WorldWideScience

Sample records for crystalline er2sio5 films

  1. PREPARATION AND CHARACTERIZATION OF POLY-CRYSTALLINE SILICON THIN FILM

    Institute of Scientific and Technical Information of China (English)

    Y.F. Hu; H. Shen; Z.Y. Liu; L.S. Wen

    2003-01-01

    Poly-crystalline silicon thin film has big potential of reducing the cost of solar cells.In this paper the preparation of thin film is introduced, and then the morphology of poly-crystalline thin film is discussed. On the film we developed poly-crystalline silicon thin film solar cells with efficiency up to 6. 05% without anti-reflection coating.

  2. Anisotropy and Crystalline Structure in Polyaniline Films

    Science.gov (United States)

    Minto, C. D. G.; Vaughan, A. S.

    1996-03-01

    Films of polyaniline -- camphor sulphonic acid cast from m-cresol exhibit transport properties characteristic of a material stradelling the metal/insulator transition. This improvement in properties over traditional methods of polyaniline production has been suggested as being caused by the macromolecule adopting an expanded coil configuration in this solvent. Such films have been shown to be semi--crystalline and are presumed to be completely isotropic. We present here new results which demonstrate that such films are in fact appreciably aligned. X-ray scattering is utilised to expose the presence of molecular anisotropy within such films, the polymers forming a stacked structure with the molecules preferentially oriented parallel to the plane of the film. Similar measurements confirm that the molecules are randomly oriented within this plane. Such alignment considerably improves the transport properties. Anisotropy and the crystalline structure within these films, those cast from chloroform and those using the isolated enantiomeric counter ion are quantified and discussed. The results demonstrate that improved transport properties have arisen as a result of both polymer--solvent interactions and as a result of improved chain alignment.

  3. Dynamic control of crystallinity in polymer film casting process

    OpenAIRE

    Thananchai Leephakpreeda

    2005-01-01

    This paper presents an approach for dynamic control of crystallinity in polymer film casting process. As known, the transients of crystallization dictate the microstructures of semi-crystalline polymer during solidification. In turn, the properties of finished products can be determined by adjustable variables in polymer film casting process such as temperature of chill roll. In this work, an experimental model of the solidification in film casting process is derived by a system identificatio...

  4. Fabrication of hierarchically ordered crystalline titania thin films

    Energy Technology Data Exchange (ETDEWEB)

    Niedermeier, Martin; Kaune, Gunar; Rawolle, Monika; Koerstgens, Volker; Ruderer, Matthias; Mueller-Buschbaum, Peter [TU Muenchen, Physik-Department LS E13, Garching (Germany); Gutmann, Jochen S. [Max-Planck Institute for Polymer Research, Mainz (Germany)

    2010-07-01

    Thin films of nanostructured titania have received a lot of attention in various applications such as photovoltaics within the last years. Having a well defined morphology is crucial for the functionality and performance of these films because it defines the volume to surface ratio and thereby the surface being available for interface reactions. Increasing the total film thickness is a common approach in order to increase the surface area. The present work focuses on the fabrication of hierarchically structured titania thin films and their crystallinity. A layer-by-layer spin-coating approach is investigated. A solution based sol-gel process using diblock copolymers as a template to obtain nanocomposite films is followed by calcination to obtain crystalline titania structures. The obtained structures are investigated using several imaging techniques like SEM and AFM. The crystallinity and the thickness of the films are analyzed with XRD and XRR.

  5. Dynamic control of crystallinity in polymer film casting process

    Directory of Open Access Journals (Sweden)

    Thananchai Leephakpreeda

    2005-05-01

    Full Text Available This paper presents an approach for dynamic control of crystallinity in polymer film casting process. As known, the transients of crystallization dictate the microstructures of semi-crystalline polymer during solidification. In turn, the properties of finished products can be determined by adjustable variables in polymer film casting process such as temperature of chill roll. In this work, an experimental model of the solidification in film casting process is derived by a system identification technique. This model is used to design a digital feedback controller including a state estimator. The simulation results show the effectiveness of the proposed control technique on an extruded film.

  6. Growth Induced Magnetic Anisotropy in Crystalline and Amorphous Thin Films

    Energy Technology Data Exchange (ETDEWEB)

    Hellman, Frances

    1998-10-03

    OAK B204 Growth Induced Magnetic Anisotropy in Crystalline and Amorphous Thin Films. The work in the past 6 months has involved three areas of magnetic thin films: (1) amorphous rare earth-transition metal alloys, (2) epitaxial Co-Pt and hTi-Pt alloy thin films, and (3) collaborative work on heat capacity measurements of magnetic thin films, including nanoparticles and CMR materials.

  7. Crystalline-silicon reliability lessons for thin-film modules

    Science.gov (United States)

    Ross, R. G., Jr.

    1985-01-01

    The reliability of crystalline silicon modules has been brought to a high level with lifetimes approaching 20 years, and excellent industry credibility and user satisfaction. The transition from crystalline modules to thin film modules is comparable to the transition from discrete transistors to integrated circuits. New cell materials and monolithic structures will require new device processing techniques, but the package function and design will evolve to a lesser extent. Although there will be new encapsulants optimized to take advantage of the mechanical flexibility and low temperature processing features of thin films, the reliability and life degradation stresses and mechanisms will remain mostly unchanged. Key reliability technologies in common between crystalline and thin film modules include hot spot heating, galvanic and electrochemical corrosion, hail impact stresses, glass breakage, mechanical fatigue, photothermal degradation of encapsulants, operating temperature, moisture sorption, circuit design strategies, product safety issues, and the process required to achieve a reliable product from a laboratory prototype.

  8. Rotational reorganization of doped cholesteric liquid crystalline films

    NARCIS (Netherlands)

    Eelkema, R.; M. Pollard, M.; Katsonis, N.; Vicario, J.; J. Broer, D.; Feringa, B.L.

    2006-01-01

    In this paper an unprecedented rotational reorganization of cholesteric liquid crystalline films is described. This rotational reorganization results from the conversion of a chiral molecular motor dopant to an isomer with a different helical twisting power, leading to a change in the cholesteric pi

  9. Crystalline, highly oriented MOF thin film: the fabrication and application.

    Science.gov (United States)

    Fu, Zhihua; Xu, Gang

    2016-10-24

    The thin film of metal-organic frameworks (MOFs) is a rapidly developing research area which has tremendous potential applications in many fields. One of the major challenges in this area is to fabricate MOF thin film with good crystallinity, high orientation and well-controlled thickness. In order to address this challenge, different appealing approaches have been studied intensively. Among various oriented MOF films, many efforts have also been devoted to developing novel properties and broad applications, such as in gas separator, thermoelectric, storage medium and photovoltaics. As a result, there has been a large demand for fundamental studies that can provide guidance and experimental data for further applications. In this account, we intend to present an overview of current synthetic methods for fabricating oriented crystalline MOF thin film and bring some updated applications. We give our perspective on the background, preparation and applications that led to the developments in this area and discuss the opportunities and challenges of using crystalline, highly oriented MOF thin film.

  10. Thin-film crystalline silicon solar cells

    CERN Document Server

    Brendel, Rolf

    2011-01-01

    This introduction to the physics of silicon solar cells focuses on thin cells, while reviewing and discussing the current status of the important technology. An analysis of the spectral quantum efficiency of thin solar cells is given as well as a full set of analytical models. This is the first comprehensive treatment of light trapping techniques for the enhancement of the optical absorption in thin silicon films.

  11. Exploration of exciton delocalization in organic crystalline thin films

    Science.gov (United States)

    Hua, Kim; Manning, Lane; Rawat, Naveen; Ainsworth, Victoria; Furis, Madalina

    The electronic properties of organic semiconductors play a crucial role in designing new materials for specific applications. Our group recently found evidence for a rotation of molecular planes in phthalocyanines that is responsible for the disappearance of a delocalized exciton in these systems for T >150K.................()().......1 In this study, we attempt to tune the exciton delocalization of small organic molecules using strain effects and alloying different molecules in the same family. The exciton behavior is monitored using time- and polarization resolved photolumniscence (PL) spectroscopy as a function of temperature. Specifically, organic crystalline thin films of octabutoxy phthalocyanine (H2OBPc), octyloxy phthalocyanines and H-bonded semiconductors such as the quinacridone and indigo derivatives are deposited on flexible substrates (i.e. Kapton and PEN) using an in-house developed pen-writing method.........2 that results in crystalline films with macroscopic long range order. The room temperature PL studies show redshift and changes in polarization upon bending of the film. Crystalline thin films of alloyed H2OBPc and octabutoxy naphthalocyanine with ratios ranging from 1:1 to 100:1 fabricated on both sapphire and flexible substrates are also explored using the same PL spectroscopy to elucidate the behaviors of delocalized excitons. .1N. Rawat, et al., J Phys Chem Lett 6, 1834 (2015). 2R. L. Headrick, et al., Applied Physics Letters 92, 063302 (2008). NSF DMR-1056589, NSF DMR-1062966.

  12. Crystalline Indium Sulphide thin film by photo accelerated deposition technique

    Science.gov (United States)

    Dhanya, A. C.; Preetha, K. C.; Deepa, K.; Remadevi, T. L.

    2015-02-01

    Indium sulfide thin films deserve special attention because of its potential application as buffer layers in CIGS based solar cells. Highly transparent indium sulfide (InS) thin films were prepared using a novel method called photo accelerated chemical deposition (PCD). Ultraviolet source of 150 W was used to irradiate the solution. Compared to all other chemical methods, PCD scores its advantage for its low cost, flexible substrate and capable of large area of deposition. Reports on deposition of high quality InS thin films at room temperature are very rare in literature. The precursor solution was initially heated to 90°C for ten minutes and then deposition was carried out at room temperature for two hours. The appearance of the film changed from lemon yellow to bright yellow as the deposition time increased. The sample was characterized for its structural and optical properties. XRD profile showed the polycrystalline behavior of the film with mixed phases having crystallite size of 17 nm. The surface morphology of the films exhibited uniformly distributed honey comb like structures. The film appeared to be smooth and the value of extinction coefficient was negligible. Optical measurements showed that the film has more than 80% transmission in the visible region. The direct band gap energy was 2.47eV. This method is highly suitable for the synthesis of crystalline and transparent indium sulfide thin films and can be used for various photo voltaic applications.

  13. Polarized photoluminescence from nematic and chiral- nematic liquid crystalline films

    Science.gov (United States)

    Conger, Brooke Morgan

    Polarization control is key to optoelectronics in terms of the processing and display of optical information. In principle, photonic or electronic excitation of anisotropic films should result in polarized light emission. Because of spontaneous molecular self-assembly, liquid crystals are ideal for the exploration of polarized luminescence. Although most studies on polarized luminescence have been based on liquid crystalline fluid films, solid films are preferred in view of morphological stability. Therefore, the theme of my thesis is the study of polarized luminescence from various fluorescent liquid crystal systems. From the fundamental perspective, a theory modeling the process of polarized photoluminescence was validated using fluorophore doped fluid liquid crystal films. To provide the morphological stability crucial to practical application, polarized fluorescence using vitrifiable and polymeric liquid crystals functionalized with fluorescent moieties was investigated. In addition, liquid crystalline π- conjugated polymers were synthesized and characterized as a new class of optical polymers. The effect of the emission source on achievable polarization from pyrene and carbazole systems was also elucidated. The main observations are as follows: (1) The observed degrees of polarization for all fluorescent liquid crystal systems were found to agree with the theories governing polarized fluorescence. (2) Low molar mass vitrifiable and polymeric liquid crystalline cyanoterphenyl and cyanotolane derivatives were found to yield moderate polarized fluorescence. Monomer emission was established as the decay pathway for the precursors and cyclohexane and polymethacrylate derivatives. (3) Ordered solid films from thiophene and p-phenylene π-conjugated polymers were found to induce significant degrees of polarized fluorescence. (4) Emission from glass-forming pyrenyl derivatives exhibited excimer emission in dilute solution and neat film, whereas in solid hosts it was

  14. Nano-crystalline CNx Films and Field Electron Emission Properties

    Institute of Scientific and Technical Information of China (English)

    张兰; 马会中; 李会军; 杨仕娥; 姚宁; 胡欢陵; 张兵临

    2003-01-01

    CNx films with x ≈ 0.5 were prepared on to a titanium coated ceramic substrate by using microwave plasma enhanced chemical vapour deposition. As-deposited films were studied by x-ray photoelectron spectroscopy (XPS), x-ray diffraction, and scanning electron microscopy. The films consist of nano-crystalline grains with sites in a range of 20-40nm approximately. The interplanar distance (d-value) of the nano-crystalline structure determined from the peak position of x-ray diffraction was found to be 0.336nm. This value is consistent with the d-value of graphite. XPS measurements of the N1 s and C1 s core levels for the same sample demonstrate two types of bonding structures between carbon and nitrogen atoms, corresponding to sp2 C-N and sp3 C-N. It is suggested that the N atoms mainly exist in aromatic rings of the nano-graphite layers by substituting carbon positions with nitrogen. Field electron emission characteristics of the film were tested. The turn-on field of the emission was as Iow as 1.1 V/μm.

  15. STRUCTURE OF CRYSTALLINE DOMAINS IN SEMICRYSTALLINE BLOCK COPOLYMER THIN FILMS

    Institute of Scientific and Technical Information of China (English)

    Guo-dong Liang; Jun-ting Xu; Zhi-qiang Fan

    2006-01-01

    Thin film morphology of a symmetric semicrystalline oxyethylene/oxybutylene diblock copolymer (E76B38) on silicon was investigated by tapping mode atomic force microscopy (AFM). It is found that the nascent thin film is composed of multiple polymer layers having mixed thicknesses of L ≈ L0 and L ≈ L0/2 (L0 is the long period of the block copolymer in bulk) besides the first layer near the substrate. This shows that the crystalline domain in the block copolymer consists of double poly(oxyethylene) layers. Annealing leads to disappearance of the polymer layers with thickness L ≈ L0/2, indicating that such polymer layers are metastable.

  16. Radiation hardness of single-crystalline zinc oxide films

    Energy Technology Data Exchange (ETDEWEB)

    Koike, Kazuto; Aoki, Takahiro; Fujimoto, Ryugo; Sasa, Shigehiko; Yano, Mitsuaki [Nanomaterials Microdevices Research Center, Osaka Institute of Technology, Ohmiya, Asahi-ku, Osaka 535-8585 (Japan); Gonda, Shun-ichi [The Institute of Scientific and Industrial Research, Osaka University, Mihogaoka, Ibaraki-city, Osaka 567-0047 (Japan); Ishigami, Ryoya; Kume, Kyo [The Wakasa Wan Energy Research Center, Nagatani, Tsuruga-city, Fukui 914-0192 (Japan)

    2012-07-15

    Zinc oxide (ZnO) is a potential semiconductor to exhibit high radiation hardness since large threshold displacement energy for damage can be expected due to the small unit-cell volume and large bandgap energy. In order to study the radiation hardness, single-crystalline c-axis-oriented ZnO films with and without two-dimensional electron gas, and bulk crystals of ZnO and gallium nitride (GaN) for comparison, were irradiated with 8 MeV protons at the wide range of fluences from 2 x 10{sup 13} to 1 x 10{sup 17} p/cm{sup 2}. For both ZnO films, decrease of luminescence intensity followed by increase of electrical resistance was observed at larger fluences than {proportional_to}5 x 10{sup 14} p/cm{sup 2}. This threshold fluence was found to be much larger and larger than those of GaN and ZnO bulk crystals, respectively, indicating that ZnO thin films should be useful for such device applications as the electronics for space satellites and nuclear reactors. (copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  17. Spin Exchange Interaction in Substituted Copper Phthalocyanine Crystalline Thin Films

    Science.gov (United States)

    Rawat, Naveen; Pan, Zhenwen; Lamarche, Cody J.; Wetherby, Anthony; Waterman, Rory; Tokumoto, Takahisa; Cherian, Judy G.; Headrick, Randall L.; McGill, Stephen A.; Furis, Madalina I.

    2015-11-01

    The origins of spin exchange in crystalline thin films of Copper Octabutoxy Phthalocyanine (Cu-OBPc) are investigated using Magnetic Circular Dichroism (MCD) spectroscopy. These studies are made possible by a solution deposition technique which produces highly ordered films with macroscopic grain sizes suitable for optical studies. For temperatures lower than 2 K, the contribution of a specific state in the valence band manifold originating from the hybridized lone pair in nitrogen orbitals of the Phthalocyanine ring, bears the Brillouin-like signature of an exchange interaction with the localized d-shell Cu spins. A comprehensive MCD spectral analysis coupled with a molecular field model of a σπ - d exchange analogous to sp-d interactions in Diluted Magnetic Semiconductors (DMS) renders an enhanced Zeeman splitting and a modified g-factor of -4 for the electrons that mediate the interaction. These studies define an experimental tool for identifying electronic states involved in spin-dependent exchange interactions in organic materials.

  18. Preparation and Structural Characterization of Superionic Conductor RbAg4I5 Crystalline Grain Film

    Science.gov (United States)

    Cao, Yang; Sun, Hong-San; Sun, Jia-Lin; Tian, Guang-Yan; Xing, Zhi; Guo, Ji-Hua

    2003-05-01

    Superionic conductor RbAg4I5 crystalline grain films were prepared by vacuum thermal evaporation on NaCl crystalline substrates. The surface morphology, microstructure and the electronic energy states of the films were examined by atomic force microscopy, transmission-electron microscopy, x-ray diffraction and x-ray photoelectron spectroscopy. The results show that the obtained RbAg4I5 layer has an epitaxial film of perfect crystalline structure, and the unit cell of crystalline grain RbAg4I5 films belongs to cubic crystal system. The principal x-ray diffraction peaks at d = 3.7447 and 1.8733 Å are related to the structure of ternary compound RbAg4I5 films.

  19. Formation of thin-film crystalline silicon on glass observed by in-situ XRD

    NARCIS (Netherlands)

    Westra, J.M.; Vavrunkova, V.; Sutta, P.; Van Swaaij, R.A.C.M.M.; Zeman, M.

    2010-01-01

    Thin-film poly-crystalline silicon (poly c-Si) on glass obtained by crystallization of an amorphous silicon (a-Si) film is a promising material for low cost, high efficiency solar cells. Our approach to obtain this material is to crystallize a-Si films on glass by solid phase crystallization (SPC).

  20. Epitaxial growth of homogeneous single-crystalline AlN films on single-crystalline Cu (1 1 1) substrates

    Science.gov (United States)

    Wang, Wenliang; Yang, Weijia; Liu, Zuolian; Lin, Yunhao; Zhou, Shizhong; Qian, Huirong; Gao, Fangliang; Yang, Hui; Li, Guoqiang

    2014-03-01

    The homogeneous and crack free single-crystalline AlN thin films have been epitaxially grown on single-crystalline Cu (1 1 1) substrates with an in-plane alignment of AlN [11-20]//Cu [1-10] by pulsed laser deposition (PLD) technology with an integrated laser rastering program. The as-grown AlN films are studied by spectroscopic ellipsometry, field emission scanning electron microscopy (FESEM), atomic force microscopy (AFM), polarized light microscopy, high-resolution X-ray diffraction, and high-resolution transmission electron microscopy (HRTEM). The spectroscopic ellipsometry reveals the excellent thickness uniformity of as-grown AlN films on the Cu (1 1 1) substrates with a root-mean-square (RMS) thickness inhomogeneity less than 2.6%. AFM and FESEM measurements indicate that very smooth and flat surface AlN films are obtained with a surface RMS roughness of 2.3 nm. The X-ray reflectivity image illustrates that there is a maximum of 1.2 nm thick interfacial layer existing between the as-grown AlN and Cu (1 1 1) substrates and is confirmed by HRTEM measurement, and reciprocal space mapping shows that almost fully relaxed AlN films are achieved only with a compressive strain of 0.48% within ∼321 nm thick films. This work demonstrates a possibility to obtain homogeneous and crack free single-crystalline AlN films on metallic substrates by PLD with optimized laser rastering program, and brings up a broad prospect for the application of acoustic filters that require abrupt hetero-interfaces between the AlN films and the metallic electrodes.

  1. Development of novel UV emitting single crystalline film scintillators

    Science.gov (United States)

    Zorenko, Yu; Gorbenko, V.; Savchyn, V.; Voznyak, T.; Nikl, M.; Mares, J. A.; Martin, T.; Douissard, P.-A.

    2011-04-01

    The work is dedicated to development of new types of UV -emitting scintillators based on single crystalline films (SCF) of aluminimum perovskites and garnets grown by the liquid phase epitaxy (LPE) method. The development of the following three types of UV SCF scintillators is considered in this work: i) Ce-doped SCF of Y-Lu-Al-perovskites with Ce3+ emission in the 360-370 nm range with a decay time of 16-17 ns; ii) Pr-doped SCF of Y-Lu-Al garnets with Pr3+ emission in the 300-400 nm range with a decay time of 13-17 ns; iii) La3+ and Sc3+ doped SCF of Y-Lu-Al-garnets, emitting in the 290-400 nm range due to formation of the LaY,Lu, ScY,Lu and ScAl centers with decay time of 250-575 ns. The results of testing the several novel UV-emitting SCFs scintillators for visualization of X-ray images at ESFR are presented. It is shown that the UV emission of the LuAG:Sc, LuAG:La and LuAG:Pr SCFs is efficient enough for conversion of X-ray to the UV light and that these scintillators can be used for improvement of the resolution of imaging detectors in synchrotron radiation applications.

  2. GAGG:ce single crystalline films: New perspective scintillators for electron detection in SEM

    Energy Technology Data Exchange (ETDEWEB)

    Bok, Jan, E-mail: bok@isibrno.cz [Institute of Scientific Instruments of the CAS, Kralovopolska 147, 61264 Brno (Czech Republic); Lalinský, Ondřej [Institute of Scientific Instruments of the CAS, Kralovopolska 147, 61264 Brno (Czech Republic); Hanuš, Martin; Onderišinová, Zuzana [Charles University, Faculty of Mathematics and Physics, Ke Karlovu 5, 12116 Prague (Czech Republic); Kelar, Jakub [Dept. of Physical Electronics, Masaryk University, Kotlarska 2, 61137 Brno (Czech Republic); Kučera, Miroslav [Charles University, Faculty of Mathematics and Physics, Ke Karlovu 5, 12116 Prague (Czech Republic)

    2016-04-15

    Single crystal scintillators are frequently used for electron detection in scanning electron microscopy (SEM). We report gadolinium aluminum gallium garnet (GAGG:Ce) single crystalline films as a new perspective scintillators for the SEM. For the first time, the epitaxial garnet films were used in a practical application: the GAGG:Ce scintillator was incorporated into a SEM scintillation electron detector and it showed improved image quality. In order to prove the GAGG:Ce quality accurately, the scintillation properties were examined using electron beam excitation and compared with frequently used scintillators in the SEM. The results demonstrate excellent emission efficiency of the GAGG:Ce single crystalline films together with their very fast scintillation decay useful for demanding SEM applications. - Highlights: • First practical application of epitaxial garnet films demonstrated in SEM. • Improved image quality of SEM equipped with GAGG:Ce single crystalline thin film scintillator. • Scintillation properties of GAGG:Ce films compared with standard bulk crystal scintillators.

  3. Preparation and Structural Characterization of Superionic Conductor RbAg4I5 Crystalline Grain Film

    Institute of Scientific and Technical Information of China (English)

    曹阳; 孙红三; 孙家林; 田广彦; 邢志; 郭继华

    2003-01-01

    Superionic conductor RbAg4I5 crystalline grainfilms were prepared by vacuum thermal evaporation on NaCl crystalline substrates. The surface morphology, microstructure and the electronic energy states of the films were examined by atomic force microscopy, transmission-electron microscopy, x-ray diffraction and x-ray photoelectron spectroscopy. The results show that the obtained RbAg4I5 layer has an epitaxial film of perfect crystalline structure, and the unit cell of crystalline grain RbAg4I5 films belongs to cubic crystal system. The principal x-ray diffraction peaks at d = 3.7447 and 1.8733A are related to the structure of ternary compound RbAg4I5films.

  4. Low temperature plasma deposition of silicon thin films: From amorphous to crystalline

    OpenAIRE

    Roca i Cabarrocas, Pere; Cariou, Romain; Labrune, Martin

    2012-01-01

    International audience; We report on the epitaxial growth of crystalline silicon films on (100) oriented crystalline silicon substrates by standard plasma enhanced chemical vapor deposition at 175 °C. Such unexpected epitaxial growth is discussed in the context of deposition processes of silicon thin films, based on silicon radicals and nanocrystals. Our results are supported by previous studies on plasma synthesis of silicon nanocrystals and point toward silicon nanocrystals being the most p...

  5. Nanoscale cellulose films with different crystallinities and mesostructures--their surface properties and interaction with water.

    Science.gov (United States)

    Aulin, Christian; Ahola, Susanna; Josefsson, Peter; Nishino, Takashi; Hirose, Yasuo; Osterberg, Monika; Wågberg, Lars

    2009-07-07

    A systematic study of the degree of molecular ordering and swelling of different nanocellulose model films has been conducted. Crystalline cellulose II surfaces were prepared by spin-coating of the precursor cellulose solutions onto oxidized silicon wafers before regeneration in water or by using the Langmuir-Schaefer (LS) technique. Amorphous cellulose films were also prepared by spin-coating of a precursor cellulose solution onto oxidized silicon wafers. Crystalline cellulose I surfaces were prepared by spin-coating wafers with aqueous suspensions of sulfate-stabilized cellulose I nanocrystals and low-charged microfibrillated cellulose (LC-MFC). In addition, a dispersion of high-charged MFC was used for the buildup of polyelectrolyte multilayers with polyetheyleneimine on silica with the aid of the layer-by-layer (LbL) technique. These preparation methods produced smooth thin films on the nanometer scale suitable for X-ray diffraction and swelling measurements. The surface morphology and thickness of the cellulose films were characterized in detail by atomic force microscopy (AFM) and ellipsometry measurements, respectively. To determine the surface energy of the cellulose surfaces, that is, their ability to engage in different interactions with different materials, they were characterized through contact angle measurements against water, glycerol, and methylene iodide. Small incidence angle X-ray diffraction revealed that the nanocrystal and MFC films exhibited a cellulose I crystal structure and that the films prepared from N-methylmorpholine-N-oxide (NMMO), LiCl/DMAc solutions, using the LS technique, possessed a cellulose II structure. The degree of crystalline ordering was highest in the nanocrystal films (approximately 87%), whereas the MFC, NMMO, and LS films exhibited a degree of crystallinity of about 60%. The N,N-dimethylacetamide (DMAc)/LiCl film possessed very low crystalline ordering (properties of the films, it was necessary to consider both the

  6. Crystallinity of inorganic films grown by atomic layer deposition: Overview and general trends

    Science.gov (United States)

    Miikkulainen, Ville; Leskelä, Markku; Ritala, Mikko; Puurunen, Riikka L.

    2013-01-01

    Atomic layer deposition (ALD) is gaining attention as a thin film deposition method, uniquely suitable for depositing uniform and conformal films on complex three-dimensional topographies. The deposition of a film of a given material by ALD relies on the successive, separated, and self-terminating gas-solid reactions of typically two gaseous reactants. Hundreds of ALD chemistries have been found for depositing a variety of materials during the past decades, mostly for inorganic materials but lately also for organic and inorganic-organic hybrid compounds. One factor that often dictates the properties of ALD films in actual applications is the crystallinity of the grown film: Is the material amorphous or, if it is crystalline, which phase(s) is (are) present. In this thematic review, we first describe the basics of ALD, summarize the two-reactant ALD processes to grow inorganic materials developed to-date, updating the information of an earlier review on ALD [R. L. Puurunen, J. Appl. Phys. 97, 121301 (2005)], and give an overview of the status of processing ternary compounds by ALD. We then proceed to analyze the published experimental data for information on the crystallinity and phase of inorganic materials deposited by ALD from different reactants at different temperatures. The data are collected for films in their as-deposited state and tabulated for easy reference. Case studies are presented to illustrate the effect of different process parameters on crystallinity for representative materials: aluminium oxide, zirconium oxide, zinc oxide, titanium nitride, zinc zulfide, and ruthenium. Finally, we discuss the general trends in the development of film crystallinity as function of ALD process parameters. The authors hope that this review will help newcomers to ALD to familiarize themselves with the complex world of crystalline ALD films and, at the same time, serve for the expert as a handbook-type reference source on ALD processes and film crystallinity.

  7. Structural phase study in un-patterned and patterned PVDF semi-crystalline films

    Energy Technology Data Exchange (ETDEWEB)

    Pramod, K., E-mail: rameshg.phy@pondiuni.edu.in; Gangineni, Ramesh Babu, E-mail: rameshg.phy@pondiuni.edu.in [Department of Physics, Pondicherry University, R. V. Nagar, Kalapet, Puducherry - 605014 (India)

    2014-04-24

    This work explores the structural phase studies of organic polymer- polyvinylidene fluoride (PVDF) thin films in semi-crystallized phase and nano-patterned PVDF thin films. The nanopatterns are transferred with the CD layer as a master using soft lithography technique. The semi-crystalline PVDF films were prepared by a still and hot (SH) method, using a homemade spin coater that has the proficiency of substrate heating by a halogen lamp. Using this set up, smooth PVDF thin films in semi-crystalline α-phase were prepared using 2-Butanone as solvent. XRD, AFM and confocal Raman microscope have been utilized to study the structural phase, crystallinity and quality of the films.

  8. Effect of crystalline/amorphous interfaces on thermal transport across confined thin films and superlattices

    Science.gov (United States)

    Giri, Ashutosh; Braun, Jeffrey L.; Hopkins, Patrick E.

    2016-06-01

    We report on the thermal boundary resistances across crystalline and amorphous confined thin films and the thermal conductivities of amorphous/crystalline superlattices for Si/Ge systems as determined via non-equilibrium molecular dynamics simulations. Thermal resistances across disordered Si or Ge thin films increase with increasing length of the interfacial thin films and in general demonstrate higher thermal boundary resistances in comparison to ordered films. However, for films ≲3 nm, the resistances are highly dependent on the spectral overlap of the density of states between the film and leads. Furthermore, the resistances at a single amorphous/crystalline interface in these structures are much lower than those at interfaces between the corresponding crystalline materials, suggesting that diffusive scattering at an interface could result in higher energy transmissions in these systems. We use these findings, together with the fact that high mass ratios between amorphous and crystalline materials can lead to higher thermal resistances across thin films, to design amorphous/crystalline superlattices with very low thermal conductivities. In this regard, we study the thermal conductivities of amorphous/crystalline superlattices and show that the thermal conductivities decrease monotonically with increasing interface densities above 0.1 nm-1. These thermal conductivities are lower than that of the homogeneous amorphous counterparts, which alludes to the fact that interfaces non-negligibly contribute to thermal resistance in these superlattices. Our results suggest that the thermal conductivity of superlattices can be reduced below the amorphous limit of its material constituent even when one of the materials remains crystalline.

  9. Biodegradation of starch films: the roles of molecular and crystalline structure.

    Science.gov (United States)

    Li, Ming; Witt, Torsten; Xie, Fengwei; Warren, Frederick J; Halley, Peter J; Gilbert, Robert G

    2015-05-20

    The influences of molecular, crystalline and granular structures on the biodegradability of compression-molded starch films were investigated. Fungal α-amylase was used as model degradation agent. The substrates comprised varied starch structures obtained by different degrees of acid hydrolysis, different granular sizes using size fractionation, and different degrees of crystallinity by aging for different times (up to 14 days). Two stages are identified for unretrograded films by fitting degradation data using first-order kinetics. Starch films containing larger molecules were degraded faster, but the rate coefficient was independent of the granule size. Retrograded films were degraded much slower than unretrograded ones, with a similar rate coefficient to that in the second stage of unretrograded films. Although initially the smaller molecules or the easily accessible starch chains on the amorphous film surface were degraded faster, the more ordered structure (resistant starch) formed from retrogradation, either before or during enzymatic degradation, strongly inhibits film biodegradation.

  10. Enhancement of the crystalline Ge film growth by inductively coupled plasma-assisted pulsed DC sputtering.

    Science.gov (United States)

    Kim, Eunkyeom; Han, Seung-Hee

    2014-11-01

    The effect of pulsed DC sputtering on the crystalline growth of Ge thin film was investigated. Ge thin films were deposited on the glass substrates using ICP-assisted pulsed DC sputtering. The Ge target was sputtered using asymmetric bipolar pulsed DC sputtering system with and without assistance of ICP source. The pulse frequency of 200 Hz and the pulse on time of 500 μsec (duty cycle = 10%) were kept during sputtering process. Crystal structures were studied from X-ray diffraction. The X-ray diffraction patterns clearly showed crystalline film structures. The Ge thin films with randomly oriented crystalline were obtained using pulsed DC sputtering without ICP, whereas they had well aligned (220) orientation crystalline using ICP source. Moreover, the combination of ICP assistance and pulsed DC sputtering enhanced the growth of crystalline Ge thin films without hydrogen and metal by in situ deposition. The structure and lattice of the films were studied from TEM images. The cross-sectional TEM images revealed the deposited Ge films with columnar structure.

  11. MORPHOLOGICAL STUDIES ON THERMOTROPIC LIQUID CRYSTALLINE POLYESTER——MORPHOLOGY OF SHEAR ORIENTED FILMS

    Institute of Scientific and Technical Information of China (English)

    WANG Xiayu; DONG Yanming; LI Xianxing; XIONG Qianzhen

    1989-01-01

    The morphology of shear-oriented films of a thermotropic liquid crystalline polyester containing a triad ester mesogenic unit and a flexible spacer has been investigated in details. The formation conditions and process, the fine structures and the relaxation process of mat structure in the oriented films have been observed and discussed.

  12. Effect of heat and film thickness on a photoinduced phase transition in azobenzene liquid crystalline polyesters

    DEFF Research Database (Denmark)

    Sanchez, C; Alcala, R; Hvilsted, Søren

    2003-01-01

    The liquid crystal to isotropic phase transition induced with 488 nm light in films of liquid crystalline azobenzene polyesters has been studied as a function of temperature, light intensity, and film thickness. That phase transition is associated with the photoinduced trans-cis-trans isomerizati...

  13. Substrate Temperature Study in the Crystallinity of BaTiO3 Thin Films

    Directory of Open Access Journals (Sweden)

    Márquez-Herrera Alfredo

    2013-06-01

    Full Text Available Ferroelectric thin films of BaTiO3(BTO were grown on quartz and nichrome substrates using a BaTiO3 target by RF-Sputtering technique. It was studied the effect of the substrate temperature in the crystallization of the material. These samples were compared with films deposited at room temperature and heat treated out of the growth Chamber. Their crystallinity were studied by X-ray diffraction. Additionally, the optical characterizations were carried out by UV-Vis spectrophotometer. The growth of thin films with substrate temperature allows the obtaining of crystalline materials at temperatures below those reported by other authors.

  14. Pt crystalline ultrathin films as counter electrodes for bifacial dye-sensitized solar cells

    Science.gov (United States)

    Cheng, Cheng-En; Lin, Zheng-Kun; Lin, Yu-Chang; Lei, Bi-Chen; Chang, Chen-Shiung; Shih-Sen Chien, Forest

    2017-01-01

    This study is to develop the Pt crystalline ultrathin films as high-transparent, efficient, and low-Pt-loaded counter electrodes (CEs) for bifacial dye-sensitized solar cells (DSCs). The 1-nm-thick Pt ultrathin films are sputtered on fluorine-doped tin oxide substrates and thermal annealed at 400 °C. After annealing, as-prepared amorphous-nanocrystal-mixed Pt films become high-crystalline films with better optical transmittance and electrocatalytic ability to I3 - reduction for bifacial DSCs. The rear-to-front ratios of short-circuit current density and power conversion efficiency of DSCs with crystalline ultrathin Pt CEs are as high as 81 and 83%, respectively.

  15. Growth induced magnetic anisotropy in crystalline and amorphous thin films

    Energy Technology Data Exchange (ETDEWEB)

    Hellman, F.

    1998-07-20

    The work in the past 6 months has involved three areas of magnetic thin films: (1) amorphous rare earth-transition metal alloys, (2) epitaxial Co-Pt and Ni-Pt alloy thin films, and (3) collaborative work on heat capacity measurements of magnetic thin films, including nanoparticles and CMR materials. A brief summary of work done in each area is given.

  16. Crystalline thin films: The electrochemical atomic layer deposition (ECALD) view

    CSIR Research Space (South Africa)

    Modibedi, M

    2011-09-01

    Full Text Available Electrochemical atomic layer deposition technique is selected as one of the methods to prepare thin films for various applications, including electrocatalytic materials and compound....

  17. RF Magnetron Sputtering Aluminum Oxide Film for Surface Passivation on Crystalline Silicon Wafers

    Directory of Open Access Journals (Sweden)

    Siming Chen

    2013-01-01

    Full Text Available Aluminum oxide films were deposited on crystalline silicon substrates by reactive RF magnetron sputtering. The influences of the deposition parameters on the surface passivation, surface damage, optical properties, and composition of the films have been investigated. It is found that proper sputtering power and uniform magnetic field reduced the surface damage from the high-energy ion bombardment to the silicon wafers during the process and consequently decreased the interface trap density, resulting in the good surface passivation; relatively high refractive index of aluminum oxide film is benefic to improve the surface passivation. The negative-charged aluminum oxide film was then successfully prepared. The surface passivation performance was further improved after postannealing by formation of an SiOx interfacial layer. It is demonstrated that the reactive sputtering is an effective technique of fabricating aluminum oxide surface passivation film for low-cost high-efficiency crystalline silicon solar cells.

  18. Low energy radiation stability of nano-crystalline cubic Zirconia films

    Science.gov (United States)

    Kalita, Parswajit; Ghosh, Santanu; Avasthi, Devesh K.

    2016-07-01

    The radiation stability of nano-crystalline cubic Zirconia films was investigated under 41 keV He ion irradiation. These ions were chosen to simulate alpha particles (produced during fission events) because of the similar electronic energy loss in Zirconia. The ZrO2 films, with an average grain size of 8 nm, were grown on Si (1 0 0) substrates by electron beam assisted thermal evaporation. Although the cubic structure was retained upon irradiation, a slight reduction in crystallinity in the irradiated films was detected as compared to the as-deposited film. No bulk amorphization was however observed for any of the fluences and hence these films are radiation tolerant to alpha particles.

  19. Photoconductivity studies on amorphous and crystalline TiO{sub 2} films doped with gold nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Valverde-Aguilar, G.; Garcia-Macedo, J.A. [Universidad Nacional Autonoma de Mexico, Departamento de Estado Solido, Instituto de Fisica, Mexico D.F. (Mexico); Renteria-Tapia, V. [Universidad de Guadalajara, Centro Universitario de los Valles, Departamento de Ciencias Naturales y Exactas, Ameca, Jalisco (Mexico); Aguilar-Franco, M. [Universidad Nacional Autonoma de Mexico, Departamento de Fisica Quimica, Instituto de Fisica, Mexico D.F. (Mexico)

    2011-06-15

    In this work, amorphous and crystalline TiO{sub 2} films were synthesized by the sol-gel process at room temperature. The TiO{sub 2} films were doped with gold nanoparticles. The films were spin-coated on glass wafers. The crystalline samples were annealed at 100 C for 30 minutes and sintered at 520 C for 2 h. All films were characterized using X-ray diffraction, transmission electronic microscopy and UV-Vis absorption spectroscopy. Two crystalline phases, anatase and rutile, were formed in the matrix TiO{sub 2} and TiO{sub 2}/Au. An absorption peak was located at 570 nm (amorphous) and 645 nm (anatase). Photoconductivity studies were performed on these films. The experimental data were fitted with straight lines at darkness and under illumination at 515 nm and 645 nm. This indicates an ohmic behavior. Crystalline TiO{sub 2}/Au films are more photoconductive than the amorphous ones. (orig.)

  20. Crystalline polarity of ZnO thin films deposited under dc external bias on various substrates

    Science.gov (United States)

    Ohsawa, Takeo; Tsunoda, Kei; Dierre, Benjamin; Zellhofer, Caroline; Grachev, Sergey; Montigaud, Hervé; Ishigaki, Takamasa; Ohashi, Naoki

    2017-04-01

    Effects of the nature of substrates, either crystalline or non-crystalline, on the structure and properties of ZnO films deposited by sputtering were investigated. This study focuses mainly on the role of the external electric bias applied to substrates during magnetron sputtering deposition in controlling crystalline polarity, i.e., Zn-face or O-face, and the resulting film properties. It was found that polarity control was achieved on silica and silicon substrates but not on sapphire substrates. The substrate bias did influence the lattice parameters in the structural formation; however, the selection of the substrate type had a significant influence on the defect structures and the film properties.

  1. Activity of formaldehyde dehydrogenase on titanium dioxide films with different crystallinities

    Science.gov (United States)

    Nakamura, Hitomi; Kato, Katsuya; Masuda, Yoshitake; Kato, Kazumi

    2015-02-01

    Many biosensors have been developed and used in recent years, and to enhance the sensitivity and stability of enzyme biosensors, immobilization of the enzymes on material surfaces is a necessary and important step. Therefore, there has been considerable interest in understanding how material interfaces affect enzyme adsorption. In this study, the influence of the crystallinity of titanium dioxide (TiO2) films on the quantity and activity of the immobilized enzyme, i.e., formaldehyde dehydrogenase (FDH), was investigated. It was found that TiO2 films with high crystallinity, which were annealed at 550 °C, showed higher enzyme immobilization and activity compared with the non-annealed TiO2 film. These results suggest that the activity of enzymes could be affected by the crystallinity of surface materials.

  2. Optical and electrical characterization of crystalline silicon films formed by rapid thermal annealing of amorphous silicon

    Energy Technology Data Exchange (ETDEWEB)

    Baldus-Jeursen, Christopher, E-mail: cjbaldus@uwaterloo.ca; Tarighat, Roohollah Samadzadeh, E-mail: rsamadza@uwaterloo.ca; Sivoththaman, Siva, E-mail: sivoththaman@uwaterloo.ca

    2016-03-31

    The effect of rapid thermal annealing (RTA) on n-type hydrogenated amorphous silicon (a-Si:H) films deposited on single-crystal silicon (c-Si) wafers was studied by electrical and optical methods. Deposition of a-Si:H films by plasma-enhanced chemical vapor deposition (PECVD) was optimized for high deposition rate and maximum film uniformity. RTA processed films were characterized by spreading resistance profiling (SRP), Hall effect, spectroscopic ellipsometry, defect etching, and transmission electron microscopy (TEM). It was found that the films processed between 600 °C and 1000 °C were highly crystalline and that the defect density in the films diminished with increasing thermal budget. Junctions formed by the RTA processed n-type a-Si:H films on p-type c-Si wafers were tested for device applicability. It was established that these films can be used as the emitter layer in n{sup +}p photovoltaic (PV) devices with over 14% conversion efficiency. - Highlights: • Rapid thermal annealing of doped amorphous silicon deposited on single-crystal silicon (c-Si) wafers resulted in highly crystalline films for photovoltaic devices. • As the annealing temperature increased, the electrical and optical properties of the films became increasingly similar to single-crystal silicon. • Annealing temperatures between 500-1000 oC were investigated. Solar cell devices fabricated after annealing at 750 oC were found to be the most suitable compromise between good quality crystalline films and minimal dopant diffusion into the c-Si wafer. • Annealed films were highly conductive without the need for a transparent conducting oxide.

  3. Collagen films with stabilized liquid crystalline phases and concerns on osteoblast behaviors

    Energy Technology Data Exchange (ETDEWEB)

    Tang, Minjian; Ding, Shan; Min, Xiang; Jiao, Yanpeng, E-mail: tjiaoyp@jnu.edu.cn; Li, Lihua; Li, Hong; Zhou, Changren, E-mail: tcrz9@jnu.edu.cn

    2016-01-01

    To duplicate collagen's in vivo liquid crystalline (LC) phase and investigate the relationship between the morphology of LC collagen and osteoblast behavior, a self-assembly method was introduced for preparing collagen films with a stabilized LC phase. The LC texture and topological structure of the films before and after stabilization were observed with polarizing optical microscopy, scanning electron microscopy (SEM), and atomic force microscopy (AFM). The relationship between the collagen films and osteoblast behavior was studied with the 3-(4,5)-dimethylthiahiazo(-z-y1)-3,5-di-phenytetrazoliumromide method, proliferation index detection, alkaline phosphatase measurements, osteocalcin assay, inverted microscopy, SEM observation, AFM observation, and cytoskeleton fluorescence staining. The results showed that the LC collagen film had continuously twisting orientations in the cholesteric phase with a typical series of arced patterns. The collagen fibers assembled in a well-organized orientation in the LC film. Compared to the non-LC film, the LC collagen film can promote cell proliferation, and increase ALP and osteocalcin expression, revealing a contact guide effect on osteoblasts. - Highlights: • Collagen film with liquid crystalline (LC) phase was observed by POM, SEM and AFM. • The effect of LC collagen film on osteoblasts behaviors was studied in detail. • LC collagen film promoted osteoblast proliferation and osteogenesis activity.

  4. IMPROVEMENT OF THE CRYSTALLINITY AND OPTICAL PARAMETERS OF ZnO FILM WITH ALUMINUM DOPING

    OpenAIRE

    Ilican, Saliha

    2016-01-01

    In this study, the undoped and Aluminum (Al) doped (1% and 3%) zinc oxide (ZnO) films were prepared by sol gel method via spin coating onto glass substrates. To investigate the structural and optical properties of the films, it was used to X-ray diffractometer and UV-vis spectrophotometer, respectively. The prepared ZnO films are polycrystalline with a hexagonal wurtzite structure with a preferential orientation according to the (002) plane. The crystalline quality of ZnO film was improved by...

  5. Irradiation induced improvement in crystallinity of epitaxially grown Ag thin films on Si substrates

    Energy Technology Data Exchange (ETDEWEB)

    Takahiro, Katsumi; Nagata, Shinji; Yamaguchi, Sadae [Tohoku Univ., Sendai (Japan). Inst. for Materials Research

    1997-03-01

    We report the improvement in crystallinity of epitaxially grown Ag films on Si(100) substrates with ion irradiation. The irradiation of 0.5 MeV Si ions to 2x10{sup 16}/cm{sup 2} at 200degC, for example, reduces the channeling minimum yield from 60% to 6% at Ag surface. The improvement originates from the decrease of mosaic spread in the Ag thin film. In our experiments, ion energy, ion species and irradiation temperature have been varied. The better crystallinity is obtained as the higher concentration of defect is generated. The mechanism involved in the irradiation induced improvement is discussed. (author)

  6. Photo-Induced Bending Behavior of Post-Crosslinked Liquid Crystalline Polymer/Polyurethane Blend Films.

    Science.gov (United States)

    Pang, Xinlei; Xu, Bo; Qing, Xin; Wei, Jia; Yu, Yanlei

    2017-06-30

    Photoresponsive blend films with post-crosslinked liquid crystalline polymer (CLCP) as a photosensitive component and flexible polyurethane (PU) as the matrix are successfully fabricated. After being uniaxially stretched, even at low concentration, the azobenzene-containing CLCP effectively transfers its photoresponsiveness to the photoinert PU matrix, resulting in the fast photo-induced bending behavior of whole blend film thanks to the effective dispersion of CLCP. Specifically, the blend film shows photo-induced deformations upon exposure to unpolarized UV light at ambient temperature. The film unbends after thermal treatment, and the randomly orientated mesogens in the film can be realigned by the mechanical stretching, which endows the film with a reversible deformation behavior. The photosensitive blend film possesses favorable mechanical property and good processability at low cost, and it is a promising candidate for a new generation of actuators. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Exceptionally crystalline and conducting acid doped polyaniline films by level surface assisted solution casting approach

    Energy Technology Data Exchange (ETDEWEB)

    Puthirath, Anand B.; Varma, Sreekanth J.; Jayalekshmi, S., E-mail: jayalekshmi@cusat.ac.in [Division for Research in Advanced Materials, Department of Physics, Cochin University of Science and Technology, Cochin, Kerala 682022 (India); Methattel Raman, Shijeesh [Nanophotonic and Optoelectronic Devices Laboratory, Department of Physics, Cochin University of Science and Technology, Cochin, Kerala 682022 (India)

    2016-04-18

    Emeraldine salt form of polyaniline (PANI) was synthesized by chemical oxidative polymerisation method using ammonium persulfate as oxidant. Resultant emeraldine salt form of PANI was dedoped using ammonia solution and then re-doped with camphor sulphonic acid (CSA), naphthaline sulphonic acid (NSA), hydrochloric acid (HCl), and m-cresol. Thin films of these doped PANI samples were deposited on glass substrates using solution casting method with m-cresol as solvent. A level surface was employed to get homogeneous thin films of uniform thickness. Detailed X-ray diffraction studies have shown that the films are exceptionally crystalline. The crystalline peaks observed in the XRD spectra can be indexed to simple monoclinic structure. FTIR and Raman spectroscopy studies provide convincing explanation for the exceptional crystallinity observed in these polymer films. FESEM and AFM images give better details of surface morphology of doped PANI films. The DC electrical conductivity of the samples was measured using four point probe technique. It is seen that the samples also exhibit quite high DC electrical conductivity, about 287 S/cm for CSA doped PANI, 67 S/cm for NSA doped PANI 65 S/cm for HCl doped PANI, and just below 1 S/cm for m-cresol doped PANI. Effect of using the level surface for solution casting is studied and correlated with the observed crystallinity.

  8. Exceptionally crystalline and conducting acid doped polyaniline films by level surface assisted solution casting approach

    Science.gov (United States)

    Puthirath, Anand B.; Methattel Raman, Shijeesh; Varma, Sreekanth J.; Jayalekshmi, S.

    2016-04-01

    Emeraldine salt form of polyaniline (PANI) was synthesized by chemical oxidative polymerisation method using ammonium persulfate as oxidant. Resultant emeraldine salt form of PANI was dedoped using ammonia solution and then re-doped with camphor sulphonic acid (CSA), naphthaline sulphonic acid (NSA), hydrochloric acid (HCl), and m-cresol. Thin films of these doped PANI samples were deposited on glass substrates using solution casting method with m-cresol as solvent. A level surface was employed to get homogeneous thin films of uniform thickness. Detailed X-ray diffraction studies have shown that the films are exceptionally crystalline. The crystalline peaks observed in the XRD spectra can be indexed to simple monoclinic structure. FTIR and Raman spectroscopy studies provide convincing explanation for the exceptional crystallinity observed in these polymer films. FESEM and AFM images give better details of surface morphology of doped PANI films. The DC electrical conductivity of the samples was measured using four point probe technique. It is seen that the samples also exhibit quite high DC electrical conductivity, about 287 S/cm for CSA doped PANI, 67 S/cm for NSA doped PANI 65 S/cm for HCl doped PANI, and just below 1 S/cm for m-cresol doped PANI. Effect of using the level surface for solution casting is studied and correlated with the observed crystallinity.

  9. Structural Changes of Amorphous GeTe2 Films by Annealing (Formation of Metastable Crystalline GeTe2 Films)

    Science.gov (United States)

    Fukumoto, Hirofumi; Tsunetomo, Keiji; Imura, Takeshi; Osaka, Yukio

    1987-01-01

    Amorphous GeTe2 films with the thickness ˜0.5 μm, prepared by sputtering technique, transform into the crystalline GeTe2 films with the isomorphic structure to β-cristobalite, cubic SiO2, at Ta(annealing temperature){=}200°C. The cubic phase of GeTe2 is metastable and decomposes into the mixed crystal of GeTe and Te at Ta{=}250°C.

  10. Engineering the Crystalline Morphology of Polymer Thin Films via Physical Vapor Deposition

    Science.gov (United States)

    Jeong, Hyuncheol; Arnold, Craig; Priestley, Rodney

    Thin-film growth via physical vapor deposition (PVD) has been successfully exploited for the delicate control of film structure for molecular and atomic systems. The application of such a high-energetic process to polymeric film growth has been challenged by chemical degradation. However, recent development of Matrix Assisted Pulsed Laser Evaporation (MAPLE) technique opened up a way to deposit a variety of macromolecules in a PVD manner. Here, employing MAPLE technique to the growth of semicrystalline polymer thin films, we show the engineering of crystalline film morphology can be achieved via manipulation of substrate temperature. This is accomplished by exploiting temperature effect on crystallization kinetics of polymers. During the slow film growth crystallization can either be permitted or suppressed, and crystal thickness can be tuned via temperature modulation. In addition, we report that the crystallinity of polymer thin films may be significantly altered with deposition temperature in MAPLE processing. We expect that this ability to manipulate crystallization kinetics during polymeric film growth will open the possibility to engineer structure in thin film polymeric-based devices in ways that are difficult by other means.

  11. Epitaxial layers of 2122 BCSCO superconductor thin films having single crystalline structure

    Science.gov (United States)

    Pandey, Raghvendra K. (Inventor); Raina, Kanwal K. (Inventor); Solayappan, Narayanan (Inventor)

    1995-01-01

    A substantially single phase, single crystalline, highly epitaxial film of Bi.sub.2 CaSr.sub.2 Cu.sub.2 O.sub.8 superconductor which has a T.sub.c (zero resistance) of 83K is provided on a lattice-matched substrate with no intergrowth. This film is produced by a Liquid Phase Epitaxy method which includes the steps of forming a dilute supercooled molten solution of a single phase superconducting mixture of oxides of Bi, Ca, Sr, and Cu having an atomic ratio of about 2:1:2:2 in a nonreactive flux such as KCl, introducing the substrate, e.g., NdGaO.sub.3, into the molten solution at 850.degree. C., cooling the solution from 850.degree. C. to 830.degree. C. to grow the film and rapidly cooling the substrate to room temperature to maintain the desired single phase, single crystalline film structure.

  12. Superconducting thin films of (100) and (111) oriented indium doped topological crystalline insulator SnTe

    Energy Technology Data Exchange (ETDEWEB)

    Si, Weidong, E-mail: wds@bnl.gov, E-mail: qiangli@bnl.gov; Zhang, Cheng; Wu, Lijun; Ozaki, Toshinori; Gu, Genda; Li, Qiang, E-mail: wds@bnl.gov, E-mail: qiangli@bnl.gov [Condensed Matter Physics and Materials Science Department, Brookhaven National Laboratory, Upton, New York 11973 (United States)

    2015-08-31

    Recent discovery of the topological crystalline insulator SnTe has triggered a search for topological superconductors, which have potential application to topological quantum computing. The present work reports on the superconducting properties of indium doped SnTe thin films. The (100) and (111) oriented thin films were epitaxially grown by pulsed-laser deposition on (100) and (111) BaF{sub 2} crystalline substrates, respectively. The onset superconducting transition temperatures are about 3.8 K for (100) and 3.6 K for (111) orientations, slightly lower than that of the bulk. Magneto-resistive measurements indicate that these thin films may have upper critical fields higher than that of the bulk. With large surface-to-bulk ratio, superconducting indium doped SnTe thin films provide a rich platform for the study of topological superconductivity and potential device applications based on topological superconductors.

  13. Control of preferred (222) crystalline orientation of sputtered indium tin oxide thin films

    Energy Technology Data Exchange (ETDEWEB)

    Pham, Duy Phong [Laboratory of Advanced Materials, University of Science, Vietnam National University, Ho Chi Minh (Viet Nam); Phan, Bach Thang [Laboratory of Advanced Materials, University of Science, Vietnam National University, Ho Chi Minh (Viet Nam); Faculty of Materials Science, University of Science, Vietnam National University, Ho Chi Minh (Viet Nam); Hoang, Van Dung; Nguyen, Huu Truong [Laboratory of Advanced Materials, University of Science, Vietnam National University, Ho Chi Minh (Viet Nam); Ta, Thi Kieu Hanh [Faculty of Materials Science, University of Science, Vietnam National University, Ho Chi Minh (Viet Nam); Maenosono, Shinya [Japan Advanced Institute of Science and Technology, Nomi, Ishikawa (Japan); Tran, Cao Vinh, E-mail: tcvinh@hcmus.edu.vn [Laboratory of Advanced Materials, University of Science, Vietnam National University, Ho Chi Minh (Viet Nam)

    2014-11-03

    We report a two-step growth process for the fabrication of (222)-plane textured indium tin oxide (ITO) films. A thin ITO seed layer was grown in mixed Argon + Oxygen gases, followed by a thick ITO deposited in Argon gas. X-Ray diffraction shows that the sputtered ITO films exhibit strongly preferred (222) crystalline orientation. The (222)-plane textured ITO films have high transmittance above 80% in the visible range and carrier concentration, mobility and resistivity in the range of 10{sup 21} cm{sup −3}, 40 cm{sup 2}/Vs and 10{sup −4} Ω·cm, respectively. The surface roughness of our (222) textured ITO films is 1.4 nm, which is one of the smallest value obtained from sputtered ITO thin films. - Highlights: • Control of preferred (222) crystalline orientation of indium tin oxide (ITO) films • A thin oxygen rich seed layer activates (222) orientation growth of overhead ITO films. • The surface roughness of (222)-plane textured ITO films is about 1.4 nm. • Carrier concentration and resistivity are about 10{sup 21} cm{sup −3} and 10{sup −4} Ω·cm, respectively.

  14. Characterization of crystalline structure and morphology of NiO thin films.

    Science.gov (United States)

    Shin, Hyemin; Choi, Soo-Bin; Yu, Chung-Jong; Kim, Jae-Yong

    2011-05-01

    We investigated the relation of sputtering powers with structural and morphological properties of nickel oxide (NiO) thin films. NiO thin films were fabricated by using an rf-reactive sputtering method on Si(100) substrates with a Ni target in a partial pressure of oxygen and argon. The films were deposited by various rf-sputtering powers from 100 to 200 W at room temperature. The phases and crystalline structures of the deposited films were investigated by using grazing incident X-ray diffraction (XRD). The thickness and surface morphology of the films were investigated by using a field emission-scanning electron microscopy (FE-SEM). The different sputtering conditions drastically affected the crystallinity and the surface morphology of NiO thin films. A combined analysis of the data obtained from X-ray diffraction and SEM images demonstrates that the preferred orientation of NiO films tends to grow from (111) to (200) direction as increasing the sputtering power, which can be explained by in terms of the surface energy along the indexing plane in an fcc structure. As increasing the rf power, lattice constants decreased from 4.26 to 4.20 angstroms and samples became high-quality crystals. Under our experimental condition, NiO films prepared at 150 W with 20% partial pressure of oxygen and 7 cm distance from the sample to the target show the best quality of the crystal.

  15. Effect of plasticizer on drug crystallinity of hydroxypropyl methylcellulose matrix film.

    Science.gov (United States)

    Panda, Brajabihari; Parihar, Aditi Singh; Mallick, Subrata

    2014-06-01

    Effect of different hydrophilic plasticizers on drug crystallinity of hydroxypropyl methylcellulose (HPMC) matrix film was studied. HPMC films containing telmisartan using different plasticizers were prepared by casting method. Drug crystallinity in the films was examined using polarized light microscopy (PLM), scanning electron microscopy (SEM), and x-ray diffractometry (XRD) to describe their phase behavior/solid state miscibility/crystal growth and drug-polymer-plasticizer interaction. HPMC and plasticizer were compatible with the drug and no phase separation was observed upon solvent evaporation. Plasticized-HPMC contributed a major role in the significant inhibition of crystal growth of the drug in the film. The triethanolamine film produced a relatively smooth surface in comparison to the other films in the submicron level. The films have not shown any significant changes even after exposure to stress (40°C/75% RH, 6 w). Triethanolamine as plasticizer brought about amorphization of telmisartan to the maximum extent in the film which is technologically more advantageous than the others owing to its anticipated better bioavailability.

  16. Growth characteristics, optical properties, and crystallinity of thermal and plasma-enhanced ALD AIN films

    NARCIS (Netherlands)

    Van Bui, H.; Wiggers, F.B.; Aarnink, A.A.I.; Nguyen, M.D.; Jong, de M.P.; Kovalgin, A.Y.; Gupta, A.Y.

    2014-01-01

    Using real-time in-situ spectroscopic ellipsometry and ex-situ atomic force microscopy and X-ray diffraction, we have investigated the growth characteristics, especially ocusing on the initial growth (nucleation) regime, optical properties and crystalline structure of thin films of aluminum nitride

  17. Light-induced circular birefringence in cyanoazobenzene side-chain liquid-crystalline polyester films

    DEFF Research Database (Denmark)

    Naydenova, I; Nikolova, L; Ramanujam, P.S.;

    1999-01-01

    We report the inducement of large circular birefringence (optical activity) in films of a cyanoazobenzene side-chain liquid-crystalline polyester on illumination with circularly polarized light. The polyester has no chiral groups and is initially isotropic. The induced optical rotation is up to 5...

  18. PEALD AlN: controlling growth and film crystallinity

    NARCIS (Netherlands)

    Banerjee, Sourish; Aarnink, Antonius A.I.; Kruijs, van de Robbert; Kovalgin, Alexey Y.; Schmitz, Jurriaan

    2015-01-01

    We report on the growth kinetics and material properties of aluminium nitride (AlN) films deposited on Si(111), with plasma enhanced atomic layer deposition (PEALD). Tri-methyl aluminium (TMA) and NH3-plasma were used as the precursors. The ALD window was identified in terms of the process parameter

  19. Thin-Film Behavior of Poly(methyl methacrylates). 3. Epitaxial Crystallization in Thin Films of Isotactic Poly(methyl methacrylate) Using Crystalline Langmuir-Blodgett Layers

    NARCIS (Netherlands)

    Brinkhuis, R.H.G.; Schouten, A.J.

    1992-01-01

    A procedure is introduced using monolayer crystallized films of isotactic poly(methyl methacrylate) (i-PMMA) to induce crystallization in amorphous films of i-PMMA. Use of the Langmuir-Blodgett films as surface crystallization nuclei permits the preparation of highly crystalline films with thickness

  20. Eu3+ DOPED SILICA FILM AS LUMINESCENT DOWN-SHIFTING LAYER FOR CRYSTALLINE Si SOLAR CELLS

    OpenAIRE

    ZUJUN CHENG; LIKUN PAN; FENFANG SU; MEILING CAO; ZHUO SUN

    2009-01-01

    Eu3+ doped silica films have been prepared by sol–gel method and employed as luminescent down-shifting layer on the front side of a crystalline Si solar cell to improve their conversion efficiency. Measurements under standard test conditions (AM1.5, 100 mW/cm2) show the conversion efficiency of Si solar cell with silica film containing Eu3+ is improved 9.5% maximally as compared to the Si solar cell with pure silica film. However, high Eu3+ concentration is not encouraged because concentratio...

  1. Near-infrared single-photons from aligned molecules in ultrathin crystalline films at room temperature

    CERN Document Server

    Toninelli, C; Bremi, J; Renn, A; Goetzinger, S; Sandoghdar, V

    2010-01-01

    We investigate the optical properties of Dibenzoterrylene (DBT) molecules in a spin-coated crystalline film of anthracence. By performing single molecule studies, we show that the dipole moments of the DBT molecules are oriented parallel to the plane of the film. Despite a film thickness of only 20 nm, we observe an exceptional photostability at room temperature and photon count rates around one million per second from a single molecule. These properties together with an emission wavelength around 800 nm make this system attractive for applications in nanophotonics and quantum optics.

  2. Sprayed and Spin-Coated Multilayer Antireflection Coating Films for Nonvacuum Processed Crystalline Silicon Solar Cells

    OpenAIRE

    Abdullah Uzum; Masashi Kuriyama; Hiroyuki Kanda; Yutaka Kimura; Kenji Tanimoto; Hidehito Fukui; Taichiro Izumi; Tomitaro Harada; Seigo Ito

    2017-01-01

    Using the simple and cost-effective methods, spin-coated ZrO2-polymer composite/spray-deposited TiO2-compact multilayer antireflection coating film was introduced. With a single TiO2-compact film on the surface of a crystalline silicon wafer, 5.3% average reflectance (the reflectance average between the wavelengths of 300 nm and 1100 nm) was observed. Reflectance decreased further down to 3.3% after forming spin-coated ZrO2 on the spray-deposited TiO2-compact film. Silicon solar cells were fa...

  3. Synthesis of Crystalline Carbon Nitride Thin Films by Pulsed Arc Discharge at Atmospheric Pressure

    Institute of Scientific and Technical Information of China (English)

    SHI Changyong; MA Zhibin

    2007-01-01

    The preparation of crystalline C3N4 films was investigated using pulsed arc discharge from mixed methanol and ammonia water at atmospheric pressure.The X-ray diffraction(XRD)patterns of the films prepared at a substrate temperature of 450℃ suggested that the film was composed of α-C3N4 and β-C3N4 crystallites.Raman spectra exhibited distinct peaks which are in good agreement with those predicted theoretically for C3N4 crystallites.

  4. Enhanced superconductivity and superconductor to insulator transition in nano-crystalline molybdenum thin films

    Science.gov (United States)

    Sharma, Shilpam; Amaladass, E. P.; Sharma, Neha; Harimohan, V.; Amirthapandian, S.; Mani, Awadhesh

    2017-06-01

    Disorder driven superconductor to insulator transition via intermediate metallic regime is reported in nano-crystalline thin films of molybdenum. The nano-structured thin films have been deposited at room temperature using DC magnetron sputtering at different argon pressures. The grain size has been tuned using deposition pressure as the sole control parameter. A variation of particle sizes, room temperature resistivity and superconducting transition has been studied as a function of deposition pressure. The nano-crystalline molybdenum thin films are found to have large carrier concentration but very low mobility and electronic mean free path. Hall and conductivity measurements have been used to understand the effect of disorder on the carrier density and mobilities. Ioffe-Regel parameter is shown to correlate with the continuous metal-insulator transition in our samples.

  5. GAGG:ce single crystalline films: New perspective scintillators for electron detection in SEM.

    Science.gov (United States)

    Bok, Jan; Lalinský, Ondřej; Hanuš, Martin; Onderišinová, Zuzana; Kelar, Jakub; Kučera, Miroslav

    2016-04-01

    Single crystal scintillators are frequently used for electron detection in scanning electron microscopy (SEM). We report gadolinium aluminum gallium garnet (GAGG:Ce) single crystalline films as a new perspective scintillators for the SEM. For the first time, the epitaxial garnet films were used in a practical application: the GAGG:Ce scintillator was incorporated into a SEM scintillation electron detector and it showed improved image quality. In order to prove the GAGG:Ce quality accurately, the scintillation properties were examined using electron beam excitation and compared with frequently used scintillators in the SEM. The results demonstrate excellent emission efficiency of the GAGG:Ce single crystalline films together with their very fast scintillation decay useful for demanding SEM applications.

  6. Investigation of the nonlinear refractive index of single-crystalline thin gold films and plasmonic nanostructures

    Science.gov (United States)

    Goetz, Sebastian; Razinskas, Gary; Krauss, Enno; Dreher, Christian; Wurdack, Matthias; Geisler, Peter; Pawłowska, Monika; Hecht, Bert; Brixner, Tobias

    2016-04-01

    The nonlinear refractive index of plasmonic materials may be used to obtain nonlinear functionality, e.g., power-dependent switching. Here, we investigate the nonlinear refractive index of single-crystalline gold in thin layers and nanostructures on dielectric substrates. In a first step, we implement a z-scan setup to investigate ~100-µm-sized thin-film samples. We determine the nonlinear refractive index of fused silica, n 2(SiO2) = 2.9 × 10-20 m2/W, in agreement with literature values. Subsequent z-scan measurements of single-crystalline gold films reveal a damage threshold of 0.22 TW/cm2 and approximate upper limits of the real and imaginary parts of the nonlinear refractive index, | n 2'(Au)| film). An upper limit for the nonlinear power-dependent phase change between two propagating near-field modes is determined to Δ φ < 0.07 rad.

  7. Effective Propagation of Surface Plasmon Polaritons on Graphene-Protected Single-Crystalline Silver Films.

    Science.gov (United States)

    Hong, Hyun Young; Ha, Jeong Sook; Lee, Sang-Soo; Park, Jong Hyuk

    2017-02-08

    Silver (Ag) is a promising material for manipulation of surface plasmon polaritons (SPPs), due to its optical and electrical properties; however, the intrinsic properties are easily degraded by surface corrosion under atmospheric conditions, restricting its applications in plasmonics. Here, we address this issue via single-crystalline Ag films protected with graphene layers and demonstrate effective propagation of SPPs on the graphene-protected Ag films. Single-crystalline Ag films with atomically flat surfaces are prepared by epitaxial growth; graphene layers are then transferred onto the Ag films. The propagation lengths of SPPs on the graphene-protected Ag films are measured, and their variations under corrosive conditions are investigated. The initial SPP propagation lengths for the bare Ag films are very long (about 50 μm in the wavelength range 550-700 nm). However, the values decrease significantly (11-13 μm) under corrosive conditions. On the contrary, the double-layer-graphene-protected Ag films exhibit SPP propagation lengths of about 23 μm and retain over 90% (21-23 μm) of the propagation lengths even after exposure to corrosive conditions, guaranteeing the reliability of Ag plasmonic devices. This approach can encourage extending the application of the graphene-metal hybrid structure and thus developing Ag plasmonic devices.

  8. Preparation and characterization of crystalline titania film on polyimide substrate by SILAR

    Science.gov (United States)

    Shi, Yaping; Wu, Yiyong; Sun, Chengyue; Huo, Mingxue

    2014-10-01

    Crystalline titania films were prepared on the flexible polyimide (Kapton) substrates using the successive ionic layer adsorption and reaction (SILAR) technique modified with mixed organic amine template agents at room temperature. The titania film with the organic amine template agents presents orderly stacked morphology with cross linked V-shaped strips, and it composes of mainly anatase and minor rutile phases with N doping. Structural and morphology analysis indicates that there includes two parallel deposition growth processes: One is adsorption of the template agents and reaction with Ti4+ ions on the constraint region; and the other is a normal SILAR process of including the adsorption of Ti4+ ions and reaction with hydroxyl groups. The organic amine templates and their specific adsorption induce and direct the crystallization of the titania films. Crystal structure of the titania film was confirmed by its excellent photo catalytic property of the films, detected by the degradation test of MB.

  9. Electrical and Thermal Characteristics of the Insulator-Metal Transition in Crystalline V2O5 Films

    Science.gov (United States)

    Kang, Manil; Kim, Sok Won

    2017-10-01

    The electrical and thermal properties with respect to the crystallization in V2O5 thin films were investigated by measuring the resistance at different temperatures and applied voltages. The changes in the crystal structure of the films at different temperatures were also explored using Raman measurements. The thermal diffusivity of the crystalline V2O5 film was measured by the nanosecond thermoreflectance method. The microstructures of amorphous and crystalline V2O5 were observed by SEM and XRD measurements. The temperature-dependent Raman spectra revealed that a structural phase transition does not occur in the crystalline film. The resistance measurements of an amorphous film indicated semiconducting behavior, whereas the resistance of the crystalline film revealed a substantial change near 250 {°}C, and Ohmic behavior was observed above 380 {°}C. This result was due to the metal-insulator transition induced by lattice distortion in the crystalline film, for which Tc was 260 {°}C. Tc of the film decreased from 260 {°}C to 230 {°}C with increasing applied voltage from 0 V to 10 V. Furthermore, the thermal diffusivity of the crystalline film was 1.67× 10^{-7} m2\\cdot s^{-1} according to the nanosecond thermoreflectance measurements.

  10. Large gain for crystalline thin films of thiophene/phenylene co-oligomer by photopumping with femtosecond laser pulses

    Energy Technology Data Exchange (ETDEWEB)

    Mochizuki, Hiroyuki, E-mail: h-mochizuki@aist.go.jp [Electronics and Photonics Research Institutes, National Institute of Advanced Industrial Science and Technology, Tsukuba, Ibaraki 305-8568 (Japan); Kawaguchi, Yoshizo; Sasaki, Fumio [Electronics and Photonics Research Institutes, National Institute of Advanced Industrial Science and Technology, Tsukuba, Ibaraki 305-8568 (Japan); Hotta, Shu [Department of Macromolecular Science and Engineering, Graduate School of Science and Technology, Kyoto Institute of Technology, Kyoto 606-8585 (Japan)

    2014-11-15

    We have evaluated the emission behaviors of crystalline thin films of thiophene/phenylene co-oligomers. Crystalline films of 2,5-bis(4-biphenylyl)thiophene (BP1T) were prepared on a substrate by vapor deposition followed by thermal treatment. The BP1T films contained crystalline domains several hundred micrometers in size. We examined the emission behavior of crystalline BP1T thin films by femtosecond laser excitation. Very high gains of over 500 cm{sup −1} were obtained for the crystalline BP1T film. Furthermore, the emission cross section of the crystalline BP1T film was on the order of 10{sup –16} cm{sup 2}, rivaling that of dilute solutions of organic laser dyes. - Highlights: • Vapor deposition and thermal treatment is effective for preparation of crystallized film. • Femtosecond laser is efficient for excitation of photo-active materials. • Very large gain values over 500 cm{sup −1} for BP1T crystallized films. • Emission cross section of 10{sup −16} cm{sup 2} in crystallized film.

  11. Ambient Pressure Synthesis of Nanostructured Tungsten Oxide Crystalline Films

    Directory of Open Access Journals (Sweden)

    H. X. Zhang

    2008-01-01

    Full Text Available We report the results of the ambient pressure synthesis of tungsten oxide nanowires and nanoparticles on AlN substrates using the hot filament CVD techniques. The morphologic surface, crystallographic structures, chemical compositions, and bond structures of the obtained samples have been investigated using scanning electron microscopy (SEM, X-ray diffraction (XRD, energy dispersive X-ray spectroscopy (EDX, and Raman scattering, respectively. Different morphologies were observed for different substrate temperatures, but otherwise identical growth conditions. The experimental measurements reveal the evolutions of the crystalline states and bond structures following the substrate temperatures. Besides, different substrate materials also affected the tungsten oxide nanostructures. Bundles of wire-type tungsten oxide nanowires with a length of up to 5 mm were obtained on Al2O3 substrate. Furthermore, the sensitive properties of the super long nanowires to the gas and different temperature were investigated. The dependence of the sensitivity of tungsten oxide nanowires to the methane as a function of the time was obtained. The sensitive properties of the tungsten oxide nanowires have almost linear relationship with the temperature.

  12. Controlling morphology, mesoporosity, crystallinity, and photocatalytic activity of ordered mesoporous TiO{sub 2} films prepared at low temperature

    Energy Technology Data Exchange (ETDEWEB)

    Elgh, Björn; Yuan, Ning; Palmqvist, Anders E. C. [Applied Surface Chemistry, Department of Chemical and Biological Engineering, Chalmers University of Technology, SE 412 96 Göteborg (Sweden); Cho, Hae Sung; Terasaki, Osamu [Graduate School of EEWS (WCU), KAIST, Daejeon 305-701 (Korea, Republic of); Magerl, David; Philipp, Martine; Müller-Buschbaum, Peter [Lehrstuhl für Funktionelle Materialien, Physik-Department, Technische Universität München, 85748 Garching (Germany); Roth, Stephan V. [DESY, Notkestrasse 85, 22603 Hamburg (Germany); Yoon, Kyung Byung [Department of Chemistry, Sogang University, Seoul 121-742 (Korea, Republic of)

    2014-11-01

    Partly ordered mesoporous titania films with anatase crystallites incorporated into the pore walls were prepared at low temperature by spin-coating a microemulsion-based reaction solution. The effect of relative humidity employed during aging of the prepared films was studied using SEM, TEM, and grazing incidence small angle X-ray scattering to evaluate the mesoscopic order, porosity, and crystallinity of the films. The study shows unambiguously that crystal growth occurs mainly during storage of the films and proceeds at room temperature largely depending on relative humidity. Porosity, pore size, mesoscopic order, crystallinity, and photocatalytic activity of the films increased with relative humidity up to an optimum around 75%.

  13. Effects of surface morphology on the anchoring and electrooptical dynamics of confined nanoscale liquid crystalline films.

