WorldWideScience

Sample records for crystalline phases present

  1. Nanostructures having crystalline and amorphous phases

    Science.gov (United States)

    Mao, Samuel S; Chen, Xiaobo

    2015-04-28

    The present invention includes a nanostructure, a method of making thereof, and a method of photocatalysis. In one embodiment, the nanostructure includes a crystalline phase and an amorphous phase in contact with the crystalline phase. Each of the crystalline and amorphous phases has at least one dimension on a nanometer scale. In another embodiment, the nanostructure includes a nanoparticle comprising a crystalline phase and an amorphous phase. The amorphous phase is in a selected amount. In another embodiment, the nanostructure includes crystalline titanium dioxide and amorphous titanium dioxide in contact with the crystalline titanium dioxide. Each of the crystalline and amorphous titanium dioxide has at least one dimension on a nanometer scale.

  2. Phase diagrams of binary crystalline-crystalline polymer blends.

    Science.gov (United States)

    Matkar, Rushikesh A; Kyu, Thein

    2006-08-17

    A thermodynamically self-consistent theory has been developed to establish binary phase diagrams for two-crystalline polymer blends by taking into consideration all interactions including amorphous-amorphous, crystal-amorphous, amorphous-crystal, and crystal-crystal interactions. The present theory basically involves combination of the Flory-Huggins free energy for amorphous-amorphous isotropic mixing and the Landau free energy of polymer solidification (e.g., crystallization) of the crystalline constituents. The self-consistent solution via minimization of the free energy of the mixture affords determination of eutectic, peritectic, and azeotrope phase diagrams involving various coexistence regions such as liquid-liquid, liquid-solid, and solid-solid coexistence regions bound by liquidus and solidus lines. To validate the present theory, the predicted eutectic phase diagrams have been compared with the reported experimental binary phase diagrams of blends such as polyethylene fractions as well as polycaprolactone/trioxane mixtures.

  3. Monolithic aerogels with nanoporous crystalline phases

    Science.gov (United States)

    Daniel, Christophe; Guerra, Gaetano

    2015-05-01

    High porosity monolithic aerogels with nanoporous crystalline phases can be obtained from syndiotactic polystyrene and poly(2,6-dimethyl-1,4-phenylene)oxide thermoreversible gels by removing the solvent with supercritical CO2. The presence of crystalline nanopores in the aerogels based on these polymers allows a high uptake associated with a high selectivity of volatile organic compounds from vapor phase or aqueous solutions even at very low activities. The sorption and the fast kinetics make these materials particularly suitable as sorption medium to remove traces of pollutants from water and moist air.

  4. Electrical induction and optical erasure of birefringence in the isotropic liquid phase of a dichiral azobenzene liquid-crystalline compound (Presentation Recording)

    Science.gov (United States)

    Yamamoto, Takahiro; Nishiyama, Isa

    2015-10-01

    Liquid crystal is a representative soft matter, which has physical properties between those of conventional liquid and those of crystal in a temperature range above a melting point. A liquid-crystal display (LCD) employs the response of the liquid-crystal alignment to the electric field and is a key device of an information display. For common LCDs, the precise control of the initial alignment of LC molecules is needed so that a good dark state, thus a high contrast ratio, can be obtained. If the birefringence can be induced in the liquid phase by the application of electric field, it is of great use as a material for the LCD application. In this study, we will report a unique property of dichiral azobenzene liquid crystals: an electric induction of birefringence in a liquid phase of an antiferroelectric dichiral azobenzene liquid crystal. The optically isotropic texture changes into the homogenous birefringent texture by the application of the in-plane electric field above the clearing temperature of the liquid crystal. We find that one of the possible reasons of the induction of the birefringence in the isotropic phase is the electrically-induced increase of the phase transition temperature between the antiferroelectric liquid-crystalline and "liquid" phases, i.e., increase in the clearing temperature. The resulting birefringence can be disappeared by the irradiation of UV light, due to the photoinduced isomerization of the azobenzene compound, thus dual control of the birefringent structure, by the irradiation of light and/or by the application of the electric field, is achieved.

  5. Naturally occurring crystalline phases: analogues for radioactive waste forms

    Energy Technology Data Exchange (ETDEWEB)

    Haaker, R.F.; Ewing, R.C.

    1981-01-01

    Naturally occurring mineral analogues to crystalline phases that are constituents of crystalline radioactive waste forms provide a basis for comparison by which the long-term stability of these phases may be estimated. The crystal structures and the crystal chemistry of the following natural analogues are presented: baddeleyite, hematite, nepheline; pollucite, scheelite;sodalite, spinel, apatite, monazite, uraninite, hollandite-priderite, perovskite, and zirconolite. For each phase in geochemistry, occurrence, alteration and radiation effects are described. A selected bibliography for each phase is included.

  6. Electrical transport in crystalline phase change materials

    Energy Technology Data Exchange (ETDEWEB)

    Woda, Michael

    2012-01-06

    In this thesis, the electrical transport properties of crystalline phase change materials are discussed. Phase change materials (PCM) are a special class of semiconducting and metallic thin film alloys, typically with a high amount of the group five element antimony or the group six element tellurium, such as Ge{sub 2}Sb{sub 2}Te{sub 5}. The unique property portfolio of this material class makes it suitable for memory applications. PCMs reveal fast switching between two stable room-temperature phases (amorphous and crystalline) realized by optical laser or electrical current pulses in memory devices. Additionally, a pronounced property contrast in form of optical reflectivity and electrical conductivity between the amorphous and crystalline phase is the characteristic fingerprint of PCMs. The emerging electrical solid state memory PCRAM is a very promising candidate to replace Flash memory in the near future or to even become a universal memory, which is non-volatile and shows the speed and cyclability of DRAM. One of the main technological challenges is the switching process into the amorphous state, which is the most power demanding step. In order to reduce the switching power, the crystalline resistivity needs to be increased at a given voltage. Thus understanding and tayloring of this property is mandatory. In this work, first the technological relevance, i.e. optical and electrical memory concepts based on PCMs are introduced. Subsequently a description of the physical properties of PCMs in four categories is given. Namely, structure, kinetics, optical properties and electrical properties are discussed. Then important recent developments such as the identification of resonant bonding in crystalline PCMs and a property predicting coordination scheme are briefly reviewed. The following chapter deals with the theoretical background of electrical transport, while the next chapter introduces the experimental techniques: Sputtering, XRR, XRD, DSC, thermal annealing

  7. Microscopic characterization of crystalline phases in waste forms

    Energy Technology Data Exchange (ETDEWEB)

    Buck, E.C.; Dietz, N.L.; Wronkiewicz, D.J.; Bates, J.K. [Argonne National Lab., IL (United States); Millar, A. [Purdue Univ., West Lafayette, IN (United States)

    1995-07-01

    Transmission electron microscopy (TEM) has been used to determine the microstructure of crystalline phases present in zirconium- and titanium-bearing glass crystalline composite (GCC) waste forms. The GCC materials were found to contain spinels (maghemite), zirconolites, perovskites (CaTiO{sub 3}) and plagiociase feldspar (anorthite) mineral phases. The structure of the uranium and cerium-bearing monoclinic zirconolite was characterized by medium resolution TEM imaging and electron and X-ray diffraction (XRD). The phase was found to contain high levels of iron in comparison to Synroc-type zirconolites. Excess zirconium in zirconolite has resulted in martensitic baddeleyite (ZrO{sub 2}) formation. Anorthite (CaAl{sub 2}Si{sub 2}O{sub 8}) was present as elongated crystallites within a calcium-rich aluminosilicate glass. Lead and iron-bearing anorthite lying along distinct precipitates were occasionally observed within the an crystallographic planes.

  8. Phase diagrams and kinetics of solid-liquid phase transitions in crystalline polymer blends

    Science.gov (United States)

    Matkar, Rushikesh A.

    A free energy functional has been formulated based on an order parameter approach to describe the competition between liquid-liquid phase separation and solid-liquid phase separation. In the free energy description, the assumption of complete solvent rejection from the crystalline phase that is inherent in the Flory diluent theory was removed as solvent has been found to reside in the crystalline phase in the form of intercalates. Using this approach, we have calculated various phase diagrams in binary blends of crystalline and amorphous polymers that show upper or lower critical solution temperature. Also, the discrepancy in the chi values obtained from different experimental methods reported in the literature for the polymer blend of poly(vinylidenefluoride) and poly(methylmethacrylate) has been discussed in the context of the present model. Experimental phase diagram for the polymer blend of poly(caprolactone) and polystyrene has also been calculated. Of particular importance is that the crystalline phase concentration as a function of temperature has been calculated using free energy minimization methods instead of assuming it to be pure. In the limit of complete immiscibility of the solvent in the crystalline phase, the Flory diluent theory is recovered. The model is extended to binary crystalline blends and the formation of eutectic, peritectic and azeotrope phase diagrams has been explained on the basis of departure from ideal solid solution behavior. Experimental eutectic phase diagram from literature of a binary blend of crystalline polymer poly(caprolactone) and trioxane were recalculated using the aforementioned approach. Furthermore, simulations on the spatio temporal dynamics of crystallization in blends of crystalline and amorphous polymers were carried out using the Ginzburg-Landau approach. These simulations have provided insight into the distribution of the amorphous polymer in the blends during the crystallization process. The simulated results

  9. A new crystalline phase in magnetar crusts

    CERN Document Server

    Bedaque, Paulo F; Ng, Nathan; Sen, Srimoyee

    2013-01-01

    We show that ions at the low densities and high magnetic fields relevant to the outer crust of magnetars form a novel crystalline phase where ions are strongly coupled along the magnetic field and loosely coupled in the transverse direction. The underlying cause is the anisotropic screening of the Coulomb force by electrons in the presence of a strongly quantizing magnetic field which leads to Friedel oscillations in the ion-ion potential. In particular, the Friedel oscillations are much longer-ranged in the direction of the magnetic field than is the case in the absence of magnetic fields, a factor that has been neglected in previous studies. These "Friedel crystals" have very anisotropic elastic moduli, with potentially interesting implications for the Quasi-periodic Oscillations seen in the X-ray flux of magnetars during their giant flares. We find the minimum energy configuration of ions taking into account these anisotropic effects and find that, depending on the density, temperature and magnetic field s...

  10. Polymorphic phases of galactocerebrosides: spectroscopic evidence of lamellar crystalline structures.

    Science.gov (United States)

    Bou Khalil, M; Carrier, D; Wong, P T; Tanphaichitr, N

    2001-06-06

    Fourier transform infrared spectroscopy was applied to study the structural and thermal properties of bovine brain galactocerebroside (GalCer) containing amide linked non-hydroxylated or alpha-hydroxy fatty acids (NFA- and HFA-GalCer, respectively). Over the temperature range 0-90 degrees C, both GalCer displayed complex thermal transitions, characteristic of polymorphic phase behavior. Upon heating, aqueous dispersions of NFA- and HFA-GalCer exhibited high order-disorder transition temperatures near 80 and 72 degrees C, respectively. En route to the chain melting transition, the patterns of the amide I band of NFA-GalCer were indicative of two different lamellar crystalline phases, whereas those of HFA-GalCer were suggestive of lamellar gel and crystalline bilayers. Cooling from the liquid-crystalline phase resulted in the formation of another crystalline phase of NFA-GalCer and a gel phase of HFA-GalCer, with a phase transition near 62 and 66 degrees C, respectively. Prolonged incubation of GalCer bilayers at 38 degrees C revealed conversions among lamellar crystalline phases (NFA-GalCer) or between lamellar gel and crystalline bilayer structures (HFA-GalCer). Spectral changes indicated that the temperature and/or time induced formation of the lamellar crystalline structures of NFA- and HFA-GalCer was accompanied by partial dehydration and by rearrangements of the hydrogen bonding network and bilayer packing mode of GalCer.

  11. Formation of nano quasicrystalline and crystalline phases by mechanical alloying

    Energy Technology Data Exchange (ETDEWEB)

    Shamah, A.M.; Ibrahim, S. [Faculty of Petroleum and Mining Engineering, Suez Canal University, Suez (Egypt); Hanna, F.F., E-mail: fariedhanna@yahoo.com [Faculty of Petroleum and Mining Engineering, Suez Canal University, Suez (Egypt)

    2011-02-03

    Research highlights: > Mechanical alloying (MA) is an important method to investigate the formation of nano sized quasicrystalline phases in Al{sub 86}Cr{sub 14}, Al{sub 84}Fe{sub 16} and Al{sub 62.5}Cu{sub 25}Fe{sub 12.5} compounds. The second part of the present work is an attempt to examine the possibility of formation of the i-phase of the Al{sub 62.5}Cu{sub 25}Fe{sub 12.5}, which lies in the region of the perfect i-phase in the ternary phase diagram, by rapid solidification method. To perform the obtained quasi phase mechanical alloying and heat treatment at the rapid solidified sample were done. - Abstract: In the present work, the formation of nano quasicrystalline icosahedral phase in Al{sub 86}Cr{sub 14}, Al{sub 84}Fe{sub 16} and Al{sub 62.5}Cu{sub 25}Fe{sub 12.5} alloys has been investigated by mechanical alloying. Mixtures of quasicrystalline and related crystalline phases have been observed under various milling conditions. The X-ray diffraction, differential thermal analysis and electrical resistivity techniques have been used for characterization and physical property measurements. The particle size was calculated by X-ray profile using Williamson-Hall plot method and it was found to be 25-50 nm size.

  12. Topological Crystalline Insulator in a New Bi Semiconducting Phase

    Science.gov (United States)

    Munoz, F.; Vergniory, M. G.; Rauch, T.; Henk, J.; Chulkov, E. V.; Mertig, I.; Botti, S.; Marques, M. A. L.; Romero, A. H.

    2016-02-01

    Topological crystalline insulators are a type of topological insulators whose topological surface states are protected by a crystal symmetry, thus the surface gap can be tuned by applying strain or an electric field. In this paper we predict by means of ab initio calculations a new phase of Bi which is a topological crystalline insulator characterized by a mirror Chern number nM = -2, but not a strong topological insulator. This system presents an exceptional property: at the (001) surface its Dirac cones are pinned at the surface high-symmetry points. As a consequence they are also protected by time-reversal symmetry and can survive against weak disorder even if in-plane mirror symmetry is broken at the surface. Taking advantage of this dual protection, we present a strategy to tune the band-gap based on a topological phase transition unique to this system. Since the spin-texture of these topological surface states reduces the back-scattering in carrier transport, this effective band-engineering is expected to be suitable for electronic and optoelectronic devices with reduced dissipation.

  13. Volume phase transitions of cholesteric liquid crystalline gels

    Energy Technology Data Exchange (ETDEWEB)

    Matsuyama, Akihiko, E-mail: matuyama@bio.kyutech.ac.jp [Department of Bioscience and Bioinformatics, Faculty of Computer Science and Systems Engineering, Kyushu Institute of Technology, Kawazu 680-4, Iizuka, Fukuoka 820-8502 (Japan)

    2015-05-07

    We present a mean field theory to describe anisotropic deformations of a cholesteric elastomer without solvent molecules and a cholesteric liquid crystalline gel immersed in isotropic solvents at a thermal equilibrium state. Based on the neoclassical rubber theory of nematic elastomers, we derive an elastic energy and a twist distortion energy, which are important to determine the shape of a cholesteric elastomer (or gel). We demonstrate that when the elastic energy dominates in the free energy, the cholesteric elastomer causes a spontaneous compression in the pitch axis and elongates along the director on the plane perpendicular to the pitch axis. Our theory can qualitatively describe the experimental results of a cholesteric elastomer. We also predict the first-order volume phase transitions and anisotropic deformations of a gel at the cholesteric-isotropic phase transition temperature. Depending on a chirality of a gel, we find a prolate or oblate shape of cholesteric gels.

  14. Liquid crystalline composites toward organic photovoltaic application (Conference Presentation)

    Science.gov (United States)

    Shimizu, Yo; Sosa-Vargas, Lydia; Shin, Woong; Higuchi, Yumi; Itani, Hiromichi; Kawano, Koki; Dao, Quang Duy; Fujii, Akihiko; Ozaki, Masanori

    2017-02-01

    Liquid crystalline semiconductor is an interesting category of organic electronic materials and also has been extensively studied in terms of "Printed Electronics". For the wider diversity in research toward new applications, one can consider how to use a combination of miscibility and phase separation in liquid crystals. Here we report discotic liquid crystals in making a composite of which structural order is controlled in nano-scale toward photovoltaic applications. Discotic columnar LCs were studied on their resultant molecular order and carrier transport properties. Liquid crystals of phthalocyanine and its analogues which exhibit columnar mesomorphism with high carrier mobility (10-1 cm2/Vs) were examined with making binary phase diagrams and the correlation to carrier transport properties by TOF measurements was discussed. The shape-analogues in chemical structure shows a good miscibility even for the different lattice-type of columnar arrangement and the carrier mobility is mostly decrease except for a case of combination with a metal-free and the metal complex. For the mixtures with non-mesogenic C60 derivatives, one sees a phase-separated structure due to its immiscibility, though the columnar order is remained in a range of component ratio.Especially, in a range of the ratio, it was observed the phase separated C60 derivatives are fused into the matrix of columnar bundles, indicating C60 derivatives could be diffused in columnar arrays in molecular level.

  15. Electrospinning of PVDF nanofibrous membranes with controllable crystalline phases

    Science.gov (United States)

    Lei, Tingping; Zhu, Ping; Cai, Xiaomei; Yang, Le; Yang, Fan

    2015-07-01

    Effectively controlling crystalline phases of electrospun polyvinylidene fluoride (PVDF) nanofibers is crucial to produce membranes with special properties for specific applications. Here, the heating treatment during or after electrospinning has been investigated to determine an effective way to control crystalline phase of PVDF nanofibers. By simultaneously controlling the collector temperature and the flow rate during the fiber deposition, a comparatively lower temperature (≤70 °C) is required for obtaining α-, β-, or γ-phase-dominant nanofibrous membranes, whereas a much higher temperature (≥150 °C) is necessary for post-heating of already-deposited fibers. On the other hand, through finely tuning the heating during or after electrospinning, crosslinked nanofibrous membranes can be also obtained, which undoubtedly enhance mechanical performance of the membranes. Therefore, it is hopeful to fabricate high-performance electrospun PVDF nanofibrous membranes with synchronous control of crystalline phases and morphologies, which will further broaden the applications of PVDF materials.

  16. Entropy calculations for a supercooled liquid crystalline blue phase

    Energy Technology Data Exchange (ETDEWEB)

    Singh, U [Physics Department, University of the West Indies, PO Box 64, Bridgetown (Barbados)

    2007-01-15

    We observed, using polarized light microscopy, the supercooling of the blue phase (BPI) of cholesteryl proprionate and measured the corresponding liquid crystalline phase transition temperatures. From these temperatures and additional published data we have provided, for the benefit of undergraduate physics students, a nontraditional example involving entropy calculations for an irreversible transition.

  17. Local Crystalline Structure in an Amorphous Protein Dense Phase.

    Science.gov (United States)

    Greene, Daniel G; Modla, Shannon; Wagner, Norman J; Sandler, Stanley I; Lenhoff, Abraham M

    2015-10-20

    Proteins exhibit a variety of dense phases ranging from gels, aggregates, and precipitates to crystalline phases and dense liquids. Although the structure of the crystalline phase is known in atomistic detail, little attention has been paid to noncrystalline protein dense phases, and in many cases the structures of these phases are assumed to be fully amorphous. In this work, we used small-angle neutron scattering, electron microscopy, and electron tomography to measure the structure of ovalbumin precipitate particles salted out with ammonium sulfate. We found that the ovalbumin phase-separates into core-shell particles with a core radius of ∼2 μm and shell thickness of ∼0.5 μm. Within this shell region, nanostructures comprised of crystallites of ovalbumin self-assemble into a well-defined bicontinuous network with branches ∼12 nm thick. These results demonstrate that the protein gel is comprised in part of nanocrystalline protein.

  18. Crystalline-crystalline phase transformation in two-dimensional In2Se3 thin layers.

    Science.gov (United States)

    Tao, Xin; Gu, Yi

    2013-08-14

    We report, for the first time, the fabrication of single-crystal In2Se3 thin layers using mechanical exfoliation and studies of crystalline-crystalline (α → β) phase transformations as well as the corresponding changes of the electrical properties in these thin layers. Particularly, using electron microscopy and correlative in situ micro-Raman and electrical measurements, we show that, in contrast to bulk single crystals, the β phase can persist in single-crystal thin layers at room temperature (RT). The single-crystal nature of the layers before and after the phase transition allows for unambiguous determination of changes in the electrical resistivity. Specifically, the β phase has an electrical resistivity about 1-2 orders of magnitude lower than the α phase. Furthermore, we find that the temperature of the α → β phase transformation increases by as much as 130 K with the layer thickness decreasing from ~87 nm to ~4 nm. These single-crystal thin layers are ideal for studying the scaling behavior of the phase transformations and associated changes of the electrical properties. For these In2Se3 thin layers, the accessibility of the β phase at RT, with distinct electrical properties than the α phase, provides the basis for multilevel phase-change memories in a single material system.

  19. Casimir Force Contrast Between Amorphous and Crystalline Phases of AIST

    NARCIS (Netherlands)

    Torrichelli, G.; Zwol, van P.J.; Shpak, O.; Palasantzas, G.; Svetovoy, V.B.; Binns, C.; Kooi, B.J.; Jost, P.; Wittig, M.

    2012-01-01

    Phase change materials (PCMs) can be rapidly and reversibly switched between the amorphous and crystalline state. The structural transformation is accompanied by a signifi cant change of optical and electronic properties rendering PCMs suitable for rewritable optical data storage and nonvolatile ele

  20. STUDY ON THE PHASE TRANSITION KINETICS OF THERMOTROPIC LIQUID CRYSTALLINE AROMATIC-ALIPHATIC COPOLYESTER

    Institute of Scientific and Technical Information of China (English)

    LI Minhui; WANG Xiaogong; LIU Deshan; ZHOU Qixiang

    1991-01-01

    The phase transition kinetics of thermotropic liquid crystalline aromatic-aliphatic regular copolyester:(X) were studied by DSC. By means of Kissinger's method the kinetic equation and parameters including activation energy, rate order and preexponential factor for phase transition from nematic to isotropic were obtained. The activation energy from crystal to nematic was also presented.

  1. Viscous friction between crystalline and amorphous phase of dragline silk.

    Directory of Open Access Journals (Sweden)

    Sandeep P Patil

    Full Text Available The hierarchical structure of spider dragline silk is composed of two major constituents, the amorphous phase and crystalline units, and its mechanical response has been attributed to these prime constituents. Silk mechanics, however, might also be influenced by the resistance against sliding of these two phases relative to each other under load. We here used atomistic molecular dynamics (MD simulations to obtain friction forces for the relative sliding of the amorphous phase and crystalline units of Araneus diadematus spider silk. We computed the coefficient of viscosity of this interface to be in the order of 10(2 Ns/m(2 by extrapolating our simulation data to the viscous limit. Interestingly, this value is two orders of magnitude smaller than the coefficient of viscosity within the amorphous phase. This suggests that sliding along a planar and homogeneous surface of straight polyalanine chains is much less hindered than within entangled disordered chains. Finally, in a simple finite element model, which is based on parameters determined from MD simulations including the newly deduced coefficient of viscosity, we assessed the frictional behavior between these two components for the experimental range of relative pulling velocities. We found that a perfectly relative horizontal motion has no significant resistance against sliding, however, slightly inclined loading causes measurable resistance. Our analysis paves the way towards a finite element model of silk fibers in which crystalline units can slide, move and rearrange themselves in the fiber during loading.

  2. Perhydroazulene-based liquid-crystalline materials with smectic phases.

    Science.gov (United States)

    Hussain, Zakir; Hopf, Henning; Eichhorn, S Holger

    2012-01-01

    New liquid-crystalline materials with a perhydroazulene core were synthesized and the stereochemistry of these compounds was investigated. The mesomorphic properties of the new LC compounds were investigated by differential scanning colorimetry, polarizing optical microscopy and X-ray diffraction. We report here on the LC properties of nonchiral materials, which predominantly exhibit smectic phases and display nematic phases only within narrow temperature ranges. The dependence of the mesogenic behavior of the new materials on the stereochemistry of the core system was also investigated. All newly synthesized compounds were fully characterized by the usual spectroscopic and analytical methods.

  3. Perhydroazulene-based liquid-crystalline materials with smectic phases

    Directory of Open Access Journals (Sweden)

    Zakir Hussain

    2012-03-01

    Full Text Available New liquid-crystalline materials with a perhydroazulene core were synthesized and the stereochemistry of these compounds was investigated. The mesomorphic properties of the new LC compounds were investigated by differential scanning colorimetry, polarizing optical microscopy and X-ray diffraction. We report here on the LC properties of nonchiral materials, which predominantly exhibit smectic phases and display nematic phases only within narrow temperature ranges. The dependence of the mesogenic behavior of the new materials on the stereochemistry of the core system was also investigated. All newly synthesized compounds were fully characterized by the usual spectroscopic and analytical methods.

  4. Gyroscope based on a crystalline optical WGM microresonator (Conference Presentation)

    Science.gov (United States)

    Liang, Wei; Ilchenko, Vladimir S.; Eliyahu, Danny; Savchenkov, Anatoliy A.; Matsko, Andrey B.; Maleki, Lute

    2017-02-01

    We report on a study of performance of both active and passive optical gyroscopes based on high finesse crystalline whispering gallery mode (WGM) resonators. We show that the sensitivity of the devices is ultimately limited due to the nonlinearity of the resonator host material. A gyroscope characterized with 0.02 deg/hr^1/2 angle random walk and 2 deg/hr bias drift is demonstrated.

  5. Nucleation and growth studies of crystalline carbon phases at nanoscale

    Science.gov (United States)

    Mani, Radhika C.

    Understanding the nucleation and early stage growth of crystals from the vapor phase is important for realizing large-area single-crystal quality films, controlled synthesis of nanocrystals, and the possible discovery of new phases of materials. Carbon provides the most interesting system because all its known crystalline phases (diamond, graphite and carbon nanotubes) are technologically important materials. Hence, this dissertation is focused on studying the nucleation and growth of carbon phases synthesized from the vapor phase. Nucleation experiments were performed in a microwave plasma chemical vapor deposition (CVD) reactor, and the resulting carbon nanocrystals were analyzed primarily using electron nanodiffraction and Raman spectroscopy. These studies led to the discovery of two new crystalline phases of sp 3 carbon other than diamond: face-centered and body-centered cubic carbon. Nanodiffraction results revealed possible hydrogen substitution into diamond-cubic lattices, indicating that these new phases probably act as intermediates in diamond nucleation. Nucleation experiments also led to the discovery of two new morphologies for sp2 carbon: nanocrystals of graphite and tapered, hollow 1-D structures termed here as "carbon nanopipettes". A Kinetic Monte Carlo (KMC) algorithm was developed to simulate the growth of individual diamond crystals from the vapor phase, starting with small clusters of carbon atoms (or seeds). Specifically, KMC simulations were used to distinguish the kinetic rules that give rise to a star-shaped decahedral morphology compared to decahedral crystals. KMC simulations revealed that slow adsorption on the {111} step-propagation sites compared to kink sites leads to star-decahedral crystals, and higher adsorption leads to decahedral crystals. Since the surfaces of the nanocrystals of graphite and nanopipettes were expected to be composed primarily of edge-plane sites, the electrochemical behavior of both these materials were

  6. Chemical composition of glass and crystalline phases in coarse coal gasification ash

    Energy Technology Data Exchange (ETDEWEB)

    R.H. Matjie; Zhongsheng Li; Colin R. Ward; David French [Sasol Technology (Pty) Ltd., Sasolburg (South Africa)

    2008-05-15

    A procedure has been developed for determining the chemical composition and relative abundance of the amorphous or glassy material, as well as crystalline phases, present in coarse coal gasification ash, in order to assist in predicting the behaviour of the material in cement/brick/concrete applications. The procedure is based on a combination of quantitative X-ray diffraction (XRD), chemical analysis and electron microprobe studies. XRD analysis indicates that the clinker samples contain a number of crystalline high temperature phases, including anorthite, mullite, cristobalite, quartz and diopside. Quantitative evaluation using Rietveld-based techniques has been used to determine the percentages of both the individual crystalline phases and the glass component. These data were then combined with the chemistry of the crystalline phases and the overall chemical composition of the ash to estimate the chemical composition of the glass phase, which is typically the most abundant component present in the different materials. Although there is some degree of scatter, comparison between the inferred glass composition from XRD and bulk chemistry and actual data on the glass composition using electron microprobe techniques suggest that the two approaches are broadly consistent. The microprobe further indicates that a range of compositions are present in the glassy and crystalline components of the ashes, including Si-Al-rich glass, metakaolin and Fe-Ca-Mg-Ti phases, as well as quartz, anorthite and an aluminophosphate material. Electron microprobe and XRD studies also show that pyrrhotite (FeS), representing a high temperature transformation product of pyrite, is present in some clinker and partially burnt carbonaceous shale samples. 27 refs., 5 figs., 7 tabs.

  7. Electronic phases of substances. Phase transitions with change of electron and crystalline structure

    Directory of Open Access Journals (Sweden)

    Nadykto Boris

    2015-01-01

    Full Text Available There is plenty of experimental data on high-pressure phase transformations in various materials. Variations in materials characteristics (for example, equilibrium density and bulk modulus, while the crystalline structure remains unchanged, are indicative of energy variations in outer-shell electrons of solid atoms. In experiments with crystalline structure variations, the dependence of pressure on density in some cases can be described by the same curve, the parameters of which are independent of the crystalline structure. Examples of such transformations in some materials at static compression and in shock-wave experiments are given.

  8. Investigations on the liquid crystalline phases of cation-induced condensed DNA

    Indian Academy of Sciences (India)

    C K S Pillai; Neethu Sundaresan; M Radhakrishnan Pillai; T Thomas; T J Thomas

    2005-10-01

    Viral and nonviral condensing agents are used in gene therapy to compact oligonucleotides and plasmid DNA into nanostructures for their efficient transport through the cell membranes. Whereas viral vectors are best by the toxic effects on the immune system, most of the nonviral delivery vehicles are not effective for use in clinical system. Recent investigations indicate that the supramolecular organization of DNA in the condensed state is liquid crystalline. The present level of understanding of the liquid crystalline phase of DNA is inadequate and a thorough investigation is required to understand the nature, stability, texture and the influence of various environmental conditions on the structure of the phase. The present study is mainly concerned with the physicochemical investigations on the liquid crystalline transitions during compaction of DNA by cationic species such as polyamines and metallic cations. As a preliminary to the above investigation, studies were conducted on the evolution of mesophase transitions of DNA with various cationic counterion species using polarized light microscopy. These studies indicated significant variations in the phase behaviour of DNA in the presence of Li and other ions. Apart from the neutralization of the charges on the DNA molecule, these ions are found to influence selectively the hydration sphere of DNA that in turn influences the induction and stabilization of the LC phases. The higher stability observed with the liquid crystalline phases of Li-DNA system could be useful in the production of nanostructured DNA. In the case of the polyamine, a structural specificity effect depending on the nature, charge and structure of the polyamine used has been found to be favoured in the crystallization of DNA.

  9. Investigations on the liquid crystalline phases of cation-induced condensed DNA

    Science.gov (United States)

    Pillai, C. K. S.; Sundaresan, Neethu; Radhakrishnan Pillai, M.; Thomas, T.; Thomas, T. J.

    2005-10-01

    Viral and nonviral condensing agents are used in gene therapy to compact oligonucleotides and plasmid DNA into nanostructures for their efficient transport through the cell membranes. Whereas viral vectors are best by the toxic effects on the immune system, most of the nonviral delivery vehicles are not effective for use in clinical system. Recent investigations indicate that the supramolecular organization of DNA in the condensed state is liquid crystalline. The present level of understanding of the liquid crystalline phase of DNA is inadequate and a thorough investigation is required to understand the nature, stability, texture and the influence of various environmental conditions on the structure of the phase. The present study is mainly concerned with the physico-chemical investigations on the liquid crystalline transitions during compaction of DNA by cationic species such as polyamines and metallic cations. As a preliminary to the above investigation, studies were conducted on the evolution of mesophase transitions of DNA with various cationic counterion species using polarized light microscopy. These studies indicated significant variations in the phase behaviour of DNA in the presence of Li and other ions. Apart from the neutralization of the charges on the DNA molecule, these ions are found to influence selectively the hydration sphere of DNA that in turn influences the induction and stabilization of the LC phases. The higher stability observed with the liquid crystalline phases of Li--DNA system could be useful in the production of nanostructured DNA. In the case of the polyamine, a structural specificity effect depending on the nature, charge and structure of the polyamine used has been found to be favoured in the crystallization of DNA.

  10. Review of crystalline structures of some selected homologous series of rod-like molecules capable of forming liquid crystalline phases.

    Science.gov (United States)

    Zugenmaier, Peter

    2011-01-01

    The crystal structures of four homologous series of rod-like molecules are reviewed, two of which form hydrogen bonds and two with a symmetric chemical constitution. Many of the compounds investigated turn into liquid crystalline phases upon temperature increase. It is of valuable interest to know possible conformations and possible packing arrangements as prerequisites to model liquid crystalline structures. The hydrogen bonds of homologous series of pure 4-(ω-hydroxyalkyloxy)-4'-hydroxybiphenyl (HnHBP, n the alkyloxy tail length) are realized through head to tail arrangements of the hydroxyl groups and crystallize except one compound in chiral space groups without the molecules containing any asymmetric carbon. The hydrogen bonds of the homologous series of 4-substituted benzoic acids with various lengths of the tail provide dimers through strong polar bonding of adjacent carboxyl groups and thus provide the stiff part of a mesogenic unit prerequisite for liquid crystalline phases. The homologous series of dialkanoyloxybiphenyls (BP-n, n = 1, 19), of which nine compounds could be crystallized, show liquid crystalline behavior for longer alkane chain lengths, despite the high mobility of the alkane chain ends already detectable in the crystal phase. A single molecule, half a molecule or two half molecules form the asymmetric unit in a centrosymmetric space group. The homologous series of 1,4-terephthalidene-bis-N-(4'-n-alkylaniline) (TBAA-n) exhibit a large variety of packing arrangements in the crystalline state, with or without relying on the symmetry center within the molecules.

  11. Evidence of a new crystalline phase in U–Gd–O phase diagram

    Energy Technology Data Exchange (ETDEWEB)

    Pieck, Darío [CEA, DEN, DEC, SESC – Laboratoire des Lois de Comportement des Combustibles (France); Desgranges, Lionel, E-mail: lionel.desgranges@cea.fr [CEA, DEN, DEC, SESC – Laboratoire des Lois de Comportement des Combustibles (France); Matheron, Pierre [CEA, DEN, DEC, SPUA – Laboratoire Combustibles Uranium (France); Palancher, Hervé [CEA, DEN, DEC, SESC – Laboratoire des Lois de Comportement des Combustibles (France)

    2015-06-15

    The U–Gd–O phase diagram was investigated in its high Gd content part. Several samples with the general (U{sub 1−y}, Gd{sub y})O{sub 2±x} composition were prepared by sintering under Ar H{sub 2} 5% atmosphere. The samples were characterized by SEM–EDS and X-ray diffraction. A new cubic crystalline phase was evidenced at high a Gd content that was not expected from previous literature. Rietveld refinements showed that its crystalline structure is related to C-Gd{sub 2}O{sub 3} phase. The existence of this compound has to be taken into account in the sintering of (U,Gd)O{sub 2} nuclear fuel.

  12. Quasiparticle specific heats for the crystalline color superconducting phase of QCD

    CERN Document Server

    Casalbuoni, R; Mannarelli, M; Nardulli, G; Ruggieri, M; Stramaglia, S; 10.1016/j.physletb.2003.09.071

    2003-01-01

    We calculate the specific heats of quasiparticles of two-flavor QCD in its crystalline phases for low temperature. We show that for the different crystalline structures considered here there are gapless modes contributing linearly in temperature to the specific heat. We evaluate also the phonon contributions which are cubic in temperature. These features might be relevant for compact stars with an inner shell in a color superconducting crystalline phase. (21 refs).

  13. Quasi-particle Specific Heats for the Crystalline Color Superconducting Phase of QCD

    CERN Document Server

    Casalbuoni, Roberto; Mannarelli, M; Nardulli, Giuseppe; Ruggieri, Marco; Stramaglia, S

    2003-01-01

    We calculate the specific heats of quasi-particles of two-flavor QCD in its crystalline phases for low temperature. We show that for the different crystalline structures considered here there are gapless modes contributing linearly in temperature to the specific heat. We evaluate also the phonon contributions which are cubic in temperature. These features might be relevant for compact stars with an inner shell in a color superconducting crystalline phase.

  14. Quasi-particle specific heats for the crystalline color superconducting phase of QCD

    Energy Technology Data Exchange (ETDEWEB)

    Casalbuoni, R.; Gatto, R.; Mannarelli, M.; Nardulli, G.; Ruggieri, M.; Stramaglia, S

    2003-11-27

    We calculate the specific heats of quasi-particles of two-flavor QCD in its crystalline phases for low temperature. We show that for the different crystalline structures considered here there are gapless modes contributing linearly in temperature to the specific heat. We evaluate also the phonon contributions which are cubic in temperature. These features might be relevant for compact stars with an inner shell in a color superconducting crystalline phase.

  15. The influence of glass composition on crystalline phase stability in glass-ceramic wasteforms

    Energy Technology Data Exchange (ETDEWEB)

    Maddrell, Ewan, E-mail: ewan.r.maddrell@nnl.co.uk [National Nuclear Laboratory, Sellafield, Seascale, Cumbria CA20 1PG (United Kingdom); Thornber, Stephanie; Hyatt, Neil C. [Department of Materials Science and Engineering, The University of Sheffield, Mappin Street, Sheffield S1 3JD (United Kingdom)

    2015-01-15

    Highlights: • Crystalline phase formation shown to depend on glass matrix composition. • Zirconolite forms as the sole crystalline phase only for most aluminous glasses. • Thermodynamics indicate that low silica activity glasses stabilise zirconolite. - Abstract: Zirconolite glass-ceramic wasteforms were prepared using a suite of Na{sub 2}O–Al{sub 2}O{sub 3}–B{sub 2}O{sub 3}–SiO{sub 2} glass matrices with variable Al:B ratios. Zirconolite was the dominant crystalline phase only for the most alumina rich glass compositions. As the Al:B ratio decreased zirconolite was replaced by sphene, zircon and rutile. Thermodynamic data were used to calculate a silica activity in the glass melt below which zirconolite is the favoured crystalline phase. The concept of the crystalline reference state of glass melts is then utilised to provide a physical basis for why silica activity varies with the Al:B ratio.

  16. Review of Crystalline Structures of Some Selected Homologous Series of Rod-Like Molecules Capable of Forming Liquid Crystalline Phases

    Directory of Open Access Journals (Sweden)

    Peter Zugenmaier

    2011-10-01

    Full Text Available The crystal structures of four homologous series of rod-like molecules are reviewed, two of which form hydrogen bonds and two with a symmetric chemical constitution. Many of the compounds investigated turn into liquid crystalline phases upon temperature increase. It is of valuable interest to know possible conformations and possible packing arrangements as prerequisites to model liquid crystalline structures. The hydrogen bonds of homologous series of pure 4-(ω-hydroxyalkyloxy-4′-hydroxybiphenyl (HnHBP, n the alkyloxy tail length are realized through head to tail arrangements of the hydroxyl groups and crystallize except one compound in chiral space groups without the molecules containing any asymmetric carbon. The hydrogen bonds of the homologous series of 4-substituted benzoic acids with various lengths of the tail provide dimers through strong polar bonding of adjacent carboxyl groups and thus provide the stiff part of a mesogenic unit prerequisite for liquid crystalline phases. The homologous series of dialkanoyloxybiphenyls (BP-n, n = 1, 19, of which nine compounds could be crystallized, show liquid crystalline behavior for longer alkane chain lengths, despite the high mobility of the alkane chain ends already detectable in the crystal phase. A single molecule, half a molecule or two half molecules form the asymmetric unit in a centrosymmetric space group. The homologous series of 1,4-terephthalidene-bis-N-(4′-n-alkylaniline (TBAA-n exhibit a large variety of packing arrangements in the crystalline state, with or without relying on the symmetry center within the molecules.

  17. The devitrification of artificial fibers: a multimethodic approach to quantify the temperature-time onset of cancerogenic crystalline phases.

    Science.gov (United States)

    Comodi, Paola; Cera, Fabio; Gatta, Giacomo Diego; Rotiroti, Nicola; Garofani, Patrizia

    2010-11-01

    A variety of artificial fibers extensively employed as lining in high-temperature apparatus may undergo a devitrification process that leads to significant changes in the chemical-physical properties of the materials. Among them, the crystallization of carcinogenic minerals, such as cristobalite, has already been documented for alumino-silicate ceramic fibers. Five fibrous samples with different compositions were treated over a wide range of temperatures (20-1500°C) and times (24-336 h) to investigate the rate and the crystalline phases that are formed as well their onset temperatures. The new phases were characterized by using a multimethodic approach: phase transformations were monitored together with thermal analysis and the new phases were investigated by using X-ray powder diffraction analysis. The crystalline:amorphous ratio was monitored by Rietveld refinement of X-ray diffraction data. Scanning electron microscopy was used to study the effect of heat treatments on the morphology of fibers, and the nanostructures were investigated by transmission electron microscopy (TEM). The results show that the main crystalline phases are cristobalite, diopside, mullite, and zirconia. The onset of cristobalite was observed at temperature lower than that thermodynamically expected. The TEM analysis showed that protostructures were present in the material vitrified from sol-gel-derived products, which can act as crystallization nuclei. The study shows that the devitrification leads to health hazard due to the formation of inhalable powder of cancerogenic crystalline phases.

  18. Quantitative Phase Development of crystalline, nano-crystalline and amorphous phases during hydration of OPC blended with siliceous fly ash

    OpenAIRE

    Dittrich, Sebastian

    2015-01-01

    Ambitious efforts driven by political and environmental considerations to reduce carbon dioxide emission are currently present, amongst other branches in the construction material industry as well. One possible solution concentrates on the replacement of cement by supplementary cementitious materials like fly ash or granulated blast furnace slag. Due to its high amorphous phase content and the related reactivity potential fly ash seems well suited for being used in cement or concrete. Unfortu...

  19. Sensitivity of micromechanical actuation on amorphous to crystalline phase transformations under the influence of Casimir forces

    NARCIS (Netherlands)

    Sedighi Ghozotkhar, Mehdi; Broer, W. H.; Palasantzas, G.; Kooi, B. J.

    2013-01-01

    Amorphous to crystalline phase transitions in phase change materials (PCM) can have strong influence on the actuation of microelectromechanical systems under the influence of Casimir forces. Indeed, the bifurcation curves of the stationary equilibrium points and the corresponding phase portraits of

  20. Frustrated smectic liquid crystalline phases in lactic acid derivatives

    Science.gov (United States)

    Glogarová, M.; Novotná, V.

    2016-08-01

    We have prepared and studied a series of compounds with different types of molecular core and lactate unit in the chiral terminal chain. We draw a survey and comparison of their mesomorphic properties with respect to the occurrence of twist grain boundary (TGB) phases. The materials exhibit extremely wide TGBA phase more than 60K broad, unique TGBA-TGBC-SmC*-SmCA* phase sequence and unique re-entrant TGBA phase below the SmA phase. TGB phases have been induced in binary mixtures of molecules with different molecular shape and chirality (chiral lactic acid derivative and non-chiral hockey-stick mesogen). Unique effect is observed for compounds with TGBA phase, where the applied electric field transforms the planar texture into the homeotropic one, homogeneously dark in crossed polarizers. The process is analogy of the Frederiks transition so far known only for nematics. This effect, changing the bright state to the dark one, is promising for applications.

  1. Shifting Phases for Patchy Particles - Effect of mutagenesis and chemical modification on the phase diagram of human gamma D crystallin

    Science.gov (United States)

    McManus, Jennifer J.; James, Susan; McNamara, Ruth; Quinn, Michelle

    2014-03-01

    Single mutations in human gamma D crystallin (HGD), a protein found in the eye lens are associated with several childhood cataracts. Phase diagrams for several of these protein mutants have been measured and reveal that phase boundaries are shifted compared with the native protein, leading to condensation of protein in a physiologically relevant regime. Using HGD as a model protein, we have constructed phase diagrams for double mutants of the protein, incorporating two single amino acid substitutions for which phase diagrams are already known. In doing so, the characteristics of each of the single mutations are maintained but both are now present in the same protein particle. While these proteins are not of interest physiologically, this strategy allows the controlled synthesis of nano-scale patchy particles in which features associated with a known phase behavior can be included. It can also provide a strategy for the controlled crystallisation of proteins. Phase boundaries also change after the chemical modification of the protein, through the covalent attachment of fluorescent labels, for example, and this will also be discussed. The authors acknowledge Science Foundation Ireland Stokes Lectureship and Grant 11/RFP.1/PHY/3165. The authors also acknowledge the Irish Research Council and the John and Pat Hume Scholarship.

  2. Structural phase study in un-patterned and patterned PVDF semi-crystalline films

    Energy Technology Data Exchange (ETDEWEB)

    Pramod, K., E-mail: rameshg.phy@pondiuni.edu.in; Gangineni, Ramesh Babu, E-mail: rameshg.phy@pondiuni.edu.in [Department of Physics, Pondicherry University, R. V. Nagar, Kalapet, Puducherry - 605014 (India)

    2014-04-24

    This work explores the structural phase studies of organic polymer- polyvinylidene fluoride (PVDF) thin films in semi-crystallized phase and nano-patterned PVDF thin films. The nanopatterns are transferred with the CD layer as a master using soft lithography technique. The semi-crystalline PVDF films were prepared by a still and hot (SH) method, using a homemade spin coater that has the proficiency of substrate heating by a halogen lamp. Using this set up, smooth PVDF thin films in semi-crystalline α-phase were prepared using 2-Butanone as solvent. XRD, AFM and confocal Raman microscope have been utilized to study the structural phase, crystallinity and quality of the films.

  3. Effect of heat and film thickness on a photoinduced phase transition in azobenzene liquid crystalline polyesters

    DEFF Research Database (Denmark)

    Sanchez, C; Alcala, R; Hvilsted, Søren

    2003-01-01

    The liquid crystal to isotropic phase transition induced with 488 nm light in films of liquid crystalline azobenzene polyesters has been studied as a function of temperature, light intensity, and film thickness. That phase transition is associated with the photoinduced trans-cis-trans isomerizati...

  4. Monodisperse nonionic isoprenoid-type hexahydrofarnesyl ethylene oxide surfactants: high throughput lyotropic liquid crystalline phase determination.

    Science.gov (United States)

    Fong, Celesta; Weerawardena, Asoka; Sagnella, Sharon M; Mulet, Xavier; Krodkiewska, Irena; Chong, Josephine; Drummond, Calum J

    2011-03-15

    The neat and lyotropic phase behavior of eight new ethylene oxide amphiphiles (EO = 1-8) with a hexahydrofarnesyl chain (3,7,11-trimethyldodecyl) and narrow polydispersity (>98.5% purity) is reported. Below five EO units the behavior of the neat surfactants show only a glass transition, Tg ∼ -90 °C. Above four EO units, crystallization (Tcrys) and crystal-isotropic liquid (Tm) transitions are also observed that increase with degree of ethoxylation of the surfactant headgroup. The lyotropic liquid crystalline phase behavior spans a complex spectrum of surfactant-water interfacial curvatures. Specifically, inverse phases are present below ambient temperatures for EO ethoxylation, with the crossover to normal phases occurring at HFarn(EO)(7-8) which exhibits normal hexagonal (H(I)) and cubic (Q(I)) phases at ambient temperatures. The toxicity of colloidal dispersions of these EO amphiphiles was assayed against normal breast epithelial (HMEpiC) and breast cancer (MCF7) cell lines. The IC50 of the EO amphiphiles was similar in both cell lines with moderate toxicity ranging from ca. <5 to 140 μM in an in vitro cell viability assay. Observations are qualitatively rationalized in terms of the molecular geometry of the surfactant. The physicochemical behavior of the HFarnesyl ethylene oxide amphiphiles is compared to other ethylene oxide surfactants.

  5. Mechanochemical spinodal decomposition: a phenomenological theory of phase transformations in multi-component, crystalline solids

    Science.gov (United States)

    Rudraraju, Shiva; van der Ven, Anton; Garikipati, Krishna

    2016-06-01

    We present a phenomenological treatment of diffusion-driven martensitic phase transformations in multi-component crystalline solids that arise from non-convex free energies in mechanical and chemical variables. The treatment describes diffusional phase transformations that are accompanied by symmetry-breaking structural changes of the crystal unit cell and reveals the importance of a mechanochemical spinodal, defined as the region in strain-composition space, where the free-energy density function is non-convex. The approach is relevant to phase transformations wherein the structural order parameters can be expressed as linear combinations of strains relative to a high-symmetry reference crystal. The governing equations describing mechanochemical spinodal decomposition are variationally derived from a free-energy density function that accounts for interfacial energy via gradients of the rapidly varying strain and composition fields. A robust computational framework for treating the coupled, higher-order diffusion and nonlinear strain gradient elasticity problems is presented. Because the local strains in an inhomogeneous, transforming microstructure can be finite, the elasticity problem must account for geometric nonlinearity. An evaluation of available experimental phase diagrams and first-principles free energies suggests that mechanochemical spinodal decomposition should occur in metal hydrides such as ZrH2-2c. The rich physics that ensues is explored in several numerical examples in two and three dimensions, and the relevance of the mechanism is discussed in the context of important electrode materials for Li-ion batteries and high-temperature ceramics.

  6. Nonionic diethanolamide amphiphiles with isoprenoid-type hydrocarbon chains: thermotropic and lyotropic liquid crystalline phase behaviour

    Energy Technology Data Exchange (ETDEWEB)

    Sagnella, Sharon M.; Conn, Charlotte E.; Krodkiewska, Irena; Drummond, Calum J. (CSIRO/MSE)

    2014-09-24

    The thermotropic and lyotropic liquid crystalline phase behaviour of a series of diethanolamide amphiphiles with isoprenoid-type hydrocarbon chains (geranoyl, H-farnesoyl, and phytanoyl) has been investigated. When neat, both H-farnesoyl and phytanoyl diethanolamide form a smectic liquid crystalline structure at sub-zero temperatures. In addition, all three diethanolamides exhibit a glass transition temperature at around -73 C. Geranoyl diethanolamide forms a lamellar crystalline phase with a lattice parameter of 17.4 {angstrom} following long term storage accompanied by the loss of the glass transition. In the presence of water, H-farnesoyl and phytanoyl diethanolamide form lyotropic liquid crystalline phases, whilst geranoyl diethanolamide forms an L{sub 2} phase. H-farnesoyl diethanolamide forms a fluid lamellar phase (L{sub {alpha}}) at room temperature and up to {approx} 40 C. Phytanoyl diethanolamide displays a rich mesomorphism forming the inverse diamond (Q{sub II}{sup D}) and gyroid (Q{sub II}{sup G}) bicontinuous cubic phases in addition to an L{sub {alpha}} phase.

  7. Improvement of multilayer graphene crystallinity by solid-phase precipitation with current stress application during annealing

    Science.gov (United States)

    Sahab Uddin, Md.; Ichikawa, Hiroyasu; Sano, Shota; Ueno, Kazuyoshi

    2016-06-01

    To improve the crystallinity of multilayer graphene (MLG) films by solid-phase precipitation, a new method by which current stress is introduced during annealing of a carbon-doped cobalt (Co-C) layer using cobalt (Co) as the catalyst has been investigated. The effects of current stress on the formation and crystallinity of MLG films were investigated by comparing the characteristics of the films annealed at the same temperature with and without current by taking into account the temperature rise due to Joule heating. The characteristics obtained by Raman spectroscopy, scanning electron microscopy (SEM), transmission electron microscopy (TEM), and X-ray diffraction (XRD) measurements revealed that the MLG films produced were crystalline in nature and their crystallinity increased with applied current stress at the same temperature. From SEM observations, beside Joule heating, enhancement of Co grain size by agglomeration induced by current stress may be the potential reason for the improvement of the crystallinity of MLG films. We have also improved the uniformity of MLG films by depositing an additional copper (Cu) capping layer over the Co-C layer. Current stress application can lead to low-temperature fabrication of MLG with higher crystallinity by solid-phase precipitation.

  8. Durability of crystalline phase in concrete microstructure modified by the mineral powders: evaluation by nanoindentation tests

    Directory of Open Access Journals (Sweden)

    Rajczakowska Magdalena

    2016-03-01

    Full Text Available This paper presents the nanoindentation investigation of the evolution of concrete microstructure modified by the Internal Crystallization Technology mineral powders. The samples under study were retrieved from a fragment of a circular concrete lining of the vertical mine shaft at a depth of approximately 1,000 m. Due to the aggressive environment and exposure to contaminated water, the internal surface of the structure was deteriorated, decreasing its strength significantly. The mineral powders were applied directly on the surface lining. The specimens were investigated one month, three months and one year after the application of the aforementioned substance in order to verify the time dependence of the strengthening processes and durability of the crystalline phase. The microstructural changes of concrete were assessed with the use of nanoindentation technique. The testing procedure involved including the previously cut specimens in the epoxy resin and grinding and polishing in order to reduce the surface roughness. As a result of the nanoindentation tests the hardness as well as Young’s modulus of the material were evaluated. The results were then compared and statistically analyzed. As a consequence, the disintegration time of the crystalline network in the pores of concrete was identified.

  9. 77 FR 35425 - Crystalline Silicon Photovoltaic Cells and Modules From China; Scheduling of the Final Phase of...

    Science.gov (United States)

    2012-06-13

    ... silicon photovoltaic cells, and modules, laminates, and panels, consisting of crystalline silicon... COMMISSION Crystalline Silicon Photovoltaic Cells and Modules From China; Scheduling of the Final Phase of... crystalline silicon photovoltaic cells and modules, provided for in subheadings 8501.31.80, 8501.61.00,...

  10. Electrostriction and Crystalline Phase Transformations in a Vinylidene Flouride Terpolymer

    Science.gov (United States)

    Roland, C. M.; Garrett, J. T.; Qadri, S. B.

    Substantial electrostrictive strains can be obtained from terpolymers of vinylidene fluoride, trifluoroethylene, and chlorotrifluoroethylene. The mechanism of the electromechanical response was investigated using x-ray diffraction and infrared absorption measurements on the polymer under an electric field. While application of the field is found to induce changes in the crystal phase structure, the phase transition that can effect dimensional changes is too small to account for the magnitude of the electrostriction. Thus, the origin of the exceptional electromechanical properties of this material remains to be fully elucidated.

  11. Amorphous and crystalline phase interaction during the Brill transition in nylon 66

    Directory of Open Access Journals (Sweden)

    2009-07-01

    Full Text Available A prominent α' process in specifically treated nylon 66 and microcomposite samples is identified by dynamic mechanical analysis and proposed to be an amorphous phase counterpart of the Brill transition identified by synchrotron wide-angle X-ray diffraction (WAXD. It is suggested that this α' process, which marks a critical free volume change and an onset of segmental chain movement in the amorphous phase, precedes and prompts the Brill transition in the crystalline phase.

  12. Tuning the phase diagrams: the miscibility studies of multilactate liquid crystalline compounds

    Science.gov (United States)

    Bubnov, Alexej; Tykarska, Marzena; Hamplová, Věra; Kurp, Katarzyna

    2016-09-01

    Design of binary and multicomponent liquid crystalline mixtures is a very powerful tool to reach the desired self-assembling properties. Beyond many advantages, this method has a distinct negativity - it is very material-consuming. While working with unique chiral materials in the research laboratory, this problem can be solved by applying miscibility study by the contact preparation method. In this work, the miscibility studies of lactic acid derivatives and non-chiral/chiral liquid crystalline molecules of different structure have been done in order to establish the phase diagrams. Special attention is focused on the ferro(antiferro)electric smectic phases.

  13. Growth of crystalline Al2O3 via thermal atomic layer deposition: Nanomaterial phase stabilization

    Directory of Open Access Journals (Sweden)

    S. M. Prokes

    2014-03-01

    Full Text Available We report the growth of crystalline Al2O3 thin films deposited by thermal Atomic Layer Deposition (ALD at 200 °C, which up to now has always resulted in the amorphous phase. The 5 nm thick films were deposited on Ga2O3, ZnO, and Si nanowire substrates 100 nm or less in diameter. The crystalline nature of the Al2O3 thin film coating was confirmed using Transmission Electron Microscopy (TEM, including high-resolution TEM lattice imaging, selected area diffraction, and energy filtered TEM. Al2O3 coatings on nanowires with diameters of 10 nm or less formed a fully crystalline phase, while those with diameters in the 20–25 nm range resulted in a partially crystalline coating, and those with diameters in excess of 50 nm were fully amorphous. We suggest that the amorphous Al2O3 phase becomes metastable with respect to a crystalline alumina polymorph, due to the nanometer size scale of the film/substrate combination. Since ALD Al2O3 films are widely used as protective barriers, dielectric layers, as well as potential coatings in energy materials, these findings may have important implications.

  14. Ultrasonic study of the shear mechanical impedance of butyloxybenzylidene octylaniline near the crystalline-B-smectic-A phase transition

    OpenAIRE

    Thiriet, Y.; Martinoty, P.

    1982-01-01

    We report a detailed study of the shear mechanical impedance near the crystalline-B-smectic-A transition in butyloxybenzylidene octylaniline (40.8). The measurements were performed at various frequencies from 5 to 85 MHz for shear waves propagating along the normal to the layers. In both phases the material response presents strong relaxation effects. The structure change at the transition is indicated by an increase in the real part of the shear impedance. The results at 85 MHz are those exp...

  15. Low-pressure phase diagram of crystalline benzene from quantum Monte Carlo

    Science.gov (United States)

    Azadi, Sam; Cohen, R. E.

    2016-08-01

    We studied the low-pressure (0-10 GPa) phase diagram of crystalline benzene using quantum Monte Carlo and density functional theory (DFT) methods. We performed diffusion quantum Monte Carlo (DMC) calculations to obtain accurate static phase diagrams as benchmarks for modern van der Waals density functionals. Using density functional perturbation theory, we computed the phonon contributions to the free energies. Our DFT enthalpy-pressure phase diagrams indicate that the Pbca and P21/c structures are the most stable phases within the studied pressure range. The DMC Gibbs free-energy calculations predict that the room temperature Pbca to P21/c phase transition occurs at 2.1(1) GPa. This prediction is consistent with available experimental results at room temperature. Our DMC calculations give 50.6 ± 0.5 kJ/mol for crystalline benzene lattice energy.

  16. Crystalline Ultrastructures, Inflammatory Elements, and Neoangiogenesis Are Present in Inconspicuous Aortic Valve Tissue

    Directory of Open Access Journals (Sweden)

    P. Dorfmüller

    2010-01-01

    Full Text Available Morbidity from calcific aortic valve disease (CAVD is increasing. Recent studies suggest early reversible changes involving inflammation and neoangiogenesis. We hypothesized that microcalcifications, chemokines, and growth factors are present in unaffected regions of calcific aortic valves. We studied aortic valves from 4 patients with CAVD and from 1 control, using immunohistochemistry, scanning electron microscopy, and infrared spectrography. We revealed clusters of capillary neovessels in calcified (ECC, to a lesser extent in noncalcified (ECN areas. Endothelial cells proved constant expression of SDF-1 in ECC, ECN, and endothelial cells from valvular surface (ECS. Its receptor CXCR4 was expressed in ECC. IL-6 expression correlated with CXCR4 staining and presence of lymphocytes. VEGF was expressed by ECS, its receptor by ECC and ECN. Crystalline ultrastructures were found on the surface of histologically noncalcified areas (HNCAs, spectrography revealed calcium hydroxylapatite. Our results demonstrate that crystalline ultrastructures are present in HNCAs, undergoing neoangiogenesis in an inflammatory context. These alterations could be an early witness of disease and an opening to therapy.

  17. Determination of Crystallinity and Crystal Structure of Hylamer™ Polyethylene after in vivo Wear

    OpenAIRE

    Visentin, M; Stea, S.; De Clerico, M.; Reggiani, M.; Fagnano, C.; Squarzoni, S.; De Toni, A

    2006-01-01

    Abstract Hylamer? polyethylene is a crystalline form of polyethylene of 70% crystallinity whereas conventional polyethylene (PE) has 50% crystallinity. Crystallinity is the percentage by weight of the crystalline phase present in the whole polymer, which comprises both amorphous and crystalline phases. Clinical experience has shown that Hylamer? components used in joint prostheses, if sterilized ...

  18. Determination of Crystallinity and Crystal Structure of Hylamer™ Polyethylene after in vivo Wear

    OpenAIRE

    Visentin, M; Stea, S.; Clerico, M; Reggiani, M.; Fagnano, C.; Squarzoni, S.; Toni, A.

    2006-01-01

    Abstract Hylamer? polyethylene is a crystalline form of polyethylene of 70% crystallinity whereas conventional polyethylene (PE) has 50% crystallinity. Crystallinity is the percentage by weight of the crystalline phase present in the whole polymer, which comprises both amorphous and crystalline phases. Clinical experience has shown that Hylamer? components used in joint prostheses, if sterilized ...

  19. Shadow wave-function variational calculations of crystalline and liquid phases of 4He

    Science.gov (United States)

    Vitiello, S. A.; Runge, K. J.; Chester, G. V.; Kalos, M. H.

    1990-07-01

    A new class of variational wave functions for boson systems, shadow wave functions, is used to investigate the properties of solid and liquid 4He. The wave function is translationally invariant and symmetric under particle interchange. In principle, the calculations for the crystalline phase do not require the use of any auxiliary lattice. Using the Metropolis Monte Carlo algorithm, we show that the additional variational degrees of freedom in the wave function lower the energy significantly. This wave function also allows the crystalization of an equilibrated liquid phase when a crystalline seed is used. The pair correlation function and structure factor S(k) are determined in the liquid phase. The condensate fraction is calculated as well. Results are given for the single-particle distribution function around the lattice positions in the solid phase.

  20. Effect of trans-cis photoisomerization on phase equilibria and phase transition of liquid-crystalline azobenzene chromophore and its blends with reactive mesogenic diacrylate.

    Science.gov (United States)

    Kim, Namil; Li, Quan; Kyu, Thein

    2011-03-01

    Photoisomerization-induced phase transition of neat liquid-crystalline azobenzene chromophore (LCAC) and its effect on phase diagrams of its mixtures with reactive mesogenic diacrylate monomer (RM257) have been investigated experimentally and theoretically. Upon irradiation with ultraviolet light, the nematic phase of LCAC transformed to isotropic, while the crystal phase showed corrugated textures on the surface (i.e., ripples). The phase-transition temperatures and corresponding morphologies of the blends have been investigated by means of differential scanning calorimetry and optical microscopy. A theoretical phase diagram of a binary nematic and crystalline system was constructed by self-consistently solving the combined free energies of Flory-Huggins, Maier-Saupe, and phase-field theory. The calculation revealed various coexistence regions such as nematic + liquid (N₁ + L₂), crystal + liquid (Cr₁ + L₂), crystal + nematic (Cr₁ + N₂), and crystal + crystal (Cr₁ + Cr₂) over a broad range of compositions including the single-phase nematic (N₁, N₂) of the corresponding constituents. The calculated liquidus lines were in good accord with the depressed mesophase-isotropic transition points. The present paper demonstrates the effect of trans-cis photoisomerization on the mesophase transitions of neat LCAC and the phase diagram of LCAC-RM257 as well as on the ripple formation (i.e., periodic undulation) on the azobenzene crystals.

  1. Distinct Topological Crystalline Phases in Models for the Strongly Correlated Topological Insulator SmB_{6}.

    Science.gov (United States)

    Baruselli, Pier Paolo; Vojta, Matthias

    2015-10-09

    SmB_{6} was recently proposed to be both a strong topological insulator and a topological crystalline insulator. For this and related cubic topological Kondo insulators, we prove the existence of four different topological phases, distinguished by the sign of mirror Chern numbers. We characterize these phases in terms of simple observables, and we provide concrete tight-binding models for each phase. Based on theoretical and experimental results for SmB_{6} we conclude that it realizes the phase with C_{k_{z}=0}^{+}=+2, C_{k_{z}=π}^{+}=+1, C_{k_{x}=k_{y}}^{+}=-1, and we propose a corresponding minimal model.

  2. The structure and dynamics of amorphous and crystalline phases of ice

    Energy Technology Data Exchange (ETDEWEB)

    Klug, D. D.; Tse, J. S.; Tulk, C. A.; Svensson, E. C.; Swainson, I.; Loong, C.-K.

    2000-07-14

    The structures of the high and low-density amorphous phases of ice are studied using several techniques. The diffraction patterns of high and low density amorphous ice are analyzed using reverse Monte Carlo methods and compared with molecular dynamics simulations of these phases. The spectra of crystalline and amorphous phases of ice obtained by Raman and incoherent inelastic neutron scattering are analyzed to yield structural features for comparison with the results of molecular dynamics and Reverse Monte Carlo analysis. The structural details obtained indicate that there are significant differences between the structure of liquid water and the amorphous phases of ice.

  3. Phase behavior and crystalline structures of cholesteryl ester mixtures: a C-13 MASNMR study.

    Science.gov (United States)

    Guo, W; Hamilton, J A

    1995-06-01

    Cholesteryl esters are a transport and storage form of cholesterol in normal physiology but also a significant lipid in atherosclerotic plaques. To understand better the molecular properties of cholesteryl esters in tissues and plaques, we have studied the polymorphic and mesomorphic features of pure and mixed cholesteryl esters by solid state C-13 NMR with magic angle sample spinning (MASNMR). The temperature-dependent properties of two single components (cholesteryl linoleate (CL, C18:2) and cholesteryl linolenate (CLL, C18:3)), four binary systems (cholesteryl palmitate (CP, C16:0) with CL, CLL or cholesteryl oleate (CO, C18:1), and CO/CL), one ternary system (CO/CP/CL), and one quaternary system (CO/CP/CL/CLL) were studied. The mixing ratios were based on the composition of an atherosclerosis plaque dissected from a cholesterol-fed New Zealand white rabbit. C-13 MASNMR determined the phase transition temperatures, identified the phases present in all systems, and provided novel information about molecular structures. For example, solid CL exhibited a disordered structure with multiple molecular conformations, whereas pure CLL had a crystalline structure different from the three most commonly characterized forms (MLII, MLI, BL). In binary mixtures, the crystalline structure of each cholesteryl ester species was identified by its own characteristic resonances. It was found that CP always existed in its native BL form, but CL and CO were influenced by the composition of the mixture. CL was induced to form MLII crystals by the coexisting CP (55 wt%). When CO was cooled from the isotropic phase, it existed as a mixture of MLII and an amorphous form. The presence of CP significantly accelerated the conversion of the amorphous form to the MLII form. For the ternary mixture co-dried from chloroform, CL cocrystallized with CO in the MLII form and CP existed in BL form. Addition of a small amount of CLL slightly increased the heterogeneity of the solid mixture, but had

  4. High-Quality Single Crystalline Ge(111) Growth on Si(111) Substrates by Solid Phase Epitaxy

    Institute of Scientific and Technical Information of China (English)

    SUN Bing; CHANG Hu-Dong; LU Li; LIU Hong-Gang; WU De-Xin

    2012-01-01

    Heterogeneous integration of crystalline Ge layers on cleaned and H-terminated Si(111) substrates are demonstrated by employing a combination of e-beam evaporation and solid phase epitaxy techniques. High-quality single crystalline Ge(111) layers on Si(111) substrates with a smooth Ge surface and an abrupt interface between Ge and Si are obtained.An XRD rocking curve scan of the Ge(111) diffraction peak shovs a FWHM of only 260 arcsec for a 50-nm-thick Ge layer annealed at 600℃ with a ramp-up rate of 20℃/s and a holding time of 1 min. The AFM images exhibit that the rms surface roughness of all the crystalline Ge layers are less than 2.1 nm.

  5. Toward an anisotropic atom-atom model for the crystalline phases of the molecular S8 compound

    OpenAIRE

    Pastorino, C.; Gamba, Z.

    2000-01-01

    We analize two anisotropic atom-atom models used to describe the crystalline alpha,beta and gamma phases of S8 crystals, the most stable compound of elemental sulfur in solid phases, at ambient pressure and T

  6. Predicting primary crystalline phase and liquidus temperature above or below 1050{degrees}C as functions of glass composition

    Energy Technology Data Exchange (ETDEWEB)

    Redgate, P.E.; Piepel, G.F.

    1996-02-01

    This report presents the results of applying statistical empirical modeling techniques to primary crystalline phase at the liquidus temperature (T{sub L}) and (ii) whether liquidus temperature is above or below 1050{degree}C (1OO{degree}C below a melting temperature of 1150{degree}C). Data used in modeling primary crystalline phase and liquidus temperate are from the Composition Variability Study (CVS) of Hanford waste glass compositions and properties. The majority of the 123 CVS glasses are categorized into one of 13 primary crystalline phases (at the liquidus temperature). They are also classified as to having T{sub L} Above or Below 1050{degree}C. Two common statistical methods used to model such categorical data are the multinomial logit and classification tree models. The classification tree models provided an overall better modeling approach than did the multinomial logit models. The performance of models in this report should be compared to the performance of the revised ``Development of Models and Software for Liquidus Temperature of Glasses of HWVP Products`` models from Ecole Polytechnique. If the Ecole Polytechnique models perform better than the models discussed in this report, no additional effort on these models would be needed. However, if the converse is true, it may be worthwhile to invest additional effort on statistical empirical modeling methods.

  7. Spectral descriptors for bulk metallic glasses based on the thermodynamics of competing crystalline phases

    CERN Document Server

    Perim, Eric; Liu, Yanhui; Toher, Cormac; Gong, Pan; Li, Yanglin; Simmons, W Neal; Levy, Ohad; Vlassak, Joost J; Schroers, Jan; Curtarolo, Stefano

    2016-01-01

    Metallic glasses have attracted considerable interest in recent years due to their unique combination of superb properties and processability. Predicting bulk metallic glass formers from known parameters remains a challenge and the search for new systems is still performed by trial and error. It has been speculated that some sort of "confusion" during crystallization of the crystalline phases competing with glass formation could play a key role. Here, we propose a heuristic descriptor quantifying confusion and demonstrate its validity by detailed experiments on two well-known glass forming alloy systems. With the insight provided by these results, we develop a robust model for predicting glass formation ability based on the spectral decomposition of geometrical and energetic features of crystalline phases calculated ab-initio in the AFLOW high throughput framework. Our findings indicate that the formation of metallic glass phases could be a much more common phenomenon than currently estimated, with more than ...

  8. Control of crystalline phases in magnetic Fe nanoparticles inserted inside a matrix of porous carbon

    Energy Technology Data Exchange (ETDEWEB)

    Fernandez, M.P., E-mail: fernandezpaz.uo@uniovi.e [Dpto. de Fisica, Universidad de Oviedo, Calvo Sotelo, s/n, 33007 Oviedo (Spain); Schmool, D.S. [IN-IFIMUP, Universidade do Porto, Rua do Campo Alegre 687, 4169-007 Porto (Portugal); Dpto. de Fisica, Universidade do Porto, Rua do Campo Alegre 687, 4440-661 Porto (Portugal); Silva, A.S. [Dpto. de Fisica, Universidade do Porto, Rua do Campo Alegre 687, 4440-661 Porto (Portugal); Sevilla, M.; Fuertes, A.B. [Instituto Nacional del Carbon (CSIC), Apartado 73, 33080 Oviedo (Spain); Gorria, P.; Blanco, J.A. [Dpto. de Fisica, Universidad de Oviedo, Calvo Sotelo, s/n, 33007 Oviedo (Spain)

    2010-05-15

    Two magnetic composites made up of Fe nanoparticles (Fe-NPs) embedded in a porous amorphous carbon matrix are presented. One of the samples, Fe-S-AC, was obtained with the aid of sucrose and the other, Fe-AC, in the absence of this substance. The XRD patterns show Bragg diffraction peaks associated with alpha-Fe and gamma-Fe crystalline phases in the Fe-AC sample, while only peaks corresponding to the alpha-Fe phase are observed for Fe-S-AC powders. The Fe-NPs exhibit broad particle-size distributions for both samples, 5-50 nm for Fe-AC, whereas two populations (2-8 and 10-70 nm) for the Fe-S-AC composite are found. This fact gives rise to poorly defined blocking temperatures, as it can be deduced from the broad maxima observed in M{sub ZFC}(T) variations. In addition, M(H) curves for both Fe-AC and Fe-S-AC samples reveal the existence of exchange-bias effect for T<60 K, probably due to a magnetic coupling within a core/shell structure of the Fe-NPs, although this effect was observed to be less significant for Fe-S-AC.

  9. Change in the crystalline structure during the phase transition of the palladium-hydrogen system.

    Science.gov (United States)

    Kawasaki, Akio; Itoh, Satoshi; Shima, Kunihiro; Kato, Kenichi; Ohashi, Haruhiko; Ishikawa, Tetsuya; Yamazaki, Toshimitsu

    2015-10-14

    We performed an X-ray diffraction experiment while a palladium bulk absorbed and desorbed hydrogen to investigate the behavior of the crystalline lattice during the phase transition between the α phase and the β phase. Fast growth of the β phase was observed at around x = 0.1 and x = 0.45 of PdHx, and the phase transition rate has an exponential behavior in between. In addition, slight compression of the lattice at a high hydrogen concentration, an increase in the lattice constant, and broadening of the line width of the α phase after a cycle of absorption and desorption of hydrogen were observed. These behaviors correlated with the change in the sample length, which may infer that the change in shape was related to the phase transition.

