Sample records for crystalline perfection optical

  1. Near perfect optics

    Energy Technology Data Exchange (ETDEWEB)

    Goeke, R.; Farnsworth, A.V.; Neumann, C.C.; Sweatt, W.C.; Warren, M.E.; Weed, J.W.


    This report discusses a novel fabrication process to produce nearly perfect optics. The process utilizes vacuum deposition techniques to optimally modify polished optical substrate surfaces. The surface figure, i.e. contour of a polished optical element, is improved by differentially filling in the low spots on the surface using flux from a physical vapor deposition source through an appropriate mask. The process is expected to enable the manufacture of diffraction-limited optical systems for the UV, extreme UV, and soft X-ray spectral regions, which would have great impact on photolithography and astronomy. This same technique may also reduce the fabrication cost of visible region optics with aspheric surfaces.

  2. Optical, crystalline perfection and mechanical studies on unidirectional grown bis(thiourea) cadmium zinc chloride single crystal

    Energy Technology Data Exchange (ETDEWEB)

    Uthrakumar, R. [Department of Physics, Loyola College, Sterling Road, Nungambakkam, Chennai-600 034, Tamilnadu (India); Department of Physics, Sri Muthukumaran Institute of Technology, Chennai-600 069 (India); Vesta, C. [Department of Physics, SDNB Vaishnav College, Chennai-600 044 (India); Bhagavannarayana, G. [CGC Section, National Physical Laboratory, New Delhi-110 012 (India); Robert, R. [Department of Physics, Government Arts College, Krishnagiri-635 001 (India); Jerome Das, S., E-mail: [Department of Physics, Loyola College, Sterling Road, Nungambakkam, Chennai-600 034, Tamilnadu (India)


    Research highlights: > Growth of bulk and optically clear single crystal of bis(thiourea) cadmium zinc chloride was successfully grown from aqueous solution by utilizing unidirectional crystal growth method. The title material belongs to orthorhombic crystal system with space group P2{sub 1}2{sub 1}2{sub 1}. The grown single crystal was free from structural grain boundaries with the FWHM value of the diffraction curve as 14 arc s. The optical transmission analysis indicates that BTCZC has a wide transparency window in the visible region with a lower cutoff wavelength at 250 nm. Hardness parameters have been calculated for the grown crystal. The dielectric studies reveal that BTCZC has low dielectric constant with fewer defects, and hence this crystal can be used as a potential material for optical applications. - Abstract: Optically transparent and bulk single crystal of bis(thiourea) cadmium zinc chloride was successfully grown by unidirectional crystal growth technique. The quality of the crystal was examined by high-resolution X-ray diffraction analysis. The cell parameters and the crystallinity of the grown crystal were estimated by the single-crystal and powder X-ray diffraction analyses, respectively. Optical transmittance of the crystal was recorded using the UV-vis-NIR spectrophotometer. The optical band gap and optical constant of the material were calculated by using transmission spectrum. Microhardness measurements were made for the grown crystal using Vicker's microhardness tester. The dielectric loss and dielectric constant measurements as a function of frequency and temperature were measured for the grown crystal.

  3. Growth, crystalline perfection and characterization of benzophenone oxime crystal (United States)

    Rajasekar, M.; Muthu, K.; Meenatchi, V.; Bhagavannarayana, G.; Mahadevan, C. K.; Meenakshisundaram, SP.

    Single crystals of benzophenone oxime (BPO) have been grown by slow evaporation solution growth technique from ethanol at room temperature. The single crystal X-ray diffraction study reveals that the crystal belongs to monoclinic system and cell parameters are, a = 9.459 Å, b = 8.383 Å, c = 26.690 Å, v = 2115 Å3 and β = 92.807°. The structure and the crystallinity of the materials were further confirmed by powder X-ray diffraction analysis. The various functional groups present in the molecule are confirmed by FT-IR analysis. The TG/DSC studies reveal the purity of the material and the crystals are transparent in the entire visible region having a lower optical cut-off at ˜300 nm. The crystalline perfection was evaluated by high-resolution X-ray diffraction (HRXRD). The crystal is further characterized by Kurtz powder technique, dielectric studies and microhardness analysis.

  4. Optically Modulated Multiband Terahertz Perfect Absorber

    DEFF Research Database (Denmark)

    Seren, Huseyin R.; Keiser, George R.; Cao, Lingyue


    response of resonant metamaterials continues to be a challengingendeavor. Resonant perfect absorbers have flourished as one of the mostpromising metamaterial devices with applications ranging from power har-vesting to terahertz imaging. Here, an optically modulated resonant perfectabsorber is presented...

  5. Overlapped optics induced perfect coherent effects (United States)

    Li, Jian Jie; Zang, Xiao Fei; Mao, Jun Fa; Tang, Min; Zhu, Yi Ming; Zhuang, Song Lin


    For traditional coherent effects, two separated identical point sources can be interfered with each other only when the optical path difference is integer number of wavelengths, leading to alternate dark and bright fringes for different optical path difference. For hundreds of years, such a perfect coherent condition seems insurmountable. However, in this paper, based on transformation optics, two separated in-phase identical point sources can induce perfect interference with each other without satisfying the traditional coherent condition. This shifting illusion media is realized by inductor-capacitor transmission line network. Theoretical analysis, numerical simulations and experimental results are performed to confirm such a kind of perfect coherent effect and it is found that the total radiation power of multiple elements system can be greatly enhanced. Our investigation may be applicable to National Ignition Facility (NIF), Inertial Confined Fusion (ICF) of China, LED lighting technology, terahertz communication, and so on.

  6. Investigation on crystalline perfection, mechanical, piezoelectric and ferroelectric properties of L-tartaric acid single crystal

    Energy Technology Data Exchange (ETDEWEB)

    Murugan, G. Senthil, E-mail:; Ramasamy, P., E-mail: [Centre for Crystal Growth, SSN College of Engineering, Kalavakkam, Tamilnadu - 603110 (India)


    Polar organic nonlinear optical material, L-tartaric acid single crystals have been grown from slow evaporation solution growth technique. Single crystal X-ray diffraction study indicates that the grown crystal crystallized in monoclinic system with space group P2{sub 1}. Crystalline perfection of the crystal has been evaluated by high resolution X-ray diffraction technique and it reveals that the crystal quality is good and free from structural grain boundaries. Mechanical stability of the crystal has been analyzed by Vickers microhardness measurement and it exhibits reverse indentation size effect. Piezoelectric d{sub 33} co-efficient for the crystal has been examined and its value is 47 pC/N. The ferroelectric behaviour of the crystal was analyzed by polarization-electric field hysteresis loop measurement.

  7. Optical waveguides in hard crystalline materials

    NARCIS (Netherlands)

    Pollnau, Markus


    The recent results of our research group and collaborators in the field of fabrication, characterization, and applications of optical waveguides in hard crystalline materials, specifically in sapphire and Ti:sapphire, are reviewed.

  8. Optimal phase element for generating a perfect optical vortex. (United States)

    Kotlyar, Victor V; Kovalev, Alexey A; Porfirev, Alexey P


    We derived exact analytical relationships to describe the complex amplitude of a perfect optical vortex generated by means of three different optical elements, namely, (i) an amplitude-phase element with a transmission function proportional to a Bessel function, (ii) an optimal phase element with a transmission equal to the sign function of a Bessel function, and (iii) a spiral axicon. The doughnut intensity was shown to be highest when using an optimal phase element. The spiral-axicon-aided diffraction ring was found to be twice as wide as when generated using two other elements. Thus, the optimal filter was shown to be best suited for generating a perfect optical vortex. The simulation results were shown to corroborate theoretical predictions, with the experiment being in agreement with theory and simulation.

  9. Comment on "Generating a perfect quantum optical vortex" (United States)

    Barral, David; Liñares, Jesús


    In a recent article, Banerji et al. introduced a novel quantum state of light, coined as the perfect quantum optical vortex state [Phys. Rev. A 94, 053838 (2016), 10.1103/PhysRevA.94.053838] due to its mathematical similarity with the classical perfect vortex beam. This state is obtained by means of the Fourier transform of a Bessel-Gaussian vortex state, and the authors claim that this can be accomplished by means of a simple lens. Here, we will show that this statement is wrong since a lens cannot modify the quantum noise distribution related to the input optical quantum state and this has to be exchanged by an "effective lens."

  10. Tunable enhanced optical absorption of graphene using plasmonic perfect absorbers

    Energy Technology Data Exchange (ETDEWEB)

    Cai, Yijun [Institute of Optoelectronic Technology, Department of Electronic Engineering, Xiamen University, Xiamen 361005 (China); Institute of Electromagnetics and Acoustics, Department of Electronic Science, Xiamen University, Xiamen 361005 (China); Zhu, Jinfeng, E-mail: [Institute of Electromagnetics and Acoustics, Department of Electronic Science, Xiamen University, Xiamen 361005 (China); Liu, Qing Huo [Department of Electrical and Computer Engineering, Duke University, Durham, North Carolina 27708 (United States)


    Enhancement and manipulation of light absorption in graphene is a significant issue for applications of graphene-based optoelectronic devices. In order to achieve this purpose in the visible region, we demonstrate a design of a graphene optical absorber inspired by metal-dielectric-metal metamaterial for perfect absorption of electromagnetic waves. The optical absorbance ratios of single and three atomic layer graphene are enhanced up to 37.5% and 64.8%, respectively. The graphene absorber shows polarization-dependence and tolerates a wide range of incident angles. Furthermore, the peak position and bandwidth of graphene absorption spectra are tunable in a wide wavelength range through a specific structural configuration. These results imply that graphene in combination with plasmonic perfect absorbers have a promising potential for developing advanced nanophotonic devices.

  11. Overlapped illusion optics: a perfect lens brings a brighter feature (United States)

    Xu, Yadong; Du, Shengwang; Gao, Lei; Chen, Huanyang


    In this paper, we show that a perfect lens can be employed to make multiple objects appear like only one object in the far field, leading to a new concept in illusion optics. Numerical simulations have been performed to verify the functionalities for both passive and active objects. The conceptual device can be utilized to enhance the illumination brightness for both incoherent and coherent systems.

  12. Overlapped illusion optics: a perfect lens brings a brighter feature

    Energy Technology Data Exchange (ETDEWEB)

    Xu Yadong; Gao Lei; Chen Huanyang [School of Physical Science and Technology, Soochow University, Suzhou, Jiangsu 215006 (China); Du Shengwang, E-mail: [Department of Physics, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon (Hong Kong)


    In this paper, we show that a perfect lens can be employed to make multiple objects appear like only one object in the far field, leading to a new concept in illusion optics. Numerical simulations have been performed to verify the functionalities for both passive and active objects. The conceptual device can be utilized to enhance the illumination brightness for both incoherent and coherent systems.

  13. Amplifying (Im)perfection: The Impact of Crystallinity in Discrete and Disperse Block Co-oligomers. (United States)

    van Genabeek, Bas; Lamers, Brigitte A G; de Waal, Bas F M; van Son, Martin H C; Palmans, Anja R A; Meijer, E W


    Crystallinity is seldomly utilized as part of the microphase segregation process in ultralow-molecular-weight block copolymers. Here, we show the preparation of two types of discrete, semicrystalline block co-oligomers, comprising an amorphous oligodimethylsiloxane block and a crystalline oligo-l-lactic acid or oligomethylene block. The self-assembly of these discrete materials results in lamellar structures with unforeseen uniformity in the domain spacing. A systematic introduction of dispersity reveals the extreme sensitivity of the microphase segregation process toward chain length dispersity in the crystalline block.

  14. Free-space optical communication link using perfect vortex beams carrying orbital angular momentum (OAM) (United States)

    Zhu, Fuquan; Huang, Sujuan; Shao, Wei; Zhang, Jie; Chen, Musheng; Zhang, Weibing; Zeng, Junzhang


    We experimentally demonstrate a free-space optical communication link using perfect vortex beams. Perfect vortex beams with different topological charges are generated using a phase-modulation-type spatial light modulator (SLM) loaded with novel phase holograms based on the Bessel function. With the help of a microscope objective and simple lens, perfect vortex beams are transmitted effectively for a certain distance. After completing the demodulation of perfect vortex beams carrying OFDM 16-QAM signals and a series of offline processing on the Gaussian bright spot demodulated from the perfect vortex beams, we also achieve a communication link. The constellations and mean bit error rates (BER) of subcarriers are shown.

  15. Side-chain liquid crystalline polyesters for optical information storage

    DEFF Research Database (Denmark)

    Ramanujam, P.S.; Holme, Christian; Hvilsted, Søren


    and holographic storage in one particular polyester are described in detail and polarized Fourier transform infrared spectroscopic data complementing the optical data are presented. Optical and atomic force microscope investigations point to a laser-induced aggregation as responsible for permanent optical storage.......Azobenzene side-chain liquid crystalline polyester structures suitable for permanent optical storage are described. The synthesis and characterization of the polyesters together with differential scanning calorimetry and X-ray investigations are discussed. Optical anisotropic investigations...

  16. Generation of Perfect Optical Vortices by Using a Transmission Liquid Crystal Spatial Light Modulator

    Directory of Open Access Journals (Sweden)

    Nelson Anaya Carvajal


    Full Text Available We have experimentally created perfect optical vortices by the Fourier transformation of holographic masks with combination of axicons and spiral functions, which are displayed on a transmission liquid crystal spatial light modulator. We showed theoretically that the size of the annular vortex in the Fourier plane is independent of the spiral phase topological charge but it is dependent on the axicon. We also studied numerically and experimentally the free space diffraction of a perfect optical vortex after the Fourier back plane and we found that the size of the intensity pattern of a perfect optical vortex depends on the topological charge and the propagation distance.

  17. Generation of Perfect Optical Vortices by Using a Transmission Liquid Crystal Spatial Light Modulator


    Nelson Anaya Carvajal; Acevedo, Cristian H.; Yezid Torres Moreno


    We have experimentally created perfect optical vortices by the Fourier transformation of holographic masks with combination of axicons and spiral functions, which are displayed on a transmission liquid crystal spatial light modulator. We showed theoretically that the size of the annular vortex in the Fourier plane is independent of the spiral phase topological charge but it is dependent on the axicon. We also studied numerically and experimentally the free space diffraction of a perfect optic...




    Optically active amino acids contain many highly efficient optical second-harmonic generators. When light from a ruby laser at 6943 A falls on the crystalline amino acids with sufficient intensity, the second harmonic of the light at 3471 A can be observed. Although the symmetry requirements for optical second-harmonic generation are always met by isomerically pure optically active substances, there is considerable variation in efficiency for the generation of the second harmonic, ranging from almost zero to greater than that of potassium dihydrogen phosphate, the most efficient known.

  19. Nonlinear optics and crystalline whispering gallery mode resonators (United States)

    Matsko, Andrey B.; Savchenkov, Anatoliy A.; Ilchenko, Vladimir S.; Maleki, Lute


    We report on our recent results concerning fabrication of high-Q whispering gallery mode (WGM) crystalline resonators, and discuss some possible applications of lithium niobate WGM resonators in nonlinear optics and photonics. In particular, we demonstrate experimentally a tunable third-order optical filter fabricated from the three metalized resonators; and report observation of parametric frequency dobuling in a WGM resonator made of periodically poled lithium niobate (PPLN).

  20. Optical, electrical and solid state properties of nano crystalline zinc ...

    African Journals Online (AJOL)

    Semiconducting Zinc Sulphide (ZnS) thin films were deposited on glass substrate using relatively simple Chemical Bath Deposition (CBD) technique. Nano crystalline ZnS thin films were fabricated in the study. Optical characterization of the films showed that the materials are transparent to visible light, opaque to ultraviolet ...

  1. Optical characteristics of crystalline antimony sulphide (Sb 2 S 3 ...

    African Journals Online (AJOL)

    This paper presents the important optical characteristics of crystalline Sb2S3 film deposited on glass substrate using solution growth technique at 300k. These characteristics were analyzed using PYEUNICAM SP8-100 spectrophotometer in the range of UV-VIS-NIR while the morphology and the structural composition were ...

  2. Thermally induced nonlinear optical absorption in metamaterial perfect absorbers

    Energy Technology Data Exchange (ETDEWEB)

    Guddala, Sriram, E-mail:; Kumar, Raghwendra; Ramakrishna, S. Anantha [Department of Physics, Indian Institute of Technology Kanpur, Kanpur 208016 (India)


    A metamaterial perfect absorber consisting of a tri-layer (Al/ZnS/Al) metal-dielectric-metal system with top aluminium nano-disks was fabricated by laser-interference lithography and lift-off processing. The metamaterial absorber had peak resonant absorbance at 1090 nm and showed nonlinear absorption for 600ps laser pulses at 1064 nm wavelength. A nonlinear saturation of reflectance was measured to be dependent on the average laser power incident and not the peak laser intensity. The nonlinear behaviour is shown to arise from the heating due to the absorbed radiation and photo-thermal changes in the dielectric properties of aluminium. The metamaterial absorber is seen to be damage resistant at large laser intensities of 25 MW/cm{sup 2}.

  3. Liquid crystalline fiber optic colorimeter for hydrostatic pressure measurement (United States)

    Wolinski, Tomasz R.; Bajdecki, Waldemar K.; Domanski, Andrzej W.; Karpierz, Miroslaw A.; Konopka, Witold; Nasilowski, T.; Sierakowski, Marek W.; Swillo, Marcin; Dabrowski, Roman S.; Nowinowski-Kruszelnicki, Edward; Wasowski, Janusz


    This paper presents results of tests performed on a fiber optic system of liquid crystalline transducer for hydrostatic pressure monitoring based on properties of colorimetry. The system employs pressure-induced deformations occurring in liquid crystalline (LC) cells configured in a homogeneous Frederiks geometry. The sensor is compared of a round LC cell placed inside a specially designed pressure chamber. As a light source we used a typical diode operating at red wavelength and modulated using standard techniques. The pressure transducer was connected to a computer with a specially designed interface built on the bas of advanced ADAM modules. Results indicate that the system offers high response to pressure with reduced temperature sensitivity and, depending on the LC cell used, can be adjusted for monitoring of low hydrostatic pressures up to 6 MPa. These studies have demonstrated the feasibility of fiber optic liquid crystal colorimeter for hydrostatic pressure sensing specially dedicated to pipe- lines, mining instrumentation, and process-control technologies.

  4. Towards liquid crystalline elastomer optically tunable photonic microstructures (United States)

    Nocentini, S.; Martella, D.; Parmeggiani, C.; Zanotto, S.; Wiersma, D. S.


    In this paper we investigate the potentials of liquid crystalline elastomer microstructures for the realization of optically tunable photonic microstructures. While certain limitations regarding the compromise between feature size and structure warping have been observed, it turns out that the simultaneous presence of a refractive index tuning effect and of a shape tuning effect intrinsic to the LCE material can be harnessed to design tunable photonic devices with unique behavior.

  5. Growth, spectral, optical, thermal, crystallization perfection and nonlinear optical studies of novel nonlinear optical crystal—Urea thiosemicarbazone monohydrate (United States)

    Hanumantharao, Redrothu; Kalainathan, S.; Bhagavannarayana, G.


    Single crystals of organic nonlinear material urea thiosemicarbazone monohydrate (UTM) have been grown by slow evaporation method. The grown crystals were characterized by single crystal X-ray diffraction analysis reveals that sample crystallized in triclinic system with noncentrosymmetric space group P1. Powder XRD pattern confirmed that grown crystal posses highly crystalline nature. FTIR spectrum was recorded to identify the presence of functional groups and molecular structure was confirmed by 1H NMR spectrum. Material confirmation of title compound has been performed by using mass spectroscopic analysis. Elemental composition of grown crystal was confirmed by energy-dispersive spectrometry (EDS). To study the crystalline perfection of the grown crystals, high-resolution X-ray diffraction (HR-XRD) study was carried out. Thermogravimetric and differential thermal analyses were employed to understand the thermal and physio-chemical stability of the synthesized compound. UV-Vis-NIR spectrum revealed the transmission properties of the crystal specimen. Relative SHG efficiency is measured by Kurtz and Perry method and found to about 0.89 times that of standard potassium dihydrogen phosphate (KDP) crystals.

  6. Probing the negative permittivity perfect lens at optical frequencies using near-field optics and single molecule detection

    NARCIS (Netherlands)

    Moerland, R.J.; van Hulst, N.F.; Gersen, H.; Kuipers, L.


    Recently, the existence of a perfect lens has been predicted, made of an artificial material that has a negative electric permittivity and a negative magnetic permeability. For optical frequencies a poormans version is predicted to exist in the sub-wavelength limit. Then, only the permittivity has

  7. Optical pendulum generator based on photomechanical liquid-crystalline actuators. (United States)

    Tang, Rong; Liu, Ziyi; Xu, Dandan; Liu, Jian; Yu, Li; Yu, Haifeng


    For converting light energy into electricity, an optical pendulum generator was designed by combining photomechanical movement of liquid-crystalline actuator (LCA) with Faraday's law of electromagnetic induction. Bilayer cantilever actuators were first fabricated with LDPE and LCA. Their photomechanical movement drove the attached copper coils to cut magnetic line of force generating electricity. The output electricity was proportional to the changing rate of the magnetic flux, which was greatly influenced by light intensity, film thickness, and sample size. Continuous electrical output was also achieved. This simple strategy may expand applications of photoactive materials in the capture and storage of light energy.

  8. Perfectly matched layers for nonlocal media with hydrodynamic-Drude description: a transformation optics approach. (United States)

    Zhang, Pu; Xie, Xuejiang; Chen, Xue-Wen


    We develop a transformation optics theory for the nonlocal media in the hydrodynamic Drude model by generalizing the free-electron current density equation to a transformation invariant form. Applying the transformation optics theory, perfectly matched layers (PMLs) for the nonlocal media are theoretically formulated and implemented in frequency domain with finite element method. The nonlocal PMLs are shown to absorb outgoing surface and volume plasmons without inducing unphysical reflections. The effectiveness of the nonlocal PMLs is quantitatively demonstrated by the behaviors that the numerical errors continuously approach zero with increasing linear mesh density.

  9. Growth, structure, crystalline perfection and characterization of Mg(II)-incorporated tris(thiourea)Zn(II) sulfate crystals: Enhanced second harmonic generation (SHG) efficiency

    Energy Technology Data Exchange (ETDEWEB)

    Muthu, K. [Department of Chemistry, Annamalai University, Annamalainagar-608 002 (India); Bhagavannarayana, G. [Crystal Growth and X-ray Analysis Activity, Council of Scientific and Industrial Research, National Physical Laboratory, New Delhi-110 012 (India); Meenakshisundaram, S.P., E-mail: [Department of Chemistry, Annamalai University, Annamalainagar-608 002 (India)


    Highlights: Black-Right-Pointing-Pointer A small quantity incorporation of Mg(II)- enhances the SHG efficiency of ZTS. Black-Right-Pointing-Pointer Crystal stress is observed. Black-Right-Pointing-Pointer Structure of Mg(II)-incorporated ZTS is elucidated. Black-Right-Pointing-Pointer Crystalline perfection is evaluated by HRXRD. - Abstract: Single crystals of Mg(II)-incorporated tris(thiourea)Zn(II) sulfate (MZTS) have been grown from aqueous solution at room temperature by slow evaporation solution growth technique. The incorporation of Mg(II)- into the crystalline lattice was well confirmed by energy dispersive X-ray spectroscopy (EDS) and by single crystal X-ray diffraction technique. The reduction in the intensities observed in powder X-ray diffraction patterns of doped specimen and slight shifts in vibrational frequencies in FT-IR indicate the lattice stress as a result of doping. Thermal studies reveal the purity of the material and no decomposition is observed up to the melting point. High transmittance is observed in the visible region and the band gap energy is estimated by Kubelka-Munk algorithm. Surface morphology of doped material was observed by scanning electron microscopy (SEM). Decreased crystalline perfection by doping observed by high-resolution X-ray diffraction (HRXRD) analysis is justified by the crystal stress. Even a small quantity incorporation of Mg(II)- enhances the SHG efficiency significantly. The as-grown crystal is further characterized by microhardness and dielectric studies.

  10. Optical studies of crystalline organic superconductors under extreme conditions

    CERN Document Server

    McDonald, R D


    the aim being to make an optical measurement of the pressure dependence of the charge carrier effective mass. Chapter 4 concentrates on the vibrational modes of kappa-(BEDT-TTF) sub 2 Cu(SCN) sub 2. This chapter reports the first Raman scattering experiments on an organic superconductor at high pressure. Comparison of the infrared reflectance and Raman scattering measurements are used to elucidate the role of electron-phonon coupling in this material's superconductivity. Chapter 5 reports the first non-resonant measurements of the GHz conductivity of an organic molecular superconductor. These experiments probe the unconventional metallic properties of an organic superconductor during the onset of superconductivity. This thesis reports experiments which involve the interaction of light and matter to probe the properties of crystalline organic superconductors. The organic superconductors of the BEDT-TTF family are prototypical correlated electron systems; their low-temperature ground states are dominated by man...

  11. Mechanically flexible optically transparent porous mono-crystalline silicon substrate

    KAUST Repository

    Rojas, Jhonathan Prieto


    For the first time, we present a simple process to fabricate a thin (≥5μm), mechanically flexible, optically transparent, porous mono-crystalline silicon substrate. Relying only on reactive ion etching steps, we are able to controllably peel off a thin layer of the original substrate. This scheme is cost favorable as it uses a low-cost silicon <100> wafer and furthermore it has the potential for recycling the remaining part of the wafer that otherwise would be lost and wasted during conventional back-grinding process. Due to its porosity, it shows see-through transparency and potential for flexible membrane applications, neural probing and such. Our process can offer flexible, transparent silicon from post high-thermal budget processed device wafer to retain the high performance electronics on flexible substrates. © 2012 IEEE.

  12. Electrodynamics analysis on coherent perfect absorber and phase-controlled optical switch. (United States)

    Chen, Tianjie; Duan, Shaoguang; Chen, Y C


    A coherent perfect absorber is essentially a specially designed Fabry-Perot interferometer, which completely extinguishes the incident coherent light. The one- and two-beam coherent perfect absorbers have been analyzed using classical electrodynamics by considering index matching in layered structures to totally suppress reflections. This approach presents a clear and physically intuitive picture for the principle of operation of a perfect absorber. The results show that the incident beam(s) must have correct phases and amplitudes, and the real and imaginary parts of the refractive indices of the media in the interferometer must satisfy a well-defined relation. Our results are in agreement with those obtained using the S-matrix analysis. However, the results were obtained solely based on the superposition of waves from multiple reflections without invoking the concept of time reversal as does the S-matrix approach. Further analysis shows that the two-beam device can be configured to function as a phase-controlled three-state switch. © 2012 Optical Society of America

  13. A forward model for ground penetrating radar imaging of buried perfect electric conductors within the physical optics approximation

    DEFF Research Database (Denmark)

    Polat, Burak; Meincke, Peter


    A forward model for ground penetrating radar imaging of buried 3-D perfect electric conductors is addressed within the framework of diffraction tomography. The similarity of the present forward model derived within the physical optics approximation with that derived within the first Born...... approximation in an earlier investigation highlights analytically the reasons lying under the success of the Born models in identifying perfect electric conductors....

  14. Compact optical imaging system for star tracker with long focal length and perfect thermal adaptability (United States)

    Ji, Yiqun; Shi, Rongbao; He, Hucheng; Xu, Li; Liu, Xuxia; Jin, Yangming; Shen, Weimin


    A star tracker optical imaging system is designed for Polaris detection. System parameters determination and its configuration chosen method are given. Based on Macsutov-Cassegrain configuration, the system is designed imagery tele-centric. It works at 0.6μm~1.1μm waveband and the view field is 0.5 degree. The tube length of the system is 80mm, which is only 8 percent of its focal length. Its MTF reaches diffraction limit and the spot diagrams are quit near a circle. About 80% of the energy is encircled in a CCD pixel. And the distortion is less than 1%. Moreover, it has a perfect thermal adaptability from -40° to 60°.

  15. Perfect optical vortex array with controllable diffraction order and topological charge. (United States)

    Fu, Shiyao; Wang, Tonglu; Gao, Chunqing


    We have demonstrated a holographic grating, the far-field diffraction pattern of which is a perfect optical vortex (POV) array. The diffraction order, as well as the topological charge of each spot in the array, is controllable. By setting different parameters when designing the hologram, the spot in different diffraction orders will be changed, resulting in the variance of the POV array. During the experiment, we uploaded holograms of different design on a phase-only spatial light modulator. We then observed POV arrays with different dimensions and topological charges using a CCD camera, which fit well with the simulation. This technique provides the possibility to generate multiple POVs simultaneously, and can be used in domains where multiple POVs are of high interest such as orbital angular momentum multiplexed fiber data transmission systems.

  16. Design and experimental verification of a perfect dual-band optical metamaterial absorber (United States)

    Ye, Fenghua; Ye, Huan; Wang, Xiaozhi


    A perfect dual-band optical absorber is designed and measured. A low absorption peak (P1) and two high absorption peaks (P2 and P3) are obtained. The P1 peak is excited by the resonance of internal surface plasmon (ISP) mode. The P2 peak is resulted by the coupling of local surface plasma (LSP) modes and the resonance of ISP mode. The P3 peak is excited by the resonance of ISP mode. The damping constant of the gold film is optimization calculated in simulations. Measured results indicate that high absorption performed is obtained with different dielectric layers. The measured metamaterial absorber displays high absorption performed at TM and TE configurations. Moreover, the proposed metamaterial absorber is sensitivity on the change of the refractive index of the environmental media.

  17. Crystalline perfection and optical properties of rapid grown KH2PO4 ...

    Indian Academy of Sciences (India)

    Additionally, the extinction ratio was decreased with rise of CrO 4 2 − concentration. CrO 4 2 − introduced two absorption peaks centred at 360 and 280 nm and enhanced the intrinsic absorption near 220 nm, which were at the same band positions compared with the CrO 4 2 − or HCrO 4 − transmittance spectra. Additionally ...

  18. Crystalline perfection and optical properties of rapid grown KH2PO4 ...

    Indian Academy of Sciences (India)

    the replacement of K. + ions (Pritula et al 2008). Impurities, which are inevitable when growing KDP crys- tal from solution, can dramatically affect both growth and .... Jianxu Ding et al method. The transmittance at the infrared region of KDP crystals grown with CrO2−. 4 additive is approximately equal to that of pure crystal.

  19. Reconstruction of perfect ZnO nanowires facets with high optical quality (United States)

    Zehani, E.; Hassani, S.; Lusson, A.; Vigneron, J.; Etcheberry, A.; Galtier, P.; Sallet, V.


    ZnO nanowires were grown on sapphire substrates using metalorganic chemical vapor deposition. The samples were subsequently annealed under zinc pressure in a vacuum-sealed ampoule, at temperature ranging from 500 to 800 °C. The originality and the main motivation to provide a zinc-rich atmosphere were to prevent the out-diffusion of zinc from the nanowires. In doing so, the perfect structural properties and the morphology of the nanowires are kept. Interestingly, photoluminescence experiments performed on nanowires annealed in a narrow window of temperature [580-620 °C] show a spectacular improvement of the optical quality, as transitions commonly observable in high quality bulk samples are found. In addition, the intensity of the so-called "surface excitons" (SX) is strongly decreased. To accurately investigate the chemical modifications of the surface, XPS experiments were carried out and show that zinc hydroxide species and/or Zn(OH)2 sublayer were partially removed from the surface. These results suggest that the annealing process in zinc vapor helps to properly reconstruct the surface of ZnO nanowires, and improves the optical quality of their core. Such a thermal treatment at moderate temperature should be beneficial to nanodevices involving surface reaction, e.g. gas sensors.

  20. Generation of perfect optical vortices using a Bessel-Gaussian beam diffracted by curved fork grating. (United States)

    Karahroudi, Mahdi Khodadadi; Parmoon, Bahman; Qasemi, Mohammadreza; Mobashery, Abolhasan; Saghafifar, Hossein


    Perfect optical vortices (POVs) are beams whose topological charges are independent of radius, unlike conventional optical vortices. POVs are the Fourier transformation of Bessel-Gaussian (BG) beams and can be seen in the far-field diffraction of BG beams. In this paper, we present the generation of POVs of arbitrary charge using curved fork grating (CFG) illuminated by BG beam. For this purpose, first, a theoretical study of the Fresnel-Kirchhoff integral for diffraction of a BG beam by CFG is completed. The analytical results show the presence of vortex beams with various topological charges in diffraction orders. Then, diffraction of the BG beam with the order (l) by CFG with a topological charge (p) is numerically simulated. Additionally, experimental results prove the generation of POVs in diffraction orders. Also, experimental interference patterns obtained by interfering a POV and Gaussian beam confirm the ability of analytical solutions to determine the topological charges of vortex beams. Comparison of the results reveals the validity of the analytical, simulation, and experimental results.

  1. Spatial ordering and abnormal optical activity of DNA liquid-crystalline dispersion particles

    Directory of Open Access Journals (Sweden)

    Semenov S.V.


    Full Text Available In our work, we investigate physicochemical and optical properties of double-strand DNA dispersions. The study of these properties is of biological interest, because it allows one to describe the characteristics of certain classes of chromosomes and DNA containing viruses. The package pattern of DNA molecules in the dispersions particles (DP is examined. The consideration of the DNA liquid-crystalline DP optical activity based on the theory of electromagnetic wave absorption by large molecular aggregates has been performed. The investigation is also focused on various effects induced by the interaction between biological active compounds and DNA in the content of liquid-crystalline DP.

  2. optical, electrical and solid state properties of nano crystalline zinc ...

    African Journals Online (AJOL)


    reflection coatings on window glass, video screen, camera lenses and other ... potentially important material for antireflection coating for heterojuction ..... REFERENCES. [1] Jyorti, P. B., Barman, J. and Sarma, K. C. (2008). Structural and optical properties of ZnS nanoparticles. Calcogenide Letters, 5 (9), 201-208. [2] Pavan ...

  3. Nonlinear Optical Functions in Crystalline and Amorphous Silicon-on-Insulator Nanowires

    DEFF Research Database (Denmark)

    Baets, R.; Kuyken, B.; Liu, X.


    Silicon-on-Insulator nanowires provide an excellent platform for nonlinear optical functions in spite of the two-photon absorption at telecom wavelengths. Work on both crystalline and amorphous silicon nanowires is reviewed, in the wavelength range of 1.5 to 2.5 µm....

  4. Coherent perfect absorption mediated enhancement and optical bistability in phase conjugation

    CERN Document Server

    Reddy, K Nireekshan; Gupta, S Dutta


    We study phase conjugation in a nonlinear composite slab when the counter propagating pump waves are completely absorbed by means of coherent perfect absorption. Under the undepleted pump approximation the coupling constant and the phase conjugated reflectivity are shown to undergo a substantial increase and multivalued response. The effect can be used for efficient switching of the phase conjugated reflectivity in photonic circuits.

  5. Multiband perfect absorbers using metal-dielectric films with optically dense medium for angle and polarization insensitive operation. (United States)

    You, Jong-Bum; Lee, Wook-Jae; Won, Dongshik; Yu, Kyoungsik


    The cavity resonant properties of planar metal-dielectric layered structures with optically dense dielectric media are studied with the aim of realizing omnidirectional and polarization-insensitive operation. The angle-dependent coupling between free-space and cavity modes are revealed to be a key leverage factor in realizing nearly perfect absorbers well-matched to a wide range of incidence angles. We establish comprehensive analyses of the relationship between the structural and optical properties by means of theoretical modeling with numerical simulation results. The presented work is expected to provide a simple and cost-effective solution for light absorption and detection applications that exploit planar metal-dielectric optical devices.

  6. Invited Article: All-optical multichannel logic based on coherent perfect absorption in a plasmonic metamaterial

    Directory of Open Access Journals (Sweden)

    Maria Papaioannou


    Full Text Available The exponential growth of telecommunications bandwidth will require next generation optical networks, where multiple spatial information channels will be transmitted in parallel. To realise the full potential of parallel optical data channels, fast and scalable multichannel solutions for processing of optical data are of paramount importance. Established solutions based on the nonlinear wave interaction in photorefractive materials are slow. Here we experimentally demonstrate all-optical logical operations between pairs of simulated spatially multiplexed information channels using the coherent interaction of light with light on a plasmonic metamaterial. The approach is suitable for fiber implementation and—in principle—operates with diffraction-limited spatial resolution, 100 THz bandwidth, and arbitrarily low intensities, thus promising ultrafast, low-power solutions for all-optical parallel data processing.

  7. Invited Article: All-optical multichannel logic based on coherent perfect absorption in a plasmonic metamaterial (United States)

    Papaioannou, Maria; Plum, Eric; Valente, João; Rogers, Edward T. F.; Zheludev, Nikolay I.


    The exponential growth of telecommunications bandwidth will require next generation optical networks, where multiple spatial information channels will be transmitted in parallel. To realise the full potential of parallel optical data channels, fast and scalable multichannel solutions for processing of optical data are of paramount importance. Established solutions based on the nonlinear wave interaction in photorefractive materials are slow. Here we experimentally demonstrate all-optical logical operations between pairs of simulated spatially multiplexed information channels using the coherent interaction of light with light on a plasmonic metamaterial. The approach is suitable for fiber implementation and—in principle—operates with diffraction-limited spatial resolution, 100 THz bandwidth, and arbitrarily low intensities, thus promising ultrafast, low-power solutions for all-optical parallel data processing.

  8. Perfect X-ray focusing via fitting corrective glasses to aberrated optics. (United States)

    Seiboth, Frank; Schropp, Andreas; Scholz, Maria; Wittwer, Felix; Rödel, Christian; Wünsche, Martin; Ullsperger, Tobias; Nolte, Stefan; Rahomäki, Jussi; Parfeniukas, Karolis; Giakoumidis, Stylianos; Vogt, Ulrich; Wagner, Ulrich; Rau, Christoph; Boesenberg, Ulrike; Garrevoet, Jan; Falkenberg, Gerald; Galtier, Eric C; Ja Lee, Hae; Nagler, Bob; Schroer, Christian G


    Due to their short wavelength, X-rays can in principle be focused down to a few nanometres and below. At the same time, it is this short wavelength that puts stringent requirements on X-ray optics and their metrology. Both are limited by today's technology. In this work, we present accurate at wavelength measurements of residual aberrations of a refractive X-ray lens using ptychography to manufacture a corrective phase plate. Together with the fitted phase plate the optics shows diffraction-limited performance, generating a nearly Gaussian beam profile with a Strehl ratio above 0.8. This scheme can be applied to any other focusing optics, thus solving the X-ray optical problem at synchrotron radiation sources and X-ray free-electron lasers.

  9. Learning by playing: how to create the perfect learning game for and with optics (United States)

    Haist, Tobias; Burla, Avinash


    For children, playing and learning is often one thing. They learn while playing and by playing the right games they learn a lot. It is therefore obvious that we should use (among other things) games in order to fascinate children for optics and to teach them the basic laws of optics. In this contribution we will introduce different optical games for children in preschool and elementary school. The majority of commercial learning games on the market do not achieve the ambitious goal of leading to fun and knowledge since very often there are serious design flaws within these games. We introduce ten design rules for learning games that will enable you to create your own successful learning game for a special topic. Exemplary, we will show games based on and for color mixing and polarization.

  10. Crystallins are regulated biomarkers for monitoring topical therapy of glaucomatous optic neuropathy.

    Directory of Open Access Journals (Sweden)

    Verena Prokosch

    Full Text Available Optic nerve atrophy caused by abnormal intraocular pressure (IOP remains the most common cause of irreversible loss of vision worldwide. The aim of this study was to determine whether topically applied IOP-lowering eye drugs affect retinal ganglion cells (RGCs and retinal metabolism in a rat model of optic neuropathy. IOP was elevated through cauterization of episcleral veins, and then lowered either by the daily topical application of timolol, timolol/travoprost, timolol/dorzolamide, or timolol/brimonidine, or surgically with sectorial iridectomy. RGCs were retrogradely labeled 4 days prior to enucleation, and counted. Two-dimensional polyacrylamide gel electrophoresis (2D-PAGE, matrix-assisted laser desorption ionization mass spectrometry, Western blotting, and immunohistochemistry allowed the identification of IOP-dependent proteomic changes. Genomic changes were scrutinized using microarrays and qRT-PCR. The significant increase in IOP induced by episcleral vein cauterization that persisted until 8 weeks of follow-up in control animals (p<0.05 was effectively lowered by the eye drops (p<0.05. As anticipated, the number of RGCs decreased significantly following 8 weeks of elevated IOP (p<0.05, while treatment with combination compounds markedly improved RGC survival (p<0.05. 2D-PAGE and Western blot analyses revealed an IOP-dependent expression of crystallin cry-βb2. Microarray and qRT-PCR analyses verified the results at the mRNA level. IHC demonstrated that crystallins were expressed mainly in the ganglion cell layer. The data suggest that IOP and either topically applied antiglaucomatous drugs influence crystallin expression within the retina. Neuronal crystallins are thus suitable biomarkers for monitoring the progression of neuropathy and evaluating any neuroprotective effects.

  11. Novel side-chain liquid crystalline polyester architecture for reversible optical storage

    DEFF Research Database (Denmark)

    Hvilsted, Søren; Andruzzi, Fulvio; Kulinna, Chrisian


    New side-chain liquid crystalline polyesters have been prepared by melt transesterification of diphenyl tetradecanedioate and a series of mesogenic 2-[omega-[4-[(4-cyanophenyl)azo]phenoxyl] alkyl]-1,3-propanediols, where the alkyl spacer is hexa-, octa-, and decamethylene in turn. The polyesters...... for the cyanoazobenzene mesogens calculated. FTIR is also utilized to follow the temperature-dependent erasure of the induced orientation. Optical storage properties of thin unoriented polyester films are examined through measurements of polarization anisotropy and holography. A resolution of over 5000 lines...

  12. Structural, optical and mechanical properties of amorphous and crystalline alumina thin films

    Energy Technology Data Exchange (ETDEWEB)

    Nayar, Priyanka [Department of Physics, Guru Nanak Dev University, Amritsar 143005 (India); Khanna, Atul, E-mail: [Department of Physics, Guru Nanak Dev University, Amritsar 143005 (India); Kabiraj, D.; Abhilash, S.R. [Inter University Accelerator Centre, Aruna Asaf Ali Marg, New Delhi 110067 (India); Beake, Ben D.; Losset, Yannick [Micro Materials Limited, Unit 3, Wrexham Technology Park, Wrexham LL13 7YP (United Kingdom); Chen, Banghao [Chemistry and Biochemistry Department, Florida State University, Tallahassee 32306 (United States)


    Thin films of amorphous alumina of thickness 350 nm were deposited on fused silica substrates by electron beam evaporation. Amorphous films were annealed at several temperatures in the range: 400–1130 °C and changes in film crystallinity, short-range structure, optical and mechanical properties were studied. X-ray diffraction studies found that crystallization starts at 800 °C and produces γ and δ-alumina, the latter phase grows with heat treatment and the sample was mostly δ and θ-alumina after annealing at 1130 °C. The as-deposited amorphous alumina films have low hardness of 5 to 8 GPa, which increases to 11 to 12 GPa in crystalline sample. {sup 27}Al Magic Angle Spinning Nuclear Magnetic Resonance was used to study the short-range order of amorphous and crystalline alumina films and it was found that amorphous alumina film contains AlO{sub 5} and AlO{sub 4} structural units in the ratio of 1:2. The concentration of AlO{sub 5} was significantly suppressed in crystalline film, which contains 48% of Al{sup 3+} ions in AlO{sub 6}, 7% in AlO{sub 5} and 45% in AlO{sub 4} units. - Highlights: • Structure–property correlations in alumina films grown by electron-beam evaporation • Amorphous films crystallize into γ and δ-alumina on annealing in air at 800 °C. • δ and θ-alumina films are stable up to 1130 °C and do not transform to α-phase. • Amorphous alumina films contain {sup [5]}Al and {sup [4]}Al structural units in the ratio of 1:2. • {sup [5]}Al decreases whereas {sup [6]}Al concentration increases on crystallization.

  13. Optical Evaluation of the Rear Contacts of Crystalline Silicon Solar Cells by Coupled Electromagnetic and Statistical Ray-Optics Modeling

    KAUST Repository

    Dabirian, Ali


    High-efficiency crystalline silicon (c-Si) solar cells increasingly feature sophisticated electron and hole contacts aimed at minimizing electronic losses. At the rear of photovoltaic devices, such contacts—usually consisting of stacks of functional layers—offer opportunities to enhance the infrared response of the solar cells. Here, we propose an accurate and simple modeling procedure to evaluate the infrared performance of rear contacts in c-Si solar cells. Our method combines full-wave electromagnetic modeling of the rear contact with a statistical ray optics model to obtain the fraction of optical energy dissipated from the rear contact relative to that absorbed by the Si wafer. Using this technique, we study the impact of the refractive index, extinction coefficient, and thickness of the rear-passivating layer and establish basic design rules. In addition, we evaluate novel optical structures, including stratified thin films, nanoparticle composites, and conductive nanowires embedded in a low-index dielectric matrix, for integration into advanced rear contacts in c-Si photovoltaic devices. From an optical perspective, nanowire structures preserving low contact resistance appear to be the most effective approach to mitigating dissipation losses from the rear contact.

  14. Experimental analysis on the coupled effect between thermo-optical properties and microstructure of semi-crystalline thermoplastics (United States)

    Boztepe, Sinan; Thiam, Abdoulahad; de Almeida, Olivier; Le Maoult, Yannick; Schmidt, Fabrice


    Radiation heat transfer is the most common method used in thermoforming processes of thermoplastic polymers due to their poor thermal conductivity. Considering the fact that the thermo-optical characteristics of polymers play a major role in the efficiency of radiative heat transfer in bulk polymers, microstructure of semi-crystalline thermoplastics is one of the key factors to understand this heat transfer phenomenon in depth. In this study, a relation between the microcrystalline structure of polyolefin (PO) and its effect on the thermo-optical properties was experimentally analyzed. Information on the microcrystalline structure of the samples was obtained by determining the degree of crystallinity (Xc) thanks to Differential Scanning Calorimetry (DSC). Using Fourier Transform Infrared (FT-IR) spectroscopy and integrating sphere, optical characteristics of the PO samples were analyzed considering two spectrums that are in near-infrared (NIR) and middle-infrared (MIR) spectral regions respectively. The analyses showed that the degree of crystallinity has a great effect on the thermo-optical characteristics of the PO - particularly considering transmission - in NIR range. Such a coupled effect can be functionalized and adopted to develop an advanced radiative heat transfer model that may be used for addressing various problems on infrared (IR) heating of heterogeneous materials, particularly semi-crystalline thermoplastics. In the last part of the paper, a theoretical approach for consideration of the heterogeneity of semi-crystalline thermoplastics in a radiative heat transfer model was highlighted.

  15. Infrared Spectra and Optical Constants of Astronomical Ices: I. Amorphous and Crystalline Acetylene (United States)

    Hudson, R. L.; Ferrante, R. F.; Moore, M. H.


    Here we report recent measurements on acetylene (C2H2) ices at temperatures applicable to the outer Solar System and the interstellar medium. New near- and mid-infrared data, including optical constants (n, k), absorption coefficients (alpha), and absolute band strengths (A), are presented for both amorphous and crystalline phases of C2H2 that exist below 70 K. Comparisons are made to earlier work. Electronic versions of the data are made available, as is a computer routine to use our reported n and k values to simulate the observed IR spectra. Suggestions are given for the use of the data and a comparison to a spectrum of Makemake is made.

  16. Synthesis, Characterization and Photoinduction of Optical Anisotropy in Liquid Crystalline Diblock Azo-Copolymers

    DEFF Research Database (Denmark)

    Forcén, P; Oriol, L; Sánchez, C


    behavior similar to that of the azo homopolymers. Thin films of these copolymers were characterized by transmission elevtron microscopy (TEM). A lamellar nanostructure was observed for azo content down to 20 wt %, while no structure is observed for the copolymer with a 7% azo content. The optical......Diblock copolymers with polymethyl methacrylate and side chain liquid crystalline WC) azopolymethacrylate blocks were synthesized by atom transfer radical polymerization (ATRP). The azobeazene content in these copolymers ranges from 52 to 7 wt %. For an azo conteat dowri to 20% they exhibit a LC...... the homopolymer to the copolymers. Photoinduced azo orientation perpendicular to the 488 nm light polarization was found in aH the polymers. The orientational order parameter is very similar in the homopolymer and in the block copolymers with an azo content down to 20 wt %, while it is much lower in the random...

  17. Azobenzene side-chain liquid crystalline polyesters with outstanding optical storage properties

    DEFF Research Database (Denmark)

    Hvilsted, Søren; Pedersen, M; Holme, NCR


    A flexible azobenzene side-chain liquid crystalline (SCLC) polyester architecture employed for reversible optical storage is described. The modular design allows four structural parameters to be individually modified. These parameters: i- the methylene side-chain spacer length, ii- the substituent......, information can be recorded either through polarization holography or as direct computer generated pattern (grey tones). Thus polarization holography results in high diffraction efficiency (> 50%) and high storage density (> 5000 lines/mm interference gratings) lasting presently well over 5 years without any......, the observed surface roughness is strongly dependent on the laser polarization. Polarization Fourier-Transform infrared studies of laser induced segmental motion in selectively deuterated SCLC cyanoazobenzene polyesters have revealed that not only the azobenzene chromophores but also main-chain and side...

  18. Optical characterization of the coloration process in electrochromic amorphous and crystalline WO3 films by spectroscopic ellipsometry (United States)

    Yuan, Guangzhong; Hua, Chenzheng; Huang, Li; Defranoux, Christophe; Basa, Peter; Liu, Yong; Song, Chenlu; Han, Gaorong


    Amorphous and crystalline electrochromic WO3 films exhibit quite different optical properties during coloration process. In the present work, amorphous and crystalline electrochromic WO3 films prepared by a solution method were characterized using X-ray diffraction, scanning electron microscope, and transmission electron microscope techniques. A double-layer model with sharp interfaces was established for the fitting of the ellipsometry parameters. The results show that the proton favors amorphous films more than crystalline WO3 films. The refractive indices of both amorphous and polycrystalline WO3 films decrease while extinction coefficients increase with the inserting of H+ during the coloration process. But the optical parameters of the latter are much more sensitive to the H+ ions injected compared to the amorphous WO3 during the coloration process. That is the refractive index modulation of the crystalline WO3 films is about 53% at 633 nm while that of the amorphous films about 15% at the same wavelength. The Drude-like free electron model for crystalline WO3 and hopping mechanism of small polaron for amorphous WO3 are used to explain the difference in detail. These results are very helpful for the better understanding of the coloration process and for the design of electrochromic devices.

  19. Picture perfect

    DEFF Research Database (Denmark)

    Pless, Mette; Sørensen, Niels Ulrik

    ’Picture perfect’ – when perfection becomes the new normal This paper draws on perspectives from three different studies. One study, which focuses on youth life and lack of well-being (Sørensen et al 2011), one study on youth life on the margins of society (Katznelson et al 2015) and one study...

  20. Suspension and optical properties of the crystalline lens in the eyes of basal vertebrates. (United States)

    Kröger, Ronald H H; Gustafsson, Ola S E; Tuminaite, Inga


    We have investigated the apparatus suspending the crystalline lens in the eyes of basal vertebrates. Data are presented for Holocephali (Chondrichthyes) and the actinopterygians Polypteriformes, Polyodontidae (Acipenseriformes), Lepisosteiformes, Amiiformes, and one teleost species, the banded archerfish (Toxotes jaculatrix). We also studied the optical properties of the lens in Polypteriformes, Lepisosteiformes, and the archerfish. Together with previously published results, our findings show that there are three basic types of lens suspension in vertebrates. These are i) a rotationally symmetric suspension (Petromyzontida, lampreys; Ceratodontiformes, lungfishes; Tetrapoda), ii) a suspension with a dorso-ventral axis of symmetry and a ventral papilla (all Chondrichthyes and Acipenseriformes), and iii) an asymmetric suspension with a ventral muscle and a varying number of ligaments (all Actinopterygii except for Acipenseriformes). Large eyes with presumably high spatial resolution have evolved in all groups. Multifocal lenses creating well-focused color images are also present in all groups studied. Stable and exact positioning of the lens, in many cases in combination with accommodative changes in lens position or shape, is achieved by all three types of lens suspension. It is somewhat surprising that lens suspensions are strikingly similar in Chondrichthyes and Acipenseriformes (Actinopterygii), while the suspension apparatus in Polypteriformes, usually being regarded as an actinopterygian group more basal than Acipenseriformes, are considerably more teleostean-like. This study completes a series of investigations on lens suspensions in nontetrapod vertebrates, covering all major groups except for the rare and highly derived coelacanths. Copyright © 2013 Wiley Periodicals, Inc.

  1. Progress Toward Single-Photon-Level Nonlinear Optics in Crystalline Microcavities (United States)

    Kowligy, Abijith S.

    excess of 500 ns for all the three waves in the interaction, provided a cavity of radius R methods for disk radii, R > 100 mum, whereas for the smaller disks, additional rigorous polishing may be required. We also fabricated resonators as small as R ˜ 40 mum via this method. In a millimeter-sized resonator, we experimentally demonstrated triply resonant sum-frequency generation, which allowed for an observation of the classical manifestation of the quantum Zeno effect, wherein line-splitting occurs due to the high efficiency intracavity frequency conversion. For the sub-100 mum resonators, we present phase-matching calculations and dispersion-management techniques using analytical approximations and rigorous finite-element-method simulations. Experimentally, Q -factor measurements are shown, and we identify the specific short-comings of the fabrication procedure that may have led to the lower, surface-roughness-limited Q-factors. Finally, we identify pathways toward achieving the single-photon-level nonlinear optics using off-resonant nonlinear optics, which requires the simultaneous realization of phase-matching, large cavity lifetimes, and small mode volumes. We believe this would be feasible in the near future as more advanced fabrication and processing methods are developed for crystalline materials and novel nonlinear crystals are synthesized.

  2. Biomechanical properties of crystalline lens as a function of intraocular pressure assessed noninvasively by optical coherence elastography (United States)

    Wu, Chen; Aglyamov, Salavat R.; Liu, Chih-Hao; Han, Zhaolong; Singh, Manmohan; Larin, Kirill V.


    Many ocular diseases such as glaucoma and uveitis can lead to the elevation of intraocular pressure (IOP). Previous research implies a link between elevated IOP and lens disease. However, the relationship between IOP elevation and biomechanical properties of the crystalline lens has not been directly studied yet. In this work, we investigated the biomechanical properties of porcine lens as a function of IOP by acoustic radiation force optical coherence elastography.

  3. Optical properties of zirconium oxynitride films: The effect of composition, electronic and crystalline structures

    Energy Technology Data Exchange (ETDEWEB)

    Carvalho, P. [Centro de Física, Universidade do Minho, 4710-057 Braga (Portugal); Borges, J., E-mail: [Centro de Física, Universidade do Minho, 4710-057 Braga (Portugal); Department of Control Engineering, Faculty of Electrical Engineering, Czech Technical University in Prague, Technická 2, Prague 6 (Czech Republic); Rodrigues, M.S. [Centro de Física, Universidade do Minho, 4710-057 Braga (Portugal); Barradas, N.P. [Centro de Ciências e Tecnologias Nucleares, Instituto Superior Técnico, Universidade de Lisboa, E.N. 10 (km 139,7), 2695-066 Bobadela LRS (Portugal); Alves, E. [Instituto de Plasmas e Fusão Nuclear, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisbon (Portugal); Espinós, J.P.; González-Elipe, A.R. [Instituto de Ciencia de Materiales de Sevilla (CSIC-University Sevilla), Avda. Américo Vespucio 49, 41092 Sevilla (Spain); Cunha, L.; Marques, L.; Vasilevskiy, M.I.; Vaz, F. [Centro de Física, Universidade do Minho, 4710-057 Braga (Portugal)


    Highlights: • Optical behaviour of ZrO{sub x}N{sub y} films were correlated with structural properties. • A continuous depopulation of the d-band and an opening of an energy gap was observed. • Drude–Lorentz parameters changed for the metallic samples. • Optical bandgap of the films increases with non-metallic elements incorporation. - Abstract: This work is devoted to the investigation of zirconium oxynitride (ZrO{sub x}N{sub y}) films with varied optical responses prompted by the variations in their compositional and structural properties. The films were prepared by dc reactive magnetron sputtering of Zr, using Ar and a reactive gas mixture of N{sub 2} + O{sub 2} (17:3). The colour of the films changed from metallic-like, very bright yellow-pale and golden yellow, for low gas flows to red-brownish for intermediate gas flows. Associated to this colour change there was a significant decrease of brightness. With further increase of the reactive gas flow, the colour of the samples changed from red-brownish to dark blue or even to interference colourations. The variations in composition disclosed the existence of four different zones, which were found to be closely related with the variations in the crystalline structure. XRD analysis revealed the change from a B1 NaCl face-centred cubic zirconium nitride-type phase for films prepared with low reactive gas flows, towards a poorly crystallized over-stoichiometric nitride phase, which may be similar to that of Zr{sub 3}N{sub 4} with some probable oxygen inclusions within nitrogen positions, for films prepared with intermediate reactive gas flows. For high reactive gas flows, the films developed an oxynitride-type phase, similar to that of γ-Zr{sub 2}ON{sub 2} with some oxygen atoms occupying some of the nitrogen positions, evolving to a ZrO{sub 2} monoclinic type structure within the zone where films were prepared with relatively high reactive gas flows. The analysis carried out by reflected electron energy

  4. An amorphous-to-crystalline phase transition within thin silicon films grown by ultra-high-vacuum evaporation and its impact on the optical response (United States)

    Orapunt, Farida; Tay, Li-Lin; Lockwood, David J.; Baribeau, Jean-Marc; Noël, Mario; Zwinkels, Joanne C.; O'Leary, Stephen K.


