WorldWideScience

Sample records for crystalline aluminosilicate zeolite

  1. Prediction of degree of crystallinity for the LTA zeolite using artificial neural networks

    Directory of Open Access Journals (Sweden)

    Ghanbari Shahram

    2017-10-01

    Full Text Available Zeolites are microporous aluminosilicate/silicate crystalline materials with three-dimensional tetrahedral configuration. In this study, the degree of crystallinity of the synthesized Linde Type A (LTA zeolite, which is the main indicator of its quality/purity is tried to be modeled. Effect of crystallization time, temperature, molar ratio of the synthesis gel on the relative crystallinity of the LTA zeolites is investigated using artificial neural networks. Our experimental observations and some data collected from literature have been used for adjusting the parameters of the proposed model and evaluating its performance. It has been observed that two-layer perceptron network with eight hidden neurons is the most accurate approach for the considered task. The designed model predicts the experimental datasets with a mean square error of 3.99 × 10-6, absolute average relative deviation of 8.69 %, and regression coefficient of 0.9596. The proposed model can decrease the required time and number of experiments to evaluate the extent of crystallinity of the LTA zeolites.

  2. Highly mesoporous single-crystalline zeolite beta synthesized using a nonsurfactant cationic polymer as a dual-function template

    KAUST Repository

    Zhu, Jie

    2014-02-12

    Mesoporous zeolites are useful solid catalysts for conversion of bulky molecules because they offer fast mass transfer along with size and shape selectivity. We report here the successful synthesis of mesoporous aluminosilicate zeolite Beta from a commercial cationic polymer that acts as a dual-function template to generate zeolitic micropores and mesopores simultaneously. This is the first demonstration of a single nonsurfactant polymer acting as such a template. Using high-resolution electron microscopy and tomography, we discovered that the resulting material (Beta-MS) has abundant and highly interconnected mesopores. More importantly, we demonstrated using a three-dimensional electron diffraction technique that each Beta-MS particle is a single crystal, whereas most previously reported mesoporous zeolites are comprised of nanosized zeolitic grains with random orientations. The use of nonsurfactant templates is essential to gaining single-crystalline mesoporous zeolites. The single-crystalline nature endows Beta-MS with better hydrothermal stability compared with surfactant-derived mesoporous zeolite Beta. Beta-MS also exhibited remarkably higher catalytic activity than did conventional zeolite Beta in acid-catalyzed reactions involving large molecules. © 2014 American Chemical Society.

  3. The Chemistry, Crystallization, Physicochemical Properties and Behavior of Sodium Aluminosilicate Solid Phases: Final Report

    International Nuclear Information System (INIS)

    Rosencrance, S.

    2003-01-01

    The synthesis of sodium aluminosilicate solids phases precipitated from NO 2 /NO 3 -free and NO 2 /NO 3 -rich liquors has been performed. Four sodium aluminosilicate precipitation products were formed. These are (1) X-ray/electron diffraction-indifferent amorphous phase; (2) crystalline zeolite A; (3)NO 2 /NO 3 -rich crystalline sodalite; and (4) NO 2 /NO 3 -rich crystalline cancrinite phase. Characterization of the physicochemical properties for these phases has been performed under conditions simulating Westinghouse Savannah River Company liquid waste processing

  4. Catalytic pyrolysis using UZM-44 aluminosilicate zeolite

    Science.gov (United States)

    Nicholas, Christopher P; Boldingh, Edwin P

    2013-12-17

    A new family of aluminosilicate zeolites designated UZM-44 has been synthesized. These zeolites are represented by the empirical formula Na.sub.nM.sub.m.sup.k+T.sub.tAl.sub.1-xE.sub.xSi.sub.yO.sub.z where "n" is the mole ratio of Na to (Al+E), M represents a metal or metals from zinc, Group 1, Group 2, Group 3 and or the lanthanide series of the periodic table, "m" is the mole ratio of M to (Al+E), "k" is the average charge of the metal or metals M, T is the organic structure directing agent or agents, and E is a framework element such as gallium. The process involves contacting a carbonaceous biomass feedstock with UZM-44 at pyrolysis conditions to produce pyrolysis gases comprising hydrocarbons. The catalyst catalyzes a deoxygenation reaction converting oxygenated hydrocarbons into hydrocarbons and removing the oxygen as carbon oxides and water. A portion of the pyrolysis gases is condensed to produce low oxygen biomass-derived pyrolysis oil.

  5. Preparation of hierarchical micro-mesoporous aluminosilicate composites by simple Y zeolite/MCM-48 silica assembly

    Energy Technology Data Exchange (ETDEWEB)

    Enterría, Marina, E-mail: marina@incar.csic.es; Suárez-García, Fabián; Martínez-Alonso, Amelia; Tascón, Juan M.D.

    2014-01-15

    Highlights: • Hierarchical micro-mesoporous aluminosilicates were synthesized. • Y zeolite core/MCM-48 silica shell structures were obtained. • Y zeolite favors the formation of the mesostructure. • Porosity and structure can be varied by modifying the preparation variables. • Duration of the hydrothermal step has a great effect on the materials properties. -- Abstract: A simple procedure to obtain hierarchical micro-mesoporous aluminosilicate composites was developed by growing MCM-48 silica over commercial Y zeolite. The obtained hierarchical composites have a microporous core and a mesoporous shell. The process consists in assembling dispersed Y zeolite with a mesoporous silica phase that is formed “in situ” by “soft-templating” with cetryltrimethylammonium bromide (CTAB) as surfactant. The Y zeolite/MCM-48 silica ratio and aging time were varied to study their effects on the final porosity and structure of the hierarchical composites. The pore textural and structural characteristics of the composites did not match those of the corresponding Y zeolite/MCM-48 silica physical mixtures. This implies that the synthesized composites integrate micropores and mesopores in the same bulk. The obtained composites exhibited micropore and mesopore volumes ranging between 0.15–0.31 and 0.30–0.51 cm{sup 3}/g, respectively. X-ray diffraction and N{sub 2} adsorption results revealed that the presence of zeolite in the reaction medium favors the formation of mesopores in the obtained materials, especially for short hydrothermal treatments. TEM results showed that the obtained adsorbents are constituted by an integrated micro-mesoporous bimodal system in which Y zeolite is surrounded by a thin cover of MCM-48 silica.

  6. Preparation of hierarchical micro-mesoporous aluminosilicate composites by simple Y zeolite/MCM-48 silica assembly

    International Nuclear Information System (INIS)

    Enterría, Marina; Suárez-García, Fabián; Martínez-Alonso, Amelia; Tascón, Juan M.D.

    2014-01-01

    Highlights: • Hierarchical micro-mesoporous aluminosilicates were synthesized. • Y zeolite core/MCM-48 silica shell structures were obtained. • Y zeolite favors the formation of the mesostructure. • Porosity and structure can be varied by modifying the preparation variables. • Duration of the hydrothermal step has a great effect on the materials properties. -- Abstract: A simple procedure to obtain hierarchical micro-mesoporous aluminosilicate composites was developed by growing MCM-48 silica over commercial Y zeolite. The obtained hierarchical composites have a microporous core and a mesoporous shell. The process consists in assembling dispersed Y zeolite with a mesoporous silica phase that is formed “in situ” by “soft-templating” with cetryltrimethylammonium bromide (CTAB) as surfactant. The Y zeolite/MCM-48 silica ratio and aging time were varied to study their effects on the final porosity and structure of the hierarchical composites. The pore textural and structural characteristics of the composites did not match those of the corresponding Y zeolite/MCM-48 silica physical mixtures. This implies that the synthesized composites integrate micropores and mesopores in the same bulk. The obtained composites exhibited micropore and mesopore volumes ranging between 0.15–0.31 and 0.30–0.51 cm 3 /g, respectively. X-ray diffraction and N 2 adsorption results revealed that the presence of zeolite in the reaction medium favors the formation of mesopores in the obtained materials, especially for short hydrothermal treatments. TEM results showed that the obtained adsorbents are constituted by an integrated micro-mesoporous bimodal system in which Y zeolite is surrounded by a thin cover of MCM-48 silica

  7. Highly mesoporous single-crystalline zeolite beta synthesized using a nonsurfactant cationic polymer as a dual-function template

    KAUST Repository

    Zhu, Jie; Zhu, Yihan; Zhu, Liangkui; Rigutto, Marcello S.; Van Der Made, Alexander W.; Yang, Chengguang; Pan, Shuxiang; Wang, Liang; Zhu, Longfeng; Jin, Yinying; Sun, Qi; Wu, Qinming; Meng, Xiangju; Zhang, Daliang; Han, Yu; Li, Jixue; Chu, Yueying; Zheng, Anmin; Qiu, Shilun; Zheng, Xiaoming; Xiao, Fengshou

    2014-01-01

    Mesoporous zeolites are useful solid catalysts for conversion of bulky molecules because they offer fast mass transfer along with size and shape selectivity. We report here the successful synthesis of mesoporous aluminosilicate zeolite Beta from a

  8. Sorption of 60 Co in natural zeolite (clinoptilolite)

    International Nuclear Information System (INIS)

    Hernandez B, E.

