Sample records for crystalline silica content

  1. Crystalline Silica Primer (United States)



    Crystalline silica is the scientific name for a group of minerals composed of silicon and oxygen. The term crystalline refers to the fact that the oxygen and silicon atoms are arranged in a threedimensional repeating pattern. This group of minerals has shaped human history since the beginning of civilization. From the sand used for making glass to the piezoelectric quartz crystals used in advanced communication systems, crystalline silica has been a part of our technological development. Crystalline silica's pervasiveness in our technology is matched only by its abundance in nature. It's found in samples from every geologic era and from every location around the globe. Scientists have known for decades that prolonged and excessive exposure to crystalline silica dust in mining environments can cause silicosis, a noncancerous lung disease. During the 1980's, studies were conducted that suggested that crystalline silica also was a carcinogen. As a result of these findings, crystalline silica has been regulated under the Occupational Safety and Health Administration's (OSHA) Hazard Communication Standard (HCS). Under HCS, OSHAregulated businesses that use materials containing 0.1% or more crystalline silica must follow Federal guidelines concerning hazard communication and worker training. Although the HCS does not require that samples be analyzed for crystalline silica, mineral suppliers or OSHAregulated

  2. Bench-scale synthesis of zeolite A from subbituminous coal ashes with high crystalline silica content

    Energy Technology Data Exchange (ETDEWEB)

    Chareonpanich, M.; Jullaphan, O.; Tang, C. [Kasetsart University, Bangkok (Thailand). Dept. of Chemical Engineering


    In this present work, fly ash and bottom ash with high crystalline silica content were obtained from the coal-fired boilers within the paper industries in Thailand. These coal ashes were used as the basic raw materials for synthetic zeolite production. The crystal type and crystallinity, specific surface area and pore size, and textural properties of zeolite products were characterized by using X-ray diffraction spectroscopy (XRD), N{sub 2} sorption analysis, and Scanning Electron Microscopy (SEM), respectively. It was found that sodalite octahydrate was selectively formed via the direct conventional (one-step) synthesis, whereas through a two-step, sodium silicate preparation and consecutive zeolite A synthesis process, 94 and 72 wt.% zeolite A products could be produced from the fly ash and bottom ash, respectively. The cation-exchange capacity (CEC) of fly ash and bottom ash-derived zeolite A products were closely similar to that of the commercial grade zeolite A.

  3. Particle size distribution and particle size-related crystalline silica content in granite quarry dust. (United States)

    Sirianni, Greg; Hosgood, Howard Dean; Slade, Martin D; Borak, Jonathan


    Previous studies indicate that the relationship between empirically derived particle counts, particle mass determinations, and particle size-related silica content are not constant within mines or across mine work tasks. To better understand the variability of particle size distributions and variations in silica content by particle size in a granite quarry, exposure surveys were conducted with side-by-side arrays of four closed face cassettes, four cyclones, four personal environmental monitors, and a real-time particle counter. In general, the proportion of silica increased as collected particulate size increased, but samples varied in an inconstant way. Significant differences in particle size distributions were seen depending on the extent of ventilation and the nature and activity of work performed. Such variability raises concerns about the adequacy of silica exposure assessments based on only limited numbers of samples or short-term samples.

  4. Evaluation of Respirable Crystalline Silica in High School Ceramics Classrooms

    Directory of Open Access Journals (Sweden)

    Matthew Fechser


    Full Text Available Air concentrations of respirable crystalline silica were measured in eleven (11 high school ceramics classrooms located in Salt Lake County, UT, USA. Respirable dust was collected on PVC filters using precision flow pumps and cyclone samplers (n = 44. Filters were subsequently analyzed for respirable dust and percent crystalline silica content. The geometric mean of the silica concentrations was 0.009 mg/m3 near the teacher’s work station and 0.008 mg/m3 near the kilns. The number of students in the classroom was correlated to the silica concentration in the ceramics classroom, but no correlation was found between the silica concentrations and either the size of the classroom or the age of the building. Results from this study indicate that ceramics teachers may be at an increased risk of exposure to crystalline silica based on the ACGIH TLV of 0.025 mg/m3, with an exceedance of 21%.

  5. Evaluation of Respirable Crystalline Silica in High School Ceramics Classrooms (United States)

    Fechser, Matthew; Alaves, Victor; Larson, Rodney; Sleeth, Darrah


    Air concentrations of respirable crystalline silica were measured in eleven (11) high school ceramics classrooms located in Salt Lake County, UT, USA. Respirable dust was collected on PVC filters using precision flow pumps and cyclone samplers (n = 44). Filters were subsequently analyzed for respirable dust and percent crystalline silica content. The geometric mean of the silica concentrations was 0.009 mg/m3 near the teacher’s work station and 0.008 mg/m3 near the kilns. The number of students in the classroom was correlated to the silica concentration in the ceramics classroom, but no correlation was found between the silica concentrations and either the size of the classroom or the age of the building. Results from this study indicate that ceramics teachers may be at an increased risk of exposure to crystalline silica based on the ACGIH TLV of 0.025 mg/m3, with an exceedance of 21%. PMID:24464235

  6. Exposure to crystalline silica in abrasive blasting operations where silica and non-silica abrasives are used. (United States)

    Radnoff, Diane L; Kutz, Michelle K


    Exposure to respirable crystalline silica is a hazard common to many industries in Alberta but particularly so in abrasive blasting. Alberta occupational health and safety legislation requires the consideration of silica substitutes when conducting abrasive blasting, where reasonably practicable. In this study, exposure to crystalline silica during abrasive blasting was evaluated when both silica and non-silica products were used. The crystalline silica content of non-silica abrasives was also measured. The facilities evaluated were preparing metal products for the application of coatings, so the substrate should not have had a significant contribution to worker exposure to crystalline silica. The occupational sampling results indicate that two-thirds of the workers assessed were potentially over-exposed to respirable crystalline silica. About one-third of the measurements over the exposure limit were at the work sites using silica substitutes at the time of the assessment. The use of the silica substitute, by itself, did not appear to have a large effect on the mean airborne exposure levels. There are a number of factors that may contribute to over-exposures, including the isolation of the blasting area, housekeeping, and inappropriate use of respiratory protective equipment. However, the non-silica abrasives themselves also contain silica. Bulk analysis results for non-silica abrasives commercially available in Alberta indicate that many contain crystalline silica above the legislated disclosure limit of 0.1% weight of silica per weight of product (w/w) and this information may not be accurately disclosed on the material safety data sheet for the product. The employer may still have to evaluate the potential for exposure to crystalline silica at their work site, even when silica substitutes are used. Limited tests on recycled non-silica abrasive indicated that the silica content had increased. Further study is required to evaluate the impact of product recycling

  7. Exposure to respirable crystalline silica in South African farm workers

    Energy Technology Data Exchange (ETDEWEB)

    Swanepoel, Andrew; Rees, David [University of the Witwatersrand, School of Public Health, Johannesburg (South Africa); Renton, Kevin [National Institute for Occupational Health, Johannesburg (South Africa); Kromhout, Hans, E-mail: [Environmental Epidemiology Division, Institute for Risk Assessment Sciences, University of Utrecht (Netherlands)


    Although listed in some publications as an activity associated with silica (quartz) exposure, agriculture is not widely recognized as an industry with a potential for silica associated diseases. Because so many people work in agriculture; and because silica exposure and silicosis are associated with serious diseases such as tuberculosis (TB), particular in those immunological compromised by the Human immunodeficiency virus (HIV), silica exposure in agriculture is potentially very important. But in South Africa (SA) very little is known about silica exposure in this industry. The objectives of this project are: (a) to measure inhalable and respirable dust and its quartz content on two typical sandy soil farms in the Free State province of SA for all major tasks done on the farms; and (b) to characterise the mineralogy soil type of these farms. Two typical farms in the sandy soil region of the Free State province were studied. The potential health effects faced by these farm workers from exposure to respirable crystalline silica are discussed.

  8. How reliable are crystalline silica dust concentration measurements? (United States)

    Cox, L A; Van Orden, D R; Lee, R J; Arlauckas, S M; Kautz, R A; Warzel, A L; Bailey, K F; Ranpuria, A K


    To determine how reliably commercial laboratories measure crystalline silica concentrations corresponding to OSHA's proposed limits, 105 filters were prepared with known masses of 20, 40, and 80 μg of respirable quartz corresponding to airborne silica concentrations of 25, 50, and 100 μg/m(3) and were submitted, in a blind test, to qualified commercial laboratories over a nine month period. Under these test conditions, the reported results indicated a lack of accuracy and precision needed to reliably inform regulatory compliance decisions. This was true even for filters containing only silica, without an interfering matrix. For 36 filters loaded with 20 or more micrograms of silica, the laboratories reported non-detected levels of silica. Inter-laboratory variability in this performance test program was so high that the reported results could not be used to reliably discriminate among filters prepared to reflect 8-h exposures to respirable quartz concentrations of 25, 50 and 100 μg/m(3). Moreover, even in intra-laboratory performance, there was so much variability in the reported results that 2-fold variations in exposure concentrations could not be reliably distinguished. Part of the variability and underreporting may result from the sample preparation process. The results of this study suggest that current laboratory methods and practices cannot necessarily be depended on, with high confidence, to support proposed regulatory standards with reliable data.

  9. Respirable crystalline silica exposures during asphalt pavement milling at eleven highway construction sites. (United States)

    Hammond, Duane R; Shulman, Stanley A; Echt, Alan S


    Asphalt pavement milling machines use a rotating cutter drum to remove the deteriorated road surface for recycling. The removal of the road surface has the potential to release respirable crystalline silica, to which workers can be exposed. This article describes an evaluation of respirable crystalline silica exposures to the operator and ground worker from two different half-lane and larger asphalt pavement milling machines that had ventilation dust controls and water-sprays designed and installed by the manufacturers. Manufacturer A completed milling for 11 days at 4 highway construction sites in Wisconsin, and Manufacturer B completed milling for 10 days at 7 highway construction sites in Indiana. To evaluate the dust controls, full-shift personal breathing zone air samples were collected from an operator and ground worker during the course of normal employee work activities of asphalt pavement milling at 11 different sites. Forty-two personal breathing zone air samples were collected over 21 days (sampling on an operator and ground worker each day). All samples were below 50 µg/m(3) for respirable crystalline silica, the National Institute for Occupational Safety and Health recommended exposure limit. The geometric mean personal breathing zone air sample was 6.2 µg/m(3) for the operator and 6.1 µg/m(3) for the ground worker for the Manufacturer A milling machine. The geometric mean personal breathing zone air sample was 4.2 µg/m(3) for the operator and 9.0 µg/m(3) for the ground worker for the Manufacturer B milling machine. In addition, upper 95% confidence limits for the mean exposure for each occupation were well below 50 µg/m(3) for both studies. The silica content in the bulk asphalt material being milled ranged from 7-23% silica for roads milled by Manufacturer A and from 5-12% silica for roads milled by Manufacturer B. The results indicate that engineering controls consisting of ventilation controls in combination with water-sprays are

  10. Respirable crystalline silica - a failure to control exposureexclamation

    Energy Technology Data Exchange (ETDEWEB)

    Cain, J R, E-mail: [HM Regional Specialist Inspector (Occupational Hygiene), Health and Safety Executive, Marshalls Mill, Marshall Street, Leeds LS11 9YJ (United Kingdom)


    Several sites were visited to monitor stonemason exposure to respirable crystalline silica (RCS), inhalable dust and respirable dust. At all sites, exposure to RCS exceeded the Workplace Exposure Limit of 0.1 mg/m{sup 3} 8-hour TWA. There was therefore a continuing high risk of workers developing silicosis unless the appropriate measures were instigated to prevent or control exposure. Exposure control was ineffective at all sites e.g. water wall extraction systems were not well designed. There was evidence that foreign workers were at a greater exposure risk. But even with appropriate controls to mitigate exposure to RCS it may not be possible to sustain exposure to below 0.1 mg/m{sup 3} 8-hour TWA without on-going HSE intervention.





    Eu3+ doped silica films have been prepared by sol–gel method and employed as luminescent down-shifting layer on the front side of a crystalline Si solar cell to improve their conversion efficiency. Measurements under standard test conditions (AM1.5, 100 mW/cm2) show the conversion efficiency of Si solar cell with silica film containing Eu3+ is improved 9.5% maximally as compared to the Si solar cell with pure silica film. However, high Eu3+ concentration is not encouraged because concentratio...

  12. Exposure to respirable dust and crystalline silica in bricklaying education at Dutch vocational training centers.

    NARCIS (Netherlands)

    Huizer, D.; Spee, T.; Lumens, M.E.G.L.; Kromhout, H.


    BACKGROUND: Construction workers are educated at vocational training centers before they begin their working lives. Future bricklayers and their instructors are exposed to respirable dust and possibly to hazardous respirable crystalline silica from trial mortar. METHODS: Thirty-six personal air samp

  13. Occupational exposure to crystalline silica and gastric cancer: a systematic review and meta-analysis. (United States)

    Lee, Wanhyung; Ahn, Yeon-Soon; Lee, Seunghyun; Song, Bo Mi; Hong, Seri; Yoon, Jin-Ha


    Crystalline silica is a widely used industrial material that is readily available worldwide, and is one of the most common types of particulate mineral pollutants. It has been classified as a group 1 human carcinogen of the respiratory system; however, whether it is linked to gastric cancer remains uncertain. We conducted a systemic review and meta-analyses to search for evidence of the relationship between gastric cancer and occupational exposure to crystalline silica. We searched for articles on occupations involving silica exposure and gastric cancer studies up to December 2014. Pooled-risk estimates of the association between occupational crystalline silica exposure and risk of gastric cancer were calculated by a random effects model. Metaregression analyses of industry type and histological confirmation status, study design and industrial subgroup analyses were performed. 29 articles, including 9 case-control and 20 cohort studies, were analysed. The overall summary effects size was 1.25 (95% CI 1.18 to 1.34) for the association of occupational silica exposure with gastric cancer. Both heterogeneity and publication bias were partially attenuated after subgroup analyses. Heterogeneity of studies was attenuated after metaregression by industry. Higher overall effects were observed in the mining and foundry industries. We found a significant relationship between occupational crystalline silica exposure and gastric cancer. Our results were strengthened by various subgroup analyses and, considering the biological plausibility of our premise, further studies are required to better understand this association. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to

  14. Comparison of non-crystalline silica nanoparticles in IL-1β release from macrophages

    Directory of Open Access Journals (Sweden)

    Sandberg Wiggo J


    Full Text Available Abstract Background Respirable crystalline silica (silicon dioxide; SiO2, quartz particles are known to induce chronic inflammation and lung disease upon long-term inhalation, whereas non-crystalline (amorphous SiO2 particles in the submicrometre range are regarded as less harmful. Several reports have demonstrated that crystalline, but also non-crystalline silica particles induce IL-1β release from macrophages via the NALP3-inflammasome complex (caspase-1, ASC and NALP3 in the presence of lipopolysaccharide (LPS from bacteria. Our aim was to study the potential of different non-crystalline SiO2 particles from the nano- to submicro-sized range to activate IL-1β responses in LPS-primed RAW264.7 macrophages and primary rat lung macrophages. The role of the NALP3-inflammasome and up-stream mechanisms was further explored in RAW264.7 cells. Results In the present study, we have shown that 6 h exposure to non-crystalline SiO2 particles in nano- (SiNPs, 5–20 nm, 50 nm and submicro-sizes induced strong IL-1β responses in LPS-primed mouse macrophages (RAW264.7 and primary rat lung macrophages. The primary lung macrophages were more sensitive to Si-exposure than the RAW-macrophages, and responded more strongly. In the lung macrophages, crystalline silica (MinUsil 5 induced IL-1β release more potently than the non-crystalline Si50 and Si500, when adjusted to surface area. This difference was much less pronounced versus fumed SiNPs. The caspase-1 inhibitor zYVAD and RNA silencing of the NALP3 receptor reduced the particle-induced IL-1β release in the RAW264.7 macrophages. Furthermore, inhibitors of phagocytosis, endosomal acidification, and cathepsin B activity reduced the IL-1β responses to the different particles to a similar extent. Conclusions In conclusion, non-crystalline silica particles in the nano- and submicro-size ranges seemed to induce IL-1β release from LPS-primed RAW264.7 macrophages via similar mechanisms as crystalline

  15. Field evaluation of an engineering control for respirable crystalline silica exposures during mortar removal. (United States)

    Collingwood, Scott; Heitbrink, William A


    During mortar removal with a right angle grinder, a building renovation process known as "tuck pointing," worker exposures to respirable crystalline silica can be as high as 5 mg/m(3), 100 times the recommended exposure limit developed by the National Institute for Occupational Safety and Health. To reduce the risk of silicosis among these workers, a vacuum cleaner can be used to exhaust 80 ft(3)/min (2.26 m(3)/min) from a hood mounted on the grinder. Field trials examined the ability of vacuum cleaners to maintain adequate exhaust ventilation rates and measure exposure outcomes when using this engineering control. These field trials involved task-based exposure measurement of respirable dust and crystalline silica exposures during mortar removal. These measurements were compared with published exposure data. Vacuum cleaner airflows were obtained by measuring and digitally logging vacuum cleaner static pressure at the inlet to the vacuum cleaner motor. Static pressures were converted to airflows based on experimentally determined fan curves. In two cases, video exposure monitoring was conducted to study the relationship between worker activities and dust exposure. Worker activities were video taped concurrent with aerosol photometer measurement of dust exposure and vacuum cleaner static pressure as a measure of airflow. During these field trials, respirable crystalline silica exposures for 22 samples had a geometric mean of 0.06 mg/m(3) and a range of less than 0.01 to 0.86 mg/m(3). For three other studies, respirable crystalline silica exposures during mortar removal have a geometric means of 1.1 to 0.35. Although this field study documented noticeably less exposure to crystalline silica, video exposure monitoring found that the local exhaust ventilation provided incomplete dust control due to low exhaust flow rates, certain work practices, and missing mortar. Vacuum cleaner airflow decrease had a range of 3 to 0.4 ft(3)/min (0.08 to 0.01 m(3)/sec(2)) over a range

  16. Tailoring crystallinity and configuration of silica nanotubes by electron irradiation (United States)

    Taguchi, Tomitsugu; Yamaguchi, Kenji


    SiO2 nanotubes show potential in applications such as nanoscale electronic and optical devices, bioseparation, biocatalysis, and nanomedicine. As-grown SiO2 nanotubes in the previous studies always have an amorphous wall, and here we demonstrate the successful synthesis of single-crystal nanotubes for the first time by the heat treatment of SiC nanotubes at 1300 °C for 10 h under low-vacuum conditions. According to TEM observations, the single-crystal SiO2 was α-cristobalite. We also demonstrate that single-crystal SiO2 nanotubes can be transformed into amorphous SiO2 nanotubes by electron beam irradiation. Moreover, we synthesized a crystalline/amorphous SiO2 composite nanotube, in which crystalline and amorphous SiO2 coexisted in different localized regions. In addition, for biomedical applications such as drug delivery systems, controlling the configuration of the open end, the diameter, and capsulation of SiO2 nanotubes is crucial. We can also obturate, capsulate, and cut a SiO2 nanotube, as well as modify the inner diameter of the nanotube at a specific, nanometer-sized region using the focused electron beam irradiation technique.

  17. Blocking the 4-1BB Pathway Ameliorates Crystalline Silica-induced Lung Inflammation and Fibrosis in Mice. (United States)

    Li, Chao; Du, Sitong; Lu, Yiping; Lu, Xiaowei; Liu, Fangwei; Chen, Ying; Weng, Dong; Chen, Jie


    Long term pulmonary exposure to crystalline silica leads to silicosis that manifests progressive interstitial fibrosis, eventually leading to respiratory failure and death. Despite efforts to eliminate silicosis, clinical cases continue to occur in both developing and developed countries. The exact mechanisms of crystalline silica-induced pulmonary fibrosis remain elusive. Herein, we find that 4-1BB is induced in response to crystalline silica injury in lungs and that it is highly expressed during development of experimental silicosis. Therefore, we explore the role of 4-1BB pathway during crystalline silica-induced lung injury and find that a specific inhibitor blocking the pathway could effectively alleviate crystalline silica-induced lung inflammation and subsequent pulmonary fibrosis in vivo. Compared to controls, the treated mice exhibited reduced Th1 and Th17 responses. The concentrations of pro-inflammatory cytokines in bronchoalveolar lavage fluid (BALF), including tumor necrosis factor (TNF)-α, interferon (IFN)-γ and interleukin (IL)-17A following crystalline silica challenge were also reduced in inhibitor-treated mice. Although there was no significant alteration in Th2 cytokines of IL-4 and IL-13, another type of pro-fibrogenic cell, regulatory T cell (Treg) was significantly affected. In addition, one of the major participants in fibrogenesis, fibrocyte recruited less due to the blockade. Furthermore, we demonstrated the decreased fibrocyte recruitment was associated with chemokine reductions in lung. Our study discovers the 4-1BB pathway signaling enhances inflammatory response and promotes pulmonary fibrosis induced by crystalline silica. The findings here provide novel insights into the molecular events that control crystalline silica-induced lung inflammation and fibrosis through regulating Th responses and the recruitment of fibrocytes in crystalline silica-exposed lung.

  18. On the mechanical quality factors of cryogenic test masses from fused silica and crystalline quartz

    CERN Document Server

    Schroeter, Anja; Schnabel, Roman; Reid, Stuart; Martin, Iain; Rowan, Sheila; Schwarz, Christian; Koettig, Torsten; Neubert, Ralf; Thürk, Matthias; Vodel, Wolfgang; Tünnermann, Andreas; Danzmann, Karsten; Seidel, Paul


    Current interferometric gravitational wave detectors (IGWDs) are operated at room temperature with test masses made from fused silica. Fused silica shows very low absorption at the laser wavelength of 1064 nm. It is also well suited to realize low thermal noise floors in the detector signal band since it offers low mechanical loss, i. e. high quality factors (Q factors) at room temperature. However, for a further reduction of thermal noise, cooling the test masses to cryogenic temperatures may prove an interesting technique. Here we compare the results of Q factor measurements at cryogenic temperatures of acoustic eigenmodes of test masses from fused silica and its crystalline counterpart. Our results show that the mechanical loss of fused silica increases with lower temperature and reaches a maximum at 30 K for frequencies of slightly above 10 kHz. The losses of crystalline quartz generally show lower values and even fall below the room temperature values of fused silica below 10 K. Our results show that in ...

  19. Tailoring crystallinity and configuration of silica nanotubes by electron irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Taguchi, Tomitsugu, E-mail:; Yamaguchi, Kenji


    Highlights: •Single-crystal SiO{sub 2} nanotubes were successfully synthesized for the first time. •The single-crystal SiO{sub 2} was α-crystobalite. •Desired area of single-crystal nanotube can be changed to amorphous by electron irradiation. •The configuration of nanotube can be controlled using the focused electron irradiation technique. -- Abstract: SiO{sub 2} nanotubes show potential in applications such as nanoscale electronic and optical devices, bioseparation, biocatalysis, and nanomedicine. As-grown SiO{sub 2} nanotubes in the previous studies always have an amorphous wall, and here we demonstrate the successful synthesis of single-crystal nanotubes for the first time by the heat treatment of SiC nanotubes at 1300 °C for 10 h under low-vacuum conditions. According to TEM observations, the single-crystal SiO{sub 2} was α-cristobalite. We also demonstrate that single-crystal SiO{sub 2} nanotubes can be transformed into amorphous SiO{sub 2} nanotubes by electron beam irradiation. Moreover, we synthesized a crystalline/amorphous SiO{sub 2} composite nanotube, in which crystalline and amorphous SiO{sub 2} coexisted in different localized regions. In addition, for biomedical applications such as drug delivery systems, controlling the configuration of the open end, the diameter, and capsulation of SiO{sub 2} nanotubes is crucial. We can also obturate, capsulate, and cut a SiO{sub 2} nanotube, as well as modify the inner diameter of the nanotube at a specific, nanometer-sized region using the focused electron beam irradiation technique.

  20. Evolution of Morphology and Crystallinity of Silica Minerals Under Hydrothermal Conditions (United States)

    Isobe, H.


    Silica minerals are quite common mineral species in surface environment of the terrestrial planets. They are good indicator of terrestrial processes including hydrothermal alteration, diagenesis and soil formation. Hydrothermal quartz, metastable low temperature cristobalite and amorphous silica show characteristic morphology and crystallinity depending on their formation processes and kinetics under wide range of temperature, pressure, acidity and thermal history. In this study, silica minerals produced by acidic hydrothermal alteration related to volcanic activities and hydrothermal crystallization experiments from diatom sediment are examined with crystallographic analysis and morphologic observations. Low temperature form of cistobalite is a metastable phase and a common alteration product occured in highly acidic hydrothermal environment around fumaroles in geothermal / volcanic areas. XRD analysis revealed that the alteration degree of whole rock is represented by abundance of cristobalite. Detailed powder XRD analysis show that the primary diffraction peak of cristobalite composed with two or three phases with different d-spacing and FWHM by peak profile fitting analysis. Shorter d-spacing and narrower FWHM cristobalite crystallize from precursor materials with less-crystallized, longer d-spacing and wider FWHM cristobalite. Textures of hydrothermal cristobalite in altered rock shows remnant of porphylitic texture of the host rock, pyroxene-amphibole andesite. Diatom has amorphous silica shell and makes diatomite sediment. Diatomite found in less diagenetic Quarternary formation keeps amorphous silica diatom shells. Hydrothermal alteration experiments of amorphous silica diatomite sediment are carried out from 300 °C to 550 °C. Mineral composition of run products shows crystallization of cristobalite and quartz progress depending on temperature and run durations. Initial crystallization product, cristobalite grains occur as characteristic lepispheres and

  1. Assessment of Occupational Exposure to Dust and Crystalline Silica in Foundries


    Ali OMIDIANIDOST; Mehdi GHASEMKHANI; Azari, Mansour R.; Golbabaei,Farideh


    Background: The term “crystalline silica” refers to crystallized form of SiO2 and quartz, as the most abundant compound on the earth’s crust; it is capable of causing silicosis and lung cancer upon inhaling large doses in the course of occupational exposure. The aim of this study was to assess occupational exposure to dust and crystalline silica in foundries in Pakdasht, Iran. Materials and Methods: In this study, airborne dust samples were collected on PVC filters (37 mm diameter, 0.8 mm por...

  2. Crystalline silica in heated man-made vitreous fibres: a review. (United States)

    Brown, Terry P; Harrison, Paul T C


    Refractory ceramic fibres (RCF) and alkaline earth silicate (AES) wools are types of man-made vitreous fibre (MMVF) that are used in demanding high-temperature industrial applications, generally above 900 °C and up to 1400 °C. When exposed to prolonged high temperatures, MMVF can devitrify with the formation of cristobalite and other crystalline silica species, which is of potential concern because crystalline silica (CS) is classified as carcinogenic. This article reviews the chemico-physical processes and morphological consequences of fibre devitrification, the forms and micro-location of CS produced, and the toxicity of devitrified fibres and the CS species formed in this way. It also examines scenarios for worker exposure to the products of fibre devitrification in industries using RCF and/or AES wools. We identify gaps in knowledge and make recommendations for future research.

  3. Silicosis mortality trends and new exposures to respirable crystalline silica - United States, 2001-2010. (United States)

    Bang, Ki Moon; Mazurek, Jacek M; Wood, John M; White, Gretchen E; Hendricks, Scott A; Weston, Ainsley


    Silicosis is a preventable occupational lung disease caused by the inhalation of respirable crystalline silica dust and can progress to respiratory failure and death. No effective specific treatment for silicosis is available; patients are provided supportive care, and some patients may be considered for lung transplantation. Chronic silicosis can develop or progress even after occupational exposure has ceased. The number of deaths from silicosis declined from 1,065 in 1968 to 165 in 2004. Hazardous occupational exposures to silica dust have long been known to occur in a variety of industrial operations, including mining, quarrying, sandblasting, rock drilling, road construction, pottery making, stone masonry, and tunneling operations. Recently, hazardous silica exposures have been newly documented during hydraulic fracturing of gas and oil wells and during fabrication and installation of engineered stone countertops. To describe temporal trends in silicosis mortality in the United States, CDC analyzed annual multiple cause-of-death data for 2001-2010 for decedents aged ≥15 years. During 2001-2010, a total of 1,437 decedents had silicosis coded as an underlying or contributing cause of death. The annual number of silicosis deaths declined from 164 (death rate† = 0.74 per 1 million population) in 2001 to 101 (0.39 per 1 million) in 2010 (p = 0.002). Because of new operations and tasks placing workers at risk for silicosis, efforts to limit workplace exposure to crystalline silica need to be maintained.

  4. Levels of crystalline silica dust in dental laboratorium of Dental Health Technology Study Program of Vocational Faculty, Universitas Airlangga

    Directory of Open Access Journals (Sweden)

    Eny Inayati


    Full Text Available Background: Silicosis is an occupational lung disease caused by inhaling particles of crystalline silica in a long time. The disease then results in inflammation and defects in lung tissue. Prosthesis construction is usually conducted in dental laboratory using a lot of materials containing crystalline silica, such as gypsum, ceramics, planting material, sandblast and others. Purpose: This research aims to determine levels of crystalline silica dust in the dental laboratory of Dental Health Technology Diploma Study Program, Vocational Faculty, Universitas Airlangga. Method: Three measurement points was determined, namely point 1, point 2 and point 3 in each dental laboratory space (I and II. Suctioning dust was performed at those points using Low Volume Dust Sampler (LVDS. Samples taken were divided into two groups, namely X and Y. Taking dust samples were carried out for 30 minutes. Elements of crystalline silica contained in the dust were quantitatively measured using XR Defractometry tool, while size and morphology of silica were measured using SEM EDX tool. Data obtained were statistically analyzed by paired t test. Result: The results showed significant differences in the levels of the total dust measured and crystalline silica in the form of quartz and cristobalite among those two dental laboratory spaces. Conclusion: It can be concluded that the levels of the total dust and silica quartz dust in the dental laboratory spaces I and II were greater than the Threshold Limit Value (TLV determined.

  5. A Significant Amount of Crystalline Silica in Returned Cometary Samples: Bridging the Gap between Astrophysical and Meteoritical Observations (United States)

    Roskosz, Mathieu; Leroux, Hugues


    Crystalline silica (SiO2) is recurrently identified at the percent level in the infrared spectra of protoplanetary disks. By contrast, reports of crystalline silica in primitive meteorites are very unusual. This dichotomy illustrates the typical gap existing between astrophysical observations and meteoritical records of the first solids formed around young stars. The cometary samples returned by the Stardust mission in 2006 offer an opportunity to have a closer look at a silicate dust that experienced a very limited reprocessing since the accretion of the dust. Here, we provide the first extended study of silica materials in a large range of Stardust samples. We show that cristobalite is the dominant form. It was detected in 5 out of 25 samples. Crystalline silica is thus a common minor phase in Stardust samples. Furthermore, olivine is generally associated with this cristobalite, which put constraints on possible formation mechanisms. A low-temperature subsolidus solid-solid transformation of an amorphous precursor is most likely. This crystallization route favors the formation of olivine (at the expense of pyroxenes), and crystalline silica is the natural byproduct of this transformation. Conversely, direct condensation and partial melting are not expected to produce the observed mineral assemblages. Silica is preserved in cometary materials because they were less affected by thermal and aqueous alterations than their chondritic counterparts. The common occurrence of crystalline silica therefore makes the cometary material an important bridge between the IR-based mineralogy of distant protoplanetary disks and the mineralogy of the early solar system.


    Energy Technology Data Exchange (ETDEWEB)

    Roskosz, Mathieu; Leroux, Hugues [Unité Matériaux et Transformations, Université Lille 1, CNRS, UMR 8207, F-59655 Villeneuve d’Ascq (France)


    Crystalline silica (SiO{sub 2}) is recurrently identified at the percent level in the infrared spectra of protoplanetary disks. By contrast, reports of crystalline silica in primitive meteorites are very unusual. This dichotomy illustrates the typical gap existing between astrophysical observations and meteoritical records of the first solids formed around young stars. The cometary samples returned by the Stardust mission in 2006 offer an opportunity to have a closer look at a silicate dust that experienced a very limited reprocessing since the accretion of the dust. Here, we provide the first extended study of silica materials in a large range of Stardust samples. We show that cristobalite is the dominant form. It was detected in 5 out of 25 samples. Crystalline silica is thus a common minor phase in Stardust samples. Furthermore, olivine is generally associated with this cristobalite, which put constraints on possible formation mechanisms. A low-temperature subsolidus solid–solid transformation of an amorphous precursor is most likely. This crystallization route favors the formation of olivine (at the expense of pyroxenes), and crystalline silica is the natural byproduct of this transformation. Conversely, direct condensation and partial melting are not expected to produce the observed mineral assemblages. Silica is preserved in cometary materials because they were less affected by thermal and aqueous alterations than their chondritic counterparts. The common occurrence of crystalline silica therefore makes the cometary material an important bridge between the IR-based mineralogy of distant protoplanetary disks and the mineralogy of the early solar system.

  7. Quantitative crystalline silica exposure assessment for a historical cohort epidemiologic study in the German porcelain industry. (United States)

    Birk, Thomas; Guldner, Karlheinz; Mundt, Kenneth A; Dahmann, Dirk; Adams, Robert C; Parsons, William


    A time-dependent quantitative exposure assessment of silica exposure among nearly 18,000 German porcelain workers was conducted. Results will be used to evaluate exposure-response disease risks. Over 8000 historical industrial hygiene (IH) measurements with original sampling and analysis protocols from 1954-2006 were obtained from the German Berufs- genossenschaft der keramischen-und Glas-Industrie (BGGK) and used to construct a job exposure matrix (JEM). Early measurements from different devices were converted to modern gravimetric equivalent values. Conversion factors were derived from parallel historical measurements and new side-by-side measurements using historical and modern devices in laboratory dust tunnels and active workplace locations. Exposure values were summarized and smoothed using LOESS regression; estimates for early years were derived using backward extrapolation techniques. Employee work histories were merged with JEM values to determine cumulative crystalline silica exposures for cohort members. Average silica concentrations were derived for six primary similar exposure groups (SEGs) for 1938-2006. Over 40% of the cohort accumulated 1 mg/m(3)-years. Nearly 5000 workers had cumulative crystalline silica estimates >1.5 mg/m(3)-years. Similar numbers of men and women fell into each cumulative exposure category, except for 1113 women and 1567 men in the highest category. Over half of those hired before 1960 accumulated >3 mg/m(3)-years crystalline silica compared with 4.9% of those hired after 1960. Among those ever working in the materials preparation area, half accumulated >3 mg/m(3)-year compared with 12% of those never working in this area. Quantitative respirable silica exposures were estimated for each member of this cohort, including employment periods for which sampling used now obsolete technologies. Although individual cumulative exposure estimates ranged from background to about 40 mg/m(3)-years, many of these estimates reflect long

  8. Respirable Crystalline Silica (RCS) emissions from industrial plants - Results from measurement programmes in Germany (United States)

    Ehrlich, C.; Noll, G.; Wusterhausen, E.; Kalkoff, W.-D.; Remus, R.; Lehmann, C.


    Numerous research articles dealing with Respirable Crystalline Silica (RCS) in occupational health because epidemiological studies reveal an association between RCS-dust and the development of silicosis as well as an increased probability of developing lung cancer. Research activities about RCS in ambient air are known from US-measurements. However there is a lack of knowledge regarding RCS-emissions in several industrial sectors. Industrial sources of crystalline silica include construction, foundries, glass manufacturing, abrasive blasting or any industrial or commercial use of silica sand, and mining and rock crushing operations. This paper describes a RCS-emission measurement method for stack gases and report results from the German RCS-emission measurement programmes which were used to identify installations and types of industries with the highest concentration levels of RCS in stack gases. A two-stage cascade impactor was used for the measurements which separate particles into the following size fractions: >10 μm, 10-4 μm und plants are located in different German states such as Bavaria, North Rhine Westphalia, Baden-Wuerttemberg, Rhineland-Palatinate and Saxony-Anhalt. The results of the measurements show that most of the investigated plants can achieve compliance with the newly developed German emission limit value (ELV) of 1 mg m-3. The ELV is expressed as the concentration of RCS in stack emissions. According to the German emission minimising principle and the precautionary principle it is assumed that by complying with the RCS-ELV there is no ambient air health risk for people living these plants. In the case of increased total dust concentration in the stack gas (more than 20 mg m-3) combined with increased percentage of crystalline silica in PM4 dust, a violation of the above mentioned ELV is more likely. This applies mostly to installations in the silica sand processing industry. To comply with the ELV of 1 mg m-3, efficient emission control

  9. Crystalline silica is a negative modifier of pulmonary cytochrome P-4501A1 induction

    Energy Technology Data Exchange (ETDEWEB)

    Battelli, L.A.; Ghanem, M.M.; Kashon, M.L.; Barger, M.; Ma, J.Y.C.; Simoskevitz, R.L.; Miles, P.R.; Hubbs, A.F. [NIOSH, Morgantown, WV (United States). Health Effects Laboratory Division


    Polycyclic aromatic hydrocarbons (PAHs) are products of incomplete combustion that are commonly inhaled by workers in the dusty trades. Many PAHs are metabolized by cytochrome P-4501A1 (CYP1A1), which may facilitate excretion but may activate pulmonary carcinogens. PAHs also stimulate their own metabolism by inducing CYP1A1. Recent studies suggest that respirable coal dust exposure inhibits induction of pulmonary CYP1A1 using the model PAH {beta}-naphthoflavone. The effect of the occupational particulate respirable crystalline silica was investigated on PAH-dependent pulmonary CYP1A1 induction. Male Sprague-Dawley rats were exposed to intratracheal silica or vehicle and then intraperitoneal {beta}-naphthoflavone, a CYP1A1 inducer, and/or phenobarbital, an inducer of hepatic CYP2B1, or vehicle. {beta}-Naphthoflavone induced pulmonary CYP1A1, but silica attenuated this {beta}-naphthoflavone-induced CYP1A1 activity and also suppressed the activity of CYP2B1, the major constituitive CYP in rat lung. The magnitude of CYP activity suppression was similar regardless of silica exposure dose within a range of 5 to 20 mg/rat. Phenobarbital and beta-naphthoflavone had no effect on pulmonary CYP2B1 activity. Both enzymatic immunohistochemistry and immunofluorescent staining for CYP1A1 indicated that sites of CYP1A1 induction were nonciliated airway epithelial cells, endothelial cells, and the alveolar septum. Our findings suggest that in PAH-exposed rat lung, silica is a negative modifier of CYP1A1 induction and CYP2B1 activity.

  10. Effect of Alkali Ions on the Amorphous to Crystalline Phase Transition of Silica (United States)

    Venezia, A. M.; La Parola, V.; Longo, A.; Martorana, A.


    The effect of the addition of alkali ions to commercial amorphous silica, generally used as support for heterogeneous catalysts, has been investigated from the point of view of morphological and structural changes. Samples of alkali-doped silica were prepared by impregnation and subsequent calcination at various temperatures. The structural effect of Li, Na, K, and Cs was determined by use of techniques such as wide-angle (WAXS) and small-angle X-ray scattering (SAXS). The WAXS diffractograms, analyzed with the Rietveld method using the GSAS program, allowed qualitative and quantitative identification of the fraction of the different silica polymorphs like quartz, tridymite, and cristobalite. SAXS measurements, using the classical method based on Porod's law, yielded the total surface area of the systems. The calculated areas were compared with the surface areas determined by the nitrogen adsorption technique using the analytical method of Brunauer-Emmett-Teller. The results are explained in terms of sizes of the alkali ions and cell volume of the different crystalline phases.

  11. Development of an exposure matrix for respirable crystalline silica in the British pottery industry. (United States)

    Burgess, G L


    Processes associated with occupational exposure to respirable crystalline silica in the British pottery industry were investigated to develop estimates of worker exposures from 1930 to 1995. Information was derived from more than 1300 air samples, published literature and unpublished reports of dust control innovations and process changes. A matrix was developed specifically to support a mortality study of 5115 pottery workers in North Staffordshire, UK. Matrix values range from 2 micrograms/m3 for pottery support activities performed in the 1990s to 800 micrograms/m3 for firing activities in the 1930s. Although exposure estimates within decade varied, median concentrations for all process categories displayed an overall trend towards progressive reduction in exposure during the 65 year span. Potential methods to validate the matrix as well as sources of error are discussed.

  12. Respirable crystalline silica: Analysis methodologies; Silice cristalina respirable: Metodologias de analisis

    Energy Technology Data Exchange (ETDEWEB)

    Gomez-Tena, M. P.; Zumaquero, E.; Ibanez, M. J.; Machi, C.; Escric, A.


    This paper describes different analysis methodologies in occupational environments and raw materials. A review is presented of the existing methodologies, the approximations made, some of the constraints involved, as well as the best measurement options for the different raw materials. In addition, the different factors that might affect the precision and accuracy of the results are examined. With regard to the methodologies used for the quantitative analysis of any of the polymorph s, particularly of quartz, the study centres particularly on the analytical X-ray diffraction method. Simplified methods of calculation and experimental separation are evaluated for the estimation of this fraction in the raw materials, such as separation methods by centrifugation, sedimentation, and dust generation in controlled environments. In addition, a review is presented of the methodologies used for the collection of respirable crystalline silica in environmental dust. (Author)

  13. Bioreactivity of the crystalline silica polymorphs, quartz and cristobalite, and implications for occupational exposure limits (OELs). (United States)

    Mossman, Brooke T; Glenn, Robert E


    Silica or silicon dioxides (SiO₂) are naturally occurring substances that comprise the vast majority of the earth's crust. Because of their prevalence and commercial applications, they have been widely studied for their potential to induce pulmonary fibrosis and other disorders. Historically, the focus in the workplace has been on the development of inflammation and fibrotic lung disease, the basis for promulgating workplace standards to protect workers. Crystalline silica (CS) polymorphs, predominantly quartz and cristobalite, are used in industry but are different in their mineralogy, chemistry, surface features, size dimensions and association with other elements naturally and during industrial applications. Epidemiologic, clinical and experimental studies in the literature historically have predominantly focused on quartz polymorphs. Thus, in this review, we summarize past scientific evaluations and recent peer-reviewed literature with an emphasis on cristobalite, in an attempt to determine whether quartz and cristobalite polymorphs differ in their health effects, toxicity and other properties that may dictate the need for various standards of protection in the workplace. In addition to current epidemiological and clinical reports, we review in vivo studies in rodents as well as cell culture studies that shed light on mechanisms intrinsic to the toxicity, altered cell responses and protective or defense mechanisms in response to these minerals. The medical and scientific literature indicates that the mechanisms of injury and potential causation of inflammation and fibrotic lung disease are similar for quartz and cristobalite. Our analysis of these data suggests similar occupational exposure limits (OELs) for these minerals in the workplace.

  14. Gasification slag rheology and crystalline phase formation in titanium-calcium-alumina-silica-rich glass

    Energy Technology Data Exchange (ETDEWEB)

    Brooker, D.D. [Texaco, Inc., Beacon, NY (United States); Oh, M.S. [Hongik Univ., Seoul (Korea, Republic of)


    The Texaco Gasification Process employs a high temperature and pressure slagging gasifier, in which the viscosity of the slag plays a key role in determining operating conditions. The empirical models available in the literature as well as laboratory testing have concentrated on low titanium feeds. During the gasification of waste material, titanium oxide will become an important element in controlling the ash and slag behavior. Slag viscosity was measured at temperatures in the range of 1150-1500{degrees}C under reducing atmosphere with 0-30% titanium in combination with calcium-alumina-silica rich feeds to gain a better understanding of the slag theology. The slag viscosities with most titanium-rich slags showed the behavior of a crystalline slag with T{sub cv} of 1250{degrees}C. Crystalline phase analyses of the slag samples revealed that titanium oxide crystal will nucleate, but the glass phase is dominated by calcium-titanium-silicate and calcium-alumina-silicate glasses which have low melting points.

  15. How accurately and consistently do laboratories measure workplace concentrations of respirable crystalline silica? (United States)

    Cox, Louis Anthony Tony


    Permissible exposure limits (PELs) for respirable crystalline silica (RCS) have recently been reduced from 0.10 to 0.05 mg/m(3). This raises an important question: do current laboratory practices and standards for assessing RCS concentrations permit reliable discrimination between workplaces that are in compliance and workplaces that are not? To find out, this paper examines recent laboratory performance in quantifying RCS amounts on filters sent to them to assess their proficiency. A key finding is that accredited laboratories do not reliably (e.g., with 95% confidence) estimate RCS quantities to within a factor of 2. Thus, laboratory findings indicating that RCS levels are above or below a PEL provide little confidence that this is true. The current accreditation standard only requires laboratories to achieve estimates within three standard deviations of the correct (reference) value at least two thirds of the time, rather than a more usual standard such as within 25% of the correct value at least 95% of the time. Laboratory practices may improve as the new PEL is implemented, but they are presently essentially powerless to discriminate among RCS levels over most of the range of values that have been tested, leaving employers and regulators without a reliable means to ascertain when workplace RCS levels are above or below the PEL.

  16. Pulmonary inflammation and crystalline silica in respirable coal mine dust: dose-response

    Indian Academy of Sciences (India)

    E D Kuempel; M D Attfield; V Vallyathan; N L Lapp; J M Hale; R J Smith; V Castranova


    This study describes the quantitative relationships between early pulmonary responses and the estimated lungburden or cumulative exposure of respirable-quartz or coal mine dust. Data from a previous bronchoalveolar lavage (BAL) study in coal miners ( = 20) and nonminers ( = 16) were used including cell counts of alveolar macrophages (AMs) and polymorphonuclear leukocytes (PMNs), and the antioxidant superoxide dismutase (SOD) levels. Miners’ individual working lifetime particulate exposures were estimated from work histories and mine air sampling data, and quartz lung-burdens were estimated using a lung dosimetry model. Results show that quartz, as either cumulative exposure or estimated lung-burden, was a highly statistically significant predictor of PMN response ( < 0.0001); however cumulative coal dust exposure did not significantly add to the prediction of PMNs ( = 0.2) above that predicted by cumulative quartz exposure ( < 0.0001). Despite the small study size, radiographic category was also significantly related to increasing levels of both PMNs and quartz lung burden (-values < 0.04). SOD in BAL fluid rose linearly with quartz lung burden ( < 0.01), but AM count in BAL fluid did not ( > 0.4). This study demonstrates dose-response relationships between respirable crystalline silica in coal mine dust and pulmonary inflammation, antioxidant production, and radiographic small opacities.

  17. [Study on quantificational analysis method for the non-crystalline content in blast furnace slag]. (United States)

    Yan, Ding-Liu; Guo, Pei-Min; Qi, Yuan-Hong; Zhang, Chun-Xia; Wang, Hai-Feng; Dai, Xiao-Tian


    Quantificational analysis method for the non-crystalline and crystalline contents in blast furnace slag was studied by means of X-ray diffraction. The process of quantificational analysis method includes standard samples preparation, samples preparation, X-ray diffraction measurement and data treatment. The data treatment includes integration areas of non-crystalline curve and crystalline peaks in certain diffraction angle range, linear fitting and quantificational coefficient determination. The preparation methods of standard samples for X-ray diffraction of blast furnace slag were proposed, including 100% crystalline sample and 100% non-crystalline sample. The 100% crystalline sample can be obtained by heating blast furnace slag for 12 h at 1 000-1 200 degrees C, and the 100% non-crystalline sample can be obtained by quenching the molten slag with enough water. The X-ray diffraction method of quantificational analysis of non-crystalline content in blast furnace slag was proposed with the 100% non-crystalline and 100% crystalline standard samples, and the quantificational coefficient can be obtained by linear regression on the integration areas of non-crystalline curve and crystalline peaks of X-ray diffraction in the 2-theta range 20 degrees-40 degrees. This method is suitable for the blast furnace slag with the non-crystalline content over 80%. The non-crystalline and crystalline contents of original blast furnace slag are obtained by combining the X-ray diffraction results and mathematical treatment, and this method is suitable for the blast furnace slag with the non-crystalline content over 90%, whose process includes preparing the 100% crystalline standard sample by heating blast furnace slag for 12 h at 1000-1200 degrees C, samples preparation with the 0.02 interval in the 0-0.1 mass ratio range of 100% crystalline to original slag, X-ray diffraction measurement of the samples prepared and data treatment using iterative linear regression. The

  18. Electrolyte-promoted demineralization of biogenic, vitreous, and crystalline silica: A density functional investigation (United States)

    Dove, P. M.; Wallace, A. F.; Gibbs, G. V.


    The dissolution of amorphous and crystalline varieties of SiO2 is an integral part of the global biogeochemical cycle of silicon. Nanoparticulate biogenic silica produced by marine phytoplankton and terrestrial plants are of particular interest because their enhanced reactivity and abundance make them important sources and sinks of dissolved silicon in natural environments. Recent experimental results on (100) surfaces of quartz show that the dominant dissolution mechanism in simple H2O solutions is by retreat of Q2 groups along step edges. In the presence of electrolytes, rates are accelerated by up to 100X in the presence by a crossover in the dominant dissolution mechanism to nucleation of vacancy islands at Q3 terminated species (Dove et al., PNAS, 2005). While the control of surface coordination in reactivity is clear, the molecular pathway by which electrolytes induce dissolution by a nucleated process remains poorly understood. The results of previous ab initio investigations of Si-O bond hydrolysis by water have demonstrated that the reaction proceeds through the dissociative adsorption of H2O at the silica surface, resulting in the formation of a pentacoordinated Si transition state, followed by the transfer of one of the water bound hydrogen atoms to a bridging oxygen in the SiO2 bonded network, and breakage of the Si-O bond. Assuming a similar reaction path, the specific effects of hydrated group II metal cations (Mg2+, Ca2+, Sr2+, Ba2+) on the energetics of Si-O bond hydrolysis have been investigated with density functional methods (B3LYP) and a relatively large neutral silica cluster (H8Si6O16). Reactant, product, and transition states for Q3 to Q2 hydrolysis in the presence and absence of the afore-mentioned cations have been determined with all electron (6-31G(d)) and effective core potential (SDDALL) Gaussian basis sets. The free energy of activation for Q3 to Q2 Si-O bond hydrolysis was determined to be approximately 5 kJ/mol lower for Ca2+ than Mg

  19. Differentiating between long and short range disorder in infra-red spectra: on the meaning of "crystallinity" in silica. (United States)

    Asscher, Yotam; Dal Sasso, Gregorio; Nodari, Luca; Angelini, Ivana; Boffa Ballaran, Tiziana; Artioli, Gilberto


    Local atomic disorder and crystallinity are structural properties that influence greatly the resulting chemical and mechanical properties of inorganic solids, and are used as indicators for different pathways of material formation. Here, these structural properties are assessed in the crystals of quartz based on particle-size-related scattering processes in transmission infra-red spectroscopy. Independent determinations of particle size distributions in the range 2-100 μm of a single crystal of quartz and defective quartz with highly anisotropic micro-crystallites show that particle sizes below the employed wavelength (approx 10 μm) exhibit asymmetric narrowing of absorption peak widths, due to scattering processes that depend on the intra-particle structural defects and long range crystallinity. In particular, we observe that the 1079 cm(-1) peak could be used to assess crystallinity, because it shows an asymmetric peak shape shift toward a higher wavelength, depending on the crystallite size. We observe that the 694 cm(-1) peak could be used to assess local atomic disorder as it does not show scattering and peak shape changes when absorption effects dominate, below 2 μm. We propose coupling particle size assessments with infra-red peak shape analysis as a method to characterize crystallinity and short range order for studying recrystallization in natural silica, as well as defectivity in many different types of silicas used for industrial and technological applications.

  20. On the determination of crystallinity and cellulose content in plant fibres

    DEFF Research Database (Denmark)

    Thygesen, Anders; Oddershede, Jette; Lilholt, Hans


    A comparative study of cellulose crystallinity based on the sample crystallinity and the cellulose content in plant fibres was performed for samples of different origin. Strong acid hydrolysis was found superior to agricultural fibre analysis and comprehensive plant fibre analysis for a consistent...... determination of the cellulose content. Crystallinity determinations were based on X-ray powder diffraction methods using side-loaded samples in reflection (Bragg-Brentano) mode. Rietveld refinements based on the recently published crystal structure of cellulose I beta followed by integration of the crystalline...... and amorphous (background) parts were performed. This was shown to be straightforward to use and in many ways advantageous to traditional crystallinity determinations using the Segal or the Ruland-Vonk methods. The determined cellulose crystallinities were 90 - 100 g/ 100 g cellulose in plant-based fibres...

  1. Dental composite resins containing silica-fused ceramic single-crystalline whiskers with various filler levels. (United States)

    Xu, H H


    Currently available direct-filling composite resins are susceptible to fracture and hence are not recommended for use in large stress-bearing posterior restorations involving cusps. The glass fillers in composites provide only limited reinforcement because of the brittleness and low strength of glass. The aim of the present study was to use ceramic single-crystalline whiskers as fillers to reinforce composites, and to investigate the effect of whisker filler level on composite properties. Silica particles were fused onto the whiskers to facilitate silanization and to roughen the whiskers, thereby improving retention in the matrix. The composite flexural strength, elastic modulus, hardness, and degree of polymerization conversion were measured as a function of whisker filler mass fraction, which ranged from 0% to 70%. Selected composites were polished simulating clinical procedures, and the surface roughness was measured with profilometry. The whisker composite with a filler mass fraction of 55% had a flexural strength (mean +/- SD; n = 6) of 196+/-10 MPa, significantly higher than 83+/-14 MPa of a microfill and 120+/-16 MPa of a hybrid composite control (family confidence coefficient = 0.95; Tukey's multiple comparison). The composite modulus and hardness increased monotonically with filler level. The flexural strength first increased, then plateaued with increasing filler level. The degree of conversion decreased with increasing filler level. The whisker composite had a polished surface roughness similar to that of a conventional hybrid composite (p>0.1; Student's t). To conclude, ceramic whisker reinforcement can significantly improve the mechanical properties of composite resins; the whisker filler level plays a key role in determining composite properties; and the reinforcement mechanisms appear to be crack pinning by whiskers and friction from whisker pullout resisting crack propagation.

  2. Differences in gene expression and cytokine production by crystalline vs. amorphous silica in human lung epithelial cells

    Directory of Open Access Journals (Sweden)

    Perkins Timothy N


    Full Text Available Abstract Background Exposure to respirable crystalline silica particles, as opposed to amorphous silica, is associated with lung inflammation, pulmonary fibrosis (silicosis, and potentially with lung cancer. We used Affymetrix/GeneSifter microarray analysis to determine whether gene expression profiles differed in a human bronchial epithelial cell line (BEAS 2B exposed to cristobalite vs. amorphous silica particles at non-toxic and equal surface areas (75 and 150 × 106μm2/cm2. Bio-Plex analysis was also used to determine profiles of secreted cytokines and chemokines in response to both particles. Finally, primary human bronchial epithelial cells (NHBE were used to comparatively assess silica particle-induced alterations in gene expression. Results Microarray analysis at 24 hours in BEAS 2B revealed 333 and 631 significant alterations in gene expression induced by cristobalite at low (75 and high (150 × 106μm2/cm2 amounts, respectively (p 6μm2/cm2 induced 108 significant gene changes. Bio-Plex analysis of 27 human cytokines and chemokines revealed 9 secreted mediators (p FOS, ATF3, IL6 and IL8 early and over time (2, 4, 8, and 24 h. Patterns of gene expression in NHBE cells were similar overall to BEAS 2B cells. At 75 × 106μm2/cm2, there were 339 significant alterations in gene expression induced by cristobalite and 42 by amorphous silica. Comparison of genes in response to cristobalite (75 × 106μm2/cm2 revealed 60 common, significant gene alterations in NHBE and BEAS 2B cells. Conclusions Cristobalite silica, as compared to synthetic amorphous silica particles at equal surface area concentrations, had comparable effects on the viability of human bronchial epithelial cells. However, effects on gene expression, as well as secretion of cytokines and chemokines, drastically differed, as the crystalline silica induced more intense responses. Our studies indicate that toxicological testing of particulates by surveying viability and

  3. Effectiveness of dust control methods for crystalline silica and respirable suspended particulate matter exposure during manual concrete surface grinding. (United States)

    Akbar-Khanzadeh, Farhang; Milz, Sheryl A; Wagner, Cynthia D; Bisesi, Michael S; Ames, April L; Khuder, Sadik; Susi, Pam; Akbar-Khanzadeh, Mahboubeh


    Concrete grinding exposes workers to unacceptable levels of crystalline silica dust, known to cause diseases such as silicosis and possibly lung cancer. This study examined the influence of major factors of exposure and effectiveness of existing dust control methods by simulating field concrete grinding in an enclosed workplace laboratory. Air was monitored during 201 concrete grinding sessions while using a variety of grinders, accessories, and existing dust control methods, including general ventilation (GV), local exhaust ventilation (LEV), and wet grinding. Task-specific geometric mean (GM) of respirable crystalline silica dust concentrations (mg/m³ for LEV:HEPA-, LEV:Shop-vac-, wet-, and uncontrolled-grinding, while GV was off/on, were 0.17/0.09, 0.57/0.13, 1.11/0.44, and 23.1/6.80, respectively. Silica dust concentrations (mg/m³ using 100-125 mm (4-5 inch) and 180 mm (7 inch) grinding cups were 0.53/0.22 and 2.43/0.56, respectively. GM concentrations of silica dust were significantly lower for (1) GV on (66.0%) vs. off, and (2) LEV:HEPA- (99.0%), LEV:Shop-vac- (98.1%) or wet- (94.4%) vs. uncontrolled-grinding. Task-specific GM of respirable suspended particulate matter (RSP) concentrations (mg/m³ for LEV:HEPA-, LEV:Shop-vac-, wet-, and uncontrolled grinding, while GV was off/on, were 1.58/0.63, 7.20/1.15, 9.52/4.13, and 152/47.8, respectively. GM concentrations of RSP using 100-125 mm and 180 mm grinding cups were 4.78/1.62 and 22.2/5.06, respectively. GM concentrations of RSP were significantly lower for (1) GV on (70.2%) vs. off, and (2) LEV:HEPA- (98.9%), LEV:Shop-vac- (96.9%) or wet- (92.6%) vs. uncontrolled grinding. Silica dust and RSP were not significantly affected by (1) orientation of grinding surfaces (vertical vs. inclined); (2) water flow rates for wet grinding; (3) length of task-specific sampling time; or, (4) among cup sizes of 100, 115 or 125 mm. No combination of factors or control methods reduced an 8-hr exposure level to below the

  4. State-of-the-science review of the occupational health hazards of crystalline silica in abrasive blasting operations and related requirements for respiratory protection. (United States)

    Madl, Amy K; Donovan, Ellen P; Gaffney, Shannon H; McKinley, Meg A; Moody, Emily C; Henshaw, John L; Paustenbach, Dennis J


    Excessive exposures to airborne crystalline silica have been known for over 100 years to pose a serious health hazard. Work practices and regulatory standards advanced as the knowledge of the hazards of crystalline silica evolved. This article presents a comprehensive historical examination of the literature on exposure, health effects, and personal protective equipment related to silica and abrasive blasting operations over the last century. In the early 1900s, increased death rates and prevalence of pulmonary disease were observed in industries that involved dusty operations. Studies of these occupational cohorts served as the basis for the first occupational exposure limits in the 1930s. Early exposure studies in foundries revealed that abrasive blasting operations were particularly hazardous and provided the basis for many of the engineering control and respiratory protection requirements that are still in place today. Studies involving abrasive blasters over the years revealed that engineering controls were often not completely effective at reducing airborne silica concentrations to a safe level; consequently, respiratory protection has always been an important component of protecting workers. During the last 15-20 yr, quantitative exposure-response modeling, experimental animal studies, and in vitro methods were used to better understand the relationship between exposure to silica and disease in the workplace. In light of Occupational Safety and Health Administration efforts to reexamine the protectiveness of the current permissible exposure limit (PEL) for crystalline silica and its focus on protecting workers who are known to still be exposed to silica in the workplace (including abrasive blasters), this state-of-the-science review of one of the most hazardous operations involving crystalline silica should provide useful background to employers, researchers, and regulators interested in the historical evolution of the recognized occupational health hazards

  5. Centrifugation-assisted Assembly of Colloidal Silica into Crack-Free and Transferrable Films with Tunable Crystalline Structures. (United States)

    Fan, Wen; Chen, Min; Yang, Shu; Wu, Limin


    Self-assembly of colloidal particles into colloidal films has many actual and potential applications. While various strategies have been developed to direct the assembly of colloidal particles, fabrication of crack-free and transferrable colloidal film with controllable crystal structures still remains a major challenge. Here we show a centrifugation-assisted assembly of colloidal silica spheres into free-standing colloidal film by using the liquid/liquid interfaces of three immiscible phases. Through independent control of centrifugal force and interparticle electrostatic repulsion, polycrystalline, single-crystalline and quasi-amorphous structures can be readily obtained. More importantly, by dehydration of silica particles during centrifugation, the spontaneous formation of capillary water bridges between particles enables the binding and pre-shrinkage of the assembled array at the fluid interface. Thus the assembled colloidal films are not only crack-free, but also robust and flexible enough to be easily transferred on various planar and curved substrates.

  6. The effect of Al-content and crystallinity on the magnetic properties of goethites

    Energy Technology Data Exchange (ETDEWEB)

    Barrero, C.A. [Universidad de Antioquia, A.A, Departamento de Fisica (Colombia); Vandenberghe, R.E.; Grave, E. de [University of Gent, Department of Subatomic and Radiation Physics (Belgium)


    This paper reviews a profound Moessbauer study on the magnetic properties of goethites with varying crystallinity and Al-content. It has been found that both the cluster-ordering and the superferromagnetic models reproduce the temperature dependencies of the average hyperfine fields quite well. However, the magnetic transition temperatures predicted by the cluster-ordering model are in better agreement with those measured from thermoscan experiments. On the other hand, it has been found that the hyperfine field of maximum probability at low temperatures follows the spin-wave law for antiferromagnets. Linear relationships between the saturation hyperfine fields, the inter-sublattice exchange interactions, and the Neel temperatures to the Al-content and crystallinity could be derived. On the other hand, applied-field Moessbauer spectroscopy seems to suggest that the anisotropy field can differentiate between poor crystallinity and Al-content, and that a certain degree of ferrimagnetism occurs at higher Al-contents.

  7. Quantitative exposure matrix for asphalt fume, total particulate matter, and respirable crystalline silica among roofing and asphalt manufacturing workers. (United States)

    Fayerweather, William E; Trumbore, David C; Johnson, Kathleen A; Niebo, Ronald W; Maxim, L Daniel


    This paper summarizes available data on worker exposures to asphalt fume (soluble fraction), total particulate matter, and respirable crystalline silica (quartz) [hereinafter RCS] over a 30-year period in Owens Corning's asphalt production and roofing manufacturing plants. For the period 1977 through 2006, the air-monitoring database contains more than 1,400 personal samples for asphalt fume (soluble fraction), 2,400 personal samples for total particulate, and 1,300 personal samples for RCS. Unique process-job categories were identified for the asphalt production and roofing shingle manufacturing plants. Quantitative exposures were tabulated by agent, process-job, and calendar period to form an exposure matrix for use in subsequent epidemiologic studies of the respiratory health of these workers. Analysis of time trends in exposure data shows substantial and statistically significant exposure reductions for asphalt fume (soluble fraction), total particulate matter, and respirable crystalline silica at Owens Corning plants. Cumulative distribution plots for the most recent sampling period (2001-2006) show that 95% of the asphalt fume (soluble fraction) measurements were less than 0.25 mg/m3; 95% of the total particulate measurements were less than 2.2 mg/m3; and 95% of the RCS measurements were less than 0.05 mg/m3. Several recommendations are offered to improve the design of future monitoring efforts.

  8. Will the Occupational Safety and Health Administration's Proposed Standards for Occupational Exposure to Respirable Crystalline Silica Reduce Workplace Risk? (United States)

    Dudley, Susan E; Morriss, Andrew P


    The Occupational Safety and Health Administration (OSHA) is developing regulations to amend existing standards for occupational exposure to respirable crystalline silica by establishing a new permissible exposure limit as well as a series of ancillary provisions for controlling exposure. This article briefly reviews OSHA's proposed regulatory approach and the statutory authority on which it is based. It then evaluates OSHA's preliminary determination of significant risk and its analysis of the risk reduction achievable by its proposed controls. It recognizes that OSHA faces multiple challenges in devising a regulatory approach that reduces exposures and health risks and meets its statutory goal. However, the greatest challenge to reducing risks associated with silica exposure is not the lack of incentives (for either employers or employees) but rather lack of information, particularly information on the relative toxicity of different forms of silica. The article finds that OSHA's proposed rule would contribute little in the way of new information, particularly since it is largely based on information that is at least a decade old--a significant deficiency, given the rapidly changing conditions observed over the last 45 years. The article concludes with recommendations for alternative approaches that would be more likely to generate information needed to improve worker health outcomes.

  9. Laboratory evaluation to reduce respirable crystalline silica dust when cutting concrete roofing tiles using a masonry saw. (United States)

    Carlo, Rebecca V; Sheehy, John; Feng, H Amy; Sieber, William K


    Respirable crystalline silica dust exposure in residential roofers is a recognized hazard resulting from cutting concrete roofing tiles. Roofers cutting tiles using masonry saws can be exposed to high concentrations of respirable dust. Silica exposures remain a serious threat for nearly two million U.S. construction workers. Although it is well established that respiratory diseases associated with exposure to silica dust are preventable, they continue to occur and cause disability or death. The effectiveness of both a commercially available local exhaust ventilation (LEV) system and a water suppression system in reducing silica dust was evaluated separately. The LEV system exhausted 0.24, 0.13, or 0.12 m(3)/sec of dust laden air, while the water suppression system supplied 0.13, 0.06, 0.03, or 0.02 L/sec of water to the saw blade. Using a randomized block design, implemented under laboratory conditions, the aforementioned conditions were evaluated independently on two types of concrete roofing tiles (s-shape and flat) using the same saw and blade. Each engineering control (LEV or water suppression) was replicated eight times, or four times for each type of tile. Analysis of variance was performed by comparing the mean airborne respirable dust concentrations generated during each run and engineering control treatment. The use of water controls and ventilation controls compared with the "no control" treatment resulted in a statistically significant (p capture velocity, additional weight of the saw with the LEV system, electricity connections, and cost of air handling unit.

  10. The structure of volcanic cristobalite in relation to its toxicity; relevance for the variable crystalline silica hazard

    Directory of Open Access Journals (Sweden)

    Horwell Claire J


    Full Text Available Abstract Background Respirable crystalline silica (RCS continues to pose a risk to human health worldwide. Its variable toxicity depends on inherent characteristics and external factors which influence surface chemistry. Significant population exposure to RCS occurs during volcanic eruptions, where ashfall may cover hundreds of square km and exposure may last years. Occupational exposure also occurs through mining of volcanic deposits. The primary source of RCS from volcanoes is through collapse and fragmentation of lava domes within which cristobalite is mass produced. After 30 years of research, it is still not clear if volcanic ash is a chronic respiratory health hazard. Toxicological assays have shown that cristobalite-rich ash is less toxic than expected. We investigate the reasons for this by determining the physicochemical/structural characteristics which may modify the pathogenicity of volcanic RCS. Four theories are considered: 1 the reactivity of particle surfaces is reduced due to co-substitutions of Al and Na for Si in the cristobalite structure; 2 particles consist of aggregates of cristobalite and other phases, restricting the surface area of cristobalite available for reactions in the lung; 3 the cristobalite surface is occluded by an annealed rim; 4 dissolution of other volcanic particles affects the surfaces of RCS in the lung. Methods The composition of volcanic cristobalite crystals was quantified by electron microprobe and differences in composition assessed by Welch’s two sample t-test. Sections of dome-rock and ash particles were imaged by scanning and transmission electron microscopy, and elemental compositions of rims determined by energy dispersive X-ray spectroscopy. Results Volcanic cristobalite contains up to 4 wt. % combined Al2O3 and Na2O. Most cristobalite-bearing ash particles contain adhered materials such as feldspar and glass. No annealed rims were observed. Conclusions The composition of volcanic

  11. Nanoscale confinement and interfacial effects on the dynamics and glass transition/crystallinity of thin adsorbed films on silica nanoparticles (United States)

    Madathingal, Rajesh Raman

    hydrogen bonded to the silanols, and was independent of particle morphology. For methylated silica, (CH3) 3-SiO2, the adsorption isotherms were identical for colloidal and fumed silica, but Tg was depressed for the former, and comparable to the bulk value for the latter. The increased Tg of PMMA adsorbed onto fumed (CH3)3-SiO2 was attributed to the larger loops formed by the bridging PMMA chains between the silica aggregates. For nanocomposites the interphase region becomes more important as the surface/volume ratio of the nanoparticles increases. Polymers have chain dimensions (characterized by the radius of gyration, Rg) similar to the nanoparticles (Rnanoparticle) themselves, so that chain conformation, mobility and crystallinity can be affected by Rg/Rnanoparticle. Here, both the glass transition temperature (Tg) and degree of crystallinity (Xc) of polyethylene oxide (PEO) on individual SiO 2 nanoparticles of nominal 15, 50 and 100 nm diameter (2 RSiO2 ) , in which Rg (PEO) was greater, equal to or less than RSiO2 was investigated. Plateau adsorption of PEO on SiO2 nanoparticles (PEO-SiO2) increased in the order PEO-SiO 2 (100 nm) > PEO-SiO2 (50 nm) > PEO-SiO2 (15 nm). At plateau adsorption after melting and solidification, the samples were completely amorphous. The Tg of the adsorbed PEO increased in the order PEO-SiO 2 (100 nm) > PEO-SiO2 (50 nm) > PEO-SiO2 (15 nm); since the Tgs were above 25°C in all cases, the PEO behaved more like a brittle solid than an elastomer. For comparable amounts of PEO that were adsorbed from solution but not melted, the melt endotherm increased in the order PEO-SiO2 (15 nm) > PEO-SiO2 (50 nm) > PEO-SiO 2 (100 nm). These trends were interpreted as due to an increase in loop/tail lengths and thus flexibility, with a concomitant ability to crystallize, as Rg (PEO)/RSiO2 decreased and which was the result of less hydrogen bond formation between the oxygens of PEO and the silanols (SiOH) of the SiO 2 as the nanoparticle size decreased. This

  12. Validation of the analysis of respirable crystalline silica (quartz) in foams used with CIP 10-R samplers. (United States)

    Eypert-Blaison, Céline; Moulut, Jean-Claude; Lecaque, Thierry; Marc, Florian; Kauffer, Edmond


    Sampling the respirable fraction to measure exposure to crystalline silica is most often carried out using cyclones. However, low flow rates (quartz sampled on foams, known amounts of quartz associated with a matrix have been injected into foams. The results obtained show that the proposed protocol, with prior acid attack and ashing of the foams, satisfies the recommendations of EN 482 Standard [CEN. (2006) Workplace atmospheres-general requirements for the performance of procedures for the measurements of chemical agents. Brussels, Belgium: EN 482 Comité Européen de normalization (CEN).], namely an expanded uncertainty of quartz weights between 0.1 and 0.5 times the 8-h exposure limit value and quartz weights between 0.5 and 2 times the 8-h exposure limit value, assuming an exposure limit value equal to 0.1 mg m(-3). Results obtained show that the 101 reflection line allows a quartz quantity of the order of 25 μg to be satisfactorily measured, which corresponds to a 10th of the exposure limit value, assuming an exposure limit value of 0.05 mg m(-3). In this case, the 100 and 112 reflection lines with expanded uncertainties of ~50% would also probably lead to satisfactory quantification. Particular recommendations are also proposed for the preparation of calibration curves to improve the method.

  13. Designing, construction, assessment, and efficiency of local exhaust ventilation in controlling crystalline silica dust and particles, and formaldehyde in a foundry industry plant. (United States)

    Morteza, Mortezavi Mehrizi; Hossein, Kakooi; Amirhossein, Matin; Naser, Hasheminegad; Gholamhossein, Halvani; Hossein, Fallah


    The purpose of the present study was to design and assess the efficiency of a local exhaust ventilation system used in a foundry operation to control inhalable dust and particles, microcrystal particles, and noxious gases and vapours affecting workers during the foundry process. It was designed based on recommendations from the American Conference of Governmental Industrial Hygiene. After designing a local exhaust ventilation system (LEV), we prepared and submitted the implementation plan to the manufacturer. High concentrations of crystalline silica dust and formaldehyde, which are common toxic air pollutants in foundries, were ultimately measured as an indicator for studying the efficiency of this system in controlling inhalable dust and particles as well as other air pollutants. The level of occupational exposure to silica and formaldehyde as major air pollutants was assessed in two modes: first, when the LEV was on, and second, when it was off. Air samples from the exposure area were obtained using a personal sampling pump and analysed using the No. 7601 method for crystal silica and the No. 2541 method for formaldehyde of the National Institute for Occupational Safety and Health (NIOSH). Silica and formaldehyde concentrations were determined by visible absorption spectrophotometry and gas chromatography. The results showed that local exhaust ventilation was successful in preserving the crystal silica particles in the work environment at a level below the NIOSH maximum allowed concentration (0.05 mg m-3). In contrast, formaldehyde exceeded the NIOSH limit (1 ppm or 1.228 mg m-3).