    A number of thin silicon films are deposited on crystalline silicon, native oxidized crystalline silicon, and optical quality fused quartz substrates through the use of ultra-high-vacuum evaporation at growth temperatures ranging from 98 to 572 °C. An analysis of their grazing incidence X-ray diffraction and Raman spectra indicates that a phase transition, from amorphous-to-crystalline, occurs as the growth temperature is increased. Through a peak decomposition process, applied to the Raman spectroscopy results, the crystalline volume fractions associated with these samples are plotted as a function of the growth temperature for the different substrates considered. It is noted that the samples grown on the crystalline silicon substrates have the lowest crystallanity onset temperature, whereas those grown on the optical quality fused quartz substrates have the highest crystallanity onset temperature; the samples grown on the native oxidized crystalline silicon substrates have a crystallanity onset temperature between these two limits. These resultant dependencies on the growth temperature provide a quantitative means of characterizing the amorphous-to-crystalline phase transition within these thin silicon films. It is noted that the thin silicon film grown on an optical quality fused quartz substrate at 572 °C, possessing an 83% crystalline volume fraction, exhibits an optical absorption spectrum which is quite distinct from that associated with the other thin silicon films. We suggest that this is due to the onset of sufficient long-range order in the film for wave-vector conservation to apply, at least partially. Finally, we use a semi-classical optical absorption analysis to study how this phase transition, from amorphous-to-crystalline, impacts the spectral dependence of the optical absorption coefficient.

  5. An exact line integral representation of the physical optics scattered field: the case of a perfectly conducting polyhedral structure illuminated by electric Hertzian dipoles

    DEFF Research Database (Denmark)

    Johansen, Peter M.; Breinbjerg, Olav


    An exact line integral representation of the electric physical optics scattered field is presented. This representation applies to scattering configurations with perfectly electrically conducting polyhedral structures illuminated by a finite number of electric Hertzian dipoles. The positions...... of the source and observation points can be almost arbitrary. The line integral representation yields the exact same result as the conventional surface radiation integral; however, it is potentially less time consuming and particularly useful when the physical optics field can be augmented by a fringe wave...... contribution as calculated from physical theory of diffraction equivalent edge currents. The final expression for the line integral representation is lengthy but involves only simple functions and is thus suited for numerical calculation. To illustrate the exactness of the line integral representation...

  6. Incorporation of Oxygen in Crystalline Zeolitic Chromosilicates: Optical Identification of Chromium(vi) by Photoacoustic Spectroscopy


    Mambrim, J. Silvio T.; Vichi, Eduardo J. S.; Pastore, Heloise 0.; Davanzo,Celso U.; Vargas,Helion; Silva, Edson; Nakamura, Ossamu


    p. 922-923 Incorporation of oxygen to crystalline zeolitic chromosilicates, with oxidation of anchored Cr"' to non-interacting CrVl species, has been confirmed by photoacoustic spectroscopy; the dichromate anion being extracted from the chromosilicate with water and identified by precipitation of AgCr04 and oxidation to Cr05.

  7. Side-chain liquid-crystalline polyesters for optical information storage

    DEFF Research Database (Denmark)

    Hvilsted, Søren; Andruzzi, F.; Ramanujam, P.S.


    We report erasable holographic recording with a resolution of at least 2500 lines/mm on unoriented films of side-chain liquid-crystalline polyesters. Recording energies of approximately 1 J/cm2 have been used. We have obtained a diffraction efficiency of approximately 30% with polarization...

  8. Optical, electric and magnetic controlled ballistic conductance in monolayer WSe2: the perfect valley and spin polarizations (United States)

    Qiu, X. J.; Lv, Q.; Cao, Z. Z.


    We study the charge and valley-spin ballistic transport through monolayer (ML) WSe2 potential barrier, of width L and height U , in the presence of an off-resonant light and ferromagnetic (FM) exchange field. We show that an electric switch is available in WSe2 by increasing U beyond the critical value U=115 meV . Due to the band gaps of valley K and {{K}\\prime } responding differently to off-resonant light together with the huge spin–orbit coupling (SOC) in WSe2, the perfect valley and spin polarizations are obtained. Interestingly, under the effect of electrostatic potential U=115 meV , the valley polarization can be realized even for a tiny light intensity. Additionally, the FM exchange field can assist significantly the spin polarization in a wider region of light intensity and barrier height plane due to the large shift of spin-up and down bands. More important in our results, the highest valley and spin conductance is near 100% even under the polarized situation. These results demonstrate that WSe2 is a distinguished 2D material for novel spintronics and valleytronics in future.

  9. Crystalline/amorphous tungsten oxide core/shell hierarchical structures and their synergistic effect for optical modulation. (United States)

    Zhou, D; Xie, D; Shi, F; Wang, D H; Ge, X; Xia, X H; Wang, X L; Gu, C D; Tu, J P


    High-performance electrochromic films with large color contrast and fast switching speed are of great importance for developing advanced smart windows. In this work, crystalline/amorphous WO3 core/shell (c-WO3@a-WO3) nanowire arrays rationally are synthesized by combining hydrothermal and electrodeposition methods. The 1D c-WO3@a-WO3 core/shell hierarchical structures show a synergistic effect for the enhancement of optical modulation, especially in the infrared (IR) region. By optimizing the electrodeposition time of 400s, the core/shell array exhibits a significant optical modulation (70.3% at 750nm, 42.0% at 2000nm and 51.4% at 10μm), fast switching speed (3.5s and 4.8s), high coloration efficiency (43.2cm(2)C(-1) at 750nm) and excellent cycling performance (68.5% after 3000 cycles). The crystalline/amorphous nanostructured film can provide an alternative way for developing high-performance electrochromic materials. Copyright © 2015 Elsevier Inc. All rights reserved.

  10. Evolutionary Design and Prototyping of Single Crystalline Titanium Nitride Lattice Optics (Postprint) (United States)


    Maximum 200 words ) This paper describes the design and prototyping of single-crystalline TiN plasmonic metasurfaces based on subwavelength hole...balanced intensities at the light spots . We also demonstrated a simple, efficient technique to prototype these lattice designs in large-area TiN...focusing with arbitrary light spot patterns was realized. Using anisotropic nanohole shapes, the TiN lattice lenses could exhibit dynamic tuning of the

  11. Atomic force and optical near-field microscopic investigations of polarization holographic gratings in a liquid crystalline azobenzene side-chain polyester

    DEFF Research Database (Denmark)

    Ramanujam, P.S.; Holme, N.C.R.; Hvilsted, S.


    Atomic force and scanning near-field optical microscopic investigations have been carried out on a polarization holographic grating recorded in an azobenzene side-chain Liquid crystalline polyester. It has been found that immediately following laser irradiation, a topographic surface grating......-field optical microscopic scanning of the grating reveals, however, that the bulk of the film remains optically anisotropic. (C) 1996 American Institute of Physics....

  12. Characterization and Optical Properties of the Single Crystalline SnS Nanowire Arrays

    Directory of Open Access Journals (Sweden)

    Yue GH


    Full Text Available Abstract The SnS nanowire arrays have been successfully synthesized by the template-assisted pulsed electrochemical deposition in the porous anodized aluminum oxide template. The investigation results showed that the as-synthesized nanowires are single crystalline structures and they have a highly preferential orientation. The ordered SnS nanowire arrays are uniform with a diameter of 50 nm and a length up to several tens of micrometers. The synthesized SnS nanowires exhibit strong absorption in visible and near-infrared spectral region and the direct energy gapE gof SnS nanowires is 1.59 eV.

  13. The Optical Properties of Crystalline Zn3Nb2O8 Nanomaterials Obtained by Hydrothermal Method

    Directory of Open Access Journals (Sweden)

    Mihaela Birdeanu


    Full Text Available The present study is focused on the obtaining of the Zn3Nb2O8 nanomaterial using the hydrothermal method and its characterization through different techniques. X-ray diffraction at room temperature revealed that a novel crystalline form of the nanomaterial forms at 1100°C belonging to monoclinic space group C2/c. Field-emission scanning electron microscopy evidenced the columnar morphology of the particle’s agglomeration and the high resolution electron transmission microscopy confirms the measured interplanar distances calculated from the X-ray diffraction experiments. Using the UV-VIS spectrum and Kubelka-Munk equations, the absorbance and the band gap for the Zn3Nb2O8 nanomaterial were calculated. PL spectrum reveals a single peak at 465 nm corresponding to the blue color fluorescence. The novel crystalline nanomaterial might find applications in fluorescence covering of technical devices, due to its capacity to preserve blue fluorescence both in acrylic based paint and after embedding in isopropyl alcohol.

  14. The influence of metal interlayers on the structural and optical properties of nano-crystalline TiO 2 films

    KAUST Repository

    Yang, Yong


    TiO 2-M-TiO 2 (M = W, Co and Ag) multilayer films have been deposited on glass substrates using reactive magnetron sputtering, then annealed in air for 2 h at 500°C. The structure, surface morphology and optical properties of the films have been studied using X-ray diffraction, Raman spectroscopy, atomic force microscopy and UV-vis spectroscopy. The TiO 2-W-TiO 2 and TiO 2-Co-TiO 2 films showed crystalline phases, whereas the TiO 2-Ag-TiO 2 films remained in the amorphous state. The crystallization temperature for the TiO 2-M-TiO 2 films decreased significantly compared with pure TiO 2 film deposited on quartz. Detailed analysis of the Raman spectra suggested that the crystallization of TiO 2-M-TiO 2 films was associated with the large structural deformation imposed by the oxidation of intermediate metal layers. Moreover, the optical band gap of the films narrowed due to the appearance of impurity levels as the metal ions migrated into the TiO 2 matrix. These results indicate that the insertion of intermediate metal layers provides a feasible access to improve the structural and optical properties of anatase TiO 2 films, leading to promising applications in the field of photocatalysis. © 2011 Elsevier B.V. All rights reserved.

  15. Growth of compact arrays of optical quality single crystalline ZnO ...

    Indian Academy of Sciences (India)


    Abstract. We report the synthesis and optical properties of compact and aligned ZnO nanorod arrays (dia,. ~ 50–200 nm) grown on a glass substrate with varying seed particle density. The suspension of ZnO nanoparti- cles (size, ~ 15 nm) of various concentrations are used as seed layer for the growth of nanorod arrays via ...

  16. Growth of compact arrays of optical quality single crystalline ZnO ...

    Indian Academy of Sciences (India)

    We report the synthesis and optical properties of compact and aligned ZnO nanorod arrays (dia, ∼ 50–200 nm) grown on a glass substrate with varying seed particle density. The suspension of ZnO nanoparticles (size, ∼ 15 nm) of various concentrations are used as seed layer for the growth of nanorod arrays via ...

  17. Metamaterials for perfect absorption

    CERN Document Server

    Lee, Young Pak; Yoo, Young Joon; Kim, Ki Won


    This book provides a comprehensive overview of the theory and practical development of metamaterial-based perfect absorbers (MMPAs). It begins with a brief history of MMPAs which reviews the various theoretical and experimental milestones in their development. The theoretical background and fundamental working principles of MMPAs are then discussed, providing the necessary background on how MMPAs work and are constructed. There then follows a section describing how different MMPAs are designed and built according to the operating frequency of the electromagnetic wave, and how their behavior is changed. Methods of fabricating and characterizing MMPAs are then presented. The book elaborates on the performance and characteristics of MMPAs, including electromagnetically-induced transparency (EIT). It also covers recent advances in MMPAs and their applications, including multi-band, broadband, tunability, polarization independence and incidence independence. Suitable for graduate students in optical sciences and e...

  18. Optical and carrier transport properties of graphene oxide based crystalline-Si/organic Schottky junction solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Khatri, I.; Tang, Z.; Hiate, T.; Liu, Q.; Ishikawa, R.; Ueno, K.; Shirai, H. [Graduate School of Science and Engineering, Saitama University, Saitama 338-8570 (Japan)


    We investigated the graphene oxide (GO) based n-type crystalline silicon (c-Si)/conductive poly(ethylene dioxythiophene):poly(styrenesulfonate)(PEDOT:PSS) Schottky junction devices with optical characterization and carrier transport measurement techniques. The optical transmittance in the UV region decreased markedly for the films with increasing the concentration of GO whereas it increased markedly in the visible-infrared regions. Spectroscopic ellipsometry revealed that the ordinary and extraordinary index of refraction increased with increasing the concentration of GO. The hole mobility also increased from 1.14 for pristine film to 1.85 cm{sup 2}/V s for the 12–15 wt. % GO modified film with no significant increases of carrier concentration. The highest conductivity was found for a 15 wt. % GO modified PEDOT:PSS film: the c-Si/PEDOT:PSS:GO device using this sample exhibited a relatively high power conversion efficiency of 11.04%. In addition, the insertion of a 2–3 nm-thick GO thin layer at the c-Si/PEDOT:PSS interface suppressed the carrier recombination efficiency of dark electron and photo-generated hole at the anode, resulting in the increased photovoltaic performance. This study indicates that the GO can be good candidates for hole transporting layer of c-Si/PEDOT:PSS Schottky junction solar cell.

  19. Stabilization of Bend Alignment Using Optical Polymerization of UV Curable Liquid Crystalline Monomers (United States)

    Asakawa, Youichi; Yokota, Kouji; Nanaumi, Makoto; Takatuka, Naoki; Takahashi, Taiju; Saito, Susumu


    Director profiles and electrooptical properties in polymer-stabilized π cells used in optically compensated bend (OCB) liquid crystal displays (LCDs) are theoretically investigated by introducing an additional term which expresses the effect of polymer stabilization on the free energy density. The conditions required to stabilize the bend alignment definitively have been theoretically clarified and experimentally confirmed. As a result, the bend alignment is successfully stabilized even if the twist state is more stable than the bend state before the application of polymer-stabilization treatment.

  20. Crystalline structure, and magnetic and magneto-optical properties of MnSbBi thin films

    CERN Document Server

    Kang, K


    the c-axis texture and the saturation magnetisation due to less segregation of the non-magnetic phase in the annealed films. Using a thin Sb seed layer in Mn/Sb/Bi// films also results in an increase in both the c-axis texture and the saturation magnetisation. Decreasing the layer thicknesses in Mn/Bi/Sb// films results in a decrease in the grain size. By depositing the Sb layer first in Pt/Mn/Sb// and Co/Mn/Sb// films, the perpendicular c-axis texture can be kept before and after annealing. Computer simulation was carried out to investigate the relationship between the crystal structure and the magnetic properties before and after annealing. Comparing optical and MO properties of annealed Mn/Sb/Bi// and Mn/Sb// films suggests a possible origin of the peaks in Kerr spectra caused by adding Bi. This thesis reports work carried out to investigate some aspects of the crystal structure, and magnetic and magneto-optical (MO) properties in thin films of the Mn-Sb system. Reports of interesting properties and the po...

  1. Numerical simulations of the optical gain of crystalline fiber doped by rare earth and transition ion (United States)

    Daoui, A. K.; Boubir, B.; Adouane, A.; Demagh, N.; Ghoumazi, M.


    A fiber laser is a laser whose gain medium is a doped fiber, although lasers whose cavity is made wholly of fibers have also been called fiber lasers. The gain media in a fiber laser is usually fiber doped with rare-earth ions, such as erbium (Er), neodymium (Nd), ytterbium (Yb), thulium (Tm), or praseodymium (Pr), which is doped into the core of the optical fiber, similar to those used to transmit telecommunications signals. Fiber lasers find many applications in materials processing, including cutting, welding, drilling, and marking metal. To maximize their market penetration, it is necessary to increase their output power. In this work, we present a detailed study based on the numerical simulation using MATLAB, of one of the principal characteristics of a fiber laser doped with rare earth ions and transition ion. The gain depends on several parameters such as the length of the doped fiber, the density, the pump power, noise, etc.). The used program resolves the state equations in this context together with those governing the light propagation phenomena. The developed code can also be used to study the dynamic operating modes of a doped fiber laser.

  2. Synthesis, optical, structural, and electrical properties of single-crystalline CdS nanobelts

    Energy Technology Data Exchange (ETDEWEB)

    Alqahtani, Mohammed S. [King Saud University, Department of Physics and Astronomy, Riyadh (Saudi Arabia); Hadia, N.M.A.; Mohamed, S.H. [Sohag University, Physics Department, Faculty of Science, Sohag (Egypt)


    CdS nanobelts (NBs) were synthesized by vapor transport of CdS powders. The growth was carried out without any catalyst on quartz and Si (100) substrates. The synthesized CdS NBs were examined by transmission electron microscopy (TEM), field emission scanning electron microscopy (FE-SEM) and selected area electron diffraction (SAED), high-resolution transmission electron microscopy (HR-TEM), X-ray powder diffraction (XRD), energy dispersion analysis of X-ray (EDAX), spectrophotometer, and photoluminescence spectroscopy. CdS NBs were indexed as hexagonal wurtzite structure. The growth was via vapor-solid growth mechanism and along the [100] direction. The refractive index was evaluated in the transparent region, as suggested by Swanepoel, using the envelope method. The refractive index values and the extinction coefficient were decreased by increasing the wavelength. The calculated optical band gap was 2.50 eV. The photoluminescence (PL) spectrum of the synthesized CdS NBs exhibited a green emission peak at 510 nm and a broad red emission peak at 696 nm. The conductivity measurements were achieved, in the temperature range from 300 to 600 K, using the conventional two-probe technique. Two different slopes with different activation energies of 0.618 and 0.215 eV were obtained. The CdS NBs are likely being novel functional materials. Thus, they can be used in the manufacture of innovative optoelectronic nanodevices. (orig.)

  3. Synthesis, optical, structural, and electrical properties of single-crystalline CdS nanobelts (United States)

    Alqahtani, Mohammed S.; Hadia, N. M. A.; Mohamed, S. H.


    CdS nanobelts (NBs) were synthesized by vapor transport of CdS powders. The growth was carried out without any catalyst on quartz and Si (100) substrates. The synthesized CdS NBs were examined by transmission electron microscopy (TEM), field emission scanning electron microscopy (FE-SEM) and selected area electron diffraction (SAED), high-resolution transmission electron microscopy (HR-TEM), X-ray powder diffraction (XRD), energy dispersion analysis of X-ray (EDAX), spectrophotometer, and photoluminescence spectroscopy. CdS NBs were indexed as hexagonal wurtzite structure. The growth was via vapor-solid growth mechanism and along the [100] direction. The refractive index was evaluated in the transparent region, as suggested by Swanepoel, using the envelope method. The refractive index values and the extinction coefficient were decreased by increasing the wavelength. The calculated optical band gap was 2.50 eV. The photoluminescence (PL) spectrum of the synthesized CdS NBs exhibited a green emission peak at 510 nm and a broad red emission peak at 696 nm. The conductivity measurements were achieved, in the temperature range from 300 to 600 K, using the conventional two-probe technique. Two different slopes with different activation energies of 0.618 and 0.215 eV were obtained. The CdS NBs are likely being novel functional materials. Thus, they can be used in the manufacture of innovative optoelectronic nanodevices.

  4. X-ray Excited Optical Fluorescence and Diffraction Imaging of Reactivity and Crystallinity in a Zeolite Crystal: Crystallography and Molecular Spectroscopy in One. (United States)

    Ristanović, Zoran; Hofmann, Jan P; Richard, Marie-Ingrid; Jiang, Tao; Chahine, Gilbert A; Schülli, Tobias U; Meirer, Florian; Weckhuysen, Bert M


    Structure-activity relationships in heterogeneous catalysis are challenging to be measured on a single-particle level. For the first time, one X-ray beam is used to determine the crystallographic structure and reactivity of a single zeolite crystal. The method generates μm-resolved X-ray diffraction (μ-XRD) and X-ray excited optical fluorescence (μ-XEOF) maps of the crystallinity and Brønsted reactivity of a zeolite crystal previously reacted with a styrene probe molecule. The local gradients in chemical reactivity (derived from μ-XEOF) were correlated with local crystallinity and framework Al content, determined by μ-XRD. Two distinctly different types of fluorescent species formed selectively, depending on the local zeolite crystallinity. The results illustrate the potential of this approach to resolve the crystallographic structure of a porous material and its reactivity in one experiment via X-ray induced fluorescence of organic molecules formed at the reactive centers.

  5. Effect of sputtering power on crystallinity, intrinsic defects, and optical and electrical properties of Al-doped ZnO transparent conducting thin films for optoelectronic devices (United States)

    Hu, Yu Min; Li, Jung Yu; Chen, Nai Yun; Chen, Chih Yu; Han, Tai Chun; Yu, Chin Chung


    The crystallinity and intrinsic defects of transparent conducting oxide (TCO) films have a high impact on their optical and electrical properties and therefore on the performance of devices incorporating such films, including flat panel displays, electro-optical devices, and solar cells. The optical and electrical properties of TCO films can be modified by tailoring their deposition parameters, which makes proper understanding of these parameters crucial. Magnetron sputtering is the most adaptable method for preparing TCO films used in industrial applications. In this study, we investigate the direct and inter-property correlation effects of sputtering power (PW) on the crystallinity, intrinsic defects, and optical and electrical properties of Al-doped ZnO (AZO) TCO films. All of the films were preferentially c-axis-oriented with a wurtzite structure and had an average transmittance of over 80% in the visible wavelength region. Scanning electron microscopy images revealed significantly increased AZO film grain sizes for PW ≥ 150 W, which may lead to increased conductivity, carrier concentration, and optical band gaps but decreased carrier mobility and in-plane compressive stress in AZO films. Photoluminescence results showed that, with increasing PW, the near band edge emission gradually dominates the defect-related emissions in which zinc interstitial (Zni), oxygen vacancy (VO), and oxygen interstitial (Oi) are possibly responsible for emissions at 3.08, 2.8, and 2.0 eV, respectively. The presence of Zni- and Oi-related emissions at PW ≥ 150 W indicates a slight increase in the presence of Al atoms substituted at Zn sites (AlZn). The presence of Oi at PW ≥ 150 W was also confirmed by X-ray photoelectron spectroscopy results. These results clearly show that the crystallinity and intrinsic-defect type of AZO films, which dominate their optical and electrical properties, may be controlled by PW. This understanding may facilitate the development of TCO


    Directory of Open Access Journals (Sweden)

    Alexander Yu. Sulimov


    Full Text Available The article is devoted to technique «Perfect demand illusion», which allows to strengthen the competitive advantageof retailers. Also in the paper spells out the golden rules of visual merchandising.The definition of the method «Demand illusion», formulated the conditions of its functioning, and is determined by the mainhypothesis of the existence of this method.Furthermore, given the definition of the «Perfect demand illusion», and describes its additional conditions. Also spells out the advantages of the «Perfect demandillusion», before the «Demand illusion».

  7. New Crystalline Materials for Nonlinear Frequency Conversion, Electro-Optic Modulation, and Mid-Infrared Gain Media

    Energy Technology Data Exchange (ETDEWEB)

    Adams, J


    New crystalline materials were investigated for applications in frequency conversion of near-infrared wavelengths and as gain media for tunable mid-infrared solid-state lasers. GaCa{sub 4}O(BO{sub 3}){sub 3} (GdCOB), YCa{sub 4}O(BO{sub 3}){sub 3} (YCOB), LaCa{sub 4}O(BO{sub 3}){sub 3} (LaCOB), and Gd{sub 0.275}Y{sub 0.725}Ca{sub 4}O(BO{sub 3}){sub 3} were characterized for frequency conversion of 1 {micro}m lasers. For type I doubling at 1064 nm, LaCOB, GdCOB, and YCOB were found to have effective coupling coefficients (d{sub eff}) of 0.52 {+-} 0.05, 0.78 {+-} 0.06, and 1.12 {+-} 0.07 pm/V, respectively. LaCOB was measured to have angular and thermal sensitivities of 1224 {+-} 184 (cm-rad){sup -1} and < 0.10 (cm-{sup o}C){sup -1}, respectively. The effective coupling coefficient for type II noncritically phasematched (NCPM) doubling at 1064 nm in Gd{sub 0.275}Y{sub 0.725}Ca{sub 4}O(BO{sub 3}){sub 3} was measured to be 0.37 {+-} 0.04 pm/V. We predict LaCOB to have a type I NCPM fundamental wavelength of 1042 {+-} 1.5 nm. Due to its low angular and thermal sensitivities for doubling near 1047 nm, LaCOB has potential for frequency doubling of high-average power Nd:LiYF{sub 4} and Yb:Sr{sub 5}(P0{sub 4}){sub 3}F lasers. LaCOB, GdCOB, and YCOB were also investigated for optical parametric oscillator applications and we determined that they may have potential in a Ti:sapphire pumped oscillator. The effective linear electro-optic coefficients (r{sub eff}) were measured along dielectric directions in YCOB and a maximum r{sub eff} of 10.8 pm/V was found. For a crystal with a 5:1 aspect ratio, the corresponding half-wave voltage at 1064 nm would be 19.6 kV. Therefore a Pockels cell composed of two YCOB crystals with 5:1 aspect ratios would have a required half-wave voltage <10 kV. Moderate coupling coefficients (3 x KH{sub 2}PO{sub 4}), low thermal sensitivities, ease of growth to large sizes, non-hygroscopicity, and favorable polishing and coating characteristics make La

  8. The perfect maths lesson

    CERN Document Server

    Loynd, Ian


    The Perfect (Ofsted) Maths Lesson recognises that teaching is hard and that, although no teacher is perfect, their lessons can be. Drawing on his experience as a secondary maths teacher and assistant head teacher Ian Loynd provides practical ideas and common-sense methods that can help every teacher to be outstanding, and uncovers the essential strategies that help teachers appear to walk on water.

  9. Diameter Perfect Lee Codes

    CERN Document Server

    Horak, Peter


    Lee codes have been intensively studied for more than 40 years. Interest in these codes has been triggered by the Golomb-Welch conjecture on the existence of perfect error-correcting Lee codes. In this paper we deal with the existence and enumeration of diameter perfect Lee codes. As main results we determine all q for which there exists a linear diameter-4 perfect Lee code of word length n over Z_{q}, and prove that for each n\\geq3 there are unaccountably many diameter-4 perfect Lee codes of word length n over Z. This is in a strict contrast with perfect error-correcting Lee codes of word length n over Z as there is a unique such code for n=3, and its is conjectured that this is always the case when 2n+1 is a prime. Diameter perfect Lee codes will be constructed by an algebraic construction that is based on a group homomorphism. This will allow us to design an efficient algorithm for their decoding.

  10. Quasi-crystalline and disordered photonic structures fabricated using direct laser writing (United States)

    Sinelnik, Artem D.; Pinegin, Konstantin V.; Bulashevich, Grigorii A.; Rybin, Mikhail V.; Limonov, Mikhail F.; Samusev, Kirill B.


    Direct laser writing is a rapid prototyping technology that has been utilized for the fabrication of micro- and nano-scale materials that have a perfect structure in most of the cases. In this study we exploit the direct laser writing to create several classes of non-periodic materials, such as quasi-crystalline lattices and three-dimensional (3D) objects with an orientation disorder in structural elements. Among quasi-crystalline lattices we consider Penrose tiling and Lévy-type photonic glasses. Images of the fabricated structures are obtained with a scanning electron microscope. In experiment we study the optical diffraction from 3D woodpile photonic structures with orientation disorder and analyze diffraction patters observed on a flat screen positioned behind the sample. With increasing of the disorder degree, we find an impressive transformation of the diffraction patterns from perfect Laue picture to a speckle pattern.

  11. Improving the optical and crystalline properties on CdS thin films growth on small and large area by using CBD technique

    Energy Technology Data Exchange (ETDEWEB)

    Albor A, M. L.; Flores M, J. M.; Hernandez V, C.; Contreras P, G.; Mejia G, C.; Rueda M, G. [IPN, Escuela Superior de Fisica y Matematicas, Departamento de Fisica, Unidad Profesional Adolfo Lopez Mateos, Zacatenco, 07738 Ciudad de Mexico (Mexico); Gonzalez T, M. A. [IPN, Escuela Superior de Computo, Departamento de Formacion Basica, Unidad Profesional Adolfo Lopez Mateos, 07738 Ciudad de Mexico (Mexico)


    CdS polycrystalline thin films have been used as window layer in solar cells; the optical and crystalline quality of the CdS-partner plays and important role in the photovoltaic device performance. CdS thin films were deposited by using Chemical Bath Deposition. The SnO{sub 2}:F substrates used were chemically treated with HCl (0.1 M) and others were thermally annealed in different atmospheres (Ar and O{sub 2}). The physical properties of CdS thin films were influenced by the HCl treatment, position, size and the substrates movement inside the reaction beaker. The CdS samples were deposited in areas of 4 cm{sup 2}, 50 cm{sup 2} and 100 cm{sup 2}. Finally CdS thin films with thickness of 35-300 nm with good optical and crystalline quality on a uniform morphology were obtained. Transmittance values were obtained for all samples about 85-90 % with an average of gap energy of 2.5 eV. The structural characteristics of the samples were determined by the X-ray diffraction patterns, by means of a D-500 Siemens X-ray system. (Author)

  12. Surface properties, crystallinity and optical properties of anodised titanium in mixture of β-glycerophosphate (β-GP) and calcium acetate (CA)

    Energy Technology Data Exchange (ETDEWEB)

    Chuan, Lee Te, E-mail:; Abdullah, Hasan Zuhudi, E-mail:; Idris, Maizlinda Izwana, E-mail: [Faculty of Mechanical and Manufacturing Engineering, Universiti Tun Hussein Onn Malaysia, 86400 Parit Raja, Batu Pahat, Johor (Malaysia)


    Anodic oxidation is an electrochemical method for the production of ceramic films on a metallic substrate. It had been widely used to deposit the ceramic coatings on the metals surface. This method has been widely used in surface modification of biomaterials especially for dental implants. In this study, the surface morphology, crystallinity and optical properties of titanium foil was modified by anodising in mixture of β-glycerophosphate disodium salt pentahydrate (β-GP) and calcium acetate monohydrate (CA). The experiments were carried out at high voltage (350 V), different anodising time (5 and 10 minutes) and current density (10-70{sup −2}) at room temperature. Anodised titanium was characterised by using field emission scanning electron microscopy (FESEM), X-ray diffractometer (XRD), and UV-Vis spectrometry. The result of the experiment showed that surface morphology, crystallinity and optical properties depended strongly on the current density and anodising time. More porous surface and large amount of anatase and rutile was produced at higher current density and longer anodising time. Apart from that, it is also revealed that the energy band gap of anodised titanium increases as the increase in current density due to the presence of anatase and rutile TiO{sub 2}.

  13. An optical investigation of nano-crystalline CaF2 particles doped with Nd3+ ions (United States)

    O'Dwyer, C.; James, H. J.; Cheu, B.; Jaque, F.; Han, T. P. J.


    Good crystalline quality CaF2 sub-micron size particles doped with neodymium ions have been produced by the co-precipitation process and their crystallinity have been further improved by thermal treatment at 500 °C. Core and surface related luminescence defect centres have been identified and the effects of Y3+ and Yb3+ codopants are also investigated. Core defects centres are associated with single-ion and multi-ion defect centres as observed in bulk single crystal whereas the origin of the surface or near surface defect, A‧, centre has been ascertained to be derived from a single-ion centre most probably charge compensated by a hydroxyl group.

  14. Everybody's Different Nobody's Perfect (United States)

    ... traten ni qué edad tengan — eso se llama “DISCAPACIDAD.” Some kids have a disability because their muscles ... have one? ¿Conoces a alguien que tenga una discapacidad? ¿Tienes una tú? Everybody’s different, nobody’s perfect. So ...

  15. California's Perfect Storm (United States)

    Bacon, David


    The United States today faces an economic crisis worse than any since the Great Depression of the 1930s. Nowhere is it sharper than in the nation's schools. Last year, California saw a perfect storm of protest in virtually every part of its education system. K-12 teachers built coalitions with parents and students to fight for their jobs and their…

  16. In a Perfect World (United States)

    Murray, Jeannette


    In a perfect world, all children should live at home with their family, play with the kids in their neighborhood, walk or ride the school bus to a community-based school--after affectionately kissing or hugging their parents goodbye. They should receive adequate classroom services and return home at 3 p.m. or thereabouts. They may even…

  17. Optical properties of hydrothermally synthesized TGA-capped CdS nanoparticles: controlling crystalline size and phase (United States)

    Tavakoli Banizi, Zoha; Seifi, Majid


    TGA-capped CdS nanoparticles were obtained in the presence of thioglycolic acid (TGA) as capping agent via a facile hydrothermal method at relatively low temperature and over a short duration. As-synthesized TGA-capped CdS nanoparticles were characterized by x-ray diffraction, scanning electron microscopy, transmission electron microscopy, Fourier transform infrared spectra, photoluminescence spectroscopy, Ultraviolet-visible spectroscopy and energy-dispersive x-ray spectroscopy. The products had spherical shapes, although their crystalline size and phase was dependent on temperature and time of the reaction. Photoluminescence spectra showed that the fluorescence intensity decreased when increasing the reaction time and temperature.

  18. Single crystalline wurtzite ZnO/zinc blende ZnS coaxial heterojunctions and hollow zinc blende ZnS nanotubes: synthesis, structural characterization and optical properties. (United States)

    Huang, Xing; Willinger, Marc-Georg; Fan, Hua; Xie, Zai-lai; Wang, Lei; Klein-Hoffmann, Achim; Girgsdies, Frank; Lee, Chun-Sing; Meng, Xiang-Min


    Synthesis of ZnO/ZnS heterostructures under thermodynamic conditions generally results in the wurtzite (WZ) structure of the ZnS component because its WZ phase is thermodynamically more stable than its zinc blende (ZB) phase. In this report, we demonstrate for the first time the preparation of ZnO/ZnS coaxial nanocables composed of single crystalline ZB structured ZnS epitaxially grown on WZ ZnO via a two-step thermal evaporation method. The deposition temperature is believed to play a crucial role in determining the crystalline phase of ZnS. Through a systematic structural analysis, the ZnO core and the ZnS shell are found to have an orientation relationship of (0002)ZnO(WZ)//(002)ZnS(ZB) and [01-10]ZnO(WZ)//[2-20]ZnS(ZB). Observation of the coaxial nanocables in cross-section reveals the formation of voids between the ZnO core and the ZnS shell during the coating process, which is probably associated with the nanoscale Kirkendall effect known to result in porosity. Furthermore, by immersing the ZnO/ZnS nanocable heterojunctions in an acetic acid solution to etch away the inner ZnO cores, single crystalline ZnS nanotubes orientated along the [001] direction of the ZB structure were also achieved for the first time. Finally, optical properties of the hollow ZnS tubes were investigated and discussed in detail. We believe that our study could provide some insights into the controlled fabrication of one dimensional (1D) semiconductors with desired morphology, structure and composition at the nanoscale, and the synthesized WZ ZnO/ZB ZnS nanocables as well as ZB ZnS nanotubes could be ideal candidates for the study of optoelectronics based on II-VI semiconductors.

  19. Broadband polarization-independent perfect absorber using a phase-change metamaterial at visible frequencies. (United States)

    Cao, Tun; Wei, Chen-wei; Simpson, Robert E; Zhang, Lei; Cryan, Martin J


    We report a broadband polarization-independent perfect absorber with wide-angle near unity absorbance in the visible regime. Our structure is composed of an array of thin Au squares separated from a continuous Au film by a phase change material (Ge2Sb2Te5) layer. It shows that the near perfect absorbance is flat and broad over a wide-angle incidence up to 80° for either transverse electric or magnetic polarization due to a high imaginary part of the dielectric permittivity of Ge2Sb2Te5. The electric field, magnetic field and current distributions in the absorber are investigated to explain the physical origin of the absorbance. Moreover, we carried out numerical simulations to investigate the temporal variation of temperature in the Ge2Sb2Te5 layer and to show that the temperature of amorphous Ge2Sb2Te5 can be raised from room temperature to > 433 K (amorphous-to-crystalline phase transition temperature) in just 0.37 ns with a low light intensity of 95 nW/μm(2), owing to the enhanced broadband light absorbance through strong plasmonic resonances in the absorber. The proposed phase-change metamaterial provides a simple way to realize a broadband perfect absorber in the visible and near-infrared (NIR) regions and is important for a number of applications including thermally controlled photonic devices, solar energy conversion and optical data storage.

  20. Supramolecular Structure, Physical Properties, and Langmuir-Blodgett Film Formation of an Optically Active Liquid-Crystalline Phthalocyanine

    NARCIS (Netherlands)

    Nostrum, Cornelus F. van; Bosman, Anton W.; Gelinck, Gerwin H.; Schouten, Pieter G.; Warman, John M.; Devillers, Marinus A.C.; Meijerink, Andries; Picken, Stephen J.; Sohling, Ulrich; Schouten, Arend-Jan; Nolte, Roeland J.M.

    The structure and physical properties of optically active, metal-free 2,3,9,10,16,17,23,24-octa(S-3,7-dimethyloctoxy)phthalocyanine ((S)-Pc(8,2)) are reported and compared with those of the phthalocyanine with (R,S) side chains (mixture of 43 stereoisomers). Unlike the latter compound, (S)-Pc(8,2)

  1. The effects of annealing temperature on the structural properties and optical constants of a novel DPEA-MR-Zn organic crystalline semiconductor nanostructure thin films (United States)

    Al-Hossainy, A. Farouk; Ibrahim, A.


    The dependence of structural properties and optical constants on annealing temperature of a 2-((1,2-bis (diphenylphosphino)ethyl)amino) acetic acid-methyl red-monochloro zinc dihydride (DPEA-MR-Zn) as a novel organic semiconductor thin film was studied. The DPEA-MR-Zn thin film was deposited on silicon substrates using the spin coating technique. The as-deposited film was annealed in air for 1 h at 150, 175 and 205 °C. The XRD study of DPEA-MR-Zn in its powder form showed that this complex is mere a triclinic crystal structure with a space group P-1. In addition, the XRD patterns showed that the as-deposited thin films were crystallized according to the preferential orientation [(214), (121), (0 2 bar 6), (3 bar 02), (122) and (11 4 bar)]. Moreover, two additional peaks (2 bar 2 bar 1 and 2 4 bar 7) were shown at 2θ nearly 30°, and 69°, where, the more annealing temperature, the more the intensity of the two peaks. In addition, it was noticed that the grain size had a remarkable change with an annealing temperature of the DPEA-MR-Zn thin films. The optical measurements showed that the thin film has a relatively high absorption region where the photon energy ranges from 2 to 3.25 eV. Both of Wemple-DiDomenico and single Sellmeier oscillator models were applied on the DPEA-MR-Zn to analyze the dispersion of the refractive index and the optical and dielectric constants. The outcome of the study of the structural and optical properties reported here of the DPEA-MR-Zn organic semiconductor crystalline nanostructure thin film had shown various applications in many advanced technologies such as photovoltaic solar cells.

  2. Building the perfect PC

    CERN Document Server

    Thompson, Robert Bruce


    This popular Build-It-Yourself (BIY) PC book covers everything you want to know about building your own system: Planning and picking out the right components, step-by-step instructions for assembling your perfect PC, and an insightful discussion of why you'd want to do it in the first place. Most big brand computers from HP, Dell and others use lower-quality components so they can meet their aggressive pricing targets. But component manufacturers also make high-quality parts that you can either purchase directly, or obtain through distributors and resellers. Consumers and corporations

  3. Liquid Crystalline Polymers (United States)


    Kunststoffe (German Plastics) 78(5):411-419. Calundann, G., M. Jaffe, R. S. Jones, and H. Yoon. 1988. Fibre Reinforcements for Composite Materials, A... Kunststoffe - German Plastics 77(10):1032-1035. 47 Williams, D. J. 1987. P. 405 in Nonlinear Optical Properties of Organic Molecules and Crystals, Vol. 1...crystalline acrylate. Makromol. Chem.-Macromol. Chem. Phys. 189(l):185-194. Browstow, W. 1988. Kunststoffe (German Plastics) 78:411. Clark, N. A. and

  4. Urea-based hydrothermal growth, optical and photocatalytic properties of single-crystalline In(OH)3 nanocubes. (United States)

    Yan, Tingjiang; Wang, Xuxu; Long, Jinlin; Liu, Ping; Fu, Xianliang; Zhang, Guoying; Fu, Xianzhi


    Nearly monodisperse single-crystalline In(OH)(3) nanocubes were successfully synthesized using In(NO(3))(3) x 4.5 H(2)O as indium source in the presence of urea and cetyltrimethyl ammonium bromide (CTAB) by a two-step hydrothermal process: the stock solution was heated at 70 degrees C for 24 h and then at 120 degrees C for 12 h. The structure and morphology of the resultant In(OH)(3) samples were determined by X-ray powder diffraction (XRD), scanning electron microscopy (SEM), and transmission electron microscopy (TEM). The results revealed that most of as-synthesized In(OH)(3) nanocubes were uniform in size, with the average edge length of approximately 700 nm. The influences of the reaction temperature, the reaction time, the mineralizer, and the surfactant on the morphology of the obtained products were discussed in detail. Room-temperature photoluminescence (PL) spectrum of the In(OH)(3) nanocubes showed a peculiar strong emission peak centered at 480 nm. Furthermore, the photocatalytic properties of the In(OH)(3) nanocubes were tested. It was found that In(OH)(3) exhibited not only higher activity for benzene removal, but also better H(2) evolution from water than the commercial Degussa P25 TiO(2).

  5. In quest of perfection in electron optics: A biographical sketch of Harald Rose on the occasion of his 80th birthday

    Energy Technology Data Exchange (ETDEWEB)

    Urban, Knut W., E-mail:


    This brief biographical sketch of Harald Rose on occasion of his 80th birthday describes some of the key events in an extraordinarily successful scientific life. Many of the theoretical concepts developed by him over the last 50 years have been fundamental for electron optics. Indeed, some of them have changed the whole complexion of this field and are fundamental to modern electron microscopy, both in TEM and in STEM mode. With this dedicated issue of Ultramicroscopy, the members of the electron microscopy community would like to thank Harald Rose for dedicating his professional life to their field and thereby enriching the life of those active in it. - Highlights: • A short biography of the professional life of Harald Rose is given. • We give a guide to some of Harald Rose's most important papers. • The impact of Harald Rose's work in the field of electron optics is described. • An introduction to a Special Issue of Ultramicroscopy dedicated to Harald Rose is given.

  6. Variation in the Optical Properties of the SiC-SiO2 Composite Antireflection Layer in Crystalline Silicon Solar Cells by Annealing (United States)

    Jannat, Azmira; Li, Zhen Yu; Akhter, M. Shaheer; Yang, O.-Bong


    This study showed the effects of annealing on a sol-gel-derived SiC-SiO2 composite antireflection (AR) layer and investigated the optical and photovoltaic properties of crystalline silicon (Si) solar cells. The SiC-SiO2 composite AR coating showed a considerable decrease in reflectance from 7.18% to 3.23% at varying annealing temperatures of 450-800°C. The refractive indices of the SiC-SiO2 composite AR layer were tuned from 2.06 to 2.45 with the increase in annealing temperature. The analysis of the current density-voltage characteristics indicated that the energy conversion efficiencies of the fabricated Si solar cells gradually increased from 16.99% to 17.73% with increasing annealing temperatures of 450-800°C. The annealing of the SiC-SiO2 composite AR layer in Si solar cells was crucial to improving the optical, morphological, and photovoltaic properties.

  7. Potential dynamic range in a scheme of the acousto-optical spectrometer providing light beam apodization for a large-aperture crystalline cell with linear acoustic losses (United States)

    Shcherbakov, Alexandre S.; Luna Castellanos, Abraham; Tepichin Rodriguez, Eduardo; Balderas Mata, Sandra E.


    We develop our previous considerations for one of the most important problems related to optimizing the performance data of a new acousto-optical spectrometer for the analysis of radio-astronomical signals. The main attention is paid to estimating the side lobes of light distributions inherent in an individual resolvable spot in the output Fourier plane, governing the dynamic range of that spectrometer. At first, we analyze the Akhieser mechanism responsible for linear attenuation of both longitudinal and shear elastic waves in isotropic solid states. Similar analysis can be directly applied to crystalline materials as well in all the cases of passing elastic wave along the acoustic axis in crystals. Then, we estimate the influence of the acoustic attenuation along a large-aperture acousto-optical cells operating in a one- and two-phonon light scattering regimes. In so doing, the optimal operating points are discussed for both these regimes. Finally, the combined effect of the acoustic attenuation and the incident light beam apodization is studied from the points of view of optimizing the levels of side lobes and minima in light distribution of an individual resolvable spot in focal plane of the integrating lens and, consequently, estimating potential limitations of the dynamic range.

  8. In quest of perfection in electron optics: a biographical sketch of Harald Rose on the occasion of his 80th birthday. (United States)

    Urban, Knut W


    This brief biographical sketch of Harald Rose on occasion of his 80th birthday describes some of the key events in an extraordinarily successful scientific life. Many of the theoretical concepts developed by him over the last 50 years have been fundamental for electron optics. Indeed, some of them have changed the whole complexion of this field and are fundamental to modern electron microscopy, both in TEM and in STEM mode. With this dedicated issue of Ultramicroscopy, the members of the electron microscopy community would like to thank Harald Rose for dedicating his professional life to their field and thereby enriching the life of those active in it. Copyright © 2015 Elsevier B.V. All rights reserved.

  9. Perfect pitch reconsidered. (United States)

    Moulton, Calum


    Perfect pitch, or absolute pitch (AP), is defined as the ability to identify or produce the pitch of a sound without need for a reference pitch, and is generally regarded as a valuable asset to the musician. However, there has been no recent review of the literature examining its aetiology and its utility taking into account emerging scientific advances in AP research, notably in functional imaging. This review analyses the key empirical research on AP, focusing on genetic and neuroimaging studies. The review concludes that: AP probably has a genetic predisposition, although this is based on limited evidence; early musical training is almost certainly essential for AP acquisition; and, although there is evidence that it may be relevant to speech processing, AP can interfere with relative pitch, an ability on which humans rely to communicate effectively. The review calls into question the value of AP to musicians and non-musicians alike. © 2014 Royal College of Physicians.

  10. Perfect and imperfect states

    Directory of Open Access Journals (Sweden)

    Nikitović Aleksandar


    Full Text Available Early Greek ethics embodied in Cretan and Spartan mores, served as a model for Plato`s political theory. Plato theorized the contents of early Greek ethics, aspiring to justify and revitalize the fundamental principles of a traditional view of the world. However, according to Plato`s new insight, deed is further from the truth than a thought i.e. theory. The dorian model had to renounce its position to the perfect prototype of a righteous state, which is a result of the inner logic of philosophical theorizing in early Greek ethics. Prototype and model of philosophical reflection, in comparison to philosophical theory, becomes minor and deficient. Philosophical theorizing of early Greek ethics philosophically formatted Greek heritage, initiating substantial changes to the content of traditional ethics. Replacement of the myth with ontology, as a new foundation of politics, transformed early Greek ethics in various relevant ways. [Projekat Ministarstva nauke Republike Srbije, br. 179049

  11. Perfect simulation of Hawkes processes

    DEFF Research Database (Denmark)

    Møller, Jesper; Rasmussen, Jakob Gulddahl

    their branching and conditional independence structure, useful approximations of the distribution function for the length of a cluster are derived. This is used to construct upper and lower processes for the perfect simulation algorithm. Examples of applications and empirical results are presented.......This article concerns a perfect simulation algorithm for unmarked and marked Hawkes processes. The usual stratihtforward simulation algorithm suffers from edge effects, whereas our perfect simulation algorithm does not. By viewing Hawkes processes as Poisson cluster processes and using...

  12. Effect of cobalt doping on crystallinity, stability, magnetic and optical properties of magnetic iron oxide nano-particles (United States)

    Anjum, Safia; Tufail, Rabia; Rashid, Khalid; Zia, Rehana; Riaz, S.


    This paper is dedicated to investigate the effect of Co2+ ions in magnetite Fe3O4 nano-particles with stoichiometric formula CoxFe3-xO4 where (x = 0, 0.05, 0.1 and 0.15) prepared by co-precipitation method. The structural, thermal, morphological, magnetic and optical properties of magnetite and Co2+ doped magnetite nanoparticles have been carried out using X-ray Diffractometer, Fourier Transform Infrared Spectroscopy, Themogravimetric Analysis, Scanning Electron Microscopy, Vibrating Sample Magnetometer (VSM) and UV-Vis Spectrometer (UV-Vis) respectively. Structural analysis verified the formation of single phase inverse spinel cubic structure with decrease in lattice parameters due to increase in cobalt content. FTIR analysis confirms the single phase of CoxFe3-xO4 nanoparticles with the major band at 887 cm-1, which might be due to the stretching vibrations of metal-oxide bond. The DSC results corroborate the finding of an increase in the maghemite to hematite phase transition temperature with increase in Co2+ content. The decrease in enthalpy with increase in Co2+ concentration attributed to the fact that the degree of conversion from maghemite to hematite decrease which shows that the stability increases with increasing Co2+ content in B-site of Fe3O4 structure. SEM analysis demonstrated the formation of spherical shaped nanoparticles with least agglomeration. The magnetic measurements enlighten that the coercivity and anisotropy of CoxFe3-xO4 nanoparticles are significantly increased. From UV-Vis analysis it is revealed that band gap energy increases with decreasing particle size. This result has a great interest for magnetic fluid hyperthermia application (MPH).

  13. Effect of cobalt doping on crystallinity, stability, magnetic and optical properties of magnetic iron oxide nano-particles

    Energy Technology Data Exchange (ETDEWEB)

    Anjum, Safia, E-mail: [Department of Physics, Lahore College for Women University, Lahore (Pakistan); Tufail, Rabia [Department of Physics, Lahore College for Women University, Lahore (Pakistan); Rashid, Khalid [PCSIR Laboratories Lahore (Pakistan); Zia, Rehana [Department of Physics, Lahore College for Women University, Lahore (Pakistan); Riaz, S. [Centre for Solid State Physics, University of the Punjab, Lahore (Pakistan)


    Highlights: • The stability of Co{sub x}Fe{sub (2-x)}O{sub 3} nanoparticles enhances. • Energy losses increases. • Anisotropy of NP is high. - Abstract: This paper is dedicated to investigate the effect of Co{sup 2+} ions in magnetite Fe{sub 3}O{sub 4} nano-particles with stoichiometric formula Co{sub x}Fe{sub 3-x}O{sub 4} where (x = 0, 0.05, 0.1 and 0.15) prepared by co-precipitation method. The structural, thermal, morphological, magnetic and optical properties of magnetite and Co{sup 2+} doped magnetite nanoparticles have been carried out using X-ray Diffractometer, Fourier Transform Infrared Spectroscopy, Themogravimetric Analysis, Scanning Electron Microscopy, Vibrating Sample Magnetometer (VSM) and UV–Vis Spectrometer (UV–Vis) respectively. Structural analysis verified the formation of single phase inverse spinel cubic structure with decrease in lattice parameters due to increase in cobalt content. FTIR analysis confirms the single phase of Co{sub x}Fe{sub 3-x}O{sub 4} nanoparticles with the major band at 887 cm{sup −1}, which might be due to the stretching vibrations of metal-oxide bond. The DSC results corroborate the finding of an increase in the maghemite to hematite phase transition temperature with increase in Co{sup 2+} content. The decrease in enthalpy with increase in Co{sup 2+} concentration attributed to the fact that the degree of conversion from maghemite to hematite decrease which shows that the stability increases with increasing Co{sup 2+} content in B-site of Fe{sub 3}O{sub 4} structure. SEM analysis demonstrated the formation of spherical shaped nanoparticles with least agglomeration. The magnetic measurements enlighten that the coercivity and anisotropy of Co{sub x}Fe{sub 3-x}O{sub 4} nanoparticles are significantly increased. From UV–Vis analysis it is revealed that band gap energy increases with decreasing particle size. This result has a great interest for magnetic fluid hyperthermia application (MPH).

  14. An ultrathin but nearly perfect direct current electric cloak (United States)

    Xiang Jiang, Wei; Yang Luo, Chen; Lei Mei, Zhong; Jun Cui, Tie


    We propose and experimentally demonstrate an ultrathin but nearly perfect dc electric invisibility cloak. In the dc limit, transformation optics reduces to transformation electrostatics. Based on a special coordinate transformation, we derive a nearly perfect dc electric cloak which is composed of homogeneous and anisotropic conducting material. Due to the homogeneity feature, the dc cloak is realized using an ultrathin dc metamaterial with only one-unit-cell thickness, which is the ultra limit for practical artificial materials. Although ultrathin, our experimental results show that the dc cloak has excellent performance with nearly perfect cloaking behaviour.

  15. Uveitic crystalline maculopathy. (United States)

    Or, Chris; Kirker, Andrew W; Forooghian, Farzin


    The purpose of this case report is to present a novel cause of crystalline maculopathy. A 52-year-old Japanese female presented with a 4-month history of decreased vision in the left eye. Best corrected visual acuity in the left eye was 20/40. Dilated fundus examination of the right eye was unremarkable, but that of the left eye demonstrated foveal yellow-green intraretinal crystals and mild vitritis. Optical coherence tomography of the left eye revealed small intraretinal fluid cysts and intraretinal crystals. Ultra-widefield fluorescein angiography was normal in the right eye, but that of the left eye demonstrated features of intermediate uveitis. There was no history or findings to suggest any cause for the crystals other than the uveitis. We propose that this may represent a novel category of crystalline retinopathy, termed uveitic crystalline maculopathy. We hypothesize that breakdown of the blood-retinal barrier as seen in uveitis may contribute to the deposition of crystals in the macula, although the precise composition of the crystals is unknown.

  16. Perfect simulation of Hawkes processes

    DEFF Research Database (Denmark)

    Møller, Jesper; Rasmussen, Jakob Gulddahl


    their branching and conditional independence structures, useful approximations of the distribution function for the length of a cluster are derived. This is used to construct upper and lower processes for the perfect simulation algorithm. A tail-lightness condition turns out to be of importance......Our objective is to construct a perfect simulation algorithm for unmarked and marked Hawkes processes. The usual straightforward simulation algorithm suffers from edge effects, whereas our perfect simulation algorithm does not. By viewing Hawkes processes as Poisson cluster processes and using...

  17. Myth of the Perfect Family (United States)

    ... Spread the Word Shop AAP Find a Pediatrician Family Life Medical Home Family Dynamics Adoption & Foster Care ... Español Text Size Email Print Share The "Perfect" Family Page Content Article Body Is there such a ...

  18. Spherically symmetric perfect fluid solutions

    Energy Technology Data Exchange (ETDEWEB)

    Hajj-Boutros, J.


    Many exact solutions for the spherically symmetric perfect fluid distribution of matter with shear, acceleration, and expansion are obtained. One of them is expressed in terms of Painleve's third transcendent.

  19. Metamaterial perfect absorber based hot electron photodetection. (United States)

    Li, Wei; Valentine, Jason


    While the nonradiative decay of surface plasmons was once thought to be only a parasitic process that limits the performance of plasmonic devices, it has recently been shown that it can be harnessed in the form of hot electrons for use in photocatalysis, photovoltaics, and photodetectors. Unfortunately, the quantum efficiency of hot electron devices remains low due to poor electron injection and in some cases low optical absorption. Here, we demonstrate how metamaterial perfect absorbers can be used to achieve near-unity optical absorption using ultrathin plasmonic nanostructures with thicknesses of 15 nm, smaller than the hot electron diffusion length. By integrating the metamaterial with a silicon substrate, we experimentally demonstrate a broadband and omnidirectional hot electron photodetector with a photoresponsivity that is among the highest yet reported. We also show how the spectral bandwidth and polarization-sensitivity can be manipulated through engineering the geometry of the metamaterial unit cell. These perfect absorber photodetectors could open a pathway for enhancing hot electron based photovoltaic, sensing, and photocatalysis systems.

  20. Perfect secure domination in graphs

    Directory of Open Access Journals (Sweden)

    S.V. Divya Rashmi


    Full Text Available Let $G=(V,E$ be a graph. A subset $S$ of $V$ is a dominating set of $G$ if every vertex in $Vsetminus  S$ is adjacent to a vertex in $S.$ A dominating set $S$ is called a secure dominating set if for each $vin Vsetminus S$ there exists $uin S$ such that $v$ is adjacent to $u$ and $S_1=(Ssetminus{u}cup {v}$ is a dominating set. If further the vertex $uin S$ is unique, then $S$ is called a perfect secure dominating set. The minimum cardinality of a perfect secure dominating set of $G$ is called the perfect  secure domination number of $G$ and is denoted by $gamma_{ps}(G.$ In this paper we initiate a study of this parameter and present several basic results.

  1. Correlation between SnO{sub 2} nanocrystals and optical properties of Eu{sup 3+} ions in SiO{sub 2} matrix: Relation of crystallinity, composition, and photoluminescence

    Energy Technology Data Exchange (ETDEWEB)

    Thanh, Bui Quang [International Training Institute for Materials Science (ITIMS), Hanoi University of Science and Technology (HUST), No.1 Dai Co Viet, Hanoi (Viet Nam); Ha, Ngo Ngoc, E-mail: [International Training Institute for Materials Science (ITIMS), Hanoi University of Science and Technology (HUST), No.1 Dai Co Viet, Hanoi (Viet Nam); Khiem, Tran Ngoc, E-mail: [International Training Institute for Materials Science (ITIMS), Hanoi University of Science and Technology (HUST), No.1 Dai Co Viet, Hanoi (Viet Nam); Chien, Nguyen Duc [International Training Institute for Materials Science (ITIMS), Hanoi University of Science and Technology (HUST), No.1 Dai Co Viet, Hanoi (Viet Nam); School of Engineering Physics (SEP), Hanoi University of Science and Technology (HUST), No.1 Dai Co Viet, Hanoi (Viet Nam)


    We report characteristics and optical properties of Eu{sup 3+}-doped SnO{sub 2} nanocrystals dispersed in SiO{sub 2} matrix. Samples are prepared by the sol–gel method. Crystallinity of SnO{sub 2} nanocrystals is examined by X-ray diffraction experiments. At annealing temperatures from 900 to 1200 °C, we observe the formation of single tetragonal rutile structure of SnO{sub 2} nanocrystals. Average sizes of SnO{sub 2} nanocrystals within 3–7 nm are estimated by Debye–Scherrer equation. Intense photoluminescent spectra of Eu{sup 3+} ions consist of a series of resolved emission bands within 570–645 nm, which are varied with different sample-preparation conditions. We show the efficient excitation process of Eu{sup 3+} ions through SnO{sub 2} nanocrystals in the materials. Microscopic structure of SnO{sub 2} nanoparticles and optical properties of Eu{sup 3+} ions are also presented and discussed. - Highlights: • Thin layers of Eu{sup 3+} doped SnO{sub 2} nanocrystals dispersed in SiO{sub 2} were prepared by sol-gel method and spin-coating process. • Formation of single-phase tetragonal rutile structure of SnO{sub 2} nanocrystals and highly efficient optical excitation of the Eu{sup 3+} dopants were exhibited. • Relations of the crystallinity and composition of SnO{sub 2} and optical properties of Eu{sup 3+} dopants were comprehensively investigated and presented. • Allocations of major optically-active Eu{sup 3+} ions in the materials were deduced from their emission bands.