    1996-01-01

    A Mexican zeolite (clinoptilolite) from Taxco, Guerrero, was partially stabilized with sodium cations. Radioactive Cobalt ( 60 Co) was used to study the Co 2+ sorption in the stabilized zeolite (Na + ). It was found that sorption in general does not favour the diffusion of cobalt between framework, it explains because of it is a natural zeolite and its composition heterogeneous decrease its exchange capacity by the generated competence to the existence other type of exchange ions. The cobalt retention reached the highest level, around 0.408 m eq Co 2+ /g in the Na-Clinoptilolite. The crystallinity of the aluminosilicates was maintained during experiments, it was verified by XRD patterns. (Author)

  9. Synthesis of Foam-Shaped Nanoporous Zeolite Material: A Simple Template-Based Method

    Science.gov (United States)

    Saini, Vipin K.; Pires, Joao

    2012-01-01

    Nanoporous zeolite foam is an interesting crystalline material with an open-cell microcellular structure, similar to polyurethane foam (PUF). The aluminosilicate structure of this material has a large surface area, extended porosity, and mechanical strength. Owing to these properties, this material is suitable for industrial applications such as…

  10. Beyond Creation of Mesoporosity: The Advantages of Polymer-Based Dual-Function Templates for Fabricating Hierarchical Zeolites

    KAUST Repository

    Tian, Qiwei

    2016-02-05

    Direct synthesis of hierarchical zeolites currently relies on the use of surfactant-based templates to produce mesoporosity by the random stacking of 2D zeolite sheets or the agglomeration of tiny zeolite grains. The benefits of using nonsurfactant polymers as dual-function templates in the fabrication of hierarchical zeolites are demonstrated. First, the minimal intermolecular interactions of nonsurfactant polymers impose little interference on the crystallization of zeolites, favoring the formation of 3D continuous zeolite frameworks with a long-range order. Second, the mutual interpenetration of the polymer and the zeolite networks renders disordered but highly interconnected mesopores in zeolite crystals. These two factors allow for the synthesis of single-crystalline, mesoporous zeolites of varied compositions and framework types. A representative example, hierarchial aluminosilicate (meso-ZSM-5), has been carefully characterized. It has a unique branched fibrous structure, and far outperforms bulk aluminosilicate (ZSM-5) as a catalyst in two model reactions: conversion of methanol to aromatics and catalytic cracking of canola oil. Third, extra functional groups in the polymer template can be utilized to incorporate desired functionalities into hierarchical zeolites. Last and most importantly, polymer-based templates permit heterogeneous nucleation and growth of mesoporous zeolites on existing surfaces, forming a continuous zeolitic layer. In a proof-of-concept experiment, unprecedented core-shell-structured hierarchical zeolites are synthesized by coating mesoporous zeolites on the surfaces of bulk zeolites. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Zeolites: promising candidates for drug delivery systems (DDSs)

    OpenAIRE

    Vilaça, Natália; Amorim, Ricardo; Baltazar, Fátima; Fonseca, António Manuel; Neves, Isabel C.

    2012-01-01

    [Excerpt] The aim of controlled drug delivery systems (DDSs) is to administer the necessary amount of drug safely and effectively to specific sites in the human body and to regulate the temporal drug profile for maximum therapeutic benefits.[1] Zeolites are crystalline aluminosilicates solids with very regular microporous structures and they have been recently considered for medical use due to their biological properties and stability in biological environments.[1,2] The large variety in ...

  12. Hydrothermal synthesis of silica rich zeolites and microporous martials

    International Nuclear Information System (INIS)

    Durrani, S.K.; Chughtai, N.A.; Akhtar, J.; Arif, M.; Ahmed, M.

    1999-01-01

    A fast crystallization method for synthesis of silica rich aluminosilicate and ferro silicate zeotype materials has been reported. The method also permits for the complete crystallization of silico alumino phosphate microporous materials. Aluminosilicate and ferro silicate silica rich zeotype materials and silico alumino phosphate microporous materials have been synthesized from the reaction mixture of colloidal silica sol, reactive aluminum, ferrous and phosphorous salts, and the essential organic templates at 373-473 K and were characterized by TG/DTA/DSC, X-ray diffraction, scanning electron microscopy and other analytical techniques. Crystallinity and unit cell parameters of the synthesized materials were found to be the function of Al and Fe content of zeolites. (author)

  13. Introduction to chemistry of crystalline zeolites and its applications

    International Nuclear Information System (INIS)

    Lobo Cabezas, Raul Francisco

    2006-01-01

    Establishes the zeolites as the most important group of solid acids and its relation to the contemporaneous chemical industry. It describes that zeolites are used in the following applications: refineries, chemicals/petrochemicals, environmental chemistry, separation of gas, adsorbent ia and ionic exchange in water purification in mineral processes, medicine and agricultural industry. Zeolites are defined as crystalline aluminium silicates with a compound structure of interconnected tetrahedrons. It mentions the key components in zeolites structure. It focuses that structural basic unity of the zeolite is the tetrahedron and compound structural unities are: cells and columns. Besides, it describes that pore system defines a lot of all its properties; but chemical composition affects them. Composition and properties of zeolites are established: adsorption, molecular sieves, acidity, selectivity, transition state in the hydrocarbon's chemistry. It concludes that the newer application of zeolite is in oxidations: Titanium-Silicate-1; production of propylene's oxide using peroxide of hydrogen as oxidizing. The catalysis is an active area of research, and the most popular areas are related to chemicals and the environment [es

  14. A Highly Ion-Selective Zeolite Flake Layer on Porous Membranes for Flow Battery Applications.

    Science.gov (United States)

    Yuan, Zhizhang; Zhu, Xiangxue; Li, Mingrun; Lu, Wenjing; Li, Xianfeng; Zhang, Huamin

    2016-02-24

    Zeolites are crystalline microporous aluminosilicates with periodic arrangements of cages and well-defined channels, which make them very suitable for separating ions of different sizes, and thus also for use in battery applications. Herein, an ultra-thin ZSM-35 zeolite flake was introduced onto a poly(ether sulfone) based porous membrane. The pore size of the zeolite (ca. 0.5 nm) is intermediary between that of hydrated vanadium ions (>0.6 nm) and protons (99 % and an energy efficiency of >81 % at 200 mA cm(-2), which is by far the highest value ever reported. These convincing results indicate that zeolite-coated membranes are promising in battery applications. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Applications of natural zeolites on agriculture and food production.

    Science.gov (United States)

    Eroglu, Nazife; Emekci, Mevlut; Athanassiou, Christos G

    2017-08-01

    Zeolites are crystalline hydrated aluminosilicates with remarkable physical and chemical properties, which include losing and receiving water in a reverse way, adsorbing molecules that act as molecular sieves, and replacing their constituent cations without structural change. The commercial production of natural zeolites has accelerated during the last 50 years. The Structure Commission of the International Zeolite Association recorded more than 200 zeolites, which currently include more than 40 naturally occurring zeolites. Recent findings have supported their role in stored-pest management as inert dust applications, pesticide and fertilizer carriers, soil amendments, animal feed additives, mycotoxin binders and food packaging materials. There are many advantages of inert dust application, including low cost, non-neurotoxic action, low mammalian toxicity and safety for human consumption. The latest consumer trends and government protocols have shifted toward organic origin materials to replace synthetic chemical products. In the present review, we summarize most of the main uses of zeolites in food and agruculture, along with the with specific paradigms that illustrate their important role. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.

  16. Nanoscale encapsulation: the structure of cations in hydrophobic microporous aluminosilicates

    International Nuclear Information System (INIS)

    Wasserman, S.R.; Yuchs, S.E.; Giaquinta, D.; Soderholm, L.; Song, Kang.

    1996-01-01

    Hydrophobic microporous aluminosilicates, created by organic surface modification of inherently hydrophilic materials such as zeolites and clays, are currently being investigated as storage media for hazardous cations. Use of organic monolayers to modify the surface of an aluminosilicate after introducing an ion into the zeolite/clay reduces the interaction of water with the material. Resulting systems are about 20 times more resistant to leaching of stored ion. XAS spectra from the encapsulated ion demonstrate that byproducts from the organic modifier can complex with the stored cation. This complexation can result in a decreased affinity of the cation for the aluminosilicate matrix. Changing the organic modifier eliminates this problem. XAS spectra also indicate that the reactivity and speciation of the encapsulated ion may change upon application of the hydrophobic layer

  17. Characterization of Zeolite in Zeolite-Geopolymer Hybrid Bulk Materials Derived from Kaolinitic Clays

    Directory of Open Access Journals (Sweden)

    Hayami Takeda

    2013-05-01

    Full Text Available Zeolite-geopolymer hybrid materials have been formed when kaolin was used as a starting material. Their characteristics are of interest because they can have a wide pore size distribution with micro- and meso-pores due to the zeolite and geopolymer, respectively. In this study, Zeolite-geopolymer hybrid bulk materials were fabricated using four kinds of kaolinitic clays (a halloysite and three kinds of kaolinite. The kaolinitic clays were first calcined at 700 °C for 3 h to transform into the amorphous aluminosilicate phases. Alkali-activation treatment of the metakaolin yielded bulk materials with different amounts and types of zeolite and different compressive strength. This study investigated the effects of the initial kaolinitic clays on the amount and types of zeolite in the resultant geopolymers as well as the strength of the bulk materials. The kaolinitic clays and their metakaolin were characterized by XRD analysis, chemical composition, crystallite size, 29Si and 27Al MAS NMR analysis, and specific surface area measurements. The correlation between the amount of zeolite formed and the compressive strength of the resultant hybrid bulk materials, previously reported by other researchers was not positively observed. In the studied systems, the effects of Si/Al and crystalline size were observed. When the atomic ratio of Si/Al in the starting kaolinitic clays increased, the compressive strength of the hybrid bulk materials increased. The crystallite size of the zeolite in the hybrid bulk materials increased with decreasing compressive strength of the hybrid bulk materials.

  18. Novel family of solid acid catalysts: substantially amorphous or partially crystalline zeolitic materials

    CSIR Research Space (South Africa)

    Nicolaides, CP

    1999-01-01

    Full Text Available of the samples obtained at the various temperatures showed that for synthesis temperatures of up to 70 degrees C, X-ray amorphous aluminosilicates were obtained, whereas treatment at 90 degrees C produced a material exhibiting a 2% XRD crystallinity. Higher...

  19. Kinetic analysis of temperature-induced transformation of zeolite 4A to low-carnegieite

    International Nuclear Information System (INIS)

    Kosanovic, C.; Subotic, B.; Ristic, A.