  14. Measurements of water potential and water content in unsaturated crystalline rock (United States)

    Schneebeli, Martin; Flühler, Hannes; Gimmi, Thomas; Wydler, Hannes; LäSer, Hans-Peter; Baer, Toni


    A water desaturation zone develops around a tunnel in water-saturated rock when the evaporative water loss at the rock surface is larger than the water flow from the surrounding saturated region of restricted permeability. We describe the methods with which such water desaturation processes in rock materials can be quantified. The water retention characteristic θ (ψ) of crystalline rock samples was determined with a pressure membrane apparatus. The negative water potential, identical to the capillary pressure, ψ, below the tensiometric range (ψ drilled into the granodiorite as a measuring chamber. The water potentials observed in a cylindrical granodiorite monolith ranged between -0.1 and -3.0 MPa; those near the wall in a ventilated tunnel between -0.1 and -2.2 MPa. Two types of three-rod TDR probes were used, one as a depth probe inserted into the rock, the other as a surface probe using three copper stripes attached to the surface for detecting water content changes in the rock-to-air boundary. The TDR signal was smoothed with a low-pass filter, and the signal length determined based on the first derivative of the trace. Despite the low porosity of crystalline rock these standard methods are applicable to describe the unsaturated zone in solid rock and may also be used in other consolidated materials such as concrete.

  15. Silica Supported Ceria Nanoparticles: A Hybrid Nanostructure To Increase Stability And Surface Reactivity Of Nano-crystalline Ceria

    Energy Technology Data Exchange (ETDEWEB)

    Munusamy, Prabhakaran; Sanghavi, Shail P.; Varga, Tamas; Thevuthasan, Suntharampillai


    The mixed oxidation state (3+/4+) of ceria nanoparticles of smaller sizes make them attractive materials for their catalytic antioxidant biological properties. However the unmodified smaller ceria nanoparticles are limited in their use due to particles agglomeration and reduced surface chemical reactivity in the solutions used to disperse the nanoparticles. This work describes an effort to stabilize small ceria nanoparticles, retaining their desired activity, on a larger stable silica support. The ceria nanoparticles attached to silica was synthesized by a solution synthesis technique in which the surface functional groups of silica nanoparticles were found to be essential for the formation of smaller ceria nanoparticles. The surface chemical and vibrational spectroscopy analysis revealed cerium–silicate (Ce-O-Si) covalent bond linkage between silica and cerium oxide nanoparticles. The colloidal properties (agglomerate particle size and suspension stability) of ceria attached to silica was significantly improved due to inherent physico-chemical characteristics of silica against random collision and gravitation settling as opposed to unmodified ceria nanoparticles in solution. The bio-catalytic activity of ceria nanoparticles in the 3+ oxidation state was not found to be limited by attachment to the silica support as measured by free radical scavenging activity in different biological media conditions.

  16. Crystalline silica dust and respirable particulate matter during indoor concrete grinding - wet grinding and ventilated grinding compared with uncontrolled conventional grinding. (United States)

    Akbar-Khanzadeh, Farhang; Milz, Sheryl; Ames, April; Susi, Pamela P; Bisesi, Michael; Khuder, Sadik A; Akbar-Khanzadeh, Mahboubeh


    The effectiveness of wet grinding (wet dust reduction method) and ventilated grinding (local exhaust ventilation method, LEV) in reducing the levels of respirable crystalline silica dust (quartz) and respirable suspended particulate matter (RSP) were compared with that of uncontrolled (no dust reduction method) conventional grinding. A field laboratory was set up to simulate concrete surface grinding using hand-held angle grinders in an enclosed workplace. A total of 34 personal samples (16 pairs side-by-side and 2 singles) and 5 background air samples were collected during 18 concrete grinding sessions ranging from 15-93 min. General ventilation had no statistically significant effect on operator's exposure to dust. Overall, the arithmetic mean concentrations of respirable crystalline silica dust and RSP in personal air samples during: (i) five sessions of uncontrolled conventional grinding were respectively 61.7 and 611 mg/m(3) (ii) seven sessions of wet grinding were 0.896 and 11.9 mg/m(3) and (iii) six sessions of LEV grinding were 0.155 and 1.99 mg/m(3). Uncontrolled conventional grinding generated relatively high levels of respirable silica dust and proportionally high levels of RSP. Wet grinding was effective in reducing the geometric mean concentrations of respirable silica dust 98.2% and RSP 97.6%. LEV grinding was even more effective and reduced the geometric mean concentrations of respirable silica dust 99.7% and RSP 99.6%. Nevertheless, the average level of respirable silica dust (i) during wet grinding was 0.959 mg/m(3) (38 times the American Conference of Governmental Industrial Hygienists [ACGIH] threshold limit value [TLV] of 0.025 mg/m(3)) and (ii) during LEV grinding was 0.155 mg/m(3) (6 times the ACGIH TLV). Further studies are needed to examine the effectiveness of a greater variety of models, types, and sizes of grinders on different types of cement in different positions and also to test the simulated field lab experimentation in the field.

  17. Dependence of growth rate of quartz in fused silica on pressure and impurity content (United States)

    Fratello, V. J.; Hays, J. F.; Turnbull, D.


    The effects of pressure, temperature, and some variations in impurity content on the growth rate u of quartz into fused silica were measured. Under all conditions the growth rate was interface controlled and increased exponentially with pressure with an activation volume averaging -21.2 cu cm/mole. The activation enthalpy for all specimens is extrapolated to a zero pressure value of 64 kcal/mole, within the experimental uncertainty. At a given stoichiometry the effect of hydroxyl content on growth rate is described entirely by a linear term C(OH) in the prefactor of the equation for the growth rate. The effect of chlorine impurity can be described similarly. Also u is increased as the ideal stoichiometry is approached from the partially reduced state.

  18. Silica-sol-based spin-coating barrier layer against phosphorous diffusion for crystalline silicon solar cells. (United States)

    Uzum, Abdullah; Fukatsu, Ken; Kanda, Hiroyuki; Kimura, Yutaka; Tanimoto, Kenji; Yoshinaga, Seiya; Jiang, Yunjian; Ishikawa, Yasuaki; Uraoka, Yukiharu; Ito, Seigo


    The phosphorus barrier layers at the doping procedure of silicon wafers were fabricated using a spin-coating method with a mixture of silica-sol and tetramethylammonium hydroxide, which can be formed at the rear surface prior to the front phosphorus spin-on-demand (SOD) diffusion and directly annealed simultaneously with the front phosphorus layer. The optimization of coating thickness was obtained by changing the applied spin-coating speed; from 2,000 to 8,000 rpm. The CZ-Si p-type silicon solar cells were fabricated with/without using the rear silica-sol layer after taking the sheet resistance measurements, SIMS analysis, and SEM measurements of the silica-sol material evaluations into consideration. For the fabrication of solar cells, a spin-coating phosphorus source was used to form the n(+) emitter and was then diffused at 930°C for 35 min. The out-gas diffusion of phosphorus could be completely prevented by spin-coated silica-sol film placed on the rear side of the wafers coated prior to the diffusion process. A roughly 2% improvement in the conversion efficiency was observed when silica-sol was utilized during the phosphorus diffusion step. These results can suggest that the silica-sol material can be an attractive candidate for low-cost and easily applicable spin-coating barrier for any masking purpose involving phosphorus diffusion.

  19. Mechanical properties and filler distribution as a function filler content in silica filled PDMS samples

    Energy Technology Data Exchange (ETDEWEB)

    Hawley, M. E. (Marilyn E.); Wrobleski, Debra A.; Orler, E. B. (E. Bruce); Houlton, R. J. (Robert J.); Chitanvis, K. E. (Kiran E.); Brown, G. W. (Geoffrey W.); Hanson, D. E. (David E.)


    Atomic force microscopy (AFM) phase imaging and tensile stress-strain measurements are used to study a series of model compression molded fumed silica filled polydimethysiloxane (PDMS) samples with filler content of zero, 20, 35, and 50 parts per hundred (phr) to determine the relationship between filler content and stress-strain properties. AFM phase imaging was used to determine filler size, degree of aggregation, and distribution within the soft PDMS matrix. A small tensile stage was used to measure mechanical properties. Samples were not pulled to break in order to study Mullins and aging effects. Several identical 35 phr samples were subjected to an initial stress, and then one each was reevaluated over intervals up to 26 weeks to determine the degree to which these samples recovered their initial stress-strain behavior as a function of time. One sample was tested before and after heat treatment to determine if heating accelerated recovery of the stress-strain behavior. The effect of filler surface treatment on mechanical properties was examined for two samples containing 35 phr filler treated or untreated with hexamethyldisilazane (HMDZ), respectively. Fiduciary marks were used on several samples to determine permanent set. 35 phr filler samples were found to give the optimum mechanical properties. A clear Mullins effect was seen. Within experimental error, no change was seen in mechanical behavior as a function of time or heat-treatment. The mechanical properties of the sample containing the HDMZ treated silica were adversely affected. AFM phase images revealed aggregation and nonuniform distribution of the filler for all samples. Finally, a permanent set of about 3 to 6 percent was observed for the 35 phr samples.

  20. Effect of extrusion temperature and moisture content of corn flour on crystallinity and hardness of rice analogues (United States)

    Budi, Faleh Setia; Hariyadi, Purwiyatno; Budijanto, Slamet; Syah, Dahrul


    Rice analogues are food products made of broken rice and/or any other carbohydrate sources to have similar texture and shape as rice. They are usually made by hot extrusion processing. The hot extrusion process may change the crystallinity of starch and influence the characteristic of rice analogues. Therefore, this research aimed to study the effect of moisture content of incoming dough and temperature of extrusion process on the crystallinity and hardness of resulting rice analogues. The dough's were prepared by mixing of corn starch-flour with ratio 10/90 (w/w) and moisture content of 35%, 40% and 45% (w/w) and extrusion process were done at temperature of 70, 80, 90°C by using of twin screw extruder BEX-DS-2256 Berto. The analyses were done to determine the type of crystal, degree of crystallinity, and hardness of the resulting rice analogues. Our result showed that the enhancement of extrusion temperature from 70 - 90°C increased degree of crystallinity from 5.86 - 15.00% to 10.70 - 18.87% and hardness from 1.71 - 4.36 kg to 2.05 - 5.70 kg. The raising of dough moisture content from 35 - 45% decreased degree of crystallinity from 15.00 - 18.87% to 5.86 - 10.70% and hardness from 4.36 - 5.70 kg to 1.71 - 2.05 kg. The increase of degree of crystallinity correlated positively with the increase of hardness of rice analogues (r = 0.746, p = 0.05).

  1. Dynamic vapor sorption as a tool for characterization and quantification of amorphous content in predominantly crystalline materials. (United States)

    Sheokand, Sneha; Modi, Sameer R; Bansal, Arvind K


    It is well established that pharmaceutical processing can cause disruption of the crystal structure, leading to generation of amorphous content in crystalline materials. The presence of even a small amount of amorphous form, especially on the surface of crystalline material, can affect processing, performance, and stability of a drug product. This necessitates the need to quantify, monitor, and control the amorphous form. Numerous analytical techniques have been reported for the quantification of amorphous phase, but issues of sensitivity, suitability, limit of detection, and quantitation pose significant challenges. The present review focuses on use of dynamic vapor sorption (DVS) for quantification of amorphous content in predominantly crystalline materials. The article discusses (1) theoretical and experimental considerations important for developing a quantification method, (2) methods used for quantification of amorphous content, (3) basis for selecting a suitable methodology depending on the properties of a material, and (4) role of various instrument and sample-related parameters in designing a protocol for quantification of amorphous content. Finally, DVS-based hyphenated techniques have been discussed as they can offer higher sensitivity for quantification of amorphous content.

  2. Risk evaluation and exposure control of mineral dust containing free crystalline silica: a study case at a quarry in the Recife Metropolitan Area. (United States)

    Lira, Mario; Kohlman Rabbani, E; Barkokébas Junior, Beda; Lago, Eliane


    During the production of aggregates at quarry sites, elevated quantities of micro-particulate mineral dust are produced in all stages of the process. This dust contains appreciable amounts of free crystalline silica in a variety of forms which, if maintained suspended in the air in the work environment, expose the workers to the risk of developing occupational silicosis, which causes reduced ability to work and potential shortening of lifespan. This study was conducted to qualitatively and quantitatively evaluate workers' exposure to mineral dust containing free crystalline silica at a midsized quarry in the Recife metropolitan area, in the State of Pernambuco. It involved evaluation of the industrial process, collection and analysis of representative dust samples, and interviews with the management team of the company with the intent to assess the compliance of the company with Regulatory Standard (NR) 22--Occupational safety and health in mining. In order to assist the company in managing risks related to dust exposure, three protocols were developed, implemented and made available, the first based on NR 22, from which the company was also given an economic safety indicator, the second based on the recommendations and requirements of Fundacentro to implement a Respiratory Protection Program and, finally, an assessment protocol with respect to the guidelines of the International Labor Organization to implement a health and safety management system. This study also showed the inadequacy of the formula for calculating tolerance limits in Brazilian legislation when compared with the more strict internationally accepted control parameters. From the laboratory results, unhealthy conditions at the quarry site were confirmed and technical and administrative measures were suggested to reduce and control dust exposure at acceptable levels, such as the implementation of an occupational health and safety management system, integrated with other management systems. From these

  3. Effect of sample moisture content on XRD-estimated cellulose crystallinity index and crystallite size (United States)

    Umesh P. Agarwal; Sally A. Ralph; Carlos Baez; Richard S. Reiner; Steve P. Verrill


    Although X-ray diffraction (XRD) has been the most widely used technique to investigate crystallinity index (CrI) and crystallite size (L200) of cellulose materials, there are not many studies that have taken into account the role of sample moisture on these measurements. The present investigation focuses on a variety of celluloses and cellulose...

  4. Pre-exposure of Mycobacterium tuberculosis-infected macrophages to crystalline silica impairs control of bacterial growth by deregulating the balance between apoptosis and necrosis.

    Directory of Open Access Journals (Sweden)

    Leslie Chávez-Galán

    Full Text Available Inhalation of crystalline silica (CS particles increases the risk of pulmonary tuberculosis; however, the precise mechanism through which CS exposure facilitates Mycobacterium tuberculosis (Mtb infection is unclear. We speculate that macrophage exposure to CS deregulates the cell death pathways that could explain, at least in part, the association observed between exposure to CS and pulmonary tuberculosis. We therefore established an in vitro model in which macrophages were exposed to CS and then infected with Mtb. Expression of surface markers was analyzed by flow cytometry, JNK1/2, ASK1, caspase 9, P-p38, Bcl-2 and Mcl-1 were analyzed by Western blot, and cytokines by ELISA. Our results show that exposure to CS limits macrophage ability to control Mtb growth. Moreover, this exposure reduced the expression of TLR2, Bcl-2 and Mcl-1, but increased that of JNK1 and ASK1 molecules in the macrophages. Finally, when the pre-exposed macrophages were infected with Mtb, the concentrations of TNFα, IL-1β and caspase-9 expression increased. This pro-inflammatory profile of the macrophage unbalanced the apoptosis/necrosis pathway. Taken together, these data suggest that macrophages exposed to CS are sensitized to cell death by MAPK kinase-dependent signaling pathway. Secretion of TNF-α and IL-1β by Mtb-infected macrophages promotes necrosis, and this deregulation of cell death pathways may favor the release of viable bacilli, thus leading to the progression of tuberculosis.

  5. Effect of Synthesis Technique and Carbonate Content on the Crystallinity and Morphology of Carbonated Hydroxyapatite

    Institute of Scientific and Technical Information of China (English)

    Chia Ching Kee; Hanafi Ismail; Ahmad Fauzi Mohd Noor


    The syntheses of nanosized carbonated hydroxyapatite (CHA) were performed by comparing dropwise and direct pouring of acetone solution of Ca(NO3)2.4H20 into mixture of (NH4)2HP04 and NH4HC03 at room temperature controlled at pH 11.Direct pouring method was later applied to study the increment of carbonate content in syntheses.The as-synthesized powders were characterized by various characterization techniques.The crystallographic results of the produced powders were obtained from X-ray diffraction analysis,whilst the carbonate content in the produced powders was determined by the CHNS/O elemental analyzer.Fourier transform infrared analysis confirmed that the CHA powders formed were B-type.Field emission scanning electron microscopy revealed that the powders were highly agglomerated in nanosized range and hence energy filtered transmission electron microscopy was employed to show elongated particles which decreased with increasing carbonate content.

  6. Silica in Protoplanetary Disks

    CERN Document Server

    Sargent, B A; Tayrien, C; McClure, M K; Li, A; Basu, A R; Manoj, P; Watson, D M; Bohac, C J; Furlan, E; Kim, K H; Green, J D; Sloan, G C


    Mid-infrared spectra of a few T Tauri stars (TTS) taken with the Infrared Spectrograph (IRS) on board the Spitzer Space Telescope show prominent narrow emission features indicating silica (crystalline silicon dioxide). Silica is not a major constituent of the interstellar medium; therefore, any silica present in the circumstellar protoplanetary disks of TTS must be largely the result of processing of primitive dust material in the disks surrouding these stars. We model the silica emission features in our spectra using the opacities of various polymorphs of silica and their amorphous versions computed from earth-based laboratory measurements. This modeling indicates that the two polymorphs of silica, tridymite and cristobalite, which form at successively higher temperatures and low pressures, are the dominant forms of silica in the TTS of our sample. These high temperature, low pressure polymorphs of silica present in protoplanetary disks are consistent with a grain composed mostly of tridymite named Ada found...

  7. Effects of Silica Aerogel Content on Microstructural and Mechanical Properties of Poly(methyl methacry-late)/Silica Aerogel Dual-scale Cellular Foams Processed in Supercritical Carbon Dioxide

    Institute of Scientific and Technical Information of China (English)

    GU Xiaoli; LUO Guoqiang; ZHANG Ruizhi; ZHANG Jian; LI Meijuan; SHEN Qiang; WANG Jin; ZHANG Lianmeng


    A novel poly(methyl-methacrylate)/silica aerogel (PMMA/SA) dual-scale cellular foam was synthesized with internal mixing followed by the supercritical carbon dioxide foaming process. The effects of silica aerogel content on the microstructural and mechanical performance of the foams were investigated by SEM, TEM analysis, and mechanical tests. The experimental results suggest that the employment of silica aerogel granule as addictive can distinctly improve the morphological feature as well as the mechanical performance in comparison to neat PMMA foam by uniformizing cell size distribution, decreasing cell size and increasing cell density. And dual-scale cells including micrometric cells of 3-10 μm and nanometric cells of about 50nm existed in the structure of foams resulting from the retained original framework structure of silica aerogel, which has not been described in other studies with the addition of various fillers. Furthermore, the mechanical strength was signiifcantly elevated even with a small amount of silica aerogel resulting from the unique microstructure, decreased cell size and enhanced cell walls. The compressive strength was 18.12 MPa and the lfexural strength was 18.90 MPa by adding 5wt% and 2wt% silica aerogel, respectively. These results demonstrate the potential to synthesize PMMA/SA dual-scale cellular foams to be used as structural materials with the advantages of low density and high strength.

  8. New PAT tools for assessing content uniformity, sampling error, and degree of crystallinity in pharmaceutical tablets

    DEFF Research Database (Denmark)

    Warnecke, Solveig

    overlooked sampling uncertainty that exist in all analytical measurements. The sampling error was studied using an example involving near infrared transmission (NIT) spectroscopy to study content of uniformity of five batches of escitalopram tablets, produced at different active pharmaceutical ingredients...... and the two APIs, it was possible to establish calibrations using partial least squares regression (PLS) on unfolded fluorescence landscapes with relative errors of 9.1 % for FLU and 4.1 % for MEL, respectively. Both fluorescence spectroscopy and terahertz time domain spectroscopy are new tools...... compression forces, and measured with the spectrometer in different orientations. The study showed that a minimum of 18 tablets from each level of API concentrations (90 spectra in total) were required to establish a robust NIT calibration. Further, it was shown that the spectra from tablets with the scored...

  9. Effect of degree of crystallinity and the contents of aluminium oxide and sodium oxide on water sorption capacity in NaY zeolite

    Directory of Open Access Journals (Sweden)

    Kešelj Dragana M.


    Full Text Available The paper presents mathematical models which describe the dependence between water sorption capacity, on one hand, and the degree of crystallinity and the content of Na2O and Al2O3 in NaY zeolite, on the other. NaY was synthesized from sodium aluminate solution, water glass and sulfuric acid under different conditions of crystallization. The obtained zeolite powders underwent chemical analysis (Na2O, Al2O3, water sorption capacity (WSC, as well as diffraction analysis which served to determine the degree of crystallinity (CD. Zeolite powder samples had the following values: for the content of Na2O from 13.81 to 16.14%, for Al2O3 from 21.58 to 27.17%, degree of crystallinity from 58.70 to 114.00 and WSC from 21.32 to 36.59%, and regression analysis lead to the conclusion that there is a significant correlation between water sorption capacity and the degree of crystallinity, unlike the contents of Na2O and Al2O3 in the zeolite powder, whose correlation with water sorption capacity was neglibile. The mathematical model obtained by linear regression analysis had a high R2= 0.796, where as non-linear regressional analysis produced a better mathematical model R2= 0.912, where water sorption capacity was expressed through a quadratic model.

  10. Magnetically separable mesoporous Fe{sub 3}O{sub 4}/silica catalysts with very low Fe{sub 3}O{sub 4} content

    Energy Technology Data Exchange (ETDEWEB)

    Grau-Atienza, A.; Serrano, E.; Linares, N. [Molecular Nanotechnology Laboratory, Department of Inorganic Chemistry, University of Alicante, Carretera San Vicente s/n, E-03690 Alicante (Spain); Svedlindh, P. [Department of Engineering Sciences, Uppsala University, Box 534, SE-75121 Uppsala (Sweden); Seisenbaeva, G., E-mail: [Department of Chemistry and Biotechnology, BioCenter SLU, Box 7015, SE-75007 Uppsala (Sweden); García-Martínez, J., E-mail: [Molecular Nanotechnology Laboratory, Department of Inorganic Chemistry, University of Alicante, Carretera San Vicente s/n, E-03690 Alicante (Spain)


    Two magnetically separable Fe{sub 3}O{sub 4}/SiO{sub 2} (aerogel and MSU-X) composites with very low Fe{sub 3}O{sub 4} content (<1 wt%) have been successfully prepared at room temperature by co-condensation of MPTES-functionalized Fe{sub 3}O{sub 4} nanoparticles (NPs) with a silicon alkoxide. This procedure yields a homogeneous incorporation of the Fe{sub 3}O{sub 4} NPs on silica supports, leading to magnetic composites that can be easily recovered using an external magnetic field, despite their very low Fe{sub 3}O{sub 4} NPs content (ca. 1 wt%). These novel hybrid Fe{sub 3}O{sub 4}/SiO{sub 2} materials have been tested for the oxidation reaction of 3,3′,5,5′-tetramethylbenzidine (TMB) with hydrogen peroxide showing an enhancement of the stability of the NPs in the Fe{sub 3}O{sub 4}/silica aerogel as compared to the Fe{sub 3}O{sub 4} NPs alone, even after five catalytic cycles, no leaching or agglomeration of the Fe{sub 3}O{sub 4}/SiO{sub 2} systems. - Graphical abstract: Novel magnetically separable mesoporous silica-based composites with very low magnetite content. - Highlights: • An innovative way to prepare magnetically separable composites with <1 wt% NPs. • The Fe{sub 3}O{sub 4}/silica composites are readily magnetized/demagnetized. • The Fe{sub 3}O{sub 4}/silica composites can be easily recovered using an external magnetic field. • Excellent catalytic performance and recyclability despite the low Fe{sub 3}O{sub 4} NPs content.

  11. The influence of the hydrophobic agent, catalyst, solvent and water content on the wetting properties of the silica films prepared by one-step sol–gel method

    Energy Technology Data Exchange (ETDEWEB)

    Ramezani, Maedeh, E-mail: [Division of Nanotechnology and Advanced Materials, Materials and Energy Research Center, P.O. Box 31787-316, Karaj (Iran, Islamic Republic of); Vaezi, Mohammad Reza [Division of Nanotechnology and Advanced Materials, Materials and Energy Research Center, P.O. Box 31787-316, Karaj (Iran, Islamic Republic of); Kazemzadeh, Asghar [Division of Semiconductors, Materials and Energy Research Center, P.O. Box 31787-316, Karaj (Iran, Islamic Republic of)


    Graphical abstract: - Highlights: • Transparent, hydrophobic, uniform silica film by sol–gel co-precursor process. • Preparation of silica coatings from ETES and Iso-OTMS in different molar ratios. • Decreasing in hydrophobicity of the films with increasing in Iso-TMS molar ratio. • By changing the molar ratio of component, different size of particles was obtained. - Abstract: In this paper, we used one-step sol–gel process to prepare the hydrophobic silica films on the glass substrate from the ethyltriethoxysilane (ETES) as a precursor and iso-octyltrimethoxysilane (Iso-OTMS) as a hydrophobic agent. In order to study the effect of the hydrophobic agent on the water repellent properties of the silica films, the alcosol was prepared by keeping constant the molar ratio of ETES:EtOH:H{sub 2}O at 1:36.2:6.3, with 6 M ammonium hydroxide and Iso-OTMS/ETES molar ratio varied from 0.2 to 1.4. Also, we investigated the influence of the other sol–gel reaction parameters, such as catalyst, solvent and water content and their effect on the morphology and hydrophobic properties of the silica films. The results revealed that by altering the molar ratio of NH{sub 4}OH, EtOH and H{sub 2}O, different sizes of silica nanoparticles from 41.24 to 86.16 nm were obtained. The silica films were characterized by atomic force microscopy (AFM), Fourier transform infrared spectroscopy (FT-IR), field emission scanning electron microscopy (FE-SEM) images, contact angle measurement (CA) and percentage of optical transmission.

  12. The effects of sulfate content on crystalline phase, microstructure, and chemical durability of zirconolite−barium borosilicate glass-ceramics

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Lang, E-mail: [State Key Laboratory Cultivation Base for Nonmetal Composites and Functional Materials, Southwest University of Science and Technology, Mianyang 621010 (China); Wang, Xin; Li, Huidong; Teng, Yuancheng [State Key Laboratory Cultivation Base for Nonmetal Composites and Functional Materials, Southwest University of Science and Technology, Mianyang 621010 (China); Peng, Long [Sichuan Province Key Laboratory of Information Materials and Devices Application, Chengdu University of Information Technology, Chengdu 610225 (China)


    The effects of sulfate content on structure and chemical durability of barium borosilicate glass-ceramics were studied. The results show that the glass-ceramics with 0–1.10 mol% SO{sub 3} possess mainly CaZrTi{sub 2}O{sub 7}-2M phase along with a small amount of CaZrTi{sub 2}O{sub 7}-3T and ZrO{sub 2} phases. The hexagonal CaZrTi{sub 2}O{sub 7}-3T crystals crystallize on the surface of glass-ceramics. For the samples with 1.24–1.55 mol% SO{sub 3}, the main crystalline phases are CaTiSiO{sub 5} and CaZrTi{sub 2}O{sub 7}-2M in the bulk, while a separate sulfate layer containing Na{sub 2}SO{sub 4} and BaSO{sub 4} is observed on the surface. X-ray fluorescence analysis indicates that about 2/3 of the SO{sub 3} originally added has been lost by volatility. The normalized mass loss (NL{sub i}) for Na, B, Ca elements remains almost unchanged (∼10{sup −2} g/m{sup 2}) after 7 days for the samples with 0–1.10 mol% SO{sub 3}. The NL{sub i} for both Na and B increases gradually after 7 days when the SO{sub 3} content is 1.24 mol%. - Highlights: • Strip-shaped CaZrTi{sub 2}O{sub 7}-2M and plate-like CaTiSiO{sub 5} crystals crystallize in the bulk. • CaZrTi{sub 2}O{sub 7}-3T crystals crystallize on the surface for samples with 0–1.10 mol% SO{sub 3}. • A separate sulfate layer crystallizes on the surface when SO{sub 3} exceeds solubility.

  13. Plackett-Burman experimental design for bacterial cellulose-silica composites synthesis. (United States)

    Guzun, Anicuta Stoica; Stroescu, Marta; Jinga, Sorin Ion; Voicu, Georgeta; Grumezescu, Alexandru Mihai; Holban, Alina Maria


    Bacterial cellulose-silica hybrid composites were prepared starting from wet bacterial cellulose (BC) membranes using Stöber reaction. The structure and surface morphology of hybrid composites were examined by FTIR and SEM. The SEM pictures revealed that the silica particles are attached to BC fibrils and are well dispersed in the BC matrix. The influence of silica particles upon BC crystallinity was studied using XRD analysis. Thermogravimetric (TG) analysis showed that the composites are stable up to 300°C. A Plackett-Burman design was applied in order to investigate the influence of process parameters upon silica particle sizes and silica content of BC-silica composites. The statistical model predicted that it is possible for silica particles size to vary the synthesis parameters in order to obtain silica particles deposed on BC membranes in the range from 34.5 to 500 nm, the significant parameters being ammonia concentration, reaction time and temperature. The silica content also varies depending on process parameters, the statistical model predicting that the most influential parameters are water-tetraethoxysilane (TEOS) ratio and reaction temperature. The antimicrobial behavior on Staphylococcus aureus of BC-silica composites functionalized with usnic acid (UA) was also studied, in order to create improved surfaces with antiadherence and anti-biofilm properties.

  14. Analytical techniques for determination and control of silica content in the water in thermal power plants

    Directory of Open Access Journals (Sweden)

    Ignjatović Nataša R.


    Full Text Available Ultrapure water with minimum contents of impurities is used for the preparation of steam in thermal power plants. More recently it has been found that the corrosion process is also influenced by sodium ions, chloride ions, and all forms of silicon in water. At higher temperatures and under high pressure the less soluble compounds of silicon are extracted, which form deposits on the walls of the boiler, the piping system and the turbine blades. Silicon is found in water in the form of different types (species which are characterized by specific physical and chemical properties. Distinctions can be made between highly reactive species of ionic (silicate anions and molecular forms (silicic acid and relatively inert types (suspended, colloidal, and polymerized silicon. The determination of various forms of silicon in water is a complex analytical task. This paper covers relevant research in the field of silicon specification analysis. Maintaining the unchanged, original composition of silicon species during various stages of analysis (sample collection, storage, and conservation has been given special attention. A large number of methods and procedures have been developed for the analysis of species of silicon, including chromatographic, spectroscopic and electrochemical techniques and combinations thereof. The techniques used for determining both the total amount and individual forms of silicon have been singled out. There is also an overview of the coupled techniques used most frequently in practice by using the methodology which involves preliminary separation of species and then individual specification. The paper offers an overview of analytical properties, advantages and disadvantages of the most representative analytical methods developed specifically for the analysis of silicon species in ultrapure water. The most important studies focusing on the silicon species in water have been highlighted and presented in detail. The determination of

  15. Determination of fluorine content in the hydrated silica%白炭黑中氟含量的测定方法

    Institute of Scientific and Technical Information of China (English)

    刘颖; 张筑南; 唐波


    介绍了利用磷肥企业含氟硅渣生产白炭黑工艺中,白炭黑中氟含量的分析方法。对氧硅酸钾法、电极法、比色法3种氟含量分析方法进行了比较,得出电极法操作简单,能快捷地分析出氟含量,是较合适的分析方法;如氟含量较高,采用氟硅酸法分析比较合适。%The article briefly had introduced the fluorine content analysis method in the hydrated silica, which was produced by fluorine silicon slag from the phosphate fertilizer enterprise. The fluorine content analysis methods including the potassium fluosilieate method,the electrode method and the colorimetric method were compared. It was drawn that the electrode method was a simple,quick analysis method of the fluorine content. So,it was more appro- priate analysis method of the fluorine content in the hydrated silica. If the hydrated silica had higher fluorine con- tent, the potassium fluosilicate analysis method was more appropriate.

  16. Silica-titania composite aerogel photocatalysts by chemical liquid deposition of titania onto nanoporous silica scaffolds. (United States)

    Zu, Guoqing; Shen, Jun; Wang, Wenqin; Zou, Liping; Lian, Ya; Zhang, Zhihua


    Silica-titania composite aerogels were synthesized by chemical liquid deposition of titania onto nanoporous silica scaffolds. This novel deposition process was based on chemisorption of partially hydrolyzed titanium alkoxides from solution onto silica nanoparticle surfaces and subsequent hydrolysis and condensation to afford titania nanoparticles on the silica surface. The titania is homogeneously distributed in the silica-titania composite aerogels, and the titania content can be effectively controlled by regulating the deposition cycles. The resultant composite aerogel with 15 deposition cycles possessed a high specific surface area (SSA) of 425 m(2)/g, a small particle size of 5-14 nm, and a large pore volume and pore size of 2.41 cm(3)/g and 18.1 nm, respectively, after heat treatment at 600 °C and showed high photocatalytic activity in the photodegradation of methylene blue under UV-light irradiation. Its photocatalytic activity highly depends on the deposition cycles and heat treatment. The combination of small particle size, high SSA, and enhanced crystallinity after heat treatment at 600 °C contributes to the excellent photocatalytic property of the silica-titania composite aerogel. The higher SSAs compared to those of the reported titania aerogels (aerogels promising candidates as photocatalysts.

  17. Mesoporous silica materials with an extremely high content of organic sulfonic groups and their comparable activities with that of concentrated sulfuric acid in catalytic esterification. (United States)

    Feng, Ye-Fei; Yang, Xiao-Yu; Di, Yan; Du, Yun-Chen; Zhang, Yong-Lai; Xiao, Feng-Shou


    Mesoporous silica materials (HS-JLU-20) with an extremely high content of mercaptopropyl groups have been successfully synthesized using fluorocarbon-hydrocarbon surfactant mixtures through a simple co-condensation approach of tetraethyl orthosilicate (TEOS) and (3-mercaptopropyl)trimethoxysilane (MPTS), which are characterized by X-ray diffraction (XRD), nitrogen adsorption and desorption isotherms, transmission electron microscopy (TEM), CHNS elemental analysis, thermogravimetry analysis (TGA), and (29)Si NMR spectroscopy. The results show that HS-JLU-20 samples with molar ratios of MPTS/(MPTS + TEOS) at 0.5-0.8 in the starting synthetic gels still show their mesostructures, while HS-SBA-15 with the molar ratio of MPTS/(MPTS + TEOS) at 0.50 completely loses its mesostructure in the absence of fluorocarbon surfactant. Possibly, fluorocarbon surfactant containing N(+) species with a positive charge could effectively interact with negatively charged mercapto groups in the synthesis of HS-JLU-20 materials, resulting in the formation of mesoporous silicas with good cross-linking of silica condensation even at an extremely high content of organic mercapto groups. More interestingly, after the treatment with hydrogen peroxide, HSO(3)-JLU-20 materials with an extremely high content of organic sulfonic groups exhibit comparable activity with liquid concentrated sulfuric acid in catalytic esterification of cyclohexanol with acetic acid.

  18. Hydrophobic silica nanoparticles as reinforcing filler for poly (lactic acid polymer matrix

    Directory of Open Access Journals (Sweden)

    Pilić Branka M.


    Full Text Available Properties of poly (lactic acid (PLA and its nanocomposites, with silica nanoparticles (SiO2, as filler were investigated. Neat PLA films and PLA films with different percentage of hydrophobic fumed silica nanoparticles (0.2, 0.5, 1, 2, 3 and 5 wt. % were prepared by solution casting method. Several tools were used to characterize the influence of different silica content on crystalline behavior, and thermal, mechanical and barrier properties of PLA/SiO2 nanocomposites. Results from scanning electron microscope (SEM showed that the nanocomposite preparation and selection of specific hydrophobic spherical nano filler provide a good dispersion of the silica nanoparticles in the PLA matrix. Addition of silica nanoparticles improved mechanical properties, the most significant improvement being observed for lowest silica content (0.2wt.%. Barrier properties were improved for all measured gases at all loadings of silica nanoparticles. The degree of crystallinity for PLA slightly increased by adding 0.2 and 0.5 wt. % of nano filler. [Projekat Ministarstva nauke Republike Srbije, br. III46001

  19. Crystalline mesoporous metal oxide

    Institute of Scientific and Technical Information of China (English)

    Wenbo Yue; Wuzong Zhou


    Since the discovery of many types of mesoporous silicas, such as SBA-15, KIT-6, FDU-12 and SBA-16, porous crystalline transition metal oxides, such as Cr2O3, Co3O4, In2O3, NiO, CeO2, WO3, Fe2O3 and MnO2, have been synthesized using the mesoporous silicas as hard templates. Several synthetic methods have been developed. These new porous materials have high potential applications in catalysis, Li-ion rechargeable batteries and gas sensors. This article gives a brief review of the research of porous crystals of metal oxides in the last four years.

  20. Effect of simultaneous inhibition of starch branching enzymes I and IIb on the crystalline structure of rice starches with different amylose contents. (United States)

    Man, Jianmin; Yang, Yang; Huang, Jun; Zhang, Changquan; Chen, Yifang; Wang, Youping; Gu, Minghong; Liu, Qiaoquan; Wei, Cunxu


    Mutating or inhibiting genes encoding starch branching enzymes (SBEs) can increase the amylose content (AC) of cereals. We analyzed endosperm starches from three rice cultivars with different ACs and from transgenic lines derived from them. The transgenic lines had simultaneously inhibited SBE I and IIb genes. Compared with the starch from their wild-type parents, the starch from transgenic lines showed significantly increased apparent ACs and lamella size and decreased relative crystallinity, double helix content, and lamellar peak scattering intensity, and altered short-range ordered structure in the external region. These changes were more prominent in the line derived from the high-AC cultivar than in those derived from waxy and low-AC cultivars. Inhibiting both SBE I and IIb changed the crystalline structure of starch from A-type to CA-type in lines derived from waxy and low-AC cultivars, and from A-type to C-type in that derived from the high-AC cultivar.

  1. Polymer Morphology and Crystallinity close to Inorganic Surfaces (United States)

    Chrissopoulou, Kiriaki; Papananou, Hellen; Anastasiadis, Spiros H.; Andrikopoulos, Konstantinos S.; Voyiatzis, George A.


    Polymer behavior close to surfaces or when restricted in space can be very different from that in the bulk. In this work, we investigate the morphology, crystallization and chain conformation of a hydrophilic, semi-crystalline polymer, poly(ethylene oxide), PEO, when mixed with silica, SiO2, nanoparticles in a broad range of compositions. The good dispersion of the nanoparticles was verified by Transmission Electron Microscopy (TEM), whereas the morphology and crystallization behaviour of the hybrids were investigated with, X-ray Diffraction (XRD), Fourier Transform Infrared Spectroscopy (FTIR) and Differential Scanning Calorimetry (DSC). A gradual decrease of polymer crystallinity with increasing nanoparticles content is observed; nevertheless, polymer crystallization exists for all silica loadings. Moreover, DSC showed two melting and crystallization transitions in hybrids with polymer content lower than 50wt%, indicating that the polymer crystallizes differently than the bulk when it is in a thin interfacial layer near the silica surface. The existence of the two transitions are also evident in the IR and Raman spectra. Partially sponsored by EU (COST Action MP0902) and by the Greek GSRT (Research Funding Program: ARISTEIA II (SMART-SURF, project No. 3393, 2013SE01380048).

  2. Synthesis and Characterization of ZSM-5/β Co-Crystalline Zeolite

    Institute of Scientific and Technical Information of China (English)

    Tianbo Zhao; Huiying Zhang; Fengyan Li; Chao Yang; Baoning Zong


    ZSM-5/β co-crystalline zeolites with different content of ZSM-5 have been synthesized by adding different amount of ZSM-5 to the synthetic system ofβ zeolite with NaAlO2, silica sol as the source of aluminum and silica, respectively, and TEA+ as the template under controlled condition of the synthesis. The ZSM-5/β co-crystalline zeolite was studied by XRD, SEM, BET and NH3-TPD. The reaction activity of toluene alkylation was investigated with a mixture of toluene-methanol as the feedstock in a pulse micro-reactor over the ZSM-5/β co-crystalline zeolite. It is found that ZSM-5/β co-crystalline zeolite has two kinds of zeolite structure including ZSM-5 and β zeolite, not in the form of a physical mixture. The pore structure of ZSM-5/β co-crystalline zeolites is different from that forβ zeolite, ZSM-5and their physical mixture. In addition, the peaks of both high and low temperature desorption of ammonia over the ZSM-5/β co-crystalline zeolite shift 23 ℃ to lower temperatures and the acid amount of its strong acid is 3% more than the physical mixture. So the ZSM-5/β co-crystalline zeolite produces the highest content of xylene, which is 10.4% higher than the physical mixture. And the ZSM-5/β co-crystalline zeolite has better selectivity for toluene alkylation and weaker de-methylation than β zeolite, ZSM-5 and their physical mixture.

  3. Silica exposure and systemic vasculitis.


    Mulloy, Karen B


    Work in Department of Energy (DOE) facilities has exposed workers to multiple toxic agents leading to acute and chronic diseases. Many exposures were common to numerous work sites. Exposure to crystalline silica was primarily restricted to a few facilities. I present the case of a 63-year-old male who worked in DOE facilities for 30 years as a weapons testing technician. In addition to silica, other workplace exposures included beryllium, various solvents and heavy metals, depleted uranium, a...



    Celil Atik; Saim Ates


    The high silica content of wheat straw is an important limiting factor for straw pulping. High silica content complicates processing and black liquor recovery, wears out factory installations, and lowers paper quality. Each section of wheat straw has different cells and chemical compositions and thus different silica content. In this work, the silica content of balled straw samples were examined according to their physical components, including internodes, nodes, leaves (sheath and blade), ra...


    Directory of Open Access Journals (Sweden)

    Seyed Mohsen Latifi


    Full Text Available Ca ion release from bioactive biomaterials could play an important role in their bioactivity and osteoconductivity properties. In order to improve hydroxyapatite (HA dissolution rate, in situ apatite-silica nanocomposite powders with various silica contents were synthesized via sol-gel method and mechanisms controlling the Ca ion release from them were investigated. Obtained powders were characterized by X-ray diffraction (XRD and transmission electron spectroscopy (TEM techniques, acid dissolution test, and spectroscopy by atomic absorption spectrometer (AAS. Results indicated the possible incorporation of (SiO44- into the HA structure and tendency of amorphous silica to cover the surface of HA particles. However, 20 wt. % silica was the lowest amount that fully covered HA particles. All of the nanocomposite powders showed more Ca ion release compared with pure HA, and HA - 10 wt. % silica had the highest Ca ion release. The crystallinity, the crystallite size, and the content of HA, along with the integrity, thickness, and ion diffusion possibility through the amorphous silica layer on the surface of HA, were factors that varied due to changes in the silica content and were affected the Ca ion release from nanocomposite powders.

  6. Fungus-mediated biotransformation of amorphous silica in rice husk to nanocrystalline silica. (United States)

    Bansal, Vipul; Ahmad, Absar; Sastry, Murali


    Rice husk is a cheap agro-based waste material, which harbors a substantial amount of silica in the form of amorphous hydrated silica grains. However, there have been no attempts at harnessing the enormous amount of amorphous silica present in rice husk and its room-temperature biotransformation into crystalline silica nanoparticles. In this study, we address this issue and describe how naturally deposited amorphous biosilica in rice husk can be bioleached and simultaneously biotransformed into high value crystalline silica nanoparticles. We show here that the fungus Fusarium oxysporum rapidly biotransforms the naturally occurring amorphous plant biosilica into crystalline silica and leach out silica extracellularly at room temperature in the form of 2-6 nm quasi-spherical, highly crystalline silica nanoparticles capped by stabilizing proteins; that the nanoparticles are released into solution is an advantage of this process with significant application and commercial potential. Calcination of the silica nanoparticles leads to loss of occluded protein and to an apparently porous structure often of cubic morphology. The room-temperature synthesis of oxide nanomaterials using microorganisms starting from potential cheap agro-industrial waste materials is an exciting possibility and could lead to an energy-conserving and economically viable green approach toward the large-scale synthesis of oxide nanomaterials.

  7. Biphenyl liquid crystalline epoxy resin as a low-shrinkage resin-based dental restorative nanocomposite. (United States)

    Hsu, Sheng-Hao; Chen, Rung-Shu; Chang, Yuan-Ling; Chen, Min-Huey; Cheng, Kuo-Chung; Su, Wei-Fang


    Low-shrinkage resin-based photocurable liquid crystalline epoxy nanocomposite has been investigated with regard to its application as a dental restoration material. The nanocomposite consists of an organic matrix and an inorganic reinforcing filler. The organic matrix is made of liquid crystalline biphenyl epoxy resin (BP), an epoxy resin consisting of cyclohexylmethyl-3,4-epoxycyclohexanecarboxylate (ECH), the photoinitiator 4-octylphenyl phenyliodonium hexafluoroantimonate and the photosensitizer champhorquinone. The inorganic filler is silica nanoparticles (∼70-100 nm). The nanoparticles were modified by an epoxy silane of γ-glycidoxypropyltrimethoxysilane to be compatible with the organic matrix and to chemically bond with the organic matrix after photo curing. By incorporating the BP liquid crystalline (LC) epoxy resin into conventional ECH epoxy resin, the nanocomposite has improved hardness, flexural modulus, water absorption and coefficient of thermal expansion. Although the incorporation of silica filler may dilute the reinforcing effect of crystalline BP, a high silica filler content (∼42 vol.%) was found to increase the physical and chemical properties of the nanocomposite due to the formation of unique microstructures. The microstructure of nanoparticle embedded layers was observed in the nanocomposite using scanning and transmission electron microscopy. This unique microstructure indicates that the crystalline BP and nanoparticles support each other and result in outstanding mechanical properties. The crystalline BP in the LC epoxy resin-based nanocomposite was partially melted during exothermic photopolymerization, and the resin expanded via an order-to-disorder transition. Thus, the post-gelation shrinkage of the LC epoxy resin-based nanocomposite is greatly reduced, ∼50.6% less than in commercialized methacrylate resin-based composites. This LC epoxy nanocomposite demonstrates good physical and chemical properties and good biocompatibility

  8. [Compared with colloidal silica and porous silica as baicalin solid dispersion carrier]. (United States)

    Yan, Hong-Mei; Ding, Dong-Mei; Wang, Jing; Sun, E; Jia, Xiao-Bin; Zhang, Zhen-Hai


    To compare the dissolution characteristics of colloidal silica and porous silica as the solid dispersion carrier, with baicalin as the model drug. The baicalin solid dispersion was prepared by the solvent method, with colloidal silica and porous silica as the carriers. In the in vitro dissolution experiment, the solid dispersion was identified by scanning electron microscopy, differential scanning and X-ray diffraction. The solid dispersion carriers prepared with both colloidal silica and porous silica could achieve the purpose of rapid release. Along with the increase in the proportion of the carriers, the dissolution rate is accelerated to more than 80% within 60 min. Baicalin existed in the solid dispersion carriers in the non-crystalline form. The release behaviors of the baicalin solid dispersion prepared with two types of carrier were different. Among the two solid dispersion carriers, porous silica dissolved slowly than colloidal silica within 60 min, and they showed similar dissolutions after 60 min.

  9. Biocompatibility of crystalline opal nanoparticles

    Directory of Open Access Journals (Sweden)

    Hernández-Ortiz Marlen


    Full Text Available Abstract Background Silica nanoparticles are being developed as a host of biomedical and biotechnological applications. For this reason, there are more studies about biocompatibility of silica with amorphous and crystalline structure. Except hydrated silica (opal, despite is presents directly and indirectly in humans. Two sizes of crystalline opal nanoparticles were investigated in this work under criteria of toxicology. Methods In particular, cytotoxic and genotoxic effects caused by opal nanoparticles (80 and 120 nm were evaluated in cultured mouse cells via a set of bioassays, methylthiazolyldiphenyl-tetrazolium-bromide (MTT and 5-bromo-2′-deoxyuridine (BrdU. Results 3T3-NIH cells were incubated for 24 and 72 h in contact with nanocrystalline opal particles, not presented significant statistically difference in the results of cytotoxicity. Genotoxicity tests of crystalline opal nanoparticles were performed by the BrdU assay on the same cultured cells for 24 h incubation. The reduction of BrdU-incorporated cells indicates that nanocrystalline opal exposure did not caused unrepairable damage DNA. Conclusions There is no relationship between that particles size and MTT reduction, as well as BrdU incorporation, such that the opal particles did not induce cytotoxic effect and genotoxicity in cultured mouse cells.

  10. Use of Fly Ash in the Mitigation of Alkali-Silica Reaction in Concrete (United States)


    crystallinity of the silica and its solubility. Common reactive minerals susceptible to ASR include strained quartz, cristobalite , opal, obsidian, chert, and...residues, whereas alkali-silica reactive components include opal, cristobalite , tridymite, siliceous and some intermediate volcanic glass, chert

  11. High-volume samplers for the assessment of respirable silica content in metal mine dust via direct-on-filter analysis

    CSIR Research Space (South Africa)

    Cauda, EG


    Full Text Available exposure to silica by two main factors: 1) variability of the silica percent in the mining dust and 2) lengthy off-site laboratory analysis of collected samples. The collection of samples for short periods of time during the workers' shift and subsequent on...

  12. Computational Investigation of the Influence of Fly Ash Silica Content and Shape on the Erosion Behaviour of Indian Coal Fired Boiler Grade Steels (United States)

    Kumari, Amrita; Das, Suchandan Kumar; Srivastava, Prem Kumar


    A mathematical model has been developed to characterize the erosion behaviour of fly ash on boiler grade steel surfaces incorporating various ductile erosion mechanisms. These mechanisms constitute cutting wear, repeated plastic deformation and effect of operating temperature on the mechanical properties of the substrate. Parametric analysis has been carried out to study the erosion response of some typical steel grades as a function of particle impact parameters such as particle impact velocity, angle of impingement coupled with the effect of temperature on the tensile properties. Further, effects of fly ash properties such as hardness (silica content) and shape (angularity) on the erosion response have been also investigated along with the ballistic parameters. These investigations show that a small increment in the fly ash hardness can considerably augment the erosion rate of the steel surface under a given particle impingement condition. This vindicates that hardness of fly ash is one of the most critical parameter which has a direct impact in enhancing the erosion rate of boiler grade steels. The effect of fly ash shape on the erosion behaviour is also studied in conjunction with the particle hardness. This shows that the composite action of these parameters augment the erosion rate significantly.

  13. Bulk Hydrogen Content OF High-Silica Rocks in Gale Crater With the Active Dynamic Albedo of Neutrons Experiment (United States)

    Gabriel, T. S. J.; Hardgrove, C.; Litvak, M.; Mitrofanov, I.; Boynton, W. V.; Fedosov, F.; Golovin, D.; Jun, I.; Mischna, M.; Tate, C. G.; Moersch, J.; Harshman, K.; Kozyrev, A. S.; Malakhov, A.; Mokrousov, M.; Nikiforov, S.; Sanin, A. B.; Vostrukhin, A.; Archer, P. D., Jr.; Franz, H. B.; Thompson, L.


    The Mars Science Laboratory (MSL) Curiosity rover recently traversed over plateaus of mafic aeolian sandstones (the 'Stimson' formation) that overlie mudstones (the 'Murray' formation). Within the Stimson formation we observed many lighter-toned, halo-forming features, that are potentially indicative of fluid alteration (see Fig. 1). These halo features extend for tens of meters laterally and are approx.1 meter wide. The halo features were characterized by Curiosity's geochemical instruments: Alpha Proton X-Ray Spectrometer (APXS), Chemin, Chemcam and Sample Analysis at Mars (SAM). With respect to the host (unaltered) Stimson rocks, fracture halos were significantly enriched in silicon and low in iron [1]. Changes in hydrogen abundance (due to its large neutron scattering cross section) greatly influence the magnitude of the thermal neutron response from the Dynamic Albedo of Neutrons (DAN) instrument [2]. There are also some elemental species, e.g. chlorine, iron, and nickel, that have significant microscopic neutron absorption cross sections. These elements can be abundant and variable results provide a useful estimate of the lower bound for bulk hydrogen content (assuming a homogeneous distribution).

  14. Health hazards due to the inhalation of amorphous silica. (United States)

    Merget, R; Bauer, T; Küpper, H U; Philippou, S; Bauer, H D; Breitstadt, R; Bruening, T


    Occupational exposure to crystalline silica dust is associated with an increased risk for pulmonary diseases such as silicosis, tuberculosis, chronic bronchitis, chronic obstructive pulmonary disease (COPD) and lung cancer. This review summarizes the current knowledge about the health effects of amorphous (non-crystalline) forms of silica. The major problem in the assessment of health effects of amorphous silica is its contamination with crystalline silica. This applies particularly to well-documented pneumoconiosis among diatomaceous earth workers. Intentionally manufactured synthetic amorphous silicas are without contamination of crystalline silica. These synthetic forms may be classified as (1) wet process silica, (2) pyrogenic ("thermal" or "fumed") silica, and (3) chemically or physically modified silica. According to the different physicochemical properties, the major classes of synthetic amorphous silica are used in a variety of products, e.g. as fillers in the rubber industry, in tyre compounds, as free-flow and anti-caking agents in powder materials, and as liquid carriers, particularly in the manufacture of animal feed and agrochemicals; other uses are found in toothpaste additives, paints, silicon rubber, insulation material, liquid systems in coatings, adhesives, printing inks, plastisol car undercoats, and cosmetics. Animal inhalation studies with intentionally manufactured synthetic amorphous silica showed at least partially reversible inflammation, granuloma formation and emphysema, but no progressive fibrosis of the lungs. Epidemiological studies do not support the hypothesis that amorphous silicas have any relevant potential to induce fibrosis in workers with high occupational exposure to these substances, although one study disclosed four cases with silicosis among subjects exposed to apparently non-contaminated amorphous silica. Since the data have been limited, a risk of chronic bronchitis, COPD or emphysema cannot be excluded. There is no study

  15. A Review for Characterization of Silica Fume and Its Effects on Concrete Properties

    Directory of Open Access Journals (Sweden)

    Mohammad Panjehpour


    Full Text Available Mineral additions which are also known as mineral admixtures have been used in Portland cement for many years. There are two types of additions which are commonly mixed into the Portland clinker or blended directly with cement these days. They are crystalline, also known as hydraulically inactive additions and pozzolanic, which are hydraulically active additions. Silica fume is very reactive pozzolan, while it is used in concrete because of its fine particles, large surface area and high SiO2 content. Silica fume is much fined separated silica obtained as a by-product in industry. It is used as an admixture in the concrete mix and it has significant effects on the properties of the resulting material. Simultaneously, silica fume can be also utilized in production of refectory and porcelain, to increase intensity and durability. In addition, it can improve the overall performance of the material as filler used in coating resin, paint, rubber and other high molecular materials. This review paper discusses the effects of silica fume on the concrete properties such as strength, modulus, ductility, permeability, chemical attack resistance, corrosion, freeze-thaw durability, creep rate. Characterisation of silica fume as well as its physical and chemical properties will also be reviewed in this paper.

  16. Incorporation of Vanadium Oxide in Silica Nanofiber Mats via Electrospinning and Sol-Gel Synthesis

    Directory of Open Access Journals (Sweden)

    Jeanne E. Panels


    Full Text Available Submicron scale vanadia/silica hybrid nanofiber mats have been produced by electrospinning silica sol-gel precursor containing vanadium oxytriisopropoxide (VOTIP, followed by calcinations at high temperature. The properties of the resulting inorganic hybrid nanofiber mats are compared to those of electrospun pure silica nanofibers. SEM images show fibers are submicron in diameter and their morphology is maintained after calcination. Physisorption experiments reveal that silica nanofiber mats have a high specific surface area of 63 m2/g. FT-IR spectra exhibit Si—O vibrations and indicate the presence of V2O5 in the fibers. XPS studies reveal that the ratio of Si to O is close to 0.5 on the surface of fibers and the amount of vanadium on the surface of fibers increases with calcination. XRD diffraction patterns show that silica nanofibers are amorphous and orthorhombic V2O5 crystals have formed after calcination. EFTEM images demonstrate the growth of crystals on the surface of fibers containing vanadium after calcination. SEM images of fibers with high-vanadium content (50 mol% V: Si show that vanadia crystals are mostly aligned along the fiber axis. XPS shows an increase in vanadium contents at the surface, and XRD patterns exhibit an increase in the degree of crystallinity. A coaxial electrospinning scheme has successfully been employed to selectively place V2O5 in the skin layer.

  17. Effect of Mineral Admixtures on Alkali-Silica Reaction

    Institute of Scientific and Technical Information of China (English)

    ZHANG Chengzhi; WANG Aiqin


    The influence of silica fume,slag and fly ash on alkali-silica reaction under the condition of 70℃ is studied.The results show that silica,slag and fly ash may inhibit alkali-silica reaction only under suitable content.When the content is less than 10%,silica fume does not markedly influence the expansion of alkali-silica reaction.When the content is 15%-20%,silica fume only may delay the expansion of alkali-silica reaction.When the content is 30%-70%,slag may only delay the expansion of alkali-silica reaction,but cannot inhibit the expansion of alkali-silica reaction.When the content is 10%,fly ash does not markedly influence the expansion of alkali-silica reaction.When the content is 20%-30%,fly ash may only delay the expansion of alkali-silica reaction,but cannot inhibit the expansion of alkali-silica reaction.When the content is over 50%,it is possible that fly ash can inhibit effectively alkali-silica reaction.

  18. Silica Nephropathy

    Directory of Open Access Journals (Sweden)

    N Ghahramani


    Full Text Available Occupational exposure to heavy metals, organic solvents and silica is associated with a variety of renal manifestations. Improved understanding of occupational renal disease provides insight into environmental renal disease, improving knowledge of disease pathogenesis. Silica (SiO2 is an abundant mineral found in sand, rock, and soil. Workers exposed to silica include sandblasters, miners, quarry workers, masons, ceramic workers and glass manufacturers. New cases of silicosis per year have been estimated in the US to be 3600–7300. Exposure to silica has been associated with tubulointerstitial disease, immune-mediated multisystem disease, chronic kidney disease and end-stage renal disease. A rare syndrome of painful, nodular skin lesions has been described in dialysis patients with excessive levels of silicon. Balkan endemic nephropathy is postulated to be due to chronic intoxication with drinking water polluted by silicates released during soil erosion. The mechanism of silica nephrotoxicity is thought to be through direct nephrotoxicity, as well as silica-induced autoimmune diseases such as scleroderma and systemic lupus erythematosus. The renal histopathology varies from focal to crescentic and necrotizing glomerulonephritis with aneurysm formation suggestive of polyarteritis nodosa. The treatment for silica nephrotoxicity is non-specific and depends on the mechanism and stage of the disease. It is quite clear that further research is needed, particularly to elucidate the pathogenesis of silica nephropathy. Considering the importance of diagnosing exposure-related renal disease at early stages, it is imperative to obtain a thorough occupational history in all patients with renal disease, with particular emphasis on exposure to silica, heavy metals, and solvents.

  19. Chemical interactions of aluminum with aqueous silica at 25 degrees Celsius (United States)

    Hem, John David; Roberson, C.E.; Lind, Carol J.; Polxer, W.L.


    Solutions containing from 10 -5 to 10 -2 moles per liter of aluminum and dissolved silica in various ratios were aged at pH levels between 4 and 10 at 25?C. A colloidal amorphous product having the composition of halloysite was produced in most solutions. It had a consistent and reversible equilibrium solubility equivalent to a standard free energy of formation of -8974 ? 1.0 kcal per mole for the formula A12Si2O5(OH)4. Some aging times were longer than 4 years, but most solutions gave consistent solubilities after only a few months of aging. Where silica concentrations were below about 10 -4 molar, microcrystalline gibbsite was formed below pH 6.0 and crystalline bayerite above pH 7.0, but only after much longer aging than was required for crystallization in silica-free solutions. Electron micrographs and diffraction patterns of the synthesized material indicate some crystallinity in the aluminosilicate, but no X-ray diffraction patterns could be obtained even in the material aged 4 years. Solubility relationships for solutions containing fluoride as well as silica and aluminum are explainable by using cryolite stabilities determined in previous work. Aluminum contents of 51 samples of water analyzed for other purposes are in reasonable agreement with the assumption of equilibrium with amorphous clay mineral species similar to the material synthesized in this work. Solubility calculations are summarized graphically for solutions of ionic strength of 0.01 and 0.10.

  20. Synthesis and Characterization of Bimodal Mesoporous Silica

    Institute of Scientific and Technical Information of China (English)

    ZHANG Xiaofang; GUO Cuili; WANG Xiaoli; WU Yuanyuan


    Mesoporous silica with controllable bimodal pore size distribution was synthesized with cetyltrimethylammonium bromide (CTAB) as chemical template for small mesopores and silica gel as physical template for large mesopores.The structure of synthesized samples were characterized by Fourier transform infrared (FT-IR) spectroscopy,X-ray diffraction (XRD),scanning electron microscopy (SEM),transmission electron microscopy (TEM) and N2 adsorption-desorption measurements.The experimental results show that bimodal mesoporous silica consists of small mesopores of about 3 nm and large mesopores of about 45 nm.The small mesopores which were formed on the external surface and pore walls of the silica gel had similar characters with those of MCM-41,while large mesopores were inherited from parent silica gel material.The pore size distribution of the synthesized silica can be adjusted by changing the relative content of TEOS and silica gel or the feeding sequence of silica gel and NH4OH.

  1. Bietti's Crystalline Dystrophy (United States)

    ... Dystrophy > Facts About Bietti's Crystalline Dystrophy Facts About Bietti's Crystalline Dystrophy This information was developed by the ... is the best person to answer specific questions. Bietti’s Crystalline Dystrophy Defined What is Bietti’s Crystalline Dystrophy? ...

  2. Vapour-phase crystallisation of silica from SiF4-bearing volcanic gases

    Directory of Open Access Journals (Sweden)

    M. H. G. Jacobs


    Full Text Available Thermodynamic modelling of magmatic gases shows that SiF4 may be an important F-bearing species at the high pressures typical of magma reservoirs. Upon decompression during degassing, SiF4 will react with water vapour to form HF and silica. Common magmatic gases of high-T fumaroles seem to contain too little SiF4 to be a significant source of silica, except if extremely large amounts of gas percolate through a small volume of rock, as is the case in lava domes. Only if fluorine contents of the gases exceed 1 mol% detectable amounts of silica may be formed, but such high fluorine contents have not yet been observed in natural gases. Alternatively, silica may be formed by heating of cool SiF4-rich gases circulating in cooling lava bodies. We suggest that these mechanisms may be responsible for the deposition of crystalline silica, most probably cristobalite, observed in vesicles in lavas from Lewotolo volcano (Eastern Sunda Arc, Indonesia. Silica occurs as vapour-crystallised patches in vesicles, and is sometimes associated with F-phlogopite, which further supports F-rich conditions during deposition. Because of the connection between F-rich conditions and high-K volcanism, we propose that late-stage gaseous transport and deposition of silica may be more widespread in K-rich volcanoes than elsewhere, and long-term exposure to ash from eruptions of such volcanoes could therefore carry an increased risk for respiratory diseases. The dependence of SiF4/HF on temperature reported here differs from the current calibration used for temperature measurements of fumarolic gases by remote sensing techniques, and we suggest an updated calibration.

  3. Content

    DEFF Research Database (Denmark)

    Keiding, Tina Bering

    Aim, content and methods are fundamental categories of both theoretical and practical general didactics. A quick glance in recent pedagogical literature on higher education, however, reveals a strong preoccupation with methods, i.e. how teaching should be organized socially (Biggs & Tang, 2007......; Race, 2001; Ramsden, 2003). This trend appears closely related to the ‘from-teaching-to-learning’ movement, which has had a strong influence on pedagogy since the early nineties (Keiding, 2007; Terhart, 2003). Another interpretation of the current interest in methodology can be derived from...... for selection of content (Klafki, 1985, 2000; Myhre, 1961; Nielsen, 2006). These attempts all share one feature, which is that criteria for selection of content appear very general and often, more or less explicitly, deal with teaching at the first Bologna-cycle; i.e. schooling at the primary and lower...

  4. 复合纤维含量对精铸硅溶胶型壳强度及透气性的影响%Effect of composite fiber content on strength and breathability of silica sol shell for investment casting

    Institute of Scientific and Technical Information of China (English)

    芦刚; 毛蒲; 严青松; 纪超众; 饶文杰


    采用陶瓷和尼龙复合纤维增强熔模精铸硅溶胶型壳,通过测试与分析复合纤维增强硅溶胶型壳的常温及焙烧后强度和透气性,研究复合纤维含量对硅溶胶型壳强度和透气性的影响规律,确定复合纤维含量与焙烧温度和型壳强度的关系,并通过 SEM 对型壳试样断口形貌进行观察和分析。结果表明:复合纤维对硅溶胶型壳强度和透气性的影响显著,当复合纤维含量小于0.6%(质量分数)时,硅溶胶型壳强度和透气性同时增大;当复合纤维含量大于0.6%时,型壳常温及焙烧后强度开始减小,焙烧后基体中孔隙率增加,型壳透气性继续增大;当复合纤维含量为0.6%、焙烧温度为1050℃时,型壳焙烧后强度达到最大值。%Ceramic and nylon composite fibers were used to enhance silica sol shell of investment casting. The effects of composite fiber content on the strength and breathability of silica sol shell were studied by testing and analyzing the green and fired strength and breathability. Meanwhile, the relationships among composite fiber content and firing temperature and fired strength of shell were established. The fracture appearances of shell specimens were observed by scanning electron microscopy (SEM). The results indicate that the effect of composite fibers on strength and breathability of silica sol shell is obvious. When composite fiber content is less than 0.6% (mass fraction), the strength and permeability of silica sol shell both increase. When composite fiber content is more than 0.6%, the green strength and fired strength of fiber-reinforced shell decrease firstly, and the matrix porosity increases, the shell breathability continues to increase; When the composite fiber content is 0.6% and firing temperature is 1050℃, the fired strength reaches maximum value.

  5. Removal of the organic content from a bleached kraft pulp mill effluent by a treatment with silica-alginate-fungi biocomposites. (United States)

    Duarte, Katia; Justino, Celine I L; Pereira, Ruth; Panteleitchouk, Teresa S L; Freitas, Ana C; Rocha-Santos, Teresa A P; Duarte, Armando C


    This study attempts a treatment strategy of a bleached kraft pulp mill effluent with Rhizopus oryzae or Pleurotus sajor caju encapsulated on silica-alginate (biocomposite of silica-alginate-fungi, with the purpose of reducing its potential impact in the environment. Active (alive) or inactive (death by sterilization) Rhizopus oryzae or Pleurotus sajor caju was encapsulated in alginate beads. Five beads containing active and inactive fungus were placed in a mold and filled with silica hydrogel (biocomposites). The biocomposites were added to batch reactors containing the bleached kraft pulp mill effluent. The treatment of bleached kraft pulp mill effluent by active and inactive biocomposites was performed throughout 29 days at 28°C. The efficiency of treatment was evaluated by measuring the removal of organic compounds, chemical oxygen demand and the relative absorbance ratio over time. Both fungi species showed potential for removal of organic compounds, colour and chemical oxygen demand. Maximum values of reduction in terms of colour (56%), chemical oxygen demand (65%) and organic compounds (72-79%) were attained after 29 days of treatment of bleached kraft pulp mill effluent by active Rhizopus oryzae biocomposites. The immobilization of fungi, the need for low fungal biomass, and the possibility of reutlization of the biocomposites clearly demonstrate the industrial and environmental interest in bleached kraft pulp mill effluent treatment by silica-alginate-fungi biocomposites.

  6. Preparation of polystyrene/silica nanocomposites by radical copolymerization of styrene with silica macromonomer

    Institute of Scientific and Technical Information of China (English)


    A two-stage process has been developed to generate the silica-based macromonomer through surface-modification of silica with polymerizable vinyl groups. The silica surfaces were treated with excess 2,4-toluene diisocynate (TDI), after which the residual isocyanate groups were converted into polymerizable vinyl groups by reaction with hydroxypropylacrylate (HPA). Thus, polystyrene/silica nanocomposites were prepared by conventional radical copolymerization of styrene with silica macromonomer. The main effecting factors, such as ratios of styrene to the macromonomer, together with polymerization time on the copolymerization were studied in detail. FTIR, DSC and TGA were utilized to characterize the nanocomposites. Experimental results revealed that the silica nanoparticles act as cross-linking points in the polystytene/silica nanocomposites, and the glass transition temperatures of the nanocomposites are higher than that of the corresponding pure polystyrene. The glass transition temperatures of nanocomposites increased with the increasing of silica contents, which were further ascertained by DSC.


    Institute of Scientific and Technical Information of China (English)


    The Development and Evolution of the Idea of the Mandate of Heaven in the Zhou Dynasty The changes in the idea of Mandate of Heaven during the Shang and Zhou dynasties are of great significance in the course of the development of traditional Chinese culture. The quickening and awakening of the humanistic spirit was not the entire content of the Zhou idea of Mandate of Heaven. In the process of annihilating the Shang dynasty and setting up their state, the Zhou propagated the idea of the Mandate of Heaven out of practical needs. Their idea of the Mandate of Heaven was not very different from that of the Shang. From the Western Zhou on, the Zhou idea of Mandate of Heaven by no means developed in a linear way along a rational track. The intermingling of rationality and irrationality and of awakening and non-awakening remained the overall state of the Zhou intellectual superstructure after their "spiritual awakening".

  8. Crystalline Confinement

    CERN Document Server

    Banerjee, D; Jiang, F -J; Wiese, U -J


    We show that exotic phases arise in generalized lattice gauge theories known as quantum link models in which classical gauge fields are replaced by quantum operators. While these quantum models with discrete variables have a finite-dimensional Hilbert space per link, the continuous gauge symmetry is still exact. An efficient cluster algorithm is used to study these exotic phases. The $(2+1)$-d system is confining at zero temperature with a spontaneously broken translation symmetry. A crystalline phase exhibits confinement via multi-stranded strings between charge-anti-charge pairs. A phase transition between two distinct confined phases is weakly first order and has an emergent spontaneously broken approximate $SO(2)$ global symmetry. The low-energy physics is described by a $(2+1)$-d $\\mathbb{R}P(1)$ effective field theory, perturbed by a dangerously irrelevant $SO(2)$ breaking operator, which prevents the interpretation of the emergent pseudo-Goldstone boson as a dual photon. This model is an ideal candidat...

  9. Supra-amphiphilic transparent mesoporous silica coating

    Institute of Scientific and Technical Information of China (English)

    MA Jin; YANG Zhenglong; QU Xiaozhong; YANG Zhenzhong


    Transparent mesoporous silica coatings were achieved by conventional sol-gel process. The obtained coatings display permanent supraamphiphilicity, transparent appearance and good wetting property with very fast spread rate. Incorporation of functional materials such as crystalline titania nanoparticles into the coatings was also carried out without affecting the transparency and supraamphiphilicity.