  10. High-quality single crystalline NiO with twin phases grown on sapphire substrate by metalorganic vapor phase epitaxy

    Directory of Open Access Journals (Sweden)

    Kazuo Uchida

    2012-12-01

    Full Text Available High-quality single crystalline twin phase NiO grown on sapphire substrates by metalorganic vapor phase epitaxy is reported. X-ray rocking curve analysis of NiO films grown at different temperatures indicates a minimum full width at half maximum of the cubic (111 diffraction peak of 0.107° for NiO film grown at as low as 550 °C. Detailed microstructural analysis by Φ scan X-ray diffraction and transmission electron microscopy reveal that the NiO film consists of large single crystalline domains with two different crystallographic orientations which are rotated relative to each other along the [111] axis by 60°. These single crystal domains are divided by the twin phase boundaries.

  11. Formation of liquid crystalline phases in aqueous suspensions of platelet-like tripalmitin nanoparticles

    Science.gov (United States)

    Schmiele, Martin; Gehrer, Simone; Westermann, Martin; Steiniger, Frank; Unruh, Tobias

    2014-06-01

    Suspensions of platelet-like shaped tripalmitin nanocrystals stabilized by the pure lecithin DLPC and the lecithin blend S100, respectively, have been studied by small-angle x-ray scattering (SAXS) and optical observation of their birefringence at different tripalmitin (PPP) concentrations φPPP. It could be demonstrated that the platelets of these potential drug delivery systems start to form a liquid crystalline phase already at pharmaceutically relevant concentrations φPPP of less than 10 wt. %. The details of this liquid crystalline phase are described here for the first time. As in a previous study [A. Illing et al., Pharm. Res. 21, 592 (2004)] some platelets are found to self-assemble into lamellar stacks above a critical tripalmitin concentration \\varphi _{PPP}^{st} of 4 wt. %. In this study another critical concentration \\varphi _{PPP}^{lc}≈ 7 wt. % for DLPC and \\varphi _{PPP}^{lc}≈ 9 wt. % for S100 stabilized dispersions, respectively, has been observed. \\varphi _{PPP}^{lc} describes the transition from a phase of randomly oriented stacked lamellae and remaining non-assembled individual platelets to a phase in which the stacks and non-assembled platelets exhibit an overall preferred orientation. A careful analysis of the experimental data indicates that for concentrations above \\varphi _{PPP}^{lc} the stacked lamellae start to coalesce to rather small liquid crystalline domains of nematically ordered stacks. These liquid crystalline domains can be individually very differently oriented but possess an overall preferred orientation over macroscopic length scales which becomes successively more expressed when further increasing φPPP. The lower critical concentration for the formation of liquid crystalline domains of the DLPC-stabilized suspension compared to \\varphi _{PPP}^{lc} of the S100-stabilized suspension can be explained by a larger aspect ratio of the corresponding tripalmitin platelets. A geometrical model based on the excluded volumes of

  12. Low-pressure phase diagram of crystalline benzene from quantum Monte Carlo

    CERN Document Server

    Azadi, Sam

    2016-01-01

    We study the low-pressure (0 to 10 GPa) phase diagram of crystalline benzene using quantum Monte Carlo (QMC) and density functional theory (DFT) methods. We consider the $Pbca$, $P4_32_12$, and $P2_1/c$ structures as the best candidates for phase I and phase II. We perform diffusion quantum Monte Carlo (DMC) calculations to obtain accurate static phase diagrams as benchmarks for modern van der Waals density functionals. We use density functional perturbation theory to compute phonon contribution in the free-energy calculations. Our DFT enthalpy-pressure phase diagram indicates that the $Pbca$ and $P2_1/c$ structures are the most stable phases within the studied pressure range. The DMC Gibbs free-energy calculations predict that the room temperature $Pbca$ to $P2_1/c$ phase transition occurs at 2.1(1) GPa. This prediction is consistent with available experimental results at room temperature. Our DMC calculations show an estimate of 50.6$\\pm$0.5 kJ/mol for crystalline benzene lattice energy.

  13. Selective Sequence for the Peptide-Triggered Phase Transition of Lyotropic Liquid-Crystalline Structures.

    Science.gov (United States)

    Liu, Qingtao; Dong, Yao-Da; Boyd, Ben J

    2016-05-24

    A novel concept of using mixed lipids to construct selective peptide-sequence-sensing lyotropic liquid-crystalline (LLC) dispersion systems was investigated. The LLC systems were constructed using a mixture of phytantriol, a lipid that forms lyotropic liquid-crystalline phases, and a novel synthesized peptide-lipid (peplipid) for sensing a target peptide with the RARAR sequence. The internal structure of the dispersed LLC particles was converted from the lamellar structure (liposomes) to the inverse bicontinuous cubic phase (cubosomes) in the presence of the target peptide. The addition of common human proteins did not induce any structural change, indicating a high selectivity of interaction with the target peptide. The concept has potential for the design of targeted controlled release drug delivery agents.

  14. Influence of growth parameters on the surface morphology and crystallinity of InSb epilayers grown by liquid phase epitaxy

    Indian Academy of Sciences (India)

    N K Udayashankar; H L Bhat

    2003-12-01

    Unintentionally doped homoepitaxial InSb films have been grown by liquid phase epitaxy employing ramp cooling and step cooling growth modes. The effect of growth temperature, degree of supercooling and growth duration on the surface morphology and crystallinity were investigated. The major surface features of the grown film like terracing, inclusions, meniscus lines, etc are presented step-by-step and a variety of methods devised to overcome such undesirable features are described in sufficient detail. The optimization of growth parameters have led to the growth of smooth and continuous films. From the detailed morphological, X-ray diffraction, scanning electron microscopic and Raman studies, a correlation between the surface morphology and crystallinity has been established.

  15. The influence of dipalmitoyl phosphatidylserine on phase behaviour of and cellular response to lyotropic liquid crystalline dispersions.

    Science.gov (United States)

    Shen, Hsin-Hui; Crowston, Jonathan G; Huber, Florian; Saubern, Simon; McLean, Keith M; Hartley, Patrick G

    2010-12-01

    Lyotropic liquid crystalline nanoparticles (cubosomes) have the potential to act as amphiphilic scaffolds for the presentation of lipids and subsequent application in, for example, bioseparations and therapeutic delivery. In this work we have formulated lyotropic liquid crystalline systems based on the synthetic amphiphile 1,2,3-trihydroxy-3,7,11,15-tetramethylhexadecane (phytantriol) and containing the lipid dipalmitoyl phosphatidylserine (DPPS). We have prepared a range of DPPS-containing phytantriol cubosome formulations and characterized them using Small Angle X-ray Scattering and Cryo-transmission electron microscopy. These techniques show that increased DPPS content induces marked changes in lyotropic liquid crystalline phase behaviour, characterized by changes in crystallographic dimensions and increases in vesicle content. Furthermore, in vitro cell culture studies indicate that these changes correlate with lipid/surfactant cellular uptake and cytotoxicity. A model cell membrane based on a surface supported phospholipid bilayer was used to gain insights into cubosome-bilayer interactions using Quartz Crystal Microgravimetry. The data show that mass uptake at the supported bilayer increased with DPPS content. We propose that the cytotoxicity of the DPPS-containing dispersions results from changes in lipid/surfactant phase behaviour and the preferential attachment and fusion of vesicles at the cell membrane.

  16. Transitions between imperfectly ordered crystalline structures: A phase switch Monte Carlo study

    OpenAIRE

    Wilms, Dorothea; Wilding, Nigel B.; Binder, Kurt

    2012-01-01

    A model for two-dimensional colloids confined laterally by "structured boundaries" (i.e., ones that impose a periodicity along the slit) is studied by Monte Carlo simulations. When the distance D between the confining walls is reduced at constant particle number from an initial value D_0, for which a crystalline structure commensurate with the imposed periodicity fits, to smaller values, a succession of phase transitions to imperfectly ordered structures occur. These structures have a reduced...

  17. Alpha beta-crystallin expression and presentation following infection with murine gammaherpesvirus 68

    Science.gov (United States)

    Chauhan, Vinita S.; Nelson, Daniel A.; Marriott, Ian; Bost, Kenneth L.

    2014-01-01

    Alpha beta-crystallin (CRYAB) is a small heat shock protein that can function as a molecular chaperone and has protective effects for cells undergoing a variety of stressors. Surprisingly, CRYAB has been identified as one of the dominant autoantigens in multiple sclerosis. It has been suggested that autoimmune mediated destruction of this small heat shock protein may limit its protective effects, thereby exacerbating inflammation and cellular damage during multiple sclerosis. It is not altogether clear how autoimmunity against CRYAB might develop, or whether there are environmental factors which might facilitate the presentation of this autoantigen to CD4+ T lymphocytes. In the present study, we utilized an animal model of an Epstein Barr Virus (EBV)-like infection, murine gammaherpesvirus 68 (HV-68), to question whether such a virus could modulate the expression of CRYAB by antigen presenting cells. Following exposure to HV-68 and several other stimuli, in vitro secretion of CRYAB and subsequent intracellular accumulation were observed in cultured macrophages and dendritic cells. Following infection of mice with this virus, it was possible to track CRYAB expression in the spleen and in antigen presenting cell subpopulations, as well as its secretion into the blood. Mice immunized with human CRYAB mounted a significant immune response against this heat shock protein. Further, dendritic cells that were exposed to HV-68 could stimulate CD4+ T cells from CRYAB immunized mice to secrete interferon gamma. Taken together these studies are consistent with the notion of a gammaherpesvirus-induced CRYAB response in professional antigen presenting cells in this mouse model. PMID:23586607

  18. Electric-field triggered controlled release of bioactive volatiles from imine-based liquid crystalline phases.

    Science.gov (United States)

    Herrmann, Andreas; Giuseppone, Nicolas; Lehn, Jean-Marie

    2009-01-01

    Application of an electric field to liquid crystalline film forming imines with negative dielectric anisotropy, such as N-(4-methoxybenzylidene)-4-butylaniline (MBBA, 1), results in the expulsion of compounds that do not participate in the formation of the liquid crystalline phase. Furthermore, amines and aromatic aldehydes undergo component exchange with the imine by generating constitutional dynamic libraries. The strength of the electric field and the duration of its application to the liquid crystalline film influence the release rate of the expelled compounds and, at the same time, modulate the equilibration of the dynamic libraries. The controlled release of volatile organic molecules with different chemical functionalities from the film was quantified by dynamic headspace analysis. In all cases, higher headspace concentrations were detected in the presence of an electric field. These results point to the possibility of using imine-based liquid crystalline films to build devices for the controlled release of a broad variety of bioactive volatiles as a direct response to an external electric signal.

  19. Coarse-grained electrostatic interactions of coronene: Towards the crystalline phase

    Energy Technology Data Exchange (ETDEWEB)

    Heinemann, Thomas, E-mail: thomas.heinemann@tu-berlin.de; Klapp, Sabine H. L., E-mail: klapp@physik.tu-berlin.de [Institut für Theoretische Physik, Technische Universität Berlin, Hardenbergstr. 36, 10623 Berlin (Germany); Palczynski, Karol, E-mail: karol.palczynski@helmholtz-berlin.de; Dzubiella, Joachim, E-mail: joachim.dzubiella@helmholtz-berlin.de [Institut für Physik, Humboldt Universität zu Berlin, Newtonstraße 15, 12489 Berlin (Germany); Institut für Weiche Materie und Funktionale Materialen, Helmholtz-Zentrum Berlin für Materialien und Energie, Hahn-Meitner Platz 1, 14109 Berlin (Germany)

    2015-11-07

    In this article, we present and compare two different, coarse-grained approaches to model electrostatic interactions of disc-shaped aromatic molecules, specifically coronene. Our study builds on our previous work [T. Heinemann et al., J. Chem. Phys. 141, 214110 (2014)], where we proposed, based on a systematic coarse-graining procedure starting from the atomistic level, an anisotropic effective (Gay-Berne-like) potential capable of describing van der Waals contributions to the interaction energy. To take into account electrostatics, we introduce, first, a linear quadrupole moment along the symmetry axis of the coronene disc. The second approach takes into account the fact that the partial charges within the molecules are distributed in a ring-like fashion. We then reparametrize the effective Gay-Berne-like potential such that it matches, at short distances, the ring-ring potential. To investigate the validity of these two approaches, we perform many-particle molecular dynamics simulations, focusing on the crystalline phase (karpatite) where electrostatic interaction effects are expected to be particularly relevant for the formation of tilted stacked columns. Specifically, we investigate various structural parameters as well as the melting transition. We find that the second approach yields consistent results with those from experiments despite the fact that the underlying potential decays with the wrong distance dependence at large molecule separations. Our strategy can be transferred to a broader class of molecules, such as benzene or hexabenzocoronene.

  20. Coarse-grained electrostatic interactions of coronene: Towards the crystalline phase.

    Science.gov (United States)

    Heinemann, Thomas; Palczynski, Karol; Dzubiella, Joachim; Klapp, Sabine H L

    2015-11-07

    In this article, we present and compare two different, coarse-grained approaches to model electrostatic interactions of disc-shaped aromatic molecules, specifically coronene. Our study builds on our previous work [T. Heinemann et al., J. Chem. Phys. 141, 214110 (2014)], where we proposed, based on a systematic coarse-graining procedure starting from the atomistic level, an anisotropic effective (Gay-Berne-like) potential capable of describing van der Waals contributions to the interaction energy. To take into account electrostatics, we introduce, first, a linear quadrupole moment along the symmetry axis of the coronene disc. The second approach takes into account the fact that the partial charges within the molecules are distributed in a ring-like fashion. We then reparametrize the effective Gay-Berne-like potential such that it matches, at short distances, the ring-ring potential. To investigate the validity of these two approaches, we perform many-particle molecular dynamics simulations, focusing on the crystalline phase (karpatite) where electrostatic interaction effects are expected to be particularly relevant for the formation of tilted stacked columns. Specifically, we investigate various structural parameters as well as the melting transition. We find that the second approach yields consistent results with those from experiments despite the fact that the underlying potential decays with the wrong distance dependence at large molecule separations. Our strategy can be transferred to a broader class of molecules, such as benzene or hexabenzocoronene.

  1. A method for the quantitative determination of crystalline phases by X-ray

    Science.gov (United States)

    Petzenhauser, I.; Jaeger, P.

    1988-01-01

    A mineral analysis method is described for rapid quantitative determination of crystalline substances in those cases in which the sample is present in pure form or in a mixture of known composition. With this method there is no need for prior chemical analysis.

  2. Crystalline behaviors and phase transition during the manufacture of fine denier PA6 fibers

    Institute of Scientific and Technical Information of China (English)

    ZHANG ChengFeng; LIU YuHai; LIU ShaoXuan; LI HuiZhen; HUANG Kun; PAN QingHua; HUA XiaoHui; HAO ChaoWei; MA QingFang; LV ChangYou; LI WeiHong; YANG ZhanLan; ZHAO Ying; WANG DuJin; LAI GuoQiao; JIANG JianXiong; XU YiZhuang; WU JinGuang

    2009-01-01

    Recently we have successfully produced fine denier PA6 fibers by using additives containing lanthanide compounds.Meanwhile,crystallization and phase transition of PA6 fibers during spinning and drawing processes were investigated.During the spinning process,β phase crystal could be obtained In as-spun PA6 fibers which were produced with relatively high melt draw ratio,while γ phase crystal predominated when the melt draw ratio was relatively low.β phase crystal,whose behaviors ere similar with those of γ phase by FT-IR and XRD characterization,could be transformed to α form easily when PA6 fibers are immersed in boiling water.However,γ phase crystal of PA6 remains unchanged in boiling water.Thus,β and γ phase crystals of PA6 can be differentiated by the crystalline behaviors of PA6 fibers after treatment in boiling water.Further experiments demonstrate that the β phase can also be produced during a drawing process where a phase transformation from γ to α occurs.In other words,βphase may act as an intermediate state during the phase transformation.

  3. Nature of phase transitions in crystalline and amorphous GeTe-Sb2Te3 phase change materials.

    Science.gov (United States)

    Kalkan, B; Sen, S; Clark, S M

    2011-09-28

    The thermodynamic nature of phase stabilities and transformations are investigated in crystalline and amorphous Ge(1)Sb(2)Te(4) (GST124) phase change materials as a function of pressure and temperature using high-resolution synchrotron x-ray diffraction in a diamond anvil cell. The phase transformation sequences upon compression, for cubic and hexagonal GST124 phases are found to be: cubic → amorphous → orthorhombic → bcc and hexagonal → orthorhombic → bcc. The Clapeyron slopes for melting of the hexagonal and bcc phases are negative and positive, respectively, resulting in a pressure dependent minimum in the liquidus. When taken together, the phase equilibria relations are consistent with the presence of polyamorphism in this system with the as-deposited amorphous GST phase being the low entropy low-density amorphous phase and the laser melt-quenched and high-pressure amorphized GST being the high entropy high-density amorphous phase. The metastable phase boundary between these two polyamorphic phases is expected to have a negative Clapeyron slope. © 2011 American Institute of Physics

  4. Mechano-chemical spinodal decomposition: A phenomenological theory of phase transformations in multi-component, crystalline solids

    CERN Document Server

    Rudraraju, Shiva; Garikipati, Krishna

    2015-01-01

    We present a new phenomenological treatment of phase transformations in multi-component crystalline solids driven by free energy density functions that are non-convex in mechanical and chemical variables. We identify the mechano-chemical spinodal as the region in strain-composition space where the free energy density function is non-convex. Our treatment describes diffusional phase transformations that are accompanied by symmetry breaking structural changes of the crystal unit cell due to mechanical instabilities in the mechano-chemical spinodal. This approach is relevant to phase transformations wherein the structural order parameters can be expressed as linear combinations of strains relative to a high-symmetry reference crystal. Because the local strains in an inhomogeneous, transforming microstructure can be finite, the elasticity problem must account for geometric nonlinearity. Furthermore, for physical consistency and mathematical well-posedness, we regularize the free energy density functions by interf...

  5. Collagen films with stabilized liquid crystalline phases and concerns on osteoblast behaviors

    Energy Technology Data Exchange (ETDEWEB)

    Tang, Minjian; Ding, Shan; Min, Xiang; Jiao, Yanpeng, E-mail: tjiaoyp@jnu.edu.cn; Li, Lihua; Li, Hong; Zhou, Changren, E-mail: tcrz9@jnu.edu.cn

    2016-01-01

    To duplicate collagen's in vivo liquid crystalline (LC) phase and investigate the relationship between the morphology of LC collagen and osteoblast behavior, a self-assembly method was introduced for preparing collagen films with a stabilized LC phase. The LC texture and topological structure of the films before and after stabilization were observed with polarizing optical microscopy, scanning electron microscopy (SEM), and atomic force microscopy (AFM). The relationship between the collagen films and osteoblast behavior was studied with the 3-(4,5)-dimethylthiahiazo(-z-y1)-3,5-di-phenytetrazoliumromide method, proliferation index detection, alkaline phosphatase measurements, osteocalcin assay, inverted microscopy, SEM observation, AFM observation, and cytoskeleton fluorescence staining. The results showed that the LC collagen film had continuously twisting orientations in the cholesteric phase with a typical series of arced patterns. The collagen fibers assembled in a well-organized orientation in the LC film. Compared to the non-LC film, the LC collagen film can promote cell proliferation, and increase ALP and osteocalcin expression, revealing a contact guide effect on osteoblasts. - Highlights: • Collagen film with liquid crystalline (LC) phase was observed by POM, SEM and AFM. • The effect of LC collagen film on osteoblasts behaviors was studied in detail. • LC collagen film promoted osteoblast proliferation and osteogenesis activity.

  6. Synthesis of crystalline gels on a light-induced polymerization 3D printer (Conference Presentation)

    Science.gov (United States)

    Gong, Jin; Mao, Yuchen; Miyazaki, Takuya; Zhu, Meifang

    2017-04-01

    3D printing, also knows as Additive Manufacturing (AM), was first commercialized in 1986, and has been growing at breakneck speed since 2009 when Stratasys' key patent expired. Currently the 3D printing machines coming on the market can be broadly classified into three categories from the material state point of view: plastic filament printers, powder (or pellet) printers, film printers and liquid photopolymer printers. Much of the work in our laboratory revolves around the crystalline gels. We have succeeded in developing them with high toughness, high flexibility, particularly with many functions as shape memory, energy storage, freshness-retaining, water-absorbing, etc. These crystalline gels are synthesized by light-induced radical polymerization that involves light-reactive monomer having the property of curing with light of a sufficient energy to drive the reaction from liquid to solid. Note that the light-induced polymerized 3D printing uses the same principle. To open up the possibilities for broader application of our crystalline functional gels, we are interested in making them available for 3D printing. In this paper, we share the results of our latest research on the 3D printing of crystalline gels on light-induced 3D printers.

  7. Liquid crystalline phase transitions in virus and virus/polymer suspensions

    Science.gov (United States)

    Dogic, Zvonimir

    Using experimental, theoretical, and simulation methods, we investigate the relationship between the intermolecular interactions of rod-like colloids and the resulting liquid crystalline phase diagrams. As a model system of rod-like particles we use bacteriophage fd, which is a charge stabilized colloid. We are able to engineer complex attractive and repulsive intermolecular interactions by changing the ionic strengths of the suspensions, attaching covalently bound polymers and adding nonadsorbing polymers. Using standard molecular cloning techniques it is also shown that the aspect ratio of the rod-like particle can be manipulated. In the limit of high ionic strength the fd virus quantitatively agrees with the Onsager theory for the isotropic-nematic (I-N) phase transition in hard rods. The role of attractive interaction on the nature of the I-N phase transition is investigated. As the strength of the attraction is increased we observe isotropic-smectic (I-S) phase transitions. Using an optical microscope we follow the kinetics of the I-S phase transition and observe a wide range of novel structures of unexpected complexity. We also investigate the influence of adding hard spheres, or polymers on the nematic-smectic phase transition. We conclude that adding small spheres stabilizes the smectic phase and destabilizes the nematic phase.

  8. Morphology and crystalline-phase-dependent electrical insulating properties in tailored polypropylene for HVDC cables

    Science.gov (United States)

    Zha, Jun-Wei; Yan, Hong-Da; Li, Wei-Kang; Dang, Zhi-Min

    2016-11-01

    Polypropylene (PP) has become one promising material to potentially replace the cross-link polyethylene used for high voltage direct current cables. Besides the isotactic polypropylene, the block polypropylene (b-PP) and random polypropylene (r-PP) can be synthesized through the copolymerization of ethylene and propylene molecules. In this letter, the effect of morphology and crystalline phases on the insulating electrical properties of PP was investigated. It was found that the introduction of polyethylene monomer resulted in the formation of β and γ phases in b-PP and r-PP. The results from the characteristic trap energy levels indicated that the β and γ phases could induce deep electron traps which enable to capture the carriers. And the space charge accumulation was obviously suppressed. Besides, the decreased electrical conductivity was observed in b-PP and r-PP. It is attributed to the existence of deep traps which can effectively reduce the carrier mobility and density in materials.

  9. Two-dimensional topological crystalline insulator phase in quantum wells of trivial insulators

    Science.gov (United States)

    Niu, Chengwang; Buhl, Patrick M.; Bihlmayer, Gustav; Wortmann, Daniel; Blügel, Stefan; Mokrousov, Yuriy

    2016-06-01

    The realization of two-dimensional (2D) topological insulators (TIs) in HgTe/CdTe quantum wells (QWs) has generated an explosion of research on TIs and novel topologically nontrivial phases. Here we predict, based on first-principles calculations, that the newly discovered 2D topological crystalline insulators (TCIs) phase exists even in the QWs of trivial insulators, e.g. (Sn/Pb)Te and Na(Cl/Br), with mirror Chern number {n}{{M}}=-2. Tunable nontrivial energy gaps ranging from 4 to 238 meV are obtained, guaranteeing further room-temperature observations and applications. The combined effect of strain and electrostatic interaction that can be engineered by the cladding layers leads to a band inversion, resulting in the phase transition from trivial insulator to 2D TCIs. Our work provides a new strategy for engineering topological states in 2D materials.

  10. Sensitivity of micromechanical actuation on amorphous to crystalline phase transformations under the influence of Casimir forces

    Science.gov (United States)

    Sedighi, M.; Broer, W. H.; Palasantzas, G.; Kooi, B. J.

    2013-10-01

    Amorphous to crystalline phase transitions in phase change materials (PCM) can have strong influence on the actuation of microelectromechanical systems under the influence of Casimir forces. Indeed, the bifurcation curves of the stationary equilibrium points and the corresponding phase portraits of the actuation dynamics between gold and AIST (Ag5In5Sb60Te30) PCM, where an increase of the Casimir force of up ˜25% has been measured upon crystallization, show strong sensitivity to changes of the Casimir force as the stiffness of the actuating component decreases and/or the effective interaction area of the Casimir force increases, which can also lead to stiction. However, introduction of intrinsic energy dissipation (associated with a finite quality factor of the actuating system) can prevent stiction by driving the system to attenuated motion towards stable equilibrium depending on the PCM state and the system quality factor.

  11. Multiple phase transitions in single-crystalline Na_{1-delta}FeAs.

    Science.gov (United States)

    Chen, G F; Hu, W Z; Luo, J L; Wang, N L

    2009-06-01

    Specific heat, resistivity, susceptibility, and Hall coefficient measurements were performed on high-quality single-crystalline Na_{1-delta}FeAs. This compound is found to undergo three successive phase transitions at around 52, 41, and 23 K, which correspond to structural, magnetic, and superconducting transitions, respectively. The Hall effect result indicates the development of energy gap at low temperature due to the occurrence of spin-density-wave instability. Our results provide direct experimental evidence of the magnetic ordering in the nearly stoichiometric NaFeAs.

  12. Dynamic characterization of crystalline and glass phases of deuterated 1,1,2,2 tetrachloroethane

    Energy Technology Data Exchange (ETDEWEB)

    Pérez, Silvina C., E-mail: clyde@famaf.unc.edu.ar; Zuriaga, Mariano, E-mail: zuriaga@famaf.unc.edu.ar; Serra, Pablo, E-mail: serra@famaf.unc.edu.ar; Wolfenson, Alberto, E-mail: wolf@famaf.unc.edu.ar [Facultad de Matemática, Astronomía y Física, Universidad Nacional de Córdoba and IFEG-CONICET, Ciudad Universitaria, X5016LAE Córdoba (Argentina); Negrier, Philippe, E-mail: philippe.negrier@u-bordeaux.fr [Université Bordeaux, LOMA, UMR 5798, F-33400 Talence, France and LOMA, UMR 5798, F-33400 Talence (France); Tamarit, Josep Lluis, E-mail: josep.lluis.tamarit@upc.edu [Grup de Caracterització de Materials, Departament de Física i Enginyeria Nuclear, ETSEIB, Diagonal 647, Universitat Politècnica de Catalunya, 08028 Barcelona, Catalonia (Spain)

    2015-10-07

    A thorough characterization of the γ, β, and glass phases of deuterated 1,1,2,2 tetrachloroethane (C{sub 2}D{sub 2}Cl{sub 4}) via nuclear quadrupole resonance and Molecular Dynamic Simulations (MDSs) is reported. The presence of molecular reorientations was experimentally observed in the glass phase and in the β phase. In the β phase, and from MDS, these reorientations are attributed to two possible movements, i.e., a 180°  reorientation around the C{sub 2} molecular symmetry axis and a reorientation of the molecule between two non-equivalent positions. In the glass phase, the spin-lattice relaxation time T{sub 1} is of the order of 16 times lower than in the crystalline phase and varies as T{sup −1} below 100 K in good agreement with the strong quadrupolar relaxation observed in amorphous materials and in the glassy state of molecular organic systems. The activation energy of molecular reorientations in the glass phase (19 kJ/mol) is comparable to that observed in the glassy crystal of a “molecular cousin” compound, Freon 112 (C{sub 2}F{sub 2}Cl{sub 4}), for the secondary β-relaxation. Moreover, the on-site orientational motion of tetrachloroethane molecules offers a new indirect evidence of the prominent role of such orientational disorder in glassy dynamics.

  13. Dynamic characterization of crystalline and glass phases of deuterated 1,1,2,2 Tetrachloroethane

    CERN Document Server

    Perez, Silvina; Serra, Pablo; Wolfenson, Alberto; Negrier, Philippe; Tamarit, Josep

    2015-01-01

    A thorough characterization of the {\\gamma}, {\\beta} and glass phases of deuterated 1,1,2,2 Tetrachloroethane (C2D2Cl4) via Nuclear Quadrupole Resonance and Molecular Dynamic Simulations (MDS) is reported. The presence of molecular reorientations was experimentally observed in the glass phase and in the {\\beta} phase. In the {\\beta} phase, and from MDS, these reorientations are attributed to two possible movements, i.e. a $180^o$ reorientation around the C2 molecular symmetry axis and a reorientation of the molecule between non-equivalent positions. In the glass phase, the spin-lattice relaxation time T1 is of the order of 16 times lower that T1 in the crystalline phase and varies as $T^{-1}$ below 100 K in good agreement with the strong quadrupolar relaxation observed in amorphous materials and in the glassy state of molecular organic systems. The activation energy of molecular reorientations in the glass phase (19 kJ/mol) is comparable to that observed in the glassy crystal of a "molecular cousin" compound,...

  14. Local order and orientational correlations in liquid and crystalline phases of carbon tetrabromide from neutron powder diffraction measurements

    CERN Document Server

    Temleitner, László

    2010-01-01

    The liquid, plastic crystalline and ordered crystalline phases of CBr$_4$ were studied using neutron powder diffraction. The measured total scattering differential cross-sections were modelled by Reverse Monte Carlo simulation techniques (RMC++ and RMCPOW). Following successful simulations, the single crystal diffraction pattern of the plastic phase, as well as partial radial distribution functions and orientational correlations for all the three phases have been calculated from the atomic coordinates ('particle configurations'). The single crystal pattern, calculated from a configuration that had been obtained from modelling the powder pattern, shows identical behavior to the recent single crystal data of Folmer et al. (Phys. Rev. {\\bf B77}, 144205 (2008)). The BrBr partial radial distribution functions of the liquid and plastic crystalline phases are almost the same, while CC correlations clearly display long range ordering in the latter phase. Orientational correlations also suggest strong similarities bet...

  15. Gasification slag rheology and crystalline phase formation in titanium-calcium-alumina-silica-rich glass

    Energy Technology Data Exchange (ETDEWEB)

    Brooker, D.D. [Texaco, Inc., Beacon, NY (United States); Oh, M.S. [Hongik Univ., Seoul (Korea, Republic of)

    1996-10-01

    The Texaco Gasification Process employs a high temperature and pressure slagging gasifier, in which the viscosity of the slag plays a key role in determining operating conditions. The empirical models available in the literature as well as laboratory testing have concentrated on low titanium feeds. During the gasification of waste material, titanium oxide will become an important element in controlling the ash and slag behavior. Slag viscosity was measured at temperatures in the range of 1150-1500{degrees}C under reducing atmosphere with 0-30% titanium in combination with calcium-alumina-silica rich feeds to gain a better understanding of the slag theology. The slag viscosities with most titanium-rich slags showed the behavior of a crystalline slag with T{sub cv} of 1250{degrees}C. Crystalline phase analyses of the slag samples revealed that titanium oxide crystal will nucleate, but the glass phase is dominated by calcium-titanium-silicate and calcium-alumina-silicate glasses which have low melting points.

  16. Evidences of the existence of SiTe2 crystalline phase and a proposed new Si-Te phase diagram

    Science.gov (United States)

    Mishra, R.; Mishra, P. K.; Phapale, S.; Babu, P. D.; Sastry, P. U.; Ravikumar, G.; Yadav, A. K.

    2016-05-01

    The existence of two distinct crystalline phases viz., Si2Te3 and SiTe2, in the Si-Te system is established from differential thermal analysis (DTA) studies. Thermo-gravimetric (TG) data on SiTe2 indicate that the compound decomposes to Si in multiple steps via intermediate Si2Te3 phase. X-ray diffraction (XRD) reveals that SiTe2 crystallizes in P 3 ̅m1 space group with CdI2 trigonal structure, whereas Si2Te3 crystallizes in trigonal structure with space group P 3 ̅1c with varying occupation of octahedral voids. Single Si atoms fill only 1/2 of the octahedral voids in SiTe2 structure whereas in Si2Te3, Si atoms are arranged in pairs occupying 2/3 of the octahedral voids in alternating planes along c-axis. Further, X-ray absorption near edge structure (XANES) and X-ray photoelectron spectroscopy (XPS) confirm the distinctness of the chemical environment in the two crystalline structures confirming the uniqueness of both the phases. DTA results on the two compounds indicate the presence of one crystallographic phase-transition in each of the compound with transition temperatures at 441 °C for Si2Te3 and 392 °C for SiTe2. At the same time both Si2Te3 and SiTe2 undergo peritectic decomposition at 683 °C and 432 °C forming [Si(s)+Te(liq)] and [α-Si2Te3(s)+Te(liq)], respectively. The system revealed eutectic reaction between β-SiTe2 and Te at 398 °C [L=Te+SiTe2]. Consequently, the phase diagram in the Si-Te system has been delineated.

  17. Molecular dynamics simulation of calcium fluoride——Crystalline, superionic, molten and quenched-amorphous phases

    Institute of Scientific and Technical Information of China (English)

    程兆年; 郏正明; 张静; 陈念贻

    1995-01-01

    The results from the molecular dynamics simulations on crystalline, superionic, molten and quenched-amorphous states of calcium fluoride system are reported. The Ca++ and F- sublattices are studied by using the method of bond order parameters. The result shows that both Ca++ and F- sublattices can be described with the bond-orientation normal distribution model. In the superionic phase the Ca++ cations keep their original stable fcc frame, but in the F- case random distortion generates from their original simple cubic (sc) structure. The simulation on the molten phase gives three radial distribution functions that are difficult to separate from the experimental X-ray diffraction data. The simulation of quenched-amorphous state shows that a dense random packing of equivalent spheres centered by Ca++ cations occurs in the system simulated. However, the system quenched is not stable enough because the Ca++ cation and F- anions around it do not form themselves into a certain configuration.

  18. Improving the performance of polymer solar cells by adjusting the crystallinity and nanoscale phase separation

    Institute of Scientific and Technical Information of China (English)

    Chen Wei-Bing; Xu Zong-Xiang; Li Kai; Chui Stephen Sin-Yin; Roy V.A.L.; Lai Pui-To; Che Chi-Ming

    2012-01-01

    In this paper,we report a high-performance P3HT/PCBM bulk-heterojunction solar cell with a power conversion efficiency of 4.85% fabricated by adjusting the polymer crystallinity and nanoscale phase separation using an ultrasonic irradiation mixing approach for the polymer.The grazing incidence X-ray diffraction,UV/Vis spectroscopic,and atomic force microscopic measurement results for the P3HT/PCBM blend films reveal that the P3HT/PCBM film fabricated by ultrasonic irradiation mixing of the P3HT and PCBM solutions for 10 min has a higher degree of cryetallinity,a higher absorption efficiency,and better phase separation,which together account for the higher charge transport properties and photovoltaic cell performance.

  19. Relaxation process and phase transition of lanthanide liquid crystalline complexes by photoacoustic spectroscopy

    Institute of Scientific and Technical Information of China (English)

    LI Junjia; YANG Yuetao; LIU Xiaojun; ZHANG Shuyi; ZHANG Zhongning

    2008-01-01

    Lanthanide-containing liquid crystals exhibiting smectic A phase close to room temperature were obtained. Photoacoustic (PA) spectroscopy was used to study the spectral properties and phase transitions of liquid crystalline metal complexes. It was found that PA intensity of the ligand had a relationship with the probability of nonradiative transitions, which increased in the order of Eu(tta)3L2Phase transitions of europium(III) and erbium(III) complexes, in the temperature range of 383-358 K, could be clearly monitored by both PA amplitude and PA phase signals. As the temperature crossed the transition point, PA amplitude showed a minimum and PA phase a maximum. The results indicated that PA technique could serve as a new tool for investigating the physicochemical properties of liquid crystals containing metal ions.

  20. Gradient measurement technique to identify phase transitions in nano-dispersed liquid crystalline compounds

    Science.gov (United States)

    Pardhasaradhi, P.; Madhav, B. T. P.; Venugopala Rao, M.; Manepalli, R. K. N. R.; Pisipati, V. G. K. M.

    2016-09-01

    Characterization and phase transitions in pure and 0.5% BaTiO3 nano-dispersed liquid crystalline (LC) N-(p-n-heptyloxybenzylidene)-p-n-nonyloxy aniline, 7O.O9, com-pounds are carried out using a polarizing microscope attached with hot stage and camera. We observed that when any of these images are distorted, different local structures suffer from various degradations in a gradient magnitude. So, we examined the pixel-wise gradient magnitude similarity between the reference and distorted images combined with a novel pooling strategy - the standard deviation of the GMS map - to determine the overall phase transition variations. In this regard, MATLAB software is used for gradient measurement technique to identify the phase transitions and transition temperature of the pure and nano-dispersed LC compounds. The image analysis of this method proposed is in good agreement with the standard methods like polarizing microscope (POM) and differential scanning calorimeter (DSC). 0.5% BaTiO3 nano-dispersed 7O.O9 compound induces cholesteric phase quenching the nematic phase, which the pure compound exhibits.

  1. A 4F2-cross-point phase change memory using nano-crystalline doped GeSbTe material

    Science.gov (United States)

    Takaura, Norikatsu; Kinoshita, Masaharu; Tai, Mitsuharu; Ohyanagi, Takasumi; Akita, Kenichi; Morikawa, Takahiro

    2015-04-01

    This paper reports on the use of nano-crystalline doped GeSbTe, or nano-GST, to fabricate a cross-point phase change memory with 4F2 cell size and test results obtained for it. We show the characteristics of a poly-Si diode select device with a high on-off ratio and data writing in a 4F2 memory cell array. The advantages of nano-GST over conventional GeSbTe are presented in terms of neighboring disturbance and 4F2 cross-point array formation. The memory cells’ high drivability, low power, and selective write and read performances are demonstrated. The scalability of the diode current density is also presented.

  2. Combined toxicity of two crystalline phases (anatase and rutile) of Titania nanoparticles towards freshwater microalgae: Chlorella sp

    Energy Technology Data Exchange (ETDEWEB)

    Iswarya, V.; Bhuvaneshwari, M.; Alex, Sruthi Ann; Iyer, Siddharth; Chaudhuri, Gouri [Centre for Nanobiotechnology, VIT University, Vellore (India); Chandrasekaran, Prathna Thanjavur [Department of Materials Engineering, Indian Institute of Science, Bangalore (India); Bhalerao, Gopalkrishna M.; Chakravarty, Sujoy [UGC-DAE CSR, Kalpakkam Node, Kokilamedu (India); Raichur, Ashok M. [Department of Materials Engineering, Indian Institute of Science, Bangalore (India); Chandrasekaran, N. [Centre for Nanobiotechnology, VIT University, Vellore (India); Mukherjee, Amitava, E-mail: amit.mookerjea@gmail.com [Centre for Nanobiotechnology, VIT University, Vellore (India)

    2015-04-15

    Highlights: • Toxicity of two crystalline phases of titania NPs on freshwater microalgae studied. • (Anatase, Rutile) mixture showed additive and antagonistic effect on microalgae. • Rutile had more colloidal stability than anatase and binary mixtures. • ROS generation varied with the crystallinity of the NPs. • Ultrastructural damages observed in TEM images. - Abstract: In view of the increasing usage of anatase and rutile crystalline phases of titania NPs in the consumer products, their entry into the aquatic environment may pose a serious risk to the ecosystem. In the present study, the possible toxic impact of anatase and rutile nanoparticles (individually and in binary mixture) was investigated using freshwater microalgae, Chlorella sp. at low exposure concentrations (0.25, 0.5 and 1 mg/L) in freshwater medium under UV irradiation. Reduction of cell viability as well as a reduction in chlorophyll content were observed due to the presence of NPs. An antagonistic effect was noted at certain concentrations of binary mixture such as (0.25, 0.25), (0.25, 0.5), and (0.5, 0.5) mg/L, and an additive effect for the other combinations, (0.25, 1), (0.5, 0.25), (0.5, 1), (1, 0.25), (1, 0.5), and (1, 1) mg/L. The hydrodynamic size analyses in the test medium revealed that rutile NPs were more stable in lake water than the anatase and binary mixtures [at 6 h, the sizes of anatase (1 mg/L), rutile NPs (1 mg/L), and binary mixture (1, 1 mg/L) were 948.83 ± 35.01 nm, 555.74 ± 19.93 nm, and 1620.24 ± 237.87 nm, respectively]. The generation of oxidative stress was found to be strongly dependent on the crystallinity of the nanoparticles. The transmission electron microscopic images revealed damages in the nucleus and cell membrane of algal cells due to the interaction of anatase NPs, whereas rutile NPs were found to cause chloroplast and internal organelle damages. Mis-shaped chloroplasts, lack of nucleus, and starch-pyrenoid complex were noted in binary

  3. Solvation Dynamics in Different Phases of the Lyotropic Liquid Crystalline System.

    Science.gov (United States)

    Roy, Bibhisan; Satpathi, Sagar; Gavvala, Krishna; Koninti, Raj Kumar; Hazra, Partha

    2015-09-03

    Reverse hexagonal (HII) liquid crystalline material based on glycerol monooleate (GMO) is considered as a potential carrier for drugs and other important biomolecules due to its thermotropic phase change and excellent morphology. In this work, the dynamics of encapsulated water, which plays important role in stabilization and formation of reverse hexagonal mesophase, has been investigated by time dependent Stokes shift method using Coumarin-343 as a solvation probe. The formation of the reverse hexagonal mesophase (HII) and transformation to the L2 phase have been monitored using small-angle X-ray scattering and polarized light microscopy experiments. REES studies suggest the existence of different polar regions in both HII and L2 systems. The solvation dynamics study inside the reverse hexagonal (HII) phase reveals the existence of two different types of water molecules exhibiting dynamics on a 120-900 ps time scale. The estimated diffusion coefficients of both types of water molecules obtained from the observed dynamics are in good agreement with the measured diffusion coefficient collected from the NMR study. The calculated activation energy is found to be 2.05 kcal/mol, which is associated with coupled rotational-translational water relaxation dynamics upon the transition from "bound" to "quasi-free" state. The observed ∼2 ns faster dynamics of the L2 phase compared to the HII phase may be associated with both the phase transformation as well as thermotropic effect on the relaxation process. Microviscosities calculated from time-resolved anisotropy studies infer that the interface is almost ∼22 times higher viscous than the central part of the cylinder. Overall, our results reveal the unique dynamical features of water inside the cylinder of reverse hexagonal and inverse micellar phases.

  4. Preparation and crystalline phase of a TiO2 porous film by anodic oxidation

    Institute of Scientific and Technical Information of China (English)

    WANG Wei; TAO Jie; ZHANG Weiwei; TAO Haijun; WANG Ling

    2005-01-01

    Anatase titanium dioxide is an active photocatalyst, but it is difficult to immobilize on the substrate. A crystalline TiO2 porous film was prepared directly on the surface of pure titanium by anodic oxidation in this work. Constant voltage and constant current anodic oxidation were adopted with sulphuric acid used as the electrolyte, pure titanium as the anode and copper as the cathode. The morphology and structure of the porous film on the substrate were analyzed with the aid of Field Emission Scanning Electron Microscopy (FESEM) and X-ray Diffraction (XRD). The effects of the parameters of anodic oxidation (such as voltage, the concentration of sulphuric acid, anodization time and current density) on the aperture and the crystalline phase of the TiO2 porous film were systematically investigated. The results indicate that the increase of current density facilitates the augment of the aperture and the generation of anatase and rutile. In addition, the forming mechanism of anatase and rutile TiO2 porous films was discussed.

  5. MORPHOLOGICAL AND KINETIC STUDIES OF PHASE TRANSITIONS OF A SIDE-CHAIN LIQUID CRYSTALLINE POLYMER

    Institute of Scientific and Technical Information of China (English)

    Chi-bing Tan; Shu-fan Zhang; Mao Xu

    1999-01-01

    The morphological changes of a side-chain liquid-crystalline polymethacrylate during isotropization and liquid-crystallization transitions were studied by means of polarizing microscopy. These transitions were found to be composed of the initiation of a new phase at local places of the old phase matrix and the growth of the new phase domains. The kinetics of the liquid-crystallization of the polymer from an isotropic melt to a smectic mesophase was also investigated. The isothermal process of the transition can be described by the Avrami equation. The values of the Avrami exponent were found to be around 2.6. which is lower than the value usually obtained for crystallization transition of polymers, but larger than that reported for liquid-crystallization transition of main-chain polymers. These results may indicate the difference in growth geometry of new phase during transition between crystallization and liquid-crystallization in general and between liquid-crystallization of main-chain and side-chain polymers. It was found that the liquidcrystallization of the used side-chain polymethacrylate may occur at small undercoolings with high transformation rate similar to that of main-chain polymers and small-molecule liquid crystals, while the crystallization of polymers can only proceed at large undercoolings. These phenomena can be explained by the idea that the surface free energy of nucleus during liquid-crystallization transition is less than that for crystallization, and evidence was obtained from analysis of the temperature dependence of the transformation rate.

  6. An overview of crystalline silicon solar cell technology: Past, present, and future

    Science.gov (United States)

    Sopian, K.; Cheow, S. L.; Zaidi, S. H.

    2017-09-01

    Crystalline silicon (c-Si) solar cell, ever since its inception, has been identified as the only economically and environmentally sustainable renewable resource to replace fossil fuels. Performance c-Si based photovoltaic (PV) technology has been equal to the task. Its price has been reduced by a factor of 250 over last twenty years (from ˜ 76 USD to ˜ 0.3 USD); its market growth is expected to reach 100 GWP by 2020. Unfortunately, it is still 3-4 times higher than carbon-based fuels. With the matured PV manufacturing technology as it exists today, continuing price reduction poses stiff challenges. Alternate manufacturing approaches in combination with thin wafers, low (cost-based analysis of advanced solar cell manufacturing technologies aimed at higher (˜ 22 %) efficiency with existing equipment and processes.

  7. Phase field modeling of grain structure evolution during directional solidification of multi-crystalline silicon sheet

    Science.gov (United States)

    Lin, H. K.; Lan, C. W.

    2017-10-01

    Evolution of grain structures and grain boundaries (GBs), especially the coincident site lattice GBs, during directional solidification of multi-crystalline silicon sheet are simulated by using a phase field model for the first time. Since the coincident site lattice GBs having lower mobility, tend to follow their own crystallographic directions despite thermal gradients, the anisotropic energy and mobility of GBs are considered in the model. Three basic interactions of GBs during solidification are examined and they are consistent with experiments. The twinning process for new grain formation is further added in the simulation by considering twin nucleation. The effect of initial distribution of GB types and grain orientations is also investigated for the twinning frequency and the evolution of grain size and GB types.

  8. Tuning Eu{sup 3+} emission in europium sesquioxide films by changing the crystalline phase

    Energy Technology Data Exchange (ETDEWEB)

    Mariscal, A., E-mail: antonio.mariscal@csic.es [Laser Processing Group, Instituto de Óptica, CSIC, C/ Serrano 121, 28006 Madrid (Spain); Quesada, A. [Ceramics for Smart Systems Group, Instituto de Cerámica y Vidrio, C/ Kelsen 5, 28049 Madrid (Spain); Camps, I. [Laser Processing Group, Instituto de Óptica, CSIC, C/ Serrano 121, 28006 Madrid (Spain); Palomares, F.J. [Instituto de Ciencia de Materiales de Madrid, C/ Sor Juana Inés de la Cruz 3, 28049 Madrid (Spain); Fernández, J.F. [Ceramics for Smart Systems Group, Instituto de Cerámica y Vidrio, C/ Kelsen 5, 28049 Madrid (Spain); Serna, R. [Laser Processing Group, Instituto de Óptica, CSIC, C/ Serrano 121, 28006 Madrid (Spain)

    2016-06-30

    Highlights: • PLD production of high quality europium sesquioxide (Eu{sub 2}O{sub 3}) films. • The deposition of Al{sub 2}O{sub 3} capping and/or buffer layers modifies the crystallization for Eu{sub 2}O{sub 3} films upon annealing. • The formation of cubic or monoclinic phases can be favored. • Eu{sup 3+} emission tuning is achieved as a consequence of crystal field effects. - Abstract: We report the growth of europium sesquioxide (Eu{sub 2}O{sub 3}) thin films by pulsed laser deposition (PLD) in vacuum at room temperature from a pure Eu{sub 2}O{sub 3} ceramic bulk target. The films were deposited in different configurations formed by adding capping and/or buffer layers of amorphous aluminum oxide (a-Al{sub 2}O{sub 3}). The optical properties, refractive index and extinction coefficient of the as deposited Eu{sub 2}O{sub 3} layers were obtained. X-ray photoelectron spectroscopy (XPS) measurements were done to assess its chemical composition. Post-deposition annealing was performed at 500 °C and 850 °C in air in order to achieve the formation of crystalline films and to accomplish photoluminescence emission. According to the analysis of X-ray diffraction (XRD) spectra, cubic and monoclinic phases were formed. It is found that the relative amount of the phases is related to the different film configurations, showing that the control over the crystallization phase can be realized by adequately designing the structures. All the films showed photoluminescence emission peaks (under excitation at 355 nm) that are attributed to the intra 4f-transitions of Eu{sup 3+} ions. The emission spectral shape depends on the crystalline phase of the Eu{sub 2}O{sub 3} layer. Specifically, changes in the hypersensitive {sup 5}D{sub 0} → {sup 7}F{sub 2} emission confirm the strong influence of the crystal field effect on the Eu{sup 3+} energy levels.

  9. Transitions between imperfectly ordered crystalline structures: a phase switch Monte Carlo study.

    Science.gov (United States)

    Wilms, Dorothea; Wilding, Nigel B; Binder, Kurt

    2012-05-01

    A model for two-dimensional colloids confined laterally by "structured boundaries" (i.e., ones that impose a periodicity along the slit) is studied by Monte Carlo simulations. When the distance D between the confining walls is reduced at constant particle number from an initial value D(0), for which a crystalline structure commensurate with the imposed periodicity fits, to smaller values, a succession of phase transitions to imperfectly ordered structures occur. These structures have a reduced number of rows parallel to the boundaries (from n to n-1 to n-2, etc.) and are accompanied by an almost periodic strain pattern, due to "soliton staircases" along the boundaries. Since standard simulation studies of such transitions are hampered by huge hysteresis effects, we apply the phase switch Monte Carlo method to estimate the free energy difference between the structures as a function of the misfit between D and D(0), thereby locating where the transitions occur in equilibrium. For comparison, we also obtain this free energy difference from a thermodynamic integration method: The results agree, but the effort required to obtain the same accuracy as provided by phase switch Monte Carlo would be at least three orders of magnitude larger. We also show for a situation where several "candidate structures" exist for a phase, that phase switch Monte Carlo can clearly distinguish the metastable structures from the stable one. Finally, applying the method in the conjugate statistical ensemble (where the normal pressure conjugate to D is taken as an independent control variable), we show that the standard equivalence between the conjugate ensembles of statistical mechanics is violated.

  10. Multi-technique Approach for the Evaluation of the Crystalline Phase of Ultrathin High-k Gate Oxide Films

    Science.gov (United States)

    Bersch, E.; LaRose, J. D.; Wells, I.; Consiglio, S.; Clark, R. D.; Leusink, G. J.; Matyi, R. J.; Diebold, A. C.

    2011-11-01

    In order to continue scaling metal oxide semiconductor field effect transistors (MOSFETs) with HfO2 gate oxides, efforts are being made to further improve the deposited high-k film properties. Recently, a process whereby an HfO2 film is deposited through a series of depositions and anneals (so-called DADA process) has been shown to result in films that give rise to MOS capacitors (MOSCAPs) which are electrically scaled compared to MOSCAPs with HfO2 films that only received post deposition anneals (PDA) or no anneals. We have measured as-deposited, DADA and PDA HfO2 films using four measurement techniques, all of which are non-destructive and capable of being used for in-line processing, to evaluate their crystallinity and crystalline phases. Grazing incidence in-plane X-ray diffraction was used to determine the crystalline phases of the HfO2 films. We observed the crystalline phases of these films to be process dependent. Additionally, X-ray and UV photoelectron spectroscopy were used to show the presence of crystallinity in the films. As a fourth technique, spectroscopic ellipsometry was used to determine if the crystalline phases were monoclinic. The combination of techniques was useful in that XPS and UPS were able to confirm the amorphous nature of a 30 cycle DADA film, as measured by GIIXRD, and GIIXRD was able to help us interpret the SE data as being an indication of the monoclinic phase of HfO2.

  11. Emergence of topological and topological crystalline phases in TlBiS2 and TlSbS2

    KAUST Repository

    Zhang, Qingyun

    2015-02-11

    Using first-principles calculations, we investigate the band structure evolution and topological phase transitions in TlBiS2 and TlSbS2 under hydrostatic pressure as well as uniaxial and biaxial strain. The phase transitions are identified by parity analysis and by calculating the surface states. Zero, one, and four Dirac cones are found for the (111) surfaces of both TlBiS2 and TlSbS2 when the pressure grows, which confirms trivial-nontrivial-trivial phase transitions. The Dirac cones at the (M) over bar points are anisotropic with large out-of-plane component. TlBiS2 shows normal, topological, and topological crystalline insulator phases under hydrostatic pressure, thus being the first compound to exhibit a phase transition from a topological to a topological crystalline insulator.

  12. Liquid crystalline phase as a probe for crystal engineering of lactose: carrier for pulmonary drug delivery.

    Science.gov (United States)

    Patil, Sharvil S; Mahadik, Kakasaheb R; Paradkar, Anant R

    2015-02-20

    The current work was undertaken to assess suitability of liquid crystalline phase for engineering of lactose crystals and their utility as a carrier in dry powder inhalation formulations. Saturated lactose solution was poured in molten glyceryl monooleate which subsequently transformed into gel. The gel microstructure was analyzed by PPL microscopy and SAXS. Lactose particles recovered from gels after 48 h were analyzed for polymorphism using techniques such as FTIR, XRD, DSC and TGA. Particle size, morphology and aerosolisation properties of prepared lactose were analyzed using Anderson cascade impactor. In situ seeding followed by growth of lactose crystals took place in gels with cubic microstructure as revealed by PPL microscopy and SAXS. Elongated (size ∼ 71 μm) lactose particles with smooth surface containing mixture of α and β-lactose was recovered from gel, however percentage of α-lactose was more as compared to β-lactose. The aerosolisation parameters such as RD, ED, %FPF and % recovery of lactose recovered from gel (LPL) were found to be comparable to Respitose® ML001. Thus LC phase (cubic) can be used for engineering of lactose crystals so as to obtain particles with smooth surface, high elongation ratio and further they can be used as carrier in DPI formulations.

  13. Substrate Biasing during Plasma-Assisted ALD for Crystalline Phase-Control of TiO(2) Thin Films

    NARCIS (Netherlands)

    Profijt, H. B.; M. C. M. van de Sanden,; Kessels, W. M. M.

    2012-01-01

    Substrate biasing has been implemented in a remote plasma atomic layer deposition (ALD) reactor, enabling control of the ion energy up to 260 eV. For TiO(2) films deposited from Ti(Cp(Me))(NMe(2))(3) and O(2) plasma it is demonstrated that the crystalline phase can be tailored by tuning the ion ener

  14. Appearance of large crystalline domains in VO{sub 2} films grown on sapphire (001) and their phase transition characteristics

    Energy Technology Data Exchange (ETDEWEB)

    Azhan, Nurul Hanis; Su, Kui; Okimura, Kunio, E-mail: okifn@keyaki.cc.u-tokai.ac.jp [Graduate School of Science and Technology, Tokai University, Hiratsuka 259-1292 (Japan); Zaghrioui, Mustapha; Sakai, Joe [GREMAN, UMR 7347 CNRS, Université François Rabelais de Tours, Parc de Grandmont 37200 Tours (France)

    2015-06-28

    We report the first observation of large crystalline domains of several μm-size in VO{sub 2} films deposited on Al{sub 2}O{sub 3} (001) substrates by rf-biased reactive sputtering technique. The large crystalline domains, dominated with random in-plane oriented growth of (011){sub M1}-orientation, appear only under adequate substrate biasing, such as 10 W, while most biasing conditions result in conventional nanosized grains of highly oriented (010){sub M1}-orientation. Two temperature-controlled analyses, x-ray diffraction and micro-Raman spectroscopy, have revealed that some parts of large crystalline domains undergo intermediate monoclinic (M2) phase during the thermally-induced structural phase transition from monoclinic (M1) to rutile-tetragonal (R) phase. As an effect of the appearance of large crystalline domains, the film showed in-plane tensile stress, resulting in high T{sub IMT} of 69 °C due to the elongation of the V-V distance in its low-temperature monoclinic phase.

  15. Light-Driven Liquid Crystalline Materials: From Photo-Induced Phase Transitions and Property Modulations to Applications.

    Science.gov (United States)

    Bisoyi, Hari Krishna; Li, Quan

    2016-12-28

    Light-driven phenomena both in living systems and nonliving materials have enabled truly fascinating and incredible dynamic architectures with terrific forms and functions. Recently, liquid crystalline materials endowed with photoresponsive capability have emerged as enticing systems. In this Review, we focus on the developments of light-driven liquid crystalline materials containing photochromic components over the past decade. Design and synthesis of photochromic liquid crystals (LCs), photoinduced phase transitions in LC, and photoalignment and photoorientation of LCs have been covered. Photomodulation of pitch, polarization, lattice constant and handedness inversion of chiral LCs is discussed. Light-driven phenomena and properties of liquid crystalline polymers, elastomers, and networks have also been analyzed. The applications of photoinduced phase transitions, photoalignment, photomodulation of chiral LCs, and photomobile polymers have been highlighted wherever appropriate. The combination of photochromism, liquid crystallinity, and fabrication techniques has enabled some fascinating functional materials which can be driven by ultraviolet, visible, and infrared light irradiation. Nanoscale particles have been incorporated to widen and diversify the scope of the light-driven liquid crystalline materials. The developed materials possess huge potential for applications in optics, photonics, adaptive materials, nanotechnology, etc. The challenges and opportunities in this area are discussed at the end of the Review.

  16. Use of X-ray tomography to map crystalline and amorphous phases in frozen biomaterials.

    Science.gov (United States)

    Bischof, J C; Mahr, B; Choi, J H; Behling, M; Mewes, D

    2007-02-01

    The outcome of both cryopreservation and cryosurgical freezing applications is influenced by the concentration and type of the cryoprotective agent (CPA) or the cryodestructive agent (i.e., the chemical adjuvants referred to here as CDA) added prior to freezing. It also depends on the amount and type of crystalline, amorphous and/or eutectic phases formed during freezing which can differentially affect viability. This work describes the use of X-ray computer tomography (CT) for non-invasive, indirect determination of the phase, solute concentration and temperature within biomaterials (CPA, CDA loaded solutions and tissues) by X-ray attenuation before and after freezing. Specifically, this work focuses on establishing the feasibility of CT (100-420 kV acceleration voltage) to accurately measure the concentration of glycerol or salt as model CPA and CDAs in unfrozen solutions and tissues at 20 degrees C, or the phase in frozen solutions and tissue systems at -78.5 and -196 degrees C. The solutions are composed of water with physiological concentrations of NaCl (0.88% wt/wt) and DMEM (Dulbecco's Modified Eagle's Medium) with added glycerol (0-8 M). The tissue system is chosen as 3 mm thick porcine liver slices as well as 2 cm diameter cores which were either imaged fresh (3-4 h cold ischemia) or after loading with DMEM based glycerol solutions (0-8 M) for times ranging from hours to 7 days at 4 degrees C. The X-ray attenuation is reported in Hounsfield units (HU), a clinical measurement which normalizes X-ray attenuation values by the difference between those of water and air. NaCl solutions from 0 to 23.3% wt/wt (i.e. water to eutectic concentration) were found to linearly correspond to HU in a range from 0 to 155. At -196 degrees C the variation was from -80 to 95 HU while at -78.5 degrees C all readings were roughly 10 HU lower. At 20 degrees C NaCl and DMEM solutions with 0-8 M glycerol loading show a linear variation from 0 to 145 HU. After freezing to -78

  17. Opto-electronic properties of bismuth oxide films presenting different crystallographic phases

    Energy Technology Data Exchange (ETDEWEB)

    Gomez, Celia L. [Instituto de Investigaciones en Materiales, UNAM, Circuito Exterior s/n CU, México D.F. 04510 (Mexico); Posgrado en Ciencia e Ingeniería de Materiales, UNAM, Unidad de Posgrado, Edificio C, Piso 1, Zona Cultural de CU, México, D.F. 04510 (Mexico); Depablos-Rivera, Osmary, E-mail: osmarydep@yahoo.com [Instituto de Investigaciones en Materiales, UNAM, Circuito Exterior s/n CU, México D.F. 04510 (Mexico); Posgrado en Ciencia e Ingeniería de Materiales, UNAM, Unidad de Posgrado, Edificio C, Piso 1, Zona Cultural de CU, México, D.F. 04510 (Mexico); Silva-Bermudez, Phaedra [Instituto de Investigaciones en Materiales, UNAM, Circuito Exterior s/n CU, México D.F. 04510 (Mexico); Instituto Nacional de Rehabilitación, Calz. México Xochimilco No. 289 Col. Arenal de Guadalupe, C.P.14389, Ciudad de México, D.F. (Mexico); Muhl, Stephen [Instituto de Investigaciones en Materiales, UNAM, Circuito Exterior s/n CU, México D.F. 04510 (Mexico); Zeinert, Andreas; Lejeune, Michael; Charvet, Stephane; Barroy, Pierre [Laboratoire de Physique de la Matière Condensée, Université de Picardie Jules Verne, 33 rue Saint Leu, 80039 Amiens Cedex 1 (France); Camps, Enrique [Instituto Nacional de Investigaciones Nucleares, Carretera México-Toluca S/N, kilómetro 36.5. La Marquesa, Municipio de Ocoyoacac, CP 52750, Estado de México (Mexico); Rodil, Sandra E. [Instituto de Investigaciones en Materiales, UNAM, Circuito Exterior s/n CU, México D.F. 04510 (Mexico)

    2015-03-02

    The optical, electrical and structural properties of bismuth oxide thin films deposited by radio frequency reactive magnetron sputtering were studied. The Bi{sub 2}O{sub 3} thin films were grown on Si and glass substrates under different power and substrate temperatures in an oxygen-enriched plasma leading to films with different crystalline phase as evidenced by X-ray diffraction and Raman spectroscopy. The optical properties of the films were measured using ellipsometric spectroscopy and optical transmission spectra. In order to parameterize the optical dispersion functions (n, k) of the films, the Tauc–Lorentz dispersion model was used. The optical bandgap was then assessed by different methods and the results are compared to the thermal variations of the electrical resistivity of the films. It was found that the refractive index, extinction coefficient and optical gap strongly depend on the deposition conditions and the crystalline phase; the fluorite defect cubic δ-Bi{sub 2}O{sub 3} phase showed the lowest optical gap and lower resistivity. - Highlights: • Different bismuth oxide phases were obtained by sputtering. • The power and substrate temperature were the two key parameters. • Room temperature delta-Bi{sub 2}O{sub 3} thin films were obtained. • The optical bandgap was around 1.5 and 2.2 eV, depending on the phase. • The bismuth oxide films presented activation energies around 1 eV.

  18. Solid-state NMR analysis of a complex crystalline phase of ronacaleret hydrochloride.

    Science.gov (United States)

    Vogt, Frederick G; Williams, Glenn R; Strohmeier, Mark; Johnson, Matthew N; Copley, Royston C B

    2014-08-28

    A crystalline phase of the pharmaceutical compound ronacaleret hydrochloride is studied by solid-state nuclear magnetic resonance (SSNMR) spectroscopy and single-crystal X-ray diffraction. The crystal structure is determined to contain two independent cationic molecules and chloride anions in the asymmetric unit, which combine with the covalent structure of the molecule to yield complex SSNMR spectra. Experimental approaches based on dipolar correlation, chemical shift tensor analysis, and quadrupolar interaction analysis are employed to obtain detailed information about this phase. Density functional theory (DFT) calculations are used to predict chemical shielding and electric field gradient (EFG) parameters for comparison with experiment. (1)H SSNMR experiments performed at 16.4 T using magic-angle spinning (MAS) and homonuclear dipolar decoupling provide information about hydrogen bonding and molecular connectivity that can be related to the crystal structure. (19)F and (13)C assignments for the Z' = 2 structure are obtained using DFT calculations, (19)F homonuclear dipolar correlation, and (13)C-(19)F heteronuclear dipolar correlation experiments. (35)Cl MAS experiments at 16.4 T observe two chlorine sites that are assigned using calculated chemical shielding and EFG parameters. SSNMR dipolar correlation experiments are used to extract (1)H-(13)C, (1)H-(15)N, (1)H-(19)F, (13)C-(19)F, and (1)H-(35)Cl through-space connectivity information for many positions of interest. The results allow for the evaluation of the performance of a suite of SSNMR experiments and computational approaches as applied to a complex but typical pharmaceutical solid phase.

  19. Crystalline-to-plastic phase transitions in molecularly thin n-dotriacontane films adsorbed on solid surfaces

    DEFF Research Database (Denmark)

    Cisternas, Edgardo; Corrales, T. P.; del Campo, V.;

    2009-01-01

    Crystalline-to-rotator phase transitions have been widely studied in bulk hydrocarbons, in particular in normal alkanes. But few studies of these transitions deal with molecularly thin films of pure n-alkanes on solid substrates. In this work, we were able to grow dotriacontane (n-C32H66) films...... identify with a solid-solid phase transition. At higher coverages, we observed additional steps in the ellipsometric signal that we identify with a solid-solid phase transition in multilayer islands (similar to 333 K) and with the transition to the rotator phase in bulk crystallites (similar to 337 K...

  20. A novel technique for production of nano-crystalline mono tungsten carbide single phase via mechanical alloying

    Energy Technology Data Exchange (ETDEWEB)

    Razavi, Mansour, E-mail: m-razavi@merc.ac.ir [Materials and Energy Research Center (MERC), P.O. Box 14155-4777, Tehran (Iran, Islamic Republic of); Rahimipour, Mohammad Reza; Yazdani-Rad, Rahim [Materials and Energy Research Center (MERC), P.O. Box 14155-4777, Tehran (Iran, Islamic Republic of)

    2011-06-09

    Highlights: > By adding WC to mixture of tungsten and carbon black unlike the system which does not contain any additive, it can lead to synthesized mono carbide tungsten. > However, the synthesize time has been reduced significantly. > Crystalline size of two systems were in nano-meter scale, this amount in system contain primary WC which was smaller than system without WC. - Abstract: Due to simultaneous synthesis of WC and W{sub 2}C phases in most of the synthesis processes and lower mechanical properties of W{sub 2}C than WC, in this work the possibility of production of nano-crystalline WC single phase as a useful refractory ceramic by means of mechanical alloying has been investigated. The raw materials containing W and C with WC were milled in a planetary ball mill. The sampling has been done in different times. As it was expected, XRD studies showed that after 75 h of milling the WC with W{sub 2}C were produced. By adding WC to the raw materials in the beginning of the process it led to the fact that after 50 h of milling WC was synthesized only without any other phases which remained stable at the higher times while milling. During broadening of XRD peaks, the size of synthesized crystalline WC was estimated in the order of nano-meter. Crystalline size and mean strain of synthesized WC in the system without additive were higher and lower than the system containing WC, respectively.

  1. Germanium ion implantation to Improve Crystallinity during Solid Phase Epitaxy and the effect of AMU Contamination

    Science.gov (United States)

    Lee, K. S.; Yoo, D. H.; Son, G. H.; Lee, C. H.; Noh, J. H.; Han, J. J.; Yu, Y. S.; Hyung, Y. W.; Yang, J. K.; Song, D. G.; Lim, T. J.; Kim, Y. K.; Lee, S. C.; Lee, H. D.; Moon, J. T.

    2006-11-01

    Germanium ion implantation was investigated for crystallinity enhancement during solid phase epitaxial regrowth (SPE) using high current implantation equipment. Electron back-scatter diffraction(EBSD) measurement showed numerical increase of 19 percent of signal, which might be due to pre-amorphization effect on silicon layer deposited by LPCVD process with germanium ion implantation. On the other hand, electrical property such as off-leakage current of NMOS transistor degraded in specific regions of wafers, which implied non-uniform distribution of donor-type impurities into channel area. It was confirmed that arsenic atoms were incorporated into silicon layer during germanium ion implantation. Since the equipment for germanium pre-amorphization implantation(PAI) was using several source gases such as BF3 and AsH3, atomic mass unit(AMU) contamination during PAI of germanium with AMU 74 caused the incorporation of arsenic with AMU 75 which resided in arc-chamber and other parts of the equipment. It was effective to use germanium isotope of AMU 72 to suppress AMU contamination, however it led serious reduction of productivity because of decrease in beam current by 30 percent as known to be difference in isotope abundance. It was effective to use enriched germanium source gas with AMU 72 in order to improve productivity. Spatial distribution of arsenic impurities in wafers was closely related to hardware configuration of ion implantation equipment.

  2. Effect of Alkali Ions on the Amorphous to Crystalline Phase Transition of Silica

    Science.gov (United States)

    Venezia, A. M.; La Parola, V.; Longo, A.; Martorana, A.

    2001-11-01

    The effect of the addition of alkali ions to commercial amorphous silica, generally used as support for heterogeneous catalysts, has been investigated from the point of view of morphological and structural changes. Samples of alkali-doped silica were prepared by impregnation and subsequent calcination at various temperatures. The structural effect of Li, Na, K, and Cs was determined by use of techniques such as wide-angle (WAXS) and small-angle X-ray scattering (SAXS). The WAXS diffractograms, analyzed with the Rietveld method using the GSAS program, allowed qualitative and quantitative identification of the fraction of the different silica polymorphs like quartz, tridymite, and cristobalite. SAXS measurements, using the classical method based on Porod's law, yielded the total surface area of the systems. The calculated areas were compared with the surface areas determined by the nitrogen adsorption technique using the analytical method of Brunauer-Emmett-Teller. The results are explained in terms of sizes of the alkali ions and cell volume of the different crystalline phases.

  3. Effect of long range order on sheared liquid crystalline materials: flow regimes, transitions, and rheological phase diagrams

    Science.gov (United States)

    Tsuji; Rey

    2000-12-01

    A generalized theory that includes short-range elasticity, long-range elasticity, and flow effects is used to simulate and characterize the shear flow of liquid crystalline materials as a function of the Deborah (De) and Ericksen (Er) numbers in the presence of fixed planar director boundary conditions; the results are also interpreted as a function of the ratio R between short-range and long-range elasticity. The results are effectively summarized into rheological phase diagrams spanned by De and Er, and also by R and Er, where the stability region of four distinct flow regimes are indicated. The four regimes for planar (two-dimensional orientation) shear flow are (1) the elastic-driven steady state, (2) the composite tumbling-wagging periodic state, (3) the wagging periodic state, and (4) the viscous-driven steady state. The coexistence of the four regimes at a quacritical point is shown to be due to the emergence of a defect structure. The origin, the significant steady and dynamical features, and the transitions between these regimes are thoroughly characterized and analyzed. Quantitative and qualitative comparisons between the present complete model predictions and those obtained from the classical theories of nematodynamics (Leslie-Ericksen and Doi theories) are presented and the main physical mechanisms that drive the observed deviations between the predictions of these models are identified. The presented results fill the previously existing gap between the classical Leslie-Ericksen theory and the Doi theory, and present a unified description of nematodynamics.

  4. Second amorphous-to-crystalline phase transformation in Cu60Ti20Zr20 bulk metallic glass

    DEFF Research Database (Denmark)

    Cao, Q.P.; Li, J.F.; Zhang, P.N.

    2007-01-01

    is estimated to be about 2.46 kJ mol(-1) at 753 K, much smaller than the 61 kJ mol(-1) obtained assuming that it is a polymorphic transformation. It was revealed that the phase transformation occurs through a eutectic crystallization of Cu51Zr14 and Cu2TiZr14 having an effective activation energy of the order......The second amorphous-to-crystalline phase transformation in Cu60Ti20Zr20 bulk metallic glass was investigated by differential scanning calorimetry and x-ray diffractometry. The difference of the Gibbs free energies between the amorphous phase and the crystalline products during the transformation...

  5. Analysis of coal tar polycyclic aromatic hydrocarbon LC-fractions by capillary SFC on a liquid crystalline stationary phase

    Energy Technology Data Exchange (ETDEWEB)

    Kithinji, J.P.; Raynor, M.W.; Egia, B.; Davies, I.L.; Bartle, K.D.; Clifford, A.A. (University of Leeds, Leeds (UK). School of Chemistry)

    1990-01-01

    Supercritical fluid chromatography (SFC) on a capillary column coated with a smectic mesomorphic crystalline phase is shown to exhibit a typical turnover effect (retention versus column temperature) for polycyclic aromatic hydrocarbons (PAHs) at lower temperatures than are found on a methylpolysiloxane phase. Liquid chromatography is used to separate various fractions from a coal tar, which are analyzed by high resolution capillary SFC. Different density and temperature programs were investigated to optimize the separations. Simultaneous density and temperature programs gave the best results, and this is thought to be due to increased solute diffusion coefficients which yield highly efficient separations for the high molecular weight polycyclic aromatic hydrocarbons. The separation mechanism is based on the shape of the liquid crystalline phase, solubility, volatility, and molecular geometry of the PAHs.

  6. Detachment of CVD-grown graphene from single crystalline Ni films by a pure gas phase reaction

    Science.gov (United States)

    Zeller, Patrick; Henß, Ann-Kathrin; Weinl, Michael; Diehl, Leo; Keefer, Daniel; Lippmann, Judith; Schulz, Anne; Kraus, Jürgen; Schreck, Matthias; Wintterlin, Joost

    2016-11-01

    Despite great previous efforts there is still a high need for a simple, clean, and upscalable method for detaching epitaxial graphene from the metal support on which it was grown. We present a method based on a pure gas phase reaction that is free of solvents and polymer supports and avoids mechanical transfer steps. The graphene was grown on 150 nm thick, single crystalline Ni(111) films on Si(111) wafers with YSZ buffer layers. Its quality was monitored by using low energy electron diffraction and scanning tunneling microscopy. The gas phase etching uses a chemical transport reaction, the so-called Mond process, based on the formation of gaseous nickel tetracarbonyl in ~ 1 bar of CO at ~ 75 °C and by adding small amounts of sulfide catalysts. X-ray photoelectron spectroscopy, Raman spectroscopy and scanning electron microscopy were used to characterize the detached graphene. It was found that the method successfully removes the nickel from underneath the graphene layer, so that the graphene lies on the insulating oxide buffer layer. Small residual particles of nickel sulfide and cracks in the obtained graphene layer were identified. The defect concentrations were comparable to graphene samples obtained by wet chemical etching and by the bubbling transfer.