    2004-01-01

    Kinetics of the isothermal amorphization of zeolite 4A and recrystallization of the formed amorphous phase to low-carnegieite at three different temperatures were investigated by powder X-ray diffraction method. Changes in the fractions f A of zeolite 4A, f a of amorphous aluminosilicate and f C of low-carnegieite during heating of zeolite 4A, show that amorphization and recrystallization take place simultaneously. Kinetic analyzes of single processes (amorphization, recrystallization) as well as solution of the population balance of the entire transformation process (simultaneous transformation of zeolite 4A into amorphous aluminosilicate and its recrystallization into low-carnegieite) have shown that: (A) the transformation of zeolite 4A takes place by a random, diffusion-limited agglomeration of the short-range-ordered aluminosilicate subunits formed by thermally induced breaking of Si-O-Si and Si-O-Al bonds between different building units of zeolite framework; and (B) the crystallization of low-carnegieite occurs by homogeneous nucleation of low-carnegieite inside the matrix of amorphous aluminosilicate and diffusion-controlled, one-dimensional growth of the nuclei, thus forming needle-shaped crystals of low-carnegieite

  20. A Review of the Application of Zeolite Materials in Warm Mix Asphalt Technologies

    Directory of Open Access Journals (Sweden)

    Agnieszka Woszuk

    2017-03-01

    Full Text Available Among warm mix asphalt (WMA technologies, asphalt foaming techniques offer high potential in terms of decreasing production temperature. Reluctance of manufacturers to introduce this technology is connected with the concerns of a large investment costs. However, there are known additives which, through asphalt foaming, allow a decrease in temperatures by approximately 30 °C; the use of these additives do not involve expensive investment in order to change the asphalt mix production method. These additives are zeolites, that is, minerals of the aluminosilicate group, the crystalline structure of which contains water bound in a specific way. Its release, at mix asphalt production temperatures, causes asphalt foaming. It is currently known that zeolites can be used in WMA, including natural and synthetic zeolites obtained using chemical reagents and waste. This review presents the results of studies of WMA technology, including the effects of zeolite addition on asphalt properties and mix asphalt, as well as related environmental, economic, and technological benefits.

  1. New ion-exchanged zeolite derivatives: antifungal and antimycotoxin properties against Aspergillus flavus and aflatoxin B1

    Science.gov (United States)

    Savi, Geovana D.; Cardoso, Willian A.; Furtado, Bianca G.; Bortolotto, Tiago; Da Agostin, Luciana O. V.; Nones, Janaína; Torres Zanoni, Elton; Montedo, Oscar R. K.; Angioletto, Elidio

    2017-08-01

    Zeolites are microporous crystalline hydrated aluminosilicates with absorbent and catalytic properties. This material can be used in many applications in stored-pest management such as: pesticide and fertilizer carriers, animal feed additives, mycotoxin binders and food packaging materials. Herein, four 4A zeolite forms were prepared by ion-exchange and their antifungal effect against Aspergillus flavus was highlighted. Additionally, the antimycotoxin activity and the aflatoxin B1 (AFB1) adsorption capacity of these zeolites as well as their toxic effects on Artemia sp. were investigated. The ion-exchanged zeolites with Li+ and Cu2+ showed the best antifungal activity against A. flavus, including effects on conidia germination and hyphae morphological alterations. Regarding to antimycotoxin activity, all zeolite samples efficiently inhibited the AFB1 production by A. flavus. However, the ion-exchanged zeolites exhibited better results than the 4A zeolite. On the other hand, the AFB1 adsorption capacity was only observed by the 4A zeolite and zeolite-Li+. Lastly, our data showed that all zeolites samples used at effective concentrations for antifungal and antimycotoxin assays (2 mg ml-1) showed no toxic effects towards Artemia sp. Results suggest that some these ion-exchanged zeolites have great potential as an effective fungicide and antimycotoxin agent for agricultural and food safety applications.

  2. Obtaining of iron particles of nanometer size in a natural zeolite

    International Nuclear Information System (INIS)

    Xingu C, E. G.

    2013-01-01

    The zeolites are aluminosilicates with cavities that can act as molecular sieve. Their crystalline structure is formed by tetrahedrons that get together giving place to a three-dimensional net, in which each oxygen is shared by two silicon atoms, being this way part of the tecto silicate minerals, its external and internal areas reach the hundred square meters for gram, they are located in a natural way in a large part of earth crust and also exist in a synthetic way. In Mexico there are different locations of zeolitic material whose important component is the clinoptilolite. In this work the results of three zeolitic materials coming from San Luis Potosi are shown, the samples were milled and sieved for its initial characterization, to know its chemical composition, crystalline phases, morphology, topology and thermal behavior before and after its homo-ionization with sodium chloride, its use as support of iron particles of nanometer size. The description of the synthesis of iron particles of nanometer size is also presented, as well as the comparison with the particles of nanometer size synthesized without support after its characterization. The characterization techniques used during the experimental work were: Scanning electron microscopy, X-ray diffraction, Infrared spectroscopy, specific area by means of BET and thermogravimetry analysis. (Author)

  3. Synthesis of novel perfluoroalkylglucosides on zeolite and non-zeolite catalysts.

    Science.gov (United States)

    Nowicki, Janusz; Mokrzycki, Łukasz; Sulikowski, Bogdan

    2015-04-08

    Perfluoroalkylglucosides comprise a very important class of fluorine-containing surfactants. These compounds can be synthesized by using the Fisher reaction, starting directly from glucose and the required perfluoroalcohols. We wish to report on the use of zeolite catalysts of different structure and composition for the synthesis of perfluoroalkylglucosides when using glucose and 1-octafluoropentanol as substrates. Zeolites of different pore architecture have been chosen (ZSM-5, ZSM-12, MCM-22 and Beta). Zeolites were characterized by XRD, nitrogen sorption, scanning electron microscopy (SEM) and solid-state 27Al MAS NMR spectroscopy. The activity of the zeolite catalysts in the glycosidation reaction was studied in a batch reactor at 100 °C below atmospheric pressure. The performance of zeolites was compared to other catalysts, an ion-exchange resin (Purolite) and a montmorillonite-type layered aluminosilicate. The catalytic performance of zeolite Beta was the highest among the zeolites studied and the results were comparable to those obtained over Purolite and montmorillonite type catalysts.

  4. Microsphere zeolite materials derived from coal fly ash cenospheres as precursors to mineral-like aluminosilicate hosts for 135,137Cs and 90Sr

    International Nuclear Information System (INIS)

    Vereshchagina, Tatiana A.; Vereshchagin, Sergei N.; Shishkina, Nina N.; Vasilieva, Nataly G.; Solovyov, Leonid A.; Anshits, Alexander G.

    2013-01-01

    Hollow microsphere zeolite materials with a bilayered zeolite/glass crystalline shell bearing NaP1 zeolite were synthesized by the hydrothermal treatment of coal fly ash cenospheres (Si/Al = 2.7) in an alkaline medium. Cs + and/or Sr 2+ forms of zeolitized cenospheres with the different Cs + and/or Sr 2+ loading were prepared by the ion exchange from nitrate solutions. The resulted (Cs,Na)P1, (Sr,Na)P1 and (Cs,Sr,Na)P1 bearing microsphere zeolites were converted to glass ceramics by heating at 900–1000 °C. The differential scanning calorimetry and quantitative phase analysis were used to monitor the solid-phase transformation of the initial and ion exchanged zeolite materials. It was established that the final solidified forms of Cs + and/or Sr 2+ are glass–crystalline ceramic materials based on pollucite–nepheline, Sr-feldspar–nepheline and Sr-feldspar–pollucite composites including ∼60 wt.% of the major host phases (pollucite, Sr-feldspar) and 10–20 wt.% of glass. The 137 Cs leaching rate of 4.1 × 10 −7 g cm −2 day −1 was determined for the pollucite glass–ceramic according to Russian State Standard (GOST) No. 52126 P-2003 (7 day, 25 °C, distilled water)

  5. Hydrothermal conversion of FAU zeolite into RUT zeolite in TMAOH system

    OpenAIRE

    Jon, Hery; Takahashi, Shoutarou; Sasaki, Hitoshi; Oumi, Yasunori; Sano, Tsuneji

    2008-01-01

    The highly crystalline and pure RUT (RUB-10) zeolite could be obtained from the hydrothermal conversion of FAU zeolite used as a crystalline Si/Al source in tetramethylammonium hydroxide (TMAOH) media. As compared to amorphous silica/Al(OH)3 and amorphous silica/γ-Al2O3 sources, the crystallization rate for the formation of RUT zeolite was clearly faster when FAU zeolite was employed as the Si/Al source. Moreover, it was found that the hydrothermal conversion of FAU zeolite into RUT zeolite d...

  6. Feasible conversion of solid waste bauxite tailings into highly crystalline 4A zeolite with valuable application

    Energy Technology Data Exchange (ETDEWEB)

    Ma, Dongyang; Wang, Zhendong; Guo, Min [State Key Laboratory of Advanced Metallurgy, University of Science and Technology Beijing, Beijing 100083 (China); Zhang, Mei, E-mail: zhangmei@ustb.edu.cn [State Key Laboratory of Advanced Metallurgy, University of Science and Technology Beijing, Beijing 100083 (China); Liu, Jingbo [The Department of Chemistry, Texas A and M University-Kingsville, Kingsville, TX 78363 (United States); The Advanced Light Source, Lawrence Berkeley National Laboratory, Berkeley, CA 94720 (United States)

    2014-11-15

    Highlights: • Concept to convert waste to valuable product is carried out in this study. • An industrially feasible and cost-effective approach was developed and optimized. • Highly crystalline and well-defined zeolite was produced under moderate conditions. • The zeolite derived from the bauxite tailings displayed high ion exchange capacity. • Bauxite tailings have potential application in heavy metal ions adsorbent. - Abstract: Bauxite tailings are a major type of solid wastes generated in the flotation process. The waste by-products caused significant environmental impact. To lessen this hazardous effect from poisonous mine tailings, a feasible and cost-effective solution was conceived and implemented. Our approach focused on reutilization of the bauxite tailings by converting it to 4A zeolite for reuse in diverse applications. Three steps were involved in the bauxite conversion: wet-chemistry, alkali fusion, and crystallization to remove impurities and to prepare porous 4A zeolite. It was found that the cubic 4A zeolite was single phase, in high purity, with high crystallinity and well-defined structure. Importantly, the 4A zeolite displayed maximum calcium ion exchange capacity averaged at 296 mg CaCO{sub 3}/g, comparable to commercially-available zeolite (310 mg CaCO{sub 3}/g) exchange capacity. Base on the optimal synthesis condition, the reaction yield of zeolite 4A from bauxite tailings achieved to about 38.43%, hence, this study will provide a new paradigm for remediation of bauxite tailings, further mitigating the environmental and health care concerns, particularly in the mainland of PR China.