  2. Crystalline and Crystalline International Disposal Activities

    Energy Technology Data Exchange (ETDEWEB)

    Viswanathan, Hari S. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Chu, Shaoping [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Reimus, Paul William [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Makedonska, Nataliia [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Hyman, Jeffrey De' Haven [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Karra, Satish [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Dittrich, Timothy M. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)


    This report presents the results of work conducted between September 2014 and July 2015 at Los Alamos National Laboratory in the crystalline disposal and crystalline international disposal work packages of the Used Fuel Disposition Campaign (UFDC) for DOE-NE’s Fuel Cycle Research and Development program.

  3. Infrared perfect absorber based on nanowire metamaterial cavities. (United States)

    He, Yingran; Deng, Huixu; Jiao, Xiangyang; He, Sailing; Gao, Jie; Yang, Xiaodong


    An infrared perfect absorber based on a gold nanowire metamaterial cavities array on a gold ground plane is designed. The metamaterial made of gold nanowires embedded in an alumina host exhibits an effective permittivity with strong anisotropy, which supports cavity resonant modes of both electric dipole and magnetic dipole. The impedance of the cavity modes matches the incident plane wave in free space, leading to nearly perfect light absorption. The incident optical energy is efficiently converted into heat so that the local temperature of the absorber will increase. Results show that the designed absorber is polarization-insensitive and nearly omnidirectional for the incident angle.

  4. Perfect photon absorption in nonlinear regime of cavity quantum electrodynamics

    CERN Document Server

    Agarwal, G S; Wang, Liyong; Zhu, Yifu


    It has been shown that perfect photon absorption can occur in the linear excitation regime of cavity quantum electrodynamics (CQED), in which photons from two identical light fields coupled into two ends of the cavity are completely absorbed and result in excitation of the polariton state of the CQED system. The output light from the cavity is totally suppressed by the destructive interference and the polariton state can only decay incoherently back to the ground state. Here we analyze the perfect photon absorption and onset of optical bistability in the nonlinear regime of the CQED and show that the perfect photon absorption persists in the nonlinear regime of the CQED below the threshold of the optical bistability. Therefore the perfect photon absorption is a phenomenon that can be observed in both linear and nonlinear regimes of CQED. Furthermore, our study reveals for the first time that the optical bistability is influenced by the input-light interference and can be manipulated by varying the relative ph...

  5. Perfect anti-reflection from first principles. (United States)

    Kim, Kyoung-Ho; Park, Q-Han


    Reducing unwanted reflections through impedance matching, called anti-reflection, has long been an important challenge in optics and electrical engineering. Beyond trial and error optimization, however, a systematic way to realize anti-reflection is still absent. Here, we report the discovery of an analytic solution to this long standing problem. For electromagnetic waves, we find the graded permittivity and permeability that completely remove any given impedance mismatch. We demonstrate that perfect broadband anti-reflection is possible when a dispersive, graded refractive index medium is used for the impedance-matching layer. We also present a design rule for the ultra-thin anti-reflection coating which we confirm experimentally by showing the anti-reflection behavior of an exemplary λ/25-thick coating made of metamaterials. This work opens a new path to anti-reflection applications in optoelectronic device, transmission line and stealth technologies.

  6. Perfect Liberty or Natural Liberty?

    DEFF Research Database (Denmark)

    Jacobsen, Stefan Gaarsmand


    The article investigates the concept of natural order as it is used by François Quesnay and Adam Smith in their respective economic writings. While Smith used the concept only after having visited Quesnay and the Physiocrats in France in the 1760s, in The Wealth of Nations he sought to negotiate...... the meaning of what was “natural” about economic life. The Physiocrats believed it possible to identify a model or a perfect regime of natural order – an order that they in fact thought to exist and function in China due to a rigorous system of economic laws. Smith sided with contemporary critics...... of this metaphysical vision of economic perfection (and of Chinese governance), but he suggested that the economic mechanisms of the physiocratic theories would remain intact even with a minimum of control by state laws. However, Smith’s balancing act on these questions remained disputed even by his Scottish...

  7. Effective perfect fluids in cosmology

    Energy Technology Data Exchange (ETDEWEB)

    Ballesteros, Guillermo [Museo Storico della Fisica e Centro Studi e Ricerche Enrico Fermi, Piazza del Viminale 1, I-00184 Rome (Italy); Bellazzini, Brando, E-mail:, E-mail: [Dipartimento di Fisica, Università di Padova and INFN, Sezione di Padova, Via Marzolo 8, I-35131 Padova (Italy)


    We describe the cosmological dynamics of perfect fluids within the framework of effective field theories. The effective action is a derivative expansion whose terms are selected by the symmetry requirements on the relevant long-distance degrees of freedom, which are identified with comoving coordinates. The perfect fluid is defined by requiring invariance of the action under internal volume-preserving diffeomorphisms and general covariance. At lowest order in derivatives, the dynamics is encoded in a single function of the entropy density that characterizes the properties of the fluid, such as the equation of state and the speed of sound. This framework allows a neat simultaneous description of fluid and metric perturbations. Longitudinal fluid perturbations are closely related to the adiabatic modes, while the transverse modes mix with vector metric perturbations as a consequence of vorticity conservation. This formalism features a large flexibility which can be of practical use for higher order perturbation theory and cosmological parameter estimation.

  8. Annealing temperature effect on the optical properties of thermally oxidized nano-crystalline ZrO2 thin films grown on glass substrates (United States)

    Larijani, M. M.; Hasani, E.; Safa, S.


    Optical properties of zirconium oxide films on glass substrates deposited by thermal oxidation method have been studied at different temperatures. Optical characteristics of films such as refractive index, extinction coefficient, average thickness and optical dielectric constants were calculated using Swanepoel's method. X-ray diffraction analysis (XRD) and atomic force microscopy were performed to investigate the film structure and morphology. It was found out that the optical properties of zirconium oxide films are affected by oxidation temperature which are due to changes of film microstructure and surface roughness.

  9. The Beauty in Perfect Imperfection. (United States)

    Buetow, Stephen; Wallis, Katharine


    Modern technologies sanction a new plasticity of physical form. However, the increasing global popularity of aesthetic procedures (re)produces normative beauty ideals in terms of perfection and symmetry. These conditions limit the semblance of freedom by people to control their own bodies. Cultural emancipation may come from principles in Eastern philosophy. These reveal beauty in authenticity, including imperfection. Wabi-sabi acclaims beauty in common irregularity, while kintsugi celebrates beauty in visible signs of repair, like scars. These principles resist pressure to medicalize dissatisfaction with healthy bodies and invite multi-sited interventions to educate taste and aesthetic choices.

  10. Dispersible crystalline nanobundles of YPO{sub 4} and Ln (Eu, Tb)-doped YPO{sub 4}: rapid synthesis, optical properties and bio-probe applications

    Energy Technology Data Exchange (ETDEWEB)

    Majeed, Shafquat, E-mail: [Indian Institute of Science, Materials Research Centre (India); Bashir, Mohsin [Indian Institute of Science, Department of Molecular Reproduction, Development and Genetics (MRDG) (India); Shivashankar, S. A. [Indian Institute of Science, Materials Research Centre (India)


    Undoped and Ln{sup 3+} (Eu and Tb)-doped crystalline nanobundles of YPO{sub 4} were prepared by a facile microwave-assisted route with water as a solvent and without using any surfactant. TEM investigations reveal that the as-prepared powder consists of lenticular-shaped nanobundles (∼100 nm in diameter) made of very small nanorods with diameter less than 10 nm and length varying from 20 to 50 nm. Each nanorod in turn is single crystalline, as revealed by HRTEM imaging. The as-prepared nanobundles are easily dispersible in various solvents, especially water, without any surface functionalization, which is critical for various bio-probe applications like cell and tissue imaging. The Eu- and Tb-doped YPO{sub 4} nanobundles show good photoluminescence properties and were further evaluated for their use as fluorescent biolabels. Our results show that HeLa cells labelled with Eu- and Tb-doped YPO{sub 4} nanobundles show bright red (Eu) and green (Tb) intracellular luminescence under a confocal microscope. Concentration- and time-dependent MTT cell viability assays show that the nanobundles show low toxicity towards cells which makes them promising in bioimaging field.

  11. Preparation of high magneto-optical performance and crystalline quality Ce{sub 1}Gd{sub 2}Fe{sub 5−x}Ga{sub x}O{sub 12} films on CLNGG substrate crystal

    Energy Technology Data Exchange (ETDEWEB)

    Fu, Qiu-ping; Zheng, Ze-yuan; Lin, Nan-xi; Liu, Xiao-feng; Hong, Can-huang; Hu, Xiao-lin, E-mail:; Zhuang, Nai-feng; Chen, Jian-zhong, E-mail:


    Thin films of Ce{sub 1}Gd{sub 2}Fe{sub 5−x}Ga{sub x}O{sub 12} (Ce,Ga:GIG) were prepared on Gd{sub 3}Ga{sub 5}O{sub 12} (GGG) and Ca{sub 2.90}Li{sub 0.30}Nb{sub 1.93}Ga{sub 2.76}O{sub 12} (CLNGG) substrates by using radio frequency magnetron sputtering technique. The phase, grain orientation, surface morphology, transmittance, magnetism and magnetic circular dichroism (MCD) properties of films were analyzed. And the effects of lattice mismatch and non-magnetic Ga{sup 3+}-doping were discussed. The results show that the films with higher crystallized quality and lower stress can be obtained by growing on CLNGG than on GGG. Moreover, the coercive force, magnetization, magneto-optical effect intensity and orientation of film can be effectively regulated by adjusting Ga{sup 3+}-doped concentration. - Highlights: • With excellent magneto-optical performance, Ce,Ga:GIG film has a good application prospect. • Ce,Ga:GIG film with high quality were prepared on CLNGG by RF magnetron sputtering. • Crystalline quality and morphology of films are intently related to the substrate. • Ga{sup 3+} doping obviously affect on magnetism and magneto-optical property of Ce:GIG film.

  12. Crystalline and Crystalline International Disposal Activities

    Energy Technology Data Exchange (ETDEWEB)

    Viswanathan, Hari S. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Chu, Shaoping [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Dittrich, Timothy M. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Hyman, Jeffrey De' Haven [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Karra, Satish [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Makedonska, Nataliia [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Reimus, Paul William [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)


    This report presents the results of work conducted between September 2015 and July 2016 at Los Alamos National Laboratory in the crystalline disposal and crystalline international disposal work packages of the Used Fuel Disposition Campaign (UFDC) for DOE-NE’s Fuel Cycle Research and Development program. Los Alamos focused on two main activities during this period: Discrete fracture network (DFN) modeling to describe flow and radionuclide transport in complex fracture networks that are typical of crystalline rock environments, and a comprehensive interpretation of three different colloid-facilitated radionuclide transport experiments conducted in a fractured granodiorite at the Grimsel Test Site in Switzerland between 2002 and 2013. Chapter 1 presents the results of the DFN work and is divided into three main sections: (1) we show results of our recent study on the correlation between fracture size and fracture transmissivity (2) we present an analysis and visualization prototype using the concept of a flow topology graph for characterization of discrete fracture networks, and (3) we describe the Crystalline International work in support of the Swedish Task Force. Chapter 2 presents interpretation of the colloidfacilitated radionuclide transport experiments in the crystalline rock at the Grimsel Test Site.

  13. Crystalline Silica Primer (United States)



    Crystalline silica is the scientific name for a group of minerals composed of silicon and oxygen. The term crystalline refers to the fact that the oxygen and silicon atoms are arranged in a threedimensional repeating pattern. This group of minerals has shaped human history since the beginning of civilization. From the sand used for making glass to the piezoelectric quartz crystals used in advanced communication systems, crystalline silica has been a part of our technological development. Crystalline silica's pervasiveness in our technology is matched only by its abundance in nature. It's found in samples from every geologic era and from every location around the globe. Scientists have known for decades that prolonged and excessive exposure to crystalline silica dust in mining environments can cause silicosis, a noncancerous lung disease. During the 1980's, studies were conducted that suggested that crystalline silica also was a carcinogen. As a result of these findings, crystalline silica has been regulated under the Occupational Safety and Health Administration's (OSHA) Hazard Communication Standard (HCS). Under HCS, OSHAregulated businesses that use materials containing 0.1% or more crystalline silica must follow Federal guidelines concerning hazard communication and worker training. Although the HCS does not require that samples be analyzed for crystalline silica, mineral suppliers or OSHAregulated

  14. The pursuit of perfect packing

    CERN Document Server

    Weaire, Denis


    Coauthored by one of the creators of the most efficient space packing solution, the Weaire-Phelan structure, The Pursuit of Perfect Packing, Second Edition explores a problem of importance in physics, mathematics, chemistry, biology, and engineering: the packing of structures. Maintaining its mathematical core, this edition continues and revises some of the stories from its predecessor while adding several new examples and applications. The book focuses on both scientific and everyday problems ranging from atoms to honeycombs. It describes packing models, such as the Kepler conjecture, Voronoï decomposition, and Delaunay decomposition, as well as actual structure models, such as the Kelvin cell and the Weaire-Phelan structure. The authors discuss numerous historical aspects and provide biographical details on influential contributors to the field, including emails from Thomas Hales and Ken Brakke. With examples from physics, crystallography, engineering, and biology, this accessible and whimsical bo...

  15. The pursuit of perfect packing

    CERN Document Server

    Weaire, Denis


    In 1998 Thomas Hales dramatically announced the solution of a problem that has long teased eminent mathematicians: what is the densest possible arrangement of identical spheres? The Pursuit of Perfect Packing recounts the story of this problem and many others that have to do with packing things together. The examples are taken from mathematics, physics, biology, and engineering, including the arrangement of soap bubbles in foam, atoms in a crystal, the architecture of the bee''s honeycomb, and the structure of the Giant''s Causeway. Using an informal style and with key references, the book also includes brief accounts of the lives of many of the scientists who devoted themselves to problems of packing over many centuries, together with wry comments on their efforts. It is an entertaining introduction to the field for both specialists and the more general public.

  16. Crystalline boron nitride aerogels (United States)

    Zettl, Alexander K.; Rousseas, Michael; Goldstein, Anna P.; Mickelson, William; Worsley, Marcus A.; Woo, Leta


    This disclosure provides methods and materials related to boron nitride aerogels. In one aspect, a material comprises an aerogel comprising boron nitride. The boron nitride has an ordered crystalline structure. The ordered crystalline structure may include atomic layers of hexagonal boron nitride lying on top of one another, with atoms contained in a first layer being superimposed on atoms contained in a second layer.

  17. Correlation between microstructure and optical properties of nano-crystalline TiO{sub 2} thin films prepared by sol-gel dip coating

    Energy Technology Data Exchange (ETDEWEB)

    Mechiakh, R., E-mail: [Departement de Medecine, Faculte de Medecine, Universite Hadj Lakhdar, Batna (Algeria); Laboratoire de Photovoltaique de Semi-conducteurs et de Nanostructures, Centre de Recherche des Sciences et Technologies de l' Energie, BP.95, Hammam-Lif 2050 (Tunisia); Laboratoire de Ceramiques, Universite Mentouri Constantine (Algeria); Sedrine, N. Ben; Chtourou, R. [Laboratoire de Photovoltaique de Semi-conducteurs et de Nanostructures, Centre de Recherche des Sciences et Technologies de l' Energie, BP.95, Hammam-Lif 2050 (Tunisia); Bensaha, R. [Laboratoire de Ceramiques, Universite Mentouri Constantine (Algeria)


    Titanium dioxide thin films have been prepared from tetrabutyl-orthotitanate solution and methanol as a solvent by sol-gel dip coating technique. TiO{sub 2} thin films prepared using a sol-gel process have been analyzed for different annealing temperatures. Structural properties in terms of crystal structure were investigated by Raman spectroscopy. The surface morphology and composition of the films were investigated by atomic force microscopy (AFM). The optical transmittance and reflectance spectra of TiO{sub 2} thin films deposited on silicon substrate were also determined. Spectroscopic ellipsometry study was used to determine the annealing temperature effect on the optical properties and the optical gap of the TiO{sub 2} thin films. The results show that the TiO{sub 2} thin films crystallize in anatase phase between 400 and 800 deg. C, and into the anatase-rutile phase at 1000 deg. C, and further into the rutile phase at 1200 deg. C. We have found that the films consist of titanium dioxide nano-crystals. The AFM surface morphology results indicate that the particle size increases from 5 to 41 nm by increasing the annealing temperature. The TiO{sub 2} thin films have high transparency in the visible range. For annealing temperatures between 1000 and 1400 deg. C, the transmittance of the films was reduced significantly in the wavelength range of 300-800 nm due to the change of crystallite phase and composition in the films. We have demonstrated as well the decrease of the optical band gap with the increase of the annealing temperature.

  18. Coherent perfect absorption in photonic structures

    CERN Document Server

    Baldacci, Lorenzo; Tredicucci, Alessandro


    The ability to drive a system with an external input is a fundamental aspect of light-matter interaction. The coherent perfect absorption (CPA) phenomenon extends to the general multibeam interference phenomenology the well known critical coupling concepts. This interferometric control of absorption can be employed to reach full delivery of optical energy to nanoscale systems such as plasmonic nanoparticles, and multi-port interference can be used to enhance the absorption of a nanoscale device when it is embedded in a strongly scattering system, with potential applications to nanoscale sensing. Here we review the two-port CPA in reference to photonic structures which can resonantly couple to the external fields. A revised two-port theory of CPA is illustrated, which relies on the Scattering Matrix formalism and is valid for all linear two-port systems with reciprocity. Through a semiclassical approach, treating two-port critical coupling conditions in a non-perturbative regime, it is demonstrated that the st...

  19. Studies on the growth, structural, optical, mechanical properties of 8-hydroxyquinoline single crystal by vertical Bridgman technique

    Energy Technology Data Exchange (ETDEWEB)

    Prabhakaran, SP. [Crystal Growth and Thin Film Laboratory, Department of Physics, Bharathidasan University, Tiruchirappalli 620 024, Tamil Nadu (India); Babu, R. Ramesh, E-mail: [Crystal Growth and Thin Film Laboratory, Department of Physics, Bharathidasan University, Tiruchirappalli 620 024, Tamil Nadu (India); Velusamy, P.; Ramamurthi, K. [Crystal Growth and Thin Film Laboratory, Department of Physics, Bharathidasan University, Tiruchirappalli 620 024, Tamil Nadu (India)


    Highlights: {yields} Growth of bulk single crystal of 8-hydroxyquinoline (8-HQ) by vertical Bridgman technique for the first time. {yields} The crystalline perfection is reasonably good. {yields} The photoluminescence spectrum shows that the material is suitable for blue light emission. -- Abstract: Single crystal of organic nonlinear optical material, 8-hydroxyquinoline (8-HQ) of dimension 52 mm (length) x 12 mm (dia.) was grown from melt using vertical Bridgman technique. The crystal system of the material was confirmed by powder X-ray diffraction analysis. The crystalline perfection of the grown crystal was examined by high-resolution X-ray diffraction study. Low angular spread around 400'' of the diffraction curve and the low full width half maximum values show that the crystalline perfection is reasonably good. The recorded photoluminescence spectrum shows that the material is suitable for blue light emission. Optical transmittance for the UV and visible region was measured and mechanical strength was estimated from Vicker's microhardness test along the growth face of the grown crystal.

  20. La tyrannie de la perfection.

    Directory of Open Access Journals (Sweden)

    Marie-Pierre Bourdages-Sylvain


    Full Text Available Par la comparaison d’une unité publique de gériatrie et d’une chaîne de restauration privée, L’idéal au travail de Marie-Anne Dujarier témoigne du processus de normalisation de l’idéal caractérisant les services de masse et les processus sociaux qui participent à son fondement et à son maintien. La tyrannie de l’idéal est inédite en ce qu’elle transforme le modèle organisationnel rêvé en norme sanctionnable : alors qu’il était auparavant une utopie guidant l’action, l’idéal est aujourd’hui promu en norme sociale, ce qui induit une quête effrénée, mais illusoire, de perfection. Loin d’engendrer des conflits sociaux, les contradictions qui en émergent se traduisent par des tensions personnelles, si bien que « la normalisation de l’idéal contribue à transformer des contradictions de nature sociale et organisationnelle en dilemmes individuels » (Dujarier, 2006, p. 210. Les imprévus qui pourraient être gérés efficacement par une organisation flexible se muent en véritable combat pour l’employé en première ligne.

  1. Non-perturbative embedding of local defects in crystalline materials

    Energy Technology Data Exchange (ETDEWEB)

    Cances, Eric; Deleurence, Amelie [CERMICS, Ecole des Ponts and INRIA, 6 and 8 Avenue Blaise Pascal, Cite Descartes, 77455 Marne-la-Vallee Cedex 2 (France); Lewin, Mathieu [CNRS and Laboratoire de Mathematiques UMR 8088, Universite de Cergy-Pontoise, 2 Avenue Adolphe Chauvin, 95302 Cergy-Pontoise Cedex (France)], E-mail:, E-mail:, E-mail:


    We present a new variational model for computing the electronic first-order density matrix of a crystalline material in the presence of a local defect. A natural way to obtain variational discretizations of this model is to expand the difference Q between the density matrix of the defective crystal and the density matrix of the perfect crystal, in a basis of precomputed maximally localized Wannier functions of the reference perfect crystal. This approach can be used within any semi-empirical or density functional theory framework.

  2. Some Results on Generalized Multiplicative Perfect Numbers


    Laugier, Alexandre; Saikia, Manjil P.; Sarmah, Upam


    In this article, based on ideas and results by J. S\\'andor (2001, 2004), we define $k$-multiplicatively $e$-perfect numbers and $k$-multiplicatively $e$-superperfect numbers and prove some results on them. We also characterize the $k$-$T_0T^\\ast$-perfect numbers defined by Das and Saikia (2013) in details.

  3. Perfect conformal invisible device with feasible refractive indexes (United States)

    Xu, Lin; Chen, Huanyang; Tyc, Tomáš; Xie, Yangbo; Cummer, Steven A.


    Optical conformal mapping has been used to construct several isotropic devices with novel functionalities. In particular, a conformal cloak could confer omnidirectional invisibility. However, the maximum values of the refractive indexes needed for current designs are too large to implement, even in microwave experiments. Furthermore, most devices designed so far have had imperfect impedance matching and therefore incomplete invisibility functionalities. Here we describe a perfect conformal invisible device with full impedance matching everywhere. The maximum value of refractive index required by our device is just about five, which is feasible for microwave and terahertz experiments using current metamaterial techniques. To construct the device, we use a logarithmic conformal mapping and a Mikaelian lens. Our results should enable a conformal invisible device with almost perfect invisibility to be made soon.

  4. Splitting and acquiring quantum information with perfect W states based on weak cross-Kerr nonlinearities (United States)

    Xiu, Xiao-Ming; Cui, Cen; Lin, Yan-Fang; Dong, Li; Dong, Hai-Kuan; Gao, Ya-Jun


    With the assistance of weak cross-Kerr nonlinear interaction between photons and coherent states via Kerr media, we propose a scheme to split and acquire quantum information with three-photon perfect W states. By means of a fault-tolerant circuit, the perfect W states are distributed to the participants without being affected by the collective noise. And on this basis we present a scheme for splitting and acquiring a single-photon state with the shared perfect W states. Together with the mature techniques of classical feed-forward, simple and available linear optical elements are applied in the procedure, afford enhancing the feasibility of the theoretical scheme proposed here.

  5. Triamterene crystalline nephropathy. (United States)

    Nasr, Samih H; Milliner, Dawn S; Wooldridge, Thomas D; Sethi, Sanjeev


    Medications can cause a tubulointerstitial insult leading to acute kidney injury through multiple mechanisms. Acute tubular injury, a dose-dependent process, occurs due to direct toxicity on tubular cells. Acute interstitial nephritis characterized by interstitial inflammation and tubulitis develops from drugs that incite an allergic reaction. Other less common mechanisms include osmotic nephrosis and crystalline nephropathy. The latter complication is rare but has been associated with several drugs, such as sulfadiazine, indinavir, methotrexate, and ciprofloxacin. Triamterene crystalline nephropathy has been reported only rarely, and its histologic characteristics are not well characterized. We report 2 cases of triamterene crystalline nephropathy, one of which initially was misdiagnosed as 2,8-dihydroxyadenine crystalline nephropathy. Copyright © 2013 National Kidney Foundation, Inc. Published by Elsevier Inc. All rights reserved.

  6. What Is Crystalline Silica? (United States)

    ... carcinogen. Additionally, breathing crystalline silica dust can cause silicosis , which in severe cases can be disabling, or ... take in oxygen. There is no cure for silicosis. Since silicosis affects lung function, it makes one ...

  7. Fast determination of the current loss mechanisms in textured crystalline Si-based solar cells (United States)

    Nakane, Akihiro; Fujimoto, Shohei; Fujiwara, Hiroyuki


    A quite general device analysis method that allows the direct evaluation of optical and recombination losses in crystalline silicon (c-Si)-based solar cells has been developed. By applying this technique, the current loss mechanisms of the state-of-the-art solar cells with ˜20% efficiencies have been revealed. In the established method, the optical and electrical losses are characterized from the analysis of an experimental external quantum efficiency (EQE) spectrum with very low computational cost. In particular, we have performed the EQE analyses of textured c-Si solar cells by employing the experimental reflectance spectra obtained directly from the actual devices while using flat optical models without any fitting parameters. We find that the developed method provides almost perfect fitting to EQE spectra reported for various textured c-Si solar cells, including c-Si heterojunction solar cells, a dopant-free c-Si solar cell with a MoOx layer, and an n-type passivated emitter with rear locally diffused solar cell. The modeling of the recombination loss further allows the extraction of the minority carrier diffusion length and surface recombination velocity from the EQE analysis. Based on the EQE analysis results, the current loss mechanisms in different types of c-Si solar cells are discussed.

  8. Multi-channel coherent perfect absorbers

    KAUST Repository

    Bai, Ping


    The absorption efficiency of a coherent perfect absorber usually depends on the phase coherence of the incident waves on the surfaces. Here, we present a scheme to create a multi-channel coherent perfect absorber in which the constraint of phase coherence is loosened. The scheme has a multi-layer structure such that incident waves in different channels with different angular momenta can be simultaneously and perfectly absorbed. This absorber is robust in achieving high absorption efficiency even if the incident waves become "incoherent" and possess "random" wave fronts. Our work demonstrates a unique approach to designing highly efficient metamaterial absorbers. © CopyrightEPLA, 2016.

  9. Toroidal-dipole induced plasmonic perfect absorber (United States)

    Li, Jie; Wang, Ying-hua; Jin, Ren-chao; Li, Jia-qi; Dong, Zheng-gao


    We present a new kind of perfect absorber which roots in a toroidal dipole resonance. The toroidal metastructure consists of a metallic circular groove with a depth asymmetry, which couples to the toroidal dipole field in the near-infrared region and thus realizes nearly unit absorbance, acting as a perfect absorber. Moreover, this absorber owns a high sensitivity of 609.6 nm/RIU to the dielectric surroundings. Furthermore, by tuning the geometric parameters, both the toroidal dipole resonance and perfect absorbance characteristics are insensitive to the circular groove width, providing profound fabrication tolerance in future experiments.

  10. Large-Scale Silicon Nanophotonic Metasurfaces with Polarization Independent Near-Perfect Absorption. (United States)

    Odebo Länk, Nils; Verre, Ruggero; Johansson, Peter; Käll, Mikael


    Optically thin perfect light absorbers could find many uses in science and technology. However, most physical realizations of perfect absorption for the optical range rely on plasmonic excitations in nanostructured metallic metasurfaces, for which the absorbed light energy is quickly lost as heat due to rapid plasmon decay. Here we show that a silicon metasurface excited in a total internal reflection configuration can absorb at least 97% of incident near-infrared light due to interferences between coherent electric and magnetic dipole scattering from the silicon nanopillars that build up the metasurface and the reflected wave from the supporting glass substrate. This "near-perfect" absorption phenomenon loads more than 50 times more light energy into the semiconductor than what would be the case for a uniform silicon sheet of equal surface density, irrespective of incident polarization. We envisage that the concept could be used for the development of novel light harvesting and optical sensor devices.

  11. The human crystallin gene families

    Directory of Open Access Journals (Sweden)

    Wistow Graeme


    Full Text Available Abstract Crystallins are the abundant, long-lived proteins of the eye lens. The major human crystallins belong to two different superfamilies: the small heat-shock proteins (α-crystallins and the βγ-crystallins. During evolution, other proteins have sometimes been recruited as crystallins to modify the properties of the lens. In the developing human lens, the enzyme betaine-homocysteine methyltransferase serves such a role. Evolutionary modification has also resulted in loss of expression of some human crystallin genes or of specific splice forms. Crystallin organization is essential for lens transparency and mutations; even minor changes to surface residues can cause cataract and loss of vision.

  12. Perfect absorption and no reflection in disordered photonic crystals (United States)

    Wu, Jin-Hui; Artoni, M.; La Rocca, G. C.


    Understanding the effects of disorder on the light propagation in photonic devices is of major importance from both fundamental and applied points of view. Unidirectional reflectionless and coherent perfect absorption of optical signals are unusual yet fascinating phenomena that have recently sparked an extensive research effort in photonics. These two phenomena, which arise from topological deformations of the scattering matrix S parameters space, behave differently in the presence of different types of disorder, as we show here for a lossy photonic crystal prototype with a parity-time antisymmetric susceptibility or a more general non-Hermitian one.

  13. Thin Perfect Absorbers for Electromagnetic Waves: Theory, Design, and Realizations (United States)

    Ra'di, Y.; Simovski, C. R.; Tretyakov, S. A.


    With recent advances in nanophotonics and nanofabrication, considerable progress has been achieved in realizations of thin composite layers designed for full absorption of incident electromagnetic radiation, from microwaves to the visible. If the layer is structured at a subwavelength scale, thin perfect absorbers are usually called "metamaterial absorbers," because these composite structures are designed to emulate some material responses not reachable with any natural material. On the other hand, many thin absorbing composite layers were designed and used already in the time of the introduction of radar technology, predominantly as a means to reduce radar visibility of targets. In view of a wide variety of classical and new topologies of optically thin metamaterial absorbers and plurality of applications, there is a need for a general, conceptual overview of the fundamental mechanisms of full absorption of light or microwave radiation in thin layers. Here, we present such an overview in the form of a general theory of thin perfectly absorbing layers. Possible topologies of perfect metamaterial absorbers are classified based on their fundamental operational principles. For each of the identified classes, we provide design equations and give examples of particular realizations. The concluding section provides a summary and gives an outlook on future developments in this field.

  14. Plasmonic titanium nitride nanostructures for perfect absorbers

    DEFF Research Database (Denmark)

    Guler, Urcan; Li, Wen-Wei; Kinsey, Nathaniel


    We propose a metamaterial based perfect absorber in the visible region, and investigate the performance of titanium nitride as an alternative plasmonic material. Numerical and experimental results reveal that titanium nitride performs better than gold as a plasmonic absorbing material...

  15. Optics

    CERN Document Server

    Mathieu, Jean Paul


    Optics, Parts 1 and 2 covers electromagnetic optics and quantum optics. The first part of the book examines the various of the important properties common to all electromagnetic radiation. This part also studies electromagnetic waves; electromagnetic optics of transparent isotropic and anisotropic media; diffraction; and two-wave and multi-wave interference. The polarization states of light, the velocity of light, and the special theory of relativity are also examined in this part. The second part is devoted to quantum optics, specifically discussing the classical molecular theory of optical p

  16. EBay: Towards A Perfectly Competitive Market


    Joshua Chang


    The purpose of this paper is to explain how factors in eBay create an increasingly efficient marketplace that drives it towards the conditions of a perfectly competitive market.  Search and evaluation features that increase the efficiency of consumer decision making are examined and discussed in the context of information economics and market efficiency.  The increased problem solving capability of consumers enabled by features in eBay show that it is moving towards a perfectly competitive ma...

  17. Thermodynamics of Crystalline States

    CERN Document Server

    Fujimoto, Minoru


    Thermodynamics is a well-established discipline of physics for properties of matter in thermal equilibrium surroundings. Applying to crystals, however, the laws encounter undefined properties of crystal lattices, which therefore need to be determined for a clear and well-defined description of crystalline states. Thermodynamics of Crystalline States explores the roles played by order variables and dynamic lattices in crystals in a wholly new way. This book is divided into three parts. The book begins by clarifying basic concepts for stable crystals. Next, binary phase transitions are discussed to study collective motion of order variables, as described mostly as classical phenomena. In the third part, the multi-electron system is discussed theoretically, as a quantum-mechanical example, for the superconducting state in metallic crystals. Throughout the book, the role played by the lattice is emphasized and examined in-depth. Thermodynamics of Crystalline States is an introductory treatise and textbook on meso...

  18. III-V semiconductor resonators: A new strategy for broadband light perfect absorbers (United States)

    Liu, Xiaoshan; Chen, Jian; Liu, Jiasong; Huang, Zhenping; Yu, Meidong; Pan, Pingping; Liu, Zhengqi


    Broadband light perfect absorbers (BPAs) are desirable for applications in numerous optoelectronics devices. In this work, a semiconductor-based broadband light perfect absorber (S-BPA) has been numerically demonstrated by utilizing plasmonlike resonances of high-index semiconductor resonators. A maximal absorption of 99.7% is observed in the near-infrared region. By taking the absorption above 80% into account, the spectral bandwidth reaches 340 nm. The absorption properties mainly originate from the optical cavity modes induced by the cylinder resonators and ultrathin semiconductor film. These optical properties and simple structural features can maintain the absorber platform with wide applications in semiconductor optoelectronics.

  19. Perfectivity and time reference in Hausa

    Directory of Open Access Journals (Sweden)

    Mahamane L. Abdoulaye


    Full Text Available The relative marking in Hausa marks discourse presupposition in perfective and imperfective relative clauses and out-of-focus clauses of focus and fronted wh-questions. However, the Relative Perfective also appears in storyline narrative clauses and various accounts try to find a common feature between relative clauses and narrative context. This paper rejects the common feature approach to Hausa relative marking and presents a systematic grammaticalization account of the functions of the Relative Perfective. The paper shows that in temporal when relative clauses headed by look?cin d? 'time that', the aspectual contrast Relative Imperfective vs. Relative Perfective has vanished, and the Relative Perfective indexes the specific time of the event. The temporal relative clauses differ from locative and manner adverbial relative clauses, whose semantics (location and manner are not usual inflectional categories and they therefore maintain the aspectual contrast between Relative Perfective and Relative Imperfective. The paper shows that the new temporal category, the Specific Time Marker, spread to other environments and incorporated a time orientation feature in main clauses of narrative and dialogical discourse to become a simple past. The paper proposes a mixed tense and aspect TAM system for Hausa, a system positioned between aspect-only and tense-prominent systems.

  20. Glass-clad single crystalline fiber lasers (United States)

    Lai, C. C.; Hsu, K. Y.; Huang, C. W.; Jheng, D. Y.; Wang, S. C.; Lin, S. L.; Yang, M. H.; Lee, Y. W.; Huang, D. W.; Huang, S. L.


    Yttrium aluminium garnet (YAG) has been widely used as a solid-state laser host because of its superior optical, thermal, mechanical properties, as well as its plurality in hosting active ions with a wide range of ionic radii. Drawing YAG into single crystalline fiber has the potential to further scale up the attainable power level with high mode quality. The recent advancement on the codrawing laser-heated pedestal growth (CDLHPG) technique can produce glass-clad YAG crystalline fibers for laser applications. The drawing speed can reach 10 cm/min for mass production. The CDLHPG technique has shown advantages on transition-metal ion doped YAG and short-fluorescent-lifetime ion doped YAG host. Compared to silica fiber lasers, the crystalline core offers high emission cross section for transition metal ions because of the unique local matrix. The challenges on the development of glass-clad YAG fibers, including core crystallinity, diameter uniformity, dopant segregation, residual strain, post-growth thermal treatment, and the thermal expansion coefficient mismatch between the crystalline core and glass clad are discussed. Chromium, ytterbium, and neodymium ions doped YAG fiber lasers have been successfully achieved with high efficiency and low threshold power. Power scaling with a clad-pump/side-coupling scheme using single clad or double clad YAG fibers is also discussed.

  1. Liquid crystalline dihydroazulene photoswitches

    DEFF Research Database (Denmark)

    Petersen, Anne Ugleholdt; Jevric, Martyn; Mandle, Richard J.


    A large selection of photochromic dihydroazulene (DHA) molecules incorporating various substituents at position 2 of the DHA core was prepared and investigated for their ability to form liquid crystalline phases. Incorporation of an octyloxy-substituted biphenyl substituent resulted in nematic...... to the DHA where the alignment is maintained. The systematic structural variation has revealed that a biaryl spacer between the DHA and the alkyl chain is needed for liquid crystallinity and that the one aromatic ring in the spacer cannot be substituted by a triazole. This work presents an important step...

  2. Perfect selective metamaterial solar absorbers. (United States)

    Wang, Hao; Wang, Liping


    In this work, we numerically investigate the radiative properties of metamaterial nanostructures made of two-dimensional tungsten gratings on a thin dielectric spacer and an opaque tungsten film from UV to mid-infrared region as potential selective solar absorbers. The metamaterial absorber with single-sized tungsten patches exhibits high absorptance in the visible and near-infrared region due to several mechanisms such as surface plasmon polaritons, magnetic polaritons, and intrinsic bandgap absorption of tungsten. Geometric effects on the resonance wavelengths and the absorptance spectra are studied, and the physical mechanisms are elucidated in detail. The absorptance could be further enhanced in a broader spectral range with double-sized metamaterial absorbers. The total solar absorptance of the optimized metamaterial absorbers at normal incidence could be more than 88%, while the total emittance is less than 3% at 100°C, resulting in total photon-to-heat conversion efficiency of 86% without any optical concentration. Moreover, the metamaterial solar absorbers exhibit quasi-diffuse behaviors as well as polarization independence. The results here will facilitate the design of novel highly efficient solar absorbers to enhance the performance of various solar energy conversion systems.

  3. The Perfect Glass Paradigm: Disordered Hyperuniform Glasses Down to Absolute Zero. (United States)

    Zhang, G; Stillinger, F H; Torquato, S


    Rapid cooling of liquids below a certain temperature range can result in a transition to glassy states. The traditional understanding of glasses includes their thermodynamic metastability with respect to crystals. However, here we present specific examples of interactions that eliminate the possibilities of crystalline and quasicrystalline phases, while creating mechanically stable amorphous glasses down to absolute zero temperature. We show that this can be accomplished by introducing a new ideal state of matter called a "perfect glass". A perfect glass represents a soft-interaction analog of the maximally random jammed (MRJ) packings of hard particles. These latter states can be regarded as the epitome of a glass since they are out of equilibrium, maximally disordered, hyperuniform, mechanically rigid with infinite bulk and shear moduli, and can never crystallize due to configuration-space trapping. Our model perfect glass utilizes two-, three-, and four-body soft interactions while simultaneously retaining the salient attributes of the MRJ state. These models constitute a theoretical proof of concept for perfect glasses and broaden our fundamental understanding of glass physics. A novel feature of equilibrium systems of identical particles interacting with the perfect-glass potential at positive temperature is that they have a non-relativistic speed of sound that is infinite.

  4. Optics

    CERN Document Server

    Fincham, W H A


    Optics: Ninth Edition Optics: Ninth Edition covers the work necessary for the specialization in such subjects as ophthalmic optics, optical instruments and lens design. The text includes topics such as the propagation and behavior of light; reflection and refraction - their laws and how different media affect them; lenses - thick and thin, cylindrical and subcylindrical; photometry; dispersion and color; interference; and polarization. Also included are topics such as diffraction and holography; the limitation of beams in optical systems and its effects; and lens systems. The book is recommen


    NARCIS (Netherlands)



    The invention relates to a novel process for making compositions comprising a polyamid, water and a salt, having reduced crystallinity, wherein the process comprising the steps of: a. mixing the polyamide, water and a salt b. heating the mixture to a temperature above 100°C in a range between 120°C

  6. Artificial crystalline lens

    NARCIS (Netherlands)

    Norrby, S.; Koopmans, S.; Terwee, T.


    Replacement of the crystalline lens with a synthetic soft material (ACL) has been shown to produce 3 to 5 D of accommodation following pharmacologic stimulation in primates for up to 1 year postoperatively. The eyes were relatively clear, suggesting that an injectable synthetic lens is a feasible

  7. Coilable Crystalline Fiber (CCF) Lasers and their Scalability (United States)


    highly power scalable, nearly diffraction-limited output laser. 37 References 1. Snitzer, E. Optical Maser Action of Nd 3+ in A Barium Crown Glass ...Electron Devices Directorate Helmuth Meissner Onyx Optics Approved for public release; distribution...lasers, but their composition ( glass ) poses significant disadvantages in pump absorption, gain, and thermal conductivity. All-crystalline fiber lasers

  8. Electrical transport in crystalline phase change materials

    Energy Technology Data Exchange (ETDEWEB)

    Woda, Michael


    In this thesis, the electrical transport properties of crystalline phase change materials are discussed. Phase change materials (PCM) are a special class of semiconducting and metallic thin film alloys, typically with a high amount of the group five element antimony or the group six element tellurium, such as Ge{sub 2}Sb{sub 2}Te{sub 5}. The unique property portfolio of this material class makes it suitable for memory applications. PCMs reveal fast switching between two stable room-temperature phases (amorphous and crystalline) realized by optical laser or electrical current pulses in memory devices. Additionally, a pronounced property contrast in form of optical reflectivity and electrical conductivity between the amorphous and crystalline phase is the characteristic fingerprint of PCMs. The emerging electrical solid state memory PCRAM is a very promising candidate to replace Flash memory in the near future or to even become a universal memory, which is non-volatile and shows the speed and cyclability of DRAM. One of the main technological challenges is the switching process into the amorphous state, which is the most power demanding step. In order to reduce the switching power, the crystalline resistivity needs to be increased at a given voltage. Thus understanding and tayloring of this property is mandatory. In this work, first the technological relevance, i.e. optical and electrical memory concepts based on PCMs are introduced. Subsequently a description of the physical properties of PCMs in four categories is given. Namely, structure, kinetics, optical properties and electrical properties are discussed. Then important recent developments such as the identification of resonant bonding in crystalline PCMs and a property predicting coordination scheme are briefly reviewed. The following chapter deals with the theoretical background of electrical transport, while the next chapter introduces the experimental techniques: Sputtering, XRR, XRD, DSC, thermal annealing

  9. Wideband perfect coherent absorber based on white-light cavity (United States)

    Kotlicki, Omer; Scheuer, Jacob


    Coherent Perfect Absorbers (CPAs) are optical cavities which can be described as time-reversed lasers where light waves that enter the cavity, coherently interfere and react with the intra-cavity losses to yield perfect absorption. In contrast to lasers, which benefit from high coherency and narrow spectral linewidths, for absorbers these properties are often undesirable as absorption at a single frequency is highly susceptible to spectral noise and inappropriate for most practical applications. Recently, a new class of cavities, characterized by a spectrally wide resonance has been proposed. Such resonators, often referred to as White Light Cavities (WLCs), include an intra-cavity superluminal phase element, designed to provide a phase response with a slope that is opposite in sign and equal in magnitude to that of light propagation through the empty cavity. Consequently, the resonance phase condition in WLCs is satisfied over a band of frequencies providing a spectrally wide resonance. WLCs have drawn much attention due to their attractiveness for various applications such as ultra-sensitive sensors and optical buffering components. Nevertheless, WLCs exhibit inherent losses that are often undesirable. Here we introduce a simple wideband CPA device that is based on the WLC concept along with a complete analytical analysis. We present analytical and FDTD simulations of a practical, highly compact (12µm), Silicon based WLC-CPA that exhibits a flat and wide absorption profile (40nm) and demonstrate its usefulness as an optical pulse terminator (>35db isolation) and an all optical modulator that span the entire C-Band and exhibit high immunity to spectral noise.

  10. Electrical interface characteristics (I-V), optical time of flight measurements, and the x-ray (20 keV) signal response of amorphous-selenium/crystalline-silicon heterojunction structures (United States)

    Hunter, David M.; Ho, Chu An; Belev, George; De Crescenzo, Giovanni; Kasap, Safa O.; Yaffe, Martin J.


    We have investigated the dark current, optical TOF (time of flight) properties, and the X-ray response of amorphousselenium (a-Se)/crystalline-silicon (c-Si) heterostructures for application in digital radiography. The structures have been studied to determine if an x-ray generated electron signal, created in an a-Se layer, could be directly transferred to a c-Si based readout device such as a back-thinned CCD (charge coupled device). A simple first order band-theory of the structure indicates that x-ray generated electrons should transfer from the a-Se to the c-Si, while hole transfer from p-doped c-Si to the a-Se should be blocked, permitting a low dark signal as required. The structures we have tested have a thin metal bias electrode on the x-ray facing side of the a-Se which is deposited on the c-Si substrate. The heterostructures made with pure a-Se deposited on epitaxial p-doped (5×10 14 cm-3) c-Si exhibited very low dark current of 15 pA cm-2 at a negative bias field of 10 V μm-1 applied to the a-Se. The optical TOF (time of flight) measurements show that the applied bias drops almost entirely across the a-Se layer and that the a-Se hole and electron mobilities are within the range of commonly accepted values. The x-ray signal measurements demonstrate the structure has the expected x-ray quantum efficiency. We have made a back-thinned CCD coated with a-Se and although most areas of the device show a poor x-ray response, it does contain small regions which do work properly with the expected x-ray sensitivity. Improved understanding of the a-Se/c-Si interface and preparation methods should lead to properly functioning devices.

  11. Maxwell's fish-eye lens and the mirage of perfect imaging (United States)

    Merlin, R.


    Recent claims that Maxwell's fish-eye is a perfect lens, capable of providing images with deep subwavelength resolution, are examined. We show that the imaging properties of a dispersionless fish-eye are very similar to those of an ideal spherical cavity. Using this correspondence, we prove that the correct solution to Maxwell equations in the fish-eye gives image sizes that are consistent with the standard diffraction limit. Perfect focusing is an optical illusion that results from placing a time-reversed source at the position of the geometrical image which, when combined with the field due to the primary (object) source, mimics the behavior of a perfect drain. Issues of causality are briefly discussed. We also demonstrate that passive outlets are not a good alternative to time-reversed sources for broadband drain-like behavior and that, even if they were, they could not do a better job than conventional optical systems at providing high resolution.

  12. Relativistic perfect fluids in local thermal equilibrium

    CERN Document Server

    Coll, Bartolomé; Sáez, Juan Antonio


    The inverse problem for conservative perfect fluid energy tensors provides a striking result. Namely that, in spite of its name, its historic origin or its usual conceptualization, the notion of {\\em local thermal equilibrium} for a perfect fluid is a {\\em purely hydrodynamic}, not thermodynamic, notion. This means that it may be thought, defined and detected using exclusively hydrodynamic quantities, without reference to temperature or any other thermodynamic concept, either of equilibrium or irreversible: a relativistic perfect fluid evolves in local thermal equilibrium if, and only if, its hydrodynamic variables evolve keeping a certain relation among them. This relation fixes, but only fixes, a precise fraction of the thermodynamics of the fluid, namely that relating the speed of its sound waves to the hydrodynamic variables. All thermodynamic schemes (sets of thermodynamic variables and their mutual relations) compatible with such a relation on the sole hydrodynamic variables are obtained. This hydrodyna...

  13. Optics

    CERN Document Server

    Fincham, W H A


    Optics: Eighth Edition covers the work necessary for the specialization in such subjects as ophthalmic optics, optical instruments and lens design. The text includes topics such as the propagation and behavior of light; reflection and refraction - their laws and how different media affect them; lenses - thick and thin, cylindrical and subcylindrical; photometry; dispersion and color; interference; and polarization. Also included are topics such as diffraction and holography; the limitation of beams in optical systems and its effects; and lens systems. The book is recommended for engineering st

  14. Thermodynamics of Crystalline States

    CERN Document Server

    Fujimoto, Minoru


    Thermodynamics is a well-established discipline of physics for properties of matter in thermal equilibrium with the surroundings. Applying to crystals, however, the laws encounter undefined properties of crystal lattice, which therefore need to be determined for a clear and well-defined description of crystalline states. Thermodynamics of Crystalline States explores the roles played by order variables and dynamic lattices in crystals in a wholly new way. The book begins by clarifying basic concepts for stable crystals. Next, binary phase transitions are discussed to study collective motion of order variables, as described mostly as classical phenomena. New to this edition is the examination of magnetic crystals, where magnetic symmetry is essential for magnetic phase transitions. The multi-electron system is also discussed  theoretically, as a quantum-mechanical example, for superconductivity in metallic crystals. Throughout the book, the role played by the lattice is emphasized and studied in-depth. Thermod...

  15. Perfect 800 Advanced Strategies for Top Students

    CERN Document Server

    Celenti, Dan


    Getting into the nation's most competitive universities requires more than a good SAT score, it requires a perfect score. Perfect 800: SAT Math gives advanced students the tools needed to master the SAT math test. Covering areas including arithmetic concepts; algebra; geometry; and additional topics such as probability and weighted average, the book offers exposure to a wide range of degrees of difficulty in a holistic approach that allows students to experience the "real thing," including the impact of time constraints on their performance. By emphasizing critical thinking and analytic skills

  16. Anti-mirror effect: A perfect lens brings a brighter feature


    Xu, YaDong; Du, Shengwang; Gao, Lei; Chen, Huanyang


    In this letter, we show that a perfect lens can be employed to make multiple objects appear like only one in the far field, leading to a new concept of illusion optics. Numerical simulations are performed to verify the functionalities for both passive and active objects. The conceptual device can be utilized to enhance the illumination brightness for both incoherent and coherent systems.

  17. West African crystalline maculopathy. (United States)

    Browning, David J


    To report new observations in West African crystalline maculopathy. Retrospective, observational case series. Three patients drawn from a private retina practice. Review of clinical charts and photographic studies. Distribution of intraretinal crystals and changes after laser photocoagulation, and history of ingesting foods typical in a West African diet but atypical for an American diet. All patients were older than 50 years, had diabetic retinopathy, ate green vegetables not found in American diets, and showed no deleterious effects of the crystals. Kola nut ingestion in 2 patients was remote and sparse, and was unknown in a third patient. The first 2 affected patients originating outside the Ibo tribe of Nigeria are reported. The pattern of retinal crystals can be changed, and the quantity of crystals reduced, by laser photocoagulation of associated diabetic retinopathy. West African crystalline retinopathy is distinguishable from other causes of crystalline retinopathy. It may reflect a component of the West African diet, seems to have diabetic retinopathy as a promoting factor via breakdown of the blood-retina barrier, and can be modified by laser photocoagulation of diabetic retinopathy. Increased awareness of the condition will allow physicians seeing West African immigrants to make the diagnosis and treat the patients appropriately.

  18. Applied optics and optical engineering v.9

    CERN Document Server

    Shannon, Robert


    Applied Optics and Optical Engineering, Volume IX covers the theories and applications of optics and optical engineering. The book discusses the basic algorithms for optical engineering; diffraction gratings, ruled and holographic; and recording and reading of information on optical disks. The text also describes the perfect point spread function; the multiple aperture telescope diffraction images; and the displays and simulators. Ophthalmic optics, as well as the canonical and real-space coordinates used in the theory of image formation are also encompassed. Optical engineers and students tak

  19. Why Only Perfection Is Good Enough | Everitt | Philosophical Papers

    African Journals Online (AJOL)

    The real problem arises not from the evil in the world, but from the non-perfection of the world. Given that a perfect God could create only a perfect world, and given that the world is not in fact perfect, I construct an argument for atheism. I show that the argument is not open to the objections which theists standardly bring ...

  20. Mechanical Energy Changes in Perfectly Inelastic Collisions (United States)

    Mungan, Carl E.


    Suppose a block of mass "m"[subscript 1] traveling at speed "v"[subscript 1] makes a one-dimensional perfectly inelastic collision with another block of mass "m"[subscript 2]. What else does one need to know to calculate the fraction of the mechanical energy that is dissipated in the collision? (Contains 1 figure.)

  1. Diamagnetic expansions for perfect quantum gases

    DEFF Research Database (Denmark)

    Briet, Philippe; Cornean, Horia; Louis, Delphine


    In this work we study the diamagnetic properties of a perfect quantum gas in the presence of a constant magnetic field of intensity B. We investigate the Gibbs semigroup associated with the one particle operator at finite volume, and study its Taylor series with respect to the field parameter omega...

  2. A Flexible Metamaterial Terahertz Perfect Absorber (United States)

    Chen, X. R.; Zheng, Y. W.; Qin, L. M.; Wei, G. C.; Qin, Z. P.; Zhang, N. G.; Liu, K.; Li, S. Z.; Wang, S. X.


    We designed a THz matematerial absorber using metallic wires (MWs) and split resonant rings (SRRs). This matematerial absorber exhibits perfect absorption which up to 96% at 4.03 THz and is capable of wrapped around objects because of flexible polyimide dielectric substrate.

  3. Perfectly Secure Oblivious RAM without Random Oracles

    DEFF Research Database (Denmark)

    Damgård, Ivan Bjerre; Meldgaard, Sigurd Torkel; Nielsen, Jesper Buus


    We present an algorithm for implementing a secure oblivious RAM where the access pattern is perfectly hidden in the information theoretic sense, without assuming that the CPU has access to a random oracle. In addition we prove a lower bound on the amount of randomness needed for implementing...

  4. The Present Perfect in World Englishes (United States)

    Yao, Xinyue; Collins, Peter


    This paper reports on a comprehensive corpus-based study of regional and stylistic variation in the distribution of the English present perfect. The data represents ten English varieties of both the Inner Circle and Outer Circle, covering four major text types: conversation, news reportage, academic and fictional writing. The results are discussed…

  5. High-efficiency ultrashort pulse generation in a high-gain FEL oscillator near the perfect synchronism

    CERN Document Server

    Hajima, R; Nagai, R; Minehara, E J


    It has been verified experimentally in JAERI-FEL that a high-gain FEL oscillator has the maximum extraction efficiency at the perfect synchronism of optical-cavity length. The simultaneous measurement of FEL efficiency and absolute cavity length has clearly shown that a sharp peak of detuning curve at the perfect synchronism appears in high-gain and low-loss regime and the FEL extraction efficiency exceeds the scaling law of short-bunch FEL oscillators. A numerical analysis indicates that lasing at the perfect synchronism is quasi-stationary superradiance with random fluctuations, which is analogous to a SASE FEL. Second-order autocorrelation measurements show that FEL pulses shorter than four optical cycles are generated successively for a number of round trips at the perfect synchronism, which is consistent with numerical results.

  6. Dark plasmonic mode based perfect absorption and refractive index sensing. (United States)

    Yang, W H; Zhang, C; Sun, S; Jing, J; Song, Q; Xiao, S


    Dark plasmonic resonances in metallic nanostructures are essential for many potential applications such as refractive index sensing, single molecule detection, nanolasers etc. However, it is difficult to excite the dark modes in optical experiments and thus the practical applications are severely limited. Herein, we demonstrate a simple method to experimentally excite the quadrupolar and higher-order plasmonic modes with normal incident light. By directionally depositing silver films onto the sidewalls of metal-covered one-dimensional grating, we have experimentally observed a series of asymmetrical resonances at the plasmonic ranges of silver gratings. Interestingly, both of the reflection and transmission coefficients of high-order plasmonic modes are reduced to around zero, demonstrating the perfect absorption very well. The corresponding numerical simulations show that these resonances are the well-known dark modes. Different from the conventional dark modes in plasmonic dimers, here the dark modes are the electric oscillations (as standing waves) within the silver sidewalls that are excited by charge accumulation via the bright plasmonic resonance of the top silver strips. In addition to the simple realization of perfect absorption, the dark modes are found to be quite sensitive to the environmental changes. The experimentally measured reflective index sensitivity is around 458 nm per RIU (refractive index unit), which is much higher than the sensitivity of the metal-covered grating without silver sidewalls. This research shall pave new routes to practical applications of dark surface plasmons.

  7. Basic research challenges in crystalline silicon photovoltaics

    Energy Technology Data Exchange (ETDEWEB)

    Werner, J.H. [Max-Planck-Institut fuer Festkoerperforschung, Stuttgart (Germany)


    Silicon is abundant, non-toxic and has an ideal band gap for photovoltaic energy conversion. Experimental world record cells of 24 % conversion efficiency with around 300 {mu}m thickness are only 4 % (absolute) efficiency points below the theoretical Auger recombination-limit of around 28 %. Compared with other photovoltaic materials, crystalline silicon has only very few disadvantages. The handicap of weak light absorbance may be mastered by clever optical designs. Single crystalline cells of only 48 {mu}m thickness showed 17.3 % efficiency even without backside reflectors. A technology of solar cells from polycrystalline Si films on foreign substrates arises at the horizon. However, the disadvantageous, strong activity of grain boundaries in Si could be an insurmountable hurdle for a cost-effective, terrestrial photovoltaics based on polycrystalline Si on foreign substrates. This talk discusses some basic research challenges related to a Si based photovoltaics.

  8. Thermally switched PDLC liquid-crystalline composites

    Directory of Open Access Journals (Sweden)

    Krzysztof Sułkowski


    Full Text Available The thermooptical properties of conventional polymer-dispersed nematic liquid crystals (PDLC composites in visual and near IR ranges have been studied. It has been confirmed that the composite film can be switched from the scattering milky state to the transparent state just by reaching a threshold temperature range, namely liquid crystal clearing phase transition to the isotropic one with satisfactory contrast ratio. The optical contrast and switching temperature range can be adjusted by the proper choice of the components of liquid crystalline mixture. This effect could be adopted for a construction of panes with “intelligent” heat transmission.[b]Keywords[/b]: materials engineering, liquid-crystalline composites, thermooptical effect

  9. Modern problems of perfection of elite light athletic sportsmen’s technical skillfulness perfection


    Kolot A.V.