  10. 影响二氧化硅气凝胶隔热涂料热导率的因素%Effect of contents and sizes on the thermal conductivity of silica aerogel thermal insulation coatings

    Institute of Scientific and Technical Information of China (English)

    何方; 吴菊英; 黃渝鸿; 程娟; 郑伟


    The silica aerogel microspheres were prepared by sol-gel method and atomization technology,and the silica aerogel thermal insulation coatings were also prepared. The microstructures were observed by scanning electron microscopy(SEM). The sizes of microspheres were tested by a laser particle detector. The thermal conductivity of the coating was measured by Hot Disk thermal content meter. The results show that significant aggregations of silica aerogel microspheres with a high volume fraction are generated in the coatings,the number of pores in the coating increases according to SEM diagrams. Additionally,the aggregations are easy to be formed by small size silica aerogel microspheres. The thermal conductivity of the coating decreases with the increase of volume fraction because of the high thermal resistance of the silica aerogel microspheres. Aggregations of the silica aerogel microspheres have a negative impact on the reduction of thermal conductivity compared with that evenly distributed,but the pores help reduce thermal conductivity because of the high thermal resistance of air. Meanwhile,the interfacial thermal resistance of silica aerogel microspheres of small sizes is bigger than that of big sizes. So the thermal conductivity of coatings with small size microspheres is lower than that of coating with big size microspheres. Hybrid sizes increase the stacking density of silica aerogel microspheres in coating which help reduce thermal conductivity.%采用溶胶凝胶法及雾化技术制备了二氧化硅气凝胶微球,同时制备了二氧化硅气凝胶隔热涂料。利用扫描电镜(SEM)对涂料的微结构进行观测,采用激光粒度检测仪对二氧化硅气凝胶微球的尺寸进行检测,采用Hot Disk热导率仪测量了二氧化硅气凝胶隔热涂料的热导率。结果显示:根据SEM 图像,气凝胶微球在涂料中形成明显团聚,且在气凝胶体积分数较高时,涂料中气孔增多。此外,小粒径气凝

  11. Contents

    Directory of Open Access Journals (Sweden)

    Editor IJRED


    Full Text Available International Journal of Renewable Energy Development Volume 1             Number 3            October 2012                ISSN 2252- 4940   CONTENTS OF ARTICLES page Design and Economic Analysis of a Photovoltaic System: A Case Study 65-73 C.O.C. Oko , E.O. Diemuodeke, N.F. Omunakwe, and E. Nnamdi     Development of Formaldehyde Adsorption using Modified Activated Carbon – A Review 75-80 W.D.P Rengga , M. Sudibandriyo and M. Nasikin     Process Optimization for Ethyl Ester Production in Fixed Bed Reactor Using Calcium Oxide Impregnated Palm Shell Activated Carbon (CaO/PSAC 81-86 A. Buasri , B. Ksapabutr, M. Panapoy and N. Chaiyut     Wind Resource Assessment in Abadan Airport in Iran 87-97 Mojtaba Nedaei       The Energy Processing by Power Electronics and its Impact on Power Quality 99-105 J. E. Rocha and B. W. D. C. Sanchez       First Aspect of Conventional Power System Assessment for High Wind Power Plants Penetration 107-113 A. Merzic , M. Music, and M. Rascic   Experimental Study on the Production of Karanja Oil Methyl Ester and Its Effect on Diesel Engine 115-122 N. Shrivastava,  , S.N. Varma and M. Pandey  

  12. Silica exposure and systemic vasculitis. (United States)

    Mulloy, Karen B


    Work in Department of Energy (DOE) facilities has exposed workers to multiple toxic agents leading to acute and chronic diseases. Many exposures were common to numerous work sites. Exposure to crystalline silica was primarily restricted to a few facilities. I present the case of a 63-year-old male who worked in DOE facilities for 30 years as a weapons testing technician. In addition to silica, other workplace exposures included beryllium, various solvents and heavy metals, depleted uranium, and ionizing radiation. In 1989 a painful macular skin lesion was biopsied and diagnosed as leukocytoclastic vasculitis. By 1992 he developed gross hematuria and dyspnea. Blood laboratory results revealed a serum creatinine concentration of 2.1 mg/dL, ethrythrocyte sedimentation rate of 61 mm/hr, negative cANCA (antineutrophil cytoplasmic antibody cytoplasmic pattern), positive pANCA (ANCA perinuclear pattern), and antiglomerular basement membrane negative. Renal biopsy showed proliferative (crescentric) and necrotizing glomerulonephritis. The patient's diagnoses included microscopic polyangiitis, systemic necrotizing vasculitis, leukocytoclastic vasculitis, and glomerulonephritis. Environmental triggers are thought to play a role in the development of an idiopathic expression of systemic autoimmune disease. Crystalline silica exposure has been linked to rheumatoid arthritis, scleroderma, systemic lupus erythematosus, rapidly progressive glomerulonephritis and some of the small vessel vasculitides. DOE workers are currently able to apply for compensation under the federal Energy Employees Occupational Illness Compensation Program (EEOICP). However, the only diseases covered by EEOICP are cancers related to radiation exposure, chronic beryllium disease, and chronic silicosis.


    Energy Technology Data Exchange (ETDEWEB)

    Aller, Monique C.; Kulkarni, Varsha P.; Som, Debopam [Department of Physics and Astronomy, University of South Carolina, 712 Main Street, Columbia, SC 29208 (United States); York, Donald G.; Welty, Daniel E. [Department of Astronomy and Astrophysics, University of Chicago, 5640 S. Ellis Ave., Chicago, IL 60637 (United States); Vladilo, Giovanni, E-mail: [Osservatorio Astonomico di Trieste, Via Tiepolo 11, 34143 Trieste (Italy)


    We present evidence of a >10{sigma} detection of the 10 {mu}m silicate dust absorption feature in the spectrum of the gravitationally lensed quasar PKS 1830-211, produced by a foreground absorption system at redshift 0.886. We have examined more than 100 optical depth templates, derived from both observations of Galactic and extragalactic sources and laboratory measurements, in order to constrain the chemical structure of the silicate dust. We find that the best fit to the observed absorption profile is produced by laboratory crystalline olivine, with a corresponding peak optical depth of {tau}{sub 10} = 0.27 {+-} 0.05. The fit is slightly improved upon by including small contributions from additional materials, such as silica, enstatite, or serpentine, which suggests that the dust composition may consist of a blend of crystalline silicates. Combining templates for amorphous and crystalline silicates, we find that the fraction of crystalline silicates needs to be at least 95%. Given the rarity of extragalactic sources with such a high degree of silicate crystallinity, we also explore the possibility that the observed spectral features are produced by amorphous silicates in combination with other molecular or atomic transitions, or by foreground source contamination. While we cannot rule out these latter possibilities, they lead to much poorer profile fits than for the crystalline olivine templates. If the presence of crystalline interstellar silicates in this distant galaxy is real, it would be highly unusual, given that the Milky Way interstellar matter contains essentially only amorphous silicates. It is possible that the z = 0.886 absorber toward PKS 1830-211, well known for its high molecular content, has a unique star-forming environment that enables crystalline silicates to form and prevail.

  14. Pure Silica Zeolite Beta Membrane: A Potential Low Dielectric Constant Material For Microprocessor Application (United States)

    Fong, Yeong Yin; Bhatia, Subhash

    The semiconductor industry needs low dielectric constant (low k-value) materials for more advance microprocessor and chips by reducing the size of the device features. In fabricating these contents, a new material with lower k-value than conventional silica (k = 3.9-4.2) is needed in order to improve the circuit performance. The choice of the inorganic zeolite membrane is an attractive option for low k material and suitable for microprocessor applications. A pure silica zeolite beta membrane was synthesized and coated on non-porous stainless steel support using insitu crystallization in the presence of tetraethylammonium hydroxide, TEA (OH), as structure directing agent, fumed silica, HF and deionized water at pH value of 9. The crystallization was carried out for the duration of 14 days under hydrothermal conditions at 130°C. The membrane was characterized by thermogravimetric analysis (TGA), nitrogen adsorption and Scanning Electron Microscope (SEM). SEM results show a highly crystalline; with a truncated square bipyramidal morphology of pure silica zeolite beta membrane strongly adhered on the non-porous stainless steel support. In the present work, the k-value of the membrane was measured as 2.64 which make it suitable for the microprocessor applications.

  15. Health hazards due to the inhalation of amorphous silica

    Energy Technology Data Exchange (ETDEWEB)

    Merget, R.; Bruening, T. [Research Institute for Occupational Medicine (BGFA), Bochum (Germany); Bauer, T. [Bergmannsheil, University Hospital, Department of Internal Medicine, Division of Pneumonology, Allergology and Sleep Medicine, Bochum (Germany); Kuepper, H.U.; Breitstadt, R. [Degussa-Huels Corp., Wesseling (Germany); Philippou, S. [Department of Pathology, Augusta Krankenanstalten, Bochum (Germany); Bauer, H.D. [Research Institute for Hazardous Substances (IGF), Bochum (Germany)


    Occupational exposure to crystalline silica dust is associated with an increased risk for pulmonary diseases such as silicosis, tuberculosis, chronic bronchitis, chronic obstructive pulmonary disease (COPD) and lung cancer. This review summarizes the current knowledge about the health effects of amorphous (non-crystalline) forms of silica. The major problem in the assessment of health effects of amorphous silica is its contamination with crystalline silica. This applies particularly to well-documented pneumoconiosis among diatomaceous earth workers. Intentionally manufactured synthetic amorphous silicas are without contamination of crystalline silica. These synthetic forms may be classified as (1) wet process silica, (2) pyrogenic (''thermal'' or ''fumed'') silica, and (3) chemically or physically modified silica. According to the different physico-chemical properties, the major classes of synthetic amorphous silica are used in a variety of products, e.g. as fillers in the rubber industry, in tyre compounds, as free-flow and anti-caking agents in powder materials, and as liquid carriers, particularly in the manufacture of animal feed and agrochemicals; other uses are found in toothpaste additives, paints, silicon rubber, insulation material, liquid systems in coatings, adhesives, printing inks, plastisol car undercoats, and cosmetics. Animal inhalation studies with intentionally manufactured synthetic amorphous silica showed at least partially reversible inflammation, granuloma formation and emphysema, but no progressive fibrosis of the lungs. Epidemiological studies do not support the hypothesis that amorphous silicas have any relevant potential to induce fibrosis in workers with high occupational exposure to these substances, although one study disclosed four cases with silicosis among subjects exposed to apparently non-contaminated amorphous silica. Since the data have been limited, a risk of chronic bronchitis, COPD or

  16. Synthesis and Gas Transport Properties of Hyperbranched Polyimide–Silica Hybrid/Composite Membranes

    Directory of Open Access Journals (Sweden)

    Masako Miki


    Full Text Available Hyperbranched polyimide–silica hybrids (HBPI–silica HBDs and hyperbranched polyimide–silica composites (HBPI–silica CPTs were prepared, and their general and gas transport properties were investigated to clarify the effect of silica sources and preparation methods. HBPI–silica HBDs and HBPI–silica CPTs were synthesized by two-step polymerization of A2 + B3 monomer system via polyamic acid as precursor, followed by hybridizing or blending silica sources. Silica components were incorporated by the sol-gel reaction with tetramethoxysilane (TMOS or the addition of colloidal silica. In HBPI-silica HBDs, the aggregation of silica components is controlled because of the high affinity of HBPI and silica caused by the formation of covalent bonds between HBPI and silica. Consequently, HBPI-silica HBDs had good film formability, transparency, and mechanical properties compared with HBPI-silica CPTs. HBPI-silica HBD and CPT membranes prepared via the sol-gel reaction with TMOS showed specific gas permeabilities and permselectivities for CO2/CH4 separation, that is, both CO2 permeability and CO2/CH4 selectivity increased with increasing silica content. This result suggests that gas transport can occur through a molecular sieving effect of the porous silica network derived from the sol-gel reaction and/or through the narrow interfacial region between the silica networks and the organic matrix.

  17. Biomimetic synthesized chiral mesoporous silica: Structures and controlled release functions as drug carrier

    Energy Technology Data Exchange (ETDEWEB)

    Li, Jing; Xu, Lu, E-mail:; Yang, Baixue; Bao, Zhihong; Pan, Weisan; Li, Sanming, E-mail:


    This work initially illustrated the formation mechanism of chiral mesoporous silica (CMS) in a brand new insight named biomimetic synthesis. Three kinds of biomimetic synthesized CMS (B-CMS, including B-CMS1, B-CMS2 and B-CMS3) were prepared using different pH or stirring rate condition, and their characteristics were tested with transmission electron microscope and small angle X-ray diffraction. The model drug indomethacin was loaded into B-CMS and drug loading content was measured using ultraviolet spectroscopy. The result suggested that pH condition influenced energetics of self-assembly process, mainly packing energetics of the surfactant, while stirring rate was the more dominant factor to determine particle length. In application, indomethacin loading content was measured to be 35.3%, 34.8% and 35.1% for indomethacin loaded B-CMS1, indomethacin loaded B-CMS2 and indomethacin loaded B-CMS3. After loading indomethacin into B-CMS carriers, surface area, pore volume and pore diameter of B-CMS carriers were reduced. B-CMS converted crystalline state of indomethacin to amorphous state, leading to the improved indomethacin dissolution. B-CMS1 controlled drug release without burst-release, while B-CMS2 and B-CMS3 released indomethacin faster than B-CMS1, demonstrating that the particle length, the ordered lever of multiple helixes, the curvature degree of helical channels and pore diameter greatly contributed to the release behavior of indomethacin loaded B-CMS. - Highlights: • Chiral mesoporous silica was synthesized using biomimetic method. • pH influenced energetics of self-assembly process of chiral mesoporous silica. • Stirring rate determined the particle length of chiral mesoporous silica. • Controlled release behaviors of chiral mesoporous silica varied based on structures.

  18. Crystalline and Crystalline International Disposal Activities

    Energy Technology Data Exchange (ETDEWEB)

    Viswanathan, Hari S. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Chu, Shaoping [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Reimus, Paul William [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Makedonska, Nataliia [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Hyman, Jeffrey De' Haven [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Karra, Satish [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Dittrich, Timothy M. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)


    This report presents the results of work conducted between September 2014 and July 2015 at Los Alamos National Laboratory in the crystalline disposal and crystalline international disposal work packages of the Used Fuel Disposition Campaign (UFDC) for DOE-NE’s Fuel Cycle Research and Development program.

  19. The influence of glass composition on crystalline phase stability in glass-ceramic wasteforms

    Energy Technology Data Exchange (ETDEWEB)

    Maddrell, Ewan, E-mail: [National Nuclear Laboratory, Sellafield, Seascale, Cumbria CA20 1PG (United Kingdom); Thornber, Stephanie; Hyatt, Neil C. [Department of Materials Science and Engineering, The University of Sheffield, Mappin Street, Sheffield S1 3JD (United Kingdom)


    Highlights: • Crystalline phase formation shown to depend on glass matrix composition. • Zirconolite forms as the sole crystalline phase only for most aluminous glasses. • Thermodynamics indicate that low silica activity glasses stabilise zirconolite. - Abstract: Zirconolite glass-ceramic wasteforms were prepared using a suite of Na{sub 2}O–Al{sub 2}O{sub 3}–B{sub 2}O{sub 3}–SiO{sub 2} glass matrices with variable Al:B ratios. Zirconolite was the dominant crystalline phase only for the most alumina rich glass compositions. As the Al:B ratio decreased zirconolite was replaced by sphene, zircon and rutile. Thermodynamic data were used to calculate a silica activity in the glass melt below which zirconolite is the favoured crystalline phase. The concept of the crystalline reference state of glass melts is then utilised to provide a physical basis for why silica activity varies with the Al:B ratio.

  20. Encapsulation of CO2 into amorphous alpha-cyclodextrin powder at different moisture contents - Part 2: Characterization of complexed powders and determination of crystalline structure. (United States)

    Ho, Thao M; Howes, Tony; Jack, Kevin S; Bhandari, Bhesh R


    This study aims to characterize CO2-α-cyclodextrin (α-CD) inclusion complexes produced from amorphous α-CD powder at moisture contents (MC) close to or higher than the critical level of crystallization (e.g. 13, 15 and 17% MC on wet basis, w.b.) at 0.4 and 1.6MPa pressure for 72h. The results of (13)C NMR, SEM, DSC and X-ray analyses showed that these MC levels were high enough to induce crystallization of CO2-α-CD complexed powders during encapsulation, by which amount of CO2 encapsulated by amorphous α-CD powder was significantly increased. The formation of inclusion complexes were well confirmed by results of FTIR and (13)C NMR analyses through an appearance of a peak associated with CO2 on the FTIR (2334cm(-1)) and NMR (125.3ppm) spectra. Determination of crystal packing patterns of CO2-α-CD complexed powders showed that during crystallization, α-CD molecules were arranged in cage-type structure in which CO2 molecules were entrapped in isolated cavities.

  1. Aerosol-Assisted Synthesis of Monodisperse Single-Crystalline α-Cristobalite Nanospheres


    Jiang, Xingmao; Bao, Lihong; Cheng, Yung-Sung; Dunphy, Darren R.; Li, Xiaodong; Brinker, C. Jeffrey


    Monodisperse single-crystalline α-cristobalite nanospheres have been synthesized by hydrocarbon-pyrolysis-induced carbon deposition on amorphous silica aerosol nanoparticles, devitrification of the coated silica at high temperature, and subsequent carbon removal by oxidation. The nanosphere size can be well controlled by tuning the size of the colloidal silica precursor. Uniform, high-purity nanocrystalline α-cristobalite is important for catalysis, nanocomposites, advanced polishing, and und...

  2. Synthesis and characterization of Ni NPs-doped silica-titania nanocomposites: structural, optical and photocatalytic properties (United States)

    Islam, S.; Bidin, N.; Osman, S. S.; Krishnan, G.; Salim, A. A.; Riaz, S.; Suan, L. P.; Naseem, S.; Sanagi, M. M.


    The synthesis of Ni-doped silica-titania nanocomposite is performed by sol-gel method. The samples prior and after heat treatment at 300 °C for 1 h are characterized by analytical instrumental techniques. FE-SEM and AFM results indicate the regular morphology with low surface roughness without any cracks. EDX analysis verifies the formation of nanocomposites. XRD of the films reveals crystalline titania phases after annealing at 300 °C. The FTIR confirms the bond linkage between silica, titania and nickel molecules. High surface area 155 m2/g, pore volume of 0.2 cm3/g and pore diameter of 48.10 Å are obtained after heat treatment. The magnetic results show that the composite content is reminiscent of ferromagnetic hysteresis loop, with remanence magnetization Mr of 45.35 and 13.20 emu/g for both samples. The organic dye phenol red is used for the evaluation of photocatalytic activity of the synthesized magnetic material. The homogeneous surface morphology, crystalline nature, good solubility of magnetic nanoparticles into the silica-titania matrix show that the Ni/SiO2-TiO2 magnetic photocatalyst can be efficient and reusable.

  3. Influence of nano-silica content on fiexural properties of the aluminum borate whisker and silica filler composite resins%纳米二氧化硅含量对硼酸铝晶须-二氧化硅熔附体填料复合树脂弯曲性能的影响

    Institute of Scientific and Technical Information of China (English)

    张文云; 袁艳波; 陈庆华; 肖玉鸿; 李星星


    目的 研究正硅酸乙酯(TEOS)水解所得纳米二氧化硅(Si02)含量对硼酸铝晶须(AIBw)与SiO2熔附体填料复合树脂弯曲性能的影响.方法 采用TEOS溶胶一凝胶法制得纳米SiO2,按不同比例通过高温烧结使其熔附于AIBw表面,制作试样并测试其弯曲强度和弯曲弹性模量;利用透射电镜(TEM)观察高温处理过程对晶须表面形态的影响以及不同比例的熔附体形貌.结果 AlBw-SiO2熔附体复合填料可显著提高牙科复合树脂的弯曲性能:AlBw和SiO2的质量比为3:1时牙科复合树脂的弯曲强度达(130.29±8.38)MPa.结论 TEOS溶胶-凝胶法水解所得的纳米SiO2含量可改善AlBw-SiO2熔附体填料复合树脂的弯曲性能.%Objective To discuss the influence of nano-silica content which was hydrolyzed by tetraethyl orthosioate(TEOS) on the aluminum borate whisker(AlBw) and silica filler composite resins on flexural properties.Methods The nanometer-size silicon dioxide (SiO2) particles were prepared by sol-gel method based on tetraethyl orthosioate.Different proportion of AlBw and SiO2 were fused and attached onto the surface of AlBw through high temperature,then polymerized with resin matrix after surface siliconization and their flexural strength and flexural modulus were determined.The effects of heat treatment to the surface morphology of AlBw and the shapes of the mixture at various proportions were characterized by TEM.Results The flexural properties of dental composite resins with AlBw-SiO2 compound as inorganic fillers were significantly improved.The flexural property of a new type of dental composite resins was (130.29±8.38) MPa, when the mass ratio of AlBw and nano-SiO2 particle was 3:1.Conclusion Nano-silica content which was hydrolyzed by tetraethyl orthosioate improved flexural properties of the aluminum borate whisker and silica filler composite resins.

  4. Shape Memory Properties of PBS-Silica Hybrids

    Directory of Open Access Journals (Sweden)

    Katia Paderni


    Full Text Available A series of novel Si–O–Si crosslinked organic/inorganic hybrid semi-crystalline polymers with shape memory properties was prepared from alkoxysilane-terminated poly(butylene succinate (PBS by water-induced silane crosslinking under organic solvent-free and catalyst-free conditions. The hydrolyzation and condensation of alkoxysilane end groups allowed for the generation of silica-like crosslinking points between the polymeric chains, acting not only as chemical net-points, but also as inorganic filler for a reinforcement effect. The resulting networks were characterized using differential scanning calorimetry (DSC, thermogravimetric analysis (TGA, dynamic-mechanical analysis (DMA and tensile and shape memory tests to gain insight into the relationship between the polymeric structure, the morphology and the properties. By controlling the molecular weight of the PBS precursor, a fine tuning of the crosslinking density and the inorganic content of the resulting network was possible, leading to different thermal, mechanical and shape memory properties. Thanks to their suitable morphology consisting of crystalline domains, which represent the molecular switches between the temporary and permanent shapes, and chemical net-points, which permit the shape recovery, the synthesized materials showed good shape memory characteristics, being able to fix a significant portion of the applied strain in a temporary shape and to restore their original shape above their melting temperature.

  5. Novel Crystalline SiO2 Nanoparticles via Annelids Bioprocessing of Agro-Industrial Wastes (United States)

    Espíndola-Gonzalez, A.; Martínez-Hernández, A. L.; Angeles-Chávez, C.; Castaño, V. M.; Velasco-Santos, C.


    The synthesis of nanoparticles silica oxide from rice husk, sugar cane bagasse and coffee husk, by employing vermicompost with annelids ( Eisenia foetida) is reported. The product ( humus) is calcinated and extracted to recover the crystalline nanoparticles. X-ray diffraction (XRD), transmission electron microscopy (TEM), high-resolution transmission electron microscopy (HRTEM) and dynamic light scattering (DLS) show that the biotransformation allows creating specific crystalline phases, since equivalent particles synthesized without biotransformation are bigger and with different crystalline structure.

  6. Novel Crystalline SiO2 Nanoparticles via Annelids Bioprocessing of Agro-Industrial Wastes

    Directory of Open Access Journals (Sweden)

    Angeles-Chávez C


    Full Text Available Abstract The synthesis of nanoparticles silica oxide from rice husk, sugar cane bagasse and coffee husk, by employing vermicompost with annelids (Eisenia foetida is reported. The product (humus is calcinated and extracted to recover the crystalline nanoparticles. X-ray diffraction (XRD, transmission electron microscopy (TEM, high-resolution transmission electron microscopy (HRTEM and dynamic light scattering (DLS show that the biotransformation allows creating specific crystalline phases, since equivalent particles synthesized without biotransformation are bigger and with different crystalline structure.

  7. A quantitative method for silica flux evaluation (United States)

    Schonewille, R. H.; O'Connell, G. J.; Toguri, J. M.


    In the smelting of copper and copper/nickel concentrates, the role of silica flux is to aid in the removal of iron by forming a slag phase. Alternatively, the role of flux may be regarded as a means of controlling the formation of magnetite, which can severely hinder the operation of a furnace. To adequately control the magnetite level, the flux must react rapidly with all of the FeO within the bath. In the present study, a rapid method for silica flux evaluation that can be used directly in the smelter has been developed. Samples of flux are mixed with iron sulfide and magnetite and then smelted at a temperature of 1250 °C. Argon was swept over the reaction mixture and analyzed continuously for sulfur dioxide. The sulfur dioxide concentration with time was found to contain two peaks, the first one being independent of the flux content of the sample. A flux quality parameter has been defined as the height-to-time ratio of the second peak. The value of this parameter for pure silica is 5100 ppm/min. The effects of silica content, silica particle size, and silicate mineralogy were investigated. It was found that a limiting flux quality is achieved for particle sizes less than 0.1 mm in diameter and that fluxes containing feldspar are generally of a poorer quality. The relative importance of free silica and melting point was also studied using synthetic flux mixtures, with free silica displaying the strongest effect.

  8. Structure/Property Relationships of Poly(L-lactic Acid/Mesoporous Silica Nanocomposites

    Directory of Open Access Journals (Sweden)

    Javier Gudiño-Rivera


    Full Text Available Biodegradable poly(L-lactic acid (PLLA/mesoporous silica nanocomposites were prepared by grafting L-lactic acid oligomer onto silanol groups at the surface of mesoporous silica (SBA-15. The infrared results showed that the lactic acid oligomer was grafted onto the mesoporous silica. Surface characterization of mesoporous silica proved that the grafted oligomer blocked the entry of nitrogen into the mesopores. Thermal analysis measurements showed evidence that, once mixed with PLLA, SBA-15 not only nucleated the PLLA but also increased the total amount of crystallinity. Neat PLLA and its nanocomposites crystallized in the same crystal habit and, as expected, PLLA had a defined periodicity compared with the nanocomposites. This was because the grafted macromolecules on silica tended to cover the lamellar crystalline order. The g-SBA-15 nanoparticles improved the tensile moduli, increasing also the tensile strength of the resultant nanocomposites. Overall, the silica concentration tended to form a brittle material.

  9. Synthesis of all-silica zeolites from highly concentrated gels containing hexamethonium cations

    KAUST Repository

    Liu, Xiaolong


    A pure and highly crystalline all-silica EU-1 zeolite has been obtained from the crystallization of gels containing very low water contents in the presence of hexamethonium cations. Decreasing the water content in the gel down to H 2O/Si < 1 inhibited the formation of ZSM-48, which is usually observed under more diluted standard crystallization conditions. Moreover, addition of NH 4F to the synthesis led to the formation of "half-fluorinated" ITQ-13 in which fluoride anions occupied only the center of D4R cages. In larger cages, the charge of the template was compensated by framework connectivity defects, clearly demonstrating once more the essential role of F - in the formation of D4R units. The formation of such hybrid (F,OH) is particularly interesting from a synthesis point of view, particularly for understanding the respective roles of fluoride and hydroxide anions in the crystallization process. © 2012 Elsevier Inc. All rights reserved.

  10. Crystalline and Crystalline International Disposal Activities

    Energy Technology Data Exchange (ETDEWEB)

    Viswanathan, Hari S. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Chu, Shaoping [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Dittrich, Timothy M. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Hyman, Jeffrey De' Haven [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Karra, Satish [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Makedonska, Nataliia [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Reimus, Paul William [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)


    This report presents the results of work conducted between September 2015 and July 2016 at Los Alamos National Laboratory in the crystalline disposal and crystalline international disposal work packages of the Used Fuel Disposition Campaign (UFDC) for DOE-NE’s Fuel Cycle Research and Development program. Los Alamos focused on two main activities during this period: Discrete fracture network (DFN) modeling to describe flow and radionuclide transport in complex fracture networks that are typical of crystalline rock environments, and a comprehensive interpretation of three different colloid-facilitated radionuclide transport experiments conducted in a fractured granodiorite at the Grimsel Test Site in Switzerland between 2002 and 2013. Chapter 1 presents the results of the DFN work and is divided into three main sections: (1) we show results of our recent study on the correlation between fracture size and fracture transmissivity (2) we present an analysis and visualization prototype using the concept of a flow topology graph for characterization of discrete fracture networks, and (3) we describe the Crystalline International work in support of the Swedish Task Force. Chapter 2 presents interpretation of the colloidfacilitated radionuclide transport experiments in the crystalline rock at the Grimsel Test Site.

  11. Central Heat and Power Plant Coal Dust and Silica Risk Management, Eielson Air Force Base, Alaska (United States)


    autoimmune diseases and in death from other nonmalignant respiratory diseases , including chronic obstructive pulmonary disease . There are some... Occupational Safety and Health Administration Occupational Exposure to Respirable Crystalline Silica; Proposed Rule. This consultative letter is in...strategies, occupational and environmental exposure limits, and air sampling methods as they apply to CHPP operations. 15. SUBJECT TERMS Silica

  12. Multifunctional mesoporous silica catalyst

    Energy Technology Data Exchange (ETDEWEB)

    Lin, Victor Shang-Yi; Tsai, Chih-Hsiang; Chen, Hung-Ting; Pruski, Marek; Kobayashi, Takeshi


    The present invention provides bifunctional silica mesoporous materials, including mesoporous silica nanoparticles ("MSN"), having pores modified with diarylammonium triflate and perfluoroaryl moieties, that are useful for the acid-catalyzed esterification of organic acids with organic alcohols.

  13. Silica extraction from geothermal water (United States)

    Bourcier, William L; Bruton, Carol J


    A method of producing silica from geothermal fluid containing low concentration of the silica of less than 275 ppm includes the steps of treating the geothermal fluid containing the silica by reverse osmosis treatment thereby producing a concentrated fluid containing the silica, seasoning the concentrated fluid thereby producing a slurry having precipitated colloids containing the silica, and separating the silica from the slurry.

  14. Synthesis of exfoliated PA66 nanocomposites via interfacial polycondensation: effect of layered silicate and silica nanoparticles

    Indian Academy of Sciences (India)



    Nanocomposites of polyamide 66 (PA66) with layered silicate and silica (SiO2) nanoparticles were prepared via in situ interfacial polycondensation method. Hexamethylenediamine (HDMA) and adipoyl chloride(AdCl) were reacted in a two-phase media. Montmorillonite (NaMMT) and silica nanoparticles were added to reacting media. Preparation of PA66 and its nanocomposites were studied using Fourier transform infrared spectroscopy.Dispersion of nanoparticles was studied using X-ray diffraction and transmission electron microscopy. The results show that two structures were achieved using two kinds of nanoparticles. Silica nanoparticles were partially exfoliated, while NaMMT nanoparticles were hybrid intercalated–exfoliated in nanocomposite samples. Thermal properties of samples were investigated by differential scanning calorimetry. The results suggest that crystallinity is heterogeneous in the presence of nanoparticles. Kinetic of crystallization was studied by means of Avrami equation, based on the kinetic parameters, spherulites are produced. Results were reported for nanocomposites containing 2 and 4% of nanoparticles. Avrami equation parameter, n, shows that spherulite crystallization occured in the samples. Addition of nanoparticles decreases n first, then n increases with nanoparticle content.

  15. Electrodeposition of macroporous nickel coating by employing nano-silica as template. (United States)

    Xu, Lijian; Chen, Baizhen; Du, Jingjing


    A novel method of preparing the macrporous nickel coating was described. The macrporous nickel coating was fabricated by employing nano-silica as the template. The effects of technological conditions and the concentration of the additives on the surface quality of coating were investigated, the nano-silica was characterized transmission electron microscopy (TEM) and laser particle size analyzer, and the macrporous nickel coating was characterized by X-ray diffraction (XRD) and scanning electron microscopy (SEM). The experimental results showed that nano-silica particles were about 100 nm, the optimal technological conditions of electrodepositing nickel were that the cathode current density was 12 A/dm2, the temperature was 30 degrees C and the pH value was 2.0, the concentration of lauryl sodium sulfate was 0.15 g/L and the concentration of glucide was 3 g/L, the macrporous nickel coating was obtained when the adding nano-SiO2 content in the electroplating bath was 6 g/L and its structure was crystalline.

  16. Determination of Silica Content in Toothpaste by Silicon Molybdenum Blue Spectrophotometry%硅钼蓝光度法测定牙膏中二氧化硅含量的研究

    Institute of Scientific and Technical Information of China (English)

    鲁海妍; 谢海东; 杜作朋


    In order determine silica content in toothpaste ,dried toothpaste was fused by sodium peroxide and acidized by HCl,then silicon molybdenum yellow was reduced to silicon molybdenum blue by adding molybdenum blue color reagent, its absorbance value at 680 nm wavelength was determined. The precision of this method (RSD, n=12) is 0.88%, the recovery rate is 96.8%~103.7%. The test results of this method are stable and reliable.%牙膏经烘干后,经过氧化钠熔融,盐酸酸化后,在0.6~1.0 mol/L 酸性溶液中,加入钼蓝显色剂将硅钼黄还原成硅钼蓝,在波长680 nm 处测定其吸光值。用钼蓝分光光度法测定,方法精密度(RSD,n=12)为0.88%,回收率为96.8%~103.7%,方法稳定,测试结果可靠。

  17. Crystalline boron nitride aerogels (United States)

    Zettl, Alexander K.; Rousseas, Michael; Goldstein, Anna P.; Mickelson, William; Worsley, Marcus A.; Woo, Leta


    This disclosure provides methods and materials related to boron nitride aerogels. In one aspect, a material comprises an aerogel comprising boron nitride. The boron nitride has an ordered crystalline structure. The ordered crystalline structure may include atomic layers of hexagonal boron nitride lying on top of one another, with atoms contained in a first layer being superimposed on atoms contained in a second layer.

  18. Crystalline boron nitride aerogels

    Energy Technology Data Exchange (ETDEWEB)

    Zettl, Alexander K.; Rousseas, Michael; Goldstein, Anna P.; Mickelson, William; Worsley, Marcus A.; Woo, Leta


    This disclosure provides methods and materials related to boron nitride aerogels. In one aspect, a material comprises an aerogel comprising boron nitride. The boron nitride has an ordered crystalline structure. The ordered crystalline structure may include atomic layers of hexagonal boron nitride lying on top of one another, with atoms contained in a first layer being superimposed on atoms contained in a second layer.

  19. 78 FR 56273 - Occupational Exposure to Respirable Crystalline Silica (United States)


    ... basis for setting OSHA health standards.\\1\\ \\1\\ Am. Textile Mfrs. Inst., Inc. v. Nat'l Cotton Council of... controls would be at odds with this framework for evaluating the technological feasibility of a PEL...

  20. Respiratory health effects in relation to crystalline silica

    CSIR Research Space (South Africa)

    Hnizdo, E


    Full Text Available The objective of the present study was to establish the feasibility of conducting such a prospective study of respiratory health effect in gold miners. In particular, the objectives were: (1) to establish whether routinely collected lung function...

  1. Metalliferous sediment and a silica-hematite deposit within the Blanco fracture zone, Northeast Pacific (United States)

    Hein, J.R.; Clague, D.A.; Koski, R.A.; Embley, R.W.; Dunham, R.E.


    A Tiburon ROV dive within the East Blanco Depression (EBD) increased the mapped extent of a known hydrothermal field by an order of magnitude. In addition, a unique opal-CT (cristobalite-tridymite)-hematite mound was discovered, and mineralized sediments and rock were collected and analyzed. Silica-hematite mounds have not previously been found on the deep ocean floor. The light-weight rock of the porous mound consists predominantly of opal-CT and hematite filaments, rods, and strands, and averages 77.8% SiO2 and 11.8% Fe2O3. The hematite and opal-CT precipitated from a low-temperature (???115?? C), strongly oxidized, silica- and iron-rich, sulfur-poor hydrothermal fluid; a bacterial mat provided the framework for precipitation. Samples collected from a volcaniclastic rock outcrop consist primarily of quartz with lesser plagioclase, smectite, pyroxene, and sulfides; SiO2 content averages 72.5%. Formation of these quartz-rich samples is best explained by cooling in an up-flow zone of silica-rich hydrothermal fluids within a low permeability system. Opal-A, opal-CT, and quartz mineralization found in different places within the EBD hydrothermal field likely reflects decreasing silica saturation and increasing temperature of the mineralizing fluid with increasing silica crystallinity. Six push cores recovered gravel, coarse sand, and mud mineralized variously by Fe or Mn oxides, silica, and sulfides. Total rare-earth element concentrations are low for both the rock and push core samples. Ce and Eu anomalies reflect high and low temperature hydrothermal components and detrital phases. A remarkable variety of types of mineralization occur within the EBD field, yet a consistent suite of elements is enriched (relative to basalt and unmineralized cores) in all samples analyzed: Ag, Au, S, Mo, Hg, As, Sb, Sr, and U; most samples are also enriched in Cu, Pb, Cd, and Zn. On the basis of these element enrichments, the EBD hydrothermal field might best be described as a base

  2. Complex coacervation between colloidal silica and polyacrylamide

    Energy Technology Data Exchange (ETDEWEB)

    Kawase, Kaoru; Sakami, Hiroshi; Hayakawa, Kiyoshi


    Complex coacervation introduced by gamma-ray induced polymerization of acrylamide in colloidal silica was studied. The complex coaservate was formed by polymerization of acrylamide dissolved in a colloidal silica and methanol mixture. Complex coacervation (two-phase separation of the mixture) was observed only when the concentration of methanol was between 33 and 41 percent by volume, and the concentration of colloidal silica did not affect it. Although two phase separation was not influenced by pH change, the content of polyacrylamide was bigger in the equilibrated solution in acidic regions. It was, however, bigger in the complex coacervate at neutral and in alkaline regions. The content of polyacrylamide was also calculated from the particle diameter of complex coacervate measured by small angle X-ray scattering, and the result was well coincided with the analytical result. The stability of the complex coacervate against the addition of salts was better than that of the untreated colloidal silica. The rate of electrophoretic transport of the complex coacervate was also lower than that of the colloidal silica. From these observation it was concluded that the hydrophobic colloidal silica particles were protected by the surrounding hydrophilic polyacrylamide. (author).

  3. Mesoporous silica and organosilica films templated by nanocrystalline chitin. (United States)

    Nguyen, Thanh-Dinh; Shopsowitz, Kevin E; MacLachlan, Mark J


    Liquid crystalline phases can be used to impart order into inorganic solids, creating materials that mimic natural architectures. Herein, mesoporous silica and organosilica films with layered structures and high surface areas have been templated by nanocrystalline chitin. Aqueous suspensions of spindle-shaped chitin nanocrystals were prepared by sequential deacetylation and hydrolysis of chitin fibrils isolated from king crab shells. The nanocrystalline chitin self-assembles into a nematic liquid-crystalline phase that has been used to template silica and organosilica composites. Removal of the chitin template by either calcination or sulfuric-acid-catalyzed hydrolysis gave mesoporous silica and ethylene-bridged organosilica films. The large, crack-free mesoporous films have layered structures with features that originate from the nematic organization of the nanocrystalline chitin.

  4. Cellular effect of high doses of silica-coated quantum dot profiled with high throughput gene expression analysis and high content cellomics measurements. (United States)

    Zhang, Tingting; Stilwell, Jackie L; Gerion, Daniele; Ding, Lianghao; Elboudwarej, Omeed; Cooke, Patrick A; Gray, Joe W; Alivisatos, A Paul; Chen, Fanqing Frank


    Quantum dots (Qdots) are now used extensively for labeling in biomedical research, and this use is predicted to grow because of their many advantages over alternative labeling methods. Uncoated Qdots made of core/shell CdSe/ZnS are toxic to cells because of the release of Cd2+ ions into the cellular environment. This problem has been partially overcome by coating Qdots with polymers, poly(ethylene glycol) (PEG), or other inert molecules. The most promising coating to date, for reducing toxicity, appears to be PEG. When PEG-coated silanized Qdots (PEG-silane-Qdots) are used to treat cells, toxicity is not observed, even at dosages above 10-20 nM, a concentration inducing death when cells are treated with polymer or mercaptoacid coated Qdots. Because of the importance of Qdots in current and future biomedical and clinical applications, we believe it is essential to more completely understand and verify this negative global response from cells treated with PEG-silane-Qdots. Consequently, we examined the molecular and cellular response of cells treated with two different dosages of PEG-silane-Qdots. Human fibroblasts were exposed to 8 and 80 nM of these Qdots, and both phenotypic as well as whole genome expression measurements were made. PEG-silane-Qdots did not induce any statistically significant cell cycle changes and minimal apoptosis/necrosis in lung fibroblasts (IMR-90) as measured by high content image analysis, regardless of the treatment dosage. A slight increase in apoptosis/necrosis was observed in treated human skin fibroblasts (HSF-42) at both the low and the high dosages. We performed genome-wide expression array analysis of HSF-42 exposed to doses 8 and 80 nM to link the global cell response to a molecular and genetic phenotype. We used a gene array containing approximately 22,000 total probe sets, containing 18,400 probe sets from known genes. Only approximately 50 genes (approximately 0.2% of all the genes tested) exhibited a statistically significant

  5. The Management of Silica in Los Alamos National Laboratory Tap Water - A Study of Silica Solubility

    Energy Technology Data Exchange (ETDEWEB)

    Wohlberg, C.; Worland, V.P.; Kozubal, M.A.; Erickson, G.F.; Jacobson, H.M.; McCarthy, K.T.


    Well water at Los Alamos National Laboratory (LANL) has a silica (SiO{sub 2}) content of 60 to 100 mg/L, with 4 mg/L of magnesium, 13 mg/L calcium and lesser concentrations of other ions. On evaporation in cooling towers, when the silica concentration reaches 150 to 220 mg/L, silica deposits on heat transfer surfaces. When the high silica well water is used in the reprocessing of plutonium, silica remains in solution at the end of the process and creates a problem of removal from the effluent prior to discharge or evaporation. The work described in this Report is divided into two major parts. The first part describes the behavior of silica when the water is evaporated at various conditions of pH and in the presence of different classes of anions: inorganic and organic. In the second part of this work it was found that precipitation (floccing) of silica was a function of solution pH and mole ratio of metal to silica.


    Institute of Scientific and Technical Information of China (English)

    Yi-hu Song; Qiang Zheng; Zheng-zheng Lai


    Environmentally friendly thermosetting composites were successfully prepared by conventional blending wheat gluten as matrix.glycerol as plasticizer and silica as filler followed by thermo-molding of the mixture at 120℃.The strong interfacial interaction between silica particles and gluten proteins leaded to an increase in storage modulus and a decrease in loss factor as revealed by dynamic mechanical analysis.The moisture absorption and elongation at break decrease while Young's modulus and tensile strength increase with increasing silica content from 0 to 10 wt%.However,the moisture absorption and mechanical properties show discontinuous changes at a silica content of 6 wt%.The glycerol content also has a marked influence on the moisture absorption and mechanical properties of the composites with a constant gluten-to-silica ratio.

  7. Synthesis and micro structural investigations of titania-silica nano composite aerogels

    Energy Technology Data Exchange (ETDEWEB)

    Ingale, S.V., E-mail: [Applied Physics Division, Bhabha Atomic Research Centre, Mumbai 400085 (India); Sastry, P.U. [Solid State Physics Division, Bhabha Atomic Research Centre, Mumbai 400085 (India); Wagh, P.B. [Applied Physics Division, Bhabha Atomic Research Centre, Mumbai 400085 (India); Tripathi, A.K. [Chemistry Division, Bhabha Atomic Research Centre, Mumbai 400085 (India); Rao, R. [Solid State Physics Division, Bhabha Atomic Research Centre, Mumbai 400085 (India); Tewari, R. [Materials Science Division, Bhabha Atomic Research Centre, Mumbai 400085 (India); Rao, P.T. [Powder Metallurgy Division, Bhabha Atomic Research Centre, Mumbai 400085 (India); Patel, R.P. [Applied Physics Division, Bhabha Atomic Research Centre, Mumbai 400085 (India); Tyagi, A.K. [Chemistry Division, Bhabha Atomic Research Centre, Mumbai 400085 (India); Gupta, Satish C. [Applied Physics Division, Bhabha Atomic Research Centre, Mumbai 400085 (India)


    We have synthesized titania-silica (TiO{sub 2}-SiO{sub 2}) aerogel composites with 20 wt%, 50 wt% and 65 wt% TiO{sub 2} by sol-gel method and investigated their microstructure in detailed using variety of techniques. X-ray diffraction showed formation of the anatase phase of TiO{sub 2} in nano-crystalline form which was confirmed by the broadening of Raman spectra. FTIR studies indicated that TiO{sub 2} is structurally incorporated in to the lattice of silica with formation of the Si-O-Ti linkage. Small angle X-ray scattering study indicated the presence of larger aggregates with rough surfaces. A systematic variation in the morphology of the larger grains and constituting smaller particles (of typical size about 20 nm) with increase in TiO{sub 2} content has been noticed. Pictures from TEM indicated that TiO{sub 2} is confined to the pores in the host silica gel, resulting in formation of TiO{sub 2} nano-crystallites leading to high surface area. Nitrogen-physisorption studies further confirmed that the TiO{sub 2} particles occupy the pores of gel matrix resulting in reduction in the average pore diameter with increasing TiO{sub 2} content. The results from all the techniques clearly suggested that the variations in the microstructure of the composites as prepared by sol-gel method will have significant impact on the optical and catalytic performance of the TiO{sub 2}. -- Highlights: Black-Right-Pointing-Pointer Synthesized successfully TiO{sub 2}-SiO{sub 2} composite aerogels containing up to 65 wt% TiO{sub 2}. Black-Right-Pointing-Pointer Detailed micro structural study to investigate effects of increasing TiO{sub 2} content. Black-Right-Pointing-Pointer Correlated optical and catalytic properties with microstructure of the nano-composites.

  8. Rheological properties of silica suspensions in aqueous cellulose derivatives solutions (United States)

    Ryo, Y.; Kawaguchi, M.


    The rheological properties of the silica suspensions in aqueous solutions of hydroxypropylmethylcellulose (HPMC) were investigated in terms of the shear stress and storage and loss moduli (G' and G`) as a function of silica content, HPMC concentration, and HPMC molecular weight by using a coaxial cylinder rheometer.

  9. Laser oxidative pyrolysis synthesis and annealing of TiO{sub 2} nanoparticles embedded in carbon–silica shells/matrix

    Energy Technology Data Exchange (ETDEWEB)

    Fleaca, C.T. [National Institute for Plasma, Laser and Radiation Physics (NILPRP), Atomistilor 409, P.O. Box MG 36, R-077125 Magurele, Bucharest (Romania); “Politehnica” University of Bucharest, Physics Department, Independentei 313, Bucharest (Romania); Scarisoreanu, M., E-mail: [National Institute for Plasma, Laser and Radiation Physics (NILPRP), Atomistilor 409, P.O. Box MG 36, R-077125 Magurele, Bucharest (Romania); Morjan, I.; Luculescu, C.; Niculescu, A.-M.; Badoi, A. [National Institute for Plasma, Laser and Radiation Physics (NILPRP), Atomistilor 409, P.O. Box MG 36, R-077125 Magurele, Bucharest (Romania); Vasile, E. [“Politehnica” University of Bucharest, Faculty of Applied Chemistry and Materials Science, Department of Oxide Materials and Nanomaterials, Gh. Polizu 1-7, Bucharest (Romania); Kovacs, G. [“Babes-Boyai” University, Faculty of Chemistry and Chemical Engineering, Arany Janos 11, Cluj-Napoca (Romania)


    Highlights: • TiO{sub 2}-based nanocomposites were obtained by one-step laser oxidative pyrolysis. • Titania particles are surrounded by/embedded in carbon/silica shells/matrix. • They contain an anatase/rutile mixture with mean crystalline diameters up to 24 nm. • Their carbon content decreased with the increasing of introduced air coflow. • Their bandgap energy decreased due to the carbon incorporation. - Abstract: Titania nanoparticles containing a mixture of anatase and rutile phases (with mean crystalline sizes up to 24 nm) covered with/embedded in carbon/silica thin layers or matrix were obtained in a single step using laser oxidative pyrolysis. Titanium tetrachloride and hexamethyldisiloxane (HMDSO) vapors were separately introduced into the reaction zone – both together with the laser-absorbing agent (sensitizer) ethylene – which acts also as carbon source – and the oxidant (air) – through the inner and the concentric nozzle, respectively. By increasing the air flow through the annular nozzle, while keeping constant the TiC{sub 4}, inner air, HMDSO and C{sub 2}H{sub 4} flows, the atomic carbon concentration as well as the rutile to anatase ratio in the resulted nanopowders decrease. A much brighter and extended flame was observed for the experiment involving the greatest air flow. The Ti/Si atomic ratio in the resulted nanocomposites was higher than that from the introduced precursors (1.8), indicating a partial siloxane conversion to silica. The annealed powders (at 450 °C to further carbon content reducing) exhibit a lower bandgap energy than those of the reference sample without silica (and also lower than the commercial Degussa P25 nano-TiO{sub 2})

  10. Enhanced Photocatalytic Activity for Degradation of Methyl Orange over Silica-Titania

    Directory of Open Access Journals (Sweden)

    Yaping Guo


    Full Text Available Silica-modified titania (SMT powders with different atomic ratios of silica to titanium (Rx were successfully synthesized by a simple ultrasonic irradiation technique. The prepared samples were characterized by X-ray diffraction (XRD, FT-IR spectroscopy, transmission electron microscopy (TEM, X-ray photoelectron spectroscopy (XPS, and ultraviolet visible spectroscopy. The specific surface area was measured according to BET theory. Results indicate that the addition of silica to titania can suppress the crystalline size growth and the transformation of anatase phase to rutile phase of titania, enlarge specific surface area of the titania particles, and result in a blue shift of absorption edge compared to pure titania. The photocatalytic activity of the SMT samples was evaluated by decolorizing methyl orange aqueous solutions under UV-visible light irradiation. It was found in our study that this activity was affected by silica content, calcination temperature, H2SO4, and oxidants such as KIO4, (NH42S2O8 and H2O2. The results reveal that the photocatalytic activity of 0.1-SMT catalyst is the best among all samples calcined at 550°C for 1 h and it is 1.56 times higher than that of Degussa P-25 titania, which is a widely used commercial TiO2 made by Germany Degussa company and has been most widely used in industry as photocatalyst, antiultraviolet product, and thermal stabilizer. The optimal calcination temperature for preparation was 550°C. The photocatalytic activity of SMT samples is significantly enhanced by H2SO4 solution treatment and oxidants.

  11. Synthesis of a nano-crystalline solid acid catalyst from fly ash and its catalytic performance

    Energy Technology Data Exchange (ETDEWEB)

    Chitralekha Khatri; Ashu Rani [Government P.G. College, Kota (India). Environmental Chemistry Laboratory


    The synthesis of nano-crystalline activated fly ash catalyst (AFAC) with crystallite size of 12 nm was carried out by chemical and thermal treatment of fly ash, a waste material generated from coal-burning power plants. Fly ash was chemically activated using sulfuric acid followed by thermal activation at 600{sup o}C. The variation of surface and physico-chemical properties of the fly ash by activation methods resulted in improved acidity and therefore, catalytic activity for acid catalyzed reactions. The AFAC was characterized by X-ray diffraction, FT-IR spectroscopy, N{sub 2}-adsorption-desorption isotherm, scanning electron microscopy, flame atomic absorption spectrophotometry and sulfur content by CHNS/O elemental analysis. It showed amorphous nature due to high silica content (81%) and possessed high BET surface area (120 m{sup 2}/g). The catalyst was found to be highly active solid acid catalyst for liquid phase esterification of salicylic acid with acetic anhydride and methanol giving acetylsalicylic acid and methyl salicylate respectively. A maximum yield of 97% with high purity of acetylsalicylic acid (aspirin) and a very high conversion 87% of salicylic acid to methyl salicylate (oil of wintergreen) was obtained with AFAC. The surface acidity and therefore, catalytic activity in AFAC was originated by increased silica content, hydroxyl content and higher surface area as compared to fly ash. The study shows that coal generated fly ash can be converted into potential solid acid catalyst for acid catalyzed reactions. Furthermore, this catalyst may replace conventional environmentally hazardous homogeneous liquid acids making an ecofriendly; solvent free, atom efficient, solid acid based catalytic process. 27 refs., 5 figs., 2 tabs.


    carbon fibers . Several economical and simple processes were developed for obtaining research quantities of silica surfaced carbon filaments. Vat dipping processes were utilized to deposit an oxide such as silica onto the surface and into the micropores of available carbon or graphite base fibers. High performance composite materials were prepared with the surface treated carbon fibers and various resin matrices. The ablative characteristics of these composites were very promising and exhibited fewer limitations than either silica or...treated





    Renewable biofuels produced by the hydrothermal liquefaction of rice husks have received much attention because of rapid increases in fuel consumption and corresponding declines in fossil fuel resources. To increase biofuel yields, template-free syntheses of Zeolite Socony Mobil (ZSM) catalysts based on blue silica gel and rice husk ash as silica sources were studied. After ZSM synthesis in a closed reactor at 170°C, the crystallinity and crystalline diameters of the products were determined ...

  14. Silica in higher plants. (United States)

    Sangster, A G; Hodson, M J


    Opaline silica deposits are formed by many vascular (higher) plants. The capacity of these plants for silica absorption varies considerably according to genotype and environment. Plant communities exchange silica between soil and vegetation, especially in warmer climates. Silica deposition in epidermal cell walls offers mechanical and protective advantages. Biogenic silica particles from plants are also implicated in the causation of cancer. Recent techniques are reviewed which may aid in the identification of plant pathways for soluble silica movement to deposition sites and in the determination of ionic environments. Botanical investigations have focused on silicification of cell walls in relation to plant development, using scanning and transmission electron microscopy combined with X-ray microanalysis. Silica deposition in macrohair walls of the lemma of canary grass (Phalaris) begins at inflorescence emergence and closely follows wall thickening. The structure of the deposited silica may be determined by specific organic polymers present at successive stages of wall development. Lowering of transpiration by enclosure of Phalaris inflorescences in plastic bags reduced silica deposition in macrohairs. Preliminary freeze-substitution studies have located silicon, as well as potassium and chloride, in the cell vacuole and wall deposition sites during initial silicification.

  15. Anomalous Enthalpy Relaxation in Vitreous Silica

    Directory of Open Access Journals (Sweden)

    Yuanzheng eYue


    Full Text Available It is a challenge to calorimetrically determine the glass transition temperature (Tg of vitreous silica. Here we demonstrate that this challenge mainly arises from the extreme sensitivity of the Tg to the hydroxyl content in vitreous silica, but also from the irreversibility of its glass transition when repeating the calorimetric scans. It is known that the liquid fragility (i.e., the speed of the viscous slow-down of a supercooled liquid at its Tg during cooling has impact on enthalpy relaxation in glass. Here we find that vitreous silica (as a strong system exhibits striking anomalies in both glass transition and enthalpy relaxation compared to fragile oxide systems. The anomalous enthalpy relaxation of vitreous silica is discovered by performing the hperquenching-annealing-calorimetry experiments. We argue that the strong systems like vitreous silica and vitreous Germania relax in a structurally cooperative manner, whereas the fragile ones do in a structurally independent fashion. We discuss the origin of the anomalous enthalpy relaxation in the HQ vitreous silica.

  16. Agmatine attenuates silica-induced pulmonary fibrosis. (United States)

    El-Agamy, D S; Sharawy, M H; Ammar, E M


    There is a large body of evidence that nitric oxide (NO) formation is implicated in mediating silica-induced pulmonary fibrosis. As a reactive free radical, NO may not only contribute to lung parenchymal tissue injury but also has the ability to combine with superoxide and form a highly reactive toxic species peroxynitrite that can induce extensive cellular toxicity in the lung tissues. This study aimed to explore the effect of agmatine, a known NO synthase inhibitor, on silica-induced pulmonary fibrosis in rats. Male Sprague Dawley rats were treated with agmatine for 60 days following a single intranasal instillation of silica suspension (50 mg in 0.1 ml saline/rat). The results revealed that agmatine attenuated silica-induced lung inflammation as it decreased the lung wet/dry weight ratio, protein concentration, and the accumulation of the inflammatory cells in the bronchoalveolar lavage fluid. Agmatine showed antifibrotic activity as it decreased total hydroxyproline content of the lung and reduced silica-mediated lung inflammation and fibrosis in lung histopathological specimen. In addition, agmatine significantly increased superoxide dismutase (p pulmonary nitrite/nitrate as well as tumor necrosis factor α. Collectively, these results demonstrate the protective effects of agmatine against the silica-induced lung fibrosis that may be attributed to its ability to counteract the NO production, lipid peroxidation, and regulate cytokine effects.

  17. Winter climate change and fine root biogenic silica in sugar maple trees (Acer saccharum): Implications for silica in the Anthropocene (United States)

    Maguire, Timothy J.; Templer, Pamela H.; Battles, John J.; Fulweiler, Robinson W.


    Winter temperatures are projected to increase over the next century, leading to reductions in winter snowpack and increased frequency of soil freezing in many northern forest ecosystems. Here we examine biogenic silica (BSi) concentrations in sugar maple (Acer saccharum) fine roots collected from a snow manipulation experiment at Hubbard Brook Experimental Forest (New Hampshire, USA). Increased soil freezing significantly lowered the BSi content of sugar maple fine roots potentially decreasing their capacity to take up water and dissolved nutrients. The reduced silica uptake (8 ± 1 kmol silica km-2) by sugar maple fine roots is comparable to silica export from temperate forest watersheds. We estimate that fine roots account for 29% of sugar maple BSi, despite accounting for only 4% of their biomass. These results suggest that increased frequency of soil freezing will reduce silica uptake by temperate tree roots, thereby changing silica availability in downstream receiving waters.

  18. The human crystallin gene families

    Directory of Open Access Journals (Sweden)

    Wistow Graeme


    Full Text Available Abstract Crystallins are the abundant, long-lived proteins of the eye lens. The major human crystallins belong to two different superfamilies: the small heat-shock proteins (α-crystallins and the βγ-crystallins. During evolution, other proteins have sometimes been recruited as crystallins to modify the properties of the lens. In the developing human lens, the enzyme betaine-homocysteine methyltransferase serves such a role. Evolutionary modification has also resulted in loss of expression of some human crystallin genes or of specific splice forms. Crystallin organization is essential for lens transparency and mutations; even minor changes to surface residues can cause cataract and loss of vision.

  19. In vitro comet and micronucleus assays do not predict morphological transforming effects of silica particles in Syrian Hamster Embryo cells. (United States)

    Darne, Christian; Coulais, Catherine; Terzetti, Francine; Fontana, Caroline; Binet, Stéphane; Gaté, Laurent; Guichard, Yves


    Crystalline silica particles and asbestos have both been classified as carcinogenic by the International Agency for Research on Cancer (IARC). However, because of the limited data available, amorphous silica was not classifiable. In vitro, the carcinogenic potential of natural crystalline and amorphous silica particles has been revealed by the Syrian Hamster Embryo (SHE) cell transformation assay. On the other hand, the genotoxic potential of those substances has not been investigated in SHE cells. And yet, genotoxicity assays are commonly used for hazard evaluation and they are often used as in vitro assays of reference to predict a possible carcinogenic potential. The main objective of this study was to compare the genotoxic potential and the carcinogenic potential of different crystalline and amorphous silica particles in SHE cells. Three silica samples of different crystallinity were used: natural amorphous silica, partially crystallized silica and quartz silica particles. Their genotoxicity were tested through the in vitro micronucleus assay and the comet assay in SHE, and their carcinogenic potential through the SHE transformation assay. In addition, silica samples were also tested with the same genotoxicity assays in V79 hamster-lung cells, a common in vitro model for particle exposure. Results obtained in the micronucleus and the comet assays show that none of the silica was capable of inducing genotoxic effects in SHE cells and only the amorphous silica induced genotoxic effects in V79 cells. However in the SHE cell transformation assays, the partially crystallized and quartz silica were able to induce morphological cell transformation. Together, these data suggest that, in vitro, the short-term genotoxic assays alone are not sufficient to predict the hazard and the carcinogenic potential of this type of particles; SHE transformation assay appears a more reliable tool for this purpose and should be included in the "in vitro battery assays" for hazard

  20. Preparation and characterization of polyimide/silica/silver composite films

    Institute of Scientific and Technical Information of China (English)

    Ning LUO; Zhanpeng WU; Nanxiang MOU; Lizhong JIANG; Dezhen WU


    Polyimide/silica/silver hybrid films were pre-pared by the sol-gel method combined with in situ single-stage self-metallization technique.The structure of polyi-mide films in the thermal curing process and the influence of silica content on the migration and aggregation of silver particles to the surface of hybrid films were investigated.The hybrid films were characterized by transmission elec-tron microscopy,dynamic mechanical thermal analysis,Fourier transform infrared spectroscopy,ultraviolet visible spectroscopy and mechanical measurements.The results indicated that there was no degradation of the polyimide matrix after the formation of silica and silver particles.Silica acted as the nucleus for the silver particles.With increasing silica content,more and more silver particles were kept in the hybrid films instead of being migrated onto the surface of the hybrid films and the reflections of hybrid films decreased gradually.

  1. Functionalization effects of single-walled carbon nanotubes as templates for the synthesis of silica nanorods and study of growing mechanism of silica. (United States)

    Lee, Kyoung G; Wi, Rinbok; Imran, Muhammad; Park, Tae Jung; Lee, Jaebeom; Lee, Sang Yup; Kim, Do Hyun


    Silica nanorods were successfully prepared through a sol-gel process in the presence of carboxylic-functionalized single-walled carbon nanotubes (C-SWCNTs). The effect of chemical functionalization of single-walled carbon nanotubes (SWCNTs) on the growth of the silica layer was investigated using pristine SWCNTs (P-SWCNTs) and C-SWCNTS. The C-SWCNTs served as a unique template to fabricate silica hybrid composite materials. The crystalline formation and growing mechanism of the silica layer on C-SWCNTs were explained by the hydrolysis and chemical bonding between silica precursors and carboxylated SWCNTs. The C-SWCNTs, as templates, were successfully encapsulated using silica, and used templates were removed by oxidation at high temperature. Finally, silica nanorods/nanowires were synthesized in forms of mold, and this silica fabrication mechanism could be applied for large-scale production of silica nanomaterials and highly flexible nanocomposites. The sequence of a silica encapsulation process of C-SWCNTs and removed C-SWCNTs was characterized using SEM, TEM, EDX, FT-IR and Raman spectroscopy, XRD, and electrical analysis.

  2. Silica Refractory Bricks

    Institute of Scientific and Technical Information of China (English)

    Yu Lingyan; Peng Xigao


    @@ 1.Scope This standard specifies the classification,technical requirements,test methods,quality appraisal procedures,packing,marking,transportation,storage,and quality certificate of silica refractory bricks.This standard is applicable to silica refractory bricks with single weight≤40 kg.

  3. Preparation of spherical ceria coated silica nanoparticle abrasives for CMP application

    Energy Technology Data Exchange (ETDEWEB)

    Peedikakkandy, Lekha [Department of Metallurgical Engineering and Materials Science, IIT Bombay, Powai, Mumbai 400076 (India); Kalita, Laksheswar [Advanced Technology Group, Applied Materials India Pvt. Ltd., Department of Electrical Engineering, IIT Bombay, Powai, Mumbai 400076 (India); Kavle, Pravin [Department of Metallurgical Engineering and Materials Science, IIT Bombay, Powai, Mumbai 400076 (India); Kadam, Ankur; Gujar, Vikas; Arcot, Mahesh [Advanced Technology Group, Applied Materials India Pvt. Ltd., Department of Electrical Engineering, IIT Bombay, Powai, Mumbai 400076 (India); Bhargava, Parag, E-mail: [Department of Metallurgical Engineering and Materials Science, IIT Bombay, Powai, Mumbai 400076 (India)


    Highlights: • Nano-layer coating of ceria over silica nanoparticles. • Study effect of reaction pH and temperature on ceria coating over silica nanoparticles. • CMP application of ceria coated silica nanoparticles over SiO{sub 2} and SiN films. - Abstract: This paper describes synthesis of spherical and highly mono-dispersed ceria coated silica nanoparticles of size ∼70–80 nm for application as abrasive particles in Chemical Mechanical Planarization (CMP) process. Core silica nanoparticles were initially synthesized using micro-emulsion method. Ceria coating on these ultrafine and spherical silica nanoparticles was achieved using controlled chemical precipitation method. Study of various parameters influencing the formation of ceria coated silica nanoparticles of size less than 100 nm has been undertaken and reported. Ceria coating over silica nanoparticles was varied by controlling the reaction temperature, pH and precursor concentrations. Characterization studies using X-ray diffraction, scanning electron microscopy, transmission electron microscopy and Energy Dispersive X-ray analysis show formation of crystalline CeO{sub 2} coating of ∼10 nm thickness over silica with spherical morphology and particle size <100 nm. Aqueous slurry of ceria coated silica abrasive was prepared and employed for polishing of oxide and nitride films on silicon substrates. Polished films were studied using ellipsometry and an improvement in SiO{sub 2}:SiN selective removal rates up to 12 was observed using 1 wt% ceria coated silica nanoparticles slurry.

  4. Thermodynamics of Crystalline States

    CERN Document Server

    Fujimoto, Minoru


    Thermodynamics is a well-established discipline of physics for properties of matter in thermal equilibrium surroundings. Applying to crystals, however, the laws encounter undefined properties of crystal lattices, which therefore need to be determined for a clear and well-defined description of crystalline states. Thermodynamics of Crystalline States explores the roles played by order variables and dynamic lattices in crystals in a wholly new way. This book is divided into three parts. The book begins by clarifying basic concepts for stable crystals. Next, binary phase transitions are discussed to study collective motion of order variables, as described mostly as classical phenomena. In the third part, the multi-electron system is discussed theoretically, as a quantum-mechanical example, for the superconducting state in metallic crystals. Throughout the book, the role played by the lattice is emphasized and examined in-depth. Thermodynamics of Crystalline States is an introductory treatise and textbook on meso...

  5. Laser oxidative pyrolysis synthesis and annealing of TiO2 nanoparticles embedded in carbon-silica shells/matrix (United States)

    Fleaca, C. T.; Scarisoreanu, M.; Morjan, I.; Luculescu, C.; Niculescu, A.-M.; Badoi, A.; Vasile, E.; Kovacs, G.


    Titania nanoparticles containing a mixture of anatase and rutile phases (with mean crystalline sizes up to 24 nm) covered with/embedded in carbon/silica thin layers or matrix were obtained in a single step using laser oxidative pyrolysis. Titanium tetrachloride and hexamethyldisiloxane (HMDSO) vapors were separately introduced into the reaction zone - both together with the laser-absorbing agent (sensitizer) ethylene - which acts also as carbon source - and the oxidant (air) - through the inner and the concentric nozzle, respectively. By increasing the air flow through the annular nozzle, while keeping constant the TiC4, inner air, HMDSO and C2H4 flows, the atomic carbon concentration as well as the rutile to anatase ratio in the resulted nanopowders decrease. A much brighter and extended flame was observed for the experiment involving the greatest air flow. The Ti/Si atomic ratio in the resulted nanocomposites was higher than that from the introduced precursors (1.8), indicating a partial siloxane conversion to silica. The annealed powders (at 450 °C to further carbon content reducing) exhibit a lower bandgap energy than those of the reference sample without silica (and also lower than the commercial Degussa P25 nano-TiO2).

  6. Effect of silica forms in rice husk ash on the properties of concrete (United States)

    Bui, Le Anh-Tuan; Chen, Chun-Tsun; Hwang, Chao-Lung; Wu, Wei-Sheng


    The strength and durability properties of concrete with or without three types of rice husk ash (RHA), namely, amorphous, partial crystalline, and crystalline RHA, were investigates. The three types of RHA were added into concrete at a 20% replacement level. Consequently, the pozzolanic reactivity of amorphous RHA was higher than that of partial crystalline and crystalline RHA. Concrete added with amorphous RHA showed excellent characteristics in its mechanical and durability properties. The results showed that the higher the amount of crystalline silica in RHA, the lower the concrete resistivity value became. When compared with each other, concretes with 20% of the cement replaced with these types of RHA achieved similar ultrasonic pulse velocity values, but all were lower than that of the control concrete. The incorporation of these kinds of RHA significantly reduced chloride penetration. The results not only encourage the use of amorphous materials, they also support the application of crystalline or partial crystalline RHA as mineral and pozzolanic admixtures for cement.

  7. Bio-based liquid crystalline polyesters (United States)

    Wilsens, Carolus; Rastogi, Sanjay; Dutch Collaboration


    The reported thin-film polymerization has been used as a screening method in order to find bio-based liquid crystalline polyesters with convenient melting temperatures for melt-processing purposes. An in depth study of the structural, morphological and chemical changes occurring during the ongoing polycondensation reactions of these polymers have been performed. Structural and conformational changes during polymerization for different compositions have been followed by time resolved X-ray and Infrared spectroscopy. In this study, bio-based monomers such as vanillic acid and 2,5-furandicarboxylic acid are successfully incorporated in liquid crystalline polyesters and it is shown that bio-based liquid crystalline polymers with high aromatic content and convenient processing temperatures can be synthesized. Special thanks to the Dutch Polymer Institute for financial support

  8. In situ generated silica in natural rubber latex via the sol–gel technique and properties of the silica rubber composites

    Energy Technology Data Exchange (ETDEWEB)

    Poompradub, Sirilux, E-mail: [Department of Chemical Technology, Faculty of Science, Chulalongkorn University, 254 Phayathai Road, Bangkok 10330 (Thailand); Thirakulrati, Mantana [Program in Petrochemistry and Polymer Science, Faculty of Science, Chulalongkorn University, 254 Phayathai Road, Bangkok 10330 (Thailand); Prasassarakich, Pattarapan [Department of Chemical Technology, Faculty of Science, Chulalongkorn University, 254 Phayathai Road, Bangkok 10330 (Thailand)


    Natural rubber (NR) composites reinforced by silica generated in situ within the NR matrix were prepared by the sol–gel process using tetraethoxysilane (TEOS) as the silica precursor. The effect of the TEOS content, water: TEOS mole ratio, reaction time and temperature on the in situ silica content formed in the NR latex were investigated. The results indicated that the suitable condition to produce a high silica content (54 parts by weight per hundred parts of rubber (phr)) in the rubbery matrix was the use of 200 phr TEOS and a water: TEOS mole ratio of 28.9:1 at room temperature for 24 h. The curing, mechanical, and thermal properties of the composite materials were also investigated. Increasing the in situ silica content increased the cure time and improved the mechanical properties of the composite. Compared to the NR vulcanizates filled with the commercial (ex situ formed) silica, the mechanical and thermal properties of the in situ silica composite material were significantly improved. Transmission electron microscopy revealed that the in situ formed silica particles were well distributed within the NR matrix, in contrast to the clumping of the ex situ formed commercial silica within the NR matrix. - Highlights: • High in situ silica content in NR latex was obtained up to 54 phr. • A good dispersion of in situ silica filling into the rubbery matrix. • Comparison of silica generated in the rubber matrix using solid, solution and latex NR substrates. • A good reinforcement effect of in situ silica was observed on the NR vulcanizate. • Sol–gel method is an alternative way to develop a novel composite material.

  9. Liquid crystalline dihydroazulene photoswitches

    DEFF Research Database (Denmark)

    Petersen, Anne Ugleholdt; Jevric, Martyn; Mandle, Richard J.


    A large selection of photochromic dihydroazulene (DHA) molecules incorporating various substituents at position 2 of the DHA core was prepared and investigated for their ability to form liquid crystalline phases. Incorporation of an octyloxy-substituted biphenyl substituent resulted in nematic...

  10. Characterization of silica particles modified with γ-methacryloxypropyltrimethoxysilane (United States)

    Jiang, Jun; Wang, Wang; Shen, Haiying; Wang, Jiamin; Cao, Jinzhen


    The surface of hydrophilic silica particles was modified with different concentrations (2, 4, 6, 8 and 10%) of γ-methacryloxypropyltrimethoxysilane (MPTS). The hydrophobicity and hygroscopicity of unmodified and modified silica were investigated through water contact angle (WCA) tests and dynamic vapor sorption (DVS) method, respectively. The results showed that the surface properties of silica were closely related with the MPTS concentration. Within the range of MPTS concentration applied, 8% MPTS modified silica showed the least aggregation. With the increasing MPTS concentration, the WCAs on modified silica film increased correspondingly, and finally exceeded 90° at 6% and 8% concentrations. The equilibrium moisture contents (EMCs) of modified silica also decreased with the increasing MPTS concentration. The improvement on hydrophobicity can be correlated with the reduction of residual hydroxyl groups (-OH) on modified silica. The self-condensation of MPTS began to occur at concentrations higher than 4%, especially at 8%. Owing to this effect, the modified silica with 8% MPTS showed a slightly higher EMC than 6% MPTS within low relative humidity (RH) range up to 40%. At a higher RH ranging from 40 to 90%, 8% group showed the lowest EMCs because of its highest hydrophobicity and low specific surface area. A mechanism concerning the MPTS modification of silica was also proposed in this study based on the research results.

  11. Microscopic and Cytological Examination of Hyperchromatic Crystalline Deposits in Phacolytic Glaucoma

    Directory of Open Access Journals (Sweden)

    Murat Hasanreisoğlu


    Full Text Available Presence of iridescent particles is a well-known clinical condition in phacolytic glaucoma patients with severe high intraocular pressure. Several articles stated that hyperchromatic crystalline deposits were cholesterol crystalline deposits. However, some articles focus on the possible oxalate content of the hyperchromatic crystalline material. Nevertheless, there are few articles which provide information about these crystalline structures at the microscopic level. The purpose of this manuscript was to report the case of a phacolytic glaucoma patient with intense crystalline accumulation in the anterior chamber and to present the microscopic features of these crystalline deposits. (Turk J Ophthalmol 2014; 44: 490-2

  12. Dissolution-rate enhancement of fenofibrate by adsorption onto silica using supercritical carbon dioxide. (United States)

    Sanganwar, Ganesh P; Gupta, Ram B


    Dissolution rate of a poorly water-soluble drug, fenofibrate, is increased by adsorbing the drug onto silica. The adsorption is achieved by first dissolving the drug in supercritical carbon dioxide and then depressurizing the solution onto silica. Loadings of up to 27.5 wt.% drug onto silica are obtained. Since solvents are not used in the loading process, the fenofibrate/silica formulation is free of any residual solvent, and carbon dioxide is freely removed upon depressurization. The formulation is characterized using infrared spectroscopy, ultraviolet spectroscopy, X-ray diffraction, differential scanning calorimetry and scanning electron microscopy. Based on in vitro dissolution study, a significant increase in the dissolution rate (approximately 80% drug release in 20 min) of drug-silica formulation is observed as compared to micronized fenofibrate (approximately 20% drug release in 20 min), which can be attributed to increase in the surface area and decrease in the crystallinity of drug after adsorption onto silica. Two different formulations are compared: (A) amorphous fenofibrate/silica and (B) slightly crystalline fenofibrate/silica. The second formulation is found to be more stable on storage.