  7. Feasible conversion of solid waste bauxite tailings into highly crystalline 4A zeolite with valuable application

    International Nuclear Information System (INIS)

    Ma, Dongyang; Wang, Zhendong; Guo, Min; Zhang, Mei; Liu, Jingbo

    2014-01-01

    Highlights: • Concept to convert waste to valuable product is carried out in this study. • An industrially feasible and cost-effective approach was developed and optimized. • Highly crystalline and well-defined zeolite was produced under moderate conditions. • The zeolite derived from the bauxite tailings displayed high ion exchange capacity. • Bauxite tailings have potential application in heavy metal ions adsorbent. - Abstract: Bauxite tailings are a major type of solid wastes generated in the flotation process. The waste by-products caused significant environmental impact. To lessen this hazardous effect from poisonous mine tailings, a feasible and cost-effective solution was conceived and implemented. Our approach focused on reutilization of the bauxite tailings by converting it to 4A zeolite for reuse in diverse applications. Three steps were involved in the bauxite conversion: wet-chemistry, alkali fusion, and crystallization to remove impurities and to prepare porous 4A zeolite. It was found that the cubic 4A zeolite was single phase, in high purity, with high crystallinity and well-defined structure. Importantly, the 4A zeolite displayed maximum calcium ion exchange capacity averaged at 296 mg CaCO 3 /g, comparable to commercially-available zeolite (310 mg CaCO 3 /g) exchange capacity. Base on the optimal synthesis condition, the reaction yield of zeolite 4A from bauxite tailings achieved to about 38.43%, hence, this study will provide a new paradigm for remediation of bauxite tailings, further mitigating the environmental and health care concerns, particularly in the mainland of PR China

  8. Zeolites and clays behavior in presence of radioactive solutions

    International Nuclear Information System (INIS)

    Carrera Garcia, L.M.

    1991-01-01

    Natural aluminosilicates have found application as selective ion exchangers for radioactive cations, present in liquid wastes arising from nuclear facilities. Among severals cations and complex mixtures of them, Co is a common constituent of liquid radioactive wastes. Two types of zeolites (Y zeolite, and natural mexican erionite), and two types of clays (natural bentonite, and Al-expanded bentonite (Al-B) were used. Previous to the experiments, the zeolites and the natural bentonite were stabilized to their respective Na + form using 5N NaCl solution. 2Na + → 60 Co 2+ ion exchange kinetics in zeolites and clays was followed by gamma spectrometry using a NaCl-Co(NO 3 ) 2 isonormal solution (0.1N) labeled with 60 Co-Co(NO 3 ) 2 (100 μ Ci). Before and after experiments, the structural changes in the cristallinity of aluminosilicates were determined by X-ray diffraction. XRD analyzes show that the cristallinity of the aluminosilicates was not affected by ion exchange. After Co exchange the cell parameters were determined in all samples. The efficiency of zeolites, natual clays and expanded clays to remove cobalt ions from solutions depends on the ion echange capacity of the material. Results for long contacts time, 18 days, show that Co is more effectively removed by Y zeolite ( 4.07 wt %), followed by erionite (3.09 wt %), then bentonite ( 2.36 wt %) and finally expanded bentonite ( 0.70 wt %). In Y zeolite an unusual fast soportion uptake of 4.51 % wt Co was observed followed by a desorption process to 4.07 %. This effect is due to the different hydration degree of zeolites during the contact time between the zeolite and the 60 Co solution. In erionite the exchange is lower than in Y-zeolite, frist because the Si/Al ratio is higher for erionite than for Y-zeolite and second because K ions in erionite cannot be exchanged during the stabilization of erionite in 5N NaCl solution. The low exchange in expanded bentonite was expected because its cation exchange

  9. Chemical Design of Functional Nanomaterials

    DEFF Research Database (Denmark)

    Egeblad, Kresten

    This thesis deals with a very specific class of functional nanomaterials known as mesoporous zeolites. Zeolites are a class of crystalline aluminosilicate minerals characterized by featuring pores or cavities of molecular dimensions as part of their crystal structure. Mesoporous zeolites are zeol...

  10. Spectroscopy Study of Synthetic Forsterite Obtained from Zeolite Precursors

    Directory of Open Access Journals (Sweden)

    Subotić, B.

    2008-02-01

    Full Text Available Important ceramics materials are prepared from aluminosilicate based precursors using novel methods, offering at the same time a better control over many important properties. Forsterite, due to its good refractoriness with melting point at 2163 K, excellent electrical insulation properties even at high temperatures, low dielectric permittivity, thermal expansion and chemical stability, is a material of interest to engineers and designers especially as an active medium for tuneable laser and is also a material of interest to SOFC (Solid oxide fuel cells manufacturers. The aim of this study is to investigate the synthesis of crystalline forsterite using different zeolite precursors previously activated by ball milling. Synthetic forsterite was synthesized from different zeolite precursors and MgO combining highenergy ball milling and thermal treatment of the mixture under determined conditions of time and temperature for each operation. In this research are studied the solid-state phase transformations taking place at temperatures below 1273 K. The obtained products were characterized using different spectroscopy techniques in comparison with surface analysis method and X-ray diffraction.

  11. Zeolite Chemistry Studied at the Level of Single Particles, Molecules and Atoms

    NARCIS (Netherlands)

    Ristanovic, Z.

    2016-01-01

    Zeolites are microporous aluminosilicates that find a wide-spread application as catalysts in the oil refining and petrochemical industries. Zeolite acidity and related chemistry play a major role in numerous catalytic processes and it is of significant practical interest to understand their

  12. Influence of zeolite nanofillers on properties of polymeric materials

    OpenAIRE

    Kopcová, M.; Ondrušová, D.; Krmela, J.; Průša, P.; Pajtášová, M.; Jankurová, Z.

    2012-01-01

    The present work deals with the preparation and study of modified polymeric materials with the replacement of carbon black by nanofillers on the basis of zeolite that is environmentally friendly. Natural zeolites from a group of aluminosilicate nanoporous materials have wide range of possibilities for applications that are environmentally friendly. Zeolites can be used in the role of fillers into the polymer materials too [1]. The given work deals with the preparation and study of modif...

  13. High ion-exchange properties of hybrid materials from X-type zeolite and ground glass powder

    Science.gov (United States)

    Taira, Nobuyuki; Yoshida, Kohei

    2017-10-01

    Zeolites are crystalline aluminosilicates with a homogeneous distribution of micropores with a superior cation-exchange capacity. Because they have especially excellent selective exchange properties, a considerable number of studies have been conducted on treating water containing radioisotopes using the zeolites. When using artificial zeolites, they have inferior sinterability; in addition, it is quite hard for them to remove from polluted liquid since these artificial zeolites are principally synthesized as a form of powder, which is a disadvantage. In this study, hybrid materials were prepared from X-type zeolite and waste glass powder. Their ion-removal effect and mechanical strength were investigated. The zeolite and waste glass were ground in an agate mortar in several ratios. 0.5 g of the mixture was pressure-molded into pellets having a diameter of 7 mm. These pellets were slowly heated at the speed of 240°C/h to 700°C and maintained at 700°C for 2 h. The removal rate of Sr2+ ions increased as the amount of X-type zeolite in the hybrid materials increased; the former increased up to 100% when the content of latter exceeded 50%. The mechanical strength increased by increasing the amount of glass in the hybrid materials. This is attributed to the fact that the glass powder acts as a binder that improves the densification and consequently the mechanical strength of the hybrid materials.

  14. Zeolite ZSM-57

    International Nuclear Information System (INIS)

    Valyocsik, E.W.; Page, N.M.; Chu, C.T.W.

    1989-01-01

    This patent describes a synthetic porous crystalline zeolite having a molar ratio of XO 2 ; Y 2 O 3 of at least 4. Wherein X represents silicon and/or germanium and Y represents aluminum, boron, chromium, iron and/or gallium. The porous crystalline zeolite having at least the X-ray diffraction lines as set forth in the text

  15. Syntheses, characterizations, and catalytic activities of mesostructured aluminophosphates with tailorable acidity assembled with various preformed zeolite nanoclusters

    KAUST Repository

    Suo, Hongri; Zeng, Shangjing; Wang, Runwei; Zhang, Zongtao; Qiu, Shilun

    2015-01-01

    © 2015, Springer Science+Business Media New York. A series of ordered hexagonal mesoporous zeolites have been successfully synthesized by the assembly of various preformed aluminosilicates zeolite (MFI, FAU, BEA etc.) with surfactants

  16. Feasible conversion of solid waste bauxite tailings into highly crystalline 4A zeolite with valuable application.

    Science.gov (United States)

    Ma, Dongyang; Wang, Zhendong; Guo, Min; Zhang, Mei; Liu, Jingbo

    2014-11-01

    Bauxite tailings are a major type of solid wastes generated in the flotation process. The waste by-products caused significant environmental impact. To lessen this hazardous effect from poisonous mine tailings, a feasible and cost-effective solution was conceived and implemented. Our approach focused on reutilization of the bauxite tailings by converting it to 4A zeolite for reuse in diverse applications. Three steps were involved in the bauxite conversion: wet-chemistry, alkali fusion, and crystallization to remove impurities and to prepare porous 4A zeolite. It was found that the cubic 4A zeolite was single phase, in high purity, with high crystallinity and well-defined structure. Importantly, the 4A zeolite displayed maximum calcium ion exchange capacity averaged at 296 mg CaCO3/g, comparable to commercially-available zeolite (310 mg CaCO3/g) exchange capacity. Base on the optimal synthesis condition, the reaction yield of zeolite 4A from bauxite tailings achieved to about 38.43%, hence, this study will provide a new paradigm for remediation of bauxite tailings, further mitigating the environmental and health care concerns, particularly in the mainland of PR China. Copyright © 2014 Elsevier Ltd. All rights reserved.