    Purpose: perfection of elite sportsmen’s technical skillfulness in competition kinds of light athletic. Material: the data of more than 60 literature sources were systemized. Expert questioning of 36 coaches, having experience of work with elite sportsmen, was carried out; documents of training process planning were analyzed as well as sportsmen’s diaries (n=244). Results: we have presented main principles of sportsmen’s technical skillfulness perfection and elucidated characteristics of tech...

  10. Perfectly Reflectionless Omnidirectional Absorbers and Electromagnetic Horizons


    Sainath, Kamalesh; Teixeira, Fernando L.


    We demonstrate the existence of metamaterial blueprints describing, and fundamental limitations concerning, perfectly reflectionless omnidirectional electromagnetic absorbers (PR-OEMA). Previous attempts to define PR-OEMA blueprints have led to active (gain), rather than passive, media. We explain this fact and unveil new, distinct limitations of true PR-OEMA devices, including the appearance of an "electromagnetic horizon" on physical solutions. As practical alternatives we introduce alterna...

  11. Another Class of Perfect Nonlinear Polynomial Functions

    Directory of Open Access Journals (Sweden)

    Menglong Su


    Full Text Available Perfect nonlinear (PN functions have been an interesting subject of study for a long time and have applications in coding theory, cryptography, combinatorial designs, and so on. In this paper, the planarity of the trinomials xpk+1+ux2+vx2pk over GF(p2k are presented. This class of PN functions are all EA-equivalent to x2.

  12. Sleep in Adolescents: The Perfect Storm


    Carskadon, Mary A.


    The perfect storm metaphor applies to sleep patterns of adolescents in the sense that developmental trajectories of biopsychosocial factors conspire to limit the quantity of sleep for many adolescents resulting in a number of negative consequences. A reduction in sleep amount from late childhood through the second decade has long been known; however, the weight of current evidence holds that sleep need does not decline across this span. Nevertheless, parents, pediatricians, and school teacher...

  13. The perfect machine. Building the Palomar telescope. (United States)

    Florence, R.

    The author's chronicle of the conception of the great 200-inch Palomar telescope is an inspiring account of the birth of big science and of America at its can-do apex. Countless scientists, engineers, administrators, and workmen - from Edwin Hubble, John D. Rockefeller, Elihu Root, and Andrew Carnegie, to unemployed laborers - come alive in this story of two decades of effort to create "the perfect machine".

  14. Population growth rates in perfect contraceptive populations. (United States)

    Udry, J R; Bauman, K E; Chase, C L


    Abstract Eventually, world population must cease to grow. In many countries attempts are made to decrease population growth by providing family planning services to all who want to prevent pregnancies. In this paper we use the concept 'perfect contraceptive population',(1) - a population in which no unwanted births occur - to derive estimates of the maximum contribution that prevention of unwanted births might make toward attaining a zero rate of natural increase in population.

  15. Thin Crystalline Gallium Arsenide Optoelectronic Devices (United States)

    Patkar, Mahesh Pandharinath


    The numerous existing and developing applications for two closely related devices, III-V light emitting diode (LEDs) and solar cells, demand improved device efficiencies. Removing the substrate should increase the efficiency of both LEDs and solar cells by eliminating the absorption losses in the substrate. We have used the phenomenon of photon recycling in thin-crystalline device geometries to enhance efficiencies of LEDs and solar cells. GaAs LEDs were fabricated and removed from the substrate by the epitaxial lift-off process. Devices with and without an underlying GaAs substrate were then characterized by optical and electrical measurements. Efficiency enhancements of up to a factor of six were achieved. By carefully analyzing the electrical and optical measurements, we demonstrate that the device operation can be explained in terms of accepted theories for radiative recombination and photon recycling which supports our hypothesis that the efficiency enhancement is due to photon recycling in the thin-crystalline device structure. Electrical and optical characterization of ELO LEDs is also shown to be a convenient diagnostic tool for examining recombination losses in thin-crystalline solar cells. Thin crystalline solar cells were fabricated and characterized by I-V and QE measurements. Alloyed ohmic contacts are used extensively for GaAs devices. However, alloyed contacts produce rough interfaces that do not make good reflectors needed for many optoelectronic devices. Non-alloyed ohmic contacts to optoelectronic devices could make good reflectors, if one uses highly reflective metal like Au to make an ohmic contact. Ex-situ non-alloyed contacts to n-GaAs were made by using low temperature molecular beam epitaxy. Ag and Ti/Au contacts to this structure exhibited specific contact resistivities of mid 10^{-7} Omega-cm^2. Low temperature molecular beam epitaxy of GaAs with high concentrations of Be followed by an anneal under As over pressure was used to minimize

  16. Templating gold nanorods with liquid crystalline DNA (United States)

    De Sio, Luciano; Annesi, Ferdinanda; Placido, Tiziana; Comparelli, Roberto; Bruno, Vincenzo; Pane, Alfredo; Palermo, Giovanna; Curri, Maria Lucia; Umeton, Cesare; Bartolino, Roberto


    A liquid crystalline, negatively charged, whole-genome DNA is exploited to organize positively charged gold nanorods (GNRs) by means of electrostatic interaction. A mesoscopic alignment of the composite system along a preferred direction is obtained by casting a droplet of the DNA-nanorods solution onto an untreated glass substrate. Gel electrophoresis analysis enables evaluating the effective electric charge of the system, thus minimizing the DNA fragmentation. Polarized optical microscopy, combined with transmission and scanning electron microscopy, shows that, up to 20% in weight of GNR solution, the system exhibits both a long range order, induced by the liquid crystalline phase of the DNA, and a nanoscale organization, due to the DNA self-assembly. These evidences are confirmed by a polarized spectral analysis, which also points out that the optical properties of GNRs strongly depend on the polarization of the impinging probe light. The capability to organize plasmonic nanoparticles by means of DNA material represents a significant advance towards the realization of life science inspired optical materials.

  17. Tunable perfect absorber supported by accumulation electron gas at ITO-dielectric heterointerface (United States)

    Li, Liang; Zhao, Hua; Zhang, Jingwen


    Absorption of an photonic configuration with 2D accumulation electron gas is theoretically investigated in the first optical window of biological tissue. The configuration consists of a Bragg mirror, an ITO-dielectric heterostructure and a metal film. Our results show that the configuration can realize perfect absorption (reaches 99.98%) of specific wavelength light at matched electron density of the accumulation electron gas. Moreover, the influences of different parameters on the perfect absorption are investigated, which allows us accurately tune the absorption spectrum of the configuration. In addition, manufacture discrepancies of film thicknesses are simulated through introducing random thickness errors in the configuration. It is found that the discrepancies of film thicknesses dramatically affect the absorption spectrum of the configuration. Fortunately, this manufacture impact can be perfectly remedied by changing the electron density of the accumulation electron gas and the incident angle of light.

  18. Liquid crystalline order in polymers

    CERN Document Server

    Blumstein, Alexandre


    Liquid Crystalline Order in Polymers examines the topic of liquid crystalline order in systems containing rigid synthetic macromolecular chains. Each chapter of the book provides a review of one important area of the field. Chapter 1 discusses scattering in polymer systems with liquid crystalline order. It also introduces the field of liquid crystals. Chapter 2 treats the origin of liquid crystalline order in macromolecules by describing the in-depth study of conformation of such macromolecules in their unassociated state. The chapters that follow describe successively the liquid crystalli

  19. Terahertz Spectroscopy of Crystalline and Non-Crystalline Solids

    DEFF Research Database (Denmark)

    Parrott, Edward P. J.; Fischer, Bernd M.; Gladden, Lynn F.


    Terahertz spectroscopy of crystalline and non-crystalline solids is probably one of the most active research fields within the terahertz community. Many potential applications, amongst which spectral recognition is probably one of the most prominent, have significantly stimulated the development...

  20. Solution properties of γ-crystallins: Hydration of fish and mammal γ-crystallins (United States)

    Zhao, Huaying; Chen, Yingwei; Rezabkova, Lenka; Wu, Zhengrong; Wistow, Graeme; Schuck, Peter


    Lens γ crystallins are found at the highest protein concentration of any tissue, ranging from 300 mg/mL in some mammals to over 1000 mg/mL in fish. Such high concentrations are necessary for the refraction of light, but impose extreme requirements for protein stability and solubility. γ-crystallins, small stable monomeric proteins, are particularly associated with the lowest hydration regions of the lens. Here, we examine the solvation of selected γ-crystallins from mammals (human γD and mouse γS) and fish (zebrafish γM2b and γM7). The thermodynamic water binding coefficient B1 could be probed by sucrose expulsion, and the hydrodynamic hydration shell of tightly bound water was probed by translational diffusion and structure-based hydrodynamic boundary element modeling. While the amount of tightly bound water of human γD was consistent with that of average proteins, the water binding of mouse γS was found to be relatively low. γM2b and γM7 crystallins were found to exhibit extremely low degrees hydration, consistent with their role in the fish lens. γM crystallins have a very high methionine content, in some species up to 15%. Structure-based modeling of hydration in γM7 crystallin suggests low hydration is associated with the large number of surface methionine residues, likely in adaptation to the extremely high concentration and low hydration environment in fish lenses. Overall, the degree of hydration appears to balance stability and tissue density requirements required to produce and maintain the optical properties of the lens in different vertebrate species. PMID:24282025

  1. Crystalline to amorphous transformation in silicon

    Energy Technology Data Exchange (ETDEWEB)

    Cheruvu, S.M.


    In the present investigation, an attempt was made to understand the fundamental mechanism of crystalline-to-amorphous transformation in arsenic implanted silicon using high resolution electron microscopy. A comparison of the gradual disappearance of simulated lattice fringes with increasing Frenkel pair concentration with the experimental observation of sharp interfaces between crystalline and amorphous regions was carried out leading to the conclusion that when the defect concentration reaches a critical value, the crystal does relax to an amorphous state. Optical diffraction experiments using atomic models also supported this hypothesis. Both crystalline and amorphous zones were found to co-exist with sharp interfaces at the atomic level. Growth of the amorphous fraction depends on the temperature, dose rate and the mass of the implanted ion. Preliminary results of high energy electron irradiation experiments at 1.2 MeV also suggested that clustering of point defects occurs near room temperature. An observation in a high resolution image of a small amorphous zone centered at the core of a dislocation is presented as evidence that the nucleation of an amorphous phase is heterogeneous in nature involving clustering or segregation of point defects near existing defects.

  2. Crystalline Bioceramic Materials

    Directory of Open Access Journals (Sweden)

    de Aza, P. N.


    Full Text Available A strong interest in the use of ceramics for biomedical engineering applications developed in the late 1960´s. Used initially as alternatives to metallic materials in order to increase the biocompatibility of implants, bioceramics have become a diverse class of biomaterials, presently including three basic types: relatively bioinert ceramics; bioactive or surface reactive bioceramics and bioresorbable ceramics. This review will only refer to bioceramics “sensus stricto”, it is to say, those ceramic materials constituted for nonmetallic inorganic compounds, crystallines and consolidated by thermal treatments of powders to high temperatures. Leaving bioglasses, glass-ceramics and biocements apart, since, although all of them are obtained by thermal treatments to high temperatures, the first are amorphous, the second are obtained by desvitrification of a glass and in them vitreous phase normally prevails on the crystalline phases and the third are consolidated by means of a hydraulic or chemical reaction to room temperature. A review of the composition, physiochemical properties and biological behaviour of the principal types of crystalline bioceramics is given, based on the literature data and on the own experience of the authors.

    A finales de los años sesenta se despertó un gran interés por el uso de los materiales cerámicos para aplicaciones biomédicas. Inicialmente utilizados como una alternativa a los materiales metálicos, con el propósito de incrementar la biocompatibilidad de los implantes, las biocerámicas se han convertido en una clase diversa de biomateriales, incluyendo actualmente tres tipos: cerámicas cuasi inertes; cerámicas bioactivas o reactivas superficialmente y cerámicas reabsorbibles o biodegradables. En la presente revisión se hace referencia a las biocerámicas en sentido estricto, es decir, a aquellos materiales constitutitos por compuestos inorgánicos no metálicos, cristalinos y consolidados

  3. Multifunctional materials exhibiting spin crossover and liquid-crystalline properties

    Energy Technology Data Exchange (ETDEWEB)

    Seredyuk, M. [Johannes-Gutenberg-Universitaet, Institut fuer Anorganische und Analystiche Chemie (Germany); Gaspar, Ana B. [Universitat de Valencia, Edifici de Instituts de Paterna, Institut de Ciencia Molecular/Departament de Quimica Inorganica (Spain); Ksenofontov, V., E-mail:; Reiman, S. [Johannes-Gutenberg-Universitaet, Institut fuer Anorganische und Analystiche Chemie (Germany); Galyametdinov, Y. [Russian Academy of Science, Kazan Physical technical Institute (Russian Federation); Haase, W. [Darmstad University of Technology, Institute of Physical Chemistry (Germany); Rentschler, E.; Guetlich, P. [Johannes-Gutenberg-Universitaet, Institut fuer Anorganische und Analystiche Chemie (Germany)


    The physical characterization of a new class of Fe(II) multifunctional SCO materials exhibiting spin crossover and liquid crystalline properties in the room temperatures region is reported. Moessbauer spectroscopy, magnetic, differential scanning calorimetry (DSC), X-ray powder diffraction (XRD) and optical polarizing microscopy studies have been performed on such materials.

  4. Fourier transform infrared spectroscopic estimation of crystallinity in ...

    Indian Academy of Sciences (India)

    We present here optical properties and crystallinity index of quartz (SiO2) in natural rocks samples from the Mikir and Khasi hills, Assam, India. Infrared spectroscopy has been used to study the structure of quartz in rock samples and estimate the mining quality of quartz mineral, which is substantiated by calculating the ...

  5. Liquid crystalline order of carbon nanotubes (United States)

    Georgiev, Georgi; Ahlawat, Aditya; Mulkern, Brian; Doyle, Robert; Mongeau, Jennifer; Ogilvie, Alex


    Topological defects formed during phase transitions in liquid crystals provide a direct proof of the standard Cosmological model and are direct links to the Early Universe. On the other hand in Nanotechnology, carbon nanotubes can be manipulated and oriented directly by changing the liquid crystalline state of the nanotubes, in combination with organic liquid crystals. Currently there are no nano-assemblers, which makes the liquid crystal state of the nanotubes, one of the few ways of controlling them. We show the design of a fast and efficient polarized light ellipsometric system (a new modification of previous optical systems) that can provide fast quantitative real time measurements in two dimensions of the formation of topological defects in liquid crystals during phase transitions in lab settings. Our aim is to provide fundamental information about the formation of optically anisotropic structures in liquid crystals and the orientation of carbon nanotubes in electric field.

  6. Perfect drain for the Maxwell Fish Eye lens.


    Gonzalez Lopez, Juan Carlos; Benitez Gimenez, Pablo; Miñano Dominguez, Juan Carlos


    Perfect imaging of electromagnetic waves using the Maxwell fish eye (MFE) requires a new concept: a point called the perfect drain that we shall call the perfect point drain. From the mathematical point of view, a perfect point drain is just like an ideal point source, except that it drains power from the electromagnetic field instead of generating it. We introduce here the perfect drain for the MFE as a dissipative region of non-zero size that completely drains the power from the point source....

  7. Achieving global perfect homeostasis through transporter regulation (United States)

    Springer, Michael


    Nutrient homeostasis—the maintenance of relatively constant internal nutrient concentrations in fluctuating external environments—is essential to the survival of most organisms. Transcriptional regulation of plasma membrane transporters by internal nutrient concentrations is typically assumed to be the main mechanism by which homeostasis is achieved. While this mechanism is homeostatic we show that it does not achieve global perfect homeostasis—a condition where internal nutrient concentrations are completely independent of external nutrient concentrations for all external nutrient concentrations. We show that the criterion for global perfect homeostasis is that transporter levels must be inversely proportional to net nutrient flux into the cell and that downregulation of active transporters (activity-dependent regulation) is a simple and biologically plausible mechanism that meets this criterion. Activity-dependent transporter regulation creates a trade-off between robustness and efficiency, i.e., the system's ability to withstand perturbation in external nutrients and the transporter production rate needed to maintain homeostasis. Additionally, we show that a system that utilizes both activity-dependent transporter downregulation and regulation of transporter synthesis by internal nutrient levels can create a system that mitigates the shortcomings of each of the individual mechanisms. This analysis highlights the utility of activity-dependent regulation in achieving homeostasis and calls for a re-examination of the mechanisms of regulation of other homeostatic systems. PMID:28414718

  8. Realisation of 3D metamaterial perfect absorber structures by direct laser writing (United States)

    Fanyaeu, I.; Mizeikis, V.


    We report design, fabrication and optical properties of 3D electromagnetic metamaterial structures applicable as perfect absorbers (PA) at mid infra-red frequencies. PA architecture consisting of single-turn metallic helices arranged in a periodic two-dimensional array enables polarization-invariant perfect absorption within a considerable range of incidence angles. The absorber structure is all-metallic, and in principle does not require metallic ground plane, which permits optical transparency at frequencies away from the PA resonance. The samples were fabricated by preparing their dielectric templates using Direct Laser Write technique in photoresist, and metalisation by gold sputtering. Resonant absorption in excess of 90% was found at the resonant wavelength of 7.7 μm in accordance with numerical modelling. Similar PA structures may prove useful for harvesting and conversion of infrared energy as well as narrow-band thermal emission and detection.

  9. Crystalline inclusions in granulocytic sarcoma. (United States)

    Strauchen, James A; Gordon, Ronald E


    Two cases of granulocytic sarcoma were found to contain numerous crystalline inclusions identified on hematoxylin-eosin-stained sections as clusters of pointed needlelike crystals present in foci of necrosis or within macrophages. The crystals were negative for chloroacetate esterase and myeloperoxidase. Electron microscopy demonstrated homogeneously dense, bipyramidal structures, indistinguishable from Charcot-Leyden crystals. Granulocytic sarcomas may contain crystalline inclusions similar to Charcot-Leyden crystals; these structures should be distinguished from crystalline immunoglobulin inclusions occurring in cases of plasma cell myeloma and lymphoplasmacytic lymphoma, which may have a similar appearance.

  10. Role of crystallins in ocular neuroprotection and axonal regeneration. (United States)

    Thanos, Solon; Böhm, Michael R R; Meyer zu Hörste, Melissa; Prokosch-Willing, Verena; Hennig, Maren; Bauer, Dirk; Heiligenhaus, Arndt


    Neuroprotection is an emerging challenge in ophthalmology due to the particularly exposed location of retinal neurons and to the steadily increasing rate of intraocular surgical and pharmacological treatments applied to various eye diseases. Within few decades neuroprotection has developed from strongly contested approaches to being recognized and introduced as a potentially clinical application. One of the groups of putative substances for neuroprotection comprises αA- and αB-crystallins, which are types of heat-shock proteins and are considered to be molecular chaperones. The β/γ-crystallins form their own superfamily and are characterized as proteins with a distinct structure containing four Greek key motifs. Besides being abundant in the ocular lens, crystallins are also expressed in both the developing and mature retina. Crystallins are dramatically up-regulated in numerous retinal pathologies, including mechanical injury, ischemic insults, age-related macular degeneration, uveoretinitis, and diabetic retinopathy. Crystallins of the α family are thought to play a crucial role in retinal neuron survival and inflammation. Crystallins of the β/γ superfamily are also small proteins with a possible emerging role in retinal tissue remodeling and repair. One of the typical retinal diseases associated with crystallins is the experimental glaucomatous neuropathy that is characterized by their expression. Another typical retinal disease is the atrophy that occurs after mechanical injury to the optic nerve, which is associated with the need to regrow retinal axons. We have shown in regenerative models in vivo and in vitro that βB2-crystallin actively supports the regenerative growth of cut retinal axons, thereby offering targets for neuroprotective and regenerative treatments. In this review we discuss the discovery that βB2-crystallin is clearly up-regulated in the regenerating retina in vitro. βB2-Crystallin is produced and secreted during axon elongation

  11. Liquid-crystalline lanthanide complexes


    Binnemans, Koen


    The paper describes the recent developments in the field of liquid-crystalline lanthanide complexes. The role of trivalent lanthanide ions as the central metal ion in metallomesogens is considered. An outlook for the future is given.

  12. Sleep in Adolescents: The Perfect Storm (United States)

    Carskadon, Mary A.


    The perfect storm metaphor applies to sleep patterns of adolescents in the sense that developmental trajectories of biopsychosocial factors conspire to limit the quantity of sleep for many adolescents resulting in a number of negative consequences. A reduction in sleep amount from late childhood through the second decade has long been known; however, the weight of current evidence holds that sleep need does not decline across this span. Nevertheless, parents, pediatricians, and school teachers, it seems, long assumed that this sleep decline was an inevitable part of growing up and a normative expectation. We shall see below that the loss of sleep through adolescence is not driven by lower need for sleep but arises from a convergence of biological, psychological, and socio-cultural influences. PMID:21600346

  13. Theory of metasurface based perfect absorbers (United States)

    Alaee, Rasoul; Albooyeh, Mohammad; Rockstuhl, Carsten


    Based on an analytic approach, we present a theoretical review on the absorption, scattering, and extinction of both dipole scatterers and regular arrays composed of such scatterers i.e. metasurfaces. Besides offering a tutorial by outlining the maximum absorption limit for electrically/magnetically resonant dipole particles/metasurfaces, we give an educative analytical approach to their analysis. Moreover, we put forward the analysis of two known alternatives in providing perfect absorbers out of electrically and or magnetically resonant metasurfaces; one is based on the simultaneous presence of both electric and magnetic responses in so called Huygens metasurfaces while the other is established upon the presence of a back reflector in so called Salisbury absorbers. Our work is supported by several numerical examples to clarify the discussions in each stage.

  14. Application of Metamaterial in Perfect Absorber

    Directory of Open Access Journals (Sweden)

    ZHANG Yong


    Full Text Available Electromagnetic response of metamaterials is not only determined by its component materials but also the microstructure and arrangements of its resonant elements. The perfect absorber prepared by metamaterial (PMA can realize 100% absorption in specific frequency bands by designing reasonable structures of resonators. PMA can be applied in many domains, such as stealth material, frequency selective surface, terahertz imaging, micro antenna, intelligent communication, detection and regulation of electromagnetic wave because of its flexible designing, adjustable response, strong absorption, broad band, thin thickness, light mass. Based on the present study situation at home and abroad, we summarized the development, structure, preparation and test of PMA. In order to gain a more profound and comprehensive understanding on PMA, we also explored its trends, prospects and urgent problems. Proactive and intelligent PMA with multi functions and new PMA prepared by new material and new process are the future development trends.

  15. The surveyors' quest for perfect alignment

    CERN Multimedia


    Photogrammetry of a CMS endcap and part of the hadronic calorimeter.The structure was covered with targets photographed by digital cameras. Perfect alignment.... Although CERN's surveyors do not claim to achieve it, they are constantly striving for it and deploy all necessary means to come as close as they can. In their highly specialised field of large-scale metrology, the solution lies in geodesy and photogrammetry, both of which are based on increasingly sophisticated instruments and systems. In civil engineering, these techniques are used for non-destructive inspection of bridges, dams and other structures, while industrial applications include dimensional verification and deformation measurement in large mechanical assemblies. The same techniques also come into play for the metrology of research tools such as large telescopes and of course, particle accelerators. Particle physics laboratories are especially demanding customers, and CERN has often asked for the impossible. As a result, the alignment metro...

  16. Field theory of the Eulerian perfect fluid (United States)

    Ariki, Taketo; Morales, Pablo A.


    The Eulerian perfect-fluid theory is reformulated from its action principle in a pure field-theoretic manner. Conservation of the convective current is no longer imposed by Lin’s constraints, but rather adopted as the central idea of the theory. Our formulation, for the first time, successfully reduces redundant degrees of freedom promoting one half of the Clebsch variables to true dynamical fields. Interactions on these fields allow for the exchange of the convective current of quantities such as mass and charge, which are uniformly understood as the breaking of the underlying symmetry of the force-free fluid. The Clebsch fields play the essential role of exchanging angular momentum with the force field producing vorticity.

  17. Crystalline silica-induced inflammation



    M. Tech. The persistent presence of neutrophils is associated with a wide range of inflammatory diseases. Resolution of inflammation in these diseases is also associated with the ingestion of apoptotic neutrophils by macrophages. Inflammation and apoptosis of inflammatory cells are common known features observed in the lung following exposure to crystalline silica. What is not known is how well these apoptotic cells are cleared by macrophages in the presence of crystalline silica? To inves...

  18. Inter-Faith Reading of Perfect Man With Mystical Approach

    Directory of Open Access Journals (Sweden)

    Fatemeh Musavi


    Full Text Available The expression Insan –e kamil (perfect man is often said to have first been used by Muhyiddin ibn 'Arabi (1165 -1240AD, though the concept of the term is much older. In his theosophical teaching, the doctrine of insan e- kamil, is held a prominent place. After him two other great Sufis, Aziz Nasafi (1300AD and 'Abd al- karim ibn Ibrahim al- Jili (1366 – 1424 AD, each wrote a work on this very issue. These works are regarded as explanations of Ibn Arabi’s teachings on human perfection. In Islamic mysticism, Perfect man is the one who within their soul possesses all God's names and attributes. Thus the perfect man’s existence, reality and inner might become a clear mirror and a complete reflection of the Perfection, Beauty and Glory of the Essence of the One, so that he becomes Godlike. However, the idea of human perfectibility going back to other religions and human schools even before Islam. In Abrahimic religions there are some joint teachings that could be considered as main statements for the doctrine of Perfect Man In Jewish scriptures the notion of human creation in God's image suggests that the human being is able to be God's like and the perfection is available to him. However, Jews do not believe a perfect man. They hold that even Moses is not a perfect man. In Christianity, Although Jesus encourages his followers to be perfect like their heavenly fathers, the doctrine of original sin to be considered as an obstacle for human perfectibility.This essay examines some significant element in human perfectibility from the view points of some scholars of Judaism, Christianity and Islam and presents some similarities and differences of their view points.

  19. Inter-Faith Reading of Perfect Man With Mystical Approach

    Directory of Open Access Journals (Sweden)

    Shaker, M.K


    Full Text Available The expression Insan –e kamil (perfect man is often said to have first been used by Muhyiddin ibn 'Arabi (1165 -1240AD, though the concept of the term is much older. In his theosophical teaching, the doctrine of insan e- kamil, is held a prominent place. After him two other great Sufis, Aziz Nasafi (1300AD and 'Abd al- karim ibn Ibrahim al- Jili (1366 – 1424 AD, each wrote a work on this very issue. These works are regarded as explanations of Ibn Arabi’s teachings on human perfection. In Islamic mysticism, Perfect man is the one who within their soul possesses all God's names and attributes. Thus the perfect man’s existence, reality and inner might become a clear mirror and a complete reflection of the Perfection, Beauty and Glory of the Essence of the One, so that he becomes Godlike. However, the idea of human perfectibility going back to other religions and human schools even before Islam. In Abrahimic religions there are some joint teachings that could be considered as main statements for the doctrine of Perfect Man In Jewish scriptures the notion of human creation in God's image suggests that the human being is able to be God's like and the perfection is available to him. However, Jews do not believe a perfect man. They hold that even Moses is not a perfect man. In Christianity, Although Jesus encourages his followers to be perfect like their heavenly fathers, the doctrine of original sin to be considered as an obstacle for human perfectibility.This essay examines some significant element in human perfectibility from the view points of some scholars of Judaism, Christianity and Islam and presents some similarities and differences of their view points.

  20. Inter-Faith Reading of Perfect Man With Mystical Approach

    Directory of Open Access Journals (Sweden)

    Mohammadkazem Shaker


    Full Text Available   The expression Insan –e kamil (perfect man is often said to have first been used by Muhyiddin ibn 'Arabi (1165 -1240AD, though the concept of the term is much older. In his theosophical teaching, the doctrine of insan e- kamil, is held a prominent place. After him two other great Sufis, Aziz Nasafi (1300AD and 'Abd al- karim ibn Ibrahim al- Jili (1366 – 1424 AD, each wrote a work on this very issue. These works are regarded as explanations of Ibn Arabi’s teachings on human perfection. In Islamic mysticism, Perfect man is the one who within their soul possesses all God's names and attributes. Thus the perfect man’s existence, reality and inner might become a clear mirror and a complete reflection of the Perfection, Beauty and Glory of the Essence of the One, so that he becomes Godlike. However, the idea of human perfectibility going back to other religions and human schools even before Islam. In Abrahimic religions there are some joint teachings that could be considered as main statements for the doctrine of Perfect Man In Jewish scriptures the notion of human creation in God's image suggests that the human being is able to be God's like and the perfection is available to him. However, Jews do not believe a perfect man. They hold that even Moses is not a perfect man. In Christianity, Although Jesus encourages his followers to be perfect like their heavenly fathers, the doctrine of original sin to be considered as an obstacle for human perfectibility.This essay examines some significant element in human perfectibility from the view points of some scholars of Judaism, Christianity and Islam and presents some similarities and differences of their view points.

  1. Directional perfect absorption using deep subwavelength low permittivity films

    CERN Document Server

    Luk, Ting S; Kim, Iltai; Feng, Simin; Jun, Young Chul; Liu, Sheng; Wright, Jeremy B; Brener, Igal; Catrysse, Peter B; Fan, Shanhui; Sinclair, Michael B


    We experimentally demonstrate single beam directional perfect absorption (to within experimental accuracy) of p-polarized light in the near-infrared using unpatterned, deep subwavelength films of indium tin oxide (ITO) on Ag. The experimental perfect absorption occurs slightly above the epsilon-near-zero (ENZ) frequency of ITO where the permittivity is less than one. Remarkably, we obtain perfect absorption for films whose thickness is as low as ~1/50th of the operating free-space wavelength and whose single pass attenuation is only ~ 5%. We further derive simple analytical conditions for perfect absorption in the subwavelength-film regime that reveal the constraints that the ITO permittivity must satisfy if perfect absorption is to be achieved. Then, to get a physical insight on the perfect absorption properties, we analyze the eigenmodes of the layered structure by computing both the real-frequency/complex-wavenumber and the complex-frequency/real-wavenumber modal dispersion diagrams. These analyses allow u...

  2. Perfect Hiding and Perfect Binding Universally Composable Commitment Schemes with Constant Expansion Factor

    DEFF Research Database (Denmark)

    Damgård, Ivan Bjerre; Nielsen, Jesper Buus


    Canetti and Fischlin have recently proposed the security notion universal composability for commitment schemes and provided two examples. This new notion is very strong. It guarantees that security is maintained even when an unbounded number of copies of the scheme are running concurrently, also ...... versions. These are the rst schemes to show that constant expansion factor, perfect hiding, and perfect binding can be obtained for universally composable commitments.......Canetti and Fischlin have recently proposed the security notion universal composability for commitment schemes and provided two examples. This new notion is very strong. It guarantees that security is maintained even when an unbounded number of copies of the scheme are running concurrently, also...... it guarantees non-malleability, resilience to selective decommitment, and security against adaptive adversaries. Both of their schemes uses (k) bits to commit to one bit and can be based on the existence of trapdoor commitments and non-malleable encryption. We present new universally composable commitment...

  3. Classical perfect diamagnetism: expulsion of current from the plasma interior. (United States)

    Mahajan, S M


    The vanishing of generalized helicity is shown to be the necessary and sufficient condition for a perfect conductor to display perfect diamagnetism, considered to be the defining attribute of a conventional superconductor. Although conventional superconductivity is brought about by quantum correlations in classical systems, prepared in the state of zero initial helicity (helicity is a constant of the motion for a perfect conductor), it can mimic the superconductor's behavior.

  4. Perfect 2-colorings of the generalized Petersen graph

    Indian Academy of Sciences (India)

    vertex of color i, the number of its neighbors of color j is equal to aij . The matrix A is called the parameter matrix of a perfect coloring. In the case m = 2, we call the first color white, and the second color black. Remark 2.3. In this paper, we consider all perfect 2-colorings, up to renaming the colors;. i.e, we identify the perfect ...

  5. Modern problems of perfection of elite light athletic sportsmen’s technical skillfulness perfection

    Directory of Open Access Journals (Sweden)

    Kolot A.V.


    Full Text Available Purpose: perfection of elite sportsmen’s technical skillfulness in competition kinds of light athletic. Material: the data of more than 60 literature sources were systemized. Expert questioning of 36 coaches, having experience of work with elite sportsmen, was carried out; documents of training process planning were analyzed as well as sportsmen’s diaries (n=244. Results: we have presented main principles of sportsmen’s technical skillfulness perfection and elucidated characteristics of technical training methodic. We have determined main priorities of technical training building for light athletes at every stage of many years’ perfection. Dynamic of competition practice volume has been found as well as main requirements to selection of training means of technical orientation. The data of bio-mechanical criteria of sportsmen’s technical skillfulness assessment have been supplemented. Conclusions: effectiveness of sportsmen’s training methodic is determined by realization of previous stages’ technical potential in final competition results. It can be achieved by determination of means of and methods of different orientation rational correlation.

  6. The physics of large deformation of crystalline solids

    CERN Document Server

    Bell, James F


    Historically, a major problem for the study of the large deformation of crystalline solids has been the apparent lack of unity in experimentally determined stress-strain functions. The writer's discovery in 1949 of the unexpectedly high velocity of incremental loading waves in pre-stressed large deformation fields emphasized to him the pressing need for the independent, systematic experimental study of the subject, to provide a firm foundation upon which physically plausible theories for the finite deformation of crystalline solids could be constructed. Such a study undertaken by the writer at that time and continued uninterruptedly to the present, led in 1956 to the development of the diffraction grating experiment which permitted, for the first time, the optically accurate determination of the strain-time detail of non-linear finite amplitude wave fronts propagating into crystalline solids whose prior history was precisely known. These experimental diffraction grating studies during the past decade have led...

  7. Perfect terahertz absorber using fishnet based metafilm

    Energy Technology Data Exchange (ETDEWEB)

    Azad, Abul Kalam [Los Alamos National Laboratory; Shchegolkov, Dmitry Yu [Los Alamos National Laboratory; Chen, Houtong [Los Alamos National Laboratory; Taylor, Antoinette [Los Alamos National Laboratory; Smirnova, E I [Los Alamos National Laboratory; O' Hara, John F [Los Alamos National Laboratory


    We present a perfect terahertz (THz) absorber working for a broad-angle of incidence. The two fold symmetry of rectangular fishnet structure allows either complete absorption or mirror like reflection depending on the polarization of incident the THz beam. Metamaterials enable the ability to control the electromagnetic wave in a unique fashion by designing the permittivity or permeability of composite materials with desired values. Although the initial idea of metamaterials was to obtain a negative index medium, however, the evolution of metamaterials (MMs) offers a variety of practically applicable devices for controlling electromagnetic wave such as tunable filters, modulators, phase shifters, compact antenna, absorbers, etc. Terahertz regime, a crucial domain of the electromagnetic wave, is suffering from the scarcity of the efficient devices and might take the advantage of metamaterials. Here, we demonstrate design, fabrication, and characterization of a terahertz absorber based on a simple fishnet metallic film separated from a ground mirror plane by a dielectric spacer. Such absorbers are in particular important for bolometric terahertz detectors, high sensitivity imaging, and terahertz anechoic chambers. Recently, split-ring-resonators (SRR) have been employed for metamaterial-based absorbers at microwave and THz frequencies. The experimental demonstration reveals that such absorbers have absorptivity close to unity at resonance frequencies. However, the downside of these designs is that they all employ resonators of rather complicated shape with many fine parts and so they are not easy to fabricate and are sensitive to distortions.

  8. Perfect crystal interferometer and its applications

    Energy Technology Data Exchange (ETDEWEB)

    Hasegawa, Yuji [Atominstitut der Oesterreichischen Universitaeten, Vienna (Austria)


    The interferometry with angstrom scale wavelength has developed steadily, and various types of interferometers have been investigated. Among them, LLL interferometers are widely used. The first neutron interferometry was achieved in 1962 by Maier-Leibnitz et al. A new type of neutron interferometers was constructed with a perfect crystal, and experimentally performed in 1974 by Rauch et al. The precise measurements with LLL neutron interferometers were performed on scattering length, gravitational effect, coherence, Fizeau effects, spin superposition, complementarity, and post-selection effects. Since the early stage of quantum physics, the double-slit experiment has served as the example of the epistemologically strange features of quantum phenomena, and its course of study is described. The time-delayed interferometry with nuclear resonant scattering of synchrotron radiation and phase transfer in time-delayed interferometry with nuclear resonant scattering were experimented, and are briefly reported. A geometric phase factor was derived for a split beam experiment as an example of cyclic evolution. The geometric phase was observed with a two-loop neutron interferometer. All the experimental results showed complete agreement with the theoretical treatment. (K.I.)

  9. Synthesis of New Liquid Crystalline Diglycidyl Ethers

    Directory of Open Access Journals (Sweden)

    Issam Ahmed Mohammed


    Full Text Available The phenolic Schiff bases I–VI were synthesized by condensation reactions between various diamines, namely o-dianisidine, o-tolidine and ethylenediamine with vanillin or p-hydroxybenzaldehyde and subsequent reactions between these phenolic Schiff bases and epichlorohydrin to produce new diglycidyl ethers Ia–VIa. The structures of these compounds were confirmed by CHN, FT-IR, 1H-NMR, and 13C-NMR spectroscopy. Their thermotropic liquid crystalline behavior was studied using differential scanning calorimetry (DSC and polarizing optical microscopy (POM. All the diglycidyl ethers prepared exhibit nematic mesophases, except for Va and VIa, which did not show any transition mesophases, but simply flow to liquids.

  10. Synthesis and measurements of the optical bandgap of single crystalline complex metal oxide BaCuV{sub 2}O{sub 7} nanowires by UV–VIS absorption

    Energy Technology Data Exchange (ETDEWEB)

    Shakir, Imran, E-mail: [Sustainable Energy Technologies Center, King Saudi University, PO-BOX 800, Riyadh 11421 (Saudi Arabia); Shahid, Muhammad [Sustainable Energy Technologies Center, King Saudi University, PO-BOX 800, Riyadh 11421 (Saudi Arabia); Aboud, Mohamed F.A. [Sustainable Energy Technologies Center, King Saudi University, PO-BOX 800, Riyadh 11421 (Saudi Arabia); Mining and Petroleum Engineering Department, Faculty of Engineering, Al-Azhar University, Nasr City 11371, Cairo (Egypt)


    Highlights: • Synthesis of single crystalline complex metal oxides BaCuV{sub 2}O{sub 7} nanowires. • Surfactant free, economically favorable chemical solution deposition method. • Complex metal oxides nanowires with controlled stoichiometry. • Simply controlling the temperature and thickness of the coated film, we can easily obtain high quality BaCuV{sub 2}O{sub 7} nanowires. - Abstract: The synthesis of single crystalline complex metal oxides BaCuV{sub 2}O{sub 7} nanowires were attained by using surfactant free, economically favorable chemical solution deposition method. A thin layer of BaCuV{sub 2}O{sub 7} nanocrystals is formed by the decomposition of complex metal oxide solution at 150 °C to provide nucleation sites for the growth of nanowires. The synthesized nanowires were typically 1–5 μm long with diameter from 50 to 150 nm. We showed that by simply controlling the temperature and thickness of the coated film, we can easily obtain high quality BaCuV{sub 2}O{sub 7} nanowires. The UV–VIS absorption spectra show indirect bandgap of 2.65 ± 0.05 eV of nanowires. The temperature-dependent resistances of BaCuV{sub 2}O{sub 7} nanowires agree with the exponential correlation, supporting that the conducting carriers are the quasi-free electrons. We believe that our methodology will provides a simple and convenient route for the synthesis of variety of complex metal oxides nanowires with controlled stoichiometry.

  11. A THz plasmonics perfect absorber and Fabry-Perot cavity mechanism (Conference Presentation) (United States)

    Zhou, Jiangfeng; Bhattarai, Khagendra; Silva, Sinhara; Jeon, Jiyeon; Kim, Junoh; Lee, Sang Jun; Ku, Zahyun


    The plasmonic metamaterial perfect absorber (MPA) is a recently developed branch of metamaterial which exhibits nearly unity absorption within certain frequency range.[1-6] The optically thin MPA possesses characteristic features of angular-independence, high Q-factor and strong field localization that have inspired a wide range of applications including electromagnetic wave absorption,[3, 7, 8] spatial[6] and spectral[5] modulation of light,[9] selective thermal emission,[9] thermal detecting[10] and refractive index sensing for gas[11] and liquid[12, 13] targets. In this work, we demonstrate a MPA working at terahertz (THz) regime and characterize it using an ultrafast THz time-domain spectroscopy (THz-TDS). Our study reveal an ultra-thin Fabry-Perot cavity mechanism compared to the impedance matching mechanism widely adopted in previous study [1-6]. Our results also shows higher-order resonances when the cavities length increases. These higher order modes exhibits much larger Q-factor that can benefit potential sensing and imaging applications. [1] C. M. Watts, X. L. Liu, and W. J. Padilla, "Metamaterial Electromagnetic Wave Absorbers," Advanced Materials, vol. 24, pp. 98-120, Jun 19 2012. [2] M. Hedayati, F. Faupel, and M. Elbahri, "Review of Plasmonic Nanocomposite Metamaterial Absorber," Materials, vol. 7, pp. 1221-1248, 2014. [3] N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, "Perfect metamaterial absorber," Physical Review Letters, vol. 100, p. 207402, May 23 2008. [4] H. R. Seren, G. R. Keiser, L. Cao, J. Zhang, A. C. Strikwerda, K. Fan, et al., "Optically Modulated Multiband Terahertz Perfect Absorber," Advanced Optical Materials, vol. 2, pp. 1221-1226, 2014. [5] D. Shrekenhamer, J. Montoya, S. Krishna, and W. J. Padilla, "Four-Color Metamaterial Absorber THz Spatial Light Modulator," Advanced Optical Materials, vol. 1, pp. 905-909, 2013. [6] S. Savo, D. Shrekenhamer, and W. J. Padilla, "Liquid Crystal Metamaterial Absorber Spatial

  12. Laterally inherently thin amorphous-crystalline silicon heterojunction photovoltaic cell

    Energy Technology Data Exchange (ETDEWEB)

    Chowdhury, Zahidur R., E-mail:; Kherani, Nazir P., E-mail: [Department of Electrical and Computer Engineering, University of Toronto, 10 King' s College Road, Toronto, Ontario M5S 3G4 (Canada)


    This article reports on an amorphous-crystalline silicon heterojunction photovoltaic cell concept wherein the heterojunction regions are laterally narrow and distributed amidst a backdrop of well-passivated crystalline silicon surface. The localized amorphous-crystalline silicon heterojunctions consisting of the laterally thin emitter and back-surface field regions are precisely aligned under the metal grid-lines and bus-bars while the remaining crystalline silicon surface is passivated using the recently proposed facile grown native oxide–plasma enhanced chemical vapour deposited silicon nitride passivation scheme. The proposed cell concept mitigates parasitic optical absorption losses by relegating amorphous silicon to beneath the shadowed metallized regions and by using optically transparent passivation layer. A photovoltaic conversion efficiency of 13.6% is obtained for an untextured proof-of-concept cell illuminated under AM 1.5 global spectrum; the specific cell performance parameters are V{sub OC} of 666 mV, J{sub SC} of 29.5 mA-cm{sup −2}, and fill-factor of 69.3%. Reduced parasitic absorption, predominantly in the shorter wavelength range, is confirmed with external quantum efficiency measurement.

  13. Laterally inherently thin amorphous-crystalline silicon heterojunction photovoltaic cell (United States)

    Chowdhury, Zahidur R.; Kherani, Nazir P.


    This article reports on an amorphous-crystalline silicon heterojunction photovoltaic cell concept wherein the heterojunction regions are laterally narrow and distributed amidst a backdrop of well-passivated crystalline silicon surface. The localized amorphous-crystalline silicon heterojunctions consisting of the laterally thin emitter and back-surface field regions are precisely aligned under the metal grid-lines and bus-bars while the remaining crystalline silicon surface is passivated using the recently proposed facile grown native oxide-plasma enhanced chemical vapour deposited silicon nitride passivation scheme. The proposed cell concept mitigates parasitic optical absorption losses by relegating amorphous silicon to beneath the shadowed metallized regions and by using optically transparent passivation layer. A photovoltaic conversion efficiency of 13.6% is obtained for an untextured proof-of-concept cell illuminated under AM 1.5 global spectrum; the specific cell performance parameters are VOC of 666 mV, JSC of 29.5 mA-cm-2, and fill-factor of 69.3%. Reduced parasitic absorption, predominantly in the shorter wavelength range, is confirmed with external quantum efficiency measurement.

  14. Perfect Information Games where Each Player Acts Only Once

    NARCIS (Netherlands)

    Cingiz, Kutay; Flesch, Janos; Herings, P. Jean-Jacques; Predtetchinski, Arkadi


    We study perfect information games played by an infinite sequence of players, each acting only once in the course of the game. We introduce a class of frequency-based minority games and show that these games admit no subgame perfect ϵ-equilibrium for small positive values of ϵ. Furthermore we derive

  15. Development of a perfect prognosis probabilistic model for ...

    Indian Academy of Sciences (India)

    A prediction model based on the perfect prognosis method was developed to predict the probability of lightning and probable time of its occurrence over the south-east Indian region. In the perfect prognosis method, statistical relationships are established using past observed data. For real time applications, the predictors ...

  16. The Ideology of the Perfect Dictionary: How Efficient Can a ...

    African Journals Online (AJOL)

    Not only have dictionary sales dramatically increased, but the variety of dictionaries and the competition between editors are also very much on the rise. Monolingual dictionaries attract native speakers for several ... Is the concept of a perfect dictionary a reality or an ideal? There is no perfect student. Language learners, for ...

  17. Collapsing a perfect superposition to a chosen quantum state without measurement.

    Directory of Open Access Journals (Sweden)

    Ahmed Younes

    Full Text Available Given a perfect superposition of [Formula: see text] states on a quantum system of [Formula: see text] qubits. We propose a fast quantum algorithm for collapsing the perfect superposition to a chosen quantum state [Formula: see text] without applying any measurements. The basic idea is to use a phase destruction mechanism. Two operators are used, the first operator applies a phase shift and a temporary entanglement to mark [Formula: see text] in the superposition, and the second operator applies selective phase shifts on the states in the superposition according to their Hamming distance with [Formula: see text]. The generated state can be used as an excellent input state for testing quantum memories and linear optics quantum computers. We make no assumptions about the used operators and applied quantum gates, but our result implies that for this purpose the number of qubits in the quantum register offers no advantage, in principle, over the obvious measurement-based feedback protocol.

  18. Refractive surgery: the future of perfect vision? (United States)

    Fong, C S


    The history of refractive eye surgery is recent, but has seen rapid advancement. Older technologies, such as radial keratectomy, had the problem of overcorrection and epithelial complications. Newer technologies, such as photorefractive keratectomy, laser-assisted in-situ keratomileusis (LASIK) and laser-assisted subepithelial keratomileusis (LASEK), which require the use of laser, has revolutionised eye surgery. However, there are complications, such as corneal hazing, postoperative pain, regression, and poorer correction for high myopes. If not contraindicated, wavefront analysis and femtosecond laser are useful adjuncts to laser photoablation for better visual results. Wavefront analysis improves the precision of laser photoablation by measuring the individual's wavefront aberrations, while femtosecond laser offers an instrument-free means of creating the corneal hinge. Lastly, implantation of intraocular lenses, with or without extraction of the crystalline lens, provides an alternative to laser photoablation for the treatment of high myopia. Clear lens exchange offers refractive correction to presbyopes and people with cataracts. However, complications, such as endothelial cell loss, cataract formation and retinal detachment, exist. In conclusion, refractive eye surgery provides an alternative to wearing spectacles or contact lenses. However, potential patients must be warned of the complications and long-term effects on the eyes.

  19. Construction of random perfect phylogeny matrix

    Directory of Open Access Journals (Sweden)

    Mehdi Sadeghi


    Full Text Available Mehdi Sadeghi1,2, Hamid Pezeshk4, Changiz Eslahchi3,5, Sara Ahmadian6, Sepideh Mah Abadi61National Institute of Genetic Engineering and Biotechnology, Tehran, Iran; 2School of Computer Science, 3School of Mathematics, Institute for Research in Fundamental Sciences (IPM, Tehran, Iran; 4School of Mathematics, Statistics and Computer Sciences, Center of Excellence in Biomathematics, College of Science, University of Tehran, Tehran, Iran; 5Department of Mathematics, Shahid Beheshti University, G.C., Tehran, Iran; 6Department of Computer Engineering, Sharif University of Technology, Tehran, IranPurpose: Interest in developing methods appropriate for mapping increasing amounts of genome-wide molecular data are increasing rapidly. There is also an increasing need for methods that are able to efficiently simulate such data.Patients and methods: In this article, we provide a graph-theory approach to find the necessary and sufficient conditions for the existence of a phylogeny matrix with k nonidentical haplotypes, n single nucleotide polymorphisms (SNPs, and a population size of m for which the minimum allele frequency of each SNP is between two specific numbers a and b.Results: We introduce an O(max(n2, nm algorithm for the random construction of such a phylogeny matrix. The running time of any algorithm for solving this problem would be Ω (nm.Conclusion: We have developed software, RAPPER, based on this algorithm, which is available at perfect phylogeny, minimum allele frequency (MAF, tree, recursive algorithm 

  20. Crystalline organomercuric acetates via organoboranes

    Energy Technology Data Exchange (ETDEWEB)

    Kunda, S.A.; Varma, R.S.; Kabalka, G.W.


    It is shown that the organomercuric acetates (OMA) can be synthesized rapidly using organomercury derivatives as intermediates. The OMAs can be readily prepared as crystalline solids. The reactions proceed with sufficient rapidity to make the synthesis useful for isotopic labelling of physiologically active compounds.

  1. On Ultrafast Photoconductivity Dynamics and Crystallinity of Black Silicon

    DEFF Research Database (Denmark)

    Porte, Hendrik Pieter; Turchinovich, Dmitry; Persheyev, Saydulla


    We investigate the carrier dynamics of thin films of black silicon, amorphous hydrogenated silicon which under laser annealing forms a microstructured surface with extremely high broadband optical absorption. We use Raman spectroscopy to determine the degree of crystallinity of the annealed surfa...... with high energy leading edge of the annealing laser results in black silicon with the largest photon-to-electron conversion efficiency, largest mobility, and longest carrier lifetime....

  2. Generic Crystalline Disposal Reference Case

    Energy Technology Data Exchange (ETDEWEB)

    Painter, Scott Leroy [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Chu, Shaoping [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Harp, Dylan Robert [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Perry, Frank Vinton [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Wang, Yifeng [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)


    A generic reference case for disposal of spent nuclear fuel and high-level radioactive waste in crystalline rock is outlined. The generic cases are intended to support development of disposal system modeling capability by establishing relevant baseline conditions and parameters. Establishment of a generic reference case requires that the emplacement concept, waste inventory, waste form, waste package, backfill/buffer properties, EBS failure scenarios, host rock properties, and biosphere be specified. The focus in this report is on those elements that are unique to crystalline disposal, especially the geosphere representation. Three emplacement concepts are suggested for further analyses: a waste packages containing 4 PWR assemblies emplaced in boreholes in the floors of tunnels (KBS-3 concept), a 12-assembly waste package emplaced in tunnels, and a 32-assembly dual purpose canister emplaced in tunnels. In addition, three failure scenarios were suggested for future use: a nominal scenario involving corrosion of the waste package in the tunnel emplacement concepts, a manufacturing defect scenario applicable to the KBS-3 concept, and a disruptive glaciation scenario applicable to both emplacement concepts. The computational approaches required to analyze EBS failure and transport processes in a crystalline rock repository are similar to those of argillite/shale, with the most significant difference being that the EBS in a crystalline rock repository will likely experience highly heterogeneous flow rates, which should be represented in the model. The computational approaches required to analyze radionuclide transport in the natural system are very different because of the highly channelized nature of fracture flow. Computational workflows tailored to crystalline rock based on discrete transport pathways extracted from discrete fracture network models are recommended.

  3. Light-induced circular birefringence in cyanoazobenzene side-chain liquid-crystalline polyester films

    DEFF Research Database (Denmark)

    Naydenova, I; Nikolova, L; Ramanujam, P.S.


    We report the inducement of large circular birefringence (optical activity) in films of a cyanoazobenzene side-chain liquid-crystalline polyester on illumination with circularly polarized light. The polyester has no chiral groups and is initially isotropic. The induced optical rotation is up to 5...

  4. Quantum cryptography with perfect multiphoton entanglement. (United States)

    Luo, Yuhui; Chan, Kam Tai


    Multiphoton entanglement in the same polarization has been shown theoretically to be obtainable by type-I spontaneous parametric downconversion (SPDC), which can generate bright pulses more easily than type-II SPDC. A new quantum cryptographic protocol utilizing polarization pairs with the detected type-I entangled multiphotons is proposed as quantum key distribution. We calculate the information capacity versus photon number corresponding to polarization after considering the transmission loss inside the optical fiber, the detector efficiency, and intercept-resend attacks at the level of channel error. The result compares favorably with all other schemes employing entanglement.

  5. Decagonal and quasi-crystalline tilings in medieval Islamic architecture. (United States)

    Lu, Peter J; Steinhardt, Paul J


    The conventional view holds that girih (geometric star-and-polygon, or strapwork) patterns in medieval Islamic architecture were conceived by their designers as a network of zigzagging lines, where the lines were drafted directly with a straightedge and a compass. We show that by 1200 C.E. a conceptual breakthrough occurred in which girih patterns were reconceived as tessellations of a special set of equilateral polygons ("girih tiles") decorated with lines. These tiles enabled the creation of increasingly complex periodic girih patterns, and by the 15th century, the tessellation approach was combined with self-similar transformations to construct nearly perfect quasi-crystalline Penrose patterns, five centuries before their discovery in the West.

  6. Scheme for achieving coherent perfect absorption by anisotropic metamaterials

    KAUST Repository

    Zhang, Xiujuan


    We propose a unified scheme to achieve coherent perfect absorption of electromagnetic waves by anisotropic metamaterials. The scheme describes the condition on perfect absorption and offers an inverse design route based on effective medium theory in conjunction with retrieval method to determine practical metamaterial absorbers. The scheme is scalable to frequencies and applicable to various incident angles. Numerical simulations show that perfect absorption is achieved in the designed absorbers over a wide range of incident angles, verifying the scheme. By integrating these absorbers, we further propose an absorber to absorb energy from two coherent point sources.

  7. Metamaterial perfect absorber based on artificial dielectric "atoms". (United States)

    Liu, Xiaoming; Bi, Ke; Li, Bo; Zhao, Qian; Zhou, Ji


    In this work, we numerically designed and then experimentally verified a metamaterial perfect absorber based on artificial dielectric "atoms". This metamaterial absorber is composed of dielectric ceramic material (SrTiO3) "atoms" embedded in a background matrix on a metal plate. The dielectric "atoms" couple strongly to the incident electric and magnetic fields at the Mie resonance mode, leading to the narrow perfect absorption band with simulated and experimental absorptivities of 99% and 98.5% at 8.96 GHz, respectively. The designed metamaterial perfect absorber is polarization insensitive and can operate in wide angle incidence.

  8. Coherent perfect absorber and laser modes in purely imaginary metamaterials (United States)

    Fu, Yangyang; Cao, Yanyan; Cummer, Steven A.; Xu, Yadong; Chen, Huanyang


    Conjugate metamaterials, in which the permittivity and the permeability are complex conjugates of each other, possess the elements of loss and gain simultaneously. By employing a conjugate metamaterial with a purely imaginary form, we propose a mechanism for realizing both coherent perfect absorber (CPA) and laser modes. Moreover, the general conditions for obtaining CPA and laser modes, including obtaining them simultaneously, are revealed by analyzing the wave scattering properties of a slab made of purely imaginary metamaterials (PIMs). Specifically, in a PIM slab with a subunity effective refractive index, the CPA mode can be simplified as a perfect absorption mode and the incident wave from one side could be perfectly absorbed.

  9. Programmable high crystallinity carbon patterns (United States)

    Wang, Xuewen; Wang, Hong; Gu, Yang; Fu, Wei; Zheng, Lu; Liu, Guowei; He, Yongmin; Long, Yi; Zhao, Wu; Zhang, Jie; Zhang, Ting; Liu, Zheng


    Carbon nanomaterials such as carbon nanotube and graphene are promising candidates for next-generation flexible electronics. However, the practical application of carbon electronics requires controlled fabrication of those materials with micro-patterned structures on flexible substrate at wafer-scale and low cost. Inspiring from the conventional photolithography process and pyrolysis of photoresist, herein, we demonstrate the synthesis of high-quality micro-patterned high crystallinity carbon. The method employed pre-patterned pyrolyzed photoresist as carbon precursors, in order to minimize the mobility of carbon during the high temperature growth, which results into high quality carbon patterns with a lateral resolution up to ~2 µm. The flexible carbon electronics are demonstrated by transferring the as-patterned high crystallinity carbon patterns to the flexible substrate, and showing asymmetric tensile-compressive response with high output resolution. These results will pave the way to the next-generation carbon-based flexible electronics and mechanical sensors.

  10. Ultra-narrow Band Perfect Absorber and Its Application as Plasmonic Sensor in the Visible Region (United States)

    Wu, Dong; Li, Ruifang; Liu, Yumin; Yu, Zhongyuan; Yu, Li; Chen, Lei; Liu, Chang; Ma, Rui; Ye, Han


    We propose and numerically investigate a perfect ultra-narrowband absorber with an absorption bandwidth of only 1.82 nm and an absorption efficiency exceeding 95% in the visible region. We demonstrate that the perfect ultra-narrowband absorption is ascribed to the coupling effect induced by localized surface plasmon resonance. The influence of structural dimensions on the optical performance is also investigated, and the optimal structure is obtained with the extremely low reflectivity (0.001) of the resonance dip. The perfect absorber can be operated as a refractive index sensor with a sensitivity of around 425 nm/RIU and the figure of merit (FOM) reaching 233.5, which greatly improves the accuracy of the plasmonic sensors in visible region. Moreover, the corresponding figure of merit (FOM*) for this sensor is also calculated to describe the performance of the intensity change detection at a fixed frequency, which can be up to 1.4 × 105. Due to the high sensing performance, the metamaterial structure has great potential in the biological binding, integrated photodetectors, chemical applications and so on.