  7. Filling the gap in Ca input-output budgets in base-poor forest ecosystems: The contribution of non-crystalline phases evidenced by stable isotopic dilution

    Science.gov (United States)

    van der Heijden, Gregory; Legout, Arnaud; Mareschal, Louis; Ranger, Jacques; Dambrine, Etienne

    2017-07-01

    solution chemistry on very short-term time scales. These phases are very abundant in acid soils and, in the present study, represent a substantial calcium pool (equivalent in size to the Ca exchangeable pool). The gradual isotopic dilution of Mg and Ca isotope ratios in the leaching solution during the experiment evidenced an input flux of Mg and Ca originating from a pool other than the labile pool. While the Mg input flux originated primarily from the weathering of primary minerals and secondarily from the non-crystalline phases, the Ca input flux originated primarily from the non-crystalline phases. Our results also show that the net calcium release flux from these phases may represent a significant source of calcium in forest ecosystems and actively contribute to compensating the depletion of Ca exchangeable pools in the soil. Non-crystalline phases therefore should be taken into account when computing input-output nutrient budgets and soil acid neutralizing capacity.

  8. First-principles computation of mantle materials in crystalline and amorphous phases

    Science.gov (United States)

    Karki, Bijaya B.

    2015-03-01

    First-principles methods based on density functional theory are used extensively in the investigation of the behavior and properties of mantle materials over broad ranges of pressure, temperature, and composition that are relevant. A review of computational results reported during the last couple of decades shows that essentially all properties including structure, phase transition, equation of state, thermodynamics, elasticity, alloying, conductivity, defects, interfaces, diffusivity, viscosity, and melting have been calculated from first principles. Using MgO, the second most abundant oxide of Earth's mantle, as a primary example and considering many other mantle materials in their crystalline and amorphous phases, we have found that most properties are strongly pressure dependent, sometimes varying non-monotonically and anomalously, with the effects of temperature being systematically suppressed with compression. The overall agreement with the available experimental data is excellent; it is remarkable that the early-calculated results such as shear wave velocities of two key phases, MgO and MgSiO3 perovskite, were subsequently reproduced by experimentation covering almost the entire mantle pressure regime. As covered in some detail, the defect formation and migration enthalpies of key mantle materials increase with pressure. The predicted trend is that partial MgO Schottky defects are energetically most favorable in Mg-silicates but their formation enthalpies are high. So, the diffusion in the mantle is likely to be in the extrinsic regime. Preliminary results on MgO and forsterite hint that the grain boundaries can accommodate point defects (including impurities) and enhance diffusion rates at all pressures. The structures are highly distorted in the close vicinity of the defects and at the interface with excess space. Recent simulations of MgO-SiO2 binary and other silicate melts have found that the melt self-diffusion and viscosity vary by several orders of

  9. Cooperative effect of electrospinning and nanoclay on formation of polar crystalline phases in poly(vinylidene fluoride).

    Science.gov (United States)

    Liu, Yi-Liao; Li, Ying; Xu, Jun-Ting; Fan, Zhi-Qiang

    2010-06-01

    Poly(vinylidene difluoride)/organically modified montmorillonite (PVDF/OMMT) composite nanofibers were prepared by electrospinning the solution of PVDF/OMMT precursor in DMF. Wide-angle X-ray diffraction (WAXD) and transmission electron microscopy (TEM) show that in the bulk of the PVDF/OMMT precursor OMMT platelets are homogeneously dispersed in PVDF and can be both intercalated and exfoliated. It is found that the diameter of the PVDF/OMMT composite nanofibers is smaller than that of the neat PVDF fibers because the lower viscosity of PVDF/OMMT solution, which is attributed to the possible adsorption of PVDF chains on OMMT layers and thus reduction in number of entanglement. The crystal structure of the composite nanofibers was investigated using WAXD and Fourier transform infrared (FT-IR) and compared with that of thin film samples. The results show that the nonpolar alpha phase is completely absent in the electrospun PVDF/OMMT composite nanofibers, whereas it is still present in the neat PVDF electrospun fibers and in the thin films of PVDF/OMMT nanocomposites. The cooperative effect between electrospinning and nanoclay on formation of polar beta and gamma crystalline phases in PVDF is discussed. The IR result reveals that electrospinning induces formation of long trans conformation, whereas OMMT platelets can retard relaxation of PVDF chains and stabilize such conformation due to the possible interaction between the PVDF chains and OMMT layers. This cooperative effect leads to extinction of nonpolar alpha phase and enhances the polar beta and gamma phases in the electrospun PVDF/OMMT composite nanofibers.

  10. Characterization of single crystalline ZnTe and ZnSe grown by vapor phase transport

    Energy Technology Data Exchange (ETDEWEB)

    Trigubo, A B; Di Stefano, M C [FRBA-UTN, (1179) Buenos Aires (Argentina); Aguirre, M H [Dpto de Quim Inorg, Fac de Cs Quim, Univ Complutense, (28040) Madrid (Spain); Martinez, A M; D' Elia, R; Canepa, H; Heredia, E, E-mail: atrigubo@citefa.gov.a [CINSO-CITEFA: (1603) Villa Martelli, Pcia de Buenos Aires (Argentina)

    2009-05-01

    Tubular furnaces were designed and built to obtain single crystalline ZnTe and ZnSe ingots using respectively physical and chemical transport methods. Different temperature profiles and growth rates were analyzed in order to optimize the necessary crystalline quality for device development. Optical and scanning electron micrographs of the corrosion figures produced by chemical etching were used to obtain the dislocation density and the misorientation between adjacent subgrains in ZnTe and ZnSe wafers. Structural quality of the single crystalline material was determined by transmission electronic microscopy. Optical transmittance was measured by infrared transmission spectrometry and the resulting values were compared to commercial samples.

  11. The surface quasiliquid melt acceleration and the role of thermodynamic phase in the thermal decomposition of crystalline organic explosives

    Energy Technology Data Exchange (ETDEWEB)

    Henson, Bryan F [Los Alamos National Laboratory

    2010-01-01

    We show that melt acceleration in the thermal decomposition of crystalline organic solids is a manifestation of the surface quasiliquid phase. We derive a single universal rate law for melt acceleration that is a simple function of the metastable liquid activity below the melting point, and has a zero order term proportional to the quasiliquid thickness. We argue that the underlying mechanisms of this model will provide a molecular definition for the stability of the class of secondary explosives.

  12. Selecting polymers for two-phase partitioning bioreactors (TPPBs): Consideration of thermodynamic affinity, crystallinity, and glass transition temperature.

    Science.gov (United States)

    Bacon, Stuart L; Peterson, Eric C; Daugulis, Andrew J; Parent, J Scott

    2015-01-01

    Two-phase partitioning bioreactor technology involves the use of a secondary immiscible phase to lower the concentration of cytotoxic solutes in the fermentation broth to subinhibitory levels. Although polymeric absorbents have attracted recent interest due to their low cost and biocompatibility, material selection requires the consideration of properties beyond those of small molecule absorbents (i.e., immiscible organic solvents). These include a polymer's (1) thermodynamic affinity for the target compound, (2) degree of crystallinity (wc ), and (3) glass transition temperature (Tg ). We have examined the capability of three thermodynamic models to predict the partition coefficient (PC) for n-butyric acid, a fermentation product, in 15 polymers. Whereas PC predictions for amorphous materials had an average absolute deviation (AAD) of ≥16%, predictions for semicrystalline polymers were less accurate (AAD ≥ 30%). Prediction errors were associated with uncertainties in determining the degree of crystallinity within a polymer and the effect of absorbed water on n-butyric acid partitioning. Further complications were found to arise for semicrystalline polymers, wherein strongly interacting solutes increased the polymer's absorptive capacity by actually dissolving the crystalline fraction. Finally, we determined that diffusion limitations may occur for polymers operating near their Tg , and that the Tg can be reduced by plasticization by water and/or solute. This study has demonstrated the impact of basic material properties that affects the performance of polymers as sequestering phases in TPPBs, and reflects the additional complexity of polymers that must be taken into account in material selection.

  13. Short-Range Order of Mesomorphic Phase of a Semi-crystalline Polymer by Solid-State NMR: Isotactic Polypropylene

    Science.gov (United States)

    Yuan, Shichen; Miyoshi, Toshikazu

    2015-03-01

    Mesophase is intermediate phase between crystalline and melt state. Characterization of short-range structures of disordered mesomorphic phase without long-range order is challenging issue in polymer characterization. The short range order was considered same as α or β i PP, or neither. In this work, a new strategy using 13C-13C through space interactions as well as molecular dynamics based on chemical shift anisotropy (CSA) re-orientation is proposed for evaluating short-range order of mesophase of isotactic-polypropylene (iPP). 13C-13C double quantum (DQ) build up curves of 13C 15 percent CH3 selectively labeled iPP and spin dynamics simulations elucidate that local packing structures in mesophase is very close to that in β phase. Moreover, exchange NMR proves that the crystalline chains perform large amplitude motions in all α, β, and mesophase. The correlation time of overall dynamics of stems in mesophase follows the same Arrhenius line with that of β phase but is largely deviated from the Arrhenius line of the α phase. Through the obtained results, it is concluded that short-range order in mesophase is exceedingly close or same to those in β phase. This work was financially supported by the National Science Foundation (Grant No. DMR-1105829) and by UA startup funds.

  14. Crystalline phase transition information induced by high temperature susceptibility transformations in bulk PMP-YBCO superconductor growth in-situ

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, C.P., E-mail: zhangcp6813@126.com [SMRC, Northwest Institute for Non-ferrous Metal Research, Xi’an (China); Physics Department, Université Joseph Fourier, Grenoble (France); State Key Lab of Solidification Processing, Northwest Polytechnical University, Xi’an (China); Chaud, X. [CRETA/CNRS, 25 avenue des martyrs, 38042 Grenoble Cedex 9 (France); Beaugnon, E. [Physics Department, Université Joseph Fourier, Grenoble (France); CRETA/CNRS, 25 avenue des martyrs, 38042 Grenoble Cedex 9 (France); Zhou, L. [SMRC, Northwest Institute for Non-ferrous Metal Research, Xi’an (China); State Key Lab of Solidification Processing, Northwest Polytechnical University, Xi’an (China)

    2015-01-15

    Highlights: • It was the first time we measured the susceptibility of bulk YBCO in powder-melting-process at high temperature up to 1060 °C. • It revealed that the crystalline phase transition of bulk PMP-YBCO growth in process. • A new discovery of Y123 phase pre-formed then melted in heating stage has been found. • It discovered that Y123 crystal solidification started at 1004 °C in cooling stage in PMP route. - Abstract: The dynamic susceptibility transformations of bulk HTSC PMP-YBCO growth have been investigated from 200 °C up to 1060 °C by the Faraday Balance in-situ. It revealed that the crystalline phase transitions of bulk PMP-YBCO growth in process. A new discovery of Y123 phase pre-formed then melted in heating stage has been found. It also discovered that Y123 crystal solidification started at 1004 °C in cooling stage. Before Y123 solidification the liquid phase CuO change to Cu{sub 2}O reciprocally as well as the copper ion valence changed between divalent Cu{sup 2+} and trivalent Cu{sup 1+} each other. It was essential to keep quantities of CuO phase instead of the Cu{sub 2}O for Y123 crystal solidification.

  15. Formation Mechanism and Control of Perovskite Films from Solution to Crystalline Phase Studied by in Situ Synchrotron Scattering.

    Science.gov (United States)

    Chang, Chun-Yu; Huang, Yu-Ching; Tsao, Cheng-Si; Su, Wei-Fang

    2016-10-12

    Controlling the crystallization and morphology of perovskite films is crucial for the fabrication of high-efficiency perovskite solar cells. For the first time, we investigate the formation mechanism of the drop-cast perovskite film from its precursor solution, PbCl2 and CH3NH3I in N,N-dimethylformamide, to a crystalline CH3NH3PbI3-xClx film at different substrate temperatures from 70 to 180 °C in ambient air and humidity. We employed an in situ grazing-incidence wide-angle X-ray scattering (GIWAXS) technique for this study. When the substrate temperature is at or below 100 °C, the perovskite film is formed in three stages: the initial solution stage, transition-to-solid film stage, and transformation stage from intermediates into a crystalline perovskite film. In each stage, the multiple routes for phase transformations are preceded concurrently. However, when the substrate temperature is increased from 100 to 180 °C, the formation mechanism of the perovskite film is changed from the "multistage formation mechanism" to the "direct formation mechanism". The proposed mechanism has been applied to understand the formation of a perovskite film containing an additive. The result of this study provides a fundamental understanding of the functions of the solvent and additive in the solution and transition states to the crystalline film. It provides useful knowledge to design and fabricate crystalline perovskite films for high-efficiency solar cells.

  16. Identification of the hydrate gel phases present in phosphate-modified calcium aluminate binders

    Energy Technology Data Exchange (ETDEWEB)

    Chavda, Mehul A.; Bernal, Susan A. [Department of Materials Science and Engineering, The University of Sheffield, Sheffield S1 3JD (United Kingdom); Apperley, David C. [Solid-State NMR Group, Department of Chemistry, Durham University, Durham DH1 3LE (United Kingdom); Kinoshita, Hajime [Department of Materials Science and Engineering, The University of Sheffield, Sheffield S1 3JD (United Kingdom); Provis, John L., E-mail: j.provis@sheffield.ac.uk [Department of Materials Science and Engineering, The University of Sheffield, Sheffield S1 3JD (United Kingdom)

    2015-04-15

    The conversion of hexagonal calcium aluminate hydrates to cubic phases in hydrated calcium aluminate cements (CAC) can involve undesirable porosity changes and loss of strength. Modification of CAC by phosphate addition avoids conversion, by altering the nature of the reaction products, yielding a stable amorphous gel instead of the usual crystalline hydrate products. Here, details of the environments of aluminium and phosphorus in this gel were elucidated using solid-state NMR and complementary techniques. Aluminium is identified in both octahedral and tetrahedral coordination states, and phosphorus is present in hydrous environments with varying, but mostly low, degrees of crosslinking. A {sup 31}P/{sup 27}Al rotational echo adiabatic passage double resonance (REAPDOR) experiment showed the existence of aluminium–phosphorus interactions, confirming the formation of a hydrated calcium aluminophosphate gel as a key component of the binding phase. This resolves previous disagreements in the literature regarding the nature of the disordered products forming in this system.

  17. Crystalline phase transition information induced by high temperature susceptibility transformations in bulk PMP-YBCO superconductor growth in-situ

    Science.gov (United States)

    Zhang, C. P.; Chaud, X.; Beaugnon, E.; Zhou, L.

    2015-01-01

    The dynamic susceptibility transformations of bulk HTSC PMP-YBCO growth have been investigated from 200 °C up to 1060 °C by the Faraday Balance in-situ. It revealed that the crystalline phase transitions of bulk PMP-YBCO growth in process. A new discovery of Y123 phase pre-formed then melted in heating stage has been found. It also discovered that Y123 crystal solidification started at 1004 °C in cooling stage. Before Y123 solidification the liquid phase CuO change to Cu2O reciprocally as well as the copper ion valence changed between divalent Cu2+ and trivalent Cu1+ each other. It was essential to keep quantities of CuO phase instead of the Cu2O for Y123 crystal solidification.

  18. Combined toxicity of two crystalline phases (anatase and rutile) of Titania nanoparticles towards freshwater microalgae: Chlorella sp.

    Science.gov (United States)

    Iswarya, V; Bhuvaneshwari, M; Alex, Sruthi Ann; Iyer, Siddharth; Chaudhuri, Gouri; Chandrasekaran, Prathna Thanjavur; Bhalerao, Gopalkrishna M; Chakravarty, Sujoy; Raichur, Ashok M; Chandrasekaran, N; Mukherjee, Amitava

    2015-04-01

    In view of the increasing usage of anatase and rutile crystalline phases of titania NPs in the consumer products, their entry into the aquatic environment may pose a serious risk to the ecosystem. In the present study, the possible toxic impact of anatase and rutile nanoparticles (individually and in binary mixture) was investigated using freshwater microalgae, Chlorella sp. at low exposure concentrations (0.25, 0.5 and 1mg/L) in freshwater medium under UV irradiation. Reduction of cell viability as well as a reduction in chlorophyll content were observed due to the presence of NPs. An antagonistic effect was noted at certain concentrations of binary mixture such as (0.25, 0.25), (0.25, 0.5), and (0.5, 0.5) mg/L, and an additive effect for the other combinations, (0.25, 1), (0.5, 0.25), (0.5, 1), (1, 0.25), (1, 0.5), and (1, 1) mg/L. The hydrodynamic size analyses in the test medium revealed that rutile NPs were more stable in lake water than the anatase and binary mixtures [at 6h, the sizes of anatase (1mg/L), rutile NPs (1mg/L), and binary mixture (1, 1mg/L) were 948.83±35.01nm, 555.74±19.93nm, and 1620.24±237.87nm, respectively]. The generation of oxidative stress was found to be strongly dependent on the crystallinity of the nanoparticles. The transmission electron microscopic images revealed damages in the nucleus and cell membrane of algal cells due to the interaction of anatase NPs, whereas rutile NPs were found to cause chloroplast and internal organelle damages. Mis-shaped chloroplasts, lack of nucleus, and starch-pyrenoid complex were noted in binary-treated cells. The findings from the current study may facilitate the environmental risk assessment of titania NPs in an aquatic ecosystem.

  19. Polymorphism: characterization and study of the properties of a crystalline phase

    Directory of Open Access Journals (Sweden)

    Gilson da Silva

    2010-09-01

    Full Text Available Despite the same chemical composition, the physicochemical properties of polymorphs can be totally different, such as leading or not electricity. The legality of recognize them as completely new products is discussed, in front of the characteristics that a polymorph may have over another. The fact is that the differential solubility and stability and formation of active sites in different phases of a substance engage the interest of many active sectors of the economy. There are no few polymorphic energetic materials, or their precursors, which also have therapeutic applications. Therefore, some of the techniques developed by the lucrative pharmaceutical industry to study the polymorphism can be tailored to the needs of the war industry. This paper presents energetic and pharmacological materials recognized for their polymorphism and discuss properties, characterization techniques and the study of phase transition in these materials.

  20. The fabrication of quantum wires in silicon utilising the characteristics of solid phase epitaxial regrowth of crystalline silicon

    Energy Technology Data Exchange (ETDEWEB)

    Liu, A.C.Y.; McCallum, J.C. [Melbourne Univ. Parkville, VIC (Australia). School of Physics, Microanalytical Research Centre

    1998-06-01

    The process of solid phase epitaxy (SPE) in semiconductor materials is one which has been intensively researched due to possible applications in the semiconductor industry. SPE is a solid phase transformation, in which an amorphous layer can be recrystallized either through heating or a combination of heating and ion bombardment. The transformation is believed to occur exclusively at the interface between the amorphous and crystalline layers, with individual atoms from the amorphous phase being incorporated into the crystalline phase by some point defect mechanism. The process has been observed to follow an Arrhenius temperature dependence. A wafer silicon was subjected to a multi-energy silicon implant through a fine nickel grid to amorphise region to a depth of 5{mu}m creating an array of amorphous wells. Metal impurity atoms were then implanted in this region at energy of 500 keV. Samples were examined using an optical microscope and the Alphastep profiler at RMIT. It was confirmed that burgeoning wells were about 2 {mu}m wide and rose about 0.01 {mu}m above the silicon substrate. Extended abstract. 4 refs., 3 figs.

  1. Amorphous and crystalline aerosol particles interacting with water vapor – Part 1: Microstructure, phase transitions, hygroscopic growth and kinetic limitations

    Directory of Open Access Journals (Sweden)

    T. Koop

    2009-03-01

    Full Text Available Interactions with water are crucial for the properties, transformation and climate effects of atmospheric aerosols. Here we outline characteristic features and differences in the interaction of amorphous and crystalline aerosol particles with water vapor. Using a hygroscopicity tandem differential mobility analyzer (H-TDMA, we performed hydration, dehydration and cyclic hydration&dehydration experiments with aerosol particles composed of levoglucosan, oxalic acid and ammonium sulfate (diameters ~100–200 nm, relative uncertainties <0.4%, relative humidities <5% to 95% at 298 K. The measurements and accompanying Köhler model calculations provide new insights into particle microstructure, surface adsorption, bulk absorption, phase transitions and hygroscopic growth. The results of these and related investigations lead to the following main conclusions: 1. Many organic substances (including carboxylic acids, carbohydrates and proteins tend to form amorphous rather than crystalline phases upon drying of aqueous solution droplets. Depending on viscosity and microstructure, the amorphous phases can be classified as glasses, rubbers, gels or viscous liquids. 2. Amorphous organic substances tend to absorb water vapor and undergo gradual deliquescence and hygroscopic growth at much lower relative humidity than their crystalline counterparts. 3. In the course of hydration and dehydration, certain organic substances can form rubber- or gel-like structures (supra-molecular networks and undergo stepwise transitions between swollen and collapsed network structures. 4. Organic gels or (semi-solid amorphous shells (glassy, rubbery, ultra-viscous with low molecular diffusivity can kinetically limit the uptake and release of water by submicron aerosol particles on (multi-second time scales, which may influence the hygroscopic growth and activation of aerosol particles as cloud condensation nuclei (CCN and ice nuclei (IN. 5. The shape and porosity of amorphous

  2. Phase behaviour of macromolecular liquid crystalline materials. Computational studies at the molecular level

    CERN Document Server

    Stimson, L M

    2003-01-01

    Molecular simulations provide an increasingly useful insight into the static and dynamic characteristics of materials. In this thesis molecular simulations of macro-molecular liquid crystalline materials are reported. The first liquid crystalline material that has been investigated is a side chain liquid crystal polymer (SCLCP). In this study semi-atomistic molecular dynamics simulations have been conducted at a range of temperatures and an aligning potential has been applied to mimic the effect of a magnetic field. In cooling the SCLCP from an isotropic melt, microphase separation was observed yielding a domain structure. The application of a magnetic field to this structure aligns the domains producing a stable smectic mesophase. This is the first study in which mesophases have been observed using an off-lattice model of a SCLCP. The second material that has been investigated is a dendrimer with terminal mesogenic functionalization. Here, a multi-scale approach has been taken with Monte Carlo studies of a s...

  3. Rheology of the lamellar liquid-crystalline phase in polyethoxylated alcohol/water/heptane systems.

    Directory of Open Access Journals (Sweden)

    Gallegos, C.

    2005-06-01

    Full Text Available Linear viscoelastic tests as well as transient and steady flow experiments were carried out on lamellar liquid crystalline samples of poly (oxyethylene alcohol/water/heptane systems. The effect of surfactant and heptane concentrations on the rheological properties of the lamellar mesophase was investigated. The mechanical spectrum inside the linear viscoelastic regime shows, in all cases, a well-developed plateau region in the whole frequency range studied. The values of the dynamic functions were higher for intermediate surfactant or heptane concentrations indicative of a major development of the elastic network in the midrange of existence of the lamellar phase. Transient and steady flow experiments point out a shear-induced evolution of the lamellar microstructure. Different power law regions with different values of the flow index were detected in the viscosity versus shear rate plots. These shear-induced structural modifications were confirmed by using polarizing microscopy in an optical shearing cell. Structural modifications appear to be highly influenced by shear rate. In general, applying relatively high constant shear rates, the alignment of the bilayers followed by the appearance of the “oily streaks” structure was observed. Appearance of shear-induced vesicles occurs at high heptane content, as indicates the texture of close-packed monodisperse spherulites detected by polarizing microscopy.n este trabajo se han estudiado las propiedades reológicas de una fase líquido-cristalina laminar contenida en un sistema alcohol polietoxilado/agua/heptano, mediante ensayos viscoelásticos lineales, estacionarios y transitorios. El efecto de distintas variables como la composición de tensioactivo y heptano sobre dichas propiedades reológicas ha sido analizado. El espectro mecánico obtenido de la fase laminar muestra en todos los casos una región “plateau” en el intervalo de frecuencias estudiado así como mayores valores

  4. Psychiatric Presentations During All 4 Phases of the Lunar Cycle.

    Science.gov (United States)

    Francis, Omar J; Kopke, Bryan J; Affatato, Anthony J; Jarski, Robert W

    2017-01-01

    Context • Anecdotal evidence concerning a relationship between human illnesses and a full moon is frequently claimed by as many as 81% of mental health workers. Previous scientific investigations have studied only the full-moon phase and its possible effect on psychiatric presentations. However, information is limited about all 4 phases of the lunar cycle and their effects on different types of psychiatric disorders. Objective • This study primarily intended to evaluate the number of psychiatric presentations to a hospital's emergency department across all 4 phases of the lunar cycle. The secondary objective was to investigate the statistical differences among 5 categories of common mental disorders in relation to the 4 lunar phases. Design • This study was an observational analytic cohort study. Setting • The study took place in the emergency department of a 140-bed, community-teaching hospital. Participants • Participants were 1857 patients who were aged >17 y and who had had a psychiatric component to a visit to the emergency department. Outcome Measures • Data from electronic medical records were collected for 41 consecutive months. The participants were divided into 5 diagnostic groups based on the Diagnostic and Statistical Manual of Mental Disorders, 5th ed (DSM-5). The study measured the number of psychiatric presentations for each group during the 4 National Aeronautics and Space Administration (NASA)-defined phases of the lunar cycle, and the study was statistically powered to detect small effects. Results • The following psychiatric presentations occurred: (1) 464 during the new moon; (2) 483 during the first quarter; (3) 449 during the full moon; and (4) 461 during the third quarter (4-group overall χ2, P = .89). Differences between the 5 diagnostic categories across the 4 lunar phases were not statistically significant (4-group overall χ2, P = .85 for the 5 diagnostic categories). Conclusions • Although many traditional and

  5. Effect of Ce2O3 on Structure, Viscosity, and Crystalline Phase of CaO-Al2O3-Li2O-Ce2O3 Slags

    Science.gov (United States)

    Qi, Jie; Liu, Chengjun; Zhang, Chi; Jiang, Maofa

    2017-02-01

    Aiming at devising new mold flux for Ce-bearing stainless steel, a fundamental investigation on the effect of Ce2O3 on properties of the CaO-Al2O3-Li2O-Ce2O3 slag was provided by the present work. The results show that adding Ce2O3 could decrease the viscosity of the slag due to its effects on decreasing the polymerization of the slag. The crystalline process was restrained by increasing the content of Ce2O3, and the crystalline phases also can be influenced by the slag structure. The crystalline phases were transferred from LiAlO2 and CaO to LiAlO2 and CaCeAlO4 with the addition of Ce2O3 to the slag, which could be well confirmed by the structure of the unit cell of the crystals.

  6. Gibbs free-energy difference between the glass and crystalline phases of a Ni-Zr alloy

    Science.gov (United States)

    Ohsaka, K.; Trinh, E. H.; Holzer, J. C.; Johnson, W. L.

    1993-01-01

    The heats of eutectic melting and devitrification, and the specific heats of the crystalline, glass, and liquid phases have been measured for a Ni24Zr76 alloy. The data are used to calculate the Gibbs free-energy difference, Delta G(AC), between the real glass and the crystal on an assumption that the liquid-glass transition is second order. The result shows that Delta G(AC) continuously increases as the temperature decreases in contrast to the ideal glass case where Delta G(AC) is assumed to be independent of temperature.

  7. Highly efficient molecular simulation methods for evaluation of thermodynamic properties of crystalline phases

    Science.gov (United States)

    Moustafa, Sabry Gad Al-Hak Mohammad

    Molecular simulation (MS) methods (e.g. Monte Carlo (MC) and molecular dynamics (MD)) provide a reliable tool (especially at extreme conditions) to measure solid properties. However, measuring them accurately and efficiently (smallest uncertainty for a given time) using MS can be a big challenge especially with ab initio-type models. In addition, comparing with experimental results through extrapolating properties from finite size to the thermodynamic limit can be a critical obstacle. We first estimate the free energy (FE) of crystalline system of simple discontinuous potential, hard-spheres (HS), at its melting condition. Several approaches are explored to determine the most efficient route. The comparison study shows a considerable improvement in efficiency over the standard MS methods that are known for solid phases. In addition, we were able to accurately extrapolate to the thermodynamic limit using relatively small system sizes. Although the method is applied to HS model, it is readily extended to more complex hard-body potentials, such as hard tetrahedra. The harmonic approximation of the potential energy surface is usually an accurate model (especially at low temperature and large density) to describe many realistic solid phases. In addition, since the analysis is done numerically the method is relatively cheap. Here, we apply lattice dynamics (LD) techniques to get the FE of clathrate hydrates structures. Rigid-bonds model is assumed to describe water molecules; this, however, requires additional orientation degree-of-freedom in order to specify each molecule. However, we were able to efficiently avoid using those degrees of freedom through a mathematical transformation that only uses the atomic coordinates of water molecules. In addition, the proton-disorder nature of hydrate water networks adds extra complexity to the problem, especially when extrapolating to the thermodynamic limit is needed. The finite-size effects of the proton disorder contribution is

  8. Nanoscale characteristics of triacylglycerol oils: phase separation and binding energies of two-component oils to crystalline nanoplatelets.

    Science.gov (United States)

    MacDougall, Colin J; Razul, M Shajahan; Papp-Szabo, Erzsebet; Peyronel, Fernanda; Hanna, Charles B; Marangoni, Alejandro G; Pink, David A

    2012-01-01

    Fats are elastoplastic materials with a defined yield stress and flow behavior and the plasticity of a fat is central to its functionality. This plasticity is given by a complex tribological interplay between a crystalline phase structured as crystalline nanoplatelets (CNPs) and nanoplatelet aggregates and the liquid oil phase. Oil can be trapped within microscopic pores within the fat crystal network by capillary action, but it is believed that a significant amount of oil can be trapped by adsorption onto crystalline surfaces. This, however, remains to be proven. Further, the structural basis for the solid-liquid interaction remains a mystery. In this work, we demonstrate that the triglyceride liquid structure plays a key role in oil binding and that this binding could potentially be modulated by judicious engineering of liquid triglyceride structure. The enhancement of oil binding is central to many current developments in this area since an improvement in the health characteristics of fat and fat-structured food products entails a reduction in the amount of crystalline triacylglycerols (TAGs) and a relative increase in the amount of liquid TAGs. Excessive amounts of unbound, free oil, will lead to losses in functionality of this important food component. Engineering fats for enhanced oil binding capacity is thus central to the design of more healthy food products. To begin to address this, we modelled the interaction of triacylglycerol oils, triolein (OOO), 1,2-olein elaidin (OOE) and 1,2-elaidin olein (EEO) with a model crystalline nanoplatelet composed of tristearin in an undefined polymorphic form. The surface of the CNP in contact with the oil was assumed to be planar. We considered pure OOO and mixtures of OOO + OOE and OOO + EEO with 80% OOO. The last two cases were taken as approximations to high oleic sunflower oil (HOSO). The intent was to investigate whether phase separation on a nanoscale took place. We defined an "oil binding capacity" parameter, B

  9. Identifying the crystallinity, phase, and arsenic uptake of the nanomineral schwertmannite using analytical high resolution transmission electron microscopy

    Science.gov (United States)

    French, R. A.; Kim, B.; Murayama, M.; Hochella, M. F.

    2010-12-01

    Schwertmannite, an iron oxyhydroxide sulfate nanomineral, plays a significant role in the geochemistry of acid mine drainage (AMD) as a metastable phase with respect to goethite and by retaining toxic metals, e.g. arsenic [1]. Schwertmannite’s characteristic morphology is needles 100-300 nm long and only 5-10 nm in diameter extending from a dense aggregate. The poorly-and nano-crystalline nature of this mineral requires using high resolution electron microscopy (HRTEM) to be fully characterized. We used HRTEM to identify the polyphasic nature of natural samples of schwertmannite collected from the Iberian Pyrite Belt in Spain. In order to analyze the dense core, samples were prepared in thin section using an ultramicrotome. Data on a sample identified as pure schwertmannite through powder XRD shows the presence of 5-10 nm goethite nanocrystals making up a significant portion of one of the nanoneedle tips (Figure 1). These nanocrystals exhibit lattice fringes and faceted surfaces, both of which match that expected for goethite. The great majority of the nanoneedles are poorly-crystalline (no lattice fringes) with atomically rough surfaces which may be highly active in the uptake of As. The presence of a range of phases and crystallinities in this sample demonstrate incipient stages of the mechanism that results in transformation of schwertmannite to goethite. Further analytical TEM analyses will help us track sorption/desorption, as well as the specific locations of As within these materials upon initial formation, as well as during transformation. [1] Acero et al. (2006) GCA 70, 4130-4139. Figure 1. HRTEM image of 'schwertmannite' nanoneedle with FFT data (inset).

  10. Vapor-phase hydrothermal transformation of HTiOF3 intermediates into {001} faceted anatase single-crystalline nanosheets.

    Science.gov (United States)

    Liu, Porun; Wang, Yun; Zhang, Haimin; An, Taicheng; Yang, Huagui; Tang, Zhiyong; Cai, Weiping; Zhao, Huijun

    2012-12-07

    For the first time, a facile, one-pot hydrofluoric acid vapor-phase hydrothermal (HF-VPH) method is demonstrated to directly grow single-crystalline anatase TiO(2) nanosheets with 98.2% of exposed {001} faceted surfaces on the Ti substrate via a distinctive two-stage formation mechanism. The first stage produces a new intermediate crystal (orthorhombic HTiOF(3) ) that is transformed into anatase TiO(2) nanosheets during the second stage. The findings reveal that the HF-VPH reaction environment is unique and differs remarkably from that of liquid-phase hydrothermal processes. The uniqueness of the HF-VPH conditions can be readily used to effectively control the nanostructure growth.

  11. Molecular structure of the discotic liquid crystalline phase of hexa-peri-hexabenzocoronene/oligothiophene hybrid and their charge transport properties

    Energy Technology Data Exchange (ETDEWEB)

    Bag, Saientan; Maingi, Vishal; Maiti, Prabal K., E-mail: maiti@physics.iisc.ernet.in [Department of Physics, Center for Condensed Matter Theory, Indian Institute of Science, Bangalore 560012 (India); Yelk, Joe; Glaser, Matthew A.; Clark, Noel A. [Department of Physics, University of Colorado, Boulder, Colorado 80309 (United States); Walba, David M. [Department of Chemistry and Biochemistry, University of Colorado, Boulder, Colorado 80309 (United States)

    2015-10-14

    Using atomistic molecular dynamics simulation, we study the discotic columnar liquid crystalline (LC) phases formed by a new organic compound having hexa-peri-Hexabenzocoronene (HBC) core with six pendant oligothiophene units recently synthesized by Nan Hu et al. [Adv. Mater. 26, 2066 (2014)]. This HBC core based LC phase was shown to have electric field responsive behavior and has important applications in organic electronics. Our simulation results confirm the hexagonal arrangement of columnar LC phase with a lattice spacing consistent with that obtained from small angle X-ray diffraction data. We have also calculated various positional and orientational correlation functions to characterize the ordering of the molecules in the columnar arrangement. The molecules in a column are arranged with an average twist of 25° having an average inter-molecular separation of ∼5 Å. Interestingly, we find an overall tilt angle of 43° between the columnar axis and HBC core. We also simulate the charge transport through this columnar phase and report the numerical value of charge carrier mobility for this liquid crystal phase. The charge carrier mobility is strongly influenced by the twist angle and average spacing of the molecules in the column.

  12. Suppressed Release of Clarithromycin from Tablets by Crystalline Phase Transition of Metastable Polymorph Form I.

    Science.gov (United States)

    Fujiki, Sadahiro; Watanabe, Narumi; Iwao, Yasunori; Noguchi, Shuji; Mizoguchi, Midori; Iwamura, Takeru; Itai, Shigeru

    2015-08-01

    The pharmaceutical properties of clarithromycin (CAM) tablets containing the metastable form I of crystalline CAM were investigated. Although the dissolution rate of form I was higher than that of stable form II, the release of CAM from form I tablet was delayed. Disintegration test and liquid penetration test showed that the disintegration of the tablet delayed because of the slow penetration of an external solution into form I tablet. Investigation by scanning electron microscopy revealed that the surface of form I tablet was covered with fine needle-shaped crystals following an exposure to the external solution. These crystals were identified as form IV crystals by powder X-ray diffraction. The phenomenon that CAM releases from tablet was inhibited by fine crystals spontaneously formed on the tablet surface could be applied to the design of sustained-release formulation systems with high CAM contents by minimizing the amount of functional excipients. © 2015 Wiley Periodicals, Inc. and the American Pharmacists Association.

  13. Stereodynamic control of star-epoxy/anhydride crosslinking actuated by liquid-crystalline phase transitions.

    Science.gov (United States)

    Pin, Jean-Mathieu; Mija, Alice; Sbirrazzuoli, Nicolas

    2017-02-07

    The epoxy/anhydride copolymerization kinetics of an original star-epoxy monomer (TriaEP) was explored in dynamic heating mode using a series of isoconversional methods. Negative values of the apparent activation energy (Eα) related to an anti-Arrhenius behavior were observed. The transition from Arrhenius to anti-Arrhenius behavior and vice versa depending on the Eα of polymerization was correlated with the dynamics of mesophasic fall-in/fall-out events, physically induced transition (PIT) and chemically induced transition (CIT). This self-assembly phenomenon induces the generation of an anisotropic crosslinked architecture exhibiting both nematic discotic (ND) and nematic columnar (NC) organization. Particular emphasis was placed on evaluating the juxtaposition/contribution of the liquid-crystalline transitions to crosslinking, considering both the reaction dynamics and the macromolecular vision.

  14. Structural mechanisms of the Ih–II and II → Ic transitions between the crystalline phases of aqueous ice

    Energy Technology Data Exchange (ETDEWEB)

    Zheligovskaya, E. A., E-mail: lmm@phyche.ac.ru [Russian Academy of Sciences, Frumkin Institute of Physical Chemistry and Electrochemistry (Russian Federation)

    2015-09-15

    Structural mechanisms are proposed for experimentally observed phase transitions between crystalline modifications of aqueous ice, Ih and II, as well as II and Ic. It is known that the Ih–II transition occurs with the conservation of large structural units (hexagonal channels) common for these ices. It is shown that the Ih → II transition may occur with the conservation of 5/6 of all hydrogen bonds in crystal, including all hydrogen bonds in the retained channels (3/4 of the total number of bonds in crystal) and 1/3 of the bonds between these channels (1/12 of the total number). The transformation of other hydrogen bonds between the retained channels leads to the occurrence of proton order in ice II. A structural mechanism is proposed to explain the transformation of single crystals of ice Ih either into single crystals of ice II or into crystalline twins of ice II with c axes rotated by 180° with respect to each other, which is often observed at the Ih → II transition. It is established that up to 7/12 of all hydrogen bonds are retained at the irreversible cooperative II → Ic transition.

  15. Effect of fabrication technique on the crystalline phase and electrical properties of PVDF films

    Directory of Open Access Journals (Sweden)

    Mahato P. K.

    2015-03-01

    Full Text Available The effect of different fabrication techniques on the formation of electroactive β-phase polyvinylidene fluoride (PVDF has been investigated. Films with varying concentration of PVDF and solvent - dimethyl formamide (DMF were synthesized by tape casting and solvent casting techniques. The piezoelectric β-phase as well as non polar β-phase were observed for both the tape cast and solvent cast films from X-ray diffraction (XRD micrographs and Fourier transform infra-red spectroscopy (FT-IR spectra. A maximum percentage (80 % of β-phase was obtained from FT-IR analysis for a solvent cast PVDF film. The surface morphology of the PVDF films was analyzed by FESEM imaging. The dielectric properties as a function of temperature and frequency and the ferroelectric hysteresis loop as a function of voltage were measured. An enhancement in the value of the dielectric constant and polarization was obtained in solvent cast films.

  16. Atomic-level simulations of nanoindentation-induced phase transformation in mono-crystalline silicon

    Science.gov (United States)

    Lin, Yen-Hung; Chen, Tei-Chen; Yang, Ping-Feng; Jian, Sheng-Rui; Lai, Yi-Shao

    2007-12-01

    Molecular dynamics (MD) simulations of nanoindentation are carried out to investigate the phase transformations in Si with a spherical indenter. Since the phase transformation induced by deformation in micro-scale is closely related to the carrier mobility of the material, it has become a key issue to be investigated for the chips especially with smaller feature size. Up to now, however, it is not possible to carry out the nanoindentation experimentally in such a small feature. Consequently, molecular dynamic simulation on nanoindentation is resorted to and becomes a powerful tool to understand the detailed mechanisms of stress-induced phase transformation in nano-scale. In this study, the inter-atomic interaction of Si atoms is modeled by Tersoff's potential, while the interaction between Si atoms and diamond indenter atoms is modeled by Morse potential. It is found that the diamond cubic structure of Si in the indentation zone transforms into a phase with body-centred tetragonal structure (β-Si) just underneath the indenter during loading stage and then changes to amorphous after unloading. By using the technique of coordinate number the results reveal that indentation on the (0 0 1) surface exhibits significant phase transformation along the direction. In addition, indentation on the (1 1 0) surface shows more significant internal slipping and spreading of phase transformation than on the (0 0 1) surface. Furthermore, during the indentation process phase transformations of Si are somewhat reversible. Parts of transformed phases that are distributed over the region of elastic deformation can be gradually recovered to original mono-crystal structure after unloading.

  17. Integrating superconducting phase and topological crystalline quantum spin Hall effect in hafnium intercalated gallium film

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Jian, E-mail: jzhou2@vcu.edu, E-mail: pjena@vcu.edu; Jena, Puru, E-mail: jzhou2@vcu.edu, E-mail: pjena@vcu.edu [Department of Physics, Virginia Commonwealth University, Richmond, Virginia 23284 (United States); Zhang, Shunhong [Center for Applied Physics and Technology, College of Engineering, Peking University, Beijing 100871 (China); Wang, Qian [Center for Applied Physics and Technology, College of Engineering, Peking University, Beijing 100871 (China); Department of Physics, Virginia Commonwealth University, Richmond, Virginia 23284 (United States)

    2016-06-20

    Motivated by the growth of superconducting atomic hexagonal Ga layers on GaN surface we have calculated the electronic properties of Hf intercalated honeycomb Ga layers using first-principles theory. In contrast to the hexagonal Ga layers where substrate is necessary for their stability, we find the above structure to be dynamically stable in its freestanding form with small formation energy. In particular, six Dirac cones composed of Hf-d{sub xy}/d{sub x2-y2} orbitals are observed in the first Brillouin zone, slightly below the Fermi energy. Spin-orbit coupling opens a large band gap of 177 meV on these Dirac cones. By calculating its mirror Chern number, we demonstrate that this band gap is topologically nontrivial and protected by mirror symmetry. Such mirror symmetry protected band gaps are rare in hexagonal lattice. A large topological crystalline quantum spin Hall conductance σ{sub SH} ∼ −4 e{sup 2}/h is also revealed. Moreover, electron-phonon coupling calculations reveal that this material is superconducting with a transition temperature T{sub c} = 2.4 K, mainly contributed by Ga out-of-plane vibrations. Our results provide a route toward manipulating quantum spin Hall and superconducting behaviors in a single material which helps to realize Majorana fermions and topological superconductors.

  18. Form-stable crystalline polymer pellets for thermal energy storage. Phase 1

    Energy Technology Data Exchange (ETDEWEB)

    Botham, R.A.; Jenkins, G.H.; Ball, G.L. III; Salyer, I.O.

    1977-07-01

    The objective of this project was to develop a form-stable, crystalline polymer pellet TES bed material, useful in the 120 to 140/sup 0/C temperature range suitable for solar absorption air conditioning applications. This objective was achieved with a Si-O-Si crosslinked HDPE pellet material, demonstrated to have a high heat of fusion value (46 cal/g, approximately 98% of the HDPE's heat of fusion value prior to crosslinking). Further, on melt/freeze cycling of these TES pellets through 400 cycles in ethylene glycol, they retained nearly 100% of their initial heat of fusion value, and had excellent form-stability characteristics, with little or no inter-particle adhesion. Appropriate testing of this TES pellet material, from analytical (DSC) to a one gallon lab-scale TES unit, and finally to a 60 gallon prototype TES demonstration unit, consistently verified these results. C-C crosslinked PE products, which were slightly inferior to the Si-O-Si crosslinked PE in terms of good heat of fusion and form-stability properties, were also developed and are potential alternatives to the prime PE TES product.

  19. An advanced regime of the anomalous acousto-optical interaction with tangential phase matching in crystalline materials

    Science.gov (United States)

    Shcherbakov, Alexandre S.; Arellanes, Adan O.

    2016-09-01

    Regime of effective non-collinear acousto-optical interaction with tangential phase matching had been identified and previously observed only in two limiting cases: in tellurium dioxide (TeO2) at low acoustic frequencies ( 60 MHz) and in rutile (TiO2) at ultra-high frequencies ( 5 GHz). Both these limits are motivated by optical properties of the chosen materials. Low frequencies in TeO2 admit designing a wide-aperture acousto-optical cell, but limit the frequency bandwidth. While an acousto-optical cell made of TiO2 has very small aperture and exhibits low spectral resolution due to the effect of linear acoustic attenuation. Instead of those limits, we propose an advanced regime of the anomalous acousto-optical interaction with tangential phase matching, which allows us varying the frequency range and optimizing all the performances (for instance, the spectral resolution) of a wide-aperture acousto-optical cell made of the chosen crystal, as the case requires. Recently, we had suggested and successfully tested experimentally the revealed additional degree of freedom, i.e. the action of the tilt angle within the refractive indices ellipsoids to manipulate by the performances of crystalline acousto-optical cells. Now, we consider an opportunity of refining this additional degree of freedom within those ellipsoids of crystalline acousto-optical cell through some declination of the acoustic beam. For our investigations, the lithium niobate (LiNbO3) and rutile (TiO2) crystals of about 5 cm length, operating with the slow-shear acoustic mode along the acoustic axes had been selected. The needed theoretical analysis, numerical estimations, and 3D-vector diagrams have been developed to reveal potential benefits of the proposed technique.

  20. Study of crystalline morphology and phase structure in poly(styrene-b-ethylene oxide-b-styrene) triblock copolymers bu solid state RMN spin diffusion

    Energy Technology Data Exchange (ETDEWEB)

    Mantovani, Gerson L., E-mail: gerson.mantovani@ufabc.edu.b [Universidade Federal do ABC (UFABC), Santo Andre, SP (Brazil). Centro de Engenharia, Modelagem e Ciencias Sociais Aplicadas; Bonk, Fabio A. [Universidade Estadual de Campinas (IQ/UNICAMP) SP (Brazil). Inst. de Quimica; Caldarelli, Stefano Caldarelli [Aix-Marseille Universite ISm2, Site de Saint Jerome, Marseille (France); Phan, Trang; Bertin, Denis [Universite de Provence, Site de Saint Jerome, Marseille (France); Azevedo, Eduardo R. de; Bonagamba, Tito J. [Universidade de Sao Paulo (IF/USP), Sao Carlos, SP (Brazil). Inst. de Fisica

    2009-07-01

    The phase structure and crystalline morphology of a series of polystyrene-b-polyethylene oxide-b-polystyrene (PS-b- PEO-b-PS) triblock copolymers, with different compositions and molecular weights, has been studied by solid-state NMR. WAXS and DSC measurements were used to detect the presence of crystalline domains of polyethylene oxide (PEO) blocks at room temperature as a function of the copolymer composition. {sup 1}H NMR spin diffusion analyses provided an estimation of the size of the dispersed phases of the nano structured copolymers. (author)

  1. Collective stringlike motion of semiflexible filamentous particles in columnar liquid crystalline phases

    NARCIS (Netherlands)

    Naderi, S.; van der Schoot, P. P. A. M.

    2013-01-01

    We study, by means of Brownian dynamics simulations, heterogeneous dynamics in a dense columnar phase of monodisperse hard filamentous particles, and find that in a background of barely moving particles, some particles occasionally engage in a fast coherent string-type motion similar to what is

  2. Mechanisms of zinc incorporation in aluminosilicate crystalline structures and the leaching behaviour of product phases.

    Science.gov (United States)

    Tang, Yuanyuan; Shih, Kaimin

    2015-01-01

    This study quantitatively evaluates a waste-to-resource strategy of blending zinc-laden sludge and clay material for low-cost ceramic products. Using ZnO as the simulated zinc-laden sludge to sinter with kaolinite, both zinc aluminate spinel (ZnAl₂O₄) and willemite (Zn₂SiO₄) phases were formed during the sintering process. To analyse the details of zinc incorporation reactions, γ-Al₂O₃and quartz were further used as precursors to observe ZnAl₂O₄and Zn₂SiO₄formations. By firing the ZnO mixtures and their corresponding precursors at 750-1350°C for 3 h, the efficiency of zinc transformation was determined through Rietveld refinement analyses of X-ray diffraction data. The results also show different incorporation behaviour for kaolinite and mullite precursors during the formation of ZnAl2O₄and Zn2SiO₄in the system. In addition, with a competitive formation between ZnAl₂O₄and Zn₂SiO₄, the ZnAl₂O₄spinel phase is predominant at temperatures higher than 1050°C. This study used a prolonged leaching test modified from the US Environmental Protection Agency's toxicity characteristic leaching procedure to evaluate ZnO, ZnAl₂O₄, and Zn₂SiO₄product phases. The zinc concentrations in ZnO and Zn₂SiO₄leachates were about two orders of magnitude higher than that of ZnAl₂O₄ leachate at the end of the experiment, indicating that ZnAl₂O₄formation is the preferred stabilization mechanism for incorporating zinc in ceramic products.

  3. Phospholipid barrier to fibrinolysis: role for the anionic polar head charge and the gel phase crystalline structure.

    Science.gov (United States)

    Váradi, Balázs; Kolev, Krasimir; Tenekedjiev, Kiril; Mészáros, Gyöngyi; Kovalszky, Ilona; Longstaff, Colin; Machovich, Raymund

    2004-09-17

    The massive presence of phospholipids is demonstrated in frozen sections of human arterial thrombi. Purified platelet phospholipids and synthetic phospholipids retard in vitro tissue-type plasminogen activator (tPA)-induced fibrinolysis through effects on plasminogen activation and plasmin function. The inhibition of plasminogen activation on the surface of fibrin correlates with the fraction of anionic phospholipid. The phospholipids decrease the amount of tPA penetrating into the clot by 75% and the depth of the reactive surface layer occupied by the activator by up to 30%, whereas for plasmin both of these parameters decrease by approximately 50%. The phospholipids are not only a diffusion barrier, they also bind the components of the fibrinolytic system. Isothermal titration calorimetry shows binding characterized with dissociation constants in the range 0.35-7.64 microm for plasmin and tPA (lower values with more negative phospholipids). The interactions are endothermic and thermodynamically driven by an increase in entropy, probably caused by the rearrangements in the ordered gel structure of the phospholipids (in line with the stronger inhibition at gel phase temperatures compared with liquid crystalline phase temperatures). These findings show a phospholipid barrier, which should be overcome during lysis of arterial thrombi.

  4. A Phase Field Technique for Modeling and Predicting Flow Induced Crystallization Morphology of Semi-Crystalline Polymers

    Directory of Open Access Journals (Sweden)

    Xiaodong Wang

    2016-06-01

    Full Text Available Flow induced crystallization of semi-crystalline polymers is an important issue in polymer science and engineering because the changes in morphology strongly affect the properties of polymer materials. In this study, a phase field technique considering polymer characteristics was established for modeling and predicting the resulting morphologies. The considered crystallization process can be divided into two stages, which are nucleation upon the flow induced structures and subsequent crystal growth after the cessation of flow. Accordingly, the proposed technique consists of two parts which are a flow induced nucleation model based on the calculated information of molecular orientation and stretch, and a phase field crystal growth model upon the oriented nuclei. Two-dimensional simulations are carried out to predict the crystallization morphology of isotactic polystyrene under an injection molding process. The results of these simulations demonstrate that flow affects crystallization morphology mainly by producing oriented nuclei. Specifically, the typical skin-core structures along the thickness direction can be successfully predicted. More importantly, the results reveal that flow plays a dominant part in generating oriented crystal morphologies compared to other parameters, such as anisotropy strength, crystallization temperature, and physical noise.

  5. Synthesis of TiO2 visible light catalysts with controllable crystalline phase and morphology from Ti-bearing electric arc furnace molten slag.

    Science.gov (United States)

    Li, Yang; Liu, Lulu; Guo, Min; Zhang, Mei

    2016-09-01

    TiO2 visible light catalysts with different crystalline phases and morphologies were synthesized from titanium-bearing electric arc furnace molten slag (Ti-bearing EAF slag) by using a simple acidolysis process. The effects of the pH of the HCl solution, liquid to solid ratio (RL/S, HCl solution to the residue ratio, mL/g) and acidolysis time on the micro-morphology and crystalline phase of as-prepared TiO2 photocatalysts were systematically investigated. The results indicated that with decreasing pH in the HCl solution and increasing RL/S, the crystalline phase and micro-morphology of the obtained TiO2 nanostructures tended to transform from anatase type TiO2 with spherical nanoparticle structures to rutile type TiO2 with needle-like nanorod structures. The acidolysis time had little influence on the crystalline phase but great impact on the size of the obtained TiO2. The growth mechanism of TiO2 from Ti-bearing EAF slag during the acidolysis process was also discussed. In addition, the influence of RL/S on the photocatalytic properties of the synthesized nanostructured TiO2 was studied. The results showed that the photodegradation efficiency for Rhodamine B solution could reach 91.00% in 120min when the RL/S was controlled at 50:1.

  6. Reversible amorphous-crystalline phase changes in a wide range of Se1-xTex alloys studied using ultrafast differential scanning calorimetry

    NARCIS (Netherlands)

    Vermeulen, Paul. A.; Momand, Jamo; Kooi, Bart J.

    2014-01-01

    The reversible amorphous-crystalline phase change in a chalcogenide material, specifically the Se1-xTex alloy, has been investigated for the first time using ultrafast differential scanning calorimetry. Heating rates and cooling rates up to 5000 K/s were used. Repeated reversible amorphous-crystalli

  7. Reversible electrical resistance switching in GeSbTe thin films : An electrolytic approach without amorphous-crystalline phase-change

    NARCIS (Netherlands)

    Pandian, Ramanathaswamy; Kooi, Bart J.; Palasantzas, George; De Hosson, Jeff Th. M.; Wouters, DJ; Hong, S; Soss, S; Auciello, O

    2008-01-01

    Besides the well-known resistance switching originating from the amorphous-crystalline phase-change in GeSbTe thin films, we demonstrate another switching mechanism named 'polarity-dependent resistance (PDR) switching'. 'Me electrical resistance of the film switches between a low- and high-state whe

  8. The magnetic and crystalline structure of the Laves phase superconductor CeRu{sub 2}

    Energy Technology Data Exchange (ETDEWEB)

    Huxley, A.; Boucherle, J.X.; Bonnet, M.; Bourdarot, F.; Schustler, I.; Caplan, D. [CEA, Departement de Recherche Fondamental sur la Matiere Condensee, SPSMS, Grenoble 38054 (France); Lelievre, E.; Bernhoeft, N. [Institut Laue - Langevin, Grenoble (France); Lejay, P. [Centre de Recherche sur les Tres Basses Temperatures, CNRS, Grenoble (France); Gillon, B. [CEA, Laboratoire Leon Brillouin, Saclay (France)

    1997-05-19

    We report measurements of the field-induced magnetization density in CeRu{sub 2}. The main results of the study are that the magnetic density is located equally at the Ce and Ru sites, and that the distribution of the induced magnetization about the Ce site extends to larger distances than predicted for Ce{sup 3+} ions with well localized f electrons. Our measurements also cover the superconducting state, where we do not observe any suppression of the spin susceptibility. In an accompanying structural study (in zero field) of our single crystal we detect a small deviation from the ideal Laves phase structure. These results are discussed in relation to the unusual electronic and magnetic properties of this compound. (author)

  9. Interaction of fibrinogen and albumin with titanium dioxide nanoparticles of different crystalline phases

    Science.gov (United States)

    Marucco, Arianna; Fenoglio, Ivana; Turci, Francesco; Fubini, Bice

    2013-04-01

    TiO2 nanoparticles (NPs) are contained in different kinds of industrial products including paints, self-cleaning glasses, sunscreens. TiO2 is also employed in photocatalysis and it has been proposed for waste water treatment. Micrometric TiO2 is generally considered a safe material, while there is concern on the possible health effects of nanometric titania. Due to their small size NPs may migrate within the human body possibly entering in the blood stream. Therefore studies on the interaction of NPs with plasma proteins are needed. In fact, the interaction with proteins is believed to ultimately influences the NPs biological fate. Fibrinogen and albumin are two of the most abundant plasma proteins. They are involved in several important physiological functions. Furthermore, fibrinogen is known to trigger platelet adhesion and inflammation. For these reasons the study of the interaction between these protein and nanoparticles is an important step toward the understanding of the behavior of NPs in the body. In this study we investigated the interaction of albumin and fibrinogen with TiO2 nanoparticles of different crystal phases (rutile and anatase) using an integrated set of techniques. The amount of adsorbed fibrinogen and albumin for each TiO2 surface was investigated by using the bicinchoninic acid assay (BCA). The variation of the surface charge of the NP-protein conjugates respect to the naked NPs was used to indirectly estimate both surface coverage and reversibility of the adsorption upon dilution. Surface charge was monitored by measuring the ζ potential with a conventional electrophoretic light scattering (ELS) system. The extent of protein deformation was evaluated by Raman Spectroscopy. We found that both proteins adsorb irreversibly against electrostatic repulsion, likely undergoing conformational changes or selective orientation upon adsorption. The size of primary particles and the particles aggregation rather than the crystal phase modulate the

  10. Crystalline Confinement

    CERN Document Server

    Banerjee, D; Jiang, F -J; Wiese, U -J

    2013-01-01

    We show that exotic phases arise in generalized lattice gauge theories known as quantum link models in which classical gauge fields are replaced by quantum operators. While these quantum models with discrete variables have a finite-dimensional Hilbert space per link, the continuous gauge symmetry is still exact. An efficient cluster algorithm is used to study these exotic phases. The $(2+1)$-d system is confining at zero temperature with a spontaneously broken translation symmetry. A crystalline phase exhibits confinement via multi-stranded strings between charge-anti-charge pairs. A phase transition between two distinct confined phases is weakly first order and has an emergent spontaneously broken approximate $SO(2)$ global symmetry. The low-energy physics is described by a $(2+1)$-d $\\mathbb{R}P(1)$ effective field theory, perturbed by a dangerously irrelevant $SO(2)$ breaking operator, which prevents the interpretation of the emergent pseudo-Goldstone boson as a dual photon. This model is an ideal candidat...

  11. Crystalline and Crystalline International Disposal Activities

    Energy Technology Data Exchange (ETDEWEB)

    Viswanathan, Hari S. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Chu, Shaoping [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Reimus, Paul William [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Makedonska, Nataliia [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Hyman, Jeffrey De' Haven [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Karra, Satish [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Dittrich, Timothy M. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2015-12-21

    This report presents the results of work conducted between September 2014 and July 2015 at Los Alamos National Laboratory in the crystalline disposal and crystalline international disposal work packages of the Used Fuel Disposition Campaign (UFDC) for DOE-NE’s Fuel Cycle Research and Development program.

  12. Phase Structure and Properties of a Biodegradable Block Copolymer Coalesced from It's Crystalline Inclusion Compound Formed with alpha-Cyclodextrin

    Science.gov (United States)

    Shuai, Xintao; Wei, Min; Probeni, Francis; Bullions, Todd A.; Shin, I. Daniel; Tonelli, Alan E.

    2002-03-01

    A well-defined biodegradable block copolymer of poly(epsilon caprolactone) (PCL) and poly(L-lactic acid) (PLLA) was synthesized and characterized and then included as a guest in an inclusion compound (IC) formed with the host alpha-cyclodextrin (CD). The PCL-b-PLLA block copolymer was subsequently coalesced from it's CD-IC crystals by either treatment with hot water (50 C) or an aqueous amylase solution at 25 C. The coalesced PCL-b-PLLA was examined by FTIR, DSC, TGA, and WAXD and was found to be much more homogeneosly organized, with much less segregation and crystallinity of the PCL and PLLA microphases. The morpholgy, crystallization kinetics, thermal behavior, and biodegradability of the coalesced PCL-b-PLLA block copolymer was studied by comparison to similar observations made on as-synthesized PCL-b-PLLA, PCL and PLLA homopolymers, and their solution-cast blend. The PCL and PLLA blocks are found to be more intimately mixed, with less phase segregation, in the coalesced diblock copolymer, and this leads to homogeneous bulk crystallization, which is not observed for the as-synthesized diblock copolymer. The coalesced PCL-b-PLLA was also found to be more quickly biodegraded (lipase from Rhizopus arrhizus)than the as-synthesized PCL-b-PLLA or the physical blend of PCL and PLLA homopolymers. Overall, the coalescence of the inherently phase segregated diblock copolymer PCL-b-PLLA results in a small amount of compact, chain-extended PCL and PLLA crystals embedded in an amorphous phase, largely consisting of well-mixed PCL and PLLA blocks. Thus, we have demonstrated that it is possible to control the morpholgy of a biodegradable diblock copolymer, thereby significantly modifying it's properties, by coalescence from it's CD-IC crystals.

  13. Liquid crystalline phases in suspensions of pigments in non-polar solvents

    Science.gov (United States)

    Klein, Susanne; Richardson, Robert M.; Eremin, Alexey

    We will discuss colloid suspensions of pigments and compare their electro-optic properties with those of traditional dyed low molecular weight liquid crystal systems. There are several potential advantages of colloidal suspensions over low molecular weight liquid crystal systems: a very high contrast because of the high orientational order parameter of suspensions of rod shaped nano-particles, the excellent light fastness of pigments as compared to dyes and high colour saturations resulting from the high loading of the colour stuff. Although a weak `single-particle' electro-optic response can be observed in dilute suspensions, the response is very much enhanced when the concentration of the particles is sufficient to lead to a nematic phase. Excellent stability of suspensions is beneficial for experimental observation and reproducibility, but it is a fundamental necessity for display applications. We therefore discuss a method to achieve long term stability of dispersed pigments and the reasons for its success. Small angle X-ray scattering was used to determine the orientational order parameter of the suspensions as a function of concentration and the dynamic response to an applied electric field. Optical properties were investigated for a wide range of pigment concentrations. Electro-optical phenomena, such as field-induced birefringence and switching, were characterised. In addition, mixtures of pigment suspensions with small amounts of ferrofluids show promise as future magneto-optical materials.

  14. Fast Atomic-Scale Chemical Imaging of Crystalline Materials and Dynamic Phase Transformations.

    Science.gov (United States)

    Lu, Ping; Yuan, Ren Liang; Ihlefeld, Jon F; Spoerke, Erik David; Pan, Wei; Zuo, Jian Min

    2016-04-13

    Atomic-scale phenomena fundamentally influence materials form and function that makes the ability to locally probe and study these processes critical to advancing our understanding and development of materials. Atomic-scale chemical imaging by scanning transmission electron microscopy (STEM) using energy-dispersive X-ray spectroscopy (EDS) is a powerful approach to investigate solid crystal structures. Inefficient X-ray emission and collection, however, require long acquisition times (typically hundreds of seconds), making the technique incompatible with electron-beam sensitive materials and study of dynamic material phenomena. Here we describe an atomic-scale STEM-EDS chemical imaging technique that decreases the acquisition time to as little as one second, a reduction of more than 100 times. We demonstrate this new approach using LaAlO3 single crystal and study dynamic phase transformation in beam-sensitive Li[Li0.2Ni0.2Mn0.6]O2 (LNMO) lithium ion battery cathode material. By capturing a series of time-lapsed chemical maps, we show for the first time clear atomic-scale evidence of preferred Ni-mobility in LNMO transformation, revealing new kinetic mechanisms. These examples highlight the potential of this approach toward temporal, atomic-scale mapping of crystal structure and chemistry for investigating dynamic material phenomena.

  15. Structural phase analysis of a sol-gel nano-crystalline lithium-mica glass-ceramic through different compositions

    Energy Technology Data Exchange (ETDEWEB)

    Tohidifar, M.R., E-mail: tohidifar@znu.ac.ir [Faculty of Engineering, University of Zanjan, P.O. Box 45371-38791, Zanjan (Iran, Islamic Republic of); Alizadeh, P. [Department of Materials Science and Engineering, Tarbiat Modares University, P.O. Box 14115-143, Tehran (Iran, Islamic Republic of)

    2016-08-15

    The current paper attempts to study the influence of chemical composition on the phase development of nano-crystalline lithium-mica glass-ceramic. For this purpose, aqueous sol-gel technique was employed to prepare the glass-ceramics. The synthesis process was accomplished using two chemical compositions of Li{sub (1+x)}Mg{sub 3}AlSi{sub 3(1+x)}O{sub 10+6.5x}F{sub 2} and LiMg{sub 3}AlSi{sub 3(1+x)}O{sub 10+6x}F{sub 2} at different x values along with various mass% of MgF{sub 2} inclusion. It was found that considering an optimized amount of MgF{sub 2}, the specimens synthesized through a new formulation of LiMg{sub 3}AlSi{sub 3(1+x)}O{sub 10+6x}F{sub 2} composition are more appropriate for the sol-gel synthesis method, especially because of intensifying the lithium-mica precipitation and also omission of the secondary phase (i.e. lithium aluminum silicate). The results also indicated that any deviation from the optimized amount of MgF{sub 2} (8%) would cause degradation in the intensity of the precipitated lithium-mica, following the nucleation treatment. - Highlights: • Higher intensity of mica phase obtains through LiMg{sub 3}AlSi{sub 3(1+x)}O{sub 10+6x}F{sub 2} composition. • LiMg{sub 3}AlSi{sub 3(1+x)}O{sub 10+6x}F{sub 2} composition offers mica phase without applying excess MgF{sub 2}. • Applying LiMg{sub 3}AlSi{sub 3(1+x)}O{sub 10+6x}F{sub 2} composition leads to omission of minor phases. • Li{sub (1+x)}Mg{sub 3}AlSi{sub 3(1+x)}O{sub 10+6.5x}F{sub 2} formula cannot be useful in mica nucleation process. • Optimum amount of MgF{sub 2} was obtained as 8% following the nucleation process.

  16. Controlled vapor phase growth of single crystalline, two-dimensional GaSe crystals with high photoresponse.

    Science.gov (United States)

    Li, Xufan; Lin, Ming-Wei; Puretzky, Alexander A; Idrobo, Juan C; Ma, Cheng; Chi, Miaofang; Yoon, Mina; Rouleau, Christopher M; Kravchenko, Ivan I; Geohegan, David B; Xiao, Kai

    2014-06-30

    Compared with their bulk counterparts, atomically thin two-dimensional (2D) crystals exhibit new physical properties, and have the potential to enable next-generation electronic and optoelectronic devices. However, controlled synthesis of large uniform monolayer and multi-layer 2D crystals is still challenging. Here, we report the controlled synthesis of 2D GaSe crystals on SiO2/Si substrates using a vapor phase deposition method. For the first time, uniform, large (up to ~60 μm in lateral size), single-crystalline, triangular monolayer GaSe crystals were obtained and their structure and orientation were characterized from atomic scale to micrometer scale. The size, density, shape, thickness, and uniformity of the 2D GaSe crystals were shown to be controllable by growth duration, growth region, growth temperature, and argon carrier gas flow rate. The theoretical modeling of the electronic structure and Raman spectroscopy demonstrate a direct-to-indirect bandgap transition and progressive confinement-induced bandgap shifts for 2D GaSe crystals. The 2D GaSe crystals show p-type semiconductor characteristics and high photoresponsivity (~1.7 A/W under white light illumination) comparable to exfoliated GaSe nanosheets. These 2D GaSe crystals are potentially useful for next-generation electronic and optoelectronic devices such as photodetectors and field-effect transistors.

  17. Fabrication of tensile-strained single-crystalline GeSn on transparent substrate by nucleation-controlled liquid-phase crystallization

    Science.gov (United States)

    Oka, Hiroshi; Amamoto, Takashi; Koyama, Masahiro; Imai, Yasuhiko; Kimura, Shigeru; Hosoi, Takuji; Shimura, Takayoshi; Watanabe, Heiji

    2017-01-01

    We developed a method of forming single-crystalline germanium-tin (GeSn) alloy on transparent substrates that is based on liquid-phase crystallization. By controlling and designing nucleation during the melting growth process, a highly tensile-strained single-crystalline GeSn layer was grown on a quartz substrate without using any crystal-seeds or catalysts. The peak field-effect hole mobility of 423 cm2/V s was obtained for a top-gate single-crystalline GeSn MOSFET on a quartz substrate with a Sn content of 2.6%, indicating excellent crystal quality and mobility enhancement due to Sn incorporation and tensile strain.

  18. Fabrication of pure and Ag-doped TiO2 nanorods and study of the lattice strain and the activation energy of the crystalline phases

    Science.gov (United States)

    Riazian, Mehran; Rad, Shima Daliri; Azinabadi, Reza Ramezani

    2013-02-01

    TiO2 nanorods can be used as dye-sensitized solar cells and as various sensors and photocatalysts. These nanorods are synthesized by using a thermal corrosion process in a NaOH solution at 200 °C with TiO2 powder as a source material. In the present work, the synthesis of TiO2 nanorods in anatase, rutile and Ti8O15 phases and the synthesis of TiO2 nanorods by using the sol-gel method and alkaline corrosion to incorporate silver and silver-oxide dopants are reported. The morphologies and the crystalline structures of the TiO2 nanorods are characterized using field emission scanning electron microscopy (FE-SEM), atomic force microscopy (AFM), tunneling electron microscopy (TEM) and X-ray diffraction (XRD) techniques. The obtained results show an aggregation structure at high calcining temperatures with spherical particles and with Ti-O-Ti, Ti-O and Ag-O bonds. The effects of the chemical composition and the calcining temperature on the surface topography, lattice strain and phase crystallization are studied. The activation energy (E) of nanoparticle formation in a pure state during thermal treatment is calculated.

  19. Аnodic formation of nanoporous crystalline niobium oxide

    Directory of Open Access Journals (Sweden)

    LEONID SKATKOV

    2014-05-01

    Full Text Available The research results of anodic deposition of crystalline niobium oxide are presented in this work. The factors that have an impact on crystalline phase nucleation and its primary growth are revealed. Dependence of morphology and properties of nanoporous niobium oxide on modes of its formation is shown.

  20. The effects of sulfate content on crystalline phase, microstructure, and chemical durability of zirconolite−barium borosilicate glass-ceramics

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Lang, E-mail: lang.wu@163.com [State Key Laboratory Cultivation Base for Nonmetal Composites and Functional Materials, Southwest University of Science and Technology, Mianyang 621010 (China); Wang, Xin; Li, Huidong; Teng, Yuancheng [State Key Laboratory Cultivation Base for Nonmetal Composites and Functional Materials, Southwest University of Science and Technology, Mianyang 621010 (China); Peng, Long [Sichuan Province Key Laboratory of Information Materials and Devices Application, Chengdu University of Information Technology, Chengdu 610225 (China)

    2016-09-15

    The effects of sulfate content on structure and chemical durability of barium borosilicate glass-ceramics were studied. The results show that the glass-ceramics with 0–1.10 mol% SO{sub 3} possess mainly CaZrTi{sub 2}O{sub 7}-2M phase along with a small amount of CaZrTi{sub 2}O{sub 7}-3T and ZrO{sub 2} phases. The hexagonal CaZrTi{sub 2}O{sub 7}-3T crystals crystallize on the surface of glass-ceramics. For the samples with 1.24–1.55 mol% SO{sub 3}, the main crystalline phases are CaTiSiO{sub 5} and CaZrTi{sub 2}O{sub 7}-2M in the bulk, while a separate sulfate layer containing Na{sub 2}SO{sub 4} and BaSO{sub 4} is observed on the surface. X-ray fluorescence analysis indicates that about 2/3 of the SO{sub 3} originally added has been lost by volatility. The normalized mass loss (NL{sub i}) for Na, B, Ca elements remains almost unchanged (∼10{sup −2} g/m{sup 2}) after 7 days for the samples with 0–1.10 mol% SO{sub 3}. The NL{sub i} for both Na and B increases gradually after 7 days when the SO{sub 3} content is 1.24 mol%. - Highlights: • Strip-shaped CaZrTi{sub 2}O{sub 7}-2M and plate-like CaTiSiO{sub 5} crystals crystallize in the bulk. • CaZrTi{sub 2}O{sub 7}-3T crystals crystallize on the surface for samples with 0–1.10 mol% SO{sub 3}. • A separate sulfate layer crystallizes on the surface when SO{sub 3} exceeds solubility.

  1. On the relationship between crystalline structure and amorphous phase dynamics during isothermal crystallization of bacterial poly(3-hydroxybutyrate-co-3-hydroxyvalerate) copolymers.