  17. Comparison of different zeolite framework types as carriers for the oral delivery of the poorly soluble drug indomethacin.

    Science.gov (United States)

    Karavasili, Christina; Amanatiadou, Elsa P; Kontogiannidou, Eleni; Eleftheriadis, Georgios K; Bouropoulos, Nikolaos; Pavlidou, Eleni; Kontopoulou, Ioanna; Vizirianakis, Ioannis S; Fatouros, Dimitrios G

    2017-08-07

    Microporous zeolites of distinct framework types, textural properties and crystal morphologies namely BEA, ZSM and NaX, have been employed as carriers to assess their effect on modulating the dissolution behavior of a BCS II model drug (indomethacin). Preparation of the loaded carriers via the incipient wetness method induced significant drug amorphization for the BEA and NaX samples, as well as high drug payloads. The stability of the amorphous drug content was retained after stressing test evaluation of the porous carriers. The dissolution profile of loaded indomethacin was evaluated in simulated gastric fluid (pH 1.2) and simulated intestinal fluids FaSSIF (fasted) and FeSSIF (fed state) conditions and was found to be dependent on the aluminosilicate ratio of the zeolites and the degree of crystalline drug content. The feasibility of the zeolitic particles as oral drug delivery systems was appraised with cytocompatibility and cellular toxicity studies in Caco-2 cultures in a time- and dose-dependent manner by means of the MTT assay and flow cytometry analysis, respectively. Intracellular accumulation of the zeolite particles was observed with no apparent cytotoxic effects at the lower concentrations tested, rendering such microporous zeolites pertinent candidates in oral drug delivery applications. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. The structure of actinide ions exchanged into native and modified zeolites and clays

    International Nuclear Information System (INIS)

    Wasserman, S. R.; Soderholm, L.; Giaquinta, D. M.

    2000-01-01

    X-ray absorption spectroscopy (XAS) has been used to investigate the structure and valence of thorium (Th 4+ ) and uranyl (UO 2 2+ ) cations exchanged into two classes of microporous aluminosilicate minerals: zeolites and smectite clays. XAS is also employed to examine the fate of the exchanged cations after modification of the mineral surface using self-assembled organic films and/or exposure to hydrothermal conditions. These treatments serve as models for the forces that ultimately determine the chemical fate of the actinide cations in the environment. The speciation of the cations depends on the pore size of the aluminosilicate, which is fixed for the zeolites and variable for the smectites

  19. Physical, Chemical and Structural Evolution of Zeolite-Containing Waste Forms Produced from Metakaolinite and Calcined HLW

    International Nuclear Information System (INIS)

    Grutzeck, Michael; Jantzen, Carol M.

    1999-01-01

    Natural and synthetic zeolites are extremely versatile materials. They can adsorb a variety of liquids and gases, and also take part in cation exchange reactions. Zeolites are easy to synthesize from a wide variety of natural and man made materials. One combination of starting materials that exhibits a great deal of promise is a mixture of metakaolinite and/or Class F fly ash and concentrated sodium hydroxide solution. Once these ingredients are mixed and cured at elevated temperatures, they react to form a hard, dense, ceramic-like material that contains significant amounts of crystalline tectosilicates (zeolites and feldspathoids). Zeolites have the ability to sequester ions in lattice positions or within their networks of channels and voids. As such they are nearly perfect waste forms, the zeolites can host alkali, alkaline earth and a variety of higher valance cations. In addition to zeolites, it has been found that the zeolites are accompanied by an alkali aluminosilicate hydrate matrix that is a host, not only to the zeolites, but to residual amounts of insoluble hydroxide phases as well. A previous publication has established the fact that a mixture of a calcined equivalent ICPP waste (sodium aluminate/hydroxide solution containing ∼3:1 Na:Al) and fly ash and/or metakaolinite could be cured at various temperatures to produce a monolith containing Zeolite A (80 C) or Na-P1 plus hydroxy sodalite (130 C) crystals dispersed in an alkali aluminosilicate hydrate matrix. Dissolution tests have shown these materials (so-called hydroceramics) to have superior retention for alkali, alkaline earth and heavy metal ions. The zeolitization process is a simple one. Metakaolinite and/or Class F fly ash is mixed with a caustic sodium-bearing calcine and enough water to make a thick paste. The paste is transferred to a metal canister and ''soaked'' for a few hours at 70-80 C prior to steam autoclaving the sample at ∼200 C for 6-8 hours. The waste form produced in this

  20. Transformation of Indonesian Natural Zeolite into Analcime Phase under Hydrothermal Condition

    Science.gov (United States)

    Lestari, W. W.; Hasanah, D. N.; Putra, R.; Mukti, R. R.; Nugrahaningtyas, K. D.

    2018-04-01

    Natural zeolite is abundantly available in Indonesia and well distributed especially in the volcano area like Java, Sumatera, and Sulawesi. So far, natural zeolite from Klaten, Central Java is one of the most interesting zeolites has been widely studied. This research aims to know the effect of seed-assisted synthesis under a hydrothermal condition at 120 °C for 24 hours of Klaten’s zeolite toward the structural change and phase transformation of the original structure. According to XRD and XRF analysis, seed-assisted synthesis through the addition of aluminosilicate mother solution has transformed Klaten’s zeolite which contains (mordenite and clinoptilolite) into analcime type with decreasing Si/Al ratio from 4.51 into 1.38. Morphological analysis using SEM showed the shape changes from irregular into spherical looks like takraw ball in the range of 0.3 to 0.7 micrometer. Based on FTIR data, structure of TO4 site (T = Si or Al) was observed in the range of 300-1300 cm-1 and the occupancy of Brønsted acid site as OH stretching band from silanol groups was detected at 3440-3650 cm-1. Nitrogen adsorption-desorption analysis confirmed that transformation Klaten’s zeolite into analcime type has decreased the surface area from 55.41 to 22.89 m2/g and showed inhomogeneous pore distribution which can be classified as micro-mesoporous aluminosilicate materials.

  1. Obtaining of iron particles of nanometer size in a natural zeolite; Obtencion de particulas de hierro de tamano nanometrico en una zeolita natural

    Energy Technology Data Exchange (ETDEWEB)

    Xingu C, E. G.

    2013-07-01

    The zeolites are aluminosilicates with cavities that can act as molecular sieve. Their crystalline structure is formed by tetrahedrons that get together giving place to a three-dimensional net, in which each oxygen is shared by two silicon atoms, being this way part of the tecto silicate minerals, its external and internal areas reach the hundred square meters for gram, they are located in a natural way in a large part of earth crust and also exist in a synthetic way. In Mexico there are different locations of zeolitic material whose important component is the clinoptilolite. In this work the results of three zeolitic materials coming from San Luis Potosi are shown, the samples were milled and sieved for its initial characterization, to know its chemical composition, crystalline phases, morphology, topology and thermal behavior before and after its homo-ionization with sodium chloride, its use as support of iron particles of nanometer size. The description of the synthesis of iron particles of nanometer size is also presented, as well as the comparison with the particles of nanometer size synthesized without support after its characterization. The characterization techniques used during the experimental work were: Scanning electron microscopy, X-ray diffraction, Infrared spectroscopy, specific area by means of BET and thermogravimetry analysis. (Author)

  2. Study on high-silicon boron-containing zeolite by thermogravimetric and IR-spectroscopy techniques

    International Nuclear Information System (INIS)

    Chukin, G.D.; Nefedov, B.K.; Surin, S.A.; Polinina, E.V.; Khusid, B.L.; Sidel'kovskaya, V.G.

    1985-01-01

    The structure identity of initial Na-forms of boron-containing and aluminosilicate high-silicon zeolites is established by thermogravimetric and IR-spectroscopy methods. The presence of boron in Na-forms of high-silicon zeolites is shown to lead to reduction of structure thermal stability. It is noted that thermal stability of the H-form of both high-silicon boron-containing and boron-free zeolites is practically equal and considerably higher than that of Na-forms

  3. Immobilization of krypton-85 in zeolite 5A and porous glass

    International Nuclear Information System (INIS)

    Christensen, A.B.; DelDebbio, J.A.; Knecht, D.A.; Tanner, J.E.; Cossel, S.C.

    1981-12-01

    This report demonstrates the technical and economic feasibility for immobilizing krypton-85 by high pressure/high temperature encapsulation in zeolite 5A or thirsty Vyco porous glass. Data are presented to show how process conditions affect the encapsulation and how to compact the zeolite beads with glass frit or other additives to form a fused mass with low dispersibility potential. Krypton specific loadings of 30 and 50 m 3 STP gas per m 3 solid are readily achieved at 100 MPa in porous glass at 900 0 C and zeolite 5A at 700 0 C. Krypton is encapsulated by a sintering process where the porous glass and zeolite 5A voids are sealed. With zeolite 5A, the initial water concentration has a catalytic effect on the sintering, resulting in a transition from crystalline zeolite 5A to an amorphous aluminosilicate. Krypton leakage experiments are used to predict leakage rates from glass or zeolite of less than 0.03% and 0.3% for 10-y storage at 300 and 400 0 C, respectively. Heating the loaded zeolite at 600 to 700 0 C for 4 h removes 0.1% of the total krypton which is loosely held and reduces the subsequent leakage rates at 300 to 400 0 C. Zeolite 5A is chosen as the preferred material to immobilize krypton-85. A preconceptual design and cost estimate is given for a facility to encapsulate 110% of the krypton production of a 2000 metric ton of heavy metal per year reprocessing plant, or 230 m 3 of gas containing 19 MCi of krypton-85. A hot isostatic press (HIP) with an isolated work zone of 8 or 16 L capacity is required to operate for 600 or 300 cycles per year, respectively. Existing HIP technology uses work zones from 1 to 3500 L capacity at similar production rates. A preliminary safety evaluation shows that an incredible worst case accident could be contained and the maximum off-site dose would be well below accident protective action guidance levels

  4. Synthesis and properties of porous zeolite aluminosilicate adsorbents

    International Nuclear Information System (INIS)

    Shilina, A.S.; Milinchuk, V.K.; Burukhin, S.B.; Gordienko, A.B.