  11. Biocompatibility of crystalline opal nanoparticles

    Directory of Open Access Journals (Sweden)

    Hernández-Ortiz Marlen


    Full Text Available Abstract Background Silica nanoparticles are being developed as a host of biomedical and biotechnological applications. For this reason, there are more studies about biocompatibility of silica with amorphous and crystalline structure. Except hydrated silica (opal, despite is presents directly and indirectly in humans. Two sizes of crystalline opal nanoparticles were investigated in this work under criteria of toxicology. Methods In particular, cytotoxic and genotoxic effects caused by opal nanoparticles (80 and 120 nm were evaluated in cultured mouse cells via a set of bioassays, methylthiazolyldiphenyl-tetrazolium-bromide (MTT and 5-bromo-2′-deoxyuridine (BrdU. Results 3T3-NIH cells were incubated for 24 and 72 h in contact with nanocrystalline opal particles, not presented significant statistically difference in the results of cytotoxicity. Genotoxicity tests of crystalline opal nanoparticles were performed by the BrdU assay on the same cultured cells for 24 h incubation. The reduction of BrdU-incorporated cells indicates that nanocrystalline opal exposure did not caused unrepairable damage DNA. Conclusions There is no relationship between that particles size and MTT reduction, as well as BrdU incorporation, such that the opal particles did not induce cytotoxic effect and genotoxicity in cultured mouse cells.

  12. Perfection and the Bomb: Nuclear Weapons, Teleology, and Motives. (United States)

    Brummett, Barry


    Uses Kenneth Burke's theory of perfection to explore the vocabularies of nuclear weapons in United States public discourse and how "the Bomb" as a God term has gained imbalanced ascendancy in centers of power. (MS)

  13. On the Cell Probe Complexity of Membership and Perfect Hashing

    DEFF Research Database (Denmark)

    Pagh, Rasmus


    We study two fundamental static data structure problems, membership and perfect hashing, in Yao's cell probe model. The first space and bit probe optimal worst case upper bound is given for the membership problem. We also give a new efficient membership scheme where the query algorithm makes just...... one adaptive choice, and probes a total of three words. A lower bound shows that two word probes generally do not suffice. For minimal perfect hashing we show a tight bit probe lower bound, and give a simple scheme achieving this performance, making just one adaptive choice. Linear range perfect...... hashing is shown to be implementable with the same number of bit probes, of which just one is adaptive. In contrast, we establish that for sufficiently sparse sets, non-adaptive perfect hashing needs exponentially more bit probes. This is the first such separation of adaptivity and non-adaptivity....

  14. Perfect pitch and the implicit/explicit distinction


    Macpherson, F.


    This paper examines the representationalist view of experiences in the light of the phenomena of perfect and relative pitch. Two main kinds of representationalism are identified - environment-based and cognitive role-based. It is argued that to explain the relationship between the two theories a distinction should be drawn between various types of implicit and explicit content. When investigated, this distinction sheds some light on the difference between the phenomenology of perfect and rela...

  15. Dual band metamaterial perfect absorber based on artificial dielectric ?molecules?


    Xiaoming Liu; Chuwen Lan; Bo Li; Qian Zhao; Ji Zhou


    Dual band metamaterial perfect absorbers with two absorption bands are highly desirable because of their potential application areas such as detectors, transceiver system, and spectroscopic imagers. However, most of these dual band metamaterial absorbers proposed were based on resonances of metal patterns. Here, we numerically and experimentally demonstrate a dual band metamaterial perfect absorber composed of artificial dielectric ?molecules? with high symmetry. The artificial dielectric ?mo...

  16. Observation of ultrahigh mobility surface states in a topological crystalline insulator by infrared spectroscopy. (United States)

    Wang, Ying; Luo, Guoyu; Liu, Junwei; Sankar, R; Wang, Nan-Lin; Chou, Fangcheng; Fu, Liang; Li, Zhiqiang


    Topological crystalline insulators possess metallic surface states protected by crystalline symmetry, which are a versatile platform for exploring topological phenomena and potential applications. However, progress in this field has been hindered by the challenge to probe optical and transport properties of the surface states owing to the presence of bulk carriers. Here, we report infrared reflectance measurements of a topological crystalline insulator, (001)-oriented Pb 1-x Sn x Se in zero and high magnetic fields. We demonstrate that the far-infrared conductivity is unexpectedly dominated by the surface states as a result of their unique band structure and the consequent small infrared penetration depth. Moreover, our experiments yield a surface mobility of 40,000 cm 2  V -1  s -1 , which is one of the highest reported values in topological materials, suggesting the viability of surface-dominated conduction in thin topological crystalline insulator crystals. These findings pave the way for exploring many exotic transport and optical phenomena and applications predicted for topological crystalline insulators.Probing optical and transport properties of the surface states in topological crystalline insulators remains a challenge. Here, Wang et al. demonstrate that the far-infrared conductivity of Pb 1-x Sn x Se (x = 0.23-0.25) single crystals is dominated by the surface states where carriers show a high surface mobility of 40,000 cm 2  V -1  s -1 .

  17. Creation of a new eye lens crystallin (Gambeta) through structure-guided mutagenic grafting of the surface of betaB2 crystallin onto the hydrophobic core of gammaB crystallin. (United States)

    Kapoor, Divya; Singh, Balvinder; Subramanian, Karthikeyan; Guptasarma, Purnananda


    The degree of conservation of three-dimensional folds in protein superfamilies is greater than that of amino acid sequences. Therefore, very different groups of residues (and schemes of residue packing) can be found displayed upon similar structural scaffolds. We have previously demonstrated the workability of a protein engineering-based method for rational mixing of the interior features of an all-beta enzyme with the substrate-binding and catalytic (surface) features of another enzyme whose sequence is not similar but which is structurally homologous to the first enzyme. Here, we extend this method to whole-protein surfaces and interiors. We show how two all-beta Greek key proteins, betaB2 crystallin and gammaB crystallin, can be recombined to produce a new protein through rational transplantation of the entire surface of betaB2 crystallin upon the structure of gammaB crystallin, without altering the latter's interior. This new protein, Gambeta, consists of 61 residues possessing the same identity at structurally equivalent positions in betaB2- and gammaB crystallin, 91 surface residues unique to betaB2 crystallin, and 27 interior residues unique to gammaB crystallin. Gambeta displays a mixture of the structural/biochemical characteristics, surface features and colligative properties of its progenitor crystallins. It also displays optical properties common to both progenitor crystallins (i.e. retention of transparency at high concentrations, as well as high refractivity). The folding of a protein with such a 'patchwork' residue ancestry suggests that interior/surface transplants involving all-beta proteins are a feasible engineering strategy.

  18. Tailoring Crystallinity of Electrospun Plla Fibres by Control of Electrospinning Parameters

    Directory of Open Access Journals (Sweden)

    Olubayode Ero-Phillips


    Full Text Available Poly(L-lactic acid (PLLA fibers were fabricated by electrospinning. The effects of various electrospinning process parameters on the thermal properties, especially the crystallinity of the electrospun fibers were investigated. Thermal analysis of the fibers revealed that they exhibited degree of crystallinity ranging from 23% to 46% while that for the as-received granules was approximately 37%, suggesting that the crystallinity of electrospun PLLA fibres can be controlled by optimizing the electrospinning process. This finding is very important because crystallinity affects polymer properties such as degradation, stiffness, yield stress, modulus and tensile strength, solubility, optical and electrical properties which will in turn affect the behavior of these materials when they are utilized in energy, environment, defense and security applications. The results presented in this paper show that the degree of crystallinity of the electrospun fibers decreased with increasing the polymer solution concentration. Furthermore, an optimum electrospinning voltage at which maximum degree of crystallinity can be obtained was observed. At voltages higher or lower than the optimum electrospinning voltage, the degree of crystallinity will decrease or increase, respectively. The effect of the needle tip to collector distance (NTCD on the degree of crystallinity follows no predictable and consistent pattern.

  19. Studies on the effect of polymer coating on solution grown hygroscopic non-linear optical single crystal of L-lysine monohydrochloride. (United States)

    Rani, Neelam; Vijayan, N; Maurya, K K; Haranath, D; Saini, Parveen; Rathi, Brijesh; Wahab, M A; Bhagavanarayana, G


    Nonlinear optical single crystals are getting attention because of its enormous applications in the area of fiber optic communication and optical signal processing. In this article, we are reporting the single crystal growth of l-lysine monohydrochloride by slow evaporation solution growth technique, by using double distilled water as the solvent. We found that the grown single crystal is bulk in size and fairly transparent. But after a period of time, due to its hygroscopic nature, the transparency is completely vanished and became opaque. Then we have attempted to coat the poly methyl methacrylate (PMMA) polymer on the surface of l-lysine monohydrochloride (l-LMHCL) single crystal by dip coating method. This polymer coating is giving resistance to hygroscopic nature and also acting as thin protective covering layer without affecting the other properties. Then we have systematically studied the different properties of bare, polymer coated and hygroscopic l-LMCHL single crystals. Its crystalline perfection was examined by high resolution X-ray diffractometer and found major differences in crystalline quality. Its structural and optical behavior was assessed by powder X-ray diffraction, UV-vis and luminescence analyses. Copyright © 2012 Elsevier B.V. All rights reserved.

  20. Liquid crystalline polymer electrolyte membranes with ion gating properties (United States)

    Cao, Jinwei; Piedrahita, Camilo; Koterasawa, Kagami; Freedman, Abegel; Martins, Juliana; Kyu, Thein; Pugh, Coleen; Adachi, Kaoru; Tsukahara, Yasuhisa

    Polymer electrolyte membranes (PEMs) with ion conducting channels have been fabricated via photo-polymerization of liquid crystalline monomers, synthesized in our laboratory. The monomers consist of polyethylene glycol segments as the ion conduction medium and photoactive azobenzene mesogen. Guided by the phase diagram of azobenzene LC and nematic LC, ion conducting channels are formed in the liquid crystalline phases. Ionic conductivities of the azobenzene LCs were measured in trans-state and cis-state using AC impedance spectroscopy. By applying UV or visible light, the opening/closing of ion channels may be controlled through rapid trans-cis isomerization of azobenzene mesogen by light irradiation. Therefore, the ion conduction ability of the PEMs can be optically controlled, affording ion gating capability of the PEMs. These PEMs can act as the ion conducting channels on cell membranes and, therefore, may be used to construct artificial neurons. Supported by NSF-DMR 1502543.

  1. Growth and modelling of spherical crystalline morphologies of molecular materials (United States)

    Shalev, O.; Biswas, S.; Yang, Y.; Eddir, T.; Lu, W.; Clarke, R.; Shtein, M.


    Crystalline, yet smooth, sphere-like morphologies of small molecular compounds are desirable in a wide range of applications but are very challenging to obtain using common growth techniques, where either amorphous films or faceted crystallites are the norm. Here we show solvent-free, guard flow-assisted organic vapour jet printing of non-faceted, crystalline microspheroids of archetypal small molecular materials used in organic electronic applications. We demonstrate how process parameters control the size distribution of the spheroids and propose an analytical model and a phase diagram predicting the surface morphology evolution of different molecules based on processing conditions, coupled with the thermophysical and mechanical properties of the molecules. This experimental approach opens a path for exciting applications of small molecular organic compounds in optical coatings, textured surfaces with controlled wettability, pharmaceutical and food substance printing and others, where thick organic films and particles with high surface area are needed.

  2. L2 acquisition of English present perfect interpretations

    Directory of Open Access Journals (Sweden)

    Sviatlana Karpava


    Full Text Available The present study investigates the role of first language (L1, in our case Cypriot Greek (CG or Standard Greek (SG, in the second language (L2 acquisition of English present perfect in terms of form and meaning possibilities. With respect to native speakers of CG in particular, the primary goal is to determine whether transfer from the mother-tongue, in which present perfect has only a resultative reading and simple past a resultative, an existential or a definite reading, influences the acquisition of the English present perfect. It is assumed that L2 acquisition involves establishing connections between the semantic properties/overt markers for each reading and the English present perfect. Diagnostic tests proposed by Agouraki (2006 are employed in this study, based on the (incompatibility of certain types of adverbial markers with the existential reading and the resultative reading, respectively, as well as on the distinct semantic properties of the two readings. Almost 400 participants took part in this research. The results show that there is a certain effect of L1 on the L2 acquisition of English present perfect by CG- and SG-speaking pupils, which is argued to be mainly due to the different patterns of meanings and forms in CG, SG and English.

  3. Whole or incomplete: the myth of body perfection

    Directory of Open Access Journals (Sweden)

    Abha Khetarpal


    Full Text Available The media’s and society’s prejudice in favor of ‘ablesim’ propagates the myth of body perfection. As a result we pursue perfection – the concept of ableism invades our minds as well as our culture and we all succumb to it’s lure. Disability is socially constructed; it is ableism that compels people to believe that perfection is normal. This belief is nothing less than social oppression. Even the rehabilitation therapies send out strong signals that persons with disabilities are ‘deficient’ and ‘abnormal’, and that to become a "valued" person they would have to overcome their disabilities. Since the physical component of self-concept is important in maintenance of health and in identity formation, such pressures can lead to a distortion of self-concept. The desire for human perfection can lead to medical conditions such as obsessive compulsive disorder, anorexia nervosa, or depression. It can also impact our understanding of what it means to be human and what signifies a perfect or happy life. This article expounds on why we must achieve, value, and polish psychological maturity through awareness, self-regulation, and honesty.

  4. [Crystalline lens photodisruption using femtosecond laser: experimental study]. (United States)

    Chatoux, O; Touboul, D; Buestel, C; Balcou, P; Colin, J


    The aim of this study was to analyze the interactions during femtosecond (fs) laser photodisruption in ex vivo porcine crystalline lenses and to study the parameters for laser interaction optimization. An experimental femtosecond laser was used. The laser characteristics were: 1030 nm wavelength; pulse duration, 400 fs; and numerical aperture, 0.13. Specific software was created to custom and monitor any type of photoablation pattern for treatment purposes. Porcine crystalline lenses were placed in an open sky holder filled with physiological liquid (BSS) covered by a glass plate. A numerical camera was associated with metrological software in order to magnify and quantify the results. Transmission electron microscopy (TEM) was performed on some samples to identify the microscopic plasma interactions with the lens. The optimization of parameters was investigated in terms of the optical breakdown threshold, the sizing of interactions, and the best pattern for alignments. More than 150 crystalline lenses of freshly enucleated pigs were treated. The optical breakdown threshold (OBT) was defined as the minimal energy level per pulse necessary to observe a physical interaction. In our study, the OBT varied according to the following parameters: the crystalline lens itself, varying from 4.2 to 7.6 μJ (mean, 5.1 μJ), and the depth of laser focus, varying up to 1 μJ, increasing in the depth of the tissue. Analyzing the distance between impacts, we observed that the closer the impacts were the less power was needed to create a clear well-drawn defect pattern (lines), i.e., with a 4-μJ optimized OBT, when the impacts were placed every 2 μm for the x,y directions and 60 μm for the z direction. Coalescent bubbles created by plasma formation always disappeared in less than 24h. The nonthermal effect of plasma and the innocuousness on surrounding tissues were proven by the TEM results. The crystalline lens photodisruption by the femtosecond laser seems an innovative

  5. Excitonically Coupled States in Crystalline Coordination Networks. (United States)

    Haldar, Ritesh; Mazel, Antoine; Joseph, Reetu; Adams, Michael; Howard, Ian A; Richards, Bryce S; Tsotsalas, Manuel; Redel, Engelbert; Diring, Stéphane; Odobel, Fabrice; Wöll, Christof


    When chromophores are brought into close proximity, noncovalent interactions (π-π/CH-π) can lead to the formation of excitonically coupled states, which bestow new photophysical properties upon the aggregates. Because the properties of the new states not only depend on the strength of intermolecular interactions, but also on the relative orientation, supramolecular assemblies, where these parameters can be varied in a deliberate fashion, provide novel possibilities for the control of photophysical properties. This work reports that core-substituted naphthalene diimides (cNDIs) can be incorporated into surface-mounted metal- organic structures/frameworks (SURMOFs) to yield optical properties strikingly different from conventional aggregates of such molecules, for example, formed in solution or by crystallization. Organic linkers are used, based on cNDIs, well-known organic chromophores with numerous applications in different optoelectronic devices, to fabricate MOF thin films on transparent substrates. A thorough characterization of the properties of these highly ordered chromophoric assemblies reveals the presence of non-emissive excited states in the crystalline material. Structural modulations provide further insights into the nature of the coupling that gives rise to an excited-state energy level in the periodic structure. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Perfect control of reflection and refraction using spatially dispersive metasurfaces

    CERN Document Server

    Asadchy, V S; Tcvetkova, S N; Díaz-Rubio, A; Ra'di, Y; Tretyakov, S A


    Non-uniform metasurfaces (electrically thin composite layers) can be used for shaping refracted and reflected electromagnetic waves. However, known design approaches based on the generalized refraction and reflection laws do not allow realization of perfectly performing devices: there are always some parasitic reflections into undesired directions. In this paper we introduce and discuss a general approach to the synthesis of metasurfaces for full control of transmitted and reflected fields and show that perfect performance can be realized. The method is based on the use of an equivalent impedance matrix model which connects the tangential field components at the two sides on the metasurface. With this approach we are able to understand what physical properties of the metasurface are needed in order to perfectly realize the desired response. Furthermore, we determine the required polarizabilities of the metasurface unit cells and discuss suitable cell structures. It appears that only spatially dispersive metas...

  7. Dual band metamaterial perfect absorber based on Mie resonances

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Xiaoming; Lan, Chuwen; Li, Bo; Zhou, Ji, E-mail: [State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing 100084 (China); Bi, Ke [School of Science, Beijing University of Posts and Telecommunications, Beijing 100876 (China); Zhao, Qian [State Key Lab of Tribology, Department of Precision Instruments and Mechanology, Tsinghua University, Beijing 100084 (China)


    We numerically and experimentally demonstrated a polarization insensitive dual-band metamaterial perfect absorber working in wide incident angles based on the two magnetic Mie resonances of a single dielectric “atom” with simple structure. Two absorption bands with simulated absorptivity of 99% and 96%, experimental absorptivity of 97% and 94% at 8.45 and 11.97 GHz were achieved due to the simultaneous magnetic and electric resonances in dielectric “atom” and copper plate. Mie resonances of dielectric “atom” provide a simple way to design metamaterial perfect absorbers with high symmetry.

  8. Dual band metamaterial perfect absorber based on artificial dielectric "molecules". (United States)

    Liu, Xiaoming; Lan, Chuwen; Li, Bo; Zhao, Qian; Zhou, Ji


    Dual band metamaterial perfect absorbers with two absorption bands are highly desirable because of their potential application areas such as detectors, transceiver system, and spectroscopic imagers. However, most of these dual band metamaterial absorbers proposed were based on resonances of metal patterns. Here, we numerically and experimentally demonstrate a dual band metamaterial perfect absorber composed of artificial dielectric "molecules" with high symmetry. The artificial dielectric "molecule" consists of four "atoms" of two different sizes corresponding to two absorption bands with near unity absorptivity. Numerical and experimental absorptivity verify that the dual-band metamaterial absorber is polarization insensitive and can operate in wide-angle incidence.

  9. Nonexistence of pure S- and P-polarized surface waves at the interface between a perfect dielectric and a real metal

    NARCIS (Netherlands)

    El Gawhary, O.; Adam, A.J.L.; Urbach, H.P.


    It is known that, at optical frequencies, a simple interface between a perfect dielectric and a real metal can sustain the propagation of surface plasmon polaritons only for P-polarized electromagnetic waves, being S-polarized surface plasmons are prohibited. In this work, we formally show that,

  10. The effect of a cholesterol liquid crystalline structure on osteoblast cell behavior

    Energy Technology Data Exchange (ETDEWEB)

    Xu Jianping; Ji Jian; Shen Jiacong, E-mail: [Department of Polymer Science, Key Laboratory of Macromolecule Synthesis and Functionalization of Minster of Education, Zhejiang University, Hangzhou, 310027 (China)


    To investigate the effect of a liquid crystalline structure on cell behavior, polymethylsiloxane-graft-(10-cholesteryloxydecanol) was specially designed to get a thermotropic liquid crystalline polymer. Results of Fourier transform infrared (FT-IR) spectroscopy, proton nuclear magnetic resonance ({sup 1}H-NMR) spectroscopy and gel permeation chromatography (GPC) indicated that cholesterol was successfully covalently grafted onto polymethylhydrosiloxane via decamethylene 'flexible spacer'. Differential scanning calorimetry (DSC) and polarized optical microscopy (POM) investigations revealed that the copolymer with 44.9% mesogenic unit showed obvious thermotropic liquid crystalline transition at about 124.9 deg. C. Polymer films were prepared by spin coating on clean glass plates from 5 mg ml{sup -1} toluene solutions of the copolymers. The POM investigation indicated that while the unannealed films (SC15, SC45) showed no liquid crystalline structure, the films which were annealed in vacuo at 140 deg. C for 9 h and then quenched to room temperature (SC15C, SC45C) formed discrete island-like liquid crystalline and continuous liquid crystalline structures, respectively. Osteoblast cells (MC3T3) were chosen to test the cell behavior of annealed and unannealed films. In comparison to unannealed films, the annealed films with a cholesterol liquid crystalline structure could promote osteoblast cell attachment and growth significantly.

  11. The Meaning of the Perfective Aspect in Russian. (United States)

    Ferrell, James


    Descriptions of the perfective aspect in Russian taken from Miklosich, Saxmatov, Peskovsky, Fortunatov, and Karcevskij serve as background reading to the author's discussion of the problem. He explores three basic questions: (1) Is aspect a Russian problem in grammar or lexicography; (2) What is the nature of the correlation between the perfective…

  12. Perfect fluid cosmological Universes: One equation of state and the ...

    Indian Academy of Sciences (India)

    Anadijiban Das


    Jan 4, 2018 ... Perfect fluid; equation of state; cosmological solutions. PACS Nos 04.20.−q; 98.80.−k. 1. Introduction. During the present century, a large number of observa- tional results point to the overall regularities, which are global rather than local. The simplest and the most ele- gant assumption is that, our Universe ...

  13. Perfect Power Prototype for Illinois Institute of Technology

    Energy Technology Data Exchange (ETDEWEB)

    Shahidehpour, Mohammad [Illinois Inst. Of Technology, Chicago, IL (United States)


    Starting in October 2008, Illinois Institute of Technology (IIT), in collaboration with over 20 participating members, led an extensive effort to develop, demonstrate, promote, and commercialize a microgrid system and offer supporting technologies that will achieve Perfect Power at the main campus of IIT. A Perfect Power system, as defined by the Galvin Electricity Initiative (GEI), is a system that cannot fail to meet the electric needs of the individual end-user. The Principle Investigator of this Perfect Power project was Dr. Mohammad Shahidehpour, Director of the Robert W. Galvin Center for Electricity Innovation at IIT. There were six overall objectives of the Perfect Power project: (1) Demonstrate the higher reliability introduced by the microgrid system at IIT; (2) Demonstrate the economics of microgrid operations; (3) Allow for a decrease of fifty percent (50%) of grid electricity load; (4) Create a permanent twenty percent (20%) decrease in peak load from 2007 level; (5) Defer planned substation through load reduction; (6) Offer a distribution system design that can be replicated in urban communities.

  14. Diamagnetic expansions for perfect quantum gases II: uniform bounds

    DEFF Research Database (Denmark)

    Philippe, Briet; Cornean, Horia; Louis, Delphine

    Consider a charged, perfect quantum gas, in the effective mass approximation, and in the grand-canonical ensemble. We prove in this paper that the generalized magnetic susceptibilities admit the thermodynamic limit for all admissible fugacities, uniformly on compacts included in the analyticity d...

  15. Arbitrarily thin metamaterial structure for perfect absorption and giant magnification

    DEFF Research Database (Denmark)

    Jin, Yi; Xiao, Sanshui; Mortensen, N. Asger


    layer can perfectly absorb or giantly amplify an incident plane wave at a critical angle when the real parts of the permittivity and permeability of the metamaterial are zero while the absolute imaginary parts can be arbitrarily small. The metamaterial layer needs a totally reflective substrate...

  16. An improved perfectly matched layer in the eigenmode expansion technique

    DEFF Research Database (Denmark)

    Gregersen, Niels; Mørk, Jesper


    When employing the eigenmode expansion technique (EET), parasitic reflections at the boundary of the computational domain can be suppressed by introducing a perfectly matched layer (PML). However, the traditional PML, suffers from an artificial field divergence limiting its usefulness. We propose...

  17. Perfect Worlds : Utopian Fiction in China and the West

    NARCIS (Netherlands)

    Fokkema, Douwe


    Perfect Worlds biedt een uitgebreide historische analyse van utopische verhalen in de Chinese en Euro-Amerikaanse traditie. Verschillende hoofdstukken gaan onder meer in op de kritiek van Thomas More op Plato, de Europese oriëntalistische speurtocht naar utopieën in China, Dostoevsky’s reactie op

  18. The perfective and imperfective aspects in Xhosa | Savić ...

    African Journals Online (AJOL)

    The present corpus study aims to investigate the semantics of the perfective and the imperfective aspects in Xhosa. In a large number of studies that investigate tense and aspect in the Nguni languages, the observations are mostly based on invented, context-free sentences, which do not necessarily reflect the complex ...

  19. Singularity free non-rotating cosmological solutions for perfect fluids ...

    Indian Academy of Sciences (India)

    It is an attempt to explore non-singular cosmological solutions with non-rotating perfect fluids with =kρ. The investigation strongly indicates that there is no solution of the above type other than already known. It is hoped that this result may be rigorously proved in future.

  20. Designing the Perfect Plant: Activities to Investigate Plant Ecology (United States)

    Lehnhoff, Erik; Woolbaugh, Walt; Rew, Lisa


    Plant ecology is an important subject that often receives little attention in middle school, as more time during science classes is devoted to plant biology. Therefore, the authors have developed a series of activities, including a card game--Designing the Perfect Plant--to introduce student's to plant ecology and the ecological trade offs…

  1. The Perfective Past Tense in Greek Adolescents with Down Syndrome (United States)

    Stathopoulou, Nikolitsa; Clahsen, Harald


    This study investigates the ability of a group of eight Greek-speaking adolescents with Down Syndrome (DS) (aged 12.1-18.7) to handle the perfective past tense using an acceptability judgement task. The performance of the DS participants was compared with that of 16 typically-developing children whose chronological age was matched with the mental…

  2. Reflection of plane waves in an initially stressed perfectly ...

    Indian Academy of Sciences (India)

    Reflection of plane waves is studied at a free surface of a perfectly conducting transversely isotropic elastic solid half-space with initial stress. The governing equations are solved to obtain the velocity equation which indicates the existence of two quasi planar waves in the medium. Reflection coefficients and energy.

  3. Low-frequency scattering from two-dimensional perfect conductors

    DEFF Research Database (Denmark)

    Hansen, Thorkild; Yaghjian, A.D


    Exact expressions have been obtained for the leading terms in the low-frequency expansions of the far fields scattered from three different types of two-dimensional perfect conductors: a cylinder with finite cross section, a cylindrical bump on an infinite ground plane, and a cylindrical dent...

  4. Indefinite and Continuative Interpretations of the English Present Perfect

    Directory of Open Access Journals (Sweden)

    Katarina Dea Žetko


    Full Text Available The objective of our paper is to demonstrate that the English present perfect is not by inherent meaning either indefinite or continuative. Notions like indefinite and continuative are contextdependent interpretations of whole constructions and their broader context. However, continuative interpretation can also be triggered by certain adverbials, negative constructions and verbs in the progressive form. But, even these factors do not always guarantee continuative interpretations. Construction, continuative meaning can be cancelled by the context in a broader sense, this fact being a proof that this meaning is merely an implicature. We will demonstrate how different factors interact and trigger either indefinite or continuative interpretations which are not inherent in the present perfect itself. Our paper will attempt to provide sufficient evidence that there is no indefinite/continuative distinction in the English present perfect, the inherent meaning or function of the present perfect is merely to locate the situation somewhere within a period that starts before the time of utterance and leads up to it.

  5. The Perfect Storm--Genetic Engineering, Science, and Ethics (United States)

    Rollin, Bernard E.


    Uncertainty about ethics has been a major factor in societal rejection of biotechnology. Six factors help create a societal "perfect storm" regarding ethics and biotechnology: Social demand for ethical discussion; societal scientific illiteracy; poor social understanding of ethics; a "Gresham's Law for Ethics;" Scientific…

  6. The Perfect Storm—Genetic Engineering, Science, and Ethics (United States)

    Rollin, Bernard E.


    Uncertainty about ethics has been a major factor in societal rejection of biotechnology. Six factors help create a societal "perfect storm" regarding ethics and biotechnology: Social demand for ethical discussion; societal scientific illiteracy; poor social understanding of ethics; a "Gresham's Law for Ethics;" Scientific Ideology; vested interests dominating ethical discussion. How this can be remedied is discussed.

  7. Our Work Done Well Is Like the Perfect Pitch (United States)

    Rasmussen, Claudette; Hopkins, Susan; Fitzpatrick, Michele


    A carefully developed, comprehensive professional development plan takes time, energy, and coordination of resources, but when it's done well, it can seem as effortless as a perfectly pitched curve ball. Seven steps, each with a set of guiding questions, can help planners meet the goal and create a program that produces results. [Appended to this…

  8. Bianchi type-I massive string magnetized barotropic perfect fluid ...

    Indian Academy of Sciences (India)

    Bianchi type-I massive string cosmological model for perfect fluid distribution in the presence of magnetic field is investigated in Rosen's [Gen. Relativ. Gravit. 4, 435 (1973)] bimetric theory of gravitation. To obtain the deterministic model in terms of cosmic time, we have used the condition A = ( B C ) n , where n is a constant, ...

  9. Work as a Perfection of the Human Person: A Philosophico ...

    African Journals Online (AJOL)

    Hannah Arendt the French philosopher understands work as having a self perfective dimension. Plato in his Republic groups the organization of his political society according to the work every group does. This paper footnotes Paul's instruction to the Thessalonians to project work as part and parcel of man. It views work as ...

  10. Inhomogeneous generalizations of Bianchi type VIh models with perfect fluid (United States)

    Roy, S. R.; Prasad, A.


    Inhomogeneous universes admitting an Abelian G2 of isometry and filled with perfect fluid have been derived. These contain as special cases exact homogeneous universes of Bianchi type VIh. Many of these universes asymptotically tend to homogeneous Bianchi VIh universes. The models have been discussed for their physical and kinematical behaviors.

  11. Overemphasis on Perfectly Competitive Markets in Microeconomics Principles Textbooks (United States)

    Hill, Roderick; Myatt, Anthony


    Microeconomic principles courses focus on perfectly competitive markets far more than other market structures. The authors examine five possible reasons for this but find none of them sufficiently compelling. They conclude that textbook authors should place more emphasis on how economists select appropriate models and test models' predictions…

  12. Crystalline deposits in the macula - tamoxifen maculopathy or macular telangiectasia? (United States)

    Rijal, Roshija Khanal; Nakhwa, Chinmay; Sindal, Manavi D


    Tamoxifen citrate is an anti-estrogen agent used in the treatment of breast carcinoma. Crystalline maculopathy is a rare complication of tamoxifen therapy. The clinical picture resembles that of idiopathic macular telangiectasia (IMT) Type 2, which is a more common clinical entity. To report a case of crystalline maculopathy secondary to tamoxifen and highlight the importance of the medical history and investigations in differentiating it from IMT Type 2. A diabetic female with a past history of breast carcinoma treated with tamoxifen came to the hospital for a routine eye check-up. Crystalline deposits were seen in the parafoveal region in both the eyes.The spectral domain optical coherence tomography (SD-OCT) showed foveal cysts in the inner retinal layer and fundus autofluorescence (FAF) and fundus fluorescein angiography (FFA) were within normal limits. While tamoxifen maculopathy is reversible on stopping the therapy, IMT needs a long-term follow-up to monitor the potential risk of loss of vision due to choroidal neovascularization, hence necessitating the distinction between these two different clinical entities.

  13. Do Musicians with Perfect Pitch Have More Autism Traits than Musicians without Perfect Pitch? An Empirical Study

    DEFF Research Database (Denmark)

    Dohn, Anders; Garza-Villarreal, Eduardo A.; Heaton, Pamela


    Perfect pitch, also known as absolute pitch (AP), refers to the rare ability to identify or produce a musical tone correctly without the benefit of an external reference. AP is often considered to reflect musical giftedness, but it has also been associated with certain disabilities due to increased...

  14. Ultra-narrow band perfect absorbers based on Fano resonance in MIM metamaterials (United States)

    Zhang, Ming; Fang, Jiawen; Zhang, Fei; Chen, Junyan; Yu, Honglin


    Metallic nanostructures have attracted numerous attentions in the past decades due to their attractive plasmonic properties. Resonant plasmonic perfect absorbers have promising applications in a wide range of technologies including photothermal therapy, thermophotovoltaics, heat-assisted magnetic recording and biosensing. However, it remains to be a great challenge to achieve ultra-narrow band in near-infrared band with plasmonic materials due to the large optical losses in metals. In this letter, we introduced Fano resonance in MIM metamaterials composed of an asymmetry double elliptic cylinders (ADEC), which can achieve ultra-narrow band perfect absorbers. In theoretical calculations, we observed an ultranarrow band resonant absorption peak with the full width at half maximum (FWHM) of 8 nm and absorption amplitude exceeding 99% at 930 nm. Moreover, we demonstrate that the absorption increases with the increase of asymmetry and the absorption resonant wavelength can be tuned by changing the size and arrangement of the unit cell. The asymmetry metallic nanostructure also exhibit a higher refractive sensitivity as large as 503 nm/RIU with high figure of merit of 63, which is promising for high sensitive sensors. Results of this work are desirable for various potential applications in micro-technological structures such as biological sensors, narrowband emission, photodetectors and solar thermophotovoltaic (STPV) cells.

  15. Novel dynamic tuning of broadband visible metamaterial perfect absorber using graphene (United States)

    Jia, Xiuli; Wang, Xiaoou; Yuan, Chengxun; Meng, Qingxin; Zhou, Zhongxiang


    We present a novel dynamic tuning of a broadband visible metamaterial absorber consisting of a multilayer-graphene-embedded nano-cross elliptical hole (MGENCEH) structure. It has multiple effects, including excitation of surface plasmon polaritons and extraordinary optical transmission in the first two metal layers. A numerical simulation shows that the MGENCEH structure can realize broadband perfect absorption (BPA) from 5.85 × 1014 to 6.5 × 1014 Hz over a wide incident angle range for transverse magnetic polarized light if the chemical potential of graphene (uc) is tuned to 1.0 eV. Furthermore, it has high broadband absorption (above 96%) from 4.6 × 1014 to 6.6 × 1014 Hz and three areas of narrowband perfect absorption around 4.65 × 1014, 5.1 × 1014, and 5.6 × 1014 Hz. The changes in the absorption spectra as a function of uc can be classically explained by simply considering plasmons as damped harmonic oscillators. This BPA is broader than the result of Zhou et al. [Opt. Express 23, A413-A418 (2015)] and is particularly desirable for various potential applications such as solar energy absorbers.

  16. Purity and crystallinity of microwave synthesized antimony sulfide microrods

    Energy Technology Data Exchange (ETDEWEB)

    Martínez-Alonso, Claudia, E-mail: [Facultad de Química, Universidad Autónoma de Querétaro, Querétaro, Querétaro, 76010 (Mexico); Olivos-Peralta, Eliot U. [Instituto de Energías Renovables, Universidad NacionalAutónoma de México, Temixco, Morelos, 62580 (Mexico); Sotelo-Lerma, Mérida [Universidad de Sonora, Hermosillo, Sonora, 83000 (Mexico); Sato-Berrú, Roberto Y. [Centro de Ciencias Aplicadas y Desarrollo Tecnológico, Universidad Nacional Autónoma de México, MéxicoD.F., 04510 (Mexico); Mayén-Hernández, S.A. [Facultad de Química, Universidad Autónoma de Querétaro, Querétaro, Querétaro, 76010 (Mexico); Hu, Hailin, E-mail: [Instituto de Energías Renovables, Universidad NacionalAutónoma de México, Temixco, Morelos, 62580 (Mexico)


    Antimony sulfide (Sb{sub 2}S{sub 3}) is a promising semiconductor material for solar cell applications. In this work, microrods of Sb{sub 2}S{sub 3} were synthesized by microwave heating with different sulfur sources, solvents, temperature, heating rate, power, and solution concentration. It was found that 90% of stoichiometric Sb{sub 2}S{sub 3} can be obtained with thiourea (TU) or thioacetamide (TA) as sulfur sources and that their optical band gap values were within the range of 1.59–1.60 eV. The most crystalline Sb{sub 2}S{sub 3} were obtained by using TU. The morphology of the Sb{sub 2}S{sub 3} with TU the individual rods were exhibited, whereas rods bundles appeared in TA-based products. The solvents were ethylene glycol (EG) and dimethylformamide (DMF). EG generates more heat than DMF during the microwave synthesis. As a result, the Sb{sub 2}S{sub 3} obtained with EG contained a larger percentage of oxygen and smaller crystal sizes compared to those from DMF. On the other hand, the length and diameter of Sb{sub 2}S{sub 3} microrods can be increased by applying higher heating power although the crystal size did not change at all. In summary, pure and highly crystalline Sb{sub 2}S{sub 3} microrods of 6–10 μm long and 330–850 nm in diameter can be obtained by the microwave method with a careful selection of chemical and thermodynamic parameters of the synthesis. - Highlights: • Purity up to 90% of crystalline Sb{sub 2}S{sub 3} nanorods can be obtained by microwave heating. • The combination of solvent and sulfide type affects crystallinity & purity of Sb2S3. • The high pressure generated in microwave heating helps to form Sb{sub 2}S{sub 3} nanorods.

  17. Birefringence and DNA Condensation of Liquid Crystalline Chromosomes ▿ (United States)

    Chow, Man H.; Yan, Kosmo T. H.; Bennett, Michael J.; Wong, Joseph T. Y.


    DNA can self-assemble in vitro into several liquid crystalline phases at high concentrations. The largest known genomes are encoded by the cholesteric liquid crystalline chromosomes (LCCs) of the dinoflagellates, a diverse group of protists related to the malarial parasites. Very little is known about how the liquid crystalline packaging strategy is employed to organize these genomes, the largest among living eukaryotes—up to 80 times the size of the human genome. Comparative measurements using a semiautomatic polarizing microscope demonstrated that there is a large variation in the birefringence, an optical property of anisotropic materials, of the chromosomes from different dinoflagellate species, despite their apparently similar ultrastructural patterns of bands and arches. There is a large variation in the chromosomal arrangements in the nuclei and individual karyotypes. Our data suggest that both macroscopic and ultrastructural arrangements affect the apparent birefringence of the liquid crystalline chromosomes. Positive correlations are demonstrated for the first time between the level of absolute retardance and both the DNA content and the observed helical pitch measured from transmission electron microscopy (TEM) photomicrographs. Experiments that induced disassembly of the chromosomes revealed multiple orders of organization in the dinoflagellate chromosomes. With the low protein-to-DNA ratio, we propose that a highly regulated use of entropy-driven force must be involved in the assembly of these LCCs. Knowledge of the mechanism of packaging and arranging these largest known DNAs into different shapes and different formats in the nuclei would be of great value in the use of DNA as nanostructural material. PMID:20400466

  18. Bulk monocrystal growth, optical, dielectric, third order nonlinear, thermal and mechanical studies on HCl added L-alanine: An organic NLO material

    Energy Technology Data Exchange (ETDEWEB)

    Shkir, Mohd, E-mail: [Advanced Functional Materials & Optoelectronic Laboratory (AFMOL), Physics Department, Faculty of Science, King Khalid University, Abha (Saudi Arabia); Yahia, I.S., E-mail: [Advanced Functional Materials & Optoelectronic Laboratory (AFMOL), Physics Department, Faculty of Science, King Khalid University, Abha (Saudi Arabia); Nano-Science & Semiconductor Labs, Physics Department, Faculty of Education, Ain Shams University, Roxy, Cairo (Egypt); Al-Qahtani, A.M.A. [Advanced Functional Materials & Optoelectronic Laboratory (AFMOL), Physics Department, Faculty of Science, King Khalid University, Abha (Saudi Arabia)


    In the current work, good quality bulk size (∼32 mm × 23 mm × 10 mm) single crystals of HCl added L-alanine with well-defined morphology are successfully grown using slow evaporation technique. Crystal structure and other structural parameters were evaluated from X-ray diffraction data. Vibrational assessment of the grown crystal was done by FT-Raman analysis. The presence of chlorine and good quality of the grown crystal was confirmed by SEM/EDX analysis. Solid state UV–Vis–NIR diffused reflectance was measured and direct and indirect optical band gap was calculated using Kubelka-Munk relation and found to be 5.64 and 5 eV respectively. Dielectric measurement was carried out in high frequency range. Third order nonlinear optical susceptibility value was found to be enhanced from 1.91 × 10{sup −6} (pure) to 8.6 × 10{sup −6} esu (LAHCl). Good thermal stability of grown crystals was confirmed from DSC analysis. The enhancement in mechanical strength and crystalline perfection was also observed. - Highlights: • Bulk size (32 mm × 23 mm × 10 mm), good crystalline perfection HCl added L-alanine monocrystal is grown. • The shift in X-ray diffraction and vibrational peaks confirms the interaction of HCl. • The high optical transparency and band gap confirms its application in optoelectronic devices. • Third order NLO properties are found to be enhanced in HCl added L-alanine crystals. • The mechanical strength of the grown crystals is found to be enhanced due HCl addition.

  19. Electrical and structural properties of nano-crystalline silicon intrinsic layers for nano-crystalline silicon solar cells prepared by very high frequency plasma chemical vapor deposition

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, P.; Zhu, F. [Department of Metallurgical and Materials Engineering, Colorado School of Mines, Colorado 80401 (United States); Madan, A. [Department of Metallurgical and Materials Engineering, Colorado School of Mines, Colorado 80401 (United States); MVSystems Inc, Golden Colorado 80401 (United States)


    Thin silicon intrinsic layers were deposited in the amorphous to nano-crystalline transition regime to investigate their structural and optoelectrical properties using the very high frequency plasma enhanced chemical vapor deposition (VHF-PECVD) technique. Optical emission spectroscopy (OES) was primarily used to monitor the plasma properties during the deposition. The ratio H{alpha}/Si{sup *}, estimated from OES spectra, is closely related to the microstructure of the films. With the increasing plasma power from 10 to 50 W, the ratio H{alpha}/Si{sup *} increases leading to nano-crystalline films. The ratio H{alpha}/Si{sup *} decreases with the increase of process gas pressure at constant power of 15 and 30 W. The films were nano-crystalline at low pressure and became amorphous at high pressure. (author)

  20. Perfect transmission through Anderson localized systems mediated by a cluster of localized modes. (United States)

    Choi, Wonjun; Park, Q-Han; Choi, Wonshik


    In a strongly scattering medium where Anderson localization takes place, constructive interference of local non-propagating waves dominate over the incoherent addition of propagating waves. This results in the disappearance of propagating waves within the medium, which significantly attenuates energy transmission. In this numerical study performed in the optical regime, we systematically found resonance modes, called eigenchannels, of a 2-D Anderson localized system that allow for the near-perfect energy transmission. We observed that the internal field distribution of these eigenchannels exhibit dense clustering of localized modes. This strongly suggests that the clustered resonance modes facilitate long-range energy flow of local waves. Our study explicitly elucidates the interplay between wave localization and transmission enhancement in the Anderson localization regime.

  1. Laser fabrication of crystalline silicon nanoresonators from an amorphous film for low-loss all-dielectric nanophotonics

    CERN Document Server

    Dmitriev, P A; Milichko, V A; Mukhin, I S; Gudovskikh, A S; Sitnikova, A A; Samusev, A K; Krasnok, A E; Belov, P A


    The concept of high refractive index subwavelength dielectric nanoresonators, supporting electric and magnetic optical resonances, is a promising platform for waveguiding, sensing, and nonlinear nanophotonic devices. However, high concentration of defects in the nanoresonators diminishes their resonant properties, which are crucially dependent on their internal losses. Therefore, it seems to be inevitable to use initially crystalline materials for fabrication of the nanoresonators. Here, we show that the fabrication of crystalline (low-loss) resonant silicon nanoparticles by femtosecond laser ablation of amorphous (high-loss) silicon thin films is possible. We apply two conceptually different approaches: recently proposed laser-induced transfer and a novel laser writing technique for large-scale fabrication of the crystalline nanoparticles. The crystallinity of the fabricated nanoparticles is proven by Raman spectroscopy and electron transmission microscopy, whereas optical resonant properties of the nanopart...

  2. Perfect quantum multiple-unicast network coding protocol (United States)

    Li, Dan-Dan; Gao, Fei; Qin, Su-Juan; Wen, Qiao-Yan


    In order to realize long-distance and large-scale quantum communication, it is natural to utilize quantum repeater. For a general quantum multiple-unicast network, it is still puzzling how to complete communication tasks perfectly with less resources such as registers. In this paper, we solve this problem. By applying quantum repeaters to multiple-unicast communication problem, we give encoding-decoding schemes for source nodes, internal ones and target ones, respectively. Source-target nodes share EPR pairs by using our encoding-decoding schemes over quantum multiple-unicast network. Furthermore, quantum communication can be accomplished perfectly via teleportation. Compared with existed schemes, our schemes can reduce resource consumption and realize long-distance transmission of quantum information.

  3. Symmetry, reduction and swimming in a perfect fluid (United States)

    Radford, James Edward

    This thesis presents a geometric picture of a deformable body in a perfect fluid and a way to approximate its dynamics and the motion, resulting from cyclic shape deformations, of the body and, interestingly, the fluid as well. Emphasis is placed on the group structure of the configuration space of the body fluid system and the resulting symmetry in their equations of motion. Symmetry is also used to reduce a series expansion for the flow of a time dependent vector field in order to obtain a novel expansion for the path-ordered exponential. This can be used to approximate holonomy, or geometric phase, in a principal bundle when its evolution is governed by a connection on the bundle and it is subject to periodic shape inputs. Simple models for swimming in and the stirring of a perfect fluid are proposed and examined.

  4. Thermodynamics of perfect fluids from scalar field theory

    CERN Document Server

    Ballesteros, Guillermo; Pilo, Luigi


    The low-energy dynamics of relativistic continuous media is given by a shift-symmetric effective theory of four scalar fields. These scalars describe the embedding in spacetime of the medium and play the role of Stuckelberg fields for spontaneously broken spatial and time translations. Perfect fluids are selected imposing a stronger symmetry group or reducing the field content to a single scalar. We explore the relation between the field theory description of perfect fluids to thermodynamics. By drawing the correspondence between the allowed operators at leading order in derivatives and the thermodynamic variables, we find that a complete thermodynamic picture requires the four Stuckelberg fields. We show that thermodynamic stability plus the null energy condition imply dynamical stability. We also argue that a consistent thermodynamic interpretation is not possible if any of the shift symmetries is explicitly broken.

  5. A Particular Type of Present Perfect Tense in Shahnameh

    Directory of Open Access Journals (Sweden)

    Moharram Rezayati Kishekhaleh


    Full Text Available Abstract The Shahnameh, the precious and eternal epic poem of Ferdosi, in the ocean of Persian literature is a deep and immense sea. It is full of shining pearls of Iranian culture, that studying of them could be used by researchers of Persian language and literature for various dimensions of literary, historical, social, mythical, religious, and linguistics, etc. This subject allocates for little part of linguistic characteristics i.e. present perfect tense and its kinds. Initially the history of research was considered briefly then the patterns of structure of this verb were studying in the language of ancient Persian, middle Persian and Dari Persian. We eventually, according to samples from the Shahnameh, scattered notions of researchers and their adding up, describe a certain kind of present perfect tense which, its history of structure and application in addition to Soghdi, Khwarizmi and Pahlavi languages, could be recognized at some today Iranian dialects

  6. A Particular Type of Present Perfect Tense in Shahnameh

    Directory of Open Access Journals (Sweden)

    Moharram Rezayati Kishekhaleh


    Full Text Available Abstract The Shahnameh, the precious and eternal epic poem of Ferdosi, in the ocean of Persian literature is a deep and immense sea. It is full of shining pearls of Iranian culture, that studying of them could be used by researchers of Persian language and literature for various dimensions of literary, historical, social, mythical, religious, and linguistics, etc. This subject allocates for little part of linguistic characteristics i.e. present perfect tense and its kinds. Initially the history of research was considered briefly then the patterns of structure of this verb were studying in the language of ancient Persian, middle Persian and Dari Persian. We eventually, according to samples from the Shahnameh, scattered notions of researchers and their adding up, describe a certain kind of present perfect tense which, its history of structure and application in addition to Soghdi, Khwarizmi and Pahlavi languages, could be recognized at some today Iranian dialects

  7. Perfect spin filtering effect in ultrasmall helical zigzag graphene nanoribbons

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Zi-Yue, E-mail:


    The spin-polarized transport properties of helical zigzag graphene nanoribbons (ZGNRs) are investigated by first-principles calculations. It is found that although all helical ZGNRs have similar density of states and edge states, they show obviously different transport characteristics depending on the curling manners. ZGNRs curled along zigzag orientation exhibit perfect spin filtering effect with a large spin-split gap near the Fermi level, while ZGNRs curled along armchair orientation behave as conventional conductors for both two spin channels. The spin filtering effect will be weakened with the increase of either ribbon width or curling diameter. The results suggest that ultrasmall helical ZGNRs have important potential applications in spintronics and flexible electronics. - Highlights: • Perfect spin filtering effect has been found in helical ZGNRs. • The effect strongly depends on the curling manners of ZGNRs. • Different transport properties do not induced by distinct electronic properties. • The effect may be weakened with increasing either ribbon width or curling diameter.

  8. Perfect Thermal Emission by Nanoscale Transmission Line Resonators. (United States)

    Liu, Baoan; Gong, Wei; Yu, Bowen; Li, Pengfei; Shen, Sheng


    Thermal radiation with a narrow-band emission spectrum is of great importance in a variety of applications such as infrared sensing, thermophotovoltaics, radiation cooling, and thermal circuits. Although resonant nanophotonic structures such as metamaterials and nanocavities have been demonstrated to achieve the narrow-band thermal emission, maximizing their radiation power toward perfect emission still remains challenging. Here, based on the recently developed quasi-normal mode theory, we prove that thermal emission from a nanoscale transmission line resonator can always be maximized by tuning the waveguiding loss of the resonator or bending the structure. By use of nanoscale transmission line resonators as basic building blocks, we experimentally demonstrate a new type of macroscopic perfect and tunable thermal emitters. Our experimental demonstration in conjunction with the general theoretical framework from the quasi-normal mode theory lays the foundation for designing tunable narrow-band thermal emitters with applications in thermal infrared light sources, thermal management, and infrared sensing and imaging.

  9. Miniaturization for ultrathin metamaterial perfect absorber in the VHF band (United States)

    Khuyen, Bui Xuan; Tung, Bui Son; Yoo, Young Joon; Kim, Young Ju; Kim, Ki Won; Chen, Liang-Yao; Lam, Vu Dinh; Lee, Youngpak


    An efficient resolution for ultrathin metamaterial perfect absorber (MPA) is proposed and demonstrated in the VHF radio band (30-300 MHz). By adjusting the lumped capacitors and the through vertical interconnects, the absorber is miniaturized to be only λ/816 and λ/84 for its thickness and periodicity with respect to the operating wavelength (at 102 MHz), respectively. The detailed simulation and calculation show that the MPA can maintain an absorption rate over 90% in a certain range of incident angle and with a wide variation of capacitance. Additionally, we utilized the advantages of the initial single-band structure to realize a nearly perfect dual-band absorber in the same range. The results were confirmed by both simulation and experiment at oblique incidence angles up to 50°. Our work is expected to contribute to the actualization of future metamaterial-based devices working at radio frequency.

  10. Exploring the Gap between Perfect Bayesian Equilibrium and Sequential Equilibrium

    Directory of Open Access Journals (Sweden)

    Giacomo Bonanno


    Full Text Available In (Bonanno, 2013, a solution concept for extensive-form games, called perfect Bayesian equilibrium (PBE, was introduced and shown to be a strict refinement of subgame-perfect equilibrium; it was also shown that, in turn, sequential equilibrium (SE is a strict refinement of PBE. In (Bonanno, 2016, the notion of PBE was used to provide a characterization of SE in terms of a strengthening of the two defining components of PBE (besides sequential rationality, namely AGM consistency and Bayes consistency. In this paper we explore the gap between PBE and SE by identifying solution concepts that lie strictly between PBE and SE; these solution concepts embody a notion of “conservative” belief revision. Furthermore, we provide a method for determining if a plausibility order on the set of histories is choice measurable, which is a necessary condition for a PBE to be a SE.

  11. Design of emitter structures based on resonant perfect absorption for thermophotovoltaic applications

    Energy Technology Data Exchange (ETDEWEB)

    Foley, Jonathan J.; Ungaro, Craig; Sun, Keye; Gupta, Mool C.; Gray, Stephen K.


    We report a class of thermophotovoltaic emitter structures built upon planar films that support resonant modes, known as perfectly-absorbing modes, that facilitate an exceptional optical response for selective emission. These planar structures have several key advantages over previously-proposed designs for TPV applications: they are simple to fabricate, are stable across a range of temperatures and conditions, and are capable of achieving some of the highest spectral efficiencies reported of any class of emitter structure. Utilization of these emitters leads to exceptionally high device efficiencies under low operating temperature conditions, which should open new opportunities for waste heat management. We present a theoretical framework for understanding this performance, and show that this framework can be leveraged as a search algorithm for promising candidate structures. In addition to providing an efficient theoretical methodology for identifying high-performance emitter structures, our methodology provides new insight into underlying design principles and should pave way for future design of structures that are simple to fabricate, temperature stable, and possess exceptional optical properties. (C) 2015 Optical Society of America

  12. Perfect posterior simulation for mixture and hidden Marko models

    DEFF Research Database (Denmark)

    Berthelsen, Kasper Klitgaard; Breyer, Laird A.; Roberts, Gareth O.


    In this paper we present an application of the read-once coupling from the past algorithm to problems in Bayesian inference for latent statistical models. We describe a method for perfect simulation from the posterior distribution of the unknown mixture weights in a mixture model. Our method...... is extended to a more general mixture problem, where unknown parameters exist for the mixture components, and to a hidden Markov model....

  13. Perfection of technical preparation in cheerleading (work is with pompons

    Directory of Open Access Journals (Sweden)

    Zinchenko I.O.


    Full Text Available A role and job with pompons in the structure of training process of sportsmen-cheerleading is examined. A necessity of use and development of control-trainings tasks is for perfection of technical trade of cheerleading. Is presented an information about efficiency of the use of work with pompons by sportsmen for the increase of technical activity in cheerleading. The results of cross-correlation analysis are resulted, the multivariable analysis of variance is conducted.

  14. Quality strategies implemented within the tourism agency Perfect Tour

    Directory of Open Access Journals (Sweden)

    Madar, A.


    Full Text Available The paper presents the quality strategies adopted by the tourism agency Perfect Tour. The most important advantages of the Romanian agency in comparison with its competitors are: the focus on high quality services, cooperation with other international agencies, entering new fields like medical tourism and sole representative of Disneyland Paris. The strategies adopted explain the good financial results even in the period of crisis.

  15. A Perfect-Information Construction for Coordination in Games


    Berwanger, Dietmar; Kaiser, Lukasz; Puchala, Bernd


    We present a general construction for eliminating imperfect information from games with several players who coordinate against nature, and to transform them into two-player games with perfect information while preserving winning strategy profiles. The construction yields an infinite game tree with epistemic models associated to nodes. To obtain a more succinct representation, we define an abstraction based on homomorphic equivalence, which we prove to be sound for games with observable wi...

  16. Improving Beamline X-ray Optics by Analyzing the Damage to Crystallographic Structure

    Energy Technology Data Exchange (ETDEWEB)

    Zientek, John; Maj, Jozef; Navrotski, Gary; Srajer, George; Harmata, Charles; Maj, Lech; Lazarski, Krzysztof; Mikula, Stanislaw


    The mission of the X-ray Characterization Laboratory in the X-ray Science Division (XSD) at the Advanced Photon Source (APS) is to support both the users and the Optics Fabrication Facility that produces high performance optics for synchrotron X-ray beamlines. The Topography Test Unit (TTU) in the X-ray Lab has been successfully used to characterize diffracting crystals and test monochromators by quantifying residual surface stresses. This topographic method has also been adapted for testing standard X-ray mirrors, characterizing concave crystal optics and in principle, can be used to visualize residual stresses on any optic made from single crystalline material. The TTU has been instrumental in quantitatively determining crystal mounting stresses which are mechanically induced by positioning, holding, and cooling fixtures. It is this quantitative aspect that makes topography so useful since the requirements and responses for crystal optics and X-ray mirrors are quite different. In the case of monochromator crystals, even small residual or induced stresses, on the order of tens of kPa, can cause detrimental distortions to the perfect crystal rocking curves. Mirrors, on the other hand, are much less sensitive to induced stresses where stresses that are an order of magnitude greater can be tolerated. This is due to the fact that the surface rather than the lattice-spacing determines a mirror’s performance. For the highly sensitive crystal optics, it is essential to measure the in-situ rocking curves using topographs as mounting fixtures are adjusted. In this way, high heat-load monochromator crystals can be successfully mounted with minimum stress. Topographical analysis has been shown to be a highly effective method to visualize and quantify the distribution of stresses, to help identify methods that mitigate stresses, and most notably to improve diffractive crystal optic rocking curves.