    Science.gov (United States)

    Sics, I; Ezquerra, T A; Nogales, A; Baltá-Calleja, F J; Kalniņs, M; Tupureina, V

    2001-01-01

    The isothermal crystallization process of a poly(3-hydroxybutyrate-co-3-hydroxyvalerate) copolymer, P(HB-co-HV) with a HB/HV ratio 78/22 was investigated by simultaneous small-angle X-ray scattering (SAXS), wide-angle X-ray scattering (WAXS), and dielectric spectroscopy (DS). By use of this experimental setup (SWD), we have obtained simultaneous information about changes occurring in both the crystalline and the amorphous phases during crystallization. By using the Havriliak-Negami formalism to analyze the dielectric relaxation data, a strong dependence of the relaxation curve shape with the development of the crystalline phase was found. However, in this particular copolymer, the developing crystalline domains do not affect significantly the average segmental mobility in the amorphous phase. This effect is discussed in the light of the enrichment of amorphous phase by HV comonomer units during primary crystallization, hindering the secondary crystallization processes. Results support the hypothesis that the decrease of the physical-aging-like behavior, observed in P(HB-co-HV) copolymers as the amount of HV increases, can be attributed to the progressive inhibition of secondary crystallization mechanisms.

  2. Efficient and Stable Ternary Organic Solar Cells Based on Two Planar Nonfullerene Acceptors with Tunable Crystallinity and Phase Miscibility.

    Science.gov (United States)

    Wang, Jialin; Peng, Jiajun; Liu, Xiaoyu; Liang, Ziqi

    2017-06-21

    Planar perylene diimides (PDIs), when used as nonfullerene acceptors for organic photovoltaics, are constrained by their large π-aggregation in solid state. To tackle this issue, another planar nonfullerene acceptor 3,9-bis(2-methylene-(3-(1,1-dicyanomethylene)-indanone)-5,5,11,11-tetrakis(4-hexylphenyl)-dithieno[2,3-d:2',3'-d']-s-indaceno[1,2-b:5,6-b']dithiophene (ITIC) with weak crystallinity and near-infrared light absorption is introduced into the PTB7-Th:PDI binary blend to fabricate efficient and stable ternary solar cells. We have finely tuned the PDI/ITIC weight ratio to investigate the influences of individual ITIC and PDI on the optical, electronic, and morphological properties of the PTB7-Th:ITIC:PDI ternary blend. Compared to the binary blend, complementary optical absorption is achieved in all ternary blends. More importantly, it is found that ITIC plays a critical role on largely suppressing the PDI aggregates in the PTB7-Th:PDI blend, while PDI aids to form an interpenetrating network morphology to facilitate charge transport in the PTB7-Th:ITIC blend. Consequently, when the PDI/ITIC ratio is 3:7 (w/w), the PTB7-Th:ITIC:PDI based inverted solar cells exhibit the highest power conversion efficiency of 8.64% due to their favorable out-of-plane π-π stacking, finest phase-separation morphology, and highest charge mobility. Remarkably, the optimal cells that are solution-processed in air show the promising efficiency of 7.09%, suggesting good ambient stability of such ternary solar cells.

  3. A fresh look at dense hydrogen under pressure. IV. Two structural models on the road from paired to monatomic hydrogen, via a possible non-crystalline phase.

    Science.gov (United States)

    Labet, Vanessa; Hoffmann, Roald; Ashcroft, N W

    2012-02-21

    In this paper, we examine the transition from a molecular to monatomic solid in hydrogen over a wide pressure range. This is achieved by setting up two models in which a single parameter δ allows the evolution from a molecular structure to a monatomic one of high coordination. Both models are based on a cubic Bravais lattice with eight atoms in the unit cell; one belongs to space group Pa3, the other to space group R3m. In Pa3 one moves from effective 1-coordination, a molecule, to a simple cubic 6-coordinated structure but through a very special point (the golden mean is involved) of 7-coordination. In R3m, the evolution is from 1 to 4 and then to 3 to 6-coordinate. If one studies the enthalpy as a function of pressure as these two structures evolve (δ increases), one sees the expected stabilization of minima with increased coordination (moving from 1 to 6 to 7 in the Pa3 structure, for instance). Interestingly, at some specific pressures, there are in both structures relatively large regions of phase space where the enthalpy remains roughly the same. Although the structures studied are always higher in enthalpy than the computationally best structures for solid hydrogen - those emerging from the Pickard and Needs or McMahon and Ceperley numerical laboratories - this result is suggestive of the possibility of a microscopically non-crystalline or "soft" phase of hydrogen at elevated pressures, one in which there is a substantial range of roughly equi-enthalpic geometries available to the system. A scaling argument for potential dynamic stabilization of such a phase is presented.

  4. Phase-sensitive multiple reference optical coherence tomography (Conference Presentation)

    Science.gov (United States)

    Dsouza, Roshan I.; Subhash, Hrebesh; Neuhaus, Kai; Hogan, Josh; Wilson, Carol; Leahy, Martin

    2016-03-01

    Multiple reference OCT (MR-OCT) is a recently developed novel time-domain OCT platform based on a miniature reference arm optical delay, which utilizes a single miniature actuator and a partial mirror to generate recirculating optical delay for extended axial-scan range. MR-OCT technology promises to fit into a robust and cost-effective design, compatible with integration into consumer-level devices for addressing wide applications in mobile healthcare and biometry applications. Using conventional intensity based OCT processing techniques, the high-resolution structural imaging capability of MR-OCT has been recently demonstrated for various applications including in vivo human samples. In this study, we demonstrate the feasibility of implementing phase based processing with MR-OCT for various functional applications such as Doppler imaging and sensing of blood vessels, and for tissue vibrography applications. The MR-OCT system operates at 1310nm with a spatial resolution of ~26 µm and an axial scan rate of 600Hz. Initial studies show a displacement-sensitivity of ~20 nm to ~120 nm for the first 1 to 9 orders of reflections, respectively with a mirror as test-sample. The corresponding minimum resolvable velocity for these orders are ~2.3 µm/sec and ~15 µm/sec respectively. Data from a chick chorioallantoic membrane (CAM) model will be shown to demonstrate the feasibility of MR-OCT for imaging in-vivo blood flow.

  5. Achieving balanced intermixed and pure crystalline phases in PDI-based non-fullerene organic solar cells via selective solvent additives.

    Science.gov (United States)

    Li, Mingguang; Liu, Jiangang; Cao, Xinxiu; Zhou, Ke; Zhao, Qiaoqiao; Yu, Xinhong; Xing, Rubo; Han, Yanchun

    2014-12-28

    Herein, balanced intermixed and pure crystalline phases in N,N'-bis(1-ethylpropyl)-perylene-3,4,9,10-tetracarboxylic diimide (EP-PDI)-based non-fullerene organic solar cells (OSCs) were achieved via selective solvent additives (SAs). Poly[[4,8-bis[(2-ethylhexyl)oxy]benzo[1,2-b:4,5-b']dithiophene-2,6-diyl][3-fluoro-2-[(2-ethylhexyl)carbonyl]thieno[3,4-b]thiophenediyl

  6. Liquid-crystalline rigid-core semiconductor oligothiophenes: influence of molecular structure on phase behaviour and thin-film properties.

    Science.gov (United States)

    Melucci, Manuela; Favaretto, Laura; Bettini, Christian; Gazzano, Massimo; Camaioni, Nadia; Maccagnani, Piera; Ostoja, Paolo; Monari, Magda; Barbarella, Giovanna

    2007-01-01

    The design, synthesis and properties of liquid-crystalline semiconducting oligothiophenes containing dithienothiophene (DTT), benzothiadiazole (BTZ) and carbazole (CBZ) rigid cores are described. The effect of molecular structure (shape, size and substitution) on their thermal behaviour and electrical properties has been investigated. Polarised optical microscopy (POM) and differential scanning calorimetry (DSC) analyses have revealed highly ordered smectic mesophases for most of the newly synthesised compounds. X-ray diffraction (XRD) studies performed at various temperatures have shown that the smectic order is retained in the crystalline state upon cooling across the transition temperature, affording cast films with a more favourable morphology for FET applications.

  7. The evolution of strength and crystalline phases for alkali-activated ground blast furnace slag and fly ash-based geopolymers

    KAUST Repository

    Oh, Jae Eun

    2010-02-01

    The increase in strength and evolution of crystalline phases in inorganic polymer cement, made by the alkali activation of slag, Class C and Class F fly ashes, was followed using compressive strength test and synchrotron X-ray diffraction. In order to increase the crystallinity of the product the reactions were carried out at 80 °C. We found that hydrotalcite formed in both the alkali-activated slag cements and the fly ash-based geopolymers. Hydroxycancrinite, one member of the ABC-6 family of zeolites, was found only in the fly ash geopolymers. Assuming that the predominantly amorphous geopolymer formed under ambient conditions relates to the crystalline phases found when the mixture is cured at high temperature, we propose that the structure of this zeolitic precursor formed in Na-based high alkaline environment can be regarded as a disordered form of the basic building unit of the ABC-6 group of zeolites which includes poly-types such as hydroxycancrinite, hydroxysodalite and chabazite-Na. © 2009 Elsevier Ltd.

  8. The potential for the fabrication of wires embedded in the crystalline silicon substrate using the solid phase segregation of gold in crystallising amorphous volumes

    Energy Technology Data Exchange (ETDEWEB)

    Liu, A.C.Y.; McCallum, J.C

    2004-05-15

    The refinement of gold in crystallising amorphous silicon volumes was tested as a means of creating a conducting element embedded in the crystalline matrix. Amorphous silicon volumes were created by self-ion-implantation through a mask. Five hundred kiloelectronvolt Au{sup +} was then implanted into the volumes. The amorphous volumes were crystallised on a hot stage in air, and the crystallisation was characterised using cross sectional transmission electron microscopy. It was found that the amorphous silicon volumes crystallised via solid phase epitaxy at all the lateral and vertical interfaces. The interplay of the effects of the gold and also the hydrogen that infilitrated from the surface oxide resulted in a plug of amorphous material at the surface. Further annealing at this temperature demonstrated that the gold, once it had reached a certain critical concentration nucleated poly-crystalline growth instead of solid phase epitaxy. Time resolved reflectivity and Rutherford backscattering and channeling measurements were performed on large area samples that had been subject to the same implantation regime to investigate this system further. It was discovered that the crystallisation dynamics and zone refinement of the gold were complicated functions of both gold concentration and temperature. These findings do not encourage the use of this method to obtain conducting elements embedded in the crystalline silicon substrate.

  9. The structure and functional properties of Ti2 NiCu alloy rapidly quenched ribbons with different fractions of crystalline phase

    Science.gov (United States)

    Belyaev, S. P.; Istomin-Kastrovskiy, V. V.; Koledov, V. V.; Kuchin, D. S.; Resnina, N. N.; Shavrov, V. G.; Shelyakov, A. V.; Ivanov, S. E.

    The samples of Ti2NiCu rapidly quenched alloy with different fractions of crystalline phase have been prepared by electric pulse technique from as spun amorphous ribbons. The structure and thermomechanical properties of these samples have been studied. The mixture of amorphous and nanocrystalline structures with mean grains size less than 10 nm has been observed by HRTEM. The remarkable thermomechanical properties of the samples with the ratio of crystalline fraction in the range of r = 0.4 - 0.6 (determined by electrical resistivity measurements) have been found. The two-way shape memory effect with the reverse deformation Δε = 0.31 % has been induced in the sample with r = 0.46 by single deformation at cooling below the temperature of martensite transformation. The prototype of microtweezers based on amorphous-nanocrystalline Ti2NiCu melt-spun ribbon alloy with two-way shape memory effect has been designed and tested.

  10. New tellurite glasses and crystalline phases in the Bi{sub 2}O{sub 3}-CaO-TeO{sub 2} system: Synthesis and characterization

    Energy Technology Data Exchange (ETDEWEB)

    Chagraoui, Abdeslam; Tairi, Abdelmjid; Ajebli, Kaltoum; Bensaid, Hanane; Moussaoui, Abdenajib [Laboratoire de Chimie Analytique et Physico-chimie des Materiaux, Departement de Chimie, Faculte des Sciences Ben M' sik, Universite HassanII-Mohammedia Casablanca (Morocco)

    2010-04-09

    Tellurite glasses containing calcium and bismuth oxides have been prepared at 800 {sup o}C and investigated by X-ray diffraction, DSC, IR and Raman spectroscopy. The crystalline phases of glasses in TeO{sub 2}-CaO revealed {gamma}TeO{sub 2} phase which transforms into the stable {alpha}TeO{sub 2} phase up to 500 {sup o}C. IR and Raman studies show the transition of TeO{sub 4}, TeO{sub 3+1} and TeO{sub 3} units with increasing CaO content. The value of refractive index and density of glasses have been measured. The investigation in the system using XRD reveals new phases.

  11. Hierarchical architectures TiO2: pollen-inducted synthesis, remarkable crystalline-phase stability, tunable size, and reused photo-catalysis.

    Science.gov (United States)

    Dou, Lingling; Gao, Lishuang; Yang, Xiaohui; Song, Xiuqin

    2012-02-15

    TiO(2) with hierarchical architectures, tunable crystalline phase and thermal stability is successfully fabricated on a large scale through a facile hydrolysis process of TiCl(4) combining with inducing of pollen. The structure of the as-prepared TiO(2) is characterized by X-ray diffraction, Raman spectroscopy, infrared spectra, and scanning electron microscopy. The experimental results indicate that different phases (anatase, rutile or mixed crystallite) of TiO(2) can be synthesized by controlling the experimental conditions. The pure phase of rutile or anatase can be obtained at 100°C, while the pure phase of anatase can be retained after being annealed at 900°C. The hierarchical structures TiO(2) are constitute through self-assembly of nanoparticles or nanorods TiO(2), which exhibit high and reused photo-catalytic properties for degradation of methylene blue.

  12. Crystalline damage development during martensitic transformations

    NARCIS (Netherlands)

    Suiker, A.S.J.; Turteltaub, S.R.

    2006-01-01

    A recently developed thermo-mechanical model [1] is presented that can be used to simulate the interactions between martensitic phase transformations and crystalline damage growth at the austenitic grain level. Subgrain information is included in the model via the crystallographic theory of martensi

  13. Crystalline and Crystalline International Disposal Activities

    Energy Technology Data Exchange (ETDEWEB)

    Viswanathan, Hari S. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Chu, Shaoping [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Dittrich, Timothy M. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Hyman, Jeffrey De' Haven [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Karra, Satish [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Makedonska, Nataliia [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Reimus, Paul William [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2017-03-06

    This report presents the results of work conducted between September 2015 and July 2016 at Los Alamos National Laboratory in the crystalline disposal and crystalline international disposal work packages of the Used Fuel Disposition Campaign (UFDC) for DOE-NE’s Fuel Cycle Research and Development program. Los Alamos focused on two main activities during this period: Discrete fracture network (DFN) modeling to describe flow and radionuclide transport in complex fracture networks that are typical of crystalline rock environments, and a comprehensive interpretation of three different colloid-facilitated radionuclide transport experiments conducted in a fractured granodiorite at the Grimsel Test Site in Switzerland between 2002 and 2013. Chapter 1 presents the results of the DFN work and is divided into three main sections: (1) we show results of our recent study on the correlation between fracture size and fracture transmissivity (2) we present an analysis and visualization prototype using the concept of a flow topology graph for characterization of discrete fracture networks, and (3) we describe the Crystalline International work in support of the Swedish Task Force. Chapter 2 presents interpretation of the colloidfacilitated radionuclide transport experiments in the crystalline rock at the Grimsel Test Site.

  14. Enhanced Crystalline Phase Purity of CH3NH3PbI3-xClx Film for High-Efficiency Hysteresis-Free Perovskite Solar Cells.

    Science.gov (United States)

    Yang, Yingguo; Feng, Shanglei; Xu, Weidong; Li, Meng; Li, Li; Zhang, Xingmin; Ji, Gengwu; Zhang, Xiaonan; Wang, Zhaokui; Xiong, Yimin; Cao, Liang; Sun, Baoquan; Gao, Xingyu

    2017-07-12

    Despite rapid successful developments toward promising perovskite solar cells (PSCs) efficiency, they often suffer significant hysteresis effects. Using synchrotron-based grazing incidence X-ray diffraction (GIXRD) with different probing depths by varying the incident angle, we found that the perovskite films consist of dual phases with a parent phase dominant in the interior and a child phase with a smaller (110) interplanar space (d(110)) after rapid thermal annealing (RTA), which is a widely used post treatment to improve the crystallization of solution-processed perovskite films for high-performance planar PSCs. In particular, the child phase composition gradually increases with decreasing depth till it becomes the majority on the surface, which might be one of the key factors related to hysteresis in fabricated PSCs. We further improve the crystalline phase purity of the solution-processed CH3NH3PbI3-xClx perovskite film (referred as g-perovskite) by using a facile gradient thermal annealing (GTA), which shows a uniformly distributed phase structure in pinhole-free morphology with less undercoordinated Pb and I ions determined by synchrotron-based GIXRD, grazing incidence small-angle X-ray scattering, scanning electron microscopy, and X-ray photoelectron spectroscopy. Regardless of device structures (conventional and inverted types), the planar heterojunction PSCs employing CH3NH3PbI3-xClx g-perovskite films exhibit negligible hysteresis with a champion power conversion efficiency of 17.04% for TiO2-based conventional planar PSCs and 14.83% for poly(3,4-ethylenedioxythiophene:poly(styrenesulfonate) (PEDOT:PSS)-based inverted planar PSCs. Our results indicate that the crystalline phase purity in CH3NH3PbI3-xClx perovskite film, especially in the surface region, plays a crucial role in determining the hysteresis effect and device performance.

  15. Quasicritical behavior of the low-frequency dielectric permittivity in the isotropic phase of liquid crystalline materials.

    Science.gov (United States)

    Drozd-Rzoska, A; Rzoska, S J; Zioło, J; Jadzyn, J

    2001-05-01

    Results presented give evidence of the existence of quasicritical, fluidlike behavior in the isotropic phase of 4-cyano-4-pentyl-biphenyl (5CB) for frequencies ranging from the static to the ionic-dominated [low-frequency (LF)] region. Despite the boost of dielectric permittivity on lowering the frequency below 1 kHz, values of the isotropic-nematic transition discontinuity (approximately 1.1 K) and the critical exponent alpha (approximately 0.5) remain constant. It is shown that the contribution from residual ionic impurities is a linear function of temperature in the critical, prenematic fluctuation-dominated region. The validity of the fluidlike and critical behavior for LF dielectric permittivity confirmed results of a derivative analysis of the experimental data: d(epsilon)/dT proportional to (T-T*)(-alpha), originally proposed for critical mixtures. Results of a preliminary test in the isotropic phase of 4-decyl-4'-isothiocyanatobiphenyl (10BT), on approaching the smectic-E phase, may indicate a general validity of results obtained.

  16. Detection of a minor amorphous phase in crystalline etoricoxib by dynamic mechanical analysis: comparison with Raman spectroscopy and modulated differential scanning calorimetry.

    Science.gov (United States)

    Clas, Sophie-Dorothee; Lalonde, Karine; Khougaz, Karine; Dalton, Chad R; Bilbeisi, Rana

    2012-02-01

    Detection and quantification of the amorphous phase of etoricoxib bulk drug substances, a selective cycloogenase-2 inhibitor used for the treatment of osteoarthritis, rheumatoid arthritis, and dental pain, was carried out using modulated differential scanning calorimetry (MDSC), dynamic mechanical analysis (DMA), and Raman spectroscopy. Detection of amorphous content in pharmaceutical powders by DMA is a special application of dynamic mechanical spectroscopy. DMA was found to be a sensitive technique, able to detect the presence of an amorphous phase in a crystalline phase at concentrations as low as 0.5%. The limit of detection (LOD) determined for DMA was 2.5%. In comparison, Raman spectroscopy and MDSC had LOD values of 2% and 5% amorphous, respectively.

  17. Ion-irradiation-assisted phase selection in single crystalline Fe7Pd3 ferromagnetic shape memory alloy thin films: from fcc to bcc along the Nishiyama-Wassermann path.

    Science.gov (United States)

    Arabi-Hashemi, A; Mayr, S G

    2012-11-09

    When processing Fe-Pd ferromagnetic shape memory thin films, selection of the desired phases and their transformation temperatures constitutes one of the largest challenges from an application point of view. In the present contribution we demonstrate that irradiation with 1.8 MeV Kr(+) ions is the method of choice to achieve this goal: Single crystalline Fe(7)Pd(3) thin films that are grown with molecular beam epitaxy on MgO (001) substrates and subsequently irradiated with ions reveal a phase transformation along the whole phase transformation path ranging from fcc austenite to bcc martensite. While for 10(14) ions/cm(2) a fcc-fct phase transformation is observed, increasing the fluence to 5 × 10(14) ions/cm(2) and 5 × 10(15) ions/cm(2) leads to a phase transformation to the bcc phase. Pole figure measurements reveal an orientation relationship for the fcc-bcc phase transformation according to Nishiyama and Wassermann.

  18. Cubic-to-monoclinic phase transition during the epitaxial growth of crystalline Gd2O3 films on Ge(001) substrates

    Science.gov (United States)

    Molle, Alessandro; Wiemer, Claudia; Bhuiyan, Md. Nurul Kabir; Tallarida, Grazia; Fanciulli, Marco; Pavia, Giuseppe

    2007-05-01

    Thin crystalline films of Gd2O3 are grown on an atomically flat Ge(001) surface by molecular beam epitaxy and are characterized in situ by reflection high energy electron diffraction and x-ray photoelectron spectroscopy, and ex situ by x-ray diffraction (XRD), atomic force microscopy (AFM), and transmission electron microscopy. The first stage of the growth corresponds to a cubic (110) structure, with two equiprobable, 90° rotated, in-plane domains. Increasing the thickness of the films, a phase transition from cubic (110) to monoclinic (100) oriented crystallites is observed which keeps the in-plane domain rotation, as evidenced by XRD and AFM.

  19. Nanocrystalline calcitic lens arrays fabricated by self-assembly followed by amorphous-to-crystalline phase transformation.

    Science.gov (United States)

    Schmidt, Ingo; Lee, Kyubock; Zolotoyabko, Emil; Werner, Peter; Shim, Tae Soup; Oh, You-Kwan; Fratzl, Peter; Wagermaier, Wolfgang

    2014-09-23

    Natural calcium carbonate-based nanocomposites often have superior physical properties and provide a comprehensive source for bioinspired synthetic materials. Here we present thermodynamically stable, transparent CaCO3 microlens arrays (MLA) produced by transforming an amorphous CaCO3 phase into nanocrystalline calcite. We analyze the structure and properties of crystallized MLA by X-ray scattering, transmitted and polarized light microscopy, and electron microscopy and find that MLA are crystallized in spherulite-like patterns without changing the shape of the microlens. The key finding is that nanocrystallinity of the calcite formed diminishes structural anisotropy on the wavelength scale and results in greatly reduced birefringent effects. The remnant preferred orientation of the optical axes of calcite crystals in the plane of the microlens arrays leads to some directionality of optical properties, which may be beneficial for technical applications.

  20. Stimulus presentation at specific neuronal oscillatory phases experimentally controlled with tACS: implementation and applications

    Directory of Open Access Journals (Sweden)

    Sanne Ten Oever

    2016-10-01

    Full Text Available In recent years it has become increasingly clear that both the power and phase of oscillatory brain activity can influence the processing and perception of sensory stimuli. Transcranial alternating current stimulation (tACS can phase-align and amplify endogenous brain oscillations and has often been used to control and thereby study oscillatory power. Causal investigation of oscillatory phase is more difficult, as it requires precise real-time temporal control over both oscillatory phase and sensory stimulation. Here, we present hardware and software solutions allowing temporally precise presentation of sensory stimuli during tACS at desired tACS phases, enabling causal investigations of oscillatory phase. We developed freely available and easy to use software, which can be coupled with standard commercially available hardware to allow flexible and multi-modal stimulus presentation (visual, auditory, magnetic stimuli, etc. at pre-determined tACS-phases, opening up a range of new research opportunities. We validate that stimulus presentation at tACS phase in our setup is accurate to the sub-millisecond level with high inter-trial consistency. Conventional methods investigating the role of oscillatory phase such as magneto-/electroencephalography can only provide correlational evidence. Using brain stimulation with the described methodology enables investigations of the causal role of oscillatory phase. This setup turns oscillatory phase into an independent variable, allowing innovative and systematic studies of its functional impact on perception and cognition.

  1. Thermal and structural studies of imidazolium-based ionic liquids with and without liquid-crystalline phases: the origin of nanostructure.

    Science.gov (United States)

    Nemoto, Fumiya; Kofu, Maiko; Yamamuro, Osamu

    2015-04-16

    To clarify the origin of the nanostructure of ionic liquids (ILs), we have investigated two series of ILs 1-alkyl-3-methylimidazolium hexafluorophosphate (CnmimPF6, n = 4-16, n is an alkyl-carbon number) and 1-alkyl-3-methylimidazolium chloride (CnmimCl, n = 4-14) using differential scanning calorimetry and X-ray diffraction techniques. The PF6 samples with n > 13 and the Cl samples with n > 10 exhibited the liquid-crystalline (LC) to liquid (L) phase transitions, as reported before. We found that both samples with smaller n also exhibited the LC to L transitions under supercooled states as far as the ionic motions were not frozen-in at the glass transition temperatures Tg. The Tg of the LC phase was close to that of the L phase, indicating that the characteristic length of the glass transition is shorter than that of the nanostructure. A low-Q peak due to the nanostructure in the L phase and a diffraction peak due to the layer structure in the LC phase appeared at almost the same Q positions in both samples. On the basis of the above results and some thermodynamic analysis, we argue that the nanostructures of ILs are essentially the same as the layer structures in the LC phases.

  2. Primordial hexagonal phase formation during the bcc dezincification of the {beta} Cu-Zn single crystalline surface: Matrix instabilization and transformation path

    Energy Technology Data Exchange (ETDEWEB)

    Baruj, A. [Centro Atomico Bariloche and Instituto Balseiro, Comision Nacional de Energia Atomica (CNEA), (8400) San Carlos de Bariloche, Rio Negro (Argentina); CONICET (Argentina)], E-mail: baruj@cab.cnea.gov.ar; Granada, M.; Arneodo Larochette, P. [Centro Atomico Bariloche and Instituto Balseiro, Comision Nacional de Energia Atomica (CNEA), (8400) San Carlos de Bariloche, Rio Negro (Argentina); CONICET (Argentina); Sommadossi, S. [F. Ingenieria, U. N. Comahue, Buenos Aires 1400, (8300) Neuquen (Argentina); CONICET (Argentina); Troiani, H.E. [Centro Atomico Bariloche and Instituto Balseiro, Comision Nacional de Energia Atomica (CNEA), (8400) San Carlos de Bariloche, Rio Negro (Argentina); CONICET (Argentina)

    2009-07-29

    Subjecting Cu-Zn samples to annealing under dynamical vacuum produces the evaporation of Zn, a process known as dezincification. Here, we study the phase transitions related to dezincification of Cu-48 at.% Zn (bcc, Beta phase) single crystalline surfaces with residual stresses due to mechanical polishing. In order to identify different steps in the dezincification process of these deformed samples we apply a combination of in situ optical microscopy and transmission electron microscopy (TEM) observations. The former allows us to control and stop the dezincification process at a specific stage of evolution while the latter allows relating surface features with structure and composition changes. Due to dezincification, the formation of an on average 4H hexagonal phase and the fcc equilibrium phase take place. TEM observations show that the bcc to 4H phase transformation occurs by a mechanism of nucleation and growth. In particular, we show evidence of the mechanism of embryo formation for the first time. During the subsequent growth process, the coalescence of transformed zones defines regions in the micron range which after subsequent prolonged dezincification transform to the final fcc equilibrium structure. These experiments provide an insight on the reason for the formation of the non-equilibrium hexagonal phase during the dezincification of electropolished (non-deformed) samples. The new experimental results evidence the heterogeneous character of the dezincification.

  3. Synchrotron X-Ray Study of Novel Crystalline-B Phases in Heptyloxybenzylidene-Heptylaniline (70.7)

    DEFF Research Database (Denmark)

    Collet, J.; Sorensen, L. B.; Pershan, P. S.;

    1982-01-01

    This paper reports an x-ray diffraction study of structures and restacking transitions within the B phases of heptyloxybenzylidene-heptylaniline. The system evolves from a hexagonal close-packed structure, through intermediate orthorhombic and monoclinic phases, to a simple hexagonal structure. T....... The monoclinic phase has a temperature-dependent shear which transforms the system from orthorhombic to hexagonal. The latter three phases exhibit a single-q⃗ sinusoidal modulation of the molecular layers....

  4. Liquid crystalline dihydroazulene photoswitches

    DEFF Research Database (Denmark)

    Petersen, Anne Ugleholdt; Jevric, Martyn; Mandle, Richard J.

    2015-01-01

    A large selection of photochromic dihydroazulene (DHA) molecules incorporating various substituents at position 2 of the DHA core was prepared and investigated for their ability to form liquid crystalline phases. Incorporation of an octyloxy-substituted biphenyl substituent resulted in nematic...

  5. Formation of liquid-crystalline structures in the bile salt-chitosan system and triggered release from lamellar phase bile salt-chitosan capsules.

    Science.gov (United States)

    Tangso, Kristian J; Lindberg, Seth; Hartley, Patrick G; Knott, Robert; Spicer, Patrick; Boyd, Ben J

    2014-08-13

    Nanostructured capsules comprised of the anionic bile salt, sodium taurodeoxycholate (STDC), and the biocompatible cationic polymer, chitosan, were prepared to assess their potential as novel tailored release nanomaterials. For comparison, a previously studied system, sodium dodecyl sulfate (SDS), and polydiallyldimethylammonium chloride (polyDADMAC) was also investigated. Crossed-polarizing light microscopy (CPLM) and small-angle X-ray scattering (SAXS) identified the presence of lamellar and hexagonal phase at the surfactant-polymer interface of the respective systems. The hydrophobic and electrostatic interactions between the oppositely charged components were studied by varying temperature and salt concentration, respectively, and were found to influence the liquid-crystalline nanostructure formed. The hexagonal phase persisted at high temperatures, however the lamellar phase structure was lost above ca. 45 °C. Both mesophases were found to dissociate upon addition of 4% NaCl solution. The rate of release of the model hydrophilic drug, Rhodamine B (RhB), from the lamellar phase significantly increased in response to changes in the solution conditions studied, suggesting that modulating the drug release from these bile salt-chitosan capsules is readily achieved. In contrast, release from the hexagonal phase capsules had no appreciable response to the stimuli applied. These findings provide a platform for these oppositely charged surfactant and polymer systems to function as stimuli-responsive or sustained-release drug delivery systems.

  6. Synthesis, characterization and structural control of nano crystalline molybdenum oxide MoO{sub 3} single phase by low cost technique

    Energy Technology Data Exchange (ETDEWEB)

    Afify, H.H.; Hassan, S.A. [Solid State Department, Physics Division, National Research Centre, 33 El Bohouthst. (fromer El Tahrirst.), Dokki, P.O. 12622, Giza (Egypt); Abouelsayed, A., E-mail: as.abouelsayed@gmail.com [Spectroscopy Department, Physics Division, National Research Centre, 33 El Bohouthst. (fromer El Tahrirst.), Dokki, P.O. 12622, Giza (Egypt); Demian, S.E. [Solid State Department, Physics Division, National Research Centre, 33 El Bohouthst. (fromer El Tahrirst.), Dokki, P.O. 12622, Giza (Egypt); Zayed, H.A. [Physics Department, Faculty of Girls for Art, Sciences and Education, Ain Shams University (Egypt)

    2016-06-15

    Thermodynamically stable α- MoO{sub 3} thin film is prepared without any other phases of the molybdenum oxides. Simple and low coast spray pyrolysis technique is used. Growth conditions are optimized to produce pure α- MoO{sub 3} with controlled crystallite size and surface morphology. Small angle (GAXRD) diffractometer is used to elucidate the structure. Profile shape function (PSF) model is made for the experimental data. WinFit software is going first to fit (PSF) to use the refined profile parameters for determination of crystallite size and internal residual strain. The (GAXRD) patterns prove the existence of α- MoO{sub 3} only with layered structure, indicated by the appearance of only (0k0). The calculated crystallite sizes and the strain are found to range from 10 to 28 nm and 0.28%–0.05% respectively. Ultraviolet and Visible transmission measurements were performed over a wavelength range 190–2500 nm on the MoO{sub 3} thin films synthesized by spray pyrolysis technique at different substrate temperature. The two sub-bands corresponds to the electronic transition between the molybdenum oxidation states Mo{sup 4+}, Mo{sup 5+} and Mo{sup 6+} are observed. Quantitative information on the temperature-induced blue shift of the sub-bands was obtained by fitting the spectra with Lorentz functions. The transition from Mo{sup 5+} to Mo{sup 6+} oxidation states show a blue shift up to Tc = 325 °C. Above Tc, the transition Mo{sup 5+} to Mo{sup 6+} increases more drastically, resulting in an anomaly in the temperature-induced shift at Tc. The anomaly can be attributed to the amorphous-to-crystalline phase transition at 325 °C. In addition, both refractive index and extinction coefficient are calculated as a function of substrate temperature. - Highlights: • Single phase α-MoO{sub 3} nano crystalline MoO{sub 3} thin films have been synthesized. • Amorphous-to-crystalline phase transition occurs at 325 °C for MoO{sub 3} thin films. • A clear

  7. Single-exposure quantitative phase imaging in color-coded LED microscopy (Conference Presentation)

    Science.gov (United States)

    Lee, Wonchan; Jung, Daeseong; Joo, Chulmin

    2017-02-01

    Quantitative phase-gradient or phase imaging in LED microscopy has been recently demonstrated. The methods enable measurement of phase distribution of transparent specimens in a simple and cost-effective manner, but require multiple image acquisitions with different source or pupil configurations to improve phase accuracy. Here, we demonstrate a strategy for single-shot quantitative phase imaging in color-coded LED microscopy. We employ a circular LED illumination pattern that is trisected into subregions with equal area, assigned to red, green and blue colors, respectively. Additional color filter is also employed to mitigate the color leakage of light into different color channels of the image sensor. Image acquisition with a color image sensor and subsequent computation based on the weak object transfer function allow for quantitative amplitude and phase measurements of a specimen. We describe computational model and single-shot quantitative phase imaging capability of our method by presenting phase images of calibrated phase sample and dynamics of cells. Phase measurement accuracy is validated with pre-characterized phase plate, and single-shot phase imaging capability is demonstrated with time-lapse imaging of cells acquired at 30 Hz.

  8. Thermodynamics of Crystalline States

    CERN Document Server

    Fujimoto, Minoru

    2010-01-01

    Thermodynamics is a well-established discipline of physics for properties of matter in thermal equilibrium surroundings. Applying to crystals, however, the laws encounter undefined properties of crystal lattices, which therefore need to be determined for a clear and well-defined description of crystalline states. Thermodynamics of Crystalline States explores the roles played by order variables and dynamic lattices in crystals in a wholly new way. This book is divided into three parts. The book begins by clarifying basic concepts for stable crystals. Next, binary phase transitions are discussed to study collective motion of order variables, as described mostly as classical phenomena. In the third part, the multi-electron system is discussed theoretically, as a quantum-mechanical example, for the superconducting state in metallic crystals. Throughout the book, the role played by the lattice is emphasized and examined in-depth. Thermodynamics of Crystalline States is an introductory treatise and textbook on meso...

  9. NASA Physical Sciences - Presentation to Annual Two Phase Heat Transfer International Topical Team Meeting

    Science.gov (United States)

    Chiaramonte, Francis; Motil, Brian; McQuillen, John

    2014-01-01

    The Two-phase Heat Transfer International Topical Team consists of researchers and members from various space agencies including ESA, JAXA, CSA, and RSA. This presentation included descriptions various fluid experiments either being conducted by or planned by NASA for the International Space Station in the areas of two-phase flow, flow boiling, capillary flow, and crygenic fluid storage.

  10. Field-Induced Crystalline-to-Amorphous Phase Transformation on the Si Nano-Apex and the Achieving of Highly Reliable Si Nano-Cathodes

    Science.gov (United States)

    Huang, Yifeng; Deng, Zexiang; Wang, Weiliang; Liang, Chaolun; She, Juncong; Deng, Shaozhi; Xu, Ningsheng

    2015-05-01

    Nano-scale vacuum channel transistors possess merits of higher cutoff frequency and greater gain power as compared with the conventional solid-state transistors. The improvement in cathode reliability is one of the major challenges to obtain high performance vacuum channel transistors. We report the experimental findings and the physical insight into the field induced crystalline-to-amorphous phase transformation on the surface of the Si nano-cathode. The crystalline Si tip apex deformed to amorphous structure at a low macroscopic field (0.6~1.65 V/nm) with an ultra-low emission current (1~10 pA). First-principle calculation suggests that the strong electrostatic force exerting on the electrons in the surface lattices would take the account for the field-induced atomic migration that result in an amorphization. The arsenic-dopant in the Si surface lattice would increase the inner stress as well as the electron density, leading to a lower amorphization field. Highly reliable Si nano-cathodes were obtained by employing diamond like carbon coating to enhance the electron emission and thus decrease the surface charge accumulation. The findings are crucial for developing highly reliable Si-based nano-scale vacuum channel transistors and have the significance for future Si nano-electronic devices with narrow separation.

  11. Pressure-induced lattice collapse in the tetragonal phase of single-crystalline Fe(1.05)Te

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Chao [Beijing National Laboratory for Condensed Matter Physics/Chinese Academy of Scie; Yi, Wei [Beijing National Laboratory for Condensed Matter Physics/Chinese Academy of Scie; Sun, Liling [Beijing National Laboratory for Condensed Matter Physics/Chinese Academy of Scie; Chen, Xiao-Jia [Carnegie Institution of Washington; Hemley, Russell [Carnegie Institution of Washington; Mao, Ho-Kwang [Carnegie Institution of Washington; Lu, Wei [Beijing National Laboratory for Condensed Matter Physics/Chinese Academy of Scie; Dong, Xiaoli [Beijing National Laboratory for Condensed Matter Physics/Chinese Academy of Scie; Ligang, Bai [Institute of High Energy Physics, Chinese Academy of Sciences, China; Jing, Liu [Institute of High Energy Physics, Chinese Academy of Sciences, China; Moreira Dos Santos, Antonio F [ORNL; Molaison, Jamie J [ORNL; Tulk, Christopher A [ORNL; Chen, Genfu [Beijing National Laboratory for Condensed Matter Physics/Chinese Academy of Scie; Wang, Nanlin [The Institute of Physics, Chinese Academy of Sciences; Zhao, Zhongxian [Beijing National Laboratory for Condensed Matter Physics, Institute of Physics

    2009-01-01

    Pressure-induced lattice collapse was discovered in tetragonal T phase of single crystal Fe{sub 1.05}Te at room temperature through x-ray and neutron-diffraction measurements. A remarkable compression along the c axis {approx}5% was observed upon increasing pressure from the ambient condition to 4 GPa. Indexed results demonstrate that the crystallographic structure remains unchanged after the collapse, revealing that the collapse does not break symmetry of crystal structure. The Fe-spin state change was proposed to account for the lattice collapse. The equations of state for the T phase and pressure-induced collapsed T phase were determined from the diffraction measurements.

  12. Magnetic and magnetothermal properties and the magnetic phase diagram of high purity single crystalline terbium along the easy magnetization direction.

    Science.gov (United States)

    Zverev, V I; Tishin, A M; Chernyshov, A S; Mudryk, Ya; Gschneidner, K A; Pecharsky, V K

    2014-02-12

    The magnetic and magnetothermal properties of a high purity terbium single crystal have been re-investigated from 1.5 to 350 K in magnetic fields ranging from 0 to 75 kOe using magnetization, ac magnetic susceptibility and heat capacity measurements. The magnetic phase diagram has been refined by establishing a region of the fan-like phase broader than reported in the past, by locating a tricritical point at 226 K, and by a more accurate definition of the critical fields and temperatures associated with the magnetic phases observed in Tb.

  13. Light-Weight, Low-Cost, Single-Phase, Liquid-Cooled Cold Plate (Presentation)

    Energy Technology Data Exchange (ETDEWEB)

    Narumanchi, S.

    2013-07-01

    This presentation, 'Light-Weight, Low-Cost, Single-Phase Liquid-Cooled Cold Plate,' directly addresses program goals of increased power density, specific power, and lower cost of power electronics components through improved thermal management.

  14. Controlling light emission performance with hybrid phase-change plasmonic crystals (Conference Presentation)

    Science.gov (United States)

    Kao, Tsung Sheng

    2016-09-01

    In this paper, we demonstrate a novel approach in which the lattice resonances are tunable in a hybrid plasmonic crystal incorporating the phase-change material Ge2Sb2Te5 (GST) as a 20-nm-thick layer sandwiched between a gold nanodisk array and a quartz substrate. Non-volatile tuning of lattice resonances over a range Δλ of about 500 nm is achieved experimentally via intermediate phase states of the GST layer. This work demonstrates the efficacy and ease of resonance tuning via GST in the near infrared, suggesting the possibility to design broadband non-volatile tunable devices for optical modulation, switching, sensing and nonlinear optical devices. Also, with different nanostructure designs, the constituent plasmonic resonators can be selectively excited, generating isolated near-field energy hot-spots with selective excitation under a monochromatic plane wave illumination. Unlike other proposed techniques, our method for energy hot-spot positioning is based on a quantitative control of the crystalline proportions of the phase-change thin film rather than the complicated manipulations of an incident light beam. This makes such a near-field energy controllable template much easier to be implemented. This near-field energy controllable system consists of gold nano-antennas with deep subwavelength spacing and an underlying GST thin layer. Such a hybrid plasmonic system is easy to be implemented and the nanoscale energy hot-spot can be positioned in a large field of view by extending the system with different plasmon resonators, suggesting a further step toward applications such as nano-imaging, bio-assay addressing and nano-circuitry.

  15. Non-von Neumann computing using plasmon particles interacting with phase change materials (Conference Presentation)

    Science.gov (United States)

    Saiki, Toshiharu

    2016-09-01

    Control of localized surface plasmon resonance (LSPR) excited on metal nanostructures has drawn attention for applications in dynamic switching of plasmonic devices. As a reversible active media for LSPR control, chalcogenide phase-change materials (PCMs) such as GeSbTe (GST) are promising for high-contrast robust plasmonic switching. Owing to the plasticity and the threshold behavior during both amorphization and crystallization of PCMs, PCM-based LSPR switching elements possess a dual functionality of memory and processing. Integration of LSPR switching elements so that they interact with each other will allow us to build non-von-Neumann computing devices. As a specific demonstration, we discuss the implementation of a cellular automata (CA) algorithm into interacting LSPR switching elements. In the model we propose, PCM cells, which can be in one of two states (amorphous and crystalline), interact with each other by being linked by a AuNR, whose LSPR peak wavelength is determined by the phase of PCM cells on the both sides. The CA program proceeds by irradiating with a light pulse train. The local rule set is defined by the temperature rise in the PCM cells induced by the LSPR of the AuNR, which is subject to the intensity and wavelength of the irradiating pulse. We also investigate the possibility of solving a problem analogous to the spin-glass problem by using a coupled dipole system, in which the individual coupling strengths can be modified to optimize the system so that the exact solution can be easily reached. For this algorithm, we propose an implementation based on an idea that coupled plasmon particles can create long-range spatial correlations, and the interaction of this with a phase-change material allows the coupling strength to be modified.

  16. Hexagonal Close-Packed ^4{He} as Crystalline Multilayered Polytype: An Alternative for `Supersolid' or `Glassy-Like' Phase

    Science.gov (United States)

    Chishko, K. A.; Antsygina, T. N.; Poltavskaya, M. I.

    2017-01-01

    We apply the model of a crystalline polytype built of close-packed 2D monoatomic basal planes with triangular lattice to interpret the anomalous thermodynamical and mechanical properties of solid hexagonal close-packed (HCP) ^4{He} . The polytype is a 3D stack of the basal planes, and its structure can be built from the simplest periodic packing (HCP, FCC, 4H, 5H, 6R, ldots etc.) up to random stacking fault system (RSFS) totally aperiodic in only c-direction perpendicular to the basal planes. RSFS is a crystal without microscopic translation symmetry along c-axis, i.e., entirely disordered in only one spatial direction. Despite of packing disorder, c-direction remains the crystallographic axis of third order at arbitrary sequence of the 2D plates in the whole stack. In a long-wave limit the HCP polytype can be treated as 3D anisotropic continuum, as a result its phonon spectrum and Helmholtz free energy have been calculated. The temperature dependence of the phonon pressure is calculated theoretically and compared with experimental data. A quantitative agreement between the theory and the experiment is achieved. Mechanical properties of ^4{He} crystals in the framework of the polytype model are briefly discussed.

  17. Atomic-scale study of the amorphous-to-crystalline phase transition mechanism in GeTe thin films

    CERN Document Server

    Mantovan, R.; Mokhles Gerami, A.; Mølholt, T. E.; Wiemer, C.; Longo, M.; Gunnlaugsson, H. P.; Johnston, K.; Masenda, H.; Naidoo, D.; Ncube, M.; Bharuth-Ram, K.; Fanciulli, M.; Gislason, H. P.; Langouche, G.; Ólafsson, S.; Weyer, G.

    The underlying mechanism driving the structural amorphous-to-crystalline transition in Group VI chalcogenides is still a matter of debate even in the simplest GeTe system. We exploit the extreme sensitivity of 57Fe emission Mössbauer spectroscopy, following dilute implantation of 57Mn (T½ = 1.5 min) at ISOLDE/CERN, to study the electronic charge distribution in the immediate vicinity  of the 57Fe probe substituting Ge (FeGe), and to interrogate the local environment of FeGe over the amorphous-crystalline phase transition in GeTe thin films. Our results show that the local structure  of as-sputtered amorphous GeTe is a combination of tetrahedral and defect-octahedral sites. The main effect of the crystallization is the conversion from tetrahedral to defect-free octahedral sites.  We discover that only the tetrahedral fraction in amorphous GeTe participates to the change of the FeGe-Te chemical bond...

  18. Recommendations for the presentation of infrared absorption spectra in data collections condensed phases

    CERN Document Server

    Becker, E D

    2013-01-01

    Recommendations for the Presentation of Infrared Absorption Spectra in Data Collections-A. Condensed Phases presents the recommendations related to the infrared spectra of condensed phase materials that are proposed for permanent retention in data collections. These recommendations are based on two reports published by the Coblentz Society. This book emphasizes the three levels of quality evaluation for infrared spectra as designated by the Coblentz Society, including critically defined physical data, research quality analytical spectra, and approved analytical spectra. This text discusses the

  19. Distinct molecular structures and hydrogen bond patterns of α,α-diethyl-substituted cyclic imide, lactam, and acetamide derivatives in the crystalline phase

    Science.gov (United States)

    Krivoshein, Arcadius V.; Ordonez, Carlos; Khrustalev, Victor N.; Timofeeva, Tatiana V.

    2016-10-01

    α,α-Dialkyl- and α-alkyl-α-aryl-substituted cyclic imides, lactams, and acetamides show promising anticonvulsant, anxiolytic, and anesthetic activities. While a number of crystal structures of various α-substituted cyclic imides, lactams, and acetamides were reported, no in-depth comparison of crystal structures and solid-state properties of structurally matched compounds have been carried out so far. In this paper, we report molecular structure and intermolecular interactions of three α,α-diethyl-substituted compounds - 3,3-diethylpyrrolidine-2,5-dione, 3,3-diethylpyrrolidin-2-one, and 2,2-diethylacetamide - in the crystalline phase, as studied using single-crystal X-ray diffraction and IR spectroscopy. We found considerable differences in the patterns of H-bonding and packing of the molecules in crystals. These differences correlate with the compounds' melting points and are of significance to physical pharmacy and formulation development of neuroactive drugs.

  20. Understanding the Crystallinity Indices Behavior of Burned Bones and Teeth by ATR-IR and XRD in the Presence of Bioapatite Mixed with Other Phosphate and Carbonate Phases

    Directory of Open Access Journals (Sweden)

    Giampaolo Piga

    2016-01-01

    Full Text Available We have critically investigated the ATR-IR spectroscopy data behavior of burned human teeth as opposed to the generally observed behavior in human bones that were subjected to heat treatment, whether deliberate or accidental. It is shown that the deterioration of the crystallinity index (CI behavior sometimes observed in bones subjected to high temperature appears to be of higher frequency in the case of bioapatite from teeth. This occurs because the formation of the β-tricalcium phosphate (β-TCP phase, otherwise known as whitlockite, clearly ascertained by the X-ray diffraction (XRD patterns collected on the same powdered specimens investigated by ATR-IR. These results point to the need of combining more than one physicochemical technique even if apparently well suitable, in order to verify whether the assumed conditions assessed by spectroscopy are fully maintained in the specimens after temperature and/or mechanical processing.

  1. Crystalline phases during the melting of Bi sub 2 Sr sub 2 CaCu sub 2 O sub x

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Ming; Polonka, J.; Goldman, A.I.; Finnemore, D.K.; Li, Qiang; Laabs, F.C.

    1991-01-01

    The melting of Bi{sub 2}Sr{sub 2}CaCu{sub 2}O{sub x} material has been studied by scanning electron microscopy (SEM) and energy dispersive spectroscopy (EDS) in order to study the phases that formed in the high temperature regions. Two distinct phases of (Sr{sub 1-x}Ca{sub x})CuO{sub 2} and (Sr{sub 1-x}Ca{sub x}){sub 2}CuO{sub 3} have been observed in the Bi-rich matrix depending upon quenching temperatures. Crystallization from the melt by fast cooling usually produce the co-existence of Bi (2201) and these Sr-Ca-Cu-O phases. 12 refs., 2 figs.

  2. Role of sintering time, crystalline phases and symmetry in the piezoelectric properties of lead-free KNN-modified ceramics

    Energy Technology Data Exchange (ETDEWEB)

    Rubio-Marcos, F., E-mail: frmarcos@icv.csic.es [Electroceramic Department, Instituto de Ceramica y Vidrio, CSIC, Kelsen 5, 28049 Madrid (Spain); Marchet, P.; Merle-Mejean, T. [SPCTS, UMR 6638 CNRS, Universite de Limoges, 123, Av. A. Thomas, 87060 Limoges (France); Fernandez, J.F. [Electroceramic Department, Instituto de Ceramica y Vidrio, CSIC, Kelsen 5, 28049 Madrid (Spain)

    2010-09-01

    Lead-free KNN-modified piezoceramics of the system (Li,Na,K)(Nb,Ta,Sb)O{sub 3} were prepared by conventional solid-state sintering. The X-ray diffraction patterns revealed a perovskite phase, together with some minor secondary phase, which was assigned to K{sub 3}LiNb{sub 6}O{sub 17}, tetragonal tungsten-bronze (TTB). A structural evolution toward a pure tetragonal structure with the increasing sintering time was observed, associated with the decrease of TTB phase. A correlation between higher tetragonality and higher piezoelectric response was clearly evidenced. Contrary to the case of the LiTaO{sub 3} modified KNN, very large abnormal grains with TTB structure were not detected. As a consequence, the simultaneous modification by tantalum and antimony seems to induce during sintering a different behaviour from the one of LiTaO{sub 3} modified KNN.

  3. Improved Josephson Qubits incorporating Crystalline Silicon Dielectrics

    Science.gov (United States)

    Gao, Yuanfeng; Maurer, Leon; Hover, David; Patel, Umeshkumar; McDermott, Robert

    2010-03-01

    Josephson junction phase quibts are a leading candidate for scalable quantum computing in the solid state. Their energy relaxation times are currently limited by microwave loss induced by a high density of two-level state (TLS) defects in the amorphous dielectric films of the circuit. It is expected that the integration of crystalline, defect-free dielectrics into the circuits will yield substantial improvements in qubit energy relaxation times. However, the epitaxial growth of a crystalline dielectric on a metal underlayer is a daunting challenge. Here we describe a novel approach in which the crystalline silicon nanomembrane of a Silicon-on-Insulator (SOI) wafer is used to form the junction shunt capacitor. The SOI wafer is thermocompression bonded to the device wafer. The handle and buried oxide layers of the SOI are then etched away, leaving the crystalline silicon layer for subsequent processing. We discuss device fabrication issues and present microwave transport data on lumped-element superconducting resonators incorporating the crystalline silicon.

  4. Bietti's Crystalline Dystrophy

    Science.gov (United States)

    ... Dystrophy > Facts About Bietti's Crystalline Dystrophy Facts About Bietti's Crystalline Dystrophy This information was developed by the ... is the best person to answer specific questions. Bietti’s Crystalline Dystrophy Defined What is Bietti’s Crystalline Dystrophy? ...

  5. Crystalline systems. [Book chapter

    Energy Technology Data Exchange (ETDEWEB)

    Kispert, L.D.

    The use of two double resonance methods, electron-nuclear double resonance (ENDOR) and electron-electron double resonance (ELDOR) in the study of free radicals in solids is reviewed. Included are descriptions of how crystalline-phase ENDOR is used to determine small hyperfine splittings, quadrupoly couplings, and reaction mechanisms or radical formation and how crystalline phase ELDOR is used to determine large hyperfine splittings, to identify radicals with large quadrupole moments and to study spin exchange processes. The complementary role played by the ENDOR and ELDOR spectroscopy in the separation of overlapping EPR spectra, in the study of proton-deuterium exchange, in the study of methyl groups undergoing tunneling rotation, and in the determination of the rates of intermolecular motion are dealt with. 13 figures, 1 table. (DP)

  6. Thermodynamics of Crystalline States

    CERN Document Server

    Fujimoto, Minoru

    2013-01-01

    Thermodynamics is a well-established discipline of physics for properties of matter in thermal equilibrium with the surroundings. Applying to crystals, however, the laws encounter undefined properties of crystal lattice, which therefore need to be determined for a clear and well-defined description of crystalline states. Thermodynamics of Crystalline States explores the roles played by order variables and dynamic lattices in crystals in a wholly new way. The book begins by clarifying basic concepts for stable crystals. Next, binary phase transitions are discussed to study collective motion of order variables, as described mostly as classical phenomena. New to this edition is the examination of magnetic crystals, where magnetic symmetry is essential for magnetic phase transitions. The multi-electron system is also discussed  theoretically, as a quantum-mechanical example, for superconductivity in metallic crystals. Throughout the book, the role played by the lattice is emphasized and studied in-depth. Thermod...

  7. Theoretical study of phase behaviour of DLVO model for lysozyme and γ-crystalline aqueous electrolyte solutions

    Directory of Open Access Journals (Sweden)

    R. Melnyk

    2015-03-01

    Full Text Available Mean spherical approximation (MSA, second-order Barker-Henderson (BH perturbation theory and thermodynamic perturbation theory (TPT for associating fluids in combination with BH perturbation theory are applied to the study of the structural properties and phase behaviour of the Derjaguin-Landau-Verwey-Overbeek (DLVO model of lysozyme and γ-cristalline aqueous electrolyte solutions. Predictions of the MSA for the structure factors are in good agreement with the corresponding computer simulation predictions. The agreement between theoretical results for the liquid-gas phase diagram and the corresponding results of the experiment and computer simulation is less satisfactory, with predictions of the combined BH-TPT approach being the most accurate.

  8. Crystalline phase of Y2O3:Eu particles generated in a substrate-free flame process

    Institute of Scientific and Technical Information of China (English)

    Bing Guo; Hoon Yim; Wonjoong Hwang; Matt Nowell; Zhiping Luo

    2011-01-01

    In this study, factors affecting the crystal structure of flame-synthesized Y2O3:Eu particles were investigated, especially the particle size effect and its interaction with Eu doping concentration. Polydisperse Y2O3:Eu (size range 200nm to 3 μm) powder samples with Eu doping concentrations from 2.5 mol% to 25 mol% were generated in either H2/air or H2/O2 substrate-free flames. The crystal structure of the powder samples was determined by powder X-ray diffraction (XRD),which was complemented by photoluminescence (PL) measurements. Single particle crystal structure was determined by single particle selected area electron diffraction (SAED),and for the first time,by electron backscatter diffraction (EBSD).H2/air flames resulted in cubic phase Y2O3:Eu particles with hollow morphology and irregular shapes.Particles from H2/O2 flames had dense and spherical morphology; samples with lower Eu doping concentrations had mixed cubic/monoclinic phases: samples with the highest Eu doping concentrations were phase-pure monoclinic. For samples generated from H2/O2 flames,a particle size effect and its interaction with Eu doping concentration were found: particles smaller than a critical diameter had the monoclinic phase,and this critical diameter increased with increasing Eu doping concentration. These findings suggest that the formation of monoclinic Y2O3:Eu is inevitable when extremely hot substrate-free flames are used,because typical flame-synthesized Y2O3:Eu particle sizes are well below the critical diameter.However,it may be possible to generate particles with dense,spherical morphology and the desired cubic structure by using a moderately high flame temperature that enables fast sintering without melting the particles.

  9. Determination of crystallinity of ceramic materials from the Ruland Method; Determinacao da cristalinidade de materiais ceramicos atraves do metodo de Ruland

    Energy Technology Data Exchange (ETDEWEB)

    Kniess, C.T. [Universidade Nove de Julho (UNINOVE), SP (Brazil); Prates, P.B.; Gomes Junior, J.C.; Lima, J.C. de; Riella, H.G.; Kuhnen, N.C., E-mail: kniesscl@gmail.com, E-mail: patybp@gmail.com [Universidade Federal de Santa Catarina (UFSC), SC (Brazil)

    2011-07-01

    Some methods found in literature approach the different characteristics between crystalline and amorphous phases by X ray diffraction technique. These methods use the relation between the intensities of the crystalline peaks and background amorphous or the absolute intensity of one of these to determine the relative amount of crystalline and amorphous material. However, a crystalline substance presents shows coherent diffuse scattering and a loss in the intensity of the peaks of diffraction in function of thermal vibrations of atoms and imperfections in the crystalline structure. A correct method for the determination of the crystallinity must take in account these effects. This work has as objective to determine the crystallinity of ceramic materials obtained with the addition of mineral coal bottom ashes, using the X ray diffraction technique and the Ruland Method, that considers the diminution of the intensity of the crystalline peak because of the disorder affects. The Ruland Method shows adequate for the determination of the crystallinity of the ceramic materials. (author)

  10. 宽温域蓝相液晶材料%Wide Temperature Range Blue Phase Liquid Crystalline Materials

    Institute of Scientific and Technical Information of China (English)

    何万里; 王玲; 王乐; 崔晓鹏; 谢谟文; 杨槐

    2012-01-01

    Blue phases (BPs) are mesophases usually exhibited by highly chiral materials and commonly occur in a narrow temperature range below the isotropic phase. They are optically active and non-birefringent, while exhibit Bragg diffraction of light in the visible wavelength. Recently, BPs have attracted growing attention in the field of optoelectronics and photonics. This paper reviews the recent research advances in BPs liquid crystals, also with a brief introduction of the history of the blue phase studies, and some special properties, especially the frustration in the double twist molecular alignment. Finally, the current challenges for applications of BPs materials are highlighted, and the focus of future research and development are proposed%蓝相常在高手性液晶体系的清亮点附近温度区间出现,由于具有优异的光学特性如无双折射现象和选择性反射可见光等,近年来蓝相在光电和光子领域越来越受到人们的关注。本文综述了蓝相的发现、分子排列和光学特性等,详细介绍了宽温域蓝相液晶材料在国内外的研究进展和应用现状。最后分析了蓝相液晶用于平板显示领域在技术方面存在的主要问题和未来发展方向。

  11. On the Evolution of Quasicrystalline and Crystalline Phases in Rapidly Quenched Al-Co-Cu-Ni Alloy

    OpenAIRE

    Yadav, T. P.; Mukhopadhyay, N. K.; Tiwari, R. S.; O. N. Srivastava

    2006-01-01

    The occurrence of stable decagonal quasicrystalline phase in Al-Co-Ni and Al-Cu-Co alloys through conventional solidification is well established. Earlier, we have studied the effect of Cu substitution in place of Co in the Al70 Co15Ni15 alloy. Here we report the structural/micro-structural changes with substitution of Cu for Ni in rapidly solidified Al-Co-Ni alloys. The melt-spun ribbons have been characterized using X-ray diffractometry (XRD), Scanning and transmission electron microscopy (...

  12. Crystalline Bioceramic Materials

    Directory of Open Access Journals (Sweden)

    de Aza, P. N.

    2005-06-01

    Full Text Available A strong interest in the use of ceramics for biomedical engineering applications developed in the late 1960´s. Used initially as alternatives to metallic materials in order to increase the biocompatibility of implants, bioceramics have become a diverse class of biomaterials, presently including three basic types: relatively bioinert ceramics; bioactive or surface reactive bioceramics and bioresorbable ceramics. This review will only refer to bioceramics “sensus stricto”, it is to say, those ceramic materials constituted for nonmetallic inorganic compounds, crystallines and consolidated by thermal treatments of powders to high temperatures. Leaving bioglasses, glass-ceramics and biocements apart, since, although all of them are obtained by thermal treatments to high temperatures, the first are amorphous, the second are obtained by desvitrification of a glass and in them vitreous phase normally prevails on the crystalline phases and the third are consolidated by means of a hydraulic or chemical reaction to room temperature. A review of the composition, physiochemical properties and biological behaviour of the principal types of crystalline bioceramics is given, based on the literature data and on the own experience of the authors.

    A finales de los años sesenta se despertó un gran interés por el uso de los materiales cerámicos para aplicaciones biomédicas. Inicialmente utilizados como una alternativa a los materiales metálicos, con el propósito de incrementar la biocompatibilidad de los implantes, las biocerámicas se han convertido en una clase diversa de biomateriales, incluyendo actualmente tres tipos: cerámicas cuasi inertes; cerámicas bioactivas o reactivas superficialmente y cerámicas reabsorbibles o biodegradables. En la presente revisión se hace referencia a las biocerámicas en sentido estricto, es decir, a aquellos materiales constitutitos por compuestos inorgánicos no metálicos, cristalinos y consolidados

  13. Presentation

    Directory of Open Access Journals (Sweden)

    Paulo Henrique Freire Vieira

    2013-12-01

    Full Text Available This dossier focuses on one of the essential debate topics today about the territorial dimension of the new development strategies concerned with the worsening of the global socioecological crisis, that is: the challenges related to the activation and integration in networks of localized agri-food systems. For its composition, some contributions presented and debated during the VI International Conference on Localized Agri-food System - The LAFS facing the opportunities and challenges of the new global context have been gathered. The event took place in the city of Florianópolis, from May 21th to 25th of 2013. The event was promoted by the Federal University of Santa Catarina (UFSC and by the Center for the International Cooperation on Agricultural Research for Development (CIRAD. Besides UFSC and CIRAD, EPAGRI, State University of Santa Catarina (UDESC, as well as research institutes and universities from other states (UFMG, IEA/SP, UFS, UFRGS and Mexican and Argentinian partners from the RED SIAL Latino Americana also participated in the organization of lectures, discussion tables and workshops.

  14. Presentation

    Directory of Open Access Journals (Sweden)

    Eduardo Vicente

    2013-06-01

    Full Text Available In the present edition of Significação – Scientific Journal for Audiovisual Culture and in the others to follow something new is brought: the presence of thematic dossiers which are to be organized by invited scholars. The appointed subject for the very first one of them was Radio and the invited scholar, Eduardo Vicente, professor at the Graduate Course in Audiovisual and at the Postgraduate Program in Audiovisual Media and Processes of the School of Communication and Arts of the University of São Paulo (ECA-USP. Entitled Radio Beyond Borders the dossier gathers six articles and the intention of reuniting works on the perspectives of usage of such media as much as on the new possibilities of aesthetical experimenting being build up for it, especially considering the new digital technologies and technological convergences. It also intends to present works with original theoretical approach and original reflections able to reset the way we look at what is today already a centennial media. Having broadened the meaning of “beyond borders”, four foreign authors were invited to join the dossier. This is the first time they are being published in this country and so, in all cases, the articles where either written or translated into Portuguese.The dossier begins with “Radio is dead…Long live to the sound”, which is the transcription of a thought provoking lecture given by Armand Balsebre (Autonomous University of Barcelona – one of the most influential authors in the world on the Radio study field. It addresses the challenges such media is to face so that it can become “a new sound media, in the context of a new soundscape or sound-sphere, for the new listeners”. Andrew Dubber (Birmingham City University regarding the challenges posed by a Digital Era argues for a theoretical approach in radio studies which can consider a Media Ecology. The author understands the form and discourse of radio as a negotiation of affordances and

  15. Presentation

    Directory of Open Access Journals (Sweden)

    Helmut Renders

    2008-10-01

    Full Text Available We present to our esteemed readers the second edition of our journal for 2008. We have chosen the theme “The life and work of Prof. Dr. Jürgen Moltmann” as its special emphasis. It is our way to pay homage to J. Moltmann in the year the Universidade Metodista de São Paulo awards him an honorary Doctor Honoris Causa degree. Sincethe seventies, Moltmann and Latin America have been in dialog. In his emblematic work “A Theology of Liberation”, Gustavo Gutiérrez, the Catholic, discussed with Moltmann, the Reformed, the relationship between eschatology and history (GUTIÉRREZ, Gustavo.Teologia da Libertação. 5ª edição. Petrópolis, RJ: Vozes, 1985, p. 27, 137-139. A dialog held in the premises of IMS, which nowadays is called UMESP, has produced the little book “Passion for life” (MOLTMANN, Jürgen. Paixão pela vida. São Paulo, SP: ASTE - Associaçãode Seminários Teológicos Evangélicos, 1978.In the following years, the wide theological work of J. Moltmann went all the way from debates to congresses and has conquered the classrooms. Most probably, J. Moltmann is nowadays the most widely read European author in Brazilian theological seminaries. Thisrecognition can only be held in unison and the wide response to our request for articles confirms the huge repercussion that Moltmann’s work has been having up to today in Brazil. The ecumenical theologian J. Moltmann is ecumenically read. We believe that thisway we may be better equipped to answer to anyone who asks us for the reason there is hope in us. We have organized the articles on J. Moltmann’s theology according to the original publication date of the books dealt with in each essay. We also communicate that some articles which were originally requested for this edition of the journal will be published in the journal Estudos de Regilião in May 2009.As it is usual with the journal Caminhando, we have, besides this thematic emphasis, yet other contributions in the areas of

  16. Order from the disorder: hierarchical nanostructures self-assembled from the gas phase (Conference Presentation)

    Science.gov (United States)

    Di Fonzo, Fabio

    2017-02-01

    The assembly of nanoscale building blocks in engineered mesostructures is one of the fundamental goals of nanotechnology. Among the various processes developed to date, self-assembly emerges as one of the most promising, since it relays solely on basic physico-chemical forces. Our research is focused on a new type of self-assembly strategy from the gas-phase: Scattered Ballistic Deposition (SBD). SBD arises from the interaction of a supersonic molecular beam with a static gas and enables the growth of quasi-1D hierarchical mesostructures. Overall, they resemble a forest composed of individual, high aspect-ratio, tree-like structures, assembled from amorphous or crystalline nanoparticles. SBD is a general occurring phenomenon and can be obtained with different vapour or cluster sources. In particular, SBD by Pulsed Laser Deposition is a convenient physical vapor technique that allows the generation of supersonic plasma jets from any inorganic material irrespective of melting temperature, preserving even the most complex stoichiometries. One of the advantages of PLD over other vapour deposition techniques is extremely wide operational pressure range, from UHV to ambient pressure. These characteristics allowed us to develop quasi-1D hierarchical nanostructures from different transition metal oxides, semiconductors and metals. The precise control offered by the SBD-PLD technique over material properties at the nanoscale allowed us to fabricate ultra-thin, high efficiency hierarchical porous photonic crystals with Bragg reflectivity up to 85%. In this communication we will discuss the application of these materials to solar energy harvesting and storage, stimuli responsive photonic crystals and smart surfaces with digital control of their wettability behaviour.

  17. Presentation

    Directory of Open Access Journals (Sweden)

    Nicanor Lopes

    2010-11-01

    Full Text Available The Journal Caminhando debuts with a new editorial format: eachmagazine will have a Dossier.In 2010 Christianity celebrated the centenary of Edinburgh. TheWorld Missionary Conference in Edinburgh in 1910 is regarded by manyas missiological watershed in the missionary and ecumenical movement.So the Faculty of Theology of the Methodist Church (FATEO decidedto organize a Wesleyan Week discussing the issue of mission. For anevent of this magnitude FATEO invited the Rev. Dr. Wesley Ariarajah,Methodist pastor and teacher of Sri Lanka with extensive experience inpastoral ministry in local churches and professor of History of Religionsand the New Testament at the Theological College of Lanka, maintainedby the Protestant Churches in Sri Lanka. In 1981 he was invited to jointhe World Council of Churches, where he presided for over ten years theCouncil of Interreligious Dialogue. From 1992 he served as Deputy GeneralSecretary of the WCC.The following texts are not the speeches of the Rev. Dr. WesleyAriarajah, for they will be published separately. Nevertheless, the journaldialogs with the celebrations of the centenary of Edinburgh, parting formthe intriguing theme: "Mission in the 21st century in Brazil". After all, howis it that mission takes place among us in personal, church, and communityactivities?Within the Dossier, as common to the journal, the textos are organizedas follows: Bible, Theology / History and Pastoral Care. Other items thatdo not fit within the Dossier, but, do articulate mission, can be found inthe section Declarations and Documents and Book Reviews.The authors of the Dossier have important considerations in buildinga contemporary missiological concept considering Brazilian reality.Anderson de Oliveira, in the Bible-Section, presents a significantexegeses of Matthew 26.6-13. What does it mean when Jesus is quotedwith the words: "For the poor always ye have with you, but me ye havenot always." Is this declaration challenging the gospels

  18. Positronium diffusion in crystalline polyethylene

    Energy Technology Data Exchange (ETDEWEB)

    Serna, J. (Dept. de Fisica de Materiales, Univ. Complutense, Madrid (Spain))

    1990-12-16

    The analysis in four components of the positron lifetime spectra of nine different and structurally well characterised lamellar polyethylene samples has allowed to associate the two longest-lived components to positronium annihilation in the crystalline and amorphous phases. Further assumption on positronium tunneling through the interface between both phases, and a simple geometrical model, led to a value for the positronium diffusion coefficient in the crystalline phase of the order of 10{sup -4} cm{sup 2}/s. Interfaces have thicknesses around 1.5 nm and are shallow traps for positronium. (orig.).

  19. Why do disk galaxies present a common gas-phase metallicity gradient?

    Science.gov (United States)

    Chang, R.; Zhang, Shuhui; Shen, Shiyin; Yin, Jun; Hou, Jinliang

    2017-03-01

    CALIFA data show that isolated disk galaxies present a common gas-phase metallicity gradient, with a characteristic slope of -0.1dex/re between 0.3 and 2 disk effective radius re (Sanchez et al. 2014). Here we construct a simple model to investigate which processes regulate the formation and evolution.

  20. Application of phase stretch transform to plate license identification under blur and noise conditions (Conference Presentation)

    Science.gov (United States)

    Asghari, Hossein; Hadar, Ofer; Jalali, Bahram

    2016-09-01

    This paper deals with implementing a new algorithm for edge detection based on the Phase Stretch Transform (PST) for purposes of car plate license recognition. In PST edge detection algorithm, the image is first filtered with a spatial kernel followed by application of a nonlinear frequency-dependent phase. The output of the transform is the phase in the spatial domain. The main step is the 2-D phase function which is typically applied in the frequency domain. The amount of phase applied to the image is frequency dependent with higher amount of phase applied to higher frequency features of the image. Since sharp transitions, such as edges and corners, contain higher frequencies, PST emphasizes the edge information. Features can be further enhanced by applying thresholding and morphological operations. Here we investigate the influence of noise and blur on the ability to recognize the characters in the plate license, by comparison of our suggested algorithm with the well known Canny algorithm. We use several types of noise distributions among them, Gaussian noise, salt and paper noise and uniform distributed noise, with several levels of noise variances. The simulated blur is related to the car velocity and we applied several filters representing different velocities of the car. Another interesting degradation that we intend to investigate is the cases that Laser shield license plate cover is used to distort the image taken by the authorities. Our comparison results are presented in terms of True positive, False positive and False negative probabilities.

  1. A 24-GHz portable FMCW radar with continuous beam steering phased array (Conference Presentation)

    Science.gov (United States)

    Peng, Zhengyu; Li, Changzhi

    2017-05-01

    A portable 24-GHz frequency-modulated continuous-wave (FMCW) radar with continuous beam steering phased array is presented. This board-level integrated radar system consists of a phased array antenna, a radar transceiver and a baseband. The phased array used by the receiver is a 4-element linear array. The beam of the phased array can be continuously steered with a range of ±30° on the H-plane through an array of vector controllers. The vector controller is based on the concept of vector sum with binary-phase-shift attenuators. Each vector controller is capable of independently controlling the phase and the amplitude of each element of the linear array. The radar transceiver is based on the six-port technique. A free-running voltage controlled oscillator (VCO) is controlled by an analog "sawtooth" voltage generator to produce frequency-modulated chirp signal. This chirp signal is used as the transmitter signal, as well as the local oscillator (LO) signal to drive the six-port circuit. The transmitter antenna is a single patch antenna. In the baseband, the beat signal of the FMCW radar is detected by the six-port circuit and then processed by a laptop in real time. Experiments have been performed to reveal the capabilities of the proposed radar system for applications including indoor inverse synthetic aperture radar (ISAR) imaging, vital sign detection, and short-range navigation, etc. (This abstract is for the profiles session.)

  2. Investigation of the amorphous to crystalline phase transition of chemical solution deposited Pb(Zr30Ti70)O3 thin films by soft x-ray absorption and soft x-ray emission spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Schneller, T.; Schneller, T.; Kohlstedt, H.; Petraru, A.; Waser, R.; Guo, J.; Denlinger, J.; Learmonth, T.; Glans, Per-Andres; Smith, K. E.