    2015-01-01

    Environmentally safe non-energy-intensive methods of the synthesis have been developed and the properties of solid inorganic nanostructured zeolite-like adsorbents of a broad spectrum have been studied. The sorption capacities of the adsorbents with respect to various components of water pollution have been determined [ru

  5. The isolation of water-soluble radionuclides from deteriorating spent nuclear fuel in zeolite cartridge

    International Nuclear Information System (INIS)

    Hassan, N.M.; Thompson, M.C.

    1996-01-01

    A method of isolating water-soluble radionuclides leaching from deteriorating spent nuclear fuel by ion-exchange in zeolite cartridges has been studied. Design calculations of two zeolite cartridges to be incorporated in typical spent fuel storage bundle have been provided. Equilibrium exchange data obtained at several temperatures have shown that the maximum exchange capacity of total cesium in sodium titanium aluminosilicate was 114 mg/g zeolite and the capacity at 95% exchange for radioactive isotope Cs-137 was calculated as 55.2 mg/g zeolite. The kinetic data suggest that the rate of exchange of Cs + in sodium titanium aluminosilicate zeolite takes place by a fast initial exchange step followed by slow diffusion of cesium cations. Design calculations based on the equilibrium exchange data show that water-soluble radionuclides leaching from Mk 31 slugs can be isolated using two zeolite cartridges, each 3.7 inches in inside diameter and 2.5 inches in length. The cartridges are designed to isolate 95% of the Cs + leaching from the spent fuel storage bundle. The results from the thermal induced convective flow tests indicate that the system will provide necessary cooling to the spent fuel by convective currents while isolating the Cs + leaching from spent fuel storage bundle in the cartridges

  6. REMOVAL OF DIQUATERNARY AMMONIUM CATIONS FROM AS-SYNTHESIZED SSZ-16 ZEOLITE

    Directory of Open Access Journals (Sweden)

    Tatana Supinkova

    2017-07-01

    Full Text Available Zeolites are stable microporous aluminosilicates with numerous applications in chemical technology such as separation of species and catalytic transformations. Our study is focused on a weakly explored zeolite SSZ-16 with pore constrictions defined by 8-membered oxygen rings. Key results are the preparation of Et6-diquat-5 dication used as a structure directing agent (SDA and finding the optimum synthesis conditions with respect to zeolite phase purity. Stability of SDA was examined in conditions similar to those of autoclave synthesis (concentration, pH, temperature. Moreover, the content and location of SDA species in zeolite phase and conditions of SDA decomposition were investigated.

  7. Characterisation of poly(methacrylates) formed inside zeolites by gamma irradiation

    International Nuclear Information System (INIS)

    Kwiatkowski, J.; Whittaker, A.K.

    1996-01-01

    Full text: Inclusion polymerisation was first developed in the second half of the 50's as an alternative to Ziegler-Natta co-ordination polymerisation to obtain highly stereo-regular polymers. Inclusion polymerisation was performed in organic clathrates such as thio-urea channels. However the channels are only stable when formed around the monomer. This means there is a specific concentration of monomer, namely saturation, for which the host/channel system can exist. There is also a limited number of monomers which are suitable for use with a given clathrate and the channel dimension is not usually a variable parameter for a given monomer/clathrate system. One exception is Tris(o-phenolenedioxy)cycotriphosphazene. Initiation of the monomer can be easily achieved by high energy irradiation and many of the polymers obtained show considerable chemical and steric regularity. For example poly (2,3 -dimethylbutadiene) obtained by polymerisation in a thio-urea inclusion compound has only the 1,4 trans structure and is highly crystalline. The restriction on the number of clathrate and monomer systems has lead us to investigate the use of zeolites as hosts for inclusion compounds. Zeolites exist independently of any included guest compound. They are aluminosilicate compounds whose structures form molecular-dimension channels and belong to a class of materials known as molecular sieves. Channel structures can be in 1,2 or 3 dimensions. The structural aluminium in the zeolite creates a negative charge on the lattice which is balanced by cations. In this study we have diffused methyl and ethyl methacrylate into Na-ZSM5, Beta, Y and Mordenite zeolites. The samples where irradiated under vacuum and then extracted. The structures of the exrtracted polymer have been characterized by GPC, NMR and DSC The results will be correlated as a function of the channel size of the zeolite and compared to the bulk system

  8. Hierarchical zeolites: progress on synthesis and characterization of mesoporous zeolite single crystal catalysts

    DEFF Research Database (Denmark)

    Kustova, Marina; Egeblad, Kresten; Christensen, Claus H.

    2007-01-01

    Recently, a new family of crystalline zeolitic materials was reported, the so-called mesoporous zeolite single crystals featuring individual zeolite single crystals with an additional noncrystalline mesopore system interconnected with the usual micropore system of the zeolite, resulting...... measurements. Additionally, the results of diffusion of n-hexadecane in conventional and mesoporous zeolites are presented. Isomerization and cracking of n-hexadecane was chosen as model test reaction for these materials. All results support that mesoporous zeolites are superior catalysts due to improved mass...... transport. Importantly, the mesoporous zeolites show significant improved resistance to poisoning by carbon formation....

  9. Immobilization of aqueous radioactive cesium wastes by conversion to aluminosilicate minerals

    International Nuclear Information System (INIS)

    Barney, G.S.

    1975-05-01

    Radioactive cesium (primarily 137 Cs) is a major toxic constituent of liquid wastes from nuclear fuel processing plants. Because of the long half-life, highly penetrating radiation, and mobility of 137 Cs, it is necessary to convert wastes containing this radioisotope into a solid form which will prevent movement to the biosphere during long-term storage. A method for converting cesium wastes to solid, highly insoluble, thermally stable aluminosilicate minerals is described. Aluminum silicate clays (bentonite, kaolin, or pyrophyllite) or hydrous aluminosilicate gels are reacted with basic waste solutions to form pollucite, cesium zeolite (Cs-D), Cs-F, cancrinite, or nepheline. Cesium is trapped in the aluminosilicate crystal lattice of the mineral and is permanently immobilized. The identity of the mineral product is dependent on the waste composition and the SiO 2 /Al 2 O 3 ratio of the clay or gel. The stoichiometry and kinetics of mineral formation reactions are described. The products are evaluated with respect to leachability, thermal stability, and crystal morphology. (U.S.)

  10. Physical, Chemical and Structural Evolution of Zeolite-Containing Waste Forms Produced from Metakaolinite and Calcined Sodium Bearing Waste (HLW and/or LLW)

    International Nuclear Information System (INIS)

    Grutzeck, Michael W.

    2005-01-01

    Zeolites are extremely versatile. They can adsorb liquids and gases and serve as cation exchange media. They occur in nature as well cemented deposits. The ancient Romans used blocks of zeolitized tuff as a building material. Using zeolites for the management of radioactive waste is not a new idea, but a process by which the zeolites can be made to act as a cementing agent is. Zeolitic materials are relatively easy to synthesize from a wide range of both natural and man-made substances. The process under study is derived from a well known method in which metakaolin (an impure thermally dehydroxylated kaolinite heated to ∼700 C containing traces of quartz and mica) is mixed with sodium hydroxide (NaOH) and reacted in slurry form (for a day or two) at mildly elevated temperatures. The zeolites form as finely divided powders containing micrometer ((micro)m) sized crystals. However, if the process is changed slightly and only just enough concentrated sodium hydroxide solution is added to the metakaolinite to make a thick crumbly paste and then the paste is compacted and cured under mild hydrothermal conditions (60-200 C), the mixture will form a hard ceramic-like material containing distinct crystalline tectosilicate minerals (zeolites and feldspathoids) imbedded in an X-ray amorphous hydrated sodium aluminosilicate matrix. Due to its lack of porosity and vitreous appearance we have chosen to call this composite a ''hydroceramic''

  11. Zeolite-derived hybrid materials with adjustable organic pillars

    Czech Academy of Sciences Publication Activity Database

    Opanasenko, Maksym; Shamzhy, Mariya; Yu, F.; Zhou, W.; Morris, R. E.; Čejka, Jiří

    2016-01-01

    Roč. 7, č. 6 (2016), s. 3589-3601 ISSN 2041-6520 R&D Projects: GA ČR GP13-17593P; GA ČR GBP106/12/G015 Institutional support: RVO:61388955 Keywords : zeolites * inorganic aluminosilicate * nanoporous materials Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 8.668, year: 2016

  12. Rapid synthesis of beta zeolites

    Science.gov (United States)

    Fan, Wei; Chang, Chun -Chih; Dornath, Paul; Wang, Zhuopeng

    2015-08-18

    The invention provides methods for rapidly synthesizing heteroatom containing zeolites including Sn-Beta, Si-Beta, Ti-Beta, Zr-Beta and Fe-Beta. The methods for synthesizing heteroatom zeolites include using well-crystalline zeolite crystals as seeds and using a fluoride-free, caustic medium in a seeded dry-gel conversion method. The Beta zeolite catalysts made by the methods of the invention catalyze both isomerization and dehydration reactions.