    Science.gov (United States)

    Noble, Alison R; Kwon, Hye J; Nuzzo, Ralph G

    2002-12-18

    The orientation and dynamics of two 40-nm thick films of 4-n-pentyl-4'-cyanobiphenyl (5CB), a nematic liquid crystal, have been studied using step-scan Fourier transform infrared spectroscopy (FTIR). The films are confined in nanocavities bounded by an interdigitated electrode array (IDA) patterned on a zinc selenide (ZnSe) substrate. The effects of the ZnSe surface morphology (specifically, two variations of nanometer-scale corrugations obtained by mechanical polishing) on the initial ordering and reorientation dynamics of the electric-field-induced Freedericksz transition are presented here. The interaction of the 5CB with ZnSe surfaces bearing a spicular corrugation induces a homeotropic (surface normal) alignment of the film confined in the cavity. Alternately, when ZnSe is polished to generate fine grooves along the surface, a planar alignment is promoted in the liquid crystalline film. Time-resolved FTIR studies that enable the direct measurement of the rate constants for the electric-field-induced orientation and thermal relaxation reveal that the dynamic transitions of the two film structures are significantly different. These measurements quantitatively demonstrate the strong effects of surface morphology on the anchoring, order, and dynamics of liquid crystalline thin films.

  14. Solution coating of large-area organic semiconductor thin films with aligned single-crystalline domains

    KAUST Repository

    Diao, Ying

    2013-06-02

    Solution coating of organic semiconductors offers great potential for achieving low-cost manufacturing of large-area and flexible electronics. However, the rapid coating speed needed for industrial-scale production poses challenges to the control of thin-film morphology. Here, we report an approach - termed fluid-enhanced crystal engineering (FLUENCE) - that allows for a high degree of morphological control of solution-printed thin films. We designed a micropillar-patterned printing blade to induce recirculation in the ink for enhancing crystal growth, and engineered the curvature of the ink meniscus to control crystal nucleation. Using FLUENCE, we demonstrate the fast coating and patterning of millimetre-wide, centimetre-long, highly aligned single-crystalline organic semiconductor thin films. In particular, we fabricated thin films of 6,13-bis(triisopropylsilylethynyl) pentacene having non-equilibrium single-crystalline domains and an unprecedented average and maximum mobilities of 8.1±1.2 cm2 V-1 s -1 and 11 cm2 V-1 s-1. FLUENCE of organic semiconductors with non-equilibrium single-crystalline domains may find use in the fabrication of high-performance, large-area printed electronics. © 2013 Macmillan Publishers Limited. All rights reserved.

  15. Solution coating of large-area organic semiconductor thin films with aligned single-crystalline domains.

    Science.gov (United States)

    Diao, Ying; Tee, Benjamin C-K; Giri, Gaurav; Xu, Jie; Kim, Do Hwan; Becerril, Hector A; Stoltenberg, Randall M; Lee, Tae Hoon; Xue, Gi; Mannsfeld, Stefan C B; Bao, Zhenan

    2013-07-01

    Solution coating of organic semiconductors offers great potential for achieving low-cost manufacturing of large-area and flexible electronics. However, the rapid coating speed needed for industrial-scale production poses challenges to the control of thin-film morphology. Here, we report an approach--termed fluid-enhanced crystal engineering (FLUENCE)--that allows for a high degree of morphological control of solution-printed thin films. We designed a micropillar-patterned printing blade to induce recirculation in the ink for enhancing crystal growth, and engineered the curvature of the ink meniscus to control crystal nucleation. Using FLUENCE, we demonstrate the fast coating and patterning of millimetre-wide, centimetre-long, highly aligned single-crystalline organic semiconductor thin films. In particular, we fabricated thin films of 6,13-bis(triisopropylsilylethynyl) pentacene having non-equilibrium single-crystalline domains and an unprecedented average and maximum mobilities of 8.1±1.2 cm(2) V(-1) s(-1) and 11 cm(2) V(-1) s(-1). FLUENCE of organic semiconductors with non-equilibrium single-crystalline domains may find use in the fabrication of high-performance, large-area printed electronics.

  16. Solution coating of large-area organic semiconductor thin films with aligned single-crystalline domains

    Science.gov (United States)

    Diao, Ying; Tee, Benjamin C.-K.; Giri, Gaurav; Xu, Jie; Kim, Do Hwan; Becerril, Hector A.; Stoltenberg, Randall M.; Lee, Tae Hoon; Xue, Gi; Mannsfeld, Stefan C. B.; Bao, Zhenan

    2013-07-01

    Solution coating of organic semiconductors offers great potential for achieving low-cost manufacturing of large-area and flexible electronics. However, the rapid coating speed needed for industrial-scale production poses challenges to the control of thin-film morphology. Here, we report an approach—termed fluid-enhanced crystal engineering (FLUENCE)—that allows for a high degree of morphological control of solution-printed thin films. We designed a micropillar-patterned printing blade to induce recirculation in the ink for enhancing crystal growth, and engineered the curvature of the ink meniscus to control crystal nucleation. Using FLUENCE, we demonstrate the fast coating and patterning of millimetre-wide, centimetre-long, highly aligned single-crystalline organic semiconductor thin films. In particular, we fabricated thin films of 6,13-bis(triisopropylsilylethynyl) pentacene having non-equilibrium single-crystalline domains and an unprecedented average and maximum mobilities of 8.1±1.2 cm2 V-1 s-1 and 11 cm2 V-1 s-1. FLUENCE of organic semiconductors with non-equilibrium single-crystalline domains may find use in the fabrication of high-performance, large-area printed electronics.

  17. Healing of graphene on single crystalline Ni(111) films

    Energy Technology Data Exchange (ETDEWEB)

    Zeller, Patrick; Wintterlin, Joost, E-mail: wintterlin@cup.uni-muenchen.de [Department Chemie, Ludwig-Maximilians-Universität München, Butenandtstr. 5-13, 81377 Munich (Germany); Speck, Florian; Ostler, Markus [Lehrstuhl für Technische Physik, Universität Erlangen-Nürnberg, Erwin-Rommel-Str. 1, 91058 Erlangen (Germany); Institut für Physik, Technische Universität Chemnitz, Reichenhainer Str. 70, 09126 Chemnitz (Germany); Weinl, Michael; Schreck, Matthias [Institut für Physik, Universität Augsburg, Universitätsstr. 1 Nord, 86159 Augsburg (Germany); Seyller, Thomas [Institut für Physik, Technische Universität Chemnitz, Reichenhainer Str. 70, 09126 Chemnitz (Germany)

    2014-11-10

    The annealing of graphene layers grown on 150 nm thick single crystal Ni(111) films was investigated in situ by low energy electron microscopy and photoemission electron microscopy. After growth, by means of chemical vapor deposition of ethylene, the graphene layers consist of several domains showing different orientations with respect to the underlying Ni surface and also of small bilayer areas. It is shown that, in a controlled process, the rotated domains can be transformed into lattice-aligned graphene, and the bilayer areas can be selectively dissolved, so that exclusively the aligned monolayer graphene is obtained. The ordering mechanism involves transport of C atoms across the surface and solution in the bulk.

  18. Hopping Precession of Molecules in Crystalline Carbon Dioxide Films

    Science.gov (United States)

    Krainyukova, Nina; Kuchta, Bogdan

    2016-11-01

    We report a low-temperature transmission high-energy electron diffraction study of solid carbon dioxide films in the temperature range 15-87 K. The precise analysis of the experimental diffraction intensities shows that molecular axes noticeably deviate from the cubic space diagonals of the Paoverline{3} structure. The molecular tips tend to be oriented toward the empty spaces between two molecules in the nearest basal planes. Nevertheless, the crystal structure is still identified as Paoverline{3} but with 24 equivalent positions for oxygen atoms instead of 8 positions as it was thought before. We have shown that the relevant maximal angle deviations in the selected directions could be as big as ˜ 30° at the lowest temperatures and they decrease at higher temperature. This results in hopping precession of molecules instead of simple librations.

  19. Hopping Precession of Molecules in Crystalline Carbon Dioxide Films

    Science.gov (United States)

    Krainyukova, Nina; Kuchta, Bogdan

    2017-04-01

    We report a low-temperature transmission high-energy electron diffraction study of solid carbon dioxide films in the temperature range 15-87 K. The precise analysis of the experimental diffraction intensities shows that molecular axes noticeably deviate from the cubic space diagonals of the Paoverline{3} structure. The molecular tips tend to be oriented toward the empty spaces between two molecules in the nearest basal planes. Nevertheless, the crystal structure is still identified as Paoverline{3} but with 24 equivalent positions for oxygen atoms instead of 8 positions as it was thought before. We have shown that the relevant maximal angle deviations in the selected directions could be as big as {˜ } 30° at the lowest temperatures and they decrease at higher temperature. This results in hopping precession of molecules instead of simple librations.

  20. In-Plane Crystallinity Effect on the Unipolar Resistance Switching Behavior of NiO Thin Film.

    Science.gov (United States)

    Kim, Il Tae; Hur, Jaehyun; Chae, Seung Chul

    2016-02-01

    We report on the resistance switching behavior of high quality NiO thin films grown on Pt(111)/SiOx/Si and Pt(111)/Al2O3 crystals. Polarity independent resistance switching, i.e., unipolar resistance switching exhibited a substrate crystallinity dependence during the resistance switching. The unipolar resistance switching was observed commonly in NiO film grown on both substrates. High resistance state of NiO thin film without in-plane crystallinity showed higher resistance than that of NiO films with in-plane crystallinity. The NiO thin film without in-plane crystallinity also required high set voltages for the resistance switching from high resistance state to low resistance state and showed nonlinear I-V characteristics at high voltage region before the resistance switching.

  1. Anchoring Strength of Thin Aligned-Polymer Films Formed by Liquid Crystalline Monomer

    Science.gov (United States)

    Murashige, Takeshi; Fujikake, Hideo; Ikehata, Seiichiro; Sato, Fumio

    2003-04-01

    We have evaluated the polar anchoring strength of a thin molecule-aligned polymer film formed by a liquid crystalline monomer. The polymer film was obtained by photopolymerization of the monomer oriented by a rubbed polyimide alignment layer in a chamber filled with N2 gas. We fabricated a nematic liquid crystal cell using the thin aligned-polymer films as alignment layers, and then evaluated the anchoring strength of the polymer by measuring the optical retardation curve of the cell driven by voltages. The experimental result showed that the anchoring strength was one order of magnitude lower than that of a conventional rubbed polyimide alignment layer, and decreased with increasing the cure temperature of the monomer film.

  2. Polarization effect on the photocurrent of Pt sandwiched multi-crystalline ferroelectric films

    Energy Technology Data Exchange (ETDEWEB)

    Cao Dawei; Zhang Hui; Fang Liang; Dong Wen [Jiangsu Key Laboratory of Thin Films and Department of Physics, Soochow University, Suzhou 215006 (China); Zheng Fengang, E-mail: zhfg@suda.edu.cn [Jiangsu Key Laboratory of Thin Films and Department of Physics, Soochow University, Suzhou 215006 (China); Shen Mingrong, E-mail: mrshen@suda.edu.cn [Jiangsu Key Laboratory of Thin Films and Department of Physics, Soochow University, Suzhou 215006 (China)

    2011-10-03

    Highlights: {yields} Distinguish the two mechanisms of the polarization effect on photocurrent. {yields} Research the influence of the polarization charge near the interface. {yields} There is less study on the photovoltaic property of BNT films. - Abstract: Based on the analysis of the photocurrent behavior of the Pt sandwiched (Bi{sub 3.7}Nd{sub 0.3})Ti{sub 3}O{sub 12} (BNT) films deposited by sol-gel method, the mechanism of the polarization effect on the photocurrent of Pt sandwiched multi-crystalline ferroelectric films was clarified that, in ferroelectric films irradiated by the extra light, the depolarization field directly gives more contribution to the photocurrent when the polarization aligned under the external poling voltage, while the variation of the top or bottom interface Schottky barriers, because of the presence of the polarization charge near the top or bottom interface, have a indirect and subordinate influence on the photocurrent.

  3. Large-Area Dry Transfer of Single-Crystalline Epitaxial Bismuth Thin Films.

    Science.gov (United States)

    Walker, Emily S; Na, Seung Ryul; Jung, Daehwan; March, Stephen D; Kim, Joon-Seok; Trivedi, Tanuj; Li, Wei; Tao, Li; Lee, Minjoo L; Liechti, Kenneth M; Akinwande, Deji; Bank, Seth R

    2016-11-09

    We report the first direct dry transfer of a single-crystalline thin film grown by molecular beam epitaxy. A double cantilever beam fracture technique was used to transfer epitaxial bismuth thin films grown on silicon (111) to silicon strips coated with epoxy. The transferred bismuth films retained electrical, optical, and structural properties comparable to the as-grown epitaxial films. Additionally, we isolated the bismuth thin films on freestanding flexible cured-epoxy post-transfer. The adhesion energy at the bismuth/silicon interface was measured to be ∼1 J/m(2), comparable to that of exfoliated and wet transferred graphene. This low adhesion energy and ease of transfer is unexpected for an epitaxially grown film and may enable the study of bismuth's unique electronic and spintronic properties on arbitrary substrates. Moreover, this method suggests a route to integrate other group-V epitaxial films (i.e., phosphorus) with arbitrary substrates, as well as potentially to isolate bismuthene, the atomic thin-film limit of bismuth.

  4. Enhanced superconductivity and superconductor to insulator transition in nano-crystalline molybdenum thin films

    Energy Technology Data Exchange (ETDEWEB)

    Sharma, Shilpam; Amaladass, E.P. [Condensed Matter Physics Division, Materials Science Group, Indira Gandhi Centre for Atomic Research, Kalpakkam 603102 (India); Sharma, Neha [Surface & Nanoscience Division, Materials Science Group, Indira Gandhi Centre for Atomic Research, Kalpakkam 603102 (India); Harimohan, V. [Condensed Matter Physics Division, Materials Science Group, Indira Gandhi Centre for Atomic Research, Kalpakkam 603102 (India); Amirthapandian, S. [Materials Physics Division, Materials Science Group, Indira Gandhi Centre for Atomic Research, Kalpakkam 603102 (India); Mani, Awadhesh, E-mail: mani@igcar.gov.in [Condensed Matter Physics Division, Materials Science Group, Indira Gandhi Centre for Atomic Research, Kalpakkam 603102 (India)

    2017-06-01

    Disorder driven superconductor to insulator transition via intermediate metallic regime is reported in nano-crystalline thin films of molybdenum. The nano-structured thin films have been deposited at room temperature using DC magnetron sputtering at different argon pressures. The grain size has been tuned using deposition pressure as the sole control parameter. A variation of particle sizes, room temperature resistivity and superconducting transition has been studied as a function of deposition pressure. The nano-crystalline molybdenum thin films are found to have large carrier concentration but very low mobility and electronic mean free path. Hall and conductivity measurements have been used to understand the effect of disorder on the carrier density and mobilities. Ioffe-Regel parameter is shown to correlate with the continuous metal-insulator transition in our samples. - Highlights: • Thin films of molybdenum using DC sputtering have been deposited on glass. • Argon background pressure during sputtering was used to tune the crystallite sizes of films. • Correlation in deposition pressure, disorder and particle sizes has been observed. • Disorder tuned superconductor to insulator transition along with an intermediate metallic phase has been observed. • Enhancement of superconducting transition temperature and a dome shaped T{sub C} vs. deposition pressure phase diagram has been observed.

  5. Vitrified chiral-nematic liquid crystalline films for selective reflection and circular polarization

    Energy Technology Data Exchange (ETDEWEB)

    Katsis, D.; Chen, P.H.M.; Mastrangelo, J.C.; Chen, S.H. [Univ. of Rochester, NY (United States); Blanton, T.N. [Eastman Kodak Co., Rochester, NY (United States)

    1999-06-01

    Nematic and left-handed chiral-nematic liquid crystals comprising methoxybiphenylbenzoate and (S)-(-)-1-phenylethylamine pendants to a cyclohexane core were synthesized and characterized. Although pristine samples were found to be polycrystalline, thermal quenching following heating to and annealing at elevated temperatures permitted the molecular orders characteristic of liquid crystalline mesomorphism to be frozen in the glassy state. Left at room temperature for 6 months, the vitrified liquid crystalline films showed no evidence of recrystallization. An orientational order parameter of 0.65 was determined with linear dichroism of a vitrified nematic film doped with Exalite 428 at a mole fraction of 0.0025. Birefringence dispersion of a blank vitrified nematic film was determined using a phase-difference method complemented by Abbe refractometry. A series of vitrified chiral-nematic films were prepared to demonstrate selective reflection and circular polarization with a spectral region tunable from blue to the infrared region by varying the chemical composition. The experimentally measured circular polarization spectra were found to agree with the Good-Karali theory in which all four system parameters were determined a priori: optical birefringence, average refractive index, selective reflection wavelength, and film thickness.

  6. Monitoring structural defects and crystallinity of carbon nanotubes in thin films

    Indian Academy of Sciences (India)

    S S Mahajan; M D Bambole; S P Gokhale; A B Gaikwad

    2010-03-01

    We report the influence of catalyst formulation and reaction temperature on the formation of carbon nanotube (CNT) thin films by the chemical vapour deposition (CVD) method. Thin films of CNTs were grown on Fe–Mo/Al2O3-coated silicon wafer by thermal decomposition of methane at different temperatures ranging from 800 to 1000°C. The electron microscopic investigations, SEM as well as HRTEM, of the as-grown CNT thin films revealed the growth of uniform multi-walled CNTs in abundance. The intensity ratio of D-band to G-band and FWHM of G-band through Raman measurements clearly indicated the dependency of structural defects and crystallinity of CNTs in thin films on the catalyst formulation and CVD growth temperature. The results suggest that thin films of multi-walled CNTs with negligible amount of defects in the nanotube structure and very high crystallinity can be obtained by thermal CVD process at 925°C.

  7. Ag Nanodots Emitters Embedded in a Nanocrystalline Thin Film Deposited on Crystalline Si Solar Cells.

    Science.gov (United States)

    Park, Seungil; Ryu, Sel Gi; Ji, HyungYong; Kim, Myeong Jun; Peck, Jong Hyeon; Kim, Keunjoo

    2016-06-01

    We fabricated crystalline Si solar cells with the inclusion of various Ag nanodots into the additional emitters of nanocrystallite Si thin films. The fabricated process was carried out on the emitter surface of p-n junction for the textured p-type wafer. The Ag thin films were deposited on emitter surfaces and annealed at various temperatures. The amorphous Si layers were also deposited on the Ag annealed surfaces by hot-wire chemical vapor deposition and then the deposited layers were doped by the second n-type doping process to form an additional emitter. From the characterization, both the Ag nanodots and the deposited amorphous Si thin films strongly reduce photo-reflectances in a spectral region between 200-400 nm. After embedding Ag nanodots in nanocrystallite Si thin films, a conversion efficiency of the sample with added emitter was achieved to 15.1%, which is higher than the 14.1% of the reference sample and the 14.7% of the de-posited sample with a-Si:H thin film after the Ag annealing process. The additional nanocrystallite emitter on crystalline Si with Ag nanodots enhances cell properties.

  8. Control of structure and growth of polymorphic crystalline thin films of amphiphilic molecules on liquid surfaces

    DEFF Research Database (Denmark)

    Weinbach, S.P.; Kjær, K.; Bouwman, W.G.;

    1994-01-01

    The spontaneous formation and coexistence of crystalline polymorphic trilayer domains in amphiphilic films at air-liquid interfaces is demonstrated by grazing incidence synchrotron x-ray diffraction. These polymorphic crystallites may serve as models for the early stages of crystal nucleation...... and growth, helping to elucidate the manner in which additives influence the progress of crystal nucleation, growth, and polymorphism and suggesting ways of selectively generating and controlling multilayers on liquid surfaces. Auxiliary molecules have been designed to selectively inhibit development...

  9. Crystallinity of the double layer of cadmium arachidate films at the water surface

    DEFF Research Database (Denmark)

    Leveiller, F.; Jacquemain, D.; Lahav, M.

    1991-01-01

    A crystalline counterionic layer at the interface between an electrolyte solution and a charged layer of insoluble amphiphilic molecules was observed with grazing incidence synchrotron x-ray diffraction. Uncompressed arachidic films spread over 10(-3) molar cadmium chloride solution (pH 8.8) spon....... The reflections from the Cd2+ layer were indexed according to a 2 X 3 supercell of the arachidate lattice with three Cd2+ ions per cadmium unit cell....

  10. Behaviour of Self-Standing CVD Diamond Film with Different Dominant Crystalline Surfaces in Thermal-Iron Plate Polishing

    Institute of Scientific and Technical Information of China (English)

    CHEN Guang-Chao; ZHOU Zu-Yuan; LI Bin; ZHOU You-Liang; J. Askri; LI Cheng-Ming; TANG Wei-Zhong; TONG Yu-Mei; LU Fan-Xiu

    2006-01-01

    @@ Self-standing CVD diamond films with different dominant crystalline surfaces are polished by the thermal-iron plate polishing method. The influence of the dominant crystalline surfaces on polishing efficiency is investigated by measuring the removal rate and final roughness. The smallest rms roughness of 0.14μm is measured with smallest removal rate in the films with the initial (220) dominant crystalline surface. Activation energy for the polishing is analysed by the Arrhenius relation. It is found that the values are 170kJ/mol, 222kJ/mol and 214kJ/mol for the film with t hree different dominant crystalline surfaces. Based on these values, the polishing cause is regarded as the graphitization-controlling process. In the experiment, we find that transformation of the dominant crystalline surfaces from (111) to (220) always appears in the polishing process when we polish the (111) dominant surface.

  11. Formation of single-crystalline aragonite tablets/films via an amorphous precursor.

    Science.gov (United States)

    Amos, Fairland F; Sharbaugh, Denise M; Talham, Daniel R; Gower, Laurie B; Fricke, Marc; Volkmer, Dirk

    2007-02-13

    Thin tablets and films of calcium carbonate have been grown at the air-water interface via an amorphous precursor route using soluble process-directing agents and a Langmuir monolayer based on resorcarene. By using appropriate concentrations of poly(acrylic acid-sodium salt) in combination with Mg2+ ion, an initially amorphous film is deposited on the monolayer template, which subsequently crystallizes into a mosaic film composed of a mixture of single-crystalline and spherulitic patches of calcite and aragonite. Of particular importance is the synthesis of single-crystalline "tablets" of aragonite (approximately 600 nm thick), because this phase generally forms needle-like polycrystalline aggregates when grown in vitro. To our knowledge, a tabular single-crystalline morphology of aragonite has only been observed in the nacreous layer of mollusk shells. Therefore, this in vitro system may serve as a useful model for examining mechanistic issues pertinent to biomineralization, such as the influence of organic templates on nucleation from an amorphous phase.

  12. The effect of the stretching of PLA extruded films on their crystallinity and gas barrier properties

    Science.gov (United States)

    Guinault, A.; Menary, G. H.; Courgneau, C.; Griffith, D.; Ducruet, V.; Miri, V.; Sollogoub, C.

    2011-05-01

    Driven by environmental concerns, new polymers based on renewable resources are arriving on the market to replace conventional polymers, obtained from petroleum, for different applications like food packaging. One of the most prominent polymers among these materials is poly(lactic acid) (PLA), a biodegradable, thermoplastic, aliphatic polyester derived from renewable resources, such as corn starch (in the USA) or sugarcanes (in the rest of the world). However this polymer presents different disadvantages and especially low gas barrier properties [1]. Thermal crystallization can be used to increase its gas barrier properties but long times are necessary [2] and are not compatible with an industrial process. Another way to increase the gas barrier properties consists in stretching the film in order to increase its crystallinity and so its diffusion coefficient. We have prepared stretched PLA films with different stretch ratio and we have studied the effect of the stretching parameters on the gas barrier properties of PLA films. Finally we compared this process with the isothermal crystallization process by taking into account the crystallinity degree and the crystalline morphology.

  13. Establishing whether the structural feature controlling the mechanical properties of starch films is molecular or crystalline.

    Science.gov (United States)

    Li, Ming; Xie, Fengwei; Hasjim, Jovin; Witt, Torsten; Halley, Peter J; Gilbert, Robert G

    2015-03-06

    The effects of molecular and crystalline structures on the tensile mechanical properties of thermoplastic starch (TPS) films from waxy, normal, and high-amylose maize were investigated. Starch structural variations were obtained through extrusion and hydrothermal treatment (HTT). The molecular and crystalline structures were characterized using size-exclusion chromatography and X-ray diffractometry, respectively. TPS from high-amylose maize showed higher elongation at break and tensile strength than those from normal maize and waxy maize starches when processed with 40% plasticizer. Within the same amylose content, the mechanical properties were not affected by amylopectin molecular size or the crystallinity of TPS prior to HTT. This lack of correlation between the molecular size, crystallinity and mechanical properties may be due to the dominant effect of the plasticizer on the mechanical properties. Further crystallization of normal maize TPS by HTT increased the tensile strength and Young's modulus, while decreasing the elongation at break. The results suggest that the crystallinity from the remaining ungelatinized starch granules has less significant effect on the mechanical properties than that resulting from starch recrystallization, possibly due to a stronger network from leached-out amylose surrounding the remaining starch granules.

  14. Preparation of Nano-crystalline Tungsten Carbide Thin Film by Magnetron Sputtering and Their Electrocatalytic Property for PNP Reduction

    Institute of Scientific and Technical Information of China (English)

    Hua Jun ZHENG; Jian Guo HUANG; Chun An MA

    2005-01-01

    Nano-crystalline tungsten carbide thin films were deposited on Ni substrates by magnetron sputtering using WC as target material. The crystal structure and morphology of the thin films were characterized by X-ray diffraction (XRD) and scanning electron microscopy (SEM).Electrochemical investigations showed that the electrode of the thin film exhibited higher electrocatalytic activity in the reaction of p-nitrophenol (PNP) reduction. FT-IR analysis indicated that p-aminophenol (PAP) was synthesized after two step reduction of PNP on nano-crystalline tungsten carbide thin film electrode.

  15. Substrate bias effect on crystallinity of polycrystalline silicon thin films prepared by pulsed ion-beam evaporation method

    Energy Technology Data Exchange (ETDEWEB)

    Ali, Fazlat; Gunji, Michiharu; Yang, Sung-Chae; Suzuki, Tsuneo; Suematsu, Hisayuki; Jiang, Weihua; Yatsui, Kiyoshi [Nagaoka Univ. of Technology, Extreme Energy-Density Research Inst., Nagaoka, Niigata (Japan)

    2002-06-01

    The deposition of polycrystalline silicon thin films has been tried by a pulsed ion-beam evaporation method, where high crystallinity and deposition rate have been achieved without heating the substrate. The crystallinity and the deposition rate were improved by applying bias voltage to the substrate, where instantaneous substrate heating might have occurred by ion-bombardment. (author)

  16. Formation Mechanism and Control of Perovskite Films from Solution to Crystalline Phase Studied by in Situ Synchrotron Scattering.

    Science.gov (United States)

    Chang, Chun-Yu; Huang, Yu-Ching; Tsao, Cheng-Si; Su, Wei-Fang

    2016-10-12

    Controlling the crystallization and morphology of perovskite films is crucial for the fabrication of high-efficiency perovskite solar cells. For the first time, we investigate the formation mechanism of the drop-cast perovskite film from its precursor solution, PbCl2 and CH3NH3I in N,N-dimethylformamide, to a crystalline CH3NH3PbI3-xClx film at different substrate temperatures from 70 to 180 °C in ambient air and humidity. We employed an in situ grazing-incidence wide-angle X-ray scattering (GIWAXS) technique for this study. When the substrate temperature is at or below 100 °C, the perovskite film is formed in three stages: the initial solution stage, transition-to-solid film stage, and transformation stage from intermediates into a crystalline perovskite film. In each stage, the multiple routes for phase transformations are preceded concurrently. However, when the substrate temperature is increased from 100 to 180 °C, the formation mechanism of the perovskite film is changed from the "multistage formation mechanism" to the "direct formation mechanism". The proposed mechanism has been applied to understand the formation of a perovskite film containing an additive. The result of this study provides a fundamental understanding of the functions of the solvent and additive in the solution and transition states to the crystalline film. It provides useful knowledge to design and fabricate crystalline perovskite films for high-efficiency solar cells.

  17. High-rate deposition of nano-crystalline silicon thin films on plastics

    Energy Technology Data Exchange (ETDEWEB)

    Marins, E.; Guduru, V.; Cerqueira, F.; Alpuim, P. [Centro de Fisica, Universidade do Minho, 4800-058 Guimaraes, 4710-057 Braga (Portugal); Ribeiro, M. [Centro de Nanotecnologia e Materiais Tecnicos, Funcionais e Inteligentes (CeNTI), 4760-034 Vila Nova de Famalicao (Portugal); Bouattour, A. [Institut fuer Physikalische Elektronik (ipe), Universitaet Stuttgart, 70569 Stuttgart (Germany)

    2011-03-15

    Nanocrystalline silicon (nc-Si:H) is commonly used in the bottom cell of tandem solar cells. With an indirect bandgap, nc-Si:H requires thicker ({proportional_to}1 {mu}m) films for efficient light harvesting than amorphous Si (a-Si:H) does. Therefore, thin-film high deposition rates are crucial for further cost reduction of highly efficient a-Si:H based photovoltaic technology. Plastic substrates allow for further cost reduction by enabling roll-to-roll inline deposition. In this work, high nc-Si:H deposition rates on plastic were achieved at low substrate temperature (150 C) by standard Radio-frequency (13.56 MHz) Plasma Enhanced Chemical Vapor Deposition. Focus was on the influence of deposition pressure, inter-electrode distance (1.2 cm) and high power coupled to the plasma, on the hydrogen-to-silane dilution ratios (HD) necessary to achieve the amorphous-to-nanocrystalline phase transition and on the resulting film deposition rate. For each pressure and rf-power, there is a value of HD for which the films start to exhibit a certain amount of crystalline fraction. For constant rf-power, this value increases with pressure. Within the parameter range studied the deposition rate was highest (0.38 nm/s) for nc-Si:H films deposited at 6 Torr, 700 mW/cm{sup 2} using HD of 98.5%. Decreasing the pressure to 3 Torr (1.5 Torr) and rf-power to 350 mW/cm{sup 2} using HD - 98.5% deposition rate is 0.12 nm/s (0.076 nm/s). Raman crystalline fraction of these films is 72, 62 and 53% for the 6, 3 and 1.5 Torr films, respectively (copyright 2011 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  18. Nanocolumnar Crystalline Vanadium Oxide-Molybdenum Oxide Antireflective Smart Thin Films with Superior Nanomechanical Properties.

    Science.gov (United States)

    Dey, Arjun; Nayak, Manish Kumar; Esther, A Carmel Mary; Pradeepkumar, Maurya Sandeep; Porwal, Deeksha; Gupta, A K; Bera, Parthasarathi; Barshilia, Harish C; Mukhopadhyay, Anoop Kumar; Pandey, Ajoy Kumar; Khan, Kallol; Bhattacharya, Manjima; Kumar, D Raghavendra; Sridhara, N; Sharma, Anand Kumar

    2016-11-17

    Vanadium oxide-molybdenum oxide (VO-MO) thin (21-475 nm) films were grown on quartz and silicon substrates by pulsed RF magnetron sputtering technique by altering the RF power from 100 to 600 W. Crystalline VO-MO thin films showed the mixed phases of vanadium oxides e.g., V2O5, V2O3 and VO2 along with MoO3. Reversible or smart transition was found to occur just above the room temperature i.e., at ~45-50 °C. The VO-MO films deposited on quartz showed a gradual decrease in transmittance with increase in film thickness. But, the VO-MO films on silicon exhibited reflectance that was significantly lower than that of the substrate. Further, the effect of low temperature (i.e., 100 °C) vacuum (10(-5) mbar) annealing on optical properties e.g., solar absorptance, transmittance and reflectance as well as the optical constants e.g., optical band gap, refractive index and extinction coefficient were studied. Sheet resistance, oxidation state and nanomechanical properties e.g., nanohardness and elastic modulus of the VO-MO thin films were also investigated in as-deposited condition as well as after the vacuum annealing treatment. Finally, the combination of the nanoindentation technique and the finite element modeling (FEM) was employed to investigate yield stress and von Mises stress distribution of the VO-MO thin films.

  19. Nanocolumnar Crystalline Vanadium Oxide-Molybdenum Oxide Antireflective Smart Thin Films with Superior Nanomechanical Properties

    Science.gov (United States)

    Dey, Arjun; Nayak, Manish Kumar; Esther, A. Carmel Mary; Pradeepkumar, Maurya Sandeep; Porwal, Deeksha; Gupta, A. K.; Bera, Parthasarathi; Barshilia, Harish C.; Mukhopadhyay, Anoop Kumar; Pandey, Ajoy Kumar; Khan, Kallol; Bhattacharya, Manjima; Kumar, D. Raghavendra; Sridhara, N.; Sharma, Anand Kumar

    2016-11-01

    Vanadium oxide-molybdenum oxide (VO-MO) thin (21-475 nm) films were grown on quartz and silicon substrates by pulsed RF magnetron sputtering technique by altering the RF power from 100 to 600 W. Crystalline VO-MO thin films showed the mixed phases of vanadium oxides e.g., V2O5, V2O3 and VO2 along with MoO3. Reversible or smart transition was found to occur just above the room temperature i.e., at ~45-50 °C. The VO-MO films deposited on quartz showed a gradual decrease in transmittance with increase in film thickness. But, the VO-MO films on silicon exhibited reflectance that was significantly lower than that of the substrate. Further, the effect of low temperature (i.e., 100 °C) vacuum (10-5 mbar) annealing on optical properties e.g., solar absorptance, transmittance and reflectance as well as the optical constants e.g., optical band gap, refractive index and extinction coefficient were studied. Sheet resistance, oxidation state and nanomechanical properties e.g., nanohardness and elastic modulus of the VO-MO thin films were also investigated in as-deposited condition as well as after the vacuum annealing treatment. Finally, the combination of the nanoindentation technique and the finite element modeling (FEM) was employed to investigate yield stress and von Mises stress distribution of the VO-MO thin films.

  20. Morphology and photoresponse of crystalline antimony film grown on mica by physical vapor deposition

    Directory of Open Access Journals (Sweden)

    Shafa Muhammad

    2016-09-01

    Full Text Available Antimony is a promising material for the fabrication of photodetectors. This study deals with the growth of a photosensitive thin film by the physical vapor deposition (PVD of antimony onto mica surface in a furnace tube. The geometry of the grown structures was studied via scanning electron microscopy (SEM, X-ray diffraction (XRD, energy-dispersive X-ray spectroscopy (EDX and elemental diffraction analysis. XRD peaks of the antimony film grown on mica mostly matched with JCPDF Card. The formation of rhombohedral crystal structures in the film was further confirmed by SEM micrographs and chemical composition analysis. The Hall measurements revealed good electrical conductivity of the film with bulk carrier concentration of the order of 1022 Ω·cm-3 and mobility of 9.034 cm2/Vs. The grown film was successfully tested for radiation detection. The photoresponse of the film was evaluated using its current-voltage characteristics. These investigations revealed that the photosensitivity of the antimony film was 20 times higher than that of crystalline germanium.

  1. Highly Crystalline Nanoparticle Suspensions for Low-Temperature Processing of TiO2 Thin Films.

    Science.gov (United States)

    Watté, Jonathan; Lommens, Petra; Pollefeyt, Glenn; Meire, Mieke; De Buysser, Klaartje; Van Driessche, Isabel

    2016-05-25

    In this work, we present preparation and stabilization methods for highly crystalline TiO2 nanoparticle suspensions for the successful deposition of transparent, photocatalytically active TiO2 thin films toward the degradation of organic pollutants by a low temperature deposition method. A proof-of-concept is provided wherein stable, aqueous TiO2 suspensions are deposited on glass substrates. Even if the processing temperature is lowered to 150-200 °C, the subsequent heat treatment provides transparent and photocatalytically active titania thin layers. Because all precursor solutions are water-based, this method provides an energy-efficient, sustainable, and environmentally friendly synthesis route. The high load in crystalline titania particles obtained after microwave heating opens up the possibility to produce thin coatings by low temperature processing, as a conventional crystallization procedure is in this case superfluous. The impact of the precursor chemistry in Ti(4+)-peroxo solutions, containing imino-diacetic acid as a complexing ligand and different bases to promote complexation was studied as a function of pH, reaction time and temperature. The nanocrystal formation was followed in terms of colloidal stability, crystallinity and particle size. Combined data from Raman and infrared spectroscopy, confirmed that stable titanium precursors could be obtained at pH levels ranging from 2 to 11. A maximum amount of 50.7% crystallinity was achieved, which is one of the highest reported amounts of anatase nanoparticles that are suspendable in stable aqueous titania suspensions. Decoloring of methylene blue solutions by precipitated nanosized powders from the TiO2 suspensions proves their photocatalytic properties toward degradation of organic materials, a key requisite for further processing. This synthesis method proves that the deposition of highly crystalline anatase suspensions is a valid route for the production of photocatalytically active, transparent

  2. Preparation and crystalline phase of a TiO2 porous film by anodic oxidation

    Institute of Scientific and Technical Information of China (English)

    WANG Wei; TAO Jie; ZHANG Weiwei; TAO Haijun; WANG Ling

    2005-01-01

    Anatase titanium dioxide is an active photocatalyst, but it is difficult to immobilize on the substrate. A crystalline TiO2 porous film was prepared directly on the surface of pure titanium by anodic oxidation in this work. Constant voltage and constant current anodic oxidation were adopted with sulphuric acid used as the electrolyte, pure titanium as the anode and copper as the cathode. The morphology and structure of the porous film on the substrate were analyzed with the aid of Field Emission Scanning Electron Microscopy (FESEM) and X-ray Diffraction (XRD). The effects of the parameters of anodic oxidation (such as voltage, the concentration of sulphuric acid, anodization time and current density) on the aperture and the crystalline phase of the TiO2 porous film were systematically investigated. The results indicate that the increase of current density facilitates the augment of the aperture and the generation of anatase and rutile. In addition, the forming mechanism of anatase and rutile TiO2 porous films was discussed.

  3. Optical bandgap of ultra-thin amorphous silicon films deposited on crystalline silicon by PECVD

    Directory of Open Access Journals (Sweden)

    Yaser Abdulraheem

    2014-05-01

    Full Text Available An optical study based on spectroscopic ellipsometry, performed on ultrathin hydrogenated amorphous silicon (a-Si:H layers, is presented in this work. Ultrathin layers of intrinsic amorphous silicon have been deposited on n-type mono-crystalline silicon (c-Si wafers by plasma enhanced chemical vapor deposition (PECVD. The layer thicknesses along with their optical properties –including their refractive index and optical loss- were characterized by spectroscopic ellipsometry (SE in a wavelength range from 250 nm to 850 nm. The data was fitted to a Tauc-Lorentz optical model and the fitting parameters were extracted and used to compute the refractive index, extinction coefficient and optical bandgap. Furthermore, the a-Si:H film grown on silicon was etched at a controlled rate using a TMAH solution prepared at room temperature. The optical properties along with the Tauc-Lorentz fitting parameters were extracted from the model as the film thickness was reduced. The etch rate for ultrathin a-Si:H layers in TMAH at room temperature was found to slow down drastically as the c-Si interface is approached. From the Tauc-Lorentz parameters obtained from SE, it was found that the a-Si film exhibited properties that evolved with thickness suggesting that the deposited film is non-homogeneous across its depth. It was also found that the degree of crystallinity and optical (Tauc bandgap increased as the layers were reduced in thickness and coming closer to the c-Si substrate interface, suggesting the presence of nano-structured clusters mixed into the amorphous phase for the region close to the crystalline silicon substrate. Further results from Atomic Force Microscopy and Transmission Electron Microscopy confirmed the presence of an interfacial transitional layer between the amorphous film and the underlying substrate showing silicon nano-crystalline enclosures that can lead to quantum confinement effects. Quantum confinement is suggested to be the cause

  4. Optical bandgap of ultra-thin amorphous silicon films deposited on crystalline silicon by PECVD

    Energy Technology Data Exchange (ETDEWEB)

    Abdulraheem, Yaser, E-mail: yaser.abdulraheem@kuniv.edu.kw [Electrical Engineering Department, College of Engineering and Petroleum, Kuwait University. P.O. Box 5969, 13060 Safat (Kuwait); Gordon, Ivan; Bearda, Twan; Meddeb, Hosny; Poortmans, Jozef [IMEC, Kapeldreef 75, 3001, Leuven (Belgium)

    2014-05-15

    An optical study based on spectroscopic ellipsometry, performed on ultrathin hydrogenated amorphous silicon (a-Si:H) layers, is presented in this work. Ultrathin layers of intrinsic amorphous silicon have been deposited on n-type mono-crystalline silicon (c-Si) wafers by plasma enhanced chemical vapor deposition (PECVD). The layer thicknesses along with their optical properties –including their refractive index and optical loss- were characterized by spectroscopic ellipsometry (SE) in a wavelength range from 250 nm to 850 nm. The data was fitted to a Tauc-Lorentz optical model and the fitting parameters were extracted and used to compute the refractive index, extinction coefficient and optical bandgap. Furthermore, the a-Si:H film grown on silicon was etched at a controlled rate using a TMAH solution prepared at room temperature. The optical properties along with the Tauc-Lorentz fitting parameters were extracted from the model as the film thickness was reduced. The etch rate for ultrathin a-Si:H layers in TMAH at room temperature was found to slow down drastically as the c-Si interface is approached. From the Tauc-Lorentz parameters obtained from SE, it was found that the a-Si film exhibited properties that evolved with thickness suggesting that the deposited film is non-homogeneous across its depth. It was also found that the degree of crystallinity and optical (Tauc) bandgap increased as the layers were reduced in thickness and coming closer to the c-Si substrate interface, suggesting the presence of nano-structured clusters mixed into the amorphous phase for the region close to the crystalline silicon substrate. Further results from Atomic Force Microscopy and Transmission Electron Microscopy confirmed the presence of an interfacial transitional layer between the amorphous film and the underlying substrate showing silicon nano-crystalline enclosures that can lead to quantum confinement effects. Quantum confinement is suggested to be the cause of the observed

  5. Four-fold symmetric anisotropic magnetoresistance of single-crystalline Ni(001) film

    Energy Technology Data Exchange (ETDEWEB)

    Xiao, X.; Li, J. X.; Ding, Z.; Wu, Y. Z., E-mail: wuyizheng@fudan.edu.cn [Department of Physics, State Key Laboratory of Surface Physics and Collaborative Innovation Center of Advanced Microstructures, Fudan University, Shanghai 200433 (China)

    2015-11-28

    Temperature, current-direction, and film-thickness dependent anisotropic magnetoresistance measurements were performed on single-crystalline face-centered-cubic nickel films. An additional four-fold symmetry was confirmed besides the typical two-fold term even at room temperature. The angular-dependent longitudinal resistivity resolves into a two-fold term, which varies as a function of current direction, and a four-fold term, which is isotropically independent of current direction. The experimental results are interpreted well using an expression based on the phenomenological model. Both the two- and four-fold terms vary inversely proportional to film thickness, indicating that interfacial scattering can significantly influence the spin-dependent transport properties.

  6. Application of nano-crystalline silicon film in the fabrication of field-emission pressure sensor

    Institute of Scientific and Technical Information of China (English)

    廖波; 陈旻; 孔德文; 张大成; 李婷

    2003-01-01

    A kind of filed-emission array pressure sensor is designed based on the quantum tunnel effect. The nano-crystalline silicon film is prepared by chemical vapor deposition (CVD) method, with the grain dimension and thickness of the film 3-9 nm and 30-40 nm, respectively. The nano-crystal- line silicon film is introduced into the cathode cones of the sensor, functioning as the essential emission part. The silicon nano phase is analyzed by HREM and TED, the microstructure of the single emitter and emitters array is inspected by SEM, and the field emission characteristics of the device are studied by an HP4145B transistor tester. The experimental results show that the measured current density emitted from the effective area of the sensor can reach 53.5 A/m2 when the exterior electric field is 5.6×105 V/m.

  7. Pulsed-laser deposition of crystalline cobalt ferrite thin films at lower temperatures

    Science.gov (United States)

    Jiles, David; Raghunathan, Arun; Nlebedim, Ikenna; Snyder, John

    2010-03-01

    Cobalt ferrite thin films have been proposed for various engineering applications due to their exceptional magnetic, magnetoelastic, magnetotransport, magnetooptical properties. In this research, cobalt ferrite thin films were grown on SiO2/Si(100) substrates using pulsed-laser deposition (PLD) technique at substrate temperatures ranging from 250 C to 600 C. It has been shown in this study, that polycrystalline films with (111)-preferred orientation can be prepared at substrate temperatures as low as 250 C, as opposed to a report of optimum 600 C substrate temperature [1]. Thermal expansion mismatch between the film and substrate was found to have a substantial effect on the magnetic properties of the cobalt ferrite films, due to the large magnetoelastic coupling of cobalt ferrite. The growth of crystalline cobalt ferrite films at such low temperatures indicates the potential to use cobalt ferrite for MEMS devices and sensor applications [2] including integration with a wider range of multilayered device structures. This research was supported by the UK EPSRC (EP/D057094) and the US NSF (DMR-0402716). [1] J. Zhou et. al, Applied Surface Sciences, 253 (2007), p. 7456. [2] J. A. Paulsen et. al., Journal of Applied Physics, 97 (2005), p. 044502.

  8. Multi-technique Approach for the Evaluation of the Crystalline Phase of Ultrathin High-k Gate Oxide Films

    Science.gov (United States)

    Bersch, E.; LaRose, J. D.; Wells, I.; Consiglio, S.; Clark, R. D.; Leusink, G. J.; Matyi, R. J.; Diebold, A. C.

    2011-11-01

    In order to continue scaling metal oxide semiconductor field effect transistors (MOSFETs) with HfO2 gate oxides, efforts are being made to further improve the deposited high-k film properties. Recently, a process whereby an HfO2 film is deposited through a series of depositions and anneals (so-called DADA process) has been shown to result in films that give rise to MOS capacitors (MOSCAPs) which are electrically scaled compared to MOSCAPs with HfO2 films that only received post deposition anneals (PDA) or no anneals. We have measured as-deposited, DADA and PDA HfO2 films using four measurement techniques, all of which are non-destructive and capable of being used for in-line processing, to evaluate their crystallinity and crystalline phases. Grazing incidence in-plane X-ray diffraction was used to determine the crystalline phases of the HfO2 films. We observed the crystalline phases of these films to be process dependent. Additionally, X-ray and UV photoelectron spectroscopy were used to show the presence of crystallinity in the films. As a fourth technique, spectroscopic ellipsometry was used to determine if the crystalline phases were monoclinic. The combination of techniques was useful in that XPS and UPS were able to confirm the amorphous nature of a 30 cycle DADA film, as measured by GIIXRD, and GIIXRD was able to help us interpret the SE data as being an indication of the monoclinic phase of HfO2.

  9. Tuning magnetic exchange interactions in crystalline thin films of substituted Cobalt Phthalocyanine

    Science.gov (United States)

    Rawat, Naveen; Manning, Lane; Hua, Kim-Ngan; Headrick, Randall; Bishop, Michael; McGill, Stephen; Waterman, Rory; Furis, Madalina

    Magnetic exchange interactions in diluted organometallic crystalline thin film alloys of Phthalocyanines (Pcs) made of a organo-soluble derivatives of Cobalt Pc and metal-free (H2Pc) molecule and is investigated. To this end, we synthesized a organosoluble CoPc and successfully employed a novel solution-based pen-writing deposition technique to fabricate long range ordered thin films of mixtures of different ratios ranging from 1:1 to 10:1 H2Pc:CoPc. Our previous magnetic circular dichroism (MCD) results on the parent CoPc crystalline thin films identified different electronic states mediating exchange interactions and indirect exchange interaction competing with superexchange interaction. This understanding of spin-dependent exchange interaction between delocalized π-electrons with unpaired d spins along with the excitonic delocalization character enabled the further tuning of these interactions by essentially varying the spatial distance between the spins. Furthermore, high magnetic field (B CAREER and EPM program Awards: DMR-0722451, DMR-0821268, DMR-1307017 and DMR-1056589, DMR-1229217.

  10. Copper doped nickel ferrite nano-crystalline thin films: A potential gas sensor towards reducing gases

    Energy Technology Data Exchange (ETDEWEB)

    Rao, Pratibha; Godbole, R.V.; Bhagwat, Sunita, E-mail: smb.agc@gmail.com

    2016-03-01

    NiFe{sub 2}O{sub 4} and (1 wt% and 3 wt%) Cu:NiFe{sub 2}O{sub 4} thin films have been fabricated using spray pyrolysis deposition technique at 350 °C and then sintered at 650 °C for 3 h. X-ray diffraction, SEM, EDAX, UV-VIS spectroscopy, SQUID VSM were carried out to investigate phase formation, microstructural and influence of Cu doping on magnetic properties of NiFe{sub 2}O{sub 4} thin films. The gas response towards various gases viz. ethanol, Liquid Petroleum Gas (LPG), methanol and hydrogen sulfide (H{sub 2}S) is investigated. The results of XRD revealed that all samples had shown the principal phase of nickel ferrite and the lattice parameter was found to vary from 8.294 Å to 8.314 Å on an incorporation of Cu, and the crystalline sizes were about 40–45 nm. The effect of Cu concentration on saturation magnetization and coercive force were studied. The maximum value of saturation magnetization calculated from hysteresis loop was 89.16 emu/g at room temperature and 96.88 emu/g at 50 K. Cu content on the film surface was found to be maximum for 1 wt% Cu:NiFe{sub 2}O{sub 4} thin film and this film showed an improved response towards all gases. Response of ethanol for NiFe{sub 2}O{sub 4} thin film was found to be higher as compared to all the other gases. The lowering of the optimum operating temperature is observed in 1 wt% Cu:NiFe{sub 2}O{sub 4} thin film with higher selectivity towards ethanol than other gases. All results indicated that the Cu doping in nickel ferrite thin films has a significant influence on the properties. - Highlights: • Cu:NiFe{sub 2}O{sub 4} thin films are synthesized by low cost spray pyrolysis technique. • Addition of Cu content improves magnetic properties. • Cu content on the surface of the film enhances the gas response. • NiFe{sub 2}O{sub 4} thin films exhibit predominant selectivity towards ethanol. • 1 wt% Cu:NiFe{sub 2}O{sub 4} film responses towards ethanol at lower optimum temperature.

  11. Poly-crystalline thin-film by aluminum induced crystallization on aluminum nitride substrate

    Science.gov (United States)

    Bhopal, Muhammad Fahad; Lee, Doo Won; Lee, Soo Hong

    2016-09-01

    Thin-film polycrystalline silicon ( pc-Si) on foreign (non-silicon) substrates has been researched by various research groups for the production of photovoltaic cells. High quality pc-Si deposition on foreign substrates with superior optical properties is considered to be the main hurdle in cell fabrication. Metal induced crystallization (MIC) is one of the renowned techniques used to produce this quality of material. In the current study, an aluminum induced crystallization (AIC) method was adopted to produce pc-Si thin-film on aluminum nitride (AlN) substrate by a seed layer approach. Aluminum and a-Si layer were deposited using an e-beam evaporator. Various annealing conditions were used in order to investigate the AIC grown pc-Si seed layers for process optimization. The effect of thermal annealing on grain size, defects preferentially crystallographic orientation of the grains were analyzed. Surface morphology was studied using an optical microscope. Poly-silicon film with a crystallinity fraction between 95-100% and an FWHM between 5-6 cm-1 is achievable at low temperatures and for short time intervals. A grain size of about 10 micron can be obtained at a low deposition rate on an AIN substrate. Similarly, Focused ion beam (FIB) also showed that at 425 °C sample B and at 400 °C sample A were fully crystallized. The crystalline quality of pc-Si was evaluated using μ-Raman spectroscopy as a function of annealed conditions and Grazing incidence X-ray diffraction (GIXRD) was used to determine the phase direction of the pc-Si layer. The current study implicates that a poly-silicon layer with good crystallographic orientation and crystallinity fraction is achievable on AIN substrate at low temperatures and short time frames.

  12. Compatibility and optoelectronic of ZnSe nano crystalline thin film

    Institute of Scientific and Technical Information of China (English)

    Taj Muhammad Khan; Tayyaba BiBi

    2012-01-01

    We report the room temperature synthesis of zinc selenide (ZnSe) nano crystalline thin film on quartz by using a relatively simple and low cost closed space sublimation process (CSSP).The compatibility of the prepared thin films for optoelectronic applications was assessed by X-ray diffraction (XRD),atomic force microscope (AFM),scanning electron microscope (SEM),Raman spectroscopy,photoluminescence,and Fourier transform infrared spectroscopy (FT-IR).The XRD confirmed that the films were polycrystalline with the preferential orientation along the (111) plane corresponding to the cubic phase (2θ = 27.28°).The AFM indicated that the ZnSe film presented a smooth and compact morphology with RMS roughness 19.86 nm. The longitudinal optical phonon modes were observed at 247 cm-1 and 490 cm-1 attributed to the cubic structured ZnSe.The Zn-Se stretching band was confirmed by the FT-IR.The microstructure and compositional analysis was made with the SEM.The grain size,dislocation density,and strain calculated were co-related.All these properties manifested a good quality,high stability,finely adhesive,and closely packed structured ZnSe thin film for optoelectronic applications.

  13. Sprayed and Spin-Coated Multilayer Antireflection Coating Films for Nonvacuum Processed Crystalline Silicon Solar Cells

    Directory of Open Access Journals (Sweden)

    Abdullah Uzum

    2017-01-01

    Full Text Available Using the simple and cost-effective methods, spin-coated ZrO2-polymer composite/spray-deposited TiO2-compact multilayer antireflection coating film was introduced. With a single TiO2-compact film on the surface of a crystalline silicon wafer, 5.3% average reflectance (the reflectance average between the wavelengths of 300 nm and 1100 nm was observed. Reflectance decreased further down to 3.3% after forming spin-coated ZrO2 on the spray-deposited TiO2-compact film. Silicon solar cells were fabricated using CZ-Si p-type wafers in three sets: (1 without antireflection coating (ARC layer, (2 with TiO2-compact ARC film, and (3 with ZrO2-polymer composite/TiO2-compact multilayer ARC film. Conversion efficiency of the cells improved by a factor of 0.8% (from 15.19% to 15.88% owing to the multilayer ARC. Jsc was improved further by 2 mA cm−2 (from 35.3 mA cm−2 to 37.2 mA cm−2 when compared with a single TiO2-compact ARC.

  14. Crystalline Silicon Solar Cells with Thin Silicon Passivation Film Deposited prior to Phosphorous Diffusion

    Directory of Open Access Journals (Sweden)

    Ching-Tao Li

    2014-01-01

    Full Text Available We demonstrate the performance improvement of p-type single-crystalline silicon (sc-Si solar cells resulting from front surface passivation by a thin amorphous silicon (a-Si film deposited prior to phosphorus diffusion. The conversion efficiency was improved for the sample with an a-Si film of ~5 nm thickness deposited on the front surface prior to high-temperature phosphorus diffusion, with respect to the samples with an a-Si film deposited on the front surface after phosphorus diffusion. The improvement in conversion efficiency is 0.4% absolute with respect to a-Si film passivated cells, that is, the cells with an a-Si film deposited on the front surface after phosphorus diffusion. The new technique provided a 0.5% improvement in conversion efficiency compared to the cells without a-Si passivation. Such performance improvements result from reduced surface recombination as well as lowered contact resistance, the latter of which induces a high fill factor of the solar cell.

  15. Compatibility and optoelectronic of ZnSe nano crystalline thin film

    Science.gov (United States)

    Taj, Muhammad Khan; Tayyaba, BiBi

    2012-09-01

    We report the room temperature synthesis of zinc selenide (ZnSe) nano crystalline thin film on quartz by using a relatively simple and low cost closed space sublimation process (CSSP). The compatibility of the prepared thin films for optoelectronic applications was assessed by X-ray diffraction (XRD), atomic force microscope (AFM), scanning electron microscope (SEM), Raman spectroscopy, photoluminescence, and Fourier transform infrared spectroscopy (FT-IR). The XRD confirmed that the films were polycrystalline with the preferential orientation along the (111) plane corresponding to the cubic phase (2θ = 27.28°). The AFM indicated that the ZnSe film presented a smooth and compact morphology with RMS roughness 19.86 nm. The longitudinal optical phonon modes were observed at 247 cm-1 and 490 cm-1 attributed to the cubic structured ZnSe. The Zn—Se stretching band was confirmed by the FT-IR. The microstructure and compositional analysis was made with the SEM. The grain size, dislocation density, and strain calculated were co-related. All these properties manifested a good quality, high stability, finely adhesive, and closely packed structured ZnSe thin film for optoelectronic applications.

  16. Observation of uniaxial anisotropy along the [100] direction in crystalline Fe film

    Science.gov (United States)

    Bac, Seul-Ki; Lee, Hakjoon; Lee, Sangyoep; Choi, Seonghoon; Yoo, Taehee; Lee, Sanghoon; Liu, X.; Furdyna, J. K.

    2015-12-01

    We report an observation of uniaxial magnetic anisotropy along the [100] crystallographic direction in crystalline Fe film grown on Ge buffers deposited on a (001) GaAs substrate. As expected, planar Hall resistance (PHR) measurements reveal the presence of four in-plane magnetic easy axes, indicating the dominance of the cubic anisotropy in the film. However, systematic mapping of the PHR hysteresis loops observed during magnetization reversal at different field orientations shows that the easy axes along the and are not equivalent. Such breaking of the cubic symmetry can only be ascribed to the presence of uniaxial anisotropy along the direction of the Fe film. Analysis of the PHR data measured as a function of orientation of the applied magnetic field allowed us to quantify the magnitude of this uniaxial anisotropy field as Oe. Although this value is only 1.5% of cubic anisotropy field, its presence significantly changes the process of magnetization reversal, revealing the important role of the uniaxial anisotropy in Fe films. Breaking of the cubic symmetry in the Fe film deposited on a Ge buffer is surprising, and we discuss possible reason for this unexpected behavior.

  17. Fabrication and Characterization of High-Crystalline Nanoporous ZnO Thin Films by Modified Thermal Evaporation System

    Science.gov (United States)

    Islam, M. S.; Hossain, M. F.; Razzak, S. M. A.; Haque, M. M.; Saha, D. K.

    2016-05-01

    The aim of this work is to fabricate high-crystalline nanoporous zinc oxide (ZnO) thin films by a modified thermal evaporation system. First, zinc thin films have been deposited on bare glass substrate by the modified thermal evaporation system with pressure of 0.05mbar, source-substrate distance of 3cm and source temperature 700∘C. Then, high-crystalline ZnO thin film is obtained by annealing at 500∘C for 2h in atmosphere. The prepared ZnO films are characterized with various deposition times of 10min and 20min. The structural property was investigated by X-ray diffractometer (XRD). The optical bandgap and absorbance/transmittance of these films are examined by ultraviolet/visible spectrophotometer. The surface morphological property has been observed by scanning electron microscope (SEM). ZnO films have showed uniform nanoporous surface with high-crystalline hexagonal wurtzite structure. The ZnO films prepared with 20min has excitation absorption-edge at 369nm, which is blueshifted with respect to the bulk absorption-edge appearing at 380nm. The gap energy of ZnO film is decreased from 3.14eV to 3.09eV with increase of the deposition time, which can enhance the excitation of ZnO films by the near visible light, and is suitable for the application of photocatalyst of waste water cleaning and polluted air purification.

  18. The recombination channels of luminescence excitation in YAG:Yb single crystalline films

    Energy Technology Data Exchange (ETDEWEB)

    Zakharko, Ya.M. [Faculty of Electronics, Ivan Franko National University of Lviv, 107 Tarnavskogo str., Lviv 79017 (Ukraine)], E-mail: zakharko@electronics.wups.lviv.ua; Luchechko, A.P. [Faculty of Electronics, Ivan Franko National University of Lviv, 107 Tarnavskogo str., Lviv 79017 (Ukraine); Ubizskii, S.B. [Lviv Polytechnic National University, 12, Bandera srt., Lviv 79013 (Ukraine); Syvorotka, I.I. [Scientific Research Company ' Carat' , 202, Stryjska str., Lviv 79031 (Ukraine); Martynyuk, N.V. [Lviv Polytechnic National University, 12, Bandera srt., Lviv 79013 (Ukraine); Syvorotka, I.M. [Scientific Research Company ' Carat' , 202, Stryjska str., Lviv 79031 (Ukraine)

    2007-04-15

    Absorption and emission spectra, luminescence decay kinetics and thermostimulated luminescence of X-ray irradiated YAG:Yb single crystalline films were studied. Two emission bands peaked at 420 and 488 nm have been detected in the investigated films. The strong thermal quenching of luminescence band at 488 nm was observed above 160 K. The influence of growth conditions and annealing in air on the lifetime of Yb{sup 3+} ion excited state in the IR spectral region have been revealed. The recombination mechanisms of the f-f transition at Yb{sup 3+} ion excitation, as well as the mechanism of lifetime shortening for the excited Yb{sup 3+} luminescence have been discussed.

  19. Tuning Eu{sup 3+} emission in europium sesquioxide films by changing the crystalline phase

    Energy Technology Data Exchange (ETDEWEB)

    Mariscal, A., E-mail: antonio.mariscal@csic.es [Laser Processing Group, Instituto de Óptica, CSIC, C/ Serrano 121, 28006 Madrid (Spain); Quesada, A. [Ceramics for Smart Systems Group, Instituto de Cerámica y Vidrio, C/ Kelsen 5, 28049 Madrid (Spain); Camps, I. [Laser Processing Group, Instituto de Óptica, CSIC, C/ Serrano 121, 28006 Madrid (Spain); Palomares, F.J. [Instituto de Ciencia de Materiales de Madrid, C/ Sor Juana Inés de la Cruz 3, 28049 Madrid (Spain); Fernández, J.F. [Ceramics for Smart Systems Group, Instituto de Cerámica y Vidrio, C/ Kelsen 5, 28049 Madrid (Spain); Serna, R. [Laser Processing Group, Instituto de Óptica, CSIC, C/ Serrano 121, 28006 Madrid (Spain)

    2016-06-30

    Highlights: • PLD production of high quality europium sesquioxide (Eu{sub 2}O{sub 3}) films. • The deposition of Al{sub 2}O{sub 3} capping and/or buffer layers modifies the crystallization for Eu{sub 2}O{sub 3} films upon annealing. • The formation of cubic or monoclinic phases can be favored. • Eu{sup 3+} emission tuning is achieved as a consequence of crystal field effects. - Abstract: We report the growth of europium sesquioxide (Eu{sub 2}O{sub 3}) thin films by pulsed laser deposition (PLD) in vacuum at room temperature from a pure Eu{sub 2}O{sub 3} ceramic bulk target. The films were deposited in different configurations formed by adding capping and/or buffer layers of amorphous aluminum oxide (a-Al{sub 2}O{sub 3}). The optical properties, refractive index and extinction coefficient of the as deposited Eu{sub 2}O{sub 3} layers were obtained. X-ray photoelectron spectroscopy (XPS) measurements were done to assess its chemical composition. Post-deposition annealing was performed at 500 °C and 850 °C in air in order to achieve the formation of crystalline films and to accomplish photoluminescence emission. According to the analysis of X-ray diffraction (XRD) spectra, cubic and monoclinic phases were formed. It is found that the relative amount of the phases is related to the different film configurations, showing that the control over the crystallization phase can be realized by adequately designing the structures. All the films showed photoluminescence emission peaks (under excitation at 355 nm) that are attributed to the intra 4f-transitions of Eu{sup 3+} ions. The emission spectral shape depends on the crystalline phase of the Eu{sub 2}O{sub 3} layer. Specifically, changes in the hypersensitive {sup 5}D{sub 0} → {sup 7}F{sub 2} emission confirm the strong influence of the crystal field effect on the Eu{sup 3+} energy levels.

  20. Anatase TiO2 nanotube powder film with high crystallinity for enhanced photocatalytic performance

    Science.gov (United States)

    Lin, Jia; Liu, Xiaolin; Zhu, Shu; Liu, Yongsheng; Chen, Xianfeng

    2015-03-01

    We report on the synthesis of TiO2 nanotube (NT) powders using anodic oxidation and ultrasonication. Compared to free-standing NT array films, the powder-type NTs can be easily fabricated in a cost-effective way. Particularly, without the substrate effect arising from underlying Ti metals, highly crystallized NT powders with intact tube structures and pure anatase phase can be obtained using high-temperature heat treatment. The application of NTs with different crystallinity for the photocatalytic decomposition of methylene blue (MB) was then demonstrated. The results showed that with increasing annealing temperature, the photocatalytic decomposition rate was gradually enhanced, and the NT powder electrode annealed at 650°C showed the highest photoactivity. Compared to typical NTs annealed at 450°C, the rate constant increased by 2.7-fold, although the surface area was 21% lower. These findings indicate that the better photocatalytic activity was due to the significantly improved crystallinity of anatase anodic NTs in powder form, resulting in a low density of crystalline defects. This simple and efficient approach is applicable for scaled-up water purification and other light utilization applications.

  1. Oxidation-Based Continuous Laser Writing in Vertical Nano-Crystalline Graphite Thin Films

    Science.gov (United States)

    Loisel, Loïc; Florea, Ileana; Cojocaru, Costel-Sorin; Tay, Beng Kang; Lebental, Bérengère

    2016-05-01

    Nano and femtosecond laser writing are becoming very popular techniques for patterning carbon-based materials, as they are single-step processes enabling the drawing of complex shapes without photoresist. However, pulsed laser writing requires costly laser sources and is known to cause damages to the surrounding material. By comparison, continuous-wave lasers are cheap, stable and provide energy at a more moderate rate. Here, we show that a continuous-wave laser may be used to pattern vertical nano-crystalline graphite thin films with very few macroscale defects. Moreover, a spatially resolved study of the impact of the annealing to the crystalline structure and to the oxygen ingress in the film is provided: amorphization, matter removal and high oxygen content at the center of the beam; sp2 clustering and low oxygen content at its periphery. These data strongly suggest that amorphization and matter removal are controlled by carbon oxidation. The simultaneous occurrence of oxidation and amorphization results in a unique evolution of the Raman spectra as a function of annealing time, with a decrease of the I(D)/I(G) values but an upshift of the G peak frequency.

  2. Effects of neutral particle beam on nano-crystalline silicon thin films, with application to thin film transistor backplane for flexible active matrix organic light emitting diodes

    Energy Technology Data Exchange (ETDEWEB)

    Jang, Jin Nyoung; Song, Byoung Chul; Lee, Dong Hyeok [Dept. of Display and Semiconductor Physics, Korea University, Chungnam (Korea, Republic of); Yoo, Suk Jae; Lee, Bonju [National Fusion Research Institute, 52, Yuseong-Gu, Deajeon, 305-333 (Korea, Republic of); Hong, MunPyo, E-mail: goodmoon@korea.ac.kr [Dept. of Display and Semiconductor Physics, Korea University, Chungnam (Korea, Republic of)

    2011-08-01

    A novel deposition process for nano-crystalline silicon (nc-Si) thin films was developed using neutral beam assisted chemical vapor deposition (NBaCVD) technology for the application of the thin film transistor (TFT) backplane of flexible active matrix organic light emitting diode (AMOLED). During the formation of a nc-Si thin film, the energetic particles enhance nano-sized crystalline rather microcrystalline Si in thin films. Neutral Particle Beam (NPB) affects the crystallinity in two ways: (1) NPB energy enhances nano-crystallinity through kinetic energy transfer and chemical annealing, and (2) heavier NPB (such as Ar) induces damage and amorphization through energetic particle impinging. Nc-Si thin film properties effectively can be changed by the reflector bias. As increase of NPB energy limits growing the crystalline, the performance of TFT supports this NPB behavior. The results of nc-Si TFT by NBaCVD demonstrate the technical potentials of neutral beam based processes for achieving high stability and reduced leakage in TFT backplanes for AMOLEDs.

  3. Highly conducting and crystalline doubly doped tin oxide films fabricated using a low-cost and simplified spray technique

    Energy Technology Data Exchange (ETDEWEB)

    Ravichandran, K., E-mail: kkr1365@yahoo.co [P.G. and Research Department of Physics, AVVM. Sri Pushpum College, Poondi, Thanjavur District, Tamil Nadu 613503 (India); Muruganantham, G.; Sakthivel, B. [P.G. and Research Department of Physics, AVVM. Sri Pushpum College, Poondi, Thanjavur District, Tamil Nadu 613503 (India)

    2009-11-15

    Doubly doped (simultaneous doping of antimony and fluorine) tin oxide films (SnO{sub 2}:Sb:F) have been fabricated by employing an inexpensive and simplified spray technique using perfume atomizer from aqueous solution of SnCl{sub 2} precursor. The structural studies revealed that the films are highly crystalline in nature with preferential orientation along the (2 0 0) plane. It is found that the size of the crystallites of the doubly doped tin oxide films is larger (69 nm) than that (27 nm) of their undoped counterparts. The dislocation density of the doubly doped film is lesser (2.08x10{sup 14} lines/m{sup 2}) when compared with that of the undoped film (13.2x10{sup 14} lines/m{sup 2}), indicating the higher degree of crystallinity of the doubly doped films. The SEM images depict that the films are homogeneous and uniform. The optical transmittance in the visible range and the optical band gap of the doubly doped films are 71% and 3.56 eV respectively. The sheet resistance (4.13 OMEGA/square) attained for the doubly doped film in this study is lower than the values reported for spray deposited fluorine or antimony doped tin oxide films prepared from aqueous solution of SnCl{sub 2} precursor (without using methanol or ethanol).

  4. Organic solar cells based on liquid crystalline and polycrystalline thin films

    Science.gov (United States)

    Yoo, Seunghyup

    This dissertation describes the study of organic thin-film solar cells in pursuit of affordable, renewable, and environmentally-friendly energy sources. Particular emphasis is given to the molecular ordering found in liquid crystalline or polycrystalline films as a way to leverage the efficiencies of these types of cells. Maximum efficiencies estimated based on excitonic character of organic solar cells show power conversion efficiencies larger than 10% are possible in principle. However, their performance is often limited due to small exciton diffusion lengths and poor transport properties which may be attributed to the amorphous nature of most organic semiconductors. Discotic liquid crystal (DLC) copper phthalocyanine was investigated as an easily processible building block for solar cells in which ordered molecular arrangements are enabled by a self-organization in its mesophases. An increase in photocurrent and a reduction in series resistance have been observed in a cell which underwent an annealing process. X-ray diffraction (XRD) and atomic force microscopy (AFM) measurements suggest that structural and morphological changes induced after the annealing process are related to these improvements. In an alternative approach, p-type pentacene thin films prepared by physical vapor deposition were incorporated into heterojunction solar cells with C60 as n-type layers. Power conversion efficiencies of 2.7% under broadband illumination (350--900 nm) with a peak external quantum efficiency of 58% have been achieved with the broad spectral coverage across the visible spectrum. Analysis using an exciton diffusion model shows this efficient carrier generation is mainly due to the large exciton diffusion length of pentacene films. Joint XRD and AFM studies reveal that the highly crystalline nature of pentacene films can account for the observed large exciton diffusion length. In addition, the electrical characteristics are studied as a function of light intensity using

  5. Controlling domain orientation of liquid crystalline block copolymer in thin films through tuning mesogenic chemical structures

    Energy Technology Data Exchange (ETDEWEB)

    Xie, He-Lou [Institute for Molecular Engineering, The University of Chicago, Chicago Illinois 60637; Li, Xiao [Institute for Molecular Engineering, The University of Chicago, Chicago Illinois 60637; Ren, Jiaxing [Institute for Molecular Engineering, The University of Chicago, Chicago Illinois 60637; Bishop, Camille [Institute for Molecular Engineering, The University of Chicago, Chicago Illinois 60637; Arges, Christopher G. [Cain Department of Chemical Engineering, Louisiana State University, Baton Rouge Louisiana 70803 USA; Nealey, Paul F. [Institute for Molecular Engineering, The University of Chicago, Chicago Illinois 60637; Materials Science Division, Argonne National Laboratory, Argonne Illinois 60439

    2017-01-24

    Controlling the macroscopic orientation of nanoscale periodic structures of amphiphilic liquid crystalline block copolymers (LC BCPs) is important to a variety of technical applications (e.g., lithium conducting polymer electrolytes). To study LC BCP domain orientation, a series of LC BCPs containing a poly(ethylene oxide) (PEO) block as a conventional hydrophilic coil block and LC blocks containing azobenzene mesogens is designed and synthesized. LC ordering in thin films of the BCP leads to the formation of highly ordered, microphase-separated nanostructures, with hexagonally arranged PEO cylinders. Substitution on the tail of the azobenzene mesogen is shown to control the orientation of the PEO cylinders. When the substitution on the mesogenic tails is an alkyl chain, the PEO cylinders have a perpendicular orientation to the substrate surface, provided the thin film is above a critical thickness value. In contrast, when the substitution on the mesogenic tails has an ether group the PEO cylinders assemble parallel to the substrate surface regardless of the film thickness value.

  6. DC current and AC impedance measurements on boron-doped single crystalline diamond films

    Energy Technology Data Exchange (ETDEWEB)

    Ye, Haitao; Gaudin, O.; Jackman, R.B. [Department of Electronic and Electrical Engineering, University College London, Torrington Place, London WC1E 7JE (United Kingdom); Muret, P.; Gheeraert, E. [Laboratoire d' Etudes des Proprietes Electroniques des Solides, BP166, 38042 Grenoble Cedex 9 (France)

    2003-09-01

    In this paper, we report the first measurement of impedance on boron-doped single crystalline diamond films from 0.1 Hz to 10 MHz with the temperature ranging from -100 C up to 300 C. The Cole-Cole (Z' via Z{sup ''}) plots are well fitted to a RC parallel circuit model and the equivalent Resistance and Capacitance for the diamond films have been estimated using the Zview curve fitting. The results show only one single semicircle response at each temperature measured. It was found that the resistance decreases from 70 G{omega} at -100 C to 5 k{omega} at 300 C. The linear curve fitting from -100 C to 150 C shows the sample has an activation energy of 0.37 eV, which is consistent with the theoretical value published of this kind of material. The equivalent capacitance is maintained at the level of pF up to 300 C suggesting that no grain boundaries are being involved, as expected from a single crystal diamond. The activation energy from the dc current-temperature curves is 0.36 eV, which is consistent with the value from ac impedance. The potential of this under-used technique for diamond film analysis will be discussed. (copyright 2003 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  7. SRG Inscription in Supramolecular Liquid Crystalline Polymer Film: Replacement of Mesogens

    Directory of Open Access Journals (Sweden)

    Shun Mitsui

    2017-02-01

    Full Text Available The photoinduced surface relief formation via mass transfer upon irradiation with patterned light has long been a subject of extensive investigation. In azobenzene-containing liquid crystalline materials, UV light irradiation that generates the cis isomer leads to the liquid crystal to isotropic photochemical transition. Due to this phase change, efficiency of the mass transfer to generate a surface relief grating (SRG becomes markedly greater. We have previously indicated that azobenzene-colored SRG-inscribed film can be bleached by removing a hydrogen-bonded azobenzene mesogen. However, this process largely reduces the height feature of the SRG corrugation. Herein, we propose an extended procedure where a colorless mesogen is filled successively after the removal of the azobenzene side chain. The process involves four stages: (i SRG inscription in a hydrogen-bonded supramolecular azobenzene material; (ii crosslinking (insolubilization of the SRG film; (iii removal of azobenzene mesogen by rinsing with a solvent, and (iv stuffing the hollow film with a different mesogen. Although the final stuffing stage was insufficient at the present stage, this work demonstrates the possibility and validity of the strategy of mesogen replacement.