  13. Enhancement of Li+ ion conductivity in solid polymer electrolytes using surface tailored porous silica nanofillers (United States)

    Mohanta, Jagdeep; Singh, Udai P.; Panda, Subhendu K.; Si, Satyabrata


    The current study represents the design and synthesis of polyethylene oxide (PEO)-based solid polymer electrolytes by solvent casting approach using surface tailored porous silica as nanofillers. The surface tailoring of porous silica nanostructure is achieved through silanization chemistry using 3-glycidyloxypropyl trimethoxysilane in which silane part get anchored to the silica surface whereas epoxy group get stellated from the silica surface. Surface tailoring of silica with epoxy group increases the room temperature electrochemical performances of the resulting polymer electrolytes. Ammonical hydrolysis of organosilicate precursor is used for both silica preparation and their surface tailoring. The composite solid polymer electrolyte films are prepared by solution mixing of PEO with lithium salt in presence of silica nanofillers and cast into film by solvent drying, which are then characterized by impedance measurement for conductivity study and wide angle x-ray diffraction for change in polymer crystallinity. Room temperature impedance measurement reveals Li+ ion conductivity in the order of 10-4 S cm-1, which is correlated to the decrease in PEO crystallinity. The enhancement of conductivity is further observed to be dependent on the amount of silica as well as on their surface characteristics.

  14. Synthesis, spectroscopy and catalysis of [Cr(acac)3] complexes grafted onto MCM-41 materials: formation of polyethylene nanofibres within mesoporous crystalline aluminosilicates

    NARCIS (Netherlands)

    Weckhuysen, B.M.; Ramachandra Rao, R.; Bodart, P.; Debras, G.; Collart, O.; Voort, P. van der; Schoonheydt, R.A.; Vansant, E.F.


    Chromium acetyl acetonate [Cr(acac)3] complexes have been grafted onto the surface of two mesoporous crystalline materials; pure silica MCM-41 (SiMCM-41) and Al-containing silica MCM-41 with an Si:Al ratio of 27 (AlMCM-41). The materials were characterized with X-ray diffraction, N2 adsorption, ther

  15. Tetracycline-Containing MCM-41 Mesoporous Silica Nanoparticles for the Treatment of Escherichia coli. (United States)

    Koneru, Bhuvaneswari; Shi, Yi; Wang, Yu-Chieh; Chavala, Sai H; Miller, Michael L; Holbert, Brittany; Conson, Maricar; Ni, Aiguo; Di Pasqua, Anthony J


    Tetracycline (TC) is a well-known broad spectrum antibiotic, which is effective against many Gram positive and Gram negative bacteria. Controlled release nanoparticle formulations of TC have been reported, and could be beneficial for application in the treatment of periodontitis and dental bone infections. Furthermore, TC-controlled transcriptional regulation systems (Tet-on and Tet-off) are useful for controlling transgene expression in vitro and in vivo for biomedical research purposes; controlled TC release systems could be useful here, as well. Mesoporous silica nanomaterials (MSNs) are widely studied for drug delivery applications; Mobile crystalline material 41 (MCM-41), a type of MSN, has a mesoporous structure with pores forming channels in a hexagonal fashion. We prepared 41 ± 4 and 406 ± 55 nm MCM-41 mesoporous silica nanoparticles and loaded TC for controlled dug release; TC content in the TC-MCM-41 nanoparticles was 18.7% and 17.7% w/w, respectively. Release of TC from TC-MCM-41 nanoparticles was then measured in phosphate-buffered saline (PBS), pH 7.2, at 37 °C over a period of 5 h. Most antibiotic was released from both over this observation period; however, the majority of TC was released over the first hour. Efficacy of the TC-MCM-41 nanoparticles was then shown to be superior to free TC against Escherichia coli (E. coli) in culture over a 24 h period, while blank nanoparticles had no effect.

  16. Tetracycline-Containing MCM-41 Mesoporous Silica Nanoparticles for the Treatment of Escherichia coli

    Directory of Open Access Journals (Sweden)

    Bhuvaneswari Koneru


    Full Text Available Tetracycline (TC is a well-known broad spectrum antibiotic, which is effective against many Gram positive and Gram negative bacteria. Controlled release nanoparticle formulations of TC have been reported, and could be beneficial for application in the treatment of periodontitis and dental bone infections. Furthermore, TC-controlled transcriptional regulation systems (Tet-on and Tet-off are useful for controlling transgene expression in vitro and in vivo for biomedical research purposes; controlled TC release systems could be useful here, as well. Mesoporous silica nanomaterials (MSNs are widely studied for drug delivery applications; Mobile crystalline material 41 (MCM-41, a type of MSN, has a mesoporous structure with pores forming channels in a hexagonal fashion. We prepared 41 ± 4 and 406 ± 55 nm MCM-41 mesoporous silica nanoparticles and loaded TC for controlled dug release; TC content in the TC-MCM-41 nanoparticles was 18.7% and 17.7% w/w, respectively. Release of TC from TC-MCM-41 nanoparticles was then measured in phosphate-buffered saline (PBS, pH 7.2, at 37 °C over a period of 5 h. Most antibiotic was released from both over this observation period; however, the majority of TC was released over the first hour. Efficacy of the TC-MCM-41 nanoparticles was then shown to be superior to free TC against Escherichia coli (E. coli in culture over a 24 h period, while blank nanoparticles had no effect.

  17. A new parameter-free soft-core potential for silica and its application to simulation of silica anomalies

    Energy Technology Data Exchange (ETDEWEB)

    Izvekov, Sergei, E-mail:; Rice, Betsy M. [Weapons and Materials Research Directorate, U.S. Army Research Laboratory, Aberdeen Proving Ground, Maryland 21005 (United States)


    A core-softening of the effective interaction between oxygen atoms in water and silica systems and its role in developing anomalous thermodynamic, transport, and structural properties have been extensively debated. For silica, the progress with addressing these issues has been hampered by a lack of effective interaction models with explicit core-softening. In this work, we present an extension of a two-body soft-core interatomic force field for silica recently reported by us [S. Izvekov and B. M. Rice, J. Chem. Phys. 136(13), 134508 (2012)] to include three-body forces. Similar to two-body interaction terms, the three-body terms are derived using parameter-free force-matching of the interactions from ab initio MD simulations of liquid silica. The derived shape of the O–Si–O three-body potential term affirms the existence of repulsion softening between oxygen atoms at short separations. The new model shows a good performance in simulating liquid, amorphous, and crystalline silica. By comparing the soft-core model and a similar model with the soft-core suppressed, we demonstrate that the topology reorganization within the local tetrahedral network and the O–O core-softening are two competitive mechanisms responsible for anomalous thermodynamic and kinetic behaviors observed in liquid and amorphous silica. The studied anomalies include the temperature of density maximum locus and anomalous diffusivity in liquid silica, and irreversible densification of amorphous silica. We show that the O–O core-softened interaction enhances the observed anomalies primarily through two mechanisms: facilitating the defect driven structural rearrangements of the silica tetrahedral network and modifying the tetrahedral ordering induced interactions toward multiple characteristic scales, the feature which underlies the thermodynamic anomalies.

  18. Crystalline systems. [Book chapter

    Energy Technology Data Exchange (ETDEWEB)

    Kispert, L.D.

    The use of two double resonance methods, electron-nuclear double resonance (ENDOR) and electron-electron double resonance (ELDOR) in the study of free radicals in solids is reviewed. Included are descriptions of how crystalline-phase ENDOR is used to determine small hyperfine splittings, quadrupoly couplings, and reaction mechanisms or radical formation and how crystalline phase ELDOR is used to determine large hyperfine splittings, to identify radicals with large quadrupole moments and to study spin exchange processes. The complementary role played by the ENDOR and ELDOR spectroscopy in the separation of overlapping EPR spectra, in the study of proton-deuterium exchange, in the study of methyl groups undergoing tunneling rotation, and in the determination of the rates of intermolecular motion are dealt with. 13 figures, 1 table. (DP)

  19. Thermodynamics of Crystalline States

    CERN Document Server

    Fujimoto, Minoru


    Thermodynamics is a well-established discipline of physics for properties of matter in thermal equilibrium with the surroundings. Applying to crystals, however, the laws encounter undefined properties of crystal lattice, which therefore need to be determined for a clear and well-defined description of crystalline states. Thermodynamics of Crystalline States explores the roles played by order variables and dynamic lattices in crystals in a wholly new way. The book begins by clarifying basic concepts for stable crystals. Next, binary phase transitions are discussed to study collective motion of order variables, as described mostly as classical phenomena. New to this edition is the examination of magnetic crystals, where magnetic symmetry is essential for magnetic phase transitions. The multi-electron system is also discussed  theoretically, as a quantum-mechanical example, for superconductivity in metallic crystals. Throughout the book, the role played by the lattice is emphasized and studied in-depth. Thermod...

  20. Effect of Cristobalite on the Mechanical Properties of Silica RSI Materials (United States)

    Khandelwal, P. K.; Scott, W. D.


    The strength of various silica surface insulation materials was measured after high temperature heat treatment to develop substantial crystalline phases, and after low temperature thermal cycling through the alpha-beta cristobalite transformation. It appears that the presence of cristobalite in the structural elements (the fibers) is highly detrimental to tensile strength. When crystallization does not occur in silica material, the strength improves with heat treatment.

  1. Evaluation of occupational exposure to free silica in Alberta foundries. (United States)

    Ayalp, A; Myroniuk, D


    The Occupational Hygiene Branch of Alberta Workers' Health, Safety and Compensation conducted a comprehensive study of the foundry industry in Alberta. The surveys assessed both the degree of health hazards present and the effectiveness of existing control systems for airborne contaminants. All nine of Alberta's ferrous foundries were surveyed in the course of the project. The foundries varied from those which were small with limited mechanization to those which were large and highly automated. The concentrations of free silica in the work environment are correlated to the different attempts to control silica using substitution and various ventilation systems. The particular foundry processes evaluated for airborne free silica were sand preparation, shakeout, dry sand transport and sand molding. Workers' exposure to free airborne silica was evaluated by personal and area samples. The free silica content of the samples was determined by infra-red spectrophotometry. The results indicated most control systems were inadequate. Effective control methods are described to reduce the health hazard.

  2. [Silica-associated systemic sclerosis occurring after an occupational exposure to arc welding]. (United States)

    Alaya, Zeineb; Kalboussi, Houda; Osman, Walid; Naouar, Nader; Zeglaoui, Héla; Bouajina, Elyès


    Crystalline silica-associated systemic sclerosis can occur in people operating arc welding. Diffuse scleroderma was diagnosed in a 57-year old plumber-welder suffering from inflammatory polyarthralgias, Raynaud's phenomenon, sclerodactyly, diffuse cutaneous scleroderma, telangiectasias, esophageal damage, pulmonary arterial hypertension and pulmonary fibrosis associated with the presence of anti-nucleosome antibodies. During his professional activity the patient was frequently exposed to high atmospheric concentrations of crystalline silica generated by arc-welding. The diagnosis of Erasmus syndrome associated with systemic sclerosis and pulmonary silicosis was retained. A report of work-related illness (table 17 in Tunisia) was made.

  3. 硅含量对Al_2O_3-SiO_2气凝胶结构和性能的影响%Effect of Silica Content on Structure and Properties of Al_2O_3-SiO_2 Aerogels

    Institute of Scientific and Technical Information of China (English)

    冯坚; 高庆福; 武纬; 张长瑞; 冯军宗; 姜勇刚


    The effect of silica content on structure and properties of Al_2O_3-SiO_2 aerogels was investigated. The results show that with the increase in silica content, the gelation time of the sol is prolonged, the density of aerogel is increased, and the structure is changed from crystal boehmite to amorphous silica. Al_2O_3-SiO_2 aerogel is constituted of Al-O, Si-O and Al-O-Si network. Aerogels convert to amorphous γ-Al_2O_3 and SiO_2 after 600 ℃ calcination, and transformed to mullite at 1 200 ℃. When silica content is 6.1wt%~13.1wt%, as a result of the suppression of the phase transformation, Al_2O_3-SiO_2 aerogels have larger surface area (339~445 m~2·g~(-1)) than pure alumina aerogel (157 m~2·g~(-1)) at 1 000 ℃. SEM shows that the microstructure of Al_2O_3 aerogel is changed by the addition of silica. With the increase in silica content, the shape of aerogel particle is changed from acicular or clubbed into spherical.%研究了硅含量对Al_2O_3-SiO_2气凝胶结构和性能的影响.结果表明,随着硅含量的增加,Al_2O_3-SiO_2溶胶的凝胶时间逐渐延长,气凝胶密度逐渐增大.其结构逐渐由多晶勃姆石向无定形SiO_2过渡.Al_2O_3-SiO_2气凝胶同时含有Al-O、Si-O以及Al-O-Si结构,600 ℃煅烧后的物相为无定形γ-Al_2O_3和SiO_2,1 200 ℃煅烧后为莫来石相.当硅含量为6.1wt%~13.1wt%时,适量的硅抑制了Al_2O_3-SiO_2气凝胶的相变,其1 000℃的比表面积(339~445 m2·g~(-1))高于纯Al_2O_3气凝胶(157 m~2·g~(-1)).SEM分析表明,硅元素的加入改变了Al_2O_3气凝胶的结构形貌,随着硅含量的增大,Al_2O_3-SiO_2气凝胶逐渐由针叶状或长条状向球状颗粒转变.

  4. Preparation and characterization of antibacterial Senegalia (Acacia) senegal/iron-silica bio-nanocomposites (United States)

    Şişmanoğlu, Tuba; Karakuş, Selcan; Birer, Özgür; Soylu, Gülin Selda Pozan; Kolan, Ayşen; Tan, Ezgi; Ürk, Öykü; Akdut, Gizem; Kilislioglu, Ayben


    Many studies that research bio-nanocomposites utilize techniques that involve the dispersion of strengthening components like silica, metal and metal oxides through a host biopolymer matrix. The biggest success factor for the bio-nanocomposite is having a smooth integration of organic and inorganic phases. This interattraction between the surfaces of inorganic particles and organic molecules are vital for good dispersion. In this study, a novel biodegradable antibacterial material was developed using gum arabic from Senegalia senegal (stabilizer), silica (structure reinforcer) and zero valent iron particles. Silica particles work to not only strengthen the mechanical properties of the Senegalia senegal but also prevent the accumulation of ZVI nanoparticles due to attraction between hydroxyl groups and FeO. The gum arabic/Fe-SiO2 bio-nanocomposite showed effective antibacterial property against the Gram-positive Staphylococcus aureus and Gram-negative Escherichia coli. Using Scanning electron microscopy, homogeneous dispersion and uniform particle size was viewed in the biopolymer. X-ray diffraction studies of iron particles organization in Senegalia senegal also showed that the main portion of iron was crystalline and in the form of FeO and Fe0. X-ray photoelectron spectroscopy was used to evaluate the chemical composition of the surface but no appreciable peak was measured for the iron before Ar etching. These results suggest that the surface of iron nanoparticles consist mainly of a layer of iron oxides in the form of FeO. Thermal gravimetric analysis was used to determine the thermal stability and absorbed moisture content.

  5. Preparation and characterization of antibacterial Senegalia (Acacia) senegal/iron–silica bio-nanocomposites

    Energy Technology Data Exchange (ETDEWEB)

    Şişmanoğlu, Tuba; Karakuş, Selcan [Istanbul University, Faculty of Engineering, Department of Chemistry, 34320 Avcilar, Istanbul (Turkey); Birer, Özgür [Koç University, Department of Chemistry, Sarıyer 34450, Istanbul (Turkey); Koç University, KUYTAM Surface Science and Technology Center, Sarıyer 34450, Istanbul (Turkey); Soylu, Gülin Selda Pozan [Istanbul University, Faculty of Engineering, Department of Chemical Engineering, 34320 Avcilar, Istanbul (Turkey); Kolan, Ayşen; Tan, Ezgi; Ürk, Öykü; Akdut, Gizem [Istanbul University, Faculty of Engineering, Department of Chemistry, 34320 Avcilar, Istanbul (Turkey); Kilislioglu, Ayben, E-mail: [Istanbul University, Faculty of Engineering, Department of Chemistry, 34320 Avcilar, Istanbul (Turkey)


    Many studies that research bio-nanocomposites utilize techniques that involve the dispersion of strengthening components like silica, metal and metal oxides through a host biopolymer matrix. The biggest success factor for the bio-nanocomposite is having a smooth integration of organic and inorganic phases. This interattraction between the surfaces of inorganic particles and organic molecules are vital for good dispersion. In this study, a novel biodegradable antibacterial material was developed using gum arabic from Senegalia senegal (stabilizer), silica (structure reinforcer) and zero valent iron particles. Silica particles work to not only strengthen the mechanical properties of the Senegalia senegal but also prevent the accumulation of ZVI nanoparticles due to attraction between hydroxyl groups and FeO. The gum arabic/Fe–SiO{sub 2} bio-nanocomposite showed effective antibacterial property against the Gram-positive Staphylococcus aureus and Gram-negative Escherichia coli. Using Scanning electron microscopy, homogeneous dispersion and uniform particle size was viewed in the biopolymer. X-ray diffraction studies of iron particles organization in Senegalia senegal also showed that the main portion of iron was crystalline and in the form of FeO and Fe{sup 0}. X-ray photoelectron spectroscopy was used to evaluate the chemical composition of the surface but no appreciable peak was measured for the iron before Ar etching. These results suggest that the surface of iron nanoparticles consist mainly of a layer of iron oxides in the form of FeO. Thermal gravimetric analysis was used to determine the thermal stability and absorbed moisture content.

  6. Elucidation of interactive effects of synthesis conditions on the characteristics of mesoporous silicas templated using polyoxide surfactant

    Directory of Open Access Journals (Sweden)

    A.Z. Abdullah, A.H. Kamaruddin, N. Razali, H. Abdullah and S. Bhatia


    Full Text Available A series of mesoporous silicas (MS-1–MS-9 were synthesized at different gel compositions using a triblock copolymer (TCP, poly(ethylene oxide–poly(propylene oxide–poly(ethylene oxide, as the surfactant. The interactive effects of acidity, the contents of tetraethyl orthosilicate (TEOS and the surfactant, and the gelling temperature on the characteristics of the final material were simultaneously characterized. Increasing acidity favored mesopore formation. A material with a surface area of 760 m2/g, mostly in the mesoporous range, was obtained at 1.0(TEOS:0.017(TCP:7.3HCl:115.7H2O. Mesopore formation was predominantly determined by the TEOS:TCP ratio and was promoted with its increase from 1.56:1 to 2.09:1. A further increase to 2.61:1 was detrimental. Whereas increasing the TCP content to 3.5% w/w improved micellization, a further increase to 4.6% should be avoided. Mesoporous silicas showed low crystallinity but a high degree of hexagonal mesoscopic organization. The weak surface acidity was attributed to surface silanols, the number of which was proportional to mesoporosity.

  7. A Simple Method of Preparation of High Silica Zeolite Y and Its Performance in the Catalytic Cracking of Cumene

    Directory of Open Access Journals (Sweden)

    Zhanjun Liu


    Full Text Available A series of high silicon zeolites Y were prepared through direct synthetic method by using silica sol as the silicon source and sodium aluminate as the aluminum source. The effects of alkalinity and crystallization time of the process of synthesis were investigated. To separately reveal the crystalline structure, element content, morphology, and surface areas, the as-synthesized zeolite Y was characterized by powder X-ray diffraction (XRD, X-ray fluorescence (XRF, scanning electron microscopy (SEM, and N2 adsorption-desorption isotherms (BET. The results show the as-synthesized zeolite Y with high relative crystallization and uniform morphology; the SiO2/Al2O3 ratio was about 4.54~6.46. For an application, the zeolite cracking activity was studied with cumene as the probe molecules.

  8. Development and characterization of chitosan/silica nanocomposite membranes (United States)

    Kumar, Amit; Gahlot, Swati; Kulshrestha, Vaibhav; Shahi, V. K.


    Quaternized Chitosan/silica based composite membranes were prepared for pervaporation dehydration of water-ethanol mixture. Silica content in membrane matrix has been systematically optimized to control the nanostructure of the developed polymer matrix for studying the effects of molecular structure on the swelling, and PV performance. Among prepared membranes, 40% silica composite membrane shows the remarkable results for the water removal from water/ethanol mixture (80% ethanol + 20% water (w/w)). Contact angle measurement support the PV data as nature of CH-3 membrane is more hydrophilic comparative to others. SEM micrographs show the surface uniformity of the membranes.

  9. Elasticity and structure of the compounds in the wollastonite (CaSiO3)-Na 2SiO 3 system: from amorphous to crystalline state. (United States)

    Lin, Chung-Cherng; Leung, Kak Si; Shen, Pouyan; Chen, Shih-Fan


    The elastic properties and structure of four potential bioactive compounds in the CaSiO3-Na2SiO3 system were characterized by Raman and Brillouin spectroscopy at ambient conditions. The increase of Na2O content in the Na2O-CaO-SiO2 glass with the same silica content and hence polymerization was found to lower the elastic moduli with accompanied decrease of Q(0) and Q(2) species, increase of Q(1) species and negligible change of Q(3) species, corresponding to a lower and higher equilibrium constant for the disproportional reactions [Formula: see text] and [Formula: see text] (without balance), respectively. The composition-dependent variation in the shear modulus (G) of the Na2O-CaO-SiO2 glass can be attributed to the concentration change of Q(2) and probably Q(4) species; while bulk modulus (K) ascribed to the cohesion factor. The elastic moduli of the corresponding crystalline phases in this system also lower with the increase of Na2O content following two general criteria as a function of Na2O/CaO molar ratio: (1) K decreases faster than G for both the amorphous and crystalline phases and (2) both K and G decreases faster for the crystals than the glasses.

  10. Kinetics of silica polymerization

    Energy Technology Data Exchange (ETDEWEB)

    Weres, O.; Yee, A.; Tsao, L.


    The polymerization of silicic acid in geothermal brine-like aqueous solutions to produce amorphous silica in colloidal form has been studied experimentally and theoretically. A large amount of high quality experimental data has been generated over the temperature rang 23 to 100{sup 0}C. Wide ranges of dissolved silica concentration, pH, and sodium chloride concentration were covered. The catalytic effects of fluoride and the reaction inhibiting effects of aluminum and boron were studied also. Two basic processes have been separately studied: the formation of new colloidal particles by the homogeneous nucleation process and the deposition of dissolved silica on pre-existing colloidal particles. A rigorous theory of the formation of colloidal particles of amorphous silica by homogeneous nucleation was developed. This theory employs the Lothe-Pound formalism, and is embodied in the computer code SILNUC which quantitatively models the homogeneous nucleation and growth of colloidal silica particles in more than enough detail for practical application. The theory and code were extensively used in planning the experimental work and analyzing the data produced. The code is now complete and running in its final form. It is capable of reproducing most of the experimental results to within experimental error. It is also capable of extrapolation to experimentally inaccessible conditions, i.e., high temperatures, rapidly varying temperature and pH, etc.

  11. Oxygen plasma etching-induced crystalline lattice transformation of colloidal photonic crystals. (United States)

    Ding, Tao; Wang, Fei; Song, Kai; Yang, Guoqiang; Tung, Chen-Ho


    This communication describes the transformation of a colloidal crystalline lattice that was realized via oxygen plasma etching of colloidal crystals made of SiO2@PMMA core-shell microspheres. The plasma etching of the colloidal crystals proceeded nonuniformly from the top to the bottom of the colloidal crystals. The PMMA shell was etched away by the oxygen plasma in a layer-by-layer manner, and the silica core was drawn into the pit formed by the neighboring spheres in the layer below. Consequently, the crystalline lattice was transformed while the order was maintained. Scanning electron microscopy images and reflection spectra further confirmed the change in the crystalline structures. Colloidal crystals with sc and bcc lattices can be fabricated if the ratio of the polymer shell thickness to the silica core diameter is equal to certain values. More importantly, this approach may be applicable to the fabrication of various assembly structures with different inorganic particles.

  12. Characterisation of silica derived from rice husk (Muar, Johor, Malaysia) decomposition at different temperatures (United States)

    Azmi, M. A.; Ismail, N. A. A.; Rizamarhaiza, M.; W. M. Hasif. A. A., K.; Taib, H.


    Rice husk was thermally decomposed to yield powder composed of silica (SiO2). Temperatures of 700°C and 1000°C were chosen as the decomposition temperatures. X-Ray Diffraction (XRD), X-Ray Florescence (XRF), Fourier Transform Infrared (FTIR), and Field Emission Scanning Electron Microscope (FESEM) analyses were conducted on a synthetic silica powder (SS-SiO2) and the rice husk ash as for the comparative characterisation study. XRD analyses clearly indicated that the decomposed rice husk yielded silica of different nature which are Crystalline Rice Husk Silica (C-RHSiO2) and Amorphous Rice Husk Silica (A-RHSiO2). Moreover, it was found that SS-SiO2 was of Quartz phase, C-RHSiO2 was of Trydimite and Cristobalite. Through XRF detection, the highest SiO2 purity was detected in SS-SiO2 followed by C-RHSiO2 and A-RHSiO2 with purity percentages of 99.60%, 82.30% and 86.30% respectively. FTIR results clearly indicated silica (SiO2) bonding 1056, 1064, 1047, 777, 790 and 798 cm-1) increased as the crystallinity silica increased. The Cristobalite phase was detected in C-RH SiO2 at the wavelength of 620 cm-1. Morphological features as observed by FESEM analyses confirmed that, SS-SiO2 and C-RH SiO2 showed prominent coarse granular morphology.

  13. Determination of silica coating efficiency on metal particles using multiple digestion methods. (United States)

    Wang, Jun; Topham, Nathan; Wu, Chang-Yu


    Nano-sized metal particles, including both elemental and oxidized metals, have received significant interest due to their biotoxicity and presence in a wide range of industrial systems. A novel silica technology has been recently explored to minimize the biotoxicity of metal particles by encapsulating them with an amorphous silica shell. In this study, a method to determine silica coating efficiency on metal particles was developed. Metal particles with silica coating were generated using gas metal arc welding (GMAW) process with a silica precursor tetramethylsilane (TMS) added to the shielding gas. Microwave digestion and Inductively Coupled Plasma-Atomic Emission Spectroscopy (ICP-AES) were employed to solubilize the metal content in the particles and analyze the concentration, respectively. Three acid mixtures were tested to acquire the appropriate digestion method targeting at metals and silica coating. Metal recovery efficiencies of different digestion methods were compared through analysis of spiked samples. HNO(3)/HF mixture was found to be a more aggressive digestion method for metal particles with silica coating. Aqua regia was able to effectively dissolve metal particles not trapped in the silica shell. Silica coating efficiencies were thus calculated based on the measured concentrations following digestion by HNO(3)/HF mixture and aqua regia. The results showed 14-39% of welding fume particles were encapsulated in silica coating under various conditions. This newly developed method could also be used to examine the silica coverage on particles of silica shell/metal core structure in other nanotechnology areas.

  14. Effect of rapid thermal annealing on polycrystalline InGaN thin films deposited on fused silica substrates

    Energy Technology Data Exchange (ETDEWEB)

    Kazazis, S.A., E-mail: [Department of Physics, University of Crete, P.O. Box 2208, 71003 Heraklion (Greece); Papadomanolaki, E. [Department of Physics, University of Crete, P.O. Box 2208, 71003 Heraklion (Greece); Androulidaki, M.; Tsagaraki, K.; Kostopoulos, A.; Aperathitis, E. [Microelectronics Research Group, IESL-FORTH, P.O. Box 1385, 71110 Heraklion (Greece); Iliopoulos, E. [Department of Physics, University of Crete, P.O. Box 2208, 71003 Heraklion (Greece); Microelectronics Research Group, IESL-FORTH, P.O. Box 1385, 71110 Heraklion (Greece)


    In this work, we report on the effects of Rapid Thermal Annealing (RTA) on the structural, electrical and optical properties of polycrystalline InGaN thin films deposited on amorphous fused silica substrates by molecular beam deposition. Films with 20%, 35% and 50% indium content were grown and subjected to post-deposition RTA treatments. Annealing promoted crystallization in the case of the film with 0.5 InN mole fraction while in the lower indium content cases no apparent effect on the improvement of crystallinity was observed. For RTA temperature above 550 °C, film resistivity was reduced by at least two orders of magnitude due to annealing-induced increased carrier concentration. The optical properties of the films were systematically studied by variable angle spectroscopic ellipsometry. In the highest indium content films, a monotonic optical band gap widening was observed upon annealing, explained by the Burstein–Moss effect. In contrast, photoluminescence peak position was not affected by the resulting Fermi level changes. This is attributed to the different mechanisms between optical absorption and emission in such highly doped semiconductors. - Highlights: • Polycrystalline InGaN films were deposited on fused silica substrates. • Rapid thermal annealing effect on structural, electrical and optical properties studied. • Films' resistivity significantly reduced after annealing at 550 °C, in all InN content cases. • In higher indium content films, optical band gap blueshifts upon annealing, due to Burstein–Moss effect. • Photoluminescence emission position was unaffected by the band gap shift.

  15. Thermal pretreatment of silica composite filler materials


    Wan, Quan; Ramsey, Christopher; Baran, George


    Three different silica filler materials were thermally treated in order to effect dehydration, dehydroxylation, and rehydroxylation. Samples were characterized by thermogravimetry (TG), pycnometry, elemental analysis, and scanning electron microscopy (SEM). For all fillers, our results indicate incremental removal of silanol groups at higher heating temperatures and irreversible dehydroxylation at over 673 K. To remove the organic content and maintain adequate silanol density for subsequent s...

  16. Dispersion of "guava-like" silica/polyacrylate nanocomposite particles in polyacrylate matrix

    Institute of Scientific and Technical Information of China (English)


    A series of "guava-like" silica/polyacrylate nanocomposite particles with close silica content and different grafting degrees were prepared via mini-emulsion polymerization using 3-(trimethoxysilyl)propyl methacrylate (TSPM) modified silica/acrylate dispersion.The silica/polyacrylate composite particles were melt-mixed with unfilled polyacrylate (PA) resin to prepare corresponding silica/polyacrylate molded composites and the dispersion mechanism of these silica particles from the "guava-like" composite particles into polyacrylate matrix was studied.It was calculated that about 110 silica particles were accumulated in the bulk of every silica/polyacrylate composite latex particle.Both the solubility tests of silica/polyacrylate composite latex particles in tetrahydrofuran (THF) and the section transmission electron microscope (TEM) micrographs of silica/polyacrylate molded composites indicated that the grafting degree of silica particles played a crucial role in the dispersion of silica/polyacrylate composite particles into the polyacrylate matrix.When the grafting degree of polyacrylate onto silica was in a moderate range (ca.20%-70%),almost all of silica particles in these "guava-like" composite particles were dispersed into the polyacrylate matrix in a primary-particle-level.However,at a lower grafting degree,massive silica aggregations were found in molded composites because of the lack of steric protection.At a greater grafting degree (i.e.,200%),a cross-linked network was formed in the silica/polyacrylate composite particles,which prevented the dispersion of composite particles in THF and polyacrylate matrix as primary particles.

  17. Fractals of Silica Aggregates

    Institute of Scientific and Technical Information of China (English)

    ZhinhongLi; DongWu; Yuhansun; JunWang; YiLiu; BaozhongDong; Zhinhong


    Silica aggregates were prepared by base-catalyzed hydrolysis and condensation of alkoxides in alcohol.Polyethylene glycol(PEG) was used as organic modifier.The sols were characterized using Small Angle X-ray Scattering (SAXS) with synchrotron radiation as X-ray source.The structure evolution during the sol-gel process was determined and described in terms of the fractal geometry.As-produced silica aggregates were found to be mass fractals.The fractl dimensions spanned the regime 2.1-2.6 corresponding to more branched and compact structures.Both RLCA and Eden models dominated the kinetic growth under base-catalyzed condition.

  18. Silica reinforced triblock copolymer gels

    DEFF Research Database (Denmark)

    Theunissen, E.; Overbergh, N.; Reynaers, H.


    The effect of silica and polymer coated silica particles as reinforcing agents on the structural and mechanical properties of polystyrene-poly(ethylene/butylene)-polystyrene (PS-PEB-PS) triblock gel has been investigated. Different types of chemically modified silica have been compared in order...... a viscoclastic rubber to a plastic fluid and from a plastic fluid to a viscoelastic liquid are shifted to more elevated temperatures when silica is added to the triblock copolymer gel. (C) 2004 Elsevier Ltd. All rights reserved....

  19. One-pot synthesis of silica-hybridized Ag{sub 2}S–CuS nanocomposites with tunable nonlinear optical properties

    Energy Technology Data Exchange (ETDEWEB)

    Ann Mary, K.A. [School of Pure & Applied Physics, Mahatma Gandhi University, Kottayam 686560 (India); Unnikrishnan, N.V., E-mail: [School of Pure & Applied Physics, Mahatma Gandhi University, Kottayam 686560 (India); Philip, Reji [Raman Research Institute, C.V. Raman Avenue, Sadashivanagar, Bangalore 560080 (India)


    Highlights: • Silica modified QDs of CuS and Ag{sub 2}S is developed at room temperature. • Formation of Ag{sub 2}S/CuS nanocomposites is confirmed from XRD and FFT of HRTEM images. • The concentration dependent growth of silica modified QDs is discussed. • Nonlinear absorption observed in ns excitations is dominated by SA and ESA. • Tuning of optical limiting efficiency is achieved with relative Ag{sub 2}S content. - Abstract: In the present work we report a simple, facile route developed for preparing silica hybridized copper sulfide and silver sulfide quantum dots at room temperature. By adjusting the concentration of the precursors, Ag{sub 2}S can form Ag{sub 2}S–CuS nanocomposites which are self regulated in one pot. Their crystalline, structural and optical properties have been investigated in detail, and the optical limiting nature is studied from fluence-dependent transmittance measurements employing short (5 ns) laser pulses at 532 nm. Ag{sub 2}S nanoparticles are found to have large third order nonlinear optical coefficients with a relatively lower optical limiting threshold of 1.7 J cm{sup −2}, while the nonlinearity of the nanocomposites is found to lie in between that of Ag{sub 2}S and CuS nanoparticles. These results suggest pathways for designing good quality optical limiters with tunable optical limiting efficiencies by varying the constituent nanocrystal compositions.

  20. Development of ultrafine and pure amorphous and crystalline new materials and their fabrication process

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Myung Seung; Kim, Y. E.; Kim, J. G.; Gu, J. H. [Korea Atomic Energy Research Inst., Taejon (Korea, Republic of); Yoon, N. K.; Seong, S. Y. [Myongseong Ceramics Co., Taejon (Korea, Republic of); Ryu, S. E. [Paichai Univ., Taejon (Korea, Republic of); Lee, J. C. [Myongji Univ., Taejon (Korea, Republic of)


    Based on an estimation of annual rice production of 5.2 Million tons, rice husks by-production reaches to 1.17 Million tons per year in Korea. distinguished to other corns, rice contains a lot of Si; 10 {approx} 20 % by weight in rice husks calculated as silica. The aim of this research project is to develop technologies for ceramic powders and materials utilizing the silica in rice husks called phytoliths. In this researches of the following subjects were performed; decomposition of the organic components, acid treatments, extraction of the organic matter, effect of gamma-ray irradiation on the acid treatment, plasma treatment, crystallization of silica powder, dispersion of amorphous silica powder, fabrication of ultrafine crystalline fibrous materials.. (author). 18 refs., 5 tabs., 55 figs.

  1. Surge-Resistant Nanocomposite Enameled Wire Using Silica Nanoparticles with Binary Chemical Compositions on the Surface

    Directory of Open Access Journals (Sweden)

    Jeseung Yoo


    Full Text Available We developed polyesterimide (PEI nanocomposite enameled wires using surface-modified silica nanoparticles with binary chemical compositions on the surface. The modification was done using silanes assisted by ultrasound, which facilitated high density modification. Two different trimethoxysilanes were chosen for the modification on the basis of resemblance of chemical compositions on the silica surface to PEI varnish. The surface-modified silica was well dispersed in PEI varnish, which was confirmed by optical observation and viscosity measurement. The glass transition temperature of the silica-PEI nanocomposite increased with the silica content. The silica-dispersed PEI varnish was then used for enameled wire fabrication. The silica-PEI nanocomposite enameled wire exhibited a much longer lifetime compared to that of neat PEI enameled wire in partial discharge conditions.

  2. Confinement Effects for Lithium Borohydride: Comparing Silica and Carbon Scaffolds. (United States)

    Suwarno; Ngene, Peter; Nale, Angeloclaudio; Eggenhuisen, Tamara M; Oschatz, Martin; Embs, Jan Peter; Remhof, Arndt; de Jongh, Petra E


    LiBH4 is a promising material for hydrogen storage and as a solid-state electrolyte for Li ion batteries. Confining LiBH4 in porous scaffolds improves its hydrogen desorption kinetics, reversibility, and Li(+) conductivity, but little is known about the influence of the chemical nature of the scaffold. Here, quasielastic neutron scattering and calorimetric measurements were used to study support effects for LiBH4 confined in nanoporous silica and carbon scaffolds. Pore radii were varied from 8 Å to 20 nm, with increasing confinement effects observed with decreasing pore size. For similar pore sizes, the confinement effects were more pronounced for silica than for carbon scaffolds. The shift in the solid-solid phase transition temperature is much larger in silica than in carbon scaffolds with similar pore sizes. A LiBH4 layer near the pore walls shows profoundly different phase behavior than crystalline LiBH4. This layer thickness was 1.94 ± 0.13 nm for the silica and 1.41 ± 0.16 nm for the carbon scaffolds. Quasi-elastic neutron scattering confirmed that the fraction of LiBH4 with high hydrogen mobility is larger for the silica than for the carbon nanoscaffold. These results clearly show that in addition to the pore size the chemical nature of the scaffold also plays a significant role in determining the hydrogen mobility and interfacial layer thickness in nanoconfined metal hydrides.

  3. Confinement Effects for Lithium Borohydride: Comparing Silica and Carbon Scaffolds (United States)


    LiBH4 is a promising material for hydrogen storage and as a solid-state electrolyte for Li ion batteries. Confining LiBH4 in porous scaffolds improves its hydrogen desorption kinetics, reversibility, and Li+ conductivity, but little is known about the influence of the chemical nature of the scaffold. Here, quasielastic neutron scattering and calorimetric measurements were used to study support effects for LiBH4 confined in nanoporous silica and carbon scaffolds. Pore radii were varied from 8 Å to 20 nm, with increasing confinement effects observed with decreasing pore size. For similar pore sizes, the confinement effects were more pronounced for silica than for carbon scaffolds. The shift in the solid–solid phase transition temperature is much larger in silica than in carbon scaffolds with similar pore sizes. A LiBH4 layer near the pore walls shows profoundly different phase behavior than crystalline LiBH4. This layer thickness was 1.94 ± 0.13 nm for the silica and 1.41 ± 0.16 nm for the carbon scaffolds. Quasi-elastic neutron scattering confirmed that the fraction of LiBH4 with high hydrogen mobility is larger for the silica than for the carbon nanoscaffold. These results clearly show that in addition to the pore size the chemical nature of the scaffold also plays a significant role in determining the hydrogen mobility and interfacial layer thickness in nanoconfined metal hydrides. PMID:28286596

  4. Liquid crystalline order in polymers

    CERN Document Server

    Blumstein, Alexandre


    Liquid Crystalline Order in Polymers examines the topic of liquid crystalline order in systems containing rigid synthetic macromolecular chains. Each chapter of the book provides a review of one important area of the field. Chapter 1 discusses scattering in polymer systems with liquid crystalline order. It also introduces the field of liquid crystals. Chapter 2 treats the origin of liquid crystalline order in macromolecules by describing the in-depth study of conformation of such macromolecules in their unassociated state. The chapters that follow describe successively the liquid crystalli

  5. Thin supported silica membranes

    NARCIS (Netherlands)

    Zivkovic, Tijana


    This thesis discusses several transport-related aspects relevant for the application of thin supported silica membranes for gas separation and nanofiltration. The influence of support geometry on overall membrane performance is investigated. Planar (i.e., flat plate), tubular, and multichannel suppo

  6. Control of silicification by genetically engineered fusion proteins: Silk–silica binding peptides (United States)

    Zhou, Shun; Huang, Wenwen; Belton, David J.; Simmons, Leo O.; Perry, Carole C.; Wang, Xiaoqin; Kaplan, David L.


    In the present study, an artificial spider silk gene, 6mer, derived from the consensus sequence of Nephila clavipes dragline silk gene, was fused with different silica-binding peptides (SiBPs), A1, A3 and R5, to study the impact of the fusion protein sequence chemistry on silica formation and the ability to generate a silk–silica composite in two different bioinspired silicification systems: solution–solution and solution– solid. Condensed silica nanoscale particles (600–800 nm) were formed in the presence of the recombinant silk and chimeras, which were smaller than those formed by 15mer-SiBP chimeras [1], revealing that the molecular weight of the silk domain correlated to the sizes of the condensed silica particles in the solution system. In addition, the chimeras (6mer-A1/A3/R5) produced smaller condensed silica particles than the control (6mer), revealing that the silica particle size formed in the solution system is controlled by the size of protein assemblies in solution. In the solution–solid interface system, silicification reactions were performed on the surface of films fabricated from the recombinant silk proteins and chimeras and then treated to induce β-sheet formation. A higher density of condensed silica formed on the films containing the lowest β-sheet content while the films with the highest β-sheet content precipitated the lowest density of silica, revealing an inverse correlation between the β-sheet secondary structure and the silica content formed on the films. Intriguingly, the 6mer-A3 showed the highest rate of silica condensation but the lowest density of silica deposition on the films, compared with 6mer-A1 and -R5, revealing antagonistic crosstalk between the silk and the SiBP domains in terms of protein assembly. These findings offer a path forward in the tailoring of biopolymer–silica composites for biomaterial related needs. PMID:25462851

  7. Novel Crystalline SiO2 Nanoparticles via Annelids Bioprocessing of Agro-Industrial Wastes


    Angeles-Chávez C; Martínez-Hernández AL; Velasco-Santos C.; Espíndola-Gonzalez A; Castaño VM


    Abstract The synthesis of nanoparticles silica oxide from rice husk, sugar cane bagasse and coffee husk, by employing vermicompost with annelids (Eisenia foetida) is reported. The product (humus) is calcinated and extracted to recover the crystalline nanoparticles. X-ray diffraction (XRD), transmission electron microscopy (TEM), high-resolution transmission electron microscopy (HRTEM) and dynamic light scattering (DLS) show that the biotransformation allows creating specific crystalline phase...

  8. Occupational exposure to silica and lung cancer risk in the Netherlands

    NARCIS (Netherlands)

    Preller, L.; Bosch, L.M.C. van den; Brandt, P.A. van den; Kauppinen, T.; Goldbohm, R.A.


    Objectives: The lung cancer carcinogenicity of crystalline silica dust remains the subject of discussion. Epidemiological evidence is based on occupational cohort studies and population-based case-control studies. The aim of this study was to assess associations between male lung cancer risk and sil

  9. Silica-induced NLRP3 inflammasome activation in vitro and in rat lungs

    NARCIS (Netherlands)

    Peeters, P.M.; Eurlings, I.M.J.; Perkins, T.N.; Wouters, E.F.; Schins, R.P.F.; Borm, P.J.A.; Drommer, W.; Reynaert, N.L.; Albrecht, C.


    RationaleMineral particles in the lung cause inflammation and silicosis. In myeloid and bronchial epithelial cells the inflammasome plays a role in responses to crystalline silica. Thioredoxin (TRX) and its inhibitory protein TRX-interacting protein link oxidative stress with inflammasome activation

  10. Artificial microfossils - Experimental studies of permineralization of blue-green algae in silica. (United States)

    Oehler, J. H.; Schopf, J. W.


    A technique has been developed to artificially fossilize microscopic algae in crystalline silica under conditions of moderately elevated temperature and pressure. The technique is designed to simulate geochemical processes thought to have resulted in the preservation of organic microfossils in Precambrian bedded cherts. In degree of preservation and mineralogic setting, the artificially permineralized microorganisms are comparable to naturally occurring fossil algae.

  11. Micro Filler Effects of Silica-Fume on the Setting and Hardened Properties of Concrete

    Directory of Open Access Journals (Sweden)

    V.M. Sounthararajan


    Full Text Available The use of supplementary cementitious material is gaining much attention owing to its high pozzolanic property and further improvement in strength properties. Silica-fume is one among the widely used pozzolanic material which exhibits high cementing efficiency due to high silica content. This study presents comprehends a detailed insight on the hydration properties of silica fume with cement. Silica fume consists of very fine particle size and contains silica content more than 90%. The cement hydration results in the formation of calcium hydroxide and this is consumed with the addition of silica fume and results in additional calcium silicate hydrate. This compound primarily envisages the strength and improved microstructure of concrete. Addition of silica-fume fills in the spaces between cement grains. The test results showed that higher compressive strength of concrete is obtained by using 8.0% of silica-fume at 7 and 28 days was 48.25 and 55.83 MPa, respectively. This phenomenon is frequently referred to as particle packing or micro-filling. Even if silica fume did not react chemically, the micro-filler effect would lead to significant improvements in the microstructure of concrete. A comprehensive review has been carried out in this study to give a good understanding on the advantages of pozzolanic properties of silica fume in cement concrete.


    alcohols, phenol) in Nylon 6 produced changes in the crystalline structure as well as plasticizer action; these two effects must therefore be carefully...distinguished. Changes in the crystalline structure were followed by changes in the infrared spectrum. Dynamic mechanical and thermogravimetric analysis

  13. Distribution and accumulation of biogenic silica in the intertidal sediments of the Yangtze Estuary

    Institute of Scientific and Technical Information of China (English)

    HOU Lijun; LIU Min; XU Shiyuan; YAN Huimin; OU Dongni; CHENG Shubo; LIN Xiao


    Sedimentary biogenic silica is known to be all important parameter to understand biogeochemical processes and paleoenviromental records in estuarine and coastal ecosystems. Consequently, it is of great significance to investigate accumulation and distribution of biogenic silica in sediments. The two-step mild acid-mild alkaline extraction procedure was used to leach biogenic silica and its early diagenetic products in intertidal sediments of the Yangtze Estuary. The results showed that total biogenic silica(t-BSi)in the intertidal sediments varied from 237. 7-419. 4 μmol Si/g. while the mild acid leachable silica(Si-HCl)and the mild alkaline leachable silica(Si-Alk)were in the range of 25. 1-72. 9μmol Si/g and 208. 1-350. 4 μmol Si/g. respectively. Significant correlations were observed for the grain size distributions of sediments and different biogenic silica pools in intertidal sediments. This confirms that grain size distribution Can significantly affect biogenic silica contents in sediments. Close relationships of biogenic silica with organic carbon and nitrogen Were also found, reflecting that there is a strong coupling between biogenic silica and organic matter biogeochemical cycles in the intertidal system of the Yangtze Estuary. Additionally, the early diagenetic changes of biogenic silica in sediments are discussed in the present study.

  14. Formation of silica iron oxide glasses (United States)

    Al-Bawab, Abeer F.

    The microemulsion-gel method was developed as an alternative process in the production of room temperature glasses. This method is based on the formation of a microemulsion, to which is added a metal alkoxide that undergoes hydrolysis and condensation to form an oxide network, which is dried into glass. The goal of this work is to understand the sol-gel process upon addition of hydrate metal salts. The thermal transitions of the silica containing ferric nitrate hydrate were examined by differential scanning calorimetry (DSC) and thermal gravimetric analysis (TGA). Using infrared (IR) spectroscopy and X-ray diffraction (XRD). The glasses with a less than 30 mol % iron nitrate were amorphous, while those higher concentration were crystalline. Based on XRD the thermal transitions did not alter the crystallinity. The IR spectra indicated the existence of Si-O-Fe bonds. Thermal analysis indicated similar transitions as exhibited by pure iron nitrate with minor modifications due to interactions with the silica. The reaction between tetraethoxysilane and chloral hydrate in ethanol was followed by NMR of the sp{29}Si nucleus at two different pHs. The sp{29}Si NMR spectra were similar to those reported for the reactions in alcohol between tetraethoxysilane and water of low pH, and for the reactions in the presence of inorganic hydrate. At pH 4, monomene silicon species were detected where at pH 2 the reaction was sufficiently rapid that multi hydroxy monomers were not detected as expected from the catalysts. The reaction proceeded without adding water. The reaction between aluminum chloride and methoxydimethyloctylsilane was investigated at room temperature using NMR and IR spectroscopy in addition to a molecular weight determination from the freezing point reduction in benzene. The structure as deduced from the experimental results was found to be a dimer containing two silicon atoms and two aluminum atoms of which the latter were tetrahedrally coordinated.

  15. Crystalline Bioceramic Materials

    Directory of Open Access Journals (Sweden)

    de Aza, P. N.


    Full Text Available A strong interest in the use of ceramics for biomedical engineering applications developed in the late 1960´s. Used initially as alternatives to metallic materials in order to increase the biocompatibility of implants, bioceramics have become a diverse class of biomaterials, presently including three basic types: relatively bioinert ceramics; bioactive or surface reactive bioceramics and bioresorbable ceramics. This review will only refer to bioceramics “sensus stricto”, it is to say, those ceramic materials constituted for nonmetallic inorganic compounds, crystallines and consolidated by thermal treatments of powders to high temperatures. Leaving bioglasses, glass-ceramics and biocements apart, since, although all of them are obtained by thermal treatments to high temperatures, the first are amorphous, the second are obtained by desvitrification of a glass and in them vitreous phase normally prevails on the crystalline phases and the third are consolidated by means of a hydraulic or chemical reaction to room temperature. A review of the composition, physiochemical properties and biological behaviour of the principal types of crystalline bioceramics is given, based on the literature data and on the own experience of the authors.

    A finales de los años sesenta se despertó un gran interés por el uso de los materiales cerámicos para aplicaciones biomédicas. Inicialmente utilizados como una alternativa a los materiales metálicos, con el propósito de incrementar la biocompatibilidad de los implantes, las biocerámicas se han convertido en una clase diversa de biomateriales, incluyendo actualmente tres tipos: cerámicas cuasi inertes; cerámicas bioactivas o reactivas superficialmente y cerámicas reabsorbibles o biodegradables. En la presente revisión se hace referencia a las biocerámicas en sentido estricto, es decir, a aquellos materiales constitutitos por compuestos inorgánicos no metálicos, cristalinos y consolidados

  16. Oxidative cracking of n-butane over various silica packings; Kakushu shirika sonzaika deno n-butan no sanka bunkai hanno

    Energy Technology Data Exchange (ETDEWEB)

    Wakui, K.; Sato, K.; Sawada, G.; Shiozawa, K.; Matano, K. [Japan chemical Industry Association, Tokyo (Japan); Suzuki, K.; Hayakawa, T.; Murata, K.; Yoshimura, Y.; Mizukami, F. [National Institute of Materials and Chemical Research, Ibaraki (Japan)


    In order to study the difference between catalytic and non-catalytic oxidative cracking of n-butane, the oxidative cracking over carious silica was investigated in the temperature range of 600-700 degree C. The reactions were conducted with molecular oxygen, nitrogen, and n-butane using a fixed bed reactor loaded with various silica packings. Homogeneous radical reaction in the gas phase proceeded farther in an empty silica tube reactor and the highest conversion of n-butane was attained. With the loading of various silica packings, the conversion of n-butane was lowered; however, the conversion obtained using amorphous silica was quite different from that obtained using crystalline silica such as quartz sand or silicalite. The radical reaction was not suppressed so much by amorphous silica packing as by crystalline silica packing, and the n-butane conversion was as high as that in the empty tube reactor without silica packing. It was considered that the surface OH groups on the amorphous silica are involved in the radical chain reactions of the oxidative cracking. Ethylene, propylene, and butanes were obtained as major products and the selectivity of light olefins was high (700 degree C, about 75 % at 45 % conversion) compared with that obtained using other oxides. (author)

  17. Development of empirical potentials for amorphous silica

    Energy Technology Data Exchange (ETDEWEB)

    Carre, A.


    potential shows a better agreement with the CP data than the BKS ones: pair correlation functions, angular distribution functions, structure factors, density of states and pressure/density were improved. At low temperature, the diffusion coefficients appear to be three times higher than those predicted by the BKS model, however showing a similar temperature dependence. Calculations have also been carried out on crystalline samples in order to check the transferability of the potential. The equilibrium geometry as well as the elastic constants of {alpha}-quartz at 0 K are well described by our new potential although the crystalline phases have not been considered for the parameterization. We have developed a new potential for silica which represents an improvement over the pair potentials class proposed so far. Furthermore, the fitting methodology that has been developed in this work can be applied to other network forming systems such as germania as well as mixtures of SiO{sub 2} with other oxides (e.g. Al{sub 2}O{sub 3}, K{sub 2}O, Na{sub 2}O). (orig.)

  18. Soluble polymers in sol-gel silica (United States)

    Beaudry, Christopher Laurent

    In the last few years, the inherent versatility of sol-gel processing has led to a significant research effort on inorganic/organic materials. One method of incorporating an organic phase into sol-gel silica is dissolving an organic polymer in a tetraethylorthosilicate (TEOS) solution, followed by in situ polymerization of silica in the presence of organic polymer. The first part of the study involved the development of a two-step (acid-base) synthesis procedure to allow systematic control of acidity in TEOS solutions. With this procedure, it was possible to increase the pH of the TEOS solution while correlating the acidity and properties. The properties were the gelation time, syneresis rate, drying behavior, and xerogel pore structure, as determined by nitrogen sorption. Furthermore, controlling the acidity was shown to control the silica xerogel pore structure. In the second part of the study, the two-step procedure was used to synthesize silica/poly(ethylene glycol) (PEG), and silica/poly(vinyl acetate) (PVAc) composite materials. The content of organic polymer and the molecular weight were varied. The gelation time, the syneresis rate, the drying behavior, and the pore structure were determined for compositions with 10% PEG (M.W. 2,000), 5, 10, and 15% PEG (M.W. 3,400), and 10 and 25% PVAc (M.W. 83,000). Other compositions and molecular weights of PEG lead to sedimentation. In the PEG compositions, the tendency to phase separate was correlated with the effects of the processing variables on the segregation strength and polymerization rate. The PVAc compositions did not show any visible phase separation during processing, giving the composite xerogels an appearance similar to pure silica. The property differences between gels with PEG and gels with PVAc show the relative strength of the interactions with silica. Both polymers exhibit hydrogen bonding between the phases. In the case of PEG, hydrogen bonding between the ether oxygens of the polymer and silanol


    Directory of Open Access Journals (Sweden)

    Pabst W.


    Full Text Available The elastic properties of silica phases are reviewed. Available monocrystal data for crystalline SiO2 polymorphs (low-quartz, high-quartz, low-cristobalite, high-cristobalite, stishovite are collected from the literature, and effective elastic constants (Young’s moduli, shear moduli, bulk moduli and Poisson ratios are calculated from these using Voigt-Reuss-Hill averaging. Both experimental data and simulation results are taken into account. A table of room temperature elastic constants for crystalline silica polymorphs and silica glass is given that lists the recommended current “state-of-the-art“ values. All data are consistent with the well-known auxetic behavior of cristobalite at room temperature, and high-temperature simulation data published for cristobalite confirm auxetic behavior for all temperatures from room temperature up to more than 1500°C. The calculations of this paper show that also quartz can be auxetic, but only in a very limited temperature range around the low-to-high-quartz transition temperature (420 – 577°C. Experimental measurements of elastic properties of tridymite and cristobalite, including high-temperature measurements, are identified as a desideratum of future research.

  20. Biological effects induced by BSA-stabilized silica nanoparticles in mammalian cell lines. (United States)

    Foldbjerg, Rasmus; Wang, Jing; Beer, Christiane; Thorsen, Kasper; Sutherland, Duncan S; Autrup, Herman


    Much of the concerns regarding engineered nanoparticle (NP) toxicity are based on knowledge from previous studies on particles in ambient air or occupational situations. E.g., the effects of exposure to silica dust particles have been studied intensely due to the carcinogenicity of crystalline silica. However, the increasing usage of engineered amorphous silica NPs has emphasized the need for further mechanistic insight to predict the consequences of exposure to the amorphous type of silica NPs. The present study focused on the in vitro biological effects following exposure to well-dispersed, BSA-stabilized, amorphous silica NPs whereas unmodified silica NPs where included for reasons of comparison. The cytotoxicity of the silica NPs was investigated in six different cell lines (A549, THP-1, CaCo-2, ASB-XIV, J-774A.1, and Colon-26) selected to explore the significance of organ and species sensitivity in vitro. Viability data demonstrated that macrophages were most sensitive to silica NP and interestingly, murine cell lines were generally found to be more sensitive than comparable human cell lines. Further studies were conducted in the human epithelial lung cell line, A549, to explore the molecular mechanism of silica toxicity. Generation of reactive oxygen species, one of the proposed toxicological mechanisms of NPs, was investigated in A549 cells by the dichlorofluorescin (DCF) assay to be significantly induced at NP concentrations above 113 μg/mL. However, induction of oxidative stress related pathways was not found after silica NP exposure for 24 h in gene array studies conducted in A549 cells at a relatively low NP concentration (EC20). Up-regulated genes (more than 2-fold) were primarily related to lipid metabolism and biosynthesis whereas down-regulated genes included several processes such as transcription, cell junction, extra cellular matrix (ECM)-receptor interaction and others. Thus, gene expression data proposes that several cellular processes other

  1. Aniline incorporated silica nanobubbles

    Indian Academy of Sciences (India)

    M J Rosemary; V Suryanarayanan; Ian Maclaren; T Pradeep


    We report the synthesis of stearate functionalized nanobubbles of SiO2 with a few aniline molecules inside, represented as C6H5NH2@SiO2@stearate, exhibiting fluorescence with red-shifted emission. Stearic acid functionalization allows the materials to be handled just as free molecules, for dissolution, precipitation, storage etc. The methodology adopted involves adsorption of aniline on the surface of gold nanoparticles with subsequent growth of a silica shell through monolayers, followed by the selective removal of the metal core either using sodium cyanide or by a new reaction involving halocarbons. The material is stable and can be stored for extended periods without loss of fluorescence. Spectroscopic and voltammetric properties of the system were studied in order to understand the interaction of aniline with the shell as well as the monolayer, whilst transmission electron microscopy has been used to study the silica shell.

  2. Size dependent photoresponse characteristics of crystalline Ge quantum dots based photodetectors (United States)

    Bar, Rajshekhar; Manna, Santanu; Ray, Samit K.


    We report on the size dependent photoresponse behaviour of crystalline Ge quantum dots (QDs) dispersed within the silica matrix. Our findings demonstrate an increasing nature of EQE with increase in QDs size, which could be attributed to the combined effect of Coulomb interaction of photogenerated carriers, QD/silica interface defects and electric field driven carrier separation and tunneling through the oxide barriers. In this regard, the bias dependent nonlinear response of the photocurrent has been explained on the basis of cold field emission (CFE) model. Besides, the EQE is extended (>100%) for larger sized QDs, suggesting the trapping of slower holes in Ge QDs creating a charge neutrality issue.

  3. Liquid crystalline epoxy nanocomposite material for dental application. (United States)

    Tai, Yun-Yuan; Hsu, Sheng-Hao; Chen, Rung-Shu; Su, Wei-Fang; Chen, Min-Huey


    Novel liquid crystalline epoxy nanocomposites, which exhibit reduced polymerization shrinkage and effectively bond to tooth structures, can be applied in esthetic dentistry, including core and post systems, direct and indirect restorations, and dental brackets. The purposes of this study were to investigate the properties of liquid crystalline epoxy nanocomposites including biocompatibility, microhardness, and frictional forces of bracket-like blocks with different filler contents for further clinical applications. In this study, we evaluated liquid crystalline epoxy nanocomposite materials that exhibited various filler contents, by assessing their cell activity performance using a 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay and their microhardness with or without thermocycling. We also evaluated the frictional force between bracket-like duplicates and commercially available esthetic bracket systems using Instron 5566. The liquid crystalline epoxy nanocomposite materials showed good biocompatibility. The materials having high filler content demonstrated greater microhardness compared with commercially available bracket materials, before and after the thermocycling treatment. Thus, manufacturing processes are important to reduce frictional force experienced by orthodontic brackets. The microhardness of the bracket-like blocks made by our new material is superior to the commercially available brackets, even after thermocycling. Our results indicate that the evaluated liquid crystalline epoxy nanocomposite materials are of an appropriate quality for application in dental core and post systems and in various restorations. By applying technology to refine manufacturing processes, these new materials could also be used to fabricate esthetic brackets for orthodontic treatment. Copyright © 2014. Published by Elsevier B.V.

  4. Biogenic silica in space and time in sediments of Central Indian Ocean

    Digital Repository Service at National Institute of Oceanography (India)

    Pattan, J.N.; Gupta, S.M.; Mudholkar, A.V.; Parthiban, G.

    rate averages 2.25 x 10/5 and it is contributed from 33 to 50% of the total silica. Higher biogenic silica content of the surface sediment is well correlated with Mn, Cu and Ni concentration of the overlying manganese nodules. Higher biogenic...

  5. Genetics Home Reference: Bietti crystalline dystrophy (United States)

    ... Understand Genetics Home Health Conditions Bietti crystalline dystrophy Bietti crystalline dystrophy Enable Javascript to view the expand/ ... boxes. Download PDF Open All Close All Description Bietti crystalline dystrophy is a disorder in which numerous ...

  6. Synthesis and characterization of biocomposites based on chitosan and geothermal silica (United States)

    Kusumastuti, Yuni; Petrus, Himawan Tri Bayu Murti; Yohana, Fiska; Buwono, Agung Tri; Zaqina, Radinda Bian


    With the amount of about 3000 ton per year of precipitate silica, Dieng's geothermal power plant possesses potential to utilize the precipitate silica. This material is a result of silica scaling mitigation that reduces the geothermal power plant productivity to the point of 40% within a year. In this study, the precipitated silica which is mostly in the amorphous state has potential uses for biomaterial such as bone graft composite. In order to obtain best of geothermal quality, purification was conducted using dry washing method to reach 95.65% of SiO2 purity. The silica was mixed in gel phase with 17.11% of water content. The geothermal silica was mixed with composition of chitosan/gelatin/geothermal silica (C/G/GS) and chitosan/pectin/geothermal silica (C/P/GS) biocomposites with certain ratio. Those two biocomposites were characterized and compared in order to determine the effect of geothermal silica addition into the matrix. From the observation, in general, it was obtained that the swelling ratio of C/P/GS is higher than C/G/GS. However, in comparison to the sample without geothermal silica addition, the swelling ratio of silica added biocomposites at various composition is lower. In term of Young's modulus at 1:1:1 ratio, silica addition into C/P biocomposite decreased the value while addition of silica into C/G biocomposite increased Young's modulus value. In general, no interaction was observed significantly between Young's modulus and swelling ratio. The interaction between the functional group of chitosan, pectin or gelatin and geothermal silica in the composite was also revealed by FTIR spectra analysis.

  7. Toughening Mechanisms in Silica-Filled Epoxy Nanocomposites (United States)

    Patel, Binay S.

    and modeled fracture energy results. Furthermore, the contribution of microcracking was most prevalent at lower filler contents which suggests that the presence of microcracking may account for the previously unexplained improvements in fracture behavior attained in silica-filled epoxy nanocomposites at low filler contents. Secondly, surface modification through the application of three different propriety surface treatments ("A", "B" and "C") was found to greatly influence the processibility and fracture behavior of silica-filled epoxy nanocomposites. B-treated silica nanoparticles were found to readily form micron-scale agglomerates, settled during nanocomposite curing and showed no improvement in fracture toughness with increasing filler content. In contrast, the nanocomposites consisting of A-treated and C-treated silica nanoparticles yielded morphologies primarily containing well-dispersed nanoparticles. Therefore, fracture toughness improved with increasing filler content. Finally, particle porosity was found to have no significant effect on fracture behavior for the range of silica-filled epoxy nanocomposites investigated. Lower density porous silica nanoparticles were just as effective toughening agents as higher density non-porous silica nanoparticles. Consequently, the potential exists for the use of toughened-epoxies in lightweight structural applications.

  8. Terahertz Spectroscopy of Crystalline and Non-Crystalline Solids

    DEFF Research Database (Denmark)

    Parrott, Edward P. J.; Fischer, Bernd M.; Gladden, Lynn F.


    Terahertz spectroscopy of crystalline and non-crystalline solids is probably one of the most active research fields within the terahertz community. Many potential applications, amongst which spectral recognition is probably one of the most prominent, have significantly stimulated the development...... selected examples, the potential the technique holds for various different applications. A particular focus will be given to data analysis and, in particular, how we may account for effects resulting from non-ideal sample preparation....


    Institute of Scientific and Technical Information of China (English)

    Rui Song; Rui Xue; Ling-hao He; Ying Liu; Qiao-ling Xiao


    The ternary hybrid films consisting of chitosan(CS),polyethylene glycol(PEG)and nano-sized silica which was surface-modified by amino groups(RNSA)were prepared.The structures of the blend membranes were characterized by attenuation total reflection-infrared spectroscopy(ATR-IR),X-ray diffraction(XRD),optical microscopy(OM)and differential scanning calorimetry (DSC).The results showed that the addition of silica affected not only the distribution and crystallinity of PEG on the sample surface.but also the phase coarseness and the crystalline structure of chitosan in the blend system.Moreover,PEG changed the crystalline structure of chitosan.Upon annealing(at 100℃ for 1 h),the blends would show the altered crystalline structure of chitosan,the reinforced phase well as the decreased miscibility and interaction between chitosan and PEG.

  10. Temperature and moisture dependence of the dielectric properties of silica sand. (United States)

    Liu, Chenhui; Zhang, Libo; Peng, Jinhui; Srinivasakannan, Chandrasekar; Liu, Bingguo; Xia, Hongying; Zhou, Junwen; Xu, Lei


    The major objective of this work was to investigate the effects of temperature and moisture content on the dielectric properties of silica sand. The dielectric properties of moist silica sand at five temperatures between 20 to 100 degrees C, covering different moisture content levels at a frequency of 2.45 GHz, were measured with an open-ended coaxial probe dielectric measurement system. The wave penetration depth was calculated based on the measured dielectric data. The results show moisture content to be the major influencing factor for the variation of dielectric properties. Dielectric constant, loss factor and loss tangent all increase linearly with increasing moisture content. Three predictive empirical models were developed to relate the dielectric constant, loss factor, loss tangent of silica sand as a linear function of moisture content. An increase in temperature between 20 to 100 degrees C was found to increase the dielectric constant and loss factor. The penetration depth decreased with increase in moisture content and temperature. Variation in penetration depth was found to vary linearly with decrease in moisture content. An predictive empirical model was developed to calculate penetration depth for silica sand. This study offers useful information on dielectric properties of silica sand for developing microwave drying applications in mineral processing towards designing better microwave sensors for measuring silica sand moisture content.

  11. Two-dimensional silica: Structural, mechanical properties, and strain-induced band gap tuning

    Energy Technology Data Exchange (ETDEWEB)

    Gao, Enlai; Xie, Bo [Applied Mechanics Laboratory, Department of Engineering Mechanics, and Center for Nano and Micro Mechanics, Tsinghua University, Beijing 100084 (China); Xu, Zhiping, E-mail: [Applied Mechanics Laboratory, Department of Engineering Mechanics, and Center for Nano and Micro Mechanics, Tsinghua University, Beijing 100084 (China); State Key Laboratory of Mechanics and Control of Mechanical Structures, Nanjing University of Aeronautics and Astronautics, Nanjing 210016 (China)


    Two-dimensional silica is of rising interests not only for its practical applications as insulating layers in nanoelectronics, but also as a model material to understand crystals and glasses. In this study, we examine structural and electronic properties of hexagonal and haeckelite phases of silica bilayers by performing first-principles calculations. We find that the corner-sharing SiO{sub 4} tetrahedrons in these two phases are locally similar. The robustness and resilience of these tetrahedrons under mechanical perturbation allow effective strain engineering of the electronic structures with band gaps covering a very wide range, from of that for insulators, to wide-, and even narrow-gap semiconductors. These findings suggest that the flexible 2D silica holds great promises in developing nanoelectronic devices with strain-tunable performance, and lay the ground for the understanding of crystalline and vitreous phases in 2D, where bilayer silica provides an ideal test-bed.

  12. Effects of Silica Nanostructures in Poly(ethylene oxide)-Based Composite Polymer Electrolytes. (United States)

    Mohanta, Jagdeep; Anwar, Shahid; Si, Satyabrata


    The present work describes the synthesis of some poly(ethylene oxide)-based nanocomposite polymer electrolyte films using various silica nanostructures as the inorganic filler by simple solution mixing technique, in which the nature of the silica nanostructures play a vital role in modulating their electrochemical performances at room temperature. The silica nanostructures are prepared by ammonical hydrolysis of tetraethyl orthosilicate following the modified St6ber method. The resulting films are characterized by X-ray diffraction and differential scanning calorimeter to study their crystallinity. Room temperature AC impedance spectroscopy is utilized to determine the Li+ ion conductivity of the resulting films. The observed conductivity values of various NCPE films depend on the nature of silica filling as well as on their surface characteristics and also on the varying PEO-Li+ ratio, which is observed to be in the order of 10(-7)-10(-6) S cm(-1).

  13. Amorphization of Crystalline Water Ice

    CERN Document Server

    Zheng, Weijun; Kaiser, Ralf I


    We conducted a systematic experimental study to investigate the amorphization of crystalline ice by irradiation in the 10-50 K temperature range with 5 keV electrons at a dose of ~140 eV per molecule. We found that crystalline water ice can be converted partially to amorphous ice by electron irradiation. Our experiments showed that some of the 1.65-micrometer band survived the irradiation, to a degree that depends on the temperature, demonstrating that there is a balance between thermal recrystallization and irradiation-induced amorphization, with thermal recrystallizaton dominant at higher temperatures. At 50 K, recrystallization due to thermal effects is strong, and most of the crystalline ice survived. Temperatures of most known objects in the solar system, including Jovian satellites, Saturnian satellites, and Kuiper belt objects, are equal to or above 50 K, this might explain why water ice detected on those objects is mostly crystalline.

  14. Liquid-crystalline lanthanide complexes


    Binnemans, Koen


    The paper describes the recent developments in the field of liquid-crystalline lanthanide complexes. The role of trivalent lanthanide ions as the central metal ion in metallomesogens is considered. An outlook for the future is given.

  15. Diffusion in porous crystalline materials

    NARCIS (Netherlands)

    Krishna, R.


    The design and development of many separation and catalytic process technologies require a proper quantitative description of diffusion of mixtures of guest molecules within porous crystalline materials. This tutorial review presents a unified, phenomenological description of diffusion inside meso-

  16. Synthesis of vinyl polymer-silica colloidal nanocomposites prepared using commercial alcoholic silica sols. (United States)

    Percy, M J; Amalvy, J I; Randall, D P; Armes, S P; Greaves, S J; Watts, J F


    The surfactant-free synthesis of vinyl polymer-silica nanocomposite particles has been achieved in aqueous alcoholic media at ambient temperature in the absence of auxiliary comonomers. Styrene, methyl methacrylate, methyl acrylate, n-butyl acrylate, and 2-hydroxypropyl methacrylate were homopolymerized in turn in the presence of three commercially available ultrafine alcoholic silica sols. Stable colloidal dispersions with reasonably narrow size distributions were obtained, with silica contents of up to 58% by mass indicated by thermogravimetric analysis. Particle size distributions were assessed using both dynamic light scattering and disk centrifuge photosedimentometry. The former technique indicated that the particle size increased for the first 1-2 h at 25 degrees C and thereafter remained constant. Particle morphologies were studied using electron microscopy. Most of the colloidal nanocomposites comprised approximately spherical particles with relatively narrow size distributions, but in some cases more polydisperse or nonspherical particles were obtained. Selected acrylate-based nanocomposites were examined in terms of their film formation behavior. Scanning electron microscopy studies indicated relatively smooth films were obtained on drying at 20 degrees C, with complete loss of the original particle morphology. The optical clarity of solution-cast 10 microm nanocomposite films was assessed using visible absorption spectrophotometry, with 93-98% transmission being obtained from 400 to 800 nm; the effect of long-term immersion of such films in aqueous solutions was also examined. X-ray photoelectron spectroscopy studies indicated that the surface compositions of these nanocomposite particles are invariably silica-rich, which is consistent with their long-term colloidal stability and also with aqueous electrophoresis measurements. FT-IR studies suggested that in the case of the poly(methyl methacrylate)-silica nanocomposite particles, the carbonyl ester

  17. Study of interaction in silica glass via model potential approach (United States)

    Mann, Sarita; Rani, Pooja


    Silica is one of the most commonly encountered substances in daily life and in electronics industry. Crystalline SiO2 (in several forms: quartz, cristobalite, tridymite) is an important constituent of many minerals and gemstones, both in pure form and mixed with related oxides. Cohesive energy of amorphous SiO2 has been investigated via intermolecular potentials i.e weak Van der Waals interaction and Morse type short-range interaction. We suggest a simple atom-atom based Van der Waals as well as Morse potential to find cohesive energy of glass. It has been found that the study of silica structure using two different model potentials is significantly different. Van der Waals potential is too weak (P.E =0.142eV/molecule) to describe the interaction between silica molecules. Morse potential is a strong potential, earlier given for intramolecular bonding, but if applied for intermolecular bonding, it gives a value of P.E (=-21.92eV/molecule) to appropriately describe the structure of silica.