    2008-08-01

    Chemical solution deposited (CSD) complex oxide thin films attract considerable interest in various emerging fields as for example, fuel cells, ferroelectric random access memories or coated conductors. In the present paper the results of soft-x-ray spectroscopy between 100 eV and 500 eV on the amorphous to crystalline phase transition of ferroelectric PbZr{sub 0.3}Ti{sub 0.7}O{sub 3} (PZT) thin films are presented. Five CSD samples derived from the same wafer coated with a PZT film pyrolyzed at 350 C were heat treated at different temperatures between 400 C and 700 C. At first the sample were morphologically and electrically characterized. Subsequently the soft-x-ray absorption and emission experiments were performed at the undulator beamline 8.0 of the Advanced Light Source of the Lawrence Berkeley National Laboratory. Soft-x-ray absorption spectra were acquired for the Ti L{sub 2,3-}, O K-, and C K-edge thresholds by using simultaneously the total electron yield (TEY) and total fluorescence yield (TFY) detection methods. For two samples, annealed at 400 C and 700 C, respectively, the resonant inelastic soft-x-ray spectroscopy (RIXS) was applied for various excitation energies near the Ti L-, O K-edges. We observed clear evidence of a rutile phase at untypically low temperatures. This rutile phase transforms into the perovskite phase upon increasing annealing temperature. These results are discussed in the framework of current microscopic models of the PZT (111) texture selection.

  3. Experimental optical phase measurement at the exact Heisenberg limit (Conference Presentation)

    Science.gov (United States)

    Daryanoosh, Shakib; Slussarenko, Sergei; Wiseman, Howard M.; Pryde, Geoff J.

    2016-10-01

    Optical phase measurement through its application in quantum metrology has pushed the precision limit with which some physical quantities can be measured accurately. At the very fundamental level, the laws of quantum mechanics dictate that the uncertainty in phase estimations scales as 1/N, where N is the number of quantum resources employed in the protocol [1]. This is the well known Heisenberg limit (HL) which is quadratically better than the traditional precision limit known as the standard quantum limit (SQL) with uncertainty asymptotically scaling as 1/&sqrt{N} [1]. Several experiments have demonstrated that the SQL can be beaten by using an entangled state as the probe and a specific measurement scheme for ab initio estimation of unknown phases [2,3]. It has also been shown experimentally that even in the absence of the entanglement one can measure an unknown phase with imprecision scaling at the HL [4]. In this work we first present a new protocol able to estimate an optical phase at the Heisenberg limit, and then experimentally explore fundamental and practical issues in generating high-quality novel entangled states, for use in this protocol and beyond. Our aim in this study is to measure an unknown phase in the interval [0,2π) with uncertainty attaining the exact HL. There is a condition that should be met to address this objective: preparation of an optimal state [5]. This would cover part of the presentation through which we explain how to experimentally realise such an optimal state with the current technological limitations and the feasibility of the scheme. In particular, we generate an entangled 3-photon (2-photon) state of specific superposition of GHZ (Bell) states. Our numerical simulation of the phase measurement gate together with the experimental outcomes show that the created state should have a high fidelity and purity to be able to have the phase uncertainty achieving the exact HL. Therefore, we briefly explain the modelling for

  4. The effect of heating power on impurity formation and transport during the holding phase in a Bridgman furnace for directional solidification of multi-crystalline silicon

    Science.gov (United States)

    Ellingsen, Kjerstin; Lindholm, Dag; M`Hamdi, Mohammed

    2016-06-01

    Oxygen and carbon are the most common impurities in multi-crystalline silicon. The general mechanism for formation and transport of O and C in the solidification furnace is as follows: oxygen from the silica crucible comes into the melt and combines with a silicon atom and evaporates at the gas/melt interface in the form of silicon oxide (SiO). Argon inert gas, injected into the furnace chamber, carries the SiO to the hot graphite fixtures, where it reacts with carbon to form carbon monoxide (CO) and silicon carbide (SiC). CO is carried by the gas to the melt free surface, where it dissociates into carbon and oxygen. Finally, during solidification oxygen and carbon are incorporated into the crystal. A global furnace model accounting for heat transfer, melt flow, gas flow and impurity transport has been applied to investigate the oxygen and carbon formation and transport in a vertical Bridgman furnace during the holding phase when the furnace is at its hottest. A case study is performed to investigate the effect of the applied heating power on the carbon and oxygen concentrations in the melt prior to solidification.

  5. Ge Implantation to Improve Crystallinity and Productivity for Solid Phase Epitaxy Prepared by Atomic Mass Unit Cross Contamination-Free Technique

    Science.gov (United States)

    Lee, Kong-Soo; Yoo, Dae-Han; Han, Jae-Jong; Son, Gil-Hwan; Lee, Chang-Hun; Noh, Ju-Hee; Kim, Seok-Jae; Kim, Yong-Kwon; You, Young-Sub; Hyung, Yong-Woo; Lee, Hyeon-Deok

    2006-11-01

    Germanium (Ge) ion implantation was investigated for crystallinity enhancement during solid phase epitaxial (SPE) regrowth. Electron back-scatter diffraction (EBSD) measurement showed numerical increase of 19% of (100) signal, which might be due to the effect of pre-amorphization implantation (PAI) on silicon layer. On the other hand, electrical property such as off-leakage current of n-channel metal oxide semiconductor (NMOS) transistor degraded in specific regions of wafers. It was confirmed that arsenic (As) atoms were incorporated into channel area during Ge ion implantation. Since the equipment for Ge PAI was using several source gases such as BF3 and AsH3, atomic mass unit (AMU) contamination during PAI of Ge with AMU 74 caused the incorporation of As with AMU 75 which resided in arc-chamber and other parts of the equipment. It was effective to use Ge isotope of AMU 72 to suppress AMU contamination. It was effective to use enriched Ge source gas with AMU 72 in order to improve productivity.

  6. Pure, single phase, high crystalline, chamfered-edge zeolite 4A synthesized from coal fly ash for use as a builder in detergents.

    Science.gov (United States)

    Hui, K S; Chao, C Y H

    2006-09-01

    Single phase chamfered-edge zeolite 4A samples in pure form with a high crystallinity were synthesized by applying step-change of synthesis temperature during hydrothermal treatment of coal fly ash. The calcium binding capacity of these zeolite 4A samples (prepared from coal fly ash) and the commercial detergent grade zeolite 4A were tested for usage as a detergent builder. The results show that these zeolite 4A samples behaved similarly as the commercial one in removing calcium ions during the washing cycle. Moreover, from the leaching tests (evaluation of toxicological safety), the results show that these zeolite 4A samples leached the same elements (Sb, As, Se and Tl) as the commercial one with the concentrations in the same order of magnitude. This shows that the toxicological effect of the coal fly ash converted zeolite 4A was not worse than that of the commercial sample. Finally, economic and environmental aspects of converting coal fly ash to useful products were discussed.

  7. Terahertz and direct current losses and the origin of non-Drude terahertz conductivity in the crystalline states of phase change materials

    Science.gov (United States)

    Shimakawa, Koichi; Wagner, Tomas; Frumar, Miloslav; Kadlec, Filip; Kadlec, Christelle; Kasap, Safa

    2013-12-01

    THz and DC losses in crystalline states of GeSbTe and AgInSbTe phase-change material systems are re-examined and discussed. Although a simple free carrier transport has been assumed so far in the GeSbTe (GST) system, it is shown through recent experimental results that a series sequence of intragrain and intergrain (tunneling) transport, as recently formulated in Shimakawa et al., "The origin of non-Drude terahertz conductivity in nanomaterials," Appl. Phys. Lett. 100, 132102 (2012) may dominate the electronic transport in the commercially utilized GST system, producing a non-Drude THz conductivity. The extracted physical parameters such as the free-carrier density and mobility are significantly different from those obtained from the Drude law. These physical parameters are consistent with those obtained from the DC loss data, and provide further support for the model. Negative temperature coefficient of resistivity is found even in the metallic state, similar to amorphous metals, when the mean free path is short. It is shown that the concept of minimum metallic conductivity, often used in the metal-insulator transition, cannot be applied to electronic transport in these materials.

  8. Terahertz and direct current losses and the origin of non-Drude terahertz conductivity in the crystalline states of phase change materials

    Energy Technology Data Exchange (ETDEWEB)

    Shimakawa, Koichi [Department of General and Inorganic Chemistry, University of Pardubice, Pardubice (Czech Republic); Department of Electrical Engineering, Gifu University (Japan); Wagner, Tomas; Frumar, Miloslav [Department of General and Inorganic Chemistry, University of Pardubice, Pardubice (Czech Republic); Kadlec, Filip; Kadlec, Christelle [Institute of Physics, Academy of Sciences of the Czech Republic, Prague (Czech Republic); Kasap, Safa [Department of Electrical Engineering, University of Saskatchewan, Saskatoon SK S7N 5A9 (Canada)

    2013-12-21

    THz and DC losses in crystalline states of GeSbTe and AgInSbTe phase-change material systems are re-examined and discussed. Although a simple free carrier transport has been assumed so far in the GeSbTe (GST) system, it is shown through recent experimental results that a series sequence of intragrain and intergrain (tunneling) transport, as recently formulated in Shimakawa et al., “The origin of non-Drude terahertz conductivity in nanomaterials,” Appl. Phys. Lett. 100, 132102 (2012) may dominate the electronic transport in the commercially utilized GST system, producing a non-Drude THz conductivity. The extracted physical parameters such as the free-carrier density and mobility are significantly different from those obtained from the Drude law. These physical parameters are consistent with those obtained from the DC loss data, and provide further support for the model. Negative temperature coefficient of resistivity is found even in the metallic state, similar to amorphous metals, when the mean free path is short. It is shown that the concept of minimum metallic conductivity, often used in the metal-insulator transition, cannot be applied to electronic transport in these materials.

  9. Activated kinetics of the Crystalline to Nematic (K-N) and Nematic to Isotropic (N-I) phase transitions of Pentylcyanobiphenyl (5CB) liquid crystal

    Science.gov (United States)

    Sharma, Dipti

    2011-04-01

    Activated kinetics of the crystalline to Nematic (K-N) and the Nematic to Isotropic (N-I) phase transitions of the Pentylcyanobiphenyl (5CB) liquid crystal are discussed here. A kinetic comparison of the same types of transitions of other family member with higher number of carbon atoms i.e. Octylcyanobiphenyl (8CB) are also made to see the difference between the kinetic behavior of the above two transitions of the liquid crystals. Experiments were performed using high resolution calorimetric technique for heating and cooling runs. Two different scans i.e. Temperature scans and Rate scans were performed for 5CB and 8CB from 280 to 333 K at various rates to get the detailed behavior of the transitions. As a result, Double activation was observed for 5CB for two heating rate regimes whereas 8CB indicated single activation only. The 5CB has smaller enthalpy and entropy of the transitions and needs larger activation than 8CB. This kinetic change can be explained in terms of the length scale and mobility of the liquid crystal molecules.

  10. An investigation into crystalline phases and nano structural and mechanical properties of HH heat resistant stainless steels

    Directory of Open Access Journals (Sweden)

    M Hosseini

    2015-12-01

    Full Text Available In the present work, the effects of different casting parameters including pouring temperature and cooling rate on stainless steel structures and mechanical properties of heat resistant alloy (HH were studied. Mo nanoparticles were synthesized through sol-gel method and were coated on the stainless steel device using spin-coating method. The effect of coating layer on the device was studied by using XRD (X-Ray Diffraction and FT-IR (Fourier Transform Infra red and SEM (Scanning Electron Microscopy techniques. The obtained results indicated an enhancement of corrosion, surface abrasion protection without changing metal surface structure, and a reduction of leakage current through the stainless steel device. Furthermore, pouring temperature and cooling rate increase caused a fine grain structure to be acquired with less carbides and better distribution in the austenitic matrix.

  11. Confocal reflectance quantitative phase microscopy system for cell biology studies (Conference Presentation)

    Science.gov (United States)

    Singh, Vijay Raj; So, Peter T. C.

    2016-03-01

    Quantitative phase microscopy (QPM), used to measure the refractive index, provides the optical path delay measurement at each point of the specimen under study and becomes an active field in biological science. In this work we present development of confocal reflection phase microscopy system to provide depth resolved quantitative phase information for investigation of intracellular structures and other biological specimen. The system hardware development is mainly divided into two major parts. First, creates a pinhole array for parallel confocal imaging of specimen at multiple locations simultaneously. Here a digital micro mirror device (DMD) is used to generate pinhole array by turning on a subset micro-mirrors arranged on a grid. Second is the detection of phase information of confocal imaging foci by using a common path interferometer. With this novel approach, it is possible to measure the nuclei membrane fluctuations and distinguish them from the plasma membrane fluctuations. Further, depth resolved quantitative phase can be correlated to the intracellular contents and 3D map of refractive index measurements.

  12. Improved cancer risk stratification and diagnosis via quantitative phase microscopy (Conference Presentation)

    Science.gov (United States)

    Liu, Yang; Uttam, Shikhar; Pham, Hoa V.; Hartman, Douglas J.

    2017-02-01

    Pathology remains the gold standard for cancer diagnosis and in some cases prognosis, in which trained pathologists examine abnormality in tissue architecture and cell morphology characteristic of cancer cells with a bright-field microscope. The limited resolution of conventional microscope can result in intra-observer variation, missed early-stage cancers, and indeterminate cases that often result in unnecessary invasive procedures in the absence of cancer. Assessment of nanoscale structural characteristics via quantitative phase represents a promising strategy for identifying pre-cancerous or cancerous cells, due to its nanoscale sensitivity to optical path length, simple sample preparation (i.e., label-free) and low cost. I will present the development of quantitative phase microscopy system in transmission and reflection configuration to detect the structural changes in nuclear architecture, not be easily identifiable by conventional pathology. Specifically, we will present the use of transmission-mode quantitative phase imaging to improve diagnostic accuracy of urine cytology and the nuclear dry mass is progressively correlate with negative, atypical, suspicious and positive cytological diagnosis. In a second application, we will present the use of reflection-mode quantitative phase microscopy for depth-resolved nanoscale nuclear architecture mapping (nanoNAM) of clinically prepared formalin-fixed, paraffin-embedded tissue sections. We demonstrated that the quantitative phase microscopy system detects a gradual increase in the density alteration of nuclear architecture during malignant transformation in animal models of colon carcinogenesis and in human patients with ulcerative colitis, even in tissue that appears histologically normal according to pathologists. We evaluated the ability of nanoNAM to predict "future" cancer progression in patients with ulcerative colitis.

  13. A time-resolved infrared vibrational spectroscopic study of the photo-dynamics of crystalline materials.

    Science.gov (United States)

    Towrie, Mike; Parker, Anthony W; Ronayne, Kate L; Bowes, Katharine F; Cole, Jacqueline M; Raithby, Paul R; Warren, John E

    2009-01-01

    Time-resolved infrared vibrational spectroscopy is a structurally sensitive probe of the excited-state properties of matter. The technique has found many applications in the study of molecules in dilute solution phase but has rarely been applied to crystalline samples. We report on the use of a sensitive pump-probe time-resolved infrared spectrometer and sample handling techniques for studies of the ultrafast excited-state dynamics of crystalline materials. The charge transfer excited states of crystalline metal carbonyls and the proton transfer of dihydroxyquinones are presented and compared with the solution phase.

  14. Preliminary treatment of chlorinated streams containing fission products: mechanisms leading to crystalline phases in molten chloride media; Pretraitement pyrochimique de flux charges en produits de fission: mecanismes conduisant a l'obtention de phases cristallines en milieux chlorures fondus

    Energy Technology Data Exchange (ETDEWEB)

    Hudry, D

    2008-10-15

    The world of the nuclear power gets ready for profound modifications so that 'the atom' can aspire in conformance with long-lasting energy: it is what we call the development of generation IV nuclear systems. So, the new pyrochemical separation processes for the spent fuel reprocessing are currently being investigated. Techniques in molten chloride media generate an ultimate flow (with high chlorine content) which cannot be incorporated in conventional glass matrices. This flow is entirely water-soluble and must be conditioned in a chemical form which is compatible with a long-term disposal. This work of thesis consists in studying new ways for the management of the chlorinated streams loaded with fission products (FP). To do it, a strategy of selective FP extraction via the in situ formation of crystalline phases was retained. The possibility of extracting rare earths in the eutectic LiCl-KCl was demonstrated via the development of a new way of synthesis of rare earth phosphates (TRPO{sub 4}). As regards alkaline earths, the conversion of strontium and barium chlorides to the corresponding tungstates or molybdates was studied in different solvents. Mechanisms leading to the crystalline phases in molten chloride media were studied via the coupling of NMR and XRD techniques. First of all, it has been shown that these mechanisms are dependent on the stability of the used precursors. So in the case of the formation of rare earth phosphates the solvent is chemically active. On the other hand, in the case of the formation of alkaline earth tungstates it would seem that the solvent plays the role of structuring agent which can control the ability to react of chlorides. (author)

  15. OTF CCSDS Mission Operations Prototype Parameter Service. Phase I: Exit Presentation

    Science.gov (United States)

    Reynolds, Walter F.; Lucord, Steven A.; Stevens, John E.

    2009-01-01

    This slide presentation reviews the prototype of phase 1 of the parameter service design of the CCSDS mission operations. The project goals are to: (1) Demonstrate the use of Mission Operations standards to implement the Parameter Service (2) Demonstrate interoperability between Houston MCC and a CCSDS Mission Operations compliant mission operations center (3) Utilize Mission Operations Common Architecture. THe parameter service design, interfaces, and structures are described.

  16. Amorphous-crystalline dual-layer structures resulting from metastable liquid phase separation in (Fe50Co25B15Si10)8oCu20 melt-spun ribbons

    Institute of Scientific and Technical Information of China (English)

    Cao Chong-De; Gong Su-Lian; Guo Jin-Bo; Song Rui-Bo; Sun Zhan-Bo; Yang Sen; Wang Wei-Min

    2012-01-01

    (Fe50Co25B15Si10)80Cu20 ribbons are prepared by using the single-roller melt-spinning method.A dual-layer structure consisting of a (Fe,Co)-rich amorphous phase and a Cu-rich crystalline phase forms due to metastable liquid phase separation before solidification.The magnetic hysteresis loops of the as-quenched and annealed samples are measured at room temperature.It is indicated that the coercivity of the ribbon is almost zero in the as-quenched state.The crystallization leads to the increase of coercivity and decrease of saturation magnetization.

  17. Diffusion in porous crystalline materials

    NARCIS (Netherlands)

    Krishna, R.

    2012-01-01

    The design and development of many separation and catalytic process technologies require a proper quantitative description of diffusion of mixtures of guest molecules within porous crystalline materials. This tutorial review presents a unified, phenomenological description of diffusion inside meso-

  18. Evidence for variable crystallinity in bivalve shells

    Science.gov (United States)

    Jacob, D. E.; Wehrmeister, U.

    2012-04-01

    Bivalve shells are used as important palaeoclimate proxy archives and monitor regional climate variations. The shells mostly exist of two crystalline polymorphic phases of calcium carbonate calcite (rombohedric) and aragonite (orthorhombic). Calcite is the most stable polymorph at standard conditions, whereas vaterite (hexagonal) is the least stable and only rarely found in these structures. Shells are characterized by organized structures and several micro architectures of mollusc shell structures have been identified: Nacre shows different types: columnar and bricked forms and consists of composite inorganic- organic at the nano-scale. They are well known to display a "brick and mortar" structure. By AFM and FIB/TEM methods it could be shown, that its nanostructure consists of the structures in the range of 50 - 100 nm [1, 2]. These structures are vesicles, consisting of CaCO3 and are individually coated by a membrane. Most probably, the mantle epithelian cells of the bivalve extrude CaCO3 vesicles. By Raman spectroscopic investigations the crystalline CaCO3 polymorphs calcite, aragonite and vaterite, as well as ACC were determined. For some species (Diplodon chilensis patagonicus, Hyriopsis cumingii) pure ACC (i.e. not intermingled with a crystalline phase) could be identified. The presence of an amorphous phase is generally deduced from the lack of definite lattice modes, whereas a broad Raman band in this region is to observe. In most of the cultured pearls (Pinctada maxima and genus Hyriopsis) the ν1-Raman band of ACC clearly displays an asymmetric shape and splits into two different bands according to a nanocrystalline and an amorphous fraction. The FWHMs of most of the crystalline fractions are too high for well crystallized materials and support the assumption of nanocrystalline calcium carbonate polymorph clusters in ACC. They are primarily composed of amorphous calcium carbonate (ACC) which is later transformed into a crystalline modification [3

  19. Thermal behavior for a nanoscale two ferromagnetic phase system based on random anisotropy model

    Energy Technology Data Exchange (ETDEWEB)

    Muraca, D., E-mail: diego.muraca@gmail.co [INTECIN - Instituto de Tecnologia y Ciencias de la Ingenieria ' Hilario Fernandez Long' (UBA-CONICET), Facultad de Ingenieria, Paseo Colon 850, (1063), Buenos Aires (Argentina); Sanchez, F.H. [Departamento de Fisica-Instituto de Fisica de La Plata, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, C. C. 69, (1900), La Plata (Argentina); Pampillo, L.G.; Saccone, F.D. [INTECIN - Instituto de Tecnologia y Ciencias de la Ingenieria ' Hilario Fernandez Long' (UBA-CONICET), Facultad de Ingenieria, Paseo Colon 850, (1063), Buenos Aires (Argentina)

    2010-03-15

    Advances in theory that explain the magnetic behavior as function of temperature for two phase nanocrystalline soft magnetic materials are presented. The theory developed is based on the well known random anisotropy model, which includes the crystalline exchange stiffness and anisotropy energies in both amorphous and crystalline phases. The phenomenological behavior of the coercivity was obtained in the temperature range between the amorphous phase Curie temperature and the crystalline phase one.

  20. Effect of interface fertilization on biodegradation of polycyclic aromatic hydrocarbons present in nonaqueous-phase liquids.

    Science.gov (United States)

    Tejeda-Agredano, M C; Gallego, S; Niqui-Arroyo, J L; Vila, J; Grifoll, M; Ortega-Calvo, J J

    2011-02-01

    The main goal of this study was to use an oleophilic biostimulant (S-200) to target possible nutritional limitations for biodegradation of polycyclic aromatic hydrocarbons (PAHs) at the interface between nonaqueous-phase liquids (NAPLs) and the water phase. Biodegradation of PAHs present in fuel-containing NAPLs was slow and followed zero-order kinetics, indicating bioavailability restrictions. The biostimulant enhanced the biodegradation, producing logistic (S-shaped) kinetics and 10-fold increases in the rate of mineralization of phenanthrene, fluoranthene, and pyrene. Chemical analysis of residual fuel oil also evidenced an enhanced biodegradation of the alkyl-PAHs and n-alkanes. The enhancement was not the result of an increase in the rate of partitioning of PAHs into the aqueous phase, nor was it caused by the compensation of any nutritional deficiency in the medium. We suggest that biodegradation of PAH by bacteria attached to NAPLs can be limited by nutrient availability due to the simultaneous consumption of NAPL components, but this limitation can be overcome by interface fertilization.

  1. 水泥基渗透结晶材料的研究与应用现状%The Present Research and Application of Cement Based Permeated Crystalline Materials

    Institute of Scientific and Technical Information of China (English)

    尚晓华; 敬登虎

    2015-01-01

    针对混凝土结构面临的各种问题以及加固后再使用过程中面临的问题,介绍了水泥基渗透结晶材料的作用机理以及渗透深度,并探讨了水泥基渗透结晶材料对混凝土性能的影响以及面临的机遇和未来的挑战等。结果表明,水泥基渗透结晶材料从理论上来说是一种很好的加固材料,不仅能够改善混凝土现阶段的性能,并且能够抵御后续使用过程中面临的各种环境问题,但是未来混凝土技术的发展趋势,使得水泥基渗透结晶材料面临着严峻的挑战。%According to the various issues of concrete structure and some problems related to it after being strengthened , the working mechanism and the penetration depth of the cement based permeated crystalline material were introduced . Furthermore the effect of this material on the properties of the concrete and the opportunities as well as the challenges for its application in the future were also discussed .The research results indicate that the cement based permeated crystalline material in theory is a good strengthening material ,which not only can improve the performance of concrete at the present stage ,but also has the ability to resist various environmental problems emerged in the course of future process .However , with the development of concrete technology in the future ,the cement based permeated crystalline material is facing very severe challenges .

  2. Measuring dynamic membrane fluctuations in cell membrane using quantitative phase imaging (Conference Presentation)

    Science.gov (United States)

    Lee, SangYun; Kim, Kyoohyun; Park, YongKeun

    2017-02-01

    There is a strong correlation between the dynamic membrane fluctuations and the biomechanical properties of living cells. The dynamic membrane fluctuation consists of submicron displacements, and can be altered by changing the cells' pathophysiological conditions. These results have significant relevance to the understanding of RBC biophysics and pathology, as follows. RBCs must withstand large mechanical deformations during repeated passages through the microvasculature and the fenestrated walls of the splenic sinusoids. This essential ability is diminished with senescence, resulting in physiological destruction of the aging RBCs. Pathological destruction of the red cells, however, occurs in cells affected by a host of diseases such as spherocytosis, malaria, and Sickle cell disease, as RBCs depart from their normal discoid shape and lose their deformability. Therefore, quantifying the RBC deformability insight into a variety of problems regarding the interplay of cell structure, dynamics, and function. Furthermore, the ability to monitor mechanical properties of RBCs is of vital interest in monitoring disease progression or response to treatment as molecular and pharmaceutical approaches for treatment of chronic diseases. Here, we present the measurements of dynamic membrane fluctuations in live cells using quantitative phase imaging techniques. Measuring both the 3-D refractive index maps and the dynamic phase images of live cells are simultaneously measured, from which dynamic membrane fluctuation and deformability of cells are precisely calculated. We also present its applications to various diseases ranging from sickle cell diseases, babesiosis, and to diabetes.

  3. Crystallinity dependent thermal degradation in organic solar cell

    Science.gov (United States)

    Lee, Hyunho; Sohn, Jiho; Tyagi, Priyanka; Lee, Changhee

    2017-01-01

    An operating solar cell undergoes solar heating; thus, the degradation study of organic photo-voltaic (OPV) with a thermal stress is required for their practical applications. We present a thermal degradation study on OPVs fabricated with photo-active polymers having different crystalline phase. Light intensity dependent analysis for different thermal stress duration is performed. In crystalline, the degradation majorly occurs due to drop in open-circuit voltage while in amorphous one it is due to drop in short-circuit current. Physical mechanism in both systems is explained and supported by the X-ray diffraction, morphological and optical characterization.

  4. PHASE STRUCTURE AND THERMAL BEHAVIOR OF LIQUID CRYSTALLINE MULTI-BLOCK COPOLYMERS,POLY[1,6-BIS(4-OXYBENZOYL-OXY)HEXANE TEREPHTHALATE]-b-BISPHENOL A POLYCARBONATE

    Institute of Scientific and Technical Information of China (English)

    Hui-qing Zhang; Xiong-yan Zhao; De-shan Liu; Qi-xiang Zhou

    1999-01-01

    Liquid crystalline multi-block copolymers poly[1,6-bis(4-oxybenzoyl-oxy)hexane terephthalate]-b-bisphenol A polycarbonate (PHTH-6-b-PC) with different segments of polycarbonate (PC) and thermotropic polyester PHTH-6 were synthesized in tetrachloroethane at 144~146℃. The influence of segment length on the resulting phase structure and thermal behavior of block copolymers was also discussed. It is demonstrated by TEM and DMA that the resulting block copolymers show a considerable microphase separation. The degree of phase separation and the thermal behavior of the block copolymers are strongly dependent on the molecular weight of the segments incorporated.

  5. A global sensitivity analysis of two-phase flow between fractured crystalline rock and bentonite with application to spent nuclear fuel disposal

    Science.gov (United States)

    Dessirier, Benoît; Frampton, Andrew; Jarsjö, Jerker

    2015-11-01

    Geological disposal of spent nuclear fuel in deep crystalline rock is investigated as a possible long term solution in Sweden and Finland. The fuel rods would be cased in copper canisters and deposited in vertical holes in the floor of deep underground tunnels, embedded within an engineered bentonite buffer. Recent experiments at the Äspö Hard Rock Laboratory (Sweden) showed that the high suction of unsaturated bentonite causes a de-saturation of the adjacent rock at the time of installation, which was also independently predicted in model experiments. Remaining air can affect the flow patterns and alter bio-geochemical conditions, influencing for instance the transport of radionuclides in the case of canister failure. However, thus far, observations and model realizations are limited in number and do not capture the conceivable range and combination of parameter values and boundary conditions that are relevant for the thousands of deposition holes envisioned in an operational final repository. In order to decrease this knowledge gap, we introduce here a formalized, systematic and fully integrated approach to study the combined impact of multiple factors on air saturation and dissolution predictions, investigating the impact of variability in parameter values, geometry and boundary conditions on bentonite buffer saturation times and on occurrences of rock de-saturation. Results showed that four parameters consistently appear in the top six influential factors for all considered output (target) variables: the position of the fracture intersecting the deposition hole, the background rock permeability, the suction representing the relative humidity in the open tunnel and the far field pressure value. The combined influence of these compared to the other parameters increases as one targets a larger fraction of the buffer reaching near-saturation. Strong interaction effects were found, which means that some parameter combinations yielded results (e.g., time to

  6. A global sensitivity analysis of two-phase flow between fractured crystalline rock and bentonite with application to spent nuclear fuel disposal.

    Science.gov (United States)

    Dessirier, Benoît; Frampton, Andrew; Jarsjö, Jerker

    2015-11-01

    Geological disposal of spent nuclear fuel in deep crystalline rock is investigated as a possible long term solution in Sweden and Finland. The fuel rods would be cased in copper canisters and deposited in vertical holes in the floor of deep underground tunnels, embedded within an engineered bentonite buffer. Recent experiments at the Äspö Hard Rock Laboratory (Sweden) showed that the high suction of unsaturated bentonite causes a de-saturation of the adjacent rock at the time of installation, which was also independently predicted in model experiments. Remaining air can affect the flow patterns and alter bio-geochemical conditions, influencing for instance the transport of radionuclides in the case of canister failure. However, thus far, observations and model realizations are limited in number and do not capture the conceivable range and combination of parameter values and boundary conditions that are relevant for the thousands of deposition holes envisioned in an operational final repository. In order to decrease this knowledge gap, we introduce here a formalized, systematic and fully integrated approach to study the combined impact of multiple factors on air saturation and dissolution predictions, investigating the impact of variability in parameter values, geometry and boundary conditions on bentonite buffer saturation times and on occurrences of rock de-saturation. Results showed that four parameters consistently appear in the top six influential factors for all considered output (target) variables: the position of the fracture intersecting the deposition hole, the background rock permeability, the suction representing the relative humidity in the open tunnel and the far field pressure value. The combined influence of these compared to the other parameters increases as one targets a larger fraction of the buffer reaching near-saturation. Strong interaction effects were found, which means that some parameter combinations yielded results (e.g., time to

  7. Photometric Measurements of H2O Ice Crystallinity on Trans-Neptunian Objects

    Science.gov (United States)

    Terai, Tsuyoshi; Itoh, Yoichi; Oasa, Yumiko; Furusho, Reiko; Watanabe, Junichi

    2016-08-01

    We present a measurement of H2O ice crystallinity on the surface of trans-neptunian objects with near-infrared narrow-band imaging. The newly developed photometric technique allows us to efficiently determine the strength of a 1.65 μm absorption feature in crystalline H2O ice. Our data for three large objects—Haumea, Quaoar, and Orcus—which are known to contain crystalline H2O ice on the surfaces, show a reasonable result with high fractions of the crystalline phase. It can also be pointed out that if the grain size of H2O ice is larger than ˜20 μm, the crystallinities of these objects are obviously below 1.0, which suggests the presence of the amorphous phase. In particular, Orcus exhibits a high abundance of amorphous H2O ice compared to Haumea and Quaoar, possibly indicating a correlation between the bulk density of the bodies and the degree of surface crystallization. We also found the presence of crystalline H2O ice on Typhon and 2008 AP129, both of which are smaller than the minimum size limit for inducing cryovolcanism as well as a transition from amorphous to crystalline phase through thermal evolution due to the decay of long-lived isotopes. Based on data collected at Subaru Telescope, which is operated by the National Astronomical Observatory of Japan (NAOJ).

  8. Crystalline 'Genes' in Metallic Liquids

    CERN Document Server

    Sun, Yang; Ye, Zhuo; Fang, Xiaowei; Ding, Zejun; Wang, Cai-Zhuang; Mendelev, Mikhail I; Ott, Ryan T; Kramer, M J; Ho, Kai-Ming

    2014-01-01

    The underlying structural order that transcends the liquid, glass and crystalline states is identified using an efficient genetic algorithm (GA). GA identifies the most common energetically favorable packing motif in crystalline structures close to the alloy's Al-10 at.% Sm composition. These motifs are in turn compared to the observed packing motifs in the actual liquid structures using a cluster-alignment method which reveals the average topology. Conventional descriptions of the short-range order, such as Voronoi tessellation, are too rigid in their analysis of the configurational poly-types when describing the chemical and topological ordering during transition from undercooled metallic liquids to crystalline phases or glass. Our approach here brings new insight into describing mesoscopic order-disorder transitions in condensed matter physics.

  9. Rock glacier outflows may adversely affect lakes: lessons from the past and present of two neighboring water bodies in a crystalline-rock watershed.

    Science.gov (United States)

    Ilyashuk, Boris P; Ilyashuk, Elena A; Psenner, Roland; Tessadri, Richard; Koinig, Karin A

    2014-06-03

    Despite the fact that rock glaciers are one of the most common geomorphological expressions of mountain permafrost, the impacts of their solute fluxes on lakes still remain largely obscure. We examined water and sediment chemistry, and biota of two neighboring water bodies with and without a rock glacier in their catchments in the European Alps. Paleolimnological techniques were applied to track long-term temporal trends in the ecotoxicological state of the water bodies and to establish their baseline conditions. We show that the active rock glacier in the mineralized catchment of Lake Rasass (RAS) represents a potent source of acid rock drainage that results in enormous concentrations of metals in water, sediment, and biota of RAS. The incidence of morphological abnormalities in the RAS population of Pseudodiamesa nivosa, a chironomid midge, is as high as that recorded in chironomid populations inhabiting sites heavily contaminated by trace metals of anthropogenic origin. The incidence of morphological deformities in P. nivosa of ∼70% persisted in RAS during the last 2.5 millennia and was ∼40% in the early Holocene. The formation of RAS at the toe of the rock glacier most probably began at the onset of acidic drainage in the freshly deglaciated area. The present adverse conditions are not unprecedented in the lake's history and cannot be associated exclusively with enhanced thawing of the rock glacier in recent years.

  10. Quantifying structural alterations in Alzheimer's disease brains using quantitative phase imaging (Conference Presentation)

    Science.gov (United States)

    Lee, Moosung; Lee, Eeksung; Jung, JaeHwang; Yu, Hyeonseung; Kim, Kyoohyun; Yoon, Jonghee; Lee, Shinhwa; Jeong, Yong; Park, YongKeun

    2017-02-01

    Imaging brain tissues is an essential part of neuroscience because understanding brain structure provides relevant information about brain functions and alterations associated with diseases. Magnetic resonance imaging and positron emission tomography exemplify conventional brain imaging tools, but these techniques suffer from low spatial resolution around 100 μm. As a complementary method, histopathology has been utilized with the development of optical microscopy. The traditional method provides the structural information about biological tissues to cellular scales, but relies on labor-intensive staining procedures. With the advances of illumination sources, label-free imaging techniques based on nonlinear interactions, such as multiphoton excitations and Raman scattering, have been applied to molecule-specific histopathology. Nevertheless, these techniques provide limited qualitative information and require a pulsed laser, which is difficult to use for pathologists with no laser training. Here, we present a label-free optical imaging of mouse brain tissues for addressing structural alteration in Alzheimer's disease. To achieve the mesoscopic, unlabeled tissue images with high contrast and sub-micrometer lateral resolution, we employed holographic microscopy and an automated scanning platform. From the acquired hologram of the brain tissues, we could retrieve scattering coefficients and anisotropies according to the modified scattering-phase theorem. This label-free imaging technique enabled direct access to structural information throughout the tissues with a sub-micrometer lateral resolution and presented a unique means to investigate the structural changes in the optical properties of biological tissues.

  11. Topology of nonsymmorphic crystalline insulators and superconductors

    Science.gov (United States)

    Shiozaki, Ken; Sato, Masatoshi; Gomi, Kiyonori

    2016-05-01

    Topological classification in our previous paper [K. Shiozaki and M. Sato, Phys. Rev. B 90, 165114 (2014), 10.1103/PhysRevB.90.165114] is extended to nonsymmorphic crystalline insulators and superconductors. Using the twisted equivariant K theory, we complete the classification of topological crystalline insulators and superconductors in the presence of additional order-two nonsymmorphic space-group symmetries. The order-two nonsymmorphic space groups include half-lattice translation with Z2 flip, glide, twofold screw, and their magnetic space groups. We find that the topological periodic table shows modulo-2 periodicity in the number of flipped coordinates under the order-two nonsymmorphic space group. It is pointed out that the nonsymmorphic space groups allow Z2 topological phases even in the absence of time-reversal and/or particle-hole symmetries. Furthermore, the coexistence of the nonsymmorphic space group with time-reversal and/or particle-hole symmetries provides novel Z4 topological phases, which have not been realized in ordinary topological insulators and superconductors. We present model Hamiltonians of these new topological phases and analytic expressions of the Z2 and Z4 topological invariants. The half-lattice translation with Z2 spin flip and glide symmetry are compatible with the existence of boundaries, leading to topological surface gapless modes protected by the order-two nonsymmorphic symmetries. We also discuss unique features of these gapless surface modes.

  12. Polypyrrole coated phase-change contrast agents for sono-photoacoustic imaging (Conference Presentation)

    Science.gov (United States)

    Li, David S.; Yoon, Soon Joon; Matula, Thomas J.; O'Donnell, Matthew; Pozzo, Lilo D.

    2017-03-01

    A new light and sound sensitive nanoemulsion contrast agent is presented. The agents feature a low boiling point liquid perfluorocarbon core and a broad light spectrum absorbing polypyrrole (PPy) polymer shell. The PPy coated nanoemulsions can reversibly convert from liquid to gas phase upon cavitation of the liquid perfluorocarbon core. Cavitation can be initiated using a sufficiently high intensity acoustic pulse or from heat generation due to light absorption from a laser pulse. The emulsions can be made between 150 and 350 nm in diameter and PPy has a broad optical absorption covering both the visible spectrum and extending into the near-infrared spectrum (peak absorption 1053 nm). The size, structure, and optical absorption properties of the PPy coated nanoemulsions were characterized and compared to PPy nanoparticles (no liquid core) using dynamic light scattering, ultraviolet-visible spectrophotometry, transmission electron microscopy, and small angle X-ray scattering. The cavitation threshold and signal intensity were measured as a function of both acoustic pressure and laser fluence. Overlapping simultaneous transmission of an acoustic and laser pulse can significantly reduce the activation energy of the contrast agents to levels lower than optical or acoustic activation alone. We also demonstrate that simultaneous light and sound cavitation of the agents can be used in a new sono-photoacoustic imaging method, which enables greater sensitivity than traditional photoacoustic imaging.

  13. The Effect of Electronic Structure on the Phases Present in High Entropy Alloys

    Science.gov (United States)

    Leong, Zhaoyuan; Wróbel, Jan S.; Dudarev, Sergei L.; Goodall, Russell; Todd, Iain; Nguyen-Manh, Duc

    2017-01-01

    Multicomponent systems, termed High Entropy Alloys (HEAs), with predominantly single solid solution phases are a current area of focus in alloy development. Although different empirical rules have been introduced to understand phase formation and determine what the dominant phases may be in these systems, experimental investigation has revealed that in many cases their structure is not a single solid solution phase, and that the rules may not accurately distinguish the stability of the phase boundaries. Here, a combined modelling and experimental approach that looks into the electronic structure is proposed to improve accuracy of the predictions of the majority phase. To do this, the Rigid Band model is generalised for magnetic systems in prediction of the majority phase most likely to be found. Good agreement is found when the predictions are confronted with data from experiments, including a new magnetic HEA system (CoFeNiV). This also includes predicting the structural transition with varying levels of constituent elements, as a function of the valence electron concentration, n, obtained from the integrated spin-polarised density of states. This method is suitable as a new predictive technique to identify compositions for further screening, in particular for magnetic HEAs.

  14. Multi-color phase imaging and sickle cell anemia (Conference Presentation)

    Science.gov (United States)

    Hosseini, Poorya; Zhou, Renjie; Yaqoob, Zahid; So, Peter T. C.

    2016-03-01

    Quantitative phase measurements at multiple wavelengths has created an opportunity for exploring new avenues in phase microscopy such as enhancing imaging-depth (1), measuring hemoglobin concentrations in erythrocytes (2), and more recently in tomographic mapping of the refractive index of live cells (3). To this end, quantitative phase imaging has been demonstrated both at few selected spectral points as well as with high spectral resolution (4,5). However, most of these developed techniques compromise imaging speed, field of view, or the spectral resolution to perform interferometric measurements at multiple colors. In the specific application of quantitative phase in studying blood diseases and red blood cells, current techniques lack the required sensitivity to quantify biological properties of interest at individual cell level. Recently, we have set out to develop a stable quantitative interferometric microscope allowing for measurements of such properties for red cells without compromising field of view or speed of the measurements. The feasibility of the approach will be initially demonstrated in measuring dispersion curves of known solutions, followed by measuring biological properties of red cells in sickle cell anemia. References: 1. Mann CJ, Bingham PR, Paquit VC, Tobin KW. Quantitative phase imaging by three-wavelength digital holography. Opt Express. 2008;16(13):9753-64. 2. Park Y, Yamauchi T, Choi W, Dasari R, Feld MS. Spectroscopic phase microscopy for quantifying hemoglobin concentrations in intact red blood cells. Opt Lett. 2009;34(23):3668-70. 3. Hosseini P, Sung Y, Choi Y, Lue N, Yaqoob Z, So P. Scanning color optical tomography (SCOT). Opt Express. 2015;23(15):19752-62. 4. Jung J-H, Jang J, Park Y. Spectro-refractometry of individual microscopic objects using swept-source quantitative phase imaging. Anal Chem. 2013;85(21):10519-25. 5. Rinehart M, Zhu Y, Wax A. Quantitative phase spectroscopy. Biomed Opt Express. 2012;3(5):958-65.

  15. Separación de fases y cristalinidad en mezclas epoxy/poli-3-hidroxibutirato Phase separation and crystallinity in epoxy/poly-3-hydroxybutyrate blends

    Directory of Open Access Journals (Sweden)

    Sebastián Tognana

    2013-01-01

    Full Text Available En este trabajo se estudiaron mezclas epoxy/poli-3-hidroxibutirato (PHB en dos proporciones distintas 90/10 y 85/15. Para ello se prepararon muestras sometiéndolas a temperaturas de 80 ºC y 120 ºC, a efectos de producir el curado del epoxy. Se analizó la separación de fases y la cristalización del PHB mediante microscopía óptica y calorimetría diferencial de barrido. Asimismo la estructura lamelar del PHB se caracterizó mediante dispersión de rayos X de bajo ángulo. Se encontraron diferencias significativas entre las dos proporciones estudiadas; mientras que la muestra 90/10 presenta miscibilidad, la muestra 85/15 indica una separación de fases. Asimismo se encontró que, sobre todo para la muestra 90/10, el epoxy afecta considerablemente la estructura lamelar del PHB. Los resultados se analizaron en términos de la competencia entre los procesos de cristalización y separación de fases.In this work, epoxy/poly-3-hydroxybutyrate (PHB blends in two different proportions, 90/10 and 85/15, were studied. For this purpose, the samples were submitted to 80ºC and 120ºC for the curing process of epoxy. The phase separation and the crystallization were analyzed using optical microscopy and differential scanning calorimetry. Likewise, the lamellar structure of PHB was characterized using small angle X-ray scattering. Significant differences between the two proportions studied were found; while the 90/10 sample presents miscibility, the 85/15 sample indicates a phase separation. Besides, the lamellar structure of PHB is affected due to the epoxy, mainly in the 90/10 sample. The results were analyzed on the basis of the competition between crystallization and phase separation processes.

  16. The van Hemmen model and effect of random crystalline anisotropy field

    Energy Technology Data Exchange (ETDEWEB)

    Morais, Denes M. de [Instituto de Física, Universidade Federal de Mato Grosso, 78060-900 Cuiabá, Mato Grosso (Brazil); Godoy, Mauricio, E-mail: mgodoy@fisica.ufmt.br [Instituto de Física, Universidade Federal de Mato Grosso, 78060-900 Cuiabá, Mato Grosso (Brazil); Arruda, Alberto S. de, E-mail: aarruda@fisica.ufmt.br [Instituto de Física, Universidade Federal de Mato Grosso, 78060-900 Cuiabá, Mato Grosso (Brazil); Silva, Jonathas N. da [Universidade Estadual Paulista, 14800-901, Araraquara, São Paulo (Brazil); Ricardo de Sousa, J. [Instituto Nacional de Sistemas Complexos, Departamento de Fisica, Universidade Federal do Amazona, 69077-000, Manaus, Amazonas (Brazil)

    2016-01-15

    In this work, we have presented the generalized phase diagrams of the van Hemmen model for spin S=1 in the presence of an anisotropic term of random crystalline field. In order to study the critical behavior of the phase transitions, we employed a mean-field Curie–Weiss approach, which allows calculation of the free energy and the equations of state of the model. The phase diagrams obtained here displayed tricritical behavior, with second-order phase transition lines separated from the first-order phase transition lines by a tricritical point. - Highlights: • Several phase diagrams are obtained for the model. • The influence of the random crystalline anisotropy field on the model is investigated. • Three ordered (spin-glass, ferromagnetic and mixed) phases are found. • The tricritical behavior is examined.

  17. Photocontrollable liquid-crystalline actuators

    Energy Technology Data Exchange (ETDEWEB)

    Yu, Haifeng [Top Runner Incubation Center for Academia-Industry Fusion and Department of Materials and Technology, Nagaoka University of Technology, 1603-1 Kamitomioka, Nagaoka 940-2188 (Japan); Ikeda, Tomiki [Chemical Resources Laboratory, Tokyo Institute of Technology, R1-11, 4259 Nagatsuta, Midori-ku, Yokohama 226-8503 (Japan)

    2011-05-17

    Coupling photochromic molecules with liquid crystalline (LC) materials enables one to reversibly photocontrol unique LC features such as phase transition, photoalignment, and molecular cooperative motion. LC elastomers show photomechanical and photomobile properties, directly converting light energy into mechanical energy. In well-defined LC block copolymers, regular patternings of nanostructures in macroscopic scales are fabricated by photo-manipulation of LC actuators. (Copyright copyright 2011 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  18. Liquid Crystalline Esters of Dibenzophenazines

    Directory of Open Access Journals (Sweden)

    Kevin John Anthony Bozek

    2015-01-01

    Full Text Available A series of esters of 2,3,6,7-tetrakis(hexyloxydibenzo[a,c]phenazine-11-carboxylic acid was prepared in order to probe the effects of the ester groups on the liquid crystalline behavior. These compounds exhibit columnar hexagonal phases over broad temperature ranges. Variations in chain length, branching, terminal groups, and the presence of cyclic groups were found to modify transition temperatures without substantially destabilizing the mesophase range.

  19. Heavy ion irradiation of crystalline water ice

    CERN Document Server

    Dartois, E; Boduch, P; Brunetto, R; Chabot, M; Domaracka, A; Ding, J J; Kamalou, O; Lv, X Y; Rothard, H; da Silveira, E F; Thomas, J C

    2015-01-01

    Under cosmic irradiation, the interstellar water ice mantles evolve towards a compact amorphous state. Crystalline ice amorphisation was previously monitored mainly in the keV to hundreds of keV ion energies. We experimentally investigate heavy ion irradiation amorphisation of crystalline ice, at high energies closer to true cosmic rays, and explore the water-ice sputtering yield. We irradiated thin crystalline ice films with MeV to GeV swift ion beams, produced at the GANIL accelerator. The ice infrared spectral evolution as a function of fluence is monitored with in-situ infrared spectroscopy (induced amorphisation of the initial crystalline state into a compact amorphous phase). The crystalline ice amorphisation cross-section is measured in the high electronic stopping-power range for different temperatures. At large fluence, the ice sputtering is measured on the infrared spectra, and the fitted sputtering-yield dependence, combined with previous measurements, is quadratic over three decades of electronic ...

  20. A study on the properties of C-doped Ge8Sb2Te11 thin films during an amorphous-to-crystalline phase transition

    Science.gov (United States)

    Park, Cheol-Jin; Kong, Heon; Lee, Hyun-Yong; Yeo, Jong-Bin

    2016-04-01

    In this work, we evaluated the structural, electrical and optical properties of carbon-doped Ge8Sb2Te11 thin films. In a previous work, GeSbTe alloys were doped with different materials in an attempt to improve the thermal stability. Ge8Sb2Te11 and carbon-doped Ge8Sb2Te11 films of 250 nm in thickness were deposited on p-type Si (100) and glass substrates by using a RF magnetron reactive co-sputtering system at room temperature. The fabricated films were annealed in a furnance in the 0 ~ 400°C temperature range. The structural properties were analyzed by using X-ray diffraction (XRD), and the result showed that the carbon-doped Ge8Sb2Te11 had a face-centeredcubic (fcc) crystalline structure and an increased crystallization temperature ( T c ). An increase in the T c leads to thermal stability in the amorphous state. The optical properties were analyzed by using an UV-Vis-IR spectrophotometer, and the result showed an increase in the optical-energy band gap ( E op ) in the crystalline materials and an increase in the E op difference (Δ E op ), which is a good effect for reducing the noise in the memory device. The electrical properties were analyzed by using a 4-point probe, which showed an increase in the sheet resistance ( R s ) in the amorphous state and the crystalline state, which means a reduced programming current in the memory device.

  1. Improved Cross Validation of a Static Ubiquitin Structure Derived from High Precision Residual Dipolar Couplings Measured in a Drug-Based Liquid Crystalline Phase

    OpenAIRE

    2014-01-01

    The antibiotic squalamine forms a lyotropic liquid crystal at very low concentrations in water (0.3-3.5% w/v), which remains stable over a wide range of temperature (1-40 °C) and pH (4-8). Squalamine is positively charged, and comparison of the alignment of ubiquitin relative to 36 previously reported alignment conditions shows that it differs substantially from most of these, but is closest to liquid crystalline cetyl pyridinium bromide. High precision residual dipolar couplings (RDCs) measu...

  2. The luteal phase after GnRH-agonist triggering of ovulation: present and future perspectives

    DEFF Research Database (Denmark)

    Humaidan, Peter; Papanikolaou, E G; Kyrou, D;

    2012-01-01

    is the use of GnRH agonist (GnRHa) which reduces or even prevents ovarian hyperstimulation syndrome (OHSS). Interestingly, the current regimens of luteal support after HCG triggering are not sufficient to secure the early implanting embryo after GnRHa triggering. This review discusses the luteal...... phase - the phase after egg transfer - necessitating hormonal support with vaginally applied progesterone to obtain ongoing pregnancies. With the introduction of the gonadotrophin-releasing hormone (GnRH) antagonist protocol (short protocol) it became possible to perform final oocyte maturation...... with a GnRH agonist instead of human chorionic gonadotrophin (HCG). The first studies applying this concept, however, showed a very poor pregnancy rate, despite standard luteal-phase support with progesterone. This review discusses the reason for the poor results and the newest studies, using GnRH agonist...

  3. Effects of hydrolysis degree and molecular weight in PVAL crystallinity; Influencia do grau de hidrolise e da massa molar na cristalinidade do VAL

    Energy Technology Data Exchange (ETDEWEB)

    Mansur, Alexandra A.P.; Oliveira, Fagner; Mansur, Herman S. [Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, MG (Brazil). Dept. de Engenharia Metalurgica e Materiais]. E-mail: hmansur@demet.ufmg.br

    2005-07-01

    Poly(vinyl alcohol) (PVAL) is a relatively simple polymer of great interest in many applications. Poly(vinyl alcohol) commercial grades vary in polymerization degree (GP) and hydrolysis degree (GH) which affect several PVAL properties including crystallinity. The aim of this work was to evaluate the influence of GH and GP on PVAL crystallinity using WAXS (Wide Angle X Ray Scattering) analysis. Based on the results, the degree of hydrolysis has presented an important influence on PVAL crystallinity. On the other hand, the amount of crystalline phase did not seem to be significantly affected by PVAL polymerization degree. (author)

  4. Crystalline Silica Primer

    Science.gov (United States)

    ,

    1992-01-01

    Crystalline silica is the scientific name for a group of minerals composed of silicon and oxygen. The term crystalline refers to the fact that the oxygen and silicon atoms are arranged in a threedimensional repeating pattern. This group of minerals has shaped human history since the beginning of civilization. From the sand used for making glass to the piezoelectric quartz crystals used in advanced communication systems, crystalline silica has been a part of our technological development. Crystalline silica's pervasiveness in our technology is matched only by its abundance in nature. It's found in samples from every geologic era and from every location around the globe. Scientists have known for decades that prolonged and excessive exposure to crystalline silica dust in mining environments can cause silicosis, a noncancerous lung disease. During the 1980's, studies were conducted that suggested that crystalline silica also was a carcinogen. As a result of these findings, crystalline silica has been regulated under the Occupational Safety and Health Administration's (OSHA) Hazard Communication Standard (HCS). Under HCS, OSHAregulated businesses that use materials containing 0.1% or more crystalline silica must follow Federal guidelines concerning hazard communication and worker training. Although the HCS does not require that samples be analyzed for crystalline silica, mineral suppliers or OSHAregulated

  5. Bietti crystalline dystrophy and choroidal neovascularisation.

    Science.gov (United States)

    Gupta, B; Parvizi, S; Mohamed, M D

    2011-02-01

    Bietti crystalline dystrophy is a rare autosomal recessive condition characterised by the presence of crystals in the retina and is followed by retinal and choroidal degeneration. We present a novel finding of juxtafoveal choroidal neovascularisation in Bietti crystalline dystrophy and demonstrate a spectral domain optical coherence tomography image of this disorder.

  6. Preparation of Porous Crystalline Spherical Titania under Atmospheric Liquid Phase Conditions%结晶二氧化钛多孔球的常压液相制备

    Institute of Scientific and Technical Information of China (English)

    申乾宏; 黎胜; 宗建娟; 杨辉

    2009-01-01

    Porous crystalline spherical titania was facilely prepared by treating the organic titanium precursor spheres with boiling water. The spherical titania was characterized by X-ray diffraction, scanning electron mi-croscopy and transmission electron microscopy. The probable mechanism for formation of anatase nanocrystal and the morphology change of precursor spheres was also discussed. The results demonstrate that extending the treating time in boiling water is helpful for the formation of porous structure as well as the crystallization of nanoparticles. With increasing in treating time, the surface of the procursor spheres become rougher and rougher, and the crys-tallinity of anatase titania improves gradually. The forming mechanism of porous structure and anatase nanoerystal is attributed to the complete in-situ hydrolysis and condensation of the organic titanium precursor spheres in boiling water.%利用沸水处理有机钛前驱体球较为便捷地制备出结晶二氧化钛多孔球,采用XRD、SEM和TEM对二氧化钛球进行表征,并探讨了二氧化钛球锐钛矿纳米晶形成以及形貌变化的机理.结果表明:延长沸水处理时间有利于多孔结构的形成和纳米粒子的晶化,随处理时间的增加,前驱体球表面变得越来越粗糙,二氧化钛结晶度也逐渐增强.其形成机理主要归因于沸水处理过程中有机钛前驱体球原位发生的完全水解和聚合.

  7. Design of a sensitive grating-based phase contrast mammography prototype (Conference Presentation)

    Science.gov (United States)

    Arboleda Clavijo, Carolina; Wang, Zhentian; Köhler, Thomas; van Stevendaal, Udo; Martens, Gerhard; Bartels, Matthias; Villanueva-Perez, Pablo; Roessl, Ewald; Stampanoni, Marco

    2017-03-01

    Grating-based phase contrast mammography can help facilitate breast cancer diagnosis, as several research works have demonstrated. To translate this technique to the clinics, it has to be adapted to cover a large field of view within a limited exposure time and with a clinically acceptable radiation dose. This indicates that a straightforward approach would be to install a grating interferometer (GI) into a commercial mammography device. We developed a wave propagation based optimization method to select the most convenient GI designs in terms of phase and dark-field sensitivities for the Philips Microdose Mammography (PMM) setup. The phase sensitivity was defined as the minimum detectable breast tissue electron density gradient, whereas the dark-field sensitivity was defined as its corresponding signal-to-noise Ratio (SNR). To be able to derive sample-dependent sensitivity metrics, a visibility reduction model for breast tissue was formulated, based on previous research works on the dark-field signal and utilizing available Ultra-Small-Angle X-ray Scattering (USAXS) data and the outcomes of measurements on formalin-fixed breast tissue specimens carried out in tube-based grating interferometers. The results of this optimization indicate the optimal scenarios for each metric are different and fundamentally depend on the noise behavior of the signals and the visibility reduction trend with respect to the system autocorrelation length. In addition, since the inter-grating distance is constrained by the space available between the breast support and the detector, the best way we have to improve sensitivity is to count on a small G2 pitch.

  8. A reconfigurable parity-time symmetric meta-atom for polarization and phase control (Conference Presentation)

    Science.gov (United States)

    Baum, Brian; Dionne, Jennifer; Alaeian, Hadiseh; Jankovic, Vladan; Lawrence, Mark

    2016-09-01

    Metasurfaces offer exotic optical properties, which often originate from carefully designed material geometries. With locked geometries, these metasurfaces are difficult or impossible to change post-fabrication. Here, we theoretically explore a nano-scale coaxial structure capable of adjustably manipulating the polarization, phase, and spatial distribution of light through the introduction of parity-time (PT) symmetric perturbations. Coaxial waveguides possess degenerate modes, corresponding to different orbital angular momentum (OAM) states. The degeneracy of OAM modes can be lifted through the introduction of any non-zero amount of gain and loss into the structure in a way that matches the azimuthal periodicity of the degenerate mode pair. New hybrid complex conjugate modes are created which lose their pure OAM nature and are either amplifying or lossy. We confirm this behavior using both a Hamiltonian formulation and degenerate perturbation theory, and propose this selective excitation and absorption scheme as a new method of filtering for mode division multiplexing in on-chip nanophotonic systems. In addition to the creation of new hybrid modes, we show that these PT-symmetric perturbations in coaxial apertures are capable of converting incident circularly polarized light into linearly polarized light with unity efficiency. Further, due to the localization of field intensity within the gain sections, it is possible to rotate linear polarization and induce up to a pi-phase shift. We describe how our PT-symmetric coaxial aperture could function as a reconfigurable meta-atom for phase, amplitude, and polarization controlled meta-surfaces, and discuss routes toward unity-efficiency, reconfigurable holography.

  9. On some liquid crystalline phases exhibited by compounds made of bent-core molecules and their mixtures with rod-like molecules

    Indian Academy of Sciences (India)

    R Pratibha; N V Madhusudana; B K Sadashiva

    2003-08-01

    In most homologous series of compounds made of bent-core (BC) molecules, the B2, B1 and B6 phases occur as the chain length decreases. We have studied binary mixtures of the compound 1,3-phenylene bis[4-(3-methylbenzoyloxy)]4'--dodecylbiphenyl 4'-carboxylate (BC12) which exhibits the B2 phase with the compound 4-biphenylyl 4''--undecyloxybenzoate (BO11) made of rod-like (R) molecules. We find the above sequence of occurrence of the B phases with increasing concentration of BO11. In this paper we describe the physical origin for the formation of these phases in both pure compounds and in the mixtures. We have also found the occurrence of the biaxial smectic A phase when the BO11 concentration is increased to 87–95.5 mol%. We also report on another binary system composed of BC12 and 4--octyloxy 4'- cyanobiphenyl (8OCB) made of R molecules. This system exhibits the biaxial smectic A phase down to 30°C. Using polarized infrared spectroscopy we find that the mutual orientation of the R and BC molecules in the SmAdb liquid crystal is such that the arrow axes of the BC molecules are along the layer normal of the partial bilayer smectic structure formed by the rods. We also describe unusual growth patterns obtained when the nematic phase transforms to the SmAdb phase in a mixture with 24 mol% of BC12.

  10. Crystalline boron nitride aerogels

    Science.gov (United States)

    Zettl, Alexander K.; Rousseas, Michael; Goldstein, Anna P.; Mickelson, William; Worsley, Marcus A.; Woo, Leta

    2017-04-04

    This disclosure provides methods and materials related to boron nitride aerogels. In one aspect, a material comprises an aerogel comprising boron nitride. The boron nitride has an ordered crystalline structure. The ordered crystalline structure may include atomic layers of hexagonal boron nitride lying on top of one another, with atoms contained in a first layer being superimposed on atoms contained in a second layer.

  11. Crystalline boron nitride aerogels

    Energy Technology Data Exchange (ETDEWEB)

    Zettl, Alexander K.; Rousseas, Michael; Goldstein, Anna P.; Mickelson, William; Worsley, Marcus A.; Woo, Leta

    2017-04-04

    This disclosure provides methods and materials related to boron nitride aerogels. In one aspect, a material comprises an aerogel comprising boron nitride. The boron nitride has an ordered crystalline structure. The ordered crystalline structure may include atomic layers of hexagonal boron nitride lying on top of one another, with atoms contained in a first layer being superimposed on atoms contained in a second layer.

  12. Hilbert phase dynamometry (HPD) for real-time measurement of cell generated forces (Conference Presentation)

    Science.gov (United States)

    Sridharan, Shamira; Li, Yanfen; Bhaduri, Basanta; Majeed, Hassaan; Dupenloup, Paul; Levine, Alex; Kilian, Kristopher A.; Popescu, Gabriel

    2016-03-01

    Traction force microscopy is the most widely used technique for studying the forces exerted by cells on deformable substrates. However, the method is computationally intense and cells have to be detached from the substrate prior to measuring the displacement map. We have developed a new method, referred to as Hilbert phase dynamometry (HPD), which yields real-time force fields and, simultaneously, cell dry mass and growth information. HPD operates by imaging cells on a deformable substrate that is patterned with a grid of fluorescent proteins. A Hilbert transform is used to extract the phase map associated with the grid deformation, which provides the displacement field. By combining this information with substrate stiffness, an elasticity model was developed to measure forces exerted by cells with high spatial resolution. In our study, we prepared 10kPa gels and them with a 2-D grid of FITC-conjugated fibrinogen/fibronectin mixture, an extracellular matrix protein to which cells adhere. We cultured undifferentiated mesenchymal stem cells (MSC), and MSCs that were in the process of undergoing adipogenesis and osteogenesis. The cells were measured over the course of 24 hours using Spatial Light Interference Microscopy (SLIM) and wide-field epi-fluorescence microscopy allowing us to simultaneously measure cell growth and the forces exerted by the cells on the substrate.

  13. Influence of deposition temperature and bias voltage on the crystalline phase of Er{sub 2}O{sub 3} thin films deposited by filtered cathodic arc

    Energy Technology Data Exchange (ETDEWEB)

    Adelhelm, Christoph, E-mail: christoph.adelhelm@ipp.mpg.de [Max-Planck-Institut fuer Plasmaphysik, Materials Research, EURATOM Association, Boltzmannstrasse 2, 85748 Garching (Germany); Pickert, Thomas [Max-Planck-Institut fuer Plasmaphysik, Materials Research, EURATOM Association, Boltzmannstrasse 2, 85748 Garching (Germany); Koch, Freimut, E-mail: freimut.koch@ipp.mpg.de [Max-Planck-Institut fuer Plasmaphysik, Materials Research, EURATOM Association, Boltzmannstrasse 2, 85748 Garching (Germany); Balden, Martin; Jahn, Stephan [Max-Planck-Institut fuer Plasmaphysik, Materials Research, EURATOM Association, Boltzmannstrasse 2, 85748 Garching (Germany); Rinke, Monika [Forschungszentrum Karlsruhe, Institute for Materials Research I, Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen (Germany); Maier, Hans [Max-Planck-Institut fuer Plasmaphysik, Materials Research, EURATOM Association, Boltzmannstrasse 2, 85748 Garching (Germany)

    2011-10-01

    Er{sub 2}O{sub 3} thin films on Eurofer steel substrates were produced by a filtered cathodic arc device, varying the substrate temperature (RT - 700 deg. C) and sample bias (0 to -450 V). The crystallographic phase was analyzed by X-ray diffraction and Raman spectroscopy. Deposition at {>=}600 deg. C without bias lead to solely formation of the cubic Er{sub 2}O{sub 3} phase. Thin films of the uncommon, monoclinic B-phase were prepared with a negative bias voltage of {>=}100 V at RT, and at temperatures {<=}500 deg. C for -250 V bias. The B-phase films exhibit a strongly textured film structure. Residual stress measurements show high compressive stress for B-phase films deposited at RT.

  14. Influence of the oxygen concentration on the formation of crystalline phases of TiO2 during the low-pressure arc-discharge plasma synthesis

    Science.gov (United States)

    Ushakov, A. V.; Karpov, I. V.; Lepeshev, A. A.

    2016-02-01

    The synthesis of titanium dioxide (TiO2) nanoparticles with different percentage of anatase and rutile phases is investigated. The synthesis is performed by controlling the oxygen percentage in the gas mixture in the plasmachemical evaporation-condensation process employing a low-pressure arc discharge. In all our experiments, the pressure in the plasmachemical reactor and the average size of particles remain constant and are 60 Pa and 6 nm, respectively. The crystal structure of synthesized TiO2 is studied using X-ray diffraction; the morphology of the particles is analyzed employing transmission electron microscopy. Using X-ray phase analysis, it is established that the concentration of the TiO2 anatase phase decreases upon a decrease in the oxygen concentration in the gas mixture. It is shown that the TiO2 anatase phase is more efficient for photocatalytic decomposition of methylene blue than the rutile phase.

  15. Effect of Flame Conditions on Crystalline Structure of TiO2 in Liquid Flame Spraying

    Institute of Scientific and Technical Information of China (English)

    LI Chang-jiu; YANG Guan-jun; WANG Yu-yue

    2004-01-01

    Nanostructured TiO2 is a most promising functional ceramic owing to its potential utilization in photocatalytical, optical and electrical applications. Nanostructured TiO2 coating was deposited through thermal spraying with liquid feedstock. Two types of crystalline structures were present in the synthesized TiO2 coating including anatase phase and rutile phase.The effect of spray flame conditions on the crystalline structure was investigated in order to control the crystalline structure of the coating. The results showed that spray distance, flame power and precursor concentration in the liquid feedstock significantly influenced phase constitutions and grain size in the coating. Anatase phase was formed at spray distance from 150 to 250mm, while rutile phase was evidently observed in the coating deposited at 100 mm. The results suggested that anatase phase was firstly formed in the coating, and rutile phase resulted from the transformation of the deposited anatase phase. The phase transformation from anatase to rutile occurred through the annealing effect of spraying flame. The control of the phase formation can be realized through flame condition and spray distance.

  16. Photometric Measurements of H2O Ice Crystallinity on Trans-Neptunian Objects

    CERN Document Server

    Terai, Tsuyoshi; Oasa, Yumiko; Furusho, Reiko; Watanabe, Junichi

    2016-01-01

    We present a measurement of H2O ice crystallinity on the surface of trans-neptunian objects (TNOs) with near-infrared narrow-band imaging. The newly developed photometric technique allows us to efficiently determine the strength of an 1.65-um absorption feature in crystalline H2O ice. Our data for three large objects, Haumea, Quaoar, and Orcus, which are known to contain crystalline H2O ice on the surfaces, show a reasonable result with high fractions of the crystalline phase. It can also be pointed out that if the H2O-ice grain size is larger than ~20 um, the crystallinities of these objects are obviously below 1.0, which suggest the presence of the amorphous phase. Especially, Orcus exhibits a high abundance of amorphous H2O ice compared to Haumea and Quaoar, possibly indicating a correlation between bulk density of the bodies and surface crystallization degree. We also found the presence of crystalline H2O ice on Typhon and 2008 AP129, both of which are smaller than the minimum size limit for inducing cryo...

  17. Recovering refractive index correlation function from measurement of tissue scattering phase function (Conference Presentation)

    Science.gov (United States)

    Rogers, Jeremy D.

    2016-03-01

    Numerous methods have been developed to quantify the light scattering properties of tissue. These properties are of interest in diagnostic and screening applications due to sensitivity to changes in tissue ultrastructure and changes associated with disease such as cancer. Tissue is considered a weak scatterer because that the mean free path is much larger than the correlation length. When this is the case, all scattering properties can be calculated from the refractive index correlation function Bn(r). Direct measurement of Bn(r) is challenging because it requires refractive index measurement at high resolution over a large tissue volume. Instead, a model is usually assumed. One particularly useful model, the Whittle-Matern function includes several realistic function types such as mass fractal and exponential. Optical scattering properties for weakly scattering media can be determined analytically from Bn(r) by applying the Rayleigh-Gans-Debye (RGD) or Born Approximation, and so measured scattering properties are used to fit parameters of the model function. Direct measurement of Bn(r) would provide confirmation that the function is a good representation of tissue or help in identifying the length scale at which changes occur. The RGD approximation relates the scattering phase function to the refractive index correlation function through a Fourier transform. This can be inverted without approximation, so goniometric measurement of the scattering can be converted to Bn(r). However, geometric constraints of the measurement of the phase function, angular resolution, and wavelength result in a band limited measurement of Bn(r). These limits are discussed and example measurements are described.

  18. Crystallization of calcium carbonate (CaCO3) in a flowing system: Influence of Cu2+ additives on induction time and crystalline phase transformation

    Science.gov (United States)

    Usmany, Y.; Putranto, W. A.; Bayuseno, A. P.; Muryanto, S.

    2016-04-01

    Scaling of calcium carbonate (CaCO3) is commonly found in piping systems in oil, gas, desalination and other chemical processes. The scale may create technical problems, leading to the reduction of heat transfer, increase of energy consumption and unscheduled equipment shutdown. This paper presents crystallization scaling experiments and evaluation of the effect of Cu2+ additives on the induction time and calcium carbonate transformation. The crystals precursors were prepared using equimolar of CaCl2 and Na2CO3 resulted in concentrations of 3000 ppm Ca2+ in the solution. The Cu2+ in amounts of 0, 1 and 10 ppm was separately added in the solution. The flow rates (20, 35, and 60 mL/min) and elevated temperatures (27, 35 and 45°C) were selected in the study. The induction time for crystallization of CaCO3 was observed by measuring the solution conductivity over time, while the phase transformation of calcium carbonate was examined by XRD method and SEM/EDX. It was found that the conductivity remained steady for a certain period reflecting to the induction time of crystal formation, and then decreased sharply afterwards,. The induction time was increased from 34 and 48 minutes in the presence of Cu additives (1 and 10 ppm), depending on the flow rates and temperature observed. In all the experiments, the Cu2+ addition leads to the reduction of mass of crystals. Apparently, the presence of Cu2+ could inhibit the CaCO3 crystallization. In the absence of Cu2+ and at elevated temperature, the crystals obtained were a mixture of vaterite and calcite. In the presence of Cu2+ and at elevated temperature, the crystals formed were aragonite and calcite. Here, the presence of Cu2+ additives might have controlled the crystal transformation of CaCO3.

  19. Crystallinity of inorganic films grown by atomic layer deposition: Overview and general trends

    Science.gov (United States)

    Miikkulainen, Ville; Leskelä, Markku; Ritala, Mikko; Puurunen, Riikka L.

    2013-01-01

    Atomic layer deposition (ALD) is gaining attention as a thin film deposition method, uniquely suitable for depositing uniform and conformal films on complex three-dimensional topographies. The deposition of a film of a given material by ALD relies on the successive, separated, and self-terminating gas-solid reactions of typically two gaseous reactants. Hundreds of ALD chemistries have been found for depositing a variety of materials during the past decades, mostly for inorganic materials but lately also for organic and inorganic-organic hybrid compounds. One factor that often dictates the properties of ALD films in actual applications is the crystallinity of the grown film: Is the material amorphous or, if it is crystalline, which phase(s) is (are) present. In this thematic review, we first describe the basics of ALD, summarize the two-reactant ALD processes to grow inorganic materials developed to-date, updating the information of an earlier review on ALD [R. L. Puurunen, J. Appl. Phys. 97, 121301 (2005)], and give an overview of the status of processing ternary compounds by ALD. We then proceed to analyze the published experimental data for information on the crystallinity and phase of inorganic materials deposited by ALD from different reactants at different temperatures. The data are collected for films in their as-deposited state and tabulated for easy reference. Case studies are presented to illustrate the effect of different process parameters on crystallinity for representative materials: aluminium oxide, zirconium oxide, zinc oxide, titanium nitride, zinc zulfide, and ruthenium. Finally, we discuss the general trends in the development of film crystallinity as function of ALD process parameters. The authors hope that this review will help newcomers to ALD to familiarize themselves with the complex world of crystalline ALD films and, at the same time, serve for the expert as a handbook-type reference source on ALD processes and film crystallinity.

  20. Synthesis and crystalline phase of monazite-type Ce{sub 1−x}Gd{sub x}PO{sub 4} solid solutions for immobilization of minor actinide curium

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Hang; Teng, Yuancheng, E-mail: tyc239@163.com; Ren, Xuetan; Wu, Lang; Liu, Haichang; Wang, Shanlin; Xu, Liuyang

    2014-01-15

    Gadolinium (Gd{sup 3+}) was used to simulate trivalent minor actinide curium (Cm{sup 3+}), and monazite-type solid solutions with composition of Ce{sub 1−x}Gd{sub x}PO{sub 4} (x = 0–1) were prepared by the solid state reaction method using Ce{sub 2}(C{sub 2}O{sub 4}){sub 3}·10H{sub 2}O, NH{sub 4}H{sub 2}PO{sub 4}, and Gd{sub 2}O{sub 3} as starting materials. The effects of Gd content on the crystalline phase and microstructure of Ce{sub 1−x}Gd{sub x}PO{sub 4} solid solutions were investigated, and the calcining parameters of Ce{sub 0.9}Gd{sub 0.1}PO{sub 4} solid solution were optimized by means of XRD, TG-DSC and SEM. The results show that pure monazite-type crystalline phase was obtained for the Ce{sub 1−x}Gd{sub x}PO{sub 4} with x = 0–1, and the incorporation of minor actinide curium simulated by gadolinium in monazite was confirmed. The change of Gd content had no significant effect on the microstructure of Ce{sub 1−x}Gd{sub x}PO{sub 4} solid solutions, and the grain size was approximately 0.1–1 μm. Besides, the optimal calcining temperature and holding time of Ce{sub 0.9}Gd{sub 0.1}PO{sub 4} solid solution were 1000 °C and 2 h, respectively.