  8. Effect on thickness of Al layer in poly-crystalline Si thin films using aluminum(Al) induced crystallization method.

    Science.gov (United States)

    Jeong, Chaehwan; Na, Hyeon Sik; Lee, Suk Ho

    2011-02-01

    The polycrystalline silicon (poly-Si) thin films were prepared by aluminum induced crystallization. Aluminum (Al) and amorphous silicon (a-Si) layers were deposited using DC sputtering and plasma enhanced chemical vapor deposition method, respectively. For the whole process Al properties of bi-layers can be one of the important factors. In this paper we investigated the structural and electrical properties of poly-crystalline Si thin films with a variation of Al thickness through simple annealing process. All samples showed the polycrystalline phase corresponding to (111), (311) and (400) orientation. Process time, defined as the time required to reach 95% of crystalline fraction, was within 60 min and Al(200 nm)/a-Si(400 nm) structure of bi-layer showed the fast response for the poly-Si films. The conditions with a variation of Al thickness were executed in preparing the continuous poly-Si films for solar cell application.

  9. Pyroelectric response in crystalline hafnium zirconium oxide (Hf1-xZrxO2) thin films

    Science.gov (United States)

    Smith, S. W.; Kitahara, A. R.; Rodriguez, M. A.; Henry, M. D.; Brumbach, M. T.; Ihlefeld, J. F.

    2017-02-01

    Pyroelectric coefficients were measured for 20 nm thick crystalline hafnium zirconium oxide (Hf1-xZrxO2) thin films across a composition range of 0 ≤ x ≤ 1. Pyroelectric currents were collected near room temperature under zero applied bias and a sinusoidal oscillating temperature profile to separate the influence of non-pyroelectric currents. The pyroelectric coefficient was observed to correlate with zirconium content, increased orthorhombic/tetragonal phase content, and maximum polarization response. The largest measured absolute value was 48 μCm-2 K-1 for a composition with x = 0.64, while no pyroelectric response was measured for compositions which displayed no remanent polarization (x = 0, 0.91, and 1).

  10. Lattice Disorder and Photoluminescence of Er-Implanted A1N Crystalline Films

    Institute of Scientific and Technical Information of China (English)

    卢霏; A.Rizzi; R.Carius

    2002-01-01

    AlN crystalline films have been grown on SiC substrates by molecular beam epitaxy. Er doping was carried out by implantation with energy 180keV to fluence of 1 × 1015 ions/cm2. The as-implanted samples were then annealed at 650, 800, 950 and 1100.C respectively, to remove defects and to make Er ions optically active. The annealing up to 1100.C did not exert significant influence on either Er distribution or the profiles of implant-induced lattice damage. Strong 1.54 μm photoluminescence was observed in Er-implanted A1N at room temperature. The experimental results indicate that the photoluminescence lifetime can be improved by increasing the annealing temperature. The maximum photoluminescence lifetime was measured to be 2.3ms.

  11. Electronic properties of crystalline Ge1-xSbxTey thin films

    Science.gov (United States)

    Fallica, Roberto; Volpe, Flavio; Longo, Massimo; Wiemer, Claudia; Salicio, Olivier; Abrutis, Adulfas

    2012-09-01

    Ge1-xSbxTey thin films, grown by metalorganic and hot-wire liquid injection chemical vapor deposition in different crystalline phases, are investigated to determine resistivity, carrier density, and carrier mobility in the 4.2-300 K temperature range. It is found that all these chalcogenides exhibit p-type conduction, high carrier density (>2 . 1020 cm-3), and no carrier freeze-out, regardless of composition. Low-temperature mobility data show that both chemical composition and growth technique affect the defect density and, in turn, the carrier scattering mechanisms. In this regard, charge carrier mobility is analyzed according to semi-empirical scattering models and an interpretation is provided.

  12. Improvement of the Crystallinity of Silicon Films Deposited by Hot-Wire Chemical Vapor Deposition with Negative Substrate Bias

    Science.gov (United States)

    Zhang, Lei; Shen, Honglie; You, Jiayi

    2013-08-01

    We have investigated the effect of negative substrate bias on microcrystalline silicon films deposited on glass and stainless steel by hot-wire chemical vapor deposition (HWCVD) to gain insight into the effect of negative substrate bias on crystallization. Structural characterization of the silicon films was performed by Raman spectroscopy, x-ray diffraction, and scanning electron microscopy. It was found that the crystallinity of the films is obviously improved by applying the substrate bias, especially for films on stainless steel. At hot-wire temperature of 1800°C and negative substrate bias of -800 V, grain size as large as 200 nm was obtained on stainless-steel substrate with crystalline fraction 9% higher than that of films deposited on glass and 15% higher than that of films deposited without substrate bias. It is deduced that the improvement of the crystallinity is mainly related to the accelerated electrons emitted from the hot wires. The differences in this improvement between different substrates are caused by the different electrical potential of the substrates. A solar cell fabricated by HWCVD with -800 V substrate bias is demonstrated, showing an obviously higher conversion efficiency than that without substrate bias.

  13. Substrate Biasing during Plasma-Assisted ALD for Crystalline Phase-Control of TiO(2) Thin Films

    NARCIS (Netherlands)

    Profijt, H. B.; M. C. M. van de Sanden,; Kessels, W. M. M.

    2012-01-01

    Substrate biasing has been implemented in a remote plasma atomic layer deposition (ALD) reactor, enabling control of the ion energy up to 260 eV. For TiO(2) films deposited from Ti(Cp(Me))(NMe(2))(3) and O(2) plasma it is demonstrated that the crystalline phase can be tailored by tuning the ion ener

  14. Structural characteristics of single crystalline GaN films grown on (111) diamond with AlN buffer

    DEFF Research Database (Denmark)

    Pécz, Béla; Tóth, Lajos; Barna, Árpád;

    2013-01-01

    Hexagonal GaN films with the [0001] direction parallel to the surface normal were grown on (111) oriented single crystalline diamond substrates by plasma-assisted molecular beam epitaxy. Pre-treatments of the diamond surface with the nitrogen plasma beam, prior the nucleation of a thin AlN layer,...

  15. Thin nanostructured crystalline TiO{sub 2} films and their applications in solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Cheng Yajun

    2007-06-15

    Research on thin nanostructured crystalline TiO{sub 2} films has attracted considerable interests because of their intriguing physical properties and potential applications in photovoltaics. Nanostructured TiO{sub 2} film plays an important role in the TiO{sub 2} based dye-sensitized solar cells because they act as a substrate for the adsorption of dye molecules and a matrix for the transportation of electrons as well. Thus they can influence the solar cell performance significantly. Consequently, the control of the morphology including the shape, size and size distribution of the TiO{sub 2} nanostructures is critical to tune and optimize the performance of the solar cells. To control the TiO{sub 2} morphology, a strategy using amphiphilic block copolymer as templating agent coupled with sol-gel chemistry has been applied. Especially, a good-poor solvent pair induced phase separation process has been developed to guide the microphase separation behavior of the block copolymers. The amphiphilic block copolymers used include polystyrene-block-poly (ethylene oxide) (PS-b-PEO), poly (methyl methacrylate)-block-poly (ethylene oxide) (PMMA-b-PEO), and poly (ethylene oxide)-block-polystyrene-block-poly (ethylene oxide) (PEO-b-PS-b-PEO). The block copolymer undergoes a good-poor-solvent pair induced phase separation in a mixed solution of 1, 4-dioxane or N, N-dimethyl formamide (DMF), concentrated hydrochloric acid (HCl) and Titanium tetraisopropoxide (TTIP). Specifically, in the system of PS-b-PEO, a morphology phase diagram of the inorganic-copolymer composite films was mapped by adjusting the weight fractions among 1, 4-dioxane, HCl, and TTIP in solution. The amorphous TiO{sub 2} within the titania-block copolymer composite films was crystallized by calcination at temperatures above 400 C, where the organic block copolymer was simultaneously burned away. This strategy is further extended to other amphiphilic block copolymers of PMMA-b-PEO and PEO-b-PS-b-PEO, where the

  16. Laser fabrication of crystalline silicon nanoresonators from an amorphous film for low-loss all-dielectric nanophotonics

    CERN Document Server

    Dmitriev, P A; Milichko, V A; Mukhin, I S; Gudovskikh, A S; Sitnikova, A A; Samusev, A K; Krasnok, A E; Belov, P A

    2015-01-01

    The concept of high refractive index subwavelength dielectric nanoresonators, supporting electric and magnetic optical resonances, is a promising platform for waveguiding, sensing, and nonlinear nanophotonic devices. However, high concentration of defects in the nanoresonators diminishes their resonant properties, which are crucially dependent on their internal losses. Therefore, it seems to be inevitable to use initially crystalline materials for fabrication of the nanoresonators. Here, we show that the fabrication of crystalline (low-loss) resonant silicon nanoparticles by femtosecond laser ablation of amorphous (high-loss) silicon thin films is possible. We apply two conceptually different approaches: recently proposed laser-induced transfer and a novel laser writing technique for large-scale fabrication of the crystalline nanoparticles. The crystallinity of the fabricated nanoparticles is proven by Raman spectroscopy and electron transmission microscopy, whereas optical resonant properties of the nanopart...

  17. Laser fabrication of crystalline silicon nanoresonators from an amorphous film for low-loss all-dielectric nanophotonics

    Science.gov (United States)

    Dmitriev, P. A.; Makarov, S. V.; Milichko, V. A.; Mukhin, I. S.; Gudovskikh, A. S.; Sitnikova, A. A.; Samusev, A. K.; Krasnok, A. E.; Belov, P. A.

    2016-02-01

    The concept of high refractive index subwavelength dielectric nanoresonators, supporting electric and magnetic optical resonance, is a promising platform for waveguiding, sensing, and nonlinear nanophotonic devices. However, high concentration of defects in the nanoresonators diminishes their resonant properties, which are crucially dependent on their internal losses. Therefore, it seems to be inevitable to use initially crystalline materials for fabrication of the nanoresonators. Here, we show that the fabrication of crystalline (low-loss) resonant silicon nanoparticles by femtosecond laser ablation of amorphous (high-loss) silicon thin films is possible. We apply two conceptually different approaches: recently proposed laser-induced transfer and a novel laser writing technique for large-scale fabrication of the crystalline nanoparticles. The crystallinity of the fabricated nanoparticles is proven by Raman spectroscopy and electron transmission microscopy, whereas optical resonant properties of the nanoparticles are studied using dark-field optical spectroscopy and full-wave electromagnetic simulations.

  18. Optical properties of zirconium oxynitride films: The effect of composition, electronic and crystalline structures

    Energy Technology Data Exchange (ETDEWEB)

    Carvalho, P. [Centro de Física, Universidade do Minho, 4710-057 Braga (Portugal); Borges, J., E-mail: joelborges@fisica.uminho.pt [Centro de Física, Universidade do Minho, 4710-057 Braga (Portugal); Department of Control Engineering, Faculty of Electrical Engineering, Czech Technical University in Prague, Technická 2, Prague 6 (Czech Republic); Rodrigues, M.S. [Centro de Física, Universidade do Minho, 4710-057 Braga (Portugal); Barradas, N.P. [Centro de Ciências e Tecnologias Nucleares, Instituto Superior Técnico, Universidade de Lisboa, E.N. 10 (km 139,7), 2695-066 Bobadela LRS (Portugal); Alves, E. [Instituto de Plasmas e Fusão Nuclear, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisbon (Portugal); Espinós, J.P.; González-Elipe, A.R. [Instituto de Ciencia de Materiales de Sevilla (CSIC-University Sevilla), Avda. Américo Vespucio 49, 41092 Sevilla (Spain); Cunha, L.; Marques, L.; Vasilevskiy, M.I.; Vaz, F. [Centro de Física, Universidade do Minho, 4710-057 Braga (Portugal)

    2015-12-15

    Highlights: • Optical behaviour of ZrO{sub x}N{sub y} films were correlated with structural properties. • A continuous depopulation of the d-band and an opening of an energy gap was observed. • Drude–Lorentz parameters changed for the metallic samples. • Optical bandgap of the films increases with non-metallic elements incorporation. - Abstract: This work is devoted to the investigation of zirconium oxynitride (ZrO{sub x}N{sub y}) films with varied optical responses prompted by the variations in their compositional and structural properties. The films were prepared by dc reactive magnetron sputtering of Zr, using Ar and a reactive gas mixture of N{sub 2} + O{sub 2} (17:3). The colour of the films changed from metallic-like, very bright yellow-pale and golden yellow, for low gas flows to red-brownish for intermediate gas flows. Associated to this colour change there was a significant decrease of brightness. With further increase of the reactive gas flow, the colour of the samples changed from red-brownish to dark blue or even to interference colourations. The variations in composition disclosed the existence of four different zones, which were found to be closely related with the variations in the crystalline structure. XRD analysis revealed the change from a B1 NaCl face-centred cubic zirconium nitride-type phase for films prepared with low reactive gas flows, towards a poorly crystallized over-stoichiometric nitride phase, which may be similar to that of Zr{sub 3}N{sub 4} with some probable oxygen inclusions within nitrogen positions, for films prepared with intermediate reactive gas flows. For high reactive gas flows, the films developed an oxynitride-type phase, similar to that of γ-Zr{sub 2}ON{sub 2} with some oxygen atoms occupying some of the nitrogen positions, evolving to a ZrO{sub 2} monoclinic type structure within the zone where films were prepared with relatively high reactive gas flows. The analysis carried out by reflected electron energy

  19. Growth of Structured Non-crystalline Boron-Oxygen-Nitrogen Films and Measurement of Their Electrical Properties

    Institute of Scientific and Technical Information of China (English)

    CHEN Guang-Chao(陈广超); LU Fan-Xiu(吕反修); J.-H.Boo

    2003-01-01

    The boron-oxygen-nitrogen (BON) films have been grown on Si wafer by the low-frequency rf-plasma-enhanced metal-organic chemical vapour deposition method. The homogeneous film structure of completely amorphous BON is first fabricated on a low-temperature-made buffer at 500° C with N2 plasma and is observed with a high resolution-electron microscope by the transmission-electron diffraction. The results show that the interfaces among substrate/buffer/film are clear and straight in the structured film. A heterogeneous film containing nano-sized crystalline particles is also grown by a routine growth procedure as a referential structure. The C - V characteristic is measured on both the amorphous and crystal-containing films by using the metal-oxidesemiconductor structure. The dielectric constants of the films are, therefore, deduced to be 5.9 and 10.5 for the amorphous and crystal-containing films, respectively. The C - V results also indicate that more trapped charges exist in the amorphous film. The binding energy of the B, O, and N atoms in the amorphous film is higher than that in the crystal-containing one, and the N-content in the latter is found to be higher than that in the former by x-ray photo-electron spectroscopy. The different electrical property of the films is thought to originate from the energy state of the covalent electrons.

  20. Crystalline silicon thin-film solar cells. Final report; Duennschicht-Solarzellen aus kristallinem Silizium. Abschlussbericht

    Energy Technology Data Exchange (ETDEWEB)

    Raeuber, A.; Wettling, W.; Eyer, A.; Faller, F.; Hebling, C.; Hurrle, A.; Lautenschlager, H.; Luedemann, R.; Lutz, F.; Reber, S.; Schetter, C.; Schillinger, N.; Schindler, R.; Schumacher, J.O.; Warta, W.

    1998-09-01

    Activities under the project covered all the processes involved in the fabrication of a crystalline silicon thin-film solar cell applying the high-temperature method, so that R and D work was carried out from testing of materials suitable for the dielectric and semiconductive layers required, development of the process sequences for fabrication of the solar cells, simulation and optimisation of the cell design through to final characterisation of the thin films and solar cells. Several cell designs were tested in parallel for intercomparison. Several high-temperature resistant materials were tested for their suitability to serve as substrate materials.The final project report presents the basic research work and studies on the physical and technological aspects of the crystalline thin-film solar cell as well as the major results of specific development work. The report shows that significant progress could be achieved. The efficiencies of all solar cell designs developed under the project are between 9 and 11%, including those using substrate materials easily available in industry, and it could be demonstrated that the solar cells are equal in potential to the wafer-based silicon cell. (orig./CB) [Deutsch] Es wurden alle wesentlichen Teilprozesse, die fuer die Entwicklung einer kristallinen Silicium Duennschicht-Solarzelle nach dem Hochtemperaturverfahren wichtig sind, bearbeitet. Der Projektrahmen reichte von der Materialentwicklung fuer die dielektrischen und halbleitenden Schichten ueber die Entwicklung der Solarzellenprozessschritte, die Simulation und Optimierung des Zellendesigns bis zur Charakterisierung von Schichten und Solarzellen. Dabei wurden mehrere verschiedene Zellentypen parallel untersucht und miteinander verglichen. In einer Studie wurden verschiedene hochtemperaturfeste Materialien auf ihre Eignung als Substrate hin untersucht. In dem hier vorgelegten Abschlussbericht werden die erarbeiteten Grundlagen zur Physik und Technologie der kristallinen

  1. Smooth/rough layering in liquid-crystalline/gel state of dry phospholipid film, in relation to its ability to generate giant vesicles

    CERN Document Server

    Hishida, M; Yoshikawa, K; Hishida, Mafumi; Seto, Hideki; Yoshikawa, Kenichi

    2005-01-01

    Morphological changes in a dry phospholipid film on a solid substrate were studied below and above the main transition temperature, between the gel and liquid-crystalline phases by phase-contrast microscopy and AFM. A Phospholipid film in the liquid-crystalline phase exhibits flat, smooth layering, whereas that in the gel phase shows rough, random layering. These film morphologies are discussed in relation to the ability to form giant vesicles through the natural swelling method.

  2. Growth of poly-crystalline Cu films on Y substrates by picosecond pulsed laser deposition for photocathode applications

    Energy Technology Data Exchange (ETDEWEB)

    Gontad, F. [Università del Salento, Dipartimento di Matematica e Fisica “E. De Giorgi” and Istituto Nazionale di Fisica Nucleare, 73100 Lecce (Italy); Lorusso, A., E-mail: antonella.lorusso@le.infn.it [Università del Salento, Dipartimento di Matematica e Fisica “E. De Giorgi” and Istituto Nazionale di Fisica Nucleare, 73100 Lecce (Italy); Klini, A.; Manousaki, A. [Institute of Electronic Structure and Laser (IESL), Foundation for Research and Technology-Hellas (FORTH), 100 N. Plastira St., GR 70013 Heraklion, Crete (Greece); Perrone, A. [Università del Salento, Dipartimento di Matematica e Fisica “E. De Giorgi” and Istituto Nazionale di Fisica Nucleare, 73100 Lecce (Italy); Fotakis, C. [Institute of Electronic Structure and Laser (IESL), Foundation for Research and Technology-Hellas (FORTH), 100 N. Plastira St., GR 70013 Heraklion, Crete (Greece)

    2015-11-01

    In this work, the deposition of Cu thin films on Y substrates for photocathode applications by pulsed laser deposition employing picosecond laser pulses is reported and compared with the use of nanosecond pulses. The influence of power density (6–50 GW/cm{sup 2}) on the ablation of the target material, as well as on the properties of the resulting film, is discussed. The material transfer from the target to the substrate surface was found to be rather efficient, in comparison to nanosecond ablation, leading to the growth of films with high thickness. Scanning electron microscope analysis indicated a quasi-continuous film morphology, at low power density values, becoming granular with increasing power density. The structural investigation, through X-ray diffraction, revealed the poly-crystalline nature of the films, with a preferential growth along the (111) crystallographic orientation of Cu cubic network. Finally, energy-dispersive X-ray spectroscopy showed a low contamination level of the grown films, demonstrating the potential of a PLD technique for the fabrication of Cu/Y patterned structures, with applications in radiofrequency electron gun technology. - Highlights: • Cu thin films were successfully deposited on Y substrates through ultrafast PLD. • The film presents a quasi-continuous morphology. • The use of picosecond pulses increases the film thickness. • The Cu thin films are very adherent to the Y substrate.

  3. Characterization of transparent conductive oxide films and their effect on amorphous/crystalline silicon heterojunction solar cells

    Science.gov (United States)

    Meng, Fanying; Shi, Jianhua; Shen, Leilei; Zhang, Liping; Liu, Jinning; Liu, Yucheng; Yu, Jian; Bao, Jian; Liu, Zhengxin

    2017-04-01

    Three different dopant indium oxide thin films were fabricated at low temperatures by reactive plasma deposition and sputtering. The optical and electrical characteristics of these films were analyzed as a function of the Hall electron concentration. Furthermore, these films were applied to amorphous/crystalline silicon heterojunction solar cells as transparent electrodes. Consequently, it was demonstrated that the high Hall mobility, high refractive index, and low extinction coefficient of transparent conductive oxide (TCO) films contribute to the high product of short-circuit current density and fill factor and conversion efficiency. Furthermore, it was found that the solar cell with a finger spacing of 1.9 mm on a 125 × 125 mm2 Si wafer is highly tolerant to TCO film resistivity when the electron concentration is less than 4.0 × 1020 cm-3.

  4. Liquid-crystalline rigid-core semiconductor oligothiophenes: influence of molecular structure on phase behaviour and thin-film properties.

    Science.gov (United States)

    Melucci, Manuela; Favaretto, Laura; Bettini, Christian; Gazzano, Massimo; Camaioni, Nadia; Maccagnani, Piera; Ostoja, Paolo; Monari, Magda; Barbarella, Giovanna

    2007-01-01

    The design, synthesis and properties of liquid-crystalline semiconducting oligothiophenes containing dithienothiophene (DTT), benzothiadiazole (BTZ) and carbazole (CBZ) rigid cores are described. The effect of molecular structure (shape, size and substitution) on their thermal behaviour and electrical properties has been investigated. Polarised optical microscopy (POM) and differential scanning calorimetry (DSC) analyses have revealed highly ordered smectic mesophases for most of the newly synthesised compounds. X-ray diffraction (XRD) studies performed at various temperatures have shown that the smectic order is retained in the crystalline state upon cooling across the transition temperature, affording cast films with a more favourable morphology for FET applications.

  5. Crystallinity and Electrical Conductivity of PANI-Ag/Ni Film: The Role of Ultrasonic and Silver Doped

    Science.gov (United States)

    Diantoro, M.; Fitriana, I. N.; Parasmayanti, F.; Nasikhudin; Taufiq, A.; Sunaryono; Mufti, N.; Nur, H.

    2017-05-01

    Polyaniline (PANI) is typically a conductive polymer which has a uniqueness in structure and physical properties. The physical properties generally can be controlled by introducing a specific dopant as well as other processing parameters. This polymer has been widely investigated and applied in various fields, especially in electronics. Some metallic elements have been introduced to modified its characteristic such as iron and copper. In order to improve the characteristic of this material, it is important to study the optimum process as well as the elemental substitution of PANI films. In this study, we report the influence of employing sonochemistry technic and the silver substitution on the crystallinity and electrical conductivity of PANI/Ni films. The samples have been prepared similarly to the previous report with silver doped in the range of 0.1 ≤ x ≤ 0.5 M. Other series of the sample were also prepared at various irradiation time of ultrasonic exposure. FTIR spectra showed that EB and ES Polyanilines had been successfully synthesized. X-RD histogram also revealed that crystallinity of the films comparably increased with the increase ultrasonic irradiation time as well as the silver in dopant. Along with the crystallinity, the electrical conductivity of films also increased as an increase of the dopant and of ultrasonic irradiation time.

  6. Fabrication of highly crystalline oxide thin films on plastics: Sol–gel transfer technique involving high temperature process

    Directory of Open Access Journals (Sweden)

    Hiromitsu Kozuka

    2016-09-01

    Full Text Available Si(100 substrates were coated with a polyimide (PI–polyvinylpyrrolidone (PVP mixture film, and an alkoxide-derived TiO2 gel film was deposited on it by spin-coating. The gel films were fired under various conditions with final annealing at 600–1000 °C. The PI–PVP layer was completely decomposed at such high temperatures while the TiO2 films survived on Si(100 substrates without any damages. When the final annealing temperature was raised, the crystalline phase changed from anatase to rutile, and the crystallite size and the refractive index of the films tended to increase. The TiO2 films thus fired on Si(100 substrates were transferred to polycarbonate (PC substrates by melting the surface of the plastic substrate either in a near-infrared image furnace or on a hot plate under a load. Cycles of deposition and firing were found to be effective in achieving successful transfer even for the films finally annealed at 1000 °C. X-ray photoelectron spectroscopic analyses on the film/Si(100 interface suggested that the residual carbon or carbides at the interface could be a possible factor, but not a necessary and decisive factor that allows the film transfer.

  7. The influence of metal interlayers on the structural and optical properties of nano-crystalline TiO 2 films

    KAUST Repository

    Yang, Yong

    2012-03-01

    TiO 2-M-TiO 2 (M = W, Co and Ag) multilayer films have been deposited on glass substrates using reactive magnetron sputtering, then annealed in air for 2 h at 500°C. The structure, surface morphology and optical properties of the films have been studied using X-ray diffraction, Raman spectroscopy, atomic force microscopy and UV-vis spectroscopy. The TiO 2-W-TiO 2 and TiO 2-Co-TiO 2 films showed crystalline phases, whereas the TiO 2-Ag-TiO 2 films remained in the amorphous state. The crystallization temperature for the TiO 2-M-TiO 2 films decreased significantly compared with pure TiO 2 film deposited on quartz. Detailed analysis of the Raman spectra suggested that the crystallization of TiO 2-M-TiO 2 films was associated with the large structural deformation imposed by the oxidation of intermediate metal layers. Moreover, the optical band gap of the films narrowed due to the appearance of impurity levels as the metal ions migrated into the TiO 2 matrix. These results indicate that the insertion of intermediate metal layers provides a feasible access to improve the structural and optical properties of anatase TiO 2 films, leading to promising applications in the field of photocatalysis. © 2011 Elsevier B.V. All rights reserved.

  8. Composition engineering of single crystalline films based on the multicomponent garnet compounds

    Science.gov (United States)

    Zorenko, Yuriy; Gorbenko, Vitalii; Zorenko, Tetiana; Paprocki, Kazimierz; Bilski, Paweł; Twardak, Anna; Voznyak, Taras; Sidletskiy, Oleg; Gerasimov, Yaroslav; Gryniov, Boris; Fedorov, Alexandr

    2016-11-01

    The paper demonstrates our last achievement in development of the novel scintillating screens based on single crystalline films (SCF) of Ce doped multicomponent garnets using the Liquid Phase Epitaxy (LPE) method. We report in this work the optimized content and excellent scintillation properties of SCF of Lu3-xGdxAl5-yGayO12, Lu3-xTbxAl5-yGayO12 and TbxGdxAl5-yGayO12 garnet compounds grown by the LPE method from PbOsbnd B2O3 based melt-solution onto Gd3Al2.5Ga2.5O12 and YAG substrates. We also show that the Tb1.5Gd1.5Al2.5Ga2.5O12:Ce SCF possess the highest light yield (LY) in comparison with all ever grown garnet SCF scintillators. Namely, the LY of these SCF exceeds by 3.8 and 1.85 times the LY values of the best samples of YAG:Ce and LuAG:Ce SCF scintillators, respectively. The SCF samples of the mentioned compounds show low thermoluminescence in the above room temperature range and relatively fast scintillation decay time t1/e in the 180-200 ns range.

  9. Mesoporous MgTa2O6 thin films with enhanced photocatalytic activity: On the interplay between crystallinity and mesostructure

    Directory of Open Access Journals (Sweden)

    Jin-Ming Wu

    2012-02-01

    Full Text Available Ordered mesoporous, crystalline MgTa2O6 thin films with a mesoscopic nanoarchitecture were synthesized by evaporation-induced self-assembly (EISA in combination with a sol–gel procedure. Utilization of novel templates, namely the block copolymers KLE (poly(ethylene-co-butylene-b-poly(ethylene oxide and PIB6000 (CH3C(CH32(CH2C(CH32107CH2C(CH32C6H4O(CH2CH2O100H, was the key to achieving a stable ordered mesoporous structure even upon crystallization of MgTa2O6 within the mesopore walls. The effect of the calcination temperature on the ability of the mesoporous films to assist the photodegradation of rhodamine B in water was studied. As a result, two maxima in the photocatalytic activity were identified in the calcination temperature range of 550–850 °C, peaking at 700 °C and 790 °C, and the origin of this was investigated by using temperature-dependent X-ray scattering. Optimal activity was obtained when the mesoporous film was heated to 790 °C; at this temperature, crystallinity was significantly high, with MgTa2O6 nanocrystals of 1.6 nm in size (averaged over all reflections, and an ordered mesoporous structure was maintained. When considering the turnover frequency of such photocatalysts, the optimized activity of the present nanoarchitectured MgTa2O6 thin film was ca. four times that of analogous anatase TiO2 films with ordered mesopores. Our study demonstrated that high crystallinity and well-developed mesoporosity have to be achieved in order to optimize the physicochemical performance of mesoporous metal-oxide films.

  10. Controlling the texture and crystallinity of evaporated lead phthalocyanine thin films for near-infrared sensitive solar cells.

    Science.gov (United States)

    Vasseur, Karolien; Broch, Katharina; Ayzner, Alexander L; Rand, Barry P; Cheyns, David; Frank, Christian; Schreiber, Frank; Toney, Michael F; Froyen, Ludo; Heremans, Paul

    2013-09-11

    To achieve organic solar cells with a broadened spectral absorption, we aim to promote the growth of the near-infrared (NIR)-active polymorph of lead phthalocyanine (PbPc) on a relevant electrode for solar cell applications. We studied the effect of different substrate modification layers on PbPc thin film structure as a function of thickness and deposition rate (rdep). We characterized crystallinity and orientation by grazing incidence X-ray diffraction (GIXD) and in situ X-ray reflectivity (XRR) and correlated these data to the performance of bilayer solar cells. When deposited onto a self-assembled monolayer (SAM) or a molybdenum oxide (MoO3) buffer layer, the crystallinity of the PbPc films improves with thickness. The transition from a partially crystalline layer close to the substrate to a more crystalline film with a higher content of the NIR-active phase is enhanced at low rdep, thereby leading to solar cells that exhibit a higher maximum in short circuit current density (JSC) for thinner donor layers. The insertion of a CuI layer induces the formation of strongly textured, crystalline PbPc layers with a vertically homogeneous structure. Solar cells based on these templated donor layers show a variation of JSC with thickness that is independent of rdep. Consequently, without decreasing rdep we could achieve JSC=10 mA/cm2, yielding a bilayer solar cell with a peak external quantum efficiency (EQE) of 35% at 900 nm, and an overall power conversion efficiency (PCE) of 2.9%.

  11. Demonstration of thin film pair distribution function analysis (tfPDF for the study of local structure in amorphous and crystalline thin films

    Directory of Open Access Journals (Sweden)

    Kirsten M. Ø. Jensen

    2015-09-01

    Full Text Available By means of normal-incidence, high-flux and high-energy X-rays, total scattering data for pair distribution function (PDF analysis have been obtained from thin films (tf, suitable for local structure analysis. By using amorphous substrates as support for the films, the standard Rapid Acquisition PDF setup can be applied and the scattering signal from the film can be isolated from the total scattering data through subtraction of an independently measured background signal. No angular corrections to the data are needed, as would be the case for grazing incidence measurements. The `tfPDF' method is illustrated through studies of as-deposited (i.e. amorphous and crystalline FeSb3 films, where the local structure analysis gives insight into the stabilization of the metastable skutterudite FeSb3 phase. The films were prepared by depositing ultra-thin alternating layers of Fe and Sb, which interdiffuse and after annealing crystallize to form the FeSb3 structure. The tfPDF data show that the amorphous precursor phase consists of corner-sharing FeSb6 octahedra with motifs highly resembling the local structure in crystalline FeSb3. Analysis of the amorphous structure allows the prediction of whether the final crystalline product will form the FeSb3 phase with or without excess Sb present. The study thus illustrates how analysis of the local structure in amorphous precursor films can help to understand crystallization processes of metastable phases and opens for a range of new local structure studies of thin films.

  12. Centrifugation-assisted Assembly of Colloidal Silica into Crack-Free and Transferrable Films with Tunable Crystalline Structures.

    Science.gov (United States)

    Fan, Wen; Chen, Min; Yang, Shu; Wu, Limin

    2015-07-10

    Self-assembly of colloidal particles into colloidal films has many actual and potential applications. While various strategies have been developed to direct the assembly of colloidal particles, fabrication of crack-free and transferrable colloidal film with controllable crystal structures still remains a major challenge. Here we show a centrifugation-assisted assembly of colloidal silica spheres into free-standing colloidal film by using the liquid/liquid interfaces of three immiscible phases. Through independent control of centrifugal force and interparticle electrostatic repulsion, polycrystalline, single-crystalline and quasi-amorphous structures can be readily obtained. More importantly, by dehydration of silica particles during centrifugation, the spontaneous formation of capillary water bridges between particles enables the binding and pre-shrinkage of the assembled array at the fluid interface. Thus the assembled colloidal films are not only crack-free, but also robust and flexible enough to be easily transferred on various planar and curved substrates.

  13. Crystalline-to-plastic phase transitions in molecularly thin n-dotriacontane films adsorbed on solid surfaces

    DEFF Research Database (Denmark)

    Cisternas, Edgardo; Corrales, T. P.; del Campo, V.;

    2009-01-01

    Crystalline-to-rotator phase transitions have been widely studied in bulk hydrocarbons, in particular in normal alkanes. But few studies of these transitions deal with molecularly thin films of pure n-alkanes on solid substrates. In this work, we were able to grow dotriacontane (n-C32H66) films...... identify with a solid-solid phase transition. At higher coverages, we observed additional steps in the ellipsometric signal that we identify with a solid-solid phase transition in multilayer islands (similar to 333 K) and with the transition to the rotator phase in bulk crystallites (similar to 337 K...

  14. Appearance of large crystalline domains in VO{sub 2} films grown on sapphire (001) and their phase transition characteristics

    Energy Technology Data Exchange (ETDEWEB)

    Azhan, Nurul Hanis; Su, Kui; Okimura, Kunio, E-mail: okifn@keyaki.cc.u-tokai.ac.jp [Graduate School of Science and Technology, Tokai University, Hiratsuka 259-1292 (Japan); Zaghrioui, Mustapha; Sakai, Joe [GREMAN, UMR 7347 CNRS, Université François Rabelais de Tours, Parc de Grandmont 37200 Tours (France)

    2015-06-28

    We report the first observation of large crystalline domains of several μm-size in VO{sub 2} films deposited on Al{sub 2}O{sub 3} (001) substrates by rf-biased reactive sputtering technique. The large crystalline domains, dominated with random in-plane oriented growth of (011){sub M1}-orientation, appear only under adequate substrate biasing, such as 10 W, while most biasing conditions result in conventional nanosized grains of highly oriented (010){sub M1}-orientation. Two temperature-controlled analyses, x-ray diffraction and micro-Raman spectroscopy, have revealed that some parts of large crystalline domains undergo intermediate monoclinic (M2) phase during the thermally-induced structural phase transition from monoclinic (M1) to rutile-tetragonal (R) phase. As an effect of the appearance of large crystalline domains, the film showed in-plane tensile stress, resulting in high T{sub IMT} of 69 °C due to the elongation of the V-V distance in its low-temperature monoclinic phase.

  15. Effect of Mg co-doping on cathodoluminescence properties of LuGAGG:Ce single crystalline garnet films

    Science.gov (United States)

    Schauer, P.; Lalinský, O.; Kučera, M.; Lučeničová, Z.; Hanuš, M.

    2017-10-01

    Mg2+ co-doped (LuGd)3(GaAl)5O12:Ce (LuGAGG:Ce,Mg) multicomponent single crystalline epitaxial garnet films were prepared and their cathodoluminescence (CL) and thermoluminescence (TSL) properties were studied in this paper. The films were prepared using the liquid phase epitaxy from lead-free BaO-B2O3-BaF2 flux and their scintillation properties were characterized using the 10 keV collimated e-beam. More specifically, temperature dependent CL intensity, CL emission spectra, CL decay characteristics as well as TSL emission characteristics of the mentioned films were measured. At the highest content of Mg (700 ppm), the CL decay time was as low as 28 ns and the CL afterglow was as low as 0.01% at 1 μs after the e-beam excitation cut-off, which are important parameters for electron detectors in e-beam devices. The CL temperature quenching of the studied films began above room temperature. An increase of Mg concentration to or above 280 ppm quenched the characteristic CL emission of LuGAGG:Ce,Mg. The TSL measurements show that the trap population in studied garnet samples is considerably suppressed. The LuGAGG:Ce,Mg multicomponent single crystalline epitaxial films were evaluated as the perspective fast scintillators for the electron detectors in the e-beam devices.

  16. Liquidlike nature of crystalline n-butane and n-pentane films studied by time-of-flight secondary ion mass spectrometry.

    Science.gov (United States)

    Souda, Ryutaro

    2009-12-03

    Crystallization of vapor-deposited thin films of n-butane and n-pentane has been investigated using temperature-programmed time-of-flight secondary ion mass spectrometry. The morphology of thin n-butane (n-pentane) films changes at around the calorimetric crystallization temperature of 65 K (85 K) as a result of crystallization of the supercooled liquid. The morphology of the crystal grains of n-butane changes at 85 K; the butane molecules permeate through porous amorphous-solid-water films above this temperature. The crystal grains of n-pentane are smaller in size than those of n-butane, forming a smoother crystalline film. However, the crystalline n-pentane film dewets abruptly at higher temperatures, depending on the film thickness. The liquidlike nature of crystalline n-pentane (n-butane) is attributable to premelting (coexisting second liquid).

  17. Integration of crystalline orientated γ-Al2O3 films and complementary metal-oxide-semiconductor circuits on Si(1 0 0) substrate

    Science.gov (United States)

    Oishi, Koji; Akai, Daisuke; Ishida, Makoto

    2015-01-01

    In this paper, integration of crystalline orientated γ-Al2O3 films and complementary metal-oxide-semiconductor (CMOS) circuits on Si(1 0 0) substrate was reported. In this integration processes, crystalline γ-Al2O3 films need to be preserved their crystallinity during high temperature annealing processes of CMOS fabrication in order to prevent surface condition changes. The γ-Al2O3 films grown on Si substrates are annealed in the CMOS fabrication process conditions, drive-in annealing at 1150 °C in O2 atmosphere and wet annealing 1000 °C in H2O vapor atmosphere. Reflection high energy electron diffraction (RHEED) and x-ray diffraction (XRD) were used to characterize the crystallinity of γ-Al2O3 films after the annealing processes. Surface conditions of the films are analyzed and observed with X-ray photoelectron spectroscopy (XPS) and scanning electron microscope (SEM). As a result, RHEED patterns of the γ-Al2O3 films indicated that wet oxidation annealing was a critical process severally inferior surface condition of crystalline γ-Al2O3 films. XRD, XPS, and SEM investigation unveiled further details of the crystallinity changes on γ-Al2O3 films for each process. These results indicated passivation films were required to integrate γ-Al2O3 films with CMOS fabrication process. Therefore we proposed and introduced Si3N4/TEOS passivation films on γ-Al2O3 films in CMOS fabrication processes. At last, MOSFETs on γ-Al2O3 integrated Si(1 0 0) substrate were fabricated and characterized. The designed characteristics of MOSFETs were obtained on γ-Al2O3 integrated Si substrate.

  18. N-type crystalline silicon films free of amorphous silicon deposited on glass by HCl addition using hot wire chemical vapour deposition.

    Science.gov (United States)

    Chung, Yung-Bin; Park, Hyung-Ki; Lee, Sang-Hoon; Song, Jean-Ho; Hwang, Nong-Moon

    2011-09-01

    Since n-type crystalline silicon films have the electric property much better than those of hydrogenated amorphous and microcrystalline silicon films, they can enhance the performance of advanced electronic devices such as solar cells and thin film transistors (TFTs). Since the formation of amorphous silicon is unavoidable in the low temperature deposition of microcrystalline silicon on a glass substrate at temperatures less than 550 degrees C in the plasma-enhanced chemical vapour deposition and hot wire chemical vapour deposition (HWCVD), crystalline silicon films have not been deposited directly on a glass substrate but fabricated by the post treatment of amorphous silicon films. In this work, by adding the HCl gas, amorphous silicon-free n-type crystalline silicon films could be deposited directly on a glass substrate by HWCVD. The resistivity of the n-type crystalline silicon film for the flow rate ratio of [HCl]/[SiH4] = 7.5 and [PH3]/[SiH4] = 0.042 was 5.31 x 10(-4) ohms cm, which is comparable to the resistivity 1.23 x 10(-3) ohms cm of films prepared by thermal annealing of amorphous silicon films. The absence of amorphous silicon in the film could be confirmed by high resolution transmission electron microscopy.

  19. High-perfomance Ce-doped multicomponent garnet single crystalline film scintillators

    Energy Technology Data Exchange (ETDEWEB)

    Zorenko, Yu.; Gorbenko, V.; Zorenko, T. [Institute of Physics, Kazimierz Wielki, University in Bydgoszcz, Powstancow, Wielkopolskich str., 2, 85090, Bydgoszcz (Poland); Department of Electronics of Ivan Franko, National University of Lviv, Gen. Tarnavskiy str. 17, 79017, Lviv (Ukraine); Sidletskiy, O. [Institute for Single Crystals, National Academy of Sciences of Ukraine, Lenina str., 60, 61001, Kharkiv (Ukraine); Fedorov, A. [SSI Institute for Single Crystals, National Academy of Sciences of Ukraine, Lenina str., 60, 61178, Kharkiv (Ukraine); Bilski, P.; Twardak, A. [Institute of Nuclear Physic, Polish Academy of Sciences, Radzikowskiego str., 176, 31-342, Krakow (Poland)

    2015-08-15

    We report for the first time the optimized content and excellent scintillation properties of single crystalline film (SCF) scintillators of multicomponent Gd{sub 3-x}Lu{sub x} Al{sub 5-y}Ga{sub y} O{sub 12}:Ce garnet compounds grown by liquid phase epitaxy (LPE) method. The Gd{sub 1.5}Lu{sub 1.5}Al{sub 2.75}Ga{sub 2.25}O{sub 12}:Ce and Gd{sub 3}Al{sub 2.75-2}Ga{sub 2.25-3}O{sub 12}:Ce SCF show the light yield (LY) comparable with that of high-quality bulk crystal analogues of these garnets but faster scintillation decay and very low thermoluminescence in the above room temperature range. To our knowledge, these SCF possess the highest LY values ever obtained in LPE grown garnet SCF scintillators exceeding by at least 1.5-1.6 times the values previously reported for SCF scintillators. Left figure: image of Gd{sub 1.5}Lu{sub 1.5}Al{sub 2.75}Ga{sub 2.25}O{sub 12}:Ce (PbO) (inset, left) and Gd{sub 3}Al{sub 2.35}Ga{sub 2.65}O{sub 12}:Ce (BaO) (inset, right) SCF scintillators, grown by LPE method onto Gd{sub 3}Al{sub 2.5}Ga{sub 2.5}O{sub 12} (GAGG) substrate; in the middle, green-yellow light emitting by Gd{sub 1.5}Lu{sub 1.5}Al{sub 2.75}Ga{sub 2.25}O{sub 12}:Ce (BaO) SCF under 350 nm laser illumination. Right figure: XRD pattern of (1200) planes of the Gd{sub 1.5}Lu{sub 1.5}Al{sub 2.75}Ga{sub 2.25}O{sub 12}:Ce (PbO) (black) and Gd{sub 3}Al{sub 2.75}Ga{sub 2.25}O{sub 12}:Ce (BaO) (red) SCFs, grown onto GAGG substrates. The film/substrate lattice misfit is -0.73% and -0.3%, respectively. (copyright 2015 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  20. Optical and electrical properties of spray pyrolysis deposited nano-crystalline BiFeO3 films

    Directory of Open Access Journals (Sweden)

    Annapu Reddy Venkateswarlu

    2011-12-01

    Full Text Available The nano-crystalline BiFeO3 were prepared under controlled substrate temperature by spray pyrolysis method. Their structural, optical and electrical properties were studied and correlated. A blueshift (Δλ ∼ 8.17 nm in the absorbance peaks was observed in the films with decrease in grain size. The absorption coefficient spectra show defect transitions at 1.9 and 2.3 eV in large grain size films due to oxygen vacancies. The lowest leakage was observed in smaller grain size (< 20 nm films due to negligible oxygen vacancies, smooth surface roughness and large energy bang gap. The Poole-Frankel conduction mechanism has been found to be the predominant mechanism for the leakage current.

  1. Growth mechanism of single-crystalline NiO thin films grown by metal organic chemical vapor deposition

    Science.gov (United States)

    Roffi, Teuku Muhammad; Nozaki, Shinji; Uchida, Kazuo

    2016-10-01

    Nickel oxide (NiO) thin films were grown by atmospheric-pressure metal organic chemical vapor deposition (APMOCVD). Growth was carried out using various growth parameters, including the growth temperature, the input precursor (O2/Ni) ratio, and the type of substrate material. Effects of the growth parameters on the structural and electrical properties of the films were investigated. X-ray diffraction analysis revealed that the crystal structure and quality were strongly affected by the growth temperature and the type of substrate material. At an optimized growth temperature, single-crystalline NiO films were grown on MgO(100) and MgO(111) substrates in a cube-on-cube orientation relationship, while on an Al2O3(001) substrate, the film was grown in the NiO[111] direction. The use of MgO substrates successfully suppressed the formation of twin defects, which have been frequently reported in the growth of NiO. The difference in the formation of the twin defects on MgO and Al2O3 substrates was discussed. It was observed that the resistivity dependence on crystal quality was affected by the choice of substrate material. The effects of the precursor ratio on the transmittance and resistivity of the films were also investigated. Improved transparency in the visible wavelength region and higher conductivity were found in films grown with higher O2/Ni ratios.

  2. Transformation from amorphous to nano-crystalline SiC thin films prepared by HWCVD technique without hydrogen dilution

    Indian Academy of Sciences (India)

    F Shariatmadar Tehrani

    2015-09-01

    Silicon carbide (SiC) thin films were deposited on Si(111) by the hot wire chemical vapour deposition (HWCVD) technique using silane (SiH4) and methane (CH4) gases without hydrogen dilution. The effects of SiH4 to CH4 gas flow ratio (R) on the structural properties, chemical composition and photoluminescence (PL) properties of the films deposited at the different gas flow ratios were investigated and compared. X-ray diffraction (XRD) and Fourier transform infrared (FTIR) spectra revealed a structural transition from amorphous SiC to cubic nano-crystalline SiC films with the increase in the gas flow ratio. Raman scattering confirmed the multi-phased nature of the films. Auger electron spectroscopy showed that the carbon incorporation in the film structure was strongly dependent on the gas flow ratio. A similar broad visible room-temperature PL with two peaks was observed for all SiC films. The main PL emission was correlated to the band to band transition in uniform a-SiC phase and the other lower energy emission was related to the confined a-Si : H clusters in a-SiC matrix. SiC nano-crystallites exhibit no significant contribution to the radiative recombination.

  3. Effect of high magnetic field on structure and magnetic properties of evaporated crystalline and amorphous Fe-Sm thin films

    Science.gov (United States)

    Li, Guojian; Li, Mengmeng; Wang, Jianhao; Du, Jiaojiao; Wang, Kai; Wang, Qiang

    2017-02-01

    Crystalline and amorphous Fe-Sm thin films have been fabricated by using molecular beam vapor deposition method. Then, the effects of both variation of Sm content and application of high magnetic field during film growth on the structure and magnetic properties of the Fe-Sm films have been explored. The results show that bcc structure of the Fe-Sm films with 5.8% Sm transforms to amorphization with 33.0% Sm. Meanwhile, nanocrystallite is formed in the amorphous Fe-Sm films. However, no Fe-Sm compound exists with the change of Sm content and with the application of high magnetic field. Nevertheless, high magnetic field decreases interplanar spacing. The structural evolution has a significant effect on magnetic properties. Saturation magnetization decreases 290% from 1456 emu/cm3 to 373 emu/cm3 with the increase of Sm content from 5.8% to 33.0%. The coercivity increases 1225% from 20 Oe to 265 Oe. Meanwhile, both the saturation magnetization and coercivity of the films decrease with the application of high magnetic field. The reason has been discussed.

  4. Growth of poly-crystalline Cu films on Y substrates by picosecond pulsed laser deposition for photocathode applications

    Science.gov (United States)

    Gontad, F.; Lorusso, A.; Klini, A.; Manousaki, A.; Perrone, A.; Fotakis, C.

    2015-11-01

    In this work, the deposition of Cu thin films on Y substrates for photocathode applications by pulsed laser deposition employing picosecond laser pulses is reported and compared with the use of nanosecond pulses. The influence of power density (6-50 GW/cm2) on the ablation of the target material, as well as on the properties of the resulting film, is discussed. The material transfer from the target to the substrate surface was found to be rather efficient, in comparison to nanosecond ablation, leading to the growth of films with high thickness. Scanning electron microscope analysis indicated a quasi-continuous film morphology, at low power density values, becoming granular with increasing power density. The structural investigation, through X-ray diffraction, revealed the poly-crystalline nature of the films, with a preferential growth along the (111) crystallographic orientation of Cu cubic network. Finally, energy-dispersive X-ray spectroscopy showed a low contamination level of the grown films, demonstrating the potential of a PLD technique for the fabrication of Cu/Y patterned structures, with applications in radiofrequency electron gun technology.

  5. Reversible electrical resistance switching in GeSbTe thin films : An electrolytic approach without amorphous-crystalline phase-change

    NARCIS (Netherlands)

    Pandian, Ramanathaswamy; Kooi, Bart J.; Palasantzas, George; De Hosson, Jeff Th. M.; Wouters, DJ; Hong, S; Soss, S; Auciello, O

    2008-01-01

    Besides the well-known resistance switching originating from the amorphous-crystalline phase-change in GeSbTe thin films, we demonstrate another switching mechanism named 'polarity-dependent resistance (PDR) switching'. 'Me electrical resistance of the film switches between a low- and high-state whe

  6. Free Surface Command Layer for Photoswitchable Out-of-Plane Alignment Control in Liquid Crystalline Polymer Films.

    Science.gov (United States)

    Nakai, Takashi; Tanaka, Daisuke; Hara, Mitsuo; Nagano, Shusaku; Seki, Takahiro

    2016-01-26

    To date, reversible alignment controls of liquid crystalline materials have widely been achieved by photoreactive layers on solid substrates. In contrast, this work demonstrates the reversible out-of-plane photocontrols of liquid crystalline polymer films by using a photoresponsive skin layer existing at the free surface. A polymethacrylate containing a cyanobiphenyl side-chain mesogen adopts the planar orientation. Upon blending a small amount of azobenzene-containing side-chain polymer followed by successive annealing, segregation of the azobenzene polymer at the free surface occurs and induces a planar to homeotropic orientation transition of cyanobiphenyl mesogens underneath. By irradiation with UV light, the mesogen orientation turns into the planar orientation. The orientation reverts to the homeotropic state upon visible light irradiation or thermally, and such cyclic processes can be repeated many times. On the basis of this principle, erasable optical patterning is performed by irradiating UV light through a photomask.

  7. Effect of band filling on anomalous Hall conductivity and magneto-crystalline anisotropy in NiFe epitaxial thin films

    Directory of Open Access Journals (Sweden)

    Zhong Shi

    2016-01-01

    Full Text Available The anomalous Hall effect (AHE and magneto-crystalline anisotropy (MCA are investigated in epitaxial NixFe1−x thin films grown on MgO (001 substrates. The scattering independent term b of anomalous Hall conductivity shows obvious correlation with cubic magneto-crystalline anisotropy K1. When nickel content x decreasing, both b and K1 vary continuously from negative to positive, changing sign at about x = 0.85. Ab initio calculations indicate NixFe1−x has more abundant band structures than pure Ni due to the tuning of valence electrons (band fillings, resulting in the increased b and K1. This remarkable correlation between b and K1 can be attributed to the effect of band filling near the Fermi surface.

  8. Ultrafast sub-threshold photo-induced response in crystalline and amorphous GeSbTe thin films

    Science.gov (United States)

    Shu, M. J.; Chatzakis, I.; Kuo, Y.; Zalden, P.; Lindenberg, A. M.

    2013-05-01

    Pump-probe optical reflectivity and terahertz transmission measurements have been used to investigate time resolved sub-threshold photo-induced effects in crystalline and amorphous GeSbTe films at MHz repetition rates. The reflectivity in both phases exhibits long-lived modulations consistent with the sign of the changes that occur upon switching but of smaller magnitude. These can be understood by the generation of acoustic strains with the crystalline phase response dominated by thermal effects and the amorphous phase response associated with electronically induced changes. Evidence for a photo-induced distortion is observed in the amorphous phase which develops homogeneously within the excited region on few-picosecond time scales.

  9. Effect of band filling on anomalous Hall conductivity and magneto-crystalline anisotropy in NiFe epitaxial thin films

    Energy Technology Data Exchange (ETDEWEB)

    Shi, Zhong; Jiang, Hang-Yu; Zhou, Shi-Ming, E-mail: shiming@tongji.edu.cn [Shanghai Key Laboratory of Special Artificial Microstructure Materials and Technology & Pohl Institute of Solid State Physics, School of Physics Science and Engineering, Tongji University, Shanghai 200092 (China); Hou, Yan-Liang; Ye, Quan-Lin [Department of Physics, Hangzhou Normal University, Hangzhou 310036 (China); Su Si, Ming [Key Laboratory for Magnetism and Magnetic Materials of the Ministry of Education, Lanzhou University, Lanzhou 730000 (China)

    2016-01-15

    The anomalous Hall effect (AHE) and magneto-crystalline anisotropy (MCA) are investigated in epitaxial Ni{sub x}Fe{sub 1−x} thin films grown on MgO (001) substrates. The scattering independent term b of anomalous Hall conductivity shows obvious correlation with cubic magneto-crystalline anisotropy K{sub 1}. When nickel content x decreasing, both b and K{sub 1} vary continuously from negative to positive, changing sign at about x = 0.85. Ab initio calculations indicate Ni{sub x}Fe{sub 1−x} has more abundant band structures than pure Ni due to the tuning of valence electrons (band fillings), resulting in the increased b and K{sub 1}. This remarkable correlation between b and K{sub 1} can be attributed to the effect of band filling near the Fermi surface.

  10. Low-Temperature Atomic Layer Deposition of Crystalline and Photoactive Ultrathin Hematite Films for Solar Water Splitting.

    Science.gov (United States)

    Steier, Ludmilla; Luo, Jingshan; Schreier, Marcel; Mayer, Matthew T; Sajavaara, Timo; Grätzel, Michael

    2015-12-22

    We developed a low-temperature atomic layer deposition route to deposit phase pure and crystalline hematite (α-Fe2O3) films at 230 °C without the need for postannealing. Homogenous and conformal deposition with good aspect ratio coverage was demonstrated on a nanostructured substrate and analyzed by transmission electron microscopy. These as-deposited α-Fe2O3 films were investigated as photoanodes for photoelectrochemical water oxidation and found to be highly photoactive. Combined with a TiO2 underlayer and a low-cost Ni(OH)2 catalyst, hematite films of less than 10 nm in thickness reached photocurrent densities of 0.3 mA cm(-2) at 1.23 V vs RHE and a photocurrent onset potential of less than 0.9 V vs RHE, previously unseen for films this thin and without high temperature annealing. In a thickness-dependent photoelectrochemical analysis, we identified a hematite thickness of only 10 nm to yield the highest internal quantum efficiency when using a suitable underlayer such as TiO2 that induces doping of the hematite film and reduces electron/hole recombination at the back contact. We find that, at high bias potentials, photocurrent density and quantum efficiency proportionally increase with light absorption in films thinner than 10 nm and are limited by the space charge layer width in thicker films. Thus, we propose to apply hematite films of 10 nm in thickness for future developments on suitable nanostructured conductive scaffolds that can now be extended to organic scaffolds due to our low-temperature process.

  11. Anchoring and electro-optical dynamics of thin liquid crystalline films in a polyimide cell: Experiment and theory

    Science.gov (United States)

    Lee, Lay Min; Kwon, Hye J.; Kang, Joo H.; Nuzzo, Ralph G.; Schweizer, Kenneth S.

    2006-07-01

    The surface-dependent anchoring and electro-optical (EO) dynamics of thin liquid crystalline films have been examined using Fourier transform infrared spectroscopy. A simple nematic liquid crystal, 4-n-pentyl-4'-cyanobiphenyl (5CB), is confined as 40, 50, and 390nm thick films in nanocavities defined by gold interdigitated electrode arrays (IDEAs) patterned on polyimide-coated zinc selenide (ZnSe) substrates [Noble et al., J. Am. Chem. Soc. 124, 15020 (2002)]. New strategies for controlling the anchoring interactions and EO dynamics are explored based on coating a ZnSe surface with an organic polyimide layer in order to both planarize the substrate and induce a planar alignment of the liquid crystalline film. The polyimide layer can be further treated so as to induce a strong alignment of the nematic director along a direction parallel to the electrode digits of the IDEA. Step-scan time-resolved spectroscopy measurements were made to determine the rate constants for the electric-field-induced orientation and thermal relaxation of the 5CB films. In an alternate set of experiments, uncoated ZnSe substrates were polished unidirectionally to produce a grooved surface presenting nanometer-scale corrugations. The dynamical rate constants measured for several nanoscale film thicknesses and equilibrium organizations of the director in these planar alignments show marked sensitivities. The orientation rates are found to vary strongly with both the magnitude of the applied potential and the initial anisotropy of the alignment of the director within the IDEA. The relaxation rates do not vary in this same way. The marked variations seen in EO dynamics can be accounted for by a simple coarse-grained dynamical model.

  12. Predicting the optimal process window for the coating of single-crystalline organic films with mobilities exceeding 7 cm2/Vs.

    Science.gov (United States)

    Janneck, Robby; Vercesi, Federico; Heremans, Paul; Genoe, Jan; Rolin, Cedric

    2016-09-01

    Organic thin film transistors (OTFTs) based on single crystalline thin films of organic semiconductors have seen considerable development in the recent years. The most successful method for the fabrication of single crystalline films are solution-based meniscus guided coating techniques such as dip-coating, solution shearing or zone casting. These upscalable methods enable rapid and efficient film formation without additional processing steps. The single-crystalline film quality is strongly dependent on solvent choice, substrate temperature and coating speed. So far, however, process optimization has been conducted by trial and error methods, involving, for example, the variation of coating speeds over several orders of magnitude. Through a systematic study of solvent phase change dynamics in the meniscus region, we develop a theoretical framework that links the optimal coating speed to the solvent choice and the substrate temperature. In this way, we can accurately predict an optimal processing window, enabling fast process optimization. Our approach is verified through systematic OTFT fabrication based on films grown with different semiconductors, solvents and substrate temperatures. The use of best predicted coating speeds delivers state of the art devices. In the case of C8BTBT, OTFTs show well-behaved characteristics with mobilities up to 7 cm2/Vs and onset voltages close to 0 V. Our approach also explains well optimal recipes published in the literature. This route considerably accelerates parameter screening for all meniscus guided coating techniques and unveils the physics of single crystalline film formation.

  13. Effect of Argon/Oxygen Flow Rate Ratios on DC Magnetron Sputtered Nano Crystalline Zirconium Titanate Thin Films

    Science.gov (United States)

    Rani, D. Jhansi; Kumar, A. GuruSampath; Sarmash, T. Sofi; Chandra Babu Naidu, K.; Maddaiah, M.; Rao, T. Subba

    2016-06-01

    High transmitting, non absorbent, nano crystalline zirconium titanate (ZT) thin films suitable for anti reflection coatings (ARC) were deposited on to glass substrates by direct current (DC) magnetron reactive sputtering technique, under distinct Argon to Oxygen (Ar/O2) gas flow rate ratios of 31/1, 30/2, 29/3 and 28/4, with a net gas flow (Ar + O2) of 32sccm, at an optimum substrate temperature of 250°C. The influence of the gas mixture ratio on the film properties has been investigated by employing x-ray diffraction (XRD), ultra violet visible (UV-vis) spectroscopy, atomic force microscopy (AFM), energy dispersive x-ray analysis (EDX) and four point probe methods. The films showed a predominant peak at 30.85° with (111) orientation. The crystallite size reduced from 22.94 nm to 13.5 nm and the surface roughness increased from 11.53 nm to 50.58 nm with increase in oxygen content respectively. The films deposited at 31/1 and 30/2 showed almost similar chemical composition. Increased oxygen content results an increase in electrical resistivity from 3.59 × 103 to 2.1 × 106 Ωm. The film deposited at Ar/O2 of 28/4 exhibited higher average optical transmittance of 91%, but its refractive index is higher than that of what is required for ARC. The films deposited at 31/1 and 30/2 of Ar/O2 possess higher transmittance (low absorbance) apart from suitable refractive index. Thus, these films are preferable candidates for ARC.

  14. Low pressure hand made PVD system for high crystalline metal thin film preparation in micro-nanometer scale

    Energy Technology Data Exchange (ETDEWEB)

    Rosikhin, Ahmad, E-mail: a.rosikhin86@yahoo.co.id; Hidayat, Aulia Fikri; Marimpul, Rinaldo; Syuhada, Ibnu; Winata, Toto, E-mail: toto@fi.itb.ac.id [Department of physics, physics of electronic materials research division Faculty of Mathematics and Natural Sciences, Institut Teknologi Bandung Jl. Ganesha 10, Bandung 40132, Jawa Barat – Indonesia (Indonesia)

    2016-02-08

    High crystalline metal thin film preparation in application both for catalyst substrate or electrode in any electronic devices always to be considered in material functional material research and development. As a substrate catalyst, this metal take a role as guidance for material growth in order to resulted in proper surface structure although at the end it will be removed via etching process. Meanwhile as electrodes, it will dragging charges to be collected inside. This brief discussion will elaborate general fundamental principle of physical vapor deposition (PVD) system for metal thin film preparation in micro-nanometer scale. The influence of thermodynamic parameters and metal characteristic such as melting point and particle size will be elucidated. Physical description of deposition process in the chamber can be simplified by schematic evaporation phenomena which is supported by experimental measurement such as SEM and XRD.

  15. Magnetization reversal process in Fe/Si (001) single-crystalline film investigated by planar Hall effect

    Institute of Scientific and Technical Information of China (English)

    叶军; 何为; 胡泊; 汤进; 张永圣; 张向群; 陈子瑜; 成昭华

    2015-01-01

    Planar Hall effect (PHE) is introduced to investigate the magnetization reversal process in single-crystalline iron film grown on Si (001) substrate. Owing to the domain structure of iron film and the characteristics of PHE, the magnetization switches sharply in an angular range of the external field for two steps of 90◦ domain wall displacement and one step of 180◦domain wall displacement near the easy axis, respectively. However, the magnetization reversal process near hard axis is completed by only one step of 90◦ domain wall displacement and then rotates coherently. The magnetization reversal process mechanism near the hard axis seems to be a combination of coherent rotation and domain wall displacement. Furthermore, the domain wall pinning energy and uniaxial magnetic anisotropy energy can also be derived from the PHE measurement.

  16. Substate and evaporation rate dependent orientation and crystalline organization of sexithiophene films vacuum deposited onto Au and HOPG

    Science.gov (United States)

    El Ardhaoui, M.; Lang, P.; Garnier, F.; Roger, J. P.

    1998-06-01

    The orientation and the crystalline organization of the films depend largely on the nature of the substrate and the deposition rate. The substrate effect is related to its interactions with the oligomers and also to the molecular mobility at the surface. It depends also largely on the deposition rate. L'orientation et l'organisation structurale des films de sexithiophène évaporés sous vide sont fortement liées à la nature du substrat (Au, HOPG) et à la vitesse de dépôt. L'effet du substrat est lié aux interactions avec les oligomères ainsi qu'à la mobilité de ces derniers sur la surface. Cet effet dépend largement de la vitesse d'évaporation.

  17. Dye-Sensitized Nanostructured Crystalline Mesoporous Tin-doped Indium Oxide Films with Tunable Thickness for Photoelectrochemical Applications.

    Science.gov (United States)

    Hamd, W; Chavarot-Kerlidou, M; Fize, J; Muller, G; Leyris, A; Matheron, M; Courtin, E; Fontecave, M; Sanchez, C; Artero, V; Laberty-Robert, C

    2013-01-01

    A simple route towards nanostructured mesoporous Indium-Tin Oxide (templated nano-ITO) electrodes exhibiting both high conductivities and optimized bicontinuous pore-solid network is reported. The ITO films are first produced as an X-ray-amorphous, high surface area material, by adapting recently established template-directed sol-gel methods using Sn(IV) and In(III) salts. Carefully controlled temperature/atmosphere treatments convert the as-synthesized ITO films into nano-crystalline coatings with the cubic bixbyite structure. Specially, a multi-layered synthesis was successfully undertaken for tuning the film thickness. In order to evaluate the performances of templated nano-ITO as an electrode substrate for photoelectrochemical applications, photoelectrodes were prepared by covalent grafting of a redox-active dye, the complex [Ru(bpy)2(4,4'-(CH2PO3H2)2-bpy)]Cl21 (bpy=bipyridine). Surface coverage was shown to increase with the film thickness, from 0.7 × 10(-9) mol.cm(-2) (one layer, 45 nm) to 3.5 × 10(-9) mol.cm(-2) (ten layers, 470 nm), the latter value being ~ 100 times larger than that for commercially available planar ITO. In the presence of an electron mediator, photocurrents up to 50 μA.cm(-2) have been measured under visible light irradiation, demonstrating the potential of this new templated nano-ITO preparation for the construction of efficient photoelectrochemical devices.

  18. A novel twisted nematic alignment and its effects on the electro-optical dynamics of nanoscale liquid crystalline films

    Science.gov (United States)

    Rauzan, Brittany; Lee, Lay Min; Nuzzo, Ralph

    2015-03-01

    Vibrational spectroscopic studies of a surface induced, twisted alignment of the nematic liquid crystal, 4-n-pentyl-4'-cyanobiphenyl (5CB) and its temperature-dependent electro-optical (EO) dynamics were studied near the crystalline-nematic and nematic-isotropic transition temperatures, and at a median temperature in the nematic phase. A 50 nm thick film of 5CB was confined in nanocavities defined by the dimensions of a gold interdigitated electrode array patterned on a unidirectionally polished ZnSe substrate. The film was assembled between two polished substrates bearing extended nanometer-scaled grooves that are oriented orthogonally to one another. The results show that with this anchoring scheme, the molecular director of the LC film undergoes a ninety-degree twist. Step-scan time resolved spectroscopy (TRS) measurements were made to determine the rate constants for the temperature-dependent EO dynamics of both the electric field-induced orientation and thermal relaxation processes of the LC film. The work rationalizes the impacts of organizational anisotropy and illustrates how it can be exploited as a design principle to effectively influence the electric field-induced dynamics of LC systems.

  19. Effects of initial layers on surface roughness and crystallinity of microcrystalline silicon thin films formed by remote electron cyclotron resonance silane plasma

    CERN Document Server

    Murata, K; Hori, Masaki; Goto, T; Ito, M

    2002-01-01

    We have observed mu c-Si:H films grown in the glass substrate in electron cyclotron resonance plasma-enhanced chemical vapor deposition employing two-step growth (TSG) method, where the seed layer was formed without charged species firstly, and subsequently, the film with charged species. The mu c-Si:H films with smooth surface and high crystallinity were synthesized with a relatively high deposition rate at a low substrate temperature by TSG. By Fourier transform infrared attenuated-total reflection, it was found that the surface roughness and crystallinity of seed layer were related to the ratio of SiH bonds over SiH sub 2 ones in the film. Consequently, the control of chemical bonds at the initial layer is of importance and TSG method is effective for the formation of mu c-Si:H film with high quality.

  20. Single-step synthesis of crystalline h-BN quantum- and nanodots embedded in boron carbon nitride films

    Science.gov (United States)

    Matsoso, Boitumelo J.; Ranganathan, Kamalakannan; Mutuma, Bridget K.; Lerotholi, Tsenolo; Jones, Glenn; Coville, Neil J.

    2017-03-01

    Herein we report on the synthesis and characterization of novel crystalline hexagonal boron nitride (h-BN) quantum- and nanodots embedded in large-area boron carbon nitride (BCN) films. The films were grown on a Cu substrate by an atmospheric pressure chemical vapour deposition technique. Methane, ammonia, and boric acid were used as precursors for C, N and B to grow these few atomic layer thick uniform films. We observed that both the size of the h-BN quantum/nanodots and thickness of the BCN films were influenced by the vaporization temperature of boric acid as well as the H3BO3 (g) flux over the Cu substrate. These growth conditions were easily achieved by changing the position of the solid boric acid in the reactor with respect to the Cu substrate. Atomic force microscope (AFM) and TEM analyses show a variation in the h-BN dot size distribution, ranging from nanodots (∼224 nm) to quantum dots (∼11 nm) as the B-source is placed further away from the Cu foil. The distance between the B-source and the Cu foil gave an increase in the C atomic composition (42 at% C–65 at% C) and a decrease in both B and N contents (18 at% B and 14 at% N to 8 at% B and 7 at% N). UV–vis absorption spectra showed a higher band gap energy for the quantum dots (5.90 eV) in comparison with the nanodots (5.68 eV) due to a quantum confinement effect. The results indicated that the position of the B-source and its reaction with ammonia plays a significant role in controlling the nucleation of the h-BN quantum- and nanodots. The films are proposed to be used in solar cells. A mechanism to explain the growth of h-BN quantum/nanodots in BCN films is reported.

  1. Flexible Solar Cells Using Doped Crystalline Si Film Prepared by Self-Biased Sputtering Solid Doping Source in SiCl4/H2 Microwave Plasma.

    Science.gov (United States)

    Hsieh, Ping-Yen; Lee, Chi-Young; Tai, Nyan-Hwa

    2016-02-01

    We developed an innovative approach of self-biased sputtering solid doping source process to synthesize doped crystalline Si film on flexible polyimide (PI) substrate via microwave-plasma-enhanced chemical vapor deposition (MWPECVD) using SiCl4/H2 mixture. In this process, P dopants or B dopants were introduced by sputtering the solid doping target through charged-ion bombardment in situ during high-density microwave plasma deposition. A strong correlation between the number of solid doping targets and the characteristics of doped Si films was investigated in detail. The results show that both P- and B-doped crystalline Si films possessed a dense columnar structure, and the crystallinity of these structures decreased with increasing the number of solid doping targets. The films also exhibited a high growth rate (>4.0 nm/s). Under optimal conditions, the maximum conductivity and corresponding carrier concentration were, respectively, 9.48 S/cm and 1.2 × 10(20) cm(-3) for P-doped Si film and 7.83 S/cm and 1.5 × 10(20) cm(-3) for B-doped Si film. Such high values indicate that the incorporation of dopant with high doping efficiency (around 40%) into the Si films was achieved regardless of solid doping sources used. Furthermore, a flexible crystalline Si film solar cell with substrate configuration was fabricated by using the structure of PI/Mo film/n-type Si film/i-type Si film/p-type Si film/ITO film/Al grid film. The best solar cell performance was obtained with an open-circuit voltage of 0.54 V, short-circuit current density of 19.18 mA/cm(2), fill factor of 0.65, and high energy conversion of 6.75%. According to the results of bending tests, the critical radius of curvature (RC) was 12.4 mm, and the loss of efficiency was less than 1% after the cyclic bending test for 100 cycles at RC, indicating superior flexibility and bending durability. These results represent important steps toward a low-cost approach to high-performance flexible crystalline Si film

  2. Hot Plate Annealing at a Low Temperature of a Thin Ferroelectric P(VDF-TrFE Film with an Improved Crystalline Structure for Sensors and Actuators

    Directory of Open Access Journals (Sweden)

    Rahman Ismael Mahdi

    2014-10-01

    Full Text Available Ferroelectric poly(vinylidene fluoride-trifluoroethylene (P(VDF-TrFE copolymer 70/30 thin films are prepared by spin coating. The crystalline structure of these films is investigated by varying the annealing temperature from the ferroelectric phase to the paraelectric phase. A hot plate was used to produce a direct and an efficient annealing effect on the thin film. The dielectric, ferroelectric and pyroelectric properties of the P(VDF-TrFE thin films are measured as a function of different annealing temperatures (80 to 140 °C. It was found that an annealing temperature of 100 °C (slightly above the Curie temperature, Tc has induced a highly crystalline β phase with a rod-like crystal structure, as examined by X-ray. Such a crystal structure yields a high remanent polarization, Pr = 94 mC/m2, and pyroelectric constant, p = 24 μC/m2K. A higher annealing temperature exhibits an elongated needle-like crystal domain, resulting in a decrease in the crystalline structure and the functional electrical properties. This study revealed that highly crystalline P(VDF-TrFE thin films could be induced at 100 °C by annealing the thin film with a simple and cheap method.

  3. Hot plate annealing at a low temperature of a thin ferroelectric P(VDF-TrFE) film with an improved crystalline structure for sensors and actuators.

    Science.gov (United States)

    Mahdi, Rahman Ismael; Gan, W C; Abd Majid, W H

    2014-10-14

    Ferroelectric poly(vinylidene fluoride-trifluoroethylene) (P(VDF-TrFE)) copolymer 70/30 thin films are prepared by spin coating. The crystalline structure of these films is investigated by varying the annealing temperature from the ferroelectric phase to the paraelectric phase. A hot plate was used to produce a direct and an efficient annealing effect on the thin film. The dielectric, ferroelectric and pyroelectric properties of the P(VDF-TrFE) thin films are measured as a function of different annealing temperatures (80 to 140 °C). It was found that an annealing temperature of 100 °C (slightly above the Curie temperature, Tc) has induced a highly crystalline β phase with a rod-like crystal structure, as examined by X-ray. Such a crystal structure yields a high remanent polarization, Pr = 94 mC/m2, and pyroelectric constant, p = 24 μC/m2K. A higher annealing temperature exhibits an elongated needle-like crystal domain, resulting in a decrease in the crystalline structure and the functional electrical properties. This study revealed that highly crystalline P(VDF-TrFE) thin films could be induced at 100 °C by annealing the thin film with a simple and cheap method.

  4. Wet chemical methods for producing mixing crystalline phase ZrO2 thin film

    Science.gov (United States)

    Pakma, Osman; Özdemir, Cengiz; Kariper, İ. Afşin; Özaydın, Cihat; Güllü, Ömer

    2016-07-01

    The aim of the study is to develop a more economical and easier method for obtaining ZrO2 thin films at lower temperature, unlike the ones mentioned in the literature. For this purpose, wet chemical synthesis methods have been tested and XRD, UV-VIS and SEM analysis of ZrO2 thin films have been performed. At the end of the analysis, we identified the best method and it has been found that the features of the films produced with this method were better than the films produced by using different reagents, as well as the films reported in the literature. Especially it has been observed that the transmittance of the film produced with this method were higher and better than the films in the literature and the others. In addition, refractive index of the film produced with this method was observed to be lower. Moreover, by using the same method Al/ZrO2/p-Si structure has been obtained and it has been compared with Al/p-Si reference structure in terms of electrical parameters.

  5. ECR Nb Films Grown on Amorphous and Crystalline Cu Substrates: Influence of Ion Energy

    Energy Technology Data Exchange (ETDEWEB)

    Valente, Anne-Marie [Thomas Jefferson National Accelerator Facility, Newport News, VA (United States); Eremeev, Grigory V. [Thomas Jefferson National Accelerator Facility, Newport News, VA (United States); Spradlin, Joshua K. [Thomas Jefferson National Accelerator Facility, Newport News, VA (United States); Phillips, H. Lawrence [Thomas Jefferson National Accelerator Facility, Newport News, VA (United States); Reece, Charles E. [Thomas Jefferson National Accelerator Facility, Newport News, VA (United States); Cao, C. [Illinois Inst. of Technology, Chicago, IL (United States); Proslier, Thomas [Argonne National Laboratory, Argonne, IL (United States); Tao, T. [Univ. of Illinois at Chicago, Chicago, IL (United States)

    2014-02-01

    In the pursuit of niobium (Nb) films with similar performance with the commonly used bulk Nb surfaces for Superconducting RF (SRF) applications, significant progress has been made with the development of energetic condensation deposition techniques. Using energetic condensation of ions extracted from plasma generated by Electron Cyclotron Resonance, it has been demonstrated that Nb films with good structural properties and RRR comparable to bulk values can be produced on metallic substrates. The controlled incoming ion energy enables a number of processes such as desorption of adsorbed species, enhanced mobility of surface atoms and sub-implantation of impinging ions, thus producing improved film structures at lower process temperatures. Particular attention is given to the nucleation conditions to create a favourable template for growing the final surface exposed to SRF fields. The influence of the deposition energy on film growth on copper substrates is investigated with the characterization of the film surface, structure, superconducting properties and RF performance.