  18. Femtosecond laser-induced periodic surface structures on silica

    Energy Technology Data Exchange (ETDEWEB)

    Hoehm, S.; Rosenfeld, A. [Max-Born-Institut fuer Nichtlineare Optik und Kurzzeitspektroskopie (MBI), Max-Born-Strasse 2A, D-12489 Berlin (Germany); Krueger, J.; Bonse, J. [BAM Bundesanstalt fuer Materialforschung und-pruefung, Unter den Eichen 87, D-12205 Berlin (Germany)


    The formation of laser-induced periodic surface structures (LIPSS) on two different silica polymorphs (single-crystalline synthetic quartz and commercial fused silica glass) upon irradiation in air with multiple linearly polarized single- and double-fs-laser pulse sequences ({tau} = 150 fs pulse duration, {lambda} = 800 nm center wavelength, temporal pulse separation {Delta}t < 40 ps) is studied experimentally and theoretically. Two distinct types of fs-LIPSS [so-called low-spatial-frequency LIPSS (LSFL) and high-spatial-frequency LIPSS (HSFL)] with different spatial periods and orientations were identified. Their appearance was characterized with respect to the experimental parameters peak laser fluence and number of laser pulses per spot. Additionally, the 'dynamics' of the LIPSS formation was addressed in complementary double-fs-pulse experiments with varying delays, revealing a characteristic change of the LSFL periods. The experimental results are interpreted on the basis of a Sipe-Drude model considering the carrier dependence of the optical properties of fs-laser excited silica. This new approach provides an explanation of the LSFL orientation parallel to the laser beam polarisation in silica - as opposed to the behaviour of most other materials.

  19. Silica Sand Identification using ALOS PALSAR Full Polarimetry on The Northern Coastline of Rupat Island, Indonesia

    Directory of Open Access Journals (Sweden)

    Husnul Kausarian


    Full Text Available Silica sand is one of the minerals which relatively abundant in Indonesia. One of the areas with abundant of silica sand distribution is the northern coastline of Rupat Island, Bengkalis district, Riau province, Indonesia. The distribution of silica sand in this island identified only on the northern coastline in this island. Some selected sample of silica sand was measured to get the percentage of silica sand mineral’s content using X-Ray Fluorescence (XRF. Two adjacent scenes of ALOS PALSAR full-polarimetry were used. The physical properties of silica sand sample such as dielectric constant were measured using dielectric probe kit in the frequency range from 0.3 to 3.0 GHz and used for calculating the backscattering coefficient and the difference characteristics of silica sand with another object. Freeman-Durdeen and Yamaguchi techniques were used to get the scattering decomposition of physical scattering from the incoherent object model based. Surface scattering is the clearest of Scattering decomposition to show silica sand identification compares with other decompositions. From surface scattering, the backscattering coefficient value of silica sand was calculated starting from -59 dB until -52 dB. These values were given by the surface roughness condition, where the roughness is slightly rough planar. The flat condition supported by the grain size of silica sand particles that have almost the same size and shape, that were conducted by using microscopic photograph testing.

  20. Applicability of Cassie-Baxter equation for superhydrophobic fluoropolymer-silica composite films (United States)

    Cengiz, Ugur; Elif Cansoy, C.


    In this study, surface topographies and wettabilities of flat and composite rough films of perfluoro-styrene (TM/S) random copolymers with silica particles were investigated. The water and oil repellencies of flat TM/S copolymer and rough silica-TM/S composite surfaces were studied with varying perfluoro and silica contents. Increase in silica content resulted in an increase in water contact angle values; water contact angle values increased from 113° up to 170°, and the resultant surfaces were showing extremely superhydrophobic behavior depending on their silica contents. However a decrease in hexadecane contact angles from 61° to 25° depending on both silica %wt and perfluoro content of the TM/S copolymer was seen. Applicability of Cassie-Baxter equation was also investigated for TM/S copolymer films with silica particles. The results showed that Cassie-Baxter equation cannot be used for superhydrophobic surfaces, however, can be applied to oleophilic surfaces with caution. The oil repellencies of TM/S flat films in the terms of contact angle hysteresis was also compared with perfluoroethyl alkyl methacrylate-methyl methacrylate copolymer (TM/MMA) by using oil drops with varying surface tensions between 20.9 mN/m and 26.9 mN/m. The surface oleophobicities were changed according to the characteristics of the functional groups of MMA and S. The dependency of work of adhesion results of TM/S flat surfaces on wt.% of perfluoroalkyl content was also examined.

  1. Solvent free amorphisation for pediatric formulations (minitablets) using mesoporous silica

    DEFF Research Database (Denmark)

    Monsuur, Fred; Choudhari, Yogesh; Reddy, Upendra


    silica gel is densely crowded with silanol groups, which can provide hydrogen-bonding possibilities with a drug, potentially resulting in amorphisation. Purpose: Amorphous drugs provide an advantage in solubility; however, their low physical stability always remained concern. Additional there was a need......Introduction: Most silica based amorphisation strategies are using organic solvent loading methods. Towards pediatric formulations this is creating concerns. With this in mind the development of a dry amorphisation strategy was the focus of this study. The high internal surface area of mesoporous...... does not involve organic solvents and is thereby acceptable for pediatric formulations, cost effective and time saving while increasing oral bioavailability of crystalline & poorly water soluble drugs....

  2. Amorphous and nanostructured silica and aluminosilicate spray-dried microspheres (United States)

    Todea, M.; Turcu, R. V. F.; Frentiu, B.; Tamasan, M.; Mocuta, H.; Ponta, O.; Simon, S.


    Amorphous silica and aluminosilicate microspheres with diameters in the 0.1-20 μm range were produced by spray drying method. SEM, TEM and AFM images showed the spherical shape of the obtained particles. Based on thermal analysis data, several heat treatments have been applied on the as-prepared samples in order to check the amorphous state stability of the microspheres and to develop nanosized crystalline phases. As-prepared microspheres remain amorphous up to 1400 °C. By calcination at 1400 °C, cristobalite type nanocrystals are developed on silica sample, while in aluminosilicate sample first are developed mullite type nanocrystals and only after prolonged treatment are developed also cristobalite type nanocrystals. 29Si and 27Al MAS NMR results show that the local order around aluminum and silicon atoms strongly depend on the thermal history of the microspheres.

  3. Fabrication of thin silica layer-coated magnetite clusters (nFe{sub 3}O{sub 4}/silica) as anode materials for improved Li-ion batteries

    Energy Technology Data Exchange (ETDEWEB)

    Oh, Hang-Deok; Lee, Sang-Wha, E-mail:


    Thin silica layer-coated magnetite clusters (nFe{sub 3}O{sub 4}/silica) were prepared as active anode materials for Li-ion batteries. First, citrate-capped magnetites (C-Fe{sub 3}O{sub 4}) were synthesized by the co-precipitation method. Then, 3-aminopropyl trimethoxysilane (APTMS)-linked magnetite clusters (A-nFe{sub 3}O{sub 4}) were formed via electrostatic interactions between carboxylate groups of C-Fe{sub 3}O{sub 4} and amine groups of APTMS, and the resulting A-nFe{sub 3}O{sub 4} were heat-treated under N{sub 2} flow for 2 h. The calcined A-nFe{sub 3}O{sub 4} at 500 °C exhibited the X-ray diffraction (XRD) patterns mostly attributed to fcc crystalline phases of Fe{sub 3}O{sub 4}, whereas the calcined C-Fe{sub 3}O{sub 4} at 500 °C exhibited the XRD patterns attributed to the mixture of fcc crystalline phases of Fe{sub 3}O{sub 4} and hexagonal crystalline phases of α-Fe{sub 2}O{sub 3}. The calcined A-nFe{sub 3}O{sub 4} (i.e., nFe{sub 3}O{sub 4}/silica) exhibited the improved retention capacity by more than ca. 50% after 50 cycles as compared to the pristine iron oxides. The improved retention capacity of nFe{sub 3}O{sub 4}/silica was attributed to the enhanced chemical stability and large surface area of the thin silica layer-coated iron oxide clusters. - Highlights: • Thin silica layer-coated iron oxides (nFe{sub 3}O{sub 4}/silica) were facilely prepared. • The nFe{sub 3}O{sub 4}/silica exhibited the improved capacity retention by more than 50%. • Inert silica layer minimized the pulverization of iron oxide clusters.

  4. Formation of monodisperse mesoporous silica microparticles via spray-drying. (United States)

    Waldron, Kathryn; Wu, Winston Duo; Wu, Zhangxiong; Liu, Wenjie; Selomulya, Cordelia; Zhao, Dongyuan; Chen, Xiao Dong


    In this work, a protocol to synthesize monodisperse mesoporous silica microparticles via a unique microfluidic jet spray-drying route is reported for the first time. The microparticles demonstrated highly ordered hexagonal mesostructures with surface areas ranging from ~900 up to 1500 m(2)/g and pore volumes from ~0.6 to 0.8 cm(3)/g. The particle size could be easily controlled from ~50 to 100 μm from the same diameter nozzle via changing the initial solute content, or changing the drying temperature. The ratio of the surfactant (CTAB) and silica (TEOS), and the amount of water in the precursor were found to affect the degree of ordering of mesopores by promoting either the self-assembly of the surfactant-silica micelles or the condensation of the silica as two competing processes in evaporation induced self-assembly. The drying rate and the curvature of particles also affected the self-assembly of the mesostructure. The particle mesostructure is not influenced by the inlet drying temperature in the range of 92-160 °C, with even a relatively low temperature of 92 °C producing highly ordered mesoporous microparticles. The spray-drying derived mesoporous silica microparticles, while of larger sizes and more rapidly synthesized, showed a comparable performance with the conventional mesoporous silica MCM-41 in controlled release of a dye, Rhodamine B, indicating that these spray dried microparticles could be used for the immobilisation and controlled release of small molecules.

  5. Hydrothermal stability of microporous silica and niobia-silica membranes

    NARCIS (Netherlands)

    Boffa, V.; Blank, David H.A.; ten Elshof, Johan E.


    The hydrothermal stability of microporous niobia–silica membranes was investigated and compared with silica membranes. The membranes were exposed to hydrothermal conditions at 150 and 200 °C for 70 h. The change of pore structure before and after exposure to steam was probed by single-gas permeation

  6. The effect of liquid crystalline structure on chlorhexidine diacetate release. (United States)

    Farkas, E; Zelkó, R; Németh, Z; Pálinkás, J; Marton, S; Rácz, I


    The aim of this study was to examine different liquid crystalline preparations containing chlorhexidine diacetate and to find connection between their structure and the kinetic of drug release. Nonionic surfactant, Synperonic A7 (PEG(7)-C(13-15)) was selected for the preparation of the examined liquid crystalline systems. Mixtures of different ratios of Synperonic A7 and water were produced. By increasing the water content of the systems, lamellar and hexagonal liquid crystal structures were observed. For the analysis of the prepared liquid crystalline systems polarising microscopy, rheology study, differential scanning calorimetry and dynamic swelling tests were carried out. The chlorhexidine diacetate release was examined by Franz-type vertical diffusion cell apparatus. The chlorhexidine diacetate release from hexagonal liquid crystalline preparations was characterised by zero-order release kinetics, while the drug release from lamellar liquid crystalline systems was described by anomalous (non-Fickian) transport. The results indicate that the drug release kinetic is strongly dependent on the liquid crystalline structure.

  7. Silica Micro Encapsulation

    Energy Technology Data Exchange (ETDEWEB)

    Mitchell, P.; Whitbread-Jordan, M. [KEECO (United Kingdom)


    The article explains how Silica Micro Encapsulation (SME) water treatment technology may be transferred from metal mining to coal mining operations. KEECO has been developing a unique solution for treating acid rock drainage in the metal sulphide mining sector and following trials in metal mining operations (described in the article), is preparing to transfer the technology to the coal industry. SME technology comprises metal precipitation and encapsulation accomplished with proprietary chemical, KB-1, and a group of patented chemical dosing systems, the K-series, to dose KB-1 into contaminated liquid wastes as a dry powder. 4 figs., 4 tabs.

  8. ZBLAN, Silica Fiber Comparison (United States)


    This graph depicts the increased signal quality possible with optical fibers made from ZBLAN, a family of heavy-metal fluoride glasses (fluorine combined zirconium, barium, lanthanum, aluminum, and sodium) as compared to silica fibers. NASA is conducting research on pulling ZBLAN fibers in the low-g environment of space to prevent crystallization that limits ZBLAN's usefulness in optical fiber-based communications. In the graph, a line closer to the black theoretical maximum line is better. Photo credit: NASA/Marshall Space Flight Center

  9. Regenerated silica gel as stationary phase on vacuum column chromatography to purify temulawak’s extracts

    Energy Technology Data Exchange (ETDEWEB)

    Cahyono, Bambang; Maduwu, Ratna Dewi; Widayat,; Suzery, Meiny [Organic Chemistry Laboratory, Departement of Chemistry, Diponegoro University Jln Prof. Soedharto SH, Tembalang, Semarang 50275, Indonesia Tel / Fax: (024) 7460058 (Indonesia)


    Commercial silica gel only used once by many researchers and affected high cost for purification process, also less support the green chemistry program. This research focused in regeneration silica gel that used purification of temulawak’s extracts (Curcuma xanthorrhiza Roxb) by vacuum column chromatography. Sample extracts (contains 10.1195±0.5971% of curcuminoids) was purified by vacuum column chromatography (pressure: 45 kPa, column: 100mm on length and 16mm on diameter). Ethanol 96% and acetone were compared as eluent. The amount of solvent and yield of curcuminoids used as indicator purification. The silica gel was regenerated with heating in 600°C for 8 hours The silica gels were analyzed by IR spectroscopy and X-ray diffraction. Furthermore, regenerated silica gel was used as the stationary phase in vacuum column chromatography under the same conditions with the previous purification. All the purification experiments were performed in three repetitions. Based on regression equation, y=0.132x+0.0011 (r{sup 2}=0.9997) the yield of curcuminoids on purified products using ethanol as the eluent was improved 4.26% (to 14.3724±0.5749%) and by acetone was improved 3,03% (to 13.1450 ±0.6318%). The IR spectrum of both silica gel showed the same vibration profile and also there were three crystallinity peaks missing on its X-ray diffraction. Regenerated silica gel has the same performance with new silica gel in purification of temulawak’s extract: by ethanol has increased 4.08% (14.1947±0.7415%) and 2.93% (13.0447±0.4822) by acetone. In addition, all purification products showed similar TLC profiles. Purification using regenerated silica gel as the adsorbent on vacuum column chromatography has exactly same potential with the new silica gel.

  10. Porous Silica-Supported Solid Lipid Particles for Enhanced Solubilization of Poorly Soluble Drugs. (United States)

    Yasmin, Rokhsana; Rao, Shasha; Bremmell, Kristen E; Prestidge, Clive A


    Low dissolution of drugs in the intestinal fluid can limit their effectiveness in oral therapies. Here, a novel porous silica-supported solid lipid system was developed to optimize the oral delivery of drugs with limited aqueous solubility. Using lovastatin (LOV) as the model poorly water-soluble drug, two porous silica-supported solid lipid systems (SSL-A and SSL-S) were fabricated from solid lipid (glyceryl monostearate, GMS) and nanoporous silica particles Aerosil 380 (silica-A) and Syloid 244FP (silica-S) via immersion/solvent evaporation. SSL particles demonstrated significantly higher rate and extent of lipolysis in comparison with the pure solid lipid, depending on the lipid loading levels and the morphology. The highest lipid digestion was observed when silica-S was loaded with 34% (w/w) solid lipid, and differential scanning calorimeter (DSC) analysis confirmed the encapsulation of up to 2% (w/w) non-crystalline LOV in this optimal SSL-S formulation. Drug dissolution under non-digesting intestinal conditions revealed a three- to sixfold increase in dissolution efficiencies when compared to the unformulated drug and a LOV-lipid suspension. Furthermore, the SSL-S provided superior drug solubilization under simulated intestinal digesting condition in comparison with the drug-lipid suspension and drug-loaded silica. Therefore, solid lipid and nanoporous silica provides a synergistic effect on optimizing the solubilization of poorly water-soluble compound and the solid lipid-based porous carrier system provides a promising delivery approach to overcome the oral delivery challenges of poorly water-soluble drugs.

  11. Regenerated silica gel as stationary phase on vacuum column chromatography to purify temulawak's extracts (United States)

    Cahyono, Bambang; Maduwu, Ratna Dewi; Widayat, Suzery, Meiny


    Commercial silica gel only used once by many researchers and affected high cost for purification process, also less support the green chemistry program. This research focused in regeneration silica gel that used purification of temulawak's extracts (Curcuma xanthorrhiza Roxb) by vacuum column chromatography. Sample extracts (contains 10.1195±0.5971% of curcuminoids) was purified by vacuum column chromatography (pressure: 45 kPa, column: 100mm on length and 16mm on diameter). Ethanol 96% and acetone were compared as eluent. The amount of solvent and yield of curcuminoids used as indicator purification. The silica gel was regenerated with heating in 600°C for 8 hours The silica gels were analyzed by IR spectroscopy and X-ray diffraction. Furthermore, regenerated silica gel was used as the stationary phase in vacuum column chromatography under the same conditions with the previous purification. All the purification experiments were performed in three repetitions. Based on regression equation, y=0.132x+0.0011 (r2=0.9997) the yield of curcuminoids on purified products using ethanol as the eluent was improved 4.26% (to 14.3724±0.5749%) and by acetone was improved 3,03% (to 13.1450 ±0.6318%). The IR spectrum of both silica gel showed the same vibration profile and also there were three crystallinity peaks missing on its X-ray diffraction. Regenerated silica gel has the same performance with new silica gel in purification of temulawak's extract: by ethanol has increased 4.08% (14.1947±0.7415%) and 2.93% (13.0447±0.4822) by acetone. In addition, all purification products showed similar TLC profiles. Purification using regenerated silica gel as the adsorbent on vacuum column chromatography has exactly same potential with the new silica gel.

  12. Synthesis of 4A molecular sieves from gangue with high iron and silica contents by iron removal and alkali melting activation%高铁高砂煤矸石除铁及碱融活化合成4A分子筛

    Institute of Scientific and Technical Information of China (English)

    孔德顺; 吴红; 毕迎鑫


    高铁高砂的劣质煤矸石经酸浸除铁和纯碱碱融活化处理后,除铁率达到96.8%,高岭石及石英砂被完全活化,煤矸石生成了可溶于碱液的中间产物霞石(NaAlSiO4)及活性偏高岭石,将其再进行水热晶化得到了4A分子筛.用XRF、XRD、SEM等对原矿、预处理产物和产品进行了检测.结果表明:产品为较纯净的4A分子筛,粒径小于2 μm,干基产品的钙离子交换量为295.5 mg CaCO3/g.%Poor quality gangue with high iron and silica contents was treated to remove iron impurity by acid leaching and activated by sodium carbonate melting , the iron removal ratio was up to 96.8%. Kaolinite and silica were activated completely,and gangue turned into intermediate product nepheline (NaAlSiO4 ) and active metakaolinite,4A molecular sieve s were obtained by hydrothermal crystallization. Green ore, pretreated material, and products were characterized by XRF, XRD and SEM etc.. Results showed that the products were pure 4A molecular sieve with particle size less than 2 μm and the Ca2+ ion exchange capacity of dry product was 295.5 mg CaCO3/g.

  13. Water Contact Angle Dependence with Hydroxyl Functional Groups on Silica Surfaces under CO2 Sequestration Conditions. (United States)

    Chen, Cong; Zhang, Ning; Li, Weizhong; Song, Yongchen


    Functional groups on silica surfaces under CO2 sequestration conditions are complex due to reactions among supercritical CO2, brine and silica. Molecular dynamics simulations have been performed to investigate the effects of hydroxyl functional groups on wettability. It has been found that wettability shows a strong dependence on functional groups on silica surfaces: silanol number density, space distribution, and deprotonation/protonation degree. For neutral silica surfaces with crystalline structure (Q(3), Q(3)/Q(4), Q(4)), as silanol number density decreases, contact angle increases from 33.5° to 146.7° at 10.5 MPa and 318 K. When Q(3) surface changes to an amorphous structure, water contact angle increases 20°. Water contact angle decreases about 12° when 9% of silanol groups on Q(3) surface are deprotonated. When the deprotonation degree increases to 50%, water contact angle decreases to 0. The dependence of wettability on silica surface functional groups was used to analyze contact angle measurement ambiguity in literature. The composition of silica surfaces is complicated under CO2 sequestration conditions, the results found in this study may help to better understand wettability of CO2/brine/silica system.

  14. Erbium-doped borosilicate glasses containing various amounts of P{sub 2}O{sub 5} and Al{sub 2}O{sub 3}: Influence of the silica content on the structure and thermal, physical, optical and luminescence properties

    Energy Technology Data Exchange (ETDEWEB)

    Bourhis, Kevin [Politecnico di Torino, DISAT, Istituto di Ingegneria e Fisica dei Materiali, Corso Duca degli Abruzzi 24, I-10129 Torino (Italy); Massera, Jonathan [Department of Electronics and Communications Engineering, Tampere University of Technology, Korkeakoulunkatu 3, FI-33720 Tampere (Finland); BioMediTech, Tampere (Finland); Petit, Laeticia, E-mail: [Process Chemistry Centre, Åbo Akademi University, Biskopsgatan 8, FI-20500 Turku (Finland); nLIGHT Corporation, Sorronrinne 9, FI-08500 Lohja (Finland); Koponen, Joona [nLIGHT Corporation, Sorronrinne 9, FI-08500 Lohja (Finland); Fargues, Alexandre; Cardinal, Thierry [CNRS, Université de Bordeaux, ISM, 351 Cours de la Libération, F-33405 Talence (France); Hupa, Leena; Hupa, Mikko [Process Chemistry Centre, Åbo Akademi University, Biskopsgatan 8, FI-20500 Turku (Finland); Dussauze, Marc; Rodriguez, Vincent [CNRS, Université de Bordeaux, ICMCB, 87 Avenue du Dr Schweitzer, F-33608 Pessac (France); Ferraris, Monica [Politecnico di Torino, DISAT, Istituto di Ingegneria e Fisica dei Materiali, Corso Duca degli Abruzzi 24, I-10129 Torino (Italy)


    Highlights: • Er{sup 3+} doped borosilicate glasses were processed with different compositions and characterizations. • An increase in the SiO{sub 2} content leads to a silicate-rich environment around the Er{sup 3+} site. • An increase in the SiO{sub 2} content decreases the Er{sup 3+} absorption cross-section at 980 nm. • Glasses with 60 mol% of SiO{sub 2} exhibit a stronger emission intensity at 1530 nm than glasses with x = 50. • Highest 1.5 μm emission intensity was achieved for the Al and P containing glass with 60 mol% of SiO{sub 2}. - Abstract: The influence of the silica content on several properties of Er-doped borosilicate glasses in the presence of various amounts of P{sub 2}O{sub 5} and Al{sub 2}O{sub 3} has been investigated. The introduction of P{sub 2}O{sub 5} and/or Al{sub 2}O{sub 3} are responsible for structural modifications in the glass network through a charge-compensation mechanism related to the formation of negatively-charged PO{sub 4} and AlO{sub 4} groups or through the formation of AlPO{sub 4}-like structural units. In this paper, we show that an increase in the SiO{sub 2} content leads to a silicate-rich environment around the Er{sup 3+} site, resulting in an increased dependence of the Er{sup 3+} ions optical and luminescence properties on the P{sub 2}O{sub 5} and/or Al{sub 2}O{sub 3} concentration. The highest emission intensity at 1.5 μm was achieved for the glass with an equal proportion of P and Al in the glass system with 60 mol% of SiO{sub 2}.

  15. DSPC/DLPC mixed films supported on silica: a QCM-D and friction force study. (United States)

    Oguchi, Takakuni; Sakai, Kenichi; Sakai, Hideki; Abe, Masahiko


    The membrane properties of phospholipid mixtures supported on silica were studied by means of a quartz crystal microbalance with dissipation monitoring (QCM-D) technique, in situ soft-contact atomic force microscopy (AFM), and friction force microscopy (FFM). The phospholipids used in this study were di-stearoylphosphatidylcholine (DSPC) and dilauroylphosphatidylcholine (DLPC). The phospholipid films were prepared by a vesicle-fusion method, in which DSPC/DLPC mixed liposomes dispersed in an aqueous medium are adsorbed on silica and their structure is transformed into a bilayer on the substrate. The changes in QCM-D (frequency and dissipation) and friction responses of DSPC single systems (gel state at 25°C) are relatively large compared with those of DLPC single systems (liquid-crystalline state at 25°C) and those of mixed DSPC/DLPC systems. This suggests that (i) the gel-state DSPC liposomes are somewhat flattened on the silica, by keeping their solid-like molecular rigidity, whereas (ii) both the liquid-crystalline DLPC and mixed liposomes experience instantaneous structural transformation at the silica/water interface and form a normally flattened bilayer on the substrate. The friction force response is dependent on the phase state of the phospholipids, and the liquid-crystalline DLPC has a more significant impact on the overall membrane properties (i.e., the degree of swelling and the friction response on the surface) than does the gel-state DSPC.

  16. Study of Pickering emulsions stabilized by mixed particles of silica and calcite

    Institute of Scientific and Technical Information of China (English)

    Sha Wang; Yongjun He; Yong Zou


    Picketing emulsions were prepared using mixed particles of silica and calcite as emulsifiers.The effects of the silica content in the mixed particles on the stability and the drop size of the Pickering emulsions were investigated.The results showed that the Pickering emulsions were of the oil-in-water type.With increasing silica content in the mixed particles,the stability and the drop size of the Pickering emulsions decreased.Larger silica particles had more influence on the stability of the emulsions,while smaller ones had more influence on the drop size of the emulsions.The effect of the silica particles on the emulsions was attributed to their adsorptive behavior at the oil-water interfaces of the Pickering emulsions.

  17. Pure zeolite synthesis from silica extracted from coal fly ashes

    Energy Technology Data Exchange (ETDEWEB)

    Moreno, N.; Querol, X.; Plana, F.; Andres, J.M.; Janssen, M.; Nugteren, H. [CSIC, Barcelona (Spain). Inst. Earth Science ' Jaume Almera'


    Pure zeolites can be synthesised from silica extracted from fly ash by alkaline leaching. If the process is optimised the solid residue arising from this extraction may also contain a relatively high content of zeolitic material mixed with residual fly ash components. Both the pure and the impure zeolitic material have a high potential for application in waste-water and flue gas-cleaning technologies. The silica extraction potential of 23 European coal fly ashes covering most of the possible fly ash types is investigated in this study. Optimisation of leaching processes, by varying temperature, time and alkali/fly ash rates, permitted extraction yields up to 140 g of SiO{sub 2} per kg using a single step process, but the extraction yields may reach up to 210 g kg{sup -1} by applying thermal pre-treatments prior to the extraction. The solid residue arising from the silica extraction experiments shows a high NaP1 zeolite content. A high Si/Al ratio of the glass matrix, the occurrence of easily soluble silica phases in the original fly ash and a high reactive surface area were found to be the major parameters influencing silica extraction. High purity 4A and X zeolitic material was obtained by combining the silica extracts from the Meirama fly ash and a waste solution from the Al-anodising industry. The results allowed conversion of the silica extraction yields to an equivalent 630 g of pure 4A-X zeolite per kg of fly ash with a cation exchange capacity of 4.7 meq g{sup -1}.

  18. In situ silica-EPDM nanocomposites obtained via reactive processing

    NARCIS (Netherlands)

    Miloskovska, Elena; Hristova-Bogaerds, Denka; van Duin, Martin; de With, Gijsbertus


    In situ rubber nanocomposites prepared via reactive batch mixing and via reactive extrusion were studied. Materials produced via reactive batch mixing showed a significantly higher silica content for a similar reaction time as compared to previously prepared in situ nanocomposites using a diffusion

  19. Computational molecular basis for improved silica surface complexation models

    Energy Technology Data Exchange (ETDEWEB)

    Sahai, Nita; Rosso, Kevin M.


    The acidity and reactivity of surface sites on amorphous and crystalline polymorphs of silica and other oxides control their thermodynamic stability and kinetic reactivity towards reactants in surface-controlled processes of environmental, industrial, biomedical and technological relevance. Recent advances in computational methodologies such as CPMD and increasing computer power combined with spectroscopic measurements are now making it possible to link, with an impressive degree of accuracy, the molecular-level description of these processes to phenomenological, surface complexation models The future challenge now lies in linking mesoscale properties at the nanometer scale to phenomenological models that will afford a more intuitive understanding of the systems under consideration.

  20. Basic Functionalization of Hexagonal Mesoporous Silica

    Institute of Scientific and Technical Information of China (English)


    3-Aminopropyltricthoxysilanc (AM), 3-cthyldiaminopropyltrimcthoxysilane (ED) and 3-piperazinylpropyltriethoxysilanc (PZ), were used to chemically couple with the silanol groups of calcined hexagonal and hexagonal-like mesoporous silica SBA-3 and HMS, respectively, to produce functionalised alkaline mesoporous materials. The inerease in the dosage of organosilanes, or in reaction temperature, or in the humidity (i.e., water content) of support, is favorable to the grafting of functional molecules on the surface. When functionalization conditions are the same, the order of loadings on SBA-3 and DDA-HMS is ED>AM>PZ. However, on ODA-HMS, the loading of AM is similar to that of ED.

  1. Workshop on hydrology of crystalline basement rocks

    Energy Technology Data Exchange (ETDEWEB)

    Davis, S.N. (comp.)


    This workshop covered the following subjects: measurements in relatively shallow boreholes; measurement and interpretation of data from deep boreholes; hydrologic properties of crystalline rocks as interpreted by geophysics and field geology; rock mechanics related to hydrology of crystalline rocks; the possible contributions of modeling to the understanding of the hydrology of crystalline rocks; and geochemical interpretations of the hydrology of crystalline rocks. (MHR)

  2. Nanostructures having crystalline and amorphous phases (United States)

    Mao, Samuel S; Chen, Xiaobo


    The present invention includes a nanostructure, a method of making thereof, and a method of photocatalysis. In one embodiment, the nanostructure includes a crystalline phase and an amorphous phase in contact with the crystalline phase. Each of the crystalline and amorphous phases has at least one dimension on a nanometer scale. In another embodiment, the nanostructure includes a nanoparticle comprising a crystalline phase and an amorphous phase. The amorphous phase is in a selected amount. In another embodiment, the nanostructure includes crystalline titanium dioxide and amorphous titanium dioxide in contact with the crystalline titanium dioxide. Each of the crystalline and amorphous titanium dioxide has at least one dimension on a nanometer scale.

  3. Silaffins in Silica Biomineralization and Biomimetic Silica Precipitation

    Directory of Open Access Journals (Sweden)

    Carolin C. Lechner


    Full Text Available Biomineralization processes leading to complex solid structures of inorganic material in biological systems are constantly gaining attention in biotechnology and biomedical research. An outstanding example for biomineral morphogenesis is the formation of highly elaborate, nano-patterned silica shells by diatoms. Among the organic macromolecules that have been closely linked to the tightly controlled precipitation of silica in diatoms, silaffins play an extraordinary role. These peptides typically occur as complex posttranslationally modified variants and are directly involved in the silica deposition process in diatoms. However, even in vitro silaffin-based peptides alone, with and without posttranslational modifications, can efficiently mediate biomimetic silica precipitation leading to silica material with different properties as well as with encapsulated cargo molecules of a large size range. In this review, the biomineralization process of silica in diatoms is summarized with a specific focus on silaffins and their in vitro silica precipitation properties. Applications in the area of bio- and nanotechnology as well as in diagnostics and therapy are discussed.

  4. Crystalline 'Genes' in Metallic Liquids

    CERN Document Server

    Sun, Yang; Ye, Zhuo; Fang, Xiaowei; Ding, Zejun; Wang, Cai-Zhuang; Mendelev, Mikhail I; Ott, Ryan T; Kramer, M J; Ho, Kai-Ming


    The underlying structural order that transcends the liquid, glass and crystalline states is identified using an efficient genetic algorithm (GA). GA identifies the most common energetically favorable packing motif in crystalline structures close to the alloy's Al-10 at.% Sm composition. These motifs are in turn compared to the observed packing motifs in the actual liquid structures using a cluster-alignment method which reveals the average topology. Conventional descriptions of the short-range order, such as Voronoi tessellation, are too rigid in their analysis of the configurational poly-types when describing the chemical and topological ordering during transition from undercooled metallic liquids to crystalline phases or glass. Our approach here brings new insight into describing mesoscopic order-disorder transitions in condensed matter physics.

  5. Inverted opal luminescent Ce-doped silica glasses

    Directory of Open Access Journals (Sweden)

    R. Scotti


    Full Text Available Inverted opal Ce-doped silica glasses (Ce : Si molar ratio 1 ⋅ 10−3 were prepared by a sol-gel method using opals of latex microspheres as templates. The rare earth is homogeneously dispersed in silica host matrix, as evidenced by the absence of segregated CeO2, instead present in monolithic Ce-doped SG with the same cerium content. This suggests that the nanometric dimensions of bridges and junctions of the host matrix in the inverted opal structures favor the RE distribution avoiding the possible segregation of CeO2.

  6. Structure Characterization of F-doped Silica Glass

    Institute of Scientific and Technical Information of China (English)

    XIE Junlin; DENG Tao; TU Feng; LUO Jie; HAN Qingrong


    Pure and fluorine-doped silica glass were fabricated by plasma chemical vapour deposition (PCVD) and characterized using Raman and infrared spectrum. The change in Raman in-tensity of 945 cm-1 peak, relating to ≡Si-F stretching vibration, agrees with the change of F content. Compared with measured wavenumber in IR spectrum, the calculated absorption wavelength confirms the incorporation form of F into the glass, the detail of which is a tetrahedron with a Si atom in the center coupled with one F atom and three network O atoms. Such structure identification may be useful for explaining some properties of F-doping silica glass.

  7. Silica removal from newsprint mill effluents with aluminum salts


    Latour Romero, Isabel; Miranda Carreño, Rubén; Blanco Suárez, Ángeles


    The main obstacle for the implementation of reverse osmosis (RO) in a treatment chain to reuse the effluent of a newsprint mill as fresh water is the high silica content of the water, which produces severe scaling on the membrane, thus, limiting its recovery. Coagulation is one of the preferred methods to reduce silica concentration. Five aluminum based coagulants have been tested at five dosages (500-2500 ppm) and three pHs (8.3, 9.5 and 10.5). All products showed their best efficiency a...

  8. Positronium diffusion in crystalline polyethylene

    Energy Technology Data Exchange (ETDEWEB)

    Serna, J. (Dept. de Fisica de Materiales, Univ. Complutense, Madrid (Spain))


    The analysis in four components of the positron lifetime spectra of nine different and structurally well characterised lamellar polyethylene samples has allowed to associate the two longest-lived components to positronium annihilation in the crystalline and amorphous phases. Further assumption on positronium tunneling through the interface between both phases, and a simple geometrical model, led to a value for the positronium diffusion coefficient in the crystalline phase of the order of 10{sup -4} cm{sup 2}/s. Interfaces have thicknesses around 1.5 nm and are shallow traps for positronium. (orig.).

  9. Single crystalline mesoporous silicon nanowires

    Energy Technology Data Exchange (ETDEWEB)

    Hochbaum, A.I.; Gargas, Daniel; Jeong Hwang, Yun; Yang, Peidong


    Herein we demonstrate a novel electroless etching synthesis of monolithic, single-crystalline, mesoporous silicon nanowire arrays with a high surface area and luminescent properties consistent with conventional porous silicon materials. These porous nanowires also retain the crystallographic orientation of the wafer from which they are etched. Electron microscopy and diffraction confirm their single-crystallinity and reveal the silicon surrounding the pores is as thin as several nanometers. Confocal fluorescence microscopy showed that the photoluminescence (PL) of these arrays emanate from the nanowires themselves, and their PL spectrum suggests that these arrays may be useful as photocatalytic substrates or active components of nanoscale optoelectronic devices.

  10. Single crystalline mesoporous silicon nanowires

    Energy Technology Data Exchange (ETDEWEB)

    Hochbaum, Allon; Dargas, Daniel; Hwang, Yun Jeong; Yang, Peidong


    Herein we demonstrate a novel electroless etching synthesis of monolithic, single-crystalline, mesoporous silicon nanowire arrays with a high surface area and luminescent properties consistent with conventional porous silicon materials. The photoluminescence of these nanowires suggest they are composed of crystalline silicon with small enough dimensions such that these arrays may be useful as photocatalytic substrates or active components of nanoscale optoelectronic devices. A better understanding of this electroless route to mesoporous silicon could lead to facile and general syntheses of different narrow bandgap semiconductor nanostructures for various applications.

  11. Biogenic nanostructured silica

    Institute of Scientific and Technical Information of China (English)


    Silicon is by far the most abundant element in the earth crust and also is an essential element for higher plants, yet its biology and mechanisms in plant tolerance of biotic and abiotic stresses are poorly understood. Based on the molecular mechanisms of the biosilicification in marine organisms such as diatoms and sponges, the cell wall template-mediated self-assembly of nanostructured silica in marine organisms and higher plants as well as the related organic molecules are discussed. Understanding of the templating and structure-directed effects of silicon-processing organic molecules not only offers the clue for synthesizing silicon-based materials, but also helps to recognize the anomaly of silicon in plant biology.

  12. Paleozoic and Mesozoic silica-rich seawater: Evidence from hematitic chert (jasper) deposits (United States)

    Grenne, Tor; Slack, John F.


    Laterally extensive beds of highly siliceous, hematitic chert (jasper) are associated with many volcanogenic massive sulfide (VMS) deposits of Late Cambrian to Early Cretaceous age, yet are unknown in analogous younger (including modern) settings. Textural studies suggest that VMS-related jaspers in the Ordovician Løkken ophiolite of Norway were originally deposited as Si- and Fe-rich gels that precipitated from hydrothermal plumes as colloidal silica and iron-oxyhydroxide particles. Rare earth element patterns and Ge/Si ratios of the jaspers reflect precipitation from plumes having seawater dilution factors of 103 to 104, similar to modern examples. We propose that silica in the ancient jaspers is not derived from submarine hydrothermal fluids—as suggested by previous workers—but instead was deposited from silica-rich seawater. Flocculation and precipitation of the silica were triggered inorganically by the bridging effect of positively charged iron oxyhydroxides in the hydrothermal plume. A model involving amorphous silica (opal-A) precursors to the jaspers suggests that silica contents of Cambrian Early Cretaceous oceans were at least 110 mg/L SiO2, compared to values of 40 60 mg/L SiO2 estimated in other studies. The evolution of ancient silica-rich to modern Fe-rich precipitates in submarine-hydrothermal plumes reflects a changeover from silica-saturated to silica-depleted seawater through Phanerozoic time, due mainly to ocean-wide emergence of diatoms in the Cretaceous.

  13. Sílica solúvel em solos Soluble silica in soils

    Directory of Open Access Journals (Sweden)

    Bernardo van Raij


    Full Text Available Determinou-se a silica solúvel nos horizontes superficial e B2 de 44 perfis de solos do Estado de São Paulo. A extração da silica com solução 0,0025M de cloreto de cálcio evitou a dispersão dos solos e forneceu resultados em média apenas 8% menores do que a silica solúvel em água. Os resultados variaram de 2,2 a 92,2 ppm de SiO2. Verificou-se que, para solos com teores semelhantes de argila, os teores de silica solúvel foram maiores para solos com horizonte B textural, quando comparados com solos de horizonte B latossólico. Dentro dos agrupamentos de solos com horizonte B textural e horizonte B latossólico, os teores de silica solúvel foram maiores para os solos mais argilosos. Não foi observada relação entre silica solúvel e o pH dos solos.The extraction of soluble silica of soils with 0.0025M calcium chloride solution avoided dispersion of clay and results were on the average only 8% lower than water soluble silica. The results for surface and B2 horizons of 44 soil profiles of the State of São Paulo varied between 2.2 and 92.9 ppm of SiO2. For soils with similar clay contents, soluble silica was higher for soil with argillic B horizons as compared with soils with oxic B horizons. Within each group of soils, higher soluble silica results were associated with higher clay contents. Soluble silica apparently was not related to soil pH.

  14. 21 CFR 582.1711 - Silica aerogel. (United States)


    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Silica aerogel. 582.1711 Section 582.1711 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL DRUGS....1711 Silica aerogel. (a) Product. Silica aerogel as a finely powdered microcellular silica foam...

  15. 21 CFR 182.1711 - Silica aerogel. (United States)


    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Silica aerogel. 182.1711 Section 182.1711 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR HUMAN....1711 Silica aerogel. (a) Product. Silica aerogel as a finely powdered microcellular silica foam...

  16. 21 CFR 584.700 - Hydrophobic silicas. (United States)


    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Hydrophobic silicas. 584.700 Section 584.700 Food... DRINKING WATER OF ANIMALS Listing of Specific Substances Affirmed as GRAS § 584.700 Hydrophobic silicas. (a) Product. Amorphous fumed hydrophobic silica or precipitated hydrophobic silica (CAS Reg. No....

  17. Crystalline SiCO: Implication on structure and thermochemistry of ternary silicon oxycarbide ceramics (United States)

    Bodiford, Nelli

    The need for innovative refractory materials---materials that can sustain extreme temperatures---has been constantly growing within the modern industries. Basic requirements for usage at ultra-high-temperatures have been considered such as high melting point, high structural strength, exceptional resistance to oxidation, zero or almost zero creep. Monolithic ceramics alone cannot provide these properties, therefore, composite materials are sought to fulfill the demand. For example, silicon nitride and silicon carbide based ceramics have long been leading contenders for structural use in gas turbine engines. In the course of this work we are investigating amorphous SiCO formed via polymer-to-ceramic route. Previously a considerable amount of work has been done on structures of stoichiometric amorphous SiCO and a "perfect" random network was obtained (experimentally as well as supported by computational work) up to the phase content of 33 mol-% SiC. By "perfect" one assumes to have four fold coordinated Si atoms bonded to C and O; C atoms bond to Si atoms only and O is two fold connected to Si. Beyond 33 mol-% SiC within SiCO phase the structural imperfections and defects start to develop. Aside from the stoichiometric form of SiCO, the polymer-to-ceramic route allows for the incorporation of high molar amounts of carbon to create SiCO ceramic with excess carbon. The incorporation of carbon into silica glass improves high-temperature mechanical properties and increases resistance to crystallization of the amorphous material. The amount of 'free carbon' can be controlled through the choice of precursors used during synthesis. There were no ternary crystalline phases of SiCO observed. However, in systems such as MgO-SiO2, Na2O-Al2O 3-SiO2 there are ternary crystalline compounds (MgSiO 3, Mg2SiO4, NaAlSiO4, NaAlSi3 O8) that are of a greater energetic stability than glasses of the same composition. What makes the SiCO system different? In the approach proposed in this

  18. The Influence of Silica on the Reactivity of Iron Towards Chlorinated Hydrocarbons (United States)

    Kohn, T.; Himmelheber, D. W.; Vikesland, P. J.; Fairbrother, D.; Roberts, A.


    Previous work has illustrated that dissolved silica present in groundwater can adsorb onto the iron media of a permeable reactive barrier. To date, little is known about the effect of adsorbed silica on the reactivity of iron towards chlorinated contaminants. Silica is a known corrosion inhibitor, and therefore silica sorption may affect the reactivity of cast iron towards redox-active species such as chlorinated ethanes. To determine the effect of silica sorption on iron reactivity towards chlorinated hydrocarbons, it is necessary to examine contaminant degradation rates under conditions where silica adsorption has been carefully accounted for. In this study we couple measurements of chlorinated hydrocarbon (CHC) (either trichloroethane (TCA) or trichloroethene) degradation rates with measurements of silica surface content. Both batch and columns studies were conducted as part of this effort. Batch studies were performed using electrolytic iron powder or iron coupons (1 cm2) in solutions containing sodium metasilicate and TCA. To evaluate the potential long-term effect of silica sorption, columns packed with untreated sieved Master Builder's iron were fed with simulated groundwater containing low levels of sodium metasilicate and chlorinated hydrocarbons (CHCs). Batch studies showed that at pH 8.5 the rate of TCA degradation decreased significantly with increasing silica concentration. Silica concentrations of 50 mg/L or more led to a two-fold decrease in the reaction rate, and a shift in the distribution of the reaction products towards less chlorinated compounds was observed. This shift could also be discerned at pH 7.5, even though the overall reaction rates were unaffected by the presence of silica. We ascribe the loss of reactivity at pH 8.5 but not at pH 7.5 to the fact that silica adsorbs onto iron more readily at higher pH. A decrease in iron reactivity towards CHCs was also observed in column experiments. Addition of silica to the feed resulted in

  19. Crystalline polarity of ZnO thin films deposited under dc external bias on various substrates (United States)

    Ohsawa, Takeo; Tsunoda, Kei; Dierre, Benjamin; Zellhofer, Caroline; Grachev, Sergey; Montigaud, Hervé; Ishigaki, Takamasa; Ohashi, Naoki


    Effects of the nature of substrates, either crystalline or non-crystalline, on the structure and properties of ZnO films deposited by sputtering were investigated. This study focuses mainly on the role of the external electric bias applied to substrates during magnetron sputtering deposition in controlling crystalline polarity, i.e., Zn-face or O-face, and the resulting film properties. It was found that polarity control was achieved on silica and silicon substrates but not on sapphire substrates. The substrate bias did influence the lattice parameters in the structural formation; however, the selection of the substrate type had a significant influence on the defect structures and the film properties.

  20. Thermal Insulation and Strength Characteristics of Refractory Incorporating Natural Silica

    Directory of Open Access Journals (Sweden)

    Namboonruang Weerapol


    Full Text Available This work emphasizes on the studying of using silica to develop for the production of refractory materials. Materials are tested at the cured times of 7, 14 and 28 days. Results show that the cold crushing strength, flexural strength and bulk density increase with increasing cured times. On the other hand, the permanent linear change (PLC decreases with increasing cured times. It is also found that adding more silica contents can increase the durability of cracking property due to temperature changing. This study concludes that the silica refractory materials (SRM shows the enough quality to produce as the refractory material, type of the Conventional Cast/Pound (815 °C for the agroindustry using the thermal energy of Thailand.

  1. Chemical thermodynamics of silica: a critique on its geothermometer

    Energy Technology Data Exchange (ETDEWEB)

    Verma, Mahendra P. [Instituto de Investigaciones Electricas, Dept. de Geotermia, Cuernavaca (Mexico)


    The chemical thermodynamic concepts used in the calculation of solubility data of silica (quartz) are presented taking into account the PVT characteristics of water. The temperature-dependence trends between the thermodynamically calculated and the experimental quartz solubility data are very similar, but the values are widely different at high temperatures. The experimental solubility, especially along the saturation curve at high temperature and thermodynamic data for silica need to be reevaluated in order to use silica chemistry to understand geological processes. There could exist a wide range of values for silica solubility at a specified temperature, depending upon the amount of water in the reaction vessel. Thus the silica contents in geothermal fluid, in general, cannot be used as a geothermometer to estimate the reservoir temperature. The derivation of a silica geothermometer needs an extra assumption about the total amount of water in the system. The solubility data for the two extreme cases, i.e. when the vessel (bomb) is completely filled with water and when there is just enough water to make the total specific volume equal to the critical volume of water at room temperature (25degC), are considered here. These lie on the two respective straight lines of log (SiO{sub 2}(ppm)) against temperature (K). The equations for the two straight lines are log (SiO{sub 2} (ppm)) = 0.0179 T (K)-4.3214 and log SiO{sub 2} (ppm) = 0.0088 T (K)-1.6513, respectively. In the case of the well M-19A at Cerro Prieto, the silica concentration in the reservoir liquid is higher than the experimental solubility, but is lower than the calculated solubility value. (Author)

  2. Effects of alkaline or liquid-ammonia treatment on crystalline cellulose: changes in crystalline structure and effects on enzymatic digestibility

    Directory of Open Access Journals (Sweden)

    Himmel Michael E


    Full Text Available Abstract Background In converting biomass to bioethanol, pretreatment is a key step intended to render cellulose more amenable and accessible to cellulase enzymes and thus increase glucose yields. In this study, four cellulose samples with different degrees of polymerization and crystallinity indexes were subjected to aqueous sodium hydroxide and anhydrous liquid ammonia treatments. The effects of the treatments on cellulose crystalline structure were studied, in addition to the effects on the digestibility of the celluloses by a cellulase complex. Results From X-ray diffractograms and nuclear magnetic resonance spectra, it was revealed that treatment with liquid ammonia produced the cellulose IIII allomorph; however, crystallinity depended on treatment conditions. Treatment at a low temperature (25°C resulted in a less crystalline product, whereas treatment at elevated temperatures (130°C or 140°C gave a more crystalline product. Treatment of cellulose I with aqueous sodium hydroxide (16.5 percent by weight resulted in formation of cellulose II, but also produced a much less crystalline cellulose. The relative digestibilities of the different cellulose allomorphs were tested by exposing the treated and untreated cellulose samples to a commercial enzyme mixture (Genencor-Danisco; GC 220. The digestibility results showed that the starting cellulose I samples were the least digestible (except for corn stover cellulose, which had a high amorphous content. Treatment with sodium hydroxide produced the most digestible cellulose, followed by treatment with liquid ammonia at a low temperature. Factor analysis indicated that initial rates of digestion (up to 24 hours were most strongly correlated with amorphous content. Correlation of allomorph type with digestibility was weak, but was strongest with cellulose conversion at later times. The cellulose IIII samples produced at higher temperatures had comparable crystallinities to the initial cellulose I

  3. Application Of Bacterial Iron Reduction For The Removal Of Iron Impurities From Industrial Silica Sand And Kaolin (United States)

    Zegeye, A.; Yahaya, S.; Fialips, C. I.; White, M.; Manning, D. A.; Gray, N.


    Biogeochemical evidence exists to support the potential importance of crystalline or amorphous Fe minerals as electron acceptor for Fe reducing bacteria in soils and subsurface sediments. This microbial metabolic activity can be exploited as alternative method in different industrial applications. For instance, the removal of ferric iron impurities from minerals for the glass and paper industries currently rely on physical and chemical treatments having substantial economical and environmental disadvantages. The ability to remove iron by other means, such as bacterial iron reduction, may reduce costs, allow lower grade material to be mined, and improve the efficiency of mineral processing. Kaolin clay and silica sand are used in a wide range of industrial applications, particularly in paper, ceramics and glass manufacturing. Depending on the geological conditions of deposition, they are often associated with iron (hydr)oxides that are either adsorbed to the mineral surfaces or admixed as separate iron bearing minerals. In this study, we have examined the Fe(III) removal efficiency from kaolin and silica sand by a series of iron- reducing bacteria from the Shewanella species (S. alga BrY, S. oneidensis MR-1, S. putrefaciens CN32 and S. putrefaciens ATCC 8071) in the presence of anthraquinone 2,6 disulfonate (AQDS). We have also investigated the effectiveness of a natural organic matter, extracted with the silica sand, as a substitute to AQDS for enhancing Fe(III) reduction kinetics. The microbial reduction of Fe(III) was achieved using batch cultures under non-growth conditions. The rate and the extent of Fe(III) reduction was monitored as a function of the initial Fe(III) content, Shewanella species and temperature. The bacterially- treated minerals were analyzed by transmission electron microscopy (TEM) and X-ray diffraction (XRD) to observe any textural and mineralogical transformation. The whiteness and ISO brightness of the kaolin was also measured by

  4. In-situ grown silica sinters in Icelandic geothermal areas. (United States)

    Tobler, Dominique J; Stefánsson, Andri; Benning, Liane G


    Field in-situ sinter growth studies have been carried out in five geochemically very different Icelandic geothermal areas with the aim to quantify the effects of water chemistry, (e.g. silica content (250 to 695 p.p.m. SiO(2)), salinity (meteoric to seawater), pH (7.5 to 10)), temperature (42-96 degrees C) and microbial abundance (prevalence, density) on the growth rates, textures and structures of sinters forming within and around geothermal waters. At each location, sinter growth was monitored over time periods between 30 min and 25 months using glass slides that acted as precipitation substrates from which sinter growth rates were derived. In geothermal areas like Svartsengi and Reykjanes, subaqueous sinters developed rapidly with growth rates of 10 and 304 kg year(-1 )m(-2), respectively, and this was attributed primarily to the near neutral pH, high salinity and medium to high silica content within these geothermal waters. The porous and homogeneous precipitates that formed at these sites were dominated by aggregates of amorphous silica and they contained few if any microorganisms. At Hveragerdi and Geysir, the geothermal waters were characterized by slightly alkaline pH, low salinity and moderate silica contents, resulting in substantially lower rates of sinter growth (0.2-1.4 kg year(-1 )m(-2)). At these sites sinter formation was restricted to the vicinity of the air-water interface (AWI) where evaporation and condensation processes predominated, with sinter textures being governed by the formation of dense and heterogeneous crusts with well-defined spicules and silica terraces. In contrast, the subaqueous sinters at these sites were characterized by extensive biofilms, which, with time, became fully silicified and thus well preserved within the sinter edifices. Finally, at Krafla, the geothermal waters exhibited high sinter growth rates (19.5 kg year(-1 )m(-2)) despite being considerably undersaturated with respect to amorphous silica. However, the bulk of

  5. Generic Crystalline Disposal Reference Case

    Energy Technology Data Exchange (ETDEWEB)

    Painter, Scott Leroy [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Chu, Shaoping [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Harp, Dylan Robert [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Perry, Frank Vinton [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Wang, Yifeng [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)


    A generic reference case for disposal of spent nuclear fuel and high-level radioactive waste in crystalline rock is outlined. The generic cases are intended to support development of disposal system modeling capability by establishing relevant baseline conditions and parameters. Establishment of a generic reference case requires that the emplacement concept, waste inventory, waste form, waste package, backfill/buffer properties, EBS failure scenarios, host rock properties, and biosphere be specified. The focus in this report is on those elements that are unique to crystalline disposal, especially the geosphere representation. Three emplacement concepts are suggested for further analyses: a waste packages containing 4 PWR assemblies emplaced in boreholes in the floors of tunnels (KBS-3 concept), a 12-assembly waste package emplaced in tunnels, and a 32-assembly dual purpose canister emplaced in tunnels. In addition, three failure scenarios were suggested for future use: a nominal scenario involving corrosion of the waste package in the tunnel emplacement concepts, a manufacturing defect scenario applicable to the KBS-3 concept, and a disruptive glaciation scenario applicable to both emplacement concepts. The computational approaches required to analyze EBS failure and transport processes in a crystalline rock repository are similar to those of argillite/shale, with the most significant difference being that the EBS in a crystalline rock repository will likely experience highly heterogeneous flow rates, which should be represented in the model. The computational approaches required to analyze radionuclide transport in the natural system are very different because of the highly channelized nature of fracture flow. Computational workflows tailored to crystalline rock based on discrete transport pathways extracted from discrete fracture network models are recommended.

  6. Functionalized silica materials for electrocatalysis

    Indian Academy of Sciences (India)

    Vellaichamy Ganesan


    Electrocatalysis is an important phenomenon which is utilized in metal–air batteries, fuel cells, electrochemical sensors, etc. To increase the efficiency of the electrocatalytic process and to increase the electrochemical accessibility of the immobilized electrocatalysts, functionalized and non-functionalized mesoporous organo-silica (MCM41-type-materials) are used in this study. These materials possess several suitable properties to be durable catalysts and/or catalyst supports. Owing to the uniform dispersion of electrocatalysts (metal complex and/or metal nanoparticles (NPs)) on the functionalized and non-functionalized silica, an enormous increase in the redox current is observed. Long range channels of silica materials with pore diameter of 15–100 Å allowed metal NPs to accommodate in a specified manner in addition to other catalysts. The usefulness of MCM-41-type silica in increasing the efficiency of electrocatalysisis demonstrated by selecting oxygen, carbon dioxide and nitrite reduction reactions as examples

  7. Surface functionalization for tailoring the aggregation and magnetic behaviour of silica-coated iron oxide nanostructures (United States)

    Roca, A. G.; Carmona, D.; Miguel-Sancho, N.; Bomatí-Miguel, O.; Balas, F.; Piquer, C.; Santamaría, J.


    We report here a detailed structural and magnetic study of different silica nanocapsules containing uniform and highly crystalline maghemite nanoparticles. The magnetic phase consists of 5 nm triethylene glycol (TREG)- or dimercaptosuccinic acid (DMSA)-coated maghemite particles. TREG-coated nanoparticles were synthesized by thermal decomposition. In a second step, TREG ligands were exchanged by DMSA. After the ligand exchange, the ζ potential of the particles changed from - 10 to - 40 mV, whereas the hydrodynamic size remained constant at around 15 nm. Particles coated by TREG and DMSA were encapsulated in silica following a sol-gel procedure. The encapsulation of TREG-coated nanoparticles led to large magnetic aggregates, which were embedded in coalesced silica structures. However, DMSA-coated nanoparticles led to small magnetic clusters inserted in silica spheres of around 100 nm. The final nanostructures can be described as the result of several competing factors at play. Magnetic measurements indicate that in the TREG-coated nanoparticles the interparticle magnetic interaction scenario has not dramatically changed after the silica encapsulation, whereas in the DMSA-coated nanoparticles, the magnetic interactions were screened due to the function of the silica template. Moreover, the analysis of the AC susceptibility suggests that our systems essentially behave as cluster spin glass systems.

  8. Impact of pore characteristics of silica materials on loading capacity and release behavior of ibuprofen

    Energy Technology Data Exchange (ETDEWEB)

    Numpilai, Thanapha [Department of Chemical Engineering, Faculty of Engineering, Kasetsart University, Bangkok 10900 (Thailand); Muenmee, Suthaporn [Department of Chemical Engineering, Faculty of Engineering, Kasetsart University, Bangkok 10900 (Thailand); Center for Advanced Studies in Nanotechnology and Its Applications in Chemical Food and Agricultural Industries, Kasetsart University, Bangkok 10900 (Thailand); Witoon, Thongthai, E-mail: [Department of Chemical Engineering, Faculty of Engineering, Kasetsart University, Bangkok 10900 (Thailand); Center for Advanced Studies in Nanotechnology and Its Applications in Chemical Food and Agricultural Industries, Kasetsart University, Bangkok 10900 (Thailand); NANOTEC-KU-Center of Excellence on Nanoscale Materials Design for Green Nanotechnology, Kasetsart University, Bangkok 10900 (Thailand)


    Impact of pore characteristics of porous silica supports on loading capacity and release behavior of ibuprofen was investigated. The porous silica materials and ibuprofen-loaded porous silica materials were thoroughly characterized by N{sub 2}-sorption, thermal gravimetric and derivative weight analyses (TG-DTW), X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), scanning electron microscope (SEM), transmission electron microscope (TEM) to determine the physical properties of materials, amount of ibuprofen adsorbed and position of ibuprofen. The detailed characterization reveals that the ibuprofen molecules adsorbed inside the mesopores. Increasing the mesopore size from 5 nm to 10 nm increased the ibuprofen loading from 0.74 to 0.85 mmol/g, respectively. Incorporation of macropore into the structure of porous silica materials enhanced the ibuprofen loading capacity of 11.8–20.3%. The ibuprofen-loaded bimodal meso-macroporous silica materials exhibited the highest dissolution of 92 wt.% within an hour. The ibuprofen particles deposited on the external surface of the porous silica materials showed a lower dissolution rate than the ibuprofen adsorbed inside the mesopores due to the formation of ibuprofen crystalline. - Highlights: • Impacts of pore characteristics of supports on adsorption and release of ibuprofen • Increasing mesopore size increased the ibuprofen loading and dissolution rate. • Macropores reduced the diffusion pathway of ibuprofen and dissolution medium.

  9. Self-induced growth of vertical GaN nanowires on silica (United States)

    Kumaresan, V.; Largeau, L.; Oehler, F.; Zhang, H.; Mauguin, O.; Glas, F.; Gogneau, N.; Tchernycheva, M.; Harmand, J.-C.


    We study the self-induced growth of GaN nanowires on silica. Although the amorphous structure of this substrate offers no possibility of an epitaxial relationship, the nanowires are remarkably aligned with the substrate normal whereas, as expected, their in-plane orientation is random. Their structural and optical characteristics are compared to those of GaN nanowires grown on standard crystalline Si (111) substrates. The polarity inversion domains are much less frequent, if not totally absent, in the nanowires grown on silica, which we find to be N-polar. This work demonstrates that high-quality vertical GaN nanowires can be elaborated without resorting to bulk crystalline substrates.

  10. Phase diagrams of binary crystalline-crystalline polymer blends. (United States)

    Matkar, Rushikesh A; Kyu, Thein


    A thermodynamically self-consistent theory has been developed to establish binary phase diagrams for two-crystalline polymer blends by taking into consideration all interactions including amorphous-amorphous, crystal-amorphous, amorphous-crystal, and crystal-crystal interactions. The present theory basically involves combination of the Flory-Huggins free energy for amorphous-amorphous isotropic mixing and the Landau free energy of polymer solidification (e.g., crystallization) of the crystalline constituents. The self-consistent solution via minimization of the free energy of the mixture affords determination of eutectic, peritectic, and azeotrope phase diagrams involving various coexistence regions such as liquid-liquid, liquid-solid, and solid-solid coexistence regions bound by liquidus and solidus lines. To validate the present theory, the predicted eutectic phase diagrams have been compared with the reported experimental binary phase diagrams of blends such as polyethylene fractions as well as polycaprolactone/trioxane mixtures.

  11. Synthesis,characterization and hydrodesulfurization activity of silica-dispersed NiMoW trimetallic catalysts

    Institute of Scientific and Technical Information of China (English)

    Di Liu; Lihua Liu; Guangci Li; Chenguang Liu


    Silica-dispersed NiMoW trimetallic hydrodesulfurization catalysts were prepared by deposition-precipitation method.For comparative purposes,bulk NiMoW trimetallic catalysts were obtained by co-precipitation.Silica was employed to disperse active metals for full utilization of active components and silica-dispersed NiMoW catalyst had high active metal content.BET analysis showed that silica-dispersed NiMoW trimetallic catalysts had a high surface area(165.1 m2/g)and pore volume(0.27 ml/g).Transmission electron microscopy results proved that active components were well dispersed.Hydrodesulfurization activity of silica-dispersed NiMoW catalysts was much higher than that of comparative catalysts and up to twice greater than those of commercial NiMo alumina-supported systems per gram of catalyst.

  12. Influence of Silica Fume on Corrosion Behaviour of Reinforced Steel in Different Media

    Institute of Scientific and Technical Information of China (English)


    Electrochemical and corrosion behaviour of reinforced steel embedded in cement pastes incorporating differentamounts of silica fume as a partial replacement of cement has been studied in chloride and sulphate solutionsby using different electrochemical techniques. The results indicate that, while steel passivity degree is Iow in thecontrol samples upon soaking in the corrosive media, it has been high in samples incorporating silica fume andincreased with increasing silica fume content. The improvement effect of silica fume may be attributed to the poresolution structure of the cement paste, which limits the mobility of aggressive ions near the surface of the steel. Themechanism of steel corrosion due to chloride and sulphate attack and passivation effect of silica fume are discussed.

  13. Magnetic heating of silica-coated manganese ferrite nanoparticles (United States)

    Iqbal, Yousaf; Bae, Hongsub; Rhee, Ilsu; Hong, Sungwook


    Manganese ferrite nanoparticles were synthesized using the reverse micelle method; these particles were then coated with silica. The silica-coated nanoparticles were spherical in shape, with an average diameter of 14 nm. The inverse spinel crystalline structure was observed through X-ray diffraction patterns. The coating status of silica on the surface of the nanoparticles was confirmed with a Fourier transform infrared spectrometer. The superparamagnetic properties were revealed by the zero coercive force in the hysteresis curve. Controllable heating at a fixed temperature of 42 °C was achieved by changing either the concentration of nanoparticles in the aqueous solution or the intensity of the alternating magnetic field. We found that at a fixed field strength of 5.5 kA/m, the 2.6 mg/ml sample showed a saturation temperature of 42 °C for magnetic hyperthermia. On the other hand, at a fixed concentration of 3.6 mg/ml, a field intensity of 4.57 kA/m satisfied the required temperature of 42 °C.


    Adsorption isotherms were measured for ethanol, acetic acid, and water adsorbed on high-silica ZSM-5 zeolite powder from binary and ternary liquid mixtures at room temperature. Ethanol and water adsorption on two high-silica ZSM-5 zeolites with different aluminum contents and a h...

  15. Interstellar Silicate Dust in the z=0.89 Absorber Towards PKS 1830-211: Crystalline Silicates at High Redshift?

    CERN Document Server

    Aller, Monique C; York, Donald G; Vladilo, Giovanni; Welty, Daniel E; Som, Debopam


    We present evidence of a >10-sigma detection of the 10 micron silicate dust absorption feature in the spectrum of the gravitationally lensed quasar PKS 1830-211, produced by a foreground absorption system at redshift 0.886. We have examined more than 100 optical depth templates, derived from both observations of Galactic and extragalactic sources and laboratory measurements, in order to constrain the chemical structure of the silicate dust. We find that the best fit to the observed absorption profile is produced by laboratory crystalline olivine, with a corresponding peak optical depth of tau_10=0.27+/-0.05. The fit is slightly improved upon by including small contributions from additional materials such as silica, enstatite, or serpentine, which suggests that the dust composition may consist of a blend of crystalline silicates. Combining templates for amorphous and crystalline silicates, we find that the fraction of crystalline silicates needs to be at least 95%. Given the rarity of extragalactic sources wit...

  16. Factors Influencing Material Removal And Surface Finish Of The Polishing Of Silica Glasses (United States)


    autoclave . The growth is typically in the z-direction, and the bars are lumbered to generate the appropriate crystal orientation blanks, although the...liquid state. Thus, it does not crystallize , and forms a material with no long range crystalline order. Glasses are generally considered supercooled...e.g. coesite, cristobalite , stishovite, and tridymite) and is optically uni-axial along the z-axis (growth axis) [15]. The silica tetrahedrons are

  17. In Vitro Toxicity of Naturally Occurring Silica Nanoparticles in C1 Coal 
in Bronchial Epithelial Cells

    Directory of Open Access Journals (Sweden)

    Guangjian LI


    Full Text Available Background and objective China’s Xuan Wei County in Yunnan Province have the world’s highest incidence of lung cancer in nonsmoking women-20 times higher than the rest of China. Previous studies showed, this high lung cancer incidence may be associated with the silica particles embedded in the production combustion from the C1 coal. The aim of this study is to separate the silica particles from production combustion from the C1 bituminous coal in Xuan Wei County of Yunnan Province, and study in vitro toxicity of naturally occurring silica particles on BEAS-2B. Methods ①Separating the silica particles from combustion products of C1 bituminous coal by physical method, observing the morphology by Scanning Electron Microscope, analysis elements by SEM-EDX, observed the single particle morphology by Transmission Electron Microscope, analyed its particle size distribution by Laser particle size analyzer, the surface area of silica particles were determined by BET nitrogen adsorption analysis; ②Cell viability of the experimental group (silica; naturally occurring, control group (silica; industrial produced and crystalline silica was detected by assay used the 3-(4,5-dimethylthiazol-2-yl-2,5-diphenyltetrazolium bromide (MTT method, and the reactive oxygen species (ROS, lactate dehydrogenase (LDH were determined after 24 h-72 h exposed to these particles. Results ①The physical method can separate silica particles from production combustion from the C1 bituminous coal, which have different size, and from 30 nm to 120 nm particles accounted for 86.8%, different morphology, irregular surface area and containing trace of aluminum, calcium and iron and other elements; ②Under the same concentration, the experiment group have higher toxicity on BEAS-2B than control groups. Conclusion ①Physical method can separate silica particles from production combustion from the C1 bituminous coal and not change the original morphology and containing trace;

  18. Silica research in Glasgow

    CERN Document Server

    Barr, B W; Casey, M M; Clubley, D; Crooks, D R M; Danzmann, K; Elliffe, E J; Gossler, S; Grant, A; Grote, H; Heptonstall, A; Hough, J; Jennrich, O; Lück, H B; McIntosh, S A; Newton, G P; Palmer, D A; Plissi, M V; Robertson, D I; Robertson, N A; Rowan, S; Skeldon, K D; Sneddon, P; Strain, K A; Torrie, C I; Ward, H; Willems, P A; Willke, B; Winkler, W


    The Glasgow group is involved in the construction of the GEO600 interferometer as well as in R and D activity on technology for advanced gravitational wave detectors. GEO600 will be the first GW detector using quasi-monolithic silica suspensions in order to decrease thermal noise significantly with respect to steel wire suspensions. The results concerning GEO600 suspension mounting and performance will be shown in the first section. Section 2 is devoted to the present results from the direct measurement of thermal noise in mirrors mounted in the 10 m interferometer in Glasgow which has a sensitivity limit of 4 x 10 sup - sup 1 sup 9 m Hz sup - sup 1 sup / sup 2 above 1 kHz. Section 3 presents results on the measurements of coating losses. R and D activity has been carried out to understand better how thermal noise in the suspensions affects the detector sensitivity, and in section 4 a discussion on the non-linear thermoelastic effect is presented.

  19. Engineering controls for selected silica and dust exposures in the construction industry--a review. (United States)

    Flynn, Michael R; Susi, Pam


    This literature review summarizes engineering control technology research for dust and silica exposures associated with selected tasks in the construction industry. Exposure to crystalline silica can cause silicosis and lung fibrosis, and evidence now links it with lung cancer. Of over 30 references identified and reviewed, 16 were particularly significant in providing data and analyses capable of documenting the efficacy of various engineering controls. These reports include information on generation rates and worker exposures to silica and dust during four different tasks: cutting brick and concrete block, grinding mortar from between bricks, drilling, and grinding concrete surfaces. The major controls are wet methods and local exhaust ventilation. The studies suggest that while the methods provide substantial exposure reductions, they may not reduce levels below the current ACGIH threshold limit value (TLV) of 0.05 mg/m(3) for respirable quartz. Although further research on controls for these operations is indicated, it is clear that effective methods exist for significant exposure reduction.

  20. Photocontrollable liquid-crystalline actuators

    Energy Technology Data Exchange (ETDEWEB)

    Yu, Haifeng [Top Runner Incubation Center for Academia-Industry Fusion and Department of Materials and Technology, Nagaoka University of Technology, 1603-1 Kamitomioka, Nagaoka 940-2188 (Japan); Ikeda, Tomiki [Chemical Resources Laboratory, Tokyo Institute of Technology, R1-11, 4259 Nagatsuta, Midori-ku, Yokohama 226-8503 (Japan)


    Coupling photochromic molecules with liquid crystalline (LC) materials enables one to reversibly photocontrol unique LC features such as phase transition, photoalignment, and molecular cooperative motion. LC elastomers show photomechanical and photomobile properties, directly converting light energy into mechanical energy. In well-defined LC block copolymers, regular patternings of nanostructures in macroscopic scales are fabricated by photo-manipulation of LC actuators. (Copyright copyright 2011 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  1. Liquid Crystalline Esters of Dibenzophenazines

    Directory of Open Access Journals (Sweden)

    Kevin John Anthony Bozek


    Full Text Available A series of esters of 2,3,6,7-tetrakis(hexyloxydibenzo[a,c]phenazine-11-carboxylic acid was prepared in order to probe the effects of the ester groups on the liquid crystalline behavior. These compounds exhibit columnar hexagonal phases over broad temperature ranges. Variations in chain length, branching, terminal groups, and the presence of cyclic groups were found to modify transition temperatures without substantially destabilizing the mesophase range.

  2. EXAFS studies of crystalline materials

    Energy Technology Data Exchange (ETDEWEB)

    Knapp, G.S.; Georgopoulos, P.


    The application of extended x-ray absorption fine structure (EXAFS) technique to the study of crystalline materials is discussed, and previously published work on the subject is reviewed with 46 references being cited. The theory of EXAFS, methods of data analysis, and the experimental techniques, including those based on synchrotron and laboratory facilities are all discussed. Absorption and fluorescence methods of detecting EXAFS also receive attention. (BLM)

  3. Inelastic deformation in crystalline rocks (United States)

    Rahmani, H.; Borja, R. I.