  17. Transformation optics and cloaking (United States)

    McCall, Martin


    Invisibility, a long sought-for speculation in science fiction, has been turned into reality in the laboratory through the use of a theoretical technique called Transformation Optics. The principles of transformation optics show that any desired smooth deformation of the electromagnetic field can be implemented exactly by an appropriately engineered metamaterial. All demonstrations of cloaking to date have had limitations, however, reflecting our technological inability to implement the transformation optics algorithm exactly. However, the scientific principles leading to perfect invisibility are now established, and practical improvements on the initial designs are now occurring very rapidly. Most recently, researchers have re-examined transformation optics to include time as well as space, describing and then implementing the concept of a cloak that hides events, a conceptual breakout that promises many new applications. This review describes the general ideas underlying transformation optics, and how the various types of cloak based on these ideas have been implemented practically to date.

  18. Synthesis, growth, optical, mechanical and electrical properties of L ...

    Indian Academy of Sciences (India)

    single diffraction curve with reasonably low FWHM indi- cates that the crystalline perfection is fairly good. The den- sity of such interstitial defects is, however, very meagre and in almost all real crystals including nature gifted crystals, such defects are commonly observed and are many times. Figure 3. HRXRD curve recorded ...

  19. Transformation optics and invisibility cloaks

    DEFF Research Database (Denmark)

    Qiu, Min; Yan, Min; Yan, Wei


    In this paper, we briefly summarize the theory of transformation optics and introduce its application in achieving perfect invisibility cloaking. In particular, we theoretically show how the task of realizing cylindrical invisibility cloaks can be eased by using either structural approximation...

  20. Synthesis and characterization of thermotropic liquid crystalline ...

    Indian Academy of Sciences (India)

    The synthesised mesogens were characterized by different techniques including nuclear magnetic resonance and Fourier transform infrared spectroscopy. Liquid crystalline polymers (LCPs) were synthesised using pyromellitic dianhydride and 4-[(4-aminobenzylidene)amino]aniline or 4-aminophenyl-4-aminobenzoate.

  1. Syntheses, molecular and crystalline architectures, and ...

    Indian Academy of Sciences (India)

    Syntheses, molecular and crystalline architectures, and luminescence behaviour of terephthalate bridged heptacoordinated dinuclear lead(II) complexes containing a pentadentate N-donor Schiff base. SUBHASIS ROYa, SOMNATH CHOUBEYa, SUMITAVA KHANa, KISHALAY BHARa,. PARTHA MITRAb and BARINDRA ...

  2. High-efficiency crystalline silicon technology development (United States)

    Prince, M. B.


    The rationale for pursuing high efficiency crystalline silicon technology research is discussed. Photovoltaic energy systems are reviewed as to their cost effectiveness and their competitiveness with other energy systems. The parameters of energy system life are listed and briefly reviewed.

  3. Metal Organic Framework: Crystalline Stacked Molecular Containers

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 19; Issue 12. Metal Organic Framework: Crystalline Stacked Molecular Containers. Ramanathan Vaidhyanathan. General Article Volume 19 Issue 12 December 2014 pp 1147-1157 ...

  4. Do Musicians with Perfect Pitch Have More Autism Traits than Musicians without Perfect Pitch? An Empirical Study


    Dohn, Anders; Garza-Villarreal, Eduardo A.; Heaton, Pamela; Vuust, Peter


    Perfect pitch, also known as absolute pitch (AP), refers to the rare ability to identify or produce a musical tone correctly without the benefit of an external reference. AP is often considered to reflect musical giftedness, but it has also been associated with certain disabilities due to increased prevalence of AP in individuals with sensory and developmental disorders. Here, we determine whether individual autistic traits are present in people with AP. We quantified subclinical levels of au...

  5. Nanoparticle-Liquid Crystalline Elastomer Composites


    Yan Ji; Terentjev, Eugene M.; Marshall, Jean E.


    Liquid crystalline elastomers (LCEs) exhibit a number of remarkable physical effects, including a uniquely high-stroke reversible mechanical actuation triggered by external stimuli. Fundamentally, all such stimuli affect the degree of liquid crystalline order in the polymer chains cross-linked into an elastic network. Heat and the resulting thermal actuation act by promoting entropic disorder, as does the addition of solvents. Photo-isomerization is another mechanism of actuation, reducing th...

  6. Effects of molecular architecture on liquid crystalline thermosets (United States)

    Gavrin, Arthur John

    This work incorporates three studies on the influence of molecular architecture on liquid crystalline phase transitions, physical transformations, and thermal stability for acetylene functionalized liquid crystalline thermosets (LCTs). The first study focuses on synthesis and liquid crystalline phase characterization of acetylene functionalized LCTs. The second examines architecture's influence on liquid crystalline phase transitions and physical transformations that occur during isothermal curing of LCTs. The third deals with architecture and the thermal stability of the uncured and fully cured thermosets. Two homologous series of LCT monomers, differing in mesogen length, were synthesized: with monomers composed of an aromatic mesogen based on either hydroquinone (nHQ) or biphenol (nBP), end-capped with acetylene functional groups, and terminated with flexible alkyl chains of 3 to 8 carbons in length. The nHQ monomers melt and clear at lower temperatures than the nBP series. The monomers were characterized with differential scanning calorimetry (DSC), dynamic thermogravimetric analysis (TGA), and cross-polarized optical microscopy (POM). The monomers displayed liquid crystalline behavior similar to that of a related small molecule liquid crystal series. A related fully aromatic monomer was also synthesized (PEBP). It possesses higher melting and clearing temperatures, displays only a nematic phase, and has higher thermal stability. The monomers of the two series were isothermally cured in a rheometer. Gelation times were determined from the shear moduli crossover point. Both series display an odd-even effect for gel times, even though the entire nHQ series is isotropic during the isothermal cure. This is the first time such behavior has been seen for an unordered system. From POM, the monomers lose their molecular ordering during initial chain extension, but may regain some order at later extents of curing if at low enough temperatures. TGA and isothermal

  7. Peristence of triamcinolone crystals after intra-vitreal injection: Benign crystalline hyaloidopathy

    Directory of Open Access Journals (Sweden)

    Rafik Zarifa


    Full Text Available We report a case of unusually long persistence of triamcinolone crystals after intra-vitreal injection. Crystals were noted on fundus examination predominantly confined to the posterior pole. Optical coherence tomography localized the crystals to the posterior hyaloidal surface. Over 6 years of follow-up the patient has retained good visual acuity and no observable changes in the retina. As the condition clinically resembles both crystalline maculopathy and asteroid hyalosis, we suggest the term ′drug-induced benign crystalline hyaloidopathy′.

  8. Cross-Linked Liquid Crystalline Systems From Rigid Polymer Networks to Elastomers

    CERN Document Server

    Broer, Dirk


    With rapidly expanding interest in liquid crystalline polymers and elastomers among the liquid crystal community, researchers are currently exploring the wide range of possible application areas for these unique materials, including optical elements on displays, tunable lasers, strain gauges, micro-structures, and artificial muscles. Written by respected scientists from academia and industry around the world, who are not only active in the field but also well-known in more traditional areas of research, "Cross-Linked Liquid Crystalline Systems: From Rigid Polymer Networks to Elastomers&qu

  9. [Macular crystalline dystrophy in Sjögren-Larsson syndrome: case report]. (United States)

    Isaac, David Leonardo Cruvinel; Queiroz, Gustavo Henrique Medeiros; Feres, Caroline Campelo; Avila, Marcos


    Presentation of a case of crystalline macular distrophy diagnosed in a female patient with Sjögren-Larsson syndrome. The disease consists of clinical findings of spastic diplegia or tetraplegia, mental retardation, and congential ichthyosis. The eyes are affected in up to 100% of cases, and crystalline maculopathy is the main finding as described in this case report. On fundus examination multiple white dots were observed at ophthalmoscopy. The optical coherence tomography has shown not only the hipereflexive intraretinal spots but also macular atrophy with macular thickness reduction. The tomographic findings were first described in our country.

  10. Transfer of the perfect flower trait from Poa secunda to Poa arachnifera (United States)

    A Texas bluegrass (Poa arachnifera) population has been developed that successfully integrates the perfect flower trait from Poa secunda through interspecific hybridization. The resulting perfect flowered Texas bluegrass population is perennial, rhizomatous and partially apomictic in its form of re...

  11. Temperature-dependent dispersion model of float zone crystalline silicon (United States)

    Franta, Daniel; Dubroka, Adam; Wang, Chennan; Giglia, Angelo; Vohánka, Jirí; Franta, Pavel; Ohlídal, Ivan


    In this paper, we present the temperature dependent dispersion model of float zone crystalline silicon. The theoretical background for valence electronic excitations is introduced in the theoretical part of this paper. This model is based on application of sum rules and parametrization of transition strength functions corresponding to the individual elementary phonon and electronic excitations. The parameters of the model are determined by fitting ellipsometric and spectrophotometric experimental data in the spectral range from far infrared (70 cm-1) to extreme ultraviolet (40 eV). The ellipsometric data were measured in the temperature range 5-700 K. The excitations of the valence electrons to the conduction band are divided into the indirect and direct electronic transitions. The indirect transitions are modeled by truncated Lorentzian terms, whereas the direct transitions are modeled using Gaussian broadened piecewise smooth functions representing 3D and 2D van Hove singularities modified by excitonic effects. Since the experimental data up to high energies (40 eV) are available, we are able to determine the value of the effective number of valence electrons. The Tauc-Lorentz dispersion model is used for modeling high energy electron excitations. Two slightly different values of the effective number of valence electrons are obtained for the Jellison-Modine (4.51) and Campi-Coriasso (4.37) parametrization. Our goal is to obtain the model of dielectric response of crystalline silicon which depends only on photon energy, temperature and small number of material parameters, e.g. the concentration of substituted carbon and interstitial oxygen. The model presented in this paper is accurate enough to replace tabulated values of c-Si optical constants used in the optical characterization of thin films diposited on silicon substrates. The spectral dependencies of the optical constants obtained in our work are compared to results obtained by other authors.

  12. Optics/Optical Diagnostics Laboratory (United States)

    Federal Laboratory Consortium — The Optics/Optical Diagnostics Laboratory supports graduate instruction in optics, optical and laser diagnostics and electro-optics. The optics laboratory provides...

  13. Approximating perfection a mathematician's journey into the world of mechanics

    CERN Document Server

    Lebedev, Leonid P


    This is a book for those who enjoy thinking about how and why Nature can be described using mathematical tools. Approximating Perfection considers the background behind mechanics as well as the mathematical ideas that play key roles in mechanical applications. Concentrating on the models of applied mechanics, the book engages the reader in the types of nuts-and-bolts considerations that are normally avoided in formal engineering courses: how and why models remain imperfect, and the factors that motivated their development. The opening chapter reviews and reconsiders the basics of c

  14. Analysis of the Perfect Table Fuzzy Rainbow Tradeoff

    Directory of Open Access Journals (Sweden)

    Byoung-Il Kim


    Full Text Available Cryptanalytic time memory tradeoff algorithms are tools for inverting one-way functions, and they are used in practice to recover passwords that restrict access to digital documents. This work provides an accurate complexity analysis of the perfect table fuzzy rainbow tradeoff algorithm. Based on the analysis results, we show that the lesser known fuzzy rainbow tradeoff performs better than the original rainbow tradeoff, which is widely believed to be the best tradeoff algorithm. The fuzzy rainbow tradeoff can attain higher online efficiency than the rainbow tradeoff and do so at a lower precomputation cost.

  15. Inter-Faith Reading of Perfect Man With Mystical Approach


    Fatemeh Musavi; Mohammadkazem Shaker


      The expression Insan –e kamil (perfect man) is often said to have first been used by Muhyiddin ibn 'Arabi (1165 -1240AD), though the concept of the term is much older. In his theosophical teaching, the doctrine of insan e- kamil, is held a prominent place. After him two other great Sufis, Aziz Nasafi (1300AD) and 'Abd al- karim ibn Ibrahim al- Jili (1366 – 1424 AD), each wrote a work on this very issue. These works are regarded as explanations of Ibn Arabi’s teachings...

  16. Random Matrix Theory Approach to Chaotic Coherent Perfect Absorbers (United States)

    Li, Huanan; Suwunnarat, Suwun; Fleischmann, Ragnar; Schanz, Holger; Kottos, Tsampikos


    We employ random matrix theory in order to investigate coherent perfect absorption (CPA) in lossy systems with complex internal dynamics. The loss strength γCPA and energy ECPA, for which a CPA occurs, are expressed in terms of the eigenmodes of the isolated cavity—thus carrying over the information about the chaotic nature of the target—and their coupling to a finite number of scattering channels. Our results are tested against numerical calculations using complex networks of resonators and chaotic graphs as CPA cavities.

  17. Kalimat Tanya Dalam Film Pitch Perfect Karya Jason Moore


    Londok, Aprilia Fenria Ireine


    This study, entitled “The Interrogative Sentence in The Film” Pitch Perfect by Jason Moore, is aimed at identifyng and analyzing the interrogative sentence found in the film. The data have been collected by focusing on the conversation among the characters in the film and analyzed based on Aarts and Aarts' concept. Interrogative sentence is a sentence that contains subject and open with an auxiliary verb or a wh-word. Interrogative sentence which is open with an auxiliary verb is called yes/n...

  18. Simulation study of 'perfect lens' for near-field nanolithography (United States)

    Guo, Xiaowei; Dong, Qiming; Liu, Yong


    The near-field perfect lens (NFPL) in imaging chrome gratings is investigated by using finite difference time domain (FDTD) method. The surface plasmon focused effect in and beneath the NFPL layer is demonstrated. The effects of the grating parameters and NFPL permittivity on image fidelity are explored. It is found that the excitation of surface plasmons results in frequency-increased images at large duty cycles and small imaginary part of NFPL permittivities. It is also shown that maximum intensity distributions on image plane occur at some specified pitches and duty cycles. The physics mechanisms are presented to explain these phenomena.

  19. Non-adiabatic perturbations in multi-component perfect fluids

    Energy Technology Data Exchange (ETDEWEB)

    Koshelev, N.A., E-mail: [Ulyanovsk State University, Leo Tolstoy str 42, 432970 (Russian Federation)


    The evolution of non-adiabatic perturbations in models with multiple coupled perfect fluids with non-adiabatic sound speed is considered. Instead of splitting the entropy perturbation into relative and intrinsic parts, we introduce a set of symmetric quantities, which also govern the non-adiabatic pressure perturbation in models with energy transfer. We write the gauge invariant equations for the variables that determine on a large scale the non-adiabatic pressure perturbation and the rate of changes of the comoving curvature perturbation. The analysis of evolution of the non-adiabatic pressure perturbation has been made for several particular models.

  20. Seeking perfection: a Kantian look at human genetic engineering. (United States)

    Gunderson, Martin


    It is tempting to argue that Kantian moral philosophy justifies prohibiting both human germ-line genetic engineering and non-therapeutic genetic engineering because they fail to respect human dignity. There are, however, good reasons for resisting this temptation. In fact, Kant's moral philosophy provides reasons that support genetic engineering-even germ-line and non-therapeutic. This is true of Kant's imperfect duties to seek one's own perfection and the happiness of others. It is also true of the categorical imperative. Kant's moral philosophy does, however, provide limits to justifiable genetic engineering.

  1. Dynamical tuning between nearly perfect reflection, absorption, and transmission of light via graphene/dielectric structures

    CERN Document Server

    Linder, Jacob


    Exerting well-defined control over the reflection $(R)$, absorption $(A)$, and transmission $(T)$ of electromagnetic waves is a key objective in quantum optics. To this end, one often utilizes hybrid structures comprised of elements with different optical properties in order to achieve features such as high $R$ or high $A$ for incident light. A desirable goal would be the possibility to tune between all three regimes of nearly perfect reflection, absorption, and transmission within the same device, thus swapping between the cases $R\\to 1$, $A\\to1$, and $T\\to1$ dynamically. We here show that a dielectric interfaced with a graphene layer on each side allows for precisely this: by tuning only the Fermi level of graphene, all three regimes can be reached in the THz regime and below. Moreover, we show that the inclusion of cylindrical defects in the system offers a different type of control of the scattering of electromagnetic waves by means of the graphene layers.

  2. Radiation-Induced Amorphization of Crystalline Ice (United States)

    Fama, M.; Loeffler, M. J.; Raut, U.; Baragiola, R. A.


    We study radiation-induced amorphization of crystalline ice, ana lyzing the resu lts of three decades of experiments with a variety of projectiles, irradiation energy, and ice temperature, finding a similar trend of increasing resistance of amorphization with temperature and inconsistencies in results from different laboratories. We discuss the temperature dependence of amorphization in terms of the 'thermal spike' model. We then discuss the common use of the 1.65 micrometer infrared absorption band of water as a measure of degree of crystallinity, an increasingly common procedure to analyze remote sensing data of astronomical icy bodies. The discussion is based on new, high quality near-infrared refl ectance absorption spectra measured between 1.4 and 2.2 micrometers for amorphous and crystalline ices irradiated with 225 keV protons at 80 K. We found that, after irradiation with 10(exp 15) protons per square centimeter, crystalline ice films thinner than the ion range become fully amorphous, and that the infrared absorption spectra show no significant changes upon further irradiation. The complete amorphization suggests that crystalline ice observed in the outer Solar System, including trans-neptunian objects, may results from heat from internal sources or from the impact of icy meteorites or comets.

  3. Superhydrophobicity in perfection: the outstanding properties of the lotus leaf

    Directory of Open Access Journals (Sweden)

    Hans J. Ensikat


    Full Text Available Lotus leaves have become an icon for superhydrophobicity and self-cleaning surfaces, and have led to the concept of the ‘Lotus effect’. Although many other plants have superhydrophobic surfaces with almost similar contact angles, the lotus shows better stability and perfection of its water repellency. Here, we compare the relevant properties such as the micro- and nano-structure, the chemical composition of the waxes and the mechanical properties of lotus with its competitors. It soon becomes obvious that the upper epidermis of the lotus leaf has developed some unrivaled optimizations. The extraordinary shape and the density of the papillae are the basis for the extremely reduced contact area between surface and water drops. The exceptional dense layer of very small epicuticular wax tubules is a result of their unique chemical composition. The mechanical robustness of the papillae and the wax tubules reduce damage and are the basis for the perfection and durability of the water repellency. A reason for the optimization, particularly of the upper side of the lotus leaf, can be deduced from the fact that the stomata are located in the upper epidermis. Here, the impact of rain and contamination is higher than on the lower epidermis. The lotus plant has successfully developed an excellent protection for this delicate epistomatic surface of its leaves.

  4. Kernels by Monochromatic Paths and Color-Perfect Digraphs

    Directory of Open Access Journals (Sweden)

    Galeana-Śanchez Hortensia


    Full Text Available For a digraph D, V (D and A(D will denote the sets of vertices and arcs of D respectively. In an arc-colored digraph, a subset K of V(D is said to be kernel by monochromatic paths (mp-kernel if (1 for any two different vertices x, y in N there is no monochromatic directed path between them (N is mp-independent and (2 for each vertex u in V (D \\ N there exists v ∈ N such that there is a monochromatic directed path from u to v in D (N is mp-absorbent. If every arc in D has a different color, then a kernel by monochromatic paths is said to be a kernel. Two associated digraphs to an arc-colored digraph are the closure and the color-class digraph CC(D. In this paper we will approach an mp-kernel via the closure of induced subdigraphs of D which have the property of having few colors in their arcs with respect to D. We will introduce the concept of color-perfect digraph and we are going to prove that if D is an arc-colored digraph such that D is a quasi color-perfect digraph and CC(D is not strong, then D has an mp-kernel. Previous interesting results are generalized, as for example Richardson′s Theorem.

  5. A perfectly conducting surface in electrodynamics with Lorentz symmetry breaking

    Energy Technology Data Exchange (ETDEWEB)

    Borges, L.H.C. [UNESP, Campus de Guaratingueta, DFQ, Guaratingueta, SP (Brazil); Barone, F.A. [IFQ, Universidade Federal de Itajuba, Itajuba, MG (Brazil)


    In this paper we consider a model which exhibits explicit Lorentz symmetry breaking due to the presence of a single background vector v{sup μ} coupled to the gauge field. We investigate such a theory in the vicinity of a perfectly conducting plate for different configurations of v{sup μ}. First we consider no restrictions on the components of the background vector and we treat it perturbatively up to second order. Next, we treat v{sup μ} exactly for two special cases: the first one is when it has only components parallel to the plate, and the second one when it has a single component perpendicular to the plate. For all these configurations, the propagator for the gauge field and the interaction force between the plate and a point-like electric charge are computed. Surprisingly, it is shown that the image method is valid in our model and we argue that it is a non-trivial result. We show there arises a torque on the mirror with respect to its positioning in the background field when it interacts with a point-like charge. It is a new effect with no counterpart in theories with Lorentz symmetry in the presence of a perfect mirror. (orig.)

  6. Perfect harmony: A mathematical analysis of four historical tunings (United States)

    Page, Michael F.


    In Western music, a musical interval defined by the frequency ratio of two notes is generally considered consonant when the ratio is composed of small integers. Perfect harmony or an ``ideal just scale,'' which has no exact solution, would require the division of an octave into 12 notes, each of which would be used to create six other consonant intervals. The purpose of this study is to analyze four well-known historical tunings to evaluate how well each one approximates perfect harmony. The analysis consists of a general evaluation in which all consonant intervals are given equal weighting and a specific evaluation for three preludes from Bach's ``Well-Tempered Clavier,'' for which intervals are weighted in proportion to the duration of their occurrence. The four tunings, 5-limit just intonation, quarter-comma meantone temperament, well temperament (Werckmeister III), and equal temperament, are evaluated by measures of centrality, dispersion, distance, and dissonance. When all keys and consonant intervals are equally weighted, equal temperament demonstrates the strongest performance across a variety of measures, although it is not always the best tuning. Given C as the starting note for each tuning, equal temperament and well temperament perform strongly for the three ``Well-Tempered Clavier'' preludes examined. .

  7. A local model of light interaction with transparent crystalline media. (United States)

    Debelov, Victor A; Kozlov, Dmitry S


    The paper is devoted to the derivation of a bidirectional distribution function for crystals, which specifies all outgoing rays for a ray coming to the boundary of two transparent crystalline media with different optical properties, i.e., a particular mineral, directions of optical axes if they exist, and other features. A local model of interaction based on the notion of polarized light ray is introduced, which is specified by a geometric ray, its polarization state, light intensity, and so on. The computational algorithm that is suggested allows computing the directions and other properties of all (up to four) outgoing rays. In this paper, isotropic, uniaxial, and biaxial crystals are processed in a similar manner. The correctness of the model is validated by comparison of photos of real uniaxial crystals with corresponding computed images. The case of biaxial crystals is validated by testing the effect of conical refraction. Specifications of a series of tests devoted to rendering of optically different objects is presented also.

  8. L'Emploi du "present perfect": esquisse d'une approche didactique (Use of the Present Perfect: Outline of a Didactic Approach) (United States)

    Moulin, Andre


    Many examples of the present perfect tense are proposed. These are accompanied by simple rules to help the student get a clear idea and better grasp of the use of the present perfect in British English. The article is designed for teachers of English to Francophones. (Text is in French.) (AMH)

  9. Topological crystalline insulators in transition metal oxides. (United States)

    Kargarian, Mehdi; Fiete, Gregory A


    Topological crystalline insulators possess electronic states protected by crystal symmetries, rather than time-reversal symmetry. We show that the transition metal oxides with heavy transition metals are able to support nontrivial band topology resulting from mirror symmetry of the lattice. As an example, we consider pyrochlore oxides of the form A2M2O7. As a function of spin-orbit coupling strength, we find two Z2 topological insulator phases can be distinguished from each other by their mirror Chern numbers, indicating a different topological crystalline insulators. We also derive an effective k·p Hamiltonian, similar to the model introduced for Pb(1-x)Sn(x)Te, and discuss the effect of an on-site Hubbard interaction on the topological crystalline insulator phase using slave-rotor mean-field theory, which predicts new classes of topological quantum spin liquids.

  10. Structural changes in bunched crystalline ion beams

    CERN Document Server

    Bussmann, M; Schätz, T; Habs, D


    Measurements of the spatial distribution of bunched crystalline ion beams in the radio frequency quadrupole storage ring PALLAS are presented for different ratios of the longitudinal and the transverse confinement strengths. The length of highly elongated crystalline ion bunches and its dependence on the bunching voltage is compared to predictions for a one-dimensional ion string and three-dimensional space-charge-dominated beams. The length is found to be considerably shorter than that predicted by the models. Furthermore, the scaling of the length with the bunching voltage is shown to differ from the expected inverse cube root scaling. These differences can partially be attributed to the formation of a mixed crystalline structure. Additionally, a concise mapping of the structural transition from a string to a zig-zag configuration as a function of the ratio of the confinement strengths is presented, which in a similar way deviates from the predictions.

  11. Cooling and heating of crystalline ion beams

    CERN Document Server

    Schramm, U; Bussmann, M; Habs, D


    The crystallization of ion beams has recently been established in the rf quadrupole storage ring PALLAS (PAul Laser CooLing Acceleration System) for laser-cooled sup 2 sup 4 Mg sup + ion beams at an energy of about 1 eV. Yet, unexpectedly sharp constraints had to be met concerning the confinement strength and the longitudinal laser cooling rate. In this paper, related and up to now unseen heating mechanisms are pinpointed for crystalline beams. The weak but inevitable diffusive transverse heating associated with the laser cooling process itself is investigated, possibly allowing the future measurement of the latent heat of the ion crystal. As a function of the beam velocity, the influence of bending shear on the attainability of larger crystalline structures is presented. Finally, rf heating of crystalline beams of different structure is studied for discontinuous cooling.

  12. Planar-integrated single-crystalline perovskite photodetectors

    KAUST Repository

    Saidaminov, Makhsud I.


    Hybrid perovskites are promising semiconductors for optoelectronic applications. However, they suffer from morphological disorder that limits their optoelectronic properties and, ultimately, device performance. Recently, perovskite single crystals have been shown to overcome this problem and exhibit impressive improvements: low trap density, low intrinsic carrier concentration, high mobility, and long diffusion length that outperform perovskite-based thin films. These characteristics make the material ideal for realizing photodetection that is simultaneously fast and sensitive; unfortunately, these macroscopic single crystals cannot be grown on a planar substrate, curtailing their potential for optoelectronic integration. Here we produce large-area planar-integrated films made up of large perovskite single crystals. These crystalline films exhibit mobility and diffusion length comparable with those of single crystals. Using this technique, we produced a high-performance light detector showing high gain (above 104 electrons per photon) and high gain-bandwidth product (above 108 Hz) relative to other perovskite-based optical sensors.

  13. Objective Determination of Retinal Function in Bietti Crystalline Retinopathy

    Directory of Open Access Journals (Sweden)

    Dorukcan Akıncıoğlu


    Full Text Available A 44-year-old female patient without any known systemic or ocular disease presented with progressive visual loss and night vision disturbance. Visual acuity was 0.6 in the right eye and 0.2 in the left eye. Tiny, yellow crystalline deposits were seen on fundus examination. In addition, areas of retinal pigment epithelium and choriocapillaris atrophy were detected. Rod and cone responses were depressed in full-field flash electroretinogram. Multifocal electroretinogram testing showed severe foveal function disturbance with less severe but still depressed responses toward the periphery. Multiple hyperreflective lesions were detected in the retina in optical coherence tomography. We aimed to present the role of ocular electrophysiology by comparing the patient’s signs and symptoms with her ocular electrophysiological test results

  14. Synthesis of a Fragment of Crystalline Silicon: Poly(Cyclosilane). (United States)

    Press, Eric M; Marro, Eric A; Surampudi, Sravan K; Siegler, Maxime A; Tang, Joel A; Klausen, Rebekka S


    We report a strategic synthesis of poly(cyclosilane), a well-defined polymer inspired by crystalline silicon. The synthetic strategy relies on the design of a functionalized cyclohexasilane monomer for transition-metal-promoted dehydrocoupling polymerization. Our approach takes advantage of the dual function of the phenylsilyl group, which serves a crucial role both in the synthesis of a novel α,ω-oligosilanyl dianion and as a latent electrophile. We show that the cyclohexasilane monomer prefers a chair conformation. The monomer design ensures enhanced reactivity in transition-metal-promoted dehydrocoupling polymerization relative to secondary silanes, such as methylphenylsilane. Comprehensive NMR spectroscopy yields a detailed picture of the polymer end-group structure and microstructure. Poly(cyclosilane) has red-shifted optical absorbance relative to the monomer. We synthesize a σ-π hybrid donor-acceptor polymer by catalytic hydrosilylation. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Performance of heterojunction p+ microcrystalline silicon n crystalline silicon solar cells (United States)

    van Cleef, M. W. M.; Rath, J. K.; Rubinelli, F. A.; van der Werf, C. H. M.; Schropp, R. E. I.; van der Weg, W. F.


    We have studied by Raman spectroscopy and electro-optical characterization the properties of thin boron doped microcrystalline silicon layers deposited by plasma enhanced chemical vapor deposition (PECVD) on crystalline silicon wafers and on amorphous silicon buffer layers. Thin 20-30 nm p+ μc-Si:H layers with a considerably large crystalline volume fraction (˜22%) and good window properties were deposited on crystalline silicon under moderate PECVD conditions. The performance of heterojunction solar cells incorporating such window layers were critically dependent on the interface quality and the type of buffer layer used. A large improvement of open circuit voltage is observed in these solar cells when a thin 2-3 nm wide band-gap buffer layer of intrinsic a-Si:H deposited at low temperature (˜100 °C) is inserted between the microcrystalline and crystalline silicon [complete solar cell configuration: Al/(n)c-Si/buffer/p+μc-Si:H/ITO/Ag)]. Detailed modeling studies showed that the wide band-gap a-Si:H buffer layer is able to prevent electron backdiffusion into the p+ μc-Si:H layer due to the discontinuity in the conduction band at the amorphous-crystalline silicon interface, thereby reducing the high recombination losses in the microcrystalline layer. At the same time, the discontinuity in the valence band is not limiting the hole exit to the front contact and does not deteriorate the solar cell performance. The defect density inside the crystalline silicon close to the amorphous-crystalline interface has a strong effect on the operation of the cell. An extra atomic hydrogen passivation treatment prior to buffer layer deposition, in order to reduce the number of these defects, did further enhance the values of Voc and fill factor, resulting in an efficiency of 12.2% for a cell without a back surface field and texturization.

  16. Annealing of silicon optical fibers (United States)

    Gupta, N.; McMillen, C.; Singh, R.; Podila, R.; Rao, A. M.; Hawkins, T.; Foy, P.; Morris, S.; Rice, R.; Poole, K. F.; Zhu, L.; Ballato, J.


    The recent realization of silicon core optical fibers has the potential for novel low insertion loss rack-to-rack optical interconnects and a number of other uses in sensing and biomedical applications. To the best of our knowledge, incoherent light source based rapid photothermal processing (RPP) was used for the first time to anneal glass-clad silicon core optical fibers. X-ray diffraction examination of the silicon core showed a considerable enhancement in the length and amount of single crystallinity post-annealing. Further, shifts in the Raman frequency of the silicon in the optical fiber core that were present in the as-drawn fibers were removed following the RPP treatment. Such results indicate that the RPP treatment increases the local crystallinity and therefore assists in the reduction of the local stresses in the core, leading to more homogenous fibers. The dark current-voltage characteristics of annealed silicon optical fiber diodes showed lower leakage current than the diodes based on as-drawn fibers. Photons in UV and vacuum ultraviolet (VUV) regions play a very important role in improving the bulk and carrier transport properties of RPP-treated silicon optical fibers, and the resultant annealing permits a path forward to in situ enhancement of the structure and properties of these new crystalline core optical fibers.

  17. Multiple timescales in the photoswitching kinetics of crystalline thin films of azobenzene-trimers (United States)

    Weber, C.; Pithan, L.; Zykov, A.; Bommel, S.; Carla, F.; Felici, R.; Knie, C.; Bléger, D.; Kowarik, S.


    Functional materials that exhibit photoinduced structural phase transitions are highly interesting for applications in optomechanics and mechanochemistry. It is, however, still not fully understood how photochemical reactions, which are often accompanied by molecular motion, proceed in confined and crystalline environments. Here we show that thin films of azobenzene trimers exhibit high structural order and determine the crystallographic unit cell. We demonstrate that thin film can be switched partially reversibly between a crystalline and an amorphous phase. The time constant of the photoinduced amorphisation as measured with real-time x-ray diffraction (≈ 220 s) lies between the two time constants (120 s and 2870 s) of the ensemble photoisomerisation processes that are measured via optical spectroscopy. Our observation of a photoinduced shrinking of the crystalline domains indicates a cascading process, in which photoisomerisation starts at the surface of the thin film and propagates deeper into the crystalline layer by introducing disorder and generating free volume. This finding is important for the rapidly evolving research field of photoresponsive thin films and smart crystalline materials in general.

  18. Development of a high-throughput solution for crystallinity measurement using THz-Raman spectroscopy (United States)

    Roy, Anjan; Fosse, Jean-Charles; Fernandes, Filipe; Ringwald, Alexandre; Ho, Lawrence


    Rapid identification and the quantitative analysis of crystalline content and the degree of crystallinity is important in pharmaceuticals and polymer manufacturing. Crystallinity affects the bioavailability of pharmaceutical molecules and there is a strong correlation between the performance of polymers and their degree of crystallinity. Low frequency/THz-Raman spectroscopy has enabled determination of crystalline content in materials as a complementary method to X-ray powder diffraction. By incorporating motion stages and microplates, we have extended the applicability of THz-Raman technology to high-throughput screening applications. We describe here a complete THz-Raman microplate reader, with integrated laser, optics, spectrograph and software that are necessary for detecting low-frequency Raman signals. In powder materials scattering is also affected by particle size and the presence of cavities, which lead to a lack of precision and repeatability in Raman intensity measurements. We address this problem by spatial averaging using specific stage motion patterns. This design facilitates rapid and precise measurement of low-frequency vibrational modes, differentiation of polymorphs and other structural characteristics for applications in pharmaceuticals, nano- and bio-materials and for the characterization of industrial polymers where XRPD is commonly used.

  19. Liquid Crystalline Epoxies with Lateral Substituents Showing a Low Dielectric Constant and High Thermal Conductivity (United States)

    Guo, Huilong; Lu, Mangeng; Liang, Liyan; Wu, Kun; Ma, Dong; Xue, Wei


    In this work, liquid crystalline epoxies with lateral substituents were synthesized and cured with aromatic amines or anhydride. The liquid crystalline phase structure of liquid crystalline epoxies with lateral substituents was determined by polarized optical microscopy. The relationship between thermal conductivity and dielectric properties and liquid crystalline domain structure was discussed in the paper. The samples show high thermal conductivity up to 0.29 W/(m × K), due to the orientation of mesogenic units in epoxies. The sample's low dielectric constant of 2.29 is associated with the oriented mesogenic units and long nonpolar lateral substituents. This indicates a new way to obtain materials with high thermal conductivity and a low dielectric constant by introducing oriented mesogenic units into cross-linked epoxy systems. The water repellency is reflected in the contact angles of 92-98°, which are apparently higher than that of conventional epoxy systems. It was also found that the better toughness of liquid crystalline epoxies with lateral substituents was attributed to the existence of long flexible alkyl lateral substituents.

  20. Novel CYP4V2 gene mutation in a Mexican patient with Bietti's crystalline corneoretinal dystrophy. (United States)

    Zenteno, Juan C; Ayala-Ramirez, Raul; Graue-Wiechers, Federico


    To report the clinical and genetic analysis of a Mexican female patient with a sporadic Bietti's crystalline corneoretinal dystrophy. Ophthalmological examination included best-corrected visual acuity, slit lamp examination, applanation tonometry, fundus photography, fluorescein retinal angiography, Goldmann kinetic perimetry, corneal rotating Scheimpflug imaging, and anterior segment optical coherence tomography (Visante OCT). Genetic analysis included PCR amplification and direct nucleotide sequencing of the entire CYP4V2 gene in DNA from the propositus and her relatives. A late-stage retinal dystrophy was established in the patient. No retinal or corneal crystalline deposits were evident during clinical evaluation. Retrospective analysis of fundus imaging disclosed the presence of retinal crystalline deposits, suggesting the diagnosis of Bietti's crystalline corneoretinal dystrophy. Molecular analysis of the CYP4V2 gene revealed the presence of a novel C to T mutation at nucleotide position 974 (exon 7), predicting a threonine to isoleucine replacement at amino acid position 325. Corneal deposits were not seen by biomicroscopy, corneal OCT, or specular microscopy but were evidenced by means of the corneal rotating Scheimpflug imaging. Our results expand the allelic heterogeneity of Bietti's crystalline corneoretinal dystrophy. This is the first patient of Latin-American origin in which a molecular analysis of the disease has been performed. Our results suggest that the use of corneal rotating Scheimpflug imaging can evidence corneal deposits that are not apparent by other methods.

  1. Electronic processes in non-crystalline materials

    CERN Document Server

    Mott, Nevill Francis


    Since the first edition of this highly successful book the field saw many great developments both in experimental and theoretical studies of electrical properties of non-crystalline solids. It became necessary to rewrite nearly the whole book, while the aims of the second edition remained the same: to set out the theoretical concepts, to test them by comparison with experiment for a wide variety of phenomena, and to apply them to non-crystalline materials. Sir Nevill Mott shared the1977 Nobel Prize for Physics, awarded for his research work in this field. The reissue of this book as part of th

  2. Used fuel disposition in crystalline rocks

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Y. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Hadgu, Teklu [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Kalinina, Elena Arkadievna [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Jerden, James L. [Argonne National Lab. (ANL), Argonne, IL (United States); Copple, Jacqueline M. [Argonne National Lab. (ANL), Argonne, IL (United States); Cruse, T. [Argonne National Lab. (ANL), Argonne, IL (United States); Ebert, W. [Argonne National Lab. (ANL), Argonne, IL (United States); Buck, E. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Eittman, R. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Tinnacher, R. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Tournassat, Christophe. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Davis, J. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Viswanathan, H. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Chu, S. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Dittrich, T. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Hyman, F. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Karra, S. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Makedonska, N. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Reimus, P. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Zavarin, Mavrik [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Joseph, C. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)


    The U.S. Department of Energy Office of Nuclear Energy, Office of Fuel Cycle Technology established the Used Fuel Disposition Campaign (UFDC) in fiscal year 2010 (FY10) to conduct the research and development (R&D) activities related to storage, transportation and disposal of used nuclear fuel and high level nuclear waste. The objective of the Crystalline Disposal R&D Work Package is to advance our understanding of long-term disposal of used fuel in crystalline rocks and to develop necessary experimental and computational capabilities to evaluate various disposal concepts in such media.

  3. Cost-effective description of strong correlation: efficient implementations of the perfect quadruples and perfect hextuples models

    CERN Document Server

    Lehtola, Susi; Head-Gordon, Martin


    Novel implementations based on dense tensor storage are presented for the singlet-reference perfect quadruples (PQ) [Parkhill, Lawler, and Head-Gordon, J. Chem. Phys. 130, 084101 (2009)] and perfect hextuples (PH) [Parkhill and Head-Gordon, J. Chem. Phys. 133, 024103 (2010)] models. The methods are obtained as block decompositions of conventional coupled-cluster theory that are exact for four electrons in four orbitals (PQ) and six electrons in six orbitals (PH), but that can also be applied to much larger systems. PQ and PH have storage requirements that scale as the square, and as the cube of the number of active electrons, respectively, and exhibit quartic scaling of the computational effort for large systems. Applications of the new implementations are presented for full-valence calculations on linear polyenes (C n H n+2 ), which highlight the excellent computational scaling of the present implementations that can routinely handle active spaces of hundreds of electrons. The accuracy of the models is studi...

  4. Omnidirectional, polarization-independent, ultra-broadband metamaterial perfect absorber using field-penetration and reflected-wave-cancellation. (United States)

    Zhong, Yan Kai; Lai, Yi-Chun; Tu, Ming-Hsiang; Chen, Bo-Ruei; Fu, Sze Ming; Yu, Peichen; Lin, Albert


    In this work, we present the result of nickel (Ni)-based metamaterial perfect absorbers (MPA) with ultra-broadband close-to-one absorbance. The experimental broadband characteristic is significantly improved over the past effort on metamaterial perfect absorbers. An in-depth physical picture and quantitative analysis is presented to reveal the physical origin of its ultrabroadband nature. The key constituent is the cancellation of the reflected wave using ultra-thin, moderate-extinction metallic films. The ultra-thin metal thickness can reduce the reflection as the optical field penetrates through the metallic films. This leads to minimal reflection at each ultra-thin metal layer, and light is penetrating into the Ni/SiO2 stacking. More intuitively, when the layer thickness is much smaller than the photon wavelength, the layer is essentially invisible to the photons. This results in absorption in the metal thin-film through penetration while there is minimal reflection by the metal film. More importantly, the experimental evidence for omni-directionality and polarization-insensitivity are established for the proposed design. Detailed measurement is conducted. Due to the ultrathin metal layers and the satisfactory tolerance in dielectric thickness, the broadband absorption has minimal degradation at oblique incidence. Such a wide angle, polarization-insensitive, ultra-broadband MPA can be very promising in the future, and the optical physics using sub-skin-depth metal film can also facilitate miniaturized high-performance nano-photonic devices.

  5. Central surface curvatures of postmortem- extracted intact human crystalline lenses: implications for understanding the mechanism of accommodation. (United States)

    Schachar, Ronald A


    To measure the radii of curvature of postmortem, whole, encapsulated human crystalline lenses, free of all zonular attachments, and to calculate their corresponding optical powers. Experimental study. Thirty human crystalline lenses from donors with a mean age of 33.6+/-14.4 years. Intact clear human crystalline lenses were obtained within an average of 21 hours of death. The lenses were removed from the eye by the contributing eye bank and shipped in Optisol-GS, a physiologic preservative storage medium. These lenses, with intact capsules, were freed of all zonular attachments. The lenses were stored at 7 degrees C and were maintained in the same storage medium during the period that they were held for evaluation. Using a portable Keratron Scout corneal topographer (Eyequip, Ponte Vedra Beach, FL) fixed to an optical bench, the radii of curvatures of the anterior and posterior surfaces of the crystalline lens were measured daily for 10 days after receipt of the tissue. The capsules of the crystalline lenses remained intact, and the lenses were clear throughout the study. Measurements were made at room temperature after removing the lens from storage. Eight repetitions of the topography were made from each surface on each day to determine the accuracy and stability of the measurement. Profile photographs were taken daily to establish the central crystalline lens thickness. The corresponding optical power of each physiologically maintained crystalline lens was calculated. The main outcome measures were the central anterior radius of curvature, the central posterior radius of curvature, the central thickness of each crystalline lens, and the amount of change in these parameters over 10 days. The means +/- standard deviations of the central anterior and posterior radii of curvatures of the 30 adult lenses were 10.5+/-0.6 mm and 7.1+/-1.0 mm, respectively. The mean +/- standard deviation of the central thickness, as measured from profile photographs, was 3.9+/-0.5 mm

  6. Perfect Match: Biometrics and Body Patterning in a Networked World

    Directory of Open Access Journals (Sweden)

    Gillian Fuller


    Full Text Available Bodies are increasingly becoming collectively integrated into informational processes which are open to biotechnical forms of regulation. Biometrics, the use of body measurements such as retina scanning, face recognition and fingerprinting is now being uncontroversially introduced throughout the world under the aegis of security and efficient traffic management. Fields that once molded the individual through bodily confinement and observation are dispersing and converging into the regimes of logistics and control. This paper looks at the operations of biometrics to consider the biopolitical ramifications of body measurement as power is made operational by controlling movement via the haptic techniques of information architecture rather than the more familiar modes of discipline and panoptical vision machines. Biometrics is the perfect control for the networked individual as we divide across infinite planes and dimensions, reconfiguring endlessly to become pattern matches in expanding databases of everyday life.

  7. Metamaterial-based perfect absorber: polarization insensitivity and broadband (United States)

    Hien Nguyen, Thi; Bui, Son Tung; Nguyen, Trong Tuan; Nguyen, Thanh Tung; Lee, YoungPak; Nguyen, Manh An; Vu, Dinh Lam


    We report the design and simulation of a microwave metamaterials-based perfect absorber using a simple and highly symmetric structure. The basic structure consists of three functional layers: the middle is a dielectric, the back is a metallic plane and the front is a ring of metal. The influence of structural parameters on the absorbance and absorption frequency were investigated. The results show an exceptional absorption performance of near unity around 16 GHz. In addition, the absorption is insensitive to the polarization of the incident beam due to the highly symmetric structure. Finally, four and nine rings with different sizes are arranged appropriately in a unit cell in order to construct a broadband absorber. A polarization-insensitive absorbance of above 90% is achieved over a bandwidth of 15%.

  8. Perfect mixing of immiscible macromolecules at fluid interfaces (United States)

    Sheiko, Sergei; Matyjaszewski, Krzysztof; Tsukruk, Vladimir; Carrillo, Jan-Michael; Rubinstein, Michael; Dobrynin, Andrey; Zhou, Jing


    Macromolecules typically phase separate unless their shapes and chemical compositions are tailored to explicitly drive mixing. But now our research has shown that physical constraints can drive spontaneous mixing of chemically different species. We have obtained long-range 2D arrays of perfectly mixed macromolecules having a variety of molecular architectures and chemistries, including linear chains, block-copolymer stars, and bottlebrush copolymers with hydrophobic, hydrophilic, and lipophobic chemical compositions. This is achieved by entropy-driven enhancement of steric repulsion between macromolecules anchored on a substrate. By monitoring the kinetics of mixing, we have proved that molecular intercalation is an equilibrium state. The array spacing is controlled by the length of the brush side chains. This entropic templating strategy opens new ways for generating patterns on sub-100 nm length scales with potential application in lithography, directed self-assembly, and biomedical assays. Financial support from the National Science Foundation DMR-0906985, DMR-1004576, DMR-1122483, and DMR-0907515.

  9. Theory for Perfect Transmodal Fabry-Perot Interferometer. (United States)

    Yang, Xiongwei; Kweun, Joshua M; Kim, Yoon Young


    We establish the theory for perfect transmodal Fabry-Perot interferometers that can convert longitudinal modes solely to transverse modes and vice versa, reaching up to 100% efficiency. Two exact conditions are derived for plane mechanical waves: simultaneous constructive interferences of each of two coupled orthogonal modes, and intermodal interference at the entrance and exit sides of the interferometer with specific skew polarizations. Because the multimodal interferences and specific skew motions require unique anisotropic interferometers, they are realized by metamaterials. The observed peak patterns by the transmodal interferometers are similar to those found in the single-mode Fabry-Perot resonance, but multimodality complicates the involved mechanics. We provide their design principle and experimented with a fabricated interferometer. This theory expands the classical Fabry-Perot resonance to the realm of mode-coupled waves, having profound impact on general wave manipulation. The transmodal interferometer could sever as a device to transfer wave energy freely between dissimilar modes.

  10. Ways of technical training perfection in rowing on kayaks

    Directory of Open Access Journals (Sweden)

    A.N. Kolumbet


    Full Text Available Purpose: to find out the ways of rower’s movements perfection. Material: in the research 114 qualified rowers participated. Results: it was found that every rover has the zones of optimal and critical temp. With linear increasing of rowing temp there happens non-linear change of boat’s speed; of working parameters and efficiency of rower’s movements. The highest values of rowers’ efficiency coefficient were registered in zone of intensity of 70-80% from maximal. With temp’s increasing to maximal boat’s speed stabilizes and efficiency coefficient sharply reduces. At the end of distance we registered confident worsening of rowers’ main coordination elements under influence of rising tiredness. Conclusions: in the process of motor qualities’ training it is necessary to ensure: increase working temp up to critical; restore optimal correlation of technical parameters with every new level of temp.

  11. Perfection of the special preparation of volleyball players

    Directory of Open Access Journals (Sweden)

    Volodymyr Bogush


    Full Text Available Purpose: to develop and apply the complex of exercises for perfection of the special physical preparation of volleyball players and its constituents: special quickness, force, endurance. Material and Methods: sportsmen (candidates in sport masters, I and II digits inspected in age from 16 to 23 in an amount 40 persons; the special quickness and its constituents are probed: latent period of the reaction, the speed of individual movements; maximum force in various modes; endurance – speed, hopping, power. Results: at drawing on the offered complex of exercises the improvement of indexes of speed and endurance hopping, speed-power capabilities is marked at stimulation of tension of muscles in the conditions of development of a maximum of dynamic effort. Conclusions: terms and methods are certain for the effective conducting of training process, which provides optimum intercommunication of levels of bodily and functional conditions, technical and tactical preparation.

  12. Gravitational perfect fluid collapse in Gauss-Bonnet gravity

    Energy Technology Data Exchange (ETDEWEB)

    Abbas, G.; Tahir, M. [The Islamia University of Bahawalpur, Department of Mathematics, Bahawalpur (Pakistan)


    The Einstein Gauss-Bonnet theory of gravity is the low-energy limit of heterotic super-symmetric string theory. This paper deals with gravitational collapse of a perfect fluid in Einstein-Gauss-Bonnet gravity by considering the Lemaitre-Tolman-Bondi metric. For this purpose, the closed form of the exact solution of the equations of motion has been determined by using the conservation of the stress-energy tensor and the condition of marginally bound shells. It has been investigated that the presence of a Gauss-Bonnet coupling term α > 0 and the pressure of the fluid modifies the structure and time formation of singularity. In this analysis a singularity forms earlier than a horizon, so the end state of the collapse is a naked singularity depending on the initial data. But this singularity is weak and timelike, which goes against the investigation of general relativity. (orig.)

  13. Efficient and stable perfectly matched layer for CEM

    KAUST Repository

    Duru, Kenneth


    An efficient unsplit perfectly matched layer for numerical simulation of electromagnetic waves in unbounded domains is derived via a complex change of variables. In order to surround a Cartesian grid with the PML, the time-dependent PML requires only one (scalar) auxiliary variable in two space dimensions and six (scalar) auxiliary variables in three space dimensions. It is therefore cheap and straightforward to implement. We use Fourier and energy methods to prove the stability of the PML. We extend the stability result to a semi-discrete PML approximated by central finite differences of arbitrary order of accuracy and to a fully discrete problem for the \\'Leap-Frog\\' schemes. This makes precise the usefulness of the derived PML model for longtime simulations. Numerical experiments are presented, illustrating the accuracy and stability of the PML. © 2013 IMACS.

  14. Violation of Bell inequality in perfect translation-invariant systems (United States)

    Sun, Zhao-Yu; Wu, Yu-Ying; Xu, Jian; Huang, Hai-Lin; Chen, Bo-Jun; Wang, Bo


    Bell inequalities and nonlocality have been widely studied in one-dimensional quantum systems. As a kind of quantum correlation, it is expected that bipartite nonlocality should be present in quantum systems, just as bipartite entanglement does. Surprisingly, for various models, two-qubit states do not violate Bell inequalities, i.e., they are local. Recently, it is realized that the results are related to the monogamy trade-off obeyed by bipartite Bell correlations, thus it is believed that for general translation invariant systems, two-qubit states should not violate the Bell inequality [Oliveira, Europhys. Lett.EULEEJ0295-507510.1209/0295-5075/100/60004 100, 60004 (2012)]. In this Brief Report, we demonstrate that in perfect translation-invariant systems with an even number of sites, the Bell inequality can be violated. A nontrivial model is constructed to confirm the conclusion.

  15. Magnetism and perfect spin filtering effect in graphene nanoflakes (United States)

    Sheng, W.; Ning, Z. Y.; Yang, Z. Q.; Guo, H.


    Magnetic and spin-polarized transport properties in zigzag-edged graphene nanoflakes were investigated from first-principles calculations. Ferrimagnetic structure was found to be the ground state for triangular shaped graphene flakes. Magnetism is weakened by doping B or N atoms into the flakes, and it is enhanced if F atoms are doped in certain sublattices of the flakes. The magnetic properties can be rationalized by the behaviors of dopants as well as interactions between dopants and the host atoms. A perfect (100%) spin filtering effect was achieved for the pure or B doped graphene flake sandwiched between two gold electrodes. The orientation of the spin current is found to be flipped if the flake is doped with N, O, or F atoms. The orientation-tunable spin filtering effect is potentially useful in practical applications.

  16. Magnetism and perfect spin filtering effect in graphene nanoflakes

    Energy Technology Data Exchange (ETDEWEB)

    Sheng, W; Yang, Z Q [State Key Laboratory of Surface Physics and Department of Physics, Fudan University, Shanghai 200433 (China); Ning, Z Y; Guo, H, E-mail: [Center for the Physics of Materials and Department of Physics, McGill University, Montreal, QC, H3A 2T8 (Canada)


    Magnetic and spin-polarized transport properties in zigzag-edged graphene nanoflakes were investigated from first-principles calculations. Ferrimagnetic structure was found to be the ground state for triangular shaped graphene flakes. Magnetism is weakened by doping B or N atoms into the flakes, and it is enhanced if F atoms are doped in certain sublattices of the flakes. The magnetic properties can be rationalized by the behaviors of dopants as well as interactions between dopants and the host atoms. A perfect (100%) spin filtering effect was achieved for the pure or B doped graphene flake sandwiched between two gold electrodes. The orientation of the spin current is found to be flipped if the flake is doped with N, O, or F atoms. The orientation-tunable spin filtering effect is potentially useful in practical applications.

  17. Simulation of MILD combustion using Perfectly Stirred Reactor model

    KAUST Repository

    Chen, Z.


    A simple model based on a Perfectly Stirred Reactor (PSR) is proposed for moderate or intense low-oxygen dilution (MILD) combustion. The PSR calculation is performed covering the entire flammability range and the tabulated chemistry approach is used with a presumed joint probability density function (PDF). The jet, in hot and diluted coflow experimental set-up under MILD conditions, is simulated using this reactor model for two oxygen dilution levels. The computed results for mean temperature, major and minor species mass fractions are compared with the experimental data and simulation results obtained recently using a multi-environment transported PDF approach. Overall, a good agreement is observed at three different axial locations for these comparisons despite the over-predicted peak value of CO formation. This suggests that MILD combustion can be effectively modelled by the proposed PSR model with lower computational cost.

  18. Perfecting engineering and technical drawing reducing errors and misinterpretations

    CERN Document Server

    Hanifan, Ron


    This concise reference helps readers avoid the most commonplace errors in generating or interpreting engineering drawings. Applicable across multiple disciplines, Hanifan’s lucid treatment of such essential skills as understanding and conveying data in a drawing, exacting precision in dimension and tolerance notations, and selecting the most-appropriate drawing type for a particular engineering situation, “Perfecting Engineering and Technical Drawing” is an valuable resource for practicing engineers, engineering technologists, and students. Provides straightforward explanation of the requirements for all common engineering drawing types Maximizes reader understanding of engineering drawing requirements, differentiating the types of drawings and their particular characteristics Elucidates electrical reference designation requirements, geometric dimensioning, and tolerancing errors Explains the entire engineering documentation process from concept to delivery

  19. Evaluating the Type of Light Transmittance in Mono Crystalline, Poly Crystalline and Sapphire Brackets- An Invitro Spectrofluorometer Study. (United States)

    Mohamed, Jauhar P; Kommi, Pradeep Babu; Kumar, M Senthil; Hanumanth; Venkatesan; Aniruddh; Arvinth; Kumar, Arani Nanda


    Most of the patients seek orthodontic treatment to improve the smile, which improves the facial profile by means of fixed appliances i.e., brackets and wires. The brackets are of different types like stainless steel and ceramic. Ceramic brackets were considered as aesthetic appliance which was divided into mono-crystalline, polycrystalline and sapphire brackets. The light transmittance might influence the degree of curing adhesive material in mono crystalline, polycrystalline and sapphire brackets. The aim of the present study was to evaluate the translucency and intensity of three different aesthetic brackets (mono crystalline, poly crystalline and sapphire ceramic brackets) and to determine their influence on shear bond strength of the brackets. The adhesive remnant index was also measured after debonding of the brackets from the tooth surface. Twenty six samples each of monocrystalline, polycrystalline and sapphire brackets (total 78 ceramic brackets) were used for the study. The bracket samples were subjected to optical fluorescence test using spectrofluorometer to measure the intensity of the brackets. Seventy eight extracted premolar teeth were procured and divided into 3 groups. The brackets were then bonded to the tooth using Transbond XT (3M Unitek) light cure composite material and cured with new light cure unit (Light Emitting Diode) of wood pecker company (400-450nm) for 30 seconds, and these samples were subjected to shear bond strength test with Instron Universal Testing Machine (UNITEK-94100) with a load range between 0 to 100 KN with a maximum cross head speed of 0.5mm/min. ARI (Adhesive Remnant Index) scores were evaluated according to Artun and Bergland scoring system using stereomicroscope at 20x magnification. The light absorption values obtained from spectrofluorometeric study were 3300000-3500000 cps for group 1 (monocrystalline ceramic brackets), 6000000-6500000 cps for Group 2 (polycrystalline ceramic brackets) and 2700000 -3000000 cps for

  20. Perfect fluid tori orbiting Kehagias-Sfetsos naked singularities (United States)

    Stuchlík, Z.; Pugliese, D.; Schee, J.; Kučáková, H.


    We construct perfect fluid tori in the field of the Kehagias-Sfetsos (K-S) naked singularities. These are spherically symmetric vacuum solutions of the modified Hořava quantum gravity, characterized by a dimensionless parameter ω M^2, combining the gravitational mass parameter M of the spacetime with the Hořava parameter ω reflecting the role of the quantum corrections. In dependence on the value of ω M^2, the K-S naked singularities demonstrate a variety of qualitatively different behavior of their circular geodesics that is fully reflected in the properties of the toroidal structures, demonstrating clear distinction to the properties of the torii in the Schwarzschild spacetimes. In all of the K-S naked singularity spacetimes the tori are located above an "antigravity" sphere where matter can stay in a stable equilibrium position, which is relevant for the stability of the orbiting fluid toroidal accretion structures. The signature of the K-S naked singularity is given by the properties of marginally stable tori orbiting with the uniform distribution of the specific angular momentum of the fluid, l= const. In the K-S naked singularity spacetimes with ω M^2 > 0.2811, doubled tori with the same l= const can exist; mass transfer between the outer torus and the inner one is possible under appropriate conditions, while only outflow to the outer space is allowed in complementary conditions. In the K-S spacetimes with ω M^2 < 0.2811, accretion from cusped perfect fluid tori is not possible due to the non-existence of unstable circular geodesics.