  6. Effect of fabrication technique on the crystalline phase and electrical properties of PVDF films

    Directory of Open Access Journals (Sweden)

    Mahato P. K.

    2015-03-01

    Full Text Available The effect of different fabrication techniques on the formation of electroactive β-phase polyvinylidene fluoride (PVDF has been investigated. Films with varying concentration of PVDF and solvent - dimethyl formamide (DMF were synthesized by tape casting and solvent casting techniques. The piezoelectric β-phase as well as non polar β-phase were observed for both the tape cast and solvent cast films from X-ray diffraction (XRD micrographs and Fourier transform infra-red spectroscopy (FT-IR spectra. A maximum percentage (80 % of β-phase was obtained from FT-IR analysis for a solvent cast PVDF film. The surface morphology of the PVDF films was analyzed by FESEM imaging. The dielectric properties as a function of temperature and frequency and the ferroelectric hysteresis loop as a function of voltage were measured. An enhancement in the value of the dielectric constant and polarization was obtained in solvent cast films.

  7. Vacuum deposition of stoichiometric crystalline PbS films: The effect of sulfurizing environment during deposition

    Science.gov (United States)

    Singh, B. P.; Kumar, R.; Kumar, A.; Tyagi, R. C.

    2015-10-01

    Thin film of lead sulfide (PbS) was deposited onto highly cleaned glass and quartz substrates using a vacuum thermal evaporation technique. The effect of the sulfurizing environment on the growth and properties of vacuum-deposited PbS thin film was studied. The ambient sulfurizing environment was created by thermal decomposition of thiourea inside the vacuum chamber during deposition to maintain the stoichiometry and quality of the PbS film. The sulfurizing gas H2S, produced in the thermal decomposition of the solid sulfur containing thiourea readily combines with the cations (Pb2+) without leaving any anions (S2-) at the substrates and also has not produced any excess of sulfur at the substrates. The deposited film was characterized by optical spectroscopy, x-ray diffraction patterns, scanning electron micrographs with energy dispersive analysis of x-rays, and atomic force micrographs. The physical characterization of the deposited PbS film revealed that the surface of film grown in the sulfurizing environment improved and contained more stoichiometric sulfur in comparison to film deposited without the sulfurizing environment.

  8. Crystallinity Improvement of ZnO Thin Film on Different Buffer Layers Grown by MBE

    OpenAIRE

    2012-01-01

    The material and optical properties of ZnO thin film samples grown on different buffer layers on sapphire substrates through a two-step temperature variation growth by molecular beam epitaxy were investigated. The thin buffer layer between the ZnO layer and the sapphire substrate decreased the lattice mismatch to achieve higher quality ZnO thin film growth. A GaN buffer layer slightly increased the quality of the ZnO thin film, but the threading dislocations still stretched along the c-axis o...

  9. Influence of SiO{sub 2} buffer layer on the crystalline quality and photoluminescence of ZnO thin films

    Energy Technology Data Exchange (ETDEWEB)

    Xu, L H; Chen, Y L; Xu, F [College of Math and Physics, Nanjing University of Information Science and Technology, Nanjing, 210044 (China); Li, X Y [Department of Applied Physics, Nanjing University of Science and Technology, Nanjing, 210094 (China); Hua, S, E-mail: congyu3256@sina.com [Institute of Electronic Engineering and Photoelectric Technology, Nanjing University of Science and Technology, Nanjing, 210094 (China)

    2011-02-01

    In this work, a SiO{sub 2} buffer layer was first grown on Si substrate by thermal oxidation, and then ZnO thin films were deposited on SiO{sub 2} buffer layer and Si substrate by electron beam evaporation and sol-gel method. The influence of SiO{sub 2} buffer layer on the crystalline quality and photoluminescence of the films was investigated. The analyses of X-ray diffraction (XRD) showed that all the ZnO thin films had a hexagonal wurtzite structure and were preferentially oriented along the c-axis perpendicular to the substrate surface. The SiO{sub 2} buffer layer improved the crystalline quality and decreased the stress in ZnO thin films. The surface morphology analyses of the samples indicated that ZnO thin films deposited on SiO{sub 2} buffer layers had densely packed grains which obviously increased compared with those grown on bare Si substrate. The photoluminescence spectra of the samples showed that the ZnO thin films deposited on SiO{sub 2} buffer layers had stronger ultraviolet emission performance. The results suggest that SiO{sub 2} buffer layer can improve the crystalline quality and ultraviolet emission of ZnO thin films.

  10. Thermal conductivity of carbon doped GeTe thin films in amorphous and crystalline state measured by modulated photo thermal radiometry

    Science.gov (United States)

    Kusiak, Andrzej; Battaglia, Jean-Luc; Noé, Pierre; Sousa, Véronique; Fillot, F.

    2016-09-01

    The thermal conductivity and thermal boundary resistance of GeTe and carbon doped GeTe thin films, designed for phase change memory (PCM) applications, were investigated by modulated photo thermal radiometry. It was found that C doping has no significant effect on the thermal conductivity of these chalcogenides in amorphous state. The thermal boundary resistance between the amorphous films and SiO2 substrate is also not affected by C doping. The films were then crystallized by an annealing at 450°C as confirmed by optical reflectivity analysis. The thermal conductivity of non-doped GeTe significantly increases after crystallization annealing. But, surprisingly the thermal conductivity of the crystallized C doped GeTe was found to be similar from that of the amorphous state and independent of C concentration. As for the amorphous phase, C doping does not affect the thermal boundary resistance between the crystalline GeTe films and SiO2 substrate. This behaviour is discussed thanks to XRD and FTIR analysis. In particular, XRD shows a decrease of crystalline grain size in crystalline films as C concentration is increased. FTIR analysis of the film before and after crystallization evidenced that this evolution could be attributed to the disappearing of Ge-C bonds and migration of C atoms out of the GeTe phase upon crystallization, limiting then the growth of GeTe crystallites in C-doped films.

  11. Effect of the initial structure on the electrical property of crystalline silicon films deposited on glass by hot-wire chemical vapor deposition.

    Science.gov (United States)

    Chung, Yung-Bin; Lee, Sang-Hoon; Bae, Sung-Hwan; Park, Hyung-Ki; Jung, Jae-Soo; Hwang, Nong-Moon

    2012-07-01

    Crystalline silicon films on an inexpensive glass substrate are currently prepared by depositing an amorphous silicon film and then crystallizing it by excimer laser annealing, rapid thermal annealing, or metal-induced crystallization because crystalline silicon films cannot be directly deposited on glass at a low temperature. It was recently shown that by adding HCI gas in the hot-wire chemical vapor deposition (HWCVD) process, the crystalline silicon film can be directly deposited on a glass substrate without additional annealing. The electrical properties of silicon films prepared using a gas mixture of SiH4 and HCl in the HWCVD process could be further improved by controlling the initial structure, which was achieved by adjusting the delay time in deposition. The size of the silicon particles in the initial structure increased with increasing delay time, which increased the mobility and decreased the resistivity of the deposited films. The 0 and 5 min delay times produced the silicon particle sizes of approximately 10 and approximately 28 nm, respectively, in the initial microstructure, which produced the final films, after deposition for 300 sec, of resistivities of 0.32 and 0.13 Omega-cm, mobilities of 1.06 and 1.48 cm2 V(-1) S(-1), and relative densities of 0.87 and 0.92, respectively.

  12. Ultra-thin crystalline silicon films produced by plasma assisted epitaxial growth on silicon wafers and their transfer to foreign substrates*

    Directory of Open Access Journals (Sweden)

    Cabarrocas P. Roca i

    2010-10-01

    Full Text Available We have developed a new process to produce ultra-thin crystalline silicon films with thicknesses in the range of 0.1 − 1 μm on flexible substrates. A crystalline silicon wafer was cleaned by SiF4 plasma exposure and without breaking vacuum, an epitaxial film was grown from SiF4, H2 and Ar gas mixtures at low substrate temperature (Tsub ≈ 200 °C in a standard RF PECVD reactor. We found that H2 dilution is a key parameter for the growth of high quality epitaxial films and modification of the structural composition of the interface with the c-Si wafer, allowing one to switch from a smooth interface at low hydrogen flow rates to a fragile one, composed of hydrogen-rich micro-cavities, at high hydrogen flow rates. This feature can be advantageously used to separate the epitaxial film from the crystalline Si wafer. As a example demonstration, we show that by depositing a metal film followed by a spin-coated polyimide layer and applying a moderate thermal treatment to the stack, the fragile interface breaks down and allows one to obtain an ultrathin crystalline wafer on the flexible polyimide support.

  13. The crystalline structure of copper phthalocyanine films on ZnO(1100).

    Science.gov (United States)

    Cruickshank, Amy C; Dotzler, Christian J; Din, Salahud; Heutz, Sandrine; Toney, Michael F; Ryan, Mary P

    2012-09-05

    The structure of copper phthalocyanine (CuPc) thin films (5-100 nm) deposited on single-crystal ZnO(1100) substrates by organic molecular beam deposition was determined from grazing-incidence X-ray diffraction reciprocal space maps. The crystal structure was identified as the metastable polymorph α-CuPc, but the molecular stacking was found to vary depending on the film thickness: for thin films, a herringbone arrangement was observed, whereas for films thicker than 10 nm, coexistence of both the herringbone and brickstone arrangements was found. We propose a modified structure for the herringbone phase with a larger monoclinic β angle, which leads to intrastack Cu-Cu distances closer to those in the brickstone phase. This structural basis enables an understanding of the functional properties (e.g., light absorption and charge transport) of (opto)electronic devices fabricated from CuPc/ZnO hybrid systems.

  14. Dependence of critical current density on crystalline direction in thin YBCO films

    DEFF Research Database (Denmark)

    Paturi, P.; Peurla, M.; Raittila, J.

    2005-01-01

    The dependence of critical current density (J(c)) on the angle between the current direction and the (100) direction in the ab-plane of thin YBCO films deposited on (001)-SrTiO3 from natiocrystalline and microcrystalline targets is studied using magneto-optical microscopy. In the films made from ...... indicating that in addition to linear defects also the twin boundaries are very important flux pinning sites. (c) 2005 Elsevier B.V. All rights reserved....

  15. Growth of crystalline ZnO films on the nitridated (0001) sapphire surface

    Energy Technology Data Exchange (ETDEWEB)

    Butashin, A. V.; Kanevsky, V. M.; Muslimov, A. E., E-mail: amuslimov@mail.ru; Prosekov, P. A.; Kondratev, O. A.; Blagov, A. E.; Vasil’ev, A. L.; Rakova, E. V. [Russian Academy of Sciences, Shubnikov Institute of Crystallography (Russian Federation); Babaev, V. A.; Ismailov, A. M. [Dagestan State University (Russian Federation); Vovk, E. A.; Nizhankovsky, S. V. [National Academy of Sciences of Ukraine, Institute for Single Crystals (Ukraine)

    2015-07-15

    The surface morphology and structure of (0001) sapphire substrates subjected to thermochemical nitridation in a mixture of N{sub 2}, CO, and H{sub 2} gases are investigated by electron and probe microscopy and X-ray and electron diffraction. It is shown that an aluminum nitride layer is formed on the substrate surface and heteroepitaxial ZnO films deposited onto such substrates by magnetron sputtering have a higher quality when compared with films grown on sapphire.

  16. Macroscopic control of helix orientation in films dried from cholesteric liquid crystalline cellulose nanocrystal suspensions


    OpenAIRE

    2014-01-01

    The intrinsic ability of cellulose nanocrystals (CNCs) to self-organize into films and bulk materials with helical order in a cholesteric liquid crystal is scientifically intriguing and potentially important for the production of renewable multifunctional materials with attractive optical properties. A major obstacle, however, has been the lack of control of helix direction, which results in a defect-rich, mosaic-like domain structure. Herein, a method for guiding the helix during film format...

  17. Crystalline structure, and magnetic and magneto-optical properties of MnSbBi thin films

    CERN Document Server

    Kang, K

    2001-01-01

    the c-axis texture and the saturation magnetisation due to less segregation of the non-magnetic phase in the annealed films. Using a thin Sb seed layer in Mn/Sb/Bi// films also results in an increase in both the c-axis texture and the saturation magnetisation. Decreasing the layer thicknesses in Mn/Bi/Sb// films results in a decrease in the grain size. By depositing the Sb layer first in Pt/Mn/Sb// and Co/Mn/Sb// films, the perpendicular c-axis texture can be kept before and after annealing. Computer simulation was carried out to investigate the relationship between the crystal structure and the magnetic properties before and after annealing. Comparing optical and MO properties of annealed Mn/Sb/Bi// and Mn/Sb// films suggests a possible origin of the peaks in Kerr spectra caused by adding Bi. This thesis reports work carried out to investigate some aspects of the crystal structure, and magnetic and magneto-optical (MO) properties in thin films of the Mn-Sb system. Reports of interesting properties and the po...

  18. Crystallinity Improvement of ZnO Thin Film on Different Buffer Layers Grown by MBE

    Directory of Open Access Journals (Sweden)

    Shao-Ying Ting

    2012-01-01

    Full Text Available The material and optical properties of ZnO thin film samples grown on different buffer layers on sapphire substrates through a two-step temperature variation growth by molecular beam epitaxy were investigated. The thin buffer layer between the ZnO layer and the sapphire substrate decreased the lattice mismatch to achieve higher quality ZnO thin film growth. A GaN buffer layer slightly increased the quality of the ZnO thin film, but the threading dislocations still stretched along the c-axis of the GaN layer. The use of MgO as the buffer layer decreased the surface roughness of the ZnO thin film by 58.8% due to the suppression of surface cracks through strain transfer of the sample. From deep level emission and rocking curve measurements it was found that the threading dislocations play a more important role than oxygen vacancies for high-quality ZnO thin film growth.

  19. Optical Properties of Spin-Coated TiO2 Antireflection Films on Textured Single-Crystalline Silicon Substrates

    Directory of Open Access Journals (Sweden)

    Ryosuke Watanabe

    2015-01-01

    Full Text Available Antireflection coating (ARC prepared by a wet process is beneficial for low cost fabrication of photovoltaic cells. In this study, we investigated optical properties and morphologies of spin-coated TiO2 ARCs on alkaline textured single-crystalline silicon wafers. Reflectance spectra of the spin-coated ARCs on alkaline textured silicon wafers exhibit no interferences and low reflectance values in the entire visible range. We modeled the structures of the spin-coated films for ray tracing numerical calculation and compared numerically calculated reflectance spectra with the experimental results. This is the first report to clarify the novel optical properties experimentally and theoretically. Optical properties of the spin-coated ARCs without interference are due to the fractional nonuniformity of the thickness of the spin-coated ARCs that cancels out the interference of the incident light.

  20. Thin film PV standing tall side-by-side with multi-crystalline silicon: also in terms of reliability

    Science.gov (United States)

    Dhere, Neelkanth G.; Ward, Allan; Wieting, Robert; Guha, Subhendu; Dhere, Ramesh G.

    2015-09-01

    Triple junction hydrogenated amorphous silicon (a-Si:H) have shown exceptionally good reliability and durability. Cadmium telluride, CdTe PV modules have shown the lowest production cost without subsidies. Copper-indium gallium selenide sulfide (CIGS) and cadmium telluride (CdTe) cells and modules have been showing efficiencies equal or greater than those of multi-crystalline, (mx-Si), PV modules. Early generation CIGS and CdTe PV modules had a different qualification standard 61646 as compared to 61215 for crystalline silicon, (c-Si), PV modules. This, together with small vulnerability in harsh climates, was used to create doubts about their reliability. Recently CdTe and CIGS glass-to-glass modules have passed the rigorous accelerated tests, especially as long as the edge seals are not compromised. Moreover, the cumulative shipment of these modules is more than 12 GW demonstrating the customer confidence in these products. Hence it can be stated that also in terms of the reliability and durability all the thin film PV modules stand tall and compare favorably with mx-Si.

  1. The preparation of γ-crystalline non-electrically poled photoluminescant ZnO-PVDF nanocomposite film for wearable nanogenerators

    Science.gov (United States)

    Jana, Santanu; Garain, Samiran; Ghosh, Sujoy Kumar; Sen, Shrabanee; Mandal, Dipankar

    2016-11-01

    Polyvinylidene fluoride (PVDF) films are filled with various mass fractions (wt%) of zinc oxide nanoparticles (ZnO-NPs) to fabricate the high performance of a wearable polymer composite nanogenerator (PCNG). The ZnO-NPs can induced a fully γ-crystalline phase in PVDF, where traditional electrical poling is not necessary for the generation of piezoelectric properties. The PCNG delivers up to 28 V of open circuit voltage and 450 nA of short circuit current by simple repeated human finger imparting (under a pressure amplitude of 8.43 kPa) that generates sufficient power to turn on at least 48 commercial blue light emitting diodes (LEDs) instantly. Furthermore, it also successfully charged the capacitors, signifying practical applicability as a piezoelectric based nanogenerator for self-powering devices. The applicability of PCNG by wearable means is clarified when it gives rise to a sensible response, say up to 400 mV of output voltage synchronized with the PCNG embedded human finger in a bending and releasing gesture. UV-visible absorption spectral analysis revealed the possibility of estimating a change in the optical band gap value (E g), refractive index (n) and optical activation energy (E a) in different concentrations of ZnO-NP incorporated PVDF nanocomposite films, and it possesses a useful methodology where ZnO-NPs can be used as an optical probe. Near blue light emission is observed from photoluminescence spectra, which are clearly shown from a Commission Internationale de L’Eclairage (CIE) diagram. The piezoelectric charge coefficient of the nanocomposite film is estimated to be -6.4 pC/N, where even electrical poling treatment is not employed. In addition, dielectric properties have been studied to understand the role of molecular kinetic and interfacial polarization occurring in nanocomposite films at different applied frequencies.

  2. Synthesis, surface morphology, and photoluminescence properties of anatase iron-doped titanium dioxide nano-crystalline films.

    Science.gov (United States)

    Zhang, Jinzhong; Chen, Xiangui; Shen, Yude; Li, Yawei; Hu, Zhigao; Chu, Junhao

    2011-07-28

    Iron (Fe)-doped (0 to 4%) TiO(2) nano-crystalline (nc) films with the grain size of about 25 nm have been deposited on n-type Si (100) substrates by a facile nonhydrolytic sol-gel processing. X-ray diffraction measurements prove that the films are polycrystalline and present the pure anatase phase. X-ray photoelectron spectroscopy spectra indicate that the chemical valent state of Fe element is +3 and the Fe(3+) ions replace the Ti(4+) sites. The Fe dopant effects on the surface morphology, microstructure, and dielectric functions of the nc-Fe/TiO(2) films have been studied by atomic force microscope, ultraviolet Raman scattering and spectroscopic ellipsometry. With increasing Fe composition, the intensity of Raman-active mode B(1g) increases, while that of the A(1g) phonon mode decreases. The dielectric functions have been uniquely extracted by fitting ellipsometric spectra with the Adachi's dielectric function model and a four-phase layered model. It is found that the real part of dielectric functions in the transparent region and the optical band gap slightly decrease with the Fe composition due to the introduction of acceptor level Fe t(2g). Finally, the composition and temperature dependence of the surface and lattice defects in the Fe/TiO(2) films have been investigated by photoluminescence spectra in detail. At room temperature, the emission intensities decrease with increasing Fe compositions since the Fe incorporation could prolong the radiative lifetime and/or shorten the non-radiative lifetime. By analyzing the low temperature photoluminescence spectra, the intensities and positions of five emission peaks and shoulder structure can be unambiguously assigned. The phenomena could be reasonably explained by the physical mechanisms such as oxygen vacancies, localized excitons, self-trapped excitons, and indirect transitions, which are strongly related to the electronic band structure perturbed by the Fe doping.

  3. Optical analysis of the fine crystalline structure of artificial opal films.

    Science.gov (United States)

    Lozano, G; Dorado, L A; Schinca, D; Depine, R A; Míguez, H

    2009-11-17

    Herein, we present a detailed analysis of the structure of artificial opal films. We demonstrate that, rather than the generally assumed face centered cubic lattice of spheres, opal films are better approximated by rhombohedral assemblies of distorted colloids. Detailed analysis of the optical response in a very wide spectral range (0.4 < or = a/lambda < or = 2, where a is the conventional lattice constant), as well as at perpendicular and off-normal directions, unambiguously shows that the interparticle distance coincides very approximately with the expected diameter only along directions contained in the same close-packed plane but differs significantly in directions oblique to the [111] one. A full description of the real and reciprocal lattices of actual opal films is provided, as well as of the photonic band structure of the proposed arrangement. The implications of this distortion in the optical response of the lattice are discussed.

  4. Swift heavy ion induced surface modifications in nano-crystalline Li-Mg ferrite thin films

    Energy Technology Data Exchange (ETDEWEB)

    Ghosh, Sanjukta [Institute of Physics, Sachivalaya Marg, Bhubaneswar 751005 (India) and Department of Physics, University of Calcutta, 92 A.P.C. Road, Kolkata 700009 (India)]. E-mail: sanjukta@iopb.res.in; Ganesan, V. [Inter University Consortium for DAE facilities, Khandwa Road, Indore 452017 (India); Khan, S.A. [Nuclear Science Centre, Aruna Asaf Ali Marg, New Delhi 110067 (India); Ayyub, Pushan [Tata Institute of Fundamental Research, Homi Bhabha Road, Mumbai 400005 (India); Kumar, Nitendar [Solid State Physics Laboratory, DRDO, Lucknow Road, Delhi 110054 (India)

    2006-09-30

    The swift heavy ion (190 MeV Au{sup 14+}) induced modifications in surface morphologies of the nanocrystals of ferrite thin films have been extensively studied through the images of atomic force microscopy (AFM). In most of the irradiated films significant features like, the ditch and dike structures, have been observed through out the surface. We try to explain the observed changes on the basis of thermal spike model followed by momentum transfer induced lateral mass transport. In addition to these changes some new and interesting features have been noticed after irradiation in 8F and 9F ferrite thin films. These new features are attributed to sputtering phenomenon due to the presence of defects like latent tracks.

  5. Structural and optical properties of Cu{sub 2}O crystalline electrodeposited films

    Energy Technology Data Exchange (ETDEWEB)

    Brandt, Iuri S.; Martins, Cesar A.; Zoldan, Vinicius C.; Viegas, Alexandre D.C. [Laboratório de Filmes Finos e Superfícies, Departamento de Física, Universidade Federal de Santa Catarina, Florianópolis-SC 88040-900 (Brazil); Dias da Silva, José H. [Laboratório de Filmes Semicondutores, Faculdade de Ciências, Universidade Estadual Paulista, Bauru-SP 17033-360 (Brazil); Pasa, André A., E-mail: andre.pasa@ufsc.br [Laboratório de Filmes Finos e Superfícies, Departamento de Física, Universidade Federal de Santa Catarina, Florianópolis-SC 88040-900 (Brazil)

    2014-07-01

    Cuprous oxide (Cu{sub 2}O) films were electrodeposited on Ni/Si(100), Au/Si(100), and Si(100) substrates from aqueous solution at room temperature. The thicknesses of the films were varied in the range of 250 to 1250 nm. It was shown that at pH 10.00, an increase of just 1% can change the Cu{sub 2}O texture from [100] to [111]. Atomic force microscopy reveals that Cu{sub 2}O(100) and Cu{sub 2}O(111) films present rounded and faceted grains, respectively. For the thinner films, it was also observed that the substrate has a strong influence on the Cu{sub 2}O orientation. The Cu{sub 2}O refraction index (n) and band gap energy (E{sub g}) were obtained from reflectance measurements. The Wemple and DiDomenico single oscillator model was applied to n data, and the dispersion energy E{sub d} of this model was addressed to describe the density of Cu vacancies in the Cu{sub 2}O lattice. It was found out that the density of this kind of defect is higher for [111] oriented Cu{sub 2}O films and decreases as a function of the film thickness. This analysis also indicated that the dynamics of formation of the Cu vacancy depends on the Cu{sub 2}O lattice parameter. This parameter showed that Cu{sub 2}O films are initially under compressive misfit stress, but at a critical thickness, the lattice parameter abruptly increases in order to relax the Cu{sub 2}O lattice structure. This sudden transition is also observed in the E{sub g} data and is attributed to the enhancement of Cu–Cu internetwork interaction that is inversely proportional to E{sub g}. - Highlights: • Cu{sub 2}O films were electrodeposited on Au/Si(100), Ni/Si(100), and Si(100) substrates. • Growth orientation can be selected by small changes of 1% on electrolyte pH. • Cu–Cu internetwork strengthening reduces Cu{sub 2}O band gap energy. • We report that Wemple–DiDomenico model can describe density of Cu vacancies (V{sub Cu}). • Density of V{sub Cu} in Cu{sub 2}O lattice depends strongly on deposition

  6. Preparation of nanocellulose from micro-crystalline cellulose: The effect on the performance and properties of agar-based composite films.

    Science.gov (United States)

    Shankar, Shiv; Rhim, Jong-Whan

    2016-01-01

    A facile approach has been performed to prepare nanocellulose (NC) from micro-crystalline cellulose (MCC) and test their effect on the performance properties of agar-based composite films. The NC was characterized by STEM, XRD, FTIR, and TGA. The NC was well dispersed in distilled water after sonication and their size was in the range of 100-500nm. The XRD results revealed the crystallinity of NC. The crystallinity index of NC (0.71) was decreased compared to the MCC (0.81). The effect of NC or MCC content (1, 3, 5 and 10wt% based on agar) on the mechanical, water vapor permeability (WVP), and thermal properties of the composites were studied. The NC obtained from MCC can be used as a reinforcing agent for the preparation of biodegradable composites films for their potential use in the development of biodegradable food packaging materials.

  7. Temporal dynamics of upconversion luminescence in $Er^{3+}$, $Yb^{3+}$ co-doped crystalline $KY(WO_4)_2$ thin films

    NARCIS (Netherlands)

    Garcia-Revilla, S.; Valiente, R.; Romanyuk, Y.E.; Pollnau, M.

    2008-01-01

    Crystalline $Er^{3+}$ and $Yb^{3+}$ singly and doubly doped $KY(WO_4)_2$ thin films were grown by low-temperature liquid-phase epitaxy. Absorption, luminescence, excitation and temporal evolution measurements were carried out for both $Er^{3+}$ and $Yb^{3+}$ transitions from 10K to room temperature.

  8. Effect of crystalline microstructure on the photophysical performance of polymer/perylene composite films

    Institute of Scientific and Technical Information of China (English)

    FengWei; XuYou-Long; YiWen-Hui; ZhouFeng; WangXiao-Gong; YoshinoKatsumi

    2003-01-01

    To obtain high carrier mobility, better charge injection capability, and high photovoltaic device conversion efficiency a powerful stratergy is to improve the morphology of the polymer/dye composite films. Conjugated conducting polymer (CP) thin films doped with perylene derivative (PV) of various concentrations were prepared by spin-casting method, and their morphology and photovoltaic characteristics were examined. The change in morphology and molecular reorientation occurring in CP-PV composite films upon annealing at different temperatures was investigated using scanning electron microscopy, x-ray diffraction, Fourier transform infrared and UV-vis absorption. By changing the annealing temperature, PV microcrystallines of 8-10μm in size lying parallel to the substrate surface can be obtained. Annealing effect improved the photovoltaic performance of ITO/CP-PV/Al Schottky-type solar cells, which can be attributed to the formation of an electron conducting PV crystal network. Preliminary studies indicate that the morphological structure in CP-PV composite films has an important influence to their photovoltaic properties.

  9. Effect of crystalline microstructure on the photophysical performance of polymer/perylene composite films

    Institute of Scientific and Technical Information of China (English)

    封伟; 徐友龙; 易文辉; 周峰; 王晓工; 吉野勝美

    2003-01-01

    To obtain high carrier mobility, better charge injection capability, and high photovoltaic device conversion efficiency, a powerful strategy is to improve the morphology of the polymer/dye composite films. Conjugated conducting polymer (CP) thin films doped with perylene derivative (PV) of various concentrations were prepared by spin-casting method, and their morphology and photovoltaic characteristics were examined. The change in morphology and molecular reorientation occurring in CP-PV composite films upon annealing at different temperatures was investigated using scanning electron microscopy, x-ray diffraction, Fourier transform infrared and UV-vis absorption. By changing the annealing temperature, PV microcrystallines of 8-10μm in size lying parallel to the substrate surface can be obtained.Annealing effect improved the photovoltaic performance of ITO/CP-PV/A1 Schottky-type solar cells, which can be attributed to the formation of an electron conducting PV crystal network. Preliminary studies indicate that the morphological structure in CP-PV composite films has an important influence to their photovoltaic properties.

  10. Crystalline Molybdenum Oxide Thin-Films for Application as Interfacial Layers in Optoelectronic Devices

    DEFF Research Database (Denmark)

    Fernandes Cauduro, André Luis; dos Reis, Roberto; Chen, Gong

    2017-01-01

    The ability to control the interfacial properties in metal-oxide thin films through surface defect engineering is vital to fine-tune their optoelectronic properties and thus their integration in novel optoelectronic devices. This is exemplified in photovoltaic devices based on organic, inorganic...

  11. Crystalline Molybdenum Oxide Thin-Films for Application as Interfacial Layers in Optoelectronic Devices

    DEFF Research Database (Denmark)

    Fernandes Cauduro, André Luis; dos Reis, Roberto; Chen, Gong

    2017-01-01

    The ability to control the interfacial properties in metal-oxide thin films through surface defect engineering is vital to fine-tune their optoelectronic properties and thus their integration in novel optoelectronic devices. This is exemplified in photovoltaic devices based on organic, inorganic...

  12. Dielectric properties of crystalline organic molecular films in the limit of zero overlap

    Energy Technology Data Exchange (ETDEWEB)

    D’Avino, Gabriele, E-mail: gabriele.davino@gmail.com [Laboratory for Chemistry of Novel Materials, University of Mons, Place du Parc 20, BE-7000 Mons, Belgium and Department of Physics, University of Liège, Allée du 6 Août 17, BE-4000 Liège (Belgium); Vanzo, Davide; Soos, Zoltán G., E-mail: soos@princeton.edu [Department of Chemistry, Princeton University, Princeton, New Jersey 08544 (United States)

    2016-01-21

    We present the calculation of the static dielectric susceptibility tensor and dipole field sums in thin molecular films in the well-defined limit of zero intermolecular overlap. Microelectrostatic and charge redistribution approaches are applied to study the evolution of dielectric properties from one to a few molecular layers in films of different conjugated molecules with organic electronics applications. Because of the conditional convergence of dipolar interactions, dipole fields depend on the shape of the sample and different values are found in the middle layer of a thick film and in the bulk. The shape dependence is eliminated when depolarization is taken into account, and the dielectric tensor of molecular films converges to the bulk limit within a few molecular layers. We quantify the magnitude of surface effects and interpret general trends among different systems in terms of molecular properties, such as shape, polarizability anisotropy, and supramolecular organization. A connection between atomistic models for molecular dielectrics and simpler theories for polarizable atomic lattices is also provided.

  13. Synthesis of crystalline Ge nanoclusters in PE-CVD-deposited SiO2 films

    DEFF Research Database (Denmark)

    Leervad Pedersen, T.P.; Skov Jensen, J.; Chevallier, J.

    2005-01-01

    The synthesis of evenly distributed Ge nanoclusters in plasma-enhanced chemical-vapour-deposited (PE-CVD) SiO2 thin films containing 8 at. % Ge is reported. This is of importance for the application of nanoclusters in semiconductor technology. The average diameter of the Ge nanoclusters can...

  14. Surface Properties of Photocatalytic Nano-Crystalline Titania Films and Reactor for Photocatalytic Degradation of Chloroform

    DEFF Research Database (Denmark)

    Søgaard, Erik Gydesen; Simonsen, Morten Enggrob; Jensen, Henrik

    2006-01-01

    In this work two immobilizations techniques of TiO2 onto glass were investigated; deposition of previously made titania powder (PMTP) and a sol-gel method. The titania powder used in this work was Degussa P25, Hombikat UV100 and a powder prepared in our laboratory SC134. The prepared TiO2 films w...

  15. Atomic-Resolution Observations of Semi-Crystalline IntegranularThin Films in Silicon Nitride

    Energy Technology Data Exchange (ETDEWEB)

    Ziegler, Alexander; Idrobo, Juan C.; Cinibulk, Michael K.; Kisielowski, Christian; Browning, Nigel D.; Ritchie, Robert O.

    2005-08-01

    The thin intergranular phase in a silicon nitride (Si3N4)ceramic, which has been regarded for decades as having an entirely amorphous morphology, is shown to have a semi-crystalline structure. Using two different but complementary high-resolution electron microscopy methods, the intergranular atomic structure was directly imaged at the atomic level. These high-resolution images show that the atomic arrangement of the dopand element cerium takes very periodic positions not only along the interface between the intergranular phase and the Si3N4 matrix grains, but it arranges in a semi-crystalline structure that spans the entire width of the intergranular phase between two adjacent matrix grains, in principle connecting the two separate matrix grains. The result will have implications on the approach of understanding the materials properties of ceramics, most significantly on the mechanical properties and the associated computational modeling of the atomic structure of the thin intergranular phase in Si3N4 ceramics.

  16. Effect of sputtering power on crystallinity, intrinsic defects, and optical and electrical properties of Al-doped ZnO transparent conducting thin films for optoelectronic devices

    Science.gov (United States)

    Hu, Yu Min; Li, Jung Yu; Chen, Nai Yun; Chen, Chih Yu; Han, Tai Chun; Yu, Chin Chung

    2017-02-01

    The crystallinity and intrinsic defects of transparent conducting oxide (TCO) films have a high impact on their optical and electrical properties and therefore on the performance of devices incorporating such films, including flat panel displays, electro-optical devices, and solar cells. The optical and electrical properties of TCO films can be modified by tailoring their deposition parameters, which makes proper understanding of these parameters crucial. Magnetron sputtering is the most adaptable method for preparing TCO films used in industrial applications. In this study, we investigate the direct and inter-property correlation effects of sputtering power (PW) on the crystallinity, intrinsic defects, and optical and electrical properties of Al-doped ZnO (AZO) TCO films. All of the films were preferentially c-axis-oriented with a wurtzite structure and had an average transmittance of over 80% in the visible wavelength region. Scanning electron microscopy images revealed significantly increased AZO film grain sizes for PW ≥ 150 W, which may lead to increased conductivity, carrier concentration, and optical band gaps but decreased carrier mobility and in-plane compressive stress in AZO films. Photoluminescence results showed that, with increasing PW, the near band edge emission gradually dominates the defect-related emissions in which zinc interstitial (Zni), oxygen vacancy (VO), and oxygen interstitial (Oi) are possibly responsible for emissions at 3.08, 2.8, and 2.0 eV, respectively. The presence of Zni- and Oi-related emissions at PW ≥ 150 W indicates a slight increase in the presence of Al atoms substituted at Zn sites (AlZn). The presence of Oi at PW ≥ 150 W was also confirmed by X-ray photoelectron spectroscopy results. These results clearly show that the crystallinity and intrinsic-defect type of AZO films, which dominate their optical and electrical properties, may be controlled by PW. This understanding may facilitate the development of TCO

  17. Morphological control of anodic crystalline TiO{sub 2} nanochannel films for use in size-selective photocatalytic decomposition of organic molecules

    Energy Technology Data Exchange (ETDEWEB)

    Tsuji, E., E-mail: e-tsuji@eng.hokudai.ac.jp [Graduate School of Chemical Sciences and Engineering, Hokkaido University, Sapporo, Hokkaido 060-8628 (Japan); Division of Materials Chemistry, Faculty of Engineering, Hokkaido University, Sapporo, Hokkaido 060-8628 (Japan); Taguchi, Y. [Graduate School of Chemical Sciences and Engineering, Hokkaido University, Sapporo, Hokkaido 060-8628 (Japan); Aoki, Y. [Graduate School of Chemical Sciences and Engineering, Hokkaido University, Sapporo, Hokkaido 060-8628 (Japan); Division of Materials Chemistry, Faculty of Engineering, Hokkaido University, Sapporo, Hokkaido 060-8628 (Japan); Hashimoto, T.; Skeldon, P.; Thompson, G.E. [Corrosion and Protection Centre, School of Materials, The University of Manchester, Manchester, M13 9PL England (United Kingdom); Habazaki, H. [Graduate School of Chemical Sciences and Engineering, Hokkaido University, Sapporo, Hokkaido 060-8628 (Japan); Division of Materials Chemistry, Faculty of Engineering, Hokkaido University, Sapporo, Hokkaido 060-8628 (Japan)

    2014-05-01

    Graphical abstract: - Highlights: • The crystalline TiO{sub 2} nanochannel films were formed by anodizing titanium at 20 V in glycerol electrolyte containing various amounts of K{sub 3}PO{sub 4}, K{sub 2}HPO{sub 4} and KH{sub 2}PO{sub 4} at 433 K. • The growth rate of the films increased with an increase in the basicity of the electrolyte, leading to highly ordered nanochannel structures (the pore size was as small as ∼10 nm). • Size-selective photocatalytic decomposition for small organic molecules was achieved by utilizing the highly ordered TiO{sub 2} nanochannel films. - Abstract: We report the size-selective photocatalytic decomposition of organic molecules using crystalline anodic TiO{sub 2} nanochannel films as the photocatalyst. The porous TiO{sub 2} films were formed by anodizing titanium at 20 V in glycerol electrolyte containing various amounts of K{sub 3}PO{sub 4}, K{sub 2}HPO{sub 4}, and KH{sub 2}PO{sub 4} at 433 K. Regardless of the electrolyte composition, the as-formed TiO{sub 2} films had a crystalline anatase structure. The basicity of the electrolyte markedly influenced the morphology of the TiO{sub 2} nanochannel films; more regular nanochannels developed with increasing basicity of the electrolyte. Because the diameter of the nanochannels in the films formed in a basic electrolyte was as small as ∼10 nm, the anodic TiO{sub 2} nanochannel films with a thickness of 5 μm revealed a selective photocatalytic decomposition of methylene blue (MB) in a mixture of MB and direct red 80 (DR) kept under UV irradiation. The importance of the diameter of the nanochannels and their uniformity for size-selective decomposition of organic molecules were investigated.

  18. Modeling the splitting of thin silicon films from porosified crystalline silicon upon high temperature annealing in hydrogen

    Energy Technology Data Exchange (ETDEWEB)

    Ghannam, Moustafa Y.; Raheem, Yaser Abdul; Alomar, Abdul Azeez [EE Department, College of Engineering and Petroleum, Kuwait University, Safat (Kuwait); Poortmans, Jef [IMEC, Leuven (Belgium)

    2012-10-15

    The role of hydrogen in promoting thin film splitting from crystalline silicon wafers with pores or trenches during high temperature annealing is investigated. During the treatment, trenches are transformed into spherical voids that may laterally channel and split off the substrate. It is shown that the conditions necessary for hydrogen to contribute to the establishment of high stress levels around transformed voids or of pressure inside the voids are usually not satisfied. Hence promoting void coalescence by substantial void volume growth resulting from stress enhanced vacancy diffusion and/or exfoliation of separated voids are unlikely to occur. Also, there are no experimental evidence that confirms the role of hydrogen in triggering premature void collapse by Griffith fracture at relatively lower stress levels in conjunction with reduced surface energy. Therefore, it is concluded that splitting occurs during high temperature annealing only when neighboring voids are close enough to systematically coalesce. In that case, hydrogen may react at high temperature with the internal silicon surface of the voids (walls) and contribute to breaking the thin straps separating the voids which promotes channelling and film splitting (copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  19. Crystalline silicon surface passivation by thermal ALD deposited Al doped ZnO thin films

    Directory of Open Access Journals (Sweden)

    Jagannath Panigrahi

    2017-03-01

    Full Text Available The evidence of good quality silicon surface passivation using thermal ALD deposited Al doped zinc oxide (AZO thin films is demonstrated. AZO films are prepared by introducing aluminium precursor in between zinc and oxygen precursors during the deposition. The formation of AZO is confirmed by ellipsometry, XRD and Hall measurements. Effective minority carrier lifetime (τeff greater than 1.5ms at intermediate bulk injection levels is realized for symmetrically passivated p-type silicon surfaces under optimised annealing conditions of temperature and time in hydrogen ambient. The best results are realised at 450°C annealing for >15min. Such a layer may lead to implied open circuit voltage gain of 80mV.

  20. Surface Properties of Photocatalytic Nano-Crystalline Titania Films and Reactor for Photocatalytic Degradation of Chloroform

    DEFF Research Database (Denmark)

    Søgaard, Erik Gydesen; Simonsen, Morten Enggrob; Jensen, Henrik

    2006-01-01

    In this work two immobilizations techniques of TiO2 onto glass were investigated; deposition of previously made titania powder (PMTP) and a sol-gel method. The titania powder used in this work was Degussa P25, Hombikat UV100 and a powder prepared in our laboratory SC134. The prepared TiO2 films w......, as it was observed that the position of the coated lamp in the reactor yield different degradation rates....

  1. A field-emission pressure sensor of nano-crystalline silicon film

    Institute of Scientific and Technical Information of China (English)

    廖波; 韩建保

    2001-01-01

    The prototype of a field-emission pressure sensor with a novel structure based on the quantum tunnel effect is designed and manufactured, where a cathode emitter array is fabricated on the same silicon plate as the sensible film. For an integrated structure, not only the alignment and vacuum bonding between the anode and cathode are easy to be realized, but also a fine sensibility is guaranteed. For example, the measured current density emitted from the effective area of the sensor can reach 53.5 A/m2 when the exterior electric field is 5.6 x 105 V/m. Furthermore, it is demonstrated by finite element method simulation that the reduction in sensor sensitivity caused by emitters on the sensible film is negligible. The difference between the maximum deflections of the sensible films with and without emitters under specified pressure is less than 0.4 %. Therefore, it can be concluded that the novel field-emission sensor structure is reasonable.

  2. PREPARATION OF NANO-CRYSTALLINE Fe-Cu THIN FILMS AND THEIR MAGNETIC PROPERTIES

    Institute of Scientific and Technical Information of China (English)

    X.F.Bi; S.K.Gong; H.B.Xu; K.I.Arai

    2002-01-01

    Fe-Cu thin films of 0.2μm in thickness with different Cu contents were prepared byusing r.f. magnetron sputtering onto glass substrate. The effect of sputtering param-eters, including Ar gas pressure and input rf power, on the structure and magneticproperties was investigated. It was found that when the power is lower than 70W,the structure of the films remained single bcc-Fe phase with Cu solubility of up to50at.%. TEM observations for the bcc-Fe phase showed that the grain size was inthe nanometer range of less than 20nm. The coercivity of Fe-Cu films was largelyaffected by not only Ar gas pressure but also rf power, and reached about 2.5Oe in thepressure of 0.67-6.67Pa and in the power of less than 100W. In addition, saturationmagnetization, with Cu content less than 60at.%, was about proportional to the con-tent of bcc-Fe. When Cu content was at 60at.%, however, saturation magnetizationwas much smaller than its calculation value.

  3. Li ion diffusion measurements in crystalline and amorphous V{sub 2}O{sub 5} thin-film battery cathodes

    Energy Technology Data Exchange (ETDEWEB)

    McGraw, J.M.; Bahn, C.S.; Parilla, P.A.; Perkins, J.D.; Readey, D.W.; Ginley, D.S.

    2000-07-01

    Thin films of crystalline and amorphous V{sub 2}O{sub 5} were deposited by pulsed laser deposition (PLD) and the chemical diffusion coefficients, {tilde D}, were measured by the potentiostatic intermittent titration technique (PITT). In crystalline V{sub 2}O{sub 5} films, the maximum and minimum {tilde D} were found to be 1.7 x 10{sup {minus}12} cm{sup 2}/s and 5.8 x 10{sup {minus}15} cm{sup 2}/s respectively, with a general trend for {tilde D} to rise in single-phase regions. The changes in {tilde D} correlated well to the known phases in Li{sub x}V{sub 2}O{sub 5}. In amorphous V{sub 2}O{sub 5} films, {tilde D} exhibited a smooth, continuous decrease as the Li concentration increased.

  4. Crystalline silicon for thin film solar cells. Final report; Kristallines Silizium fuer Duennschichtsolarzellen. Schlussbericht

    Energy Technology Data Exchange (ETDEWEB)

    Wagner, H.

    2001-07-01

    Thin film solar cells based on silicon are of great interest for cost-effective conversion of solar energy into electric power. In order to reach this goal, intensive research is still necessary, pointing, e.g., to a further enhancement of the conversion efficiency, an improvement of stability and a reduction of the production time. Aim of the project work was the achievement of knowledge on microcrystalline silicon and its application in thin film solar cells by means of a broad research and development program. Material research focused on growth processes of the microcrystalline material, the incorporation and stability of hydrogen, the electronic transport and defects. In particular the transition from amorphous to microcrystalline material which is obtained for the present deposition methods by minor variations of the deposition parameters as well as the enhancement of the deposition rate were intensively studies. Another focus of research aimed toward the development and improvement of zinc oxide films which are of central importance for this type of solar cells for the application as transparent contacts. A comprehensive understanding was achieved. The films were incorporated in thin film solar cells and with conversion efficiencies >8% for single cells (at relatively high deposition rate) and 10% (stable) for tandem cells with amorphous silicon, top values were achieved by international standards. The project achievements serve as a base for a further development of this type of solar cell and for the transfer of this technology to industry. (orig.) [German] Duennschichtsolarzellen auf der Basis von Silizium sind von grossem Interesse fuer eine kostenguenstige Umwandlung von Sonnenenergie in elektrischen Strom. Um dieses Ziel zu erreichen, ist jedoch noch intensive Forschung, u.a. zur weiteren Steigerung des Wirkungsgrades, zur Verbesserung der Stabilitaet und zur Verkuerzung des Produktionsprozesses erforderlich. Ziel der Projektarbeiten war, durch ein

  5. Examining Wetting and Dewetting Processes in Thin-films on Crystalline Substrates at the Nanoscale

    Science.gov (United States)

    Hihath, Sahar

    Controlling the wetting and dewetting of ultra-thin films on solid substrates is important for a variety of technological and fundamental research applications. These applications include film deposition for semiconductor manufacturing, the growth of nanowires through nanoparticle-based catalysis sites, to making ordered arrays of nanoscale particles for electronic and optical devices. However, despite the importance of these processes, the underlying mechanisms by which a film wets a surface or dewets from it is still often unclear and widely debated. In this dissertation we examine wetting and dewetting processes in three materials systems that are relevant for device applications with the ultimate goal of understanding what mechanisms drive the wetting (or dewetting) process in each case. First, we examine the formation of wetting layers between nanoparticle films and highly conductive GaAs substrates for spintronic applications. In this case, the formation of a wetting layer is important for nanoparticle adhesion on the substrate surface. Wetting layers can be made by annealing these systems, which causes elemental diffusion from nanoparticles into the substrate, thereby adhesion between the nanoparticles and the substrate. Here we investigate the feasibility of forming a wetting layer underneath nanoparticles post-annealing in a system of Fe3O4 nanoparticles on a (100) GaAs substrate by studying the interface structure and composition via Transmission Electron Microscopy (TEM), Scanning Transmission Electron Microscopy (STEM), Electron Energy Loss Spectroscopy (EELS) and Energy Dispersive X-ray Spectroscopy (EDXS). Electron Energy-Loss fine structures of the Fe-L 3,2 and O-K absorption edges were quantitatively analyzed to gain insight about the compositional gradient of the interface between the nanoparticles and the GaAs substrate. Additionally, real-space density functional theory calculations of the dynamical form factor was performed to confirm the

  6. Synthesis and characterization of structural and optical properties of single crystalline a-TiO2 films on MgAl2O4(111) substrate

    Science.gov (United States)

    Xu, Haisheng; Feng, Xianjin; Luan, Caina; Ma, Jin

    2017-01-01

    Anatase phase TiO2 (a-TiO2) films have been deposited on MgAl2O4(111) substrates by the metal organic chemical vapor deposition (MOCVD) method at the substrate temperatures of 500-650°C. The structural analyses showed that the films were highly (004) oriented with tetragonal anatase structure and the epitaxial relationship was given as a-TiO2(004)||MgAl2O4 (111). The sample prepared at 600°C exhibited the best crystallization with a single-crystalline epitaxial film. The average transmittance of every TiO2 film in the visible range exceeded 90% excluding the influence of the substrate. The morphology and composition of the TiO2 films have also been studied in detail.

  7. Integrating superconducting phase and topological crystalline quantum spin Hall effect in hafnium intercalated gallium film

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Jian, E-mail: jzhou2@vcu.edu, E-mail: pjena@vcu.edu; Jena, Puru, E-mail: jzhou2@vcu.edu, E-mail: pjena@vcu.edu [Department of Physics, Virginia Commonwealth University, Richmond, Virginia 23284 (United States); Zhang, Shunhong [Center for Applied Physics and Technology, College of Engineering, Peking University, Beijing 100871 (China); Wang, Qian [Center for Applied Physics and Technology, College of Engineering, Peking University, Beijing 100871 (China); Department of Physics, Virginia Commonwealth University, Richmond, Virginia 23284 (United States)

    2016-06-20

    Motivated by the growth of superconducting atomic hexagonal Ga layers on GaN surface we have calculated the electronic properties of Hf intercalated honeycomb Ga layers using first-principles theory. In contrast to the hexagonal Ga layers where substrate is necessary for their stability, we find the above structure to be dynamically stable in its freestanding form with small formation energy. In particular, six Dirac cones composed of Hf-d{sub xy}/d{sub x2-y2} orbitals are observed in the first Brillouin zone, slightly below the Fermi energy. Spin-orbit coupling opens a large band gap of 177 meV on these Dirac cones. By calculating its mirror Chern number, we demonstrate that this band gap is topologically nontrivial and protected by mirror symmetry. Such mirror symmetry protected band gaps are rare in hexagonal lattice. A large topological crystalline quantum spin Hall conductance σ{sub SH} ∼ −4 e{sup 2}/h is also revealed. Moreover, electron-phonon coupling calculations reveal that this material is superconducting with a transition temperature T{sub c} = 2.4 K, mainly contributed by Ga out-of-plane vibrations. Our results provide a route toward manipulating quantum spin Hall and superconducting behaviors in a single material which helps to realize Majorana fermions and topological superconductors.

  8. Epitaxial growth of single-crystalline Ni46Co4Mn37In13 thin film and investigation of its magnetoresistance

    Directory of Open Access Journals (Sweden)

    Chao Jing

    2014-02-01

    Full Text Available Single-crystalline thin film of Ni46Co4Mn37In13 alloy grown on MgO(0 0 1 was prepared by Pulsed Laser Deposition (PLD method. The epitaxial growth process was monitored by in situ Reflection High Energy Electron Diffraction (RHEED. Structure measurements reveal that the single-crystalline Ni46Co4Mn37In13 film could be stabilized on MgO(0 0 1 as a face-centered-cubic (fcc structure. From the evolution of RHEED, it can be deduced from the patterns that Volmer-Weber growth mechanism (3-D dominates at the initial stage. Then, it becomes layer-by-layer growth mechanism (2-D with the increase of the film thickness. Lastly, growth mechanism converts back to 3-D when the film is thick enough. Both electrical resistance and magnetoresistance (MR were measured at various temperatures using Physical Property Measurement System (PPMS. The electrical resistance measurement indicates that the film sample does not have martensitic transformation in the measurement temperature range. However, with the temperature increasing, the film sample exhibits a transition from metallic to semiconductor-like properties. Moreover, a small negative magnetoresistance was observed at different temperature, which can be explained by the spin-dependent scattering of the conduction electrons.

  9. Improvement of epitaxy and crystallinity in YBa2Cu3Oy thin films grown on silicon with double buffer of ECO/YSZ

    Institute of Scientific and Technical Information of China (English)

    GAO Ju; YANG Jian

    2006-01-01

    A novel double buffer of Eu2CuO4 (ECO)/YSZ (yttrium-stabilized zirconia) was developed for growing YBa2Cu3Oy (YBCO) thin films on Si substrates. In these films,the severe reaction between Si and YBCO is blocked by the first YSZ layer,whereas,the degradation of crystallinity and superconductivity in the grown YBCO is greatly improved by the second ECO layer. Such an ECO material possesses a very stable 214-T' structure and excellent compatibilities with YBCO and YSZ. The result shows that the epitaxy and crystallinity of YBCO deposited on Si could be considerably enhanced by using the ECO/YSZ double buffer. The grown films are characterized by high-resolution X-ray diffraction,grazing incidence X-ray reflection,and transmission electron microscopy (TEM),respectively. It is found that well defined interfaces are formed at YBCO/ECO/YSZ boundaries. No immediate layer could be seen. The defect density in all grown layers is kept at a lower level. The YBCO film surface turns out to be very smooth. These films have full superconducting transitions above 88 K and high current carrying capacity at 77 K. The successful growth of highly epitaxial YBCO thin films on silicon with ECO/YSZ buffer,demonstrate the advantages of such a double buffer structure.

  10. Impact of bias stability for crystalline InZnO thin-film transistors

    Science.gov (United States)

    Kim, Hojoong; Choi, Daehwan; Park, Solah; Park, Kyung; Park, Hyun-Woo; Chung, Kwun-Bum; Kwon, Jang-Yeon

    2017-06-01

    Crystallized InZnO thin-film transistors (IZO TFTs) are investigated to identify a potential for the maintenance of high electrical performances with a consistent stability. The transition from an amorphous to a crystallization structure appeared at an annealing temperature around 800 °C, and it was observed using transmission electron microscopy and time-of-flight secondary ion mass spectrometry analysis. The field-effect mobility of the crystallized IZO TFTs was boosted up to 53.58 cm2/V s compared with the 11.79 cm2/V s of the amorphous devices, and the bias stability under the negative stress was greatly enhanced even under illumination. The defect states related to the oxygen vacancy near the conduction band edge decreased after the crystallization, which is a form of electrical structure evidence for the reliability impact regarding the crystallized IZO TFTs.

  11. Crystalline Structure, Electrophysical and Magnetoresistive Properties of High Entropy Film Alloys

    Directory of Open Access Journals (Sweden)

    S.I. Vorobiov

    2016-10-01

    Full Text Available The results of research the phase composition and electrophysical (resistivity, thermal coefficient of resistance, strain coefficient and magnetoresistive properties (anisotropic magnetoresistance of thin films (to 40 nm high entropy alloys (HEA based on Al, Cu, Ni, Cr, Fe, Co and Ti. It is established that after forming the layered samples by electron condensation on diffraction pattern fixed lines from the two phases of the fcc lattice and actually tracks the bcc phase. After homogenization by annealing the samples is one of the fcc phase s.s. HEA and traces bcc phase (likely s.s. (-Fe, Cr, that samples are single phase. The study electrical properties allowed watching the first double-stage plastic deformation of a large value of the coefficient gauge (300 units, watch probably, is typical for НЕА. The character dependences MR from induction indicates to realization of anisotropic magnetoresistance.

  12. Formation of nano-crystalline C{sub 3}N{sub 4} thin films on stainless steel from hexamethylenetetramine and urea using simple sol–gel method

    Energy Technology Data Exchange (ETDEWEB)

    Uddin, Md. Nizam, E-mail: nizam3472@yahoo.com [Department of Chemistry, Shahjalal University of Science and Technology, Sylhet-3114 (Bangladesh); Yang, Yong Suk, E-mail: ysyang@pusan.ac.kr [College of Nanoscience and Nanotechnology, RCDAMP, Pusan National University, Pusan 609-735 (Korea, Republic of)

    2013-12-02

    Nano-crystalline C{sub 3}N{sub 4} thin films have been deposited on stainless steel (SS) substrates from hexamethylenetetramine (HMTA) and urea separately using simple sol–gel method. For that purpose hot-dip coating processes were carried out. The coated specimens were annealed at 800 °C in N{sub 2}. The samples were analyzed using field emission scanning electron microscopy, nanoindenter, X-ray photoelectron spectroscopy and X-ray diffraction. The deposits show C{sub 3}N{sub 4} with clear hexagonal morphology and size range of 50–500 nm. The hardness values of the synthesized films show 2.74–4.35 times higher than that of SS. The hardness and Young's modulus of the films synthesized from HMTA show the highest values; 16.10 and 394.29 GPa, respectively. This significant achievement of the production of nano-crystalline C{sub 3}N{sub 4} from inexpensive sources and simple methods at ambient pressure opens up a door for its low cost production on SS for a wide range of applications. Irrespective of the sources with different chemical structures we got similar product, which implies that different sources of carbon and nitrogen might be used with our methods of sol–gel deposition. - Highlights: • Formation of nano-crystalline C{sub 3}N{sub 4} thin films with a low cost and simple sol–gel method • Uses of inexpensive materials, like steel, hexamethylenetetramine and urea • Repeatability of this method using different precursors for crystalline C{sub 3}N{sub 4} thin films.

  13. Artificial neural systems using memristive synapses and nano-crystalline silicon thin-film transistors

    Science.gov (United States)

    Cantley, Kurtis D.

    Future computer systems will not rely solely on digital processing of inputs from well-defined data sets. They will also be required to perform various computational tasks using large sets of ill-defined information from the complex environment around them. The most efficient processor of this type of information known today is the human brain. Using a large number of primitive elements (˜1010 neurons in the neocortex) with high parallel connectivity (each neuron has ˜104 synapses), brains have the remarkable ability to recognize and classify patterns, predict outcomes, and learn from and adapt to incredibly diverse sets of problems. A reasonable goal in the push to increase processing power of electronic systems would thus be to implement artificial neural networks in hardware that are compatible with today's digital processors. This work focuses on the feasibility of utilizing non-crystalline silicon devices in neuromorphic electronics. Hydrogenated amorphous silicon (a-Si:H) nanowire transistors with Schottky barrier source/drain junctions, as well as a-Si:H/Ag resistive switches are fabricated and characterized. In the transistors, it is found that the on-current scales linearly with the effective width W eff of the channel nanowire array down to at least 20 nm. The solid-state electrolyte resistive switches (memristors) are shown to exhibit the proper current-voltage hysteresis. SPICE models of similar devices are subsequently developed to investigate their performance in neural circuits. The resulting SPICE simulations demonstrate spiking properties and synaptic learning rules that are incredibly similar to those in biology. Specifically, the neuron circuits can be designed to mimic the firing characteristics of real neurons, and Hebbian learning rules are investigated. Finally, some applications are presented, including associative learning analogous to the classical conditioning experiments originally performed by Pavlov, and frequency and pattern

  14. Detachment of CVD-grown graphene from single crystalline Ni films by a pure gas phase reaction

    Science.gov (United States)

    Zeller, Patrick; Henß, Ann-Kathrin; Weinl, Michael; Diehl, Leo; Keefer, Daniel; Lippmann, Judith; Schulz, Anne; Kraus, Jürgen; Schreck, Matthias; Wintterlin, Joost

    2016-11-01

    Despite great previous efforts there is still a high need for a simple, clean, and upscalable method for detaching epitaxial graphene from the metal support on which it was grown. We present a method based on a pure gas phase reaction that is free of solvents and polymer supports and avoids mechanical transfer steps. The graphene was grown on 150 nm thick, single crystalline Ni(111) films on Si(111) wafers with YSZ buffer layers. Its quality was monitored by using low energy electron diffraction and scanning tunneling microscopy. The gas phase etching uses a chemical transport reaction, the so-called Mond process, based on the formation of gaseous nickel tetracarbonyl in ~ 1 bar of CO at ~ 75 °C and by adding small amounts of sulfide catalysts. X-ray photoelectron spectroscopy, Raman spectroscopy and scanning electron microscopy were used to characterize the detached graphene. It was found that the method successfully removes the nickel from underneath the graphene layer, so that the graphene lies on the insulating oxide buffer layer. Small residual particles of nickel sulfide and cracks in the obtained graphene layer were identified. The defect concentrations were comparable to graphene samples obtained by wet chemical etching and by the bubbling transfer.

  15. Optimized absorption of solar radiations in nano-structured thin films of crystalline silicon via a genetic algorithm

    Science.gov (United States)

    Mayer, Alexandre; Muller, Jérôme; Herman, Aline; Deparis, Olivier

    2015-08-01

    We developed a genetic algorithm to achieve optimal absorption of solar radiation in nano-structured thin films of crystalline silicon (c-Si) for applications in photovoltaics. The device includes on the front side a periodic array of inverted pyramids, with conformal passivation layer (a-Si:H or AlOx) and anti-reflection coating (SiNx). The device also includes on the back side a passivation layer (a-Si:H) and a flat reflector (ITO and Ag). The geometrical parameters of the inverted pyramids as well as the thickness of the different layers must be adjusted in order to maximize the absorption of solar radiations in the c-Si. The genetic algorithm enables the determination of optimal solutions that lead to high performances by evaluating only a reduced number of parameter combinations. The results achieved by the genetic algorithm for a 40μm thick c-Si lead to short-circuit currents of 37 mA/cm2 when a-Si:H is used for the front-side passivation and 39.1 mA/cm2 when transparent AlOx is used instead.

  16. Highly efficient hydrogen evolution reaction using crystalline layered three-dimensional molybdenum disulfides grown on graphene film.

    Energy Technology Data Exchange (ETDEWEB)

    Behranginia, Amirhossein; Asadi, Mohammad; Liu, Cong; Yasaei, Poya; Kumar, Bijandra; Phillips, Patrick; Foroozan, Tara; Waranius, Joseph C.; Kim, Kibum; Abiade, Jeremiah; Klie, Robert F.; Curtiss, Larry A.; Salehi-Khojin, Amin

    2016-01-26

    Electrochemistry is central to applications in the field of energy storage and generation. However, it has advanced far more slowly over the last two decades, mainly because of a lack of suitable and affordable catalysts. Here, we report the synthesis of highly crystalline layered three-dimensional (3D) molybdenum disulfide (MoS2) catalysts with bare Mo-edge atoms and demonstrate their remarkable performance for the hydrogen evolution reaction (HER). We found that Mo-edge-terminated 3D MoS2 directly grown on graphene film exhibits a remarkable exchange current density (18.2 mu A cm(-2)) and turnover frequency (>4 S-1) for HER. The obtained exchange current density is 15.2 and 2.3 times higher than that of MoS2/graphene and MoS2/Au catalysts, respectively, both with sulfided Mo-edge atoms. An easily scalable and robust growth process on a wide variety of substrates, along with prolonged stability, suggests that this material is a promising catalyst in energy-related applications.

  17. Atomic-scale study of the amorphous-to-crystalline phase transition mechanism in GeTe thin films

    CERN Document Server

    Mantovan, R.; Mokhles Gerami, A.; Mølholt, T. E.; Wiemer, C.; Longo, M.; Gunnlaugsson, H. P.; Johnston, K.; Masenda, H.; Naidoo, D.; Ncube, M.; Bharuth-Ram, K.; Fanciulli, M.; Gislason, H. P.; Langouche, G.; Ólafsson, S.; Weyer, G.

    The underlying mechanism driving the structural amorphous-to-crystalline transition in Group VI chalcogenides is still a matter of debate even in the simplest GeTe system. We exploit the extreme sensitivity of 57Fe emission Mössbauer spectroscopy, following dilute implantation of 57Mn (T½ = 1.5 min) at ISOLDE/CERN, to study the electronic charge distribution in the immediate vicinity  of the 57Fe probe substituting Ge (FeGe), and to interrogate the local environment of FeGe over the amorphous-crystalline phase transition in GeTe thin films. Our results show that the local structure  of as-sputtered amorphous GeTe is a combination of tetrahedral and defect-octahedral sites. The main effect of the crystallization is the conversion from tetrahedral to defect-free octahedral sites.  We discover that only the tetrahedral fraction in amorphous GeTe participates to the change of the FeGe-Te chemical bond...

  18. Effect of germanium fraction on the effective minority carrier lifetime in thin film amorphous-Si/crystalline-Si1xGex/crystalline-Si heterojunction solar cells

    Directory of Open Access Journals (Sweden)

    Sabina Abdul Hadi

    2013-05-01

    Full Text Available The effect of germanium fraction on the effective minority carrier lifetime (τeff for epitaxial Si1-xGex layers is extracted using measurements on amorphous(a Si(n+/crystalline(c-Si1-xGex(p/crystalline(c-Si(p+ heterojunction solar cells with x = 0.25, 0.41 and 0.56. The τeff extracted for Si0.75Ge0.25 is ∼1 μs, decreasing to ∼ 40 ns for Si0.44Ge0.56. In addition, the band-gap voltage offset (Woc increases from 0.5 eV for Si to 0.65 eV for 56% Ge indicating an increase in non-radiative recombination consistent with the reduction in effective lifetime.

  19. Cubic-to-monoclinic phase transition during the epitaxial growth of crystalline Gd2O3 films on Ge(001) substrates

    Science.gov (United States)

    Molle, Alessandro; Wiemer, Claudia; Bhuiyan, Md. Nurul Kabir; Tallarida, Grazia; Fanciulli, Marco; Pavia, Giuseppe

    2007-05-01

    Thin crystalline films of Gd2O3 are grown on an atomically flat Ge(001) surface by molecular beam epitaxy and are characterized in situ by reflection high energy electron diffraction and x-ray photoelectron spectroscopy, and ex situ by x-ray diffraction (XRD), atomic force microscopy (AFM), and transmission electron microscopy. The first stage of the growth corresponds to a cubic (110) structure, with two equiprobable, 90° rotated, in-plane domains. Increasing the thickness of the films, a phase transition from cubic (110) to monoclinic (100) oriented crystallites is observed which keeps the in-plane domain rotation, as evidenced by XRD and AFM.

  20. High-Mobility Transistors Based on Large-Area and Highly Crystalline CVD-Grown MoSe2 Films on Insulating Substrates.

    Science.gov (United States)

    Rhyee, Jong-Soo; Kwon, Junyeon; Dak, Piyush; Kim, Jin Hee; Kim, Seung Min; Park, Jozeph; Hong, Young Ki; Song, Won Geun; Omkaram, Inturu; Alam, Muhammad A; Kim, Sunkook

    2016-03-23

    Large-area and highly crystalline CVD-grown multilayer MoSe2 films exhibit a well-defined crystal structure (2H phase) and large grains reaching several hundred micrometers. Multilayer MoSe2 transistors exhibit high mobility up to 121 cm(2) V(-1) s(-1) and excellent mechanical stability. These results suggest that high mobility materials will be indispensable for various future applications such as high-resolution displays and human-centric soft electronics.

  1. Degree of crystallinity and strain in B{sub 4}C and SiC thin films as a function of processing conditions

    Energy Technology Data Exchange (ETDEWEB)

    Hershberger, J.; Yalisove, S.M.; Bilello, J.C. [Univ. of Michigan, Ann Arbor, MI (United States); Rek, Z.U. [Stanford Univ., CA (United States). Stanford Synchrotron Radiation Lab.; Kustas, F. [Technology Assessment and Transfer, Annapolis, MD (United States)

    1998-12-31

    Amorphous and crystalline content in sputtered B{sub 4}C and SiC thin films has been analyzed by synchrotron grazing incidence x-ray scattering (GIXS). GIXS provided quantitative information on the average structure while TEM was used to find inhomogeneities such as small volume fraction phases. GIXS results were compared to simulations to determine average particle size or bond length for crystalline or amorphous phases respectively. In this work, the authors compared results from films deposited with, and without, an RF bias applied to the substrate during deposition. Results indicated that SiC can be described as strained polycrystalline material with particle size of approximately 13 {angstrom} for biased samples and 9 {angstrom} for unbiased samples. Boron carbide deposited without bias was completely crystalline with a particle size of approximately 30 {angstrom}, while the data suggested that B{sub 4}C deposited with bias is amorphous. The scattering from the biased materials was fourier transformed to yield radial distribution functions (RDF). This provided nearest neighbor distances, and it was demonstrated that the technique can be used to determine full three-dimensional strain tensors in amorphous thin films.

  2. DEFORMATION OF SOFT COLLOIDAL CRYSTALLINE STRUCTURE-THEORETICAL CONSIDERATIONS AND EXPERIMENTAL EVIDENCES BY SYNCHROTRON SMALL-ANGLE X-RAY SCATTERING ON TENSILE STRETCHED POLYMERIC LATEX FILM

    Institute of Scientific and Technical Information of China (English)

    Jian-qi Zhang; Yong-feng Men

    2009-01-01

    Films obtained via drying a polymeric latex dispersion are normally colloidal crystalline where latex particles are packed into a face centered cubic (fcc) structure.Different from conventional atomic crystallites or hard sphere colloidal crystallites,the crystalline structure of these films is normally deformable due to the low glass transition temperature of the latex particles.Upon tensile deformation,depending on the drawing direction with respect to the normal of specific crystallographic plane,one observes different crystalline structural changes.Three typical situations where crystallographic c-axis,body diagonal or face diagonal of the fcc structure of the colloidal crystallites being parallel to the stretching direction were investigated.Tilting angle and d-spacing of several crystallographic planes as a function of draw ratio at each situation were derived.Experimental evidences for such relationships were also given by considering in-situ synchrotron small angle X-ray scattering data of a typical latex film during stretching.It turns out that the experimental results are fully in accordance with the mathematical calculations.

  3. Influence of surfactant and annealing temperature on optical properties of sol-gel derived nano-crystalline TiO2 thin films.

    Science.gov (United States)

    Vishwas, M; Sharma, Sudhir Kumar; Rao, K Narasimha; Mohan, S; Gowda, K V Arjuna; Chakradhar, R P S

    2010-03-01

    Titanium dioxide thin films have been synthesized by sol-gel spin coating technique on glass and silicon substrates with and without surfactant polyethylene glycol (PEG). XRD and SEM results confirm the presence of nano-crystalline (anatase) phase at an annealing temperature of 300 degrees C. The influence of surfactant and annealing temperature on optical properties of TiO(2) thin films has been studied. Optical constants and film thickness were estimated by Swanepoel's (envelope) method and by ellipsometric measurements in the visible spectral range. The optical transmittance and reflectance were found to decrease with an increase in PEG percentage. Refractive index of the films decreased and film thickness increased with the increase in percentage of surfactant. The refractive index of the un-doped TiO(2) films was estimated at different annealing temperatures and it has increased with the increasing annealing temperature. The optical band gap of pure TiO(2) films was estimated by Tauc's method at different annealing temperature.

  4. Improving the optical and crystalline properties on CdS thin films growth on small and large area by using CBD technique

    Energy Technology Data Exchange (ETDEWEB)

    Albor A, M. L.; Flores M, J. M.; Hernandez V, C.; Contreras P, G.; Mejia G, C.; Rueda M, G. [IPN, Escuela Superior de Fisica y Matematicas, Departamento de Fisica, Unidad Profesional Adolfo Lopez Mateos, Zacatenco, 07738 Ciudad de Mexico (Mexico); Gonzalez T, M. A. [IPN, Escuela Superior de Computo, Departamento de Formacion Basica, Unidad Profesional Adolfo Lopez Mateos, 07738 Ciudad de Mexico (Mexico)

    2016-11-01

    CdS polycrystalline thin films have been used as window layer in solar cells; the optical and crystalline quality of the CdS-partner plays and important role in the photovoltaic device performance. CdS thin films were deposited by using Chemical Bath Deposition. The SnO{sub 2}:F substrates used were chemically treated with HCl (0.1 M) and others were thermally annealed in different atmospheres (Ar and O{sub 2}). The physical properties of CdS thin films were influenced by the HCl treatment, position, size and the substrates movement inside the reaction beaker. The CdS samples were deposited in areas of 4 cm{sup 2}, 50 cm{sup 2} and 100 cm{sup 2}. Finally CdS thin films with thickness of 35-300 nm with good optical and crystalline quality on a uniform morphology were obtained. Transmittance values were obtained for all samples about 85-90 % with an average of gap energy of 2.5 eV. The structural characteristics of the samples were determined by the X-ray diffraction patterns, by means of a D-500 Siemens X-ray system. (Author)

  5. Impact of LT-GaAs layers on crystalline properties of the epitaxial GaAs films grown by MBE on Si substrates

    Science.gov (United States)

    Petrushkov, M. O.; Putyato, M. A.; Gutakovsky, A. K.; Preobrazhenskii, V. V.; Loshkarev, I. D.; Emelyanov, E. A.; Semyagin, B. R.; Vasev, A. V.

    2016-08-01

    GaAs films with low-temperature GaAs (LT-GaAs) layers were grown by molecular beam epitaxy (MBE) method on vicinal (001) Si substrates oriented 6° off towards [110]. The grown structures were different with the thickness of LT-GaAs layers and its arrangement in the film. The processes of epitaxial layers nucleation and growth were controlled by reflection high energy electron diffraction (RHEED) method. Investigations of crystalline properties of the grown structures were carried out by the methods of X-ray diffraction (XRD) and transmission electron microscopy (TEM). The crystalline perfection of the GaAs films with LT-GaAs layers and the GaAs films without ones was comparable. It was found that in the LT- GaAs/Si layers the arsenic clusters are formed, as it occurs in the LT-GaAs/GaAs system without dislocation. It is shown that large clusters are formed mainly on the dislocations. However, the clusters have practically no effect on the density and the propagation path of threading dislocations. With increasing thickness of LT-GaAs layer the dislocations are partly bent along the LT-GaAs/GaAs interface due to the presence of stresses.

  6. Multivariate analysis of DSC-XRD simultaneous measurement data: a study of multistage crystalline structure changes in a linear poly(ethylene imine) thin film.

    Science.gov (United States)

    Kakuda, Hiroyuki; Okada, Tetsuo; Otsuka, Makoto; Katsumoto, Yukiteru; Hasegawa, Takeshi

    2009-01-01

    A multivariate analytical technique has been applied to the analysis of simultaneous measurement data from differential scanning calorimetry (DSC) and X-ray diffraction (XRD) in order to study thermal changes in crystalline structure of a linear poly(ethylene imine) (LPEI) film. A large number of XRD patterns generated from the simultaneous measurements were subjected to an augmented alternative least-squares (ALS) regression analysis, and the XRD patterns were readily decomposed into chemically independent XRD patterns and their thermal profiles were also obtained at the same time. The decomposed XRD patterns and the profiles were useful in discussing the minute peaks in the DSC. The analytical results revealed the following changes of polymorphisms in detail: An LPEI film prepared by casting an aqueous solution was composed of sesquihydrate and hemihydrate crystals. The sesquihydrate one was lost at an early stage of heating, and the film changed into an amorphous state. Once the sesquihydrate was lost by heating, it was not recovered even when it was cooled back to room temperature. When the sample was heated again, structural changes were found between the hemihydrate and the amorphous components. In this manner, the simultaneous DSC-XRD measurements combined with ALS analysis proved to be powerful for obtaining a better understanding of the thermally induced changes of the crystalline structure in a polymer film.

  7. Anomalous behavior of B1g mode in highly transparent anatase nano-crystalline Nb-doped Titanium Dioxide (NTO thin films

    Directory of Open Access Journals (Sweden)

    Subodh K. Gautam

    2015-12-01

    Full Text Available The effect of Niobium doping and size of crystallites on highly transparent nano-crystalline Niobium doped Titanium Dioxide (NTO thin films with stable anatase phase are reported. The Nb doping concentration is varied within the solubility limit in TiO2 lattice. Films were annealed in controlled environment for improving the crystallinity and size of crystallites. Elemental and thickness analysis were carried out using Rutherford backscattering spectrometry and cross sectional field emission scanning electron microscopy. Structural characteristics reveal a substitutional incorporation of Nb+5 in the TiO2 lattice which inhibits the anatase crystallites growth with increasing the doping percentage. The micro-Raman (MR spectra of films with small size crystallites shows stiffening of about 4 cm−1 for the Eg(1 mode and is ascribed to phonon confinement and non-stoichiometry. In contrast, B1g mode exhibits a large anomalous softening of 20 cm−1 with asymmetrical broadening; which was not reported for the case of pure TiO2 crystallites. This anomalous behaviour is explained by contraction of the apical Ti-O bonds at the surface upon substitutional Nb5+ doping induced reduction of Ti4+ ions also known as hetero-coordination effect. The proposed hypotheses is manifested through studying the electronic structure and phonon dynamics by performing the near edge x-ray absorption fine structure (NEXAFS and temperature dependent MR down to liquid nitrogen temperature on pure and 2.5 at.% doped NTO films, respectively.