    The elasto-plastic behavior of crystalline rocks, such as evaporites, igneous rocks, or metamorphic rocks, is highly dependent on the behavior of their individual crystals. Previous studies indicate that crystal plasticity can be one of the dominant micro mechanisms in the plastic deformation of crystal aggregates. Deformation bands and pore collapse are examples of plastic deformation in crystalline rocks. In these cases twinning within the grains illustrate plastic deformation of crystal lattice. Crystal plasticity is governed by the plastic deformation along potential slip systems of crystals. Linear dependency of the crystal slip systems causes singularity in the system of equations solving for the plastic slip of each slip system. As a result, taking the micro-structure properties into account, while studying the overall behavior of crystalline materials, is quite challenging. To model the plastic deformation of single crystals we use the so called `ultimate algorithm' by Borja and Wren (1993) implemented in a 3D finite element framework to solve boundary value problems. The major advantage of this model is that it avoids the singularity problem by solving for the plastic slip explicitly in sub steps over which the stress strain relationship is linear. Comparing the results of the examples to available models such as Von Mises we show the significance of considering the micro-structure of crystals in modeling the overall elasto-plastic deformation of crystal aggregates.


    Institute of Scientific and Technical Information of China (English)

    W. J. Jackson


    Advances have been made in understanding the interactions of composition, molecular weight,liquid crystallinity, orientation, and three-dimensional crystallinity on the properties of injection-molded and melt-spun liquid crystalline polyesters (LCP's). Two classes of potentially low-cost LCP's were compared : (1) semiflexible LCP's prepared from 1,6-hexanediol and the dimethyl ester of either trans-4, 4'-stilbenedicarboxylic acid or 4.4 ′-biphenyldicarboxylic acid and (2) all-aromatic LCP's prepared from terephthalic acid, 2, 6-naphthalenedicarboxylic acid, the diacetate of hydroquinone,and the acetate of p-hydroxybenzoic acid. The effects of composition on the plastic properties of the 4-component all-aromatic LCP's were determined with the aid of a 3 × 3 factorial statistically designed experiment, the generation of equations with a computer program, and the plotting of three-dimensional figures and contour diagrams. The effects of absolute molecular weight (Mw) on the tensile strengths of the semiflexible LCP's and one of the all-aromatic LCP's having an excellent balance of plastic properties were also compared, and it was observed that the semiflexible LCP's required Mw's about 4 times higher than the all-aromatic LCP to attain a given strength. Persistence lengths and molecular modeling were used to explain these differences.

  5. Effect of chemical modification on carbon dioxide adsorption property of mesoporous silica. (United States)

    Zhao, Yi; Shen, Yanmei; Bai, Lu


    Three adsorbents were prepared by different modification methods, which were grafting silica gel with (3-aminopropyl) trimethoxysilane, grafting silica gel with acrylamide polymer, and impregnating silica gel with acrylamide polymer, respectively. The characterization of materials was carried out by N(2) adsorption experiments, Fourier transform infrared spectroscopy, scanning electron microscopy, thermo-gravimetric analysis, and elemental analyses. The results showed that the amine group was successfully loaded on all three modified adsorbents; among that, the polymer-modified silica adsorbents had higher amine content and larger surface area than the aminopropyl-grafted silica adsorbent and displayed higher thermal stability than the other polymer-modified silica materials previously reported. The CO(2) adsorption/desorption experiments performed at 25°C by TGA-DSC method showed that the highest CO(2) adsorption capacity (0.98 mmol/g) was observed for the polymer-impregnated silica adsorbent. CO(2) adsorbed on all samples was completely desorbed by purging with inert gas at 60°C except for the aminopropyl-grafted silica material, which showed the highest enthalpy of CO(2) adsorption.

  6. Paleozoic and Mesozoic silica-rich seawater: Evidence from hematitic chert (jasper) deposits (United States)

    Grenne, Tor; Slack, J.F.


    Laterally extensive beds of highly siliceous, hematitic chert (jasper) are associated with many volcanogenic massive sulfide (VMS) deposits of Late Cambrian to Early Cretaceous age, yet are unknown in analogous younger (including modern) settings. Textural studies suggest that VMS-related jaspers in the Ordovician Løkken ophiolite of Norway were originally deposited as Si- and Fe-rich gels that precipitated from hydrothermal plumes as colloidal silica and iron-oxyhydroxide particles. Rare earth element patterns and Ge/Si ratios of the jaspers reflect precipitation from plumes having seawater dilution factors of 103 to 104, similar to modern examples. We propose that silica in the ancient jaspers is not derived from submarine hydrothermal fluids-as suggested by previous workers-but instead was deposited from silic-rich sea-water. Flocculation and precipitation of the silica were triggered inorganically by the bridging effect of positively charged iron oxyhydroxides in the hydrothermal plume. A model involving amorphous silica (opal-A) precursors to the jaspers suggests that silica contents of Cambrian-Early Cretaceous oceans were at least 110 mg/L SiO2, compared to values of 40-60 mg/L SiO2 estimated in other studies. The evolution of ancient silica-rich to modern Fe-rich precipitates in submarine-hydrothermal plumes reflects a changeover from silica-saturated to silica-depleted seawater through Phanerozoic time, due mainly to ocean-wide emergence of diatoms in the Cretaceous.

  7. Styrene grafted natural rubber reinforced by in situ silica generated via sol–gel technique

    Energy Technology Data Exchange (ETDEWEB)

    Sittiphan, Torpong [Program of Petrochemistry and Polymer Sciences, Faculty of Science, Chulalongkorn University, Bangkok 10330 (Thailand); Prasassarakich, Pattarapan [Department of Chemical Technology, Faculty of Science, Chulalongkorn University, Bangkok 10330 (Thailand); Poompradub, Sirilux, E-mail: [Department of Chemical Technology, Faculty of Science, Chulalongkorn University, Bangkok 10330 (Thailand)


    Highlights: • Sol–gel reaction by NR latex was the absence of use of organic solvent and base catalyst. • Well dispersed in situ formed silica particles in the rubber matrix were obtained. • In situ silica was better to improve mechanical properties of rubber vulcanizates. -- Abstract: The filling of styrene graft natural rubber (ST-GNR) with in situ formed silica was performed using the sol–gel reaction via the latex solution method. The mechanical properties of ST-GNR/NR vulcanizate were improved when using the in situ formed silica to levels higher than those obtained with the commercial ex situ formed silica filled ST-GNR/NR vulcanizates at a comparable silica content of 12 parts by weight per hundred parts of rubber. Transmission electron microscopy analysis revealed that the in situ silica particles were small (∼40 nm diameter) and well dispersed, while the commercial silica particles were larger (∼60 nm diameter) and markedly agglomerated in the rubbery matrix. The mechanical properties of the composites prepared via both the solid rubber and latex solution methods were comparable.

  8. SANS study to probe nanoparticle dispersion in nanocomposite membranes of aromatic polyamide and functionalized silica nanoparticles. (United States)

    Jadav, Ghanshyam L; Aswal, Vinod K; Singh, Puyam S


    Silica nanoparticles produced from organically functionalized silicon alkoxide precursors were incorporated into polyamide film to produce a silica-polyamide nanocomposite membrane with enhanced properties. The dispersion of the silica nanoparticles in the nanocomposite membrane was characterized by performing small-angle neutron scattering (SANS) measurements on dilute reactant systems and dilute solution suspensions of the final product. Clear scattering of monodisperse spherical particles of 10-18 A R(g) were observed from dilute solutions of the initial reactant system. These silica nanoparticles initially reacted with diamine monomers of polyamide and subsequently were transformed into polyamide-coated silica nanoparticles; finally nanoparticle aggregates of 27-45 A R(g) were formed. The nanoparticle dispersion of the membrane as the nanosized aggregates is in corroboration with ring- or chain-like assemblies of the nanoparticles dispersed in the bulk polyamide phase as observed by transmission electron microscopy. It is demonstrated that dispersions of silica nanoparticles as the nanosized aggregates in the polyamide phase could be achieved in the nanocomposite membrane with a silica content up to about 2 wt.%. Nanocomposite membranes with higher silica loading approximately 10 wt.% lead to the formation of large aggregates of sizes over 100 A R(g) in addition to the nanosized aggregates.

  9. Hybrid thin films derived from UV-curable acrylate-modified waterborne polyurethane and monodispersed colloidal silica

    Directory of Open Access Journals (Sweden)

    C. H. Yang


    Full Text Available Hybrid thin films containing nano-sized inorganic domains were synthesized from UV-curable acrylate-modified waterborne polyurethane (WPU-AC and monodispersed colloidal silica with coupling agent. The coupling agent, 3-(trimethoxysilylpropyl methacrylate (MSMA, was bonded onto colloidal silica first, and then mixed with WPU-AC to form a precursor solution. This precursor was spin coated, dried and UV-cured to generate the hybrid films. The silica content in the hybrid thin films was varied from 0 to 30 wt%. Experimental results showed the aggregation of silica particles in the hybrid films. Thus, the silica domain in the hybrid films was varied from 30 to 50 nm by the different ratios of MSMAsilica to WPU-AC. The prepared hybrid films from the crosslinked WPU-AC/MSMA-silica showed much better thermal stability and mechanical properties than pure WPU-AC.

  10. Improvement of RVNRL film properties by adding fumed silica and hydroxy apatite

    Directory of Open Access Journals (Sweden)

    Adul Thiangchanya


    Full Text Available The effect of adding fumed silica and hydroxy apatite to Radiation Vulcanized Natural Rubber Latex (RVNRL for improving tear strength, aging properties, degradability and water-soluble protein content of rubber films has been investigated. The addition of fumed silica and hydroxy apatite in RVNRL improves tear strength and aging properties of rubber films, whereas tensile strength and degradability of rubber films were unchanged during storage at room temperature. The water-soluble protein content in rubber films was reduced by immobilization of the fumed silica and hydroxy apatite and enhanced by addition of ZnO. This may reduce allergy problems of natural rubber latex products caused by water-soluble protein. The MST of the RVNRL with fumed silica and hydroxy apatite indicated that the latex must be used within two months after mixing because of its stability.

  11. Diesel and silica monitoring at two sites following hurricane sandy. (United States)

    Freund, Alice; Zuckerman, Norman; Luo, Honghong; Hsu, Hsiao-Hsien; Lucchini, Roberto


    Following Hurricane Sandy, which hit New York City and New Jersey in October 2012, industrial hygienists from the Mount Sinai and Belleview/New York University occupational medicine clinics conducted monitoring for diesel exhaust and silica in lower Manhattan and Rockaway Peninsula. Average daytime elemental carbon levels at three stations in lower Manhattan on December 4, 2012, ranged from 9 to18 μg/m(3). Sub-micron particle counts at various times on the same day were over 200,000 particles per cubic centimeter on many streets in lower Manhattan. In Rockaway Peninsula on December 12, 2012, all average daytime elemental carbon levels were below a detection limit of approximately 7 μg/m(3). The average daytime crystalline silica dust concentration was below detection at two sites on Rockaway Peninsula, and was 0.015 mg/m(3) quartz where sand was being replaced on the beach. The daily average levels of elemental carbon and airborne particulates that we measured are in the range of levels that have been found to cause respiratory effects in sensitive subpopulations like asthmatic patients after 2 hr of exposure. Control of exposure to diesel exhaust must be considered following natural disasters where diesel-powered equipment is used in cleanup and recovery. Although peak silica exposures were not likely captured in this study, but were reported by a government agency to have exceeded recommended guidelines for at least one cleanup worker, we recommend further study of silica exposures when debris removal operations or traffic create visible levels of suspended dust from soil or sand.

  12. Environmentally-Friendly Geopolymeric Binders Made with Silica (United States)

    Erdogan, S. T.


    Portland cement (PC) is the ubiquitous binding material for constructions works. It is a big contributor to global warming and climate change since its production is responsible for 5-10 % of all anthropogenic CO2 emissions. Half of this emission arises from the calcination of calcareous raw materials and half from kiln fuel burning and cement clinker grinding. Recently there have been efforts to develop alternative binders with lower greenhouse gas emissions. One such class of binders is geopolymers, formed by activating natural or waste materials with suitable alkaline or acidic solutions. These binders use natural or industrial waste raw materials with a very low CO2 footprint from grinding of the starting materials, and some from the production of the activating chemicals. The total CO2 emissions from carefully formulated mixtures can be as low as 1/10th - 1/5th of those of PC concrete mixtures with comparable properties. While use of industrial wastes as raw materials is environmentally preferable, the variability of their chemical compositions over time renders their use difficult. Use of natural materials depletes resources but can have more consistent properties and can be more easily accepted. Silica sand is a natural material containing very high amounts of quartz. Silica fume is a very fine waste from silicon metal production that is mostly non-crystalline silica. This study describes the use of sodium hydroxide and sodium silicate solutions to yield mortars with mechanical properties comparable to those of portland cement mortars and with better chemical and thermal durability. Strength gain is slower than with PC mixtures at room temperature but adequate ultimate strength can be achieved with curing at slightly elevated temperatures in less than 24 h. The consistency of the chemical compositions of these materials and their abundance in several large, developing countries makes silica attractive for producing sustainable concretes with reduced carbon

  13. Infrared spectra of silica polymorphs (United States)

    Koike, C.; Noguchi, R.; Chihara, H.; Suto, H.; Ohtaka, O.; Imai, Y.; Matsumoto, T.; Tsuchiyama, A.

    The existence of silica within several debris disks has been suggested. We investigate the annealing conditions of α-cristobalite, and further prepare various types of silica, including α-cristobalite, α-quartz, coesite, stishovite, and fused quartz, which are natural, synthetic or commercial samples. We compare the results to previous studies and find that α-cristobalite synthesized at higher temperature than annealed silica. The interesting result of features similar to those of forsterite should be highlighted, where αcristobalite and coesite showed similar peaks at 16, 33, and 69 μm as forsterite. The 69 μm band for αcristobalite is especially very broad and strong, and shifts largely to a shorter wavelengths under cooling to low temperatures. The band for coesite, however, is very sharp, and shifts only a small amount to longer wavelengths under cooling to low temperatures. The peak positions of 16 and 69-μm band due to α-cristobalite can become index for temperature of silica dust. We discuss the possibility of silica detection around debris disks.

  14. New application of crystalline cellulose in rubber composites (United States)

    Bai, Wen

    Rubber without reinforcement has limited applications. The strength of reinforced rubber composites can be ten times stronger than that of unreinforced rubbers. Therefore, rubber composites are widely used in various applications ranging from automobile tires to seals, valves, and gaskets because of their excellent mechanical elastic properties. Silica and carbon black are the two most commonly used reinforcing materials in rubber tires. They are derived from non-renewable materials and are expensive. Silica also contributes to a large amount of ash when used tires are disposed of by incineration. There is a need for a new reinforcing filler that is inexpensive, renewable and easily disposable. Cellulose is the most abundant natural polymer. Native cellulose includes crystalline regions and amorphous regions. Crystalline cellulose can be obtained by removing the amorphous regions with the acid hydrolysis of cellulose because the amorphous cellulose can be hydrolyzed faster than crystalline cellulose. We recently discovered that the partial replacement of silica with microcrystalline cellulose (MCC) provided numerous benefits: (1) low energy consumption for compounding, (2) good processability, (3) strong tensile properties, (4) good heat resistance, and (5) potential for good fuel efficiency in the application of rubber tires. Strong bonding between fillers and a rubber matrix is essential for imparting rubber composites with the desired properties for many specific applications. The bonding between hydrophilic MCC and the hydrophobic rubber matrix is weak and can be improved by addition of a coupling agent or surface modifications of MCC. In this study, MCC was surface-modified with acryloyl chloride or alkenyl ketene dimer (AnKD) to form acrylated MCC (A-MCC) and AnKD-modified MCC (AnKD-MCC). The surface modifications of MCC did not change the integrity and mechanical properties of MCC, but provided functional groups that were able to form covalent linkages with

  15. Silica Aerogel: Synthesis and Applications

    Directory of Open Access Journals (Sweden)

    Jyoti L. Gurav


    Full Text Available Silica aerogels have drawn a lot of interest both in science and technology because of their low bulk density (up to 95% of their volume is air, hydrophobicity, low thermal conductivity, high surface area, and optical transparency. Aerogels are synthesized from molecular precursors by sol-gel processing. Special drying techniques must be applied to replace the pore liquid with air while maintaining the solid network. Supercritical drying is most common; however, recently developed methods allow removal of the liquid at atmospheric pressure after chemical modification of the inner surface of the gels, leaving only a porous silica network filled with air. Therefore, by considering the surprising properties of aerogels, the present review addresses synthesis of silica aerogels by the sol-gel method, as well as drying techniques and applications in current industrial development and scientific research.

  16. Radiocarbon dating of the human eye lens crystallines reveal proteins without carbon turnover throughout life

    DEFF Research Database (Denmark)

    Lynnerup, Niels; Kjeldsen, Henrik; Heegaard, Steffen


    , there is no subsequent remodelling of these fibers, nor removal of degraded lens fibers. Human tissue ultimately derives its (14)C content from the atmospheric carbon dioxide. The (14)C content of the lens proteins thus reflects the atmospheric content of (14)C when the lens crystallines were formed. Precise radiocarbon...... on a yearly basis this allows very accurate dating. METHODOLOGY/PRINCIPAL FINDINGS: Our results allow us to conclude that the crystalline formation in the lens nucleus almost entirely takes place around the time of birth, with a very small, and decreasing, continuous formation throughout life. The close...... that the eye lens is a soft structure, subjected to almost continuous deformation, due to lens accommodation, yet its most important constituent, the lens crystalline, is never subject to turnover or remodelling once formed. The determination of the (14)C content of various tissues may be used to assess...

  17. Low Temperature Coating of Anatase Thin Films on Silica Glass Fibers by Liquid Phase Deposition

    Institute of Scientific and Technical Information of China (English)

    LI Shun; LIU Jiachen; FENG Tiecheng


    Uniform crystalline TiO2 thin films were coated on silica glass fibers by liquid phase deposition from aqueous solution of ammonium hexafluorotitanate at low temperature. TiO2 thin films and nanopowders were prepared by adding H3BO3 into (NH4)2TiF6 solution supersaturated with anatase nano-crystalline TiO2 at 40 ℃. The effects of the deposition conditions on the surface morphology, section morphology, thickness of the deposited TiO2 thin films were investigated. The results indicate that the growth rate and particle size of the thin films were controlled by both the deposition conditions and the amount of anatase nano-crystalline TiO2.

  18. Optothermal nonlinearity of silica aerogel

    CERN Document Server

    Braidotti, Maria Chiara; Fleming, Adam; Samuels, Michiel C; Di Falco, Andrea; Conti, Claudio


    We report on the characterization of silica aerogel thermal optical nonlinearity, obtained by z-scan technique. The results show that typical silica aerogels have nonlinear optical coefficient similar to that of glass $(\\simeq 10^{-12} $m$^2/$W), with negligible optical nonlinear absorption. The non\\-li\\-near coefficient can be increased to values in the range of $10^{-10} $m$^2/$W by embedding an absorbing dye in the aerogel. This value is one order of magnitude higher than that observed in the pure dye and in typical highly nonlinear materials like liquid crystals.

  19. The Studies of A New Type of Crystalline Antimonic Acid

    Institute of Scientific and Technical Information of China (English)

    LIUXiaozhen; ZHOUJiayin; 等


    A new type of crystalline antimonic acid Sb2O5·3H2O was synthesized.The composition,crystal structure,the equilibrium distribution coefficients for sodium and potassium ions and the ion-exchange capacity of this exchanger were determined.With this exchanger,sodium inos were removed from potassium chloride,and the content of sodium chloride was reduced from 3.24% to 0.02%.Compared with other ion-exchange materials,the crystalline antimonic acid gives and unusual selectivity for potassium and sodium ions. The different compositions and properties of antimonic acid exchangers are obtained through different preparing conditions and its crystalline formula of Sb2O5·4H2O(C-SbA1) is currently accepted.This paper reports a new type of crystalline antimonic acid-Sb2O5·3H2O(C-SbA2),synthesized by an improved Kuzin′s method.Sodium ions are removed from potassium chloride with C-SbA2.The exchange efficiency is better than that of C-SbA1.

  20. Bulk nano-crystalline alloys


    T.-S. Chin; Lin, C. Y.; Lee, M.C.; R.T. Huang; S. M. Huang


    Bulk metallic glasses (BMGs) Fe–B–Y–Nb–Cu, 2 mm in diameter, were successfully annealed to become bulk nano-crystalline alloys (BNCAs) with α-Fe crystallite 11–13 nm in size. A ‘crystallization-and-stop’ model was proposed to explain this behavior. Following this model, alloy-design criteria were elucidated and confirmed successful on another Fe-based BMG Fe–B–Si–Nb–Cu, 1 mm in diameter, with crystallite sizes 10–40 nm. It was concluded that BNCAs can be designed in general by the proposed cr...

  1. Optical absorption of neutron-irradiated silica fibers

    Energy Technology Data Exchange (ETDEWEB)

    Cooke, D.W.; Farnum, E.H.; Bennett, B.L. [Los Alamos National Lab., NM (United States)


    Induced-loss spectra of silica-based optical fibers exposed to high (10{sup 23} n-m{sup {minus}2}) and low (10{sup 21} n-m{sup {minus}2}) fluences of neutrons at the Los Alamos Spallation Radiation Effects Facility (LASREF) have been measured. Two types of fibers consisting of a pure fused silica core with fluorine-doped ({approximately}4 mole %) cladding were obtained from Fiberguide Industries and used in the as-received condition. Anhydroguide{trademark} and superguide{trademark} fibers contained less than 1 ppm, and 600 to 800 ppm of OH, respectively. The data suggest that presently available silica fibers can be used in plasma diagnostics, but the choice and suitability depends upon the spectral region of interest. Low-OH content fibers can be used for diagnostic purposes in the interval {approximately}800 to 1400 mn if the exposure is to high-fluence neutrons. For low-fluence neutron exposures, the low-OH content fibers are best suited for use in the interval {approximately}800 to 2000 nm, and the high-OH content fibers are the choice for the interval {approximately}400 to 800 nm.

  2. Ionoluminescence of fused silica under swift ion irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Saavedra, R. [Fusion Materials Research Unit, National Fusion Laboratory, CIEMAT, Av Complutense, 40, 28040 Madrid (Spain); Jiménez-Rey, D. [Fusion Materials Research Unit, National Fusion Laboratory, CIEMAT, Av Complutense, 40, 28040 Madrid (Spain); Centre for Micro Analysis of Materials, Universidad Autónoma de Madrid, Cantoblanco, 28049 Madrid (Spain); Martin, P.; Vila, R. [Fusion Materials Research Unit, National Fusion Laboratory, CIEMAT, Av Complutense, 40, 28040 Madrid (Spain)


    Highlights: • Irradiation with He{sup +} ions (lowest stopping power) shows highest luminescence. • Silica with highest OH content presents the lowest blue luminescence. • Electronic excitation was the predominant process of energy transfer. • Surface cracks were observed in Si or O irradiated samples at low fluence. • Blue IL maximum for O and Si irradiated samples is related to structural changes. - Abstract: Ion beam induced luminescence spectra have been in-situ recorded during He{sup +} (2.5 MeV), O{sup 4+} (13.5 MeV) and Si{sup 4+} (24.4 MeV) irradiations for three vitreous silica grades with different OH content (KU1, KS-4V and Infrasil 301). Remarkable changes in the ionoluminescence spectra of the three silica grades were observed for low ion fluences. He{sup +} irradiated samples exhibited higher luminescence than equivalent ones irradiated with heavier O{sup 4+} and Si{sup 4+} ions. KU1 samples with the highest OH content showed the lowest blue luminescence. Blue luminescence maximum during ion irradiations with O{sup 4+} and Si{sup 4+} ions is correlated with structural changes.

  3. Niobia-silica and silica membranes for gas separation

    NARCIS (Netherlands)

    Boffa, Vittorio


    This thesis describes the development of ceramic membranes suitable for hydrogen separation and CO2 recovery from gaseous streams. The research work was focused on the three different parts of which gas selective ceramic membranes are composed, i.e., the microporous gas selective silica layer, the m

  4. Effect of Dust Deposition on the Performance of Multi-Crystalline Photovoltaic Modules Based on Experimental Measurements


    Khatib, Tamer; Kazem, Hussian; K. Sopian; Buttinger, Frank; Elmenreich, Wilfried; Albusaidi, Ahmed Said


    This paper investigates the dust effect on the photovoltaic module (multi-crystalline) performance (the output voltage and generated power). The degradation of PV performance due to the deposition of different pollutant types, and accumulation has been investigated. Experiments concerning the effects of air pollutants (red soil, ash, sand, calcium carbonate, and silica) on the power generated are conducted and analyzed. The results show that the reduction in PV voltage and power is strongly d...

  5. Geology of quartz and hydrated silica-bearing deposits near Antoniadi Crater, Mars (United States)

    Smith, Matthew R.; Bandfield, Joshua L.


    The only area on Mars where crystalline quartz has been identified from orbit is near Antoniadi Crater, on the northern edge of the Syrtis Major shield volcano. However, the method of quartz formation has remained unknown. In this study, we use high-resolution satellite imagery as well as thermal and near-infrared spectroscopy to construct a geologic history of these deposits and their local context. We find that the quartz-bearing deposits are consistently co-located with hydrated silica. This spatial coherence suggests that the quartz formed as a diagenetic product of amorphous silica, rather than as a primary igneous mineral. Diagenetic quartz is a mature alteration product of hydrated amorphous silica, and indicates more persistent water and/or higher temperatures at this site. Beneath the silica-bearing rocks, we also find spectral evidence for smectites in the lowermost exposed Noachian-aged breccia. A similar stratigraphic sequence — smectite-bearing breccias beneath deposits containing minerals suggesting a greater degree of alteration — has also been found at nearby exposures at Nili Fossae and Toro Crater, suggesting a widespread sequence of alteration. By merging the mineral detections of thermal infrared (quartz, feldspar) and near-infrared spectroscopy (hydrated silica, smectite clays) we are able to construct a more complete geologic history from orbit.


    Directory of Open Access Journals (Sweden)

    Ning Jia


    Full Text Available Cellulose-silica composite fiber samples have been successfully synthesized using cellulose solution, tetraethoxysilane, and NH3•H2O in ethanol/water mixed solvents at room temperature for 24 h. The cellulose solution was previously prepared by the dissolution of microcrystalline cellulose in a solvent mixture of N,N-dimethylacetamide (DMAc/lithium chloride (LiCl. The effect of the tetraethoxysilane concentration on the product was investigated. The products were characterized by X-ray powder diffraction (XRD, thermogravimetric analysis (TG, differential scanning calorimetric analysis (DSC, scanning electron microscopy (SEM, Fourier transform infrared spectrometry (FT-IR, energy-dispersive X-ray spectrum (EDS, and cross polarization magic angle spinning (CP/MAS solid state 13C-NMR. The morphology of the cellulose-silica composite fiber was investigated by SEM, while their composition was established from EDS measurements combined with the results of FT-IR spectral analysis and XRD patterns. The XRD, FT-IR and EDS results indicated that the obtained product was cellulose-silica composite fiber. The SEM micrographs showed that the silica particles were homogeneously dispersed in the cellulose fiber. The CP/MAS solid state 13C-NMR results indicated that the silica concentration had an influence on the crystallinity of the cellulose. This method is simple for preparation of cellulose-based composites.

  7. Structural Characterization of Silica Particles Extracted from Grass Stenotaphrum secundatum: Biotransformation via Annelids

    Directory of Open Access Journals (Sweden)

    A. Espíndola-Gonzalez


    Full Text Available This study shows the structural characterization of silica particles extracted from Stenotaphrum secundatum (St. Augustine grass using an annelid-based biotransformation process. This bioprocess starts when St. Augustine grass is turned into humus by vermicompost, and then goes through calcination and acid treatment to obtain silica particles. To determine the effect of the bioprocess, silica particles without biotransformation were extracted directly from the sample of grass. The characterization of the silica particles was performed using Infrared (FTIR and Raman spectroscopy, Transmission Electron Microscopy (TEM, X-ray Diffraction (XRD, Dynamic Light Scattering (DLS, and Energy Dispersion Spectroscopy (EDS. Both types of particles showed differences in morphology and size. The particles without biotransformation were essentially amorphous while those obtained via annelids showed specific crystalline phases. The biological relationship between the metabolisms of worms and microorganisms and the organic-mineral matter causes changes to the particles' properties. The results of this study are important because they will allow synthesis of silica in cheaper and more ecofriendly ways.

  8. Densification and Devitrification of Fused Silica Induced by Ballistic Impact: A Computational Investigation

    Directory of Open Access Journals (Sweden)

    Mica Grujicic


    Full Text Available A molecular-level computational investigation is carried out to determine the dynamic response and material topology changes of fused silica subjected to ballistic impact by a hard projectile. The analysis was focused on the investigation of specific aspects of the dynamic response and of the topological changes such as the deformation of highly sheared and densified regions, and the conversion of amorphous fused silica to SiO2 crystalline polymorphs (in particular, α-quartz and stishovite. The topological changes in question were determined by carrying out a postprocessing atom-coordination procedure. This procedure suggested the formation of stishovite (and perhaps α-quartz within fused silica during ballistic impact. To rationalize the findings obtained, the all-atom molecular-level computational analysis is complemented by a series of quantum-mechanics density functional theory (DFT computations. The latter computations enable determination of the relative potential energies of the fused silica, α-quartz and stishovite, under ambient pressure (i.e., under their natural densities as well as under imposed (as high as 50 GPa pressures (i.e., under higher densities and shear strains. In addition, the transition states associated with various fused-silica devitrification processes were identified. The results obtained are found to be in good agreement with their respective experimental counterparts.

  9. A thermodynamic and kinetic model for paste–aggregate interactions and the alkali–silica reaction

    Energy Technology Data Exchange (ETDEWEB)

    Guthrie, George D., E-mail:; Carey, J. William


    A new conceptual model is developed for ASR formation based on geochemical principles tied to aqueous speciation, silica solubility, kinetically controlled mineral dissolution, and diffusion. ASR development is driven largely by pH and silica gradients that establish geochemical microenvironments between paste and aggregate, with gradients the strongest within the aggregate adjacent to the paste boundary (i.e., where ASR initially forms). Super-saturation of magadiite and okenite (crystalline ASR surrogates) occurs in the zone defined by gradients in pH, dissolved silica, Na{sup +}, and Ca{sup 2} {sup +}. This model provides a thermodynamic rather than kinetic explanation of why quartz generally behaves differently from amorphous silica: quartz solubility does not produce sufficiently high concentrations of H{sub 4}SiO{sub 4} to super-saturate magadiite, whereas amorphous silica does. The model also explains why pozzolans do not generate ASR: their fine-grained character precludes formation of chemical gradients. Finally, these gradients have interesting implications beyond the development of ASR, creating unique biogeochemical environments.

  10. Genetics of Bietti Crystalline Dystrophy. (United States)

    Ng, Danny S C; Lai, Timothy Y Y; Ng, Tsz Kin; Pang, Chi Pui


    Bietti crystalline dystrophy (BCD) is an inherited retinal degenerative disease characterized by crystalline deposits in the retina, followed by progressive atrophy of the retinal pigment epithelium (RPE), choriocapillaris, and photoreceptors. CYP4V2 has been identified as the causative gene for BCD. The CYP4V2 gene belongs to the cytochrome P450 superfamily and encodes for fatty acid ω-hydroxylase of both saturated and unsaturated fatty acids. The CYP4V2 protein is localized most abundantly within the endoplasmic reticulum in the RPE and is postulated to play a role in the physiological lipid recycling system between the RPE and photoreceptors to maintain visual function. Electroretinographic assessments have revealed progressive dysfunction of rod and cone photoreceptors in patients with BCD. Several genotypes have been associated with more severe phenotypes based on clinical and electrophysiological findings. With the advent of multimodal imaging with spectral domain optical coherence tomography, fundus autofluorescence, and adaptive optics scanning laser ophthalmoscopy, more precise delineation of BCD severity and progression is now possible, allowing for the potential future development of targets for gene therapy.

  11. Microstructure and Thermomechanical Properties of Polyimide-Silica Nanocomposites

    Directory of Open Access Journals (Sweden)

    A. Al Arbash


    Full Text Available Novel polyimide-silica nanocomposites with interphase chemical bonding have been prepared using the sol-gel process. The morphology, thermal and mechanical properties were studied as a function of silica content and compared with the similar composites having no interphase interaction. The polyimide precursors, polyamic acids (PAAs with or without pendant hydroxyl groups were prepared from the reaction of pyromellitic dianhydride with a mixture of oxydianiline and 1,3 phenylenediamine or 2,4-diminophenol in dimethylacetamide. The PAA with pendant hydroxyl groups was reacted with isocyanatopropyltriethoxysilane to produce alkoxy groups on the chain. The reinforcement of PAA matrices with or without alkoxy groups on the chain was carried out by mixing appropriate amount of tetraethoxysilane (TEOS and carrying out its hydrolysis and condensation in a sol-gel process. Thin hybrid films were imidized by successive heating up to 300C∘. The presence of alkoxy groups on the polymer chain and their cocondensation with TEOS developed the silica network which was interconnected chemically with the polyimide matrix. SEM studies show a drastic decrease in the silica particle size in the chemically bonded system. Higher thermal stability and mechanical strength, improved transparency, and low values of thermal coefficient of expansion were observed in case of chemically bonded composites.

  12. Iron Oxide Silica Derived from Sol-Gel Synthesis

    Directory of Open Access Journals (Sweden)

    João Carlos Diniz da Costa


    Full Text Available In this work we investigate the effect of iron oxide embedded in silica matrices as a function of Fe/Si molar ratio and sol pH. To achieve homogeneous dispersion of iron oxide particles, iron nitrate nonahydrate was dissolved in hydrogen peroxide and was mixed with tetraethyl orthosilicate and ethanol in a sol-gel synthesis method. Increasing the calcination temperature led to a reduction in surface area, although the average pore radius remained almost constant at about 10 Å, independent of the Fe/Si molar ratio or sol pH. Hence, the densification of the matrix was accompanied by similar reduction in pore volume. However, calcination at 700 °C resulted in samples with similar surface area though the iron oxide content increased from 5% to 50% Fe/Si molar ratio. As metal oxide particles have lower surface area than polymeric silica structures, these results strongly suggest that the iron oxides opposed the silica structure collapse. The effect of sol pH was found to be less significant than the Fe/Si molar ratio in the formation of molecular sieve structures derived from iron oxide silica.

  13. Large-scale synthesis of ultralong single-crystalline SiC nanowires

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Jianjun [Center of Materials Engineering, Zhejiang Sci-Tech University, Xiasha College Park, 310018 Hangzhou (China); The Key Laboratory of Advanced Textile Materials and Manufacturing Technology, Zhejiang Sci-Tech University, Ministry of Education, 310018 Hangzhou (China); Shi, Qiang [The Key Laboratory of Advanced Textile Materials and Manufacturing Technology, Zhejiang Sci-Tech University, Ministry of Education, 310018 Hangzhou (China); Gao, Linhui; Zhu, Hongliang [Center of Materials Engineering, Zhejiang Sci-Tech University, Xiasha College Park, 310018 Hangzhou (China)


    A large number of cotton-like ultralong {beta}-SiC nanowires (NWs) were successfully synthesized via a simple catalyst-free carbothermal reduction approach using a carbonaceous silica xerogel as raw materials. The length of the NWs is in the millimeter range and the diameter of the NWs is about 130 nm. The ultralong NWs are bamboo-like single-crystalline {beta}-SiC NWs. A vapor-solid mechanism was proposed to elucidate the growth process of the NWs, and the large length and high-yield of the SiC NWs may be ascribed to the stable release of SiO and CO gases form the carbonaceous silica xerogel. The simple method provides a promising candidate for industrial fabrication of {beta}-SiC NWs. (Copyright copyright 2010 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  14. Ringing phenomenon in silica microspheres

    Institute of Scientific and Technical Information of China (English)

    Chunhua Dong; Changling Zou; Jinming Cui; Yong Yang; Zhengfu Han; Guangcan Guo


    Whispering gallery modes in silica microspheres are excited by a tunable continuous-wave laser through the fiber taper. Ringing phenomenon can be observed with high frequency sweeping speed. The thermal nonlinearity in the microsphere can enhance this phenomenon. Our measurement results agree very well with the theoretical predictions by the dynamic equation.

  15. Influence of polyols on the formation of nanocrystalline nickel ferrite inside silica matrices (United States)

    Stoia, Marcela; Barvinschi, Paul; Barbu-Tudoran, Lucian; Bunoiu, Mădălin


    We have synthesized nickel ferrite/silica nanocomposites, using a modified sol-gel method that combines the sol-gel processing with the thermal decomposition of metal-organic precursors, leading to a homogenous dispersion of ferrite nanoparticles within the silica matrix and a narrow size distribution. We used as starting materials tetraethyl orthosilicate (TEOS) as source of silica, Fe(III) and Ni(II) nitrates as sources of metal cations, and polyols as reducing agent (polyvinyl alcohol, 1,4-butanediol and their mixture). TG/DTA coupled technique evidenced the redox interaction between the polyol and the mixture of metal nitrates during the heating of the gel, with formation of nickel ferrite precursors in the pores of the silica-gels. FT-IR spectroscopy confirmed the formation of metal carboxylates inside the silica-gels and the interaction of the polyols with the Si-OH groups of the polysiloxane network. X-ray diffractometry evidenced that in case of nanocomposites obtained by using a single polyol, nickel ferrite forms as single crystalline phase inside the amorphous silica matrix, while in case of using a mixture of polyols the nickel oxide appears as a secondary phase. TEM microscopy and elemental mapping evidenced the fine nature of the obtained nickel ferrite nanoparticles that are homogenously dispersed within the silica matrix. The obtained nanocomposites exhibit magnetic behavior very close to superparamagnetism slightly depending on the presence and nature of the organic compounds used in synthesis; the magnetization reached at 5 kOe magnetic field was 7 emu/g for all composites.

  16. High-aluminum-affinity silica is a nanoparticle that seeds secondary aluminosilicate formation.

    Directory of Open Access Journals (Sweden)

    Ravin Jugdaohsingh

    Full Text Available Despite the importance and abundance of aluminosilicates throughout our natural surroundings, their formation at neutral pH is, surprisingly, a matter of considerable debate. From our experiments in dilute aluminum and silica containing solutions (pH ~ 7 we previously identified a silica polymer with an extraordinarily high affinity for aluminium ions (high-aluminum-affinity silica polymer, HSP. Here, further characterization shows that HSP is a colloid of approximately 2.4 nm in diameter with a mean specific surface area of about 1,000 m(2 g(-1 and it competes effectively with transferrin for Al(III binding. Aluminum binding to HSP strongly inhibited its decomposition whilst the reaction rate constant for the formation of the β-silicomolybdic acid complex indicated a diameter between 3.6 and 4.1 nm for these aluminum-containing nanoparticles. Similarly, high resolution microscopic analysis of the air dried aluminum-containing silica colloid solution revealed 3.9 ± 1.3 nm sized crystalline Al-rich silica nanoparticles (ASP with an estimated Al:Si ratio of between 2 and 3 which is close to the range of secondary aluminosilicates such as imogolite. Thus the high-aluminum-affinity silica polymer is a nanoparticle that seeds early aluminosilicate formation through highly competitive binding of Al(III ions. In niche environments, especially in vivo, this may serve as an alternative mechanism to polyhydroxy Al(III species binding monomeric silica to form early phase, non-toxic aluminosilicates.

  17. Silica-Coated Liposomes for Insulin Delivery

    Directory of Open Access Journals (Sweden)

    Neelam Dwivedi


    Full Text Available Liposomes coated with silica were explored as protein delivery vehicles for their enhanced stability and improved encapsulation efficiency. Insulin was encapsulated within the fluidic phosphatidylcholine lipid vesicles by thin film hydration at pH 2.5, and layer of silica was formed above lipid bilayer by acid catalysis. The presence of silica coating and encapsulated insulin was identified using confocal and electron microscopy. The native state of insulin present in the formulation was evident from Confocal Micro-Raman spectroscopy. Silica coat enhances the stability of insulin-loaded delivery vehicles. In vivo study shows that these silica coated formulations were biologically active in reducing glucose levels.

  18. Preparation and properties of wheat gluten/silica composites

    Institute of Scientific and Technical Information of China (English)

    SONG Yi-Hu; ZHENG Qiang; ZHOU Wen-Ce


    Wheat gluten (WG)/silica (SiO2) hybrids were prepared through in-situ synthesis of SiO2 in WG disper-sion of aqueous ammonia. The hybrids with different SiO2 contents were mixed with glycerol plasticizer to form cohesive dough and the dough was compressively molded to form cross-linked sheets. Mor-phology, moisture absorption, protein solubility in water, tensile mechanical properties and dynamic rheological behavior of the WG/SiO2 composites were investigated in relation to SiO2 contents.

  19. Preparation and properties of wheat gluten/silica composites

    Institute of Scientific and Technical Information of China (English)


    Wheat gluten (WG)/silica (SiO2) hybrids were prepared through in-situ synthesis of SiO2 in WG disper-sion of aqueous ammonia. The hybrids with different SiO2 contents were mixed with glycerol plasticizer to form cohesive dough and the dough was compressively molded to form cross-linked sheets. Morphology, moisture absorption, protein solubility in water, tensile mechanical properties and dynamic rheological behavior of the WG/SiO2 composites were investigated in relation to SiO2 contents.

  20. Fracture behavior of silica nanoparticle filled epoxy resin (United States)

    Dittanet, Peerapan

    This dissertation involves the addition of silica nanoparticles to a lightly crosslinked, model epoxy resin and investigates the effect of nanosilica content and particle size on glass transition temperature (Tg), coefficient of thermal expansion (CTE), Young's modulus (E), yield stress, and fracture toughness. This study aims to understand the influence of silica nanoparticle size, bimodal particle size distribution and silica content on the toughening behavior. The toughening mechanisms were determined using scanning electron microscopy (SEM), transmission electron microscopy (TEM) and transmission optical microscopy (TOM). The approach identifies toughening mechanisms and develops a toughening model from unimodal-particle size systems first, then extends these concepts to various mixtures micron- and nanometer-size particles in a similar model epoxy. The experimental results revealed that the addition of nanosilica did not have a significant effect on Tg or the yield stress of epoxy resin, i.e. the yield stress and Tg remained constant regardless of nanosilica particle size. As expected, the addition of nanosilica had a significant impact on CTE, modulus and fracture toughness. The CTE values of nanosilica-filled epoxies were found to decrease with increasing nanosilica content, which can be attributed to the much lower CTE of the nanosilica fillers. Interestingly, the decreases in CTE showed strong particle size dependence. The Young's modulus was also found to significantly improve with addition of nanosilica and increase with increasing filler content. However, the particle size did not exhibit any effect on the Young's modulus. Finally, the fracture toughness and fracture energy showed significant improvements with the addition of nanosilica, and increased with increasing filler content. The effect of particle size on fracture toughness was negligible. Observation of the fracture surfaces using SEM and TOM showed evidence of debonding of nanosilica particles

  1. Suitability of a South African silica sand for three-dimensional printing of foundry moulds and cores

    Directory of Open Access Journals (Sweden)

    Nyembwe, Kasongo


    Full Text Available Applications of three-dimensional printing (3DP to metal casting include, among other things, the direct manufacturing of foundry moulds and cores in refractory materials such as silica sand. The main properties of silica sand that are essentially related to the traditional moulding and core-making processes are: size distribution, clay content, pH, acid demand, and refractoriness. The silica sand used for 3DP must also be appropriately selected for the layer-based manufacturing process involved in 3DP. Properties such as grain size distribution, grain surface morphology, angularity, flowability, and recoating abilities have a particular importance when determining sand suitability. Because of these extra requirements, only a limited range of available foundry silica sands can be used for 3DP processes. The latter situation explains the scarcity and high cost of suitable silica sands, thus contributing to the relatively high operational costs of the 3DP processes for the production of sand moulds and cores. This research paper investigates the suitability of a locally-available silica sand for use in a Voxeljet VX1000 3DP machine. The local silica sand was assessed and compared with an imported silica sand recommended by the manufacturer of 3DP equipment in terms of foundry characteristics and recoating behaviour. The study shows that, despite the differences between the characteristics of the two silica sands, the local sand could be considered a suitable alternative to imported sand for rapid sand casting applications.

  2. Ordered mesoporous silica prepared by quiescent interfacial growth method - effects of reaction chemistry (United States)

    Alsyouri, Hatem M.; Abu-Daabes, Malyuba A.; Alassali, Ayah; Lin, Jerry YS


    Acidic interfacial growth can provide a number of industrially important mesoporous silica morphologies including fibers, spheres, and other rich shapes. Studying the reaction chemistry under quiescent (no mixing) conditions is important for understanding and for the production of the desired shapes. The focus of this work is to understand the effect of a number of previously untested conditions: acid type (HCl, HNO3, and H2SO4), acid content, silica precursor type (TBOS and TEOS), and surfactant type (CTAB, Tween 20, and Tween 80) on the shape and structure of products formed under quiescent two-phase interfacial configuration. Results show that the quiescent growth is typically slow due to the absence of mixing. The whole process of product formation and pore structuring becomes limited by the slow interfacial diffusion of silica source. TBOS-CTAB-HCl was the typical combination to produce fibers with high order in the interfacial region. The use of other acids (HNO3 and H2SO4), a less hydrophobic silica source (TEOS), and/or a neutral surfactant (Tweens) facilitate diffusion and homogenous supply of silica source into the bulk phase and give spheres and gyroids with low mesoporous order. The results suggest two distinct regions for silica growth (interfacial region and bulk region) in which the rate of solvent evaporation and local concentration affect the speed and dimension of growth. A combined mechanism for the interfacial bulk growth of mesoporous silica under quiescent conditions is proposed.

  3. Effect of pore size and surface chemistry of porous silica on CO2 adsorption

    Directory of Open Access Journals (Sweden)

    Thongthai Witoon


    Full Text Available In the present study, porous silica synthesized using sodium silicate as a low-cost raw material was selected as a CO2sorbent. The effects of pore size and amount of silanol content on CO2 adsorption capacity were investigated. The physicalproperties and surface chemistry (silanol content of the porous silica products were characterized by means of N2-physisorption, Fourier transform infrared spectroscopy and thermogravimetric analysis technique. The pore size of the poroussilica materials did not affect the equilibrium CO2 capacity; however the porous silica with large pore size could enhance thediffusion of CO2. The amount of silanol content was found to be a key factor for the CO2 adsorption capacity. A greater CO2adsorption capacity would be obtained with an increase of the silanol concentration on the surface of the porous silicamaterials.

  4. Thermal conductivity of pure silica MEL and MFI zeolite thin films (United States)

    Coquil, Thomas; Lew, Christopher M.; Yan, Yushan; Pilon, Laurent


    This paper reports the room temperature cross-plane thermal conductivity of pure silica zeolite (PSZ) MEL and MFI thin films. PSZ MEL thin films were prepared by spin coating a suspension of MEL nanoparticles in 1-butanol solution onto silicon substrates followed by calcination and vapor-phase silylation with trimethylchlorosilane. The mass fraction of nanoparticles within the suspension varied from 16% to 55%. This was achieved by varying the crystallization time of the suspension. The thin films consisted of crystalline MEL nanoparticles embedded in a nonuniform and highly porous silica matrix. They featured porosity, relative crystallinity, and MEL nanoparticles size ranging from 40% to 59%, 23% to 47% and 55 nm to 80 nm, respectively. PSZ MFI thin films were made by in situ crystallization, were b-oriented, fully crystalline, and had a 33% porosity. Thermal conductivity of these PSZ thin films was measured at room temperature using the 3ω method. The cross-plane thermal conductivity of the MEL thin films remained nearly unchanged around 1.02±0.10 W m-1 K-1 despite increases in (i) relative crystallinity, (ii) MEL nanoparticle size, and (iii) yield caused by longer nanoparticle crystallization time. Indeed, the effects of these parameters on the thermal conductivity were compensated by the simultaneous increase in porosity. PSZ MFI thin films were found to have similar thermal conductivity as MEL thin films even though they had smaller porosity. Finally, the average thermal conductivity of the PSZ films was three to five times larger than that reported for amorphous sol-gel mesoporous silica thin films with similar porosity and dielectric constant.

  5. The Pozzolanic reaction of silica fume

    DEFF Research Database (Denmark)

    Jensen, Ole Mejlhede


    Silica fume is a very important supplementary cementitious binder in High-Performance and Ultra High-Performance Concretes. Through its pozzolanic reaction the silica fume densifies the concrete micro-structure, in particular it strengthens the paste-aggregate interfacial transition zone. In the ...... of activation of the pozzolanic reaction of silica fume is estimated. The results show that the pozzolanic reaction of silica fume has notable differences from Portland cement hydration.......Silica fume is a very important supplementary cementitious binder in High-Performance and Ultra High-Performance Concretes. Through its pozzolanic reaction the silica fume densifies the concrete micro-structure, in particular it strengthens the paste-aggregate interfacial transition zone....... In the present paper different aspects of the pozzolanic reaction of silica fume are investigated. These include chemical shrinkage, isothermal heat development and strength development. Key data for these are given and compared with theoretical calculations, and based on presented measurements the energy...

  6. Silica Pigments for Glossy Ink Jet Media

    Institute of Scientific and Technical Information of China (English)

    Sun Qi; Michael R. Sestrick; Yoshi Sugimoto; William A. Welsh


    Silica is a versatile pigment for ink jet media. Micronized silica gel is the worldwide standard for high performance matte ink jet media. For glossy ink jet media, several different forms of silica are widely used. Submicron silica gel dispersions, with either anionic or cationic surfaces, can be employed in either absorptive basecoat layers or in the glossy ink receptive top layer. Colloidal silica, with a variety of particle sizes and surface modifications, is utilized extensively in glossy top layers. It will show how various silica pigments can be utilized in glossy ink receptive coatings, both in cast based glossy media and RC based glossy media. Several novel silica pigments will be examined by relating the physical properties of the pigments and the formula variables to the print quality of the ink jet media.

  7. Vibrational Properties of a Two-Dimensional Silica Kagome Lattice. (United States)

    Björkman, Torbjörn; Skakalova, Viera; Kurasch, Simon; Kaiser, Ute; Meyer, Jannik C; Smet, Jurgen H; Krasheninnikov, Arkady V


    Kagome lattices are structures possessing fascinating magnetic and vibrational properties, but in spite of a large body of theoretical work, experimental realizations and investigations of their dynamics are scarce. Using a combination of Raman spectroscopy and density functional theory calculations, we study the vibrational properties of two-dimensional silica (2D-SiO2), which has a kagome lattice structure. We identify the signatures of crystalline and amorphous 2D-SiO2 structures in Raman spectra and show that, at finite temperatures, the stability of 2D-SiO2 lattice is strongly influenced by phonon-phonon interaction. Our results not only provide insights into the vibrational properties of 2D-SiO2 and kagome lattices in general but also suggest a quick nondestructive method to detect 2D-SiO2.

  8. Birefringence Measurements on Crystalline Silicon

    CERN Document Server

    Krüger, Christoph; Khalaidovski, Alexander; Steinlechner, Jessica; Nawrodt, Ronny; Schnabel, Roman; Lück, Harald


    Crystalline silicon has been proposed as a new test mass material in third generation gravitational wave detectors such as the Einstein Telescope (ET). Birefringence can reduce the interferometric contrast and can produce dynamical disturbances in interferometers. In this work we use the method of polarisation-dependent resonance frequency analysis of Fabry-Perot-cavities containing silicon as a birefringent medium. Our measurements show a birefringence of silicon along the (111) axis of the order of $\\Delta\\, n \\approx 10^{-7}$ at a laser wavelength of 1550nm and room temperature. A model is presented that explains the results of different settings of our measurements as a superposition of elastic strains caused by external stresses in the sample and plastic strains possibly generated during the production process. An application of our theory on the proposed ET test mass geometry suggests no critical effect on birefringence due to elastic strains.

  9. Activation of NLRP3 inflammasome by crystalline structures via cell surface contact. (United States)

    Hari, Aswin; Zhang, Yifei; Tu, Zhongyuan; Detampel, Pascal; Stenner, Melanie; Ganguly, Anutosh; Shi, Yan


    Crystalline structures activate the NLRP3 inflammasome, leading to the production of IL-1β, however, the molecular interactions responsible for NLRP3 activation are not fully understood. Cathepsin B release from the ruptured phagolysosome and potassium ion efflux have been suggested to be critical for this activation. Here, we report that Cathepsin B redistribution was not a crucial event in crystal-induced IL-1β production. Silica and monosodium urate crystal-treated macrophages with undisturbed lysosomes demonstrated strong co-localization of ASC and Caspase-1, indicative of NLRP3 inflammasome activation. Importantly, we provided evidence to suggest that macrophage cell membrane binding to immobilized crystals was sufficient to induce IL-1β release, and this activation of the NLRP3 inflammasome was inhibited by blocking potassium efflux. Therefore, this work reveals additional complexity in crystalline structure-mediated NLRP3 inflammasome regulations.

  10. Investigation of the nonlinear refractive index of single-crystalline thin gold films and plasmonic nanostructures (United States)

    Goetz, Sebastian; Razinskas, Gary; Krauss, Enno; Dreher, Christian; Wurdack, Matthias; Geisler, Peter; Pawłowska, Monika; Hecht, Bert; Brixner, Tobias


    The nonlinear refractive index of plasmonic materials may be used to obtain nonlinear functionality, e.g., power-dependent switching. Here, we investigate the nonlinear refractive index of single-crystalline gold in thin layers and nanostructures on dielectric substrates. In a first step, we implement a z-scan setup to investigate ~100-µm-sized thin-film samples. We determine the nonlinear refractive index of fused silica, n 2(SiO2) = 2.9 × 10-20 m2/W, in agreement with literature values. Subsequent z-scan measurements of single-crystalline gold films reveal a damage threshold of 0.22 TW/cm2 and approximate upper limits of the real and imaginary parts of the nonlinear refractive index, | n 2'(Au)| film). An upper limit for the nonlinear power-dependent phase change between two propagating near-field modes is determined to Δ φ < 0.07 rad.

  11. 稻秸皮层硅物质的分布及超微构造%Distribution and ultrastructure of silica on rice straw surface

    Institute of Scientific and Technical Information of China (English)

    潘明珠; 杜俊; 甘习华; 吕歆悦


    electron microscopy with energy dispersive spectra (SEM-EDS). The ultrastructure of SiO2derived from rice straw tissues was measured with the X-ray diffraction (XRD). The results of SiO2 content measurement showed that the silicon content of sheath (7.2%) was higher than that of stem (2.7%). The SEM-EDS results showed that the silicon content was 12.65%, 0.22% and 1.14% in exterior, middle and interior sheath, respectively. And the silicon content was 8.98%, 0.39% and 0.52% in exterior, middle and interior stem, respectively. Considering total SiO2 content of sheath and stem, silica was mainly distributed in the exterior surface of sheath and stem. Furthermore, silica distributed in the exterior surface of sheath mainly exhibited small granular matter, accompanied with bigger granular matter and hair-like trichome. The distribution of silica in the exterior surface of stem was more regular, however, the content of bigger granular matter and hair-like trichome was further decreased. The silica in small granular matter with the diameter of 1μm mainly exhibited spherical and dumbbell-shaped. The XRD results showed that the crystal phase of rice straw exhibited Cellulose I, with crystallinity index of 55.3%, 59.0%, 47.8% and 57.4% in sheath, stem, node and ear, respectively. The crystallite size within them was 2.10, 2.13, 1.36 and 2.22 nm, respectively. Moreover, the SiO2 derived from rice straw exhibited amorphous.%为了探索稻秸表面硅物质的分布和超微构造,该文以稻秸各皮层的硅物质作为研究对象,采用扫描电子显微镜-能谱分析(scanning electric microscopy coupled with energy-dispersive spectroscopy,SEM-EDS)和X射线衍射仪(X-ray diffraction,XRD)探讨稻秸各皮层硅物质的分布及构造。SEM-EDS研究表明,硅物质主要分布在叶鞘、茎秆的外层,且叶鞘中硅物质的含量高于茎秆。叶鞘外层的硅物质主要以小颗粒物存在、夹杂少量大颗粒物和毛状物。茎秆外层

  12. The influence of metal Mg on micro-morphology and crystallinity of spherical hexagonal boron nitride

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Ning, E-mail:; Liu, Huan; Kan, Hongmin; Wang, Xiaoyang; Long, Haibo; Zhou, Yonghui


    Highlights: • The action mechanism of Mg to the synthesis of spherical BN was explored. • The influence of Mg content on the crystallinity of h-BN powders was studied. • Even if not added any template, the spherical h-BN could be prepared. - Abstract: This search used the boric acid and borax as a source of boron, urea as a nitrogen source, Mg as metal catalyst, and thus prepared different micro-morphology and crystallinity hexagonal boron nitride powders under a flowing ammonia atmosphere at a nitriding temperature of 750 °C. The effect of Mg content on the crystallinity and micro-morphology of hexagonal boron nitride powders was studied, and the Mg action mechanism was explored. Without the added surfactant, the graphitization index (GI) was 6.87, and the diameter of the spherical h-BN was bigger. When the added Mg were 0.1 g, 0.3 g, 0.5 g and 0.7 g, the (GI) decreased to 6.04, 5.67, 4.62 and 4.84, respectively. When the Mg content was higher (0.9 g), GI value increased rapidly, and the crystallinity became bad. When the Mg content was 0.5 g, the dispersion of h-BN powders was at its optimum and refinement apparently, and the crystallinity at its highest.

  13. High yield recombinant production of a self-assembling polycationic peptide for silica biomineralization. (United States)

    Zerfaß, Christian; Braukmann, Sandra; Nietzsche, Sandor; Hobe, Stephan; Paulsen, Harald


    We report the recombinant bacterial expression and purification at high yields of a polycationic oligopeptide, P5S3. The sequence of P5S3 was inspired by a diatom silaffin, a silica precipitating peptide. Like its native model, P5S3 exhibits silica biomineralizing activity, but furthermore has unusual self-assembling properties. P5S3 is efficiently expressed in Escherichia coli as fusion with ketosteroid isomerase (KSI), which causes deposition in inclusion bodies. After breaking the fusion by cyanogen bromide reaction, P5S3 was purified by cation exchange chromatography, taking advantage of the exceptionally high content of basic amino acids. The numerous cationic charges do not prevent, but may even promote counterion-independent self-assembly which in turn leads to silica precipitation. Enzymatic phosphorylation, a common modification in native silica biomineralizing peptides, can be used to modify the precipitation activity.

  14. Carbon in intimate contact with quartz reduces the biological activity of crystalline silica dusts. (United States)

    Ghiazza, Mara; Tomatis, Maura; Doublier, Sophie; Grendene, Francesca; Gazzano, Elena; Ghigo, Dario; Fubini, Bice


    To evaluate the effect of carbonaceous materials on the pathogenic activity of quartz dusts, mixtures of carbon soot (1 and 10%) and quartz (Min-U-Sil) were prepared and then milled so to attain an intimate association of carbon and the quartz surface. Both cellular and cell-free tests show that carbon associated to quartz completely inhibits the typical free radical generation of quartz dusts (through Fenton activity and homolytic cleavage of a C-H bond) and suppresses the oxidative stress and inflammation induced by quartz alone on MH-S murine macrophage cells (lipid peroxidation, nitric oxide release, and tumor necrosis factor-α synthesis). The cytotoxic response to quartz is also largely reduced. An extremely pure quartz milled with 10% of soot showed inactivating effects on the adverse reactions to quartz similar to Min-U-Sil quartz. None of these effects takes place when the same experiments are carried out with mechanically mixed samples, which suggests that carbon acts not just as a radical quencher but because of its association to the quartz surface.

  15. 78 FR 65242 - Occupational Exposure to Crystalline Silica; Extension of Comment Period; Extension of Period To... (United States)


    ... at (202) 693- 1648. Mail, hand delivery, express mail, messenger, or courier service: You may submit... (877) 889-5627). Deliveries (hand, express mail, messenger, or courier service) are accepted during the... delivery, hand delivery, and messenger and courier service: Submit your materials to the OSHA Docket......

  16. Preparation and characterization of polyimide/silica hybrid films

    Institute of Scientific and Technical Information of China (English)

    ZHANG Ming-yan; ZENG Shu-jin; DONG Tie-quan; ZHOU Sheng; FAN Yong; ZHANG Xiao-hong; LEI Qing-quan


    A kind of hybrid polyimide films was prepared by synthesizing poly( amic acid ) /Silica matrix resin through sol-gel technique and then followed by positing it on a silex glass plate and drying at high temperature.The effect of silica content on the corona-resistant property of the films was studied. The miscibility between the organic and inorganic phases and its effect on the corona-resistant property were investigated with aminopropyltriethoxysilane, which served as a coupling agent, added into the polyimide composite system. The chemical structure and the surface morphology of the films were characterized by FTIR and AFM respectively. The corona-resistant property of the films was tested by a rod-plate electrode. It proved that the corona-resistant property was enhanced with silica content. It also turned ont that the improvement of the miscibility between the two phases due to the presence of covalent force as a result of the addition of the coupling agent had, to some extent,effect on the corona-resistant property of the films. Furthermore, a theory on the corona-resistant property was put forward preliminarily.


    Energy Technology Data Exchange (ETDEWEB)

    Niimi, Rei; Tsuchiyama, Akira [Department of Earth and Space Science, Osaka University, Toyonaka, Osaka 560-0043 (Japan); Kadono, Toshihiko [Institute of Laser Engineering, Osaka University, Suita, Osaka 565-0871 (Japan); Okudaira, Kyoko [Office for Planning and Management, The University of Aizu, Aizuwakamatsu, Fukushima 965-8580 (Japan); Hasegawa, Sunao; Tabata, Makoto [Institute of Space and Astronautical Science, Japan Aerospace Exploration Agency, Sagamihara, Kanagawa 252-5210 (Japan); Watanabe, Takayuki; Yagishita, Masahito [Department of Environmental Chemistry and Engineering, Tokyo Institute of Technology, Nagatsuta, Yokohama 226-8502 (Japan); Machii, Nagisa; Nakamura, Akiko M. [Department of Earth and Planetary Sciences, Kobe University, Nada, Kobe 657-8501 (Japan); Uesugi, Kentaro; Takeuchi, Akihisa [Synchrotron Radiation Research Institute, SPring-8, Sayo, Hyogo 679-5198 (Japan); Nakano, Tsukasa, E-mail: [Geological Survey of Japan, Advanced Industrial Science and Technology, Tsukuba, Ibaraki 305-8567 (Japan)


    A large number of cometary dust particles were captured with low-density silica aerogel during the NASA Stardust mission. The dust particles penetrated into the aerogel and formed various track shapes. To estimate the properties of the dust particles, such as density and size, based on the morphology of the tracks, we carried out systematic experiments testing impacts into low-density aerogel at 6 km s{sup -1} using projectiles of various sizes and densities. We found that the maximum track diameter and the ratio of the track length to the maximum track diameter in aerogel are good indicators of projectile size and density, respectively. Based on these results, we estimated the size and density of individual dust particles from comet 81P/Wild 2. The average density of the 'fluffy' dust particles and the bulk density of all dust particles were obtained as 0.35 {+-} 0.07 and 0.49 {+-} 0.18 g cm{sup -3}, respectively. These statistical data provided the content of monolithic and coarse grains in the Stardust particles, {approx}30 wt%. Combining this result with some mid-infrared observational data, we found that the content of crystalline silicates is {approx}50 wt% or more of non-volatile material.

  18. Porous silicon nanocrystals in a silica aerogel matrix (United States)

    Amonkosolpan, Jamaree; Wolverson, Daniel; Goller, Bernhard; Polisski, Sergej; Kovalev, Dmitry; Rollings, Matthew; Grogan, Michael D. W.; Birks, Timothy A.


    Silicon nanoparticles of three types (oxide-terminated silicon nanospheres, micron-sized hydrogen-terminated porous silicon grains and micron-size oxide-terminated porous silicon grains) were incorporated into silica aerogels at the gel preparation stage. Samples with a wide range of concentrations were prepared, resulting in aerogels that were translucent (but weakly coloured) through to completely opaque for visible light over sample thicknesses of several millimetres. The photoluminescence of these composite materials and of silica aerogel without silicon inclusions was studied in vacuum and in the presence of molecular oxygen in order to determine whether there is any evidence for non-radiative energy transfer from the silicon triplet exciton state to molecular oxygen adsorbed at the silicon surface. No sensitivity to oxygen was observed from the nanoparticles which had partially H-terminated surfaces before incorporation, and so we conclude that the silicon surface has become substantially oxidised. Finally, the FTIR and Raman scattering spectra of the composites were studied in order to establish the presence of crystalline silicon; by taking the ratio of intensities of the silicon and aerogel Raman bands, we were able to obtain a quantitative measure of the silicon nanoparticle concentration independent of the degree of optical attenuation.

  19. Biofunctionalization of silica microspheres for protein separation

    Energy Technology Data Exchange (ETDEWEB)

    Li, Binjie [Institute of Immunology, Henan University, Kaifeng 475004 (China); Key Laboratory of Ministry of Education for Special Functional Materials, Henan University, Kaifeng 475004 (China); Zou, Xueyan [Key Laboratory of Ministry of Education for Special Functional Materials, Henan University, Kaifeng 475004 (China); Zhao, Yanbao, E-mail: [Key Laboratory of Ministry of Education for Special Functional Materials, Henan University, Kaifeng 475004 (China); Sun, Lei [Institute of Immunology, Henan University, Kaifeng 475004 (China); Key Laboratory of Ministry of Education for Special Functional Materials, Henan University, Kaifeng 475004 (China); Li, Shulian [Institute of Immunology, Henan University, Kaifeng 475004 (China)


    Mercapto-silica (SiO{sub 2}–SH) microspheres were prepared via direct hydrolysis of 3-mercaptopropyltrimethoxysilane (MPS) in a basic aqueous solution. The content of surface thiol group (-SH) of SiO{sub 2}–SH microspheres was measured by Ellman's reagent method and X-ray photoelectron spectroscopy (XPS) and the content of surface thiol group of SiO{sub 2}–SH microspheres is strongly dependent on the reaction conditions. The thermal stability of SiO{sub 2}–SH microspheres was evaluated by thermogravimetric (TG) analysis, which tended to reduce with the increase of content of surface thiol groups. SiO{sub 2}–SH microspheres can be easily modified with reduced glutathione (GSH) to generate SiO{sub 2}–GSH microspheres for the affinity separation of Glutathione S-transferase (GST). Sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) was performed to examine the validity of the separation procedure. The results showed that SiO{sub 2}–GSH microspheres were efficient in GST affinity separation from mixed proteins. - Graphical abstract: The prepared SiO{sub 2}–SH microsphere binding reduced glutathione (SiO{sub 2}–GSH) as affinity precipitation support can capture selectively Glutathione S-transferase (GST) from mixed protein solution. Highlights: ► SiO{sub 2}–SH microspheres were prepared in water using one-pot synthesis. ► The content of surface -SH was investigated by Ellman method and XPS spectra. ► The ratio of -SH to mass strongly depends on the reaction conditions. ► SiO{sub 2}–SH microspheres were biofunctionalized by glutathione. ► SiO{sub 2}–GSH can be used to capture selectively Glutathione S-transferase.

  20. Nanoscale cellulose films with different crystallinities and mesostructures--their surface properties and interaction with water. (United States)

    Aulin, Christian; Ahola, Susanna; Josefsson, Peter; Nishino, Takashi; Hirose, Yasuo; Osterberg, Monika; Wågberg, Lars


    A systematic study of the degree of molecular ordering and swelling of different nanocellulose model films has been conducted. Crystalline cellulose II surfaces were prepared by spin-coating of the precursor cellulose solutions onto oxidized silicon wafers before regeneration in water or by using the Langmuir-Schaefer (LS) technique. Amorphous cellulose films were also prepared by spin-coating of a precursor cellulose solution onto oxidized silicon wafers. Crystalline cellulose I surfaces were prepared by spin-coating wafers with aqueous suspensions of sulfate-stabilized cellulose I nanocrystals and low-charged microfibrillated cellulose (LC-MFC). In addition, a dispersion of high-charged MFC was used for the buildup of polyelectrolyte multilayers with polyetheyleneimine on silica with the aid of the layer-by-layer (LbL) technique. These preparation methods produced smooth thin films on the nanometer scale suitable for X-ray diffraction and swelling measurements. The surface morphology and thickness of the cellulose films were characterized in detail by atomic force microscopy (AFM) and ellipsometry measurements, respectively. To determine the surface energy of the cellulose surfaces, that is, their ability to engage in different interactions with different materials, they were characterized through contact angle measurements against water, glycerol, and methylene iodide. Small incidence angle X-ray diffraction revealed that the nanocrystal and MFC films exhibited a cellulose I crystal structure and that the films prepared from N-methylmorpholine-N-oxide (NMMO), LiCl/DMAc solutions, using the LS technique, possessed a cellulose II structure. The degree of crystalline ordering was highest in the nanocrystal films (approximately 87%), whereas the MFC, NMMO, and LS films exhibited a degree of crystallinity of about 60%. The N,N-dimethylacetamide (DMAc)/LiCl film possessed very low crystalline ordering (properties of the films, it was necessary to consider both the

  1. The effects of utilizing silica fume in Portland Cement Pervious Concrete (United States)

    Mann, Daniel Allen

    Silica fume has long been used as a supplementary cementing material to provide a high density, high strength, and durable building material. Silica fume has a particle size a fraction of any conventional cement, which allows it to increase concrete strength by decreasing the porosity especially near the aggregates surface. Because Portland Cement Pervious Concrete (PCPC) has a smaller bond area between aggregate and paste, silica fume has significant impacts on the properties of the PCPC. The research in this paper studies the workability of a cement paste containing silica fume in addition to analyzing the results of testing on Portland Cement Pervious Concrete mixtures that also contained silica fume. Testing conducted included a study of the effects of silica fume on cement's rheological properties at various dosage rates ranging from zero to ten percent by mass. It was determined that silica fume has negligible effects on the viscosity of cement paste until a dosage rate of five percent, at which point the viscosity increases rapidly. In addition to the rheological testing of the cement paste, trials were also conducted on the pervious concrete samples. Sample groups included mixes with river gravel and chipped limestone as aggregate, washed and unwashed, and two different void contents. Workability tests showed that mixtures containing a silica fume dosage rate of 5 percent or less had comparable or slightly improved workability when compared to control groups. Workability was found to decrease at a 7 percent dosage rate. Samples were tested for compressive strength at 7 and 28 days and splitting tensile strength at 28 days. It was found in most sample groups, strength increased with dosage rates of 3 to 5 percent but often decreased when the dosage reached 7 percent. Abrasion testing showed that both samples containing washed aggregate and samples containing silica fume exhibited a reduced mass loss.

  2. Synthesis, characterization and catalytic activity of carbon-silica hybrid catalyst from rice straw (United States)

    Janaun, J.; Safie, N. N.; Siambun, N. J.


    The hybrid-carbon catalyst has been studied because of its promising potential to have high porosity and surface area to be used in biodiesel production. Silica has been used as the support to produce hybrid carbon catalyst due to its mesoporous structure and high surface area properties. The chemical synthesis of silica-carbon hybrid is expensive and involves more complicated preparation steps. The presence of natural silica in rice plants especially rice husk has received much attention in research because of the potential as a source for solid acid catalyst synthesis. But study on rice straw, which is available abundantly as agricultural waste is limited. In this study, rice straw undergone pyrolysis and functionalized using fuming sulphuric acid to anchor -SO3H groups. The presence of silica and the physiochemical properties of the catalyst produced were studied before and after sulphonation. The catalytic activity of hybrid carbon silica acid catalyst, (H-CSAC) in esterification of oleic acid with methanol was also studied. The results showed the presence of silica-carbon which had amorphous structure and highly porous. The carbon surface consisted of higher silica composition, had lower S element detected as compared to the surface that had high carbon content but lower silica composition. This was likely due to the fact that Si element which was bonded to oxygen was highly stable and unlikely to break the bond and react with -SO3H ions. H-CSAC conversions were 23.04 %, 35.52 % and 34.2 7% at 333.15 K, 343.15 K and 353.15 K, respectively. From this research, rice straw can be used as carbon precursor to produce hybrid carbon-silica catalyst and has shown catalytic activity in biodiesel production. Rate equation obtained is also presented.

  3. Quantum Monte Carlo computations of phase stability, equations of state, and elasticity of high-pressure silica. (United States)

    Driver, K P; Cohen, R E; Wu, Zhigang; Militzer, B; Ríos, P López; Towler, M D; Needs, R J; Wilkins, J W


    Silica (SiO(2)) is an abundant component of the Earth whose crystalline polymorphs play key roles in its structure and dynamics. First principle density functional theory (DFT) methods have often been used to accurately predict properties of silicates, but fundamental failures occur. Such failures occur even in silica, the simplest silicate, and understanding pure silica is a prerequisite to understanding the rocky part of the Earth. Here, we study silica with quantum Monte Carlo (QMC), which until now was not computationally possible for such complex materials, and find that QMC overcomes the failures of DFT. QMC is a benchmark method that does not rely on density functionals but rather explicitly treats the electrons and their interactions via a stochastic solution of Schrödinger's equation. Using ground-state QMC plus phonons within the quasiharmonic approximation of density functional perturbation theory, we obtain the thermal pressure and equations of state of silica phases up to Earth's core-mantle boundary. Our results provide the best constrained equations of state and phase boundaries available for silica. QMC indicates a transition to the dense alpha-PbO(2) structure above the core-insulating D" layer, but the absence of a seismic signature suggests the transition does not contribute significantly to global seismic discontinuities in the lower mantle. However, the transition could still provide seismic signals from deeply subducted oceanic crust. We also find an accurate shear elastic constant for stishovite and its geophysically important softening with pressure.