  1. Topological crystalline insulator SnTe nanoribbons (United States)

    Dahal, Bishnu R.; Dulal, Rajendra P.; Pegg, Ian L.; Philip, John


    Topological crystalline insulators are systems in which a band inversion that is protected by crystalline mirror symmetry gives rise to nontrivial topological surface states. SnTe is a topological crystalline insulator. It exhibits p-type conductivity due to Sn vacancies and Te antisites, which leads to high carrier density in the bulk. Thus growth of high quality SnTe is a prerequisite for understanding the topological crystalline insulating behavior. We have grown SnTe nanoribbons using a solution method. The width of the SnTe ribbons varies from 500 nm to 2 μm. They exhibit rock salt crystal structure with a lattice parameter of 6.32 Å. The solution method that we have adapted uses low temperature, so the Sn vacancies can be controlled. The solution grown SnTe nanoribbons exhibit strong semiconducting behavior with an activation energy of 240 meV. This activation energy matches with the calculated band gap for SnTe with a lattice parameter of 6.32 Å, which is higher than that reported for bulk SnTe. The higher activation energy makes the thermal excitation of bulk charges very difficult on the surface. As a result, the topological surfaces will be free from the disturbance caused by the thermal excitations

  2. Crystalline Fullerenes. Round Pegs in Square Holes

    NARCIS (Netherlands)

    Fleming, R.M.; Hessen, B.; Siegrist, T.; Kortan, A.R.; Marsh, P.; Tycko, R.; Dabbagh, G.; Haddon, R.C.


    The fullerenes C60 and C70 act as spherical building blocks in crystalline solids to form a variety of crystal structures. In many cases, the icosahedral molecular symmetry of C60 appears to play little role in determining the crystal structure. In this chapter we discuss our results on the

  3. Quasi-crystalline geometry for architectural structures

    DEFF Research Database (Denmark)

    Wester, Ture; Weinzieri, Barbara

    The quasi-crystal (QC) type of material was discovered in 1983 by Dan Schechtman from Technion, Haifa. This new crystalline structure of material broke totally with the traditional conception of crystals and geometry introducing non-periodic close packing of cells with fivefold symmetry in 3D space...

  4. Donor-hydrogen complexes in crystalline silicon

    NARCIS (Netherlands)

    Liang, Z.N.; Niesen, L; Haas, C; Denteneer, P.J.H.


    Experimental results are presented on the study of Sb-H complexes in crystalline silicon, employing Sb-119 --> Sn-119 source Mossbauer spectroscopy and a low-energy H implantation technique. In addition to a visible component, we observe a large decrease of the Mossbauer intensity associated with

  5. Crystalline amino acids and nitrogen emission

    NARCIS (Netherlands)

    Verstegen, M.W.A.; Jongbloed, A.W.


    Reductions in dietary protein level and supplementation with certain crystalline amino acids is a well-established method of formulating diets to achieve a more ideal amino acid pattern and to reduce nitrogen excretion. Up to 35% reduction in nitrogen excretion may be achieved by supplementing pig

  6. Local excitation of surface plasmon polaritons by second-harmonic generation in crystalline organic nanofibers

    DEFF Research Database (Denmark)

    Skovsen, Esben; Søndergaard, Thomas; Fiutowski, Jacek


    Coherent local excitation of surface plasmon polaritons (SPPs) by second-harmonic generation (SHG) in aligned crystalline organic functionalized para-phenylene nanofibers deposited on a thin silver film is demonstrated. The excited SPPs are characterized using angle-resolved leakage radiation....... This is explained both as a consequence of approaching the peak of the fibers nonlinear response at the wavelength 772 nm, and as a consequence of better coupling to SPPs due to their stronger confinement. © 2012 Optical Society...

  7. Austrian Mirrors: Development of Ultra-Low-Loss Cryogenic Crystalline Coatings (DARPA) (United States)


    driven by excess mechanical dissipation in high-reflectivity IBS-derived films , imposes a severe limit on the performance of state-of-the- art precision...multilayers with high-quality mirror substrates. Our innovative coating technology entails the selective removal of crystalline films from the original...minimizing the background impurity level of the constituent films , we can now achieve an optical absorption level below 1 ppm in the near infrared

  8. Gamma crystallins of the human eye lens. (United States)

    Vendra, Venkata Pulla Rao; Khan, Ismail; Chandani, Sushil; Muniyandi, Anbukkarasi; Balasubramanian, Dorairajan


    Protein crystallins co me in three types (α, β and γ) and are found predominantly in the eye, and particularly in the lens, where they are packed into a compact, plastic, elastic, and transparent globule of proper refractive power range that aids in focusing incoming light on to the retina. Of these, the γ-crystallins are found largely in the nuclear region of the lens at very high concentrations (>400 mg/ml). The connection between their structure and inter-molecular interactions and lens transparency is an issue of particular interest. We review the origin and phylogeny of the gamma crystallins, their special structure involving the use of Greek key supersecondary structural motif, and how they aid in offering the appropriate refractive index gradient, intermolecular short range attractive interactions (aiding in packing them into a transparent ball), the role that several of the constituent amino acid residues play in this process, the thermodynamic and kinetic stability and how even single point mutations can upset this delicate balance and lead to intermolecular aggregation, forming light-scattering particles which compromise transparency. We cite several examples of this, and illustrate this by cloning, expressing, isolating and comparing the properties of the mutant protein S39C of human γS-crystallin (associated with congenital cataract-microcornea), with those of the wild type molecule. In addition, we note that human γ-crystallins are also present in other parts of the eye (e.g., retina), where their functions are yet to be understood. There are several 'crucial' residues in and around the Greek key motifs which are essential to maintain the compact architecture of the crystallin molecules. We find that a mutation that replaces even one of these residues can lead to reduction in solubility, formation of light-scattering particles and loss of transparency in the molecular assembly. Such a molecular understanding of the process helps us construct the

  9. Diphenylpolyynes For Nonlinear Optical Devices (United States)

    Stiegman, Albert E.; Perry, Joseph W.; Coulter, Daniel R.


    Several diphenylpolyyne compounds found to exhibit second-order nonlinear electric susceptibilities and chemical structures conducive to orientation in appropriate chemical environments. These features make new materials suitable for use in optical devices. Diphenylacetylene links give molecules rodlike characteristics making them amenable to orientation by suspension in liquid crystals. New molecules also have inherent liquid-crystalline properties enabling them to be oriented directly.

  10. From Cellulosic Based Liquid Crystalline Sheared Solutions to 1D and 2D Soft Materials

    Directory of Open Access Journals (Sweden)

    Maria Helena Godinho


    Full Text Available Liquid crystalline cellulosic-based solutions described by distinctive properties are at the origin of different kinds of multifunctional materials with unique characteristics. These solutions can form chiral nematic phases at rest, with tuneable photonic behavior, and exhibit a complex behavior associated with the onset of a network of director field defects under shear. Techniques, such as Nuclear Magnetic Resonance (NMR, Rheology coupled with NMR (Rheo-NMR, rheology, optical methods, Magnetic Resonance Imaging (MRI, Wide Angle X-rays Scattering (WAXS, were extensively used to enlighten the liquid crystalline characteristics of these cellulosic solutions. Cellulosic films produced by shear casting and fibers by electrospinning, from these liquid crystalline solutions, have regained wider attention due to recognition of their innovative properties associated to their biocompatibility. Electrospun membranes composed by helical and spiral shape fibers allow the achievement of large surface areas, leading to the improvement of the performance of this kind of systems. The moisture response, light modulated, wettability and the capability of orienting protein and cellulose crystals, opened a wide range of new applications to the shear casted films. Characterization by NMR, X-rays, tensile tests, AFM, and optical methods allowed detailed characterization of those soft cellulosic materials. In this work, special attention will be given to recent developments, including, among others, a moisture driven cellulosic motor and electro-optical devices.

  11. Generation of Perfect Optical Vortices by Using a Transmission Liquid Crystal Spatial Light Modulator

    National Research Council Canada - National Science Library

    Nelson Anaya Carvajal; Cristian H. Acevedo; Yezid Torres Moreno


    ... liquid crystal spatial light modulator. We showed theoretically that the size of the annular vortex in the Fourier plane is independent of the spiral phase topological charge but it is dependent on the axicon...

  12. TL/OSL properties of crystalline inclusions from heavy, barytes loaded, concrete

    Energy Technology Data Exchange (ETDEWEB)

    Kiyak, Nafiye G., E-mail: [ISIK University, Physics Department, Faculty of Arts and Sciences, 34980 Sile, Istanbul (Turkey); Polymeris, George S. [ISIK University, Physics Department, Faculty of Arts and Sciences, 34980 Sile, Istanbul (Turkey); R.C. ' ATHENA' , Cultural and Educational Technology Institute, Archaeometry Laboratory, Tsimiski 58, 67100 Xanthi (Greece); Kitis, George [Aristotle University of Thessaloniki, Nuclear Physics Laboratory, 54124 Thessaloniki (Greece)


    In the present work, we report the luminescence data obtained from heavy, barytes loaded, concrete containing many crystalline inclusions, extracted from a shielding block located at CERN. The use of both Thermoluminescence (TL) and Optically Stimulated Luminescence (OSL) signals, resulting from a specific trap at about 200 {sup o}C, is investigated for retrospective dosimetry purposes. By applying thermal cleaning experiments the TL signal of interest was isolated. Basic TL and OSL properties as thermal and optical stability, repeatability and mainly the linearity of the TL and OSL signals as a function of beta dose were investigated. The implications of all these luminescence properties to retrospective dosimetry are also briefly discussed.

  13. Weight filtrations on log crystalline cohomologies of families of open smooth varieties

    CERN Document Server

    Nakkajima, Yukiyoshi


    In this volume, the authors construct a theory of weights on the log crystalline cohomologies of families of open smooth varieties in characteristic p>0, by defining and constructing four filtered complexes. Fundamental properties of these filtered complexes are proved, in particular the p-adic purity, the functionality of three filtered complexes, the weight-filtered base change formula, the weight-filtered Künneth formula, the weight-filtered Poincaré duality, and the E2-degeneration of p-adic weight spectral sequences. In addition, the authors state some theorems on the weight filtration and the slope filtration on the rigid cohomology of a separated scheme of finite type over a perfect field of characteristic p>0.

  14. Crystalline Indium Sulphide thin film by photo accelerated deposition technique (United States)

    Dhanya, A. C.; Preetha, K. C.; Deepa, K.; Remadevi, T. L.


    Indium sulfide thin films deserve special attention because of its potential application as buffer layers in CIGS based solar cells. Highly transparent indium sulfide (InS) thin films were prepared using a novel method called photo accelerated chemical deposition (PCD). Ultraviolet source of 150 W was used to irradiate the solution. Compared to all other chemical methods, PCD scores its advantage for its low cost, flexible substrate and capable of large area of deposition. Reports on deposition of high quality InS thin films at room temperature are very rare in literature. The precursor solution was initially heated to 90°C for ten minutes and then deposition was carried out at room temperature for two hours. The appearance of the film changed from lemon yellow to bright yellow as the deposition time increased. The sample was characterized for its structural and optical properties. XRD profile showed the polycrystalline behavior of the film with mixed phases having crystallite size of 17 nm. The surface morphology of the films exhibited uniformly distributed honey comb like structures. The film appeared to be smooth and the value of extinction coefficient was negligible. Optical measurements showed that the film has more than 80% transmission in the visible region. The direct band gap energy was 2.47eV. This method is highly suitable for the synthesis of crystalline and transparent indium sulfide thin films and can be used for various photo voltaic applications.

  15. Whole genome association mapping by incompatibilities and local perfect phylogenies

    Directory of Open Access Journals (Sweden)

    Besenbacher Søren


    Full Text Available Abstract Background With current technology, vast amounts of data can be cheaply and efficiently produced in association studies, and to prevent data analysis to become the bottleneck of studies, fast and efficient analysis methods that scale to such data set sizes must be developed. Results We present a fast method for accurate localisation of disease causing variants in high density case-control association mapping experiments with large numbers of cases and controls. The method searches for significant clustering of case chromosomes in the "perfect" phylogenetic tree defined by the largest region around each marker that is compatible with a single phylogenetic tree. This perfect phylogenetic tree is treated as a decision tree for determining disease status, and scored by its accuracy as a decision tree. The rationale for this is that the perfect phylogeny near a disease affecting mutation should provide more information about the affected/unaffected classification than random trees. If regions of compatibility contain few markers, due to e.g. large marker spacing, the algorithm can allow the inclusion of incompatibility markers in order to enlarge the regions prior to estimating their phylogeny. Haplotype data and phased genotype data can be analysed. The power and efficiency of the method is investigated on 1 simulated genotype data under different models of disease determination 2 artificial data sets created from the HapMap ressource, and 3 data sets used for testing of other methods in order to compare with these. Our method has the same accuracy as single marker association (SMA in the simplest case of a single disease causing mutation and a constant recombination rate. However, when it comes to more complex scenarios of mutation heterogeneity and more complex haplotype structure such as found in the HapMap data our method outperforms SMA as well as other fast, data mining approaches such as HapMiner and Haplotype Pattern Mining (HPM

  16. Polarization-independent dual-band perfect absorber utilizing multiple magnetic resonances. (United States)

    Yoo, Young Joon; Kim, Young Joo; Van Tuong, Pham; Rhee, Joo Yull; Kim, Ki Won; Jang, Won Ho; Kim, Y H; Cheong, H; Lee, Youngpak


    We propose a dual-band metamaterial perfect absorber at microwave frequencies. Using a planar metamaterial, which consists of periodic metallic donut-shape meta-atoms at the front separated from the metallic plane at the back by a dielectric layer, we demonstrate the multi-plasmonic high-frequency perfect absorptions induced by the third-harmonic as well as the fundamental magnetic resonances. The origin of the induced multi-plasmonic perfect absorption was elucidated. It was also found that the perfect absorptions at dual peaks are persistent with varying polarization.

  17. On uniformly perfect boundary of stable domains in iteration of meromorphic functions II (United States)

    Jian-Hua, Zheng


    We investigate uniform perfectness of the Julia set of a transcendental meromorphic function with finitely many poles and prove that the Julia set of such a meromorphic function is not uniformly perfect if it has only bounded components. The Julia set of an entire function is uniformly perfect if and only if the Julia set including infinity is connected and every component of the Fatou set is simply connected. Furthermore if an entire function has a finite deficient value in the sense of Nevanlinna, then it has no multiply connected stable domains. Finally, we give some examples of meromorphic functions with uniformly perfect Julia sets.

  18. One-pot high-yield synthesis of single-crystalline gold nanorods using glycerol as a low-cost and eco-friendly reducing agent

    Energy Technology Data Exchange (ETDEWEB)

    Parveen, Rashida [University of São Paulo, Institute of Chemistry of São Carlos (Brazil); Gomes, Janaina F. [Universidade Federal de São Carlos, Departamento de Engenharia Química (Brazil); Ullah, Sajjad [University of São Paulo, Institute of Chemistry of São Carlos (Brazil); Acuña, José J. S. [Universidade Federal do ABC, Centro de Ciências Naturais e Humanas (Brazil); Tremiliosi-Filho, Germano, E-mail: [University of São Paulo, Institute of Chemistry of São Carlos (Brazil)


    The formation of gold nanorods (AuNRs) has recently attracted great attention due to their shape-dependent optical properties that are important for many applications. The development of simpler and safer methods for the high-yield synthesis of AuNRs employing low-cost and easily handled reagents is thus of great importance. Here, we introduce, for the first time, a one-pot seedless method for the preparation of single-crystalline AuNRs in almost 100 % yield based on the use of glycerol in alkaline medium as an eco-friendly, low-cost and pH-tunable reducing agent. The synthesized AuNRs were characterized by UV–Vis–NIR spectroscopy, FEG–SEM and HRTEM. The effect of the presence of capping agent (CTAB) and the concentration of reactants (glycerol, NaOH and AgNO{sub 3}) on the yield and aspect ratio (AR) of AuNRs is discussed. The AR and yield of AuNRs showed a clear dependence on the pH and temperature of the reaction mixture as well as on the concentration of AgNO{sub 3} added as an auxiliary reagent. The longitudinal plasmon resonance band of the resulting AuNRs can be tuned between 620 and 1200 nm by varying the reaction conditions. AuNRs with an aspect ratio (AR) of around 4 were obtained in almost 100 % yield at room temperature and under mild reducing environment. The formation of AuNRs is faster at higher pH (>11) and higher temperature (>30 °C), but the AuNR yield is smaller (<70 %). Variation in the pH of the reaction mixture in the range 12–13.5 results in the formation of AuNRs with different ARs and in different yields (27–99 %). Detailed study of the AuNRs crystallography by HRTEM showed that the AuNRs grow in [001] direction and have a perfect single-crystalline fcc structure, free from structural faults or dislocations. The present green method, which introduces glycerol as a tunable reducing agent with a pH-dependent reducing power, can provide a more general strategy for the preparation of a wide range of metallic nanoparticles.

  19. Thermotropic liquid crystalline polyesters derived from 2-chloro ...

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Chemical Sciences; Volume 129; Issue 9. Thermotropic liquid crystalline polyesters derived from 2-chloro ... These polyesters exhibited thermotropic liquid crystalline behavior and showed nematic texture except decamethylene spacer. Decamethylene spacer based polyester showed marble ...

  20. Stable liquid crystalline phases of colloidally dispersed exfoliated layered niobates. (United States)

    Nakato, Teruyuki; Miyamoto, Nobuyoshi; Harada, Akiko


    Colloidally dispersed niobium oxide nanosheets obtained by exfoliation of layered niobates HNb(3)O(8) and HTiNbO(5) formed stable liquid crystalline phases; their liquid crystallinity was dependent on the niobate species exfoliated.

  1. Perfect transmission of 3D massive Kane fermions in HgCdTe Veselago lenses (United States)

    Betancur-Ocampo, Y.; Gupta, V.


    The transmission properties of three-dimensional (3D) massive Kane fermions in HgCdTe (MCT) heterojunctions have been studied using the simplified Kane–Melé model. Based on our theoretical calculations, we propose the design of an electronic device, called a mass inverter, which consists of the junction of a narrow-gap semiconductor and semimetal. Such a device can be used in electron optics applications, since it operates as a Veselago lens and presents Klein tunneling (KT) of 3D massive Kane fermions under normal incidence. We found that KT and Veselago lensing can also be observed for general MCT heterojunctions with a specific value of doping level. We show that non-resonant perfect transmission of massive Kane fermions persists in a potential barrier for heterojunctions formed by a semimetal between two standard semiconductors. This effect is quite robust when the ideal conditions of a possible experimental test are deviated. Our findings may have important implications in the development of nano-electronic devices using 3D massive Kane fermions, where transmission features of massless particles are recovered.

  2. Interaction of βA3-Crystallin with Deamidated Mutants of αA- and αB-Crystallins.

    Directory of Open Access Journals (Sweden)

    Ekta Tiwary

    Full Text Available Interaction among crystallins is required for the maintenance of lens transparency. Deamidation is one of the most common post-translational modifications in crystallins, which results in incorrect interaction and leads to aggregate formation. Various studies have established interaction among the α- and β-crystallins. Here, we investigated the effects of the deamidation of αA- and αB-crystallins on their interaction with βA3-crystallin using surface plasmon resonance (SPR and fluorescence lifetime imaging microscopy-fluorescence resonance energy transfer (FLIM-FRET methods. SPR analysis confirmed adherence of WT αA- and WT αB-crystallins and their deamidated mutants with βA3-crystallin. The deamidated mutants of αA-crystallin (αA N101D and αA N123D displayed lower adherence propensity for βA3-crystallin relative to the binding affinity shown by WT αA-crystallin. Among αB-crystallin mutants, αB N78D displayed higher adherence propensity whereas αB N146D mutant showed slightly lower binding affinity for βA3-crystallin relative to that shown by WT αB-crystallin. Under the in vivo condition (FLIM-FRET, both αA-deamidated mutants (αA N101D and αA N123D exhibited strong interaction with βA3-crystallin (32±4% and 36±4% FRET efficiencies, respectively compared to WT αA-crystallin (18±4%. Similarly, the αB N78D and αB N146D mutants showed strong interaction (36±4% and 22±4% FRET efficiencies, respectively with βA3-crystallin compared to 18±4% FRET efficiency of WT αB-crystallin. Further, FLIM-FRET analysis of the C-terminal domain (CTE, N-terminal domain (NTD, and core domain (CD of αA- and αB-crystallins with βA3-crystallin suggested that interaction sites most likely reside in the αA CTE and αB NTD regions, respectively, as these domains showed the highest FRET efficiencies. Overall, results suggest that similar to WT αA- and WTαB-crystallins, the deamidated mutants showed strong interactionfor βA3-crystallin

  3. Electromagnetic Processes in strong Crystalline Fields

    CERN Multimedia


    We propose a number of new investigations on aspects of radiation from high energy electron and positron beams (10-300 GeV) in single crystals and amorphous targets. The common heading is radiation emission by electrons and positrons in strong electromagnetic fields, but as the setup is quite versatile, other related phenomena in radiation emission can be studied as well. The intent is to clarify the role of a number of important aspects of radiation in strong fields as e.g. observed in crystals. We propose to measure trident 'Klein-like' production in strong crystalline fields, 'crystalline undulator' radiation, 'sandwich' target phenomena, LPM suppression of pair production as well as axial and planar effects in contributions of spin to the radiation.

  4. Liquid Crystalline Semiconductors Materials, properties and applications

    CERN Document Server

    Kelly, Stephen; O'Neill, Mary


    This is an exciting stage in the development of organic electronics. It is no longer an area of purely academic interest as increasingly real applications are being developed, some of which are beginning to come on-stream. Areas that have already been commercially developed or which are under intensive development include organic light emitting diodes (for flat panel displays and solid state lighting), organic photovoltaic cells, organic thin film transistors (for smart tags and flat panel displays) and sensors. Within the family of organic electronic materials, liquid crystals are relative newcomers. The first electronically conducting liquid crystals were reported in 1988 but already a substantial literature has developed. The advantage of liquid crystalline semiconductors is that they have the easy processability of amorphous and polymeric semiconductors but they usually have higher charge carrier mobilities. Their mobilities do not reach the levels seen in crystalline organics but they circumvent all of t...

  5. Optic glioma (United States)

    Glioma - optic; Optic nerve glioma; Juvenile pilocytic astrocytoma; Brain cancer - optic glioma ... Optic gliomas are rare. The cause of optic gliomas is unknown. Most optic gliomas are slow-growing ...

  6. University Crystalline Silicon Photovoltaics Research and Development

    Energy Technology Data Exchange (ETDEWEB)

    Ajeet Rohatgi; Vijay Yelundur; Abasifreke Ebong; Dong Seop Kim


    The overall goal of the program is to advance the current state of crystalline silicon solar cell technology to make photovoltaics more competitive with conventional energy sources. This program emphasizes fundamental and applied research that results in low-cost, high-efficiency cells on commercial silicon substrates with strong involvement of the PV industry, and support a very strong photovoltaics education program in the US based on classroom education and hands-on training in the laboratory.

  7. Controlled synthesis of single-crystalline graphene

    Directory of Open Access Journals (Sweden)

    Wang Xueshen


    Full Text Available This paper reports the controlled synthesis of single-crystalline graphene on the back side of copper foil using CH4 as the precursor. The influence of growth time and the pressure ratio of CH4/H2 on the structure of graphene are examined. An optimized polymer-assisted method is used to transfer the synthesized graphene onto a SiO2/Si substrate. Scanning electron microscopy and Raman spectroscopy are used to characterize the graphene.

  8. Improving The Perfect Storm: Overcoming Barriers To Climate Literacy (United States)

    Tillinger, D.


    Students and scientists are trained to speak different languages. Climate science, and the geosciences more broadly, are strictly classroom topics, not subjects appropriate for casual conversation, social media, or creative projects. When students are aware of climate change through the mainstream media, it is nearly always in a political or technological context rather than a scientific one. However, given the opportunity, students are perfectly capable of not only understanding the science behind climate change, but communicating it to their peers. At the American Museum of Natural History, a group of underprivileged high school students visited Nature's Fury: The Science of Natural Disasters to learn about volcanoes, earthquakes, and climate change impacts. They were then able to write pitches and develop trailers for scientifically accurate, but still compelling, disaster movies. Arts in Parts, a creative outreach group formed as a response to Hurricane Sandy, facilitated a workshop in which younger children made mobiles from beach debris they collected while learning about the the threat of sea level rise locally and globally. Participants in an undergraduate natural disasters class wrote guides to understanding climate change that remained factual while showing great creativity and reflecting the personality of each student. Art, humor, and popular culture are the languages that society chooses to use; scientific literacy might benefit from their inclusion.

  9. Broadband Reflectionless Metasheets: Frequency-Selective Transmission and Perfect Absorption

    Directory of Open Access Journals (Sweden)

    V. S. Asadchy


    Full Text Available Energy of propagating electromagnetic waves can be fully absorbed in a thin lossy layer, but only in a narrow frequency band, as follows from the causality principle. On the other hand, it appears that there are no fundamental limitations on broadband matching of thin resonant absorbing layers. However, known thin absorbers produce significant reflections outside of the resonant absorption band. In this paper, we explore possibilities to realize a thin absorbing layer that produces no reflected waves in a very wide frequency range, while the transmission coefficient has a narrow peak of full absorption. Here we show, both theoretically and experimentally, that a thin resonant absorber, invisible in reflection in a very wide frequency range, can be realized if one and the same resonant mode of the absorbing array unit cells is utilized to create both electric and magnetic responses. We test this concept using chiral particles in each unit cell, arranged in a periodic planar racemic array, utilizing chirality coupling in each unit cell but compensating the field coupling at the macroscopic level. We prove that the concept and the proposed realization approach also can be used to create nonreflecting layers for full control of transmitted fields. Our results can have a broad range of potential applications over the entire electromagnetic spectrum including, for example, perfect ultracompact wave filters and selective multifrequency sensors.

  10. THE PERFECT ONLINE COURSE: Best Practices for Designing and Teaching

    Directory of Open Access Journals (Sweden)

    Reviewed by Cengiz Hakan AYDIN


    Full Text Available The growth of online learning all over the world arise new challenges. One of the major challenges is the issue of quality. What should an online course look like? What kinds of instructional strategies should be provided? To what extent various kinds of interactions must be required? What are the effective learning activities? For what functions should different technologies be used? How can learning be assessed? And similar and more questions have yet no standardized answers although they have been around since early implementations of online learning. Each provider uses different standards developed by either themselves or some institutions or some researchers. Sloan-C: Pillars of Quality, Robley and Wince’s Rubric for Quality Interactions, Concord Model, Schrum’s Qualities of Successful Students, Quality Matters, and E-excellence: Quality Manual for E-learning in Higher Education are among many of these standards.The book, entitled as The Perfect Online Course: Best Practices for Designing and Teaching is also trying to establish a list of standards about how to design and implement an effective online course.The main goal of the book is to create a framework of quality educational guidelines that can be used to offer “perfect” online course.

  11. Hierarchical fractal structure of perfect single-layer grapheme (United States)

    Zhang, T.; Ding, K.


    The atomic lattice structure of perfect singlelayer graphene that can actually be regarded as a kind of hierarchical fractal structure from the perspective of fractal geometry was studied for the first time. Three novel and special discoveries on hierarchical fractal structure and sets were unveiled upon examination of the regular crystal lattices of the single-layer graphene. The interior fractaltype structure was discovered to be the fifth space-filling curve from physical realm. Two efficient methods for calculating the fractal dimension of this fresh member was also provided. The outer boundary curve had a fractal dimension equal to one, and a multi-fractal structure from a naturally existing material was found for the first time. A series of strict self-similar hexagons comprised a rotating fractal set. These hexagons slewed at a constant counterclockwise angle α of 19.1° when observed from one level to the next higher level. From the perspective of fractal geometry, these pioneering discoveries added three new members to the existing regular fractal structures and sets. A fundamental example of a multi-fractal structure was also presented.

  12. A psychogenic dystonia perfect responsive to antidepressant treatment.

    Directory of Open Access Journals (Sweden)

    Volkan Solmaz


    Full Text Available After ruling out of organic causes, movement disorders are named as psychogenic movement disorders, it can mimic perfectly Organic movement disorders, but with a good history, clinical observations and detailed examination is very helpful in the diagnosis of this disease. In here we will present a 15 years old male patient, he was complaining of urinary incontinence at night, emerging dystonic posture especially in crowded environments, eating, and during activities that require attention, for 5 years. Self and family history was unremarkable. His physical and neurological examination was normal except for dystonic posture esipecially writing and when doing skilled jobs. All the tests were normal for the differential diagnosis. Taking into account the patient\\s clinical findings and cilinical test, the patient was diagnosed as psychogenic dystonia. He gave a very good response to treatment with antidepressants and psychotherapy. As a result, in clinical practice both the diagnostic and therapeutic challenges the psychogenic movement disorders is an important problem, and to get rid of the negative effects of unnecessary diagnostic test and side efects of treatment, you need to keep in mind this diagnosis. [J Contemp Med 2014; 4(1.000: 29-31

  13. Building the perfect parasite: cell division in apicomplexa.

    Directory of Open Access Journals (Sweden)

    Boris Striepen


    Full Text Available Apicomplexans are pathogens responsible for malaria, toxoplasmosis, and crytposporidiosis in humans, and a wide range of livestock diseases. These unicellular eukaryotes are stealthy invaders, sheltering from the immune response in the cells of their hosts, while at the same time tapping into these cells as source of nutrients. The complexity and beauty of the structures formed during their intracellular development have made apicomplexans the darling of electron microscopists. Dramatic technological progress over the last decade has transformed apicomplexans into respectable genetic model organisms. Extensive genomic resources are now available for many apicomplexan species. At the same time, parasite transfection has enabled researchers to test the function of specific genes through reverse and forward genetic approaches with increasing sophistication. Transfection also introduced the use of fluorescent reporters, opening the field to dynamic real time microscopic observation. Parasite cell biologists have used these tools to take a fresh look at a classic problem: how do apicomplexans build the perfect invasion machine, the zoite, and how is this process fine-tuned to fit the specific niche of each pathogen in this ancient and very diverse group? This work has unearthed a treasure trove of novel structures and mechanisms that are the focus of this review.

  14. Exact EGB models for spherical static perfect fluids

    Energy Technology Data Exchange (ETDEWEB)

    Hansraj, Sudan; Chilambwe, Brian; Maharaj, Sunil D. [University of KwaZulu-Natal, Astrophysics and Cosmology Research Unit, School of Mathematics, Statistics and Computer Science, Private Bag 54001, Durban (South Africa)


    We obtain a new exact solution to the field equations for a 5-dimensional spherically symmetric static distribution in the Einstein-Gauss-Bonnet modified theory of gravity. By using a transformation, the study is reduced to the analysis of a single second order nonlinear differential equation. In general the condition of pressure isotropy produces a first order differential equation which is an Abel equation of the second kind. An exact solution is found. The solution is examined for physical admissibility. In particular a set of constants is found which ensures that a pressure-free hypersurface exists which defines the boundary of the distribution. Additionally the isotropic pressure and the energy density are shown to be positive within the radius of the sphere. The adiabatic sound-speed criterion is also satisfied within the fluid ensuring a subluminal sound speed. Furthermore, the weak, strong and dominant conditions hold throughout the distribution. On setting the Gauss-Bonnet coupling to zero, an exact solution for 5-dimensional perfect fluids in the standard Einstein theory is obtained. Plots of the dynamical quantities for the Gauss-Bonnet and the Einstein case reveal that the pressure is unaffected, while the energy density increases under the influence of the Gauss-Bonnet term. (orig.)

  15. 1, 2, 3, 6: Early Gothic Architecture and Perfect Numbers

    Directory of Open Access Journals (Sweden)

    Elizabeth den Hartog


    Full Text Available ‘Knowledge of numbers should not be despised […] We are instructed in number to avoid confusion. Take away number in all things, and they all perish. Take away computation from the world, and all things are encompassed by blind ignorance; people who are ignorant of the knowledge of reckoning cannot be distinguished from the other animals’. Thus wrote Isidore of Sevilla in the 7th century (Book III, 4. Number clearly mattered. Indeed, the medieval world seems to have taken to heart the words expressed in the Book of Wisdom (11.21: ‘Omnia in mensura et numero et pondere fecisti’. In such a number-obsessed world, one would expect number to play a significant role in the design of medieval architecture, for without number, a building, like everything else, would perish. And indeed, many medieval descriptions of buildings display a great concern with numerical values. After a short introduction into the issues involved, this paper will concentrate on the use of perfect numbers as a design principle in several select examples.

  16. Inverse design of perfectly transmitting eigenchannels in scattering media (United States)

    Koirala, M.; Sarma, R.; Cao, H.; Yamilov, A.


    Light-matter interactions inside a turbid medium can be controlled by tailoring the spatial distribution of energy density throughout the system. Wavefront shaping allows selective coupling of incident light to different transmission eigenchannels, producing dramatically different spatial intensity profiles. In contrast to the density of transmission eigenvalues that is dictated by the universal bimodal distribution, the spatial structures of the eigenchannels are not universal and depend on the confinement geometry of the system. Here, we develop and verify a model for the transmission eigenchannel with the corresponding eigenvalue close to unity. By projecting the original problem of two-dimensional diffusion in a homogeneous scattering medium onto a one-dimensional inhomogeneous diffusion, we obtain an analytical expression relating the intensity profile to the shape of the confining waveguide. Inverting this relationship enables the inverse design of the waveguide shape to achieve the desired energy distribution for the perfectly transmitting eigenchannel. Our approach also allows to predict the intensity profile of such a channel in a disordered slab with open boundaries, pointing to the possibility of controllable delivery of light to different depths with local illumination.

  17. Near-perfect broadband absorption from hyperbolic metamaterial nanoparticles (United States)

    Riley, Conor T.; Smalley, Joseph S. T.; Brodie, Jeffrey R. J.; Fainman, Yeshaiahu; Sirbuly, Donald J.; Liu, Zhaowei


    Broadband absorbers are essential components of many light detection, energy harvesting, and camouflage schemes. Current designs are either bulky or use planar films that cause problems in cracking and delamination during flexing or heating. In addition, transferring planar materials to flexible, thin, or low-cost substrates poses a significant challenge. On the other hand, particle-based materials are highly flexible and can be transferred and assembled onto a more desirable substrate but have not shown high performance as an absorber in a standalone system. Here, we introduce a class of particle absorbers called transferable hyperbolic metamaterial particles (THMMP) that display selective, omnidirectional, tunable, broadband absorption when closely packed. This is demonstrated with vertically aligned hyperbolic nanotube (HNT) arrays composed of alternating layers of aluminum-doped zinc oxide and zinc oxide. The broadband absorption measures >87% from 1,200 nm to over 2,200 nm with a maximum absorption of 98.1% at 1,550 nm and remains large for high angles. Furthermore, we show the advantages of particle-based absorbers by transferring the HNTs to a polymer substrate that shows excellent mechanical flexibility and visible transparency while maintaining near-perfect absorption in the telecommunications region. In addition, other material systems and geometries are proposed for a wider range of applications.

  18. Measuring Individual Differences in the Perfect Automation Schema. (United States)

    Merritt, Stephanie M; Unnerstall, Jennifer L; Lee, Deborah; Huber, Kelli


    A self-report measure of the perfect automation schema (PAS) is developed and tested. Researchers have hypothesized that the extent to which users possess a PAS is associated with greater decreases in trust after users encounter automation errors. However, no measure of the PAS currently exists. We developed a self-report measure assessing two proposed PAS factors: high expectations and all-or-none thinking about automation performance. In two studies, participants responded to our PAS measure, interacted with imperfect automated aids, and reported trust. Each of the two PAS measure factors demonstrated fit to the hypothesized factor structure and convergent and discriminant validity when compared with propensity to trust machines and trust in a specific aid. However, the high expectations and all-or-none thinking scales showed low intercorrelations and differential relationships with outcomes, suggesting that they might best be considered two separate constructs rather than two subfactors of the PAS. All-or-none thinking had significant associations with decreases in trust following aid errors, whereas high expectations did not. Results therefore suggest that the all-or-none thinking scale may best represent the PAS construct. Our PAS measure (specifically, the all-or-none thinking scale) significantly predicted the severe trust decreases thought to be associated with high PAS. Further, it demonstrated acceptable psychometric properties across two samples. This measure may be used in future work to assess levels of PAS in users of automated systems in either research or applied settings. © 2015, Human Factors and Ergonomics Society.

  19. Effect of polylactic acid crystallinity on its electret properties (United States)

    Guzhova, A. A.; Galikhanov, M. F.; Kuznetsova, N. V.; Petrov, V. A.; Khairullin, R. Z.


    Electret properties of the polylactic acid films with different degree of crystallinity due to different cooling and annealing conditions were studied. Samples with the higher degree of crystallinity showed more stable electret characteristics resulting from amorphous-crystalline interface boundary growth and capturing bigger amount of injected charge carriers by volume energy traps.

  20. Ageing and vision: structure, stability and function of lens crystallins.

    NARCIS (Netherlands)

    Bloemendal, H.; Jong, W.W.W. de; Jaenicke, R.; Lubsen, N.H.; Slingsby, C.; Tardieu, A.


    The alpha-, beta- and gamma-crystallins are the major protein components of the vertebrate eye lens, alpha-crystallin as a molecular chaperone as well as a structural protein, beta- and gamma-crystallins as structural proteins. For the lens to be able to retain life-long transparency in the absence

  1. The Thermodynamic Scale of Inorganic Crystalline Metastability (United States)

    Sun, Wenhao; Dacek, Stephen; Ong, Shyue Ping; Hautier, Geoffroy; Jain, Anubhav; Richards, William; Gamst, Anthony; Persson, Kristin; Ceder, Gerbrand; Materials Project Team

    The space of metastable materials offers promising new design opportunities for next-generation technological materials such as complex oxides, semiconductors, pharmaceuticals, steels and beyond. Although metastable phases are ubiquitous in both nature and technology, only a heuristic understanding of their underlying thermodynamics exists. Here we report a large-scale data-mining study of the Materials Project, a high-throughput database of DFT-calculated energetics of ICSD structures, to explicitly quantify the thermodynamic scale of metastability for 29,902 observed inorganic crystalline phases. We reveal the influence of chemistry and composition on the accessible thermodynamic range of crystalline metastability for polymorphic and phase-separating compounds, yielding new physical insights that can guide the design of novel metastable materials. We further assert that not all low-energy metastable compounds can necessarily be synthesized, and propose a principle of ``remnant metastability'' - that observable metastable crystalline phases are generally remnants of thermodynamic conditions where they were once the lowest free-energy phase. DOE Contract DE-AC02-05CH11231 and Contract no. UGA-0-41029-16/ER392000.

  2. Molecular Sensing by Nanoporous Crystalline Polymers

    Directory of Open Access Journals (Sweden)

    Vincenzo Venditto


    Full Text Available Chemical sensors are generally based on the integration of suitable sensitive layers and transducing mechanisms. Although inorganic porous materials can be effective, there is significant interest in the use of polymeric materials because of their easy fabrication process, lower costs and mechanical flexibility. However, porous polymeric absorbents are generally amorphous and hence present poor molecular selectivity and undesired changes of mechanical properties as a consequence of large analyte uptake. In this contribution the structure, properties and some possible applications of sensing polymeric films based on nanoporous crystalline phases, which exhibit all identical nanopores, will be reviewed. The main advantages of crystalline nanoporous polymeric materials with respect to their amorphous counterparts are, besides a higher selectivity, the ability to maintain their physical state as well as geometry, even after large guest uptake (up to 10–15 wt%, and the possibility to control guest diffusivity by controlling the orientation of the host polymeric crystalline phase. The final section of the review also describes the ability of suitable polymeric films to act as chirality sensors, i.e., to sense and memorize the presence of non-racemic volatile organic compounds.

  3. The thermodynamic scale of inorganic crystalline metastability. (United States)

    Sun, Wenhao; Dacek, Stephen T; Ong, Shyue Ping; Hautier, Geoffroy; Jain, Anubhav; Richards, William D; Gamst, Anthony C; Persson, Kristin A; Ceder, Gerbrand


    The space of metastable materials offers promising new design opportunities for next-generation technological materials, such as complex oxides, semiconductors, pharmaceuticals, steels, and beyond. Although metastable phases are ubiquitous in both nature and technology, only a heuristic understanding of their underlying thermodynamics exists. We report a large-scale data-mining study of the Materials Project, a high-throughput database of density functional theory-calculated energetics of Inorganic Crystal Structure Database structures, to explicitly quantify the thermodynamic scale of metastability for 29,902 observed inorganic crystalline phases. We reveal the influence of chemistry and composition on the accessible thermodynamic range of crystalline metastability for polymorphic and phase-separating compounds, yielding new physical insights that can guide the design of novel metastable materials. We further assert that not all low-energy metastable compounds can necessarily be synthesized, and propose a principle of 'remnant metastability'-that observable metastable crystalline phases are generally remnants of thermodynamic conditions where they were once the lowest free-energy phase.

  4. Tailoring crystallinity and configuration of silica nanotubes by electron irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Taguchi, Tomitsugu, E-mail:; Yamaguchi, Kenji


    Highlights: •Single-crystal SiO{sub 2} nanotubes were successfully synthesized for the first time. •The single-crystal SiO{sub 2} was α-crystobalite. •Desired area of single-crystal nanotube can be changed to amorphous by electron irradiation. •The configuration of nanotube can be controlled using the focused electron irradiation technique. -- Abstract: SiO{sub 2} nanotubes show potential in applications such as nanoscale electronic and optical devices, bioseparation, biocatalysis, and nanomedicine. As-grown SiO{sub 2} nanotubes in the previous studies always have an amorphous wall, and here we demonstrate the successful synthesis of single-crystal nanotubes for the first time by the heat treatment of SiC nanotubes at 1300 °C for 10 h under low-vacuum conditions. According to TEM observations, the single-crystal SiO{sub 2} was α-cristobalite. We also demonstrate that single-crystal SiO{sub 2} nanotubes can be transformed into amorphous SiO{sub 2} nanotubes by electron beam irradiation. Moreover, we synthesized a crystalline/amorphous SiO{sub 2} composite nanotube, in which crystalline and amorphous SiO{sub 2} coexisted in different localized regions. In addition, for biomedical applications such as drug delivery systems, controlling the configuration of the open end, the diameter, and capsulation of SiO{sub 2} nanotubes is crucial. We can also obturate, capsulate, and cut a SiO{sub 2} nanotube, as well as modify the inner diameter of the nanotube at a specific, nanometer-sized region using the focused electron beam irradiation technique.

  5. The phagocytosis of crystalline silica particles by macrophages. (United States)

    Gilberti, Renée M; Joshi, Gaurav N; Knecht, David A


    Silicosis is a chronic lung disease induced by the inhalation of crystalline silica. Exposure of cultured macrophages to crystalline silica leads to cell death; however, the mechanism of cell-particle interaction, the fate of particles, and the cause of death are unknown. Time-lapse imaging shows that mouse macrophages avidly bind particles that settle onto the cell surface and that cells also extend protrusions to capture distant particles. Using confocal optical sectioning, silica particles were shown to be present within the cytoplasmic volume of live cells. In addition, electron microscopy and elemental analysis showed silica in internal cellular sections. To further examine the phagocytosis process, the kinetics of particle uptake was quantified using an assay in which cells were exposed to ovalbumin (OVA)-coated particles, and an anti-OVA antibody was used to distinguish surface-bound from internalized particles. Fc receptor-mediated uptake of antibody-coated silica particles was nearly complete within 5 minutes. In contrast, no OVA-coated particles were internalized at this time. After 30 minutes, 30% of bound silica was internalized and uptake continued slowly thereafter. OVA-coated latex beads, regardless of surface charge, were internalized at a similarly slow rate. These results demonstrate that macrophages internalize silica and that nonopsonized phagocytosis occurs by a temporally, and possibly mechanistically, distinct pathway from Fc receptor-mediated phagocytosis. Eighty percent of macrophages die within 12 hours of silica exposure. Neither OVA coating nor tetramethylrhodamine isothiocyanate labeling has any effect on cell death. Interestingly, antibody coating dramatically reduces silica toxicity. We hypothesize that the route of particle entry and subsequent phagosome trafficking affects the toxicity of internalized particles.

  6. Generation of crystalline silica from sugarcane burning. (United States)

    Le Blond, Jennifer S; Horwell, Claire J; Williamson, Ben J; Oppenheimer, Clive


    Sugarcane leaves contain amorphous silica, which may crystallise to form crystalline silica polymorphs (cristobalite or quartz), during commercial sugarcane harvesting where sugarcane plants are burned. Respirable airborne particulate containing these phases may present an occupational health hazard. Following from an earlier pilot study (J. S. Le Blond, B. J. Williamson, C. J. Horwell, A. K. Monro, C. A. Kirk and C. Oppenheimer, Atmos. Environ., 2008, 42, 5558-5565) in which experimental burning of sugarcane leaves yielded crystalline silica, here we report on actual conditions during sugarcane burning on commercial estates, investigate the physico-chemical properties of the cultivated leaves and ash products, and quantify the presence of crystalline silica. Commercially grown raw sugarcane leaf was found to contain up to 1.8 wt% silica, mostly in the form of amorphous silica bodies (with trace impurities e.g., Al, Na, Mg), with only a small amount of quartz. Thermal images taken during several pre-harvest burns recorded temperatures up to 1056 degrees C, which is sufficient for metastable cristobalite formation. No crystalline silica was detected in airborne particulate from pre-harvest burning, collected using a cascade impactor. The sugarcane trash ash formed after pre-harvest burning contained between 10 and 25 wt% SiO(2), mostly in an amorphous form, but with up to 3.5 wt% quartz. Both quartz and cristobalite were identified in the sugarcane bagasse ash (5-15 wt% and 1-3 wt%, respectively) formed in the processing factory. Electron microprobe analysis showed trace impurities of Mg, Al and Fe in the silica particles in the ash. The absence of crystalline silica in the airborne emissions and lack of cristobalite in trash ash suggest that high temperatures during pre-harvest burning were not sustained long enough for cristobalite to form, which is supported by the presence of low temperature sylvite and calcite in the residual ash. The occurrence of quartz and

  7. Metal-filled carbon nanotube based optical nanoantennas: bubbling, reshaping, and in situ characterization. (United States)

    Fan, Zheng; Tao, Xinyong; Cui, Xudong; Fan, Xudong; Zhang, Xiaobin; Dong, Lixin


    Controlled fabrication of metal nanospheres on nanotube tips for optical antennas is investigated experimentally. Resembling soap bubble blowing using a straw, the fabrication process is based on nanofluidic mass delivery at the attogram scale using metal-filled carbon nanotubes (m@CNTs). Two methods have been investigated including electron-beam-induced bubbling (EBIB) and electromigration-based bubbling (EMBB). EBIB involves the bombardment of an m@CNT with a high energy electron beam of a transmission electron microscope (TEM), with which the encapsulated metal is melted and flowed out from the nanotube, generating a metallic particle on a nanotube tip. In the case where the encapsulated materials inside the CNT have a higher melting point than what the beam energy can reach, EMBB is an optional process to apply. Experiments show that, under a low bias (2.0-2.5 V), nanoparticles can be formed on the nanotube tips. The final shape and crystallinity of the nanoparticles are determined by the cooling rate. Instant cooling occurs with a relatively large heat sink and causes the instant shaping of the solid deposit, which is typically similar to the shape of the molten state. With a smaller heat sink as a probe, it is possible to keep the deposit in a molten state. Instant cooling by separating the deposit from the probe can result in a perfect sphere. Surface and volume plasmons characterized with electron energy loss spectroscopy (EELS) prove that resonance occurs between a pair of as-fabricated spheres on the tip structures. Such spheres on pillars can serve as nano-optical antennas and will enable devices such as scanning near-field optical microscope (SNOM) probes, scanning anodes for field emitters, and single molecule detectors, which can find applications in bio-sensing, molecular detection, and high-resolution optical microscopy.

  8. ZnO Coatings with Controlled Pore Size, Crystallinity and Electrical Conductivity

    Directory of Open Access Journals (Sweden)

    Roman SCHMACK


    Full Text Available Zinc oxide is a wide bandgap semiconductor with unique optical, electrical and catalytic properties. Many of its practical applications rely on the materials pore structure, crystallinity and electrical conductivity. We report a synthesis method for ZnO films with ordered mesopore structure and tuneable crystallinity and electrical conductivity. The synthesis relies on dip-coating of solutions containing micelles of an amphiphilic block copolymer and complexes of Zn2+ ions with aliphatic ligands. A subsequent calcination at 400°C removes the template and induces crystallization of the pore walls. The pore structure is controlled by the template polymer, whereas the aliphatic ligands control the crystallinity of the pore walls. Complexes with a higher thermal stability result in ZnO films with a higher content of residual carbon, smaller ZnO crystals and therefore lower electrical conductivity. The paper discusses the ability of different types of ligands to assist in the synthesis of mesoporous ZnO and relates the structure and thermal stability of the precursor complexes to the crystallinity and electrical conductivity of the zinc oxide.DOI:

  9. Crystalline-gradient polycarbonates prepared from enantioselective terpolymerization of meso-epoxides with CO2 (United States)

    Liu, Ye; Ren, Wei-Min; He, Ke-Ke; Lu, Xiao-Bing


    The development of efficient processes for CO2 transformation into useful products is a long-standing goal for chemists, since CO2 is an abundant, inexpensive and non-toxic renewable C1 resource. Here we describe the enantioselective copolymerization of 3,4-epoxytetrahydrofuran with CO2 mediated by biphenol-linked dinuclear cobalt complex, affording the corresponding polycarbonate with >99% carbonate linkages and excellent enantioselectivity (up to 99% enantiomeric excess). Notably, the resultant isotactic polycarbonate is a typical semicrystalline polymer, possessing a melting point of 271 °C. Furthermore, the enantioselective terpolymerization of 3,4-epoxytetrahydrofuran, cyclopentene oxide and CO2 mediated by this dinuclear cobalt complex gives novel gradient polycarbonates, in which the decrement of one component and the increment of the other component occur sequentially from one chain end to the other end. The resultant terpolymers show perfectly isotactic structure and have unique crystalline-gradient nature, in which the crystallinity continuously varies along the main chain.

  10. Do musicians with perfect pitch have more autism traits than musicians without perfect pitch? An empirical study.

    Directory of Open Access Journals (Sweden)

    Anders Dohn

    Full Text Available Perfect pitch, also known as absolute pitch (AP, refers to the rare ability to identify or produce a musical tone correctly without the benefit of an external reference. AP is often considered to reflect musical giftedness, but it has also been associated with certain disabilities due to increased prevalence of AP in individuals with sensory and developmental disorders. Here, we determine whether individual autistic traits are present in people with AP. We quantified subclinical levels of autism traits using the Autism-Spectrum Quotient (AQ in three matched groups of subjects: 16 musicians with AP (APs, 18 musicians without AP (non-APs, and 16 non-musicians. In addition, we measured AP ability by a pitch identification test with sine wave tones and piano tones. We found a significantly higher degree of autism traits in APs than in non-APs and non-musicians, and autism scores were significantly correlated with pitch identification scores (r = .46, p = .003. However, our results showed that APs did not differ from non-APs on diagnostically crucial social and communicative domain scores and their total AQ scores were well below clinical thresholds for autism. Group differences emerged on the imagination and attention switching subscales of the AQ. Thus, whilst these findings do link AP with autism, they also show that AP ability is most strongly associated with personality traits that vary widely within the normal population.

  11. Do musicians with perfect pitch have more autism traits than musicians without perfect pitch? An empirical study. (United States)

    Dohn, Anders; Garza-Villarreal, Eduardo A; Heaton, Pamela; Vuust, Peter


    Perfect pitch, also known as absolute pitch (AP), refers to the rare ability to identify or produce a musical tone correctly without the benefit of an external reference. AP is often considered to reflect musical giftedness, but it has also been associated with certain disabilities due to increased prevalence of AP in individuals with sensory and developmental disorders. Here, we determine whether individual autistic traits are present in people with AP. We quantified subclinical levels of autism traits using the Autism-Spectrum Quotient (AQ) in three matched groups of subjects: 16 musicians with AP (APs), 18 musicians without AP (non-APs), and 16 non-musicians. In addition, we measured AP ability by a pitch identification test with sine wave tones and piano tones. We found a significantly higher degree of autism traits in APs than in non-APs and non-musicians, and autism scores were significantly correlated with pitch identification scores (r = .46, p = .003). However, our results showed that APs did not differ from non-APs on diagnostically crucial social and communicative domain scores and their total AQ scores were well below clinical thresholds for autism. Group differences emerged on the imagination and attention switching subscales of the AQ. Thus, whilst these findings do link AP with autism, they also show that AP ability is most strongly associated with personality traits that vary widely within the normal population.


    Directory of Open Access Journals (Sweden)

    Piret Klesment


    Full Text Available There are too few devices in Samoyedic languages toexpress a completed/ accomplished action, so one of the ways to do it is justthe use of perfect and pluperfect. Samoyedic languages have no common markersfor moods and tenses, only a few of them occur in most of the languagesmentioned. The Samoyedic system of conjugation is mainly based on verbal nouns,its mood and temporal markers mostly coincide with participle and gerundmarkers. The Tundra Nenets perfect is formed by means of the participle markers, the pluperfect – by means of the compoundmarker . In Enetsthe marker -bi as indicates anearlier meaning of the perfective participle that has disappeared by now, thepluperfect is formed by means of the compound suffixes . In Nganasan the marker expresses the past, more exactly theperfective preterit. The perfect has the compound marker -bV (-hV­+ -tV . Both perfect and pluperfect are used widelyin the languages under observation, particularly in folkloristic texts. Theformation and the use of perfect and pluperfect are mostly similar. As far asthe Samoyedic participle marker -bVis concernd, then G. J. Ramstedt (1952 refers to the Turkic perfect-gerundmarker -p (-yp, -up and to theMongol preterit perfect marker -bai,-bei, -ba, -be.

  13. Bianchi Type-V model with a perfect fluid and Λ-term

    Indian Academy of Sciences (India)

    A self-consistent system of gravitational field with a binary mixture of perfect fluid and dark energy given by a cosmological constant has been considered in Bianchi Type-V universe. The perfect fluid is chosen to be obeying either the equation of state = ρ with ∈ [0, 1] or a van der Waals equation of state. The role of ...


    We extend Berenger's perfectly matched layers (PML) to conductive media. A finite-difference-time-domain (FDTD) algorithm with PML as an absorbing boundary condition is developed for solutions of Maxwell's equations in inhomogeneous, conductive media. For a perfectly matched laye...

  15. Diamagnetic expansions for perfect quantum gases II:  Uniform bounds

    DEFF Research Database (Denmark)

    Briet, Philippe; Cornean, Horia; Louis, Delphine


    Abstract. Consider a charged, perfect quantum gas, in the effective mass approximation, and in the grand-canonical ensemble. Consider a charged, perfect quantum gas, in the effective mass approximation, and in the grand-canonical ensemble. We prove in this paper that the generalized magnetic susc...

  16. Approaching Methodology Creatively: Problematizing Elite Schools' "Best Practice" through a Film about Perfection and Imperfection (United States)

    Fahey, Johannah; Prosser, Howard


    Elite schools around the world aspire to produce perfect students and yet there are always obstacles to this perfection being achieved. In this paper, we suggest that this process of perfectionism and obstruction can best be understood using a methodology that looks to the creative arts, rather than the usual social science orthodoxies. Our focus…

  17. 76 FR 49751 - Perfect Fitness, Provisional Acceptance of a Settlement Agreement and Order (United States)


    ... direct television marketing. 5. The Subject Products are ``consumer products'' and, at all relevant times... breakage causing injury. 14. Despite knowledge of the information set forth in paragraphs 5- 13, Perfect... Mills, Chief Executive Officer Perfect Fitness 1750 Bridgeway Suite A100 Sausalito, California 94965...

  18. Imperfect or Perfect Dynamic Bipolarity? The Case of Antonymous Affective Judgments (United States)

    Vautier, Stephane; Steyer, Rolf; Jmel, Said; Raufaste, Eric


    How is affective change rated with positive adjectives such as good related to change rated with negative adjectives such as bad? Two nested perfect and imperfect forms of dynamic bipolarity are defined using latent change structural equation models based on tetrads of items. Perfect bipolarity means that latent change scores correlate -1.…

  19. Crystallinity in starch plastics: consequences for material properties. (United States)

    van Soest, J J; Vliegenthart, J F


    The processing of starches with biodegradable additives has made biodegradable plastics suitable for a number of applications. Starch plastics are partially crystalline as a result of residual crystallinity and the recrystallization of amylose and amylopectin. Such crystallinity is a key determinant of the product's properties. This article describes the influence of processing and storage conditions on starch crystallinity and offers possible explanations for the various properties of starch plastics, in particular for the problems associated with ageing, in terms of the different crystalline structures.

  20. A perfect storm? Welfare, care, gender and generations in Uruguay. (United States)

    Filgueira, Fernando; Gutiérrez, Magdalena; Papadópulos, Jorge


    This article claims that welfare states modelled on a contributory basis and with a system of entitlements that assumes stable two-parent families, a traditional breadwinner model, full formal employment and a relatively young age structure are profoundly flawed in the context of present-day challenges. While this is true for affluent countries modelled on the Bismarckian type of welfare system, the costs of the status quo are even more devastating in middle-income economies with high levels of inequality. A gendered approach to welfare reform that introduces the political economy and the economy of care and unpaid work is becoming critical to confront what may very well become a perfect storm for the welfare of these nations and their peoples. Through an in-depth study of the Uruguayan case, the authors show how the decoupling of risk and protection has torn asunder the efficacy of welfare devices in the country. An ageing society that has seen a radical transformation of its family and labour market landscapes, Uruguay maintained during the 1980s and 1990s a welfare state that was essentially contributory, elderly and male-oriented, and centred on cash entitlements. This contributed to the infantilization of poverty, increased the vulnerability of women and exacerbated fiscal stress for the system as a whole. Furthermore, because of high levels of income and asset inequality, the redistribution of risk between upper- and lower-income groups presented a deeply regressive pattern. The political economy of care and welfare has begun to change in the last decade or so, bringing about mild reforms in the right direction; but these might prove to be too little and too late.