  8. Hetero-epitaxial growth of the cubic single crystalline HfO 2 film as high k materials by pulsed laser ablation

    Science.gov (United States)

    Zhang, Xinqiang; Tu, Hailing; Wang, Xiaona; Xiong, Yuhua; Yang, Mengmeng; Wang, Lei; Du, Jun

    2010-10-01

    We report a hetero-epitaxial growth of cubic single crystalline HfO 2 film on Si substrates as high k materials by pulse laser ablation (PLA) at 820 °C. To eliminate the interfacial defects, the HfO 2 film has then been annealed at 900 °C for 5 min in N 2. Reflection high-energy electron diffraction (RHEED) results indicate orientation of the HfO 2 film on Si substrates corresponding to (∥( and [∥[. An interface layer has been revealed by high-resolution transmission electron microscope (HRTEM). Through capacitance-voltage ( C- V) and current-voltage ( I- V), it has been obtained that the leakage current of the HfO 2 gate insulator with dielectric constant of 26 is 5×10 -6 A/cm 2 at -1 V.

  9. Technology development of the nano-crystalline silicon thin film materials%纳米晶硅薄膜材料的技术发展

    Institute of Scientific and Technical Information of China (English)

    吴大维; 吴越侠; 唐志斌

    2012-01-01

    The recent development of the nano - crystalline silicon thin film material is reviewed in this paper. Some ideas is proposed to promote advances of the silicon thin film solar cells. In this paper, we make come discussions on the development of silicon thin film solar cells and predict the prospect of latest ones.%本文综述了硅基薄膜材料的发展历程;提出了一些促进硅基薄膜电池技术进步的思路;并对硅 基薄膜电池的发展进行了有益的探讨,对最新的硅基薄膜太阳能电池作了展望.

  10. Transformation of valence states and luminescence of chromium ions in the YAG:Cr, Mg and GGG:Cr, Mg single crystalline films

    Science.gov (United States)

    Zakharko, Ya. M.; Luchechko, A. P.; Syvorotka, I. M.; Syvorotka, I. I.; Ubizskii, S. B.; Melnyk, S. S.

    2005-01-01

    Peculiarities of absorption spectra and recombination luminescence of Y3Al5O12 (YAG) and Cd3Ga5O12 (GGG) single crystalline films co-doped with chromium and magnesium have been studied. The change of impurities concentration and annealing of samples in the reducing atmosphere have an influence on absorption in the visible and UV range. Using the results on absorption coefficient measurements in the band of 480 nm and in the absorption bands of Cr3+ ions, it was determined, that near 50% of the chromium ions located in octahedral sites are in the Cr4+ state in films with high chromium concentration. The investigation of thermostimulated luminescence confirms the existence of Cr2+ trap centres in the irradiated films caused by the magnesium dopant.

  11. Effects of post-deposition annealing on crystalline state of GeSn thin films sputtered on Si substrate and its application to MSM photodetector

    Science.gov (United States)

    Mahmodi, H.; Hashim, M. R.

    2016-10-01

    Ge1-x Sn x alloy thin films were prepared by co-sputtering from Ge and Sn targets on a Si (100) substrate at room temperature, and were then heated at temperature ranging from 200 {}\\circ {{C}} to 500 {}\\circ {{C}} in N2 ambient to reduce the disorder and defects and increase the crystalline quality of the films. Images obtained by field emission scanning electron microscopy revealed that the as-grown and all annealed samples displayed a densely packed morphology. The atomic percent composition of Sn in the as-grown Ge1-x Sn x film is 5.7 at % . Energy-dispersive x-ray spectroscopy results showed Sn surface segregation after heat treatment, as the Sn composition is reduced to 3.3 at % for the film annealed at 500 {}\\circ C. The Raman analysis showed that the only observed phonon mode is attributed to Ge-Ge vibrations. The Raman spectra of as-sputtered and annealed films revealed their nanocrystalline-amorphous nature. The samples annealed at lower temperature exhibited higher phonon intensity, indicating the improvement of crystallinity of the film. The optoelectronic characteristics of fabricated metal-semiconductor-metal photodetectors on the annealed sample at 200 {}\\circ {{C}} and the as-sputtered sample were studied in the dark and under illumination. Compared with the as-sputtered one, the annealed sample showed lower dark current and higher current gain of 209. The results showed the potentiality of using the sputtering technique to produce GeSn layer for optoelectronics application.

  12. Effect of crystallinity of Co layer on perpendicular exchange bias in Au-capped ultrathin Co film on Cr{sub 2}O{sub 3}(0 0 0 1) thin film

    Energy Technology Data Exchange (ETDEWEB)

    Shiratsuchi, Yu, E-mail: shiratsuchi@mat.eng.osaka-u.ac.j [Department of Materials Science and Engineering, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871 (Japan); Kawahara, Shin-ichi; Noutomi, Hayato [Department of Materials Science and Engineering, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871 (Japan); Arakawa, Kazuto; Mori, Hirotaro [Research Center for Ultra-High Voltage Electron Microscopy, Osaka University, 7-1 Mihogaoka, Ibaraki, Osaka 567-0047 (Japan); Nakatani, Ryoichi [Department of Materials Science and Engineering, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871 (Japan)

    2011-03-15

    The effect of the crystalline quality of ultrathin Co films on perpendicular exchange bias (PEB) has been investigated using a Au/Co/Au/{alpha}-Cr{sub 2}O{sub 3} thin film grown on a Ag-buffered Si(1 1 1) substrate. Our investigation is based on the effect of the Au spacer layer on the crystalline quality of the Co layer and the resultant changes in PEB. An {alpha}-Cr{sub 2}O{sub 3}(0 0 0 1)layer is fabricated by the thermal oxidization of a Cr(1 1 0) thin film. The structural properties of the {alpha}-Cr{sub 2}O{sub 3}(0 0 0 1) layer including the cross-sectional structure, lattice parameters, and valence state have been investigated. The fabricated {alpha}-Cr{sub 2}O{sub 3}(0 0 0 1) layer contains twin domains and has slightly smaller lattice parametersthan those of bulk-Cr{sub 2}O{sub 3}. The valence state of the Cr{sub 2}O{sub 3}(0 0 0 1) layer is similar to that of bulk Cr{sub 2}O{sub 3}. The ultrathin Co film directly grown on the {alpha}-Cr{sub 2}O{sub 3}(0 0 0 1) deposited by an e-beam evaporator is polycrystalline. The insertion of a Au spacer layer with a thickness below 0.5 nm improves the crystalline quality of Co, probably resulting in hcp-Co(0 0 0 1). Perpendicular magnetic anisotropy (PMA) appears below the Neel temperature of Cr{sub 2}O{sub 3} for all the investigated films. Although the PMA appears independently of the crystallinequality of Co, PEB is affected by the crystalline quality of Co. For the polycrystalline Co film, PEB is low, however, a high PEB is observed for the Co films whose in-plane atom arrangement is identical to that of Cr{sup 3+} in Cr{sub 2}O{sub 3}(0 0 0 1). The results are qualitatively discussed on the basis of the direct exchange coupling between Cr and Co at the interface as the dominant coupling mechanism. - Research Highlights: Crystalline orientation of ferromagnetic layer affects the high perpendicular exchange bias. Influence of the perpendicular magnetic anisotropy on the perpendicular exchange bias is weak. Direct

  13. Lifetime Tests on a High Ohms/Square Metalized High Crystalline Polypropylene Film Capacitor with Application to a Marx Modulator

    Energy Technology Data Exchange (ETDEWEB)

    Kemp, Mark A.; Burkhart, Craig; Tang, Tao; /SLAC

    2010-06-07

    This paper presents accelerated lifetime tests on a polypropylene film capacitor. Experimental parameters (20% droop, 5 Hz repetition rate) simulate anticipated operating conditions encountered in the SLAC P2 Marx. Elevated film electric field stress is utilized as the acceleration parameter. Results indicate that, for the particular film of interest, a film stress of {approx}290 V/{mu}m corresponds to a 10{sup 5} hour lifetime. In addition, the voltage scaling exponent for this film is 13.1.

  14. A facile synthesis of mesoporous crystalline tin oxide films involving a base-triggered formation of sol-gel building blocks.

    Science.gov (United States)

    Fried, Dorothee Irmgard; Ivanova, Alesja; Müller, Vesna; Rathousky, Jiri; Smarsly, Bernd M; Fattakhova-Rohlfing, Dina

    2011-03-01

    We have developed a new facile procedure for manufacturing crystalline thin films of SnO2 with a uniform mesoporous architecture and full crystallinity of the walls. The procedure is based on the evaporation-induced self-assembly (EISA) of prehydrolyzed tin oxide precursor directed by a commercially available Pluronic polymer. The formation of the tin oxide precursor, which can be self-assembled into a mesoporous structure, is achieved by an addition of ammonium hydroxide to a tin tetrachloride solution. The relative concentration of ammonium hydroxide as well as the duration and temperature of the hydrolysis reaction influence significantly the properties of hydrolyzed tin oxide species and the mesostructure assembled from them. The films coated from these precursor solutions and calcined at 300 °C to 400 °C exhibit a well-developed worm-like porosity with a wall to wall distance of ca. 18 nm, a surface area of up to 50 cm2 cm(-2) (corresponding to 55±5 m2 g(-1)), and high crystallinity.

  15. Enhanced Crystalline Phase Purity of CH3NH3PbI3-xClx Film for High-Efficiency Hysteresis-Free Perovskite Solar Cells.

    Science.gov (United States)

    Yang, Yingguo; Feng, Shanglei; Xu, Weidong; Li, Meng; Li, Li; Zhang, Xingmin; Ji, Gengwu; Zhang, Xiaonan; Wang, Zhaokui; Xiong, Yimin; Cao, Liang; Sun, Baoquan; Gao, Xingyu

    2017-07-12

    Despite rapid successful developments toward promising perovskite solar cells (PSCs) efficiency, they often suffer significant hysteresis effects. Using synchrotron-based grazing incidence X-ray diffraction (GIXRD) with different probing depths by varying the incident angle, we found that the perovskite films consist of dual phases with a parent phase dominant in the interior and a child phase with a smaller (110) interplanar space (d(110)) after rapid thermal annealing (RTA), which is a widely used post treatment to improve the crystallization of solution-processed perovskite films for high-performance planar PSCs. In particular, the child phase composition gradually increases with decreasing depth till it becomes the majority on the surface, which might be one of the key factors related to hysteresis in fabricated PSCs. We further improve the crystalline phase purity of the solution-processed CH3NH3PbI3-xClx perovskite film (referred as g-perovskite) by using a facile gradient thermal annealing (GTA), which shows a uniformly distributed phase structure in pinhole-free morphology with less undercoordinated Pb and I ions determined by synchrotron-based GIXRD, grazing incidence small-angle X-ray scattering, scanning electron microscopy, and X-ray photoelectron spectroscopy. Regardless of device structures (conventional and inverted types), the planar heterojunction PSCs employing CH3NH3PbI3-xClx g-perovskite films exhibit negligible hysteresis with a champion power conversion efficiency of 17.04% for TiO2-based conventional planar PSCs and 14.83% for poly(3,4-ethylenedioxythiophene:poly(styrenesulfonate) (PEDOT:PSS)-based inverted planar PSCs. Our results indicate that the crystalline phase purity in CH3NH3PbI3-xClx perovskite film, especially in the surface region, plays a crucial role in determining the hysteresis effect and device performance.

  16. A study on the properties of C-doped Ge8Sb2Te11 thin films during an amorphous-to-crystalline phase transition

    Science.gov (United States)

    Park, Cheol-Jin; Kong, Heon; Lee, Hyun-Yong; Yeo, Jong-Bin

    2016-04-01

    In this work, we evaluated the structural, electrical and optical properties of carbon-doped Ge8Sb2Te11 thin films. In a previous work, GeSbTe alloys were doped with different materials in an attempt to improve the thermal stability. Ge8Sb2Te11 and carbon-doped Ge8Sb2Te11 films of 250 nm in thickness were deposited on p-type Si (100) and glass substrates by using a RF magnetron reactive co-sputtering system at room temperature. The fabricated films were annealed in a furnance in the 0 ~ 400°C temperature range. The structural properties were analyzed by using X-ray diffraction (XRD), and the result showed that the carbon-doped Ge8Sb2Te11 had a face-centeredcubic (fcc) crystalline structure and an increased crystallization temperature ( T c ). An increase in the T c leads to thermal stability in the amorphous state. The optical properties were analyzed by using an UV-Vis-IR spectrophotometer, and the result showed an increase in the optical-energy band gap ( E op ) in the crystalline materials and an increase in the E op difference (Δ E op ), which is a good effect for reducing the noise in the memory device. The electrical properties were analyzed by using a 4-point probe, which showed an increase in the sheet resistance ( R s ) in the amorphous state and the crystalline state, which means a reduced programming current in the memory device.

  17. Experimental investigation of off-stoichiometry and 3d transition metal (Mn, Ni, Cu-substitution in single-crystalline FePt thin films

    Directory of Open Access Journals (Sweden)

    Takuya Ono

    2016-05-01

    Full Text Available In L10 (fct-FePt thin films, both tuning Fe and Pt concentrations and substitution with third-metal were studied for magnetic characteristic optimization. We investigated single-crystalline FePt-X (X = Mn, Ni, Cu thin films grown epitaxially on MgO(001 substrates at a substrate temperature of 350  °C by changing Fe, Pt, and X contents, and explored the effects of off-stoichiometry and 3d-metal-substitution. The magnetic moment per atom (m of FePt-X films as a function of the effective number of valence electrons (neff in 3d metal sites follows the Slater-Pauling-type trend, by which m decreases by the neff deviation from neff = 8, independently of the X metal and the Pt concentration. The magnetic anisotropy (Ku exhibits neff dependence similar to m. This trend was almost independent of the Pt concentration after compensation using the theoretical prediction on the relation between Ku and Fe/Pt concentrations. Such a trend has been proved for stoichiometric FePt-X films, but it was clarified as robust against off-stoichiometry. The compensated Ku ( K u comp of FePt-Mn and FePt-Cu followed a similar trend to that predicted by the rigid-band model, although the K u comp of the FePt-Mn thin films dropped more rapidly than the rigid band calculation. However, it followed the recent first-principles calculation.

  18. Experimental investigation of off-stoichiometry and 3d transition metal (Mn, Ni, Cu)-substitution in single-crystalline FePt thin films

    Science.gov (United States)

    Ono, Takuya; Nakata, Hitoshi; Moriya, Tomohiro; Kikuchi, Nobuaki; Okamoto, Satoshi; Kitakami, Osamu; Shimatsu, Takehito

    2016-05-01

    In L10 (fct)-FePt thin films, both tuning Fe and Pt concentrations and substitution with third-metal were studied for magnetic characteristic optimization. We investigated single-crystalline FePt-X (X = Mn, Ni, Cu) thin films grown epitaxially on MgO(001) substrates at a substrate temperature of 350 °C by changing Fe, Pt, and X contents, and explored the effects of off-stoichiometry and 3d-metal-substitution. The magnetic moment per atom (m) of FePt-X films as a function of the effective number of valence electrons (neff) in 3d metal sites follows the Slater-Pauling-type trend, by which m decreases by the neff deviation from neff = 8, independently of the X metal and the Pt concentration. The magnetic anisotropy (Ku) exhibits neff dependence similar to m. This trend was almost independent of the Pt concentration after compensation using the theoretical prediction on the relation between Ku and Fe/Pt concentrations. Such a trend has been proved for stoichiometric FePt-X films, but it was clarified as robust against off-stoichiometry. The compensated Ku ( Ku comp ) of FePt-Mn and FePt-Cu followed a similar trend to that predicted by the rigid-band model, although the Ku comp of the FePt-Mn thin films dropped more rapidly than the rigid band calculation. However, it followed the recent first-principles calculation.

  19. Photo-induced density-of-states variation measured by DLTS method in intrinsic micro-crystalline silicon (i-μc-Si:H) films

    Science.gov (United States)

    Wang, J.; Sun, Q. S.; Liu, H. N.; He, Y. L.

    1987-06-01

    This paper advances a measurement and two calculations of a high-frequency DLTS method for the density-of-states g(E) of intrinsic micro-crystalline and amorphous silicon film. The method surmounts the difficulties of DLTS measurement of i-a-Si:H or i-μc-Si:H samples and applies the common high-frequency DLTS to it, while the temperature of measurement is extended below 77K. Following the method, we successfully observed the obvious increase of density-of-states produced by illumination.

  20. Fabrication of perovskite films using an electrostatic assisted spray technique: the effect of the electric field on morphology, crystallinity and solar cell performance

    Science.gov (United States)

    Chandrasekhar, P. S.; Kumar, Neetesh; Swami, Sanjay Kumar; Dutta, V.; Komarala, Vamsi K.

    2016-03-01

    An electric field assisted spray deposition method is employed for improving the perovskite film morphology, crystallinity, and surface coverage, and for further fabricating an efficient solar cell. By applying different voltages ranging from 0.5 to 2.0 kV during spray deposition, we observed a large variation in the film morphology and surface coverage compared to those fabricated without an electric field, which is due to improved atomization from the Coulomb fission process. The optimized applied voltage of 1.5 kV during spraying led to completion of the reaction between CH3NH3I and PbI2 on a hot substrate for pure phase CH3NH3PbI3 thin film formation with improved grain growth and surface coverage. The cells fabricated using perovskite films showed clear applied voltage dependence in the energy conversion process and alleviation in J-V hysteresis; with 1.5 kV applied voltage the average cell efficiency of 8.9% was obtained compared to films fabricated without applying voltage providing only 6.5%. The best efficiencies are 10.9% and 7.37% for applied voltages of 1.5 kV and 0 kV, respectively. The enhancement in efficiency with applied voltage is due to the formation of more uniform and dense films with large perovskite crystals, which resulted in efficient electron transportation (enhanced photocurrent and modified series and shunt resistances) by minimizing the charge carrier recombination at grain boundaries (resulting in enhanced open circuit voltage). With further optimization of the perovskite film thickness by adjusting the CH3NH3I spray volume, the average cell efficiency of ~11.0% was obtained.An electric field assisted spray deposition method is employed for improving the perovskite film morphology, crystallinity, and surface coverage, and for further fabricating an efficient solar cell. By applying different voltages ranging from 0.5 to 2.0 kV during spray deposition, we observed a large variation in the film morphology and surface coverage compared to

  1. Acoustic study of a linear low-density polyethylene film after modification of the crystalline structure by heating.

    Science.gov (United States)

    Tohmyoh, Hironori; Sakamoto, Yuhei

    2014-02-01

    We report on a hybrid microscopy technique that enables us to measure the acoustic properties of a thin polymer film together with an optical microscope image of the corresponding area. Linear low-density polyethylene films are heated to various temperatures and examined by the technique. Density of the film is increased by heating and its sound velocity is decreased compared with a film without heating. Also, spherulites can clearly be seen in the optical microscope image, supporting the thermal shrinkage of the film which can be detected by the present technique.

  2. Oxidant effect of La(NO3)3·6H2O solution on the crystalline characteristics of nanocrystalline ZrO2 films grown by atomic layer deposition

    Science.gov (United States)

    Oh, Nam Khen; Kim, Jin-Tae; Kang, Goru; An, Jong-Ki; Nam, Minwoo; Kim, So Yeon; Park, In-Sung; Yun, Ju-Young

    2017-02-01

    Nanocrystalline ZrO2 films were synthesized by atomic layer deposition method using CpZr[N(CH3)2]3 (Cp = C5H5) as the metal precursor and La(NO3)3·6H2O solution as the oxygen source. La element in the deposited ZrO2 films could not be detected as its content was below the resolution limit of the X-ray photoelectron spectroscopy. The alternative introduction of La(NO3)3·6H2O solution to conventionally used H2O as the oxidant effectively altered the crystalline structure, grain size, and surface roughness of the grown ZrO2 films. Specifically, the crystalline structure of the ZrO2 film changed from a mixture of tetragonal and monoclinic phases to monoclinic phase. The average grain size also increased, and the resulting film surface became rougher. The average grain sizes of the ZrO2 films prepared from La(NO3)3·6H2O solution at concentrations of 10, 20, 30, and 40% were 280, 256, 208, and 200 nm, respectively, whereas that prepared using H2O oxidant was 142 nm. However, the concentration of La(NO3)3·6H2O solution minimally influenced the crystalline characteristics of the nanocrystalline ZrO2 films i.e., the crystalline structure, grain size, and surface roughness except for crystallite size.

  3. Atomic-resolution characterization of the effects of CdCl{sub 2} treatment on poly-crystalline CdTe thin films

    Energy Technology Data Exchange (ETDEWEB)

    Paulauskas, T., E-mail: tpaula2@uic.edu; Buurma, C.; Colegrove, E.; Guo, Z.; Sivananthan, S.; Klie, R. F. [Department of Physics, University of Illinois at Chicago, 845 W. Taylor St. M/C 273, Chicago, Illinois 60607-7059 (United States); Chan, M. K. Y. [Center for Nanoscale Materials, Argonne National Laboratory, 9700 S. Cass Ave., Building 440, Argonne, Illinois 60439 (United States)

    2014-08-18

    Poly-crystalline CdTe thin films on glass are used in commercial solar-cell superstrate devices. It is well known that post-deposition annealing of the CdTe thin films in a CdCl{sub 2} environment significantly increases the device performance, but a fundamental understanding of the effects of such annealing has not been achieved. In this Letter, we report a change in the stoichiometry across twin boundaries in CdTe and propose that native point defects alone cannot account for this variation. Upon annealing in CdCl{sub 2}, we find that the stoichiometry is restored. Our experimental measurements using atomic-resolution high-angle annular dark field imaging, electron energy-loss spectroscopy, and energy dispersive X-ray spectroscopy in a scanning transmission electron microscope are supported by first-principles density functional theory calculations.

  4. Anomalous behavior of B{sub 1g} mode in highly transparent anatase nano-crystalline Nb-doped Titanium Dioxide (NTO) thin films

    Energy Technology Data Exchange (ETDEWEB)

    Gautam, Subodh K., E-mail: subodhkgtm@gmail.com, E-mail: fouran@gmail.com; Ojha, S.; Singh, Fouran, E-mail: subodhkgtm@gmail.com, E-mail: fouran@gmail.com [Material Science Group, Inter University Accelerator Centre, New Delhi -110067 (India); Gautam, Naina [Department of Electronic Science, University of Delhi South Campus, New Delhi - 110023 (India); Singh, R. G. [Department of Physics, Bhagini Nivedita College, Delhi University, Delhi– 110043 (India); Shukla, D. K. [UGC-DAE Consortium for Scientific Research, University Campus, Khandwa Road, Indore 452017 (India)

    2015-12-15

    The effect of Niobium doping and size of crystallites on highly transparent nano-crystalline Niobium doped Titanium Dioxide (NTO) thin films with stable anatase phase are reported. The Nb doping concentration is varied within the solubility limit in TiO{sub 2} lattice. Films were annealed in controlled environment for improving the crystallinity and size of crystallites. Elemental and thickness analysis were carried out using Rutherford backscattering spectrometry and cross sectional field emission scanning electron microscopy. Structural characteristics reveal a substitutional incorporation of Nb{sup +5} in the TiO{sub 2} lattice which inhibits the anatase crystallites growth with increasing the doping percentage. The micro-Raman (MR) spectra of films with small size crystallites shows stiffening of about 4 cm{sup −1} for the E{sub g(1)} mode and is ascribed to phonon confinement and non-stoichiometry. In contrast, B{sub 1g} mode exhibits a large anomalous softening of 20 cm{sup −1} with asymmetrical broadening; which was not reported for the case of pure TiO{sub 2} crystallites. This anomalous behaviour is explained by contraction of the apical Ti-O bonds at the surface upon substitutional Nb{sup 5+} doping induced reduction of Ti{sup 4+} ions also known as hetero-coordination effect. The proposed hypotheses is manifested through studying the electronic structure and phonon dynamics by performing the near edge x-ray absorption fine structure (NEXAFS) and temperature dependent MR down to liquid nitrogen temperature on pure and 2.5 at.% doped NTO films, respectively.

  5. Influence of Crystallinity and Energetics on Charge Separation in Polymer–Inorganic Nanocomposite Films for Solar Cells

    Science.gov (United States)

    Bansal, Neha; Reynolds, Luke X.; MacLachlan, Andrew; Lutz, Thierry; Ashraf, Raja Shahid; Zhang, Weimin; Nielsen, Christian B.; McCulloch, Iain; Rebois, Dylan G.; Kirchartz, Thomas; Hill, Michael S.; Molloy, Kieran C.; Nelson, Jenny; Haque, Saif A.

    2013-01-01

    The dissociation of photogenerated excitons and the subsequent spatial separation of the charges are of crucial importance to the design of efficient donor-acceptor heterojunction solar cells. While huge progress has been made in understanding charge generation at all-organic junctions, the process in hybrid organic:inorganic systems has barely been addressed. Here, we explore the influence of energetic driving force and local crystallinity on the efficiency of charge pair generation at hybrid organic:inorganic semiconductor heterojunctions. We use x-ray diffraction, photoluminescence quenching, transient absorption spectroscopy, photovoltaic device and electroluminescence measurements to demonstrate that the dissociation of photogenerated polaron pairs at hybrid heterojunctions is assisted by the presence of crystalline electron acceptor domains. We propose that such domains encourage delocalization of the geminate pair state. The present findings suggest that the requirement for a large driving energy for charge separation is relaxed when a more crystalline electron acceptor is used. PMID:23524906

  6. Influence of crystallinity and energetics on charge separation in polymer-inorganic nanocomposite films for solar cells.

    Science.gov (United States)

    Bansal, Neha; Reynolds, Luke X; MacLachlan, Andrew; Lutz, Thierry; Ashraf, Raja Shahid; Zhang, Weimin; Nielsen, Christian B; McCulloch, Iain; Rebois, Dylan G; Kirchartz, Thomas; Hill, Michael S; Molloy, Kieran C; Nelson, Jenny; Haque, Saif A

    2013-01-01

    The dissociation of photogenerated excitons and the subsequent spatial separation of the charges are of crucial importance to the design of efficient donor-acceptor heterojunction solar cells. While huge progress has been made in understanding charge generation at all-organic junctions, the process in hybrid organic:inorganic systems has barely been addressed. Here, we explore the influence of energetic driving force and local crystallinity on the efficiency of charge pair generation at hybrid organic:inorganic semiconductor heterojunctions. We use x-ray diffraction, photoluminescence quenching, transient absorption spectroscopy, photovoltaic device and electroluminescence measurements to demonstrate that the dissociation of photogenerated polaron pairs at hybrid heterojunctions is assisted by the presence of crystalline electron acceptor domains. We propose that such domains encourage delocalization of the geminate pair state. The present findings suggest that the requirement for a large driving energy for charge separation is relaxed when a more crystalline electron acceptor is used.

  7. Molecular beam epitaxy and superconductivity of stoichiometric FeSe and KxFe2-ySe2 crystalline films

    Institute of Scientific and Technical Information of China (English)

    Wang Li-Li; Ma Xu-Cun; Chen Xi; Xue Qi-Kun

    2013-01-01

    Our recent progress in the fabrication of FeSe and KxFe2-ySe2 ultra thin films and the understanding of their superconductivity properties is reviewed.The growth of high-quality FeSe and KxFe2-ySe2 films is achieved in a well controlled manner by molecular beam epitaxy.The high-quality stoichiometric and superconducting crystalline thin films allow us to investigate the intrinsic superconductivity properties and the interplay between the superconductivity and the film thickness,the local structure,the substrate,and magnetism.In situ low-temperature scanning tunneling spectra reveal the nodes and the twofold symmetry in FeSe,high-temperature superconductivity at the FeSe/SrTiO3 interface,phase separation and magnetic order in KxFe2-ySe2,and the suppression of superconductivity by twin boundaries and Fe vacancies.Our findings not only provide fundamental information for understanding the mechanism of unconventional superconductivity,but also demonstrate a powerful way of engineering superconductors and raising the transition temperature.

  8. Topological crystalline insulator PbxSn1-xTe thin films on SrTiO3 (001 with tunable Fermi levels

    Directory of Open Access Journals (Sweden)

    Hua Guo

    2014-05-01

    Full Text Available In this letter, we report a systematic study of topological crystalline insulator PbxSn1-xTe (0 < x < 1 thin films grown by molecular beam epitaxy on SrTiO3(001. Two domains of PbxSn1-xTe thin films with intersecting angle of α ≈ 45° were confirmed by reflection high energy diffraction, scanning tunneling microscopy, and angle-resolved photoemission spectroscopy (ARPES. ARPES study of PbxSn1-xTe thin films demonstrated that the Fermi level of PbTe could be tuned by altering the temperature of substrate whereas SnTe cannot. An M-shaped valance band structure was observed only in SnTe but PbTe is in a topological trivial state with a large gap. In addition, co-evaporation of SnTe and PbTe results in an equivalent variation of Pb concentration as well as the Fermi level of PbxSn1-xTe thin films.

  9. A pilot investigation on laser annealing for thin-film solar cells: Crystallinity and optical properties of laser-annealed CdTe thin films by using an 808-nm diode laser

    Science.gov (United States)

    Kim, Nam-Hoon; Park, Chan Il; Park, Jinseong

    2013-02-01

    Compared to conventional furnace and rapid thermal annealing, laser annealing for heterojunctioned thin-film solar cells has several advantages including excellent annealing selectivity to the under-layers with a localized high temperature for a short process time. A continuous wave 808-nm diode laser was used for the laser annealing process of CdTe thin films for various output powers. The grains in the laser-annealed CdTe thin films grew along the C (111), H (110), and C (311) planes. Laser annealing resulted in an increase in grain size and a decrease in surface roughness. The optical band gap energy of the CdTe thin films was affected directly by the grain size, showing 1.460 eV and 1.415 eV for the as-deposited and laser-annealed CdTe thin films, respectively. The absorbance of the CdTe thin films with better crystallinity showed an improved value of 99.5-99.9% in the visible spectral region after laser annealing at an output power of 0.91 W.

  10. Controlling the color of cholesteric liquid-crystalline films by photoirradiation of a chiroptical molecular switch used as dopant

    NARCIS (Netherlands)

    van Delden, RA; Huck, NPM; Feringa, BL; Delden, Richard A. van; Gelder, Marc B. van; Huck, Nina P.M.

    2003-01-01

    Using thin films of a cholesteric mixture of acrylates 2 and 3 doped with the chiroptical molecular switch (M)-trans-1, photo-control of the reflection color between red and green is possible. This doped liquid-crystal (LC) film can be used for photoinduced writing, color reading, and photoinduced l

  11. Influence of growth time on crystalline structure, conductivity and optical properties of ZnO thin films

    Institute of Scientific and Technical Information of China (English)

    Said Benramache; Foued Chabane; Boubaker Benhaoua; Fatima Z.Lemmadi

    2013-01-01

    This paper examines the growth of ZnO thin films on glass substrate at 350 ℃ using an ultrasonic spray technique.We have investigated the influence of growth time ranging from 1 to 4 min on structural,optical and electrical properties of ZnO thin films.The as-grown films exhibit a hexagonal structure wurtzite and are (002) oriented.The maximum value of grain size G =63.99 nm is attained for ZnO films grown at 2 min.The average transmittance is about 80%,thus the films are transparent in the visible region.The optical gap energy is found to increase from 3.26 to 3.37 eV with growth time increased from 1 to 2 min.The minimum value of electrical resistivity of the films is 0.13 Ω·cm obtained at 2 min.A systematic study on the influence of growth time on the properties of ZnO thin films deposited by ultrasonic spray at 350 ℃ has been reported.

  12. Amorphous and crystalline In{sub 2}O{sub 3}-based transparent conducting films for photovoltaics

    Energy Technology Data Exchange (ETDEWEB)

    Koida, Takashi [Research Center for Photovoltaics, National Institute of Advanced Industrial Science and Technology, Tsukuba (Japan)

    2017-02-15

    We reported solar cells with reduced electrical and optical losses using hydrogen-doped In{sub 2}O{sub 3} (In{sub 2}O{sub 3}:H) transparent conducting layers with low sheet resistance and high transparence characteristics. The transparent conducting oxide (TCO) films were prepared by solid-phase crystallization of amorphous (a-) In{sub 2}O{sub 3}:H films grown by magnetron sputtering. The polycrystalline (poly-) In{sub 2}O{sub 3}:H films exhibited electron mobilities (over 100 cm{sup 2}V{sup -1} s{sup -1}) 2 and 3 times greater than those of conventional TCO films. This paper describes (i) the current status of the electrical properties of In{sub 2}O{sub 3}-based TCO; (ii) the structural and optoelectrical properties of the a-In{sub 2}O{sub 3}:H and poly-In{sub 2}O{sub 3}:H films, focusing on the inhomogeneity and stability characteristics of the films; and (iii) the electrical properties of bilayer TCO. The potential of these high mobility TCO films for solar cells was also described. (copyright 2016 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  13. Crystalline nanostructured Cu doped ZnO thin films grown at room temperature by pulsed laser deposition technique and their characterization

    Energy Technology Data Exchange (ETDEWEB)

    Drmosh, Qasem A. [Department of Mechanical Engineering, King Fahd University of Petroleum and Minerals, Dhahran 31261 (Saudi Arabia); Rao, Saleem G.; Yamani, Zain H. [Laser Research Group, Department of Physics, Center of Excellence in Nanotechnology, King Fahd University of Petroleum and Minerals, Dhahran 31261 (Saudi Arabia); Gondal, Mohammed A., E-mail: magondal@kfupm.edu.sa [Laser Research Group, Department of Physics, Center of Excellence in Nanotechnology, King Fahd University of Petroleum and Minerals, Dhahran 31261 (Saudi Arabia)

    2013-04-01

    We report structural and optical properties of Cu doped ZnO (ZnO:Cu) thin films deposited on glass substrate at room temperature by pulsed laser deposition (PLD) method without pre and post annealing contrary to all previous reports. For preparation of (ZnO:Cu) composites pure Zn and Cu targets in special geometrical arrangements were exposed to 248 nm radiations generated by KrF exciter laser. The laser energy was 200 mJ with 10 Hz frequency and 20 ns pulse width. The effect of Cu concentration on crystal structure, morphology, and optical properties were investigated by XRD, FESEM and photoluminescence spectrometer respectively. A systematic shift in ZnO (0 0 2) peak with Cu concentration observed in XRD spectra demonstrated that Cu ion has been incorporated in ZnO lattice. Uniform film with narrow size range grains were observed in FESEM images. The photoluminescence (PL) spectra measured at room temperature revealed a systematic red shift in ZnO emission peak and decrease in the band gap with the increase in Cu concentration. These results entail that PLD technique can be realized to deposit high quality crystalline ZnO and ZnO:Cu thin films without pre and post heat treatment which is normally practiced worldwide for such structures.

  14. Transformation of valence states and luminescence of chromium ions in the YAG:Cr, Mg and GGG:Cr, Mg single crystalline films

    Energy Technology Data Exchange (ETDEWEB)

    Zakharko, Ya.M.; Luchechko, A.P. [Faculty of Electronics, Ivan Franko National University of Lviv, 107 Tarnavskogo St., Lviv 79017 (Ukraine); Syvorotka, I.M.; Syvorotka, I.I.; Melnyk, S.S. [Institute for Materials SRC ' ' Carat' ' , 202 Stryjska St., Lviv 79031 (Ukraine); Ubizskii, S.B. [Institute for Materials SRC ' ' Carat' ' , 202 Stryjska St., Lviv 79031 (Ukraine); Institute for Telecommunication, Radioelectronics and Electronic Engineering, Lviv Polytechnic National University, 12 Bandera St., Lviv 79013 (Ukraine)

    2005-01-01

    Peculiarities of absorption spectra and recombination luminescence of Y{sub 3}Al{sub 5}O{sub 12} (YAG) and Cd{sub 3}Ga{sub 5}O{sub 12} (GGG) single crystalline films co-doped with chromium and magnesium have been studied. The change of impurities concentration and annealing of samples in the reducing atmosphere have an influence on absorption in the visible and UV range. Using the results on absorption coefficient measurements in the band of 480 nm and in the absorption bands of Cr{sup 3+} ions, it was determined, that near 50% of the chromium ions located in octahedral sites are in the Cr{sup 4+} state in films with high chromium concentration. The investigation of thermostimulated luminescence confirms the existence of Cr{sup 2+} trap centres in the irradiated films caused by the magnesium dopant. (copyright 2005 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  15. The effects of tungsten concentration on crystalline structure and perpendicular magnetic anisotropy of Co-W films

    Energy Technology Data Exchange (ETDEWEB)

    Yin, S. Q. [State Key Laboratory for Advanced Metals and Materials, School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083 (China); Department of Electrical and Computer Engineering and the Center for Micromagnetics and Information Technologies (MINT), University of Minnesota, Minneapolis, MN 55455 (United States); Wu, Y.; Xu, X. G., E-mail: xgxu@ustb.edu.cn; Jiang, Y. [State Key Laboratory for Advanced Metals and Materials, School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083 (China); Wang, H.; Wang, J.P. [Department of Electrical and Computer Engineering and the Center for Micromagnetics and Information Technologies (MINT), University of Minnesota, Minneapolis, MN 55455 (United States)

    2014-12-15

    In this study, Co-W thin films deposited by DC magnetron sputtering were demonstrated to be perpendicular magnetic anisotropic with large magnetocrystalline anisotropy energy (MAE). Thermodynamic calculations based on Miedema’s semi-empirical model have been used to estimate the phase in this binary alloy system. Based on the thermodynamic calculations results, a series of Co-W thin films were deposited on amorphous Ta underlayer with different tungsten concentrations. According to the X-ray diffraction results, the crystal structure of Co-W thin films is consistent well with that of thermodynamic calculations. Large MAE of Co-W thin films can be obtained with K{sub u} over 2.1 × 10{sup 5} J/m{sup 3} after vacuum annealing. The perpendicular coercivity (H{sub c}) of Co-W thin film reaches 9.1 × 10{sup 4} A/m. Therefore, the Co-W thin film is considered as a potential choice of high-density magnetic recording media materials.

  16. The effects of tungsten concentration on crystalline structure and perpendicular magnetic anisotropy of Co-W films

    Directory of Open Access Journals (Sweden)

    S. Q. Yin

    2014-12-01

    Full Text Available In this study, Co-W thin films deposited by DC magnetron sputtering were demonstrated to be perpendicular magnetic anisotropic with large magnetocrystalline anisotropy energy (MAE. Thermodynamic calculations based on Miedema’s semi-empirical model have been used to estimate the phase in this binary alloy system. Based on the thermodynamic calculations results, a series of Co-W thin films were deposited on amorphous Ta underlayer with different tungsten concentrations. According to the X-ray diffraction results, the crystal structure of Co-W thin films is consistent well with that of thermodynamic calculations. Large MAE of Co-W thin films can be obtained with Ku over 2.1 × 105 J/m3 after vacuum annealing. The perpendicular coercivity (Hc of Co-W thin film reaches 9.1 × 104 A/m. Therefore, the Co-W thin film is considered as a potential choice of high-density magnetic recording media materials.

  17. Crystalline texture and mammography energy range detection studies of pyrolysed lead iodide films: Effects of solution concentration

    Energy Technology Data Exchange (ETDEWEB)

    Condeles, J.F., E-mail: condeles@fisica.uftm.edu.br [Department of Physics, Institute of Exact Sciences, Naturals and Education, Federal Universty of Triângulo Mineiro, 38064-200, Uberaba, MG (Brazil); Mulato, M. [Department of Physics, Faculty of Philosophy, Sciences and Letters at Ribeirão Preto, University of São Paulo, Av. Bandeirantes 3900, 14040-901, Ribeirão Preto, SP (Brazil)

    2015-09-15

    Semiconductor lead iodide (PbI{sub 2}) films have been extensively studied due to their potential applications in room temperature ionizing radiation detectors. The influence of PbI{sub 2} solution concentration on the final properties of the films grown by spray pyrolysis was investigated. The solution concentration was varied in the range of 10 g/l up to 50 g/l. Total deposition time of 2.5 h was used and average growth rate varying from 22 Å s{sup −1} up to 62 Å s{sup −1} was obtained as a function of solution concentration. X-ray diffraction was used to investigate the structural properties of the films. Variations in microstructure as a function of solution concentration were studied using crystal texture calculations. The smallest value of electrical resistivity was obtained for the largest solution concentration. Mammographic X-ray irradiation from 10 mR up to 1450 mR was carried out with equivalent photon energy at 14 keV and the sensor results are discussed. - Highlights: • PbI{sub 2} films were grown by spray pyrolysis deposition method. • Variations in microstructure were studied using crystal texture calculations. • The films were tested in the mammography X-ray energy range. • The response is very linear with a slope of 13 μA/cm{sup 2} R.

  18. PEALD-Grown Crystalline AlN Films on Si (100) with Sharp Interface and Good Uniformity

    Science.gov (United States)

    Liu, Sanjie; Peng, Mingzeng; Hou, Caixia; He, Yingfeng; Li, Meiling; Zheng, Xinhe

    2017-04-01

    Aluminum nitride (AlN) thin films were deposited on Si (100) substrates by using plasma-enhanced atomic layer deposition method (PEALD). Optimal PEALD parameters for AlN deposition were investigated. Under saturated deposition conditions, the clearly resolved fringes are observed from X-ray reflectivity (XRR) measurements, showing the perfectly smooth interface between the AlN film and Si (100). It is consistent with high-resolution image of the sharp interface analyzed by transmission electron microscope (TEM). The highly uniform thickness throughout the 2-inch size AlN film with blue covered surface was determined by spectroscopic ellipsometry (SE). Grazing incident X-ray diffraction (GIXRD) patterns indicate that the AlN films are polycrystalline with wurtzite structure and have a tendency to form (002) preferential orientation with increasing of the thickness. The obtained AlN films could open up a new approach of research in the use of AlN as the template to support gallium nitride (GaN) growth on silicon substrates.

  19. The Synthesis and Structural Properties of Crystalline Silicon Quantum Dots upon Thermal Annealing of Hydrogenated Amorphous Si-Rich Silicon Carbide Films

    Science.gov (United States)

    Wen, Guozhi; Zeng, Xiangbin; Li, Xianghu

    2016-08-01

    Silicon quantum dots (QDs) embedded in non-stoichiometric hydrogenated silicon carbide (SiC:H) thin films have been successfully synthesized by plasma-enhanced chemical vapor deposition and post-annealing. The chemical composition analyses have been carried out by x-ray photoelectron spectroscopy (XPS). The bonding configurations have been deduced from Fourier transform infrared absorption measurements (FTIR). The evolution of microstructure with temperature has been characterized by glancing incident x-ray diffraction (XRD) and Raman diffraction spectroscopy. XPS and FTIR show that it is in Si-rich feature and there are a few hydrogenated silicon clusters in the as-grown sample. XRD and Raman diffraction spectroscopy show that it is in amorphous for the as-grown sample, while crystalline silicon QDs have been synthesized in the 900°C annealed sample. Silicon atoms precipitation from the SiC matrix or silicon phase transition from amorphous SiC is enhanced with annealing temperature increase. The average sizes of silicon QDs are about 5.1 nm and 5.6 nm, the number densities are as high as 1.7 × 1012 cm-2 and 3.2 × 1012 cm-2, and the crystalline volume fractions are about 58.3% and 61.3% for the 900°C and 1050°C annealed samples, respectively. These structural properties analyses provide an understanding about the synthesis of silicon QDs upon thermal annealing for applications in next generation optoelectronic and photovoltaic devices.

  20. In-situ optical emission spectroscopy diagnostic of plasma ignition impact on crystalline silicon passivation by a-Si:H films

    Science.gov (United States)

    Meddeb, Hosny; Bearda, Twan; Abdulraheem, Yaser; Dimassi, Wissem; Ezzaouia, Hatem; Gordon, Ivan; Szlufcik, Jozef; Poortmans, Jef

    2016-08-01

    The influence of the plasma ignition condition during PECVD deposition from a silane/hydrogen mixture on the amorphous silicon passivation of crystalline silicon surface is investigated. The changes in this process step mainly consist in varying the power density for very brief durations in between 1 s and 3 s. We find that the ignition phase contributes significantly in the film growth, especially in the a-Si:H/c-Si interface formation. In particular, the deposition rate increases with ignition power density. TEM cross-section inspection presents a rougher a-Si:H/c-Si interface with higher plasma power and thus, a tendency for nano-clusters formation caused by the crystalline nature of the substrate. In-situ plasma diagnostics reveal the gradual raise up of IHa*/ISiH* with the power density leading to worse SiH* abstraction to the surface. Whereas, time-resolved optical emission spectroscopy explains the possible recombination mechanism in the plasma due to higher-silane related reactive species (HSRS) formation via polymerization reactions. Our results point out that the ignition conditions with a rather low power for longer time give the best passivation, resulting an effective lifetime up to 9 ms.

  1. Enhanced conversion efficiency and surface hydrophobicity of nano-roughened Teflon-like film coated poly-crystalline Si solar cells.

    Science.gov (United States)

    Lin, Gong-Ru; Meng, Fan-Shuen; Pai, Yi-Hao; Lin, Yung-Hsiang

    2012-03-21

    Nano-roughened Teflon-like film coated poly-crystalline Si photovoltaic solar cells (PVSCs) with enhanced surface hydrophobicity and conversion efficiency (η) are characterized and compared with those coated by a Si nanorod array or a standard SiN anti-reflection layer. The Teflon-like film coated PVSC surface reveals a water contact angle increasing from 89.3° to 96.2° as its thickness enlarges from 22 to 640 nm, which is much larger than those of the standard and Si nanorod array coated PVSC surfaces (with angles of 55.6° and 32.8°, respectively). After nano-roughened Teflon-like film passivation, the PVSC shows a comparable η(10.89%) with the standard SiN coated PVSC (η = 11.39%), while the short-circuit current (I(SC)) is slightly reduced by 2% owing to the slightly decreased UV transmittance and unchanged diode performance. In contrast, the Si nanorod array may offer an improved surface anti-reflection with surface reflectance decreasing from 30% to 5% at a cost of optical scattering and randomized deflection, which simultaneously decrease the optical transmittance from 15% to 3% in the visible region without improving hydrophobicity and conversion efficiency. The Si nanorod array covered PVSC with numerous surface dangling bonds induced by 1 min wet-etching, which greatly reduces the open-circuit voltage (V(OC)) by 10-15% and I(SC) by 30% due to the reduced shunt resistance from 3 to 0.24 kΩ. The nano-scale roughened Teflon-like film coated on PVSC has provided better hydrophobicity and conversion efficiency than the Si nanorod array covered PVSC, which exhibits superior water repellant performance and comparable conversion efficiency to be one alternative approach for self-cleaning PVSC applications.

  2. Effects of crystallinity and impurities on the electrical conductivity of Li–La–Zr–O thin films

    Energy Technology Data Exchange (ETDEWEB)

    Park, Joong Sun, E-mail: parkj@anl.gov [Environmental Energy Technologies Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720 (United States); Chemical Sciences and Engineering Division, Argonne National Laboratory, Argonne, IL 60439 (United States); Cheng, Lei [Environmental Energy Technologies Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720 (United States); Department of Material Sciences and Engineering, University of California, Berkeley, CA 94720 (United States); Zorba, Vassilia [Environmental Energy Technologies Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720 (United States); Mehta, Apurva [Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, Menlo Park, CA 94025 (United States); Cabana, Jordi [Environmental Energy Technologies Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720 (United States); Department of Chemistry, University of Illinois at Chicago, IL 60607 (United States); Chen, Guoying; Doeff, Marca M.; Richardson, Thomas J. [Environmental Energy Technologies Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720 (United States); Park, Jung Hoon [Department of Nano-Science and Technology, University of Seoul, Seoul (Korea, Republic of); Son, Ji-Won [High-Temperature Energy Materials Research Center, Korea Institute of Science and Technology, Seoul 136–791 (Korea, Republic of); Hong, Wan-Shick, E-mail: wshong@uos.ac.kr [Department of Nano-Science and Technology, University of Seoul, Seoul (Korea, Republic of)

    2015-02-02

    We present a study of the fabrication of thin films from a Li{sub 7}La{sub 3}Zr{sub 2}O{sub 12} (LLZO) target using pulsed laser deposition. The effects of substrate temperatures and impurities on electrochemical properties of the films were investigated. The thin films of Li–La–Zr–O were deposited at room temperature and higher temperatures on a variety of substrates. Deposition above 600 °C resulted in a mixture of cubic and tetragonal phases of LLZO, as well as a La{sub 2}Zr{sub 2}O{sub 7} impurity, and resulted in aluminum enrichment at the surface when Al-containing substrates were used. Films deposited at 600 °C exhibited the highest room temperature conductivity, 1.61 × 10{sup −6} S/cm. The chemical stability toward metallic lithium was also studied using X-ray photoelectron spectroscopy, which showed that the oxidation state of zirconium remained at + 4 following physical contact with heated lithium metal. - Highlights: • Thin film Li–La–Zr–O was deposited by pulsed laser deposition using Li{sub 7}La{sub 3}Zr{sub 2}O{sub 12}. • Deposition above 600 °C resulted in cubic and tetragonal phases of Li{sub 7}La{sub 3}Zr{sub 2}O{sub 12}. • Aluminum migration from the substrate to the film surface was observed. • The chemical stability toward lithium was studied by X-ray photoelectron spectroscopy.

  3. Surface structure determinations of crystalline ionic thin films grown on transition metal single crystal surfaces by low energy electron diffraction

    Energy Technology Data Exchange (ETDEWEB)

    Roberts, Joel Glenn [Univ. of California, Berkeley, CA (United States)

    2000-05-01

    The surface structures of NaCl(100), LiF(100) and alpha-MgCl2(0001) adsorbed on various metal single crystals have been determined by low energy electron diffraction (LEED). Thin films of these salts were grown on metal substrates by exposing the heated metal surface to a molecular flux of salt emitted from a Knudsen cell. This method of investigating thin films of insulators (ionic salts) on a conducting substrate (metal) circumvents surface charging problems that plagued bulk studies, thereby allowing the use of electron-based techniques to characterize the surface.

  4. Evolution of enhanced crystallinity and mechanical property of nanocomposite Ti-Si-N thin films using magnetron reactive co-sputtering

    Energy Technology Data Exchange (ETDEWEB)

    Chung, C.K., E-mail: ckchung@mail.ncku.edu.tw [Department of Mechanical Engineering, Center for Micro/Nano Science and Technology, National Cheng Kung University, Tainan 701, Taiwan (China); Chang, H.C.; Chang, S.C.; Liao, M.W. [Department of Mechanical Engineering, Center for Micro/Nano Science and Technology, National Cheng Kung University, Tainan 701, Taiwan (China)

    2012-10-05

    Highlights: Black-Right-Pointing-Pointer The TiN-related hard coatings encounter poor high-temperature oxidation resistance problem. Black-Right-Pointing-Pointer The transition metal-Si-N nanocomposites have used for enhancing hard coating applications. Black-Right-Pointing-Pointer The effect of process parameters on Ti-Si-N microstructure and property was studied. Black-Right-Pointing-Pointer The orientation model for texture development of TiSiN is used for deeper discussing. Black-Right-Pointing-Pointer Both Ti-Si-N microstructure and texture are crucial factors for hardness enhancement. - Abstract: Nanocomposite Ti-Si-N thin films (nc-TiN/a-SiN{sub x} or nc-TiN/a-TiSi{sub x}N{sub y}) were deposited on Si(1 0 0) substrates from pure Ti and Si targets by magnetron reactive co-sputtering with a negative bias of -150 V. The effects of N{sub 2} flow ratio (FN{sub 2}% = FN{sub 2}/(FAr + FN{sub 2}) Multiplication-Sign 100%) and Ti power on the evolution of enhanced crystallinity and mechanical properties of Ti-Si-N have been investigated. The crystallinity, morphology, microstructure, elemental composition and mechanical properties of films were characterized by grazing incidence X-ray diffraction (GIXRD), scanning electron microscopy, energy dispersive spectroscopy and nanoindentation, respectively. When both Ti and Si target powers were fixed at 100 W, the GIXRD pattern of Ti-Si-N at 3 FN{sub 2}% exhibited a broad peak corresponding to quasi-amorphous microstructure with nanocrystalline grains embedded in an amorphous matrix. Then Ti-Si-N films showed high amount of crystallization with multiple diffraction peaks at 5 FN{sub 2}%, but the reduced peak intensity formed at 7 FN{sub 2}% and even to be amorphous films without any peak at high 10-20 FN{sub 2}%. The measured mean hardnesses of Ti-Si-N films formed at 3, 5, 7, 10 and 20 FN{sub 2}% were 18.1, 21.5, 20.4, 17.8 and 15.7 GPa, respectively. Based on the high-hardness Ti-Si-N at constant 5 FN{sub 2}%, changing Ti

  5. Effects of confinement, surface-induced orientations and strain on dynamical behaviors of bacteria in thin liquid crystalline films.

    Science.gov (United States)

    Mushenheim, Peter C; Trivedi, Rishi R; Roy, Susmit Singha; Arnold, Michael S; Weibel, Douglas B; Abbott, Nicholas L

    2015-09-14

    We report on the organization and dynamics of bacteria (Proteus mirabilis) dispersed within lyotropic liquid crystal (LC) films confined by pairs of surfaces that induce homeotropic (perpendicular) or hybrid (homeotropic and parallel orientations at each surface) anchoring of the LC. By using motile vegetative bacteria (3 µm in length) and homeotropically aligned LC films with thicknesses that exceed the length of the rod-shaped cells, a key finding reported in this paper is that elastic torques generated by the LC are sufficiently large to overcome wall-induced hydrodynamic torques acting on the cells, thus leading to LC-guided bacterial motion near surfaces that orient LCs. This result extends to bacteria within LC films with hybrid anchoring, and leads to the observation that asymmetric strain within a hybrid aligned LC rectifies motions of motile cells. In contrast, when the LC film thickness is sufficiently small that confinement prevents alignment of the bacteria cells along a homeotropically aligned LC director (achieved using swarm cells of length 10-60 µm), the bacterial cells propel in directions orthogonal to the director, generating transient distortions in the LC that have striking "comet-like" optical signatures. In this limit, for hybrid LC films, we find LC elastic stresses deform the bodies of swarm cells into bent configurations that follow the LC director, thus unmasking a coupling between bacterial shape and LC strain. Overall, these results provide new insight into the influence of surface-oriented LCs on dynamical bacterial behaviors and hint at novel ways to manipulate bacteria using confined LC phases that are not possible in isotropic solutions.

  6. FY 1997 report on the study on the formation condition of hetero-structure of single-crystalline semiconductor thin films; 1997 nendo chosa hokokusho (tankessho no handotai usumaku hetero kozo no keisei joken ni kansuru kenkyu)

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-03-01

    Since ion implantation causes material degradation by formation of crystalline defects, and hydrogen embrittlement deteriorates material strength, reduction of such defects has been positively studied. Study was made on a new active application of hydrogen separation into ion implantation defects. After H ion implantation of a proper depth into single-crystalline Si and SiC and successive annealing, single-crystalline films of sub-micron to several micron thick were obtained by hydrogen-induced delamination at the implantation depth due to hydrogen embrittlement in crystalline defects. The implantation depth is dependent on implantation energy. H atom forms (111) face defect through connection with dangling bond of crystalline defects. This crystal face defect forms a delamination plane through (100) face cleavage. This hydrogen embrittlement delamination by ion implantation is applicable to production of light-weight high-efficiency single-crystalline Si solar cells, and large single-crystalline SiC wafers as new resource saving process. 33 refs., 19 figs., 2 tabs.

  7. Sputtering and crystalline structure modification of bismuth thin films deposited onto silicon substrates under the impact of 20-160 keV Ar{sup +} ions

    Energy Technology Data Exchange (ETDEWEB)

    Mammeri, S. [CRNA/Division des Techniques Nucleaires, B.P. 399, 02 Bd. Frantz Fanon, Alger-Gare, Algiers (Algeria); Ouichaoui, S., E-mail: souichaoui@gmail.co [USTHB/Faculte de Physique, B.P. 32, El-Alia, 16111 Bab Ezzouar, Algiers (Algeria); Ammi, H. [CRNA/Division des Techniques Nucleaires, B.P. 399, 02 Bd. Frantz Fanon, Alger-Gare, Algiers (Algeria); Zemih, R. [USTHB/Faculte de Physique, B.P. 32, El-Alia, 16111 Bab Ezzouar, Algiers (Algeria)

    2010-01-15

    The sputtering of bismuth thin films induced by 20-160 keV Ar{sup +} ions has been studied using Rutherford backscattering spectrometry, scanning electron microscopy and X-ray energy dispersive and diffraction spectroscopy. These techniques revealed increasing modifications of the Bi film surfaces with increasing both ion beam energy and fluence up to their complete deterioration under irradiation conditions E = 160 keV and phi = 1.5 x 10{sup 16} cm{sup -2}, leaving isolated islands of preferred (0 1 2) orientation on the Si substrate. The observed surface morphology and crystalline structure evolutions are likely due to a complex interplay of interaction mechanisms involving both elastic nuclear collisions and inelastic electronic ones. The measured Bi sputtering yields versus Ar{sup +} ion fluence for a fixed ion energy exhibit a significant depression at very low phi-values followed by a steady state regime above approx2.0 x 10{sup 14} cm{sup -2}. Measured sputtering yields versus Ar{sup +} ion energy with fixing ion fluence to 1.2 x 10{sup 16} cm{sup -2} in the upper part of the yield saturation regime are also reported. Their comparison to theoretical model and SRIM 2008 Monte Carlo simulation predictions is discussed.

  8. Adsorption and thin-film adhesion on single-crystalline surfaces: Enthalpies, entropies, and kinetic prefactors for surface reactions

    Science.gov (United States)

    Sellers, Jason R. V.

    Chemical bonding at solid surfaces and interfaces is influential in a wide range of important technological applications including catalysis, fuel cells, batteries, chemical sensors, and device fabrication for microelectronics, computers, solar cells, and all variety of coatings. Adsorption and adhesion energetics are key elements in understanding interfacial properties, and these properties can be used to develop functional industrial materials. First, the properties of single-crystalline oxide surfaces are reviewed in detail, particularly in regards to the adsorption energetics of these surfaces. This includes the largest collection of experimental adsorption data on single-crystalline oxide surfaces ever presented, from which trends in the thermodynamic properties of adsorbates are revealed which greatly expand our understanding of the physical processes occurring on these surfaces. Among these trends is the discovery that the entropy of adsorbed molecules tracks their gas-phase entropy, retaining ~2/3 of that entropy upon adsorption. This allows for a method of predicting not only entropies of adsorption, but also the kinetic prefactors associated with many classes of elementary surface reactions. These estimations of desorption prefactors are then used to improve calculations of adsorption energies from temperature programmed desorption (TPD) measurements for many systems. Metal adsorption on oxide surfaces and the strength of the binding at metal / oxide interfaces are then discussed. The motivation here is to understand oxide-supported transition metal nanoparticles such as those used in industrial heterogeneous catalysis. For metal atom adsorption, adsorption energetics and adhesion energies are directly related to the energy of the adsorbed atoms, which define their stability, sintering rates, and reactivity, and which are found to vary with both the size of the nanoparticle and the nature of the oxide support. The experimental techniques necessary for

  9. Magnetic anisotropy of crystalline Fe films grown on (001 GaAs substrates using Ge buffer layers

    Directory of Open Access Journals (Sweden)

    Seul-Ki Bac

    2016-05-01

    Full Text Available Magnetic anisotropy of Fe films grown on (001 GaAs substrates using Ge buffer layers were investigated by planar Hall effect measurements. In addition to phenomena arising from dominant cubic symmetry of the Fe specimen, the study of angular dependence of magnetization reversal revealed breaking of this symmetry in the form of systematic asymmetric shifts of magnetic hysteresis loops around the crystallographic directions. We ascribe such symmetry breaking to an admixture of uniaxial anisotropy associated with the [100] direction in the Fe film. To determine the parameters associated with this uniaxial anisotropy, we quantitatively analyze the asymmetric shifts of the hysteresis loop centers from the directions. Even though the value of these parameters turns out to be relatively small compared to that of the cubic anisotropy (by about two orders of magnitude, they survive up to room temperature.

  10. Magnetic anisotropy of crystalline Fe films grown on (001) GaAs substrates using Ge buffer layers

    Science.gov (United States)

    Bac, Seul-Ki; Lee, Hakjoon; Lee, Sangyeop; Choi, Seonghoon; Yoo, Taehee; Lee, Sanghoon; Liu, X.; Furdyna, J. K.

    2016-05-01

    Magnetic anisotropy of Fe films grown on (001) GaAs substrates using Ge buffer layers were investigated by planar Hall effect measurements. In addition to phenomena arising from dominant cubic symmetry of the Fe specimen, the study of angular dependence of magnetization reversal revealed breaking of this symmetry in the form of systematic asymmetric shifts of magnetic hysteresis loops around the crystallographic directions. We ascribe such symmetry breaking to an admixture of uniaxial anisotropy associated with the [100] direction in the Fe film. To determine the parameters associated with this uniaxial anisotropy, we quantitatively analyze the asymmetric shifts of the hysteresis loop centers from the directions. Even though the value of these parameters turns out to be relatively small compared to that of the cubic anisotropy (by about two orders of magnitude), they survive up to room temperature.

  11. Quantification of Power Losses of the Interdigitated Metallization of Crystalline Silicon Thin-Film Solar Cells on Glass

    OpenAIRE

    Gress, Peter J.; Sergey Varlamov

    2012-01-01

    The metallization grid pattern is one of the most important design elements for high-efficiency solar cells. This paper presents a model based on the unit cell approach to accurately quantify the power losses of a specialized interdigitated metallization scheme for polycrystalline silicon thin-film solar cells on glass superstrates. The sum of the power losses can be minimized to produce an optimized grid-pattern design for a cell with specific parameters. The model is simulated with the stan...

  12. Room-temperature Ferroelectricity in Uniaxially Strained Single-crystalline SrTiO3 Freestanding Films

    Science.gov (United States)

    Lu, Di; Crossley, Sam; Yoon, Hyeok; Hikita, Yasuyuki; Hwang, Harold

    Single crystal pure bulk SrTiO3 (STO) is an incipient ferroelectric whose dielectric permittivity rises to high values as temperature is reduced, but remains paraelectric to the lowest observable temperatures. Ferroelectric phases of STO may be stabilized via doping and strain, whose common effect is to split the spatial free energy well of ionic displacements. With epitaxial strain of the order of a few percent, Curie temperatures TC ~293 K have been observed. By exploiting a highly novel process to exfoliate epitaxial oxide films deposited by pulsed laser deposition, we have isolated sub-100 nm-thick freestanding films of STO which are readily manipulated and mechanically strained to high levels. Measurements of the in-plane dielectric properties for various applied strains reveal a continuously tunable ferroelectric TC. A two-order-of-magnitude enhanced dielectric response is displayed by a 1.2%-strained sample at TC ~290 K, as compared with the same sample unstrained at the same temperature. This is consistent with a phenomenological Ginzburg-Landau model, and previous studies on anchored films. The functional properties of strained STO have generated intense interest and debate, and have been suggested for device applications due to e.g. high voltage-tunable dielectric properties. Our work exhibits strain as a continuously variable experimental degree of freedom, which can induce numerous functional effects.

  13. Initial step of hydride formation in single crystalline gadolinium thin films and islands studied on the nm-scale

    Energy Technology Data Exchange (ETDEWEB)

    Wanjelik, Sara, E-mail: Sara.Wanjelik@hhu.de [Institute of Applied Physics, Universitätsstrasse 1, 40225 Düsseldorf (Germany); Stolboushkina, Oxana [Institute of Applied Physics, Universitätsstrasse 1, 40225 Düsseldorf (Germany); Sibirian State University of Industry, Novokuznetsk 654007 (Russian Federation); Königshofen, Samuel; Getzlaff, Mathias [Institute of Applied Physics, Universitätsstrasse 1, 40225 Düsseldorf (Germany)

    2015-10-05

    Highlights: • Hydride formation in Gd films depends on hydrogen pressure and annealing conditions. • Chain formation of disclike islands (diameter about 4 nm) in 1 0 1 0 direction appears. • A triangular shaped structure is observed together with discs. • Transformation to hydride in islands starts from the edges. • All hydrogen induced structures can be removed stepwise by annealing up to 350 °C. - Abstract: The initial steps of hydrogen absorption in gadolinium systems are investigated by means of scanning tunneling microscopy (STM) under ultra high vacuum conditions. Gadolinium is grown on a W(1 1 0) substrate. Smooth films or islands can be obtained depending on the preparation conditions. Exposure to hydrogen leads to modifications of the Gd surface. Small discs with a diameter of a few nm and a height of one atomic step appear. The discs form chains with distinct directions. A triangular shaped structure is observed together with the discs. Areas that are completely transformed to GdH{sub 2} appear, too. The absorption process in islands was also investigated and compared to the behaviour of thin films. All measurements are performed at room temperature. By increasing the temperature, changes of the different modifications can be observed up to the point at which they vanish.

  14. Microscopic mechanical characteristics analysis of ultranano-crystalline diamond films%超纳米金刚石薄膜的显微力学性能表征

    Institute of Scientific and Technical Information of China (English)

    丰杰; 谢友能; 李周; 吴先哲; 李建国; 梅军; 余志明; 魏秋平

    2015-01-01

    研究4种不同气氛下制备的可应用于 MEMS 方面的超纳米金刚石薄膜的显微力学特征。利用纳米压痕技术得到样品的加载−卸载曲线及硬度和弹性模量随压入深度的变化关系。结果表明,无Ar条件下制备的薄膜具有最好的弹性回复能力、最高的硬度(72.9 GPa)和弹性模量(693.7 GPa)。同时低Ar含量更有利于提高薄膜的硬度和弹性模量。以上结果说明无Ar或低Ar含量更有利于提高纳米金刚石薄膜的力学性能,以更好地应用于MEMS方面。%The microscopic mechanical characteristics of ultranano-crystalline diamond films which were prepared in four different atmospheres were investigated for the applications in microelectron-mechanical system (MEMS). The loading−unloading curves and the change of modulus and hardness of samples along with depth were achieved through nanoindenter. The results show that the films which are made in atmosphere without Ar have the highest recovery of elasticity, hardness (72.9 GPa) and elastic modulus (693.7 GPa) among the samples. Meanwhile, samples fabricated at a low Ar content have higher hardness and modulus. All the results above demonstrate that atmosphere without Ar or low Ar content leads to better mechanical properties of nanodiamond films that are the candidates for applications in MEMS.

  15. Unusually high critical current of clean P-doped BaFe{sub 2}As{sub 2} single crystalline thin film

    Energy Technology Data Exchange (ETDEWEB)

    Kurth, F., E-mail: fritz.kurth@ifw-dresden.de; Engelmann, J.; Schultz, L. [Institute for Metallic Materials, IFW Dresden, 01171 Dresden (Germany); TU Dresden, 01062 Dresden (Germany); Tarantini, C.; Jaroszynski, J. [Applied Superconductivity Center, National High Magnetic Field Laboratory, Florida State University, 2031 East Paul Dirac Drive, Tallahassee, Florida 32310 (United States); Grinenko, V.; Reich, E.; Hühne, R. [Institute for Metallic Materials, IFW Dresden, 01171 Dresden (Germany); Hänisch, J. [Institute for Metallic Materials, IFW Dresden, 01171 Dresden (Germany); Karlsruhe Institute of Technology, Institute for Technical Physics, Hermann von Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen (Germany); Mori, Y.; Sakagami, A.; Kawaguchi, T.; Ikuta, H. [Department of Crystalline Materials Science, Nagoya University, Chikusa, Nagoya 464-8603 (Japan); Holzapfel, B. [Karlsruhe Institute of Technology, Institute for Technical Physics, Hermann von Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen (Germany); Iida, K., E-mail: iida@nuap.nagoya-u.ac.jp [Institute for Metallic Materials, IFW Dresden, 01171 Dresden (Germany); Department of Crystalline Materials Science, Nagoya University, Chikusa, Nagoya 464-8603 (Japan)

    2015-02-16

    Microstructurally clean, isovalently P-doped BaFe{sub 2}As{sub 2} (Ba-122) single crystalline thin films have been prepared on MgO (001) substrates by molecular beam epitaxy. These films show a superconducting transition temperature (T{sub c}) of over 30 K although P content is around 0.22, which is lower than the optimal one for single crystals (i.e., 0.33). The enhanced T{sub c} at this doping level is attributed to the in-plane tensile strain. The strained film shows high transport self-field critical current densities (J{sub c}) of over 6 MA/cm{sup 2} at 4.2 K, which are among the highest for Fe based superconductors (FeSCs). In-field J{sub c} exceeds 0.1 MA/cm{sup 2} at μ{sub 0}H=35 T for H‖ab and μ{sub 0}H=18 T for H‖c at 4.2 K, respectively, in spite of moderate upper critical fields compared to other FeSCs with similar T{sub c}. Structural investigations reveal no defects or misoriented grains pointing to strong pinning centers. We relate this unexpected high J{sub c} to a strong enhancement of the vortex core energy at optimal T{sub c}, driven by in-plane strain and doping. These unusually high J{sub c} make P-doped Ba-122 very favorable for high-field magnet applications.

  16. FEM numerical analysis of excimer laser induced modification in alternating multi-layers of amorphous and nano-crystalline silicon films

    Energy Technology Data Exchange (ETDEWEB)

    Conde, J.C., E-mail: jconde@uvigo.es [Dpto. Fisica Aplicada, Universidade de Vigo, Rua Maxwell s/n, Campus Universitario Lagoas Marcosende, Vigo (Spain); Martin, E. [Dpto. Mecanica, Maquinas, Motores Termicos y Fluidos, Universidade de Vigo, Rua Maxwell s/n, Campus Universitario Lagoas Marcosende, Vigo (Spain); Stefanov, S. [Dpto. Fisica Aplicada, Universidade de Vigo, Rua Maxwell s/n, Campus Universitario Lagoas Marcosende, Vigo (Spain); Alpuim, P. [Departamento de Fisica, Universidade do Minho, 4800-058 Guimaraes (Portugal); Chiussi, S. [Dpto. Fisica Aplicada, Universidade de Vigo, Rua Maxwell s/n, Campus Universitario Lagoas Marcosende, Vigo (Spain)

    2012-09-15

    Highlights: Black-Right-Pointing-Pointer nc-Si:H is a material with growing importance for a large-area of nano-electronic, photovoltaic or biomedical devices. Black-Right-Pointing-Pointer UV-ELA technique causes a rapid heating that provokes the H{sub 2} desorption from the Si surface and bulk material. Black-Right-Pointing-Pointer Next, diffusion of P doped nc-Si films and eventually, for high energy densities would be possible to reach the melting point. Black-Right-Pointing-Pointer These multilayer structures consisting of thin alternating a-Si:H(10 nm) and n-doped nc-Si:H(60 nm) films deposited on SiO{sub 2}. Black-Right-Pointing-Pointer To optimize parameters involved in this processing, FEM numerical analysis of multilayer structures have been performed. Black-Right-Pointing-Pointer The numerical results are compared with exhaustive characterization of the experimental results. - Abstract: UV excimer laser annealing (UV-ELA) is an alternative annealing process that, during the last few years, has gained enormous importance for the CMOS nano-electronic technologies, with the ability to provide films and alloys with electrical and optical properties to fit the desired device performance. The UV-ELA of amorphous (a-) and/or doped nano-crystalline (nc-) silicon films is based on the rapid (nanoseconds) formation of temperature profiles caused by laser radiation that is absorbed in the material and lead to crystallisation, diffusion in solid or even in liquid phase. To achieve the desired temperature profiles and to optimize the parameters involved in the processing of hydrogenated nanocrystalline silicon (nc-Si:H) films with the UV-ELA, a numerical analysis by finite element method (FEM) of a multilayer structure has been performed. The multilayer structures, consisting of thin alternating a-Si:H(10 nm) and n-doped nc-Si:H(60 nm) layers, deposited on a glass substrate, has also been experimentally analyzed. Temperature profiles caused by 193 nm radiation with 25

  17. Crystalline MoOx Thin-Films as Hole Transport Layers in DBP/C70 Based Organic Solar Cell

    DEFF Research Database (Denmark)

    Ahmadpour, Mehrad; Fernandes Cauduro, André Luis; dos Reis, Roberto

    Transition Metal Oxides such as Molybdenum oxide (MoOx) have been intensively used as hole transport layers in different organic, inorganic and hybrid technologies, demonstrating also important improvements on the power conversion efficiency as well as on the stability of different types of solar...... cells. Among several different deposition methods available for fabrication of MoOx thin-films, reactive sputtering arises as an interesting alternative due to its full control over the deposition parameters such as the deposition power, reactive gas partial pressure and the deposition rate....

  18. Biomimetic spiral grating for stable and highly efficient absorption in crystalline silicon thin-film solar cells

    KAUST Repository

    Hou, Jin

    2017-09-12

    By emulating the phyllotaxis structure of natural plants, which has an efficient and stable light capture capability, a two-dimensional spiral grating is introduced on the surface of crystalline silicon solar cells to obtain both efficient and stable light absorption. Using the rigorous coupled wave analysis method, the absorption performance on structural parameter variations of spiral gratings is investigated firstly. Owing to diffraction resonance and excellent superficies antireflection, the integrated absorption of the optimal spiral grating cell is raised by about 77 percent compared with the conventional slab cell. Moreover, though a 15 percent deviation of structural parameters from the optimal spiral grating is applied, only a 5 percent decrease of the absorption is observed. This reveals that the performance of the proposed grating would tolerate large structural variations. Furthermore, the angular and polarization dependence on the absorption of the optimized cell is studied. For average polarizations, a small decrease of only 11 percent from the maximum absorption is observed within an incident angle ranging from −70 to 70 degrees. The results show promising application potentials of the biomimetic spiral grating in the solar cell.