  4. Evaluation of Occupational Exposure and Biological Monitoring of Sand Washing Workers Exposed to Silica Dusts

    Directory of Open Access Journals (Sweden)

    Gholamreza Parsaseresht


    Full Text Available Background and Objectives:The health of sand washing workers could be threatened by the crystalline silica dust exposure. The aim of this study was the evaluation of occupational and biological monitoring with crystalline silica dusts in the sand washing workers. Materials and Methods: This was an analytical and cross-sectional study of 44 sand washing workers exposed to crystalline silica and also 63 municipality gardeners as a control group in the city of Dorood. Occupational exposure monitoring to respirable total dust and silica dust was performed according to the National Institute for Occupational Safety and Health (NIOSH methods 0600 and 7602-respectively. Biological monitoring of workers' was carried out according to the Karatas method for the analysis of Malondialdehyde in the blood serum of exposed and control subjects. The informed consents were taken for obtaining blood samples of workers, according to the Helsinki Declaration. Statistical analysis of data was done using SPSS version 16. The statistical test of Pearson, t-tests and linear regression was applied. Results: The occupational exposure of 54.55% was exceeded the occupational exposure limit of Iran at the level of 3 mg/m3. The mean exposure of sand miners and control group to respirable silica dust was evaluated at 0.219 ± 0.177 and 0.010 ± 0.002 as mg/m3respectively. Occupational exposure of all sand washing workers was higher than the occupational exposure limit of Iran at the level of 0.025 mg/m3.The concentration of serum Malondialdehyde (MDA exposed group and the control group were 36.64 ± 10.75 and 19.40 ± 4.68 as µM respectively. Conclusion: Due to the positive correlation between exposure of sand washing workers to silica dust sand serum MDA among exposed group(P-value<0.0001, r=0.881, periodical biological monitoring along with effective control measures of workers are recommended for the health promotion of these workers.

  5. Performance of Recycled Aggregate Concrete Containing Micronised Biomass Silica

    Directory of Open Access Journals (Sweden)

    Suraya Hani Adnan


    Full Text Available This paper presents a study on Micronised Biomass Silica (MBS that was produced from the controlled burning of waste Rice Husk. The MBS was used as pozzolan material to enhance the performance of Recycled Aggregate Concrete (RAC. Various percentages by mass of Micronised Biomass Silica were applied in the normal and recycled aggregate concrete cube samples. Compressive strength and water permeability tested on the samples at the age of 7, 14, 28 and 90 days showed that concrete containing MBS has attained higher compressive strength. Furthermore, the test on MBS also showed its ability to enhance the concrete water permeability. Lengthen to this; the study established a good correlation between the MBS content with compressive strength and water permeability coefficient.

  6. Bietti crystalline dystrophy and choroidal neovascularisation. (United States)

    Gupta, B; Parvizi, S; Mohamed, M D


    Bietti crystalline dystrophy is a rare autosomal recessive condition characterised by the presence of crystals in the retina and is followed by retinal and choroidal degeneration. We present a novel finding of juxtafoveal choroidal neovascularisation in Bietti crystalline dystrophy and demonstrate a spectral domain optical coherence tomography image of this disorder.

  7. Ordered mesoporous silica: microwave synthesis

    Energy Technology Data Exchange (ETDEWEB)

    Fantini, M.C.A. [IF-USP, CP 66318, 05315-970, Sao Paulo, SP (Brazil)]. E-mail:; Matos, J.R. [IQ-USP, CP 26077, 05599-970, Sao Paulo, SP (Brazil); Silva, L.C. Cides da [IQ-USP, CP 26077, 05599-970, Sao Paulo, SP (Brazil); Mercuri, L.P. [IQSC-USP, CP 780, 13560-970, Sao Carlos, SP (Brazil); Chiereci, G.O. [IQSC-USP, CP 780, 13560-970, Sao Carlos, SP (Brazil); Celer, E.B. [Department of Chemistry, Kent State University, Kent, OH 44240 (United States); Jaroniec, M. [Department of Chemistry, Kent State University, Kent, OH 44240 (United States)


    Ordered mesoporous silicas, FDU-1, synthesized by using triblock copolymer, EO{sub 39}BO{sub 47}EO{sub 39}, as template were hydrothermally treated in a microwave oven at 373 K for different periods of time. The structural and morphological properties of these silicas were investigated by X-ray diffraction and nitrogen adsorption and compared with those for the FDU-1 samples prepared by conventional hydrothermal treatment at 373 K. All samples were calcined at 813 K in N{sub 2} and air. This procedure succeeded in producing ordered cage-like mesoporous structures even after 15 min of the microwave treatment. The best sample was obtained after 60 min of the microwave treatment, which is reflected by narrow pore size distribution, uniform pore size entrances and thick mesopore walls. Longer time of the microwave treatment increased nonuniformity of the pore entrance sizes as evidenced by changes in the hysteresis loops of nitrogen adsorption isotherms.

  8. Heavy ion irradiation of crystalline water ice

    CERN Document Server

    Dartois, E; Boduch, P; Brunetto, R; Chabot, M; Domaracka, A; Ding, J J; Kamalou, O; Lv, X Y; Rothard, H; da Silveira, E F; Thomas, J C


    Under cosmic irradiation, the interstellar water ice mantles evolve towards a compact amorphous state. Crystalline ice amorphisation was previously monitored mainly in the keV to hundreds of keV ion energies. We experimentally investigate heavy ion irradiation amorphisation of crystalline ice, at high energies closer to true cosmic rays, and explore the water-ice sputtering yield. We irradiated thin crystalline ice films with MeV to GeV swift ion beams, produced at the GANIL accelerator. The ice infrared spectral evolution as a function of fluence is monitored with in-situ infrared spectroscopy (induced amorphisation of the initial crystalline state into a compact amorphous phase). The crystalline ice amorphisation cross-section is measured in the high electronic stopping-power range for different temperatures. At large fluence, the ice sputtering is measured on the infrared spectra, and the fitted sputtering-yield dependence, combined with previous measurements, is quadratic over three decades of electronic ...

  9. Fabrication and characterization of bioactive glass-ceramic using soda–lime–silica waste glass

    Energy Technology Data Exchange (ETDEWEB)

    Abbasi, Mojtaba; Hashemi, Babak, E-mail:


    Soda–lime–silica waste glass was used to synthesize a bioactive glass-ceramic through solid-state reactions. In comparison with the conventional route, that is, the melt-quenching and subsequent heat treatment, the present work is an economical technique. Structural and thermal properties of the samples were examined by X-ray diffraction (XRD) and differential thermal analysis (DTA). The in vitro test was utilized to assess the bioactivity level of the samples by Hanks' solution as simulated body fluid (SBF). Bioactivity assessment by atomic absorption spectroscopy (AAS) and scanning electron microscopy (SEM) was revealed that the samples with smaller amount of crystalline phase had a higher level of bioactivity. - Highlights: • A bioactive glass-ceramic was synthesized using soda–lime–silica waste glass. • Solid-state reaction method was used to synthesize bioactive glass-ceramic. • Ca{sub 2}Na{sub 2}Si{sub 3}O{sub 9} and CaNaPO{sub 4} were formed with a one-step thermal treatment condition. • The amounts of crystalline and amorphous phases influenced the bioactivity. • The sample with a smaller amount of the crystalline phase had a higher bioactivity.

  10. Synthesis and characterization of hybrid silica/PMMA nanoparticles and their use as filler in dental composites

    Energy Technology Data Exchange (ETDEWEB)

    Canché-Escamilla, G., E-mail: [Unidad de Materiales, Centro de Investigación Científica de Yucatán A.C. Calle 43 No. 130 Col. Chuburná de Hidalgo, Mérida, Yucatán 97200 (Mexico); Duarte-Aranda, S. [Unidad de Materiales, Centro de Investigación Científica de Yucatán A.C. Calle 43 No. 130 Col. Chuburná de Hidalgo, Mérida, Yucatán 97200 (Mexico); Toledano, M. [Facultad de Odontología, Universidad de Granada, Campus Universitario de Cartuja s/n, Granada 18071 (Spain)


    The effect of hybrid silica/poly(methylmethacrylate) (PMMA) nanoparticles on the properties of composites for dental restoration was evaluated. Hybrid nanoparticles with silica as core and PMMA as shell were obtained by a seeded emulsion polymerization process. Fourier transform infrared spectrum of the hybrid nanoparticles shows an intense peak at 1730 cm{sup −1}, corresponding to carbonyl groups (C=O) of the ester. The thermal stability of the hybrid particles decreases with increasing amounts of PMMA and the residual mass at 700 °C corresponds to the silica content in the hybrid particles. Composites were obtained by dispersing nanoparticles (silica or hybrid), as fillers, in a resin—bis glycidyl dimethacrylate (Bis-GMA)/triethylene glycol dimethacrylate (TEGDMA) (40%/60% (w/w)). The paste was then placed in a mold and polymerized under light irradiation. During the preparation of the composites, with the hybrid nanoparticles, the monomers swell the PMMA shell and after photo-curing, a semi-interpenetrating network (semi-IPN) is obtained around the silica core. The properties of the composites, obtained using the hybrid nanoparticles, depend on the filler content and the amount of PMMA in the semi-IPN matrix. For composites with similar inorganic filler contents, the composites with low amounts of PMMA shell had higher modulus than those in which silica was used as the filler. - Highlights: • Hybrid nanoparticles silica/PMMA were used as fillers in dental composites. • The properties of the hybrid nanoparticle depend on the silica/PMMA content ratio. • A higher content of inorganic filler was obtained using hybrid nanoparticle. • Composites with higher modulus were obtained using hybrid nanoparticles. • A semi-IPN matrix between the PMMA shell and the resin is obtained.

  11. Diffusion in porous crystalline materials. (United States)

    Krishna, Rajamani


    The design and development of many separation and catalytic process technologies require a proper quantitative description of diffusion of mixtures of guest molecules within porous crystalline materials. This tutorial review presents a unified, phenomenological description of diffusion inside meso- and micro-porous structures. In meso-porous materials, with pore sizes 2 nm < d(p) < 50 nm, there is a central core region where the influence of interactions of the molecules with the pore wall is either small or negligible; meso-pore diffusion is governed by a combination of molecule-molecule and molecule-pore wall interactions. Within micro-pores, with d(p) < 2 nm, the guest molecules are always under the influence of the force field exerted with the wall and we have to reckon with the motion of adsorbed molecules, and there is no "bulk" fluid region. The characteristics and physical significance of the self-, Maxwell-Stefan, and Fick diffusivities are explained with the aid of data obtained either from experiments or molecular dynamics simulations, for a wide variety of structures with different pore sizes and topology. The influence of adsorption thermodynamics, molecular clustering, and segregation on both magnitudes and concentration dependences of the diffusivities is highlighted. In mixture diffusion, correlations in molecular hops have the effect of slowing-down the more mobile species. The need for proper modeling of correlation effects using the Maxwell-Stefan formulation is stressed with the aid of examples of membrane separations and catalytic reactors.

  12. Leaf silica concentration in Serengeti grasses increases with watering but not clipping: insights from a common garden study and literature review (United States)

    Quigley, Kathleen M.; Anderson, T. M.


    Grasses (Poaceae) lack the complex biochemical pathways and structural defenses employed by other plant families; instead they deposit microscopic silica (SiO2) granules in their leaf blades (i.e., phytoliths) as a putative defense strategy. Silica accumulation in grasses has generally been considered an inducible defense; other research suggests silica accumulation occurs by passive diffusion and should therefore be closely coupled with whole plant transpiration. We tested the hypothesis that grasses increase leaf silica concentration in response to artificial defoliation in a common garden study in the Serengeti ecosystem of East Africa. Additionally, a watering treatment tested the alternative hypothesis that leaf silica was largely driven by plant water status. Leaf silica content of two dominant C4 Serengeti grass species, Themeda triandra and Digitaria macroblephara, was quantified after a 10-month clipping × water experiment in which defoliation occurred approximately every 2 months and supplementary water was added every 2 weeks. Themeda had greater silica content than Digitaria, and Themeda also varied in foliar silica content according to collection site. Clipping had no significant effect on leaf silica in either species and watering significantly increased silica content of the dominant tall grass species, Themeda, but not the lawn species, Digitaria. Our data, and those collected as part of a supplementary literature review, suggest that silicon induction responses are contingent upon a combination of plant identity (i.e., species, genotype, life history limitations) and environmental factors (i.e., precipitation, soil nutrients, grazing intensity). Specifically, we propose that an interaction between plant functional type and water balance plays an especially important role in determining silica uptake and accumulation. PMID:25374577

  13. Preparation of polyamide 6/silica nanocomposites from silica surface initiated ring-opening anionic polymerization

    Directory of Open Access Journals (Sweden)


    Full Text Available Polyamide 6/silica nanocomposites were synthesized by in situ ring-opening anionic polymerization of ε-caprolactam in the presence of sodium caprolactamate as a catalyst and caprolactam-functionalized silica as an initiator. The initiator precursor, isocyanate-functionalized silica, was prepared by directly reacting commercial silica with excess toluene 2,4-diisocyanate. This polymerization was found to occur in a highly efficient manner at relatively low reaction temperature (170°C and short reaction times (6 h. FTIR spectroscopy was utilized to follow the introduction and consumption of isocyanate groups on the silica surface. Thermogravimetric analysis indicated that the polyamide 6 was successfully grown from the silica surface. Transmission electron microscopy was utilized to image polymer-functionalized silica, showing fine dispersion of silica particles and their size ranging from 20 to 40 nm.

  14. Sealed silica pressure ampoules for crystal growth (United States)

    Holland, L. R.


    The properties of vitreous silica and the mechanics of thick walled pressure vessels are reviewed with regard to the construction of sealed silica crucibles such as are used in the growth of mercury-cadmium telluride crystals. Data from destructive rupture tests are reported, failure modes discussed, and recommendations for design given. Ordinary commercial clear vitreous silica from flame fused quartz can withstand a surface stress of 20 MPa or more in this application.

  15. Mesoporous Silica: A Suitable Adsorbent for Amines

    Directory of Open Access Journals (Sweden)

    Abdollahzadeh-Ghom Sara


    Full Text Available Abstract Mesoporous silica with KIT-6 structure was investigated as a preconcentrating material in chromatographic systems for ammonia and trimethylamine. Its adsorption capacity was compared to that of existing commercial materials, showing its increased adsorption power. In addition, KIT-6 mesoporous silica efficiently adsorbs both gases, while none of the employed commercial adsorbents did. This means that KIT-6 Mesoporous silica may be a good choice for integrated chromatography/gas sensing micro-devices.

  16. Analysis of the retention of water vapor on silica gel; Analisis de la retencion del vapor de agua en silica gel

    Energy Technology Data Exchange (ETDEWEB)

    Herranz, M.; Pinilla, J. L.; Alegria, N.; Idoeta, R.; Legarda, F.


    Among the various sampling systems tritium content in the atmosphere as water vapor, one of the most basic and, therefore, of widespread use in the environmental field, is the retention on silica gel. However, the behavior of the collection efficiency of silica gel under varying conditions of air temperature and relative humidity makes it difficult to define the amount of this necessary for proper completion of sampling, especially in situations of prolonged sampling. This paper presents partial results obtained in a study on the analysis of these efficiencies under normal conditions of sampling. (Author)

  17. Silica deactivation of bead VOC catalysts

    Energy Technology Data Exchange (ETDEWEB)

    Libanati, C.; Pereira, C.J. [Research Division, W. R. Grace and Co., Columbia, MD (United States); Ullenius, D.A. [Grace TEC Systems, De Pere, WI (United States)


    Catalytic oxidation is a key technology for controlling the emissions of Volatile Organic Compounds (VOCs) from industrial plants. The present paper examines the deactivation by silica of bead VOC catalysts in a flexographic printing application. Post mortem analyses of field-aged catalysts suggest that organosilicon compounds contained in the printing ink diffuse into the catalyst and deposit as silica particles in the micropores. Laboratory activity evaluation of aged catalysts suggests that silica deposition is non-selective and that silica masks the noble metal active site

  18. Cellular membrane trafficking of mesoporous silica nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Fang, I-Ju [Iowa State Univ., Ames, IA (United States)


    This dissertation mainly focuses on the investigation of the cellular membrane trafficking of mesoporous silica nanoparticles. We are interested in the study of endocytosis and exocytosis behaviors of mesoporous silica nanoparticles with desired surface functionality. The relationship between mesoporous silica nanoparticles and membrane trafficking of cells, either cancerous cells or normal cells was examined. Since mesoporous silica nanoparticles were applied in many drug delivery cases, the endocytotic efficiency of mesoporous silica nanoparticles needs to be investigated in more details in order to design the cellular drug delivery system in the controlled way. It is well known that cells can engulf some molecules outside of the cells through a receptor-ligand associated endocytosis. We are interested to determine if those biomolecules binding to cell surface receptors can be utilized on mesoporous silica nanoparticle materials to improve the uptake efficiency or govern the mechanism of endocytosis of mesoporous silica nanoparticles. Arginine-glycine-aspartate (RGD) is a small peptide recognized by cell integrin receptors and it was reported that avidin internalization was highly promoted by tumor lectin. Both RGD and avidin were linked to the surface of mesoporous silica nanoparticle materials to investigate the effect of receptor-associated biomolecule on cellular endocytosis efficiency. The effect of ligand types, ligand conformation and ligand density were discussed in Chapter 2 and 3. Furthermore, the exocytosis of mesoporous silica nanoparticles is very attractive for biological applications. The cellular protein sequestration study of mesoporous silica nanoparticles was examined for further information of the intracellular pathway of endocytosed mesoporous silica nanoparticle materials. The surface functionality of mesoporous silica nanoparticle materials demonstrated selectivity among the materials and cancer and normal cell lines. We aimed to determine

  19. Practical Hydrogen Loading of Air Silica Fibres

    DEFF Research Database (Denmark)

    Sørensen, Henrik Rokkjær; Jensen, Jesper Bevensee; Jensen, Jesper Bo Damm


    A method for hydrogen-loading air-silica optical fibres has been developed allowing out-diffusion times comparable to standard step-index fibres. Examples of the first grating written in Ge-doped air-silica fibres using a 266nm UV-laser are shown.......A method for hydrogen-loading air-silica optical fibres has been developed allowing out-diffusion times comparable to standard step-index fibres. Examples of the first grating written in Ge-doped air-silica fibres using a 266nm UV-laser are shown....

  20. Nanoporous silica membranes with high hydrothermal stability

    DEFF Research Database (Denmark)

    Boffa, Vittorio; Magnacca, Giualiana; Yue, Yuanzheng

    Despite the use of sol-gel derived nanoporous silica membranes in substitution of traditional separation processes is expected leading to vast energy savings, their intrinsic poor steam-stability hampers their application at an industrial level. Transition metal ions can be used as dopant...... to improve the stability of nanoporous silica structure. This work is a quantitative study on the impact of type and concentration of transition metal ions on the microporous structure and stability of amorphous silica-based membranes, which provides information on how to design chemical compositions...... and synthetic paths for the fabrication of silica-based membranes with a well accessible and highly stabile nanoporous structure...

  1. Low-cost preparation of mesoporous silica with high pore volume

    Institute of Scientific and Technical Information of China (English)

    Shuling Shen; Wei Wu; Kai Guo; Jianfeng Chen


    Mesoporous silica materials with high pore volume were successfully prepared by the chemical precipitation method, with water glass and a biodegradable nonionic surfactant polyethylene glycol (PEG). The obtained materials were characterized by transmission electron microscopy (TEM), scanning electron microscopy (SEM), thermo gravimetric analyzer and differential scanning calorimetry (TG-DSC), nitrogen adsorption-desorption measurements, and X-ray diffraction (XRD). The results showed that the changes of the pore parameters depended on both the surfactant content and heat treatment temperature. When the content of PEG was 10wt% and the obtained PEG/SiO2 composite was heated at 600℃, the mesoporous silica with a pore volume of 2.2 cm3/g, a BET specific surface area of 361.55 m2/g, and a diameter of 2-4 μm could be obtained. The obtained mesoporous silica materials have potential applications in the fields of paint and plastic, as thickening, reinforcing, and flatting agents.

  2. Mechanism of drug release from silica-gelatin aerogel-Relationship between matrix structure and release kinetics. (United States)

    Veres, Péter; Kéri, Mónika; Bányai, István; Lázár, István; Fábián, István; Domingo, Concepción; Kalmár, József


    Specific features of a silica-gelatin aerogel (3 wt.% gelatin content) in relation to drug delivery has been studied. It was confirmed that the release of both ibuprofen (IBU) and ketoprofen (KET) is about tenfold faster from loaded silica-gelatin aerogel than from pure silica aerogel, although the two matrices are structurally very similar. The main goal of the study was to understand the mechanistic background of the striking difference between the delivery properties of these closely related porous materials. Hydrated and dispersed silica-gelatin aerogel has been characterized by NMR cryoporometry, diffusiometry and relaxometry. The pore structure of the silica aerogel remains intact when it disintegrates in water. In contrast, dispersed silica-gelatin aerogel develops a strong hydration sphere, which reshapes the pore walls and deforms the pore structure. The drug release kinetics was studied on a few minutes time scale with 1s time resolution. Simultaneous evaluation of all relevant kinetic and structural information confirmed that strong hydration of the silica-gelatin skeleton facilitates the rapid desorption and dissolution of the drugs from the loaded aerogel. Such a driving force is not operative in pure silica aerogels.

  3. Heterogeneous Catalysis in Zeolites, Mesoporous Silica, and Metal-Organic Frameworks. (United States)

    Liang, Jie; Liang, Zibin; Zou, Ruqiang; Zhao, Yanli


    Crystalline porous materials are important in the development of catalytic systems with high scientific and industrial impact. Zeolites, ordered mesoporous silica, and metal-organic frameworks (MOFs) are three types of porous materials that can be used as heterogeneous catalysts. This review focuses on a comparison of the catalytic activities of zeolites, mesoporous silica, and MOFs. In the first part of the review, the distinctive properties of these porous materials relevant to catalysis are discussed, and the corresponding catalytic reactions are highlighted. In the second part, the catalytic behaviors of zeolites, mesoporous silica, and MOFs in four types of general organic reactions (acid, base, oxidation, and hydrogenation) are compared. The advantages and disadvantages of each porous material for catalytic reactions are summarized. Conclusions and prospects for future development of these porous materials in this field are provided in the last section. This review aims to highlight recent research advancements in zeolites, ordered mesoporous silica, and MOFs for heterogeneous catalysis, and inspire further studies in this rapidly developing field. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Studying the Effects of Adding Silica Sand Nanoparticles on Epoxy Based Composites

    Directory of Open Access Journals (Sweden)

    Tahir Ahmad


    Full Text Available The research about the preparation of submicron inorganic particles, once conducted in the past decade, is now leading to prepare polymer matrix composite (PMC reinforced with nanofillers. The objective of present research is to study the modified effects of reinforcement dispersion of nanoparticle silica in epoxy resin on the physical properties, mechanical and thermal behaviour, and the microstructure of resultant composites. Stirrer mixing associated with manual mixing of silica sand nanoparticles (developed in our earlier research (Ahmad and Mamat, 2012 into epoxy was followed by curing being the adopted technique to develop the subject nanocomposites. Experimental values showed that 15 wt.% addition of silica sand nanoparticles improves Young’s modulus of the composites; however, a reduction in tensile strength was also observed. Number of holes and cavities produced due to improper mixing turn out to be the main cause of effected mechanical properties. Addition of silica sand nanoparticles causes a reduction in degree of crystallinity of the nanocomposites as being observed in differential scanning calorimetry (DSC analysis.

  5. Concentration quenching and photostability in Eu(dbm){sub 3}phen embedded in mesoporous silica nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Moretti, Elisa, E-mail: [Department of Molecular Sciences and Nanosystems, Università Ca' Foscari Venezia, Via Torino 155/B, 30172 Mestre Venezia (Italy); Talon, Aldo; Storaro, Loretta [Department of Molecular Sciences and Nanosystems, Università Ca' Foscari Venezia, Via Torino 155/B, 30172 Mestre Venezia (Italy); Le Donne, Alessia; Binetti, Simona [Department of Materials Science and Solar Energy Research Center (MIB-SOLAR), University of Milano-Bicocca, Via Cozzi 53, 20125 Milano (Italy); Benedetti, Alvise; Polizzi, Stefano [Department of Molecular Sciences and Nanosystems, Università Ca' Foscari Venezia, Via Torino 155/B, 30172 Mestre Venezia (Italy)


    Ordered mesoporous silica nanoparticles (MSNs) were impregnated with different loadings of the luminescent complex tris(dibenzoylmethane) mono(1,10-phenanthroline)europium(III) (Eu(dbm){sub 3}phen), with the aim of increasing the luminescence by avoiding concentration quenching and having mainly in mind the application as spectral converter for multi-crystalline silicon solar cells. The morphological, structural and luminescence properties of the impregnated silica nanoparticles were characterized by N{sub 2} physisorption, X-ray diffraction, transmission electron microscopy, infrared spectroscopy, UV–visible spectroscopy and photoluminescence excitation and emission measurements. Photostability was tested under 1 sun (1000 W/m{sup 2}) illumination for 24 h and the related effects were inspected by UV–visible and photoluminescence spectroscopies. Impregnation of the complex into 50–70 nm MSNs with pore size tailored around 2.9 nm depressed concentration quenching and allowed the use of complex loadings as high as 23 wt%. Sunlight irradiation caused a marked increase in the luminescence intensity. -- Highlights: • Mesoporous silica nanoparticles tailored to the size of Eu{sup 3+}(dbm){sub 3}phen molecules. • Concentration quenching avoided up to 23 wt% of Eu{sup 3+}(dbm){sub 3}phen/silica. • Sun irradiation increased luminescence intensity by two order of magnitudes.

  6. Preparation of Metalloporphyrin-Bound Superparamagnetic Silica Particles via "Click" Reaction. (United States)

    Hollingsworth, Javoris V; Bhupathiraju, N V S Dinesh K; Sun, Jirun; Lochner, Eric; Vicente, M Graça H; Russo, Paul S


    A facile approach using click chemistry is demonstrated for immobilization of metalloporphyrins onto the surface of silica-coated iron oxide particles. Oleic-acid stabilized iron oxide nanocrystals were prepared by thermal decomposition of iron(III) acetylacetonate. Their crystallinity, morphology, and superparamagnetism were determined using X-ray diffraction, transmission electron microscopy, and a superconducting quantum interference device. Monodisperse core-shell particles were produced in the silica-coating of iron oxide via microemulsion synthesis. Surface modification of these particles was performed in two steps, which included the reaction of silica-coated iron oxide particles with 3-bromopropyltrichlorosilane, followed by azido-functionalization with sodium azide. Monoalkylated porphyrins were prepared using the Williamson ether synthesis of commercially available tetra(4-hydroxyphenyl) porphyrin with propargyl bromide in the presence of a base. (1)H NMR and matrix-assisted laser desorption ionization confirmed the identity of the compounds. The prepared monoalkyne porphyrins were zinc-metalated prior to their introduction to azide-functionalized, silica-coated iron oxide particles in the click reaction. X-ray photoelectron spectroscopy, thermogravimetric analysis, and Fourier transform infrared spectroscopy were used to characterize the surface chemistry after each step in the reaction. In addition, particle size was determined using dynamic light scattering and microscopy. The presented methodology is versatile and can be extended to other photoreactive systems, such as phthalocyanines and boron-dipyrromethane, which may lead to new materials for optical, photonic, and biological applications.

  7. History of crystalline organic conductor (United States)

    Murata, Keizo


    A brief view of crystalline organic conductor is presented. Since the discovery of TTF-TCNQ (tetrathiafulvalene-tetracyanoquinodimethane) in the mid 1970’s, pressure has been an indispensable tool to develop the physics of this field. From the aspect of charge transfer salt, TTF-TCNQ and its family was specified with partial charge transfer, two chain one-dimensional (1D) system, charge density wave (CDW) and commensurability. On the other hand, in (TMTSF)2X family (TMTSF: tetramethyltetraselenafulvalene, X: electron acceptor such as PF6, ClO4), complete charge transfer, one chain system, spin density wave (SDW), field-induced SDW, quantum Hall effect, superconductivity were discussed. Further, together with pressure itself, cooling rate was noticed to be important for low temperature properties. Recently, coming back to TTF-TCNQ family, i.e., HMTSF-TCNQ, whether or not field-induced CDW, instead of field-induced SDW, and quantum Hall effect is present was discussed (HMTSF: hexamethylene-tetraselenafulvalene). Whether or not the Fermiology in (TMTTF)2X under pressure is similar to that of (TMTSF)2X is discussed as well. In (BEDT-TTF)2X, new aspect of macroscopic polarization of α-(BEDT-TTF)2I3 related to charge order is described. At the end, in contrast to the charge transfer salts, non-charge transfer salt, that is, single component conductor is presented as a new possible example of Dirac cone, which was deeply studied by many researchers in α-(BEDT-TTF)2I3, together with the theoretical calculation of its magnetic susceptibility (BEDT-TTF: bisethylenedithia-tetrathiafulvalene).

  8. The origin of the compressibility anomaly in amorphous silica: a molecular dynamics study

    Energy Technology Data Exchange (ETDEWEB)

    Walker, Andrew M [Department of Earth Sciences, University of Cambridge, Downing Street, Cambridge CB2 3EQ (United Kingdom); Sullivan, Lucy A [Department of Earth Sciences, University of Cambridge, Downing Street, Cambridge CB2 3EQ (United Kingdom); Trachenko, Kostya [Department of Earth Sciences, University of Cambridge, Downing Street, Cambridge CB2 3EQ (United Kingdom); Bruin, Richard P [Department of Earth Sciences, University of Cambridge, Downing Street, Cambridge CB2 3EQ (United Kingdom); White, Toby O H [Department of Earth Sciences, University of Cambridge, Downing Street, Cambridge CB2 3EQ (United Kingdom); Dove, Martin T [Department of Earth Sciences, University of Cambridge, Downing Street, Cambridge CB2 3EQ (United Kingdom); Tyer, Richard P [CCLRC Daresbury Laboratory, Daresbury, Warrington, Cheshire WA4 4AD (United Kingdom); Todorov, Ilian T [CCLRC Daresbury Laboratory, Daresbury, Warrington, Cheshire WA4 4AD (United Kingdom); Wells, Stephen A [Center for Biological Physics, Arizona State University, Bateman Physical Sciences Building, Tempe, AZ 85287-1504 (United States)


    We propose an explanation for the anomalous compressibility maximum in amorphous silica based on rigidity arguments. The model considers the fact that a network structure will be rigidly compressed in the high-pressure limit, and rigidly taut in the negative pressure limit, but flexible and hence softer at intermediate pressures. We validate the plausibility of this explanation by the analysis of molecular dynamics simulations. In fact this model is quite general, and will apply to any network solid, crystalline or amorphous; there are experimental indications that support this prediction. In contrast to other ideas concerning the compressibility maximum in amorphous silica, the model presented here does not invoke the existence of polyamorphic phase transitions in the glass phase.


    Directory of Open Access Journals (Sweden)

    Li Y.


    Full Text Available Mullite-silica rich glass (MSRG composite is a material which is more efficient than chamotte for refractory utilization of clay. The effects of lightweight MSRG composite aggregate on the properties of refractory castables were studied by XRD, SEM and EDS, etc. Comparing with a common lightweight chamotte aggregate, it was found that the hot modulus of rupture, refractoriness under load and thermal shock resistance of the castable with lightweight MSRG aggregate were higher than those of the castable with a common lightweight chamotte aggregate because MSRG did not contain silica crystalline phases and contained a liquid phase with very high viscosity at high temperature. The castables with lightweight chamotte aggregate have higher thermal expansion because of existence of cristobalite and quartz, and have lower thermal conductivity because of higher porosity.

  10. Phase transitions of pyrogenic silica suspensions: a comparison to model laponite. (United States)

    Kätzel, Uwe; Richter, Thomas; Stintz, Michael; Barthel, Herbert; Gottschalk-Gaudig, Torsten


    Pyrogenic silica is often used as a thickening agent in paints, pastes, adhesives, or resins. Other applications include, e.g., abrasives in chemical mechanical planarization in the microelectronics industry. In all these applications it is essential to control the state of dispersion. Sometimes, phase transitions from the liquid to the solid state are required while in other cases they have to be completely avoided for the whole shelf life. The nature and influencing parameters of the fluid-solid transition for pyrogenic silica have not been investigated so far. Most investigations deal with the phase transitions of small clay particles such as laponite. Here, we dedicate our interest to the behavior of pyrogenic silica suspensions with varying specific surface area and ionic background concentration. To get an impression of the phase transition behavior we compare our results to model laponite suspensions. We apply dynamic light scattering measurements in the backscattering regime to minimize multiple scattering contributions from concentrated pyrogenic silica suspensions. Further on we exert a decomposition of the measured autocorrelation functions into an ergodic and nonergodic contribution. The analysis of the ergodic spectrum yields two different gelation kinetics for both systems, laponite and pyrogenic silica. For laponite these are in accordance with earlier investigations. The kinetics depend on the ionic background and the solids content of the suspensions. Additionally, we used dynamic extinction spectroscopy to follow the phase transitions of pyrogenic silica on a macroscale.

  11. Radiation hardening in sol-gel derived Er{sup 3+}-doped silica glasses

    Energy Technology Data Exchange (ETDEWEB)

    Hari Babu, B., E-mail:, E-mail:; León Pichel, Mónica [Laboratoire des Solides Irradiés, UMR CEA-CNRS 7642, Ecole Polytechnique, Université Paris Saclay, 91128 Palaiseau (France); Institut de Chimie Moléculaire et des Matériaux d' Orsay, UMR CNRS-UPSud 8182, Université Paris Sud, 91405 Orsay (France); Ollier, Nadège [Laboratoire des Solides Irradiés, UMR CEA-CNRS 7642, Ecole Polytechnique, Université Paris Saclay, 91128 Palaiseau (France); El Hamzaoui, Hicham; Bigot, Laurent; Savelii, Inna; Bouazaoui, Mohamed [Laboratoire PhLAM (UMR CNRS 8523), IRCICA (USR CNRS 3380), CERLA - FR CNRS 2416, Université Lille 1, Villeneuve d' Ascq Cedex F-59655 (France); Poumellec, Bertrand; Lancry, Matthieu, E-mail:, E-mail: [Institut de Chimie Moléculaire et des Matériaux d' Orsay, UMR CNRS-UPSud 8182, Université Paris Sud, 91405 Orsay (France); Ibarra, Angel [National Fusion Laboratory, CIEMAT, Avda Complutense 40, 28040 Madrid (Spain)


    The aim of the present paper is to report the effect of radiation on the Er{sup 3+}-doped sol-gel silica glasses. A possible application of these sol-gel glasses could be their use in harsh radiation environments. The sol-gel glasses are fabricated by densification of erbium salt-soaked nanoporous silica xerogels through polymeric sol-gel technique. The radiation-induced attenuation of Er{sup 3+}-doped sol-gel silica is found to increase with erbium content. Electron paramagnetic resonance studies reveal the presence of E′{sub δ} point defects. This happens in the sol-gel aluminum-silica glass after an exposure to γ-rays (kGy) and in sol-gel silica glass after an exposure to electrons (MGy). The concentration levels of these point defects are much lower in γ-ray irradiated sol-gel silica glasses. When the samples are co-doped with Al, the exposure to γ-ray radiation causes a possible reduction of the erbium valence from Er{sup 3+} to Er{sup 2+} ions. This process occurs in association with the formation of aluminum oxygen hole centers and different intrinsic point defects.

  12. The effects of temperature on the crystalline properties and resistant starch during storage of white bread. (United States)

    Sullivan, William R; Hughes, Jeff G; Cockman, Russell W; Small, Darryl M


    Resistant starch (RS) can form during storage of foods, thereby bestowing a variety of potential health benefits. The purpose of the current study has been to determine the influence of storage temperature and time on the crystallinity and RS content of bread. Loaves of white bread were baked and stored at refrigeration, frozen and room temperatures with analysis over a period of zero to seven days. RS determination and X-ray diffraction (XRD) were used to evaluate the influence of storage temperature and time on total crystallinity and RS content. The rate of starch recrystallisation was affected by storage temperature and time, where refrigeration temperatures accelerated RS formation and total crystallinity more than storage time at both frozen and room temperature. A strong statistical model has been established between RS formation in bread and XRD patterns, having a 96.7% fit indicating the potential of XRD to measure RS concentrations. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. Carbohydrate components and crystalline structure of organosolv hemp (Cannabis sativa L.) bast fibers pulp. (United States)

    Gümüşkaya, Esat; Usta, Mustafa; Balaban, Mualla


    Changes in carbohydrate components and crystalline structure of hemp bast fibers during organosolv pulping were investigated by X-ray diffractometry, FT-IR spectroscopy and high performance liquid chromatography (HPLC). The reasons for defibrillation and beating problems with organosolv hemp bast fiber pulp were investigated with reference to these properties of pulp samples. Hemp bast fibers and organosolv pulp samples had low hemicellulose contents and high cellulose contents. It was found that the disorder parameter of cellulose in hemp bast fibers was very low, when crystalline cellulose ratio was high and the crystalline structure of cellulose in hemp bast fibers was very stable. These properties affected defibrillation and beating of organosolv hemp bast fibers pulp negatively.

  14. Treated and untreated rock dust: Quartz content and physical characterization. (United States)

    Soo, Jhy-Charm; Lee, Taekhee; Chisholm, William P; Farcas, Daniel; Schwegler-Berry, Diane; Harper, Martin


    Rock dusting is used to prevent secondary explosions in coal mines, but inhalation of rock dusts can be hazardous if the crystalline silica (e.g., quartz) content in the respirable fraction is high. The objective of this study is to assess the quartz content and physical characteristics of four selected rock dusts, consisting of limestone or marble in both treated (such as treatment with stearic acid or stearates) and untreated forms. Four selected rock dusts (an untreated and treated limestone and an untreated and treated marble) were aerosolized in an aerosol chamber. Respirable size-selective sampling was conducted along with particle size-segregated sampling using a Micro-Orifice Uniform Deposit Impactor. Fourier Transform Infrared spectroscopy and scanning electron microscopy with energy-dispersive X-ray (SEM-EDX) analyses were used to determine quartz mass and particle morphology, respectively. Quartz percentage in the respirable dust fraction of untreated and treated forms of the limestone dust was significantly higher than in bulk samples, but since the bulk percentage was low the enrichment factor would not have resulted in any major change to conclusions regarding the contribution of respirable rock dust to the overall airborne quartz concentration. The quartz percentage in the marble dust (untreated and treated) was very low and the respirable fractions showed no enrichment. The spectra from SEM-EDX analysis for all materials were predominantly from calcium carbonate, clay, and gypsum particles. No free quartz particles were observed. The four rock dusts used in this study are representative of those presented for use in rock dusting, but the conclusions may not be applicable to all available materials.

  15. Microbial Activity and Silica Degradation in Rice Straw (United States)

    Kim, Esther Jin-kyung

    Abundantly available agricultural residues like rice straw have the potential to be feedstocks for bioethanol production. Developing optimized conditions for rice straw deconstruction is a key step toward utilizing the biomass to its full potential. One challenge associated with conversion of rice straw to bioenergy is its high silica content as high silica erodes machinery. Another obstacle is the availability of enzymes that hydrolyze polymers in rice straw under industrially relevant conditions. Microbial communities that colonize compost may be a source of enzymes for bioconversion of lignocellulose to products because composting systems operate under thermophilic and high solids conditions that have been shown to be commercially relevant. Compost microbial communities enriched on rice straw could provide insight into a more targeted source of enzymes for the breakdown of rice straw polysaccharides and silica. Because rice straw is low in nitrogen it is important to understand the impact of nitrogen concentrations on the production of enzyme activity by the microbial community. This study aims to address this issue by developing a method to measure microbial silica-degrading activity and measure the effect of nitrogen amendment to rice straw on microbial activity and extracted enzyme activity during a high-solids, thermophilic incubation. An assay was developed to measure silica-degrading enzyme or silicase activity. This process included identifying methods of enzyme extraction from rice straw, identifying a model substrate for the assay, and optimizing measurement techniques. Rice straw incubations were conducted with five different levels of nitrogen added to the biomass. Microbial activity was measured by respiration and enzyme activity. A microbial community analysis was performed to understand the shift in community structure with different treatments. With increased levels of nitrogen, respiration and cellulose and hemicellulose degrading activity

  16. Phase transition in aluminous silica in the lowermost mantle (United States)

    Tronnes, R. G.; Andrault, D.; Konopkova, Z.; Morgenroth, W.; Liermann, H.


    Lower mantle basaltic lithologies contain 35-40% Mg-perovskite, 20-30% Ca-perovskite, 15-25% Al-rich phases (NAL and Ca-ferrite phases) and 15-20% silica-dominated phases. The Fe-rich Mg-perovskite makes basaltic material denser than peridotite throughout the lower mantle below 720 km depth, with important implications for mantle dynamics. Partial separation of subducted basaltic crust from depleted lithosphere might occur within the strongly heterogeneous D" zone. Further details on phase transitions and equation of states for the various minerals, however, are needed for more complete insights. The silica-dominated phases have considerable solubility of alumina [1]. We investigated silica with 4 and 6 wt% alumina to 120 GPa, using LH-DAC at the Extreme Conditions Beamline (P02.2) at PETRA-III, DESY. Powdered glass mixed with 10-15 wt% Pt-powder was compressed and heated in NaCl pressure media in Re-gaskets. The transition from the CaCl2-structured phase to seifertite (alpha-PbO2-structure) occurs at about 116 GPa at 2500 K. This is intermediate between the transition pressures of about 122 GPa and 100-113 GPa reported for similar temperatures for pure SiO2 [2] and a basalt composition [1], respectively. The CaCl2-structured silica phase crystallized along with seifertite, consistent with a binary phase loop trending towards lower pressure with increasing Al-content. The presence of an Al-rich Ca-ferrite phase (near the MgAl2O4-NaAlSiO4-join) in basaltic material indicates that the Al-solubility limits for the silica-dominated phases in basaltic compositions may be similar to those in the binary system SiO2-AlO1.5. Based on the X-ray pattern refinement, our samples show no significant volume change across the transition. Even so, the transition could be associated with a significant density change if the Al substitution mechanisms are different in CaCl2-structured phase and seifertite. The most likely situation is that Al-substitution occurs via O-vacancies in the

  17. PFG NMR investigations of TPA-TMA-silica mixtures. (United States)

    Li, Xiang; Shantz, Daniel F


    Pulsed-field gradient (PFG) NMR studies of tetrapropylammonium (TPA)-tetramethylammonium (TMA)-silica mixtures are presented, and the effect of TMA as a foreign ion on the TPA-silica nanoparticle interactions before and after heating has been studied. Dynamic light scattering (DLS) results suggest that silica nanoparticles in these TPA-TMA systems grow via a ripening mechanism for the first 24 h of heating. PFG NMR of mixtures before heating show that TMA can effectively displace TPA from the nanoparticle surface. The binding isotherms of TPA at room temperature obtained via PFG NMR can be described by Langmuir isotherms, and indicate a decrease in the adsorbed amount of TPA upon addition of TMA. PFG NMR also shows a systematic increase in the self-diffusion coefficient of TPA in both the mixed TPA-TMA systems and pure TPA systems with heating time, indicating an increased amount of TPA in solution upon heating. By contrast, a much smaller amount of TMA is observed to desorb from the nanoparticles upon heating. These results point to the desorption of TPA from the nanoparticles being a kinetically controlled process. The apparent desorption rate constants were calculated from fitting the desorbed amount of TPA with time via a pseudosecond-order kinetic model. This analysis show the rate of TPA desorption in TPA-TMA mixtures increases with increasing TMA content, whereas for pure TPA mixtures the rate of TPA desorption is much less sensitive to the TPA concentration.

  18. Coagulated silica - a-SiO2 admixture in cement paste (United States)

    Pokorný, Jaroslav; Pavlíková, Milena; Záleská, Martina; Rovnaníková, Pavla; Pavlík, Zbyšek


    Amorphous silica (a-SiO2) in fine-grained form possesses a high pozzolanic activity which makes it a valuable component of blended binders in concrete production. The origin of a-SiO2 applied in cement-based composites is very diverse. SiO2 in amorphous form is present in various amounts in quite a few supplementary cementing materials (SCMs) being used as partial replacement of Portland cement. In this work, the applicability of a commercially produced coagulated silica powder as a partial replacement of Portland cement in cement paste mix design is investigated. Portland cement CEM I 42.5R produced according to the EU standard EN 197-1 is used as a reference binder. Coagulated silica is applied in dosages of 5 and 10 % by mass of cement. The water/binder ratio is kept constant in all the studied pastes. For the applied silica, specific surface area, density, loss on ignition, pozzolanic activity, chemical composition, and SiO2 amorphous phase content are determined. For the developed pastes on the basis of cement-silica blended binder, basic physical properties as bulk density, matrix density, and total open porosity are accessed. Pore size distribution is determined using MIP analysis. Initial and final setting times of fresh mixtures are measured by automatic Vicat apparatus. Effect of silica admixture on mechanical resistivity is evaluated using compressive strength, bending strength, and dynamic Young's modulus measurement. The obtained data gives evidence of a decreased workability of paste mixtures with silica, whereas the setting process is accelerated. On the other hand, reaction activity of silica with Portland cement minerals results in a slight decrease of porosity and improvement of mechanical resistivity of cement pastes containing a-SiO2.

  19. Optical waveguides in hard crystalline materials

    NARCIS (Netherlands)

    Pollnau, M.


    The recent results of our research group and collaborators in the field of fabrication, characterization, and applications of optical waveguides in hard crystalline materials, specifically in sapphire and Ti:sapphire, are reviewed.

  20. Co-localization of iron binding on silica with p62/sequestosome1 (SQSTM1) in lung granulomas of mice with acute silicosis (United States)

    Shimizu, Yasuo; Dobashi, Kunio; Nagase, Hiroyuki; Ohta, Ken; Sano, Takaaki; Matsuzaki, Shinichi; Ishii, Yoshiki; Satoh, Takahiro; Koka, Masashi; Yokoyama, Akihito; Ohkubo, Takeru; Ishii, Yasuyuki; Kamiya, Tomihiro


    The cellular mechanisms involved in the development of silicosis have not been fully elucidated. This study aimed to examine influence of silica-induced lung injury on autophagy. Suspensions of crystalline silica particles were administered transnasally to C57BL/6j mice. Immunohistochemical examination for Fas and p62 protein expression was performed using lung tissue specimens. Two-dimensional and quantitative analysis of silica deposits in the lungs were performed in situ using lung tissue sections by an in-air microparticle induced X-ray emission (in-air micro-PIXE) analysis system, which was based on irrradiation of specimens with a proton ion microbeam. Quantitative analysis showed a significant increase of iron levels on silica particles (assessed as the ratio of Fe relative to Si) on day 56 compared with day 7 (p<0.05). Fas and p62 were expressed by histiocytes in granulomas on day 7, and the expressions persisted for day 56. Fas- and p62-expressing histiocytes were co-localized in granulomas with silica particles that showed an increase of iron levels on silica particles in mouse lungs. Iron complexed with silica induces apoptosis, and may lead to dysregulations of autophagy in histiocytes of granulomas, and these mechanisms may contribute to granuloma development and progression in silicosis. PMID:25834305

  1. Self-arrangement of nanoparticles toward crystalline metal oxides with high surface areas and tunable 3D mesopores (United States)

    Lee, Hyung Ik; Lee, Yoon Yun; Kang, Dong-Uk; Lee, Kirim; Kwon, Young-Uk; Kim, Ji Man


    We demonstrate a new design concept where the interaction between silica nanoparticles (about 1.5 nm in diameter) with titania nanoparticles (anatase, about 4 nm or 6 nm in diameter) guides a successful formation of mesoporous titania with crystalline walls and controllable porosity. At an appropriate solution pH (~1.5, depending on the deprotonation tendencies of two types of nanoparticles), the smaller silica nanoparticles, which attach to the surface of the larger titania nanoparticles and provide a portion of inactive surface and reactive surface of titania nanoparticles, dictate the direction and the degree of condensation of the titania nanoparticles, resulting in a porous 3D framework. Further crystallization by a hydrothermal treatment and subsequent removal of silica nanoparticles result in a mesoporous titania with highly crystalline walls and tunable mesopore sizes. A simple control of the Si/Ti ratio verified the versatility of the present method through the successful control of mean pore diameter in the range of 2-35 nm and specific surface area in the ranges of 180-250 m2 g-1. The present synthesis method is successfully extended to other metal oxides, their mixed oxides and analogues with different particle sizes, regarding as a general method for mesoporous metal (or mixed metal) oxides.

  2. Magnetic silica hybrids modified with guanidine containing co-polymers for drug delivery applications

    Energy Technology Data Exchange (ETDEWEB)

    Timin, Alexander S., E-mail: [Inorganic Chemistry Department, Ivanovo State University of Chemistry and Technology (ISUCT), 7, Sheremetevsky prosp., 153000 Ivanovo (Russian Federation); RASA Center in Tomsk, Tomsk Polytechnic University, 30, Lenin Avenue, 634500 Tomsk (Russian Federation); Khashirova, Svetlana Yu. [Kabardino-Balkar State University, ul. Chernyshevskogo 173, Nal' chik, 360004 Kabardino-Balkaria (Russian Federation); Rumyantsev, Evgeniy V.; Goncharenko, Alexander A. [Inorganic Chemistry Department, Ivanovo State University of Chemistry and Technology (ISUCT), 7, Sheremetevsky prosp., 153000 Ivanovo (Russian Federation)


    Guanidine containing co-polymers grafted onto silica nanoparticles to form core-shell structure were prepared by sol-gel method in the presence of γ-Fe{sub 2}O{sub 3} nanoparticles. The morphological features for uncoated and coated silica particles have been characterized with scanning electron microscopy. The results show that the polymer coated silicas exhibit spherical morphology with rough polymeric surface covered by γ-Fe{sub 2}O{sub 3} nanoparticles. The grafting amount of guanidine containing co-polymers evaluated by thermogravimetric analysis was in the range from 17 to 30%. Then, the drug loading properties and cumulative release of silica hybrids modified with guanidine containing co-polymers were evaluated using molsidomine as a model drug. It was shown that after polymer grafting the loading content of molsidomine could reach up to 3.42 ± 0.21 and 2.34 ± 0.14 mg/g respectively. The maximum drug release of molsidomine is achieved at pH 1.6 (approximately 71–75% release at 37 °C), whereas at pH 7.4 drug release is lower (50.4–59.6% release at 37 °C). These results have an important implication that our magneto-controlled silica hybrids modified with guanidine containing co-polymers are promising as drug carriers with controlled behaviour under influence of magnetic field. - Highlights: • Polymer coated silica hybrids containing γ-Fe{sub 2}O{sub 3} were prepared via sol–gel method. • Polymer grafting influences pH-response and surface properties of final products. • Molsidomine as a model drug was effectively loaded into polymer coated silicas. • The drug loading depends on the nature of grafted polymer and its content.

  3. In vivo human crystalline lens topography


    Ortiz, Sergio; Pérez Merino, Pablo; Gambra, Enrique; Castro, Alberto; Marcos, Susana


    Custom high-resolution high-speed anterior segment spectral domain optical coherence tomography (OCT) was used to characterize three-dimensionally (3-D) the human crystalline lens in vivo. The system was provided with custom algorithms for denoising and segmentation of the images, as well as for fan (scanning) and optical (refraction) distortion correction, to provide fully quantitative images of the anterior and posterior crystalline lens surfaces. The method was tested on an artificial eye ...

  4. Revealing crystalline domains in a mollusc shell single-crystalline prism (United States)

    Mastropietro, F.; Godard, P.; Burghammer, M.; Chevallard, C.; Daillant, J.; Duboisset, J.; Allain, M.; Guenoun, P.; Nouet, J.; Chamard, V.


    Biomineralization integrates complex processes leading to an extraordinary diversity of calcareous biomineral crystalline architectures, in intriguing contrast with the consistent presence of a sub-micrometric granular structure. Hence, gaining access to the crystalline architecture at the mesoscale, that is, over a few granules, is key to building realistic biomineralization scenarios. Here we provide the nanoscale spatial arrangement of the crystalline structure within the `single-crystalline' prisms of the prismatic layer of a Pinctada margaritifera shell, exploiting three-dimensional X-ray Bragg ptychography microscopy. We reveal the details of the mesocrystalline organization, evidencing a crystalline coherence extending over a few granules. We additionally prove the existence of larger iso-oriented crystalline domains, slightly misoriented with respect to each other, around one unique rotation axis, and whose shapes are correlated with iso-strain domains. The highlighted mesocrystalline properties support recent biomineralization models involving partial fusion of oriented nanoparticle assembly and/or liquid droplet precursors.

  5. Facile transformation of superhydrophobicity to hydrophilicity by silica/poly(ɛ-caprolactone) composite film (United States)

    Gao, Zhengxin; Zhai, Xianglin; Wang, Chengyu


    A smart surface with thermo-responsive wettability was fabricated on the cross section of wood with simple bench chemistry. The surface showed fast response between superhydrophobic and hydrophilic under different temperatures. The reversible wettability from superhydrophobicity to hydrophilicity can be easily achieved by adjusting the temperature between 25 and 60 °C. This reversible wettability is resulted from the synergistic effect of the crystallinity transition of the polymer coated on the surface and the optimized roughness controlled by the silica particles with different sizes. Furthermore, the modified wood surface showed an excellent chemical stability to corrosive liquids under ambient conditions.

  6. Synthesis of SiO2 nanopowders containing quartz and cristobalite phases from silica sands


    Munasir; Triwikantoro .; Zainuri Mochamad; Darminto


    In this study, extraction and synthesis of SiO2 nanoparticles from silica sands have been conducted by means of two different methods, i.e. dry method (method 1) and hydrothermal process (method 2). The basic difference between the two methods is in the extraction step. The two methods were compared in terms of being more efficient, economical, and superior in obtaining SiO2 nanoparticles. The SiO2 nanoparticles were characterized in terms of phase purity, crystallinity, Si-O functional bondi...

  7. Preparation, characterization, and in vivo evaluation of tanshinone IIA solid dispersions with silica nanoparticles (United States)

    Jiang, Yan-rong; Zhang, Zhen-hai; Liu, Qi-yuan; Hu, Shao-ying; Chen, Xiao-yun; Jia, Xiao-bin


    We prepared solid dispersions (SDs) of tanshinone IIA (TSIIA) with silica nanoparticles, which function as dispersing carriers, using a spray-drying method and evaluated their in vitro dissolution and in vivo performance. The extent of TSIIA dissolution in the silica nanoparticles/TSIIA system (weight ratio, 5:1) was approximately 92% higher than that of the pure drug after 60 minutes. However, increasing the content of silica nanoparticles from 5:1 to 7:1 in this system did not significantly increase the rate or extent of TSIIA dissolution. The physicochemical properties of SDs were investigated using scanning electron microscopy, differential scanning calorimetry, X-ray powder diffraction, and Fourier transforms infrared spectroscopy. Studying the stability of the SDs of TSIIA revealed that the drug content of the formulation and dissolution behavior was unchanged under the applied storage conditions. In vivo tests showed that SDs of the silica nanoparticles/TSIIA had a significantly larger area under the concentration-time curve, which was 1.27 times more than that of TSIIA (P plasma concentration and the time to reach maximum plasma concentration of the SDs were higher than those of TSIIA and the physical mixing system. Based on these results, we conclude that the silica nanoparticle based SDs achieved complete dissolution, increased absorption rate, maintained drug stability, and showed improved oral bioavailability compared to TSIIA alone. PMID:23836971

  8. Photopolymerization of acrylamide as a new functionalization way of silica monoliths for hydrophilic interaction chromatography and coated silica capillaries for capillary electrophoresis. (United States)

    El-Debs, R; Marechal, A; Dugas, V; Demesmay, C


    A simple, rapid and localizable photochemical process for the preparation of hydrophilic coated capillary and silica-based monolithic capillary columns is described. The process involves the free radical polymerization of acrylamide monomers onto acrylate pre-activated silica surface triggered by UV photoinitiation. The experimental conditions (monomer content, time of irradiation) were optimized on silica monolithic columns by monitoring the evolution of the chromatographic properties (retention, permeability, efficiency) in HILIC mode using a set of nucleosides as test solutes. Compared to thermal polymerization process, the photoinitiation allows the preparation of highly retentive and efficient HILIC monolithic columns in less than 10min of irradiation. This process was then successfully applied to the surface coating of fused silica capillary walls. In addition to its relative high stability and ability to reduce the electroosmotic flow, this polyacrylamide coating is localizable. Benefits of this localizable photochemical process are highlighted through the conception of an in-line integrated bimodal microseparation tool combining a SPE preconcentration step on a photografted silica monolith and an electrokinetic separation step in a polyacrylamide photopolymerized capillary section. Two neuropeptides are used as model solutes to illustrate the suitability of this approach.

  9. Synthesis and characterization of hybrid silica/PMMA nanoparticles and their use as filler in dental composites. (United States)

    Canché-Escamilla, G; Duarte-Aranda, S; Toledano, M


    The effect of hybrid silica/poly(methylmethacrylate) (PMMA) nanoparticles on the properties of composites for dental restoration was evaluated. Hybrid nanoparticles with silica as core and PMMA as shell were obtained by a seeded emulsion polymerization process. Fourier transform infrared spectrum of the hybrid nanoparticles shows an intense peak at 1,730 cm(-1), corresponding to carbonyl groups (CO) of the ester. The thermal stability of the hybrid particles decreases with increasing amounts of PMMA and the residual mass at 700°C corresponds to the silica content in the hybrid particles. Composites were obtained by dispersing nanoparticles (silica or hybrid), as fillers, in a resin-bis glycidyl dimethacrylate (Bis-GMA)/triethylene glycol dimethacrylate (TEGDMA) (40%/60% (w/w)). The paste was then placed in a mold and polymerized under light irradiation. During the preparation of the composites, with the hybrid nanoparticles, the monomers swell the PMMA shell and after photo-curing, a semi-interpenetrating network (semi-IPN) is obtained around the silica core. The properties of the composites, obtained using the hybrid nanoparticles, depend on the filler content and the amount of PMMA in the semi-IPN matrix. For composites with similar inorganic filler contents, the composites with low amounts of PMMA shell had higher modulus than those in which silica was used as the filler. Copyright © 2014 Elsevier B.V. All rights reserved.

  10. Electrochemical behaviors of silicon wafers in silica slurry

    Institute of Scientific and Technical Information of China (English)

    Xiaolan Song; Haiping Yang; Xunda Shi; Xi He; Guanzhou Qiu


    The electrochemical behaviors of n-type silicon wafers in silica-based slurry were investigated, and the influences of the pH value and solid content of the slurry on the corrosion of silicon wafers were studied by using electrochemical DC polarization and AC impedance techniques. The results revealed that these factors affected the corrosion behaviors of silicon wafers to different degrees and had their suitable parameters that made the maximum corrosion rate of the wafers. The corrosion potential of (100) surface was lower than that of (111), whereas the current density of (100) was much higher than that of (111).

  11. Crystalline Silicon Dielectrics for Superconducting Qubit Circuits (United States)

    Hover, David; Peng, Weina; Sendelbach, Steven; Eriksson, Mark; McDermott, Robert


    Superconducting qubit energy relaxation times are limited by microwave loss induced by a continuum of two-level state (TLS) defects in the dielectric materials of the circuit. State-of-the-art phase qubit circuits employ a micron-scale Josephson junction shunted by an external capacitor. In this case, the qubit T1 time is directly proportional to the quality factor (Q) of the capacitor dielectric. The amorphous capacitor dielectrics that have been used to date display intrinsic Q of order 10^3 to 10^4. Shunt capacitors with a Q of 10^6 are required to extend qubit T1 times well into the microsecond range. Crystalline dielectric materials are an attractive candidate for qubit capacitor dielectrics, due to the extremely low density of TLS defects. However, the robust integration of crystalline dielectrics with superconducting qubit circuits remains a challenge. Here we describe a novel approach to the realization of high-Q crystalline capacitor dielectrics for superconducting qubit circuits. The capacitor dielectric is a crystalline silicon nanomembrane. We discuss characterization of crystalline silicon capacitors with low-power microwave transport measurements at millikelvin temperatures. In addition, we report progress on integrating the crystalline capacitor process with Josephson qubit fabrication.

  12. Active and passive silica waveguide integration

    DEFF Research Database (Denmark)

    Hübner, Jörg; Guldberg-Kjær, Søren Andreas


    in existing and future networks without affecting the power budget of the system. Silica on silicon technology offers a unique possibility to selectively dope sections of the integrated circuit with erbium where amplification is desired. Some techniques for active/passive integration are reviewed and a silica...

  13. Chemical immobilisation of humic acid on silica

    NARCIS (Netherlands)

    Koopal, L.K.; Yang, Y.; Minnaard, A.J.; Theunissen, P.L.M.; Riemsdijk, W.H. van


    Immobilisation of purified Aldrich humic acid (PAHA) on aminopropyl silica and glutaraldehyde-activated aminopropyl silica has been investigated. In general the humic acid is bound to the solid by both physical and chemical bonds. The physically adsorbed HA can be released to a large extent at high

  14. Magnetic core-shell silica particles

    NARCIS (Netherlands)

    Claesson, E.M.


    This thesis deals with magnetic silica core-shell colloids and related functionalized silica structures. Synthesis routes have been developed and optimized. The physical properties of these colloids have been investigated, such as the magnetic dipole moment, dipolar structure formation and

  15. Biomimetic silica encapsultation of living cells (United States)

    Jaroch, David Benjamin

    Living cells perform complex chemical processes on size and time scales that artificial systems cannot match. Cells respond dynamically to their environment, acting as biological sensors, factories, and drug delivery devices. To facilitate the use of living systems in engineered constructs, we have developed several new approaches to create stable protective microenvironments by forming bioinspired cell-membrane-specific silica-based encapsulants. These include vapor phase deposition of silica gels, use of endogenous membrane proteins and polysaccharides as a site for silica nucleation and polycondensation in a saturated environment, and protein templated ordered silica shell formation. We demonstrate silica layer formation at the surface of pluripotent stem-like cells, bacterial biofilms, and primary murine and human pancreatic islets. Materials are characterized by AFM, SEM and EDS. Viability assays confirm cell survival, and metabolite flux measurements demonstrate normal function and no major diffusion limitations. Real time PCR mRNA analysis indicates encapsulated islets express normal levels of genetic markers for β-cells and insulin production. The silica glass encapsulant produces a secondary bone like calcium phosphate mineral layer upon exposure to media. Such bioactive materials can improve device integration with surrounding tissue upon implantation. Given the favorable insulin response, bioactivity, and long-term viability observed in silica-coated islets, we are currently testing the encapsulant's ability to prevent immune system recognition of foreign transplants for the treatment of diabetes. Such hybrid silica-cellular constructs have a wide range of industrial, environmental, and medical applications.

  16. Chemical immobilisation of humic acid on silica

    NARCIS (Netherlands)

    Koopal, L.K.; Yang, Y.; Minnaard, A.J.; Theunissen, P.L.M.; Riemsdijk, W.H. van


    Immobilisation of purified Aldrich humic acid (PAHA) on aminopropyl silica and glutaraldehyde-activated aminopropyl silica has been investigated. In general the humic acid is bound to the solid by both physical and chemical bonds. The physically adsorbed HA can be released to a large extent at high

  17. Silica-Immobilized Enzyme Reactors (Postprint) (United States)


    Non-solubilized UDPGT from rat liver microsomes was covalently immobilized to a func- tionalized silica support by Schiff base chemistry and a number...activity within a day. GADPH isolated from rabbit was covalently immobilized to a wide-pore silica support by glutaraldehyde activation and Schiff - base chemistry

  18. Magnetic core-shell silica particles

    NARCIS (Netherlands)

    Claesson, E.M.


    This thesis deals with magnetic silica core-shell colloids and related functionalized silica structures. Synthesis routes have been developed and optimized. The physical properties of these colloids have been investigated, such as the magnetic dipole moment, dipolar structure formation and rotationa

  19. Synthesis, Characterization and Photoinduction of Optical Anisotropy in Liquid Crystalline Diblock Azo-Copolymers

    DEFF Research Database (Denmark)

    Forcén, P; Oriol, L; Sánchez, C


    Diblock copolymers with polymethyl methacrylate and side chain liquid crystalline WC) azopolymethacrylate blocks were synthesized by atom transfer radical polymerization (ATRP). The azobeazene content in these copolymers ranges from 52 to 7 wt %. For an azo conteat dowri to 20% they exhibit a LC ...

  20. Titania-Silica Materials for Enhanced Photocatalysis. (United States)

    Rico-Santacruz, Marisa; Serrano, Elena; Marcì, Giuseppe; García-López, Elisa I; García-Martínez, Javier


    Mesoporous titania-organosilica nanoparticles comprised of anatase nanocrystals crosslinked with organosilica moieties have been prepared by direct co-condensation of a titania precursor, tetrabuthylortotitanate (TBOT), with two organosilica precursors, 1,4-bis(triethoxysilyl) benzene (BTEB) and 1,2-bis(triethoxysilyl) ethane (BTEE), in mild conditions and in the absence of surfactant. These hybrid materials show both high surface areas (200-360 m(2)  g(-1) ) and pore volumes (0.3 cm(3)  g(-1) ) even after calcination, and excellent photoactivity in the degradation of rhodamine 6G and in the partial oxidation of propene under UV irradiation, especially after the calcination of the samples. During calcination, there is a change in the Ti(IV) coordination and an increase in the content of SiOTi moieties in comparison with the uncalcined materials, which seems to be responsible for the enhanced photocatalytic activity of hybrid titania-silica materials as compared to both uncalcined samples and the control TiO2 .

  1. Diatomite releases silica during spirit filtration. (United States)

    Gómez, J; Gil, M L A; de la Rosa-Fox, N; Alguacil, M


    The purpose of this study was to ascertain whether diatomite is an inert filter aid during spirit filtration. Surely, any compound with a negative effect on the spirit composition or the consumer's health could be dissolved. In this study different diatomites were treated with 36% vol. ethanol/water mixtures and the amounts and structures of the extracted compounds were determined. Furthermore, Brandy de Jerez was diatomite- and membrane-filtered at different temperatures and the silicon content was analysed. It was found that up to 0.36% by weight of diatomite dissolved in the aqueous ethanol and amorphous silica, in the form of hollow spherical microparticles, was the most abundant component. Silicon concentrations in Brandy de Jerez increased by up to 163.0% after contact with diatomite and these changes were more marked for calcined diatomite. In contrast, reductions of more than 30% in silicon concentrations were achieved after membrane filtration at low temperatures. Copyright © 2014 Elsevier Ltd. All rights reserved.

  2. Search for conserved amino acid residues of the α-crystallin proteins of vertebrates. (United States)

    Shiliaev, Nikita G; Selivanova, Olga M; Galzitskaya, Oxana V


    [Formula: see text]-crystallin is the major eye lens protein and a member of the small heat-shock protein (sHsp) family. [Formula: see text]-crystallins have been shown to support lens clarity by preventing the aggregation of lens proteins. We performed the bioinformatics analysis of [Formula: see text]-crystallin sequences from vertebrates to find conserved amino acid residues as the three-dimensional (3D) structure of [Formula: see text]-crystallin is not identified yet. We are the first who demonstrated that the N-terminal region is conservative along with the central domain for vertebrate organisms. We have found that there is correlation between the conserved and structured regions. Moreover, amyloidogenic regions also correspond to the structured regions. We analyzed the amino acid composition of [Formula: see text]-crystallin A and B chains. Analyzing the occurrence of each individual amino acid residue, we have found that such amino acid residues as leucine, serine, lysine, proline, phenylalanine, histidine, isoleucine, glutamic acid, and valine change their content simultaneously in A and B chains in different classes of vertebrates. Aromatic amino acids occur more often in [Formula: see text]-crystallins from vertebrates than on the average in proteins among 17 animal proteomes. We obtained that the identity between A and B chains in the mammalian group is 0.35, which is lower than the published 0.60.


    Institute of Scientific and Technical Information of China (English)

    殷明志; 张良莹; 姚熹


    Colloidal silica sol is formed by a novel hydrolyzing procedure of tetraethyl-orthosilicate(TEOS) catalyzing with NH3*H2O in aqueous mediums. Glycerol, combining with the hydrolyzed intermediates of TEOS, controls growing of the silica particles; poly(vinyl-vinyl alcohol makes the colloidal silica sol with polymeric structure and spinning, thermal strain makes the gel silica film changed into a nanoporous structure with diameter ranging 50-150 nm. Morphologies of the nanoporous silica film have been characterized; the porosities (%) is 32-64; the average dielectric constant at 1MHz region is 2.0 and 2.1; the thermal conductivity is less than 0.8. Chemical mechanism of the sol-gel process is discussed.

  4. Preparation and Properties of Ethylene Vinyl Acetate Copolymer/Silica Nanocomposites in Presence of EVA-g-Acrylic Acid. (United States)

    Tham, Do Quang; Tuan, Vu Manh; Thanh, Dinh Thi Mai; Chinh, Nguyen Thuy; Giang, Nguyen Vu; Trang, Nguyen Thi Thu; Hang, To Thi Xuan; Huong, Ho Thu; Dung, Nguyen Thi Kim; Hoang, Thai


    Here we report a facile approach to enhance the dispersibility of ethylene vinyl acetate copolymer (EVA)/silica nanocomposites (for the EVA/silica nanocomposites and interaction between silica nanoparticles (nanosilica) and EVA by adding EVA-g-acrylic acid (EVAgAA) as a compatibilizer, which was formed by grafting acrylic acid onto EVA chains with the aid of dicumyl peroxide). The above nanocomposites with and without EVAgAA were prepared by melt mixing in a Haake intermixer with different contents of silica and EVAgAA. Their structure and morphology were characterized by Fourier transform infra-red (FT-IR) spectroscopy, field emission scanning electron microscopy (FE-SEM), and the mechanical, rheological, dielectrical, and flammability properties of the nanocomposites were also investigated. The FT-IR spectra of the nanocomposites confirmed the formation of hydrogen bonds between the surface silanol groups of nanosilica and C=O groups of EVA and/or EVAgAA. The presence of EVAgAA remarkably increased the intensity of hydrogen bonding between nanosilica and EVA which not only enhanced the dispersion of nanosilica in EVA matrix but also increased the mechanical, viscosity and storage modulus of EVA/silica nanocomposites. In addition, the flammability of EVA/silica nanocomposites is also significantly reduced after the functionalization with EVAgAA. However, the mechanical properties of EVA/silica nanocomposites tended to level off when its content was above 1.5 wt.%. It has also been found that the dielectric constant value of the EVA/EVAgAA/silica nanocomposites is much lower than that of the EVA/silica nanocomposites, which is another evidence of the hydrogen bonding formation between EVAgAA and nanosilica.