  1. DECOVALEX-THMC Project. Task D. Long-Term Permeability/Porosity Changes in the EDZ and Near Field due to THM and THC Processes in Volcanic and Crystalline-Bentonite Systems. Phase 1 Report

    Energy Technology Data Exchange (ETDEWEB)

    Birkholzer, J.; Rutqvist, J.; Sonnenthal, E. [Lawrence Berkeley National Laboratory, CA (United States); Barr, D. [Office of Repository Development, DOE (United States)

    2007-02-15

    The general goal of this project is to encourage multidisciplinary interactive and cooperative research on modeling coupled processes in geologic formations in support of the performance assessment for underground storage of radioactive waste. Three multi-year project stages of DECOVALEX have been completed in the past decade, mainly focusing on coupled thermal-hydrological-mechanical processes. Currently, a fourth three-year project stage of DECOVALEX is under way, referred to as DECOVALEX-THMC. THMC stands for Thermal, Hydrological, Mechanical, and Chemical processes. The new project stage aims at expanding the traditional geomechanical scope of the previous DECOVALEX project stages by incorporating geochemical processes important for repository performance. The U.S. Department of Energy (DOE) leads Task D of the new DECOVALEX phase, entitled 'Long-term Permeability/Porosity Changes in the EDZ and Near Field due to THC and THM Processes for Volcanic and Crystalline-Bentonite Systems.' In its leadership role for Task D, DOE coordinates and sets the direction for the cooperative research activities of the international research teams engaged in Task D. The research program developed for Task D of DECOVALEX-THMC involves geomechanical and geochemical research areas. THM and THC processes may lead to changes in hydrological properties that are important for performance because the flow processes in the vicinity of emplacement tunnels will be altered from their initial state. Some of these changes can be permanent (irreversible), in which case they persist after the thermal conditions have returned to ambient; i.e., they will affect the entire regulatory compliance period. Geochemical processes also affect the water and gas chemistry close to the waste packages, which are relevant for waste package corrosion, buffer stability, and radionuclide transport. Research teams participating in Task D evaluate long-term THM and THC processes in two generic geologic

  2. Low-temperature polymorphic phase transition in a crystalline tripeptide L-Ala-L-Pro-Gly·H2O revealed by adiabatic calorimetry.

    Science.gov (United States)

    Markin, Alexey V; Markhasin, Evgeny; Sologubov, Semen S; Ni, Qing Zhe; Smirnova, Natalia N; Griffin, Robert G

    2015-02-05

    We demonstrate application of precise adiabatic vacuum calorimetry to observation of phase transition in the tripeptide L-alanyl-L-prolyl-glycine monohydrate (APG) from 6 to 320 K and report the standard thermodynamic properties of the tripeptide in the entire range. Thus, the heat capacity of APG was measured by adiabatic vacuum calorimetry in the above temperature range. The tripeptide exhibits a reversible first-order solid-to-solid phase transition characterized by strong thermal hysteresis. We report the standard thermodynamic characteristics of this transition and show that differential scanning calorimetry can reliably characterize the observed phase transition with <5 mg of the sample. Additionally, the standard entropy of formation from the elemental substances and the standard entropy of hypothetical reaction of synthesis from the amino acids at 298.15 K were calculated for the studied tripeptide.

  3. Low-Temperature Polymorphic Phase Transition in a Crystalline Tripeptide l-Ala-l-Pro-Gly·H2O Revealed by Adiabatic Calorimetry

    Science.gov (United States)

    Markin, Alexey V.; Markhasin, Evgeny; Sologubov, Semen S.; Ni, Qing Zhe; Smirnova, Natalia N.; Griffin, Robert G.

    2015-01-01

    We demonstrate application of precise adiabatic vacuun calorimetry to observation of phase transition in the tripeptide l-alanyl-l-prolyl-glycine monohydrate (APG) from 6 to 320 K and report the standard thermodynamic properties of the tripeptide in the entire range. Thus, the heat capacity of APG was measured by adiabatic vacuun calorimetry in the above temperature range. The tripeptide exhibits a reversible first-order solid-to-solid phase transition characterized by strong thermal hysteresis. We report the standard thermodynamic characteristics of this transition and show that differential scanning calorimetry can reliably characterize the observed phase transition with <5 mg of the sample. Additionally, the standard entropy of formation from the elemental substances and the standard entropy of hypothetical reaction of synthesis from the amino acids at 298.15 K were calculated for the studied tripeptide. PMID:25588051

  4. Liquid crystalline thermosetting polyimides. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Hoyt, A.E.; Huang, S.J. [Connecticut Univ., Storrs, CT (United States). Inst. of Materials Science

    1993-07-01

    Phase separation of rodlike reinforcing polymers and flexible coil matrix polymers is a common problem in formulating molecular composites. One way to reduce phase separation might be to employ liquid crystalline thermosets as the matrix material. In this work, functionally terminated polyimide oligomers which exhibit lyotropic liquid crystalline behavior were successfully prepared. Materials based on 2,2{prime}-bis(trifluoromethyl)-4,4{prime}-diaminobiphenyl and 3,3{prime},4,4{prime}-biphenylenetetra-carboxylic dianhydride have been synthesized and characterized.

  5. Improved cross validation of a static ubiquitin structure derived from high precision residual dipolar couplings measured in a drug-based liquid crystalline phase.

    Science.gov (United States)

    Maltsev, Alexander S; Grishaev, Alexander; Roche, Julien; Zasloff, Michael; Bax, Ad

    2014-03-12

    The antibiotic squalamine forms a lyotropic liquid crystal at very low concentrations in water (0.3-3.5% w/v), which remains stable over a wide range of temperature (1-40 °C) and pH (4-8). Squalamine is positively charged, and comparison of the alignment of ubiquitin relative to 36 previously reported alignment conditions shows that it differs substantially from most of these, but is closest to liquid crystalline cetyl pyridinium bromide. High precision residual dipolar couplings (RDCs) measured for the backbone (1)H-(15)N, (15)N-(13)C', (1)H(α)-(13)C(α), and (13)C'-(13)C(α) one-bond interactions in the squalamine medium fit well to the static structural model previously derived from NMR data. Inclusion into the structure refinement procedure of these RDCs, together with (1)H-(15)N and (1)H(α)-(13)C(α) RDCs newly measured in Pf1, results in improved agreement between alignment-induced changes in (13)C' chemical shift, (3)JHNHα values, and (13)C(α)-(13)C(β) RDCs and corresponding values predicted by the structure, thereby validating the high quality of the single-conformer structural model. This result indicates that fitting of a single model to experimental data provides a better description of the average conformation than does averaging over previously reported NMR-derived ensemble representations. The latter can capture dynamic aspects of a protein, thus making the two representations valuable complements to one another.

  6. Study of clay chemical composition in formation of new phases in crystalline materials ceramic; Estudo da composicao quimica de argilas na formacao de novas fases cristalinas em materiais ceramicos

    Energy Technology Data Exchange (ETDEWEB)

    Lima, L.K.S.; Goncalves, W.P.; Silva, V.J.; Dias, G.; Neves, G.A.; Santana, L.N.L., E-mail: lizandralima15@gmail.com, E-mail: lisiane@dema.ufcg.edu.br [Universidade Federal de Campina Grande (UFCG), PB (Brazil). Unidade Academica de Engenharia dos Materiais

    2016-07-01

    The knowledge of the characteristics of raw materials and the behavior of these during the heat treatment is crucial before starting any manufacturing process of clay-based products. The objective of this work was to study phase transformations of clay under different heat treatments using conventional oven. To achieve the same were used two clays coming from the municipality of Cubati - PB and kaolin from an industry in the Northeast. The samples were subjected to beneficiation process, crushing, grinding and sieving and further characterized: chemical analysis, particle size, thermal and mineralogical. For heat treatment temperatures employed were 1000, 1100 and 1200 ° C, heating rate 5 ° C / min and residence time of 60min. After this step, the mineralogical characterization was performed by x-ray diffraction technique. Clays with larger particle size fraction below 2um and greater amount of flux oxides showed higher amount of mullite for the temperatures studied. The results also showed nucleation of mullite phase from 1100 °C, a band 2theta in the range of between 20 and 25°, characteristic of amorphous silica and the temperature rise was observed intensification of crystalline phases. (author)

  7. Evolution of the crystalline structure in (Bi{sub 0}.5Na{sub 0}.5){sub 1}-xBaxTiO{sub 3} thin films around the Morpho tropic Phase Boundary

    Energy Technology Data Exchange (ETDEWEB)

    Perez-Mezcua, D.; Calzada, M. L.; Bretos, I.; Ricote, J.; Chateigner, D.; Escobar-Galindo, R.; Jimenez, R.; Sirera, R.

    2014-02-01

    (Bi{sub 0}.5Na{sub 0}.5){sub 1}-xBa{sub x}TiO{sub 3} (BNBT), which exhibits compositions for the morphotropic phase boundary (MPB) where exist an intimate coexistence of the rhombohedral and tetragonal structures, is being considered as promising lead-free alternative to the well known Pb(Zr{sub x},Ti{sub 1}-x)O{sub 3} (PZT). In this work, BNBT thin films were fabricated by chemical solution deposition (CSD) with a wide range of compositions (x{approx}{approx}0.050-0.150) onto Pt/TiO{sub 2}/SiO{sub 2}/(100)Si substrates. Structural studies by X-ray diffraction ({lambda}Cu{approx}1.5406 A) using a four-circle goniometer were carried out to determine the crystalline structure of the films. Rietveld analysis of the experimental X-ray patterns showed different volume fractions of the rhombohedral and tetragonal phases as a function of the Ba{sup 2}+ content and the coexistence of both phases, characteristic of a MPB region, for x{approx}­0.055-0.080. Finally, Rutherford backscattering experiments (RBS) were performed to determine the compositional profile of the films. This study revealed a homogenous composition of the BNBT films with abrupt film/substrate interfaces. (Author)

  8. Wave path calculation for phased array imaging to evaluate weld zone of elbow pipes (Conference Presentation)

    Science.gov (United States)

    Park, Choon-Su; Park, Jin Kyu; Choi, Wonjae; Cho, Seunghyun; Kim, Dong-Yeol; Han, Ki Hyung

    2017-04-01

    It has long been non-destructively evaluated on weld joints of various pipes which are indispensable to most of industrial structures. Ultrasound evaluation has been used to detect flaws in welding joints, but some technical deficiencies still remain. Especially, ultrasound imaging on weld of elbow pipes has many challenging issues due to varying surface along circumferential direction. Conventional ultrasound imaging has particularly focused on ultrasonic wave propagation based on ray theory. This confines the incident angle and the position of an array transducer as well. Total focusing method (TFM), however, can provide not only high resolution images but also flexibility that enables to use ultrasonic waves to every direction that they can reach. This leads us to develop a method to get images of weld zone from an elbow part that curves. It is inevitable of each ultrasonic wave from the array transducer to transmit through different media and to be reflected from the boundary with angles along the curved surface. To form a correct PA image, careful calculation is made to ensure that time delay of receive-after-transmit is correctly shifted and summed even under non-planar boundary condition. Here, a method to calculate wave paths for the zone of interest at weld joint of an elbow pipe is presented. Numerical simulations of wave propagation on an elbow pipe are made to verify the proposed method. It is also experimentally demonstrated that the proposed method is well applied to various actual pipes that contains artificial flaws with a flexible wedge.

  9. Is uracil aromatic? The enthalpies of hydrogenation in the gaseous and crystalline phases, and in aqueous solution, as tools to obtain an answer.

    Science.gov (United States)

    Galvão, Tiago L P; Rocha, Inês M; da Silva, Maria D M C Ribeiro; da Silva, Manuel A V Ribeiro

    2013-07-18

    The enthalpy of hydrogenation of uracil was derived from the experimental enthalpies of formation, in the gaseous phase, of uracil and 5,6-dihydrouracil, in order to analyze its aromaticity. The enthalpy of formation of 5,6-dihydrouracil was obtained from combustion calorimetry, Knudsen effusion technique and Calvet microcalorimetry results. High-level computational methods were tested for the enthalpy of hydrogenation of uracil, but only with G3 was possible to obtain results in agreement with the experimental ones. It was found that uracil possesses 30.0% of aromatic character in the gaseous phase. Using both implicit, explicit, and hybrid solvation methods, it was possible to obtain a reference value for the enthalpy of hydrogenation of uracil in the aqueous solution and the effect of polarity and hydrogen bonds on the aromaticity of uracil was analyzed. The value of the hydrogenation enthalpy of uracil in aqueous solution was compared with the experimental value in the crystal phase, also dominated by polarity and hydrogen bonds, derived from combustion calorimetry results. The supramolecular effects on the crystal lattice were explored by the computational simulation of π-π staking dimers and hydrogen bonded dimers.

  10. Synthesis and Phase Behavior of Branched-Arm Liquid Crystalline-Containing Isosorbide with Chiral Core%以手性核为中心的枝臂液晶的合成与相行为

    Institute of Scientific and Technical Information of China (English)

    何晓智; 韩丽; 姚丹姝; 田梅

    2013-01-01

    In this paper, three branched-arm liquid crystalline:bi-10-(4(4-(4-ethoxyl)benzoxy)biphenyl) decylic acid isosorbide ester(MA1) , bi-4-[10-(4(4-(4-ethoxyl)biphenyl)biphenyl)oxycarbonyl capryloxy] benzoic isosorbide ester(MA2), bi-3,4,5-三-[l0-(4(4-(4-ethoxyl)benzoxy)biphenyl)oxycarbonyl capryloxy] benzoic isosorbide ester (MA3), were synthesized. The structures, optical and thermodynamic properties of the liquid crystalline were investigated by FT-IR spectroscopy, 1H-NMR, differential scanning calorimetry (DSC) and polarizing optical microscopy (POM). MA1 ~ MA3 all show the cholesteric phase. MA3 which has six-arms owns more liquid crystalline texture and wide scopes of liquid crystalline phase. MA1 and MA2 have the right-hand rotation, but MA3 owns the left-hand rotation, which is opposite to the rotation of the chiral core. These branched-arm molecules turn out good fluidity and clear characteristic texture.%设计与合成了3种以异山梨醇为手性核中心的枝臂液晶分子——双-10-(4-(4-(4-乙氧基)苯甲酰氧基)联苯)氧羰基癸酸异山梨醇酯(MA1)、双-4-[10-(4-(4-(4-乙氧基)苯甲酰氧基)联苯)氧羰基癸酰氧基]苯甲(酸)异山梨醇酯(MA2)、双-3,4,5-三-[10-(4-(4-(4-乙氧基)苯甲酰氧基)联苯)氧羰基癸酰氧基]苯甲酸异山梨醇酯(MA3).通过红外光谱、核磁共振、偏光显微镜、差示扫描量热和X射线衍射等手段研究了枝臂液晶分子的结构和性能.MA1~MA3均为胆甾相液晶,且具有6个臂的MA3织构较丰富且液晶相范围也较宽.手性分子MA1、MA2为右旋,而MA3为左旋,与手性核的旋光度方向相反,具有很好的流动性及清晰的特征织构.

  11. Crystalline Silicon Dielectrics for Superconducting Qubit Circuits

    Science.gov (United States)

    Hover, David; Peng, Weina; Sendelbach, Steven; Eriksson, Mark; McDermott, Robert

    2009-03-01

    Superconducting qubit energy relaxation times are limited by microwave loss induced by a continuum of two-level state (TLS) defects in the dielectric materials of the circuit. State-of-the-art phase qubit circuits employ a micron-scale Josephson junction shunted by an external capacitor. In this case, the qubit T1 time is directly proportional to the quality factor (Q) of the capacitor dielectric. The amorphous capacitor dielectrics that have been used to date display intrinsic Q of order 10^3 to 10^4. Shunt capacitors with a Q of 10^6 are required to extend qubit T1 times well into the microsecond range. Crystalline dielectric materials are an attractive candidate for qubit capacitor dielectrics, due to the extremely low density of TLS defects. However, the robust integration of crystalline dielectrics with superconducting qubit circuits remains a challenge. Here we describe a novel approach to the realization of high-Q crystalline capacitor dielectrics for superconducting qubit circuits. The capacitor dielectric is a crystalline silicon nanomembrane. We discuss characterization of crystalline silicon capacitors with low-power microwave transport measurements at millikelvin temperatures. In addition, we report progress on integrating the crystalline capacitor process with Josephson qubit fabrication.

  12. Biocompatibility of crystalline opal nanoparticles

    Directory of Open Access Journals (Sweden)

    Hernández-Ortiz Marlen

    2012-10-01

    Full Text Available Abstract Background Silica nanoparticles are being developed as a host of biomedical and biotechnological applications. For this reason, there are more studies about biocompatibility of silica with amorphous and crystalline structure. Except hydrated silica (opal, despite is presents directly and indirectly in humans. Two sizes of crystalline opal nanoparticles were investigated in this work under criteria of toxicology. Methods In particular, cytotoxic and genotoxic effects caused by opal nanoparticles (80 and 120 nm were evaluated in cultured mouse cells via a set of bioassays, methylthiazolyldiphenyl-tetrazolium-bromide (MTT and 5-bromo-2′-deoxyuridine (BrdU. Results 3T3-NIH cells were incubated for 24 and 72 h in contact with nanocrystalline opal particles, not presented significant statistically difference in the results of cytotoxicity. Genotoxicity tests of crystalline opal nanoparticles were performed by the BrdU assay on the same cultured cells for 24 h incubation. The reduction of BrdU-incorporated cells indicates that nanocrystalline opal exposure did not caused unrepairable damage DNA. Conclusions There is no relationship between that particles size and MTT reduction, as well as BrdU incorporation, such that the opal particles did not induce cytotoxic effect and genotoxicity in cultured mouse cells.

  13. Tailoring liquid crystalline lipid nanomaterials for controlled release of macromolecules.

    Science.gov (United States)

    Bisset, Nicole B; Boyd, Ben J; Dong, Yao-Da

    2015-11-10

    Lipid-based liquid crystalline materials are being developed as drug delivery systems. However, the use of these materials for delivery of large macromolecules is currently hindered by the small size of the water channels in these structures limiting control over diffusion behaviour. The addition of the hydration-modulating agent, sucrose stearate, to phytantriol cubic phase under excess water conditions incrementally increased the size of these water channels. Inclusion of oleic acid enabled further control of swelling and de-swelling of the matrix via a pH triggerable system where at low pH the hexagonal phase is present and at higher pH the cubic phase is present. Fine control over the release of various sized model macromolecules is demonstrated, indicating future application to controlled loading and release of large macromolecules such as antibodies. Copyright © 2015 Elsevier B.V. All rights reserved.

  14. The human crystallin gene families

    Directory of Open Access Journals (Sweden)

    Wistow Graeme

    2012-12-01

    Full Text Available Abstract Crystallins are the abundant, long-lived proteins of the eye lens. The major human crystallins belong to two different superfamilies: the small heat-shock proteins (α-crystallins and the βγ-crystallins. During evolution, other proteins have sometimes been recruited as crystallins to modify the properties of the lens. In the developing human lens, the enzyme betaine-homocysteine methyltransferase serves such a role. Evolutionary modification has also resulted in loss of expression of some human crystallin genes or of specific splice forms. Crystallin organization is essential for lens transparency and mutations; even minor changes to surface residues can cause cataract and loss of vision.

  15. Synergistic Effects of Sm and C Co-Doped Mixed Phase Crystalline TiO2 for Visible Light Photocatalytic Activity

    Directory of Open Access Journals (Sweden)

    Fuchang Peng

    2017-02-01

    Full Text Available Mixed phase TiO2 nanoparticles with element doping by Sm and C were prepared via a facile sol-gel procedure. The UV-Vis light-diffuse reflectance spectroscopy analysis showed that the absorption region of co-doped TiO2 was shifted to the visible-light region, which was attributed to incorporation of samarium and carbon into the TiO2 lattice during high-temperature reaction. Samarium effectively decreased the anatase-rutile phase transformation. The grain size can be controlled by Sm doping to achieve a large specific surface area useful for the enhancement of photocatalytic activity. The photocatalytic activities under visible light irradiation were evaluated by photocatalytic degradation of methylene blue (MB. The degradation rate of MB over the Sm-C co-doped TiO2 sample was the best. Additionally, first-order apparent rate constants increased by about 4.3 times compared to that of commercial Degusssa P25 under the same experimental conditions. Using different types of scavengers, the results indicated that the electrons, holes, and •OH radicals are the main active species for the MB degradation. The high visible-light photocatalytic activity was attributed to low recombination of the photo-generated electrons and holes which originated from the synergistic effect of the co-doped ions and the heterostructure.

  16. TiO{sub 2} nanoparticles obtained by laser ablation in water: Influence of pulse energy and duration on the crystalline phase

    Energy Technology Data Exchange (ETDEWEB)

    Giorgetti, E., E-mail: emilia.giorgetti@fi.isc.cnr.it [Istituto dei Sistemi Complessi (ISC) CNR, Via Madonna del Piano 10, 50019 Sesto Fiorentino (Italy); Muniz Miranda, M.; Caporali, S. [Dipartimento di Chimica “Ugo Schiff”, Università di Firenze, Via della Lastruccia 3, 50019 Sesto Fiorentino (Italy); Canton, P. [Dipartimento di Scienze Molecolari e Nanosistemi, Università Ca’ Foscari, Via Torino, 30170 Venezia-Mestre (Italy); Marsili, P. [Istituto dei Sistemi Complessi (ISC) CNR, Via Madonna del Piano 10, 50019 Sesto Fiorentino (Italy); Dipartimento di Fisica, Università di Pisa, Largo Bruno Pontecorvo 3, 56127 Pisa (Italy); Vergari, C.; Giammanco, F. [Dipartimento di Fisica, Università di Pisa, Largo Bruno Pontecorvo 3, 56127 Pisa (Italy)

    2015-09-15

    Highlights: • Laser ablation of Ti in water at 1064 nm and comparison of ns and ps temporal regimes. • Structural and spectroscopic characterization of the colloids: TiO{sub 2} is the predominant phase. • Determination of an energy window where ps ablation produces more anatase than rutile. • Modelling of the experimental dependence of anatase/rutile yield on pulse length and energy. - Abstract: We fabricated Ti oxide nanoparticles by laser ablation of a Ti target in doubly deionized water with ps or ns pulses at a laser wavelength of 1064 nm. Electron microscopy, Raman, X-ray diffraction and X-ray photoelectron spectroscopy showed that, while with ns pulses the dominant oxide phase is rutile, with ps pulses anatase is the most abundant form in an intermediate energy window centered around 25 mJ per pulse. This experimental behavior can be described by a theoretical model which calculates the pressure and temperature evolution of the ablated material and, from this, the rutile and anatase yield.

  17. Polymorphism of Alprazolam (Xanax): a review of its crystalline phases and identification, crystallographic characterization, and crystal structure of a new polymorph (form III).

    Science.gov (United States)

    de Armas, Héctor Novoa; Peeters, Oswald M; Van den Mooter, Guy; Blaton, Norbert

    2007-05-01

    A new polymorphic form of Alprazolam (Xanax), 8-chloro-1-methyl-6-phenyl-4H-[1,2,4]triazolo-[4,3-alpha][1,4]benzodiazepine, C(17)H(13)ClN(4), has been investigated by means of X-ray powder diffraction (XRPD), single crystal X-ray diffraction, and differential scanning calorimetry (DSC). This polymorphic form (form III) was obtained during DSC experiments after the exothermic recrystallization of the melt of form I. The crystal unit cell dimensions for form III were determined from diffractometer methods. The monoclinic unit cell found for this polymorph using XRPD after indexing the powder diffractogram was confirmed by the cell parameters obtained from single crystal X-ray diffractometry on a crystal isolated from the DSC pans. The single crystal unit cell parameters are: a = 28.929(9), b = 13.844(8), c = 7.361(3) angstroms, beta = 92.82(3) degrees , V = 2944(2) angstroms(3), Z = 8, space group P2(1) (No.4), Dx = 1.393 Mg/m(3). The structure obtained from single crystal X-ray diffraction was used as initial model for Rietveld refinement on the powder diffraction data of form III. The temperature phase transformations of alprazolam were also studied using high temperature XRPD. A review of the different phases available in the Powder Diffraction File (PDF) database for this drug is described bringing some clarification and corrections.

  18. Smeared gap equations in crystalline color superconductivity

    CERN Document Server

    Ruggieri, M

    2006-01-01

    In the framework of HDET, we discuss an averaging procedure of the NJL quark-quark interaction lagrangian, treated in the mean field approximation, for the two flavor LOFF phase of QCD. This procedure gives results which are valid in domains where Ginzburg-Landau results may be questionable. We compute and compare the free energy for different LOFF crystalline structures.

  19. Bio-based ionic liquid crystalline quaternary ammonium salts: properties and applications.

    Science.gov (United States)

    Sasi, Renjith; Rao, Talasila P; Devaki, Sudha J

    2014-03-26

    In the present work, we describe the preparation, properties, and applications of novel ionic liquid crystalline quaternary ammonium salts (QSs) of 3-pentadecylphenol, a bio-based low-cost material derived from cashew nut shell liquid. Amphotropic liquid crystalline phase formation in QSs was characterized using a combination of techniques, such as DSC, PLM, XRD, SEM, and rheology, which revealed the formation of one, two, and three dimensionally ordered mesophases in different length scales. On the basis of these results, a plausible mechanism for the formation of specific modes of packing in various mesophases was proposed. Observation of anisotropic ionic conductivity and electrochemical stability suggests their application as a solid electrolyte.

  20. Anisotropic phase diagram and superconducting fluctuations of single-crystalline SmFeAsO0.85F0.15

    Science.gov (United States)

    Welp, U.; Chaparro, C.; Koshelev, A. E.; Kwok, W. K.; Rydh, A.; Zhigadlo, N. D.; Karpinski, J.; Weyeneth, S.

    2011-03-01

    We report on the specific-heat determination of the anisotropic phase diagram of single crystals of optimally doped SmFeAsO1-xFx. In zero field, we find a clear cusplike anomaly in C/T with ΔC/Tc=24 mJ/mol K2 at Tc=49.5 K. In magnetic fields along the c axis, pronounced superconducting fluctuations induce broadening and suppression of the specific-heat anomaly which can be described using three-dimensional lowest-Landau-level scaling with an upper critical field slope of -3.5 T/K and an anisotropy of Γ =8. The small value of ΔC/Tc yields a Sommerfeld coefficient γ ˜ 8 mJ/mol K2, indicating that SmFeAsO1-xFx is characterized by a modest density of states and strong coupling.

  1. The determination of the phase transition temperatures of a semifluorinated liquid crystalline biphenyl ester by impedance spectroscopy as an alternative method

    Science.gov (United States)

    Yıldız, Alptekin; Canli, Nimet Yilmaz; Karanlık, Gürkan; Ocak, Hale; Okutan, Mustafa; Eran, Belkız Bilgin

    2016-12-01

    Dielectric spectroscopy (DS) is a very powerful and important for better understanding of the molecular dynamics and relaxation phenomena in liquid crystals. The dielectric and impedance characteristics Ethyl 4-(7,7,8,8,9,9,10,10,10-nonafluorodecyloxy)biphenyl-4‧-carboxylate (ENBC) liquid crystal have been analyzed over the frequency range of 100 Hz to MHz in the temperature region from room temperature to 180 °C. The compound ENBC shows enantiotropic a smectic mesophase in a wide temperature range. The phase transition temperatures T (°C) of the liquid crystal ENBC, which were characterized by Differential Scanning Calorimetry (DSC), have been verified by the dielectric measurements and conductivity mechanisms of the ENBC. The activation energies for some selected angular frequencies have also been calculated.

  2. Photodegradation of sugarcane vinasse: evaluation of the effect of vinasse pre-treatment and the crystalline phase of TiO2

    Directory of Open Access Journals (Sweden)

    Renata Padilha de Souza

    2016-04-01

    Full Text Available In this work, photocatalysis was employed in the treatment of vinasse using TiO2 and UV light. The parameters investigated were: TiO2 phases (anatase and rutile and vinasse pre-treatments (coagulation/flocculation and dilution. The TiO2 catalysts employed were: Kronos without thermal treatment (100% anatase, calcined at 1000°C (33.5% anatase and immobilized on glass slides (100% anatase; and P25 Degussa without thermal treatment (86.6% anatase. The results showed that natural coagulant removed about 50, 85 and 97% of COD, color and turbidity, respectively. However, pre-treatment followed by photocatalysis with TiO2 87% anatase removed 67% of COD within 48h of irradiation. Bioassays with Artemia salina confirmed the efficacy of the methodology. The treatments reduced the toxicity of vinasse by up to 10 times.

  3. The determination of the phase transition temperatures of a semifluorinated liquid crystalline biphenyl ester by impedance spectroscopy as an alternative method

    Energy Technology Data Exchange (ETDEWEB)

    Yıldız, Alptekin [Istanbul Technical University, Department of Physics Engineering, Maslak, 34469 Istanbul (Turkey); Yildiz Technical University, Department of Physics, 34220 Istanbul (Turkey); Canli, Nimet Yilmaz, E-mail: niyilmaz@yahoo.com [Yildiz Technical University, Department of Physics, 34220 Istanbul (Turkey); Karanlık, Gürkan; Ocak, Hale [Yildiz Technical University, Department of Chemistry, 34220 Istanbul (Turkey); Okutan, Mustafa [Yildiz Technical University, Department of Physics, 34220 Istanbul (Turkey); Eran, Belkız Bilgin [Yildiz Technical University, Department of Chemistry, 34220 Istanbul (Turkey)

    2016-12-15

    Dielectric spectroscopy (DS) is a very powerful and important for better understanding of the molecular dynamics and relaxation phenomena in liquid crystals. The dielectric and impedance characteristics Ethyl 4-(7,7,8,8,9,9,10,10,10-nonafluorodecyloxy)biphenyl-4′-carboxylate (ENBC) liquid crystal have been analyzed over the frequency range of 100 Hz to MHz in the temperature region from room temperature to 180 °C. The compound ENBC shows enantiotropic a smectic mesophase in a wide temperature range. The phase transition temperatures T (°C) of the liquid crystal ENBC, which were characterized by Differential Scanning Calorimetry (DSC), have been verified by the dielectric measurements and conductivity mechanisms of the ENBC. The activation energies for some selected angular frequencies have also been calculated.

  4. X-Ray Diffraction Reference Intensity Ratios of Amorphous and Poorly Crystalline Phases: Implications for CheMin on the Mars Science Laboratory

    Science.gov (United States)

    Morris, R. V.; Achilles, C. N.; Chipera, S. J.; Ming, D. W.; Rampe, E. B.

    2013-01-01

    The CheMin instrument on the Mars Science Laboratory (MSL) rover Curiosity is an X-ray diffraction (XRD) and X-ray fluorescence (XRF) instrument capable of providing the mineralogical and chemical compositions of rocks and soils on the surface of Mars. CheMin uses a microfocus X-ray tube with a Co target, transmission geometry, and an energy-discriminating X-ray sensitive CCD to produce simultaneous 2-D XRD patterns and energy-dispersive X-ray histograms from powdered samples. Piezoelectric vibration of the cell is used to randomize the sample to reduce preferred orientation effects. Instrument details are provided in [1, 2, 3]. Analyses of rock and soil samples by the Mars Exploration Rovers (MER) show nanophase ferric oxide (npOx) is a significant component of the Martian global soil [4] and is thought to be one of the major contributing phases that the Curiosity rover will encounter if a soil sample is analyzed in Gale Crater. Because of the nature of this material, npOx will likely contribute to an X-ray amorphous or short-order component of a XRD pattern measured by the CheMin instrument.

  5. Spontaneous crystallinity loss of drugs in the disordered regions of poly(ethylene oxide) in the presence of water.

    Science.gov (United States)

    Marsac, Patrick J; Romary, Daniel P; Shamblin, Sheri L; Baird, Jared A; Taylor, Lynne S

    2008-08-01

    The physical stability of active pharmaceutical ingredients (APIs) formulated in the crystalline state may be compromised in the presence of excipients. In the present study, it is shown that at high relative humidity, several model crystalline drugs compacted into a matrix of poly(ethylene oxide) (PEO) may dissolve into the disordered regions of the polymer. The purpose of this project is to identify both the physicochemical properties of the API and the polymer which may lead to such a transformation and the mechanism of transformation. Crystalline drugs and PEO were physically mixed, compressed into tablets, and stored in a dessicator at 94% RH. The physical state of the drug and the polymer were determined using Raman spectroscopy and X-ray powder diffraction. The solubility of each drug in PEG 400 was measured by ultraviolet spectroscopy, the thermal properties of each compound were measured using differential scanning calorimetry, and the amount of water sorbed into these systems from the vapor phase was determined by gravimetric analysis. A spontaneous loss of crystallinity was observed for many of the model drugs when stored at high relative humidity and in the presence of PEO. In the absence of PEO, no changes in the crystalline material were observed. However, the structure of PEO was dramatically altered when exposed to high relative humidity. Specifically, it was found that PEO undergoes a very slow deliquescence increasing the disordered fraction of the polymer which facilitates the "dissolution" of the crystalline drug into these disordered regions. The degree of transformation, estimated from Raman spectroscopy, was found to qualitatively correlate with the aqueous solubility of the compounds. It can be concluded that for the systems studied here, the phase stability of the polymer was compromised at high relative humidity and the polymer underwent deliquescence. The equilibrium phase of several of the crystalline drugs studied here was then altered

  6. Using Raman spectroscopy to understand the origin of the phase transition observed in the crystalline sulfur based amino acid l-methionine

    DEFF Research Database (Denmark)

    Lima, José A.; Freire, P.T.C.; Melo, F.E.A.

    2013-01-01

    We present the Raman spectra of l-methionine (C5 H11 NO2 S) monocrystals obtained in the spectral region ranging from 3200 to 50 cm-1 at temperatures from 20 to 375 K. We investigated the dynamics of the different functional groups in l-methionine and related their behaviour to the structural tra...

  7. Using Raman spectroscopy to understand the origin of the phase transition observed in the crystalline sulfur based amino acid L-methionine

    NARCIS (Netherlands)

    Lima, Jose A.; Freire, Paulo T. C.; Melo, Francisco E. A.; Mendes Filho, J.; Fischer, Jennifer; Havenith, Remco W. A.; Broer, Ria; Bordallo, Heloisa N.; Lima Jr., José A.

    2013-01-01

    We present the Raman spectra of L-methionine (C5H11NO2S) monocrystals obtained in the spectral region ranging from 3200 to 50 cm(-1) at temperatures from 20 to 375 K. We investigated the dynamics of the different functional groups in L-methionine and related their behaviour to the structural transit

  8. Using Raman spectroscopy to understand the origin of the phase transition observed in the crystalline sulfur based amino acid l-methionine

    DEFF Research Database (Denmark)

    Lima, José A.; Freire, P.T.C.; Melo, F.E.A.;

    2013-01-01

    We present the Raman spectra of l-methionine (C5 H11 NO2 S) monocrystals obtained in the spectral region ranging from 3200 to 50 cm-1 at temperatures from 20 to 375 K. We investigated the dynamics of the different functional groups in l-methionine and related their behaviour to the structural...

  9. Using Raman spectroscopy to understand the origin of the phase transition observed in the crystalline sulfur based amino acid L-methionine

    NARCIS (Netherlands)

    Lima, Jose A.; Freire, Paulo T. C.; Melo, Francisco E. A.; Mendes Filho, J.; Fischer, Jennifer; Havenith, Remco W. A.; Broer, Ria; Bordallo, Heloisa N.; Lima Jr., José A.

    We present the Raman spectra of L-methionine (C5H11NO2S) monocrystals obtained in the spectral region ranging from 3200 to 50 cm(-1) at temperatures from 20 to 375 K. We investigated the dynamics of the different functional groups in L-methionine and related their behaviour to the structural

  10. Nano-titanium dioxide bioreactivity with human alveolar type-I-like epithelial cells: Investigating crystalline phase as a critical determinant.

    Science.gov (United States)

    Sweeney, Sinbad; Berhanu, Deborah; Ruenraroengsak, Pakatip; Thorley, Andrew J; Valsami-Jones, Eugenia; Tetley, Teresa D

    2015-05-01

    There can be significant variability between bioreactivity studies of nanomaterials that are apparently the same, possibly reflecting differences in the models used and differing sources of experimental material. In this study, we have generated two crystal forms of titanium dioxide nanoparticles (nano-TiO2), pure anatase and pure rutile to address the hypothesis that the bioreactivity of these nanoparticles with human alveolar epithelium will depend on their crystal phase. We used a human alveolar type-I-like epithelial cell model (TT1; generated in-house from primary human alveolar epithelial type II cells); these cells cover 95% of the alveolar epithelial surface area and are an important target cell for inhaled nanomaterials. Using literature as a guide, we hypothesised that pure anatase nano-TiO2 would display greater bioreactivity with TT1 cells in comparison to pure rutile nano-TiO2. However, we found the profile and pattern of inflammatory mediator release was similar between these two nano-TiO2 formats, although pure rutile treatment caused a small, but consistently greater, response for IL-6, IL-8 and MCP-1. Interestingly, the temporal induction of oxidative stress (increased reactive oxygen species levels and depleted glutathione) varied markedly between the different nano-TiO2 formats. We have shown that a combination of using nanomaterials synthesised specifically for toxicological study and the use of a highly relevant, reproducible human lung cell model, offers a useful approach to delineating the physicochemical properties of nanomaterials that may be important in their cellular reactivity.

  11. Versatile quantitative phase imaging system applied to high-speed, low noise and multimodal imaging (Conference Presentation)

    Science.gov (United States)

    Federici, Antoine; Aknoun, Sherazade; Savatier, Julien; Wattellier, Benoit F.

    2017-02-01

    Quadriwave lateral shearing interferometry (QWLSI) is a well-established quantitative phase imaging (QPI) technique based on the analysis of interference patterns of four diffraction orders by an optical grating set in front of an array detector [1]. As a QPI modality, this is a non-invasive imaging technique which allow to measure the optical path difference (OPD) of semi-transparent samples. We present a system enabling QWLSI with high-performance sCMOS cameras [2] and apply it to perform high-speed imaging, low noise as well as multimodal imaging. This modified QWLSI system contains a versatile optomechanical device which images the optical grating near the detector plane. Such a device is coupled with any kind of camera by varying its magnification. In this paper, we study the use of a sCMOS Zyla5.5 camera from Andor along with our modified QWLSI system. We will present high-speed live cell imaging, up to 200Hz frame rate, in order to follow intracellular fast motions while measuring the quantitative phase information. The structural and density information extracted from the OPD signal is complementary to the specific and localized fluorescence signal [2]. In addition, QPI detects cells even when the fluorophore is not expressed. This is very useful to follow a protein expression with time. The 10 µm spatial pixel resolution of our modified QWLSI associated to the high sensitivity of the Zyla5.5 enabling to perform high quality fluorescence imaging, we have carried out multimodal imaging revealing fine structures cells, like actin filaments, merged with the morphological information of the phase. References [1]. P. Bon, G. Maucort, B. Wattellier, and S. Monneret, "Quadriwave lateral shearing interferometry for quantitative phase microscopy of living cells," Opt. Express, vol. 17, pp. 13080-13094, 2009. [2] P. Bon, S. Lécart, E. Fort and S. Lévêque-Fort, "Fast label-free cytoskeletal network imaging in living mammalian cells," Biophysical journal, 106

  12. Gemini型表面活性剂在离子液体中构筑的溶致液晶%Lyotropic liquid crystalline phases formed by Gemini surfactants in anionic liquid

    Institute of Scientific and Technical Information of China (English)

    宋冰蕾; 陈涛; 田金年; 裴晓梅; 孟丽

    2015-01-01

    通过差示扫描量热仪(DSC)、X 射线衍射仪(XRD)、热台偏光显微镜(POM)和红外光谱仪等手段研究了Gemini表面活性剂在硝酸乙基铵(EAN)中构筑的溶致液晶体系(lyotropic liquid crystal,LLc)的性质.结果表明,在液晶区内,所形成的溶致液晶均为层状介晶A相(SmA),且EAN主要存在于液晶相分子层的极性亚层中;液晶相稳定存在的温度区间随Gemini表面活性剂的浓度、尾链长度的增加而变大,随联接链的增加表现出先增大再减小的趋势;羟基削弱了离子头基与反离子间的相互作用,进而缩小了液晶相稳定存在的温度区间.%The lyotropic liquid crystals formed by Gemini surfactants in ethyl ammonium nitrate (EAN) were investigated by differential scanning calorimetry(DSC),X ray diffractometer(XRD),polarizing microscope(POM) equipped with a hot stage and FTIR. All the surfactants form smectic A phase(SmA) in liquid crystalline region. The EAN molecules mainly exist in the polar sublayers of liquid crystals. The temperature ranges of liquid crystal phase increase with increasing Gemini surfactant alkyl chain length while show maximum with the increase of spacer length. The hydroxyl groups decrease the interactions between the ionic head groups and counterions. The temperature range of liquid crystal state is thus narrowed.

  13. Multi-crystalline silicon solidification under controlled forced convection

    Science.gov (United States)

    Cablea, M.; Zaidat, K.; Gagnoud, A.; Nouri, A.; Chichignoud, G.; Delannoy, Y.

    2015-05-01

    Multi-crystalline silicon wafers have a lower production cost compared to mono-crystalline wafers. This comes at the price of reduced quality in terms of electrical properties and as a result the solar cells made from such materials have a reduced efficiency. The presence of different impurities in the bulk material plays an important role during the solidification process. The impurities are related to different defects (dislocations, grain boundaries) encountered in multi-crystalline wafers. Applying an alternative magnetic field during the solidification process has various benefits. Impurities concentration in the final ingot could be reduced, especially metallic species, due to a convective term added in the liquid that reduces the concentration of impurities in the solute boundary layer. Another aspect is the solidification interface shape that is influenced by the electromagnetic stirring. A vertical Bridgman type furnace was used in order to study the solidification process of Si under the influence of a travelling magnetic field able to induce a convective flow in the liquid. The furnace was equipped with a Bitter type three-phase electromagnet that provides the required magnetic field. A numerical model of the furnace was developed in ANSYS Fluent commercial software. This paper presents experimental and numerical results of this approach, where interface markings were performed.

  14. Desenvolvimento de sistemas líquido-cristalinos empregando silicone fluido de co-polímero glicol e poliéter funcional siloxano Development of liquid-crystalline systems using silicon glycol copolymer and polyether functional siloxane

    Directory of Open Access Journals (Sweden)

    Marlus Chorilli

    2009-01-01

    Full Text Available For the construction of the phase diagrams, the method of the aqueous titration was used. There were prepared 5 ternary diagrams, varying the surfactant and the oil phase. The liquid-crystalline phases were identified by polarized light microscopy. The formulations prepared with silicon glycol copolymer, polyether functional siloxane (PFS and water (S1 and with diisopropyl adipate, PFS and water (S4 presented liquid-crystalline phases with lamellar arrangement. Moreover, after 15 days in hot oven (37 ºC, the formulations presented hexagonal arrangement, evidencing the influence of the temperature in the organization of the system.

  15. Ultrahigh phase-stable swept-source optical coherence tomography as a cardiac imaging platform (Conference Presentation)

    Science.gov (United States)

    Ling, Yuye; Hendon, Christine P.

    2016-02-01

    Functional extensions to optical coherence tomography (OCT) provide useful imaging contrasts that are complementary to conventional OCT. Our goal is to characterize tissue types within the myocardial due to remodeling and therapy. High-speed imaging is necessary to extract mechanical properties and dynamics of fiber orientation changes in a beating heart. Functional extensions of OCT such as polarization sensitive and optical coherence elastography (OCE) require high phase stability of the system, which is a drawback of current mechanically tuned swept source OCT systems. Here we present a high-speed functional imaging platform, which includes an ultrahigh-phase-stable swept source equipped with KTN deflector from NTT-AT. The swept source does not require mechanical movements during the wavelength sweeping; it is electrically tuned. The inter-sweep phase variance of the system was measured to be less than 300 ps at a path length difference of ~2 mm. The axial resolution of the system is 20 µm and the -10 dB fall-off depth is about 3.2 mm. The sample arm has an 8 mmx8 mm field of view with a lateral resolution of approximately 18 µm. The sample arm uses a two-axis MEMS mirror, which is programmable and capable of scanning arbitrary patterns at a sampling rate of 50 kHz. Preliminary imaging results showed differences in polarization properties and image penetration in ablated and normal myocardium. In the future, we will conduct dynamic stretching experiments with strips of human myocardial tissue to characterize mechanical properties using OCE. With high speed imaging of 200 kHz and an all-fiber design, we will work towards catheter-based functional imaging.

  16. GPU-based rapid reconstruction of cellular 3D refractive index maps from tomographic phase microscopy (Conference Presentation)

    Science.gov (United States)

    Dardikman, Gili; Shaked, Natan T.

    2016-03-01

    We present highly parallel and efficient algorithms for real-time reconstruction of the quantitative three-dimensional (3-D) refractive-index maps of biological cells without labeling, as obtained from the interferometric projections acquired by tomographic phase microscopy (TPM). The new algorithms are implemented on the graphic processing unit (GPU) of the computer using CUDA programming environment. The reconstruction process includes two main parts. First, we used parallel complex wave-front reconstruction of the TPM-based interferometric projections acquired at various angles. The complex wave front reconstructions are done on the GPU in parallel, while minimizing the calculation time of the Fourier transforms and phase unwrapping needed. Next, we implemented on the GPU in parallel the 3-D refractive index map retrieval using the TPM filtered-back projection algorithm. The incorporation of algorithms that are inherently parallel with a programming environment such as Nvidia's CUDA makes it possible to obtain real-time processing rate, and enables high-throughput platform for label-free, 3-D cell visualization and diagnosis.

  17. Fabrication of TiO2 Crystalline Coatings by Combining Ti-6Al-4V Anodic Oxidation and Heat Treatments

    Directory of Open Access Journals (Sweden)

    María Laura Vera

    2015-01-01

    Full Text Available The bio- and hemocompatibility of titanium alloys are due to the formation of a TiO2 layer. This natural oxide may have fissures which are detrimental to its properties. Anodic oxidation is used to obtain thicker films. By means of this technique, at low voltages oxidation, amorphous and low roughness coatings are obtained, while, above a certain voltage, crystalline and porous coatings are obtained. According to the literature, the crystalline phases of TiO2, anatase, and rutile would present greater biocompatibility than the amorphous phase. On the other hand, for hemocompatible applications, smooth and homogeneous surfaces are required. One way to obtain crystalline and homogeneous coatings is by heat treatments after anodic oxidation. The aim of this study is to evaluate the influence of heat treatments on the thickness, morphology, and crystalline structure of the TiO2 anodic coatings. The characterization was performed by optical and scanning electron microscopy, X-ray diffraction, and X-ray reflectometry. Coatings with different colors of interference were obtained. There were no significant changes in the surface morphology and roughness after heat treatment of 500°C. Heat treated coatings have different proportions of the crystalline phases, depending on the voltage of anodic oxidation and the temperature of the heat treatment.

  18. Fabrication of TiO2 Crystalline Coatings by Combining Ti-6Al-4V Anodic Oxidation and Heat Treatments

    Science.gov (United States)

    Schvezov, Carlos Enrique; Ares, Alicia Esther

    2015-01-01

    The bio- and hemocompatibility of titanium alloys are due to the formation of a TiO2 layer. This natural oxide may have fissures which are detrimental to its properties. Anodic oxidation is used to obtain thicker films. By means of this technique, at low voltages oxidation, amorphous and low roughness coatings are obtained, while, above a certain voltage, crystalline and porous coatings are obtained. According to the literature, the crystalline phases of TiO2, anatase, and rutile would present greater biocompatibility than the amorphous phase. On the other hand, for hemocompatible applications, smooth and homogeneous surfaces are required. One way to obtain crystalline and homogeneous coatings is by heat treatments after anodic oxidation. The aim of this study is to evaluate the influence of heat treatments on the thickness, morphology, and crystalline structure of the TiO2 anodic coatings. The characterization was performed by optical and scanning electron microscopy, X-ray diffraction, and X-ray reflectometry. Coatings with different colors of interference were obtained. There were no significant changes in the surface morphology and roughness after heat treatment of 500°C. Heat treated coatings have different proportions of the crystalline phases, depending on the voltage of anodic oxidation and the temperature of the heat treatment. PMID:25784939

  19. Nanoconfinement crystallization of frustrated alkyl groups: crossover of mesophase to crystalline structure.

    Science.gov (United States)

    Shi, Haifeng; Wang, Haixia; Xin, John H; Zhang, Xingxiang; Wang, Dujin

    2011-04-07

    Crossover of mesophase to crystalline structure in the nanoconfinement crystallization process of frustrated side groups elucidates the critical crystal thickness d(c) or the length scale of side groups, which defines the transition process from mesophase (hexagonal and monoclinic phase) to crystalline phase (orthorhombic phase) of confined CH(2) sequences in a given crystal size restriction.

  20. The crystalline fraction of interstellar silicates in starburst galaxies

    CERN Document Server

    Kemper, F; Woods, Paul M

    2010-01-01

    We present a model using the evolution of the stellar population in a starburst galaxy to predict the crystallinity of the silicates in the interstellar medium of this galaxy. We take into account dust production in stellar ejecta, and amorphisation and destruction in the interstellar medium and find that a detectable amount of crystalline silicates may be formed, particularly at high star formation rates, and in case supernovae are efficient dust producers. We discuss the effect of dust destruction and amorphisation by supernovae, and the effect of a low dust-production efficiency by supernovae, and find that when taking this into account, crystallinity in the interstellar medium becomes hard to detect. Levels of 6.5-13% crystallinity in the interstellar medium of starburst galaxies have been observed and thus we conclude that not all these crystalline silicates can be of stellar origin, and an additional source of crystalline silicates associated with the Active Galactic Nucleus must be present.

  1. Characterization of crystalline structures in Opuntia ficus-indica

    OpenAIRE

    Contreras-Padilla, Margarita; Rivera-Muñoz, Eric M.; Gutiérrez-Cortez, Elsa; del López, Alicia Real; Rodríguez-García, Mario Enrique

    2014-01-01

    This research studies the crystalline compounds present in nopal (Opuntia ficus-indica) cladodes. The identification of the crystalline structures was performed using X-ray diffraction, scanning electron microscopy, mass spectrometry, and Fourier transform infrared spectroscopy. The crystalline structures identified were calcium carbonate (calcite) [CaCO3], calcium-magnesium bicarbonate [CaMg(CO3)2], magnesium oxide [MgO], calcium oxalate monohydrate [Ca(C2O4)•(H2O)], potassium peroxydiphosph...

  2. Structural changes in bunched crystalline ion beams

    CERN Document Server

    Bussmann, M; Schätz, T; Habs, D

    2003-01-01

    Measurements of the spatial distribution of bunched crystalline ion beams in the radio frequency quadrupole storage ring PALLAS are presented for different ratios of the longitudinal and the transverse confinement strengths. The length of highly elongated crystalline ion bunches and its dependence on the bunching voltage is compared to predictions for a one-dimensional ion string and three-dimensional space-charge-dominated beams. The length is found to be considerably shorter than that predicted by the models. Furthermore, the scaling of the length with the bunching voltage is shown to differ from the expected inverse cube root scaling. These differences can partially be attributed to the formation of a mixed crystalline structure. Additionally, a concise mapping of the structural transition from a string to a zig-zag configuration as a function of the ratio of the confinement strengths is presented, which in a similar way deviates from the predictions.

  3. Crystalline mesoporous metal oxide

    Institute of Scientific and Technical Information of China (English)

    Wenbo Yue; Wuzong Zhou

    2008-01-01

    Since the discovery of many types of mesoporous silicas, such as SBA-15, KIT-6, FDU-12 and SBA-16, porous crystalline transition metal oxides, such as Cr2O3, Co3O4, In2O3, NiO, CeO2, WO3, Fe2O3 and MnO2, have been synthesized using the mesoporous silicas as hard templates. Several synthetic methods have been developed. These new porous materials have high potential applications in catalysis, Li-ion rechargeable batteries and gas sensors. This article gives a brief review of the research of porous crystals of metal oxides in the last four years.

  4. Mechanical, elastic and thermodynamic properties of crystalline lithium silicides

    CERN Document Server

    Schwalbe, Sebastian; Trepte, Kai; Biedermann, Franziska; Mertens, Florian; Kortus, Jens

    2016-01-01

    We investigate crystalline thermodynamic stable lithium silicides phases (LixSiy) with density functional theory (DFT) and a force-field method based on modified embedded atoms (MEAM) and compare our results with experimental data. This work presents a fast and accurate framework to calculate thermodynamic properties of crystal structures with large unit cells with MEAM based on molecular dynamics (MD). Mechanical properties like the bulk modulus and the elastic constants are evaluated in addition to thermodynamic properties including the phonon density of states, the vibrational free energy and the isochoric/isobaric specific heat capacity for Li, Li12Si7, Li7Si3, Li13Si4, Li15Si4, Li21Si5, Li17Si4, Li22Si5 and Si. For a selected phase (Li13Si4) we study the effect of a temperature dependent phonon density of states and its effect on the isobaric heat capacity.

  5. Individuals with hematological malignancies before undergoing chemotherapy present oxidative stress parameters and acute phase proteins correlated with nutritional status.

    Science.gov (United States)

    Camargo, Carolina de Quadros; Borges, Dayanne da Silva; de Oliveira, Paula Fernanda; Chagas, Thayz Rodrigues; Del Moral, Joanita Angela Gonzaga; Durigon, Giovanna Steffanello; Dias, Bruno Vieira; Vieira, André Guedes; Gaspareto, Patrick; Trindade, Erasmo Benício Santos de Moraes; Nunes, Everson Araújo

    2015-01-01

    Hematological malignancies present abnormal blood cells that may have altered functions. This study aimed to evaluate nutritional status, acute phase proteins, parameters of cell's functionality, and oxidative stress of patients with hematological malignancies, providing a representation of these variables at diagnosis, comparisons between leukemias and lymphomas and establishing correlations. Nutritional status, C-reactive protein (CRP), albumin, phagocytic capacity and superoxide anion production of mononuclear cells, lipid peroxidation and catalase activity in plasma were evaluated in 16 untreated subjects. Main diagnosis was acute leukemia (n = 9) and median body mass index (BMI) indicated overweight (25.6 kg/m(2)). Median albumin was below (3.2 g/dL) and CRP above (37.45 mg/L) the reference values. Albumin was inversely correlated with BMI (r = -0.53). Most patients were overweight before the beginning of treatment and had a high CRP/albumin ratio, which may indicate a nutrition inflammatory risk. BMI values correlated positively with lipid peroxidation and catalase activity. A strong correlation between catalase activity and lipid peroxidation was found (r = 0.75). Besides the elevated BMI, these patients also have elevated CRP values and unexpected relations between nutritional status and albumin, reinforcing the need for nutritional counseling during the course of chemotherapy, especially considering the correlations between oxidative stress parameters and nutritional status evidenced here.

  6. DECOVALEX-THMC Project. Task D. Long-Term Permeability/Porosity Changes in the EDZ and Near Field due to THM and THC Processes in Volcanic and Crystalline-Bentonite Systems. Phase 1 Report

    Energy Technology Data Exchange (ETDEWEB)

    Birkholzer, J.; Rutqvist, J.; Sonnenthal, E. [Lawrence Berkeley National Laboratory, CA (United States); Barr, D. [Office of Repository Development, DOE (United States)

    2007-02-15

    The general goal of this project is to encourage multidisciplinary interactive and cooperative research on modeling coupled processes in geologic formations in support of the performance assessment for underground storage of radioactive waste. Three multi-year project stages of DECOVALEX have been completed in the past decade, mainly focusing on coupled thermal-hydrological-mechanical processes. Currently, a fourth three-year project stage of DECOVALEX is under way, referred to as DECOVALEX-THMC. THMC stands for Thermal, Hydrological, Mechanical, and Chemical processes. The new project stage aims at expanding the traditional geomechanical scope of the previous DECOVALEX project stages by incorporating geochemical processes important for repository performance. The U.S. Department of Energy (DOE) leads Task D of the new DECOVALEX phase, entitled 'Long-term Permeability/Porosity Changes in the EDZ and Near Field due to THC and THM Processes for Volcanic and Crystalline-Bentonite Systems.' In its leadership role for Task D, DOE coordinates and sets the direction for the cooperative research activities of the international research teams engaged in Task D. The research program developed for Task D of DECOVALEX-THMC involves geomechanical and geochemical research areas. THM and THC processes may lead to changes in hydrological properties that are important for performance because the flow processes in the vicinity of emplacement tunnels will be altered from their initial state. Some of these changes can be permanent (irreversible), in which case they persist after the thermal conditions have returned to ambient; i.e., they will affect the entire regulatory compliance period. Geochemical processes also affect the water and gas chemistry close to the waste packages, which are relevant for waste package corrosion, buffer stability, and radionuclide transport. Research teams participating in Task D evaluate long-term THM and THC processes in two generic geologic

  7. Observation of atomic collisions in crystalline solids

    CERN Document Server

    Nelson, R S; Gevers, R

    2013-01-01

    The Observation of Atomic Collisions in Crystalline Solids presents a critical account of the more important experiments which have provided the basis for a better understanding of atomic collision phenomena in crystalline solids. Collisions have been divided into two artificial regimes; primary collisions which deal with the interaction of the incident particles with the solid, and secondary collisions which deal with those events which occur as a result of lattice atoms recoiling from primary encounters. Although the book is intended principally for the experimentalist some simple theoretica

  8. Cooling and heating of crystalline ion beams

    CERN Document Server

    Schramm, U; Bussmann, M; Habs, D

    2003-01-01

    The crystallization of ion beams has recently been established in the rf quadrupole storage ring PALLAS (PAul Laser CooLing Acceleration System) for laser-cooled sup 2 sup 4 Mg sup + ion beams at an energy of about 1 eV. Yet, unexpectedly sharp constraints had to be met concerning the confinement strength and the longitudinal laser cooling rate. In this paper, related and up to now unseen heating mechanisms are pinpointed for crystalline beams. The weak but inevitable diffusive transverse heating associated with the laser cooling process itself is investigated, possibly allowing the future measurement of the latent heat of the ion crystal. As a function of the beam velocity, the influence of bending shear on the attainability of larger crystalline structures is presented. Finally, rf heating of crystalline beams of different structure is studied for discontinuous cooling.

  9. Modeling short-range delivery and collection of light: incorporating the influence of the phase function (Conference Presentation)

    Science.gov (United States)

    Post, Anouk L.; Ruis, Roosje M.; Bloemen, Paul R.; van Leeuwen, Ton G.; Sterenborg, Henricus J. C. M.; Faber, Dirk J.

    2017-02-01

    The scattering phase function (the probability distribution of the scattering angle) is intimately associated with the cellular organization and ultrastructure of tissue. Since these physical parameters change during e.g. carcinogenesis; quantification of the phase function and related parameters may allow for improved non-invasive, in vivo discrimination between healthy and diseased tissue. Furthermore, for the derivation of models to interpret measured optical signals, assumptions about the phase function of tissue are often made - regularly assuming a Modified Henyey Greenstein. However, in contrast to other optical properties, the phase function has not yet been extensively measured for different tissue types. With conventional goniometers, the exact backscatter direction of 180 degrees cannot be measured. Especially for techniques that detect backscattered light - such as Optical Coherence Tomography and Elastic Scattering spectroscopy - the details of the backward part of the phase function will have a considerable impact on the measured signal. We have therefore developed a setup that can measure the backward part of the phase function: 134 to 180 degrees. Our design is based on full field Optical Coherence Tomography. We detect all angles simultaneously with a camera, while scanning the reference mirror. The phase function scales with the amplitude of the OCT signal for each angle. We will show our results for validation measurements on two silica bead samples of 200 nm and 400 nm beads.

  10. Donor-hydrogen complexes in crystalline silicon

    NARCIS (Netherlands)

    Liang, Z.N.; Niesen, L; Haas, C; Denteneer, P.J.H.

    1996-01-01

    Experimental results are presented on the study of Sb-H complexes in crystalline silicon, employing Sb-119 --> Sn-119 source Mossbauer spectroscopy and a low-energy H implantation technique. In addition to a visible component, we observe a large decrease of the Mossbauer intensity associated with

  11. Donor-hydrogen complexes in crystalline silicon

    NARCIS (Netherlands)

    Liang, Z.N.; Niesen, L; Haas, C; Denteneer, P.J.H.

    1996-01-01

    Experimental results are presented on the study of Sb-H complexes in crystalline silicon, employing Sb-119 --> Sn-119 source Mossbauer spectroscopy and a low-energy H implantation technique. In addition to a visible component, we observe a large decrease of the Mossbauer intensity associated with th

  12. Liquid crystalline order in polymers

    CERN Document Server

    Blumstein, Alexandre

    1978-01-01

    Liquid Crystalline Order in Polymers examines the topic of liquid crystalline order in systems containing rigid synthetic macromolecular chains. Each chapter of the book provides a review of one important area of the field. Chapter 1 discusses scattering in polymer systems with liquid crystalline order. It also introduces the field of liquid crystals. Chapter 2 treats the origin of liquid crystalline order in macromolecules by describing the in-depth study of conformation of such macromolecules in their unassociated state. The chapters that follow describe successively the liquid crystalli

  13. Birefringence Measurements on Crystalline Silicon

    CERN Document Server

    Krüger, Christoph; Khalaidovski, Alexander; Steinlechner, Jessica; Nawrodt, Ronny; Schnabel, Roman; Lück, Harald

    2015-01-01

    Crystalline silicon has been proposed as a new test mass material in third generation gravitational wave detectors such as the Einstein Telescope (ET). Birefringence can reduce the interferometric contrast and can produce dynamical disturbances in interferometers. In this work we use the method of polarisation-dependent resonance frequency analysis of Fabry-Perot-cavities containing silicon as a birefringent medium. Our measurements show a birefringence of silicon along the (111) axis of the order of $\\Delta\\, n \\approx 10^{-7}$ at a laser wavelength of 1550nm and room temperature. A model is presented that explains the results of different settings of our measurements as a superposition of elastic strains caused by external stresses in the sample and plastic strains possibly generated during the production process. An application of our theory on the proposed ET test mass geometry suggests no critical effect on birefringence due to elastic strains.

  14. Homology models of human gamma-crystallins: structural study of the extensive charge network in gamma-crystallins.

    Science.gov (United States)

    Salim, Asmat; Zaidi, Zafar H

    2003-01-17

    The lens is composed of highly stable and long-lived proteins, the crystallins which are divided into alpha-, beta-, and gamma-crystallins. Human gamma-crystallins belong to the betagamma superfamily. A large number of gamma-crystallins have been sequenced and have been found to share remarkable sequence homology with each other. Some of the gamma-crystallins from various sources have also been elucidated structurally by X-ray crystallographic or NMR spectroscopic experiments. Their three-dimensional structures are also similar having consisted of two domains each possessing two Greek key motifs. In this study we have constructed the comparative or homology models of the four major human gamma-crystallins, gammaA-,gammaB-, gammaC-, and gammaD-crystallins and studied the charge network in these crystallins. Despite an overall structural similarity between these crystallins, differences in the ion pair formation do exist which is partly due to the differences in their primary sequence and partly due to the structural orientation of the neighboring amino acids. In this study, we present an elaborate analysis of these charged interactions and their formation or loss with respect to the structural changes.

  15. COLD DRAWING IN CRYSTALLINE POLYMERS

    Science.gov (United States)

    alcohols, phenol) in Nylon 6 produced changes in the crystalline structure as well as plasticizer action; these two effects must therefore be carefully...distinguished. Changes in the crystalline structure were followed by changes in the infrared spectrum. Dynamic mechanical and thermogravimetric analysis

  16. Preferential Incorporation of Azelaic Acid Units into the Crystalline Phase of the Copoly(Alkylene Dicarboxylate Derived from 1,9-Nonanediol and an Equimolar Mixture of Pimelic and Azelaic Acids

    Directory of Open Access Journals (Sweden)

    Angélica Díaz

    2015-09-01

    Full Text Available The crystalline structure of two biodegradable odd-odd polyesters (i.e., poly(nonamethylene pimelate (PES 9,7 and poly(nonamethylene azelate (PES 9,9 was investigated by means of electron and X-ray diffraction of single crystals and oriented fibers, respectively. Truncated rhombic crystals were obtained with an aspect ratio that was strongly depended on the supercooling degree. The crystalline structure of both homopolyesters was defined by an orthorhombic P21ab space group and a large unit cell containing four molecular segments with an all-trans conformation. Nevertheless, the structure in the chain axis projection was equivalent to a simpler cell containing only two segments. Crystalline lamellae were effectively degraded by lipases, starting the enzymatic attack on the lamellar surfaces. The random copolymer constituted by an equimolar amount of pimelate and azelate units (COPES 9,7/9 crystallized according to regular lamellae with a similar molecular arrangement in the chain axis projection. The structure of this copolymer was preferably conditioned by the azelate component as could be deduced from both, diffraction and spectroscopic data. Analysis of small angle X-ray scattering patterns pointed out that less crystalline lamellae with higher amorphous thickness had developed in the copolymer. This feature was interpreted as a consequence of the preferential incorporation of pimelate comonomer units in the folding surface.

  17. Effect of substrate materials on rutile crystalline orientation in plasma-sprayed TiO2 coatings

    Institute of Scientific and Technical Information of China (English)

    YANG Guan-jun; LI Chang-jiu; WANG Yu-yue

    2004-01-01

    TiO2 coatings are of technical importance owing to their promising applications to photocatalytical, electrical, optical and tribological coatings. Thermal spraying process has been widely used to deposit both metallic and nonmetallic coatings. During thermal spraying, spray particle at fully or partially melted condition is projected to a substrate and subsequently flattens, rapidly cools and solidifies. Therefore, a coating in lamellar structure is usually formed as a quenched microstructure. TiO2 coatings were deposited on different substrates through plasma spraying with fused-crushed powder in rutile phase as feedstock to reveal the crystalline orientation in the coatings. XRD results show that the coatings consist of rutile phase with a fraction of anatase phase, and the rutile phase presents a preferable crystalline orientation along [101] direction. It is found that the orientation factors of rutile phase in the thin coatings are significantly influenced by substrate materials. The thick coatings yield the same orientation factors of 0.22 to 0.23 on all substrates in spite of substrate materials. It is considered that the thermal properties of substrate materials are the dominant factors for the preferable crystalline orientation in rutile phase within plasmasprayed TiO2 coating.

  18. Microscopic and Cytological Examination of Hyperchromatic Crystalline Deposits in Phacolytic Glaucoma

    Directory of Open Access Journals (Sweden)

    Murat Hasanreisoğlu

    2014-12-01

    Full Text Available Presence of iridescent particles is a well-known clinical condition in phacolytic glaucoma patients with severe high intraocular pressure. Several articles stated that hyperchromatic crystalline deposits were cholesterol crystalline deposits. However, some articles focus on the possible oxalate content of the hyperchromatic crystalline material. Nevertheless, there are few articles which provide information about these crystalline structures at the microscopic level. The purpose of this manuscript was to report the case of a phacolytic glaucoma patient with intense crystalline accumulation in the anterior chamber and to present the microscopic features of these crystalline deposits. (Turk J Ophthalmol 2014; 44: 490-2

  19. Photo-orientation of azobenzene-containing liquid-crystalline materials by means of domain structure rearrangement.

    Science.gov (United States)

    Bogdanov, Alexey V; Vorobiev, Andrey Kh

    2013-11-07

    A novel mechanism of photo-orientation of azobenzene-containing liquid-crystalline materials is proposed. This mechanism is based on the notion of photochemically induced domain rearrangement driven by destabilization of liquid-crystalline phase in light absorbing domains due to photochemical formation of non-mesogenic cis-azobenzene moieties. The experimental evidence of photoinduced movement of a domain boundary is presented, and the velocity of this movement is measured. A mathematical model for photo-orientation of a polydomain azobenzene-containing material is formulated. The values of model parameters for a liquid-crystalline azopolymer have been measured in separate experiments. Theoretical predictions demonstrate quantitative agreement with the experimental observations.

  20. Chemical ionization mass spectrometry (CIMS may not measure all gas-phase sulfuric acid if base molecules are present

    Directory of Open Access Journals (Sweden)

    T. Kurtén

    2010-12-01

    Full Text Available The state-of-the art method for measuring atmospheric gas-phase sulfuric acid is chemical ionization mass spectrometry (CIMS based on nitrate reagent ions. Using computed proton affinities and reaction thermodynamics for the relevant charging reactions, we show that in the presence of strong bases such as amines, which tend to cluster with the sulfuric acid molecules, a significant fraction of the total gas-phase sulfuric acid may not be measured by a CIMS instrument. If this is the case, this effect has to be taken into account in the interpretation of atmospheric sulfuric acid measurement data, as well as in intercomparison of different CIMS instruments, which likely have different susceptibilities to amine-sulfuric acid clustering.

  1. Herschel/PACS observations of the 69 $\\mu m$ band of crystalline olivine around evolved stars

    CERN Document Server

    Blommaert, J A D L; Waters, L B F M; Waelkens, C; Min, M; Van Winckel, H; Molster, F; Decin, L; Groenewegen, M A T; Barlow, M; García-Lario, P; Kerschbaum, F; Posch, Th; Royer, P; Ueta, T; Vandenbussche, B; Van de Steene, G; van Hoof, P

    2014-01-01

    We present 48 Herschel/PACS spectra of evolved stars in the wavelength range of 67-72 $\\mu$m. This wavelength range covers the 69 $\\mu$m band of crystalline olivine ($\\text{Mg}_{2-2x}\\text{Fe}_{(2x)}\\text{SiO}_{4}$). The width and wavelength position of this band are sensitive to the temperature and composition of the crystalline olivine. Our sample covers a wide range of objects: from high mass-loss rate AGB stars (OH/IR stars, $\\dot M \\ge 10^{-5}$ M$_\\odot$/yr), through post-AGB stars with and without circumbinary disks, to planetary nebulae and even a few massive evolved stars. The goal of this study is to exploit the spectral properties of the 69 $\\mu$m band to determine the composition and temperature of the crystalline olivine. Since the objects cover a range of evolutionary phases, we study the physical and chemical properties in this range of physical environments. We fit the 69 $\\mu$m band and use its width and position to probe the composition and temperature of the crystalline olivine. For 27 sourc...

  2. Deformation in amorphous–crystalline nanolaminates—an effective-temperature theory and interaction between defects

    Science.gov (United States)

    Lieou, Charles K. C.; Mayeur, Jason R.; Beyerlein, Irene J.

    2017-04-01

    Experiments and atomic-scale simulations suggest that the transmission of plasticity carriers in deforming amorphous–crystalline nanolaminates is mediated by the biphase interface between the amorphous and crystalline layers. In this paper, we present a micromechanics model for these biphase nanolaminates that describes defect interactions through the amorphous–crystalline interface (ACI). The model is based on an effective-temperature framework to achieve a unified description of the slow, configurational atomic rearrangements in both phases when driven out of equilibrium. We show how the second law of thermodynamics constrains the density of defects and the rate of configurational rearrangements, and apply this framework to dislocations in crystalline solids and shear transformation zones (STZs) in amorphous materials. The effective-temperature formulation enables us to interpret the observed movement of dislocations to the ACI and the production of STZs at the interface as a ‘diffusion’ of configurational disorder across the material. We demonstrate favorable agreement with experimental findings reported in (Kim et al 2011 Adv. Funct. Mater. 21 4550–4), and demonstrate how the ACI acts as a sink of dislocations and a source of STZs.

  3. Percent {alpha} and {beta} phases present in the silicon nitride powder produced through intermediary silicon di imide; Estudo da porcentagem de fases {alpha} e {beta} presentes no po de nitreto de silicio produzido via intermediario diimida de silicio

    Energy Technology Data Exchange (ETDEWEB)

    Cavalcanti, Celso Berilo Cidade; Piorino Neto, Francisco; Shibuya, Hissao; Silva, Vitor Alexandre da; Silva, Cosme Roberto Moreira da [Centro Tecnico Aeroespacial, Sao Jose dos Campos, SP (Brazil). Inst. de Aeronautica e Espaco

    1995-12-31

    Ceramic powder must have appropriated characteristics which allow good mechanical final properties of the sintered material. The {alpha}/{beta} relationship on the starting powders is very important when we want to improve the fracture toughness. The present work evaluates the phase relationships on silicon nitride powder, produced by ammonolysis of silicon tetrachloride, by imide step, with variation of temperature and time of dimide pyrolysis. The synthesis condition was monitored and the existing {beta}-phases for the used conditions remained between 15 and 25%. (author) 1 tab.

  4. The Cosmic Crystallinity Conundrum: Clues from IRAS 17495-2534

    CERN Document Server

    Speck, Angela K; Tartar, Josh B

    2008-01-01

    Since their discovery, cosmic crystalline silicates have presented several challenges to understanding dust formation and evolution. The mid-infrared spectrum of IRAS 17495$-$2534, a highly obscured oxygen-rich asymptotic giant branch (AGB) star, is the only source observed to date which exhibits a clear crystalline silicate absorption feature. This provides an unprecedented opportunity to test competing hypotheses for dust formation. Observed spectral features suggest that both amorphous and crystalline dust is dominated by forsterite (Mg\\_2 SiO\\_4) rather than enstatite (MgSiO\\_3) or other silicate compositions. We confirm that high mass-loss rates should produce more crystalline material, and show why this should be dominated by forsterite. The presence of Mg\\_2 SiO\\_4 glass suggests that another factor (possibly C/O) is critical in determining astromineralogy. Correlation between crystallinity, mass-loss rate and initial stellar mass suggests that only the most massive AGB stars contribute significant qua...