  19. Freestanding single crystal chemical vapor deposited diamond films produced using a lift-off method: Response to {alpha}-particles from {sup 241}Am and crystallinity

    Energy Technology Data Exchange (ETDEWEB)

    Tsubouchi, Nobuteru, E-mail: nobu-tsubouchi@aist.go.jp [Diamond Research Laboratory, National Institute of Advanced Industrial Science and Technology (AIST), 1-8-31 Midorigaoka, Ikeda, Osaka 563-8577 (Japan); Mokuno, Y. [Diamond Research Laboratory, National Institute of Advanced Industrial Science and Technology (AIST), 1-8-31 Midorigaoka, Ikeda, Osaka 563-8577 (Japan); Kakimoto, A.; Fujita, F.; Kaneko, J.H. [Graduate School of Engineering, Hokkaido University, Sapporo 060-8628 (Japan); Yamada, H.; Chayahara, A.; Shikata, S. [Diamond Research Laboratory, National Institute of Advanced Industrial Science and Technology (AIST), 1-8-31 Midorigaoka, Ikeda, Osaka 563-8577 (Japan)

    2012-09-01

    Thick ({approx}100 {mu}m) undoped diamond films were grown homoepitaxially on single crystal (SC) diamond substrates by microwave plasma chemical vapor deposition (CVD). To form a freestanding SC diamond film (plate), the substrate was pre-ion-implanted with high-energy ion beams before the film growth, and after the thick-film deposition, the substrate was eliminated using a lift-off method, resulting in fabrication of a SC CVD diamond plate. Two samples were prepared; sample 1 was grown on a (0 0 1) oriented, nitrogen doped CVD SC diamond at {approx}900 Degree-Sign C with the input microwave power of 1.7 kW, while sample 2 was grown on a (0 0 1) oriented, high-pressure high-temperature synthesized type-Ib SC diamond at {approx}900 Degree-Sign C with the input microwave power of 1.25 kW. The formed SC plates have high optical transparencies, indicating no remarkable optical absorptions seen in the wavelength from ultraviolet to near infrared. The photoluminescence (PL) spectra of both samples show strong free exciton FE peaks, while in sample 2 relatively strong optical emissions corresponding to nitrogen related centers were observed in the visible region. After the metal electrodes were formed on both faces of the SC diamond plate to fabricate a sandwich-type diamond particle detector, the energy spectra of 5.486 MeV {alpha}-particles from {sup 241}Am were measured. The charge collection efficiencies (CCEs) of sample 1 were CCE = 98% for a hole transport and CCE = 89% for an electron transport, respectively, while CCEs of sample 2 were CCE = 80% for a hole transport and CCE = 78% for an electron transport, respectively. These results indicate that both holes and electrons in sample 2 were trapped much more than those in sample 1. Possible candidates of carrier capture centers are nitrogen and/or nitrogen-vacancy centers observed in PL, nonradiative defect (complex) centers, extended defects such as threading dislocations observed in micrographs taken with

  20. Quantification of Power Losses of the Interdigitated Metallization of Crystalline Silicon Thin-Film Solar Cells on Glass

    Directory of Open Access Journals (Sweden)

    Peter J. Gress

    2012-01-01

    Full Text Available The metallization grid pattern is one of the most important design elements for high-efficiency solar cells. This paper presents a model based on the unit cell approach to accurately quantify the power losses of a specialized interdigitated metallization scheme for polycrystalline silicon thin-film solar cells on glass superstrates. The sum of the power losses can be minimized to produce an optimized grid-pattern design for a cell with specific parameters. The model is simulated with the standard parameters of a polycrystalline silicon solar cell, and areas for efficiency improvements are identified, namely, a reduction in emitter finger widths and a shift toward series-interconnected, high-voltage modules with very small cell sizes. Using the model to optimize future grid-pattern designs, higher cell and module efficiencies of such devices can be achieved.

  1. Work function contrast and energy band modulation between amorphous and crystalline Ge{sub 2}Sb{sub 2}Te{sub 5} films

    Energy Technology Data Exchange (ETDEWEB)

    Tong, H.; Yang, Z.; Yu, N. N.; Zhou, L. J.; Miao, X. S., E-mail: miaoxs@mail.hust.edu.cn [Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430074 (China); School of Optical and Electronic Information, Huazhong University of Science and Technology, Wuhan 430074 (China)

    2015-08-24

    The work function (WF) is of crucial importance to dominate the carrier transport properties of the Ge-Sb-Te based interfaces. In this letter, the electrostatic force microscopy is proposed to extract the WF of Ge{sub 2}Sb{sub 2}Te{sub 5} (GST) films with high spatial and energy resolution. The measured WF of as-deposited amorphous GST is 5.34 eV and decreases drastically after the amorphous GST is crystallized by annealing or laser illumination. A 512 × 512 array 2D-WF map is designed to study the WF spatial distribution and shows a good consistency. The WF contrast between a-GST and c-GST is ascribed to band modulation, especially the modification of electron affinity including the contribution of charges or dipoles. Then, the band alignments of GST/n-Si heterostructures are obtained based on the Anderson's rule. Due to the band modulation, the I-V characteristics of a-GST/Si heterojunction and c-GST/Si heterojunction are very different from each other. The quantitative relationship is calculated by solving the Poisson's equation, which agrees well with the I-V measurements. Our findings not only suggest a way to further understand the electrical transport properties of Ge-Sb-Te based interfaces but also provide a non-touch method to distinguish crystalline area from amorphous matrix with high spatial resolution.

  2. Study on the crystalline structure transition of syndiotactic polystyrene film during heat treatment by two-dimensional infrared correlation spectroscopy.

    Science.gov (United States)

    Li, Weizhen; Wu, Peiyi

    2009-08-01

    The crystal structure transition of syndiotactic polystyrene film from the helical conformation to the more stable planar zigzag conformation during a heating process was studied using Fourier transform infrared (FT-IR) spectroscopy in combination with two-dimensional (2D) correlation analysis and perturbation-correlation moving-window 2D analysis. The sequence of different conformations during the transition was investigated by analyzing two-dimensional FT-IR correlation spectra in the spectral ranges of 800-700 cm(-1) and 600-500 cm(-1). It was observed that the conformation of delta helical changes prior to gamma helical, and the gamma helical phase is faster than the alpha' planar zigzag phase. By utilizing the 2D asynchronous correlation spectra, the 744 cm(-1) band, which is usually incorporated in the broad 750 cm(-1) band, can now be uniquely attributed as the alpha' zigzag configuration for the first time. Furthermore, by employing thermal perturbation, the shorter helical segments consisting of m = 7-12 and m = 12-20 monomeric units were disturbed in a shorter time than the longer helical segments m = 20-30 during the heating process.

  3. Spatial variations of optoelectronic properties in single crystalline CuGaSe{sub 2} thin films studied by photoluminescence

    Energy Technology Data Exchange (ETDEWEB)

    Larsen, Jes K., E-mail: jes.larsen@uni.lu [Laboratory of Photovoltaics, University of Luxembourg, L-4422 Belval (Luxembourg); Guetay, Levent [Laboratory of Photovoltaics, University of Luxembourg, L-4422 Belval (Luxembourg); Aida, Yasuhiro [Laboratory of Photovoltaics, University of Luxembourg, L-4422 Belval (Luxembourg); Device Development Center, TDK Corporation, Ichikawa, Chiba, 272-8558 (Japan); Siebentritt, Susanne [Laboratory of Photovoltaics, University of Luxembourg, L-4422 Belval (Luxembourg)

    2011-08-31

    Single crystal CuGaSe{sub 2} (CGSe) thin films were grown epitaxially on GaAs substrates with different compositions and studied with spatially resolved photoluminescence with micrometer resolution ({mu}PL). Polycrystalline counterparts grown on glass were studied for comparison. {mu}PL performed at room temperature is used to analyze spatial variations of the band gap ({Delta}Eg) and the splitting of quasi-Fermi levels ({Delta}(E{sub Fn} - E{sub Fp})) of the absorber. In contrast to earlier studies on Cu(In,Ga)Se{sub 2} (CIGSe) we have concentrated on inhomogeneities occurring in the absence of alloying effects due to the In and Ga mixture. The epitaxially grown specimen exhibited a significantly smaller amount of variations than the polycrystalline counterparts. Cu-rich samples showed higher variation of {Delta}(E{sub Fn} - E{sub Fp}) compared to the Cu-poor counterparts. It is suggested that this is related to formation of a secondary phase Cu{sub x}Se under Cu-rich conditions giving rise to spatially fluctuating Cu-excess. The observed band gap variations could be attributed to strain effects in the absorber layer, and do not indicate any variations of the electronic structure of the absorber.

  4. Grazing incidence X-ray fluorescence analysis of buried interfaces in periodically structured crystalline silicon thin-film solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Eisenhauer, David; Preidel, Veit; Becker, Christiane [Young Investigator Group Nanostructured Silicon for Photovoltaic and Photonic Implementations (Nano-SIPPE), Helmholtz-Zentrum Berlin fuer Materialien und Energie GmbH, Berlin (Germany); Pollakowski, Beatrix; Beckhoff, Burkhard [Physikalisch-Technische Bundesanstalt, Berlin (Germany); Baumann, Jonas; Kanngiesser, Birgit [Institut fuer Optik und Atomare Physik, Technische Universitaet Berlin (Germany); Amkreutz, Daniel; Rech, Bernd [Institut Silizium Photovoltaik, Helmholtz-Zentrum Berlin fuer Materialien und Energie GmbH, Berlin (Germany); Back, Franziska; Rudigier-Voigt, Eveline [SCHOTT AG, Mainz (Germany)

    2015-03-01

    We present grazing incidence X-ray fluorescence (GIXRF) experiments on 3D periodically textured interfaces of liquid phase crystallized silicon thin-film solar cells on glass. The influence of functional layers (SiO{sub x} or SiO{sub x}/SiC{sub x}) - placed between glass substrate and silicon during crystallization - on the final carbon and oxygen contaminations inside the silicon was analyzed. Baring of the buried structured silicon surface prior to GIXRF measurement was achieved by removal of the original nano-imprinted glass substrate by wet-chemical etching. A broad angle of incidence distribution was determined for the X-ray radiation impinging on this textured surface. Optical simulations were performed in order to estimate the incident radiation intensity on the structured surface profile considering total reflection and attenuation effects. The results indicate a much lower contamination level for SiO{sub x} compared to the SiO{sub x}/SiC{sub x} interlayers, and about 25% increased contamination when comparing structured with planar silicon layers, both correlating with the corresponding solar cell performances. (copyright 2015 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  5. Nanoscale confinement and interfacial effects on the dynamics and glass transition/crystallinity of thin adsorbed films on silica nanoparticles

    Science.gov (United States)

    Madathingal, Rajesh Raman

    hydrogen bonded to the silanols, and was independent of particle morphology. For methylated silica, (CH3) 3-SiO2, the adsorption isotherms were identical for colloidal and fumed silica, but Tg was depressed for the former, and comparable to the bulk value for the latter. The increased Tg of PMMA adsorbed onto fumed (CH3)3-SiO2 was attributed to the larger loops formed by the bridging PMMA chains between the silica aggregates. For nanocomposites the interphase region becomes more important as the surface/volume ratio of the nanoparticles increases. Polymers have chain dimensions (characterized by the radius of gyration, Rg) similar to the nanoparticles (Rnanoparticle) themselves, so that chain conformation, mobility and crystallinity can be affected by Rg/Rnanoparticle. Here, both the glass transition temperature (Tg) and degree of crystallinity (Xc) of polyethylene oxide (PEO) on individual SiO 2 nanoparticles of nominal 15, 50 and 100 nm diameter (2 RSiO2 ) , in which Rg (PEO) was greater, equal to or less than RSiO2 was investigated. Plateau adsorption of PEO on SiO2 nanoparticles (PEO-SiO2) increased in the order PEO-SiO 2 (100 nm) > PEO-SiO2 (50 nm) > PEO-SiO2 (15 nm). At plateau adsorption after melting and solidification, the samples were completely amorphous. The Tg of the adsorbed PEO increased in the order PEO-SiO 2 (100 nm) > PEO-SiO2 (50 nm) > PEO-SiO2 (15 nm); since the Tgs were above 25°C in all cases, the PEO behaved more like a brittle solid than an elastomer. For comparable amounts of PEO that were adsorbed from solution but not melted, the melt endotherm increased in the order PEO-SiO2 (15 nm) > PEO-SiO2 (50 nm) > PEO-SiO 2 (100 nm). These trends were interpreted as due to an increase in loop/tail lengths and thus flexibility, with a concomitant ability to crystallize, as Rg (PEO)/RSiO2 decreased and which was the result of less hydrogen bond formation between the oxygens of PEO and the silanols (SiOH) of the SiO 2 as the nanoparticle size decreased. This

  6. Preparation of high magneto-optical performance and crystalline quality Ce{sub 1}Gd{sub 2}Fe{sub 5−x}Ga{sub x}O{sub 12} films on CLNGG substrate crystal

    Energy Technology Data Exchange (ETDEWEB)

    Fu, Qiu-ping; Zheng, Ze-yuan; Lin, Nan-xi; Liu, Xiao-feng; Hong, Can-huang; Hu, Xiao-lin, E-mail: linamethyst@fzu.edu.cn; Zhuang, Nai-feng; Chen, Jian-zhong, E-mail: j.z.chen@fzu.edu.cn

    2016-11-01

    Thin films of Ce{sub 1}Gd{sub 2}Fe{sub 5−x}Ga{sub x}O{sub 12} (Ce,Ga:GIG) were prepared on Gd{sub 3}Ga{sub 5}O{sub 12} (GGG) and Ca{sub 2.90}Li{sub 0.30}Nb{sub 1.93}Ga{sub 2.76}O{sub 12} (CLNGG) substrates by using radio frequency magnetron sputtering technique. The phase, grain orientation, surface morphology, transmittance, magnetism and magnetic circular dichroism (MCD) properties of films were analyzed. And the effects of lattice mismatch and non-magnetic Ga{sup 3+}-doping were discussed. The results show that the films with higher crystallized quality and lower stress can be obtained by growing on CLNGG than on GGG. Moreover, the coercive force, magnetization, magneto-optical effect intensity and orientation of film can be effectively regulated by adjusting Ga{sup 3+}-doped concentration. - Highlights: • With excellent magneto-optical performance, Ce,Ga:GIG film has a good application prospect. • Ce,Ga:GIG film with high quality were prepared on CLNGG by RF magnetron sputtering. • Crystalline quality and morphology of films are intently related to the substrate. • Ga{sup 3+} doping obviously affect on magnetism and magneto-optical property of Ce:GIG film.

  7. Comparative study. Thin-film technology (si-a) compared to crystalline silicon in real operating conditions; Estudio comparativo. Tecnologia de capa fina (Si-a) frente a silicio cristalino en condiciones reales de funcionamiento

    Energy Technology Data Exchange (ETDEWEB)

    Izard Gomez-Rodulfo, J.; Avellaner, J.; Sanchez, E.; Torreblanca, J.

    2010-07-01

    We present a comparative study of thin film solar modules (amorphous silicon) compared to crystalline silicon modules. This study was conducted in real operating conditions using a test bench able to obtain the characteristic curve of several modules in sequence. defined the parameter efficiency index to characterize the extent to which actual performance is close to ideal. Finally we have calculated the energy that would produce each module in the day and efficiency in relation to the energy which ideally should produce. (Author)

  8. Control of the optical and crystalline properties of TiO{sub 2} in visible-light active TiO{sub 2}/TiN bi-layer thin-film stacks

    Energy Technology Data Exchange (ETDEWEB)

    Smith, Wilson; Fakhouri, Houssam; Pulpytel, Jerome; Arefi-Khonsari, Farzaneh [Laboratoire de Genie des Procedes Plasma et Traitement de Surface, Universite Pierre et Marie Curie, 11 Rue Pierre et Marie Curie, Paris 75231 (France)

    2012-01-15

    Multi-layered thin films of TiO{sub 2} and TiN were created by rf reactive magnetron sputtering, and their crystalline, optical, and photoelectrochemical properties were measured. The overall composition of the films (TiO{sub 2}-to-TiN ratio) was kept constant with the height of each film. The number of layers and thickness of each layer was controlled to create bi-layer thin films that were composed of: 9 bi-layers, 18 bi-layers, 27 bi-layers, 36 bi-layers, and 45 bi-layers. XRD patterns were observed for each film after annealing to measure the grain size and composition of anatase and rutile as a function of temperature. It was found that the phase-transition temperature is able to be substantially controlled (between 550 deg. C and 850 deg. C) for the anatase to rutile transition by varying the number of layers/thickness of each layer. In addition, bi-layer stacking significantly affected the film's optical properties by lowering the bandgap into the visible-light region, and also showed up to three times the improvement in photoelectrochemical performance under uv and visible irradiation. Overall, bi-layer stacking of TiO{sub 2}/TiN films has shown a unique and highly desirable control over several important physical characteristics that can be beneficial for many applications, such as high-temperature sensors and optoelectronic devices.

  9. LPE Growth of Single Crystalline Film Scintillators Based on Ce3+ Doped Tb3−xGdxAl5−yGayO12 Mixed Garnets

    Directory of Open Access Journals (Sweden)

    Vitalii Gorbenko

    2017-08-01

    Full Text Available The growth of single crystalline films (SCFs with excellent scintillation properties based on the Tb1.5Gd1.5Al5−yGayO12:Ce mixed garnet at y = 2–3.85 by Liquid Phase Epitaxy (LPE method onto Gd3Al2.5Ga2.5O12 (GAGG substrates from BaO based flux is reported in this work. We have found that the best scintillation properties are shown by Tb1.5Gd1.5Al3Ga2O12:Ce SCFs. These SCFs possess the highest light yield (LY ever obtained in our group for LPE grown garnet SCF scintillators exceeding by at least 10% the LY of previously reported Lu1.5Gd1.5Al2.75Ga2.25O12:Ce and Gd3Al2–2.75 Ga3–2.25O12:Ce SCF scintillators, grown from BaO based flux. Under α-particles excitation, the Tb1.5Gd1.5 Al3Ga2O12:Ce SCF show LY comparable with that of high-quality Gd3Al2.5Ga2.5O12:Ce single crystal (SC scintillator with the LY above 10,000 photons/MeV but faster (at least by 2 times scintillation decay times t1/e and t1/20 of 230 and 730 ns, respectively. The LY of Tb1.5Gd1.5Al2.5Ga2.5O12:Ce SCFs, grown from PbO flux, is comparable with the LY of their counterparts grown from BaO flux, but these SCFs possess slightly slower scintillation response with decay times t1/e and t1/20 of 330 and 990 ns, respectively. Taking into account that the SCFs of the Tb1.5Gd1.5Al3–2.25Ga2–2.75O12:Ce garnet can also be grown onto Ce3+ doped GAGG substrates, the LPE method can also be used for the creation of the hybrid film-substrate scintillators for simultaneous registration of the different components of ionization fluxes.

  10. Technology development for crystalline silicon thin-film solar cells (TEKSI). Final report; Technologieentwicklung fuer kristalline Silizium-Duennschicht-Solarzellen (TEKSI). Abschlussbericht

    Energy Technology Data Exchange (ETDEWEB)

    Wettling, W.; Hurrle, A.; Bau, S.; Eyer, A.; Haas, F.; Huljic, D.; Kieliba, T.; Lautenschlager, H.; Luedemann, R.; Lutz, F.; Preu, R.; Reber, S.; Rentsch, J.; Schaefer, S.; Schetter, C.; Schillinger, N.; Warta, W.; Zimmermann, W.

    2002-10-01

    The results of a project aimed at the development of crystalline solar wafers are presented. All process stages were reviewed in detail with a view to industrial fabrication. This included also the further development of machinery, e.g. for selective zone melting recrystallisation, CVD silicon deposition, and characterisation of deposited films and solar cells. Not all the envisaged goals were achieved. For example, efficiencies up to 17.6 percent were possible on direct epitactic, highly doped CZ-Si substrates and with a high-efficiency process, but the normal efficiencies of solar cells on SSP or on ceramic substrates were in the range of 8-11 percent. This underlines the need for further research on the development of appropriate substrates with reproducible properties. [German] Im vorliegenden Bericht werden die Ergebnisse eines mehrjaehrigen Projekts zur Entwicklung der kristallinen Silizium-Duennschichtsolarzelle (KSD-Solarzelle) vorgestellt. Die Arbeiten waren eine konsequente Fortsetzung der bereits in einem Vorgaengerprojekt (FKZ 0328986B) bearbeiteten Themen. Alle zur Herstellung solcher Solarzellen noetigen Prozessschritte im Rahmen des am Fraunhofer ISE verfolgten Hochtemperaturpfads wurden detailliert untersucht, insbesondere im Hinblick auf eine industrielle Fertigung. Ein wesentlicher Teil der Arbeiten befasste sich deshalb auch mit der Weiterentwicklung von Geraeten, so z. B. fuer die Zonenschmelzrekristallisation, fuer die Silizumabscheidung mittels CVD-Verfahren und fuer die Charakterisierung abgeschiedener Schichten und Solarzellen. Nicht alle der ehrgeizigen Projektziele konnten erreicht werden. Auf direkt epitaxierten, hochdotierten CZ-Si-Substraten konnten zwar mit einem High-Efficiency-Prozess Wirkungsgrade bis zu 17.6%, mit fertigungsrelevanter Siebdrucktechnologie bis 13% erzielt werden. Die Wirkungsgrade von Solarzellen auf SSP oder auf Keramiksubstraten lagen aber alle im Bereich von 8-11%. Dies zeigt deutlich, dass die Entwicklung

  11. Pulse transient hot strip technique adapted for slab sample geometry to study anisotropic thermal transport properties of μm-thin crystalline films.

    Science.gov (United States)

    Ma, Y; Gustavsson, J S; Haglund, A; Gustavsson, M; Gustafsson, S E

    2014-04-01

    A new method based on the adaptation of the Pulse Transient Hot Strip technique to slab sample geometry has been developed for studying thermal conductivity and thermal diffusivity of anisotropic thin film materials (conductivity in the 0.01-100 W/mK range, deposited on thin substrates (i.e., wafers). Strength of this technique is that it provides a well-controlled thermal probing depth, making it possible to probe a predetermined depth of the sample layer and thereby avoiding the influence from material(s) deeper down in the sample. To verify the technique a series of measurements were conducted on a y-cut single crystal quartz wafer. A Hot Strip sensor (32-μm wide, 3.2-mm long) was deposited along two orthogonal crystallographic (x- and z-) directions and two independent pulse transients were recorded. Thereafter, the data was fitted to our theoretical model, and the anisotropic thermal transport properties were determined. Using a thermal probing depth of only 30 μm, we obtained a thermal conductivity along the perpendicular (parallel) direction to the z-, i.e., optic axis of 6.48 (11.4) W/mK, and a thermal diffusivity of 3.62 (6.52) mm(2)/s. This yields a volumetric specific heat of 1.79 MJ/mK. These values agree well with tabulated data on bulk crystalline quartz supporting the accuracy of the technique, and the obtained standard deviation of less than 2.7% demonstrates the precision of this new measurement technique.

  12. Dependence of crystalline, ferroelectric and fracture toughness on annealing in Pb(Zr0.52Ti0.48O3 thin films deposited by metal organic decomposition

    Directory of Open Access Journals (Sweden)

    Xuejun Zheng

    2003-12-01

    Full Text Available Crystalline, electric and fracture properties of Pb(Zr0.52Ti0.48O3 (PZT thin films are strongly affected by annealing temperatures in rapid treatment annealing (RTA of metal organic decomposition (MOD. X-ray diffraction (XRD, RT66A standard ferroelectric analyzer and Vickers indentation method were used to investigate the crystalline, ferroelectric and mechanical properties, respectively. PZT thin film with complete perovskite structure and best ferroelectric property can be obtained at 750 °C, however the fracture toughness was weaker than the thin films annealed at 600 °C and 650 °C. With the increase of annealing temperature from 600 °C to 750 °C, the remanent polarization and coercive field increased in the ranges 13.8~25.2 (µC/cm² and 7.2~8.3 (kV/cm respectively, while the fracture toughness of PZT thin films decreased from 0.49 MPam½ to 0.47 MPam½.

  13. Luminescent and scintillation properties of Bi{sup 3+} doped Y{sub 2}SiO{sub 5} and Lu{sub 2}SiO{sub 5} single crystalline films

    Energy Technology Data Exchange (ETDEWEB)

    Zorenko, Yu., E-mail: zorenko@ukw.edu.pl [Institute of Physics, Kazimierz Wielki University in Bydgoszcz, 85-090 Bydgoszcz (Poland); Gorbenko, V.; Zorenko, T. [Institute of Physics, Kazimierz Wielki University in Bydgoszcz, 85-090 Bydgoszcz (Poland); Laboratory for Optoelectronic Materials (LOM), Department of Electronics of Ivan Franko National University of Lviv, 79017 Lviv (Ukraine); Malinowski, P. [Institute of Physics, Kazimierz Wielki University in Bydgoszcz, 85-090 Bydgoszcz (Poland); Jary, V.; Kucerkova, R.; Beitlerova, A.; Mares, J.A.; Nikl, M. [Institute of Physics AS CR, Cukrovarnicka 10, 16253 Prague (Czech Republic); Fedorov, A. [Institute for Single Crystals NAS of Ukraine, 60 Lenin ave., 61001 Kharkiv (Ukraine)

    2014-10-15

    In this paper we report our follow-up research on the Bi{sup 3+} luminescence in orthosilicate compounds, focusing on absorption, luminescent and scintillation properties of YSO:Bi and LSO:Bi SCFs with the Bi concentration ranging from 0.05 to 0.18 at%. For purpose of this research, single crystalline films (SCF) of Y{sub 2}SiO{sub 5}:Bi and Lu{sub 2}SiO{sub 5}:Bi have been grown by the LPE method onto YSO and LSO substrates from the melt-solution based on Bi{sub 2}O{sub 3} flux. - Highlights: • YSO:Bi and LSO:Bi films have been grown by liquid phase epitaxy. • Bi{sup 3+} absorption and luminescence depends on Bi concentration. • Scintillation properties of YSO:Bi and LSO:Bi films have been studied.

  14. Synthesis, Characterization And Optoelectrical Properties of Cd Doped ZnO Poly Crystalline Nano Thin Films Deposited by Successive Ionic Layer Adsorption and Reaction (SILAR) Method

    Science.gov (United States)

    Bindal, Nitin; Sharma, Manisha; Kumar, H.; Sharma, S.; Upadhaya, S. C.

    2011-12-01

    Cadmium doped zinc oxide polycrystalline nano thin films were deposited on microscopic glass substrates following a modified chemical bath technique called Successive Ionic Layer Adsorption and Reaction (SILAR). Cadmium doping was found to increase the film grown rate. The X-ray diffraction pattern showed that films have polycrystalline nature. The SEM image revealed growth of large crystallites perpendicular to the substrates. The optical transmittance spectra indicate that these thin films have the direct energy band gap. The resistivity of these films decreased with increase in the temperature for all compositions, which confirmed the semiconducting nature of films.

  15. Substrate temperature study in the crystallinity of BaTiO{sub 3} thin films; Estudio de la temperatura de crecimiento sobre la cristalinidad en peliculas delgadas de BaTiO{sub 3}

    Energy Technology Data Exchange (ETDEWEB)

    Marquez-Herrera, Alfredo [Coordinacion Academica Region Altiplano (COARA), Universidad Autonoma de San Luis Potosi, San Luis Potosi (Mexico)]. E-mail: amarquez@mixteco.utm.mx; Hernandez-Rodriguez, Eric Noe; Zapata-Torres, Martin Guadalupe [Centro de Investigacion en Ciencia Aplicada y Tecnologia Avanzada, Unidad Legaria, Instituto Politecnico Nacional (Mexico)]. E-mails: noehmx@hotmail.com; mzapatat@ipn.mx; Cruz-Jauregui, Maria de la Paz [Centro de Nanociencias y Nanotecnologia, Universidad Nacional Autonoma de Mexico (Mexico)]. E-mail: mcruz@cnyn.unam.mx; Melendez-Lira, Miguel angel [Centro de Investigacion y de Estudios Avanzados, Instituto Politecnico Nacional (Mexico)]. E-mail: mlira@fis.cinvestav.mx

    2013-07-15

    Ferroelectric thin films of BaTiO{sub 3} (BTO) were grown on quartz and nichrome substrates using a BaTiO{sub 3} target by RF-Sputtering technique. It was studied the effect of the substrate temperature in the crystallization of the material. These samples were compared with films deposited at room temperature and heat treated out of the growth Chamber. Their crystallinity were studied by X-ray diffraction. Additionally, the optical characterizations were carried out by UV-Vis spectrophotometer. The growth of thin films with substrate temperature allows the obtaining of crystalline materials at temperatures below those reported by other authors. [Spanish] Peliculas delgadas Ferroelectricas de BaTiO{sub 3} (BTO) se depositaron a partir de un blanco de BaTiO{sub 3} mediante la tecnica de RF-Sputtering (erosion catodica por radio frecuencia) sobre substratos de nicromel y cuarzo. Se estudio el efecto de la temperatura de sustrato in-situ en la cristalinidad del material durante su deposito. Estas muestras fueron comparadas con peliculas depositadas a temperatura ambiente y tratadas termicamente posterior al deposito fuera de la camara de crecimiento. El estudio de la cristalinidad fue realizado mediante la tecnica de difraccion de rayos-X. Adicionalmente, se llevaron a cabo caracterizaciones opticas mediante un espectrofotometro UV-Vis. El crecimiento de peliculas delgadas con temperatura de sustrato permite la obtencion de materiales cristalinos a temperaturas por debajo de las reportadas por otros autores.

  16. Bietti's Crystalline Dystrophy

    Science.gov (United States)

    ... Dystrophy > Facts About Bietti's Crystalline Dystrophy Facts About Bietti's Crystalline Dystrophy This information was developed by the ... is the best person to answer specific questions. Bietti’s Crystalline Dystrophy Defined What is Bietti’s Crystalline Dystrophy? ...

  17. Evolution of the crystalline structure in (Bi{sub 0}.5Na{sub 0}.5){sub 1}-xBaxTiO{sub 3} thin films around the Morpho tropic Phase Boundary

    Energy Technology Data Exchange (ETDEWEB)

    Perez-Mezcua, D.; Calzada, M. L.; Bretos, I.; Ricote, J.; Chateigner, D.; Escobar-Galindo, R.; Jimenez, R.; Sirera, R.

    2014-02-01

    (Bi{sub 0}.5Na{sub 0}.5){sub 1}-xBa{sub x}TiO{sub 3} (BNBT), which exhibits compositions for the morphotropic phase boundary (MPB) where exist an intimate coexistence of the rhombohedral and tetragonal structures, is being considered as promising lead-free alternative to the well known Pb(Zr{sub x},Ti{sub 1}-x)O{sub 3} (PZT). In this work, BNBT thin films were fabricated by chemical solution deposition (CSD) with a wide range of compositions (x{approx}{approx}0.050-0.150) onto Pt/TiO{sub 2}/SiO{sub 2}/(100)Si substrates. Structural studies by X-ray diffraction ({lambda}Cu{approx}1.5406 A) using a four-circle goniometer were carried out to determine the crystalline structure of the films. Rietveld analysis of the experimental X-ray patterns showed different volume fractions of the rhombohedral and tetragonal phases as a function of the Ba{sup 2}+ content and the coexistence of both phases, characteristic of a MPB region, for x{approx}­0.055-0.080. Finally, Rutherford backscattering experiments (RBS) were performed to determine the compositional profile of the films. This study revealed a homogenous composition of the BNBT films with abrupt film/substrate interfaces. (Author)

  18. Annealing temperature effect on the optical properties of thermally oxidized nano-crystalline ZrO2 thin films grown on glass substrates

    Science.gov (United States)

    Larijani, M. M.; Hasani, E.; Safa, S.

    2014-01-01

    Optical properties of zirconium oxide films on glass substrates deposited by thermal oxidation method have been studied at different temperatures. Optical characteristics of films such as refractive index, extinction coefficient, average thickness and optical dielectric constants were calculated using Swanepoel's method. X-ray diffraction analysis (XRD) and atomic force microscopy were performed to investigate the film structure and morphology. It was found out that the optical properties of zirconium oxide films are affected by oxidation temperature which are due to changes of film microstructure and surface roughness.

  19. Composition and crystalline properties of TiNi thin films prepared by pulsed laser deposition under vacuum and in ambient Ar gas.

    Science.gov (United States)

    Cha, Jeong Ok; Nam, Tae Hyun; Alghusun, Mohammad; Ahn, Jeung Sun

    2012-01-05

    TiNi shape memory alloy thin films were deposited using the pulsed laser deposition under vacuum and in an ambient Ar gas. Our main purpose is to investigate the influences of ambient Ar gas on the composition and the crystallization temperature of TiNi thin films. The deposited films were characterized by energy-dispersive X-ray spectrometry, a surface profiler, and X-ray diffraction at room temperature. In the case of TiNi thin films deposited in an ambient Ar gas, the compositions of the films were found to be very close to the composition of target when the substrate was placed at the shock front. The in-situ crystallization temperature (ca. 400°C) of the TiNi film prepared at the shock front in an ambient Ar gas was found to be lowered by ca. 100°C in comparison with that of a TiNi film prepared under vacuum.

  20. Growth and luminescent properties of scintillators based on the single crystalline films of Lu{sub 3−x}Gd{sub x}Al{sub 5}O{sub 12}:Ce garnet

    Energy Technology Data Exchange (ETDEWEB)

    Zorenko, Yu, E-mail: zorenko@ukw.edu.pl [Institute of Physics, Kazimierz Wielki University in Bydgoszcz, 85090 Bydgoszcz (Poland); Laboratory for Optoelectronic Materials, Department of Electronics of Ivan Franko National University of Lviv, 79017 Lviv (Ukraine); Gorbenko, V. [Institute of Physics, Kazimierz Wielki University in Bydgoszcz, 85090 Bydgoszcz (Poland); Laboratory for Optoelectronic Materials, Department of Electronics of Ivan Franko National University of Lviv, 79017 Lviv (Ukraine); Vasylkiv, Ja [Laboratory for Optoelectronic Materials, Department of Electronics of Ivan Franko National University of Lviv, 79017 Lviv (Ukraine); Zelenyj, A. [Danylo Halytskyy Lviv National Medical University, 79010 Lviv (Ukraine); Fedorov, A. [Institute for Scintillation Materials, NAS of Ukraine, 61001 Kharkiv (Ukraine); Kucerkova, R.; Mares, J.A.; Nikl, M. [Institute of Physics, AS CR, 16253 Prague (Czech Republic); Bilski, P.; Twardak, A. [Institute of Nuclear Physic, Polish Academy of Science, 31-342 Krakow (Poland)

    2015-04-15

    Highlights: • Single crystalline films of Lu{sub 3−x}Gd{sub x}Al{sub 5}O{sub 12} garnets at x = 0 ÷ 3.0 were grown by LPE method onto YAG substrates. • Lattice constant of Lu{sub 3−}Gd{sub x}Al{sub 5}O{sub 12}:Ce film and the misfit m between films and YAG substrate changed linearly with increasing of Gd content. • Effective Gd{sup 3+}–Ce{sup 3+} energy transfer occurs in the Lu{sub 3−x}Gd{sub x}Al{sub 5}O{sub 12}:Ce films. • Best scintillation light yield is observed in the Lu{sub 3}Al{sub 5}O{sub 12}:Ce and Lu{sub 2.4}Gd{sub 0.6}Al{sub 5}O{sub 12}:Ce films. • Increase of the Gd content in x = 1.5–2.5 range results in decreasing the scintillation LY of Lu{sub 3−x}Gd{sub x}Al{sub 5}O{sub 12}:Ce films. - Abstract: The work is related to the growth of scintillators based on the single crystalline films (SCF) of Ce{sup 3+} doped Lu{sub 3−}Gd{sub x}Al{sub 5}O{sub 12} mixed rare-earth garnets by Liquid Phase Epitaxy (LPE) method. We have shown, that full set of Lu{sub 3−}Gd{sub x}Al{sub 5}O{sub 12} SCFs with x values ranging from 0 to 3.0 can be successfully crystallized by the LPE method onto Y{sub 3}Al{sub 5}O{sub 12} (YAG) substrates from the melt-solutions based on PbO-B{sub 2}O{sub 3} flux. The absorption, X-ray excited luminescence, photoluminescence, thermoluminescence and light yield measurements, the latter under excitation by α-particles of {sup 239}Pu and {sup 241}Am radioisotopes, were applied for their characterization.

  1. Influence of composition on optical and dispersion parameters of thermally evaporated non-crystalline Cd{sub 50}S{sub 50−x}Se{sub x} thin films

    Energy Technology Data Exchange (ETDEWEB)

    Hassanien, A.S., E-mail: a.s.hassanien@gmail.com [Engineering Mathematics and Physics Dept., Faculty of Engineering (Shoubra), Benha University (Egypt); Physics Department, Faculty of Science and Humanities in Ad-Dawadmi, Shaqra University, 11911 (Saudi Arabia); Akl, Alaa A. [Physics Department, Faculty of Science and Humanities in Ad-Dawadmi, Shaqra University, 11911 (Saudi Arabia)

    2015-11-05

    Non-crystalline thin films of chalcogenide Cd{sub 50}S{sub 50−x}Se{sub x} system (30 ≤ x ≤ 50) were obtained by thermal evaporation technique onto a pre-cleaned glass substrate at a vacuum of 8.2 × 10{sup −4} Pa. The deposition rate and film thickness were kept constant at about 8 nm/s and 200 nm, respectively. Amorphous/crystalline nature and chemical composition of films have been checked using X-ray diffraction and energy dispersive X-ray spectroscopy (EDX). Optical properties of thin films were investigated and studied using the corrected transmittance, T(λ) and corrected reflectance, R(λ) measurements. Obtained data reveal that, the indirect optical energy gap (E{sub g}) was decreased from 2.21 to 1.57 eV. On the contrary, Urbach energy (band tail width), E{sub U} was found to be increased from 0.29 to 0.45 eV. This behavior is believed to be associated with the increase of Se-content instead of S-content in the thin films of Cd{sub 50}S{sub 50−x}Se{sub x} system. Chemical bond approach model, CBA was used to analyze the obtained values of E{sub g} and E{sub U}. Optical density, skin depth, extinction coefficient, refractive index and optical conductivity of chalcogenide CdSSe thin films were discussed as functions of Se-content. Using Wemple-DiDomenico single oscillator model, the refractive index dispersion and energy parameters and their dependence on Se content were studied. - Highlights: • Amorphous thin films of thickness 200 nm of Cd{sub 50}S{sub 50−x}Se{sub x} (30 ≤ x ≤ 50) have prepared. • Optical properties, indirect optical energy gap and band tail width were studied. • Chemical bond approach, CBA was used to analyze the obtained values of E{sub g} and E{sub U}. • New data of dispersion refractive index parameters were investigated and discussed.

  2. 芳香族偶氮苯封端的液晶聚氨酯膜的制备及其液晶性能%Synthesis and Liquid Crystalline Properties of Liquid Crystalline Polyurethane Film with Aromatic Azo Benzene End Capping

    Institute of Scientific and Technical Information of China (English)

    吴宁; 赵殊; 王婧; 黄竹君

    2012-01-01

    以苯胺或对硝基苯胺为主要原料,经重氮偶合反应制得液晶基元对氨基偶氮苯(LC1)或对硝基偶氮苯胺( LC2),再用聚氨酯预聚体[由聚乙二醇(PEG400,含-OH)和二苯基甲烷二异氰酸酯(MDI,含-NCO)制得,r=n(-OH)∶n(-NCO)]封端合成了一系列偶氮液晶聚氨酯膜LCPU'1和LCPU'2,其结构和液晶性能经UV,IR,TGA,POM与XRD表征.结果表明,LCPU'1和LCPU'2为具有良好热稳定性的热致型向列型液晶聚氨酯.LCPU3/41的接触角较大,耐水性相对较佳,硬度也相对适中.%Aromatic azo benzene liquid crystalline units,LC,or LC2,were prepared by diazo coupling reaction from aniline or p-nitroaniline. A series of azo liquid crystalline polyurethane films ( LCPUr1 and LCPUr2) were synthesized by the end capping reaction of LC1 or LC2 with polyurethane prepolymer which were prepared by different ratio [ r = n ( -OH ) : n ( -NCO ) ] polyethylene glycol (PEG400,containing-OH) and 4,4'-diphenylmethane diisocyanate(MDI,containing-NCO). The structures and film properties of LC and LCPU were characterized by UV,IR,TGA,DSC,POM and XRD. The results indicated that LCPUr1 and LCPUr2 were thermotropic nematic liquid crystalline polyurethane and showed good thermal stability. LCPU3/41 exhibited a relatively modest value of static contact angle,the water resistance and hardness properties.

  3. Research and development of photovoltaic power system. Characterization and control of surface/interface recombination velocity of crystalline silicon thin films; Taiyoko hatsuden system no kenkyu kaihatsu. Silicon kessho usumaku ni okeru hyomen kaimen saiketsugo sokudo no hyoka to seigyo

    Energy Technology Data Exchange (ETDEWEB)

    Hasegawa, H. [Hokkaido University, Sapporo (Japan). Faculty of Engineering

    1994-12-01

    This paper reports the result obtained during fiscal 1994 on characterization and control of surface/interface recombination velocity of crystalline silicon thin films. To optimize design and manufacture of solar cells, it is necessary to identify correctly resistance factor (or doping) of bulk of materials, bulk minority carrier life, and recombination velocity on surface, passivation interface and electrode interface. A group in the Hokkaido University has been working since a few years ago on development of non-contact and non-destructive photo-luminescence surface level spectroscopy (PLS{sup 3}). A new non-contact C-V method was also introduced. Using these methods, basic discussions were given on possibility of separate measurements on surface/interface and bulk characteristics of solar cell materials. The PLS{sup 3} method and the non-contact C-V method were used for experimental discussions on evaluation of silicon mono-crystalline and poly-crystalline materials. Discussions were given on separate evaluations by using the DLTS method. 10 figs., 2 tabs.

  4. Effect of polylactic acid crystallinity on its electret properties

    Science.gov (United States)

    Guzhova, A. A.; Galikhanov, M. F.; Kuznetsova, N. V.; Petrov, V. A.; Khairullin, R. Z.

    2016-09-01

    Electret properties of the polylactic acid films with different degree of crystallinity due to different cooling and annealing conditions were studied. Samples with the higher degree of crystallinity showed more stable electret characteristics resulting from amorphous-crystalline interface boundary growth and capturing bigger amount of injected charge carriers by volume energy traps.

  5. Luminescence enhancement of ZnO-poly(methylmethacrylate) nanocomposite films by incorporation of crystalline BaTiO{sub 3} nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Kanamori, Tsuyoshi; Han, Yu; Nagao, Daisuke, E-mail: dnagao@tohoku.ac.jp; Kamezawa, Nao; Ishii, Haruyuki; Konno, Mikio

    2016-09-15

    Highlights: • Dielectric barium titanate (BT) nanoparticles incorporated into luminescence films. • Luminescence intensities increased by the BT nanoparticle incorporation. • Incorporation of highly dielectric nanoparticles effective for luminescence enhancement. - Abstract: Incorporation of highly dielectric nanoparticles into luminescent ZnO-polymethylmethacrylate (PMMA) nanocomposite films was undertaken to examine the effect of nanoparticle incorporation on luminescence intensity of the nanocomposite films. ZnO nanoparticles were prepared as inorganic phosphors by a precipitation method. The ZnO nanoparticles were then surface-modified with 3-methacryloxypropyltrimethoxysilane (MPTMS) to be used for fabrication of the ZnO-PMMA nanocomposite film. Barium titanate (BT) nanoparticles were synthesized with a sol-gel method as the highly dielectric nanoparticles, which were also surface-modified with the MPTMS for the incorporation into the nanocomposite films. Luminescence intensity of the nanocomposite films was successfully increased by the nanoparticle incorporation up to a BT content around 15 vol%. The luminescence intensity higher than that measured for the nanocomposite films incorporating SiO{sub 2} nanoparticles indicated that the incorporation of highly dielectric nanoparticles was an effective approach to enhance the luminescence of ZnO nanoparticles in the polymer thin films.

  6. 溶剂对钙钛矿薄膜形貌和结晶性的影响研究∗%Effect of solvent on the p erovskite thin film morphology and crystallinity

    Institute of Scientific and Technical Information of China (English)

    王栋; 朱慧敏; 周忠敏; 王在伟; 吕思刘; 逄淑平; 崔光磊

    2015-01-01

    溶剂对钙钛矿太阳能电池器件有着至关重要的影响.基于目前常用的N , N-二甲基甲酰胺(DMF)和丁内酯(GBL)溶剂,一步溶液旋涂技术和介孔电池结构,制备的钙钛矿薄膜的形貌、结晶性,以及最终的器件光电转化效率存在较大的差异,利用DMF作为溶剂,效率仅为2.8%,而基于GBL的电池效率可以达到10.1%.结合SEM, HRTEM, XRD和UV等表征手段,分析了钙钛矿从DMF溶液和GBL溶液中结晶析出的不同机理,明确了溶剂跟PbI2的配位作用对钙钛矿的溶解、析出过程的制约作用,揭示了造成器件效率差异的本质原因.%Due to their high efficiency and low cost, organic-inorganic hybrid perovskite solar cells are attracting growing interest recently. For the most commonly studied perovskite CH3NH3PbI3, optimization of the morphology and crys-tallinity of CH3NH3PbI3 thin films can greatly improve the efficiency of perovskite solar cells. A homogenous and uniform perovskite film can prevent direct contact between the hole transport layer and the electron transport layer, and thus can significantly reduce charge recombination. And the high crystallinity perovskite film facilitates fast charge transportation and injection. Various studies have proved that solvent has a critical influence on both the morphology and the crystallinity of perovskite thin films. In this work, we thoroughly studied the influence of the normally used N , N-Dimethylformamide (DMF) and r-butyrolactone (GBL) solvents on perovskite morphology, crystallinity, as well as the solar cells efficiency. When using DMF as the solvent, the efficiency is only 2.8%, while the efficiency of the cell obtained based on GBL can reach 10.1%. SEM and HRTEM are employed to study the morphology and crystallinity of these two kinds of perovskite films. The perovskite film prepared using solvent DMF shows a rough capping layer consisting of strip-like perovskite crystals, and the filling of meso-TiO2 is poor

  7. Influence of deposition temperature and bias voltage on the crystalline phase of Er{sub 2}O{sub 3} thin films deposited by filtered cathodic arc

    Energy Technology Data Exchange (ETDEWEB)

    Adelhelm, Christoph, E-mail: christoph.adelhelm@ipp.mpg.de [Max-Planck-Institut fuer Plasmaphysik, Materials Research, EURATOM Association, Boltzmannstrasse 2, 85748 Garching (Germany); Pickert, Thomas [Max-Planck-Institut fuer Plasmaphysik, Materials Research, EURATOM Association, Boltzmannstrasse 2, 85748 Garching (Germany); Koch, Freimut, E-mail: freimut.koch@ipp.mpg.de [Max-Planck-Institut fuer Plasmaphysik, Materials Research, EURATOM Association, Boltzmannstrasse 2, 85748 Garching (Germany); Balden, Martin; Jahn, Stephan [Max-Planck-Institut fuer Plasmaphysik, Materials Research, EURATOM Association, Boltzmannstrasse 2, 85748 Garching (Germany); Rinke, Monika [Forschungszentrum Karlsruhe, Institute for Materials Research I, Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen (Germany); Maier, Hans [Max-Planck-Institut fuer Plasmaphysik, Materials Research, EURATOM Association, Boltzmannstrasse 2, 85748 Garching (Germany)

    2011-10-01

    Er{sub 2}O{sub 3} thin films on Eurofer steel substrates were produced by a filtered cathodic arc device, varying the substrate temperature (RT - 700 deg. C) and sample bias (0 to -450 V). The crystallographic phase was analyzed by X-ray diffraction and Raman spectroscopy. Deposition at {>=}600 deg. C without bias lead to solely formation of the cubic Er{sub 2}O{sub 3} phase. Thin films of the uncommon, monoclinic B-phase were prepared with a negative bias voltage of {>=}100 V at RT, and at temperatures {<=}500 deg. C for -250 V bias. The B-phase films exhibit a strongly textured film structure. Residual stress measurements show high compressive stress for B-phase films deposited at RT.

  8. Correlation between microstructure and optical properties of nano-crystalline TiO{sub 2} thin films prepared by sol-gel dip coating

    Energy Technology Data Exchange (ETDEWEB)

    Mechiakh, R., E-mail: raouf_mechiakh@yahoo.fr [Departement de Medecine, Faculte de Medecine, Universite Hadj Lakhdar, Batna (Algeria); Laboratoire de Photovoltaique de Semi-conducteurs et de Nanostructures, Centre de Recherche des Sciences et Technologies de l' Energie, BP.95, Hammam-Lif 2050 (Tunisia); Laboratoire de Ceramiques, Universite Mentouri Constantine (Algeria); Sedrine, N. Ben; Chtourou, R. [Laboratoire de Photovoltaique de Semi-conducteurs et de Nanostructures, Centre de Recherche des Sciences et Technologies de l' Energie, BP.95, Hammam-Lif 2050 (Tunisia); Bensaha, R. [Laboratoire de Ceramiques, Universite Mentouri Constantine (Algeria)

    2010-11-15

    Titanium dioxide thin films have been prepared from tetrabutyl-orthotitanate solution and methanol as a solvent by sol-gel dip coating technique. TiO{sub 2} thin films prepared using a sol-gel process have been analyzed for different annealing temperatures. Structural properties in terms of crystal structure were investigated by Raman spectroscopy. The surface morphology and composition of the films were investigated by atomic force microscopy (AFM). The optical transmittance and reflectance spectra of TiO{sub 2} thin films deposited on silicon substrate were also determined. Spectroscopic ellipsometry study was used to determine the annealing temperature effect on the optical properties and the optical gap of the TiO{sub 2} thin films. The results show that the TiO{sub 2} thin films crystallize in anatase phase between 400 and 800 deg. C, and into the anatase-rutile phase at 1000 deg. C, and further into the rutile phase at 1200 deg. C. We have found that the films consist of titanium dioxide nano-crystals. The AFM surface morphology results indicate that the particle size increases from 5 to 41 nm by increasing the annealing temperature. The TiO{sub 2} thin films have high transparency in the visible range. For annealing temperatures between 1000 and 1400 deg. C, the transmittance of the films was reduced significantly in the wavelength range of 300-800 nm due to the change of crystallite phase and composition in the films. We have demonstrated as well the decrease of the optical band gap with the increase of the annealing temperature.

  9. Crystalline Confinement

    CERN Document Server

    Banerjee, D; Jiang, F -J; Wiese, U -J

    2013-01-01

    We show that exotic phases arise in generalized lattice gauge theories known as quantum link models in which classical gauge fields are replaced by quantum operators. While these quantum models with discrete variables have a finite-dimensional Hilbert space per link, the continuous gauge symmetry is still exact. An efficient cluster algorithm is used to study these exotic phases. The $(2+1)$-d system is confining at zero temperature with a spontaneously broken translation symmetry. A crystalline phase exhibits confinement via multi-stranded strings between charge-anti-charge pairs. A phase transition between two distinct confined phases is weakly first order and has an emergent spontaneously broken approximate $SO(2)$ global symmetry. The low-energy physics is described by a $(2+1)$-d $\\mathbb{R}P(1)$ effective field theory, perturbed by a dangerously irrelevant $SO(2)$ breaking operator, which prevents the interpretation of the emergent pseudo-Goldstone boson as a dual photon. This model is an ideal candidat...

  10. Transferability and Adhesion of Sol-Gel-Derived Crystalline TiO2 Thin Films to Different Types of Plastic Substrates.

    Science.gov (United States)

    Amano, Natsumi; Takahashi, Mitsuru; Uchiyama, Hiroaki; Kozuka, Hiromitsu

    2017-01-31

    Anatase thin films were prepared on various plastic substrates by our recently developed sol-gel transfer technique. Polycarbonate (PC), poly(methyl methacrylate) (PMMA), polyethylene terephthalate (PET), polyethylene (PE), polypropylene (PP), polyether ether ketone (PEEK), and polyvinylidene chloride (PVDC) were employed as plastic substrates. A Si(100) substrate was first coated with a polyimide (PI)/polyvinylpyrrolidone (PVP) mixture layer, and an alkoxide-derived titania gel film was deposited on it by spin-coating. The resulting titania gel film was heated to 600 °C, during which the PI/PVP layer decomposed and the gel film was converted into a 60 nm thick anatase film. The anatase film was then transferred from the Si(100) substrate to the plastic substrate. This was achieved by heating the plastic/anatase/Si(100) stack in a near-infrared image furnace to 120-350 °C, depending on the type of plastic substrate, under unidirectional pressure. The anatase film cracked during transfer to PE, PP, PEEK, and PVDC substrates but did not crack during transfer to PC, PMMA, and PET substrates. The fraction of the total film area that was successfully transferred was assessed with the aid of image analysis. This fraction tended to be large for plastics with C═O and C-O groups and small for those without these groups. The film/substrate adhesion assessed by cross-cut tape tests also tended to be high for plastics with C═O and C-O groups and low for those without these groups. The adhesion to plastics without C═O or C-O groups could be enhanced and their transfer area fraction increased by oxidizing the native plastic surface by ultraviolet-ozone treatment prior to transfer.

  11. Influence of growth rate on the epitaxial orientation and crystalline quality of CeO2 thin films grown on Al2O3(0001)

    Energy Technology Data Exchange (ETDEWEB)

    Nandasiri, M. I.; Nachimuthu, P.; Varga, T.; Shutthanandan, V.; Jiang, W.; Kuchibhatla, Satyanarayana V. N. T.; Thevuthasan, S.; Seal, S.; Kayani, A.

    2011-01-01

    Growth rate-induced epitaxial orientations and crystalline quality of CeO2 thin films grown on Al2O3(0001) by oxygen plasma-assisted molecular beam epitaxy were studied using in-situ and ex-situ characterization techniques. CeO2 grows as three-dimensional (3-D) islands and two-dimensional (2-D) layers at growth rates of 1-7 Å/min, and ≥9 Å/min, respectively. The formation of epitaxial CeO2(100) and CeO2(111) thin films occurs at growth rates of 1 Å/min and ≥ 9 Å/min, respectively. Glancing incidence x-ray diffraction (GIXRD) measurements have shown that the films grown at intermediate growth rates (2-7 Å/min) consist of polycrystalline CeO2 along with CeO2(100). The thin film grown at 1 Å/min exhibits six in-plane domains, characteristic of well-aligned CeO2(100) crystallites. The content of the poorly-aligned CeO2(100) crystallites increases with increasing growth rate from 2 Å/min to 7 Å/min, and three out of six in-plane domains gradually decrease and eventually disappear, as confirmed by XRD pole figures. At growth rates ≥9 Å/min, CeO2(111) film with single in-plane domain was identified. The formation of CeO2(100) 3-D islands at growth rates of 1-7 Å/min is a kinetically driven process unlike at growth rates ≥9 Å/min which result in an energetically and thermodynamically more stable CeO2(111) surface.

  12. Microwave dielectric and optical properties of amorphous and crystalline Ba0.5Sr0.5TiO3 thin films

    Science.gov (United States)

    Goud, J. Pundareekam; Joseph, Andrews; Ramakanth, S.; Naidu, Kuna Lakshun; Raju, K. C. James

    2016-05-01

    The thin films of composition Ba0.5Sr0.5TiO3 (BST5) were deposited by Pulsed Laser Deposition technique on amorphous fused silica substrates at room temperature (RT) and at 700°C. The film deposited at RT is amorphous while the other crystallized in cubic structure. The refractive index (n) and optical band gap (Eg) extracted from transmission spectra in the 190 -2500 nm range. Microwave dielectric properties were investigated using the Split Post Dielectric Resonators (SPDR) technique at spot frequencies of 10GHz and 20GHz. The experimental results show that thin films deposited at high temperature (700°C) shows very high dielectric constant for both 10GHz and 20 GHz. These high dielectric constant films can be used in a wide range of applications such as capacitors, non-volatile high speed random access memories, and electro-optic devices.

  13. 纳米微晶纤维/聚乙烯醇复合薄膜的制备及性能%Preparation and Property of Composite Films of Nano-Crystalline Cellulose/Polymer-Poly Vinyl Alcohol

    Institute of Scientific and Technical Information of China (English)

    田景阳; 朱琦; 张璠; 黄崇杏; 杨崎峰

    2012-01-01

    Films of Nano-Crystalline Cellulose/Polymer-Polyv inyl Alcohol(NCC/PVA) with different NCC content were obtained through the sol/gel process ,and NCC with 20 - 50nm particle size was obtained from bagasse. The influnce of NCC content on composite films was fucosed 'on. The results show that these composite films have improved thermal stability with the adding of NCC. The composite films' tensile strength increased 115% and water absorption reduced 12.0% and elongation ruduced 68% when the content of NCC was 0.5%.%采用蔗渣为原料制备出粒径大小为20~50nm的纳米微晶纤维素(NCC),并用溶胶/凝胶方法制备出不同NCC含量的纳米微晶纤维素/聚乙烯醇(NCC/PVA)复合薄膜,重点研究了NCC加入量对复合薄膜综合性能的影响。结果表明,NCC的加入能使薄膜的热稳定性有所提高,当NCC的添加量在0.5%时,聚乙烯醇薄膜的拉伸强度提高了115%,吸水性降低了12.0%,断裂伸长率减少了68%。

  14. Study of low resistivity and high work function ITO films prepared by oxygen flow rates and N2O plasma treatment for amorphous/crystalline silicon heterojunction solar cells.

    Science.gov (United States)

    Hussain, Shahzada Qamar; Oh, Woong-Kyo; Kim, Sunbo; Ahn, Shihyun; Le, Anh Huy Tuan; Park, Hyeongsik; Lee, Youngseok; Dao, Vinh Ai; Velumani, S; Yi, Junsin

    2014-12-01

    Pulsed DC magnetron sputtered indium tin oxide (ITO) films deposited on glass substrates with lowest resistivity of 2.62 x 10(-4) Ω x cm and high transmittance of about 89% in the visible wavelength region. We report the enhancement of ITO work function (Φ(ITO)) by the variation of oxygen (O2) flow rate and N2O surface plasma treatment. The Φ(ITO) increased from 4.43 to 4.56 eV with the increase in O2 flow rate from 0 to 4 sccm while surface treatment of N2O plasma further enhanced the ITO work function to 4.65 eV. The crystallinity of the ITO films improved with increasing O2 flow rate, as revealed by XRD analysis. The ITO work function was increased by the interfacial dipole resulting from the surface rich in O- ions and by the dipole moment formed at the ITO surface during N2O plasma treatment. The ITO films with high work functions can be used to modify the front barrier height in heterojunction with intrinsic thin layer (HIT) solar cells.

  15. An Investigation of Structural and Electrical Properties of Nano Crystalline SnO2:Cu Thin Films Deposited by Spray Pyrolysis

    Directory of Open Access Journals (Sweden)

    J. Podder

    2011-11-01

    Full Text Available Pure tin oxide (SnO2 and Cu doped SnO2 thin films have been deposited onto glass substrates by a simple spray pyrolysis technique under atmospheric pressure at temperature 350 °C. The doping concentration of Cu was varied from 1 to 8 wt. % while all other deposition parameters such as spray rate, carrier air gas pressure, deposition time, and distance between spray nozzle to substrate were kept constant. Surface morphology of the as-deposited thin films has been studied by Scanning Electron Microscopy (SEM. The SEM micrograph of the films shows uniform deposition. The structural properties of the as-deposited and annealed thin films have been studied by XRD and the electrical characterization was performed by Van-der Pauw method. The as-deposited films are found polycrystalline in nature with tetragonal crystal structure. Average grain sizes of pure and Cu doped SnO2 thin film have been obtained in the range of 7.2445 Å to 6.0699 Å, which indicates the nanometric size of SnO2 grains developed in the film. The resistivity of SnO2 films was found to decrease initially from 4.5095×10−4 Ωm to 1.1395× 10−4 Ωm for concentration of Cu up to 4 % but it was increased further with increasing of Cu concentrations. The experimental results depict the suitability of this material for using as transparent and conducting window materials in solar cells and gas sensors.

  16. A comparative study on electrical characteristics of crystalline AlN thin films deposited by ICP and HCPA-sourced atomic layer deposition

    Science.gov (United States)

    Altuntas, Halit; Bayrak, Turkan

    2017-03-01

    In this work, we aimed to investigate the effects of two different plasma sources on the electrical properties of low-temperature plasma-assisted atomic layer deposited (PA-ALD) AlN thin films. To compare the electrical properties, 50 nm thick AlN films were grown on p-type Si substrates at 200 °C by using an inductively coupled RF-plasma (ICP) and a stainless steel hollow cathode plasma-assisted (HCPA) ALD systems. Al/AlN/ p-Si metal-insulator-semiconductor (MIS) capacitor devices were fabricated and capacitance versus voltage ( C- V) and current-voltage ( I- V) measurements performed to assess the basic important electrical parameters such as dielectric constant, effective charge density, flat-band voltage, breakdown field, and threshold voltage. In addition, structural properties of the films were presented and compared. The results show that although HCPA-ALD deposited AlN thin films has structurally better and has a lower effective charge density ( N eff ) value than ICP-ALD deposited AlN films, those films have large leakage current, low dielectric constant, and low breakdown field. This situation was attributed to the involvement of Si atoms into the AlN layers during the HCPA-ALD processing leads to additional current path at AlN/Si interface and might impair the electrical properties.

  17. A comparative study on electrical characteristics of crystalline AlN thin films deposited by ICP and HCPA-sourced atomic layer deposition

    Science.gov (United States)

    Altuntas, Halit; Bayrak, Turkan

    2016-12-01

    In this work, we aimed to investigate the effects of two different plasma sources on the electrical properties of low-temperature plasma-assisted atomic layer deposited (PA-ALD) AlN thin films. To compare the electrical properties, 50 nm thick AlN films were grown on p-type Si substrates at 200 °C by using an inductively coupled RF-plasma (ICP) and a stainless steel hollow cathode plasma-assisted (HCPA) ALD systems. Al/AlN/p-Si metal-insulator-semiconductor (MIS) capacitor devices were fabricated and capacitance versus voltage (C-V) and current-voltage (I-V) measurements performed to assess the basic important electrical parameters such as dielectric constant, effective charge density, flat-band voltage, breakdown field, and threshold voltage. In addition, structural properties of the films were presented and compared. The results show that although HCPA-ALD deposited AlN thin films has structurally better and has a lower effective charge density (N eff ) value than ICP-ALD deposited AlN films, those films have large leakage current, low dielectric constant, and low breakdown field. This situation was attributed to the involvement of Si atoms into the AlN layers during the HCPA-ALD processing leads to additional current path at AlN/Si interface and might impair the electrical properties.

  18. The importance of orientation in proton transport of a polymer film based on an oriented self-organized columnar liquid-crystalline polyether

    Energy Technology Data Exchange (ETDEWEB)

    Tylkowski, Bartosz; Castelao, Nuria [Departament d' Enginyeria Quimica, Universitat Rovira i Virgili, Av. Paiesos Catalans, 26, E-43007, Tarragona (Spain); Giamberini, Marta, E-mail: marta.giamberini@urv.net [Departament d' Enginyeria Quimica, Universitat Rovira i Virgili, Av. Paiesos Catalans, 26, E-43007, Tarragona (Spain); Garcia-Valls, Ricard [Departament d' Enginyeria Quimica, Universitat Rovira i Virgili, Av. Paiesos Catalans, 26, E-43007, Tarragona (Spain); Reina, Jose Antonio [Departament de Quimica Analitica i Quimica Organica, Universitat Rovira i Virgili, Carrer Marcel.li Domingo s/n, E-43007, Tarragona (Spain); Gumi, Tania [Departament d' Enginyeria Quimica, Universitat Rovira i Virgili, Av. Paiesos Catalans, 26, E-43007, Tarragona (Spain)

    2012-02-01

    We prepared membranes based on a liquid-crystalline side-chain polyether obtained by chemical modification of commercial poly(epichlorohydrin) (PECH) with dendrons. This polymer exhibited a columnar structure, which could form an ion channel in the inner part. The columns were successfully oriented by taking advantage of surface interactions between the polymer and hydrophilic substrates, as confirmed by X-ray diffraction analysis (XRD), environmental scanning electron microscopy (ESEM) and optical microscopy between crossed polars (POM). Column orientation was found to be crucial for effective transport: the oriented membranes exhibited proton transport comparable to that of Nafion Registered-Sign N117 and no water uptake. An increase in sodium ion concentration in the feed phase suggested a proton/cation antiport. On the contrary, no proton transport was detected on unoriented membranes based on the same liquid-crystalline side-chain polyether or on unmodified PECH. - Highlights: Black-Right-Pointing-Pointer We prepared oriented membranes based on a liquid crystalline columnar polyether. Black-Right-Pointing-Pointer In this structure, the inner polyether chain could work as an ion channel. Black-Right-Pointing-Pointer We obtained membranes by casting a chloroform solution in the presence of water. Black-Right-Pointing-Pointer Membranes showed good proton permeability due to the presence of oriented channels.

  19. Ti-doped indium tin oxide thin films for transparent field-effect transistors: control of charge-carrier density and crystalline structure.

    Science.gov (United States)

    Kim, Ji-In; Ji, Kwang Hwan; Jang, Mi; Yang, Hoichang; Choi, Rino; Jeong, Jae Kyeong

    2011-07-01

    Indium tin oxide (ITO) films are representative transparent conducting oxide media for organic light-emitting diodes, liquid crystal displays, and solar cell applications. Extending the utility of ITO films from passive electrodes to active channel layers in transparent field-effect transistors (FETs), however, has been largely limited because of the materials' high carrier density (>1 × 10(20) cm(-3)), wide band gap, and polycrystalline structure. Here, we demonstrate that control over the cation composition in ITO-based oxide films via solid doping of titanium (Ti) can optimize the carrier concentration and suppress film crystallization. On 120 nm thick SiO(2)/Mo (200 nm)/glass substrates, transparent n-type FETs prepared with 4 at % Ti-doped ITO films and fabricated via the cosputtering of ITO and TiO(2) exhibited high electron mobilities of 13.4 cm(2) V(-1) s(-1), a low subthreshold gate swing of 0.25 V decade(-1), and a high I(on/)I(off) ratio of >1 × 10(8).

  20. Doping effect on SILAR synthesized crystalline nanostructured Cu-doped ZnO thin films grown on indium tin oxide (ITO) coated glass substrates and its characterization

    Science.gov (United States)

    Dhaygude, H. D.; Shinde, S. K.; Velhal, Ninad B.; Takale, M. V.; Fulari, V. J.

    2016-08-01

    In the present study, a novel chemical route is used to synthesize the undoped and Cu-doped ZnO thin films in aqueous solution by successive ionic layer adsorption and reaction (SILAR) method. The synthesized thin films are characterized by x-ray diffractometer (XRD), field emission scanning electron microscopy (FE-SEM), energy dispersive x-ray analysis (EDAX), contact angle goniometer and UV-Vis spectroscopic techniques. XRD study shows that the prepared films are polycrystalline in nature with hexagonal crystal structure. The change in morphology for different doping is observed in the studies of FE-SEM. EDAX spectrum shows that the thin films consist of zinc, copper and oxygen elements. Contact angle goniometer is used to measure the contact angle between a liquid and a solid interface and after detection, the nature of the films is initiated from hydrophobic to hydrophilic. The optical band gap energy for direct allowed transition ranging between 1.60-2.91 eV is observed.

  1. Variation of crystallinity and stoichiometry in films of gallium oxide, gallium nitride and barium zirconate prepared by means of PLD; Variation von Kristallinitaet und Stoechiometrie in mittels PLD hergestellten Schichten aus Galliumoxid, Galliumnitrid und Bariumzirkonat

    Energy Technology Data Exchange (ETDEWEB)

    Brendt, Jochen

    2011-08-05

    Pulsed Laser Deposition (PLD) is an ablation technique for thin film preparation of many materials. The film properties can be well controlled by the process parameters. Therefore, in many cases a given material can be deposited with different properties by changing one or more process parameters. In this thesis thin films of gallium oxide, gallium nitride and barium zirconate were deposited with a large variation in structure and stoichiometry by means of Pulsed Laser Deposition. The characterization of the film crystallinity, phase purity and short range structural order was completed by means of X-ray diffraction and X-ray absorption spectroscopy. The stoichiometry was investigated using electron probe microanalysis. For analyzing the correlation between the structure and stoichiometry with the optical and electrical properties, optical absorption and electrical conductivity measurements were carried out. The investigation of all three material systems showed that very unique properties can be realized when combining an amorphous structure and a non-stoichiometric composition. For example, in amorphous and oxygen deficient gallium oxide an insulator-metal-transition can be induced by partial crystallization of the as prepared phase accomplished by annealing at about 400 C in argon atmosphere (as shown in literature). Furthermore, amorphous and highly non-stoichiometric barium zirconate has the ability to split water molecules to hydrogen and oxygen at room temperature. A detailed analysis of both phenomena has been performed by means of photoemission and transmission electron microscopy in the case of gallium oxide and via X-ray absorption spectroscopy and gas chromatography in the case of barium zirconate.

  2. Studies of crystalline CdZnTe radiation detectors and polycrystalline thin film CdTe for X-ray imaging applications

    CERN Document Server

    Ede, A

    2001-01-01

    The development of a replacement to the conventional film based X-ray imaging technique is required for many reasons. One possible route for this is the use of a large area film of a suitable semiconductor overlaid on an amorphous silicon readout array. A suitable semiconductor exists in cadmium telluride and its tertiary alloy cadmium zinc telluride. In this thesis the spectroscopic characteristics of commercially available CZT X- and gamma-radiation detectors are established. The electronic, optical, electro-optic, structural and compositional properties of these detectors are then investigated. The attained data is used to infer a greater understanding for the carrier transport in a CZT radiation detector following the interaction of a high energy photon. Following this a method used to fabricate large area films of CdTe on a commercial scale is described. This is cathodic electrodeposition from an aqueous electrolyte. The theory and experimental arrangement for this technique are described in detail with ...

  3. Effect of nitrogen on deposition and field emission properties of boron-doped micro-and nano-crystalline diamond films

    Institute of Scientific and Technical Information of China (English)

    L.A. Li; S.H. Cheng; H.D. Li; Q. Yu; J.W. Liu; X.Y. Lv

    2010-01-01

    In this paper, we report the effect of nitrogen on the deposition and properties of boron doped diamond films synthesized by hot filament chemical vapor deposition. The diamond films consisting of micro-grains (nano-grains) were realized with low (high) boron source flow rate during the growth processes. The transition of micro-grains to nano-grains is speculated to be strongly (weekly) related with the boron (nitrogen) flow rate. The grain size and Raman spectral feature vary insignificantly as a function of the nitrogen introduction at a certain boron flow rate. The variation of electron field emission characteristics dependent on nitrogen is different between microcrystalline and nanocrystalline boron doped diamond samples, which are related to the combined phase composition, boron doping level and texture structure. There is an optimum nitrogen proportion to improve the field emission properties of the boron-doped films.

  4. Characteristics of the crystalline and luminescence properties of a-plane GaN films grown on γ-LiA102(302)substrates

    Institute of Scientific and Technical Information of China (English)

    Tingting Jia; Ke Xu; Shengming Zhou; Hui Lin; Hao Teng; Xiaorui Hou; Jianqi Liu; Jun Huang; Min Zhang; Jianfeng Wang

    2011-01-01

    A-plane GaN films are deposited on (302) 7-LiAlC>2 substrates by metalorganic chemical vapor deposition (MOCVD). The X-ray diffraction (XRD) results indicate that the in-plane orientation relationship between GaN and LAO substrates is [010]Lao/[0001]GaN and [203]LAO//[1100]GaN with 0.03% and 2.85% lattice mismatch, respectively. Raman scattering results indicate that the strain in the films decreases along with the increase in the thickness of the films. In addition to the band edge emission at 3.42 eV, defects-related luminescence at 3.35 eV is observed in the photoluminescence (PL) spectra. The cathodoluminescence (CL) spectra indicate that the 3.35-eV emission is related to the V pits.%@@ A-plane GaN films are deposited on(302)γ-LiA102 substrates by metalorganic chemical vapor deposition (MOCVD).The X-ray diffraction(XRD)results indicate that the in-plane orientation relationship between GaN and LAO substrates is [010]LAO//[0001]GaN and [203]LAO//[1100]GaN with 0.03% and 2.85% lattice mismatch,respectively.Raman scattering results indicate that the strain in the films decreases along with the increase in the thickness of the films.In addition to the band edge emission at 3.42 eV,defects-related luminescence at 3.35 eV is observed in the photoluminescence(PL)spectra.The cathodoluminescence (CL)spectra indicate that the 3.35-eV emission is related to the V pits.

  5. Heavy ion irradiation of crystalline water ice

    CERN Document Server

    Dartois, E; Boduch, P; Brunetto, R; Chabot, M; Domaracka, A; Ding, J J; Kamalou, O; Lv, X Y; Rothard, H; da Silveira, E F; Thomas, J C

    2015-01-01

    Under cosmic irradiation, the interstellar water ice mantles evolve towards a compact amorphous state. Crystalline ice amorphisation was previously monitored mainly in the keV to hundreds of keV ion energies. We experimentally investigate heavy ion irradiation amorphisation of crystalline ice, at high energies closer to true cosmic rays, and explore the water-ice sputtering yield. We irradiated thin crystalline ice films with MeV to GeV swift ion beams, produced at the GANIL accelerator. The ice infrared spectral evolution as a function of fluence is monitored with in-situ infrared spectroscopy (induced amorphisation of the initial crystalline state into a compact amorphous phase). The crystalline ice amorphisation cross-section is measured in the high electronic stopping-power range for different temperatures. At large fluence, the ice sputtering is measured on the infrared spectra, and the fitted sputtering-yield dependence, combined with previous measurements, is quadratic over three decades of electronic ...

  6. Improvement of the crystallinity of CdTe epitaxial film grown on Si substrates by molecular beam epitaxy using the two-step growth method

    Energy Technology Data Exchange (ETDEWEB)

    Han, M.S.; Ryu, Y.S.; Song, B.K.; Kang, T.W. [Dongguk Univ., Seoul (Korea, Republic of). Dept. of Phys.; Kim, T.W. [Department of Physics, Kwangwoon University, Seoul 139-701 (Korea, Republic of)

    1997-01-05

    Molecular beam epitaxy growth of CdTe epitaxial layers on Si (100) substrates using the two-step growth method was performed to produce high-quality CdTe thin layers. The reflection high-energy electron diffraction patterns were streaky with clear Kikuchi lines, which is direct evidence for layer-by-layer two-dimensional growth of CdTe on Si. From the X-ray diffraction analysis, the grown layer was found to be a CdTe (111) epitaxial film, regardless of the film thickness. Photoluminescence (PL) measurements at 12 K showed that the defect density of the CdTe film grown on Si using two-step growth decreased in comparison with that grown using direct growth. The bound exciton appearing in the PL measurements shifted to the low energy side as the thickness of the CdTe increased. When the CdTe thickness increased from 1 to 1.8 {mu}m, the peak position of the bound exciton shifted by 7.2 meV, and the stress obtained from the exciton peak shift was -12.405 kbar. These results indicate that high quality CdTe films grown by two-step growth hold promise for applications as buffer layers for the subsequent growth of Hg{sub x}Cd{sub 1-x}Te. (orig.) 16 refs.

  7. Growth of crystalline semiconductor materials on crystal surfaces

    CERN Document Server

    Aleksandrov, L

    2013-01-01

    Written for physicists, chemists, and engineers specialising in crystal and film growth, semiconductor electronics, and various applications of thin films, this book reviews promising scientific and engineering trends in thin films and thin-films materials science. The first part discusses the physical characteristics of the processes occurring during the deposition and growth of films, the principal methods of obtaining semiconductor films and of reparing substrate surfaces on which crystalline films are grown, and the main applications of films. The second part contains data on epitaxial i

  8. Ion-irradiation-assisted phase selection in single crystalline Fe7Pd3 ferromagnetic shape memory alloy thin films: from fcc to bcc along the Nishiyama-Wassermann path.

    Science.gov (United States)

    Arabi-Hashemi, A; Mayr, S G

    2012-11-09

    When processing Fe-Pd ferromagnetic shape memory thin films, selection of the desired phases and their transformation temperatures constitutes one of the largest challenges from an application point of view. In the present contribution we demonstrate that irradiation with 1.8 MeV Kr(+) ions is the method of choice to achieve this goal: Single crystalline Fe(7)Pd(3) thin films that are grown with molecular beam epitaxy on MgO (001) substrates and subsequently irradiated with ions reveal a phase transformation along the whole phase transformation path ranging from fcc austenite to bcc martensite. While for 10(14) ions/cm(2) a fcc-fct phase transformation is observed, increasing the fluence to 5 × 10(14) ions/cm(2) and 5 × 10(15) ions/cm(2) leads to a phase transformation to the bcc phase. Pole figure measurements reveal an orientation relationship for the fcc-bcc phase transformation according to Nishiyama and Wassermann.