  13. Processing of radioactive waste solution with zeolites. I. Thermal transformation of Na, Cs and Sr type zeolites

    Energy Technology Data Exchange (ETDEWEB)

    Kanno, T; Mimura, H; Kitamura, T [Tohoku Univ., Sendai (Japan). Research Inst. of Mineral Dressing and Metallurgy

    1976-08-01

    Thermal transformation of Na, Cs and Sr type zeolites were studied by means of differential thermal analysis (DTA), thermogravimetric analysis (TGA) and X-ray powder diffraction. Synthetic zeolites A, X and Y, synthetic mordenite (Zeolon) and natural mordenite were used in this study. Na type zeolites of A and X recrystallized to Nepheline (NaAlSiO/sub 4/) above 1,000/sup 0/C, but the structures of zeolite Y and mordenite collapsed above about 900/sup 0/C and did not recrystallize until 1,200/sup 0/C. Cs type zeolites of A and X recrystallized to pollucite (CsAlSi/sub 2/O/sub 6/) above 1,000/sup 0/C and Cs type of zeolite Y recrystallized to it above 1,100/sup 0/C, but the structure of mordenite collapsed above 1,000/sup 0/C and did not recrystallize until 1,200/sup 0/C. On Sr type zeolites, zeolite A and X recrystallized to strontium aluminosilicate (SrAl/sub 2/Si/sub 2/O/sub 8/) above 1,100/sup 0/C and zeolite Y recrystallized to it above 1,200/sup 0/C, but the structure of mordenite collapsed above 1,000/sup 0/C. The results described above were supported by microscopic observation and the measurement of density. If this solidifications by calcination of zeolites are further studied, new informations concerning the fixation of Cs and Sr will be obtained.

  14. Structure–Property Relationships of Inorganically Surface-Modified Zeolite Molecular Sieves for Nanocomposite Membrane Fabrication

    KAUST Repository

    Lydon, Megan E.; Unocic, Kinga A.; Bae, Tae-Hyun; Jones, Christopher W.; Nair, Sankar

    2012-01-01

    A multiscale experimental study of the structural, compositional, and morphological characteristics of aluminosilicate (LTA) and pure-silica (MFI) zeolite materials surface-modified with MgO xH y nanostructures is presented. These characteristics

  15. Salt-occluded zeolite waste forms: Crystal structures and transformability

    International Nuclear Information System (INIS)

    Richardson, J.W. Jr.

    1996-01-01

    Neutron diffraction studies of salt-occluded zeolite and zeolite/glass composite samples, simulating nuclear waste forms loaded with fission products, have revealed complex structures, with cations assuming the dual roles of charge compensation and occlusion (cluster formation). These clusters roughly fill the 6--8 angstrom diameter pores of the zeolites. Samples are prepared by equilibrating zeolite-A with complex molten Li, K, Cs, Sr, Ba, Y chloride salts, with compositions representative of anticipated waste systems. Samples prepared using zeolite 4A (which contains exclusively sodium cations) as starting material are observed to transform to sodalite, a denser aluminosilicate framework structure, while those prepared using zeolite 5A (sodium and calcium ions) more readily retain the zeolite-A structure. Because the sodalite framework pores are much smaller than those of zeolite-A, clusters are smaller and more rigorously confined, with a correspondingly lower capacity for waste containment. Details of the sodalite structures resulting from transformation of zeolite-A depend upon the precise composition of the original mixture. The enhanced resistance of salt-occluded zeolites prepared from zeolite 5A to sodalite transformation is thought to be related to differences in the complex chloride clusters present in these zeolite mixtures. Data relating processing conditions to resulting zeolite composition and structure can be used in the selection of processing parameters which lead to optimal waste forms

  16. Ammonium removal from high-strength aqueous solutions by Australian zeolite

    DEFF Research Database (Denmark)

    Wijesinghe, D. Thushari N; Dassanayake, Kithsiri B.; Sommer, Sven G.

    2016-01-01

    Removal of ammonium nitrogen (NH4 +-N) particularly from sources which are highly rich in nitrogen is important for addressing environmental pollution. Zeolites, aluminosilicate minerals, are commonly used as commercial adsorbents and ion-exchange medium in number of commercial applications due...... to its high adsorption capacity of ammonium (NH4 +). However, detailed investigations on NH4 + adsorption and ion exchange capacities of Australian natural zeolites are rare, particularly under higher NH4 + concentrations in the medium. Therefore, this study was conducted to determine NH4 + adsorption...... characteristics of Australian natural zeolites at high NH4 + concentrations with and without other chemical compounds in an aqueous solution. Results showed that initial NH4 + concentration, temperature, reaction time, and pH of the solution had significant effects on NH4 + adsorption capacity of zeolite...

  17. Densification of salt-occluded zeolite a powders to a leach-resistant monolith

    International Nuclear Information System (INIS)

    Lewis, M.A.; Fischer, D.F.; Murhpy, C.D.

    1993-01-01

    Pyrochemical processing of spent fuel from the Integral Fast Reactor (IFR) yields a salt waste of LiCl-KCl that contains approximately 6 wt% fission products, primarily as CsCl and SrCl 2 . Past work has shown that zeolite A will preferentially sorb cesium and strontium and will encapsulate the salt waste in a leach-resistant, radiation-resistant aluminosilicate matrix. However, a method is sill needed to convert the salt-occluded zeolite powders into a form suitable for geologic disposal. We are thus investigating a method that forms bonded zeolite by hot pressing a mixture of glass frit and salt-occluded zeolite powders at 990 K (717 degree C) and 28 MPa. The leach resistance of the bonded zeolite was measured in static leach tests run for 28 days in 363 K (90 degree C) deionized water. Normalized release rates of all elements in the bonded zeolite were low, 2 d. Thus, the bonded zeolite may be a suitable waste form for IFR salt waste

  18. Magnetic zeolites a and p synthesized from kaolin: synthesis and characterization

    Energy Technology Data Exchange (ETDEWEB)

    Bessa, R.A.; Oliveira, C.P.; Nascimento, R.F.; Bohn, F.; Loiola, A.R. [Universidade Federal do Ceara (UFCE), CE (Brazil)

    2016-07-01

    Full text: Zeolites are hydrated aluminosilicates of open chain, formed by silica and alumina tetrahedral structures linked by common oxygen atoms, generating interconnected pores and cages with molecular dimensions and well defined sizes that limit matter transference between internal surface and application medium. They can be found naturally or synthesized using different aluminum and silicon sources that may modify the produced zeolite. Their industrial application has grown enormously over the last century. However, a big issue that still remains is the difficulty in retrieving zeolite powders when used in aqueous media. This work reports the use of kaolin as an alternative raw material for zeolite syntheses by means of hydrothermal route and subsequent preparation of magnetic composites through magnetite impregnation. The syntheses of two different zeolites were carried out by mixing appropriate amounts of metakaolin (kaolin previously calcined at 600 deg C for 2 h), sodium metasilicate and sodium hydroxide solution, aged for 18 h and heated at 100 °C for 4-48 h. After these processes, the final materials were washed several times with distilled water, filtered and dried at 80 deg C for 12 h. Magnetic composites were prepared by impregnating the zeolites with of Fe3O4 nanoparticles (NP) synthesized by the partial oxidation and precipitation of Fe2+ ions. The obtained materials were characterized by X-ray diffraction, scanning electron microscopy, FTIR spectroscopy and magnetization measurements. The results of XRD and FTIR provide evidence of the success in the synthesis of both zeolites A and P as well as Fe3O4. Subsequently, composites were formed by mixtures of zeolite A + NP and zeolite P + NP. The existence of secondary crystalline phases was also confirmed. However, it did not interfered significantly in the results as these phases appear as minor amounts and are most likely residues from the clay used as the main silica and alumina sources. Scanning

  19. Kinetics and thermodynamic for sorption of arsenate by Lanthanum-exchanged zeolite

    International Nuclear Information System (INIS)

    Mohd Jelas Haron; Saiful Adli Masdan; Mohd Zobir Hussein; Zulkarnain Zainal; Anuar Kassim

    2007-01-01

    Zeolites are crystalline, hydrated aluminosilicate containing exchangeable alkaline and alkaline earth cations in their structural frameworks. Since zeolites have permanent negative charges on their surfaces, they have no affinity for anions. However recent studies have shown that modification of zeolites with certain surfactants or metal cations yield sorbents with a strong affinity for many anions. In this paper, modification of zeolites (zeolite A, X and ZSM5) were performed by exchange of naturally occurring cations with lanthanum ion that forms low solubility arsenate salt. The exchanged zeolites were used to sorb arsenate from aqueous solution. Among parameters investigated were effect of pH, arsenate initial concentrations, contact time and temperature. The maximum exchanged capacity of La (III) ion was obtained when using solution with initial pH of 4. Zeolite X gives the highest La (III) exchanged capacity compared to other zeolites. The results showed that As (V) sorption by La-zeolites occurred at about pH 6.5 and increased as pH increased and reaching maximum at equilibrium pH about 7.8. On the other hand, almost no arsenate sorption occurred on un exchanged zeolites. This indicates that La (III) ion on the exchanged zeolites is taking part on the As(V) sorption via surface precipitation. The results also showed that the sorption capacities increased with increasing initial As (V) concentrations. The sorption followed Langmuir model with maximum sorption capacities of 0.41, 0.21 and 0.19 mmol/g at 25 degree Celsius for La exchanged zeolite X (La-ZX), La exchanged zeolite ZSM5 (La-ZSM) and La exchanged zeolite A (La-ZA), respectively. The amounts of sorption of As (V) by La exchanged zeolite increased as temperature increased from 25 to 70 degree Celsius indicating that the process is endothermic. The free energy changes ( ΔG degree) for the sorption at 25 degree Celsius were -10.25, -9.65 and -8.49 kJ/ mol for La-ZX, La-ZSM and La-ZA, respectively. The

  20. Zeolite food supplementation reduces abundance of enterobacteria.

    Science.gov (United States)

    Prasai, Tanka P; Walsh, Kerry B; Bhattarai, Surya P; Midmore, David J; Van, Thi T H; Moore, Robert J; Stanley, Dragana

    2017-01-01

    According to the World Health Organisation, antibiotics are rapidly losing potency in every country of the world. Poultry are currently perceived as a major source of pathogens and antimicrobial resistance. There is an urgent need for new and natural ways to control pathogens in poultry and humans alike. Porous, cation rich, aluminosilicate minerals, zeolites can be used as a feed additive in poultry rations, demonstrating multiple productivity benefits. Next generation sequencing of the 16S rRNA marker gene was used to phylogenetically characterize the fecal microbiota and thus investigate the ability and dose dependency of zeolite in terms of anti-pathogenic effects. A natural zeolite was used as a feed additive in laying hens at 1, 2, and 4% w/w for a 23 week period. At the end of this period cloacal swabs were collected to sample faecal microbial communities. A significant reduction in carriage of bacteria within the phylum Proteobacteria, especially in members of the pathogen-rich family Enterobacteriaceae, was noted across all three concentrations of zeolite. Zeolite supplementation of feed resulted in a reduction in the carriage of a number of poultry pathogens without disturbing beneficial bacteria. This effect was, in some phylotypes, correlated with the zeolite concentration. This result is relevant to zeolite feeding in other animal production systems, and for human pathogenesis. Copyright © 2016 Elsevier GmbH. All rights reserved.