  5. Research on the Mineral Phase and Component of Non-Crystalline and Nano-Crystalline Corrosion Products on Bronzes Unearthed from Shang Tomb in Xingan%新干商墓青铜器非晶与纳米晶锈蚀产物结构的分析研究

    Institute of Scientific and Technical Information of China (English)

    成小林; 潘路

    2012-01-01

    应用微区X射线衍射仪(μXRD)及高分辨透射电镜(HTEM)分析江西新干商墓出土的青铜器粉状锈蚀产物,结果表明锈蚀产物主要为具有锡石结构的SnO2,晶态形式为非晶与晶粒尺寸为4~5.7 nm的纳米晶共混;能谱分析表明样品中除含有大量锡外,还有少量的铜、硅、铅与铁等元素.通过对锈蚀产物的高分辨透射电镜晶格条纹像计算,说明纳米晶SnO2的晶格中并没有其他原子的掺杂;对该锈蚀产物拉曼光谱的分析研究表明,样品不含有表征SnO2的体相拉曼峰,更具有非晶SnO2的特征,而973 cm-1的弱而宽的峰表明样品含有非晶的硅酸盐类的锈蚀物,推测锈蚀产物中的少量铜、硅、铅与铁等元素应以非晶的形式存在.%The patinas on bronzes in Shang Tomb of Xingan were powdery, pale green, which were more like "bronze disease", but the mineral composition of patinas was not paratacamite or atacamite. Micro X-ray diffraction (XRD) and high performance transmission electroscope ( HTEM) showed that the patinas were mainly composed of non-crystalline and nano-crystalline SnO2, and the size of nano-crystalline particle was in the range of 4 ~ 5. 7 nm; Moreover, the energy-dispersive X-ray spectrometry showed that element tin is the primary ingredient of the sample, as well as little copper, silicon, lead and iron were detected. By studying the crystal lattice stripe image of the nanometer SnQ2, it was deduced that the chemical formula of nano-crystalline SnO2 did not include other elements; The Raman spectrum of the sample showed that there were not any characteristic peaks of SnO2, the spectrum was more like non-crystalline SnO2, and the weak and broad peak of 973 cm-1 indicated that the sample may contain silicate grains, It was inferred that little of copper, silicon, lead and iron should exist in the form of non-crystalline silicate particles.

  6. Genetics Home Reference: Bietti crystalline dystrophy

    Science.gov (United States)

    ... Understand Genetics Home Health Conditions Bietti crystalline dystrophy Bietti crystalline dystrophy Enable Javascript to view the expand/ ... boxes. Download PDF Open All Close All Description Bietti crystalline dystrophy is a disorder in which numerous ...

  7. Quantum creep in a highly crystalline two-dimensional superconductor

    Science.gov (United States)

    Saito, Yu; Kasahara, Yuichi; Ye, Jianting; Iwasa, Yoshihiro; Nojima, Tsutomu

    Conventional studies on quantum phase transitions, especially on superconductor-insulator or superconductor-metal-insulator transitions have been performed in deposited metallic thin films such as Bismuth or MoGe. Although the techniques of thin films deposition have been considerably improved, unintentional disorder such as impurities and deficiencies, generating the pinning centers, seems to still exist in such systems. The mechanical exfoliated highly crystalline two-dimensional material can be a good candidate to realize a less-disordered 2D superconductor with extremely weak pinning, combined with transfer method or ionic-liquid gating. We report on the quantum metal, namely, magnetic-field-induced metallic state observed in an ion-gated two-dimensional superconductor based on an ultra-highly crystalline layered band insulator, ZrNCl. We found that the superconducting state is extremely fragile against external magnetic fields; that is, zero resistance state immediately disappears, once an external magnetic field switches on. This is because the present system is relatively clean and the pinning potential is extremely weak, which cause quantum tunneling and flux flow of vortices, resulting in metallic ground state.

  8. Terahertz Spectroscopy of Crystalline and Non-Crystalline Solids

    DEFF Research Database (Denmark)

    Parrott, Edward P. J.; Fischer, Bernd M.; Gladden, Lynn F.

    2013-01-01

    Terahertz spectroscopy of crystalline and non-crystalline solids is probably one of the most active research fields within the terahertz community. Many potential applications, amongst which spectral recognition is probably one of the most prominent, have significantly stimulated the development...... selected examples, the potential the technique holds for various different applications. A particular focus will be given to data analysis and, in particular, how we may account for effects resulting from non-ideal sample preparation....

  9. Synthesis and Supramolecular Chemistry of Novel Liquid Crystalline Crown Ether-Substituted Phthalocyanines : Toward Molecular Wires and Molecular Ionoelectronics

    NARCIS (Netherlands)

    Nostrum, Cornelus F. van; Picken, Stephen J.; Schouten, Arend-Jan; Nolte, Roeland J.M.

    1995-01-01

    The synthesis of the metal-free and the dihydroxysilicon derivatives of tetrakis[4’,5’-bis(decoxy)benzo-18-crown-6]phthalocyanine is described. The metal-free phthalocyanine is liquid crystalline and exhibits a crystalline phase to mesophase transition at 148 °C. The structures of the crystalline ph

  10. Synthesis and Supramolecular Chemistry of Novel Liquid Crystalline Crown Ether-Substituted Phthalocyanines : Toward Molecular Wires and Molecular Ionoelectronics

    NARCIS (Netherlands)

    Nostrum, Cornelus F. van; Picken, Stephen J.; Schouten, Arend-Jan; Nolte, Roeland J.M.

    1995-01-01

    The synthesis of the metal-free and the dihydroxysilicon derivatives of tetrakis[4’,5’-bis(decoxy)benzo-18-crown-6]phthalocyanine is described. The metal-free phthalocyanine is liquid crystalline and exhibits a crystalline phase to mesophase transition at 148 °C. The structures of the crystalline

  11. Synthesis and Supramolecular Chemistry of Novel Liquid Crystalline Crown Ether-Substituted Phthalocyanines : Toward Molecular Wires and Molecular Ionoelectronics

    NARCIS (Netherlands)

    Nostrum, Cornelus F. van; Picken, Stephen J.; Schouten, Arend-Jan; Nolte, Roeland J.M.

    1995-01-01

    The synthesis of the metal-free and the dihydroxysilicon derivatives of tetrakis[4’,5’-bis(decoxy)benzo-18-crown-6]phthalocyanine is described. The metal-free phthalocyanine is liquid crystalline and exhibits a crystalline phase to mesophase transition at 148 °C. The structures of the crystalline ph

  12. Shape-memory behavior of cross-linked semi-crystalline polymers and their blends

    Directory of Open Access Journals (Sweden)

    I. Kolesov

    2015-03-01

    Full Text Available The present study deals with thermally induced one-way and invertible two-way shape-memory effect (SME in covalent networks on the basis of crystallizable (copolymers and their blends and is an attempt to generalize the results of own investigation received by the authors in the last ten years. The main focus of work clearly lies on research of covalently crosslinked binary and ternary blends having two and three crystalline phases with different thermal stability, respectively. The existence of two or three crystalline phases possessing different melting and crystallization temperatures in heterogeneous polymer networks can lead to triple-shape or even quadruple-shape behavior of such networks. However, the performed investigations point to crucial effect of phase morphology of crosslinked polymer blends on multiplicity of their shapememory behavior beside the influence of blend content, crystallinity and cross-link density of blend phases as well as of processing conditions. For instance, triple-shape memory behavior in binary blends can be realized only if the continuous phase has a lower melting temperature than the dispersed phase. Cross-linked polymer blends are a facile alternative to expensive and complex synthesis of interpenetrating or block-copolymer networks used for shape memory polymers. In addition to findings of experimental investigation of SME in crystallizable covalent polymer networks, the results of modeling their shape-memory behavior on the basis of self-developed physically reasonable model have been briefly described and discussed. Thereby, good accordance between results of theory and experiment was achieved with physically justified fitting parameters.

  13. MORPHOLOGICAL STUDIES OF A THERMOTROPIC SIDE-CHAIN LIQUID CRYSTALLINE POLYMER DURING MESOPHASE TRANSITIONS

    Institute of Scientific and Technical Information of China (English)

    Chi-bing Tan; Quan-ling Zhang; Shu-fan Zhang; Xia-yu Wang; Mao Xu

    1999-01-01

    The morphological features of a side-chain liquid crystalline polymer during the mesophase transitions were investigated by using the DSC technique. The polymer used was polyacrylate with mesogens of three benzene rings attached to the main chain through a flexible spacer. A special two-phase texture was observed in the transition temperature range. Similar to main-chain liquid crystalline polymers the transition process of the side-chain liquid crystalline polymer was composed of an initiation of the new phase at local places of the old phase matrix and a growth process of the new phase domains.

  14. Angiographic imaging using an 18.9 MHz swept-wavelength laser that is phase-locked to the data acquisition clock and resonant scanners (Conference Presentation)

    Science.gov (United States)

    Tozburun, Serhat; Blatter, Cedric; Siddiqui, Meena; Nam, Ahhyun S.; Vakoc, Benjamin J.

    2016-03-01

    In this study, we present an angiographic system comprised from a novel 18.9 MHz swept wavelength source integrated with a MEMs-based 23.7 kHz fast-axis scanner. The system provides rapid acquisition of frames and volumes on which a range of Doppler and intensity-based angiographic analyses can be performed. Interestingly, the source and data acquisition computer can be directly phase-locked to provide an intrinsically phase stable imaging system supporting Doppler measurements without the need for individual A-line triggers or post-processing phase calibration algorithms. The system is integrated with a 1.8 Gigasample (GS) per second acquisition card supporting continuous acquisition to computer RAM for 10 seconds. Using this system, we demonstrate phase-stable acquisitions across volumes acquired at 60 Hz frequency. We also highlight the ability to perform c-mode angiography providing volume perfusion measurements with 30 Hz temporal resolution. Ultimately, the speed and phase-stability of this laser and MEMs scanner platform can be leveraged to accelerate OCT-based angiography and both phase-sensitive and phase-insensitive extraction of blood flow velocity.

  15. Influence of Crystal Allomorph and Crystallinity on the Products and Behavior of Cellulose during Fast Pyrolysis

    Energy Technology Data Exchange (ETDEWEB)

    Mukarakate, Calvin; Mittal, Ashutosh; Ciesielski, Peter N.; Budhi, Sridhar; Thompson, Logan; Iisa, Kristiina; Nimlos, Mark R.; Donohoe, Bryon S.

    2016-09-06

    Cellulose is the primary biopolymer responsible for maintaining the structural and mechanical integrity of cell walls and, during the fast pyrolysis of biomass, may be restricting cell wall expansion and inhibiting phase transitions that would otherwise facilitate efficient escape of pyrolysis products. Here, we test whether modifications in two physical properties of cellulose, its crystalline allomorph and degree of crystallinity, alter its performance during fast pyrolysis. We show that both crystal allomorph and relative crystallinity of cellulose impact the slate of primary products produced by fast pyrolysis. For both cellulose-I and cellulose-II, changes in crystallinity dramatically impact the fast pyrolysis product portfolio. In both cases, only the most highly crystalline samples produced vapors dominated by levoglucosan. Cellulose-III, on the other hand, produces largely the same slate of products regardless of its relative crystallinity and produced as much or more levoglucosan at all crystallinity levels compared to cellulose-I or II. In addition to changes in products, the different cellulose allomorphs affected the viscoelastic properties of cellulose during rapid heating. Real-time hot-stage pyrolysis was used to visualize the transition of the solid material through a molten phase and particle shrinkage. SEM analysis of the chars revealed additional differences in viscoelastic properties and molten phase behavior impacted by cellulose crystallinity and allomorph. Regardless of relative crystallinity, the cellulose-III samples displayed the most obvious evidence of having transitioned through a molten phase.

  16. Amorphization of Crystalline Water Ice

    CERN Document Server

    Zheng, Weijun; Kaiser, Ralf I

    2008-01-01

    We conducted a systematic experimental study to investigate the amorphization of crystalline ice by irradiation in the 10-50 K temperature range with 5 keV electrons at a dose of ~140 eV per molecule. We found that crystalline water ice can be converted partially to amorphous ice by electron irradiation. Our experiments showed that some of the 1.65-micrometer band survived the irradiation, to a degree that depends on the temperature, demonstrating that there is a balance between thermal recrystallization and irradiation-induced amorphization, with thermal recrystallizaton dominant at higher temperatures. At 50 K, recrystallization due to thermal effects is strong, and most of the crystalline ice survived. Temperatures of most known objects in the solar system, including Jovian satellites, Saturnian satellites, and Kuiper belt objects, are equal to or above 50 K, this might explain why water ice detected on those objects is mostly crystalline.

  17. Liquid-crystalline lanthanide complexes

    OpenAIRE

    Binnemans, Koen

    1999-01-01

    The paper describes the recent developments in the field of liquid-crystalline lanthanide complexes. The role of trivalent lanthanide ions as the central metal ion in metallomesogens is considered. An outlook for the future is given.

  18. Respiration phase-locks to fast stimulus presentations: implications for the interpretation of posterior midline “deactivations”

    Science.gov (United States)

    Huijbers, W.; Pennartz, C.M.A.; Beldzik, E.; Domagalik, A.; Vinck, M.; Hofman, W.F.; Cabeza, R.; Daselaar, S.M.

    2015-01-01

    The posterior midline region (PMR) –considered a core of the default mode network- is deactivated during successful performance in different cognitive tasks. The extent of PMR-deactivations is correlated with task-demands and associated with successful performance in various cognitive domains. In the domain of episodic memory, functional MRI (fMRI) studies found that PMR-deactivations reliably predict learning (successful encoding). Yet, it is unclear what explains this relation. One intriguing possibility is that PMR-deactivations are partially-mediated by respiratory artifacts. There is evidence that the fMRI signal in PMR is particularly prone to respiratory artifacts, because of its large surrounding blood vessels. Since respiratory fluctuations has been shown to track changes in attention, it is critical for the general interpretation of fMRI results to clarify the relation between respiratory fluctuations, cognitive performance, and fMRI signal. Here, we investigated this issue by measuring respiration during word encoding, together with a breath-holding condition during fMRI-scanning. Stimulus-locked respiratory analyses showed that respiratory fluctuations predicted successful encoding via a respiratory phase-locking mechanism. At the same time, the fMRI analyses showed that PMR-deactivations associated with learning were reduced during breath-holding and correlated with individual differences in the respiratory phase-locking effect during normal breathing. A left frontal region –used as a control region– did not show these effects. These findings indicate that respiration is a critical factor in explaining the link between PMR-deactivation and successful cognitive performance. Further research is necessary to demonstrate whether our findings are restricted to episodic memory encoding, or also extend to other cognitive domains. PMID:24737724

  19. Concentration Transitions on the Crystalline Lattices

    Directory of Open Access Journals (Sweden)

    N.A. Gorenko

    2014-07-01

    Full Text Available Results of numerical modeling of dilute 2D and 3D crystalline lattices are presented. The percolation thresholds for face-centered cubic (fcc, body-centered cubic (bcc and the simple cubic (sc lattices for the first, second and third coordination spheres are obtained by means of Monte Carlo (MC method. It is shown, that the mean value of the percolation cluster density has a minimum value at the percolation threshold.

  20. Bietti’ Crystalline Retinal Dystrophy: A Case Report

    Directory of Open Access Journals (Sweden)

    Muhammed Şahin

    2016-03-01

    Full Text Available Bietti’ crystalline retinal dystrophy (BCD is a rare, auto­somal, recessively inherited disorder, characterized by the deposition of yellow crystals in the corneal limbus and retina. In this paper we aimed to present a pediatric case with BCD, with clinical, electrophysiological and spectral domain optical coherence tomography (SD-OCT findings and discuss BCD with the light of the literature. J Clin Exp Invest 2016; 7 (1: 94-97

  1. Topological Influence of Lyotropic Liquid Crystalline Systems on Excited-State Proton Transfer Dynamics.

    Science.gov (United States)

    Roy, Bibhisan; Satpathi, Sagar; Hazra, Partha

    2016-03-29

    In the present work, we have investigated the excited-state proton transfer (ESPT) dynamics inside lipid-based reverse hexagonal (HII), gyroid Ia3d, and diamond Pn3m LLC phases. Polarized light microscopy (PLM) and small-angle X-ray scattering (SAXS) techniques have been employed for the characterization of LLC systems. Time-resolved fluorescence results reveal the retarded ESPT dynamics inside liquid crystalline systems compared to bulk water, and it follows the order HII water and it follows the order H2O constant and different channel diameters of these LLC systems. However, the dissociation dynamics is found to be slower than bulk water and it follows the order HII dissociation dynamics in these liquid crystalline systems.

  2. Application of NURE data to the study of crystalline rocks in the Wyoming uranium province

    Science.gov (United States)

    Rush, S. M.; Anderson, J. R.; Bennett, J. E.

    1983-03-01

    The Wyoming uranium province study is a part of the National Uranium Resource Evaluation (NURE) program conducted by Bendix Field Engineering Corporation for the US Department of Energy. The ultimate objective of the entire project is the integration of NURE and other data sources to develop a model for a uranium province centered in Wyoming. This paper presents results of the first phase of the Wyoming uranium province study, which comprises characterization of the crystalline rocks of the study area using NURE hydrogeochemical and stream-sediment data, aerial radiometric and magnetic data, and new data generated for zircons from intrusive rocks in the study area. The results of this study indicate that the stream-sediment, aerial radiometric, aerial magnetic, and zircon data are useful in characterization of the crystalline rocks of the uranium province.

  3. Electron impact ionization of H{sub 2}O molecule in crystalline ice

    Energy Technology Data Exchange (ETDEWEB)

    Vinodkumar, Minaxi; Joshipura, K.N. E-mail: knjoshipura@yahoo.com; Limbachiya, C.G.; Antony, B.K

    2003-12-01

    The present work focuses on electron impact scattering in crystalline ice, which is an exotic solid. The major difference between crystalline form and amorphous form lies in its structure. Here we consider the H{sub 2}O molecule to possess properties consistent with the ice structure. Our basic calculation rests on the complex optical potential for the e-molecule system, with the molecular charge density as an input. To examine a single scattering event in condensed phases, we build up a model scattering potential to determine total inelastic cross-section Q{sub inel}. Finally an estimate of the total ionization cross-section, Q{sub ion} for H{sub 2}O (free), H{sub 2}O (amorphous) and H{sub 2}O (ice) in the energy range from threshold to 2000 eV, is obtained through semi-empirical arguments.

  4. Diffusion in porous crystalline materials.

    Science.gov (United States)

    Krishna, Rajamani

    2012-04-21

    The design and development of many separation and catalytic process technologies require a proper quantitative description of diffusion of mixtures of guest molecules within porous crystalline materials. This tutorial review presents a unified, phenomenological description of diffusion inside meso- and micro-porous structures. In meso-porous materials, with pore sizes 2 nm < d(p) < 50 nm, there is a central core region where the influence of interactions of the molecules with the pore wall is either small or negligible; meso-pore diffusion is governed by a combination of molecule-molecule and molecule-pore wall interactions. Within micro-pores, with d(p) < 2 nm, the guest molecules are always under the influence of the force field exerted with the wall and we have to reckon with the motion of adsorbed molecules, and there is no "bulk" fluid region. The characteristics and physical significance of the self-, Maxwell-Stefan, and Fick diffusivities are explained with the aid of data obtained either from experiments or molecular dynamics simulations, for a wide variety of structures with different pore sizes and topology. The influence of adsorption thermodynamics, molecular clustering, and segregation on both magnitudes and concentration dependences of the diffusivities is highlighted. In mixture diffusion, correlations in molecular hops have the effect of slowing-down the more mobile species. The need for proper modeling of correlation effects using the Maxwell-Stefan formulation is stressed with the aid of examples of membrane separations and catalytic reactors.

  5. LC-UV-solid-phase extraction-NMR-MS combined with a cryogenic flow probe and its application to the identification of compounds present in Greek oregano

    NARCIS (Netherlands)

    Exarchou, V.; Godejohann, M.; Beek, van T.A.; Gerothanassis, I.P.; Vervoort, J.J.M.

    2003-01-01

    Structure elucidation of natural products usually relies on a combination of NMR spectroscopy with mass spectrometry whereby NMR trails MS in terms of the minimum sample amount required. In the present study, the usefulness of on-line solid-phase extraction (SPE) in LC-NMR for peak storage after the

  6. Novel Crystalline SiO2 Nanoparticles via Annelids Bioprocessing of Agro-Industrial Wastes

    Science.gov (United States)

    Espíndola-Gonzalez, A.; Martínez-Hernández, A. L.; Angeles-Chávez, C.; Castaño, V. M.; Velasco-Santos, C.

    2010-09-01

    The synthesis of nanoparticles silica oxide from rice husk, sugar cane bagasse and coffee husk, by employing vermicompost with annelids ( Eisenia foetida) is reported. The product ( humus) is calcinated and extracted to recover the crystalline nanoparticles. X-ray diffraction (XRD), transmission electron microscopy (TEM), high-resolution transmission electron microscopy (HRTEM) and dynamic light scattering (DLS) show that the biotransformation allows creating specific crystalline phases, since equivalent particles synthesized without biotransformation are bigger and with different crystalline structure.

  7. Alkali Metal-incorporated Mesoporous Smectites:Crystallinity and Textural Properties

    Institute of Scientific and Technical Information of China (English)

    HE Yan-feng; Shinichiro Fujita; Nobuhiro Iwasa; Bhalchandra M. Bhanage; Masahiko Arai

    2003-01-01

    A series of mesoporous smectite-like materials incorporated with alkali metals such as Li, Na, K and Cs has been synthesized with the hydrothermal method. The crystalline and the pore structures of the materials synthesized significantly change with the introduction of alkali metals. The addition of Li gives highly ordered layer phases, while the incorporation of Cs yields much less crystalline structures. Although Na or K has little effect on the crystalline structure, they modify the pore structure.

  8. Influence of Crystalline Nanoprecipitates on Shear-Band Propagation in Cu-Zr Based Metallic Glasses

    OpenAIRE

    Brink, Tobias; Peterlechner, Martin; Rösner, Harald; Albe, Karsten; Wilde, Gerhard

    2015-01-01

    The interaction of shear bands with crystalline nanoprecipitates in Cu-Zr-based metallic glasses is investigated by a combination of high-resolution TEM imaging and molecular-dynamics computer simulations. Our results reveal different interaction mechanisms: Shear bands can dissolve precipitates, can wrap around crystalline obstacles, or can be blocked depending on size and density of the precipitates. If the crystalline phase has a low yield strength, we also observe slip transfer through th...

  9. Novel Crystalline SiO2 Nanoparticles via Annelids Bioprocessing of Agro-Industrial Wastes

    Directory of Open Access Journals (Sweden)

    Angeles-Chávez C

    2010-01-01

    Full Text Available Abstract The synthesis of nanoparticles silica oxide from rice husk, sugar cane bagasse and coffee husk, by employing vermicompost with annelids (Eisenia foetida is reported. The product (humus is calcinated and extracted to recover the crystalline nanoparticles. X-ray diffraction (XRD, transmission electron microscopy (TEM, high-resolution transmission electron microscopy (HRTEM and dynamic light scattering (DLS show that the biotransformation allows creating specific crystalline phases, since equivalent particles synthesized without biotransformation are bigger and with different crystalline structure.

  10. Paramagnetic defect centres in crystalline Alq{sub 3}

    Energy Technology Data Exchange (ETDEWEB)

    Grecu, M N [National Institute for Materials Physics, POB MG-7, 077125 Magurele-Bucharest (Romania); Mirea, A [Experimental Physics II, Bayreuth University, 95440 Bayreuth (Germany); Ghica, C [National Institute for Materials Physics, POB MG-7, 077125 Magurele-Bucharest (Romania); Coelle, M [Philips Research, Laboratories, NL-5656 AA Eindhoven (Netherlands); Schwoerer, M [Experimental Physics II, Bayreuth University, 95440 Bayreuth (Germany)

    2005-10-05

    X- and Q-band electron paramagnetic resonance (EPR) investigation of different crystalline Alq{sub 3} (tris(8-hydroxyquinoline)aluminium (III)) fractions formed by a train sublimation method are reported. Several paramagnetic defect centres corresponding to 1/2, 1, and 3/2 spin are observed at room temperature. Their intensity is dependent on the temperature, nature of the crystalline phase, and preparation conditions. Spectra simulation and analysis based on the spin Hamiltonian appropriate to a high spin system (S{>=}1) suggest the existence of randomly oriented triplets and quartets in annealed Alq{sub 3} fractions. The crystalline Alq{sub 3} phases responsible for the EPR powder spectra have been identified by transmission electron microscopy measurements performed on these sample fractions.

  11. Crystalline structure and thermotropic behavior of alkyltrimethylphosphonium amphiphiles.

    Science.gov (United States)

    Gamarra, Ana; Urpí, Lourdes; Martínez de Ilarduya, Antxon; Muñoz-Guerra, Sebastián

    2017-02-08

    Quaternary organophosphonium salts bearing long alkyl chains are cationic surfactants of interest owing to their physical and biological properties. In the present work, the crystal structure and thermotropic behavior of the homologous series of alkyltrimethylphosphonium bromides (nATMP·Br), with the alkyl chain containing an even number (n) of carbon atoms from 12 to 22, have been examined within the 0-300 °C range of temperatures. These compounds were shown to be resistant to heat up to ∼390 °C. The phases adopted at different temperatures were detected by DSC, and the structural changes involved in the phase transitions have been characterized by simultaneous WAXS and SAXS carried out in real-time, and by polarizing optical microscopy as well. Three or four phases were identified for n = 12 and 14 or n ≥ 16, respectively, in agreement with the heat exchange peaks observed by DSC. The phase existing at room temperature (Ph-I) was found to be fully crystalline and its crystal lattice was determined by single-crystal X-ray diffraction methods. Ph-II consisted of a semicrystalline structure that can be categorized as Smectic-B with the crystallized ionic pairs hexagonally arranged in layers and the molten alkyl chain confined in the interlayer space. Ph-II of 12ATMP·Br and 14ATMP·Br directly isotropicized upon heating at ∼220 °C, whereas for n ≥ 16, it converted into a Smectic-A phase (Ph-III) that needed to be heated above ∼240 °C to become isotropic (Ph-Is). The correlation existing between the thermal behavior, phase structure and length of the alkyl side chain has been demonstrated.

  12. [Representation and mathematical analysis of human crystalline lens].

    Science.gov (United States)

    Tălu, Stefan; Giovanzana, Stefano; Tălu, Mihai

    2011-01-01

    The surface of human crystalline lens can be described and analyzed using mathematical models based on parametric representations, used in biomechanical studies and 3D solid modeling of the lens. The mathematical models used in lens biomechanics allow the study and the behavior of crystalline lens on variables and complex dynamic loads. Also, the lens biomechanics has the potential to improve the results in the development of intraocular lenses and cataract surgery. The paper presents the most representative mathematical models currently used for the modeling of human crystalline lens, both optically and biomechanically.

  13. Unilateral Crystalline Vitreoretinopathy: A Rare Entity Associated with Intraocular Inflammation

    Directory of Open Access Journals (Sweden)

    Kaustubh B. Harshey

    2015-01-01

    Full Text Available A 31-year-old Indian male presented with floaters and diminution of vision in the right eye. Ocular examination showed features of old anterior uveitis with posterior subcapsular cataract and fine, refractile crystals in the vitreous cavity and on the retinal surface. A thorough workup for all known causes of crystalline retinopathy was inconclusive. Unilateral crystalline retinopathy has been sparingly reported. This is the first report of unilateral, crystalline vitreoretinopathy in the absence of any demonstrable and known cause for intraocular crystals.

  14. Experimental realization of a new type of crystalline undulator.

    Science.gov (United States)

    Wistisen, Tobias N; Andersen, Kristoffer K; Yilmaz, Serdar; Mikkelsen, Rune; Hansen, John Lundsgaard; Uggerhøj, Ulrik I; Lauth, Werner; Backe, Hartmut

    2014-06-27

    A new scheme of making crystalline undulators was recently proposed and investigated theoretically by Andriy Kostyuk, concluding that a new type of crystalline undulator would be not only viable, but better than the previous scheme. This article describes the first experimental measurement of such a crystalline undulator, produced by using Si(1-x)Ge(x)-graded composition and measured at the Mainzer Microtron facility at beam energies of 600 and 855 MeV. We also present theoretical models developed to compare with the experimental data.

  15. Comparison of the incremental and hierarchical methods for crystalline neon.

    Science.gov (United States)

    Nolan, S J; Bygrave, P J; Allan, N L; Manby, F R

    2010-02-24

    We present a critical comparison of the incremental and hierarchical methods for the evaluation of the static cohesive energy of crystalline neon. Both of these schemes make it possible to apply the methods of molecular electronic structure theory to crystalline solids, offering a systematically improvable alternative to density functional theory. Results from both methods are compared with previous theoretical and experimental studies of solid neon and potential sources of error are discussed. We explore the similarities of the two methods and demonstrate how they may be used in tandem to study crystalline solids.

  16. History of crystalline organic conductor

    Science.gov (United States)

    Murata, Keizo

    2017-05-01

    A brief view of crystalline organic conductor is presented. Since the discovery of TTF-TCNQ (tetrathiafulvalene-tetracyanoquinodimethane) in the mid 1970’s, pressure has been an indispensable tool to develop the physics of this field. From the aspect of charge transfer salt, TTF-TCNQ and its family was specified with partial charge transfer, two chain one-dimensional (1D) system, charge density wave (CDW) and commensurability. On the other hand, in (TMTSF)2X family (TMTSF: tetramethyltetraselenafulvalene, X: electron acceptor such as PF6, ClO4), complete charge transfer, one chain system, spin density wave (SDW), field-induced SDW, quantum Hall effect, superconductivity were discussed. Further, together with pressure itself, cooling rate was noticed to be important for low temperature properties. Recently, coming back to TTF-TCNQ family, i.e., HMTSF-TCNQ, whether or not field-induced CDW, instead of field-induced SDW, and quantum Hall effect is present was discussed (HMTSF: hexamethylene-tetraselenafulvalene). Whether or not the Fermiology in (TMTTF)2X under pressure is similar to that of (TMTSF)2X is discussed as well. In (BEDT-TTF)2X, new aspect of macroscopic polarization of α-(BEDT-TTF)2I3 related to charge order is described. At the end, in contrast to the charge transfer salts, non-charge transfer salt, that is, single component conductor is presented as a new possible example of Dirac cone, which was deeply studied by many researchers in α-(BEDT-TTF)2I3, together with the theoretical calculation of its magnetic susceptibility (BEDT-TTF: bisethylenedithia-tetrathiafulvalene).

  17. Morphological character of crystalline components present in saiga horn.

    Science.gov (United States)

    Hashiguchi, K; Hashimoto, K; Akao, M

    2001-05-01

    The purpose of this study was to investigate the ultrastructure of saiga-antelope (Saiga tatarica) horn for proposing the mechanism of the initial mineralization. Horn is derived from horny tooth of Cyclostomata. The minerals in saiga horn were identified crystallographically using electron microscopy and X-ray diffraction techniques. Soft X-ray photographs revealed the degree of the mineralization pattern. However, the number of rings did not indicate the age of saiga. Mineral deposites were observed among well banded keratin fibers and composed of powder like crystals. This deposited crystals were found by the X-ray diffraction method to be octacalcium phospate (OCP) by comparing these periodic lattice fringes to JCPDS card data. The chemical formula of OCP is Ca8H2(PO4)6.5H2O. Evidences for the presence of OCP in mature hard tissues have never been obtained. This phenomenon described here may be characteristic of saiga horn because we have found no reports on this type of OCP mineralization in any other animal species. It is possible that OCP is the precursor in the initial mineralization step, indicating in a nucleation of mineral on the keratin fibers.

  18. Workshop on hydrology of crystalline basement rocks

    Energy Technology Data Exchange (ETDEWEB)

    Davis, S.N. (comp.)

    1981-08-01

    This workshop covered the following subjects: measurements in relatively shallow boreholes; measurement and interpretation of data from deep boreholes; hydrologic properties of crystalline rocks as interpreted by geophysics and field geology; rock mechanics related to hydrology of crystalline rocks; the possible contributions of modeling to the understanding of the hydrology of crystalline rocks; and geochemical interpretations of the hydrology of crystalline rocks. (MHR)

  19. Understanding the interfacial properties of nanostructured liquid crystalline materials for surface-specific delivery applications.

    Science.gov (United States)

    Dong, Yao-Da; Larson, Ian; Barnes, Timothy J; Prestidge, Clive A; Allen, Stephanie; Chen, Xinyong; Roberts, Clive J; Boyd, Ben J

    2012-09-18

    Nonlamellar liquid crystalline dispersions such as cubosomes and hexosomes have great potential as novel surface-targeted active delivery systems. In this study, the influence of internal nanostructure, chemical composition, and the presence of Pluronic F127 as a stabilizer, on the surface and interfacial properties of different liquid crystalline particles and surfaces, was investigated. The interfacial properties of the bulk liquid crystalline systems with coexisting excess water were dependent on the internal liquid crystalline nanostructure. In particular, the surfaces of the inverse cubic systems were more hydrophilic than that of the inverse hexagonal phase. The interaction between F127 and the bulk liquid crystalline systems depended on the internal liquid crystalline structure and chemical composition. For example, F127 adsorbed to the surface of the bulk phytantriol cubic phase, while for monoolein cubic phase, F127 was integrated into the liquid crystalline structure. Last, the interfacial adsorption behavior of the dispersed liquid crystalline particles also depended on both the internal nanostructure and the chemical composition, despite the dispersions all being stabilized using F127. The findings highlight the need to understand the specific surface characteristics and the nature of the interaction with colloidal stabilizer for understanding and optimizing the behavior of nonlamellar liquid crystalline systems in surface delivery applications.

  20. Fluorine-containing triphenylenes. Liquid crystalline properties and surface ordering

    NARCIS (Netherlands)

    Umesh, C.P.; Marcelis, A.T.M.; Zuilhof, H.

    2014-01-01

    The synthesis and liquid crystalline properties of two novel series of triphenylenes with 4 or 5 pentafuoropentyloxy tails and 1 or 2 alkoxy tails of varying length are reported. All compounds form wide-range hexagonal columnar phases. The isotropisation temperatures and the corresponding enthalpy

  1. Liquid crystallinity driven highly aligned large graphene oxide composites

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Kyung Eun; Oh, Jung Jae; Yun, Taeyeong [Center for Nanomaterials and Chemical Reactions, Institute for Basic Science (IBS), Daejeon 305-701 (Korea, Republic of); Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 305-701 (Korea, Republic of); Kim, Sang Ouk, E-mail: sangouk.kim@kaist.ac.kr [Center for Nanomaterials and Chemical Reactions, Institute for Basic Science (IBS), Daejeon 305-701 (Korea, Republic of); Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 305-701 (Korea, Republic of)

    2015-04-15

    Graphene is an emerging graphitic carbon materials, consisting of sp{sup 2} hybridized two dimensinal honeycomb structure. It has been widely studied to incorporate graphene with polymer to utilize unique property of graphene and reinforce electrical, mechanical and thermal property of polymer. In composite materials, orientation control of graphene significantly influences the property of composite. Until now, a few method has been developed for orientation control of graphene within polymer matrix. Here, we demonstrate facile fabrication of high aligned large graphene oxide (LGO) composites in polydimethylsiloxane (PDMS) matrix exploiting liquid crystallinity. Liquid crystalline aqueous dispersion of LGO is parallel oriented within flat confinement geometry. Freeze-drying of the aligned LGO dispersion and subsequent infiltration with PDMS produce highly aligned LGO/PDMS composites. Owing to the large shape anisotropy of LGO, liquid crystalline alignment occurred at low concentration of 2 mg/ml in aqueous dispersion, which leads to the 0.2 wt% LGO loaded composites. - Graphical abstract: Liquid crystalline LGO aqueous dispersions are spontaneous parallel aligned between geometric confinement for highly aligned LGO/polymer composite fabrication. - Highlights: • A simple fabrication method for highly aligned LGO/PDMS composites is proposed. • LGO aqueous dispersion shows nematic liquid crystalline phase at 0.8 mg/ml. • In nematic phase, LGO flakes are highly aligned by geometric confinement. • Infiltration of PDMS into freeze-dried LGO allows highly aligned LGO/PDMS composites.

  2. Dynamic control of crystallinity in polymer film casting process

    OpenAIRE

    Thananchai Leephakpreeda

    2005-01-01

    This paper presents an approach for dynamic control of crystallinity in polymer film casting process. As known, the transients of crystallization dictate the microstructures of semi-crystalline polymer during solidification. In turn, the properties of finished products can be determined by adjustable variables in polymer film casting process such as temperature of chill roll. In this work, an experimental model of the solidification in film casting process is derived by a system identificatio...

  3. Interface Induced Growth and Transformation of Polymer-Conjugated Proto-Crystalline Phases in Aluminosilicate Hybrids: A Multiple-Quantum (23)Na-(23)Na MAS NMR Correlation Spectroscopy Study.

    Science.gov (United States)

    Brus, Jiri; Kobera, Libor; Urbanova, Martina; Doušová, Barbora; Lhotka, Miloslav; Koloušek, David; Kotek, Jiří; Čuba, Pavel; Czernek, Jiri; Dědeček, Jiří

    2016-03-22

    Nanostructured materials typically offer enhanced physicochemical properties because of their large interfacial area. In this contribution, we present a comprehensive structural characterization of aluminosilicate hybrids with polymer-conjugated nanosized zeolites specifically grown at the organic-inorganic interface. The inorganic amorphous Al-O-Si framework is formed by alkali-activated low-temperature transformation of metakaoline, whereas simultaneous copolymerization of organic comonomers creates a secondary epoxide network covalently bound to the aluminosilicate matrix. This secondary epoxide phase not only enhances the mechanical integrity of the resulting hybrids but also introduces additional binding sites accessible for compensating negative charge on the aluminosilicate framework. This way, the polymer network initiates growth and subsequent transformation of protocrystalline short-range ordered zeolite domains that are located at the organic-inorganic interface. By applying an experimental approach based on 2D (23)Na-(23)Na double-quantum (DQ) MAS NMR spectroscopy, we discovered multiple sodium binding sites in these protocrystalline domains, in which immobilized Na(+) ions form pairs or small clusters. It is further demonstrated that these sites, the local geometry of which allows for the pairing of sodium ions, are preferentially occupied by Pb(2+) ions during the ion exchange. The proposed synthesis protocol thus allows for the preparation of a novel type of geopolymer hybrids with polymer-conjugated zeolite phases suitable for capturing and storage of metal cations. The demonstrated (23)Na-(23)Na DQ MAS NMR combined with DFT calculations represents a suitable approach for understanding the role of Na(+) ions in aluminositicate solids and related inorganic-organic hybrids, particularly their specific arrangement and clustering at interfacial areas.

  4. NMR studies of electronic structure in crystalline and amorphous Zr2PdH/x/

    Science.gov (United States)

    Bowman, R. C., Jr.; Johnson, W. L.; Maeland, A. J.; Rhim, W.-K.

    1983-01-01

    The proton Knight shifts and spin-lattice relaxation times have been measured in crystalline and amorphous Ze2PdH(x). Core polarization from the Zr d-band dominates the proton hyperfine interactions. The density of Fermi level d-electron states is reduced in the amorphous phase relative to the electron density in crystalline Zr2PdH(x).

  5. Liquid Crystalline Compositions as Gas Sensors

    Science.gov (United States)

    Shibaev, Petr; Murray, John; Tantillo, Anthony; Wenzlick, Madison; Howard-Jennings, Jordan

    2015-03-01

    Droplets and films of nematic and cholesteric liquid crystalline mixtures were studied as promising detectors of volatile organic compounds (VOCs) in the air. Under increasing concentration of VOC in the air the detection may rely on each of the following effects sequentially observed one after the other due to the diffusion of VOC inside liquid crystalline matrix: i. slight changes in orientation and order parameter of liquid crystal, ii. formation of bubbles on the top of the liquid crystalline droplet due to the mass transfer between the areas with different order parameter, iii. complete isotropisation of the liquid crystal. All three stages can be easily monitored by optical microscopy and photo camera. Detection limits corresponding to the first stage are typically lower by a factor of 3-6 than detection limits corresponding to the beginning of mass transfer and isotropisation. The prototype of a compact sensor sensitive to the presence of organic solvents in the air is described in detail. The detection limits of the sensor is significantly lower than VOC exposure standards. The qualitative model is presented to account for the observed changes related to the diffusion, changes of order parameter and isotropisation.

  6. Single crystalline mesoporous silicon nanowires

    Energy Technology Data Exchange (ETDEWEB)

    Hochbaum, A.I.; Gargas, Daniel; Jeong Hwang, Yun; Yang, Peidong

    2009-08-04

    Herein we demonstrate a novel electroless etching synthesis of monolithic, single-crystalline, mesoporous silicon nanowire arrays with a high surface area and luminescent properties consistent with conventional porous silicon materials. These porous nanowires also retain the crystallographic orientation of the wafer from which they are etched. Electron microscopy and diffraction confirm their single-crystallinity and reveal the silicon surrounding the pores is as thin as several nanometers. Confocal fluorescence microscopy showed that the photoluminescence (PL) of these arrays emanate from the nanowires themselves, and their PL spectrum suggests that these arrays may be useful as photocatalytic substrates or active components of nanoscale optoelectronic devices.

  7. Single crystalline mesoporous silicon nanowires

    Energy Technology Data Exchange (ETDEWEB)

    Hochbaum, Allon; Dargas, Daniel; Hwang, Yun Jeong; Yang, Peidong

    2009-08-18

    Herein we demonstrate a novel electroless etching synthesis of monolithic, single-crystalline, mesoporous silicon nanowire arrays with a high surface area and luminescent properties consistent with conventional porous silicon materials. The photoluminescence of these nanowires suggest they are composed of crystalline silicon with small enough dimensions such that these arrays may be useful as photocatalytic substrates or active components of nanoscale optoelectronic devices. A better understanding of this electroless route to mesoporous silicon could lead to facile and general syntheses of different narrow bandgap semiconductor nanostructures for various applications.

  8. SYNTHESIS AND PROPERTIES OF NEW SIDE-CHAIN LIQUID CRYSTALLINE POLYMER WITH LATERALLY ATTACHED MESOGENS BY ESTER GROUP

    Institute of Scientific and Technical Information of China (English)

    Qi-ding Mi; Qi-feng Zhou

    1999-01-01

    New liquid crystalline monomer, 2,5-bis[(4'-methoxyphenoxy)carbonyl]phenyl acrylate was successfully synthesized. Polyacrylate with laterally attached mesogens via ester linkage was also derived.This polymer forms an enantiotropic liquid crystal phase while its monomer exhibits a metastable nematic phase with respect to the crystalline state. However, its liquid crystallinity is very low as compared to that of poly { 2,5-bis[(4'-methoxyphenoxy)carbonyl] -styrene }.

  9. STUDY ON THE BLENDS OF NYLON 66 AND LIQUID CRYSTALLINE POLYESTERS

    Institute of Scientific and Technical Information of China (English)

    Zhang Shufan; Ren Jinghong

    1991-01-01

    Blends of polyamide (Nylon 66 ) with two different kinds of liquid crystalline polyesters were studied in all the composition range. Homogeneous samples were obtained by coprecipitation from 2wt%. solution of blends. The thermal properties, crystallinity and morphology of these blends were studied by using DSC, polarizing microscopy, and scanning electron microscopy. The phase transition and morphology of the blends are markedlyinfluenced by the composition of liquid crystalline polyesters. The mechanical behaviour of PHB/HNA-Nylon 66 blend was improved .although polyamide (Nylon 66)with the liquid crystalline polyesters were incompatible, but a rather strong interaction between the polymers did exist.

  10. Corrosion resistance of amorphous and crystalline Pd40Ni40P20 alloys in aqueous solutions

    DEFF Research Database (Denmark)

    Wu, Y.F.; Chiang, Wen-Chi; Chu, J.;

    2006-01-01

    The corrosion behaviors of amorphous and crystalline Pd40Ni40P20 alloys in various aqueous solutions are reported in this paper. The corrosion resistance of crystalline (annealed) Pd40Ni40P20 is better than that of amorphous Pd40Ni40P20 in various corrosive solutions, due to crystalline Pd40Ni40P20...... and mainly consists of inert Pd5P2, NI3P, Ni2Pd2P and noble Pd phases. These inert and noble properties result in a higher corrosion resistance in crystalline Pd40Ni40P20....

  11. Reducing burn-in voltage loss in polymer solar cells by increasing the polymer crystallinity

    KAUST Repository

    Heumueller, Thomas

    2014-08-01

    In order to commercialize polymer solar cells, the fast initial performance losses present in many high efficiency materials will have to be managed. This burn-in degradation is caused by light-induced traps and its characteristics depend on which polymer is used. We show that the light-induced traps are in the bulk of the active layer and we find a direct correlation between their presence and the open-circuit voltage loss in devices made with amorphous polymers. Solar cells made with crystalline polymers do not show characteristic open circuit voltage losses, even though light-induced traps are also present in these devices. This indicates that crystalline materials are more resistant against the influence of traps on device performance. Recent work on crystalline materials has shown there is an energetic driving force for charge carriers to leave amorphous, mixed regions of bulk heterojunctions, and charges are dominantly transported in pure, ordered phases. This energetic landscape allows efficient charge generation as well as extraction and also may benefit the stability against light-induced traps. This journal is © the Partner Organisations 2014.

  12. Vibrational dynamics of crystalline L-alanine

    Energy Technology Data Exchange (ETDEWEB)

    Bordallo, H.N.; Eckert, J. [Los Alamos National Lab., NM (United States); Barthes, M. [Univ. Montpellier II (France)

    1997-11-01

    The authors report a new, complete vibrational analysis of L-alanine and L-alanine-d{sub 4} which utilizes IINS intensities in addition to frequency information. The use of both isotopomers resulted in a self-consistent force field for and assignment of the molecular vibrations in L-alanine. Some details of the calculation as well as a comparison of calculated and observed IINS spectra are presented. The study clarifies a number of important issues on the vibrational dynamics of this molecule and presents a self-consistent force field for the molecular vibrations in crystalline L-alanine.

  13. LYOTROPIC LIQUID CRYSTALLINE BEHAVIOR OF FIVE CHITOSAN DERIVATIVES

    Institute of Scientific and Technical Information of China (English)

    Yan-ming Dong; Zhi-qiang Li

    1999-01-01

    Five chitosan derivatives, i.e. O-butyryl chitosan, O-benzoyl chitosan, N-phthaloyl chitosan, N-maleoyl chitosan and O-cyanoethyl chitosan, were prepared from chitosan. All of them had better solubilitythan chitosan, and demonstrated lyotropic liquid crystalline behavior in various solvents. The critical liquid crystalline behavior of three O-substituted chitosan derivatives was evidently different from two Nsubstituted analogues. Typical fingerprint textures of cholesteric phase were only observed in three Osubstituted derivatives. The critical concentration (v/v%) of three O-substituted derivatives does not depend on the acidity of acidic solvents.

  14. Gamma-irradiation effects to posttranslational modification and chaperon function of bovine {alpha}-crystalline

    Energy Technology Data Exchange (ETDEWEB)

    Hiroki, K; Matsumoto, S.; Awakura, M. [Kyoto Univ., Graduate School of Science, Kyoto (Japan); Fujii, N. [Kyoto Univ., Kumatori, Osaka (Japan). Research Reactor Inst

    2001-01-01

    The formation of D-asparate (D-Asp) in {alpha}A-crystallin of the aged human eye and the cataract crystalline lens has been reported. Crystalline lens keeps the transparency by forming {alpha}-crystallin which consists of a high order association of {alpha}A-and {alpha}B-crystallin. Bovine {alpha}-crystallin for investigating a chaperone function which protects the crystalline lens from getting to opaque or disordered agglutination with heat or light, is irradiated by gamma-ray (Co-60) at 0, 1, 2, 3, and 4 kGy, respectively. The irradiated bovine {alpha}-crystallin are analyzed with electrophoresis, gel permeation chromatograph, and UV absorption spectrometer for checking on the agglutination and the isomerization of macromolecules. Oxidation of methionine residues (Met-1) and isomerization of asparagine residues (Asp-151) in the {alpha}A-crystallin are ascertained in molecular levels with reversed phase liquid chromatography. The Met-1 oxidation and the Asp-151 isomerization depend on gamma-irradiation doses. It is thought that OH radical and H radical in water generated by the irradiation lead to the oxidation and the isomerization. Stereoinversion in the {alpha}-crystallin following to such a chemical change are considered to lead to the agglutination of polymer and the reduction of chaperon function. (M. Suetake)

  15. Efficient photocatalytic degradation of organics present in gas and liquid phases using Pt-TiO2/Zeolite (H-ZSM).

    Science.gov (United States)

    Neppolian, B; Mine, Shinya; Horiuchi, Yu; Bianchi, C L; Matsuoka, M; Dionysiou, D D; Anpo, M

    2016-06-01

    TiO2-encapsulated H-ZSM photocatalysts were prepared by physical mixing of TiO2 and zeolites. Pt was immobilized on the surface of the TiO2-encapsulated zeolite (H-ZSM) catalysts by a simple photochemical reduction method. Different weight ratios of both TiO2 and Pt were hybridized with H-ZSM and the catalytic performance of the prepared catalysts was investigated for 2-propanol oxidation in liquid phase and acetaldehyde in gas phase reaction. Around 5-10 wt% TiO2-encapsulated H-ZSM catalysts was found to be optimal amount for the effective oxidation of the organics. Prior to light irradiation, Pt-TiO2-H-ZSM showed considerable amount of catalytic degradation of 2-propanol in the dark, forming acetone as an intermediate. In this study, Pt has played a major and important role on the total oxidation of 2-propanol as well as acetaldehyde. As a result, no residual organics were present in the pores of the zeolites. The catalysts could be reused more than three times without losing their catalytic activity in both phases. The Pt-TiO2-H-ZSM photocatalysts could overcome the problem of strong adsorption of organics in the zeolite pores (after the reaction). Thus, Pt-TiO2-H-ZSM can be used as a potential catalyst for both liquid and gas phase oxidation of organic pollutants.

  16. Generic Crystalline Disposal Reference Case

    Energy Technology Data Exchange (ETDEWEB)

    Painter, Scott Leroy [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Chu, Shaoping [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Harp, Dylan Robert [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Perry, Frank Vinton [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Wang, Yifeng [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2015-02-20

    A generic reference case for disposal of spent nuclear fuel and high-level radioactive waste in crystalline rock is outlined. The generic cases are intended to support development of disposal system modeling capability by establishing relevant baseline conditions and parameters. Establishment of a generic reference case requires that the emplacement concept, waste inventory, waste form, waste package, backfill/buffer properties, EBS failure scenarios, host rock properties, and biosphere be specified. The focus in this report is on those elements that are unique to crystalline disposal, especially the geosphere representation. Three emplacement concepts are suggested for further analyses: a waste packages containing 4 PWR assemblies emplaced in boreholes in the floors of tunnels (KBS-3 concept), a 12-assembly waste package emplaced in tunnels, and a 32-assembly dual purpose canister emplaced in tunnels. In addition, three failure scenarios were suggested for future use: a nominal scenario involving corrosion of the waste package in the tunnel emplacement concepts, a manufacturing defect scenario applicable to the KBS-3 concept, and a disruptive glaciation scenario applicable to both emplacement concepts. The computational approaches required to analyze EBS failure and transport processes in a crystalline rock repository are similar to those of argillite/shale, with the most significant difference being that the EBS in a crystalline rock repository will likely experience highly heterogeneous flow rates, which should be represented in the model. The computational approaches required to analyze radionuclide transport in the natural system are very different because of the highly channelized nature of fracture flow. Computational workflows tailored to crystalline rock based on discrete transport pathways extracted from discrete fracture network models are recommended.

  17. Dopant-specific unzipping of carbon nanotubes for intact crystalline graphene nanostructures

    Science.gov (United States)

    Lim, Joonwon; Narayan Maiti, Uday; Kim, Na-Young; Narayan, Rekha; Jun Lee, Won; Sung Choi, Dong; Oh, Youngtak; Min Lee, Ju; Yong Lee, Gil; Hun Kang, Seok; Kim, Hyunwoo; Kim, Yong-Hyun; Ouk Kim, Sang

    2016-01-01

    Atomic level engineering of graphene-based materials is in high demand to enable customize structures and properties for different applications. Unzipping of the graphene plane is a potential means to this end, but uncontrollable damage of the two-dimensional crystalline framework during harsh unzipping reaction has remained a key challenge. Here we present heteroatom dopant-specific unzipping of carbon nanotubes as a reliable and controllable route to customized intact crystalline graphene-based nanostructures. Substitutional pyridinic nitrogen dopant sites at carbon nanotubes can selectively initiate the unzipping of graphene side walls at a relatively low electrochemical potential (0.6 V). The resultant nanostructures consisting of unzipped graphene nanoribbons wrapping around carbon nanotube cores maintain the intact two-dimensional crystallinity with well-defined atomic configuration at the unzipped edges. Large surface area and robust electrical connectivity of the synergistic nanostructure demonstrate ultrahigh-power supercapacitor performance, which can serve for AC filtering with the record high rate capability of -85° of phase angle at 120 Hz.

  18. Electronic properties of SnTe-class topological crystalline insulator materials

    Science.gov (United States)

    Wang, Jianfeng; Wang, Na; Huang, Huaqing; Duan, Wenhui

    2016-11-01

    The rise of topological insulators in recent years has broken new ground both in the conceptual cognition of condensed matter physics and the promising revolution of the electronic devices. It also stimulates the explorations of more topological states of matter. Topological crystalline insulator is a new topological phase, which combines the electronic topology and crystal symmetry together. In this article, we review the recent progress in the studies of SnTe-class topological crystalline insulator materials. Starting from the topological identifications in the aspects of the bulk topology, surface states calculations, and experimental observations, we present the electronic properties of topological crystalline insulators under various perturbations, including native defect, chemical doping, strain, and thickness-dependent confinement effects, and then discuss their unique quantum transport properties, such as valley-selective filtering and helicity-resolved functionalities for Dirac fermions. The rich properties and high tunability make SnTe-class materials promising candidates for novel quantum devices. Project supported by the Ministry of Science and Technology of China (Grant No. 2016YFA0301000) and the National Natural Science Foundation of China (Grant No. 11334006).

  19. HVPE GaN wafers with improved crystalline and electrical properties

    Science.gov (United States)

    Freitas, J. A.; Culbertson, J. C.; Mahadik, N. A.; Sochacki, T.; Iwinska, M.; Bockowski, M. S.

    2016-12-01

    The quest for low cost GaN substrates with optimized crystalline and electrical properties continues to fuel the search for a fast growth method to produce commercial wafers that will allow the fabrication of devices capable of achieving high performance at high power and/or high frequency. Thick films grown by hydride vapor phase epitaxy (HVPE) on Ammono substrates in addition to reproducing the high crystalline quality of those substrates show significant reduction in free carrier concentration. This work presents a detailed spectroscopic, X-ray diffraction, and Raman spectroscopy imaging investigation of thick freestanding HVPE GaN films deposited on HVPE/Ammono-GaN templates. The results demonstrate that they are stress-free, and have a nearly uniform and relatively lower residual background doping, in addition to high crystalline quality. This result is extremely important, because it demonstrates the usefulness of this new type of HVPE-GaN substrate to fabricate highly efficient optoelectronic and electronic devices.

  20. FROM CRYSTALLINE BLOCK SLIPS TO DOMINANCE OF NETWORK STRETCHING——MECHANISMS OF TENSILE DEFORMATION IN SEMI-CRYSTALLINE POLYMERS

    Institute of Scientific and Technical Information of China (English)

    Y. Men; G. Strobl

    2002-01-01

    The mechanism of tensile deformation in semi-crystalline polymers was studied based on true stress-strain curves obtained with the aid of a video-controlled tensile set-up. The deformation is affected by both the crystalline and the amorphous phases. However, the relative weights of the two portions change with the deformation stage. At low deformations the coupling and coarse slips of the crystalline blocks dominate the mechanical properties, which allows the system to maintain a homogeneous strain distribution in the sample. As the stretching increases, at a critical strain the force generated from entangled fluid portions reaches a critical value to destroy the crystallites. The dominant deformation mechanism then changes into a disaggregation - recrystallization process.

  1. Manipulating the dimensional assembly pattern and crystalline structures of iron oxide nanostructures with a functional polyolefin.

    Science.gov (United States)

    He, Qingliang; Yuan, Tingting; Wang, Yiran; Guleria, Abhishant; Wei, Suying; Zhang, Guoqi; Sun, Luyi; Liu, Jingjing; Yu, Jingfang; Young, David P; Lin, Hongfei; Khasanov, Airat; Guo, Zhanhu

    2016-01-28

    Controlled crystalline structures (α- and γ-phase) and assembly patterns (1-D, 2-D and 3-D) were achieved in the synthesized iron oxide (Fe2O3) nanoparticles (NPs) using polymeric surfactant-polypropylene grafted maleic anhydride (PP-g-MA) with different concentrations. In addition, the change of the crystalline structure from the α- and γ-phase also led to the significantly increased saturation magnetization and coercivity.

  2. Elucidation of adsorption processes of cellulases during hydrolysis of crystalline cellulose

    Energy Technology Data Exchange (ETDEWEB)

    Tanaka, Mitsuo; Nakamura, Hiroko; Taniguchi, Masayuki; Morita, Takuo; Matsuno, Ryuichi; Kamikubo, Tadashi

    1986-01-01

    To elucidate the effect of adsorption of cellulases during hydrolysis of crystalline cellulose, the relationship between the rate of hydrolysis and the adsorption of crude cellulases onto crystalline cellulose was investigated under various experimental conditions. Several phases of adsorption have been proposed to explain the process of cellulose hydrolysis by these enzymes. The process of hydrolysis calculated on the basis of these phases fitted well with that obtained experimentally.

  3. Crystalline Motion of Interfaces Between Patterns

    Science.gov (United States)

    Braides, Andrea; Cicalese, Marco; Yip, Nung Kwan

    2016-09-01

    We consider the dynamical problem of an antiferromagnetic spin system on a two-dimensional square lattice ɛ {Z}^2 with nearest-neighbour and next-to-nearest neighbour interactions. The key features of the model include the interaction between spatial scale ɛ and time scale τ , and the incorporation of interfacial boundaries separating regions with microstructures. By employing a discrete-time variational scheme, a limit continuous-time evolution is obtained for a crystal in {R}^2 which evolves according to some motion by crystalline curvatures. In the case of anti-phase boundaries between striped patterns, a striking phenomenon is the appearance of some "non-local" curvature dependence velocity law reflecting the creation of some defect structure on the interface at the discrete level.

  4. Crystalline Scaling Geometries from Vortex Lattices

    CERN Document Server

    Bao, Ning

    2013-01-01

    We study magnetic geometries with Lifshitz and/or hyperscaling violation exponents (both with a hard wall cutoff in the IR and a smooth black brane horizon) which have a complex scalar field which couples to the magnetic field. The complex scalar is unstable to the production of a vortex lattice in the IR. The lattice is a normalizable mode which is relevant (i.e. grows into the IR.) When one considers linearized backreaction of the lattice on the metric and gauge field, the metric forms a crystalline structure. We analyze the scaling of the free energy, thermodynamic entropy, and entanglement in the lattice phase and find that in the smeared limit, the leading order correction to thermodynamic properties due to the lattice has the scaling behavior of a theory with a hyperscaling violation exponent between 0 and 1, indicating a flow to an effectively lower-dimensional theory in the deep IR.

  5. EXAFS studies of crystalline materials

    Energy Technology Data Exchange (ETDEWEB)

    Knapp, G.S.; Georgopoulos, P.

    1982-01-01

    The application of extended x-ray absorption fine structure (EXAFS) technique to the study of crystalline materials is discussed, and previously published work on the subject is reviewed with 46 references being cited. The theory of EXAFS, methods of data analysis, and the experimental techniques, including those based on synchrotron and laboratory facilities are all discussed. Absorption and fluorescence methods of detecting EXAFS also receive attention. (BLM)

  6. A metastable liquid melted from a crystalline solid under decompression

    Science.gov (United States)

    Lin, Chuanlong; Smith, Jesse S.; Sinogeikin, Stanislav V.; Kono, Yoshio; Park, Changyong; Kenney-Benson, Curtis; Shen, Guoyin

    2017-01-01

    A metastable liquid may exist under supercooling, sustaining the liquid below the melting point such as supercooled water and silicon. It may also exist as a transient state in solid–solid transitions, as demonstrated in recent studies of colloidal particles and glass-forming metallic systems. One important question is whether a crystalline solid may directly melt into a sustainable metastable liquid. By thermal heating, a crystalline solid will always melt into a liquid above the melting point. Here we report that a high-pressure crystalline phase of bismuth can melt into a metastable liquid below the melting line through a decompression process. The decompression-induced metastable liquid can be maintained for hours in static conditions, and transform to crystalline phases when external perturbations, such as heating and cooling, are applied. It occurs in the pressure–temperature region similar to where the supercooled liquid Bi is observed. Akin to supercooled liquid, the pressure-induced metastable liquid may be more ubiquitous than we thought. PMID:28112152

  7. Inelastic deformation in crystalline rocks

    Science.gov (United States)

    Rahmani, H.; Borja, R. I.

    2011-12-01

    The elasto-plastic behavior of crystalline rocks, such as evaporites, igneous rocks, or metamorphic rocks, is highly dependent on the behavior of their individual crystals. Previous studies indicate that crystal plasticity can be one of the dominant micro mechanisms in the plastic deformation of crystal aggregates. Deformation bands and pore collapse are examples of plastic deformation in crystalline rocks. In these cases twinning within the grains illustrate plastic deformation of crystal lattice. Crystal plasticity is governed by the plastic deformation along potential slip systems of crystals. Linear dependency of the crystal slip systems causes singularity in the system of equations solving for the plastic slip of each slip system. As a result, taking the micro-structure properties into account, while studying the overall behavior of crystalline materials, is quite challenging. To model the plastic deformation of single crystals we use the so called `ultimate algorithm' by Borja and Wren (1993) implemented in a 3D finite element framework to solve boundary value problems. The major advantage of this model is that it avoids the singularity problem by solving for the plastic slip explicitly in sub steps over which the stress strain relationship is linear. Comparing the results of the examples to available models such as Von Mises we show the significance of considering the micro-structure of crystals in modeling the overall elasto-plastic deformation of crystal aggregates.

  8. ADVANCES IN LIQUID CRYSTALLINE POLYESTERS

    Institute of Scientific and Technical Information of China (English)

    W. J. Jackson

    1992-01-01

    Advances have been made in understanding the interactions of composition, molecular weight,liquid crystallinity, orientation, and three-dimensional crystallinity on the properties of injection-molded and melt-spun liquid crystalline polyesters (LCP's). Two classes of potentially low-cost LCP's were compared : (1) semiflexible LCP's prepared from 1,6-hexanediol and the dimethyl ester of either trans-4, 4'-stilbenedicarboxylic acid or 4.4 ′-biphenyldicarboxylic acid and (2) all-aromatic LCP's prepared from terephthalic acid, 2, 6-naphthalenedicarboxylic acid, the diacetate of hydroquinone,and the acetate of p-hydroxybenzoic acid. The effects of composition on the plastic properties of the 4-component all-aromatic LCP's were determined with the aid of a 3 × 3 factorial statistically designed experiment, the generation of equations with a computer program, and the plotting of three-dimensional figures and contour diagrams. The effects of absolute molecular weight (Mw) on the tensile strengths of the semiflexible LCP's and one of the all-aromatic LCP's having an excellent balance of plastic properties were also compared, and it was observed that the semiflexible LCP's required Mw's about 4 times higher than the all-aromatic LCP to attain a given strength. Persistence lengths and molecular modeling were used to explain these differences.

  9. FAST TRACK COMMUNICATION: Field dependence of temperature induced irreversible transformations of magnetic phases in Pr0.5Ca0.5Mn0.975Al0.025O3 crystalline oxide

    Science.gov (United States)

    Lakhani, Archana; Kushwaha, Pallavi; Rawat, R.; Kumar, Kranti; Banerjee, A.; Chaddah, P.

    2010-01-01

    Glass-like arrest has recently been reported in various magnetic materials. As in structural glasses, the kinetics of a first order transformation is arrested while retaining the higher entropy phase as a non-ergodic state. We show visual mesoscopic evidence of the irreversible transformation of the arrested antiferromagnetic-insulating phase in Pr0.5Ca0.5Mn0.975Al0.025O3 to its equilibrium ferromagnetic-metallic phase with an isothermal increase of magnetic field, similar to its iso-field transformation on warming. The magnetic field dependence of the non-equilibrium to equilibrium transformation temperature is shown to be governed by Le Chatelier's principle.

  10. Field dependence of temperature induced irreversible transformations of magnetic phases in Pr(0.5)Ca(0.5)Mn(0.975)Al(0.025)O(3) crystalline oxide.

    Science.gov (United States)

    Lakhani, Archana; Kushwaha, Pallavi; Rawat, R; Kumar, Kranti; Banerjee, A; Chaddah, P

    2010-01-27

    Glass-like arrest has recently been reported in various magnetic materials. As in structural glasses, the kinetics of a first order transformation is arrested while retaining the higher entropy phase as a non-ergodic state. We show visual mesoscopic evidence of the irreversible transformation of the arrested antiferromagnetic-insulating phase in Pr(0.5)Ca(0.5)Mn(0.975)Al(0.025)O(3) to its equilibrium ferromagnetic-metallic phase with an isothermal increase of magnetic field, similar to its iso-field transformation on warming. The magnetic field dependence of the non-equilibrium to equilibrium transformation temperature is shown to be governed by Le Chatelier's principle.

  11. Phase field modelling of interfaces from first principles

    Energy Technology Data Exchange (ETDEWEB)

    Pruessner, G [Mathematics Institute, University of Warwick, Gibbet Hill Road, Coventry CV4 7AL (United Kingdom); Sutton, A P [Department of Physics, Imperial College London, Exhibition Road, London SW7 2AZ (United Kingdom)], E-mail: g.pruessner@imperial.ac.uk, E-mail: a.sutton@imperial.ac.uk

    2008-01-15

    Phase field modelling is a technique in (computational) material science that utilises diffuse interface constructions to simulate the dynamics of microstructural evolution. To date, phase field modelling of crystalline interfaces has been guided mainly by phenomenology and symmetry considerations, rather than microscopic physics. The central equation of motion minimises a free energy with respect to the phase field, which is considered as a space and time dependent, coarse-grained, continuous degree of freedom of the system. However, it is neither clear how to interpret the phase field microscopically, nor how to derive the equation of motion from atomic interactions. Based on the (classical) density functional theory by Haymet and Oxtoby, we derive the phase field model by Allen and Cahn, which is commonly used for modelling crystalline interfaces. In the present article, we summarise the physical implications of the various observables and parameters as well as the underlying approximations.

  12. Phase transformations in the Zn-Al eutectoid alloy after quenching from the high temperature triclinic beta phase

    Energy Technology Data Exchange (ETDEWEB)

    Sandoval-Jimenez, A., E-mail: asandovalj@correo.unam.mx [Instituto Nacional de Investigaciones Nucleares, Dpto. de Aceleradores, Carretera Mexico-Toluca S/N, La Marquesa, Ocoyoacac, Mexico, C.P. 52750, ESIME, Unidad Culhuacan, Dpto. Ing. Mecanica, IPN (Mexico); Negrete, J. [Instituto de Metalurgia, Universidad Autonoma de San Luis Potosi, SLP 78210 (Mexico); Torres-Villasenor, G. [Instituto de Investigaciones en Materiales, Universidad Nacional Autonoma de Mexico, Apdo. Postal 70-360, Mexico D.F. 04510 (Mexico)

    2010-11-15

    Ribbons of the Zn-Al eutectoid alloy obtained by melt-spinning, were heat treated at 350 deg. C during 30 min in a free atmosphere furnace, and then quenched in liquid nitrogen. The temperature correspond to {beta} phase zone, which has a triclinic crystalline structure [1, 2]. Some evidence, obtained by X-ray diffraction, show that the structures present in the just quenched material are both close-packed hexagonal ({eta}-phase) and rhombohedral (R-phase). X-ray diffractograms taken in the same ribbons after annealed 500 h at room temperature, show that the R phase its transform to {alpha} and {eta} phases.

  13. Crystalline podocytopathy and tubulopathy without overt glomerular proteinuria in a patient with multiple myeloma

    Directory of Open Access Journals (Sweden)

    Eun Jeong Lee

    2016-12-01

    Full Text Available Crystalline nephropathy is a rare yet well-known condition associated with multiple myeloma and other light chain–secreting disorders. Paraproteins that are resistant to proteolysis crystallize within proximal tubular cells and cause light-chain proximal tubulopathy, which presents clinically as Fanconi syndrome. Podocytes are rarely affected, and the crystalline inclusions within podocytes are typically precipitated, yielding significant glomerular proteinuria. Here we report a case of extensive crystalline inclusions primarily within podocytes and proximal tubules that presented only with Fanconi syndrome and renal insufficiency. Despite the presence of extensive crystalline inclusions in podocytes and diffuse foot process effacement, the patient had no clinical evidence suggestive of podocyte injury.

  14. Biomimetic processing of oriented crystalline ceramic layers

    Energy Technology Data Exchange (ETDEWEB)

    Cesarano, J.; Shelnutt, J.A.

    1997-10-01

    The aim of this project was to develop the capabilities for Sandia to fabricate self assembled Langmuir-Blodgett (LB) films of various materials and to exploit their two-dimensional crystalline structure to promote the growth of oriented thin films of inorganic materials at room temperature. This includes the design and synthesis of Langmuir-active (amphiphilic) organic molecules with end groups offering high nucleation potential for various ceramics. A longer range goal is that of understanding the underlying principles, making it feasible to use the techniques presented in this report to fabricate unique oriented films of various materials for electronic, sensor, and membrane applications. Therefore, whenever possible, work completed in this report was completed with the intention of addressing the fundamental phenomena underlying the growth of crystalline, inorganic films on template layers of highly organized organic molecules. This problem was inspired by biological processes, which often produce exquisitely engineered structures via templated growth on polymeric layers. Seashells, for example, exhibit great toughness owing to their fine brick-and-mortar structure that results from templated growth of calcium carbonate on top of layers of ordered organic proteins. A key goal in this work, therefore, is to demonstrate a positive correlation between the order and orientation of the template layer and that of the crystalline ceramic material grown upon it. The work completed was comprised of several parallel efforts that encompassed the entire spectrum of biomimetic growth from solution. Studies were completed on seashells and the mechanisms of growth for calcium carbonate. Studies were completed on the characterization of LB films and the capability developed for the in-house fabrication of these films. Standard films of fatty acids were studied as well as novel polypeptides and porphyrins that were synthesized.

  15. Current induced polycrystalline-to-crystalline transformation in vanadium dioxide nanowires

    Science.gov (United States)

    Jeong, Junho; Yong, Zheng; Joushaghani, Arash; Tsukernik, Alexander; Paradis, Suzanne; Alain, David; Poon, Joyce K. S.

    2016-11-01

    Vanadium dioxide (VO2) exhibits a reversible insulator-metal phase transition that is of significant interest in energy-efficient nanoelectronic and nanophotonic devices. In these applications, crystalline materials are usually preferred for their superior electrical transport characteristics as well as spatial homogeneity and low surface roughness over the device area for reduced scattering. Here, we show applied electrical currents can induce a permanent reconfiguration of polycrystalline VO2 nanowires into crystalline nanowires, resulting in a dramatically reduced hysteresis across the phase transition and reduced resistivity. Low currents below 3 mA were sufficient to cause the local temperature in the VO2 to reach about 1780 K to activate the irreversible polycrystalline-to-crystalline transformation. The crystallinity was confirmed by electron microscopy and diffraction analyses. This simple yet localized post-processing of insulator-metal phase transition materials may enable new methods of studying and fabricating nanoscale structures and devices formed from these materials.

  16. Fourier Monte Carlo renormalization-group approach to crystalline membranes.

    Science.gov (United States)

    Tröster, A

    2015-02-01

    The computation of the critical exponent η characterizing the universal elastic behavior of crystalline membranes in the flat phase continues to represent challenges to theorists as well as computer simulators that manifest themselves in a considerable spread of numerical results for η published in the literature. We present additional insight into this problem that results from combining Wilson's momentum shell renormalization-group method with the power of modern computer simulations based on the Fourier Monte Carlo algorithm. After discussing the ideas and difficulties underlying this combined scheme, we present a calculation of the renormalization-group flow of the effective two-dimensional Young modulus for momentum shells of different thickness. Extrapolation to infinite shell thickness allows us to produce results in reasonable agreement with those obtained by functional renormalization group or by Fourier Monte Carlo simulations in combination with finite-size scaling. Moreover, our method allows us to obtain a decent estimate for the value of the Wegner exponent ω that determines the leading correction to scaling, which in turn allows us to refine our numerical estimate for η previously obtained from precise finite-size scaling data.

  17. Direct dynamic synthesis of nanodispersed phases of titanium oxides upon sputtering of electrodischarge titanium plasma into an air atmosphere

    Science.gov (United States)

    Sivkov, A. A.; Gerasimov, D. Yu.; Nikitin, D. S.

    2017-01-01

    Experimental investigations of the possibility of directly synthesizing nanodispersed crystalline phases of titanium dioxides with rutile and anatase structures in a hypervelocity jet of electroerosion plasma generated by a coaxial magnetoplasma accelerator with titanium electrodes are presented. A powder product containing nanosized polymorphic phases of titanium dioxide with a spherical shape of particles has been manufactured.