  9. Detection and imaging of the oxygen deficiency in single crystalline YBa{sub 2}Cu{sub 3}O{sub 7−δ} thin films using a scanning positron beam

    Energy Technology Data Exchange (ETDEWEB)

    Reiner, M.; Gigl, T.; Hugenschmidt, C. [Lehrstuhl E21 at Physics Department and FRM II at Heinz Maier-Leibnitz Zentrum (MLZ), Technische Universität München, James-Franck Straße, 85748 Garching (Germany); Jany, R.; Hammerl, G. [Experimental Physics VI, Center for Electronic Correlations and Magnetism, University of Augsburg, Universitätsstraße 1, 86135 Augsburg (Germany)

    2015-03-16

    Single crystalline YBa{sub 2}Cu{sub 3}O{sub 7−δ} (YBCO) thin films were grown by pulsed laser deposition in order to probe the oxygen deficiency δ using a mono-energetic positron beam. The sample set covered a large range of δ (0.191 < δ < 0.791) yielding a variation of the critical temperature T{sub c} between 25 and 90 K. We found a linear correlation between the Doppler broadening of the positron electron annihilation line and δ determined by X-ray diffraction. Ab-initio calculations have been performed in order to exclude the presence of Y vacancies and to ensure the negligible influence of potentially present Ba or Cu vacancies to the found correlation. Moreover, scanning with the positron beam allowed us to analyze the spatial variation of δ, which was found to fluctuate with a standard deviation of up to 0.079(5) within a single YBCO film.

  10. Promotion of Surface Free Energy of Azobenzene Containing Side-Chain Liquid Crystalline Polysiloxane Film by Polarized Light%偏振光照对偶氮苯侧链聚硅氧烷膜表面能的提高

    Institute of Scientific and Technical Information of China (English)

    刘剑; 王明乐; 李园园; 罗海波

    2011-01-01

    采用硅氢加成法合成了含偶氮苯侧链的聚硅烷液晶聚合物,用FTIR、DSC和偏光显微镜对聚合物结构及液晶特性进行了表征.采用473 nm偏振光对聚合物膜进行了光致取向,用偏光显微镜对取向结果进行了表征,发现偏振光倾斜照射后侧链偶氮苯基团发生了面外垂直取向.采用量高法测量了取向前后膜的接触角,根据接触角计算了膜的表面能.聚合物膜在取向前接触角为94.5°,偏振光照射取向后降低为76.5°,表明光照使聚合物膜从疏水变为亲水,膜的表面能明显增加.结合锥光显微镜观察到的干涉图结果,提出了极性偶氮苯基团面外垂直排列取向提升膜表面能的机理.%Azobenzene containing side-chain liquid crystalline polymer was synthesized by hydrosilation reaction of poly (methylhydrosiloxane) with the azo monomer. The chemical structure and its liquid crystalline properties were investigated by FITR, DSC and POM with a hot stage. Photo-alignment treatment was performed on the polysiloxane film by using a linearly polarized light source with the wavelength of 473 nm. A static contact angle measurement was carried out and the surface free energy was also calculated from the contact angles of a drop of water on the polymer film. The water contact angles was decreased from 94. 5° to 76. 5° after the light irradiation. We conclude that the changes in the hydrophilic of LC polymer were influenced by the surface compositions upon the photoinduced reorientation of the azobenzene side groups perpendicularly towards the film surface, which was confirmed by conoscopic POM observation results.

  11. Performance characterization of thin-film-silicon based solar modules under clouded and clear sky conditions in comparison to crystalline silicon modules

    Science.gov (United States)

    Weicht, J. A.; Rasch, R.; Behrens, G.; Hamelmann, F. U.

    2016-07-01

    For a precise prediction of the energy yield of amorphous ( a-Si) and amorphous-microcrystalline tandem ( a-Si/ μc-Si) thinfilm-silicon photovoltaic (PV) modules it is important to know their performance ratio under different light conditions. The efficiency of solar modules is an important value for the monitoring and planning of PV-systems. The efficiency of a-Si solar modules shows no significant changes in the performance ratio at clouded or clear sky conditions. The efficiency of crystalline silicon-based ( c-Si) and a-Si/ μc-Si solar modules shows a lower efficiency for fully clouded conditions without direct irradiation compared to conditions with direct irradiation (clear sky). [Figure not available: see fulltext.

  12. Growth and luminescent properties of single crystalline films of Ce3+ doped Pr1-xLuxAlO3 and Gd1-xLuxAlO3 perovskites

    Science.gov (United States)

    Zorenko, Yu; Gorbenko, V.; Zorenko, T.; Voznyak, T.; Riva, F.; Douissard, P. A.; Martin, T.; Fedorov, A.; Suchocki, A.; Zhydachevskii, Ya.

    2017-01-01

    The paper is dedicated to development of UV emitting scintillating screens for microimaging applications based on the single crystalline films (SCFs) of Ce doped Gd1-xLuxAlO3 and Pr1-xLuxAlO3 (x=0-1) multicomponent perovskites grown onto YAlO3 (YAP) substrates using the liquid phase epitaxy (LPE) method with the objective to improve the X-ray stopping power. Recently Riva et al. [1] have reported that the full set of GdxLu1-xAlO3 SCFs with x values in x=0-1.0 range can be crystallized on YAP substrates using this technique. We report here that PrxLu1-xAlO3 SCFs with x values in x=0-0.5 range can be grown also by the LPE method from PbO-B2O3 flux onto the same YAP substrates. The structural quality of the films was studied using X-ray diffraction. The optical properties of Ce3+ doped of Gd1-xLuxAlO3 and Pr1-xLuxAlO3 (x=0-1) multicomponent perovskite films, studied by traditional spectroscopic methods, such as absorption, cathodoluminescence, photoluminescence and light yield measurements under α-particles excitation, are also reported in this work. We have shown that Pb2+ flux related impurity has significantly larger influence on the light yield of Pr0.5Lu0.5AlO3:Ce, GdAlO3:Ce and Gd0.5Lu0.5AlO3:Ce SCFs in comparison with the YAP:Ce and LuAlO3:Ce counterparts grown onto YAP substrates.

  13. Investigation of the amorphous to crystalline phase transition of chemical solution deposited Pb(Zr30Ti70)O3 thin films by soft x-ray absorption and soft x-ray emission spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Schneller, T.; Schneller, T.; Kohlstedt, H.; Petraru, A.; Waser, R.; Guo, J.; Denlinger, J.; Learmonth, T.; Glans, Per-Andres; Smith, K. E.

    2008-08-01

    Chemical solution deposited (CSD) complex oxide thin films attract considerable interest in various emerging fields as for example, fuel cells, ferroelectric random access memories or coated conductors. In the present paper the results of soft-x-ray spectroscopy between 100 eV and 500 eV on the amorphous to crystalline phase transition of ferroelectric PbZr{sub 0.3}Ti{sub 0.7}O{sub 3} (PZT) thin films are presented. Five CSD samples derived from the same wafer coated with a PZT film pyrolyzed at 350 C were heat treated at different temperatures between 400 C and 700 C. At first the sample were morphologically and electrically characterized. Subsequently the soft-x-ray absorption and emission experiments were performed at the undulator beamline 8.0 of the Advanced Light Source of the Lawrence Berkeley National Laboratory. Soft-x-ray absorption spectra were acquired for the Ti L{sub 2,3-}, O K-, and C K-edge thresholds by using simultaneously the total electron yield (TEY) and total fluorescence yield (TFY) detection methods. For two samples, annealed at 400 C and 700 C, respectively, the resonant inelastic soft-x-ray spectroscopy (RIXS) was applied for various excitation energies near the Ti L-, O K-edges. We observed clear evidence of a rutile phase at untypically low temperatures. This rutile phase transforms into the perovskite phase upon increasing annealing temperature. These results are discussed in the framework of current microscopic models of the PZT (111) texture selection.

  14. Fabrication and characterization of Al2O3 /Si composite nanodome structures for high efficiency crystalline Si thin film solar cells

    Science.gov (United States)

    Zhang, Ruiying; Zhu, Jian; Zhang, Zhen; Wang, Yanyan; Qiu, Bocang; Liu, Xuehua; Zhang, Jinping; Zhang, Yi; Fang, Qi; Ren, Zhong; Bai, Yu

    2015-12-01

    We report on our fabrication and characterization of Al2O3/Si composite nanodome (CND) structures, which is composed of Si nanodome structures with a conformal cladding Al2O3 layer to evaluate its optical and electrical performance when it is applied to thin film solar cells. It has been observed that by application of Al2O3thin film coating using atomic layer deposition (ALD) to the Si nanodome structures, both optical and electrical performances are greatly improved. The reflectivity of less than 3% over the wavelength range of from 200 nm to 2000 nm at an incident angle from 0° to 45° is achieved when the Al2O3 film is 90 nm thick. The ultimate efficiency of around 27% is obtained on the CND textured 2 μm-thick Si solar cells, which is compared to the efficiency of around 25.75% and 15% for the 2 μm-thick Si nanodome surface-decorated and planar samples respectively. Electrical characterization was made by using CND-decorated MOS devices to measure device's leakage current and capacitance dispersion. It is found the electrical performance is sensitive to the thickness of the Al2O3 film, and the performance is remarkably improved when the dielectric layer thickness is 90 nm thick. The leakage current, which is less than 4x10-9 A/cm2 over voltage range of from -3 V to 3 V, is reduced by several orders of magnitude. C-V measurements also shows as small as 0.3% of variation in the capacitance over the frequency range from 10 kHz to 500 kHz, which is a strong indication of surface states being fully passivated. TEM examination of CND-decorated samples also reveals the occurrence of SiOx layer formed between the interface of Si and the Al2O3 film, which is thin enough that ensures the presence of field-effect passivation, From our theoretical and experimental study, we believe Al2O3 coated CND structures is a truly viable approach to achieving higher device efficiency.

  15. Fabrication and characterization of Al{sub 2}O{sub 3} /Si composite nanodome structures for high efficiency crystalline Si thin film solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Ruiying, E-mail: ryzhang2008@sinano.ac.cn [Key lab of nanodevices and applications, Chinese Academy of Sciences, Division of nano-devices and related materials, Suzhou Institute of Nano-tech and Nano-bionics, Chinese Academy of Sciences, Suzhou, 215123 (China); State Key Laboratory of Functional Materials for Informatics, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, 865 Changning Road, Shanghai 200050 China (China); Zhu, Jian; Zhang, Zhen; Wang, Yanyan; Qiu, Bocang [Key lab of nanodevices and applications, Chinese Academy of Sciences, Division of nano-devices and related materials, Suzhou Institute of Nano-tech and Nano-bionics, Chinese Academy of Sciences, Suzhou, 215123 (China); Liu, Xuehua; Zhang, Jinping; Zhang, Yi [Platform for Characterization & Test, Suzhou Institute of Nano-tech and Nano-bionics, Chinese Academy of Sciences, Suzhou, 215123 (China); Fang, Qi; Ren, Zhong [Oxford Instruments Plasma Technology, Yatton, Bristol, BS49 4AP (United Kingdom); Bai, Yu [School of Nano-Science and Nano-Engineering, Xi’an Jiaotong University, Suzhou, 215123 (China)

    2015-12-15

    We report on our fabrication and characterization of Al{sub 2}O{sub 3}/Si composite nanodome (CND) structures, which is composed of Si nanodome structures with a conformal cladding Al{sub 2}O{sub 3} layer to evaluate its optical and electrical performance when it is applied to thin film solar cells. It has been observed that by application of Al{sub 2}O{sub 3}thin film coating using atomic layer deposition (ALD) to the Si nanodome structures, both optical and electrical performances are greatly improved. The reflectivity of less than 3% over the wavelength range of from 200 nm to 2000 nm at an incident angle from 0° to 45° is achieved when the Al{sub 2}O{sub 3} film is 90 nm thick. The ultimate efficiency of around 27% is obtained on the CND textured 2 μm-thick Si solar cells, which is compared to the efficiency of around 25.75% and 15% for the 2 μm-thick Si nanodome surface-decorated and planar samples respectively. Electrical characterization was made by using CND-decorated MOS devices to measure device’s leakage current and capacitance dispersion. It is found the electrical performance is sensitive to the thickness of the Al{sub 2}O{sub 3} film, and the performance is remarkably improved when the dielectric layer thickness is 90 nm thick. The leakage current, which is less than 4x10{sup −9} A/cm{sup 2} over voltage range of from -3 V to 3 V, is reduced by several orders of magnitude. C-V measurements also shows as small as 0.3% of variation in the capacitance over the frequency range from 10 kHz to 500 kHz, which is a strong indication of surface states being fully passivated. TEM examination of CND-decorated samples also reveals the occurrence of SiO{sub x} layer formed between the interface of Si and the Al{sub 2}O{sub 3} film, which is thin enough that ensures the presence of field-effect passivation, From our theoretical and experimental study, we believe Al{sub 2}O{sub 3} coated CND structures is a truly viable approach to achieving higher device

  16. Fabrication and characterization of Al2O3 /Si composite nanodome structures for high efficiency crystalline Si thin film solar cells

    Directory of Open Access Journals (Sweden)

    Ruiying Zhang

    2015-12-01

    Full Text Available We report on our fabrication and characterization of Al2O3/Si composite nanodome (CND structures, which is composed of Si nanodome structures with a conformal cladding Al2O3 layer to evaluate its optical and electrical performance when it is applied to thin film solar cells. It has been observed that by application of Al2O3thin film coating using atomic layer deposition (ALD to the Si nanodome structures, both optical and electrical performances are greatly improved. The reflectivity of less than 3% over the wavelength range of from 200 nm to 2000 nm at an incident angle from 0° to 45° is achieved when the Al2O3 film is 90 nm thick. The ultimate efficiency of around 27% is obtained on the CND textured 2 μm-thick Si solar cells, which is compared to the efficiency of around 25.75% and 15% for the 2 μm-thick Si nanodome surface-decorated and planar samples respectively. Electrical characterization was made by using CND-decorated MOS devices to measure device’s leakage current and capacitance dispersion. It is found the electrical performance is sensitive to the thickness of the Al2O3 film, and the performance is remarkably improved when the dielectric layer thickness is 90 nm thick. The leakage current, which is less than 4x10−9 A/cm2 over voltage range of from -3 V to 3 V, is reduced by several orders of magnitude. C-V measurements also shows as small as 0.3% of variation in the capacitance over the frequency range from 10 kHz to 500 kHz, which is a strong indication of surface states being fully passivated. TEM examination of CND-decorated samples also reveals the occurrence of SiOx layer formed between the interface of Si and the Al2O3 film, which is thin enough that ensures the presence of field-effect passivation, From our theoretical and experimental study, we believe Al2O3 coated CND structures is a truly viable approach to achieving higher device efficiency.

  17. Crystalline and Crystalline International Disposal Activities

    Energy Technology Data Exchange (ETDEWEB)

    Viswanathan, Hari S. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Chu, Shaoping [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Reimus, Paul William [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Makedonska, Nataliia [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Hyman, Jeffrey De' Haven [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Karra, Satish [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Dittrich, Timothy M. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2015-12-21

    This report presents the results of work conducted between September 2014 and July 2015 at Los Alamos National Laboratory in the crystalline disposal and crystalline international disposal work packages of the Used Fuel Disposition Campaign (UFDC) for DOE-NE’s Fuel Cycle Research and Development program.

  18. Study of magnetization reversal and anisotropy of single crystalline ultrathin Fe/MgO (001) film by magneto-optic Kerr effect

    Science.gov (United States)

    Miao-Ling, Zhang; Jun, Ye; Rui, Liu; Shu, Mi; Yong, Xie; Hao-Liang, Liu; Chris Van, Haesendonck; Zi-Yu, Chen

    2016-04-01

    The magnetization reversal process of Fe/MgO (001) thin film is investigated by combining transverse and longitudinal hysteresis loops. Owing to the competition between domain wall pinning energy and weak uniaxial magnetic anisotropy, the typical magnetization reversal process of Fe ultrathin film can take place via either an “l-jump” process near the easy axis, or a “2-jump” process near the hard axis, depending on the applied field orientation. Besides, the hysteresis loop presents strong asymmetry resulting from the variation of the detected light intensity due to the quadratic magneto-optic effect. Furthermore, we modify the detectable light intensity formula and simulate the hysteresis loops of the Kerr signal. The results show that they are in good agreement with the experimental data. Project supported by the National Natural Science Foundation of China (Grant Nos. 11274033, 11474015, and 61227902), the Research Fund for the Doctoral Program of Higher Education of China (Grant No. 20131102130005), and the Beijing Key Discipline Foundation of Condensed Matter Physics.

  19. Electric field dependence of crystallinity in poly(vinylidene fluoride)

    Energy Technology Data Exchange (ETDEWEB)

    Kepler, R.G.; Anderson, R.A.; Lagasse, R.R.

    1982-05-03

    It is shown that the crystallinity of poled films of poly(vinylidene fluoride) can be changed by the application of an electric field. This is the first time that electric-field-induced changes of crystallinity in a polymer have been reported, and this observation confirms the hypothesis that reversible changes in crystallinity with temperature contribute significantly to the pyroelectric effect in poly(vinylidene fluoride).

  20. Electric Field Dependence of Crystallinity in Poly(Vinylidene Fluoride)

    Science.gov (United States)

    Kepler, R. G.; Anderson, R. A.; Lagasse, R. R.

    1982-05-01

    It is shown that the crystallinity of poled films of poly(vinylidene fluoride) can be changed by the application of an electric field. This is the first time that electric-field-induced changes of crystallinity in a polymer have been reported, and this observation confirms the hypothesis that reversible changes in crystallinity with temperature contribute significantly to the pyroelectric effect in poly(vinylidene fluoride).

  1. Single crystalline growth of a soluble organic semiconductor in a parallel aligned liquid crystal solvent using rubbing-treated polyimide films

    Science.gov (United States)

    Matsuzaki, Tomoya; Shibata, Yosei; Takeda, Risa; Ishinabe, Takahiro; Fujikake, Hideo

    2017-01-01

    For directional control of organic single crystals, we propose a crystal growth method using liquid crystal as the solvent. In this study, we examined the formation of 2,7-dioctyl[1]benzothieno[3,2-b][1]benzothiophene (C8-BTBT) single crystals using a parallel aligned liquid crystal (LC) cell and rubbing-treated polyimide films in order to clarify the effects of LC alignment on anisotropic C8-BTBT crystal growth. Based on the results, we found that the crystal growth direction of C8-BTBT single crystals was related to the direction of the aligned LC molecules because of rubbing treatment. Moreover, by optical evaluation, we found that the C8-BTBT single crystals have a aligned molecular structure.

  2. Control of crystallinity and composition in calcium phosphate coatings

    Energy Technology Data Exchange (ETDEWEB)

    Cifuentes, M.; Cabanas, M.V.; Vallet-Regi, M. [Universidad Complutense de Madrid (Spain). Dept. de Quimica Inorganica y Bioinorganica

    2001-07-01

    Calcium phosphate coatings were prepared by the so-called pyrosol method. Both crystallinity and composition of obtained films can be controlled by modifying the composition of the precursor solution, surrounding atmosphere and substrate temperature. In this way, tricalcium phosphate, hydroxyapatite or biphasic hydroxyapatite/tricalcium phosphate with different crystallinity and microstructure have been prepared. (orig.)

  3. CdTe Films Deposited by Closed-space Sublimation

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    CdTe films are prepared by closed-space sublimation technology. Dependence of film crystalline on substrate materials and substrate temperature is investigated. It is found that films exhibit higher crystallinity at substrate temperature higher than 400℃. And the CdTe films deposited on CdS films with higher crystallinity have bigger crystallite and higher uniformity. Treatment with CdCl2 methanol solution promotes the crystallite growth of CdTe films during annealing.

  4. Coherent phonon modes of crystalline and amorphous Ge{sub 2}Sb{sub 2}Te{sub 5} thin films: A fingerprint of structure and bonding

    Energy Technology Data Exchange (ETDEWEB)

    Shalini, A.; Liu, Y.; Srivastava, G. P.; Hicken, R. J. [Department of Physics and Astronomy, University of Exeter, Exeter EX4 4QL (United Kingdom); Katmis, F.; Braun, W. [Paul Drude Institute for Solid State Electronics, Hausvogteiplatz 5-7, 10117 Berlin (Germany)

    2015-01-14

    Femtosecond optical pump-probe measurements have been made upon epitaxial, polycrystalline, and amorphous thin films of Ge{sub 2}Sb{sub 2}Te{sub 5} (GST). A dominant coherent optical phonon mode of 3.4 THz frequency is observed in time-resolved anisotropic reflectance (AR) measurements of epitaxial films, and is inferred to have 3-dimensional T{sub 2}-like character based upon the dependence of its amplitude and phase on pump and probe polarization. In contrast, the polycrystalline and amorphous phases exhibit a comparatively weak mode of about 4.5 THz frequency in both reflectivity (R) and AR measurements. Raman microscope measurements confirm the presence of the modes observed in pump-probe measurements, and reveal additional modes. While the Raman spectra are qualitatively similar for all three phases of GST, the mode frequencies are found to be different within experimental error, ranging from 3.2 to 3.6 THz and 4.3 to 4.7 THz, indicating that the detailed crystallographic structure has a significant effect upon the phonon frequency. While the lower frequency (3.6 THz) mode of amorphous GST is most likely associated with GeTe{sub 4} tetrahedra, modes in epitaxial (3.4 THz) and polycrystalline (3.2 THz) GST could be associated with either GeTe{sub 6} octahedra or Sb-Te bonds within defective octahedra. The more polarizable Sb-Te bonds are the most likely origin of the higher frequency (4.3–4.7 THz) mode, although the influence of Te-Te bonds cannot be excluded. The effect of high pump fluence, which leads to irreversible structural changes, has been explored. New modes with frequency of 3.5/3.6 THz in polycrystalline/amorphous GST may be associated with Sb{sub 2}Te{sub 3} or GeTe{sub 4} tetrahedra, while a 4.2 THz mode observed in epitaxial GST may be related to segregation of Sb.

  5. High-performance single-crystalline arsenic-doped indium oxide nanowires for transparent thin-film transistors and active matrix organic light-emitting diode displays.

    Science.gov (United States)

    Chen, Po-Chiang; Shen, Guozhen; Chen, Haitian; Ha, Young-geun; Wu, Chao; Sukcharoenchoke, Saowalak; Fu, Yue; Liu, Jun; Facchetti, Antonio; Marks, Tobin J; Thompson, Mark E; Zhou, Chongwu

    2009-11-24

    We report high-performance arsenic (As)-doped indium oxide (In(2)O(3)) nanowires for transparent electronics, including their implementation in transparent thin-film transistors (TTFTs) and transparent active-matrix organic light-emitting diode (AMOLED) displays. The As-doped In(2)O(3) nanowires were synthesized using a laser ablation process and then fabricated into TTFTs with indium-tin oxide (ITO) as the source, drain, and gate electrodes. The nanowire TTFTs on glass substrates exhibit very high device mobilities (approximately 1490 cm(2) V(-1) s(-1)), current on/off ratios (5.7 x 10(6)), steep subthreshold slopes (88 mV/dec), and a saturation current of 60 microA for a single nanowire. By using a self-assembled nanodielectric (SAND) as the gate dielectric, the device mobilities and saturation current can be further improved up to 2560 cm(2) V(-1) s(-1) and 160 microA, respectively. All devices exhibit good optical transparency (approximately 81% on average) in the visible spectral range. In addition, the nanowire TTFTs were utilized to control green OLEDs with varied intensities. Furthermore, a fully integrated seven-segment AMOLED display was fabricated with a good transparency of 40% and with each pixel controlled by two nanowire transistors. This work demonstrates that the performance enhancement possible by combining nanowire doping and self-assembled nanodielectrics enables silicon-free electronic circuitry for low power consumption, optically transparent, high-frequency devices assembled near room temperature.

  6. Crystalline and Crystalline International Disposal Activities

    Energy Technology Data Exchange (ETDEWEB)

    Viswanathan, Hari S. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Chu, Shaoping [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Dittrich, Timothy M. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Hyman, Jeffrey De' Haven [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Karra, Satish [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Makedonska, Nataliia [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Reimus, Paul William [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2017-03-06

    This report presents the results of work conducted between September 2015 and July 2016 at Los Alamos National Laboratory in the crystalline disposal and crystalline international disposal work packages of the Used Fuel Disposition Campaign (UFDC) for DOE-NE’s Fuel Cycle Research and Development program. Los Alamos focused on two main activities during this period: Discrete fracture network (DFN) modeling to describe flow and radionuclide transport in complex fracture networks that are typical of crystalline rock environments, and a comprehensive interpretation of three different colloid-facilitated radionuclide transport experiments conducted in a fractured granodiorite at the Grimsel Test Site in Switzerland between 2002 and 2013. Chapter 1 presents the results of the DFN work and is divided into three main sections: (1) we show results of our recent study on the correlation between fracture size and fracture transmissivity (2) we present an analysis and visualization prototype using the concept of a flow topology graph for characterization of discrete fracture networks, and (3) we describe the Crystalline International work in support of the Swedish Task Force. Chapter 2 presents interpretation of the colloidfacilitated radionuclide transport experiments in the crystalline rock at the Grimsel Test Site.

  7. Energy transport in crystalline DNA composites

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Zaoli; Xu, Shen; Tang, Xiaoduan; Wang, Xinwei, E-mail: xwang3@iastate.edu [Department of Mechanical Engineering, 2010 Black Engineering Building Iowa State University, Ames, IA 50011 (United States)

    2014-01-15

    This work reports on the synthesis of crystalline DNA-composited films and microfibers, and details the study of thermal energy transport in them. The transient electro-thermal technique is used to characterize the thermal transport in DNA composite microfibers, and the photothermal technique is used to explore the thermal transport in the thickness direction of DNA films. Compared with microfibers, the DNA films are found to have a higher thermal transport capacity, largely due to the carefully controlled crystallization process in film synthesis. In high NaCl concentration solutions, the bond of the Na{sup +} ion and phosphate group aligns the DNA molecules with the NaCl crystal structure during crystallization. This results in significant enhancement of thermal transport in the DNA films with aligned structure.

  8. Study on the fabrication of back surface reflectors in nano-crystalline silicon thin-film solar cells by using random texturing aluminum anodization

    Science.gov (United States)

    Shin, Kang Sik; Jang, Eunseok; Cho, Jun-Sik; Yoo, Jinsu; Park, Joo Hyung; Byungsung, O.

    2015-09-01

    In recent decades, researchers have improved the efficiency of amorphous silicon solar cells in many ways. One of the easiest and most practical methods to improve solar-cell efficiency is adopting a back surface reflector (BSR) as the bottom layer or as the substrate. The BSR reflects the incident light back to the absorber layer in a solar cell, thus elongating the light path and causing the so-called "light trapping effect". The elongation of the light path in certain wavelength ranges can be enhanced with the proper scale of BSR surface structure or morphology. An aluminum substrate with a surface modified by aluminum anodizing is used to improve the optical properties for applications in amorphous silicon solar cells as a BSR in this research due to the high reflectivity and the low material cost. The solar cells with a BSR were formed and analyzed by using the following procedures: First, the surface of the aluminum substrate was degreased by using acetone, ethanol and distilled water, and it was chemically polished in a dilute alkali solution. After the cleaning process, the aluminum surface's morphology was modified by using a controlled anodization in a dilute acid solution to form oxide on the surface. The oxidized film was etched off by using an alkali solution to leave an aluminum surface with randomly-ordered dimple-patterns of approximately one micrometer in size. The anodizing conditions and the anodized aluminum surfaces after the oxide layer had been removed were systematically investigated according to the applied voltage. Finally, amorphous silicon solar cells were deposited on a modified aluminum plate by using dc magnetron sputtering. The surfaces of the anodized aluminum were observed by using field-emission scanning electron microscopy. The total and the diffuse reflectances of the surface-modified aluminum sheets were measured by using UV spectroscopy. We observed that the diffuse reflectances increased with increasing anodizing voltage. The

  9. Crystalline Silica Primer

    Science.gov (United States)

    ,

    1992-01-01

    Crystalline silica is the scientific name for a group of minerals composed of silicon and oxygen. The term crystalline refers to the fact that the oxygen and silicon atoms are arranged in a threedimensional repeating pattern. This group of minerals has shaped human history since the beginning of civilization. From the sand used for making glass to the piezoelectric quartz crystals used in advanced communication systems, crystalline silica has been a part of our technological development. Crystalline silica's pervasiveness in our technology is matched only by its abundance in nature. It's found in samples from every geologic era and from every location around the globe. Scientists have known for decades that prolonged and excessive exposure to crystalline silica dust in mining environments can cause silicosis, a noncancerous lung disease. During the 1980's, studies were conducted that suggested that crystalline silica also was a carcinogen. As a result of these findings, crystalline silica has been regulated under the Occupational Safety and Health Administration's (OSHA) Hazard Communication Standard (HCS). Under HCS, OSHAregulated businesses that use materials containing 0.1% or more crystalline silica must follow Federal guidelines concerning hazard communication and worker training. Although the HCS does not require that samples be analyzed for crystalline silica, mineral suppliers or OSHAregulated

  10. Biomimetic processing of oriented crystalline ceramic layers

    Energy Technology Data Exchange (ETDEWEB)

    Cesarano, J.; Shelnutt, J.A.

    1997-10-01

    The aim of this project was to develop the capabilities for Sandia to fabricate self assembled Langmuir-Blodgett (LB) films of various materials and to exploit their two-dimensional crystalline structure to promote the growth of oriented thin films of inorganic materials at room temperature. This includes the design and synthesis of Langmuir-active (amphiphilic) organic molecules with end groups offering high nucleation potential for various ceramics. A longer range goal is that of understanding the underlying principles, making it feasible to use the techniques presented in this report to fabricate unique oriented films of various materials for electronic, sensor, and membrane applications. Therefore, whenever possible, work completed in this report was completed with the intention of addressing the fundamental phenomena underlying the growth of crystalline, inorganic films on template layers of highly organized organic molecules. This problem was inspired by biological processes, which often produce exquisitely engineered structures via templated growth on polymeric layers. Seashells, for example, exhibit great toughness owing to their fine brick-and-mortar structure that results from templated growth of calcium carbonate on top of layers of ordered organic proteins. A key goal in this work, therefore, is to demonstrate a positive correlation between the order and orientation of the template layer and that of the crystalline ceramic material grown upon it. The work completed was comprised of several parallel efforts that encompassed the entire spectrum of biomimetic growth from solution. Studies were completed on seashells and the mechanisms of growth for calcium carbonate. Studies were completed on the characterization of LB films and the capability developed for the in-house fabrication of these films. Standard films of fatty acids were studied as well as novel polypeptides and porphyrins that were synthesized.

  11. Crystalline boron nitride aerogels

    Science.gov (United States)

    Zettl, Alexander K.; Rousseas, Michael; Goldstein, Anna P.; Mickelson, William; Worsley, Marcus A.; Woo, Leta

    2017-04-04

    This disclosure provides methods and materials related to boron nitride aerogels. In one aspect, a material comprises an aerogel comprising boron nitride. The boron nitride has an ordered crystalline structure. The ordered crystalline structure may include atomic layers of hexagonal boron nitride lying on top of one another, with atoms contained in a first layer being superimposed on atoms contained in a second layer.

  12. Crystalline boron nitride aerogels

    Energy Technology Data Exchange (ETDEWEB)

    Zettl, Alexander K.; Rousseas, Michael; Goldstein, Anna P.; Mickelson, William; Worsley, Marcus A.; Woo, Leta

    2017-04-04

    This disclosure provides methods and materials related to boron nitride aerogels. In one aspect, a material comprises an aerogel comprising boron nitride. The boron nitride has an ordered crystalline structure. The ordered crystalline structure may include atomic layers of hexagonal boron nitride lying on top of one another, with atoms contained in a first layer being superimposed on atoms contained in a second layer.

  13. Physical Properties and Antibacterial Efficacy of Biodegradable Chitosan Films

    OpenAIRE

    中島, 照夫

    2009-01-01

    [Synopsis] Chitin, chitosan and quaternary chitosan films were prepared, and the physical properties and the antibacterial activities of chitosan and quaternary chitosan films were evaluated. The tensile strength of chitin films was 30~40% lower than that of chitosan films, but the crystallinity of chitin film was much higher than that of chitosan films. The crystallinity and orientation of crystallites were hardly affected by the four kinds of solvent chosen to cast chitosan films, but a de...

  14. Bio-based liquid crystalline polyesters

    Science.gov (United States)

    Wilsens, Carolus; Rastogi, Sanjay; Dutch Collaboration

    2013-03-01

    The reported thin-film polymerization has been used as a screening method in order to find bio-based liquid crystalline polyesters with convenient melting temperatures for melt-processing purposes. An in depth study of the structural, morphological and chemical changes occurring during the ongoing polycondensation reactions of these polymers have been performed. Structural and conformational changes during polymerization for different compositions have been followed by time resolved X-ray and Infrared spectroscopy. In this study, bio-based monomers such as vanillic acid and 2,5-furandicarboxylic acid are successfully incorporated in liquid crystalline polyesters and it is shown that bio-based liquid crystalline polymers with high aromatic content and convenient processing temperatures can be synthesized. Special thanks to the Dutch Polymer Institute for financial support

  15. Liquid Crystalline Materials for Biological Applications.

    Science.gov (United States)

    Lowe, Aaron M; Abbott, Nicholas L

    2012-03-13

    Liquid crystals have a long history of use as materials that respond to external stimuli (e.g., electrical and optical fields). More recently, a series of investigations have reported the design of liquid crystalline materials that undergo ordering transitions in response to a range of biological interactions, including interactions involving proteins, nucleic acids, viruses, bacteria and mammalian cells. A central challenge underlying the design of liquid crystalline materials for such applications is the tailoring of the interface of the materials so as to couple targeted biological interactions to ordering transitions. This review describes recent progress toward design of interfaces of liquid crystalline materials that are suitable for biological applications. Approaches addressed in this review include the use of lipid assemblies, polymeric membranes containing oligopeptides, cationic surfactant-DNA complexes, peptide-amphiphiles, interfacial protein assemblies and multi-layer polymeric films.

  16. 碳化钨纳米晶薄膜电极的制备及其对甲醇电氧化性能%Preparation of nano-crystalline tungsten carbide thin film electrode and its electrocatalytic activity for oxidation of methanol

    Institute of Scientific and Technical Information of China (English)

    郑华均; 马淳安; 黄建国

    2005-01-01

    Nano-crystalline tungsten carbide thin films were fabricated on graphite substrates by plasma enhanced chemical vapour deposition in H2 and Ar atmosphere, using WF6 and CH4 as precursors. The crystal phase, structure and chemical components of the films were characterized with X-ray diffraction(XRD), scanning electron microscopy (SEM) and energy-dispersive spectrometer (EDS), respectively. The results showed that the film prepared at CH4/WF6 concentration ratio of 20, working pressure of 100Pa and temperature of 800℃ were composed of sphere particles with a diameter of 20-35nm Electrochemical investigations show that the electrochemical surface area of electrode of the film was large.The electrode of the film exhibited higher electro-catalytic activity in the reaction of methanol oxidation, and its catalytic properties were similar to those of Pt or Pt group catalysts. The constant current of the film catalyst was 123.6mA·cm-2 in the mixture solution of H2SO4 and CH3OH at the concentration of 0.5 mol·L-1 and 2.0 mol·L-1 respectively at 70℃, and its constant potential was only 0. 306V(vs. SCE).

  17. Investigation on Silicon Thin Film Solar Cells

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    The preparation, current status and trends are investigated for silicon thin film solar cells. The advantages and disadvantages of amorphous silicon thin film, polycrystalline silicon thin film and mono-crystalline silicon thin film solar cells are compared. The future development trends are pointed out. It is found that polycrystalline silicon thin film solar cells will be more promising for application with great potential.

  18. Facile "modular assembly" for fast construction of a highly oriented crystalline MOF nanofilm.

    Science.gov (United States)

    Xu, Gang; Yamada, Teppei; Otsubo, Kazuya; Sakaida, Shun; Kitagawa, Hiroshi

    2012-10-10

    The preparation of crystalline, ordered thin films of metal-organic frameworks (MOFs) will be a critical process for MOF-based nanodevices in the future. MOF thin films with perfect orientation and excellent crystallinity were formed with novel nanosheet-structured components, Cu-TCPP [TCPP = 5,10,15,20-tetrakis(4-carboxyphenyl)porphyrin], by a new "modular assembly" strategy. The modular assembly process involves two steps: a "modularization" step is used to synthesize highly crystalline "modules" with a nanosized structure that can be conveniently assembled into a thin film in the following "assembly" step. With this method, MOF thin films can easily be set up on different substrates at very high speed with controllable thickness. This new approach also enabled us to prepare highly oriented crystalline thin films of MOFs that cannot be prepared in thin-film form by traditional techniques.

  19. Improved Josephson Qubits incorporating Crystalline Silicon Dielectrics

    Science.gov (United States)

    Gao, Yuanfeng; Maurer, Leon; Hover, David; Patel, Umeshkumar; McDermott, Robert

    2010-03-01

    Josephson junction phase quibts are a leading candidate for scalable quantum computing in the solid state. Their energy relaxation times are currently limited by microwave loss induced by a high density of two-level state (TLS) defects in the amorphous dielectric films of the circuit. It is expected that the integration of crystalline, defect-free dielectrics into the circuits will yield substantial improvements in qubit energy relaxation times. However, the epitaxial growth of a crystalline dielectric on a metal underlayer is a daunting challenge. Here we describe a novel approach in which the crystalline silicon nanomembrane of a Silicon-on-Insulator (SOI) wafer is used to form the junction shunt capacitor. The SOI wafer is thermocompression bonded to the device wafer. The handle and buried oxide layers of the SOI are then etched away, leaving the crystalline silicon layer for subsequent processing. We discuss device fabrication issues and present microwave transport data on lumped-element superconducting resonators incorporating the crystalline silicon.

  20. The human crystallin gene families

    Directory of Open Access Journals (Sweden)

    Wistow Graeme

    2012-12-01

    Full Text Available Abstract Crystallins are the abundant, long-lived proteins of the eye lens. The major human crystallins belong to two different superfamilies: the small heat-shock proteins (α-crystallins and the βγ-crystallins. During evolution, other proteins have sometimes been recruited as crystallins to modify the properties of the lens. In the developing human lens, the enzyme betaine-homocysteine methyltransferase serves such a role. Evolutionary modification has also resulted in loss of expression of some human crystallin genes or of specific splice forms. Crystallin organization is essential for lens transparency and mutations; even minor changes to surface residues can cause cataract and loss of vision.

  1. Effect of Crystallinity on Electrical Conduction in Polypropylene

    Science.gov (United States)

    Ikezaki, Kazuo; Kaneko, Takanobu; Sakakibara, Toshio

    1981-03-01

    The electrical conduction of 20 μm thick polypropylene films with different crystallinities has been studied at 72°C below 400 kV/cm. The field dependence of the current shows that the conduction mechanism in this polymer is ion hopping. The estimated ionic jump distance strongly depends on the polymer crystallinity, and it decreases from 100 Å to 45 Å as the crystallinity increases from 50.5% to 78%. Preheating of samples seriously affects the electrical conduction in polypropylene, so differences in conductivity, activation energy and jump distance obtained by different authors can be explained partly by differences in the thermal history of the samples used.

  2. Thermodynamics of Crystalline States

    CERN Document Server

    Fujimoto, Minoru

    2010-01-01

    Thermodynamics is a well-established discipline of physics for properties of matter in thermal equilibrium surroundings. Applying to crystals, however, the laws encounter undefined properties of crystal lattices, which therefore need to be determined for a clear and well-defined description of crystalline states. Thermodynamics of Crystalline States explores the roles played by order variables and dynamic lattices in crystals in a wholly new way. This book is divided into three parts. The book begins by clarifying basic concepts for stable crystals. Next, binary phase transitions are discussed to study collective motion of order variables, as described mostly as classical phenomena. In the third part, the multi-electron system is discussed theoretically, as a quantum-mechanical example, for the superconducting state in metallic crystals. Throughout the book, the role played by the lattice is emphasized and examined in-depth. Thermodynamics of Crystalline States is an introductory treatise and textbook on meso...

  3. Ferroelectric domain structures of epitaxial CaBi2Nb2O9 thin films on single crystalline Nb doped (1 0 0) SrTiO3 substrates

    Science.gov (United States)

    Ahn, Yoonho; Seo, Jeong Dae; Son, Jong Yeog

    2015-07-01

    Epitaxial CaBi2Nb2O9 (CBNO) thin films were deposited on Nb-doped SrTiO3 substrates. The CBNO thin films as a lead-free ferroelectric material exhibit a good ferroelectric property with the remanent polarization of 10.6 μC/cm2. In the fatigue resistance test, the CBNO thin films have no degradation in polarization up to 1×1012 switching cycles, which is applicable for non-volatile ferroelectric random access memories (FeRAMs). Furthermore, piezoresponse force microscopy study (PFM) reveals that the CBNO thin films have larger ferroelectric domain structures than those of PbTiO3 thin films. From the Landau, Lifshiftz, and Kittel's scaling law, it is inferred that the domain wall energy of CBNO thin films is probably very similar to that of the PbTiO3 thin films.

  4. Formation of crystalline TiO2 by anodic oxidation of titanium

    Institute of Scientific and Technical Information of China (English)

    Zixue Su; Linjie Zhang; Feilong Jiang; Maochun Hongn

    2013-01-01

    Formation of crystalline TiO2 (anatase) films by anodic oxidation of titanium foils in ethylene glycol (EG) based electrolytes at room temperature has been investigated. By varying the anodizing parameters such as the amounts of water and NH4F added, applied voltage and anodization time, anodic TiO2 films with different crystalline structures were obtained. Scanning electron microscopy (SEM), transmission electron microscopy (TEM), and X-ray powder diffraction (XRD) characterizations were employed to determine the morphologies and crystalline structures of as-prepared anodic TiO2 films. The results indicate that crystallization of anodic TiO2 films was generally facilitated by high fluoride concentration, high applied voltage and longer anodization time, and the formation of anodic TiO2 films with best crystallinity could only be achieved when optimized amounts of water were added.

  5. Liquid crystalline dihydroazulene photoswitches

    DEFF Research Database (Denmark)

    Petersen, Anne Ugleholdt; Jevric, Martyn; Mandle, Richard J.

    2015-01-01

    A large selection of photochromic dihydroazulene (DHA) molecules incorporating various substituents at position 2 of the DHA core was prepared and investigated for their ability to form liquid crystalline phases. Incorporation of an octyloxy-substituted biphenyl substituent resulted in nematic...

  6. The effect of a cholesterol liquid crystalline structure on osteoblast cell behavior.

    Science.gov (United States)

    Xu, Jian-Ping; Ji, Jian; Shen, Jia-Cong

    2009-04-01

    To investigate the effect of a liquid crystalline structure on cell behavior, polymethylsiloxane-graft-(10-cholesteryloxydecanol) was specially designed to get a thermotropic liquid crystalline polymer. Results of Fourier transform infrared (FT-IR) spectroscopy, proton nuclear magnetic resonance (1H-NMR) spectroscopy and gel permeation chromatography (GPC) indicated that cholesterol was successfully covalently grafted onto polymethylhydrosiloxane via decamethylene 'flexible spacer'. Differential scanning calorimetry (DSC) and polarized optical microscopy (POM) investigations revealed that the copolymer with 44.9% mesogenic unit showed obvious thermotropic liquid crystalline transition at about 124.9 degrees C. Polymer films were prepared by spin coating on clean glass plates from 5 mg ml(-1) toluene solutions of the copolymers. The POM investigation indicated that while the unannealed films (SC15, SC45) showed no liquid crystalline structure, the films which were annealed in vacuo at 140 degrees C for 9 h and then quenched to room temperature (SC15C, SC45C) formed discrete island-like liquid crystalline and continuous liquid crystalline structures, respectively. Osteoblast cells (MC3T3) were chosen to test the cell behavior of annealed and unannealed films. In comparison to unannealed films, the annealed films with a cholesterol liquid crystalline structure could promote osteoblast cell attachment and growth significantly.

  7. Liquid Crystalline Semiconductors Materials, properties and applications

    CERN Document Server

    Kelly, Stephen; O'Neill, Mary

    2013-01-01

    This is an exciting stage in the development of organic electronics. It is no longer an area of purely academic interest as increasingly real applications are being developed, some of which are beginning to come on-stream. Areas that have already been commercially developed or which are under intensive development include organic light emitting diodes (for flat panel displays and solid state lighting), organic photovoltaic cells, organic thin film transistors (for smart tags and flat panel displays) and sensors. Within the family of organic electronic materials, liquid crystals are relative newcomers. The first electronically conducting liquid crystals were reported in 1988 but already a substantial literature has developed. The advantage of liquid crystalline semiconductors is that they have the easy processability of amorphous and polymeric semiconductors but they usually have higher charge carrier mobilities. Their mobilities do not reach the levels seen in crystalline organics but they circumvent all of t...

  8. Basic research challenges in crystalline silicon photovoltaics

    Energy Technology Data Exchange (ETDEWEB)

    Werner, J.H. [Max-Planck-Institut fuer Festkoerperforschung, Stuttgart (Germany)

    1995-08-01

    Silicon is abundant, non-toxic and has an ideal band gap for photovoltaic energy conversion. Experimental world record cells of 24 % conversion efficiency with around 300 {mu}m thickness are only 4 % (absolute) efficiency points below the theoretical Auger recombination-limit of around 28 %. Compared with other photovoltaic materials, crystalline silicon has only very few disadvantages. The handicap of weak light absorbance may be mastered by clever optical designs. Single crystalline cells of only 48 {mu}m thickness showed 17.3 % efficiency even without backside reflectors. A technology of solar cells from polycrystalline Si films on foreign substrates arises at the horizon. However, the disadvantageous, strong activity of grain boundaries in Si could be an insurmountable hurdle for a cost-effective, terrestrial photovoltaics based on polycrystalline Si on foreign substrates. This talk discusses some basic research challenges related to a Si based photovoltaics.

  9. Crystalline systems. [Book chapter

    Energy Technology Data Exchange (ETDEWEB)

    Kispert, L.D.

    The use of two double resonance methods, electron-nuclear double resonance (ENDOR) and electron-electron double resonance (ELDOR) in the study of free radicals in solids is reviewed. Included are descriptions of how crystalline-phase ENDOR is used to determine small hyperfine splittings, quadrupoly couplings, and reaction mechanisms or radical formation and how crystalline phase ELDOR is used to determine large hyperfine splittings, to identify radicals with large quadrupole moments and to study spin exchange processes. The complementary role played by the ENDOR and ELDOR spectroscopy in the separation of overlapping EPR spectra, in the study of proton-deuterium exchange, in the study of methyl groups undergoing tunneling rotation, and in the determination of the rates of intermolecular motion are dealt with. 13 figures, 1 table. (DP)

  10. Thermodynamics of Crystalline States

    CERN Document Server

    Fujimoto, Minoru

    2013-01-01

    Thermodynamics is a well-established discipline of physics for properties of matter in thermal equilibrium with the surroundings. Applying to crystals, however, the laws encounter undefined properties of crystal lattice, which therefore need to be determined for a clear and well-defined description of crystalline states. Thermodynamics of Crystalline States explores the roles played by order variables and dynamic lattices in crystals in a wholly new way. The book begins by clarifying basic concepts for stable crystals. Next, binary phase transitions are discussed to study collective motion of order variables, as described mostly as classical phenomena. New to this edition is the examination of magnetic crystals, where magnetic symmetry is essential for magnetic phase transitions. The multi-electron system is also discussed  theoretically, as a quantum-mechanical example, for superconductivity in metallic crystals. Throughout the book, the role played by the lattice is emphasized and studied in-depth. Thermod...

  11. Superacid Passivation of Crystalline Silicon Surfaces.

    Science.gov (United States)

    Bullock, James; Kiriya, Daisuke; Grant, Nicholas; Azcatl, Angelica; Hettick, Mark; Kho, Teng; Phang, Pheng; Sio, Hang C; Yan, Di; Macdonald, Daniel; Quevedo-Lopez, Manuel A; Wallace, Robert M; Cuevas, Andres; Javey, Ali

    2016-09-14

    The reduction of parasitic recombination processes commonly occurring within the silicon crystal and at its surfaces is of primary importance in crystalline silicon devices, particularly in photovoltaics. Here we explore a simple, room temperature treatment, involving a nonaqueous solution of the superacid bis(trifluoromethane)sulfonimide, to temporarily deactivate recombination centers at the surface. We show that this treatment leads to a significant enhancement in optoelectronic properties of the silicon wafer, attaining a level of surface passivation in line with state-of-the-art dielectric passivation films. Finally, we demonstrate its advantage as a bulk lifetime and process cleanliness monitor, establishing its compatibility with large area photoluminescence imaging in the process.

  12. Protection of brittle film against cracking

    Science.gov (United States)

    Musil, J.; Sklenka, J.; Čerstvý, R.

    2016-05-01

    This article reports on the protection of the brittle Zrsbnd Sisbnd O film against cracking in bending by the highly elastic top film (over-layer). In experiments the Zrsbnd Sisbnd O films with different elemental composition and structure were used. Both the brittle and highly elastic films were prepared by magnetron sputtering using a dual magnetron. The brittle film easily cracks in bending. On the other hand, the highly elastic film exhibits enhanced resistance to cracking in bending. Main characteristic parameters of both the brittle and highly elastic films are given. Special attention is devoted to the effect of the structure (crystalline, amorphous) of both the brittle and highly elastic top film on the resistance of cracking of the brittle film. It was found that (1) both the X-ray amorphous and crystalline brittle films easily crack in bending, (2) the highly elastic film can have either X-ray amorphous or crystalline structure and (3) both the X-ray amorphous and crystalline, highly elastic top films perfectly protect the brittle films against cracking in bending. The structure, mechanical properties and optical transparency of the brittle and highly elastic sputtered Zrsbnd Sisbnd O films are described in detail. At the end of this article, the principle of the low-temperature formation of the highly elastic films is also explained.

  13. Improvement of multilayer graphene crystallinity by solid-phase precipitation with current stress application during annealing

    Science.gov (United States)

    Sahab Uddin, Md.; Ichikawa, Hiroyasu; Sano, Shota; Ueno, Kazuyoshi

    2016-06-01

    To improve the crystallinity of multilayer graphene (MLG) films by solid-phase precipitation, a new method by which current stress is introduced during annealing of a carbon-doped cobalt (Co-C) layer using cobalt (Co) as the catalyst has been investigated. The effects of current stress on the formation and crystallinity of MLG films were investigated by comparing the characteristics of the films annealed at the same temperature with and without current by taking into account the temperature rise due to Joule heating. The characteristics obtained by Raman spectroscopy, scanning electron microscopy (SEM), transmission electron microscopy (TEM), and X-ray diffraction (XRD) measurements revealed that the MLG films produced were crystalline in nature and their crystallinity increased with applied current stress at the same temperature. From SEM observations, beside Joule heating, enhancement of Co grain size by agglomeration induced by current stress may be the potential reason for the improvement of the crystallinity of MLG films. We have also improved the uniformity of MLG films by depositing an additional copper (Cu) capping layer over the Co-C layer. Current stress application can lead to low-temperature fabrication of MLG with higher crystallinity by solid-phase precipitation.

  14. Preparation of highly (001)-oriented photoactive tungsten diselenide (WSe{sub 2}) films by an amorphous solid-liquid-crystalline solid (aSLcS) rapid-crystallization process

    Energy Technology Data Exchange (ETDEWEB)

    Bozheyev, Farabi; Friedrich, Dennis; Nie, Man; Rengachari, Mythili; Ellmer, Klaus [Helmholtz-Zentrum Berlin fuer Materialien und Energie, Institute for Solar Fuels, Hahn-Meitner-Platz 1, 14109, Berlin (Germany)

    2014-09-15

    Highly (001)-textured tungsten diselenide WSe{sub 2} thin films have been prepared by a two-step process on quartz glass and TiN metallic back contacts, respectively. At first, X-ray amorphous, selenium-rich WSe{sub 2+x} films were deposited by reactive magnetron sputtering at room temperature onto a thin metal promoter film (Ni or Pd) and afterwards annealed in an H{sub 2}Se/Ar atmosphere. X-ray diffraction and scanning electron microscopy show that highly (001)-oriented WSe{sub 2} films can be grown, which is caused by the formation of liquid promoter-metal selenide droplets which dissolve tungsten or tungsten selenide at temperatures, higher than the eutectic temperature in the promoter metal-selenium system, followed by oversaturation and eventually crystallization of WSe{sub 2} platelets. Time-resolved microwave conductivity measurements show that the films are photoactive. The sum of the carrier mobilities of the best films μ{sub e} + μ{sub h} is in the range of 1-7 cm{sup 2} V{sup -1} s{sup -1}. (copyright 2014 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  15. Crystalline mesoporous metal oxide

    Institute of Scientific and Technical Information of China (English)

    Wenbo Yue; Wuzong Zhou

    2008-01-01

    Since the discovery of many types of mesoporous silicas, such as SBA-15, KIT-6, FDU-12 and SBA-16, porous crystalline transition metal oxides, such as Cr2O3, Co3O4, In2O3, NiO, CeO2, WO3, Fe2O3 and MnO2, have been synthesized using the mesoporous silicas as hard templates. Several synthetic methods have been developed. These new porous materials have high potential applications in catalysis, Li-ion rechargeable batteries and gas sensors. This article gives a brief review of the research of porous crystals of metal oxides in the last four years.

  16. Liquid Crystalline Compositions as Gas Sensors

    Science.gov (United States)

    Shibaev, Petr; Murray, John; Tantillo, Anthony; Wenzlick, Madison; Howard-Jennings, Jordan

    2015-03-01

    Droplets and films of nematic and cholesteric liquid crystalline mixtures were studied as promising detectors of volatile organic compounds (VOCs) in the air. Under increasing concentration of VOC in the air the detection may rely on each of the following effects sequentially observed one after the other due to the diffusion of VOC inside liquid crystalline matrix: i. slight changes in orientation and order parameter of liquid crystal, ii. formation of bubbles on the top of the liquid crystalline droplet due to the mass transfer between the areas with different order parameter, iii. complete isotropisation of the liquid crystal. All three stages can be easily monitored by optical microscopy and photo camera. Detection limits corresponding to the first stage are typically lower by a factor of 3-6 than detection limits corresponding to the beginning of mass transfer and isotropisation. The prototype of a compact sensor sensitive to the presence of organic solvents in the air is described in detail. The detection limits of the sensor is significantly lower than VOC exposure standards. The qualitative model is presented to account for the observed changes related to the diffusion, changes of order parameter and isotropisation.

  17. Study of sodium citrate dependent crystalline orientation and properties of Zn{sub 0.85}Co{sub 0.05}Mg{sub 0.10}O films

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Yanmei, E-mail: lymf@sina.com.cn; Sun, Xia; Wang, Tao; Fang, Qingqing; Lv, Qingrong; Wu, Mingzai; Sun, Zhaoqi; He, Gang; Li, Aixia

    2014-10-15

    Highlights: • Zn{sub 0.85}Co{sub 0.05}Mg{sub 0.10}O films with different morphologies have been first prepared. • With increasing Na{sub 3}Cit, the films present morphology, orientation and bandgap changes. • Strong and wide visible emission centering at about 460 nm was found on PL spectra. • All samples show room temperature ferromagnetism. - Abstract: Zn{sub 0.85}Co{sub 0.05}Mg{sub 0.10}O (ZCMO) films with different morphologies have been prepared by a low temperature hydrothermal method via changing sodium citrate (Na{sub 3}Cit) concentration in the source solutions, which have been investigated on their structural, optical and magnetic properties. With continuously increasing Na{sub 3}Cit concentration in the source solutions, these films derived from the solutions changed their morphologies from aligned nanorods to the rose flower-like crystals vertical to the substrate and preferential orientation from [0 0 0 1] to [101{sup ¯}0] direction which were characterized by scan electron microscope (SEM) and X-ray diffraction (XRD) respectively. It was also found that the bandgaps of the ZCMO films obtained from transmittance spectra enlarge with the increase of the Na{sub 3}Cit concentration in the source solutions. A strong and wide visible emission band centering at about 460 nm and the ferromagnetism were observed for all ZCMO films at room temperature, the intensities of which change with the variation of Na{sub 3}Cit concentration in the source solutions. The change of bandgaps and the origins of the visible emission and the ferromagnetism were also discussed.

  18. Liquid crystalline order in polymers

    CERN Document Server

    Blumstein, Alexandre

    1978-01-01

    Liquid Crystalline Order in Polymers examines the topic of liquid crystalline order in systems containing rigid synthetic macromolecular chains. Each chapter of the book provides a review of one important area of the field. Chapter 1 discusses scattering in polymer systems with liquid crystalline order. It also introduces the field of liquid crystals. Chapter 2 treats the origin of liquid crystalline order in macromolecules by describing the in-depth study of conformation of such macromolecules in their unassociated state. The chapters that follow describe successively the liquid crystalli

  19. On Ultrafast Photoconductivity Dynamics and Crystallinity of Black Silicon

    DEFF Research Database (Denmark)

    Porte, Hendrik Pieter; Turchinovich, Dmitry; Persheyev, Saydulla;

    2013-01-01

    We investigate the carrier dynamics of thin films of black silicon, amorphous hydrogenated silicon which under laser annealing forms a microstructured surface with extremely high broadband optical absorption. We use Raman spectroscopy to determine the degree of crystallinity of the annealed...... surfaces, and investigate the dependence on crystallinity and fabrication method of the photoconductivity. Time-resolved THz spectroscopy is used to determine the evolution of the carrier scattering time and confinement of carriers on the picosecond time scale. We conclude that a fabrication method...... with high energy leading edge of the annealing laser results in black silicon with the largest photon-to-electron conversion efficiency, largest mobility, and longest carrier lifetime....

  20. Lithium insertion in sputtered vanadium oxide film

    DEFF Research Database (Denmark)

    West, K.; Zachau-Christiansen, B.; Skaarup, S.V.

    1992-01-01

    were oxygen deficient compared to V2O5. Films prepared in pure argon were reduced to V(4) or lower. The vanadium oxide films were tested in solid-state lithium cells. Films sputtered in oxygen showed electrochemical properties similar to crystalline V2O5. The main differences are a decreased capacity...... above 3.0 V, showing that V is partially reduced, and a broadening of the capacity peaks, showing that the crystallinity of these films is rather low. The film sputtered in argon behaved differently, discharging at a very low potential, 1.9 V versus Li, in the first cycle. In subsequent cycles...

  1. BaO/Al2O3/NiAl(110) Model NOx Storage Materials. The effect of BaO film thickness on the amorphous-to-crystalline Ba(NO3)2 phase transition

    Energy Technology Data Exchange (ETDEWEB)

    Yi, Cheol-Woo W. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Szanyi, Janos [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2008-12-18

    The reaction of NO2 with BaO (0.15 – 2 ML and > 30 ML)/Al2O3(12 ML)/NiAl(110) model NOx storage materials was studied. A thick (~12 ML), ordered Al2O3 film was prepared as the support oxide on a NiAl(110) substrate in order to minimize the effect of the intermixing between the two oxide phases (BaO and Al2O3) on the NOx chemistry of BaO. The growth of a thick alumina film, prepared by atomic oxygen deposition onto NiAl(110), follows a layer-by-layer growth mode and the resulting film is much more stable when exposed to NO2 than the ultra-thin alumina films studied before. The interaction of NO2 with the model NOx storage systems at low coverages of BaO show fundamentally different behaviors from a thick BaO film, as nitrite species form at low exposures of NO2, followed by nitrate formation at high NO2 exposures. In contrast, on the thick BaO layer nitrite-nitrate ion pairs form at 300 K under UHV conditions (PNO2 ~ 1 x 10-9 Torr). However, at elevated NO2 pressures (≥ 1 x 10-5 Torr) the thick BaO film is gradually converted into amorphous Ba(NO3)2 at 300 K. Raising the temperature of the samples with ΘBaO > 1 ML after NO2 exposure (in the absence of gas phase NO2) leads to the phase transformation of the amorphous Ba(NO3)2 layer into crystalline Ba(NO3)2 particles in the temperature range of 500 – 600 K. No phase transformation is observed in samples with ΘBaO < 1 ML.

  2. Crystalline organization of a methanofullerene as used for plastic solar-cell applications

    NARCIS (Netherlands)

    Yang, X.; van Duren, JKJ; Rispens, M. T.; Hummelen, J. C.; Janssen, Rene A.J.; Michels, Matthias A.J.

    2004-01-01

    Crystalline organization of a methano-fullerene, [6,6]-phenyl C-61 butyric acid methyl ester (PCBM), as achieved in various thin-film deposition techniques, is reported. Mechanically stable, and thus self-supporting, thin films obtained via fast solvent evaporation techniques are found to be

  3. Crystalline organization of a methanofullerene as used for plastic solar-cell applications

    NARCIS (Netherlands)

    Yang, XN; van Duren, JKJ; Rispens, MT; Hummelen, JC; Janssen, RAJ; Michels, MAJ; Yang, Xiaoniu; Janssen, Rene A.J.; Michels, Matthias A.J.

    2004-01-01

    Crystalline organization of a methano-fullerene, [6,6]-phenyl C-61 butyric acid methyl ester (PCBM), as achieved in various thin-film deposition techniques, is reported. Mechanically stable, and thus self-supporting, thin films obtained via fast solvent evaporation techniques are found to be compose

  4. Crystalline organization of a methanofullerene as used for plastic solar-cell applications

    NARCIS (Netherlands)

    Yang, X.; van Duren, JKJ; Rispens, M. T.; Hummelen, J. C.; Janssen, Rene A.J.; Michels, Matthias A.J.

    2004-01-01

    Crystalline organization of a methano-fullerene, [6,6]-phenyl C-61 butyric acid methyl ester (PCBM), as achieved in various thin-film deposition techniques, is reported. Mechanically stable, and thus self-supporting, thin films obtained via fast solvent evaporation techniques are found to be compose

  5. COLD DRAWING IN CRYSTALLINE POLYMERS

    Science.gov (United States)

    alcohols, phenol) in Nylon 6 produced changes in the crystalline structure as well as plasticizer action; these two effects must therefore be carefully...distinguished. Changes in the crystalline structure were followed by changes in the infrared spectrum. Dynamic mechanical and thermogravimetric analysis

  6. Crystalline Bioceramic Materials

    Directory of Open Access Journals (Sweden)

    de Aza, P. N.

    2005-06-01

    Full Text Available A strong interest in the use of ceramics for biomedical engineering applications developed in the late 1960´s. Used initially as alternatives to metallic materials in order to increase the biocompatibility of implants, bioceramics have become a diverse class of biomaterials, presently including three basic types: relatively bioinert ceramics; bioactive or surface reactive bioceramics and bioresorbable ceramics. This review will only refer to bioceramics “sensus stricto”, it is to say, those ceramic materials constituted for nonmetallic inorganic compounds, crystallines and consolidated by thermal treatments of powders to high temperatures. Leaving bioglasses, glass-ceramics and biocements apart, since, although all of them are obtained by thermal treatments to high temperatures, the first are amorphous, the second are obtained by desvitrification of a glass and in them vitreous phase normally prevails on the crystalline phases and the third are consolidated by means of a hydraulic or chemical reaction to room temperature. A review of the composition, physiochemical properties and biological behaviour of the principal types of crystalline bioceramics is given, based on the literature data and on the own experience of the authors.

    A finales de los años sesenta se despertó un gran interés por el uso de los materiales cerámicos para aplicaciones biomédicas. Inicialmente utilizados como una alternativa a los materiales metálicos, con el propósito de incrementar la biocompatibilidad de los implantes, las biocerámicas se han convertido en una clase diversa de biomateriales, incluyendo actualmente tres tipos: cerámicas cuasi inertes; cerámicas bioactivas o reactivas superficialmente y cerámicas reabsorbibles o biodegradables. En la presente revisión se hace referencia a las biocerámicas en sentido estricto, es decir, a aquellos materiales constitutitos por compuestos inorgánicos no metálicos, cristalinos y consolidados

  7. Morphology and Curie temperature engineering in crystalline La{sub 0.7}Sr{sub 0.3}MnO{sub 3} films on Si by pulsed laser deposition

    Energy Technology Data Exchange (ETDEWEB)

    Nori, Rajashree, E-mail: rajsre@ee.iitb.ac.in; Ganguly, U.; Ravi Chandra Raju, N.; Pinto, R.; Ramgopal Rao, V. [Centre of Excellence in Nanoelectronics, Department of Electrical Engineering, Indian Institute of Technology-Bombay (IIT-B), Mumbai 400076 (India); Kale, S. N. [Department of Applied Physics, Defence Institute of Advanced Technology (DIAT), Pune 411025 (India); Sutar, D. S. [Central Surface Analytical Facility, Indian Institute of Technology-Bombay (IIT-B), Mumbai 400076 (India)

    2014-01-21

    Of all the colossal magnetoresistant manganites, La{sub 0.7}Sr{sub 0.3}MnO{sub 3} (LSMO) exhibits magnetic and electronic state transitions above room temperature, and therefore holds immense technological potential in spintronic devices and hybrid heterojunctions. As the first step towards this goal, it needs to be integrated with silicon via a well-defined process that provides morphology and phase control, along with reproducibility. This work demonstrates the development of pulsed laser deposition (PLD) process parameter regimes for dense and columnar morphology LSMO films directly on Si. These regimes are postulated on the foundations of a pressure-distance scaling law and their limits are defined post experimental validation. The laser spot size is seen to play an important role in tandem with the pressure-distance scaling law to provide morphology control during LSMO deposition on lattice-mismatched Si substrate. Additionally, phase stability of the deposited films in these regimes is evaluated through magnetometry measurements and the Curie temperatures obtained are 349 K (for dense morphology) and 355 K (for columnar morphology)—the highest reported for LSMO films on Si so far. X-ray diffraction studies on phase evolution with variation in laser energy density and substrate temperature reveals the emergence of texture. Quantitative limits for all the key PLD process parameters are demonstrated in order enable morphological and structural engineering of LSMO films deposited directly on Si. These results are expected to boost the realization of top-down and bottom-up LSMO device architectures on the Si platform for a variety of applications.

  8. Electroactive β-crystalline phase inclusion and photoluminescence response of a heat-controlled spin-coated PVDF/TiO2 free-standing nanocomposite film for a nanogenerator and an active nanosensor

    Science.gov (United States)

    Mehebub Alam, Md; Sultana, Ayesha; Sarkar, Debabrata; Mandal, Dipankar

    2017-09-01

    The electroactive β-phase is most desirable due to its highest piezo-, pyro- and ferroelectric properties in poly(vinylidene fluoride) (PVDF). Induction of the β-phase is successfully accomplished in titanium dioxide (TiO2) nanoparticles (NPs) doped spin-coated PVDF nanocomposite (PNC) films. The optimized yields of β-phase and homogeneous ultra-smooth free-standing PNC film is utilized in a mechanical-energy harvesting application by fabricating a nanogenerator (NG) where the typical electrical poling step is not undertaken. Under a repeated human finger touch and release process, it delivers an open-circuit voltage of 5 V. Moreover, the physical sensing capabilities of the NG are examined through harvesting mechanical energy from mouse clicking of a laptop and wrist pulse detection, which indicates that it can also be used as a nanosensor. The blue photoluminescence centred at 444 nm, which was also observed in PNC films, makes us anticipate a new type of photonic application where the design feasibility of hybrid sensors, i.e. electromechanical and photonic combination, is also possible.

  9. Zapping thin film transistors

    NARCIS (Netherlands)

    Golo-Tosic, N.; Kuper, F.G.; Mouthaan, A.J.

    2002-01-01

    It was expected that hydrogenated amorphous silicon thin film transistors (alpha-Si:H TFTs) behave similarly to crystalline silicon transistors under electrostatic discharge (ESD) stress. It will be disproved in this paper. This knowledge is necessary in the design of the transistors used in a ESD

  10. Electrical transport in crystalline phase change materials

    Energy Technology Data Exchange (ETDEWEB)

    Woda, Michael

    2012-01-06

    In this thesis, the electrical transport properties of crystalline phase change materials are discussed. Phase change materials (PCM) are a special class of semiconducting and metallic thin film alloys, typically with a high amount of the group five element antimony or the group six element tellurium, such as Ge{sub 2}Sb{sub 2}Te{sub 5}. The unique property portfolio of this material class makes it suitable for memory applications. PCMs reveal fast switching between two stable room-temperature phases (amorphous and crystalline) realized by optical laser or electrical current pulses in memory devices. Additionally, a pronounced property contrast in form of optical reflectivity and electrical conductivity between the amorphous and crystalline phase is the characteristic fingerprint of PCMs. The emerging electrical solid state memory PCRAM is a very promising candidate to replace Flash memory in the near future or to even become a universal memory, which is non-volatile and shows the speed and cyclability of DRAM. One of the main technological challenges is the switching process into the amorphous state, which is the most power demanding step. In order to reduce the switching power, the crystalline resistivity needs to be increased at a given voltage. Thus understanding and tayloring of this property is mandatory. In this work, first the technological relevance, i.e. optical and electrical memory concepts based on PCMs are introduced. Subsequently a description of the physical properties of PCMs in four categories is given. Namely, structure, kinetics, optical properties and electrical properties are discussed. Then important recent developments such as the identification of resonant bonding in crystalline PCMs and a property predicting coordination scheme are briefly reviewed. The following chapter deals with the theoretical background of electrical transport, while the next chapter introduces the experimental techniques: Sputtering, XRR, XRD, DSC, thermal annealing

  11. Alginate-magnesium aluminum silicate composite films: effect of film thickness on physical characteristics and permeability.

    Science.gov (United States)

    Pongjanyakul, Thaned; Puttipipatkhachorn, Satit

    2008-01-04

    The different film thicknesses of the sodium alginate-magnesium aluminum silicate (SA-MAS) microcomposite films were prepared by varying volumes of the composite dispersion for casting. Effect of film thickness on thermal behavior, solid-state crystallinity, mechanical properties, water uptake and erosion, and water vapor and drug permeability of the microcomposite films were investigated. The film thickness caused a small change in thermal behavior of the films when tested using DSC and TGA. The crystallinity of the thin films seemed to increase when compared with the thick films. The thin films gave higher tensile strength than the thick films, whereas % elongation of the films was on the contrary resulted in the lower Young's modulus of the films when the film thickness was increased. This was due to the weaker of the film bulk, suggesting that the microscopic matrix structure of the thick films was looser than that of the thin films. Consequently, water uptake and erosion, water vapor permeation and drug diffusion coefficient of the thick films were higher than those of the thin films. The different types of drug on permeability of the films also showed that a positive charge and large molecule of drug, propranolol HCl, had higher lag time and lower diffusion coefficient that acetaminophen, a non-electrolyte and small molecule. This was because of a higher affinity of positive charge drug on MAS in the films. The findings suggest that the evaporation rate of solvent in different volumes of the composite dispersion used in the preparation method could affect crystallinity and strength of the film surface and film bulk of the microcomposite films. This led to a change in water vapor and drug permeability of the films.

  12. Epitaxial growth of crystalline polyaniline on reduced graphene oxide.

    Science.gov (United States)

    Majumdar, Dipanwita; Baskey, Moni; Saha, Shyamal K

    2011-08-17

    Due to its unique electronic properties, graphene has already been identified as a promising material for future carbon based electronics. To develop graphene technology, the fabrication of a high quality P-N junction is a great challenge. Here, we describe a general technique to grow single crystalline polyaniline (PANI) films on graphene sheets using in situ polymerization via the oxidation-reduction of aniline monomer and graphene oxide, respectively, to fabricate a high quality P-N junction, which shows diode-like behavior with a remarkably low turn-on voltage (60 mV) and high rectification ratio (1880:1) up to a voltage of 0.2 V. The origin of these superior electronic properties is the preferential growth of a highly crystalline PANI film as well as lattice matching between the d-values [∼2.48 Å] of graphene and {120} planes of PANI.

  13. Genetics Home Reference: Bietti crystalline dystrophy

    Science.gov (United States)

    ... Understand Genetics Home Health Conditions Bietti crystalline dystrophy Bietti crystalline dystrophy Enable Javascript to view the expand/ ... boxes. Download PDF Open All Close All Description Bietti crystalline dystrophy is a disorder in which numerous ...

  14. Terahertz Spectroscopy of Crystalline and Non-Crystalline Solids

    DEFF Research Database (Denmark)

    Parrott, Edward P. J.; Fischer, Bernd M.; Gladden, Lynn F.

    2013-01-01

    Terahertz spectroscopy of crystalline and non-crystalline solids is probably one of the most active research fields within the terahertz community. Many potential applications, amongst which spectral recognition is probably one of the most prominent, have significantly stimulated the development...... selected examples, the potential the technique holds for various different applications. A particular focus will be given to data analysis and, in particular, how we may account for effects resulting from non-ideal sample preparation....

  15. 氮化时间对RF-MBE法生长InN薄膜晶体结构的影响%Influence of Nitridation Time on the RF-MBE Growth of InN Films Crystalline Structure

    Institute of Scientific and Technical Information of China (English)

    高芳亮; 管云芳; 李国强

    2013-01-01

    采用射频等离子体分子束外延(RF-MBE)技术在蓝宝石(Al2O3)衬底上外延生长了InN薄膜,在生长之前对其进行不同时间的氮化处理.通过扫描电子显微镜(SEM)和X射线衍射(XRD)对薄膜的形貌和结构进行了表征,发现氮化时间小于60 min时获得的InN薄膜的晶体结构为多晶且表面粗糙,而氮化时间为60 min及120 min时获得的InN薄膜为单晶结构,表面粗糙度有所下降.分析表明,氮化时间对InN薄膜的晶体结构有很重要的影响.%InN thin films with different nitridation time were grown by radio frequency plasma molecular beam epitaxy (RF-MBE) on sapphire (A12O3) substrate. By means of SEM and X-ray diffraction scanning, InN thin films obtained by nitridation time of less than 60 min present polycrystalline structure and rough surface morphology, while InN thin films obtained by nitridation time of 60 and 120 min have single crystal structure and less rough surface morphology. It shows that the nitridation time plays an important role in the formation of the InN crystal structure.

  16. Freestanding single-crystalline magnetic structures fabricated by ion bombardment

    Energy Technology Data Exchange (ETDEWEB)

    Schoenherr, P.; Bischof, A.; Boehm, B.; Eib, P.; Grimm, S.; Gross, L.; Allenspach, R., E-mail: ral@zurich.ibm.com [IBM Research – Zurich, 8803 Rüschlikon (Switzerland); Alvarado, S. F. [Department of Materials, ETH Zürich, 8093 Zürich (Switzerland)

    2015-01-19

    Starting from an ultrathin Fe film grown epitaxially on top of a GaAs(001) substrate, we show that freestanding structures can be created by ion-beam treatment. These structures are single-crystalline blisters and only a few nanometers thick. Anisotropic stress in the rim of a blister induces magnetic domain states magnetized in the direction normal to the blister edge. Experimental evidence is provided that the lateral size can be confined by starting from a nanostructured template.

  17. Carbon Nanotubes as Reinforcement of Cellulose Liquid Crystalline Responsive Networks.

    Science.gov (United States)

    Echeverria, Coro; Aguirre, Luis E; Merino, Esther G; Almeida, Pedro L; Godinho, Maria H

    2015-09-30

    The incorporation of small amount of highly anisotropic nanoparticles into liquid crystalline hydroxypropylcellulose (LC-HPC) matrix improves its response when is exposed to humidity gradients due to an anisotropic increment of order in the structure. Dispersed nanoparticles give rise to faster order/disorder transitions when exposed to moisture as it is qualitatively observed and quantified by stress-time measurements. The presence of carbon nanotubes derives in a improvement of the mechanical properties of LC-HPC thin films.