  1. Liquid-crystalline rigid-core semiconductor oligothiophenes: influence of molecular structure on phase behaviour and thin-film properties. (United States)

    Melucci, Manuela; Favaretto, Laura; Bettini, Christian; Gazzano, Massimo; Camaioni, Nadia; Maccagnani, Piera; Ostoja, Paolo; Monari, Magda; Barbarella, Giovanna


    The design, synthesis and properties of liquid-crystalline semiconducting oligothiophenes containing dithienothiophene (DTT), benzothiadiazole (BTZ) and carbazole (CBZ) rigid cores are described. The effect of molecular structure (shape, size and substitution) on their thermal behaviour and electrical properties has been investigated. Polarised optical microscopy (POM) and differential scanning calorimetry (DSC) analyses have revealed highly ordered smectic mesophases for most of the newly synthesised compounds. X-ray diffraction (XRD) studies performed at various temperatures have shown that the smectic order is retained in the crystalline state upon cooling across the transition temperature, affording cast films with a more favourable morphology for FET applications.

  2. A physico-chemical approach to study the experimental and theoretical properties of L-ornithine monohydrochloride: An organic nonlinear optical material

    Energy Technology Data Exchange (ETDEWEB)

    Shkir, Mohd, E-mail: [Department of Physics, College of Science, King Khalid University, P.O. Box. 9004, Abha 61413 (Saudi Arabia); AlFaify, S. [Department of Physics, College of Science, King Khalid University, P.O. Box. 9004, Abha 61413 (Saudi Arabia); Abbas, Haider [Department of Physics, Manav Rachna College of Engineering, Faridabad, Haryana 121001 (India); Bhagavannarayana, G. [CSIR – National Physical Laboratory, Crystal Growth and X-ray Analysis, New Delhi 110 012 (India)


    In the current work the authors report the experimental and theoretical investigation on L-ornithine monohydrochloride (LOHCL). Single crystals of LOHCL were grown by slow cooling technique and its crystal system was confirmed by powder X-ray diffraction analysis. The crystalline perfection was evaluated by high-resolution X-ray diffraction analysis which indicates that the crystalline perfection of the grown crystal is fairly good. Vibrational modes of LOHCL were identified by experimentally recorded and theoretically calculated FT-Raman and IR spectrums and found in good agreement with the reported values. Optical absorbance and reflectance were recorded by using UV–Vis–NIR spectrophotometer and various optical parameters were calculated. Detailed theoretical analysis was done by density functional theory (DFT) and time dependent TD-DFT using B3LYP/6-31G(d,p) level of method. HOMO-LUMO gap was found to be 6.09 eV whereas by experiment it is 4.8 eV. The excited state is more polar in comparison to ground state during excitation, dipole moment increases from 3.06 D in ground state to 3.90 D in excited state. The average polarizability (α{sub tot}), anisotropy of polarizability (Δα), first static and second order hyperpolarizability (β{sub tot}, β{sub 0}, γ) were calculated. The total first hyperpolarizability of LOHCL is found to be 2 times higher than prototype urea molecule which is very promising for nonlinear optical applications. - Graphical abstract: Grown crystal, molecular geometry and HOMO-LUMO of LOHCL. - Highlights: • A dual approach has been applied on LOHCL molecule to study its various needful properties. • Structural and vibrational (IR and Raman) analysis was done and found in close agreement earlier reports. • Various optical parameters were calculated and discussed using experimental and theoretical studies. • First and second order hyperpolarizability values were calculated and found to be comparable with others materials.

  3. Structure, crystal growth, optical and mechanical studies of poly bis (thiourea) silver (I) nitrate single crystal: a new semi organic NLO material. (United States)

    Sivakumar, N; Kanagathara, N; Varghese, B; Bhagavannarayana, G; Gunasekaran, S; Anbalagan, G


    A new semi organic non linear optical polymeric crystal, bis (thiourea) silver (I) nitrate (TuAgN) with dimension 8×7×1.5 mm(3) has been successfully grown from aqueous solution by slow evaporation solution technique. Single crystal X-ray diffraction study reveals that the crystal belongs to orthorhombic system with non centrosymmetric space group C2221. The crystalline perfection of the crystal was analyzed by high resolution X-ray diffraction (HRXRD) rocking curve measurements. Functional groups present in the crystal were analyzed qualitatively by infrared and Confocal Raman spectral analysis. Effects due to coordination of thiourea with metal ions were also discussed. Optical absorption study on TuAgN crystal shows the minimum absorption in the entire UV-Vis region and the lower cut off wavelength of TuAgN is found to be 318 nm. Thermal analysis shows that the material is thermally stable up to 180°C. The mechanical strength and its parameters of the grown crystal were estimated by Vicker's microhardness test. The second harmonic generation (SHG) efficiency of the crystal was measured by Kurtz's powder technique infers that the crystal has nonlinear optical (NLO) efficiency 0.85 times that of KDP. Copyright © 2013 Elsevier B.V. All rights reserved.

  4. Design of a hybrid silicon-plasmonic co-propagating coupler operating close to coherent perfect absorption

    Energy Technology Data Exchange (ETDEWEB)

    Zanotto, Simone; Melloni, Andrea [Dipartimento di Elettronica, Informazione e Bioingegneria, Politecnico di Milano, Piazza Leonardo da Vinci 32, 20133 Milano (Italy)


    By hybrid integration of plasmonic and dielectric waveguide concepts, it is shown that nearly perfect coherent absorption can be achieved in a co-propagating coupler geometry. First, the operating principle of the proposed device is detailed in the context of a more general 2 × 2 lossy coupler formalism. Then, it is shown how to tune the device in a wide region of possible working points, its broadband operation, and the tolerance to fabrication uncertainties. Finally, a complete picture of the electromagnetic modes inside the hybrid structure is analyzed, shining light onto the potentials which the proposed device holds in view of classical and quantum signal processing, nonlinear optics, polarization control, and sensing.

  5. Biomimetic processing of oriented crystalline ceramic layers

    Energy Technology Data Exchange (ETDEWEB)

    Cesarano, J.; Shelnutt, J.A.


    The aim of this project was to develop the capabilities for Sandia to fabricate self assembled Langmuir-Blodgett (LB) films of various materials and to exploit their two-dimensional crystalline structure to promote the growth of oriented thin films of inorganic materials at room temperature. This includes the design and synthesis of Langmuir-active (amphiphilic) organic molecules with end groups offering high nucleation potential for various ceramics. A longer range goal is that of understanding the underlying principles, making it feasible to use the techniques presented in this report to fabricate unique oriented films of various materials for electronic, sensor, and membrane applications. Therefore, whenever possible, work completed in this report was completed with the intention of addressing the fundamental phenomena underlying the growth of crystalline, inorganic films on template layers of highly organized organic molecules. This problem was inspired by biological processes, which often produce exquisitely engineered structures via templated growth on polymeric layers. Seashells, for example, exhibit great toughness owing to their fine brick-and-mortar structure that results from templated growth of calcium carbonate on top of layers of ordered organic proteins. A key goal in this work, therefore, is to demonstrate a positive correlation between the order and orientation of the template layer and that of the crystalline ceramic material grown upon it. The work completed was comprised of several parallel efforts that encompassed the entire spectrum of biomimetic growth from solution. Studies were completed on seashells and the mechanisms of growth for calcium carbonate. Studies were completed on the characterization of LB films and the capability developed for the in-house fabrication of these films. Standard films of fatty acids were studied as well as novel polypeptides and porphyrins that were synthesized.

  6. Crystalline silicotitanates for cesium/strontium removal

    Energy Technology Data Exchange (ETDEWEB)

    Brown, N.; Miller, J.; Sherman, J.


    A new class of inorganic ion exchangers called crystalline silicotitanates (CST) has been developed that exhibits very high selectivity for cesium and strontium in the highly alkaline radioactive wastes at the Hanford Site and other DOE sites. Tests have also shown that CSTs have high selectivity for cesium in acidic and neutral solutions. The ESP is supporting an effort at Sandia National Laboratories and Texas A & M University to further develop and characterize the important chemical and physical properties that will determine the applicability of CST to radioactive waste treatment at Hanford and other DOE facilities.

  7. Vibrational dynamics of crystalline L-alanine

    Energy Technology Data Exchange (ETDEWEB)

    Bordallo, H.N.; Eckert, J. [Los Alamos National Lab., NM (United States); Barthes, M. [Univ. Montpellier II (France)


    The authors report a new, complete vibrational analysis of L-alanine and L-alanine-d{sub 4} which utilizes IINS intensities in addition to frequency information. The use of both isotopomers resulted in a self-consistent force field for and assignment of the molecular vibrations in L-alanine. Some details of the calculation as well as a comparison of calculated and observed IINS spectra are presented. The study clarifies a number of important issues on the vibrational dynamics of this molecule and presents a self-consistent force field for the molecular vibrations in crystalline L-alanine.

  8. RF Magnetron Sputtering Aluminum Oxide Film for Surface Passivation on Crystalline Silicon Wafers

    Directory of Open Access Journals (Sweden)

    Siming Chen


    Full Text Available Aluminum oxide films were deposited on crystalline silicon substrates by reactive RF magnetron sputtering. The influences of the deposition parameters on the surface passivation, surface damage, optical properties, and composition of the films have been investigated. It is found that proper sputtering power and uniform magnetic field reduced the surface damage from the high-energy ion bombardment to the silicon wafers during the process and consequently decreased the interface trap density, resulting in the good surface passivation; relatively high refractive index of aluminum oxide film is benefic to improve the surface passivation. The negative-charged aluminum oxide film was then successfully prepared. The surface passivation performance was further improved after postannealing by formation of an SiOx interfacial layer. It is demonstrated that the reactive sputtering is an effective technique of fabricating aluminum oxide surface passivation film for low-cost high-efficiency crystalline silicon solar cells.

  9. Synthesis and Liquid Crystalline Properties of New Diols Containing Azomethine Groups

    Directory of Open Access Journals (Sweden)

    Issam Ahmed Mohammed


    Full Text Available A series of new mesogenic azomethine diols were successfully synthesized by condensation reactions between various chloroalkanols and N,N'-bis(4-hydroxy-benzylidene-o-toluidine (1. The structures of these compounds were confirmed by CHN, FT-IR, 1H-NMR, and 13C-NMR spectrophotometer. Their thermotropic liquid crystalline behavior was studied using differential scanning calorimetry (DSC and polarizing optical microscope (POM. 4,4'-di(4-Hydroxybutoxy-N-benzylidine-o-tolidine (2a does not exhibit liquid crystalline properties. A nematic texture was observed for mesogenic diols 2b, and 2d, whereas the diol 2c exhibits a smectic mesophase. The increase of terminal alkyl chain in these mesogenic diols leads to a decrease in the transition temperature.

  10. Optic neuritis (United States)

    Retro-bulbar neuritis; Multiple sclerosis - optic neuritis; Optic nerve - optic neuritis ... The exact cause of optic neuritis is unknown. The optic nerve carries visual information from your eye to the brain. The nerve can swell when ...

  11. Black GE based on crystalline/amorphous core/shell nanoneedle arrays (United States)

    Javey, Ali; Chueh, Yu-Lun; Fan, Zhiyong


    Direct growth of black Ge on low-temperature substrates, including plastics and rubber is reported. The material is based on highly dense, crystalline/amorphous core/shell Ge nanoneedle arrays with ultrasharp tips (.about.4 nm) enabled by the Ni catalyzed vapor-solid-solid growth process. Ge nanoneedle arrays exhibit remarkable optical properties. Specifically, minimal optical reflectance (<1%) is observed, even for high angles of incidence ( and for relatively short nanoneedle lengths (.about.1 .mu.m). Furthermore, the material exhibits high optical absorption efficiency with an effective band gap of .about.1 eV. The reported black Ge can have important practical implications for efficient photovoltaic and photodetector applications on nonconventional substrates.

  12. Nanoscale crystallinity modulates cell proliferation on plasma sprayed surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Smith, Alan M. [School of Applied Sciences, University of Huddersfield, Huddersfield HD1 3DH (United Kingdom); Paxton, Jennifer Z.; Hung, Yi-Pei; Hadley, Martin J.; Bowen, James; Williams, Richard L. [School of Chemical Engineering, University of Birmingham, Edgbaston, B15 2TT (United Kingdom); Grover, Liam M., E-mail: [School of Chemical Engineering, University of Birmingham, Edgbaston, B15 2TT (United Kingdom)


    Calcium phosphate coatings have been applied to the surface of metallic prostheses to mediate hard and soft tissue attachment for more than 40 years. Most coatings are formed of high purity hydroxyapatite, and coating methods are often designed to produce highly crystalline surfaces. It is likely however, that coatings of lower crystallinity can facilitate more rapid tissue attachment since the surface will exhibit a higher specific surface area and will be considerably more reactive than a comparable highly crystalline surface. Here we test this hypothesis by growing a population of MC3T3 osteoblast-like cells on the surface of two types of hip prosthesis with similar composition, but with differing crystallinity. The surfaces with lower crystallinity facilitated more rapid cell attachment and increased proliferation rate, despite having a less heterogeneous surface topography. This work highlights that the influence of the crystallinity of HA at the nano-scale is dominant over macro-scale topography for cell adhesion and growth. Furthermore, crystallinity could be easily adjusted by without compromising coating purity. These findings could facilitate designing novel coated calcium phosphate surfaces that more rapidly bond tissue following implantation. - Highlights: • Crystallinity of HA at the nano-scale was dominant over macro-scale topography. • Lower crystallinity caused rapid cell attachment and proliferation rate. • Crystallinity could be easily adjusted by without compromising coating purity.

  13. Nanoparticle-Liquid Crystalline Elastomer Composites

    Directory of Open Access Journals (Sweden)

    Yan Ji


    Full Text Available Liquid crystalline elastomers (LCEs exhibit a number of remarkable physical effects, including a uniquely high-stroke reversible mechanical actuation triggered by external stimuli. Fundamentally, all such stimuli affect the degree of liquid crystalline order in the polymer chains cross-linked into an elastic network. Heat and the resulting thermal actuation act by promoting entropic disorder, as does the addition of solvents. Photo-isomerization is another mechanism of actuation, reducing the orientational order by diminishing the fraction of active rod-like mesogenic units, mostly studied for azobenzene derivatives incorporated into the LCE composition. Embedding nanoparticles provides a new, promising strategy to add functionality to LCEs and ultimately enhance their performance as sensors and actuators. The motivation for the combination of nanoparticles with LCEs is to provide better-controlled actuation stimuli, such as electric and magnetic fields, and broad-spectrum light, by selecting and configuring the appropriate nanoparticles in the LCE matrix. Here we give an overview of recent advances in this area with a focus on preparation, physical properties and actuation performance of the resultant nanocomposites.

  14. Single crystalline nanostructures of topological crystalline insulator SnTe with distinct facets and morphologies. (United States)

    Li, Z; Shao, S; Li, N; McCall, K; Wang, J; Zhang, S X


    Topological crystalline insulators (TCIs) are a new class of topological materials that possess unique metallic surface states protected by crystalline mirror symmetry. Their topological surface properties are expected to strongly depend on the surface orientation. By combining density functional theory (DFT) calculations and synthesis experiments, we demonstrate the controlled growth of single crystalline nanostructures of the prototypical TCI SnTe with distinct facets and morphologies. Our calculations suggest that the excess energy of the {111} surfaces can be either higher or lower than that of the {100} surfaces, depending on the stoichiometry, while the {110} is always higher than the {100}. In our synthesis experiment, we qualitatively controlled the stoichiometry by tailoring the growth temperature and obtained two types of single crystalline nanowires: smooth nanowires dominated by {100} facets at high temperatures and zigzag nanowires composed of both {100} and {111} surfaces at low temperatures. Notably, there is no {110} facet in our nanostructures, strongly supporting the DFT calculations. Our device fabrication and electrical characterizations suggest that both types of nanowires are suitable for transport studies of topological surface states.

  15. Transmittance and reflectance of crystalline quartz and highand low-water content fused silica from 2 microns to 1 mm (United States)

    Heaney, J. B.; Stewart, K. P.; Hass, G.


    The transmittances and reflectances of cultured crystalline quartz, Suprasil, Suprasil W, and Infrasil were compared over the wavelength region from 2 to 1000 microns. The high-water content of Suprasil and the low-water content of cultured crystalline quartz, Suprasil W, and Infrasil were determined by their transmittances measured at 2.73 microns where water content causes high absorption in optical materials. The fact that the fused silicas, both with high- and low-water content, had identical far-IR transmittances and that their transmittances were greatly inferior to that of crystalline quartz led to the conclusion that their inferior transmittance is due to their amorphous structure and not to their water content.

  16. Unveiling the Formation Pathway of Single Crystalline Porous Silicon Nanowires (United States)

    Zhong, Xing; Qu, Yongquan; Lin, Yung-Chen; Liao, Lei; Duan, Xiangfeng


    Porous silicon nanowire is emerging as an interesting material system due to its unique combination of structural, chemical, electronic, and optical properties. To fully understand their formation mechanism is of great importance for controlling the fundamental physical properties and enabling potential applications. Here we present a systematic study to elucidate the mechanism responsible for the formation of porous silicon nanowires in a two-step silver-assisted electroless chemical etching method. It is shown that silicon nanowire arrays with various porosities can be prepared by varying multiple experimental parameters such as the resistivity of the starting silicon wafer, the concentration of oxidant (H2O2) and the amount of silver catalyst. Our study shows a consistent trend that the porosity increases with the increasing wafer conductivity (dopant concentration) and oxidant (H2O2) concentration. We further demonstrate that silver ions, formed by the oxidation of silver, can diffuse upwards and re-nucleate on the sidewalls of nanowires to initiate new etching pathways to produce porous structure. The elucidation of this fundamental formation mechanism opens a rational pathway to the production of wafer-scale single crystalline porous silicon nanowires with tunable surface areas ranging from 370 m2·g−1 to 30 m2·g−1, and can enable exciting opportunities in catalysis, energy harvesting, conversion, storage, as well as biomedical imaging and therapy. PMID:21244020

  17. Implementation of a perfect metamaterial absorber into multi-functional sensor applications (United States)

    Akgol, O.; Karaaslan, M.; Unal, E.; Sabah, C.


    Perfect metamaterial absorber (MA)-based sensor applications are presented and investigated in the microwave frequency range. It is also experimentally analyzed and tested to verify the behavior of the MA. Suggested perfect MA-based sensor has a simple configuration which introduces flexibility to sense the dielectric properties of a material and the pressure of the medium. The investigated applications include pressure and density sensing. Besides, numerical simulations verify that the suggested sensor achieves good sensing capabilities for both applications. The proposed perfect MA-based sensor variations enable many potential applications in medical or food technologies.

  18. Computing a quasi-perfect equilibrium of a two-player game

    DEFF Research Database (Denmark)

    Miltersen, Peter Bro; Sørensen, Troels Bjerre


    Refining an algorithm due to Koller, Megiddo and von Stengel, we show how to apply Lemke's algorithm for solving linear complementarity programs to compute a quasi-perfect equilibrium in behavior strategies of a given two-player extensive-form game of perfect recall. A quasi-perfect equilibrium...... of a zero-sum game, we devise variants of the algorithm that rely on linear programming rather than linear complementarity programming and use the simplex algorithm or other algorithms for linear programming rather than Lemke's algorithm. We argue that these latter algorithms are relevant for recent...

  19. A perfect absorber made of a graphene micro-ribbon metamaterial. (United States)

    Alaee, Rasoul; Farhat, Mohamed; Rockstuhl, Carsten; Lederer, Falk


    Metamaterial-based perfect absorbers promise many applications. Perfect absorption is characterized by the complete suppression of transmission and reflection and complete dissipation of the incident energy by the absorptive meta-atoms. A certain absorption spectrum is usually assigned to a bulk medium and serves as a signature of the respective material. Here we show how to use graphene flakes as building blocks for perfect absorbers. Then, an absorbing meta-atom only consists of a molecular monolayer placed at an appropriate distance from a metallic ground plate. We show that the functionality of such device is intuitively and correctly explained by a Fabry-Perot model.

  20. A perfect absorber made of a graphene micro-ribbon metamaterial

    CERN Document Server

    Alaee, Rasoul; Rockstuhl, Carsten; Lederer, Falk


    Metamaterial-based perfect absorbers promise many applica- tions. Perfect absorption is characterized by the complete suppression of transmission and reflection and complete dissipation of the incident energy by the absorptive meta-atoms. A certain absorption spectrum is usually assigned to a bulk medium and serves as a signature of the respective material. Here we show how to use graphene flakes as building blocks for perfect absorbers. Then, an absorbing meta-atom only consists of a molecular monolayer placed at an appropriate distance from a metallic ground plate. We show that the functionality of such device is intuitively and correctly explained by a Fabry-Perot model.

  1. Crystalline SiCO: Implication on structure and thermochemistry of ternary silicon oxycarbide ceramics (United States)

    Bodiford, Nelli

    The need for innovative refractory materials---materials that can sustain extreme temperatures---has been constantly growing within the modern industries. Basic requirements for usage at ultra-high-temperatures have been considered such as high melting point, high structural strength, exceptional resistance to oxidation, zero or almost zero creep. Monolithic ceramics alone cannot provide these properties, therefore, composite materials are sought to fulfill the demand. For example, silicon nitride and silicon carbide based ceramics have long been leading contenders for structural use in gas turbine engines. In the course of this work we are investigating amorphous SiCO formed via polymer-to-ceramic route. Previously a considerable amount of work has been done on structures of stoichiometric amorphous SiCO and a "perfect" random network was obtained (experimentally as well as supported by computational work) up to the phase content of 33 mol-% SiC. By "perfect" one assumes to have four fold coordinated Si atoms bonded to C and O; C atoms bond to Si atoms only and O is two fold connected to Si. Beyond 33 mol-% SiC within SiCO phase the structural imperfections and defects start to develop. Aside from the stoichiometric form of SiCO, the polymer-to-ceramic route allows for the incorporation of high molar amounts of carbon to create SiCO ceramic with excess carbon. The incorporation of carbon into silica glass improves high-temperature mechanical properties and increases resistance to crystallization of the amorphous material. The amount of 'free carbon' can be controlled through the choice of precursors used during synthesis. There were no ternary crystalline phases of SiCO observed. However, in systems such as MgO-SiO2, Na2O-Al2O 3-SiO2 there are ternary crystalline compounds (MgSiO 3, Mg2SiO4, NaAlSiO4, NaAlSi3 O8) that are of a greater energetic stability than glasses of the same composition. What makes the SiCO system different? In the approach proposed in this

  2. Bendable X-ray Optics for High Resolution Imaging (United States)

    Gubarev, M.; Ramsey, B.; Kilaru, K.; Atkins, C.; Broadway, D.


    Current state-of the-art for x-ray optics fabrication calls for either the polishing of massive substrates into high-angular-resolution mirrors or the replication of thin, lower-resolution, mirrors from perfectly figured mandrels. Future X-ray Missions will require a change in this optics fabrication paradigm in order to achieve sub-arcsecond resolution in light-weight optics. One possible approach to this is to start with perfectly flat, light-weight surface, bend it into a perfect cone, form the desired mirror figure by material deposition, and insert the resulting mirror into a telescope structure. Such an approach is currently being investigated at MSFC, and a status report will be presented detailing the results of finite element analyses, bending tests and differential deposition experiments.

  3. The congenital cataract-linked A2V mutation impairs tetramer formation and promotes aggregation of βB2-crystallin.

    Directory of Open Access Journals (Sweden)

    Jia Xu

    Full Text Available β/γ-Crystallins, the major structural proteins in human lens, are highly conserved in their tertiary structures but distinct in the quaternary structures. The N- and C-terminal extensions have been proposed to play a crucial role in mediating the size of β-crystallin assembly. In this research, we investigated the molecular mechanism underlying the congenital hereditary cataract caused by the recently characterized A2V mutation in βB2-crystallin. Spectroscopic experiments indicated that the mutation did not affect the secondary and tertiary structures of βB2-crystallin. The mutation did not affect the formation of βB2/βA3-crystallin heteromer as well as the stability and folding of the heteromer, suggesting that the mutation might not interfere with the protein interacting network in the lens. However, the tetramerization of βB2-crystallin at high protein concentrations was retarded by the A2V mutation. The mutation slightly decreased the thermal stability and promoted the thermal aggregation of βB2-crystallin. Although it did not influence the stability of βB2-crystallin against denaturation induced by chemical denaturants and UV irradiation, the A2V mutant was more prone to be trapped in the off-pathway aggregation process during kinetic refolding. Our results suggested that the A2V mutation might lead to injury of lens optical properties by decreasing βB2-crystallin stability against heat treatment and by impairing βB2-crystallin assembly into high-order homo-oligomers.

  4. Detection of Perfectly-Conducting Targets with Airborne Electromagnetic Systems (United States)

    Smiarowski, Adam

    A significant problem with exploring for electrically conductive mineral deposits with airborne electromagnetic (AEM) methods is that many of the most valuable sulphide deposits are too conductive to be detected with conventional systems. High-grade sulphide deposits with bulk electrical conductivities on the order of 100,000 S/m can appear as "perfect conductors" to most EM systems because the decay of secondary fields (the "time constant" of the deposit) generated in the target by the system transmitter takes much longer than the short measuring time of EM systems. Their EM response is essentially undetectable with off-time measurements. One solution is to make measurements during the transmitter on-time when the secondary field of the target produced by magnetic flux exclusion is large. The difficulty is that the secondary field must be measured in the presence of a primary field which is orders of magnitude larger. The goal of this thesis is to advance the methodology of making AEM measurements during transmitter on-time by analysing experimental data from three different AEM systems. The first system analysed is a very large separation, two helicopter system where geometry is measured using GPS sensors. In order to calculate the primary field at the receiver with sufficient accuracy, the very large (nominally 400 m) separation requires geometry to be known to better than 1 m. Using the measured geometry to estimate and remove the primary field, I show that a very conductive target can be detected at depths of 200m using the total secondary field. I then used fluxgate magnetometers to correct for receiver rotation which allowed the component of the secondary field to be determined. The second system I examined was a large separation fixed-wing AEM system. Using a towed receiver bird with a smaller (≈ 135m) separation, the geometry must be known much more accurately. In the absence of direct measurement of this geometry, I used a least-squares prediction

  5. Op zoek naar de perfecte match in vrijwilligersland

    Directory of Open Access Journals (Sweden)

    Els van Gilst


    Full Text Available Finding the perfect volunteer matchOrganizations that are (partially staffed by volunteers in the Netherlands are experiencing a growing need for volunteers. This relates to stricter laws and regulations, the changing deployment of volunteers and reforms in the care system (Bekkers & Boezeman, 2009; Devilee, 2005; MOVISIE, 2014; Rutte & Samsom, 2012.Volunteer centres can form part of the solution to the growing demand for volunteers. There are about 240 volunteer centres in the Netherlands. They promote volunteering and provide information, training, advice and support in this area. In addition, they play an active role as brokers in bringing together supply (volunteers and demand (volunteer-involving organizations. This intermediary role is often the core business of volunteer centres (Ploegmakers, Merkus & Terpstra, 2011; Terpstra, Ploegmakers & van Laar, 2008.The success of volunteer brokerage remains relatively limited, however. Offline brokerage (at the office of the volunteer centre is in about half of the cases successful. This falls to 37 percent for online brokerage. Volunteer brokerage is classed as successful when a volunteer is placed at an organization for a short-term project or a period of three months (Ploegmakers et al., 2011.Literature research (Van Gilst, Schalk, Garretsen & Van de Goor, 2011 was carried out to determine how the results of volunteer brokerage can be improved. The motivation and feelings of pride and respect on the part of a volunteer are found to be important for the level of satisfaction and willingness to keep on volunteering in both the short term and the long term.This article examines how success factors such as motivation, pride and respect can be incorporated into the daily brokerage practices of volunteer centres. Two research questions are central to this article:1. How does volunteer brokerage occur in practice?2. When and how can success factors for matching volunteers and organizations (partially

  6. Characterization of crystalline structures in Opuntia ficus-indica


    Contreras-Padilla, Margarita; Eric M. Rivera-Muñoz; Gutiérrez-Cortez, Elsa; del López, Alicia Real; Rodríguez-García, Mario Enrique


    This research studies the crystalline compounds present in nopal (Opuntia ficus-indica) cladodes. The identification of the crystalline structures was performed using X-ray diffraction, scanning electron microscopy, mass spectrometry, and Fourier transform infrared spectroscopy. The crystalline structures identified were calcium carbonate (calcite) [CaCO3], calcium-magnesium bicarbonate [CaMg(CO3)2], magnesium oxide [MgO], calcium oxalate monohydrate [Ca(C2O4)•(H2O)], potassium peroxydiphosph...

  7. Crystalline-Silicon Solar Cells for the 21st Century

    Energy Technology Data Exchange (ETDEWEB)

    Tsuo, Y. S.; Wang, T. H.; Ciszek, T. F.


    The worldwide market share for crystalline-silicon solar cells has increased steadily in the last 10 years. In 1998, about 87% of the photovoltaic modules shipped worldwide are based on crystalline silicon. This dominance will likely continue into at least the first few years of the 21st century. The long-term growth of crystalline-silicon solar cells will depend on the development of low-cost polysilicon feedstock, silicon films, and advanced cell and module manufacturing processes.

  8. Nearly perfect nonmagnetic invisibility cloaking: Analytic solutions and parametric studies (United States)

    Castaldi, Giuseppe; Gallina, Ilaria; Galdi, Vincenzo


    Coordinate-transformation approaches to invisibility cloaking rely on the design of an anisotropic, spatially inhomogeneous “transformation medium” capable of suitably rerouting the energy flux around the region to conceal without causing any scattering in the exterior region. It is well known that the inherently magnetic properties of such medium limit the high-frequency scaling of practical “metamaterial” implementations based on subwavelength inclusions (e.g., split-ring resonators). Thus, for the optical range, nonmagnetic implementations, based on approximate reductions of the constitutive parameters, have been proposed. In this paper, we present an alternative approach to nonmagnetic coordinate-transformation cloaking, based on the mapping from a nearly transparent, anisotropic and spatially inhomogeneous virtual domain. We show that, unlike its counterparts in the literature, our approach is amenable to exact analytic treatment, and that its overall performance is comparable to that of a nonideal (lossy, dispersive, parameter truncated) implementation of standard (magnetic) cloaking.

  9. Light-Driven Liquid Crystalline Materials: From Photo-Induced Phase Transitions and Property Modulations to Applications. (United States)

    Bisoyi, Hari Krishna; Li, Quan


    Light-driven phenomena both in living systems and nonliving materials have enabled truly fascinating and incredible dynamic architectures with terrific forms and functions. Recently, liquid crystalline materials endowed with photoresponsive capability have emerged as enticing systems. In this Review, we focus on the developments of light-driven liquid crystalline materials containing photochromic components over the past decade. Design and synthesis of photochromic liquid crystals (LCs), photoinduced phase transitions in LC, and photoalignment and photoorientation of LCs have been covered. Photomodulation of pitch, polarization, lattice constant and handedness inversion of chiral LCs is discussed. Light-driven phenomena and properties of liquid crystalline polymers, elastomers, and networks have also been analyzed. The applications of photoinduced phase transitions, photoalignment, photomodulation of chiral LCs, and photomobile polymers have been highlighted wherever appropriate. The combination of photochromism, liquid crystallinity, and fabrication techniques has enabled some fascinating functional materials which can be driven by ultraviolet, visible, and infrared light irradiation. Nanoscale particles have been incorporated to widen and diversify the scope of the light-driven liquid crystalline materials. The developed materials possess huge potential for applications in optics, photonics, adaptive materials, nanotechnology, etc. The challenges and opportunities in this area are discussed at the end of the Review.

  10. Fabrication of TiO2 Crystalline Coatings by Combining Ti-6Al-4V Anodic Oxidation and Heat Treatments

    Directory of Open Access Journals (Sweden)

    María Laura Vera


    Full Text Available The bio- and hemocompatibility of titanium alloys are due to the formation of a TiO2 layer. This natural oxide may have fissures which are detrimental to its properties. Anodic oxidation is used to obtain thicker films. By means of this technique, at low voltages oxidation, amorphous and low roughness coatings are obtained, while, above a certain voltage, crystalline and porous coatings are obtained. According to the literature, the crystalline phases of TiO2, anatase, and rutile would present greater biocompatibility than the amorphous phase. On the other hand, for hemocompatible applications, smooth and homogeneous surfaces are required. One way to obtain crystalline and homogeneous coatings is by heat treatments after anodic oxidation. The aim of this study is to evaluate the influence of heat treatments on the thickness, morphology, and crystalline structure of the TiO2 anodic coatings. The characterization was performed by optical and scanning electron microscopy, X-ray diffraction, and X-ray reflectometry. Coatings with different colors of interference were obtained. There were no significant changes in the surface morphology and roughness after heat treatment of 500°C. Heat treated coatings have different proportions of the crystalline phases, depending on the voltage of anodic oxidation and the temperature of the heat treatment.

  11. Perfect and Imperfect Modals in Romance Some syntactic remarks on the Tense/Modality interaction

    Directory of Open Access Journals (Sweden)

    Elena Soare


    Full Text Available This paper addresses the interplay between Tense-Aspect and Modality in Romanian and some Romance languages, in ambiguous sentences that exhibit what has been called “perfective raising”. It is observed that Romanian does not behave like French, for instance, inasmuch perfective forces actuality entailment on modals. I show that this contrast is connected to the structure of Romanian modal sentences: as commonly assumed in the literature, modal verbs in Romanian behave like lexical verbs with clausal complements; they have their own temporal-aspectual domain, which has to obey interpretive constraints. I propose that the ambiguity between root and epistemic readings in the perfective is the effect of two combined factors: perfective/imperfective Aspect and a high degree of grammaticalization of the modal (i.e. monoclausal structures for modals.

  12. Hypersurface-homogeneous Universe filled with perfect fluid in f (R ...

    Indian Academy of Sciences (India)

    homogeneous Universe filled with perfect fluid in the framework of f ( R , T ) theory of gravity (Harko et al, \\emph{Phys. Rev.} D 84, 024020 (2011)) is derived. The physical behaviour of the cosmological model is studied.

  13. A hybrid of monopoly and perfect competition model for hi-tech products (United States)

    Yang, P. C.; Wee, H. M.; Pai, S.; Yang, H. J.; Wee, P. K. P.


    For Hi-tech products, the demand rate, the component cost as well as the selling price usually decline significantly with time. In the case of perfect competition, shortages usually result in lost sales; while in a monopoly, shortages will be completely backordered. However, neither perfect competition nor monopoly exists. Therefore, there is a need to develop a replenishment model considering a hybrid of perfect competition and monopoly when the cost, price and demand are decreasing simultaneously. A numerical example and sensitivity analysis are carried out to illustrate this model. The results show that a higher decline-rate in the component cost leads to a smaller service level and a larger replenishment interval. When the component cost decline rate increases and the selling price decline rate decreases simultaneously, the replenishment interval decreases. In perfect competition it is better to have a high service level, while for the case with monopoly, keeping a low service level is better due to complete backordering.

  14. Femtosecond dynamics of a spaser and unidirectional emission from a perfectly spherical nanoparticle

    KAUST Repository

    Gongora, J. S. Totero


    We investigate the femtosecond dynamics of the spaser emission by combining ab-initio simulations and thermodynamic analysis. Interestingly, the emission is characterized by rotational evolution, opening to the generation of unidirectional emission from perfectly spherical nanoparticles. © OSA 2015.

  15. Energy transport in crystalline DNA composites

    Directory of Open Access Journals (Sweden)

    Zaoli Xu


    Full Text Available This work reports on the synthesis of crystalline DNA-composited films and microfibers, and details the study of thermal energy transport in them. The transient electro-thermal technique is used to characterize the thermal transport in DNA composite microfibers, and the photothermal technique is used to explore the thermal transport in the thickness direction of DNA films. Compared with microfibers, the DNA films are found to have a higher thermal transport capacity, largely due to the carefully controlled crystallization process in film synthesis. In high NaCl concentration solutions, the bond of the Na+ ion and phosphate group aligns the DNA molecules with the NaCl crystal structure during crystallization. This results in significant enhancement of thermal transport in the DNA films with aligned structure.

  16. Amorphous silicon crystalline silicon heterojunction solar cells

    CERN Document Server

    Fahrner, Wolfgang Rainer


    Amorphous Silicon/Crystalline Silicon Solar Cells deals with some typical properties of heterojunction solar cells, such as their history, the properties and the challenges of the cells, some important measurement tools, some simulation programs and a brief survey of the state of the art, aiming to provide an initial framework in this field and serve as a ready reference for all those interested in the subject. This book helps to "fill in the blanks" on heterojunction solar cells. Readers will receive a comprehensive overview of the principles, structures, processing techniques and the current developmental states of the devices. Prof. Dr. Wolfgang R. Fahrner is a professor at the University of Hagen, Germany and Nanchang University, China.

  17. Quasi-crystalline geometry for architectural structures

    DEFF Research Database (Denmark)

    Weizierl, Barbara; Wester, Ture


    . The purpose of the paper is to investigate some possibilities for the application of Quasi-Crystal geometry for structures in architecture. The basis for the investigations is A: to use the Golden Cubes (the two different hexahedra consisting of rhombic facets where the length of the diagonals has the Golden......Artikel på CD-Rom 8 sider. The quasi-crystal (QC) type of material was discovered in 1983 by Dan Schechtman from Technion, Haifa. This new crystalline structure of material broke totally with the traditional conception of crystals and geometry introducing non-periodic close packing of cells...... ratio) as basic elements for aperiodic 3D geometries and B: to raise aperiodic Penrose tilings and its binary substitutions from their 2D basis into 3D QC geometries and describe the structural behaviour for these spatial configurations....

  18. Crystalline lens radioprotectors; Les radioprotecteurs du cristallin

    Energy Technology Data Exchange (ETDEWEB)

    Belkacemi, Y.; Pasquier, D.; Castelain, B.; Lartigau, E. [Centre de Lutte Contre le Cancer Oscar-Lambret, Dept. de Radiotherapie, 59 - Lille (France); Warnet, J.M. [Paris-5 Univ., Lab. de Toxicologie, UFR Pharmacie, Unite de Pharmacotoxicologie Cellulaire, service Pharmacie, Centre Hospitalier National d' Ophtalmologie des 15-20, 75 (France)


    During more than a half of century, numerous compounds have been tested in different models against radiation-induced cataract. In this report, we will review the radioprotectors that have been already tested for non-human crystalline lens protection. We will focus on the most important published studies in this topic and the mechanisms of cyto-protection reported in. vitro and in. vivo from animals. The most frequent mechanisms incriminated in the cyto-protective effect are: free radical scavenging, limitation of lipid peroxidation, modulation of cycle progression increase of intracellular reduced glutathione pool, reduction of DNA strand breaks and limitation of apoptotic cell death. Arnifostine (or Ethyol) and anethole dithiolethione (or Sulfarlem), already used clinically as chemo- and radio-protectants, could be further test?r for ocular radioprotection particularly for radiation-induced cataract. (author)

  19. Analysis of experience of feet functions perfection in rhythmic gymnastic exercises


    Nesterova T.V.; Makarova O.V.


    Trainers and gymnasts take the problem of the special preparation feet and developments of method of its perfection to the number of the actual. The results of the pedagogical testing are shown that basic (basic, pushed, amortisation) and specific (aesthetic, manipulation, integral) functions feet have a different degree of display. They will be realized in exercises on all of the stages of long-term preparation of sportswomen. Most dynamic perfection of functions feet gymnasts take place on ...

  20. Simulation of a perfect CVD diamond Schottky diode steep forward current–voltage characteristic

    Energy Technology Data Exchange (ETDEWEB)

    Kukushkin, V.A., E-mail: [Institute of Applied Physics of the Russian Academy of Science, 46 Ulyanov St., 603950 Nizhny Novgorod (Russian Federation); Nizhny Novgorod State University named after N.I. Lobachevsky, 23 Gagarin pr., 603950 Nizhny Novgorod (Russian Federation)


    The kinetic equation approach to the simulation of the perfect CVD diamond Schottky diode current–voltage characteristic is considered. In result it is shown that the latter has a significantly steeper forward branch than that of perfect devices of such a type on usual semiconductors. It means that CVD diamond-based Schottky diodes have an important potential advantage over analogous devices on conventional materials.


    Directory of Open Access Journals (Sweden)

    E. V. Buloichyk


    Full Text Available Technical perfection improvement of microprocessor current protection of distribution networks lines is provided by introduction of asymmetrical fault mode determination and fault location functions in the algorithm of its functioning. As a result of computing experiment the basic indices of the technical perfection of current protection have been obtained in the paper. The paper proves high efficiency of the proposed methods that ensure selective and proper operation in the different modes of the controlled line.

  2. Pulsed laser deposition of semiconducting crystalline double-doped barium titanate thin films on nickel substrates (United States)

    Apostol, I.; Stefan, N.; Luculescu, C. R.; Birjega, R.; Socol, M.; Miroiu, M.; Mihailescu, I. N.


    We synthesized by pulsed laser deposition (Ba,Sr,Y)TiO3 and (Ba,Pb,Y)TiO3 thin films on mechanically polished nickel substrates. The synthesized thin films were analyzed for: crystalline structure by X-ray diffractometry, morphology and surface topography by atomic force microscopy, optical and scanning electron microscopy, and elemental composition by energy dispersive X-ray spectroscopy and electrical properties by electrical measurements. We have shown that film properties were determined by the dopants, target composition, and deposition parameters (oxygen pressure, substrate temperature and incident laser fluence). All films exhibited a semiconducting behavior, as proved by the decrease of electrical resistance with heating temperature.

  3. Crystal coherence length effects on the infrared optical response of MgO thin films (United States)

    Ihlefeld, J. F.; Ginn, J. C.; Shelton, D. J.; Matias, V.; Rodriguez, M. A.; Kotula, P. G.; Carroll, J. F.; Boreman, G. D.; Clem, P. G.; Sinclair, M. B.


    The role of crystal coherence length on the infrared optical response of MgO thin films was investigated with regard to Reststrahlen band photon-phonon coupling. Preferentially (001)-oriented sputtered and evaporated ion-beam assisted deposited thin films were prepared on silicon and annealed to vary film microstructure. Film crystalline coherence was characterized by x-ray diffraction line broadening and transmission electron microscopy. The infrared dielectric response revealed a strong dependence of dielectric resonance magnitude on crystalline coherence. Shifts to lower transverse optical phonon frequencies were observed with increased crystalline coherence. Increased optical phonon damping is attributed to increasing granularity and intergrain misorientation.

  4. 3-Hydroxykynurenine oxidizes alpha-crystallin: potential role in cataractogenesis. (United States)

    Korlimbinis, Anastasia; Hains, Peter G; Truscott, Roger J W; Aquilina, J Andrew


    The alpha-, beta-, and gamma-crystallins are the major structural proteins of mammalian lenses. The human lens also contains tryptophan-derived UV filters, which are known to spontaneously deaminate at physiological pH and covalently attach to lens proteins. 3-Hydroxykynurenine (3OHKyn) is the third most abundant of the kynurenine UV filters in the lens, and previous studies have shown this compound to be unstable and to be oxidized under physiological conditions, producing H2O2. In this study, we show that methionine and tryptophan amino acid residues are oxidized when bovine alpha-crystallin is incubated with 3-hydroxykynurenine. We observed almost complete oxidation of methionines 1 and 138 in alphaA-crystallin and a similar extent of oxidation of methionines 1 and 68 in alphaB-crystallin after 48 h. Tryptophans 9 and 60 in alphaB-crystallin were oxidized to a lesser extent. AlphaA-crystallin was also found to have 3OHKyn bound to its single cysteine residue. Examination of normal aged human lenses revealed no evidence of oxidation of alpha-crystallin; however, oxidation was detected at methionine 1 in both alphaA- and alphaB-crystallin from human cataractous lenses. Age-related nuclear cataract is associated with coloration and insolubilization of lens proteins and extensive oxidation of cysteine and methionine residues. Our findings demonstrate that 3-hydroxykynurenine can readily catalyze the oxidation of methionine residues in both alphaB- and alphaA-crystallin, and it has been reported that alpha-crystallin modified in this way is a poorer chaperone. Thus, 3-hydroxykynurenine promotes the oxidation and modification of crystallins and may contribute to oxidative stress in the human lens.

  5. The transformation of ZnO submicron dumbbells into perfect hexagonal tubular structures using CBD: a post treatment route (United States)

    Borade, P.; Joshi, K. U.; Gokarna, A.; Lerondel, G.; Jejurikar, S. M.


    In this paper, we report the synthesis of dumbbell-shaped ZnO structures and their subsequent transformation into perfect hexagonal tubes by the extended chemical bath deposition (CBD) method, retaining all advantages such as reproducibility, simplicity, quickness and economical aspect. Well-dispersed sub-micron-sized dumbbell-shaped ZnO structures were synthesized on a SiO2/Si substrate by the CBD method. As an extension of the CBD process the synthesized ZnO dumbbells were exposed to the evaporate coming out of the chemical bath for a few minutes (simply by adjusting the height of the deposit so that it remained just above the solution) to convert them into hexagonal tubes via the dissolution process. The possible dissolution mechanism responsible for the observed conversion is discussed. The optical properties (photo-luminescence) recorded at low temperature on both the structures showed an intense, sharp excitonic peak located at ∼370 nm. The improved intensity and low FWHM of the UV peak observed in the hexagonal tubular structures assures high optical quality, and hence can be used for optoelectronic applications.

  6. Tunable graphene-based plasmonic multispectral and narrowband perfect metamaterial absorbers at the mid-infrared region. (United States)

    Meng, Haiyu; Wang, Lingling; Liu, Guidong; Xue, Xiongxiong; Lin, Qi; Zhai, Xiang


    We numerically investigate the optical performance of a periodically patterned H-shaped graphene array by the finite-difference time-domain (FDTD) in the mid-infrared region. The simulated results reveal that absorption spectra of the proposed structure consist of two dramatic narrowband perfect absorption peaks located at 6.3 μm (Mode 1) and 8.6 μm (Mode 2) with high absorption coefficients of 99.65% and 99.80%, respectively. Two impressive absorption bandwidths that are the full width at half-maximum (FWHM) of the resonant frequency of 90 nm and 188 nm are obtained. The dipole resonance mode is supported by graphene ribbon at a wavelength of 6.3 μm. While the other absorption, attributed to the hybridized mode, is a new resonance that is different from the dipole resonance. The spectral position of the absorption peaks can be dynamically tuned by controlling the refractive index of the dielectric and the Fermi energy of graphene. Furthermore, we can obtain multispectral absorption peaks by applying multilayer graphene arrays. These design approaches enable us to control the number of absorption spectra and such absorbers will benefit the easy-to-fabricate nanophotonic devices for optical filtering, thermal detectors, and electromagnetic wave energy storage.

  7. Polarisation-sensitive optical elements in azobenzene polyesters and peptides

    DEFF Research Database (Denmark)

    Ramanujam, P.S.; Dam-Hansen, Carsten; Berg, Rolf Henrik


    In this article, we describe fabrication of polarisation holographic optical elements in azobenzene polyesters. Both liquid crystalline and amorphous side-chain polyesters have been utilised. Diffractive optical elements such as lenses and gratings that are sensitive to the polarisation of the in...

  8. Graphene Quantum Dot Layers with Energy-Down-Shift Effect on Crystalline-Silicon Solar Cells. (United States)

    Lee, Kyung D; Park, Myung J; Kim, Do-Yeon; Kim, Soo M; Kang, Byungjun; Kim, Seongtak; Kim, Hyunho; Lee, Hae-Seok; Kang, Yoonmook; Yoon, Sam S; Hong, Byung H; Kim, Donghwan


    Graphene quantum dot (GQD) layers were deposited as an energy-down-shift layer on crystalline-silicon solar cell surfaces by kinetic spraying of GQD suspensions. A supersonic air jet was used to accelerate the GQDs onto the surfaces. Here, we report the coating results on a silicon substrate and the GQDs' application as an energy-down-shift layer in crystalline-silicon solar cells, which enhanced the power conversion efficiency (PCE). GQD layers deposited at nozzle scan speeds of 40, 30, 20, and 10 mm/s were evaluated after they were used to fabricate crystalline-silicon solar cells; the results indicate that GQDs play an important role in increasing the optical absorptivity of the cells. The short-circuit current density was enhanced by about 2.94% (0.9 mA/cm(2)) at 30 mm/s. Compared to a reference device without a GQD energy-down-shift layer, the PCE of p-type silicon solar cells was improved by 2.7% (0.4 percentage points).

  9. On the Contribution of Slovenian Linguistics to the History of the Ancient Greek Perfect

    Directory of Open Access Journals (Sweden)

    Jerneja Kavčič


    Full Text Available An important contribution to the history of the Ancient Greek perfect is the study of Erika Mihevc-Gabrovec, The Disappearance of the Perfect in Late Greek (La disparition du parfait dans le grec de la basse époque. In terms of theory and content, her study continues the work of Pierre Chantraine, but somewhat diverges from her predecessor’s views on the issue of the merger between the aorist and the perfect, identifying examples of the use of the perfect even in an – according to Pierre Chantraine – relatively late period.  Some years after the publication of Erika Mihevc-Gabrovec’s book, the question of when the aorist and the perfect may have merged was raised again, to be addressed by McKay in a number of articles. Today, the views on the subject are strongly divided.   As argued by the author of this paper, one of the setbacks in examining the merger between the aorist and the perfect concerns the methodology, since researchers have tended to rely exclusively on their sense of language. A possible new approach is offered in the framework of the Slovenian theory of Natural Syntax, which has from the start paid considerable attention to English sentences of the I believe her to be intelligent type. The paper describes similar sentences in New Testament Greek, terming them “sentences of the λέγουσινἀνάστασινμὴεἶναι type”. In New Testament Greek, they display a tendency to use the present infinitive of stative verbs; relatively frequent is also the perfect infinitive (of non-stative verbs, while, as already noted in other studies, these sentences – at least in New Testament Greek – avoid the aorist infinitive. Such sentences thus bear witness to the fact that the aorist and the perfect were not fully interchangeable in New Testament Greek; the status of the aorist and perfect infinitives in sentences of the λέγουσινἀνάστασινμὴεἶναι type should also be taken into

  10. Quantitative aspects of crystalline lactose in milk products

    NARCIS (Netherlands)

    Roetman, K.


    The occurrence of crystalline lactose in milk products and its influence on their physical properties are briefly reviewed. The importance of the quantitive determination of crystalline lactose for scientific and industrial purposes is indicated, and a summary is given of our earlier work. This

  11. Single Molecule Study of Cellulase Hydrolysis of Crystalline Cellulose

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Y.-S.; Luo, Y.; Baker, J. O.; Zeng, Y.; Himmel, M. E.; Smith, S.; Ding, S.-Y.


    This report seeks to elucidate the role of cellobiohydrolase-I (CBH I) in the hydrolysis of crystalline cellulose. A single-molecule approach uses various imaging techniques to investigate the surface structure of crystalline cellulose and changes made in the structure by CBH I.

  12. Аnodic formation of nanoporous crystalline niobium oxide

    Directory of Open Access Journals (Sweden)



    Full Text Available The research results of anodic deposition of crystalline niobium oxide are presented in this work. The factors that have an impact on crystalline phase nucleation and its primary growth are revealed. Dependence of morphology and properties of nanoporous niobium oxide on modes of its formation is shown.

  13. Determination of cellulose I crystallinity by FT-Raman spectroscopy (United States)

    Umesh P. Agarwal; Richard S. Reiner; Sally A. Ralph


    Two new methods based on FT-Raman spectroscopy, one simple, based on band intensity ratio, and the other, using a partial least-squares (PLS) regression model, are proposed to determine cellulose I crystallinity. In the simple method, crystallinity in semicrystalline cellulose I samples was determined based on univariate regression that was first developed using the...

  14. Study of optical Laue diffraction (United States)

    Chakravarthy, Giridhar; Allam, Srinivasa Rao; Satyanarayana, S. V. M.; Sharan, Alok


    We present the study of the optical diffraction pattern of one and two-dimensional gratings with defects, designed using desktop pc and printed on OHP sheet using laser printer. Gratings so prepared, using novel low cost technique provides good visual aid in teaching. Diffraction pattern of the monochromatic light (632.8nm) from the grating so designed is similar to that of x-ray diffraction pattern of crystal lattice with point defects in one and two-dimensions. Here both optical and x-ray diffractions are Fraunhofer. The information about the crystalline lattice structure and the defect size can be known.

  15. Mark formation modeling in optical rewritable recording

    NARCIS (Netherlands)

    Brusche, J.H.; Segal, A.; Vuik, C.; Urbach, H.P.


    In optical rewritable recording media, such as the Blu-ray Disc, amorphous marks are formed on a crystalline background of a phase-change layer, by means of short, high power laser pulses. In order to improve this data storage concept, it is of great importance to understand the mark formation


    Directory of Open Access Journals (Sweden)

    Jiří Pazderka


    Full Text Available There have been many experimental measurements of the waterproofing ability and durability of concrete with a crystalline admixture, but some other important properties have not been reliably tested yet. The results of the tests, carried out by the authors, showed that crystalline admixtures reduce the water vapor permeability of concrete by 16-20 %. The authors also carried out the water pressure test in different time intervals, during the initial phase of cement hydration. The test results have shown that the full waterproofing effect of concrete with a crystalline admixture is available approximately on the 12th day after the concrete creation. The crystalline admixture effect on the compressive strength of concrete was also the subject of the testing. The results have shown that the compressive strength of the concrete with a crystalline admixture (added in an amount of 2 % and the compressive strength of the specimens from concrete without admixture were almost identical after 28 days.

  17. Synthesis of Isothianaphthene (ITN and 3,4-Ethylenedioxy-Thiophene (EDOT-Based Low-Bandgap Liquid Crystalline Conjugated Polymers

    Directory of Open Access Journals (Sweden)

    Hiromasa Goto


    Full Text Available Copolymers, consisting of isothianaphthene and phenylene derivatives with liquid crystal groups, were synthesized via Migita-Kosugi-Stille polycondensation reaction. IR absorption, UV-vis optical absorption, and PL spectroscopy measurements were carried out. Thermotropic liquid crystallinity of the polymers with bandgap of ~2.5 eV was confirmed.

  18. Machine Learning of ABO3 Crystalline Compounds (United States)

    Gubernatis, J. E.; Balachandran, P. V.; Lookman, T.

    We apply two advanced machine learning methods to a database of experimentally known ABO3 materials to predict the existence of possible new perovskite materials and possible new cubic perovskites. Constructing a list of 625 possible new materials from charge conserving combinations of A and B atoms in known stable ABO3 materials, we predict about 440 new perovskites. These new perovskites are predicted most likely to occur when the A and B atoms are a lanthanide or actinide, when the A atom is a alkali, alkali earth, or late transition metal, and a when the B atom is a p-block atom. These results are in basic agreement with the recent materials discovery by substitution analysis of Hautier et al. who data-mined the entire ICSD data base to develop the probability that in any crystal structure atom X could be substituted for by atom Y. The results of our analysis has several points of disagreement with a recent high throughput DFT study of ABO3 crystalline compounds by Emery et al. who predict few, if any, new perovskites whose A and B atoms are both a lanthanide. They also predict far more new cubic perovskites than we do: We predict few, if any, with a high degree of probability. This work was supported by the LDRD DR program of the Los Alamos National Laboratory.

  19. Nanomechanics of Single Crystalline Tungsten Nanowires

    Directory of Open Access Journals (Sweden)

    Volker Cimalla


    Full Text Available Single crystalline tungsten nanowires were prepared from directionally solidified NiAl-W alloys by a chemical release from the resulting binary phase material. Electron back scatter diffraction (EBSD proves that they are single crystals having identical crystallographic orientation. Mechanical investigations such as bending tests, lateral force measurements, and mechanical resonance measurements were performed on 100–300 nm diameter wires. The wires could be either directly employed using micro tweezers, as a singly clamped nanowire or in a doubly clamped nanobridge. The mechanical tests exhibit a surprisingly high flexibility for such a brittle material resulting from the small dimensions. Force displacement measurements on singly clamped W nanowires by an AFM measurement allowed the determination of a Young's modulus of 332 GPa very close to the bulk value of 355 GPa. Doubly clamped W nanowires were employed as resonant oscillating nanowires in a magnetomotively driven resonator running at 117 kHz. The Young's modulus determined from this setup was found to be higher 450 GPa which is likely to be an artefact resulting from the shift of the resonance frequency by an additional mass loading.

  20. Open-cell glass crystalline porous material

    Energy Technology Data Exchange (ETDEWEB)

    Anshits, Alexander G.; Sharonova, Olga M.; Vereshchagina, Tatiana A.; Zykova, Irina D.; Revenko, Yurii A.; Tretyakov, Alexander A.; Aloy, Albert S.; Lubtsev, Rem I.; Knecht, Dieter A.; Tranter, Troy J.; Macheret, Yevgeny


    An open-cell glass crystalline porous material made from hollow microspheres which are cenospheres obtained from fly ash, having an open-cell porosity of up to 90 vol. % is produced. The cenospheres are separated into fractions based on one or more of grain size, density, magnetic or non-magnetic, and perforated or non-perforated. Selected fractions are molded and agglomerated by sintering with a binder at a temperature below the softening temperature, or without a binder at a temperature about, or above, the softening temperature but below the temperature of liquidity. The porous material produced has an apparent density of 0.3-0.6 g/cm.sup.3, a compressive strength in the range of 1.2-3.5 MPa, and two types of openings: through-flow wall pores in the cenospheres of 0.1-30 micrometers, and interglobular voids between the cenospheres of 20-100 micrometers. The porous material of the invention has properties useful as porous matrices for immobilization of liquid radioactive waste, heat-resistant traps and filters, supports for catalysts, adsorbents and ion-exchangers.