  18. Crystallinity and crystallization mechanism of lithium aluminosilicate glass by X-ray diffractometry

    Institute of Scientific and Technical Information of China (English)

    GUO Xing-zhong; YANG hui; CAO Ming; HAN Chen; SONG Fang-fang

    2006-01-01

    The crystallinity of lithium aluminosilicate(LAS) glass after crystallization were studied at different temperatures by X-ray diffractometry and the crystallinity of the standard glass ceramic with known crystal and glass phases was examined. The crystallization mechanism of LAS glass was analyzed by the crystallinity, with a formula relating the crystallinity (Ⅹ) and temperature (7). The results show that the calculated crystallinity of LAS glass by XRD increases with the crystallization temperature,in the range of 40% -50%, which is close to the calculated ones of standard samples with spodumene quartz ratio of 40%-70%. The activation energy of LAS glass is different within different temperature ranges; nEc is 125.44 kJ/mol at 710-810 ℃ and nEc is 17.42 kJ/mol at 810-980 ℃, which indicates different crystallization mechanisms. It has been proved that the required energy for crystallization of glass in the lower temperature range includes the interfacial energy between glass and crystalline phase and the free energy difference of atoms in structures of glass and crystal, and in the higher temperature ranges only the interfacial energy between glass and crystalline phase is considered.

  19. Unexpected superconductivity at nanoscale junctions made on the topological crystalline insulator Pb0.6Sn0.4Te

    Science.gov (United States)

    Das, Shekhar; Aggarwal, Leena; Roychowdhury, Subhajit; Aslam, Mohammad; Gayen, Sirshendu; Biswas, Kanishka; Sheet, Goutam

    2016-09-01

    Discovery of exotic phases of matter from the topologically non-trivial systems not only makes the research on topological materials more interesting but also enriches our understanding of the fascinating physics of such materials. Pb0.6Sn0.4Te was recently shown to be a topological crystalline insulator. Here, we show that by forming a mesoscopic point-contact using a normal non-superconducting elemental metal on the surface of Pb0.6Sn0.4Te, a superconducting phase is created locally in a confined region under the point-contact. This happens when the bulk of the sample remains to be non-superconducting, and the superconducting phase emerges as a nano-droplet under the point-contact. The superconducting phase shows a high transition temperature Tc that varies for different point-contacts and falls in a range between 3.7 K and 6.5 K. Therefore, this Letter presents the discovery of a superconducting phase on the surface of a topological crystalline insulator, and the discovery is expected to shed light on the mechanism of induced superconductivity in topologically non-trivial systems in general.

  20. Preparation of Highly Crystalline TiO2 Nanostructures by Acid-assisted Hydrothermal Treatment of Hexagonal-structured Nanocrystalline Titania/Cetyltrimethyammonium Bromide Nanoskeleton

    Directory of Open Access Journals (Sweden)

    Sakai Hideki

    2010-01-01

    Full Text Available Abstract Highly crystalline TiO2 nanostructures were prepared through a facile inorganic acid-assisted hydrothermal treatment of hexagonal-structured assemblies of nanocrystalline titiania templated by cetyltrimethylammonium bromide (Hex-ncTiO2/CTAB Nanoskeleton as starting materials. All samples were characterized by X-ray diffraction (XRD and transmission electron microscopy (TEM. The influence of hydrochloric acid concentration on the morphology, crystalline and the formation of the nanostructures were investigated. We found that the morphology and crystalline phase strongly depended on the hydrochloric acid concentrations. More importantly, crystalline phase was closely related to the morphology of TiO2 nanostructure. Nanoparticles were polycrystalline anatase phase, and aligned nanorods were single crystalline rutile phase. Possible formation mechanisms of TiO2 nanostructures with various crystalline phases and morphologies were proposed.

  1. Physics of liquid and crystalline plasmas: Future perspectives

    Science.gov (United States)

    Morfill, G. E.

    It has been shown that under certain conditions "complex plasmas" (plasma containing ions, electrons and charged microspheres) may undergo spontaneous phase changes to become liquid and crystalline, without recombination of the charge components. Hence these systems may be regarded as new plasma states "condensed plasmas". The ordering forces are mainly electrostatic, but dipolar effects, anisotropic pressure due shielding, ion flow focussing etc. may all play a role, too. Complex plasmas are of great interest from a fundamental research point of view because the individual particles of one plasma component (the charged microspheres) can be visualised and hence the plasma can be studied at the kinetic level. Also, the relevant time scales (e.g. 1/plasma frequency) are of order 0.1 sec, the plasma processes occur practically in "slow motion". We will discuss some physical processes (e.g. wave propagation, shocks, phase transitions) of these systems and outline the potential of the research for the understanding of strongly coupled systems. Technologically, it is expected that colloidal plasmas will also become very important, because both plasma technology and colloid technology are widely developed already. In this overview first the basic forces between the particles are discussed, then the phase transitions, the lattice structures and results from active experiments will be presented. Finally the future perspectives will be discussed, from the scientific potential point of view and the experimental approaches in the laboratory and in space. Experiments under microgravity conditions are of great importance, because the microspheres are 10's of billions times heavier than the ions.

  2. Preparation and specific properties of single crystalline metallic nanowires

    Energy Technology Data Exchange (ETDEWEB)

    Hassel, Achim Walter; Milenkovic, Srdjan [Max-Planck-Institut fuer Eisenforschung GmbH, Duesseldorf (Germany); Institute for Chemical Technology of Inorganic Materials, Johannes Kepler University, Linz (Austria); Bello-Rodriguez, Belen; Smith, Andrew Jonathan; Chen, Ying [Max-Planck-Institut fuer Eisenforschung GmbH, Duesseldorf (Germany)

    2010-10-15

    Directional solidification of eutectics is a route to produce iso-oriented metallic single crystalline nanowires (NWs). Etching or electrochemical oxidation allows selective dissolution of either of the phases to produce NW arrays, isolated NWs, nanopore arrays and also derived structures by combining various process steps. A good understanding of the thermodynamics and the kinetics of the phase transformation and chemical reactions including electrodissolution, passivation, selective etching, complexing of reaction products and electrodeposition in the systems NiAl-X (X=Re, W, Mo), Ag-Cu and Fe-Au was reached. Functional devices based on these NWs, like high aspect ratio NW based STM tips, nanoelectromechanical systems (NEMS), NW pH sensors and sensor arrays were constructed. Array of rhenium single crystalline NWs embedded in the NiAl matrix after partial dissolution of the matrix. (Abstract Copyright [2010], Wiley Periodicals, Inc.)

  3. C4b-binding protein is present in affected areas of myocardial infarction during the acute inflammatory phase and covers a larger area than C3.

    Directory of Open Access Journals (Sweden)

    Leendert A Trouw

    Full Text Available BACKGROUND: During myocardial infarction reduced blood flow in the heart muscle results in cell death. These dying/dead cells have been reported to bind several plasma proteins such as IgM and C-reactive protein (CRP. In the present study we investigated whether fluid-phase complement inhibitor C4b-binding protein (C4BP would also bind to the infarcted heart tissue. METHODS AND FINDINGS: Initial studies using immunohistochemistry on tissue arrays for several cardiovascular disorders indicated that C4BP can be found in heart tissue in several cardiac diseases but that it is most abundantly found in acute myocardial infarction (AMI. This condition was studied in more detail by analyzing the time window and extent of C4BP positivity. The binding of C4BP correlates to the same locations as C3b, a marker known to correlate to the patterns of IgM and CRP staining. Based on criteria that describe the time after infarction we were able to pinpoint that C4BP binding is a relatively early marker of tissue damage in myocardial infarction with a peak of binding between 12 hours and 5 days subsequent to AMI, the phase in which infiltration of neutrophilic granulocytes in the heart is the most extensive. CONCLUSIONS: C4BP, an important fluid-phase inhibitor of the classical and lectin pathway of complement activation binds to jeopardized cardiomyocytes early after AMI and co-localizes to other well known markers such as C3b.

  4. International Workshop on Non-Crystalline Solids (3rd) Held in Matalascanas, Spain on November 5-8, 1991. Programme and Abstracts

    Science.gov (United States)

    1991-11-01

    CSIC. Universidad Sevilla A. Conde (Chairman) C.F. Conde A. Criado J. Leal M. Miln H. Miranda SPONSORS MINISTERIO DE EDUCACION Y CIENCIA JUNTA DE...ANDALUCIA (Consejerias de President-ia y Educacibn y Glencia) UNIVERSIDAD DE SEVILLA CONSEJO SUPERIOR DE INVESTIGACIONES CIENTIFICAS GRUPO ESPECIALIZADO...from the structural phases present. Both the supressed magneto-crystalline anisotropy and the low magnetostriction provide the basis for the superior

  5. Electroactive β-crystalline phase inclusion and photoluminescence response of a heat-controlled spin-coated PVDF/TiO2 free-standing nanocomposite film for a nanogenerator and an active nanosensor

    Science.gov (United States)

    Mehebub Alam, Md; Sultana, Ayesha; Sarkar, Debabrata; Mandal, Dipankar

    2017-09-01

    The electroactive β-phase is most desirable due to its highest piezo-, pyro- and ferroelectric properties in poly(vinylidene fluoride) (PVDF). Induction of the β-phase is successfully accomplished in titanium dioxide (TiO2) nanoparticles (NPs) doped spin-coated PVDF nanocomposite (PNC) films. The optimized yields of β-phase and homogeneous ultra-smooth free-standing PNC film is utilized in a mechanical-energy harvesting application by fabricating a nanogenerator (NG) where the typical electrical poling step is not undertaken. Under a repeated human finger touch and release process, it delivers an open-circuit voltage of 5 V. Moreover, the physical sensing capabilities of the NG are examined through harvesting mechanical energy from mouse clicking of a laptop and wrist pulse detection, which indicates that it can also be used as a nanosensor. The blue photoluminescence centred at 444 nm, which was also observed in PNC films, makes us anticipate a new type of photonic application where the design feasibility of hybrid sensors, i.e. electromechanical and photonic combination, is also possible.

  6. Bulk nano-crystalline alloys

    OpenAIRE

    T.-S. Chin; Lin, C. Y.; Lee, M.C.; R.T. Huang; S. M. Huang

    2009-01-01

    Bulk metallic glasses (BMGs) Fe–B–Y–Nb–Cu, 2 mm in diameter, were successfully annealed to become bulk nano-crystalline alloys (BNCAs) with α-Fe crystallite 11–13 nm in size. A ‘crystallization-and-stop’ model was proposed to explain this behavior. Following this model, alloy-design criteria were elucidated and confirmed successful on another Fe-based BMG Fe–B–Si–Nb–Cu, 1 mm in diameter, with crystallite sizes 10–40 nm. It was concluded that BNCAs can be designed in general by the proposed cr...

  7. Anisotropy and Crystalline Structure in Polyaniline Films

    Science.gov (United States)

    Minto, C. D. G.; Vaughan, A. S.

    1996-03-01

    Films of polyaniline -- camphor sulphonic acid cast from m-cresol exhibit transport properties characteristic of a material stradelling the metal/insulator transition. This improvement in properties over traditional methods of polyaniline production has been suggested as being caused by the macromolecule adopting an expanded coil configuration in this solvent. Such films have been shown to be semi--crystalline and are presumed to be completely isotropic. We present here new results which demonstrate that such films are in fact appreciably aligned. X-ray scattering is utilised to expose the presence of molecular anisotropy within such films, the polymers forming a stacked structure with the molecules preferentially oriented parallel to the plane of the film. Similar measurements confirm that the molecules are randomly oriented within this plane. Such alignment considerably improves the transport properties. Anisotropy and the crystalline structure within these films, those cast from chloroform and those using the isolated enantiomeric counter ion are quantified and discussed. The results demonstrate that improved transport properties have arisen as a result of both polymer--solvent interactions and as a result of improved chain alignment.

  8. Investigation of the crystalline structure of ettringite with in situ measurement of its evolution during formation and thermal decomposition

    Science.gov (United States)

    Hartman, Michael R.

    2005-07-01

    The crystalline structure of ettringite, Ca6[Al(OH)6 ]2(SO4)3·26H2O, an important hydration product in the chemistry of Portland cement, was investigated using time-of-flight neutron diffraction combined with Rietveld crystal structure refinement. In addition, the changes in crystalline structure during the formation and thermal decomposition of ettringite were followed in situ, using specialized experimental assemblies. The diffusive motions of crystalline water within the ettringite structure were studied using incoherent quasi-elastic neutron scattering techniques. The results of this investigation led to an improved model for the crystalline structure of ettringite, including a detailed understanding of the three-dimensional hydrogen bond network that extends throughout the structure. Structural changes were observed for ettringite specimens with thermal decomposition up to 30 wt. %. These studies showed that previous models of the dehydration process, based upon indirect experimental evidence, were incorrect. The formation of ettringite during the hydration of tricalcium aluminate (Ca3Al 2O6) in the presence of gypsum (CaSO4·2H 2O), for temperatures ranging from 25°C to 80°C, demonstrated that ettringite was the only crystalline hydration product, in contrast to a prior study which reported the presence of a precursor phase in the reaction pathway. An analysis of the kinetics of the hydration reaction showed that the rate law of the reaction changed markedly over the temperature range investigated. Approximately 12% of the hydrogen atoms present in a fully hydrated ettringite specimen were observed to perform a localized diffusive motion for temperatures between 200 K and 320 K, while an ettringite specimen dehydrated to a weight loss of 20 wt. % showed indications of translational diffusion for approximately 9% of the remaining hydrogen atoms.

  9. Reaction Front Evolution during Electrochemical Lithiation of Crystalline Silicon Nanopillars

    KAUST Repository

    Lee, Seok Woo

    2012-12-01

    The high theoretical specific capacity of Si as an anode material is attractive in lithium-ion batteries, although the issues caused by large volume changes during cycling have been a major challenge. Efforts have been devoted to understanding how diffusion-induced stresses cause fracture, but recent observations of anisotropic volume expansion in single-crystalline Si nanostructures require new theoretical considerations of expansion behavior during lithiation. Further experimental investigation is also necessary to better understand the anisotropy of the lithiation process. Here, we present a method to reveal the crystalline core of partially lithiated Si nanopillars with three different crystallographic orientations by using methanol to dissolve the Li atoms from the amorphous Li-Si alloy. The exposed crystalline cores have flat {110} surfaces at the pillar sidewalls; these surfaces represent the position of the reaction front between the crystalline core and the amorphous Li-Si alloy. It was also found that an amorphous Si structure remained on the flat surfaces of the crystalline core after dissolution of the Li, which was presumed to be caused by the accumulation of Si atoms left over from the removal of Li from the Li-Si alloy. © 2012 Wiley-VCH Verlag GmbH &Co. KGaA, Weinheim.

  10. Genetics of Bietti Crystalline Dystrophy.

    Science.gov (United States)

    Ng, Danny S C; Lai, Timothy Y Y; Ng, Tsz Kin; Pang, Chi Pui

    2016-01-01

    Bietti crystalline dystrophy (BCD) is an inherited retinal degenerative disease characterized by crystalline deposits in the retina, followed by progressive atrophy of the retinal pigment epithelium (RPE), choriocapillaris, and photoreceptors. CYP4V2 has been identified as the causative gene for BCD. The CYP4V2 gene belongs to the cytochrome P450 superfamily and encodes for fatty acid ω-hydroxylase of both saturated and unsaturated fatty acids. The CYP4V2 protein is localized most abundantly within the endoplasmic reticulum in the RPE and is postulated to play a role in the physiological lipid recycling system between the RPE and photoreceptors to maintain visual function. Electroretinographic assessments have revealed progressive dysfunction of rod and cone photoreceptors in patients with BCD. Several genotypes have been associated with more severe phenotypes based on clinical and electrophysiological findings. With the advent of multimodal imaging with spectral domain optical coherence tomography, fundus autofluorescence, and adaptive optics scanning laser ophthalmoscopy, more precise delineation of BCD severity and progression is now possible, allowing for the potential future development of targets for gene therapy.

  11. Dynamic control of crystallinity in polymer film casting process

    Directory of Open Access Journals (Sweden)

    Thananchai Leephakpreeda

    2005-05-01

    Full Text Available This paper presents an approach for dynamic control of crystallinity in polymer film casting process. As known, the transients of crystallization dictate the microstructures of semi-crystalline polymer during solidification. In turn, the properties of finished products can be determined by adjustable variables in polymer film casting process such as temperature of chill roll. In this work, an experimental model of the solidification in film casting process is derived by a system identification technique. This model is used to design a digital feedback controller including a state estimator. The simulation results show the effectiveness of the proposed control technique on an extruded film.

  12. Experimental study for the feasibility of a crystalline undulator.

    Science.gov (United States)

    Bellucci, S; Bini, S; Biryukov, V M; Chesnokov, Yu A; Dabagov, S; Giannini, G; Guidi, V; Ivanov, Yu M; Kotov, V I; Maisheev, V A; Malagù, C; Martinelli, G; Petrunin, A A; Skorobogatov, V V; Stefancich, M; Vincenzi, D

    2003-01-24

    We present an idea for creation of a crystalline undulator and report its first realization. One face of a silicon crystal was given periodic microscratches (grooves) by means of a diamond blade. The x-ray tests of the crystal deformation due to a given periodic pattern of surface scratches have shown that a sinusoidal-like shape is observed on both the scratched surface and the opposite (unscratched) face of the crystal; that is, a periodic sinusoidal-like deformation goes through the bulk of the crystal. This opens up the possibility for experiments with high-energy particles channeled in a crystalline undulator, a novel compact source of radiation.

  13. Crystalline beams in dispersion-free storage rings

    Directory of Open Access Journals (Sweden)

    Masahiro Ikegami

    2006-12-01

    Full Text Available Generating a multidimensional crystalline beam in a storage ring has been known to be difficult without a special cooling force, i.e., tapered cooling, because of the momentum dispersion induced by bending magnets. It is, however, possible to eliminate the dispersion all around the ring by adding an electric dipole field in each magnetic bending region. A storage ring with such unique deflectors should enable us to reach multidimensional crystalline states with an ordinary untapered cooling force. In order to verify this expectation, molecular dynamics simulations are performed to study beam crystallization in several dispersion-free storage rings including the S-LSR at Kyoto University. The present results show that various crystalline states can be established without relying on the tapered force.

  14. Atomically flat single-crystalline gold nanostructures for plasmonic nanocircuitry

    Energy Technology Data Exchange (ETDEWEB)

    Huang, J.S.; Geisler, P.; Bruening, C.; Kern, J.; Prangsma, J.C.; Wu, X.; Feichtner, Thorsten; Ziegler, J.; Weinmann, P.; Kamp, M.; Forchel, A.; Hecht, B. [Wilhelm-Conrad-Roentgen-Center for Complex Material Systems, University of Wuerzburg (Germany); Biagioni, P. [CNISM, Dipartimento di Fisica, Politecnico di Milano (Italy)

    2011-07-01

    Deep subwavelength integration of high-definition plasmonic nano-structures is of key importance for the development of future optical nanocircuitry. So far the experimental realization of proposed extended plasmonic networks remains challenging, mainly due to the multi-crystallinity of commonly used thermally evaporated gold layers. Resulting structural imperfections in individual circuit elements drastically reduce the yield of functional integrated nanocircuits. Here we demonstrate the use of very large but thin chemically grown single-crystalline gold flakes. After immobilization on any arbitrary surface, they serve as an ideal basis for focused-ion beam milling. We present high-definition ultra-smooth gold nanostructures with reproducible nanosized features over micrometer lengthscales. By comparing multi- and single-crystalline optical antennas we prove that the latter have superior optical properties which are in good agreement with numerical simulations.

  15. The physics of large deformation of crystalline solids

    CERN Document Server

    Bell, James F

    1968-01-01

    Historically, a major problem for the study of the large deformation of crystalline solids has been the apparent lack of unity in experimentally determined stress-strain functions. The writer's discovery in 1949 of the unexpectedly high velocity of incremental loading waves in pre-stressed large deformation fields emphasized to him the pressing need for the independent, systematic experimental study of the subject, to provide a firm foundation upon which physically plausible theories for the finite deformation of crystalline solids could be constructed. Such a study undertaken by the writer at that time and continued uninterruptedly to the present, led in 1956 to the development of the diffraction grating experiment which permitted, for the first time, the optically accurate determination of the strain-time detail of non-linear finite amplitude wave fronts propagating into crystalline solids whose prior history was precisely known. These experimental diffraction grating studies during the past decade have led...

  16. Fabrication of hierarchically ordered crystalline titania thin films

    Energy Technology Data Exchange (ETDEWEB)

    Niedermeier, Martin; Kaune, Gunar; Rawolle, Monika; Koerstgens, Volker; Ruderer, Matthias; Mueller-Buschbaum, Peter [TU Muenchen, Physik-Department LS E13, Garching (Germany); Gutmann, Jochen S. [Max-Planck Institute for Polymer Research, Mainz (Germany)

    2010-07-01

    Thin films of nanostructured titania have received a lot of attention in various applications such as photovoltaics within the last years. Having a well defined morphology is crucial for the functionality and performance of these films because it defines the volume to surface ratio and thereby the surface being available for interface reactions. Increasing the total film thickness is a common approach in order to increase the surface area. The present work focuses on the fabrication of hierarchically structured titania thin films and their crystallinity. A layer-by-layer spin-coating approach is investigated. A solution based sol-gel process using diblock copolymers as a template to obtain nanocomposite films is followed by calcination to obtain crystalline titania structures. The obtained structures are investigated using several imaging techniques like SEM and AFM. The crystallinity and the thickness of the films are analyzed with XRD and XRR.

  17. Development of novel UV emitting single crystalline film scintillators

    Science.gov (United States)

    Zorenko, Yu; Gorbenko, V.; Savchyn, V.; Voznyak, T.; Nikl, M.; Mares, J. A.; Martin, T.; Douissard, P.-A.

    2011-04-01

    The work is dedicated to development of new types of UV -emitting scintillators based on single crystalline films (SCF) of aluminimum perovskites and garnets grown by the liquid phase epitaxy (LPE) method. The development of the following three types of UV SCF scintillators is considered in this work: i) Ce-doped SCF of Y-Lu-Al-perovskites with Ce3+ emission in the 360-370 nm range with a decay time of 16-17 ns; ii) Pr-doped SCF of Y-Lu-Al garnets with Pr3+ emission in the 300-400 nm range with a decay time of 13-17 ns; iii) La3+ and Sc3+ doped SCF of Y-Lu-Al-garnets, emitting in the 290-400 nm range due to formation of the LaY,Lu, ScY,Lu and ScAl centers with decay time of 250-575 ns. The results of testing the several novel UV-emitting SCFs scintillators for visualization of X-ray images at ESFR are presented. It is shown that the UV emission of the LuAG:Sc, LuAG:La and LuAG:Pr SCFs is efficient enough for conversion of X-ray to the UV light and that these scintillators can be used for improvement of the resolution of imaging detectors in synchrotron radiation applications.

  18. Photonic Properties of Er-Doped Crystalline Silicon

    NARCIS (Netherlands)

    Vinh, N. Q.; Ha, N. N.; T. Gregorkiewicz,

    2009-01-01

    During the last four decades, a remarkable research effort has been made to understand the physical properties of Si:Er material, as it is considered to be a promising approach towards improving the optical properties of crystalline Si. in this paper, we present a summary of the most important resul

  19. A continuum theory for modeling the dynamics of crystalline materials.

    Science.gov (United States)

    Xiong, Liming; Chen, Youping; Lee, James D

    2009-02-01

    This paper introduces a multiscale field theory for modeling and simulation of the dynamics of crystalline materials. The atomistic formulation of a multiscale field theory is briefly introduced. Its applicability is discussed. A few application examples, including phonon dispersion relations of ferroelectric materials BiScO3 and MgO nano dot under compression are presented.

  20. SYNTHESIS AND SUPRAMOLECULAR CHEMISTRY OF NOVEL LIQUID-CRYSTALLINE CROWN ETHER-SUBSTITUTED PHTHALOCYANINES - TOWARD MOLECULAR WIRES AND MOLECULAR IONOELECTRONICS

    NARCIS (Netherlands)

    VANNOSTRUM, CF; PICKEN, SJ; SCHOUTEN, AJ; NOLTE, RJM

    1995-01-01

    The synthesis of the metal-free and the dihydroxysilicon derivatives of tetrakis[4',5'-bis(decoxy)benzo-18-crown-6]phthalocyanine is described. The metal-free phthalocyanine is liquid crystalline and exhibits a crystalline phase to mesophase transition at 148 degrees C. The structures of the crystal

  1. SYNTHESIS AND SUPRAMOLECULAR CHEMISTRY OF NOVEL LIQUID-CRYSTALLINE CROWN ETHER-SUBSTITUTED PHTHALOCYANINES - TOWARD MOLECULAR WIRES AND MOLECULAR IONOELECTRONICS

    NARCIS (Netherlands)

    VANNOSTRUM, CF; PICKEN, SJ; SCHOUTEN, AJ; NOLTE, RJM

    1995-01-01

    The synthesis of the metal-free and the dihydroxysilicon derivatives of tetrakis[4',5'-bis(decoxy)benzo-18-crown-6]phthalocyanine is described. The metal-free phthalocyanine is liquid crystalline and exhibits a crystalline phase to mesophase transition at 148 degrees C. The structures of the crystal

  2. Crystalline SiCO: Implication on structure and thermochemistry of ternary silicon oxycarbide ceramics

    Science.gov (United States)

    Bodiford, Nelli

    work for studying the SiCO system we work with crystalline models. These are well-ordered structures that approximate essential details of a disordered phase. The crystalline models are generated by using recently introduced structure search algorithms: AIRSS ( Ab Initio Random Structure Prediction Search) and USPEX (Universal structure predictor: Evolutionary Xtallography). Then the models are further optimized in a standard ab-initio total-energy and molecular dynamics program VASP (Vienna Ab-initio Simulation Package) using pseudopotentials, plane waves, and the generalized gradient approximation (GGA). Structures of the targeted compositions start with 10 mol-% of SiC within SiCO up to 66 mol-%. In addition to stoichiometric models, we also analyzed structures with "free" carbon. The excess energy was calculated from the difference between the energy of the model and the energy of a combination of phase assembly composed of beta-SiC, q-SiO2 and graphite. As the result, this work presents SiCO crystalline models, their microstructure, crystallographic description of each structure, energetic stability compared to amorphous models as well as the phase diagrams including Gibbs energy calculations to estimate thermodynamic stability.

  3. THE CRYSTALLINE DOMAINS IN POTATO STARCH GRANULES ARE ARRANGED IN A HELICAL FASHION

    NARCIS (Netherlands)

    OOSTERGETEL, GT; VANBRUGGEN, EFJ

    1993-01-01

    The structural basis for the physical properties of starches from different botanical sources is still poorly understood. Particularly at the level of the crystalline domains the present knowledge concerning the structure of starch is limited. This paper reports the semi-crystalline structure of pot

  4. Protective and therapeutic role for αB-crystallin in autoimmune demyelination

    NARCIS (Netherlands)

    Ousman, S.S.; Tomooka, B.H.; Noort, J.M. van; Wawrousek, E.F.; O'Conner, K.; Hafler, D.A.; Sobel, R.A.; Robinson, W.H.; Steinman, L.

    2007-01-01

    αB-crystallin (CRYAB) is the most abundant gene transcript present in early active multiple sclerosis lesions, whereas such transcripts are absent in normal brain tissue. This crystallin has anti-apoptotic and neuroprotective functions. CRYAB is the major target of CD4+ T-cell immunity to the myelin

  5. Simple X-ray diffraction algorithm for direct determination of cotton crystallinity

    Science.gov (United States)

    Traditionally, XRD had been used to study the crystalline structure of cotton celluloses. Despite considerable efforts in developing the curve-fitting protocol to evaluate the crystallinity index (CI), in its present state, XRD measurement can only provide a qualitative or semi-quantitative assessme...

  6. Tectonics of the crystalline Basement of the Dolomites in North Italy

    NARCIS (Netherlands)

    Agterberg, F.P.

    1961-01-01

    The present thesis deals with a number of crystalline regions around the Dolomites in North Italy. The geographic position is shown on sheet I, which is depicted in fig. 105. The Dolomites proper consist mainly of Permotriassic, overlying a transgression plane, which cuts off the studied crystalline

  7. Radiation effects on crystalline polymers—I. Crystallinity dependence of chemical reaction in irradiated polyamide-1010

    Science.gov (United States)

    Lihua, Zhang; Yuchen, Qi; Li, Yu; Shuzhong, Li; Donglin, Chen

    The present study concentrates on the role played by aggregated state on crosslinking in situ during irradiation and post-crosslinking occurred during heat treatment after irradiation by using DSC, WAXD, ESR and di-electric spectrum, and gel fraction measurement techniques. It was found that the chain crosslinking and scission of irradiated polyamide-1010 occur mainly in the amorphous region or crystal surface. Besides, we further proved that the non-crystalline region is also the main district wherein the post-crosslinking and post-degradation occur.

  8. (Preoxidation cleaning optimization for crystalline silicon)

    Energy Technology Data Exchange (ETDEWEB)

    1991-01-01

    A series of controlled experiments has been performed in Sandia's Photovoltaic Device Fabrication Laboratory to evaluate the effect of various chemical surface treatments on the recombination lifetime of crystalline silicon wafers subjected to a high-temperature dry oxidation. From this series of experiments we have deduced a relatively simple yet effective cleaning sequence. We have also evaluated the effect of different chemical damage-removal etches for improving the recombination lifetime and surface smoothness of mechanically lapped wafers. This paper presents the methodology used, the experimental results obtained, and our experience with using this process on a continuing basis over a period of many months. 7 refs., 4 figs., 1 tab.

  9. Phase Transitions of Simple Systems

    CERN Document Server

    Berry, Stephen

    2008-01-01

    This monograph develops a unified microscopic basis for phases and phase changes of bulk matter and small systems in terms of classical physics. The origins of such phase changes are derived from simple but physically relevant models of how transitions between rigid crystalline, glassy and fluid states occur, how phase equilibria arise, and how bulk properties evolve from those of small systems.

  10. Optofluidic encapsulation of crystalline colloidal arrays into spherical membrane.

    Science.gov (United States)

    Kim, Shin-Hyun; Jeon, Seog-Jin; Yang, Seung-Man

    2008-05-07

    Double emulsion droplets encapsulating crystalline colloidal arrays (CCAs) with a narrow size distribution were produced using an optofluidic device. The shell phase of the double emulsion was a photocurable resin that was photopolymerized downstream of the fluidic channel within 1 s after drop generation. The present optofluidic synthesis scheme was very effective for fabricating highly monodisperse spherical CCAs that were made structurally stable by in situ photopolymerization of the encapsulating shells. The shell thickness and the number of core emulsion drops could be controlled by varying the flow rates of the three coflowing streams in the dripping regime. The spherical CCAs confined in the shell exhibited distinct diffraction patterns in the visible range, in contrast to conventional film-type CCAs. As a result of their structure, the spherical CCAs exhibited photonic band gaps for normal incident light independent of the position on the spherical surface. This property was induced by heterogeneous nucleation at the smooth wall of the spherical emulsion drop during crystallization into a face-centered cubic (fcc) structure. On the other hand, the solidified shells did not permit the penetration of ionic species, enabling the CCAs to maintain their structure in a continuous aqueous phase of high ionic strength for at least 1 month. In addition, the evaporation of water molecules inside the shell was slowed considerably when the core-shell microparticles were exposed to air: It took approximately 6 h for a suspension encapsulated in a thick shell to evaporate completely, which is approximately 1000 times longer than the evaporation time for water droplets with the same volume. Finally, the spherical CCAs additionally exhibited enhanced stability against external electric fields. The spherical geometry and high dielectric constant of the suspension contributed to reducing the electric field inside the shell, thereby inhibiting the electrophoretic movement of

  11. Lyotropic, liquid crystalline nanostructures of aqueous dilutions of SMEDDS revealed by small-angle X-ray scattering: impact on solubility and drug release.

    Science.gov (United States)

    Goddeeris, Caroline; Goderis, Bart; Van den Mooter, Guy

    2010-05-12

    The present study was conducted to characterise the liquid crystalline phases that occur upon diluting a SMEDDS and to elucidate the role of these phases on drug solubilisation and release. Small-angle X-ray scattering (SAXS) was used to probe the structures in aqueous dilutions of 3 SMEDDS consisting of propylene glycol mono- and dicaprylate and mono- and dicaprate (PGDCDC) and d-alpha-tocopheryl polyethylene glycol succinate 1000 (TPGS 1000), polysorbate 80 (P80) or polyoxyl 40 hydrogenated castor oil (P40HC). The scattering patterns revealed the formation of either a random periodic or a lamellar phase when 10% (w/w) water was added. All formulations exhibited lamellar structures at 20% (w/w) aqueous dilution, of which the layer-to-layer distance increased upon further addition of water. At 40% (w/w) water, a hexagonal or lamellar phase was formed, depending on the geometry of the surfactant. Temperature did not alter the phases formed. Incorporation of the drug UC 781 only slightly enlarged the characteristic dimensions of the liquid crystalline phases. Drug solubility decreased upon aqueous dilution, although 10% (w/w) dilutions of PGDCDC-P80 SMEDDS and PGDCDC-TPGS 1000 SMEDDS revealed a highly increased solubility as compared to the pure formulations. Drug release data revealed that UC 781 release could not be linked to the solubilisation capacity of the SMEDDS, but could be associated with the solubility of UC 781 in the phases formed at water concentrations above 10% (w/w).

  12. Bacterial adhesion on amorphous and crystalline metal oxide coatings

    Energy Technology Data Exchange (ETDEWEB)

    Almaguer-Flores, Argelia [Facultad de Odontología, División de Estudios de Posgrado e Investigación, Universidad Nacional Autónoma de México, Circuito exterior s/n, Ciudad Universitaria, 04510 México D.F. (Mexico); Silva-Bermudez, Phaedra, E-mail: suriel21@yahoo.com [Unidad de Ingeniería de Tejidos, Terapia Celular y Medicina Regenerativa, Instituto Nacional de Rehabilitación, Calzada México-Xochimilco No. 289, Col. Arenal de Guadalupe, 14389 México D.F. (Mexico); Instituto de Investigaciones en Materiales, Universidad Nacional Autónoma de México, Circuito Exterior s/n, Ciudad Universitaria, 04510 México D.F. (Mexico); Galicia, Rey; Rodil, Sandra E. [Instituto de Investigaciones en Materiales, Universidad Nacional Autónoma de México, Circuito Exterior s/n, Ciudad Universitaria, 04510 México D.F. (Mexico)

    2015-12-01

    Several studies have demonstrated the influence of surface properties (surface energy, composition and topography) of biocompatible materials on the adhesion of cells/bacteria on solid substrates; however, few have provided information about the effect of the atomic arrangement or crystallinity. Using magnetron sputtering deposition, we produced amorphous and crystalline TiO{sub 2} and ZrO{sub 2} coatings with controlled micro and nanoscale morphology. The effect of the structure on the physical–chemical surface properties was carefully analyzed. Then, we studied how these parameters affect the adhesion of Escherichia coli and Staphylococcus aureus. Our findings demonstrated that the nano-topography and the surface energy were significantly influenced by the coating structure. Bacterial adhesion at micro-rough (2.6 μm) surfaces was independent of the surface composition and structure, contrary to the observation in sub-micron (0.5 μm) rough surfaces, where the crystalline oxides (TiO{sub 2} > ZrO{sub 2}) surfaces exhibited higher numbers of attached bacteria. Particularly, crystalline TiO{sub 2}, which presented a predominant acidic nature, was more attractive for the adhesion of the negatively charged bacteria. The information provided by this study, where surface modifications are introduced by means of the deposition of amorphous or crystalline oxide coatings, offers a route for the rational design of implant surfaces to control or inhibit bacterial adhesion. - Highlights: • Amorphous (a) and crystalline (c) TiO{sub 2} and ZrO{sub 2} coatings were deposited. • The atomic ordering influences the coatings surface charge and nano-topography. • The atomic ordering modifies the bacterial adhesion for the same surface chemistry. • S. aureus adhesion was lower on a-TiO{sub 2} and a-ZrO{sub 2} than on their c-oxide counterpart. • E. coli adhesion on a-TiO{sub 2} was lower than on the c-TiO{sub 2}.

  13. Direct visualization of dispersed lipid bicontinuous cubic phases by cryo-electron tomography

    Science.gov (United States)

    Demurtas, Davide; Guichard, Paul; Martiel, Isabelle; Mezzenga, Raffaele; Hébert, Cécile; Sagalowicz, Laurent

    2015-11-01

    Bulk and dispersed cubic liquid crystalline phases (cubosomes), present in the body and in living cell membranes, are believed to play an essential role in biological phenomena. Moreover, their biocompatibility is attractive for nutrient or drug delivery system applications. Here the three-dimensional organization of dispersed cubic lipid self-assembled phases is fully revealed by cryo-electron tomography and compared with simulated structures. It is demonstrated that the interior is constituted of a perfect bicontinuous cubic phase, while the outside shows interlamellar attachments, which represent a transition state between the liquid crystalline interior phase and the outside vesicular structure. Therefore, compositional gradients within cubosomes are inferred, with a lipid bilayer separating at least one water channel set from the external aqueous phase. This is crucial to understand and enhance controlled release of target molecules and calls for a revision of postulated transport mechanisms from cubosomes to the aqueous phase.

  14. Effect of TiO2 Doping by Zn on Crystalline Phase and Photocatalytic Activity%Zn掺杂对 TiO2晶相及光催化性能的影响

    Institute of Scientific and Technical Information of China (English)

    徐向军; 邢晓轲; 卫世乾

    2015-01-01

    采用改进的溶胶-凝胶法制备ZnO-TiO2复合催化剂,通过X射线衍射( XRD)、紫外-可见漫反射( UV-Vis DRS)对其微晶结构和光吸收性能进行表征.以甲基橙作为模拟降解物,结果表明,改变水和乙醇的含量以控制溶胶向凝胶陈化的时间影响ZnO-TiO2的催化活性.当n( Zn)∶n( Ti)为3∶15、煅烧温度为500℃时产物催化效率最好,紫外光照5 h,降解率为96.4%.XRD结果显示,ZnO-TiO2主要以锐钛矿相 TiO2和立方Zn2 TiO4晶相存在,且Zn2 TiO4晶相在n( Zn)∶n( Ti)≥3∶15时才会出现.紫外-可见漫反射吸收光谱显示,相比单纯TiO2,ZnO-TiO2吸收边蓝移.%ZnO-TiO2 composite catalyst was prepared by modified sol-gel method.The microcrystalline structure and light absorption performance of ZnO-TiO2 were identified by XRD and UV-Vis DRS, respectively.With methyl or-ange( MO) as the degradation product, the result showed that the photocatalytic activity of ZnO-TiO2 was affected by the conversion time from sol to gel controlled by changing the content of water and ethanol.when the ratio of n( Zn)∶n( Ti) was 3∶15 and calcination temperature was 500 ℃, the degradation of MO was up to 96.4%under UV irradia-tion for 5 h.The XRD results confirmed ZnO-TiO2 appeared mostly anatase TiO2 and cubic Zn2 TiO4 phases, and the cubic Zn2 TiO4 phase was observed only when n( Zn)∶n( Ti)≥3∶15.Compared with the pure TiO2 , the characteristic absorption threshold of ZnO-TiO2 appeared slight blue shift.

  15. The thermal structural transition of alpha-crystallin modulates subunit interactions and increases protein solubility.

    Directory of Open Access Journals (Sweden)

    Giuseppe Maulucci

    Full Text Available BACKGROUND: Alpha crystallin is an oligomer composed of two types of subunits, alpha-A and alpha-B crystallin, and is the major constituent of human lens. The temperature induced condensation of alpha-crystallin, the main cause for eye lens opacification (cataract, is a two step-process, a nucleation followed by an aggregation phase, and a protective effect towards the aggregation is exhibited over the alpha crystallin phase transition temperature (Tc = 318.16 K. METHODS/RESULTS: To investigate if a modulation of the subunit interactions over Tc could trigger the protective mechanism towards the aggregation, we followed, by using simultaneously static and dynamic light scattering, the temperature induced condensation of alpha-crystallin. By developing a mathematical model able to uncouple the nucleation and aggregation processes, we find a previously unobserved transition in the nucleation rate constant. Its temperature dependence allows to determine fundamental structural parameters, the chemical potential (Δμ and the interfacial tension (γ of the aggregating phase, that characterize subunit interactions. CONCLUSIONS/GENERAL SIGNIFICANCE: The decrease of both Δμ and γ at Tc, and a relative increase in solubility, reveal a significative decrease in the strenght of alpha-crystallin subunits interactions, which protects from supramolecolar condensation in hypertermic conditions. On the whole, we suggest a general approach able to understand the structural and kinetic mechanisms involved in aggregation-related diseases and in drugs development and testing.

  16. Precipitation of Co(2+) carbonates from aqueous solution: insights on the amorphous to crystalline transformation.

    Science.gov (United States)

    González-López, Jorge; Fernández-González, Ángeles; Jiménez, Amalia

    2016-04-01

    Cobalt is toxic metal that is present only as a trace in the Earth crust. However, Co might concentrate on specific areas due to both natural and anthropogenic factors and thus, soils and groundwater can be contaminated. It is from this perspective that we are interested in the precipitation of cobalt carbonates, since co-precipitation with minerals phases is a well-known method for metal immobilization in the environment. In particular, the carbonates are widely used due to its reactivity and natural abundance. In order to evaluate the cobalt carbonate precipitation at room temperature, a simple experimental work was carried out in this work. The precipitation occurred via reaction of two common salts: 0.05M of CoCl2 and 0.05M of Na2CO3 in aqueous solution. After reaction, the precipitated solid was kept in the remaining water at 25 oC and under constant stirring for different aging times of 5 min, 1 and 5 hours, 1, 2, 4, 7, 30 and 60 days. In addition to the aging and precipitation experiments, we carried out experiments to determine the solubility of the solids. In these experiments each precipitate was dissolved in Milli-Q water until equilibrium was reached and then the aqueous solution was analyzed regarding Co2+ and total alkalinity. Furthermore, acid solution calorimetry of the products were attained. Finally, we modeled the results using the PHREEQC code. Solid and aqueous phase identification and characterization have been extensively reported in a previous work (González-López et al., 2015). The main results of our investigation were the initial precipitation of an amorphous cobalt carbonate that evolve towards a poorly crystalline cobalt hydroxide carbonate with aging treatment. Solubility of both phases have been calculated under two different approaches: precipitation and dissolution. Values of solubility from each approach were obtained with a general error due to differences in experiment conditions, for instance, ionic strength, temperature and

  17. System-size dependence of the free energy of crystalline solids.

    Science.gov (United States)

    de Miguel, Enrique; Marguta, Ramona G; del Río, Elvira M

    2007-10-21

    We investigate the system-size dependence of the Helmholtz free energy of crystalline solids from computer simulation. We employ a standard thermodynamic integration technique along a reversible path that links the crystalline solid with a noninteracting Einstein crystal with the same structure. The key contribution to the free energy is computed by using the so-called expanded-ensemble technique and the results are compared with those obtained from conventional integration of the derivative of the free energy along the path using Gaussian-Legendre quadrature. We find that both methods yield fully consistent results. The free energy is found to exhibit a strong dependence with system size, in agreement with the behavior found by Polson et al. [J. Chem. Phys. 112, 5339 (2000)] but at variance with the dependence reported more recently by Chang and Sandler [J. Chem. Phys. 118, 8390 (2003)]. This has been tested for the face-centered cubic (fcc) and hexagonal close-packed phases of a crystal of hard spheres at a density close to the melting point. We also investigate any possible dependence of the free energy of the solid phase with the shape of the simulation box. We find that this contribution may not be as important as previous investigations suggest. The present results seem to indicate that there is a non-negligible contribution to the free energy arising from the orientation of the closed-packed crystal layers with respect to the simulation cell. This contribution is particularly noticeable for small system sizes and is believed to be an effect of the periodic boundary conditions used in the simulations. The results presented here corroborate the stability of the fcc phase of the hard-sphere solid close to melting.

  18. Colloidal-crystal-assisted patterning of crystalline materials.

    Science.gov (United States)

    Li, Cheng; Qi, Limin

    2010-04-06

    Colloidal crystals have shown great potential as versatile templates for the fabrication of patterned micro- and nanostructures with complex architectures and novel properties. The patterning of functional crystalline materials in two and three dimensions is essential to the realization of their applications in many technologically important fields. This article highlights some recent progress in the fabrication of 2D and 3D patterned crystalline materials with the assistance of colloidal crystals. By combining a bioinspired synthetic strategy based on a transient amorphous phase with a colloidal-crystal templating method, unique 3D ordered macroporous (3DOM) calcite single crystals can be created. Moreover, patterned arrays of regular ZnO nanopillars with controlled size, shape, and orientation can be fabricated via a facile wet chemical approach by using masks derived from monolayer colloidal crystals (MCC).

  19. Alkyl chains acting as entropy reservoir in liquid crystalline materials.

    Science.gov (United States)

    Sorai, Michio; Saito, Kazuya

    2003-01-01

    The roles played by the conformational disordering of alkyl chains in determining the aggregation states of matter are reviewed for liquid crystalline materials from a thermodynamic perspective. Entropy, which is one of the most macroscopic concepts but which has a clear microscopic meaning, provides crucial microscopic information for complex systems for which a microscopic description is hard to establish. Starting from structural implication by absolute (third-law) entropy for crystalline solids, the existence of successive phase transitions caused by the successive conformational melting of alkyl chains in discotic mesogens is explained. An experimental basis is given for the "quasi-binary picture" of thermotropic liquid crystals, i.e., the highly disordered alkyl chains behave like a second component (solvent). A novel entropy transfer between the "components" of a molecule and the resulting "alkyl chains as entropy reservoir" mechanism are explained for cubic mesogens.

  20. Stardust Interstellar Preliminary Examination VIII: Identification of crystalline material in two interstellar candidates

    Science.gov (United States)

    Gainsforth, Zack; Brenker, Frank E.; Simionovici, Alexandre S.; Schmitz, Sylvia; Burghammer, Manfred; Butterworth, Anna L.; Cloetens, Peter; Lemelle, Laurence; Tresserras, Juan-Angel Sans; Schoonjans, Tom; Silversmit, Geert; Solé, Vicente A.; Vekemans, Bart; Vincze, Laszlo; Westphal, Andrew J.; Allen, Carlton; Anderson, David; Ansari, Asna; Bajt, SašA.; Bastien, Ron K.; Bassim, Nabil; Bechtel, Hans A.; Borg, Janet; Bridges, John; Brownlee, Donald E.; Burchell, Mark; Changela, Hitesh; Davis, Andrew M.; Doll, Ryan; Floss, Christine; Flynn, George; Fougeray, Patrick; Frank, David; Grün, Eberhard; Heck, Philipp R.; Hillier, Jon K.; Hoppe, Peter; Hudson, Bruce; Huth, Joachim; Hvide, Brit; Kearsley, Anton; King, Ashley J.; Lai, Barry; Leitner, Jan; Leroux, Hugues; Leonard, Ariel; Lettieri, Robert; Marchant, William; Nittler, Larry R.; Ogliore, Ryan; Ong, Wei Ja; Postberg, Frank; Price, Mark C.; Sandford, Scott A.; Srama, Ralf; Stephan, Thomas; Sterken, Veerle; Stodolna, Julien; Stroud, Rhonda M.; Sutton, Steven; Trieloff, Mario; Tsou, Peter; Tsuchiyama, Akira; Tyliszczak, Tolek; von Korff, Joshua; Zevin, Daniel; Zolensky, Michael E.

    2014-09-01

    Using synchrotron-based X-ray diffraction measurements, we identified crystalline material in two particles of extraterrestrial origin extracted from the Stardust Interstellar Dust Collector. The first particle, I1047,1,34 (Hylabrook), consisted of a mosaiced olivine grain approximately 1 µm in size with internal strain fields up to 0.3%. The unit cell dimensions were a = 4.85 ± 0.08 Å, b = 10.34 ± 0.16 Å, c = 6.08 ± 0.13 Å (2σ). The second particle, I1043,1,30 (Orion), contained an olivine grain ≈ 2 µm in length and >500 nm in width. It was polycrystalline with both mosaiced domains varying over ≈ 20° and additional unoriented domains, and contained internal strain fields Fo65 (2σ). Orion also contained abundant spinel nanocrystals of unknown composition, but unit cell dimension a = 8.06 ± 0.08 Å (2σ). Two additional crystalline phases were present and remained unidentified. An amorphous component appeared to be present in both these particles based on STXM and XRF results reported elsewhere.

  1. Irreversible thermodynamics of creep in crystalline solids

    Science.gov (United States)

    Mishin, Y.; Warren, J. A.; Sekerka, R. F.; Boettinger, W. J.

    2013-11-01

    We develop an irreversible thermodynamics framework for the description of creep deformation in crystalline solids by mechanisms that involve vacancy diffusion and lattice site generation and annihilation. The material undergoing the creep deformation is treated as a nonhydrostatically stressed multicomponent solid medium with nonconserved lattice sites and inhomogeneities handled by employing gradient thermodynamics. Phase fields describe microstructure evolution, which gives rise to redistribution of vacancy sinks and sources in the material during the creep process. We derive a general expression for the entropy production rate and use it to identify of the relevant fluxes and driving forces and to formulate phenomenological relations among them taking into account symmetry properties of the material. As a simple application, we analyze a one-dimensional model of a bicrystal in which the grain boundary acts as a sink and source of vacancies. The kinetic equations of the model describe a creep deformation process accompanied by grain boundary migration and relative rigid translations of the grains. They also demonstrate the effect of grain boundary migration induced by a vacancy concentration gradient across the boundary.

  2. Experimental Realizations of Magnetic Topological Insulator and Topological Crystalline Insulator

    Science.gov (United States)

    Xu, Suyang

    2013-03-01

    Over the past few years the experimental research on three-dimensional topological insulators have emerged as one of the most rapidly developing fields in condensed matter physics. In this talk, we report on two new developments in the field: The first part is on the dynamic interplay between ferromagnetism and the Z2 topological insulator state (leading to a magnetic topological insulator). We present our spin-resolved photoemission and magnetic dichroic experiments on MBE grown films where a hedgehog-like spin texture is revealed on the magnetically ordered surface of Mn-Bi2Se3 revealing a Berry's phase gradient in energy-momentum space of the crystal. A chemically/electrically tunable Berry's phase switch is further demonstrated via the tuning of the spin groundstate in Mn-Bi2Se3 revealed in our data (Nature Physics 8, 616 (2012)). The second part of this talk describes our experimental observation of a new topological phase of matter, namely a topological crystalline insulator where space group symmetries replace the role of time-reversal symmetry in an otherwise Z2 topological insulator predicted in theory. We experimentally investigate the possibility of a mirror symmetry protected topological phase transition in the Pb1-xSnxTe alloy system, which has long been known to contain an even number of band inversions based on band theory. Our experimental results show that at a composition below the theoretically predicted band inversion, the system is fully gapped, whereas in the band-inverted regime, the surface exhibits even number of spin-polarized Dirac cone states revealing mirror-protected topological order (Nature Communications 3, 1192 (2012)) distinct from that observed in Z2 topological insulators. We discuss future experimental possibilities opened up by these new developments in topological insulators research. This work is in collaboration with M. Neupane, C. Liu, N. Alidoust, I. Belopolski, D. Qian, D.M. Zhang, A. Richardella, A. Marcinkova, Q

  3. Calcium carbonate interaction analysis in polypropylene compounds and their impact on the formation of beta crystalline phase of this polymer; Analise da interacao de diferentes tipos de carbonato de calcio em compositos de polipropileno e suas consequencias na formacao da fase cristalina beta do PP

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2011-07-01

    The insertion of calcium carbonate (CaCO{sub 3}) in polypropylene compound is a thoroughly known technique widely studied in the academic area and in the industry. Its wide application is due, mainly, to increase mechanical properties with low manufacturing cost. These improvements in this polymer make it more versatile and competitive compared to other expensive polymers. In this study, the incorporation of four types of CaCO3 from the same manufacturer were compared and the focus was on the size of this mineral filler. Furthermore, it was analyzed the interaction of graphitized polypropylene with maleic anhydride (PP-g-MA) in the same samples. All these samples were analyzed by WAXS and SEM. The physical properties of tensile strength and impact were also analyzed. It was observed from this study that the smallest CaCO3 produced with PP-g-MA resulted in better physical properties with the formation of a crystalline phase beta, as originally studied by other authors using other raw materials. (author)

  4. Crystalline polymorphism induced by charge regulation in ionic membranes.

    Science.gov (United States)

    Leung, Cheuk-Yui; Palmer, Liam C; Kewalramani, Sumit; Qiao, Baofu; Stupp, Samuel I; Olvera de la Cruz, Monica; Bedzyk, Michael J

    2013-10-08

    The crystallization of molecules with polar and hydrophobic groups, such as ionic amphiphiles and proteins, is of paramount importance in biology and biotechnology. By coassembling dilysine (+2) and carboxylate (-1) amphiphiles of various tail lengths into bilayer membranes at different pH values, we show that the 2D crystallization process in amphiphile membranes can be controlled by modifying the competition of long-range and short-range interactions among the polar and the hydrophobic groups. The pH and the hydrophobic tail length modify the intermolecular packing and the symmetry of their crystalline phase. For hydrophobic tail lengths of 14 carbons (C14), we observe the coassembly into crystalline bilayers with hexagonal molecular ordering via in situ small- and wide-angle X-ray scattering. As the tail length increases, the hexagonal lattice spacing decreases due to an increase in van der Waals interactions, as demonstrated by atomistic molecular dynamics simulations. For C16 and C18 we observe a reentrant crystalline phase transition sequence, hexagonal-rectangular-C-rectangular-P-rectangular-C-hexagonal, as the solution pH is increased from 3 to 10.5. The stability of the rectangular phases, which maximize tail packing, increases with increasing tail length. As a result, for very long tails (C22), the possibility of observing packing symmetries other than rectangular-C phases diminishes. Our work demonstrates that it is possible to systematically exchange chemical and mechanical energy by changing the solution pH value within a range of physiological conditions at room temperature in bilayers of molecules with ionizable groups.

  5. Influence of crystallinity on thermo-process ability and mechanical properties in a Au-based bulk metallic glass

    Energy Technology Data Exchange (ETDEWEB)

    Cardinal, S.; Pelletier, J.M. [Universitéde Lyon, CNRS (France); INSA-Lyon, MATEIS UMR5510, F-69621 Villeurbanne (France); Eisenbart, M.; Klotz, U.E. [FEM, Research Institute Precious Metals and Metals Chemistry, Katharinenstrasse 17, 73525 Schwäbisch Gmünd (Germany)

    2016-04-13

    The present investigation addresses the impact of crystallinity on the mechanical properties: hardness (HV) and toughness (K{sub IC}) in an Au{sub 49}Cu{sub 26.9}Ag{sub 5.5}Pd{sub 2.3}Si{sub 16.3} BMG which appears especially attractive for applications in jewelry and watch making industries. Thermal stability is first determined using differential scanning calorimetry (DSC), X-ray diffraction and thermo-mechanical analysis (TMA). Then the conditions (time, temperature) in which crystallization is observed (during annealing above the glass transition temperature) and the kinetics are determined. Results show an increase of hardness proportional to the volume fraction of the crystalline phase (ϕ) (from about 350 HV up to about 480 HV), and a drastic reduction in fracture toughness from about 20 MPa√m down to 1.5 MPa√m for fully crystalline structure. Finally the conditions required achieving a good compromise between hardness and toughness are established.

  6. Dynamic vapor sorption as a tool for characterization and quantification of amorphous content in predominantly crystalline materials.

    Science.gov (United States)

    Sheokand, Sneha; Modi, Sameer R; Bansal, Arvind K

    2014-11-01

    It is well established that pharmaceutical processing can cause disruption of the crystal structure, leading to generation of amorphous content in crystalline materials. The presence of even a small amount of amorphous form, especially on the surface of crystalline material, can affect processing, performance, and stability of a drug product. This necessitates the need to quantify, monitor, and control the amorphous form. Numerous analytical techniques have been reported for the quantification of amorphous phase, but issues of sensitivity, suitability, limit of detection, and quantitation pose significant challenges. The present review focuses on use of dynamic vapor sorption (DVS) for quantification of amorphous content in predominantly crystalline materials. The article discusses (1) theoretical and experimental considerations important for developing a quantification method, (2) methods used for quantification of amorphous content, (3) basis for selecting a suitable methodology depending on the properties of a material, and (4) role of various instrument and sample-related parameters in designing a protocol for quantification of amorphous content. Finally, DVS-based hyphenated techniques have been discussed as they can offer higher sensitivity for quantification of amorphous content.

  7. BaO/Al2O3/NiAl(110) Model NOx Storage Materials. The effect of BaO film thickness on the amorphous-to-crystalline Ba(NO3)2 phase transition

    Energy Technology Data Exchange (ETDEWEB)

    Yi, Cheol-Woo W. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Szanyi, Janos [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2008-12-18

    The reaction of NO2 with BaO (0.15 – 2 ML and > 30 ML)/Al2O3(12 ML)/NiAl(110) model NOx storage materials was studied. A thick (~12 ML), ordered Al2O3 film was prepared as the support oxide on a NiAl(110) substrate in order to minimize the effect of the intermixing between the two oxide phases (BaO and Al2O3) on the NOx chemistry of BaO. The growth of a thick alumina film, prepared by atomic oxygen deposition onto NiAl(110), follows a layer-by-layer growth mode and the resulting film is much more stable when exposed to NO2 than the ultra-thin alumina films studied before. The interaction of NO2 with the model NOx storage systems at low coverages of BaO show fundamentally different behaviors from a thick BaO film, as nitrite species form at low exposures of NO2, followed by nitrate formation at high NO2 exposures. In contrast, on the thick BaO layer nitrite-nitrate ion pairs form at 300 K under UHV conditions (PNO2 ~ 1 x 10-9 Torr). However, at elevated NO2 pressures (≥ 1 x 10-5 Torr) the thick BaO film is gradually converted into amorphous Ba(NO3)2 at 300 K. Raising the temperature of the samples with ΘBaO > 1 ML after NO2 exposure (in the absence of gas phase NO2) leads to the phase transformation of the amorphous Ba(NO3)2 layer into crystalline Ba(NO3)2 particles in the temperature range of 500 – 600 K. No phase transformation is observed in samples with ΘBaO < 1 ML.

  8. Liquid dynamics in partially crystalline glycerol

    DEFF Research Database (Denmark)

    Sanz, Alejandro; Niss, Kristine

    2017-01-01

    We present a dielectric study on the dynamics of supercooled glycerol during crystallization. We explore the transformation into a solid phase in real time by monitoring the temporal evolution of the amplitude of the dielectric signal. Neither the initial nucleation nor the crystal growth......, we have found no evidence that supercooled glycerol transforms into a peculiar phase in which either a new solid amorphous state or nano-crystals dispersed in a liquid matrix are formed....

  9. TOPICAL REVIEW: New crystalline silicon ribbon materials for photovoltaics

    Science.gov (United States)

    Hahn, G.; Schönecker, A.

    2004-12-01

    The objective of this article is to review, in relation to photovoltaic applications, the current status of crystalline silicon ribbon technologies as an alternative to technologies based on wafers originating from ingots. Increased wafer demand, the foreseeable silicon feedstock shortage, and the need for a substantial module cost reduction are the main issues that must be faced in the booming photovoltaic market. Ribbon technologies make excellent use of silicon, as wafers are crystallized directly from the melt at the desired thickness and no kerf losses occur. Therefore, they offer a high potential for significantly reducing photovoltaic electricity costs as compared to technology based on wafers cut from ingots. However, the defect structure present in the ribbon silicon wafers can limit material quality and cell efficiency. We will review the most successful of the ribbon techniques already used in large scale production or currently in the pilot demonstration phase, with special emphasis on the defects incorporated during crystal growth. Because of the inhomogeneous distribution of defects, mapped characterization techniques have to be applied. Al and P gettering studies give an insight into the complex interaction of defects in the multicrystalline materials as the gettering efficiency is influenced by the state of the chemical bonding of the metal atoms. The most important technique for improvement of carrier lifetimes is hydrogenation, whose kinetics are strongly influenced by oxygen and carbon concentrations present in the material. The best cell efficiencies for laboratory-type (17%-18% cell area: 4 cm2) as well as industrial-type (15%-16% cell area: {\\ge } 80~{\\mathrm {cm^{2}}} ) ribbon silicon solar cells are in the same range as for standard wafers cut from ingots. A substantial cost reduction therefore seems achievable, although the most promising techniques need to be improved.

  10. Improvement of Bi-2223/Ag tape performances through the control of the Pb-rich phases present in the precursors powders

    DEFF Research Database (Denmark)

    Chen, X.P.; Grivel, Jean-Claude; Li, M.Y.;

    2004-01-01

    Precursor powders containing different lead-rich phases: (a) Ca2PbO4, (b) Pb-3(Sr,Bi)(3)Ca2CuOy (3321), were prepared by controlling the calcination temperature and atmosphere. Monofilament tapes were fabricated using those two powders. It has been found that both the microstructure and critical...... current depended strongly on the nature of the lead-rich phase. Tapes fabricated using the precursor with the Ca2PbO4 phase (tape T1) had a much lower optimum sintering temperature and a narrower temperature window than tapes fabricated using the precursor with the 3321 phase (tape T2). The critical...... current density J(c), of tape T2 is improved by a factor 1.5-2. SEM results show that a large fraction of secondary phases with big particle size was formed in the fully reacted tape TI, which might degrade the critical current of these tapes. On the contrary, little and small secondary phases were formed...

  11. Smooth/rough layering in liquid-crystalline/gel state of dry phospholipid film, in relation to its ability to generate giant vesicles

    CERN Document Server

    Hishida, M; Yoshikawa, K; Hishida, Mafumi; Seto, Hideki; Yoshikawa, Kenichi

    2005-01-01

    Morphological changes in a dry phospholipid film on a solid substrate were studied below and above the main transition temperature, between the gel and liquid-crystalline phases by phase-contrast microscopy and AFM. A Phospholipid film in the liquid-crystalline phase exhibits flat, smooth layering, whereas that in the gel phase shows rough, random layering. These film morphologies are discussed in relation to the ability to form giant vesicles through the natural swelling method.

  12. Mixed phases during the phase transitions

    CERN Document Server

    Tatsumi, Toshitaka; Maruyama, Toshiki

    2011-01-01

    Quest for a new form of matter inside compact stars compels us to examine the thermodynamical properties of the phase transitions. We closely consider the first-order phase transitions and the phase equilibrium on the basis of the Gibbs conditions, taking the liquid-gas phase transition in asymmetric nuclear matter as an example. Characteristic features of the mixed phase are figured out by solving the coupled equations for mean-fields and densities of constituent particles self-consistently within the Thomas-Fermi approximation. The mixed phase is inhomogeneous matter composed of two phases in equilibrium; it takes a crystalline structure with a unit of various geometrical shapes, inside of which one phase with a characteristic shape, called "pasta", is embedded in another phase by some volume fraction. This framework enables us to properly take into account the Coulomb interaction and the interface energy, and thereby sometimes we see the mechanical instability of the geometric structures of the mixed phase...

  13. Effect of microgravity and magnetic field on the metallic and crystalline structure of magnetostrictive SmFe2 synthesized by unidirectional solidification.

    Science.gov (United States)

    Okutani, Takeshi; Nagai, Hideaki; Mamiya, Mikito; Shibuya, Masachika; Castillo, Martin

    2006-09-01

    The Sm-2Fe molten alloy with 1:2 molar ratio was unidirectionally solidified in both microgravity and normal gravity in concurrence with a magnetic flux (0-0.12 T). The compound SmFe2 was produced by the unidirectional solidification in microgravity with a magnetic flux of 0T and exhibited a lamellar microstructure. The average lamellar thickness was 30 mum and each lamella possessed a crystallographic alignment along major axis aligned in the direction of cooling. Unidirectional solidification in microgravity with a magnetic field of 0.04 T produced crystalline SmFe2 and Fe phases. The microstructure of this product was lamellar with an average lamellar thickness of 17 mum and no crystalline alignment. Unidirectional solidification in microgravity with a magnetic flux ranging from 0.06 to 0.12 T and in normal gravity with a magnetic flux ranging from 0 to 0.12 T produced crystalline Sm2Fe17 and Fe. During unidirectional solidification in microgravity without a magnetic flux, few nucleation sites were formed and rapid crystal growth occurred, consequently forming large-grain SmFe2. The produced SmFe2 had a lamellar structure with a dominant crystallographic alignment in the direction of cooling. Convection in the molten state and where a magnetic flux was present caused homogeneous nucleation, forming Sm2Fe17 with a disordered structure and crystalline alignment coinciding with the formation of the dendritic Fe.

  14. Metamorphosis: Phases of UF{sub 6}

    Energy Technology Data Exchange (ETDEWEB)

    Dyer, R.H. [Department of Energy, Oak Ridge, TN (United States)

    1991-12-31

    A 15-minute videotape is presented. The subject matter is 150 grams of UF{sub 6} sealed in a glass tube. Close-up views show the UF{sub 6} as phase changes are effected by the addition or removal of heat from the closed system. The solid-to-liquid transition is shown as heat is added, both slowly and rapidly. The solid phases which result from freezing and from desublimation are contrasted. In the solid state, uranium hexafluoride is a nearly-white, dense crystalline solid. The appearance of this solid depends on whether it is formed by freezing from the liquid or by desublimation from the vapor phase. If frozen from the liquid, the solid particles take the form of irregularly shaped coarse grains, while the solid product of desublimation tends to be a rather formless mass without individually distinguishable particles. The changes in state are presented in terms of the UF{sub 6} phase diagram.

  15. Electronic and optical excitations in crystalline conjugated polymers

    Science.gov (United States)

    van der Horst, J.-W.; Bobbert, P. A.; Michels, M. A.

    2002-07-01

    We calculate the electronic and optical excitations of crystalline polythiophene and polyphenylenevinylene, using the GW approximation for the electronic self-energy and including excitonic effects by solving the electron-hole Bethe-Salpeter equation. We compare with our earlier calculations on an isolated polythiophene chain and polymer chains embedded in a dielectric medium. Surprisingly, we find for the crystalline calculations optical gaps and exciton binding energies that are significantly smaller than present experimental values. We attribute the disagreement to the fact that the quantum-mechanical coherence between polymer chains, present in the calculations, is absent in most experimental situations. We discuss possible reasons for this absence. Our general conclusion is that the picture of a polymer chain in a dielectric medium is most appropriate in describing the present experimental data on electronic and optical excitations in conjugated polymers.

  16. STUDIES ON THE PORE FORMATION MECHANISM OF β-CRYSTALLINE POLYPROPYLENE UNDER STRETCHING

    Institute of Scientific and Technical Information of China (English)

    Shao-feng Ran; Mao Xu

    2004-01-01

    The pore formation mechanism of β-crystalline polypropylene under stretching was investigated. The porosity of the samples increases rapidly with stretching, having a maximum at draw ratios around 2 and then decreases monotonically.An abrupt formation process of initial micropores at very low draw ratios was evidenced by in situ SAXS measurements. At the same time the phase transition from β-crystal to a-crystal proceeds slowly in the whole deformation process up to large draw ratios around 5. Comparative studies of a- and β-crystalline polypropylene samples before stretching indicate that in addition to difference in crystal forms the a- and β-crystalline polypropylene samples exhibit quite different morphological features. There are a lot of interfaces in β-crystalline polypropylene samples, which may have a lower density value and can be easily etched by argon ions and penetrated by small molecules. It was concluded from these experimental facts that the pore formation and crystal transition are two independent phenomena during the deformation of β-crystalline polypropylene samples, and phase transition from β-crystal to a-crystal could hardly be the origin of pore formation. A defect initiation mechanism was proposed to understand the pore formation behavior of β-crystalline polypropylenes.

  17. 演化晚期恒星中的结晶硅酸盐尘埃%Crystalline Silicates in Evolved Stars

    Institute of Scientific and Technical Information of China (English)

    刘佳明; 姜碧沩

    2014-01-01

    Silicate is the most abundant cosmic dust which may present in two forms:amorphous and crystalline. Due to the difference in structure, the two types of silicate dust can be distinguished from their spectral features in the infrared. The amorphous silicate dust was discovered early in 1960s by their smooth and broad features at 10 and 18 micron. In particular, the all-sky survey by InfraRed Astronomical Satellite/Low Resolution Spectrometer revealed the popularity of amorphous silicate dust in the circumstellar envelope of evolved stars such as AGB and post-AGB stars. Meanwhile, the crystalline silicate outside the solar system was not definitely identified until the successful observation in the even longer wavelength range by the high resolution spectrometers board on the Infrared Space Observatory. It was found that the crystalline silicate dust emits a series of narrow and sharp features spanning the infrared spectrum from 10 to 70 micron, with the most prominent features being the complexes around 10, 18, 23, 28, 33, 40 and 60 micron. These features are detected in various scales, from our solar system ob jects to distant galaxies, including comets, the pre-planetary disk around Herbig Ae/Be and T Tauri stars, the debris disk of main-sequence stars, circumstellar envelop around evolved stars, ultra-luminous infrared galaxies, and even quasars. On the other hand, there has been no clear detection of crystalline silicate in the interstellar medium of the Milky Way galaxy, which addresses a question how the crystalline silicate dust evolves in the interstellar medium. The crystalline silicate dust is detected in every phase of late stellar evolution, i.e, red giants, AGB stars, post-AGB stars, planetary nebulae at the low-mass end, and red supergiants, luminous blue variables, supernova remnants at the high-mass end. The char-acteristics (such as peak wavelength and FWHM) of the spectral features (in particular the features at 33.6 and 69 microns) in the evolved

  18. Spatial distribution of crystalline corrosion products formed during corrosion of stainless steel in concrete

    Energy Technology Data Exchange (ETDEWEB)

    Serdar, Marijana [Department of Materials, Faculty of Civil Engineering, University of Zagreb, 10000 Zagreb (Croatia); Meral, Cagla [Middle East Technical University, Department of Civil Engineering, Ankara (Turkey); Kunz, Martin [Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA 94720 (United States); Bjegovic, Dubravka [Department of Materials, Faculty of Civil Engineering, University of Zagreb, 10000 Zagreb (Croatia); Wenk, Hans-Rudolf [Department of Earth and Planetary Science, University of California, Berkeley, CA 94720 (United States); Monteiro, Paulo J.M., E-mail: monteiro@ce.berkeley.edu [Department of Civil and Environmental Engineering, University of California, Berkeley, CA 94720 (United States)

    2015-05-15

    The mineralogy and spatial distribution of nano-crystalline corrosion products that form in the steel/concrete interface were characterized using synchrotron X-ray micro-diffraction (μ-XRD). Two types of low-nickel high-chromium reinforcing steels embedded into mortar and exposed to NaCl solution were investigated. Corrosion in the samples was confirmed by electrochemical impedance spectroscopy (EIS). μ-XRD revealed that goethite (α-FeOOH) and akaganeite (β-FeOOH) are the main iron oxide–hydroxides formed during the chloride-induced corrosion of stainless steel in concrete. Goethite is formed closer to the surface of the steel due to the presence of chromium in the steel, while akaganeite is formed further away from the surface due to the presence of chloride ions. Detailed microstructural analysis is shown and discussed on one sample of each type of steel. - Highlights: • Synchrotron micro-diffraction used to map the distribution of crystalline phases. • Goethite and akaganeite are the main corrosion products during chloride induced corrosion in mortar. • Layers of goethite and akaganeite are negatively correlated. • EDS showed Cr present in corrosion products identified by SEM.

  19. Impact of internal crystalline boundaries on lattice thermal conductivity: Importance of boundary structure and spacing

    Energy Technology Data Exchange (ETDEWEB)

    Aghababaei, Ramin, E-mail: ramin.aghababaei@epfl.ch; Anciaux, Guillaume; Molinari, Jean-François [Computational Solid Mechanics Laboratory, Civil Engineering Institute (School of Architecture, Civil and Environmental Engineering), Institute of Materials (School of Engineering), Ecole Polytechnique Fédérale de Lausanne - EPFL, Lausanne (Switzerland)

    2014-11-10

    The low thermal conductivity of nano-crystalline materials is commonly explained via diffusive scattering of phonons by internal boundaries. In this study, we have quantitatively studied phonon-crystalline boundaries scattering and its effect on the overall lattice thermal conductivity of crystalline bodies. Various types of crystalline boundaries such as stacking faults, twins, and grain boundaries have been considered in FCC crystalline structures. Accordingly, the specularity coefficient has been determined for different boundaries as the probability of the specular scattering across boundaries. Our results show that in the presence of internal boundaries, the lattice thermal conductivity can be characterized by two parameters: (1) boundary spacing and (2) boundary excess free volume. We show that the inverse of the lattice thermal conductivity depends linearly on a non-dimensional quantity which is the ratio of boundary excess free volume over boundary spacing. This shows that phonon scattering across crystalline boundaries is mainly a geometrically favorable process rather than an energetic one. Using the kinetic theory of phonon transport, we present a simple analytical model which can be used to evaluate the lattice thermal conductivity of nano-crystalline materials where the ratio can be considered as an average density of excess free volume. While this study is focused on FCC crystalline materials, where inter-atomic potentials and corresponding defect structures have been well studied in the past, the results would be quantitatively applicable for semiconductors in which heat transport is mainly due to phonon transport.

  20. Preparation of Fluorine-Doped TiO2 Photocatalysts with Controlled Crystalline Structure

    Directory of Open Access Journals (Sweden)

    N. Todorova

    2008-01-01

    Full Text Available Nanocrystalline F-doped TiO2 powders were prepared by sol-gel route. The thermal behavior of the powders was recorded by DTA/TG technique. The crystalline phase of the fluorinated TiO2 powders was determined by X-ray diffraction technique. It was demonstrated that F-doping using CF3COOH favors the formation of rutile along with anatase phase even at low temperature. Moreover, the rutile's phase content increases with the increase of the quantity of the fluorine precursor in the starting solution. The surface area of the powders and the pore size distribution were studied by N2 adsorption-desorption using BET and BJH methods. X-ray photoelectron spectroscopy (XPS revealed that the fluorine is presented in the TiO2 powders mainly as metal fluoride in quantities ∼16 at %. The F-doped TiO2 showed a red-shift absorption in UV-vis region which was attributed to the increased content of rutile phase in the powders. The powders exhibited enhanced photocatalytic activity in decomposition of acetone.