  18. Growth of crystalline Al2O3 via thermal atomic layer deposition: Nanomaterial phase stabilization

    Directory of Open Access Journals (Sweden)

    S. M. Prokes

    2014-03-01

    Full Text Available We report the growth of crystalline Al2O3 thin films deposited by thermal Atomic Layer Deposition (ALD at 200 °C, which up to now has always resulted in the amorphous phase. The 5 nm thick films were deposited on Ga2O3, ZnO, and Si nanowire substrates 100 nm or less in diameter. The crystalline nature of the Al2O3 thin film coating was confirmed using Transmission Electron Microscopy (TEM, including high-resolution TEM lattice imaging, selected area diffraction, and energy filtered TEM. Al2O3 coatings on nanowires with diameters of 10 nm or less formed a fully crystalline phase, while those with diameters in the 20–25 nm range resulted in a partially crystalline coating, and those with diameters in excess of 50 nm were fully amorphous. We suggest that the amorphous Al2O3 phase becomes metastable with respect to a crystalline alumina polymorph, due to the nanometer size scale of the film/substrate combination. Since ALD Al2O3 films are widely used as protective barriers, dielectric layers, as well as potential coatings in energy materials, these findings may have important implications.

  19. Amorphization of Crystalline Water Ice

    CERN Document Server

    Zheng, Weijun; Kaiser, Ralf I

    2008-01-01

    We conducted a systematic experimental study to investigate the amorphization of crystalline ice by irradiation in the 10-50 K temperature range with 5 keV electrons at a dose of ~140 eV per molecule. We found that crystalline water ice can be converted partially to amorphous ice by electron irradiation. Our experiments showed that some of the 1.65-micrometer band survived the irradiation, to a degree that depends on the temperature, demonstrating that there is a balance between thermal recrystallization and irradiation-induced amorphization, with thermal recrystallizaton dominant at higher temperatures. At 50 K, recrystallization due to thermal effects is strong, and most of the crystalline ice survived. Temperatures of most known objects in the solar system, including Jovian satellites, Saturnian satellites, and Kuiper belt objects, are equal to or above 50 K, this might explain why water ice detected on those objects is mostly crystalline.

  20. Liquid-crystalline lanthanide complexes

    OpenAIRE

    Binnemans, Koen

    1999-01-01

    The paper describes the recent developments in the field of liquid-crystalline lanthanide complexes. The role of trivalent lanthanide ions as the central metal ion in metallomesogens is considered. An outlook for the future is given.

  1. Diffusion in porous crystalline materials

    NARCIS (Netherlands)

    Krishna, R.

    2012-01-01

    The design and development of many separation and catalytic process technologies require a proper quantitative description of diffusion of mixtures of guest molecules within porous crystalline materials. This tutorial review presents a unified, phenomenological description of diffusion inside meso-

  2. Raman spectral research on MPCVD diamond film

    Institute of Scientific and Technical Information of China (English)

    YAN Yan; ZHANG Shulin; ZHAO Xinsheng; HAN Yisong; HOU Li

    2003-01-01

    Raman spectra of MPCVD diamond film have been studied. Based on the resonance size selection effect, we think that there is no nano-crystalline diamond in the sample and the Raman peak at 1145 cm-1 can not be considered as the characteristic peak of nano-crystalline diamond though it has been used as the characteristic peak of nano-crystalline diamond widely for many years.

  3. Research on anti-PID performance of double-layer SiN film poly-crystalline silicon solar cell%双层SiN 膜多晶硅太阳电池抗PID性能研究

    Institute of Scientific and Technical Information of China (English)

    罗旌旺; 王祺; 芮春保; 孔凡建

    2014-01-01

    Double-layer SiN film poly-crystal ine silicon solar cel was the research point. Different refractive index and thickness double-layer SiN film solar cel by modifying PECVD process were prepared. The cel s with glass, EVA, backsheet etc were encapsulated. PID (Potential Induced Degradation) test at 85℃, 85%RH was conducted. The results show (1)that the cel s with a low refractive index of outer SiNx layer cause serious PID effect regardless of the refractive index or thickness of inner SiN layer;(2), but as the outer layer refractive index increasing the cel s PID effects decreased conspicuously, the cel s with a outer layer refractive index≥2.15 past PID 600 h test with a power loss less than 5%;(3) compared to conventional cel , double-layers SiN film anti-PID solar cel efficiency is a slightly lower, but the cel to module encapsulation power loss is smal er and its module power is equivalent to conventional cel 's. Therefore, the application of this anti-PID solar cel is promising.%以双层SiN 膜多晶硅太阳电池为研究对象,通过调整PECVD工艺参数制备不同折射率和厚度的双层氮化硅减反射膜太阳电池,并用玻璃、EVA和背板等将电池片封装成光伏组件,进行85℃、85%RH条件下组件电势诱导衰减(PID)实验。研究结果表明:(1)改变内层折射率和厚度保持外层较低的折射率时,双层氮化硅膜太阳电池均会发生严重的PID效应;(2)但随着外层折射率提高,电池PID效应显著减小,外层折射率≥2.15的电池PID实验600 h功率衰减小于5%;(3)双层氮化硅膜抗PID太阳电池的转化效率略低于普通太阳电池,但其组件的封装损失较小,与普通电池的组件功率相当,因此具有很好的应用前景。

  4. Thin films for material engineering

    Science.gov (United States)

    Wasa, Kiyotaka

    2016-07-01

    Thin films are defined as two-dimensional materials formed by condensing one by one atomic/molecular/ionic species of matter in contrast to bulk three-dimensional sintered ceramics. They are grown through atomic collisional chemical reaction on a substrate surface. Thin film growth processes are fascinating for developing innovative exotic materials. On the basis of my long research on sputtering deposition, this paper firstly describes the kinetic energy effect of sputtered adatoms on thin film growth and discusses on a possibility of room-temperature growth of cubic diamond crystallites and the perovskite thin films of binary compound PbTiO3. Secondly, high-performance sputtered ferroelectric thin films with extraordinary excellent crystallinity compatible with MBE deposited thin films are described in relation to a possible application for thin-film MEMS. Finally, the present thin-film technologies are discussed in terms of a future material science and engineering.

  5. Selective inorganic thin films

    Energy Technology Data Exchange (ETDEWEB)

    Phillips, M.L.F.; Weisenbach, L.A.; Anderson, M.T. [Sandia National Laboratories, Albuquerque, NM (United States)] [and others

    1995-05-01

    This project is developing inorganic thin films as membranes for gas separation applications, and as discriminating coatings for liquid-phase chemical sensors. Our goal is to synthesize these coatings with tailored porosity and surface chemistry on porous substrates and on acoustic and optical sensors. Molecular sieve films offer the possibility of performing separations involving hydrogen, air, and natural gas constituents at elevated temperatures with very high separation factors. We are focusing on improving permeability and molecular sieve properties of crystalline zeolitic membranes made by hydrothermally reacting layered multicomponent sol-gel films deposited on mesoporous substrates. We also used acoustic plate mode (APM) oscillator and surface plasmon resonance (SPR) sensor elements as substrates for sol-gel films, and have both used these modified sensors to determine physical properties of the films and have determined the sensitivity and selectivity of these sensors to aqueous chemical species.

  6. The influence of polymerization rate on conductivity and crystallinity of electropolymerized polypyrrole

    DEFF Research Database (Denmark)

    Dyreklev, P.; Granström, M.; Inganäs, O.

    1996-01-01

    conductivity and increased crystallinity. The conductivity is also less temperature activated compared to that of the polymer grown at higher rate. X-ray diffractograms are compared to simulated diffraction data and the results are discussed in terms of increased order in the material. This may result from......We report studies on electronic conductivity and crystallinity in electropolymerized polypyrrole. Different growth rates during electropolymerization strongly influence and determine structural and electronic properties. Polymer films grown using low current density show higher electronic...

  7. Workshop on hydrology of crystalline basement rocks

    Energy Technology Data Exchange (ETDEWEB)

    Davis, S.N. (comp.)

    1981-08-01

    This workshop covered the following subjects: measurements in relatively shallow boreholes; measurement and interpretation of data from deep boreholes; hydrologic properties of crystalline rocks as interpreted by geophysics and field geology; rock mechanics related to hydrology of crystalline rocks; the possible contributions of modeling to the understanding of the hydrology of crystalline rocks; and geochemical interpretations of the hydrology of crystalline rocks. (MHR)

  8. Nanostructures having crystalline and amorphous phases

    Science.gov (United States)

    Mao, Samuel S; Chen, Xiaobo

    2015-04-28

    The present invention includes a nanostructure, a method of making thereof, and a method of photocatalysis. In one embodiment, the nanostructure includes a crystalline phase and an amorphous phase in contact with the crystalline phase. Each of the crystalline and amorphous phases has at least one dimension on a nanometer scale. In another embodiment, the nanostructure includes a nanoparticle comprising a crystalline phase and an amorphous phase. The amorphous phase is in a selected amount. In another embodiment, the nanostructure includes crystalline titanium dioxide and amorphous titanium dioxide in contact with the crystalline titanium dioxide. Each of the crystalline and amorphous titanium dioxide has at least one dimension on a nanometer scale.

  9. Preparation and Characterization of Highly Oriented ZnO Film by Ultrasonic Assisted SILAR Method

    Institute of Scientific and Technical Information of China (English)

    GAO Xiangdong; LI Xiaomin; YU Weidong

    2005-01-01

    Ultrasonic Assisted SILAR method ( UA-SILAR ) was developed and highly oriented ZnO films were deposited on the glass substrate by this novel technique. The crystallinity and microstructure of as-deposited ZnO films were analyzed by means of XRD and SEM. Moreover, the underling deposition mechanism of ZnO films was discussed. Results show that obtained ZnO films exhibit an excellent crystallinity with the preferential orientation of (002) plane. The crystalline grain of films is about 40nm in size, which is supported by both the Sherrer equation and the SEM result. However, the ZnO film is composed of numerous clustered particulates in the size of 200 to 300 nm, and each particulate is the compact aggregation of smaller ZnO crystalline grains. It is speculated that the excellent crystallinity of ZnO films may chiefly originate from the cavatition effect of the ultrasonic rinsing process.

  10. In Situ Studies of the Temperature-Dependent Surface Structure and Chemistry of Single-Crystalline (001)-Oriented La 0.8 Sr 0.2 CoO 3−δ Perovskite Thin Films

    KAUST Repository

    Feng, Zhenxing

    2013-05-02

    Perovskites are used to promote the kinetics of oxygen electrocatalysis in solid oxide fuel cells and oxygen permeation membranes. Little is known about the surface structure and chemistry of perovskites at high temperatures and partial oxygen pressures. Combining in situ X-ray reflectivity (XRR) and in situ ambient pressure X-ray photoelectron spectroscopy (APXPS), we report, for the first time, the evolution of the surface structure and chemistry of (001)-oriented perovskite La0.8Sr0.2CoO 3-δ (LSC113) and (La0.5Sr 0.5)2CoO4+δ (LSC214)-decorated LSC113 (LSC113/214) thin films as a function of temperature. Heating the (001)-oriented LSC113 surface leads to the formation of surface LSC214-like particles, which is further confirmed by ex situ Auger electron spectroscopy (AES). In contrast, the LSC113/214 surface, with activities much higher than that of LSC 113, is stable upon heating. Combined in situ XRR and APXPS measurements support that Sr enrichment may occur at the LSC113 and LSC214 interface, which can be responsible for its markedly enhanced activities. © 2013 American Chemical Society.

  11. Crystalline 'Genes' in Metallic Liquids

    CERN Document Server

    Sun, Yang; Ye, Zhuo; Fang, Xiaowei; Ding, Zejun; Wang, Cai-Zhuang; Mendelev, Mikhail I; Ott, Ryan T; Kramer, M J; Ho, Kai-Ming

    2014-01-01

    The underlying structural order that transcends the liquid, glass and crystalline states is identified using an efficient genetic algorithm (GA). GA identifies the most common energetically favorable packing motif in crystalline structures close to the alloy's Al-10 at.% Sm composition. These motifs are in turn compared to the observed packing motifs in the actual liquid structures using a cluster-alignment method which reveals the average topology. Conventional descriptions of the short-range order, such as Voronoi tessellation, are too rigid in their analysis of the configurational poly-types when describing the chemical and topological ordering during transition from undercooled metallic liquids to crystalline phases or glass. Our approach here brings new insight into describing mesoscopic order-disorder transitions in condensed matter physics.

  12. Planar-integrated single-crystalline perovskite photodetectors

    KAUST Repository

    Saidaminov, Makhsud I.

    2015-11-09

    Hybrid perovskites are promising semiconductors for optoelectronic applications. However, they suffer from morphological disorder that limits their optoelectronic properties and, ultimately, device performance. Recently, perovskite single crystals have been shown to overcome this problem and exhibit impressive improvements: low trap density, low intrinsic carrier concentration, high mobility, and long diffusion length that outperform perovskite-based thin films. These characteristics make the material ideal for realizing photodetection that is simultaneously fast and sensitive; unfortunately, these macroscopic single crystals cannot be grown on a planar substrate, curtailing their potential for optoelectronic integration. Here we produce large-area planar-integrated films made up of large perovskite single crystals. These crystalline films exhibit mobility and diffusion length comparable with those of single crystals. Using this technique, we produced a high-performance light detector showing high gain (above 104 electrons per photon) and high gain-bandwidth product (above 108 Hz) relative to other perovskite-based optical sensors.

  13. Positronium diffusion in crystalline polyethylene

    Energy Technology Data Exchange (ETDEWEB)

    Serna, J. (Dept. de Fisica de Materiales, Univ. Complutense, Madrid (Spain))

    1990-12-16

    The analysis in four components of the positron lifetime spectra of nine different and structurally well characterised lamellar polyethylene samples has allowed to associate the two longest-lived components to positronium annihilation in the crystalline and amorphous phases. Further assumption on positronium tunneling through the interface between both phases, and a simple geometrical model, led to a value for the positronium diffusion coefficient in the crystalline phase of the order of 10{sup -4} cm{sup 2}/s. Interfaces have thicknesses around 1.5 nm and are shallow traps for positronium. (orig.).

  14. Single crystalline mesoporous silicon nanowires

    Energy Technology Data Exchange (ETDEWEB)

    Hochbaum, A.I.; Gargas, Daniel; Jeong Hwang, Yun; Yang, Peidong

    2009-08-04

    Herein we demonstrate a novel electroless etching synthesis of monolithic, single-crystalline, mesoporous silicon nanowire arrays with a high surface area and luminescent properties consistent with conventional porous silicon materials. These porous nanowires also retain the crystallographic orientation of the wafer from which they are etched. Electron microscopy and diffraction confirm their single-crystallinity and reveal the silicon surrounding the pores is as thin as several nanometers. Confocal fluorescence microscopy showed that the photoluminescence (PL) of these arrays emanate from the nanowires themselves, and their PL spectrum suggests that these arrays may be useful as photocatalytic substrates or active components of nanoscale optoelectronic devices.

  15. Single crystalline mesoporous silicon nanowires

    Energy Technology Data Exchange (ETDEWEB)

    Hochbaum, Allon; Dargas, Daniel; Hwang, Yun Jeong; Yang, Peidong

    2009-08-18

    Herein we demonstrate a novel electroless etching synthesis of monolithic, single-crystalline, mesoporous silicon nanowire arrays with a high surface area and luminescent properties consistent with conventional porous silicon materials. The photoluminescence of these nanowires suggest they are composed of crystalline silicon with small enough dimensions such that these arrays may be useful as photocatalytic substrates or active components of nanoscale optoelectronic devices. A better understanding of this electroless route to mesoporous silicon could lead to facile and general syntheses of different narrow bandgap semiconductor nanostructures for various applications.

  16. The radiation damage of crystalline silicon PN diode in tritium beta-voltaic battery.

    Science.gov (United States)

    Lei, Yisong; Yang, Yuqing; Liu, Yebing; Li, Hao; Wang, Guanquan; Hu, Rui; Xiong, Xiaoling; Luo, Shunzhong

    2014-08-01

    A tritium beta-voltaic battery using a crystalline silicon convertor composed of (100)Si/SiO2/Si3N4 film degrades remarkably with radiation from a high intensity titanium tritide film. Simulation and experiments were carried out to investigate the main factor causing the degradation. The radiation damages mainly comes from the x-ray emitted from the titanium tritide film and beta particle can relieve the damages. The x-ray radiation induced positive charges in the SiO2 film destroying the output property of the PN diode with the induction of an electric field.

  17. Generic Crystalline Disposal Reference Case

    Energy Technology Data Exchange (ETDEWEB)

    Painter, Scott Leroy [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Chu, Shaoping [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Harp, Dylan Robert [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Perry, Frank Vinton [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Wang, Yifeng [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2015-02-20

    A generic reference case for disposal of spent nuclear fuel and high-level radioactive waste in crystalline rock is outlined. The generic cases are intended to support development of disposal system modeling capability by establishing relevant baseline conditions and parameters. Establishment of a generic reference case requires that the emplacement concept, waste inventory, waste form, waste package, backfill/buffer properties, EBS failure scenarios, host rock properties, and biosphere be specified. The focus in this report is on those elements that are unique to crystalline disposal, especially the geosphere representation. Three emplacement concepts are suggested for further analyses: a waste packages containing 4 PWR assemblies emplaced in boreholes in the floors of tunnels (KBS-3 concept), a 12-assembly waste package emplaced in tunnels, and a 32-assembly dual purpose canister emplaced in tunnels. In addition, three failure scenarios were suggested for future use: a nominal scenario involving corrosion of the waste package in the tunnel emplacement concepts, a manufacturing defect scenario applicable to the KBS-3 concept, and a disruptive glaciation scenario applicable to both emplacement concepts. The computational approaches required to analyze EBS failure and transport processes in a crystalline rock repository are similar to those of argillite/shale, with the most significant difference being that the EBS in a crystalline rock repository will likely experience highly heterogeneous flow rates, which should be represented in the model. The computational approaches required to analyze radionuclide transport in the natural system are very different because of the highly channelized nature of fracture flow. Computational workflows tailored to crystalline rock based on discrete transport pathways extracted from discrete fracture network models are recommended.

  18. Phase diagrams of binary crystalline-crystalline polymer blends.

    Science.gov (United States)

    Matkar, Rushikesh A; Kyu, Thein

    2006-08-17

    A thermodynamically self-consistent theory has been developed to establish binary phase diagrams for two-crystalline polymer blends by taking into consideration all interactions including amorphous-amorphous, crystal-amorphous, amorphous-crystal, and crystal-crystal interactions. The present theory basically involves combination of the Flory-Huggins free energy for amorphous-amorphous isotropic mixing and the Landau free energy of polymer solidification (e.g., crystallization) of the crystalline constituents. The self-consistent solution via minimization of the free energy of the mixture affords determination of eutectic, peritectic, and azeotrope phase diagrams involving various coexistence regions such as liquid-liquid, liquid-solid, and solid-solid coexistence regions bound by liquidus and solidus lines. To validate the present theory, the predicted eutectic phase diagrams have been compared with the reported experimental binary phase diagrams of blends such as polyethylene fractions as well as polycaprolactone/trioxane mixtures.

  19. Crystalline organization of a methanofullerene as used for plastic solar-cell applications

    Energy Technology Data Exchange (ETDEWEB)

    Yang, X.; Michels, M.A.J. [Group Polymer Physics, Eindhoven University of Technology, PO Box 513, NL-5600 MB Eindhoven (Netherlands); Dutch Polymer Institute, PO Box 902, NL-5600 AX Eindhoven (Netherlands); Duren, J.K.J. van; Janssen, R.A.J. [Molecular Materials and Nanosystems, Eindhoven University of Technology, PO Box 513, NL-5600 MB Eindhoven (Netherlands); Rispens, M.T.; Hummelen, J.C. [Molecular Electronics, University of Groningen, Nijenborgh 4, NL-9747 AG Groningen (Netherlands); Loos, J. [Laboratories of Polymer Technology and, Solid State Chemistry and Materials, Eindhoven University of Technology, PO Box 513, NL-5600 MB Eindhoven (Netherlands)

    2004-05-17

    Crystalline organization of a methanofullerene, [6,6]-phenyl C{sub 61} butyric acid methyl ester (PCBM), as achieved in various thin-film deposition techniques, is reported. Mechanically stable, and thus self-supporting, thin films obtained via fast solvent evaporation techniques are found to be composed of densely and homogeneously distributed PCBM nanocrystals with various crystallographic orientations. (Abstract Copyright [2004], Wiley Periodicals, Inc.)

  20. Potentiostatic Deposition and Characterization of Cuprous Oxide Thin Films

    OpenAIRE

    2013-01-01

    Electrodeposition technique was employed to deposit cuprous oxide Cu2O thin films. In this work, Cu2O thin films have been grown on fluorine doped tin oxide (FTO) transparent conducting glass as a substrate by potentiostatic deposition of cupric acetate. The effect of deposition time on the morphologies, crystalline, and optical quality of Cu2O thin films was investigated.

  1. Monte Carlo simulation of magnetic nanostructured thin films

    Institute of Scientific and Technical Information of China (English)

    Guan Zhi-Qiang; Yutaka Abe; Jiang Dong-Hua; Lin Hai; Yoshitake Yamazakia; Wu Chen-Xu

    2004-01-01

    @@ Using Monte Carlo simulation, we have compared the magnetic properties between nanostructured thin films and two-dimensional crystalline solids. The dependence of nanostructured properties on the interaction between particles that constitute the nanostructured thin films is also studied. The result shows that the parameters in the interaction potential have an important effect on the properties of nanostructured thin films at the transition temperatures.

  2. Thermoelectric properties of epitaxial β-FeSi2 thin films grown on Si(111) substrates with various film qualities

    Science.gov (United States)

    Watanabe, Kentaro; Taniguchi, Tatsuhiko; Sakane, Shunya; Aoki, Shunsuke; Suzuki, Takeyuki; Fujita, Takeshi; Nakamura, Yoshiaki

    2017-05-01

    Si-based epitaxial β-FeSi2 thin films are attractive as materials for on-chip thermoelectric power generators. We investigated the structure, crystallinity, and thermoelectric properties of β-FeSi2 thin films epitaxially grown on Si(111) substrates by using three different techniques: conventional reactive deposition epitaxy followed by molecular beam epitaxy (RDE+MBE), solid phase epitaxy (SPE) based on codeposition of Fe and Si presented previously, and SPE followed by MBE (SPE+MBE) presented newly by this work. Their epitaxial growth temperatures were fixed at 530 °C for comparison. RDE+MBE thin films exhibited high crystalline quality, but rough surfaces and rugged β-FeSi2/Si(111) interfaces. On the other hand, SPE thin films showed flat surfaces and abrupt β-FeSi2/Si(111) interfaces but low crystallinity. We found that SPE+MBE thin films realized crystallinity higher than SPE thin films, and also had flatter surfaces and sharper interfaces than RDE+MBE thin films. In SPE+MBE thin film growth, due to the initial SPE process with low temperature codeposition, thermal interdiffusion of Fe and Si was suppressed, resulting in the surface flatness and abrupt interface. Second high temperature MBE process improved the crystallinity. We also investigated thermoelectric properties of these β-FeSi2 thin films. Structural factors affecting the thermoelectric properties of RDE+MBE, SPE, and SPE+MBE thin films were investigated.

  3. Fabrication of Crystalline Indium Tin Oxide Nanobasket Electrodes using Aluminum Anodic Oxide Template

    Science.gov (United States)

    Wang, Gou-Jen; Chen, He-Tsing; Yang, Hsihang

    2008-07-01

    Fabrication of crystalline indium tin oxide (ITO) nanobasket electrodes shaped by an anodic aluminum oxide (AAO) template for better electron conductivity is presented. ITO films were deposited on porous AAO templates by RF magnetron sputtering. The sputter-coated ITO films were characterized by field-emission scanning electron microscopy (FESEM) to illustrate the nanobasket morphologies. The compositions of the ITO films were characterized by energy-dispersive X-ray (EDS) analysis. X-ray diffraction (XRD) analysis was conducted to evaluate the crystallinity. The crystallinity can be enhanced by annealing at 300 °C. Although the conductivity of the ITO nanobasket film is larger than that of the conventional ITO thin film, the harvest efficiency can be markedly increased due to the nanobasket structure which enables most of the photoexcited electrons to reach their nearest electrode before losing their momentum. The presented ITO nanobasket films can be further used as a more effective electrode material for photovoltaics such as dye-sensitized solar cells (DSSCs).

  4. 液相沉积法处理TiO2纳米晶膜对其光电性能的影响%Influence of LPD Treatment on the Photoelectric Properties of Porous Nano-crystalline-TiO2 Thin Film

    Institute of Scientific and Technical Information of China (English)

    张琳; 王爱军; 陈胜利

    2012-01-01

    A conductive glass coated with porous nano-crystalline-TiO2 films was immersed in a LPD solution containing titanium ammonium fluoride, boric acid and water, and a layer of TiO2 was deposited on the surface of the porous TiO2 films through the hydrolysis of titanium ammonium fluoride, the F" of which react with boric acid forming BF4, shifting the hydrolysis equilibrium to form TiO2. The TiO2 electrode treated by the TiO2 LPD process was as the anode of dye-sensitized solar cell ( DSSC ). The effects of LPD treatment time on photovoltaic properties of DSSC were investigated. The results showed that after 25 min LPD treatment, the short circuit photocurrent density (Isc.) and the conversion efficiency of the solar energy to electricity energy were increased by 13.13% and 13.95% respectively. The reason for the improvement of the photovoltaic properties was discussed.%将涂有TiO2纳米晶膜的导电玻璃浸渍于氟钛酸铵、硼酸和水的液相沉积(Liquid Phase Deposition,简称LPD)反应溶液中,利用反应液中氟的金属配位离子和金属氟化物之间的化学平衡反应,在TiO2纳米晶多孔膜(简称ncTiO2膜)上沉积一层TiO2纳米粒子,从而实现对TiO2纳米晶膜进行化学处理.以经过LPD处理的TiO2纳米晶膜作为光阳极组装染料敏化太阳能电池(DSSC)并测试其伏安特性曲线,研究了不同反应时间条件下LPD处理ncTiO2膜对DSSC光电性能的影响.结果表明:在一定条件下用LPD处理TiO2纳米晶膜可显著提高其DSSC光电性能,短路电流密度最高提高13.13%,能量转化效率最高提高13.95%.论文对LPD处理TiO2纳米晶膜提高DSSC光电转化性能的原因进行了分析.

  5. Controllable preparation of nanosized TiO2 thin film and relationship between structure of film and its photocatalytic activity

    Institute of Scientific and Technical Information of China (English)

    WEI; Gang; (魏刚); ZHANG; Yuanjing; (张元晶); XIONG; Rongchun; (熊蓉春)

    2003-01-01

    TiO2 nano-crystalline film and fixed bed photocatalytic reactor were prepared by the sol-gel process using tetrabutylorthotitanate as a precursor and glass tube as the substrate. XRD, AFM, SEM and thickness analysis results indicate that the preparation of nano-crystalline film can be controlled by optimizing experiment process. Under the optimized process, the phase of TiO2 in film is anatase, and the grain size is 3-4 nm. The size of particles, which is about 20-80 nm, can be controlled. The thickness of monolayer film is in nanometer grade. The thickness and particles size in films growing on nanometer film can also be controlled in nanometer grade. As a result, the crack of film can be effectively avoided. Rhodamine B degradation results using UV-Vis spectrophotometer show that the activity of nano-crystalline film in the photocatalytic reactor has a good relation with the diameter of TiO2 particles, that is, the film shows high activity when the size is 20-30 nm and greatly reduced when the size is above 60 nm. The activity of film does not decrease with the increase of film thickness, and this result indicates that nano-crystalline film has no ill influence on the transmissivity of ultraviolet light.

  6. Photocontrollable liquid-crystalline actuators

    Energy Technology Data Exchange (ETDEWEB)

    Yu, Haifeng [Top Runner Incubation Center for Academia-Industry Fusion and Department of Materials and Technology, Nagaoka University of Technology, 1603-1 Kamitomioka, Nagaoka 940-2188 (Japan); Ikeda, Tomiki [Chemical Resources Laboratory, Tokyo Institute of Technology, R1-11, 4259 Nagatsuta, Midori-ku, Yokohama 226-8503 (Japan)

    2011-05-17

    Coupling photochromic molecules with liquid crystalline (LC) materials enables one to reversibly photocontrol unique LC features such as phase transition, photoalignment, and molecular cooperative motion. LC elastomers show photomechanical and photomobile properties, directly converting light energy into mechanical energy. In well-defined LC block copolymers, regular patternings of nanostructures in macroscopic scales are fabricated by photo-manipulation of LC actuators. (Copyright copyright 2011 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  7. Liquid Crystalline Esters of Dibenzophenazines

    Directory of Open Access Journals (Sweden)

    Kevin John Anthony Bozek

    2015-01-01

    Full Text Available A series of esters of 2,3,6,7-tetrakis(hexyloxydibenzo[a,c]phenazine-11-carboxylic acid was prepared in order to probe the effects of the ester groups on the liquid crystalline behavior. These compounds exhibit columnar hexagonal phases over broad temperature ranges. Variations in chain length, branching, terminal groups, and the presence of cyclic groups were found to modify transition temperatures without substantially destabilizing the mesophase range.

  8. EXAFS studies of crystalline materials

    Energy Technology Data Exchange (ETDEWEB)

    Knapp, G.S.; Georgopoulos, P.

    1982-01-01

    The application of extended x-ray absorption fine structure (EXAFS) technique to the study of crystalline materials is discussed, and previously published work on the subject is reviewed with 46 references being cited. The theory of EXAFS, methods of data analysis, and the experimental techniques, including those based on synchrotron and laboratory facilities are all discussed. Absorption and fluorescence methods of detecting EXAFS also receive attention. (BLM)

  9. Inelastic deformation in crystalline rocks

    Science.gov (United States)

    Rahmani, H.; Borja, R. I.

    2011-12-01

    The elasto-plastic behavior of crystalline rocks, such as evaporites, igneous rocks, or metamorphic rocks, is highly dependent on the behavior of their individual crystals. Previous studies indicate that crystal plasticity can be one of the dominant micro mechanisms in the plastic deformation of crystal aggregates. Deformation bands and pore collapse are examples of plastic deformation in crystalline rocks. In these cases twinning within the grains illustrate plastic deformation of crystal lattice. Crystal plasticity is governed by the plastic deformation along potential slip systems of crystals. Linear dependency of the crystal slip systems causes singularity in the system of equations solving for the plastic slip of each slip system. As a result, taking the micro-structure properties into account, while studying the overall behavior of crystalline materials, is quite challenging. To model the plastic deformation of single crystals we use the so called `ultimate algorithm' by Borja and Wren (1993) implemented in a 3D finite element framework to solve boundary value problems. The major advantage of this model is that it avoids the singularity problem by solving for the plastic slip explicitly in sub steps over which the stress strain relationship is linear. Comparing the results of the examples to available models such as Von Mises we show the significance of considering the micro-structure of crystals in modeling the overall elasto-plastic deformation of crystal aggregates.

  10. ADVANCES IN LIQUID CRYSTALLINE POLYESTERS

    Institute of Scientific and Technical Information of China (English)

    W. J. Jackson

    1992-01-01

    Advances have been made in understanding the interactions of composition, molecular weight,liquid crystallinity, orientation, and three-dimensional crystallinity on the properties of injection-molded and melt-spun liquid crystalline polyesters (LCP's). Two classes of potentially low-cost LCP's were compared : (1) semiflexible LCP's prepared from 1,6-hexanediol and the dimethyl ester of either trans-4, 4'-stilbenedicarboxylic acid or 4.4 ′-biphenyldicarboxylic acid and (2) all-aromatic LCP's prepared from terephthalic acid, 2, 6-naphthalenedicarboxylic acid, the diacetate of hydroquinone,and the acetate of p-hydroxybenzoic acid. The effects of composition on the plastic properties of the 4-component all-aromatic LCP's were determined with the aid of a 3 × 3 factorial statistically designed experiment, the generation of equations with a computer program, and the plotting of three-dimensional figures and contour diagrams. The effects of absolute molecular weight (Mw) on the tensile strengths of the semiflexible LCP's and one of the all-aromatic LCP's having an excellent balance of plastic properties were also compared, and it was observed that the semiflexible LCP's required Mw's about 4 times higher than the all-aromatic LCP to attain a given strength. Persistence lengths and molecular modeling were used to explain these differences.

  11. Biocompatibility of crystalline opal nanoparticles

    Directory of Open Access Journals (Sweden)

    Hernández-Ortiz Marlen

    2012-10-01

    Full Text Available Abstract Background Silica nanoparticles are being developed as a host of biomedical and biotechnological applications. For this reason, there are more studies about biocompatibility of silica with amorphous and crystalline structure. Except hydrated silica (opal, despite is presents directly and indirectly in humans. Two sizes of crystalline opal nanoparticles were investigated in this work under criteria of toxicology. Methods In particular, cytotoxic and genotoxic effects caused by opal nanoparticles (80 and 120 nm were evaluated in cultured mouse cells via a set of bioassays, methylthiazolyldiphenyl-tetrazolium-bromide (MTT and 5-bromo-2′-deoxyuridine (BrdU. Results 3T3-NIH cells were incubated for 24 and 72 h in contact with nanocrystalline opal particles, not presented significant statistically difference in the results of cytotoxicity. Genotoxicity tests of crystalline opal nanoparticles were performed by the BrdU assay on the same cultured cells for 24 h incubation. The reduction of BrdU-incorporated cells indicates that nanocrystalline opal exposure did not caused unrepairable damage DNA. Conclusions There is no relationship between that particles size and MTT reduction, as well as BrdU incorporation, such that the opal particles did not induce cytotoxic effect and genotoxicity in cultured mouse cells.

  12. ELECTROCHROMETIC STUDIES ON POLAR MULTILAYERS OF LIQUID CRYSTALLINE POLYMERS

    Institute of Scientific and Technical Information of China (English)

    GONG Mingxuan; REN Yanzhi; LIU Wang; GAO Manglai; ZHAO Yingying; BAI Yubai; LI Tiejin

    1995-01-01

    Electrochrometic measurements were carried on the Z-type Langmuir-Blodgett films oftwo liquid crystalline polymers: mono- {6-[4-(phenylazo) naphthyloxy] hexyl } (1a) andmono- { 6-[4- (anthraquinone-1-azo) naphthyloxy] hexyl} (2a) ester of polymaleic acid . Itwas found that for both polymers, poling fields parallel and antiparallel to dipole momentsof the polymer side chains induce red and blue shift in absorption bands, respectively. Forpolymer la blue shift is accompanied by absorbance increase, while red shift by absorbancedecrease;but for polymer 2a only decrease in absorbance is observed. A simple model wasproposed to analyze the results.

  13. Liquid-crystalline polymer holograms for high-density optical storage and photomechanical analysis

    Science.gov (United States)

    Shishido, A.; Akamatsu, N.

    2012-10-01

    We report linear and crosslinked azobenzene containing liquid-crystalline polymers which can be applied to high-density optical storage and photomechanical analysis. We introduced a molecular design concept of multicomponent systems composed of photoresponse, refactive-index change amplification, and transparency units. Taking advantage of characteristics of liquid crystals (optical anisotropy and cooperative motion), polarization holograms were recorded, which enabled us higher-density holographic storage. On the other hand, crosslinked liquid-crystalline azobenzene polymer films were fabricated to investigate the photomechanical behavior. We have found that a large change in Young's modulus is induced by several mol%-cis form production. Furthermore, a unique bending behavior, which cannot be explained by the conventional bending mechanism, was observed in the crosslinked liquid-crystalline polymer films with azobenzene in the side chain.

  14. Laser writing of single-crystalline gold substrates for surface enhanced Raman spectroscopy

    Science.gov (United States)

    Singh, Astha; Sharma, Geeta; Ranjan, Neeraj; Mittholiya, Kshitij; Bhatnagar, Anuj; Singh, B. P.; Mathur, Deepak; Vasa, Parinda

    2017-07-01

    Surface enhanced Raman scattering (SERS) spectroscopy, a powerful contemporary tool for studying low-concentration analytes via surface plasmon induced enhancement of local electric field, is of utility in biochemistry, material science, threat detection, and environmental studies. We have developed a simple, fast, scalable, and relatively low-cost optical method of fabricating and characterizing large-area, reusable and broadband SERS substrates with long storage lifetime. We use tightly focused, intense infra-red laser pulses to write gratings on single-crystalline, Au (1 1 1) gold films on mica which act as SERS substrates. Our single-crystalline SERS substrates compare favourably, in terms of surface quality and roughness, to those fabricated in poly-crystalline Au films. Tests show that our SERS substrates have the potential of detecting urea and 1,10-phenantroline adulterants in milk and water, respectively, at 0.01 ppm (or lower) concentrations.

  15. Mobility enhancement in crystalline In-Ga-Zn-oxide with In-rich compositions

    Energy Technology Data Exchange (ETDEWEB)

    Tsutsui, Kazuhiro; Matsubayashi, Daisuke; Ishihara, Noritaka; Takasu, Takako; Matsuda, Shinpei; Yamazaki, Shunpei [Semiconductor Energy Laboratory Co., Ltd., 398 Hase, Atsugi-shi 243-0036, Kanagawa (Japan)

    2015-12-28

    The electron mobility of In-Ga-Zn-oxide (IGZO) is known to be enhanced by higher In content. We theoretically investigated the mobility-enhancement mechanism by proposing an In-Ga-Zn-disorder scattering model for an In-rich crystalline IGZO (In{sub 1+x}Ga{sub 1−x}O{sub 3}(ZnO){sub m} (0 < x < 1, m > 0)) thin film. The obtained theoretical mobility was found to be in agreement with experimental Hall mobility for a crystalline In{sub 1.5}Ga{sub 0.5}O{sub 3}(ZnO) (or In{sub 3}GaZn{sub 2}O{sub 8}) thin film. The mechanism specific to In-rich crystalline IGZO thin films is based on three types of Coulomb scattering potentials that originate from effective valence differences. In this study, the In-Ga-Zn-disorder scattering model indicates that the effective valence of the In{sup 3+} ions in In-rich crystalline IGZO thin films significantly affects their electron mobility.

  16. High diffraction efficiency polarization gratings recorded by biphotonic holography in an azobenzene liquid crystalline polyester

    DEFF Research Database (Denmark)

    Sánchez, C; Alcalá, R; Hvilsted, Søren

    2001-01-01

    High diffraction efficiencies have been achieved with polarization gratings recorded in thin films of an azobenzene side-chain liquid crystalline polyester by means of biphotonic processes. Efficiency values up to 30% have been reached after an induction period of 300 s and subsequent evolution w...

  17. A paint removal concept with side-chain liquid crystalline polymers as primer material

    NARCIS (Netherlands)

    Wielen, van der M.W.J.; Cohen Stuart, M.A.; Fleer, G.J.; Nieuwhof, R.P.; Marcelis, A.T.M.; Sudhölter, E.J.R.

    2001-01-01

    A new paint removal concept is introduced making use of a polymer primer layer with a sharp softening temperature. For this, a new class of side-chain liquid crystalline polymers with polar moieties in the backbone has been developed and studied in thin films. These polymers form lamellar-ordered

  18. High quality crystalline silicon surface passivation by combined intrinsic and n-type hydrogenated amorphous silicon

    NARCIS (Netherlands)

    Schuttauf, J.A.; van der Werf, C.H.M.; Kielen, I.M.; van Sark, W.G.J.H.M.; Rath, J.K.

    2011-01-01

    We investigate the influence of thermal annealing on the passivation quality of crystalline silicon (c-Si) surfaces by intrinsic and n-type hydrogenated amorphous silicon (a-Si:H) films. For temperatures up to 255 C, we find an increase in surface passivation quality, corresponding to a decreased da

  19. Novel biphotonic holographic storage in a side-chain liquid crystalline polyester

    DEFF Research Database (Denmark)

    Ramanujam, P.S.; Hvilsted, S.; Andruzzi, F.

    1993-01-01

    We report novel biphotonic holographic storage of text and gratings on unoriented films of a side-chain liquid crystalline polyester capable of high density storage and complete erasure. The holograms have a typical size of 1 mm. The recording utilizes unusual photochemistry involving azo dye...

  20. Electric-field triggered controlled release of bioactive volatiles from imine-based liquid crystalline phases.

    Science.gov (United States)

    Herrmann, Andreas; Giuseppone, Nicolas; Lehn, Jean-Marie

    2009-01-01

    Application of an electric field to liquid crystalline film forming imines with negative dielectric anisotropy, such as N-(4-methoxybenzylidene)-4-butylaniline (MBBA, 1), results in the expulsion of compounds that do not participate in the formation of the liquid crystalline phase. Furthermore, amines and aromatic aldehydes undergo component exchange with the imine by generating constitutional dynamic libraries. The strength of the electric field and the duration of its application to the liquid crystalline film influence the release rate of the expelled compounds and, at the same time, modulate the equilibration of the dynamic libraries. The controlled release of volatile organic molecules with different chemical functionalities from the film was quantified by dynamic headspace analysis. In all cases, higher headspace concentrations were detected in the presence of an electric field. These results point to the possibility of using imine-based liquid crystalline films to build devices for the controlled release of a broad variety of bioactive volatiles as a direct response to an external electric signal.

  1. Local excitation of surface plasmon polaritons by second-harmonic generation in crystalline organic nanofibers

    DEFF Research Database (Denmark)

    Skovsen, Esben; Søndergaard, Thomas; Fiutowski, Jacek

    2012-01-01

    Coherent local excitation of surface plasmon polaritons (SPPs) by second-harmonic generation (SHG) in aligned crystalline organic functionalized para-phenylene nanofibers deposited on a thin silver film is demonstrated. The excited SPPs are characterized using angle-resolved leakage radiation...

  2. A quantitative correlation between the mobility and crystallinity of photo-cross-linkable P3HT

    KAUST Repository

    Woo, Claire

    2012-04-10

    The performance of polymer field effect transistors (FETs) can vary by orders of magnitude by applying different processing conditions. Although it is generally believed that a higher degree of crystallinity results in a higher mobility, the correlation is not straightforward. In addition, the effect of cross-linking on polymer thin film microstructural order is relatively unknown. This study investigates the effect of thermal annealing and UV-initiated photo-cross-linking on the FET performance and microstructural order of a photo-cross-linkable P3HT derivative. Our results demonstrate that while cross-linking did not disrupt the overall crystallinity of the polymer thin film, the photo-cross-linking process likely induced doping in the semiconductor layer, leading to the absence of saturation behavior in the FET. Annealing after cross-linking slightly improved the FET performance but only minimally affected the microstructural order of the polymer film since the 3D morphology had been "locked in" during the first cross-linking step. Importantly, annealing and cross-linking simultaneously was a successful method to preserve polymer crystallinity while also achieving effective cross-linking. Using newly developed quantitative X-ray analysis techniques, our study established a quantitative correlation between FET charge mobility and thin film crystallinity. © 2012 American Chemical Society.

  3. Side-chain liquid-crystalline polyesters for optical information storage

    DEFF Research Database (Denmark)

    Hvilsted, Søren; Andruzzi, F.; Ramanujam, P.S.

    1992-01-01

    We report erasable holographic recording with a resolution of at least 2500 lines/mm on unoriented films of side-chain liquid-crystalline polyesters. Recording energies of approximately 1 J/cm2 have been used. We have obtained a diffraction efficiency of approximately 30% with polarization record...

  4. Characterization of thin-film silicon materials and solar cells through numerical modeling

    NARCIS (Netherlands)

    Pieters, B.E.

    2008-01-01

    At present most commercially available solar cells are made of crystalline silicon (c-Si). The disadvantages of crystalline silicon solar cells are the high material cost and energy consumption during production. A cheaper alternative can be found in thin-film silicon solar cells. The thin-film sili

  5. Optical and structural properties of sputtered CdS films for thin film solar cell applications

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Donguk [School of Electronic and Electrical Engineering, Sungkyunkwan University, Cheoncheon-dong 300, Jangan-gu, Suwon 440-746 (Korea, Republic of); Park, Young [High-Speed Railroad Infrastructure System Research Team, Korea Railroad Research Institute, Uiwang 437-757 (Korea, Republic of); Kim, Minha [School of Electronic and Electrical Engineering, Sungkyunkwan University, Cheoncheon-dong 300, Jangan-gu, Suwon 440-746 (Korea, Republic of); Choi, Youngkwan [Water Facility Research Center, K-water, 125, 1689 Beon-gil, Yuseong-daero, Yuseong-gu, Daejeon 305-730 (Korea, Republic of); Park, Yong Seob [Department of Photoelectronics Information, Chosun College of Science and Technology, Gwangju (Korea, Republic of); Lee, Jaehyoeng, E-mail: jaehyeong@skku.edu [School of Electronic and Electrical Engineering, Sungkyunkwan University, Cheoncheon-dong 300, Jangan-gu, Suwon 440-746 (Korea, Republic of)

    2015-09-15

    Graphical abstract: Photo current–voltage curves (a) and the quantum efficiency (QE) (b) for the solar cell with CdS film grown at 300 °C. - Highlights: • CdS thin films were grown by a RF magnetron sputtering method. • Influence of growth temperature on the properties of CdS films was investigated. • At higher T{sub g}, the crystallinity of the films improved and the grains enlarged. • CdS/CdTe solar cells with efficiencies of 9.41% were prepared at 300 °C. - Abstract: CdS thin films were prepared by radio frequency magnetron sputtering at various temperatures. The effects of growth temperature on crystallinity, surface morphology and optical properties of the films were characterized with X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM), Raman spectra, UV–visible spectrophotometry, and photoluminescence (PL) spectra. As the growth temperature was increased, the crystallinity of the sputtered CdS films was improved and the grains were enlarged. The characteristics of CdS/CdTe thin film solar cell appeared to be significantly influenced by the growth temperature of the CdS films. Thin film CdS/CdTe solar cells with efficiencies of 9.41% were prepared at a growth temperature of 300 °C.

  6. Bulk nano-crystalline alloys

    OpenAIRE

    T.-S. Chin; Lin, C. Y.; Lee, M.C.; R.T. Huang; S. M. Huang

    2009-01-01

    Bulk metallic glasses (BMGs) Fe–B–Y–Nb–Cu, 2 mm in diameter, were successfully annealed to become bulk nano-crystalline alloys (BNCAs) with α-Fe crystallite 11–13 nm in size. A ‘crystallization-and-stop’ model was proposed to explain this behavior. Following this model, alloy-design criteria were elucidated and confirmed successful on another Fe-based BMG Fe–B–Si–Nb–Cu, 1 mm in diameter, with crystallite sizes 10–40 nm. It was concluded that BNCAs can be designed in general by the proposed cr...

  7. Thick Nano-Crystalline Diamond films for fusion applications

    Energy Technology Data Exchange (ETDEWEB)

    Dawedeit, Christoph [Technical Univ. of Munich (Germany)

    2010-06-30

    This Diplomarbeit deals with the characterization of 9 differently grown diamond samples. Several techniques were used to determine the quality of these specimens for inertial confinement fusion targets. The quality of chemical vapor deposition diamond is usually considered in terms of the proportion of sp3-bonded carbon to sp2-bonded carbon in the sample. For fusion targets smoothness, Hydrogen content and density of the diamonds are further important characteristics. These characteristics are analyzed in this thesis. The research for thesis was done at Lawrence Livermore National Laboratory in collaboration with the Fraunhofer Institut für angewandte Festkörperphysik Freiburg, Germany. Additionally the Lehrstuhl fuer Nukleartechnik at Technical University of Germany supported the work.

  8. Microwave annealing for preparation of crystalline hydroxyapatite thin films

    CSIR Research Space (South Africa)

    Adams, D

    2006-11-01

    Full Text Available ) detector. A background subtraction was performed by subtracting the spectrum of an uncoated piece of sili- con wafer from all specimen runs, each recorded spectrum being the average of 1024 scans. The FTIR chamber was evacuated to a pressure of 1 mbar... of the instrument no sig- nificant contributions from CO3– could be detected in the samples. The very low-intensity bump at 850 cm–1 (Fig. 6) may suggest the presence of an insignificantly small amount of carbonate. It has been reported that these bands...

  9. Anisotropy-based crystalline oxide-on-semiconductor material

    Science.gov (United States)

    McKee, Rodney Allen; Walker, Frederick Joseph

    2000-01-01

    A semiconductor structure and device for use in a semiconductor application utilizes a substrate of semiconductor-based material, such as silicon, and a thin film of a crystalline oxide whose unit cells are capable of exhibiting anisotropic behavior overlying the substrate surface. Within the structure, the unit cells of the crystalline oxide are exposed to an in-plane stain which influences the geometric shape of the unit cells and thereby arranges a directional-dependent quality of the unit cells in a predisposed orientation relative to the substrate. This predisposition of the directional-dependent quality of the unit cells enables the device to take beneficial advantage of characteristics of the structure during operation. For example, in the instance in which the crystalline oxide of the structure is a perovskite, a spinel or an oxide of similarly-related cubic structure, the structure can, within an appropriate semiconductor device, exhibit ferroelectric, piezoelectric, pyroelectric, electro-optic, ferromagnetic, antiferromagnetic, magneto-optic or large dielectric properties that synergistically couple to the underlying semiconductor substrate.

  10. Genetics of Bietti Crystalline Dystrophy.

    Science.gov (United States)

    Ng, Danny S C; Lai, Timothy Y Y; Ng, Tsz Kin; Pang, Chi Pui

    2016-01-01

    Bietti crystalline dystrophy (BCD) is an inherited retinal degenerative disease characterized by crystalline deposits in the retina, followed by progressive atrophy of the retinal pigment epithelium (RPE), choriocapillaris, and photoreceptors. CYP4V2 has been identified as the causative gene for BCD. The CYP4V2 gene belongs to the cytochrome P450 superfamily and encodes for fatty acid ω-hydroxylase of both saturated and unsaturated fatty acids. The CYP4V2 protein is localized most abundantly within the endoplasmic reticulum in the RPE and is postulated to play a role in the physiological lipid recycling system between the RPE and photoreceptors to maintain visual function. Electroretinographic assessments have revealed progressive dysfunction of rod and cone photoreceptors in patients with BCD. Several genotypes have been associated with more severe phenotypes based on clinical and electrophysiological findings. With the advent of multimodal imaging with spectral domain optical coherence tomography, fundus autofluorescence, and adaptive optics scanning laser ophthalmoscopy, more precise delineation of BCD severity and progression is now possible, allowing for the potential future development of targets for gene therapy.

  11. Uniaxial Stretching of Poly(keto-ether-imide) Films

    Science.gov (United States)

    Hinkley, Jeffrey A.; Dezern, James F.; Feuz, L.; Klinedinst, D.

    1999-01-01

    Fully-cured aromatic polyimides were prepared from various combinations of five dianhydrides and six diamines. When heated progressively under constant load, most of the films elongated rapidly near their glass transition temperatures. In about half of the nineteen materials, the strain was self-limiting - a possible indication of strain-induced crystallinity. The presence of crystallinity was established unambiguously for one material.

  12. Quantum creep in a highly crystalline two-dimensional superconductor

    Science.gov (United States)

    Saito, Yu; Kasahara, Yuichi; Ye, Jianting; Iwasa, Yoshihiro; Nojima, Tsutomu

    Conventional studies on quantum phase transitions, especially on superconductor-insulator or superconductor-metal-insulator transitions have been performed in deposited metallic thin films such as Bismuth or MoGe. Although the techniques of thin films deposition have been considerably improved, unintentional disorder such as impurities and deficiencies, generating the pinning centers, seems to still exist in such systems. The mechanical exfoliated highly crystalline two-dimensional material can be a good candidate to realize a less-disordered 2D superconductor with extremely weak pinning, combined with transfer method or ionic-liquid gating. We report on the quantum metal, namely, magnetic-field-induced metallic state observed in an ion-gated two-dimensional superconductor based on an ultra-highly crystalline layered band insulator, ZrNCl. We found that the superconducting state is extremely fragile against external magnetic fields; that is, zero resistance state immediately disappears, once an external magnetic field switches on. This is because the present system is relatively clean and the pinning potential is extremely weak, which cause quantum tunneling and flux flow of vortices, resulting in metallic ground state.

  13. Antimicrobial properties of silver-doped hydroxyapatite nano-powders and thin films

    Science.gov (United States)

    Sygnatowicz, Michael; Keyshar, Kunttal; Tiwari, Ashutosh

    2010-07-01

    Silver-doped hydroxyapatite nanopowders were prepared using a solution based sol-gel method and thoroughly characterized using x-ray diffraction (XRD), scanning electron microscopy (SEM), and energy dispersive spectroscopy (EDS). Antibacterial tests showed silver-doped HAP powders prevented the growth and reproduction of bacteria. Silver-doped HAP powders were pressed into pellets and on these pellets a pulsed laser deposition (PLD) technique was employed to grow amorphous and crystalline thin films on sapphire substrates. Crystalline films had silver nano-particles present within the HAP matrix. Film stability tests showed crystalline films to be far more stable in prolonged solution submersion than their amorphous counterparts.

  14. Formation and Morphology of Anodic Oxide Films of Ti

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    The morphology and structure of the oxide films of Ti in H3PO4 were investigated by galvanostatic anodization, SEM and XRD. The oxide film grew from some pores in the grooves to layered microdomains as increasing anodizing voltage. The crystallinity of the oxide films decreased with the increase of the concentration of the electrolyte. The model has been proposed for the growth of the oxide films by two steps, i.e. by uniform thickening and by local deposition.

  15. Film Reviews.

    Science.gov (United States)

    Lance, Larry M.; Atwater, Lynn

    1987-01-01

    Reviews four Human Sexuality films and videos. These are: "Personal Decisions" (Planned Parenthood Federation of America, 1985); "The Touch Film" (Sterling Production, 1986); "Rethinking Rape" (Film Distribution Center, 1985); "Not A Love Story" (National Film Board of Canada, 1981). (AEM)

  16. Preparation of electron buffer layer with crystalline ZnO nanoparticles in inverted organic photovoltaic cells

    Science.gov (United States)

    Lee, Donghwan; Kang, Taeho; Choi, Yoon-Young; Oh, Seong-Geun

    2017-06-01

    Zinc oxide (ZnO) nanoparticles synthesized through sol-gel method were used to fabricate the electron buffer layer in inverted organic photovoltaic cells (OPVs) after thermal treatment. To investigate the effect of thermal treatment on the formation of crystalline ZnO nanoparticles, the amorphous ZnO nanoparticles were treated via hydrothermal method. The crystalline phase of ZnO with well-ordered structure could be obtained when the amorphous phase of ZnO was processed under hydrothermal treatment at 170 °C. The crystalline structure of ZnO thin film in inverted organic solar cell could be obtained under relatively low annealing temperature by using thermally treated ZnO nanoparticles. The OPVs fabricated by using crystalline ZnO nanoparticles for electron buffer layer exhibited higher efficiency than the conventional ZnO nanoparticles. The best power conversion efficiency (PCE) was achieved for 7.16% through the ZnO film using the crystalline ZnO nanoparticles. The proposed method to prepared ZnO nanoparticles (NPs) could effectively reduce energy consumption during the fabrication of OPVs, which would greatly contribute to advantages such as lower manufacturing costs, higher productivity and application on flexible substrates.

  17. Advanced fabrication of single-crystalline silver nanopillar on SiO{sub 2} substrate

    Energy Technology Data Exchange (ETDEWEB)

    Mori, Tomohiro, E-mail: tomohiro-mori@wakayama-kg.jp, E-mail: kenzo@eng.kagawa-u.ac.jp [Department of Advanced Materials Science, Faculty of Engineering, Kagawa University, Hayashicho 2217-20, Takamatsu, Kagawa 761-0396 (Japan); Industrial Technology Center of Wakayama Prefecture, Ogura 60, Wakayama 649-6261 (Japan); Tanaka, Yasuhiro; Suzaki, Yoshifumi; Yamaguchi, Kenzo, E-mail: tomohiro-mori@wakayama-kg.jp, E-mail: kenzo@eng.kagawa-u.ac.jp [Department of Advanced Materials Science, Faculty of Engineering, Kagawa University, Hayashicho 2217-20, Takamatsu, Kagawa 761-0396 (Japan)

    2016-01-25

    Nanoscale crystallographic textures have received very little attention in research on surface plasmons using metallic nanostructures. A single-crystalline metallic nanostructure with a controlled crystallographic texture is expected to reduce optical losses. We elucidated the grain growth mechanism in silver thin films deposited on a highly transparent SiO{sub 2} substrate by electron backscatter diffraction methods with nanoscale resolution. At higher substrate temperatures, the grain growth was facilitated but the preferred orientation was not achieved. Moreover, we fabricated a single-crystalline silver nanopillar in a (111)-oriented large growing grain, which was controlled by varying the substrate temperature during film deposition by focused ion-beam milling. Furthermore, the light intensity of the scattering spectrum was measured for a single-crystalline silver nanopillar (undersurface diameter: 200 nm) for which surface plasmon resonance was observed. The single-crystalline silver nanopillar exhibits a stronger and sharper spectrum than the polycrystalline silver nanopillar. These results can be applied to the direct fabrication of a single-crystalline silver nanopillar using only physical processing.

  18. Influence of annealing and blending of photoactive polymers on their crystalline structure.

    Science.gov (United States)

    Ruderer, Matthias A; Prams, Stefan M; Rawolle, Monika; Zhong, Qi; Perlich, Jan; Roth, Stephan V; Müller-Buschbaum, Peter

    2010-12-02

    Thin photoactive polymer films of poly(3-octylthiophene-2,5-diyl) (P3OT) and poly(2,5-di(hexyloxy)cyanoterephthalylidene) (CN-PPV) are investigated. With X-ray reflectivity measurements, a linear concentration-thickness dependence is found for both polymers and the molecular weight of CN-PPV is determined from this concentration-thickness dependence. Based on the molecular weights, the critical blending ratio is determined. Grazing incidence wide-angle X-ray scattering (GIWAXS) is used to probe the crystallinity of thin films and to determine characteristic length scales of the crystalline structure. Moreover, the orientation of the crystalline parts regarding the substrate of both the homopolymer and the blended films is probed with GIWAXS. Temperature annealing is found to improve the crystallization for both homopolymers. In addition, reorientation of the predominant crystalline structures takes place. Blending both polymers reduces or even suppresses the crystallization during spin coating as well as temperature annealing. Absorption measurements complement the structural investigations.

  19. Centimetre-scale micropore alignment in oriented polycrystalline metal-organic framework films via heteroepitaxial growth

    Science.gov (United States)

    Falcaro, Paolo; Okada, Kenji; Hara, Takaaki; Ikigaki, Ken; Tokudome, Yasuaki; Thornton, Aaron W.; Hill, Anita J.; Williams, Timothy; Doonan, Christian; Takahashi, Masahide

    2016-12-01

    The fabrication of oriented, crystalline films of metal-organic frameworks (MOFs) is a critical step toward their application to advanced technologies such as optics, microelectronics, microfluidics and sensing. However, the direct synthesis of MOF films with controlled crystalline orientation remains a significant challenge. Here we report a one-step approach, carried out under mild conditions, that exploits heteroepitaxial growth for the rapid fabrication of oriented polycrystalline MOF films on the centimetre scale. Our methodology employs crystalline copper hydroxide as a substrate and yields MOF films with oriented pore channels on scales that primarily depend on the dimensions of the substrate. To demonstrate that an anisotropic crystalline morphology can translate to a functional property, we assembled a centimetre-scale MOF film in the presence of a dye and showed that the optical response could be switched `ON’ or `OFF’ by simply rotating the film.

  20. Centimetre-scale micropore alignment in oriented polycrystalline metal-organic framework films via heteroepitaxial growth

    Science.gov (United States)

    Falcaro, Paolo; Okada, Kenji; Hara, Takaaki; Ikigaki, Ken; Tokudome, Yasuaki; Thornton, Aaron W.; Hill, Anita J.; Williams, Timothy; Doonan, Christian; Takahashi, Masahide

    2017-03-01

    The fabrication of oriented, crystalline films of metal-organic frameworks (MOFs) is a critical step toward their application to advanced technologies such as optics, microelectronics, microfluidics and sensing. However, the direct synthesis of MOF films with controlled crystalline orientation remains a significant challenge. Here we report a one-step approach, carried out under mild conditions, that exploits heteroepitaxial growth for the rapid fabrication of oriented polycrystalline MOF films on the centimetre scale. Our methodology employs crystalline copper hydroxide as a substrate and yields MOF films with oriented pore channels on scales that primarily depend on the dimensions of the substrate. To demonstrate that an anisotropic crystalline morphology can translate to a functional property, we assembled a centimetre-scale MOF film in the presence of a dye and showed that the optical response could be switched `ON’ or `OFF’ by simply rotating the film.

  1. Birefringence Measurements on Crystalline Silicon

    CERN Document Server

    Krüger, Christoph; Khalaidovski, Alexander; Steinlechner, Jessica; Nawrodt, Ronny; Schnabel, Roman; Lück, Harald

    2015-01-01

    Crystalline silicon has been proposed as a new test mass material in third generation gravitational wave detectors such as the Einstein Telescope (ET). Birefringence can reduce the interferometric contrast and can produce dynamical disturbances in interferometers. In this work we use the method of polarisation-dependent resonance frequency analysis of Fabry-Perot-cavities containing silicon as a birefringent medium. Our measurements show a birefringence of silicon along the (111) axis of the order of $\\Delta\\, n \\approx 10^{-7}$ at a laser wavelength of 1550nm and room temperature. A model is presented that explains the results of different settings of our measurements as a superposition of elastic strains caused by external stresses in the sample and plastic strains possibly generated during the production process. An application of our theory on the proposed ET test mass geometry suggests no critical effect on birefringence due to elastic strains.

  2. Water vapour permeability of poly(lactic acid): Crystallinity and the tortuous path model

    Science.gov (United States)

    Duan, Z.; Thomas, N. L.

    2014-02-01

    The water vapour transmission rates (WVTR) through samples of polylactic acid of different crystallinities have been measured. Three different grades of commercial poly(lactic acid) (PLA) were used with different ratios of L-lactide and D-lactide to give a range of crystallinities from 0% to 50%. Sheets of PLA were prepared by melt compounding followed by compression moulding and annealing at different temperatures and for different times to give the range of crystallinities required. Crystallinity was measured by differential scanning calorimetry and the morphology of the samples was observed under crossed polars in a transmitted light microscope. Water vapour transmission rates through the films were measured at 38 °C and at a relative humidity of 90%. It was found that the measured values of WVTR decreased linearly with increasing crystallinity of the PLA from 0% to 50%. The results are discussed in terms of the effect of crystallinity on solubility and shown to fit the "Tortuous Path Model." The model was also successfully used to explain published data on water permeability of polyethylene terephthalate.

  3. Super-Hydrophobic and Oloephobic Crystalline Coatings by Initiated Chemical Vapor Deposition

    Science.gov (United States)

    Coclite, Anna Maria; Shi, Yujun; Gleason, Karen K.

    Preferred crystallographic orientation (texture) in thin films frequently has a strong effect on the properties of the materials and it is important for stable surface properties. Organized molecular films of poly-perfluorodecylacrylate p(PFDA) were deposited by initiated Chemical Vapor Deposition (iCVD). The high tendency of p(PFDA) to crystallize has been fully retained in the polymers prepared by iCVD. The degree of crystallinity and the preferred orientation of the perfluoro side chains, either parallel or perpendicular to the surface, were controlled by tuning the CVD process parameters (i.e. initiator to monomer flow rate ratio, filament temperature, and substrate temperature). Super- hydrophobicity (advancing water contact angle, WCA, of 160°, low hysteresis of 5°), and oleophobicity (advancing CA with mineral oil of 120°) were achieved. Low hysteresis was associated with high crystallinity, particularly when the orientation of the crystallites resulted in the perfluoro side groups being oriented parallel to the surface. The latter texture resulted in smoother film (RMS roughness < 30 nm) than the texture with the chains oriented perpendicularly to the surface. This can be very advantageous for applications that require smooth but still crystalline films.

  4. Controlling interfacial states in amorphous/crystalline LaAlO3/SrTiO3 heterostructures by electric fields

    DEFF Research Database (Denmark)

    Christensen, Dennis; Trier, Felix; Chen, Yunzhong;

    2013-01-01

    amorphous LaAlO3 films on SrTiO3. Here, we present a non-volatile and reversible tuning of the interface conductivity by more than 3 orders of magnitude at room temperature by applying an electric field to such amorphous/crystalline heterostructures with amorphous LaAlO3 film thicknesses of 2 nm. We show...

  5. Film thickness determination by grazing incidence diffraction

    Energy Technology Data Exchange (ETDEWEB)

    Battiston, G. A.; Gerbasi, R. [CNR, Padua (Italy). Istituto di Chimica e Tecnologie Inorganiche e dei Materiali Avanzati

    1996-09-01

    Thin films deposited via MOCVD (Metal Organic Chemical Vapour Deposition) are layers in the thickness range of a few manometers to about ten micrometers. An understanding of the physics and chemistry of films is necessary for a better comprehension of the phenomena involved in the film deposition procedure and its optimisation. Together with the crystalline phase a parameter that must be determined is the thickness of the layer. In this work the authors present a method for the measurement of the film thickness. This procedure, based on diffraction intensity absorption of the X-rays, both incident and diffracted in passing through the layers, resulted quite simple, rapid and non-destructive.

  6. Bietti crystalline dystrophy and choroidal neovascularisation.

    Science.gov (United States)

    Gupta, B; Parvizi, S; Mohamed, M D

    2011-02-01

    Bietti crystalline dystrophy is a rare autosomal recessive condition characterised by the presence of crystals in the retina and is followed by retinal and choroidal degeneration. We present a novel finding of juxtafoveal choroidal neovascularisation in Bietti crystalline dystrophy and demonstrate a spectral domain optical coherence tomography image of this disorder.

  7. Diffusion in porous crystalline materials.

    Science.gov (United States)

    Krishna, Rajamani

    2012-04-21

    The design and development of many separation and catalytic process technologies require a proper quantitative description of diffusion of mixtures of guest molecules within porous crystalline materials. This tutorial review presents a unified, phenomenological description of diffusion inside meso- and micro-porous structures. In meso-porous materials, with pore sizes 2 nm < d(p) < 50 nm, there is a central core region where the influence of interactions of the molecules with the pore wall is either small or negligible; meso-pore diffusion is governed by a combination of molecule-molecule and molecule-pore wall interactions. Within micro-pores, with d(p) < 2 nm, the guest molecules are always under the influence of the force field exerted with the wall and we have to reckon with the motion of adsorbed molecules, and there is no "bulk" fluid region. The characteristics and physical significance of the self-, Maxwell-Stefan, and Fick diffusivities are explained with the aid of data obtained either from experiments or molecular dynamics simulations, for a wide variety of structures with different pore sizes and topology. The influence of adsorption thermodynamics, molecular clustering, and segregation on both magnitudes and concentration dependences of the diffusivities is highlighted. In mixture diffusion, correlations in molecular hops have the effect of slowing-down the more mobile species. The need for proper modeling of correlation effects using the Maxwell-Stefan formulation is stressed with the aid of examples of membrane separations and catalytic reactors.

  8. The Influence of Hydrogen on the Properties of Zinc Sulfide Thin Films Deposited by Magnetron Sputtering

    OpenAIRE

    2014-01-01

    Zinc sulfide thin films have been deposited with hydrogen in Ar and Ar+H2 atmosphere by radio frequency magnetron sputtering. The thickness, structural properties, composition, surface morphology, and optical and electrical properties of the films have been investigated. Effect of hydrogen on the properties of the film was studied. The results showed that hydrogen leads to better crystallinity and larger crystallite size of ZnS polycrystalline films. The band gaps of the films in Ar+H2 are ab...

  9. Growth of YBCO superconducting thin films on CaF sub 2 buffered silicon

    CERN Document Server

    Bhagwat, S S; Patil, J M; Shirodkar, V S

    2000-01-01

    CaF sub 2 films were grown on silicon using the neutral cluster beam deposition technique. These films were highly crystalline and c-axis oriented. Superconducting YBCO thin films were grown on the Ca F sub 2 buffered silicon using the laser ablation technique. These films showed T sub c (onset) at 90 K and Tc(zero) at 86 K. X-ray diffraction analysis showed that the YBCO films were also oriented along the c-axis.

  10. Role of the Confined Geometry on the Crystallization of Poly(ethylene terephthlate) Ultrathin Films

    Institute of Scientific and Technical Information of China (English)

    Ying ZHANG; Yong Lai LU; De Yan SHEN

    2005-01-01

    The reflection-absorption infrared (RAIR) was employed to study the crystallization kinetic of poly (ethylene terephthalate) (PET) ultrathin films. During isothermal crystallization the thinner PET film shows a slower kinetic compared with the thicker film. Moreover, the final crystallinity of films with various thickness was found decrease with thickness. The result of fitting our data to Avrami equation showed that the Avrami exponents decrease with film thickness.

  11. Fabrication of fullerene nano-strucutres in mixed films and devices utilizing fullerene nano-structures

    KAUST Repository

    Zhong, Yufei

    2017-04-06

    Embodiments provide methods for controlling crystallization of fullerene compounds in mixed films comprising one or more polymers. Methods can include depositing fullerene mixed films comprising one or more polymers on crystalline fullerene substrates and annealing the deposited mixed films. Methods can further include one or more of exposing the annealed mixed film to UV light, and washing the annealed mixed film with a solvent. Fullerene compounds can include one or more of PCBM, PCBNB, and PCBA.

  12. Film/NotFilm

    OpenAIRE

    Willems, Gertjan

    2016-01-01

    Although Samuel Beckett (1906-1989) showed a genuine interest in audio-visual media in his fascinating and innovative radio plays and television works, and in 1936 even wrote a letter to Sergei Eisenstein to be accepted to the famous Soviet film school VGIK, the 22-minute Film (1965) was his only venture into cinema. Beckett conceived the film, wrote the screenplay, supervised the production and, as one of the film’s crew members recalled and as the director Alan Schneider himself acknowledge...

  13. Atomic-Level Sculpting of Crystalline Oxides: Toward Bulk Nanofabrication with Single Atomic Plane Precision.

    Science.gov (United States)

    Jesse, Stephen; He, Qian; Lupini, Andrew R; Leonard, Donovan N; Oxley, Mark P; Ovchinnikov, Oleg; Unocic, Raymond R; Tselev, Alexander; Fuentes-Cabrera, Miguel; Sumpter, Bobby G; Pennycook, Stephen J; Kalinin, Sergei V; Borisevich, Albina Y

    2015-11-25

    The atomic-level sculpting of 3D crystalline oxide nanostructures from metastable amorphous films in a scanning transmission electron microscope (STEM) is demonstrated. Strontium titanate nanostructures grow epitaxially from the crystalline substrate following the beam path. This method can be used for fabricating crystalline structures as small as 1-2 nm and the process can be observed in situ with atomic resolution. The fabrication of arbitrary shape structures via control of the position and scan speed of the electron beam is further demonstrated. Combined with broad availability of the atomic resolved electron microscopy platforms, these observations suggest the feasibility of large scale implementation of bulk atomic-level fabrication as a new enabling tool of nanoscience and technology, providing a bottom-up, atomic-level complement to 3D printing.

  14. Composition, XRD and morphology study of laser prepared LiNbO3 films

    Science.gov (United States)

    Jelínek, M.; Havránek, V.; Remsa, J.; Kocourek, T.; Vincze, A.; Bruncko, J.; Studnička, V.; Rubešová, K.

    2013-03-01

    LiNbO3 films were deposited by PLD from LiNbO3 crystalline or from three different stoichiometric or Li-enriched LiNbO3 targets. Polycrystalline films were prepared on SiO2/Si or sapphire substrates at temperatures T S ˜650-750 °C. Main attention was paid to the influence of targets preparation and the deposition conditions on films composition, morphology and crystallinity. The thin-film morphology was determined by SEM microscopy. The composition was measured by SIMS, RBS, PIXE and PIGE methods. Highly oriented, smooth and stoichiometric LiNbO3 films were synthesized.

  15. Reorientation of magnetic anisotropy in epitaxial cobalt ferrite thin films

    NARCIS (Netherlands)

    Lisfi, A.; Williams, C.M.; Nguyen, L.T.; Lodder, J.C.; Coleman, A.; Corcoran, H.; Johnson, A.; Chang, P.; Kumar, A.; Morgan, W.

    2007-01-01

    Spin reorientation has been observed in CoFe2O4 thin single crystalline films epitaxially grown on (100) MgO substrate upon varying the film thickness. The critical thickness for such a spin-reorientation transition was estimated to be 300 nm. The reorientation is driven by a structural transition

  16. Reorientation of magnetic anisotropy in epitaxial cobalt ferrite thin films

    NARCIS (Netherlands)

    Lisfi, A.; Williams, C.M.; Nguyen, L.T.; Lodder, J.C.; Coleman, A.; Corcoran, H.; Johnson, A.; Chang, P.; Abhishek Kumar, A.K.; Kumar, A.; Morgan, W.

    2007-01-01

    Spin reorientation has been observed in CoFe2O4 thin single crystalline films epitaxially grown on (100) MgO substrate upon varying the film thickness. The critical thickness for such a spin-reorientation transition was estimated to be 300 nm. The reorientation is driven by a structural transition

  17. Birefringence-dependent linearly-polarized emission in a liquid crystalline organic light emitting polymer.

    Science.gov (United States)

    Lee, Dong-Myoung; Lee, You-Jin; Kim, Jae-Hoon; Yu, Chang-Jae

    2017-02-20

    We investigated the linearly polarized emission of uniformly aligned poly(9,9-di-n-octylfluorenyl-2,7-diyl)-alt-(benzo[2,1,3]thia-diazol-4,8-diyl) (F8BT) with a liquid crystalline phase on a rubbed alignment layer. The polarization ratio, defined by the ratio of luminous intensities polarized parallel and perpendicular to the rubbed direction, gradually decreased with increasing thickness of the F8BT film. In the photoluminescence (PL) process, the polarized light is emitted throughout the whole F8BT film, while in the electroluminescence (EL) process, the polarized light is emitted at a certain region within the F8BT film. The thickness-dependent polarization ratios in both PL and EL processes were successfully described based on a simple model wherein the mean optical birefringence was expressed as a function of the thickness of the F8BT film.

  18. CHOLESTERIC LIQUID CRYSTALLINE CHARACTER ON THE SURFACE OF CHITOSAN/POLYACRYLIC ACID COMPOSITES

    Institute of Scientific and Technical Information of China (English)

    Yan-ming Dong; Yu-song; Wu Mian Wang

    2001-01-01

    The cholesteric liquid crystalline structure in chitosan/polyacrylic acid composite films was studied by surface techniques. A periodical lamellar-like structure was observed in the permanganic acid etched film surface by both scanning electron microscopy (SEM) and atomic force microscopy (AFM), instead of the thumb-print texture which can be detected with polarized optical microscopy. It is suggested that the periodical lamellar-like structure is induced by the etching selectivity between cholesteric layers due to different molecular arrangement on the film surface. Four kinds of perpendicular disclinations, I.e. Χ→τ- + λ+, χ→λ- + τ+, χ→τ- + τ+ and χ→λ- + λ+, were found in the composite films from SEM observations. The smallest periodicity of lamellar-like structure (equals to halfpitch) is 20~40 nm measured with AFM.

  19. Thin Films

    Directory of Open Access Journals (Sweden)

    M. Benmouss

    2003-01-01

    the optical absorption are consistent with the film color changes. Finally, the optical and electrochromic properties of the films prepared by this method are compared with those of our sputtered films already studied and with other works.

  20. Crystalline mono- and multilayer self-assemblies of oligothiophenes at the air-water interface

    DEFF Research Database (Denmark)

    Isz, S.; Weissbuch, I.; Kjær, K.;

    1997-01-01

    of aromatic nonamphiphilic molecules, self-aggregated at the air-water interface. As model systems we have examined the deposition of quaterthiophene (S-4), quinquethiophene (S-5). and sexithiophene (S-6) from chloroform solutions on the water surface. The structures of the films were determined by surface...... pressure-area isotherms, by scanning force microscopy (SFM) after transfer of the films onto atomically smooth mica, by cryo-transmission electron microscopy (Cryo-TEM) on vitreous ice, and by grazing incidence synchrotron X-ray diffraction (GID) directly on the water surface. S-4 forms two polymorphic...... surface. S-5 self-ageregates at the water surface to form mixtures of monolayers and bilayers of the beta polymorph; S-6 forms primarily crystalline monolayers of both alpha and beta forms. The crystalline assemblies preserve their integrity during transfer from the water surface onto solid supports...