  5. Stability and cytotoxicity of crystallin amyloid nanofibrils (United States)

    Kaur, Manmeet; Healy, Jackie; Vasudevamurthy, Madhusudan; Lassé, Moritz; Puskar, Ljiljana; Tobin, Mark J.; Valery, Celine; Gerrard, Juliet A.; Sasso, Luigi


    Previous work has identified crystallin proteins extracted from fish eye lenses as a cheap and readily available source for the self-assembly of amyloid nanofibrils. However, before exploring potential applications, the biophysical aspects and safety of this bionanomaterial need to be assessed so as to ensure that it can be effectively and safely used. In this study, crude crystallin amyloid fibrils are shown to be stable across a wide pH range, in a number of industrially relevant solvents, at both low and high temperatures, and in the presence of proteases. Crystallin nanofibrils were compared to well characterised insulin and whey protein fibrils using Thioflavin T assays and TEM imaging. Cell cytotoxicity assays suggest no adverse impact of both mature and fragmented crystallin fibrils on cell viability of Hec-1a endometrial cells. An IR microspectroscopy study supports long-term structural integrity of crystallin nanofibrils.Previous work has identified crystallin proteins extracted from fish eye lenses as a cheap and readily available source for the self-assembly of amyloid nanofibrils. However, before exploring potential applications, the biophysical aspects and safety of this bionanomaterial need to be assessed so as to ensure that it can be effectively and safely used. In this study, crude crystallin amyloid fibrils are shown to be stable across a wide pH range, in a number of industrially relevant solvents, at both low and high temperatures, and in the presence of proteases. Crystallin nanofibrils were compared to well characterised insulin and whey protein fibrils using Thioflavin T assays and TEM imaging. Cell cytotoxicity assays suggest no adverse impact of both mature and fragmented crystallin fibrils on cell viability of Hec-1a endometrial cells. An IR microspectroscopy study supports long-term structural integrity of crystallin nanofibrils. Electronic supplementary information (ESI) available: ThT fluorescence graphs of buffers and solvents used for

  6. Development of a high-throughput solution for crystallinity measurement using THz-Raman spectroscopy (United States)

    Roy, Anjan; Fosse, Jean-Charles; Fernandes, Filipe; Ringwald, Alexandre; Ho, Lawrence


    Rapid identification and the quantitative analysis of crystalline content and the degree of crystallinity is important in pharmaceuticals and polymer manufacturing. Crystallinity affects the bioavailability of pharmaceutical molecules and there is a strong correlation between the performance of polymers and their degree of crystallinity. Low frequency/THz-Raman spectroscopy has enabled determination of crystalline content in materials as a complementary method to X-ray powder diffraction. By incorporating motion stages and microplates, we have extended the applicability of THz-Raman technology to high-throughput screening applications. We describe here a complete THz-Raman microplate reader, with integrated laser, optics, spectrograph and software that are necessary for detecting low-frequency Raman signals. In powder materials scattering is also affected by particle size and the presence of cavities, which lead to a lack of precision and repeatability in Raman intensity measurements. We address this problem by spatial averaging using specific stage motion patterns. This design facilitates rapid and precise measurement of low-frequency vibrational modes, differentiation of polymorphs and other structural characteristics for applications in pharmaceuticals, nano- and bio-materials and for the characterization of industrial polymers where XRPD is commonly used.

  7. Crystalline structure of annealed polylactic acid and its relation to processing

    Directory of Open Access Journals (Sweden)


    Full Text Available This paper focuses on the crystalline structure of injection moulding grade poly(lactic acid (PLA and the effect of crystalline structure on the processing. The research is induced by the significant differences in crystallinity of the pure PLA resin, and the injection moulded product, and thus the reprocessing of PLA products. 2 mm thick PLA sheets were injection moulded and re-crystallized in a conventional oven at 60–140°C, for 10–60 minutes to achieve various crystalline contents. The properties of these sheets were investigated by dynamic mechanical analysis (DMA, differential scanning calorimetry (DSC, and wide angle X-ray diffraction (WAXD. In a processing plant the rejected parts are recycled and reused as raw material for further cycles, accordingly the various crystalline content PLA products were reprocessed as a resin, to investigate the processing itself. When PLA products are reprocessed, due to the adherent feature of amorphous PLA processing difficulties may occur. This adherent effect of the amorphous PLA was investigated and characterized.

  8. Cellulose crystallinity index: measurement techniques and their impact on interpreting cellulase performance. (United States)

    Park, Sunkyu; Baker, John O; Himmel, Michael E; Parilla, Philip A; Johnson, David K


    Although measurements of crystallinity index (CI) have a long history, it has been found that CI varies significantly depending on the choice of measurement method. In this study, four different techniques incorporating X-ray diffraction and solid-state 13C nuclear magnetic resonance (NMR) were compared using eight different cellulose preparations. We found that the simplest method, which is also the most widely used, and which involves measurement of just two heights in the X-ray diffractogram, produced significantly higher crystallinity values than did the other methods. Data in the literature for the cellulose preparation used (Avicel PH-101) support this observation. We believe that the alternative X-ray diffraction (XRD) and NMR methods presented here, which consider the contributions from amorphous and crystalline cellulose to the entire XRD and NMR spectra, provide a more accurate measure of the crystallinity of cellulose. Although celluloses having a high amorphous content are usually more easily digested by enzymes, it is unclear, based on studies published in the literature, whether CI actually provides a clear indication of the digestibility of a cellulose sample. Cellulose accessibility should be affected by crystallinity, but is also likely to be affected by several other parameters, such as lignin/hemicellulose contents and distribution, porosity, and particle size. Given the methodological dependency of cellulose CI values and the complex nature of cellulase interactions with amorphous and crystalline celluloses, we caution against trying to correlate relatively small changes in CI with changes in cellulose digestibility. In addition, the prediction of cellulase performance based on low levels of cellulose conversion may not include sufficient digestion of the crystalline component to be meaningful.

  9. Precise size control over ultrafine rutile titania nanocrystallites in hierarchical nanotubular silica/titania hybrids with efficient photocatalytic activity. (United States)

    Gu, Yuanqing; Huang, Jianguo


    Hierarchical-structured nanotubular silica/titania hybrids incorporated with particle-size-controllable ultrafine rutile titania nanocrystallites were realized by deposition of ultrathin titania sandwiched silica gel films onto each nanofiber of natural cellulose substances (e.g., common commercial filter paper) and subsequent flame burning in air. The rapid flame burning transforms the initially amorphous titania into rutile phase titania, and the silica gel films suppress the crystallite growth of rutile titania, thereby achieving nano-precise size regulation of ultrafine rutile titania nanocrystallites densely embedded in the silica films of the nanotubes. The average diameters of these nanocrystallites are adjustable in a range of approximately 3.3-16.0 nm by a crystallite size increment rate of about 2.4 nm per titania deposition cycle. The silica films transfer the electrons activated by crystalline titania and generate catalytic reactive species at the outer surface. The size-tuned ultrafine rutile titania nanocrystallites distributed in the unique hierarchical networks significantly improve the photocatalytic performance of the rutile phase titania, thereby enabling a highly efficient photocatalytic degradation of the methylene blue dye under ultraviolet light irradiation, which is even superior to the pure anatase-titania-based materials. The facile stepwise size control of the rutile titania crystallites described here opens an effective pathway for the design and preparation of fine-nanostructured rutile phase titania materials to explore potential applications.

  10. Large-Scale Synthesis and Systematic Photoluminescence Properties of Monolayer MoS2 on Fused Silica. (United States)

    Wan, Yi; Zhang, Hui; Zhang, Kun; Wang, Yilun; Sheng, Bowen; Wang, Xinqiang; Dai, Lun


    Monolayer MoS2, with fascinating mechanical, electrical, and optical properties, has generated enormous scientific curiosity and industrial interest. Controllable and scalable synthesis of monolayer MoS2 on various desired substrates has significant meaning in both basic scientific research and device application. Recent years have witnessed many advances in the direct synthesis of single-crystalline MoS2 flakes or their polycrystalline aggregates on numerous diverse substrates, such as SiO2-Si, mica, sapphire, h-BN, and SrTiO3, etc. In this work, we used the dual-temperature-zone atmospheric-pressure chemical vapor deposition method to directly synthesize large-scale monolayer MoS2 on fused silica, the most ordinary transparent insulating material in daily life. We systematically investigated the photoluminescence (PL) properties of monolayer MoS2 on fused silica and SiO2-Si substrates, which have different thermal conductivity coefficients and thermal expansion coefficients. We found that there exists a stronger strain on monolayer MoS2 grown on fused silica, and the strain becomes more obvious as temperature decreases. Moreover, the monolayer MoS2 grown on fused silica exhibits the unique trait of a fractal shape with tortuous edges and has stronger adsorbability. The monolayer MoS2 grown on fused silica may find application in sensing, energy storage, and transparent optoelectronics, etc.

  11. Closed-system behaviour of the intra-crystalline fraction of amino acids in mollusc shells. (United States)

    Penkman, K E H; Kaufman, D S; Maddy, D; Collins, M J


    When mollusc shells are analysed conventionally for amino acid geochronology, the entire population of amino acids is included, both inter- and intra-crystalline. This study investigates the utility of removing the amino acids that are most susceptible to environmental effects by isolating the fraction of amino acids encapsulated within mineral crystals of mollusc shells (intra-crystalline fraction). Bleaching, heating and leaching (diffusive loss) experiments were undertaken on modern and fossil Corbicula fluminalis, Margaritifera falcata, Bithynia tentaculata and Valvata piscinalis shells. Exposure of powdered mollusc shells to concentrated NaOCl for 48 h effectively reduced the amino acid content of the four taxa to a residual level, assumed to represent the intra-crystalline fraction. When heated in water at 140 degrees C for 24 h, only 1% of amino acids were leached from the intra-crystalline fraction of modern shells compared with 40% from whole shell. Free amino acids were more effectively retained in the intra-crystalline fraction, comprising 55% (compared with 18%) of the whole shell after 24 h at 140 degrees C. For fossil gastropods, the inter-shell variability in D/L values for the intra-crystalline fraction of a single-age population was reduced by 50% compared with conventionally analysed shells. In contrast, analysis of the intra-crystalline fraction of C. fluminalis does not appear to improve the results for this taxon, possibly due to variability in shell ultrastructure. Nonetheless, the intra-crystalline fraction in gastropods approximates a closed system of amino acids and appears to provide a superior subset of amino acids for geochronological applications.

  12. D. C. plasma-sprayed coatings of nano-structured alumina-titania-silica

    CERN Document Server

    Jiang Xian Liang


    nano-crystalline powders of omega(Al sub 2 O sub 3) = 95%, omega(TiO sub 2) = 3%, and omega(SiO sub 2) = 2%, were reprocessed into agglomerated particles for plasma spraying, by using consecutive steps of ball milling, slurry forming, spray drying, and heat treatment. D.C. plasma was used to spray the agglomerated nano-crystalline powders, and resultant coatings were deposited on the substrate of stainless steel. Scanning electron microscopy (SEM) was used to examine the morphology of the agglomerated powders and the cross section of the alumina-titania-silica coatings. Experimental results show that the agglomerated nano-crystalline particles are spherical, with a size from (10-90) mu m. The flow ability of the nano-crystalline powders is greatly improved after the reprocessing. The coatings deposited by the plasma spraying are mainly of nano-structure. Unlike conventional plasma-sprayed coatings, no laminar layer could be found in the nano-structured coatings. Although the nano-structured coatings have a lo...

  13. Mineralogy, geochemistry, genesis, and industrial application of silica in Arefi area, south of Mashhad

    Directory of Open Access Journals (Sweden)

    Mohammad Hassan Karimpour


    Full Text Available Introduction Arefi quartz-bearing conglomerate (Middle Jurassic is situated within Binalud structural zone. The unit is trending NW-SE located 25 km south of Mashhad. More than 97% of the pebbles are quartz as mono-crystalline, poly-crystalline, and minor fragments of chert, quartzite, and mica schist. Less that 3% of the remaining minerals are feldspar, mica, chlorite, hornblende, tourmaline, zircon, sphene, and opaque minerals. The cement is mainly silica. Hashemi (Hashemi, 2004 suggested this unit is orthoquartzitic polymictic conglomerate. In this study, we carried out detailed mineralogical studies, geochemical analyses for SiO2 and troublesome elements, determination of quartz pebbles source using geological observations and fluid inclusion microthermometry, and industrial application studies with new insight for porcelain and ceramic factories as the nearest silica-rich reserve to Mashhad. Material and methods 1. Preparing geologic map in 1:10000 scale in the Arefi area. 2. Petrographic study of 65 samples from the quartz-bearing conglomerate unit. 3. Major elements such as SiO2, TFeO, TiO2, and CaO were analyzed at the Maghsoud Porcelain Factories Group, using a Philips PW1480 X-ray spectrometer. 4. Ore dressing analyses in Danesh Faravaran Engineering Company. 5. Fluid-inclusion studies in 4 samples doubly-polished wafers of quartz crystals were studied using standard techniques (Roedder, 1984 and Linkam THM 600 heating-freezing stage (from –190 to 600ºC mounted on a Olympus TH4–200 microscope stage at Ferdowsi University of Mashhad, Iran. Salinities and density of fluid inclusions were calculated using the Microsoft Excel spreadsheet HOKIEFLINCS-H2O-NACL (Steele-MacInnis et al., 2012; Lecumberri-Sanchez et al., 2012 Results and Discussion Fluid Inclusion studies of both mono- and poly- crystalline quartz revealed that the inclusions consist of three phases (LVS with NaCl crystals. Homogenization temperature is between 484 and more

  14. Characterization of gamma-crystallin from a catfish: structural characterization of one major isoform with high methionine by cDNA sequencing. (United States)

    Pan, F M; Chang, W C; Lin, C H; Hsu, A L; Chiou, S H


    gamma-Crystallin is the major and most abundant lens protein present in the eye lens of most teleostean fishes. To facilitate structural characterization of gamma-crystallins isolated from the lens of the catfishes (Clarias fuscus), a cDNA mixture was synthesized from the poly(A)+mRNA isolated from fresh eye lenses, and amplification by polymerase chain reaction (PCR) was adopted to obtain cDNAs encoding various gamma-crystallins. Plasmids of transformed E. coli strain JM109 containing amplified gamma-crystallin cDNAs were purified and prepared for nucleotide sequencing by the dideoxynucleotide chain-termination method. Sequencing more than five clones containing DNA inserts of 0.52 kb revealed the presence of one major isoform with a complete reading frame of 534 base pairs, covering a gamma-crystallin (gamma M1) with a deduced protein sequence of 177 amino acids excluding the initiating methionine. It was of interest to find that this crystallin of pI 9.1 contains a high-methionine content of 15.3% in contrast to those gamma-crystallins of low-methionine content from most mammalian lenses. Sequence comparisons of catfish gamma M1-crystallin with those published sequences of gamma-crystallins from carp, bovine and mouse lenses indicate that there is approx. an 82% sequence homology between the catfish and the carp species of piscine class whereas only 51-58% homology is found between mammals and the catfish. Moreover the differences in the hydropathy profiles for these two groups of gamma-crystallins, i.e. one with a high-methionine content from teleostean fishes and the other with a low-methionine content from mammalian species, reflect a distinct variance in the polarity distributions of surface amino acids in these crystallins.(ABSTRACT TRUNCATED AT 250 WORDS)

  15. Effects of Na and K ions on the crystallization of low-silica X zeolite and its catalytic performance for alkylation of toluene with methanol

    Energy Technology Data Exchange (ETDEWEB)

    Hui, Haitao; Gao, Junhua; Wang, Gencun; Liu, Ping; Zhang, Kan, E-mail:, E-mail: [State Key Laboratory of Coal Conversion, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan (China)


    The crystallization of low-silica X zeolite (LSX) was studied in Na-K gel systems with different extents of replacement of Na by K while fixed content of other components. X-ray diffraction, inductively coupled plasma atomic emission spectroscopy, scanning electron microscopy, infrared spectra, and nuclear magnetic resonance were used to characterize liquid and solid phase. In the synthesis of LSX, the molar ratio of K/(Na + K) affects the crystallization and the composition of final products. A higher mole fraction of K corresponded to a lower crystallization rate, higher concentration of Si in the liquid phase, and lower Si/Al ratio of the obtained LSX. The average size of LSX products steadily increased with the progressive replacement of Na by K in the initial gels, and crystal morphology of the LSX products gradually changed from round to octahedral. For alkylation of toluene with methanol over obtained LSX, the selectivity of ring alkylation product xylene decreased while the side chain alkylation products styrene and ethylbenzene increased with the increased x values except x = 0, which was due to its low crystallinity. (author)


    Institute of Scientific and Technical Information of China (English)

    LI Xiaohu; LU Yun; LIN Sicong


    This paper reports mainly the preparation of silica supported acetylacetone ligands and their cobalt complexes, the characterization of their chemical structure, and the evaluation of their catalytic activity in the reaction for the preparation of ethers directly from alkanols and benzyl chloride. The results indicate that those silica supported β-diketone cobalt complexes (SACO) not only can simplify the reaction procedure of the ether preparation but also show a much higher catalytic activity in comparison with other homogeneous catalysts. In addition, SACO can be recovered and reused although their catalytic activity descend gradually as a result of the decrease in their cobalt content.

  17. Alkali-Silica Reaction Inhibited by LiOH and Its Mechanism

    Institute of Scientific and Technical Information of China (English)


    A high alkali reactive aggregate-zeolitization perlite was used to test the long-term effectiveness of LiOH in inhibiting alkali-silica reaction.In this paper,the rigorous conditions were designed that the mortar bars had been cured at 80℃ for 3 years after autoclaved 24 hours at 150℃.Under this condition,LiOH was able to inhibit the alkali-silica reaction long-term effectiveness.Not only the relationship between the molar ratio of n(Li)/(Na) and the alkali contents in systems was established, but also the governing mechanism of such effects was also studied by SEM.

  18. Thermal, structural and morphological properties of High Density Polyethylene matrix composites reinforced with submicron agro silica particles and Titania particles

    Directory of Open Access Journals (Sweden)

    Oluyemi O. Daramola


    Full Text Available HDPE—based composites samples filled with 2, 4, 6, 8 and 10 wt.% submicron agro-waste silica particles extracted from rice husk ash (RHA at constant 0.3 wt.% Titania loading were prepared using rapra single screw extruder at temperature of 200–230 °C. The extrudates were compressed with a laboratory carver press at a temperature of 230 °C for 10 min under applied pressure of 0.2 kPa and water cooled at 20 °C min−1. Thermal, structural and morphological properties of the composites were studied. The results of the thermogravimetric analysis (TGA revealed that the composites with 10 wt.% SiO2 have the best maximum thermal degradation temperature of 438.73 °C. The crystal structure of neat HDPE, and the siliceous composites developed revealed two obvious diffractive peaks of about 21.3° and 23.7° corresponding to typical crystal plane (1 1 0 and (2 0 0 of orthorhombic phase respectively. The diffractive peaks do not shift with the addition of silica particles; this clearly indicates that the addition of silica particles did not exert much effect on the crystalline structure of HDPE. There is no much difference in the interplanar distance (d-value. Lamellar thickness (L of HDPE increases with the addition of silica particles, which implies that silica particles aid the formation of more perfect crystals. Scanning electron microscopy studies indicated that there were chains inter diffusion and entanglement between HDPE matrix and the silica particles at lower weight fraction (2–4 wt.% of submicron silica particles which resulted into homogeneous dispersion of the particles within the matrix.

  19. Improved Josephson Qubits incorporating Crystalline Silicon Dielectrics (United States)

    Gao, Yuanfeng; Maurer, Leon; Hover, David; Patel, Umeshkumar; McDermott, Robert


    Josephson junction phase quibts are a leading candidate for scalable quantum computing in the solid state. Their energy relaxation times are currently limited by microwave loss induced by a high density of two-level state (TLS) defects in the amorphous dielectric films of the circuit. It is expected that the integration of crystalline, defect-free dielectrics into the circuits will yield substantial improvements in qubit energy relaxation times. However, the epitaxial growth of a crystalline dielectric on a metal underlayer is a daunting challenge. Here we describe a novel approach in which the crystalline silicon nanomembrane of a Silicon-on-Insulator (SOI) wafer is used to form the junction shunt capacitor. The SOI wafer is thermocompression bonded to the device wafer. The handle and buried oxide layers of the SOI are then etched away, leaving the crystalline silicon layer for subsequent processing. We discuss device fabrication issues and present microwave transport data on lumped-element superconducting resonators incorporating the crystalline silicon.

  20. Metal-silica sol-gel materials (United States)

    Stiegman, Albert E. (Inventor)


    The present invention relates to a single phase metal-silica sol-gel glass formed by the co-condensation of a transition metal with silicon atoms where the metal atoms are uniformly distributed within the sol-gel glass as individual metal centers. Any transition metal may be used in the sol-gel glasses. The present invention also relates to sensor materials where the sensor material is formed using the single phase metal-silica sol-gel glasses. The sensor materials may be in the form of a thin film or may be attached to an optical fiber. The present invention also relates to a method of sensing chemicals using the chemical sensors by monitoring the chromatic change of the metal-silica sol-gel glass when the chemical binds to the sensor. The present invention also relates to oxidation catalysts where a metal-silica sol-gel glass catalyzes the reaction. The present invention also relates to a method of performing oxidation reactions using the metal-silica sol-gel glasses. The present invention also relates to organopolymer metal-silica sol-gel composites where the pores of the metal-silica sol-gel glasses are filled with an organic polymer polymerized by the sol-gel glass.

  1. Light-Induced Surface Patterning of Silica. (United States)

    Kang, Hong Suk; Lee, Seungwoo; Choi, Jaeho; Lee, Hongkyung; Park, Jung-Ki; Kim, Hee-Tak


    Manipulating the size and shape of silica precursor patterns using simple far-field light irradiation and transforming such reconfigured structures into inorganic silica patterns by pyrolytic conversion are demonstrated. The key concept of our work is the use of an azobenzene incorporated silica precursor (herein, we refer to this material as azo-silane composite) as ink in a micromolding process. The moving direction of azo-silane composite is parallel to light polarization direction; in addition, the amount of azo-silane composite movement can be precisely determined by controlling light irradiation time. By exploiting this peculiar phenomenon, azo-silane composite patterns produced using the micromolding technique are arbitrarily manipulated to obtain various structural features including high-resolution size or sophisticated shape. The photoreconfigured patterns formed with azo-silane composites are then converted into pure silica patterns through pyrolytic conversion. The pyrolytic converted silica patterns are uniformly formed over a large area, ensuring crack-free formation and providing high structural fidelity. Therefore, this optical manipulation technique, in conjunction with the pyrolytic conversion process, opens a promising route to the design of silica patterns with finely tuned structural features in terms of size and shape. This platform for designing silica structures has significant value in various nanotechnology fields including micro/nanofluidic channel for lab-on-a-chip devices, transparent superhydrophobic surfaces, and optoelectronic devices.

  2. Spatial ordering and abnormal optical activity of DNA liquid-crystalline dispersion particles (United States)

    Semenov, S. V.; Yevdokimov, Yu. M.


    In our work, we investigate physicochemical and optical properties of double-strand DNA dispersions. The study of these properties is of biological interest, because it allows one to describe the characteristics of certain classes of chromosomes and DNA containing viruses. The package pattern of DNA molecules in the dispersions particles (DP) is examined. The consideration of the DNA liquid-crystalline DP optical activity based on the theory of electromagnetic wave absorption by large molecular aggregates has been performed. The investigation is also focused on various effects induced by the interaction between biological active compounds and DNA in the content of liquid-crystalline DP.

  3. Effects of magnesium potassium phosphate cements mixed with silica fume on the solidification and reduction of municipal sludge (United States)

    Chen, Yanchang; Wang, Lixin; Song, Peng; Wang, Qi


    In order to investigate Magnesium-Potassium Phosphate Cement (MKPC) mixed with silica fume on the solidification and reduction of high moisture content (94%) of municipal sludge. The moisture content of the solidified sludge, volume shrinkage, compressive strength and other properties were studied, and the mechanism was discussed based on phase and morphology analysis. The results indicates that the solidified sludge (30% MKPC) with 30% silica fume can obtain with the early compressive strength of 430 KPa, which reached the requirements of the landfill (≥ 350 KPa). The moisture content of solidified sludge decrease to 30% and the volume shrinkage of solidified sludge can reduce to 68% or less at 7d, which played a key role for sludge reduction. MKPC and silica fume form skeleton structure that can promote the evaporation of moisture in the sludge.

  4. Rapid Sintering of Silica Xerogel Ceramic Derived from Sago Waste Ash Using Sub-millimeter Wave Heating with a 300 GHz CW Gyrotron (United States)

    Aripin, Haji; Mitsudo, Seitaro; Sudiana, I. Nyoman; Tani, Shinji; Sako, Katsuhide; Fujii, Yutaka; Saito, Teruo; Idehara, Toshitaka; Sabchevski, Sliven


    In this paper, we present and discuss experimental results from a microwave sintering of a silica-glass ceramic, produced from a silica xerogel extracted from a sago waste ash. As a radiation source for the microwave heating a sub-millimeter wave gyrotron (Gyrotron FU CW I) with an output frequency of 300 GHz has been used. The powders of silica xerogel have been dry pressed and then sintered at temperatures ranging from 300°C to 1500°C. The influence of the sintering temperature on the technological properties such as porosity and bulk density was studied in detail. Furthermore, X-ray diffraction (XRD) and Fourier Transform Infrared (FTIR) spectroscopy have been used in order to study the structure of the produced silica glass-ceramics. It has been found that the silica xerogel crystallizes at a temperature of 800°C, which is about 200°C lower than the one observed in the conventional process. The silica xerogel samples sintered by their irradiation with a sub-millimeter wave at 900°C for 18 minutes are fully crystallized into a silica glass-ceramic with a density of about 2.2 g/cm3 and cristobalite as a major crystalline phase. The results obtained in this study allow one to conclude that the microwave sintering with sub-millimeter waves is an appropriate technological process for production of silica glass-ceramics from a silica xerogel and is characterized with such advantages as shorter times of the thermal cycle, lower sintering temperatures and higher quality of the final product.


    Institute of Scientific and Technical Information of China (English)

    Wei Huang; Ying Huang; Yunzhao Yu


    Trimethylsilylated silica was synthesized through hydrolytic condensation of tetraethoxysilane followed by trimethylsilylation. Rheological properties of the silicone resin with trimethylsilylated silica as modifier were studied. It turned out that the particle size of silica was important to the rheological behavior of the modified resin. Trimethylsilylated silica of medium particle size shows the strongest tendency of forming physical network in the resin.

  6. Controlled silica synthesis inspired by diatom silicon biomineralization

    NARCIS (Netherlands)

    Vrieling, EG; Sun, QY; Beelen, TPM; Hazelaar, S; Gieskes, WWC; van Santen, RA; Sommerdijk, NAJM


    Silica becomes increasingly used in chemical, pharmaceutical, and (nano)technological processes', resulting in an increased demand for well-defined silicas and silica-based materials. The production of highly structured silica from cheap starting materials and under ambient conditions, which is a ta

  7. Controlled silica synthesis inspired by diatom silicon biomineralization

    NARCIS (Netherlands)

    Vrieling, EG; Sun, QY; Beelen, TPM; Hazelaar, S; Gieskes, WWC; van Santen, RA; Sommerdijk, NAJM

    Silica becomes increasingly used in chemical, pharmaceutical, and (nano)technological processes', resulting in an increased demand for well-defined silicas and silica-based materials. The production of highly structured silica from cheap starting materials and under ambient conditions, which is a

  8. Dual-setting brushite-silica gel cements. (United States)

    Geffers, Martha; Barralet, Jake E; Groll, Jürgen; Gbureck, Uwe


    The current study describes a dual-mechanism-setting cement that combines a brushite-forming cement paste with a second inorganic silica-based precursor. Materials were obtained by pre-hydrolyzing tetraethyl orthosilicate (TEOS) under acidic conditions following the addition of a calcium phosphate cement (CPC) powder mixed of β-tricalcium phosphate and monocalcium phosphate. Cement setting occurred by a dissolution-precipitation process, while changes in pH during setting simultaneously initiated the condensation reaction of the hydrolyzed TEOS. This resulted in an interpenetrating phase composite material in which the macropores of the CPC were infiltrated by the microporous silica gel, leading to a higher density and a compressive strength ∼5-10 times higher than the CPC reference. This also altered the release of vancomycin as a model drug, whereby in contrast to the quantitative release from the CPC reference, 25% of the immobilized drug remained in the composite matrix. By varying the TEOS content in the composite, the cement phase composition could be controlled to form either brushite, anhydrous monetite or a biphasic mixture of both. The composites with the highest silicate content showed a cell proliferation similar to a hydroxyapatite reference with a significantly higher activity per cell. Surprisingly, the biological response did not seem to be attributed to the released silicate ions, but to the release of phosphate and the adsorption of magnesium ions from the cell culture medium.


    Institute of Scientific and Technical Information of China (English)

    Elhussein A.Taha; Jun-tao Wu; Kai Gao; Lin Guo


    Fumed silica/bisphenol A dicyanate ester (BADCy) nanocomposites were prepared by introducing different contents of nano-sized fumed SiO2 into the BADCy matrix.Two different average primary particle diameters of 12 and 40 nm were chosen.Dibutyltindilaurate (DBTDL) catalyst was chosen to catalyze the cyanate ester group into triazine group via cyclotrimerization reaction.The SEM micrographs indicated that the fumed SiO2 particles were homogeneously dispersed in the poly(bisphenol A dicyanate) matrix by means of ultrasonic treatment and the addition of a coupling agent.The FTIR spectroscopy shows that,not only DBTDL catalyzes the polymerization reaction but also-OH groups of the SiO2 particles surface help the catalyst for the complete polymerization of BADCy monomer.The thermal stability of the cured BADCy can be improved by adequate addition of fumed SiO2.A slight increase in the dielectric constant and dielectric loss values were identified by testing the dielectric properties of the prepared nanocomposite samples.By increasing the SiO2 content,there was a slight increasing in the thermal conductivity values of the tested samples.The obtained results proved that the fumed silica/BADCy nanocomposites had good thermal and dielectrical properties and can be used in many applications such as in the thermal insulation field.

  10. Silica Microcapsules Prepared by Interfacial Reaction Methods

    Institute of Scientific and Technical Information of China (English)

    M; Fujiwara; K; Shiokawa; Y; Nakahara


    1 Results Silica spherical particles with hollow structure are directly prepared by interfacial reaction methods using W/O/W emulsion (schematic diagram in Fig.1)[1].Fig.1 Silica microcapsule formationThe mixing of W/O emulsion consisting of sodium silicate solution (inner water phase) and n-hexane solution (oil phase) to outer water phase dissolving NH4HCO3 or other salts affords silica microcapsules.The critical feature of this method is the direct formation of hollow structure.Therefore,the core com...

  11. Structural changes in bunched crystalline ion beams

    CERN Document Server

    Bussmann, M; Schätz, T; Habs, D


    Measurements of the spatial distribution of bunched crystalline ion beams in the radio frequency quadrupole storage ring PALLAS are presented for different ratios of the longitudinal and the transverse confinement strengths. The length of highly elongated crystalline ion bunches and its dependence on the bunching voltage is compared to predictions for a one-dimensional ion string and three-dimensional space-charge-dominated beams. The length is found to be considerably shorter than that predicted by the models. Furthermore, the scaling of the length with the bunching voltage is shown to differ from the expected inverse cube root scaling. These differences can partially be attributed to the formation of a mixed crystalline structure. Additionally, a concise mapping of the structural transition from a string to a zig-zag configuration as a function of the ratio of the confinement strengths is presented, which in a similar way deviates from the predictions.

  12. Cooling and heating of crystalline ion beams

    CERN Document Server

    Schramm, U; Bussmann, M; Habs, D


    The crystallization of ion beams has recently been established in the rf quadrupole storage ring PALLAS (PAul Laser CooLing Acceleration System) for laser-cooled sup 2 sup 4 Mg sup + ion beams at an energy of about 1 eV. Yet, unexpectedly sharp constraints had to be met concerning the confinement strength and the longitudinal laser cooling rate. In this paper, related and up to now unseen heating mechanisms are pinpointed for crystalline beams. The weak but inevitable diffusive transverse heating associated with the laser cooling process itself is investigated, possibly allowing the future measurement of the latent heat of the ion crystal. As a function of the beam velocity, the influence of bending shear on the attainability of larger crystalline structures is presented. Finally, rf heating of crystalline beams of different structure is studied for discontinuous cooling.

  13. Liquid Crystalline Materials for Biological Applications. (United States)

    Lowe, Aaron M; Abbott, Nicholas L


    Liquid crystals have a long history of use as materials that respond to external stimuli (e.g., electrical and optical fields). More recently, a series of investigations have reported the design of liquid crystalline materials that undergo ordering transitions in response to a range of biological interactions, including interactions involving proteins, nucleic acids, viruses, bacteria and mammalian cells. A central challenge underlying the design of liquid crystalline materials for such applications is the tailoring of the interface of the materials so as to couple targeted biological interactions to ordering transitions. This review describes recent progress toward design of interfaces of liquid crystalline materials that are suitable for biological applications. Approaches addressed in this review include the use of lipid assemblies, polymeric membranes containing oligopeptides, cationic surfactant-DNA complexes, peptide-amphiphiles, interfacial protein assemblies and multi-layer polymeric films.

  14. Synthesis and biological response of casein-based silica nano-composite film for drug delivery system. (United States)

    Ma, Jianzhong; Xu, Qunna; Zhou, Jianhua; Zhang, Jing; Zhang, Limin; Tang, Huiru; Chen, Lihong


    Casein possesses many interesting properties that make it a good candidate for conventional and novel drug delivery systems. In this study, casein-based silica nano-composite was prepared via double in situ method, and the as-prepared latex particles were evaluated in terms of their morphology and size through transmission electron microscopy (TEM). The film morphology was investigated by scanning electron microscopy (SEM) and energy dispersive X-ray (EDX), and the mechanical property and response behavior of the films as a function of silica content were discussed. Ibuprofen was used as the model drug. The drug load and release properties were studied by solid-state nuclear magnetic resonance (solid-state NMR), Fourier transform infrared (FT-IR), SEM and in vitro test. The composite latex particle showed a stable core-shell structure, and the film exhibited a regular surface with even SiO2 distribution. The drug load efficiency of the composite films increased with adding silica because of the adsorption of the drugs on the silica. In an acidic release medium, the ibuprofen-loaded composite showed a slower drug release dependent on the silica content. These behaviors were most likely due to the reduced diffusion rate of the drug through the composite microsphere, which resulted from the interaction between the silica and the drug.

  15. Structural Variety and Adsorptive Properties of Mesoporous Silicas with Immobilized Oligosaccharide Groups (United States)

    Trofymchuk, Iryna; Roik, Nadiia; Belyakova, Lyudmila


    In this research, we report on the synthesis of mesoporous silicas with various quantities of immobilized oligosaccharide groups and different pore ordering degree. The hydrothermal co-condensation of tetraethyl orthosilicate and β-cyclodextrin-containing organosilane in the presence of cetyltrimethylammonium bromide template was employed. The purpose of this investigation was to show the opportunity of increasing β-cyclodextrin content in silica matrix by changing the molar ratio of initial reagents during organosilane synthesis and to determine whether the enhancing of immobilized groups on the surface influences on model aromatic compound adsorption from water. It was prepared several β-cyclodextrin-organosilanes by modification of (3-aminopropyl)triethoxysilane with oligosaccharide (the molar composition of reaction mixtures were 1:1, 3:1, and 5:1) with using N, N'-carbonyldiimidazole as linking agent. Three types of MCM-41 materials were obtained with 0.018, 0.072, and 0.095 mmol g-1 β-cyclodextrin-group loading according to chemical analysis of silicas. The IR spectroscopy and potentiometric titration were also performed to confirm the presence of functional groups in the silica matrix. Nitrogen sorptometry experiments exhibited the decrease of high surface area (from 812 to 457 m2 g-1) and the average pore diameter (from 1.06 to 0.60 cm3 g-1) of synthesized silicas with increasing of immobilized oligosaccharide groups. The influence of β-cyclodextrin-organosilane presence on the forming of hexagonally arranged porous structure of silicas was evaluated by X-ray diffraction and TEM analyses. As the loading of oligosaccharide groups increases in obtained silicas, the (100) reflex in diffraction patterns is even less intense and broader, denoting the decrease of long-range pore ordering. Adsorption experiments were carried out to study the effect of β-cyclodextrin groups' attendance in silica matrix on benzene uptakes from aqueous solutions. Experimental

  16. Influence of He+ long-time irradiation on silica luminescence spectrum (United States)

    Zhurenko, V.; Kalantaryan, O.; Kononenko, S.; Mysiura, I.; Barannik, E.


    The paper deals with experimental investigation of 420 keV He+ dose dependence of silica (medium OH-group contents) luminescence. It was founded that experimental spectra were good fitted by two Voigt peaks centered in 2.7 and 1.9 eV. The absorption dose growth influenced on silica ionoluminescence spectra due to increase of radiation defects. We compared the obtained results with 420 keV hydrogen ion irradiation data for the same samples. It was shown that relative intensity of red band correlated with specific energy losses and effective charge of ions in silica. The theoretical simulation of helium ion implantation and intrinsic defect dynamics was performed. The dependence of ionoluminescence intensity on observation angle was measured.

  17. Tailored sPP/Silica Nanocomposite for Ecofriendly Insulation of Extruded HVDC Cable

    Directory of Open Access Journals (Sweden)

    Bin Dang


    Full Text Available Cross-linked polyethylene (XLPE is a thermosetting material that cannot be recycled at the end of its lifetime. This study investigated the potential of syndiotactic polypropylene (sPP/silica as an ecofriendly extruded insulation system for HVDC cables. We investigated the morphology, Fourier transform infrared, and thermal, thermomechanical, and electrical behaviors of sPP modified with 0.5–3% nanosilica. We found that the silica/sPP nanocomposite without cross-linking offered a suitable mechanical modulus at room temperature and sufficient intensity at high temperatures, and adding nanosilica modified by a silane coupling agent to the sPP resulted in significant DC resistivity and space charge improvement. The optimal nanosilica content in the sPP was determined by balancing the mechanical and thermomechanical characteristics and the DC resistivity. The sPP/silica nanocomposite reported here shows great potential as a candidate insulation material for future ecofriendly extruded HVDC cables.


    Institute of Scientific and Technical Information of China (English)

    Hua Li; Shu-xue Zhou; Bo You; Li-min Wu


    Poly(St-co-BuA)/silica nanocomposite latexes were synthesized via conventional emulsion polymerization in the presence of 3-(trimethoxysilyl)propyl methacrylate modified colloidal nano-silica. The effects of surface property, particle size and content of colloidal nano-silica as well as the concentrations of monomer and surfactant on the morphology of nanocomposite latex particles were investigated by transmission electron microscope (TEM) and scanning electron microscope (SEM) in detail. Various interesting morphologies such as grape-like, Chinese gooseberry-like, pomegranate-like and normal core-shell structures were observed. Droplet nucleation mechanism competing with micelle nucleation mechanism was proposed to explain the morphological evolution of the nanocomposite particles.

  19. Effects of Cu over Pd based catalysts supported on silica or niobia

    Directory of Open Access Journals (Sweden)

    Roma M.N.S.C.


    Full Text Available Palladium and palladium-copper catalysts supported on silica and niobia were characterized by H2 chemisorption and H2-O2 titration. Systems over silica were also analyzed by transmission electron microscopy and EXAFS. The metallic dispersion decreased from 20% to 7% when the content of Pd was increased from 0.5wt.-% to 3wt.-% in monometallic catalysts. The addition of 3 wt.-% Cu to obtain Pd-Cu catalysts caused a remarkable capacity loss of hydrogen chemisorption. TPR analysis suggested an interaction between the two metals and EXAFS characterization of the catalyst supported on silica confirmed the formation of Pd-Cu alloy. Pd/Nb2O5 catalysts showed turnover numbers higher than those obtained with the Pd/SiO2 systems in the cyclohexane dehydrogenation. However, the bimetallic catalysts showed very low turnover numbers.

  20. The influence of silica functionalized with silanes on migration of heavy metals in soil

    Directory of Open Access Journals (Sweden)

    Grzesiak Piotr


    Full Text Available 3-Mercaptopropyl-trimethoxysilane and [3-(2-aminoethylaminopropyl]trimethoxysilane were used to functionalize the surface of silica from Piotrowice in Poland to stabilize heavy metals (HMs and arsenic in soil. The soil for the study was sampled from the impact zone of Głogów Copper Smelter and Refinery. The soil samples were exposed to five-step Tessier sequential extraction. The speciation studies were limited to five sequentially defined fractions in which metal content was determined. The addition of unmodified silica did not affect significantly the concentration of metals in individual fractions. Significant changes were noted upon introduction of functionalized silica in the soil. The hybrid formulations obtained significantly reduce the release of heavy metals and arsenic from soil sorption complex. The results indicate the potential use of functional formulations for reduction of metal migration in soil in the areas of exceeded concentration of heavy metals and arsenic in the soil, caused by industrial activity.

  1. Ceramics manufacturing contributes to ambient silica air pollution and burden of lung disease. (United States)

    Liao, Chung-Min; Wu, Bo-Chun; Cheng, Yi-Hsien; You, Shu-Han; Lin, Yi-Jun; Hsieh, Nan-Hung


    Inhalation of silica (SiO2) in occupational exposures can cause pulmonary fibrosis (silicosis), lung function deficits, pulmonary inflammation, and lung cancer. Current risk assessment models, however, cannot fully explain the magnitude of silica-induced pulmonary disease risk. The purpose of this study was to assess human health risk exposed to airborne silica dust in Taiwan ceramics manufacturing. We conducted measurements to characterize workplace-specific airborne silica dust in tile and commodity ceramic factories and used physiologically based alveolar exposure model to estimate exposure dose. We constructed dose-response models for describing relationships between exposure dose and inflammatory responses, by which health risks among workers can be assessed. We found that silica contents were 0.22-33.04 % with mean concentration ranges of 0.11-5.48 and 0.46-1763.30 μg m(-3), respectively, in commodity and tile ceramic factories. We showed that granulation workers in tile ceramic factory had the highest total SiO2 lung burden (∼1000 mg) with cumulative SiO2 lung burden of ∼4 × 10(4) mg-year. The threshold estimates with an effect on human lung inflammation and fibrosis are 407.31 ± 277.10 (mean ± sd) and 505.91 ± 231.69 mg, respectively. For granulation workers, long-term exposure to airborne silica dust for 30-45 years was likely to pose severe adverse health risks of inflammation and fibrosis. We provide integrated assessment algorithms required to implement the analyses and maintain resulting concentration of silica dust at safety threshold level in the hope that they will stimulate further analyses and interpretation. We suggest that decision-makers take action to implement platforms for effective risk management to prevent the related long-term occupational disease in ceramics manufacturing.

  2. Electronic processes in non-crystalline materials

    CERN Document Server

    Mott, Nevill Francis


    Since the first edition of this highly successful book the field saw many great developments both in experimental and theoretical studies of electrical properties of non-crystalline solids. It became necessary to rewrite nearly the whole book, while the aims of the second edition remained the same: to set out the theoretical concepts, to test them by comparison with experiment for a wide variety of phenomena, and to apply them to non-crystalline materials. Sir Nevill Mott shared the1977 Nobel Prize for Physics, awarded for his research work in this field. The reissue of this book as part of th

  3. Photochromism of 36-Armed Liquid Crystalline Dendrimer

    Institute of Scientific and Technical Information of China (English)


    The photochromism of a 36-armed liquid crystalline dendrimer D6 was briefly described in this paper. The molar absorption coefficient, photoisomerization and photo back-isomerization of D6 in solution were investigated by UV/Vis absorption spectra. The results indicate that the photochromism and photo back-isomerization of D6 in chloroform (CHCl3) and tetrahydrofuran (THF) solutions are in accordance with the first order kinetics. The photochromism rate constants of D6 are 10-1 s-1, it is 107 times larger than that of side-chain liquid crystalline polymers containing the same azobenzene moieties.

  4. Used fuel disposition in crystalline rocks

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Y. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Hadgu, Teklu [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Kalinina, Elena Arkadievna [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Jerden, James L. [Argonne National Lab. (ANL), Argonne, IL (United States); Copple, Jacqueline M. [Argonne National Lab. (ANL), Argonne, IL (United States); Cruse, T. [Argonne National Lab. (ANL), Argonne, IL (United States); Ebert, W. [Argonne National Lab. (ANL), Argonne, IL (United States); Buck, E. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Eittman, R. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Tinnacher, R. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Tournassat, Christophe. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Davis, J. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Viswanathan, H. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Chu, S. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Dittrich, T. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Hyman, F. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Karra, S. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Makedonska, N. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Reimus, P. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Zavarin, Mavrik [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Joseph, C. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)


    The U.S. Department of Energy Office of Nuclear Energy, Office of Fuel Cycle Technology established the Used Fuel Disposition Campaign (UFDC) in fiscal year 2010 (FY10) to conduct the research and development (R&D) activities related to storage, transportation and disposal of used nuclear fuel and high level nuclear waste. The objective of the Crystalline Disposal R&D Work Package is to advance our understanding of long-term disposal of used fuel in crystalline rocks and to develop necessary experimental and computational capabilities to evaluate various disposal concepts in such media.

  5. Liquid crystalline thermosetting polyimides. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Hoyt, A.E.; Huang, S.J. [Connecticut Univ., Storrs, CT (United States). Inst. of Materials Science


    Phase separation of rodlike reinforcing polymers and flexible coil matrix polymers is a common problem in formulating molecular composites. One way to reduce phase separation might be to employ liquid crystalline thermosets as the matrix material. In this work, functionally terminated polyimide oligomers which exhibit lyotropic liquid crystalline behavior were successfully prepared. Materials based on 2,2{prime}-bis(trifluoromethyl)-4,4{prime}-diaminobiphenyl and 3,3{prime},4,4{prime}-biphenylenetetra-carboxylic dianhydride have been synthesized and characterized.

  6. Exact Topological Twistons in Crystalline Polyethylene

    CERN Document Server

    Ventura, E; Bazeia, D


    We investigate the presence of topological twistons in crystalline polyethylene. We describe crystalline polyethylene with a model that couples the torsional and longitudinal degrees of freedom of the polymeric chain by means of a system of two real scalar fields. This model supports topological twistons, which are described by exact and stable topological solutions that appear when the interaction between torsional and longitudinal fields is polynomial, containing up to the sixth power in the fields. We calculate the energy of the topological twiston, and the result is in very good agreement with the value obtained via molecular simulation.

  7. Observation of atomic collisions in crystalline solids

    CERN Document Server

    Nelson, R S; Gevers, R


    The Observation of Atomic Collisions in Crystalline Solids presents a critical account of the more important experiments which have provided the basis for a better understanding of atomic collision phenomena in crystalline solids. Collisions have been divided into two artificial regimes; primary collisions which deal with the interaction of the incident particles with the solid, and secondary collisions which deal with those events which occur as a result of lattice atoms recoiling from primary encounters. Although the book is intended principally for the experimentalist some simple theoretica

  8. Monolithic aerogels with nanoporous crystalline phases (United States)

    Daniel, Christophe; Guerra, Gaetano


    High porosity monolithic aerogels with nanoporous crystalline phases can be obtained from syndiotactic polystyrene and poly(2,6-dimethyl-1,4-phenylene)oxide thermoreversible gels by removing the solvent with supercritical CO2. The presence of crystalline nanopores in the aerogels based on these polymers allows a high uptake associated with a high selectivity of volatile organic compounds from vapor phase or aqueous solutions even at very low activities. The sorption and the fast kinetics make these materials particularly suitable as sorption medium to remove traces of pollutants from water and moist air.

  9. Silica xerogel-chitosan nano-hybrids for use as drug eluting bone replacement. (United States)

    Lee, Eun-Jung; Jun, Shin-Hee; Kim, Hyoun-Ee; Kim, Hae-Won; Koh, Young-Hag; Jang, Jun-Hyeog


    Silica xerogel-chitosan hybrids containing vancomycin were fabricated by the sol-gel process at room temperature and their potential as a drug eluting bone replacement was evaluated in terms of their mechanical properties and drug release behaviors. Regardless of the content of chitosan, all of the prepared hybrids had a uniform mesoporous structure, which would allow the effectual loading of vancomycin. As the content of chitosan was increased, the strength, strain to failure, and work of fracture of the hybrids were significantly enhanced, while the elastic modulus was decreased. These changes in the mechanical properties were mainly attributed to the mitigation of the brittleness of the silica xerogel through its hybridization with the flexible chitosan phase. In addition, the initial burst-effect was remarkably reduced by increasing the content of chitosan. The hybrids with more than 30% chitosan could release the vancomycin for an extended period of time in a controlled manner.

  10. Controversial effects of fumed silica on the curing and thermomechanical properties of epoxy composites

    Directory of Open Access Journals (Sweden)


    Full Text Available The effect of fumed silica on the curing of a trimethylolpropane epoxy resin was investigated by thermal analysis methods like Differential Scanning Calorimetry (DSC, and Dynamic Mechanical Analysis (DMA. The fumed silica used here is a by-product of the silicon and ferrosilicon industry, consisting of micro and nanosized particles. Both the curing reaction and the properties of the obtained composites were affected by the filler content. Different trends were observed for filler contents above and below the 30 wt%. Up to 30 wt%, the behaviour can be explained as a predominantly agglomeration effect. For 30 wt% and higher filler contents, single particles seem to play a more important role.

  11. Ionoluminescence induced by swift heavy ions in silica and quartz: A comparative analysis

    Energy Technology Data Exchange (ETDEWEB)

    Jimenez-Rey, D. [Centro de Micro-Analisis de Materiales, Universidad Autonoma de Madrid (UAM), Cantoblanco, E-28049 Madrid (Spain); Pena-Rodriguez, O., E-mail: [Centro de Micro-Analisis de Materiales, Universidad Autonoma de Madrid (UAM), Cantoblanco, E-28049 Madrid (Spain); Instituto de Optica, Consejo Superior de Investigaciones Cientificas (CSIC), C/ Serrano 121, E-28006 Madrid (Spain); Manzano-Santamaria, J. [Centro de Micro-Analisis de Materiales, Universidad Autonoma de Madrid (UAM), Cantoblanco, E-28049 Madrid (Spain); Euratom/CIEMAT Fusion Association, Madrid (Spain); Olivares, J. [Centro de Micro-Analisis de Materiales, Universidad Autonoma de Madrid (UAM), Cantoblanco, E-28049 Madrid (Spain); Instituto de Optica, Consejo Superior de Investigaciones Cientificas (CSIC), C/ Serrano 121, E-28006 Madrid (Spain); Munoz-Martin, A. [Centro de Micro-Analisis de Materiales, Universidad Autonoma de Madrid (UAM), Cantoblanco, E-28049 Madrid (Spain); Rivera, A. [Instituto de Fusion Nuclear, Universidad Politecnica de Madrid, C/ Jose Gutierrez Abascal 2, E-28006 Madrid (Spain); Agullo-Lopez, F. [Centro de Micro-Analisis de Materiales, Universidad Autonoma de Madrid (UAM), Cantoblanco, E-28049 Madrid (Spain)


    Ionoluminescence (IL) of the two SiO{sub 2} phases, amorphous silica and crystalline quartz, has been comparatively investigated in this work, in order to learn about the structural defects generated by means of ion irradiation and the role of crystalline order on the damage processes. Irradiations have been performed with Cl at 10 MeV and Br at 15 MeV, corresponding to the electronic stopping regime (i.e., where the electronic stopping power S{sub e} is dominant) and well above the amorphization threshold. The light-emission kinetics for the two main emission bands, located at 1.9 eV (652 nm) and 2.7 eV (459 nm), has been measured under the same ion irradiation conditions as a function of fluence for both, silica and quartz. The role of electronic stopping power has been also investigated and discussed within current views for electronic damage. Our experiments provide a rich phenomenological background that should help to elucidate the mechanisms responsible for light emission and defect creation.

  12. Fixed Bed Adsorption of Drugs on Silica Aerogel from Supercritical Carbon Dioxide Solutions

    Directory of Open Access Journals (Sweden)

    Giuseppe Caputo


    Full Text Available Supercritical adsorption coupled with the high adsorption capacity of silica aerogel allows the preparation of a new kind of delivery systems of poor water soluble drugs. In order to overcome drawbacks of conventional techniques where the use of liquid solvents can cause the fracture of aerogel porous structure, in this work a new adsorption process of drugs from a supercritical mixture is proposed. Adsorption takes place from a fluid solution of the drug in supercritical CO2 and ethanol as cosolvent. A fixed bed adsorption plant has been developed to allow fast mixing of fluid phase and effective contact in the adsorption column. The use of ethanol as cosolvent allows to overcome the limitation of supercritical adsorption due to low solubility of many drugs in supercritical CO2. Adsorption isotherms were measured for one-model substance, nimesulide, at 40°C, and breakthrough curve was experimentally obtained. The drug loading of the drug into silica aerogel was up to 9 wt%. The drug composite was characterized using scanning electron microscopy, and release kinetics of the adsorbed drug were also evaluated by in vitro dissolution tests. The dissolution of nimesulide from loaded aerogel is much faster than dissolution of crystalline nimesulide. Around 80% of nimesulide dissolves from the aerogel within 6 minutes, whereas dissolving 80% of the crystalline drug takes about 90 min.

  13. Interfacial interaction between the epoxidized natural rubber and silica in natural rubber/silica composites

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Tiwen [College of Materials Science and Engineering, South China University of Technology, Guangzhou 510640 (China); Jia, Zhixin, E-mail: [College of Materials Science and Engineering, South China University of Technology, Guangzhou 510640 (China); Luo, Yuanfang; Jia, Demin [College of Materials Science and Engineering, South China University of Technology, Guangzhou 510640 (China); Peng, Zheng [Agricultural Product Processing Research Institute, Chinese Academy of Tropical Agriculture Sciences, Zhanjiang 524001 (China)


    Highlights: • Substantiate the ring open reaction between Si-OH of silica and epoxy groups of ENR. • ENR can act as a bridge between NR and silica to enhance the interfacial interaction. • As a modifier, ENR gets the potential to be used in the tread of green tire for improving the wet skid resistance apparently. - Abstract: The epoxidized natural rubber (ENR) as an interfacial modifier was used to improve the mechanical and dynamical mechanical properties of NR/silica composites. In order to reveal the interaction mechanism between ENR and silica, the ENR/Silica model compound was prepared by using an open mill and the interfacial interaction of ENR with silica was investigated by Fourier transform infrared spectroscopy (FTIR), X-ray photoelectron spectroscopy (XPS), transmission electron microscopy (TEM), X-ray diffraction (XRD) and stress–strain testing. The results indicated that the ring-opening reaction occurs between the epoxy groups of ENR chains and Si-OH groups on the silica surfaces and the covalent bonds are formed between two phases, which can improve the dispersion of silica in the rubber matrix and enhance the interfacial combination between rubber and silica. The ring-opening reaction occurs not only in vulcanization process but also in mixing process, meanwhile, the latter seems to be more important due to the simultaneous effects of mechanical force and temperature.

  14. Interference sources in ATP bioluminescence assay of silica nanoparticle toxicity to activated sludge. (United States)

    Sibag, Mark; Kim, Seung Hwan; Kim, Choah; Kim, Hee Jun; Cho, Jinwoo


    ATP measurement provides an overview of the general state of microbial activity, and thus it has proven useful for the evaluation of nanoparticle toxicity in activated sludge. ATP bioluminescence assay, however, is susceptible to interference by the components of activated sludge other than biomass. This paper presents the interference identified specific to the use of this assay after activated sludge respiration inhibition test of silica nanoparticles (OECD 209). We observed a high degree of interference (90%) in the presence of 100 mg/L silica nanoparticles and a low level of ATP being measured (0.01 μM); and 30% interference by the synthetic medium regardless of silica nanoparticle concentration and ATP level in the samples. ATP measurement in activated sludge with different MLSS concentrations revealed interference of high biomass content. In conclusion, silica nanoparticles, synthetic medium and activated sludge samples themselves interfere with ATP bioluminescence; this will need to be considered in the evaluation of silica nanoparticle toxicity to activated sludge when this type of assay is used.

  15. Target dependent femtosecond laser plasma implantation dynamics in enabling silica for high density erbium doping (United States)

    Chandrappan, Jayakrishnan; Murray, Matthew; Kakkar, Tarun; Petrik, Peter; Agocs, Emil; Zolnai, Zsolt; Steenson, D. P.; Jha, Animesh; Jose, Gin


    Chemical dissimilarity of tellurium oxide with silica glass increases phase separation and crystallization tendency when mixed and melted for making a glass. We report a novel technique for incorporating an Er3+-doped tellurite glass composition into silica substrates through a femtosecond (fs) laser generated plasma assisted process. The engineered material consequently exhibits the spectroscopic properties of Er3+-ions, which are unachievable in pure silica and implies this as an ideal material for integrated photonics platforms. Formation of a well-defined metastable and homogeneous glass structure with Er3+-ions in a silica network, modified with tellurite has been characterized using high-resolution cross-sectional transmission electron microscopy (HRTEM). The chemical and structural analyses using HRTEM, Rutherford backscattering spectrometry (RBS) and laser excitation techniques, confirm that such fs-laser plasma implanted glasses may be engineered for significantly higher concentration of Er3+-ions without clustering, validated by the record high lifetime-density product 0.96 × 1019 Characterization of planar optical layers and photoluminescence emission spectra were undertaken to determine their thickness, refractive indices and photoluminescence properties, as a function of Er3+ concentration via different target glasses. The increased Er3+ content in the target glass enhance the refractive index and photoluminescence intensity of the modified silica layer whilst the lifetime and thickness decrease.

  16. Roles of silica and lignin in horsetail (Equisetum hyemale), with special reference to mechanical properties (United States)

    Yamanaka, Shigeru; Sato, Kanna; Ito, Fuyu; Komatsubara, Satoshi; Ohata, Hiroshi; Yoshino, Katsumi


    This research deals with detailed analyses of silica and lignin distribution in horsetail with special reference to mechanical strength. Scanning electron images of a cross-section of an internode showed silica deposited densely only around the outer epidermis. Detailed histochemical analyses of lignin showed no lignin deposition in the silica-rich outer internodes of horsetail, while a characteristic lignin deposition was noticed in the vascular bundle in inner side of internodes. To analyze the structure of horsetail from a mechanical viewpoint, we calculated the response of a model structure of horsetail to a mechanical force applied perpendicularly to the long axis by a finite element method. We found that silica distributed in the outer epidermis may play the major structural role, with lignin's role being limited ensuring that the vascular bundle keep waterproof. These results were in contrast to more modern tall trees like gymnosperms, for which lignin provides mechanical strength. Lignin has the advantage of sticking to cellulose, hemicellulose, and other materials. Such properties make it possible for plants containing lignin to branch. Branching of tree stems aids in competing for light and other atmospheric resources. This type of branching was impossible for ancient horsetails, which relied on the physical properties of silica. From the evolutional view points, over millennia in trees with high lignin content, true branching, and many chlorophyll-containing leaves developed.

  17. Physical Characteristics of Chitosan Based Film Modified With Silica and Polyethylene Glycol

    Directory of Open Access Journals (Sweden)

    F. Widhi Mahatmanti


    Full Text Available Recently, development of film materials is focused on finding the films with high chemical and physical stabilities. Organic based material such as chitosan produces films with low physical stability, and hence addition of inorganic materials necessary. In this research, the effect of silica and polyethylene glycol (PEG addition on the properties of chitosan based films has been investigated. Precursors used to produce films included chitosan with the deacetylation degree of 83% and sodium silicate solution as the silica source. A simple synthesis in a one-pot process was carried out by mixing 1%(w of chitosan solution in 2%(v/v acetate acid and sodium silicate solution (27% SiO2 in various composition ratios and casting the solution on a glass dish. The tensile strength and percentage of elongation decrease with increasing the silica content. The tensile strength tends to decline with addition of PEG, but the elongation percentage of the film increases. Hydrophilicity of the film decreases with the addition of silica and increases with the addition of PEG. The addition of silica and PEG does not change significantly the morphology of the film and functional groups indicating the domination of physical interaction among active sites in the film components.

  18. Quality by Design approach to spray drying processing of crystalline nanosuspensions. (United States)

    Kumar, Sumit; Gokhale, Rajeev; Burgess, Diane J


    Quality by Design (QbD) principles were explored to understand spray drying process for the conversion of liquid nanosuspensions into solid nano-crystalline dry powders using indomethacin as a model drug. The effects of critical process variables: inlet temperature, flow and aspiration rates on critical quality attributes (CQAs): particle size, moisture content, percent yield and crystallinity were investigated employing a full factorial design. A central cubic design was employed to generate the response surface for particle size and percent yield. Multiple linear regression analysis and ANOVA were employed to identify and estimate the effect of critical parameters, establish their relationship with CQAs, create design space and model the spray drying process. Inlet temperature was identified as the only significant factor (p value dried nano-crystalline powders. Aspiration and flow rates were identified as significant factors affecting yield (p value dried at higher inlet temperatures had lower moisture compared to those dried at lower inlet temperatures.

  19. Anisotropic silica mesostructures for DNA encapsulation

    Indian Academy of Sciences (India)

    Aparna Ganguly; Ashok K Ganguli


    The encapsulation of biomolecules in inert meso or nanostructures is an important step towards controlling drug delivery agents. Mesoporous silica nanoparticles (MSN) are of immense importance owing to their high surface area, large pore size, uniform particle size and chemical inertness. Reverse micellar method with CTAB as the surfactant has been used to synthesize anisotropic mesoporous silica materials. We have used the anisotropic silica nanostructures for DNA encapsulation studies and observed a loading capacity of ∼8 g mg-1 of the sample. On functionalizing the pores of silica with amine group, the amount of DNA loaded on the rods decreases which is due to a reduction in the pore size upon grafting of amine groups.

  20. Silica Brick for Hot Blast Stove

    Institute of Scientific and Technical Information of China (English)


    @@ 1 Scope This standard specifies the glossary and definition, marking, shape and dimension, technical requirements, test method, quality appraisal procedure, packing, label, transportation, storage and quality certification of silica brick for hot blast stove.

  1. Accelerated purification of colloidal silica sols (United States)

    Bahnsen, E. B.; Garofalini, S.; Pechman, A.


    Accelerated purification process for colloidal sols using heat/deionization scheme, sharply reduces waiting time between deionization cycles from several months to a few days. Process produces same high purity silica sols as conventional methods.

  2. Amorphous silica scale in cooling waters

    Energy Technology Data Exchange (ETDEWEB)

    Midkiff, W.S.; Foyt, H.P.


    In 1968, most of the evaporation cooled recirculating water systems at Los Alamos Scientific Laboratory were nearly inoperable due to scale. These systems, consisting of cooling towers, evaporative water coolers, evaporative condensers, and air washers had been operated on continuous blowdown without chemical treatment. The feedwater contained 80 mg/l silica. A successful program of routine chemical addition in the make-up water was begun. Blends of chelants, dispersants and corrosion inhibitors were found to gradually remove old scale, prevent new scale, and keep corrosion to less than an indicated rate of one mil per year. An explanation has been proposed that amorphous silica by itself does not form a troublesome scale. When combined with a crystal matrix such as calcite, the resultant silica containing scale can be quite troublesome. Rapid buildup of silica containing scale can be controlled and prevented by preventing formation of crystals from other constituents in the water such as hardness or iron. (auth)

  3. Silicon Monoxide at 1 atm and Elevated Pressures: Crystalline or Amorphous?

    KAUST Repository

    AlKaabi, Khalid


    The absence of a crystalline SiO phase under ordinary conditions is an anomaly in the sequence of group 14 monoxides. We explore theoretically ordered ground-state and amorphous structures for SiO at P = 1 atm, and crystalline phases also at pressures up to 200 GPa. Several competitive ground-state P = 1 atm structures are found, perforce with Si-Si bonds, and possessing Si-O-Si bridges similar to those in silica (SiO2) polymorphs. The most stable of these static structures is enthalpically just a little more stable than a calculated random bond model of amorphous SiO. In that model we find no segregation into regions of amorphous Si and amorphous SiO2. The P = 1 atm structures are all semiconducting. As the pressure is increased, intriguing new crystalline structures evolve, incorporating Si triangular nets or strips and stishovite-like regions. A heat of formation of crystalline SiO is computed; it is found to be the most negative of all the group 14 monoxides. Yet, given the stability of SiO2, the disproportionation 2SiO (s) → Si(s)+SiO2(s) is exothermic, falling right into the series of group 14 monoxides, and ranging from a highly negative ΔH of disproportionation for CO to highly positive for PbO. There is no major change in the heat of disproportionation with pressure, i.e., no range of stability of SiO with respect to SiO2. The high-pressure SiO phases are metallic. © 2014 American Chemical Society.

  4. Anomalous enthalpy relaxation in vitreous silica

    DEFF Research Database (Denmark)

    Yue, Yuanzheng


    scans. It is known that the liquid fragility (i.e., the speed of the viscous slow-down of a supercooled liquid at its Tg during cooling) has impact on enthalpy relaxation in glass. Here, we find that vitreous silica (as a strong system) exhibits striking anomalies in both glass transition and enthalpy...... the fragile ones do in a structurally independent fashion. We discuss the origin of the anomalous enthalpy relaxation in the HQ vitreous silica....

  5. UK silica sand resources for fracking


    Mitchell, Clive


    UK silica sand resources for fracking Clive Mitchell, Industrial Minerals Specialist, British Geological Survey, Keyworth, Nottingham, NG12 5GG Email: Silica sand is high purity quartz sand that is mainly used for glass production, as foundry sand, in horticulture, leisure and other industrial uses. One specialist use is as a ‘proppant’ to enhance oil and gas recovery. This presentation will focus on this application, particularly for shale gas recovery where it is mo...

  6. Vibrating reed experiments on compacted vitreous silica (United States)

    Weiss, G.; Daum, A.; Sohn, M.; Arndt, J.


    We have studied the acoustic properties of irreversibly compacted vitreous silica (Suprasil I) at frequencies around 12 kHz between 10 mK and room temperature. At low temperatures up to a few K the compacted glass exhibits acoustic properties similar to those of normal vitreous silica, however, with considerably smaller values of the damping and of the temperature coefficient of the sound velocity. Around 30 K the internal friction is reduced by factor of 6.

  7. Structural Control of Mesoporous 1,4-Phenylene-silica Using the Mixture of CTAB/SDS

    Institute of Scientific and Technical Information of China (English)

    Zhuang Wei; Bi Lifeng; Zhang Ming; Wang Sibing; Li Yi; Li Baozong; Yang Yonggang


    The morphology, pore architecture and crystallinity of the mesoporous 1,4-phenylene-silicas were controlled using the mixtures of cetyltrimethylammonium bromide (CTAB) and sodium dodecylsulfate (SDS). When the SDS/CTAB molar ratio increased from 0 to 1.0, the morphology of the mesoporous 1,4-phenylene-silicas changed in a sequence of sphere, hexagonal short rod, worm-like, bent flake and flower-like structure; the pore architecture of them changed from a hexagonal arranged tubular structure to a lamellar one; and the organization of the smallest repeat units within the wall changed from a random structure to a crystalline structure. At the SDS/CTAB molar ra-tios of 0.3 and 0.5, 1,4-phenylene-silica nanofibers with lamellar mesopores outside and tubular pore channels in-side were obtained. The lamellar mesopores should be formed by merging the rod-like miceUes during the reaction process.

  8. Quantitative crystallinity determination for E1010, a novel carbapenem antibiotic, using differential scanning calorimetry. (United States)

    Kushida, Ikuo


    The objective of this study was to develop a quantitative crystallinity analysis method for the bulk drug of E1010 ((+)-(4R,5S,6S)-6-[(R)-1-hydroxyethyl]-3-[(2S,4S)-2-[(R)-1-hydroxy-1-[(R)-pyrrolidin-3 -yl]methyl]pyrrolidin-4-yl]thio-4-methyl-7-oxo-1-azabicyclo[3.2.0]hept-2-ene-2-carboxylic acid monohydrochloride), a novel carbapenem antibiotic. X-ray analyses, thermal analyses and hygroscopicity measurements were used to elucidate the crystal structure and the solid state properties. To develop a quantitative method for the crystallinity of E1010 bulk drug, the relationship between enthalpy change obtained by differential scanning calorimetry (DSC) and crystalline form ratio was investigated. E1010 bulk drug was found to exist in a crystalline trihydrate formed in two layers, i.e. a layer of E1010 free form, and a layer consisting of chloride ions and water molecules. The thermal analysis showed an endothermic peak derived from dehydration with the loss of crystal lattices at around 100°C as an onset. The enthalpy change value for the endothermic peak correlated well with crystalline content in binary physical mixtures of the crystalline trihydrate and the amorphous form. In addition, for nine lots of the bulk drug, a positive correlation between the enthalpy change and chemical stability in the solid state was observed. This quantitative analysis of crystallinity using DSC could be applicable for the quality control of the bulk drug to detect variability among manufacturing batches and to estimate the chemical stability of partially amorphous samples. © 2011 The Author. JPP © 2011 Royal Pharmaceutical Society.

  9. Microporous Silica Based Membranes for Desalination

    Directory of Open Access Journals (Sweden)

    João C. Diniz da Costa


    Full Text Available This review provides a global overview of microporous silica based membranes for desalination via pervaporation with a focus on membrane synthesis and processing, transport mechanisms and current state of the art membrane performance. Most importantly, the recent development and novel concepts for improving the hydro-stability and separating performance of silica membranes for desalination are critically examined. Research into silica based membranes for desalination has focussed on three primary methods for improving the hydro-stability. These include incorporating carbon templates into the microporous silica both as surfactants and hybrid organic-inorganic structures and incorporation of metal oxide nanoparticles into the silica matrix. The literature examined identified that only metal oxide silica membranes have demonstrated high salt rejections under a variety of feed concentrations, reasonable fluxes and unaltered performance over long-term operation. As this is an embryonic field of research several target areas for researchers were discussed including further improvement of the membrane materials, but also regarding the necessity of integrating waste or solar heat sources into the final process design to ensure cost competitiveness with conventional reverse osmosis processes.

  10. Influence of Silica Fume on Normal Concrete

    Directory of Open Access Journals (Sweden)

    Debabrata Pradhan


    Full Text Available The incorporation of silica fume into the normal concrete is a routine one in the present days to produce the tailor made high strength and high performance concrete. The design parameters are increasing with the incorporation of silica fume in conventional concrete and the mix proportioning is becoming complex. The main objective of this paper has been made to investigate the different mechanical properties like compressive strength, compacting factor, slump of concrete incorporating silica fume. In this present paper 5 (five mix of concrete incorporating silica fume are cast to perform experiments. These experiments were carried out by replacing cement with different percentages of silica fume at a single constant water-cementitious materials ratio keeping other mix design variables constant. The silica fume was replaced by 0%, 5%, 10%, 15% and 20% for water-cementitious materials (w/cm ratio for 0.40. For all mixes compressive strengths were determined at 24 hours, 7 and 28 days for 100 mm and 150 mm cubes. Other properties like compacting factor and slump were also determined for five mixes of concrete.

  11. Grassy Silica Nanoribbons and Strong Blue Luminescence (United States)

    Wang, Shengping; Xie, Shuang; Huang, Guowei; Guo, Hongxuan; Cho, Yujin; Chen, Jun; Fujita, Daisuke; Xu, Mingsheng


    Silicon dioxide (SiO2) is one of the key materials in many modern technological applications such as in metal oxide semiconductor transistors, photovoltaic solar cells, pollution removal, and biomedicine. We report the accidental discovery of free-standing grassy silica nanoribbons directly grown on SiO2/Si platform which is commonly used for field-effect transistors fabrication without other precursor. We investigate the formation mechanism of this novel silica nanostructure that has not been previously documented. The silica nanoribbons are flexible and can be manipulated by electron-beam. The silica nanoribbons exhibit strong blue emission at about 467 nm, together with UV and red emissions as investigated by cathodoluminescence technique. The origins of the luminescence are attributed to various defects in the silica nanoribbons; and the intensity change of the blue emission and green emission at about 550 nm is discussed in the frame of the defect density. Our study may lead to rational design of the new silica-based materials for a wide range of applications.

  12. Mesoporous Silica from Rice Husk Ash

    Directory of Open Access Journals (Sweden)

    V.R. Shelke


    Full Text Available Mesoporous silica is used as a raw material in several areas: in preparation of catalysts, in inks, as a concrete hardening accelerator, as a component of detergents and soaps, as a refractory constituent etc. Sodium silicate is produced by reacting rice hull ash (RHA with aqueous NaOH and silica is precipitated from the sodium silicate by acidification. In the present work, conversion of about 90% of silica contained in RHA into sodium silicate was achieved in an open system at temperatures of about 100 °C. The results showed that silica obtained from RHA is mesoporous, has a large surface area and small particle size. Rice Husk is usually mixed with coal and this mixture is used for firing boilers. The RHA therefore, usually contains carbon particles. Activated carbon embedded on silica has been prepared using the carbon already present in RHA. This carbon shows good adsorption capacity. ©2010 BCREC UNDIP. All rights reserved(Received: 25th April 2010, Revised: 17th June 2010, Accepted: 24th June 2010[How to Cite: V.R. Shelke, S.S. Bhagade, S.A. Mandavgane. (2010. Mesoporous Silica from Rice Husk Ash. Bulletin of Chemical Reaction Engineering and Catalysis, 5 (2: 63-67. doi:10.9767/bcrec.5.2.793.63-67][DOI:

  13. Silica Derived from Burned Rice Hulls

    Directory of Open Access Journals (Sweden)

    M.F. de Souza


    Full Text Available Three new processes to obtain silica having high specific surface area from burned pre-treated rice hulls are presented and discussed. These procedures allow for the simultaneous recovery of biomass energy and the production of high quality silica at thermoelectric plants, without the risk of using corrosive substances in the burning process. The first method involves treatment of the hull with hot organic acid solutions before burning, the second with boiling water, both using an autoclave at temperatures close to150 °C, while the third method renders the hull fragile by treating it at 250 °C and reducing it to a fine powder before burning. The first two methods result in white amorphous silica that can show 500 m²/g of specific surface area. The third method, which does not remove the alkaline elements from the hull, produces an amorphous gray carbon-free powder whose specific surface area can be as high as 250 m²/g. An investigation of the specific surface area of the prepared silica indicates the alkaline elements are not mixed with silica in the hulls or combined as insoluble compounds. A comparison is made of these processes and the dissolution of silica by sodium hydroxide solutions is discussed.