  1. Effects of ultrasonic treatment on zeolite NaA synthesized from by-product silica.

    Science.gov (United States)

    Vaičiukynienė, Danutė; Kantautas, Aras; Vaitkevičius, Vitoldas; Jakevičius, Leonas; Rudžionis, Žymantas; Paškevičius, Mantas

    2015-11-01

    The synthesis of zeolite NaA from silica by-product was carried out in the presence of 20 kHz ultrasound at room temperature. Zeolites obtained in this type of synthesis were compared to zeolites obtained by performing conventional static syntheses under similar conditions. The sonication effects on zeolite NaA synthesis were characterized by phase identification, crystallinity etc. The effects of different parameters such as crystallization time and initial materials preparation methods on the crystallinity and morphology of the synthesized zeolites were investigated. The final products were characterized by XRD and FT-IR. It was possible to obtain crystalline zeolite NaA from by-product silica in the presence of ultrasound. Copyright © 2015 Elsevier B.V. All rights reserved.

  2. Na-noparticles of activated natural zeolite on textiles for protection and therapy

    Directory of Open Access Journals (Sweden)

    Ivančica Kovaček

    2009-10-01

    Full Text Available Activated natural zeolite clinoptilolite is microporous hydrated aluminosilicates crystals with well-defined structures containing AlO4 and SiO4 tetrahedral linked through the common oxygen atoms. It is to point out that zeolites act as strong adsorbents and ion-exchangers but having many other useful properties. Due to its cationexchange ability, zeolites have catalytic properties and, for that, multiple uses in medicine and industry, agriculture, water purification and detergents. Zeolites are nontoxic substance, excellent for UVR and microbes protection, for proteins and small molecules such as glucose adsorption. In this paper its positive effect on the metabolism of living organisms and its anticancerogenic, antiviral, antimetastatic and antioxidant effect. The activity of natural zeolite as natural immunostimulator was presented as well as its help in healing wounds. Therefore, the present paper is an attempt to modify cotton (by mercerization and polyester (by alkaline hydrolysis fabrics for summer clothing with addition of natural zeolite nanoparticles for achieving UV and antibacterial protective textiles

  3. Determination of the bulk modulus of hydroxycancrinite, a possible zeolitic precursor in geopolymers, by high-pressure synchrotron X-ray diffraction

    KAUST Repository

    Oh, Jae Eun

    2011-11-01

    Crystalline zeolitic materials, such as hydroxycancrinite, hydroxysodalite, herschelite and nepheline, are often synthesized from geopolymerization using fly-ash and solutions of NaOH at high temperatures. Comprised mainly of 6-membered aluminosilicate rings that act as basic building units, their crystal structures may provide insight into the reaction products formed in NaOH-activated fly ash-based geopolymers. Recent research indicates that the hydroxycancrinite and hydroxysodalite may play an important role as possible analogues of zeolitic precursor in geopolymers. Herein is reported a high pressure synchrotron study of the behavior of hydroxycancrinite exposed to pressures up to 6.1 GPa in order to obtain its bulk modulus. A refined equation of state for hydroxycancrinite yielded a bulk modulus of Ko = 46 ± 5 GPa (assuming Ko′ = 4.0) for a broad range of applied pressure. When low pressure values are excluded from the fit and only the range of 2.5 and 6.1 GPa is considered, the bulk modulus of hydroxycancrinite was found to be Ko = 46.9 ± 0.9 GPa (Ko′ = 4.0 ± 0.4, calculated). Comparison with the literature shows that all zeolitic materials possessing single 6-membered rings (i.e., hydroxycancrinite, sodalite and nepheline) have similar bulk moduli. © 2011 Elsevier Ltd. All rights reserved.

  4. Characterization and Design of Zeolite Catalysts Solid Acidity, Shape Selectivity and Loading Properties

    CERN Document Server

    Niwa, Miki; Okumura, Kazu

    2010-01-01

    Zeolites are microporous, aluminosilicate minerals commonly used as commercial adsorbents. Zeolite-based catalysts are used by industrial chemical companies in the interconversion of hydrocarbons and the alkylation of aromatic compounds. The current book deals with the characterization of specific properties of Zeolites and calculations for the design of catalysts. Measurements and utilization of solid acidity, shape selectivity, and loading properties, that are three prominent properties of a Zeolite catalyst, are treated in detail. These features concern chemical vapor deposition of silica, shape selectivity, loading properties, solid activity, Brønsted or Lewis character, ammonia temperature programmed desorption, control of the pore-opening size by chemical vapor deposition of silica and XAFS analysis of metals being highly dispersed inside and outside a framework.

  5. Aluminum-rich mesoporous MFI - type zeolite single crystals

    DEFF Research Database (Denmark)

    Kustova, Marina; Kustov, Arkadii; Christensen, Christina Hviid

    2005-01-01

    Zeolitcs are crystalline materials, which are widely used as solid acid catalysts and supports in many industrial processes. Recently, mesoporous MFI-type zeolite single crystals were synthesized by use of carbon particles as a mesopore template and sodium aluminate as the aluminum Source....... With this technique, only zeolites with relatively low Al contents were reported (Si/Al ratio about 100). In this work, the preparation of aluminum-rich mesoporous MFI-type zeolite single crystals (Si/Al similar to 16-50) using aluminum isopropoxide as the aluminum Source is reported for the first time. All samples...... are characterized by X-ray powder diffraction (XRD), scanning electron microscopy (SEM), ammonia temperature programmed desorption (NH3-TPD), and N-2 adsorption measurements. The obtained zeolites combine the high crystallinity and the characteristic micropores of zeolites with an intracrystalline mesopore system...

  6. Les zéolithes comme catalyseurs "verts" pour la synthèse organique : de leur synthèse à façon à leurs applications en chimie organique

    OpenAIRE

    Bernardon , Claire

    2016-01-01

    Zeolites are crystalline porous aluminosilicates and useful heterogeneous catalysts in chemical industries. They represent one of the significant solutions to main environmental concerns. Thanks to their particular properties like shape selectivity and intrinsic acidities of Lewis and Brønsted, zeolites offer unbeatable abilities in organic synthesis. More than 230 structures have already been discovered, which afford thousands discovery and offer a lot of possibilities.This work was focused ...

  7. Thermophysical properties of novel zeolite materials for sorption cycles

    KAUST Repository

    Thu, Kyaw

    2013-08-01

    his article discusses the thermophysical properties of zeolite-based adsorbents. Three types of zeolite (Z-01, Z-02 and Z-05) with different chemical compositions developed by Mitsubishi Plastics, Inc. are analyzed for possible applications in adsorption chillers and desalination cycles driven by low-temperature waste heat sources. The experiments are performed using static volumetric method with N2 gas sorption at 77 K. Thermophysical properties such as pore surface area, micropore volume and pore size distribution are evaluated using standard multipoint Brunauer-Emmett-Teller (BET) and Non-Local Density Functional Theory (NLDFT) methods. It is observed that Aluminosilicate functionalized Z-02 exhibits the highest surface area with huge micropore volume. © (2013) Trans Tech Publications, Switzerland.

  8. Structural simulation of natural zeolites

    International Nuclear Information System (INIS)

    Sanchez P, E.; Carrera G, L.M.

    1997-01-01

    The application of X-ray diffraction (XRD) in the study of crystalline structures of the natural and modified zeolites allows the identification, lattice parameter determination and the crystallinity grade of the sample of interest. Until two decades ago, simulation methods of X-ray diffraction patterns were developed with which was possible to do reliable determinations of their crystalline structure. In this work it is presented the first stage of the crystalline structure simulation of zeolitic material from Etla, Oaxaca which has been studied for using it in the steam production industry and purification of industrial water. So that the natural material was modified for increasing its sodium contents and this material in its turn was put in contact with aqueous solutions of Na, Mg and Ca carbonates. All the simulations were done with the Lazy-Pulverix method. The considered phase was clinoptilolite. It was done the comparison with three clinoptilolite reported in the literature. (Author)

  9. Hydrocarbon conversion with cracking catalyst having co-combustion promoters lanthanum and iron

    International Nuclear Information System (INIS)

    Csicsery, S.M.

    1979-01-01

    A composition useful in hydrocarbon conversion processes such as catalytic cracking comprises 0.05 to 10 weight percent lanthanum associated with a refractory support. The composition may also include 0.02 to 10 weight percent iron. The refractory support is a zeolitic crystalline aluminosilicate

  10. Electron irradiation of zeolites

    International Nuclear Information System (INIS)

    Wang, S.X.; Wang, L.M.; Ewing, R.C.

    1999-01-01

    Three different zeolites (analcime, natrolite, and zeolite-Y) were irradiated with 200 keV and 400 keV electrons. All zeolites amorphized under a relatively low electron fluence. The transformation from the crystalline-to-amorphous state was continuous and homogeneous. The electron fluences for amorphization of the three zeolites at room temperature were: 7.0 x 10 19 e - /cm 2 (analcime), 1.8 x 10 20 e - /cm 2 (natrolite), and 3.4 x 10 20 e - /cm 2 (zeolite-Y). The different susceptibilities to amorphization are attributed to the different channel sizes in the structures which are the pathways for the release of water molecules and Na + . Natrolite formed bubbles under electron irradiation, even before complete amorphization. Analcime formed bubbles after amorphization. Zeolite-Y did not form bubbles under irradiation. The differences in bubble formation are attributed to the different channel sizes of the three zeolites. The amorphization dose was also measured at different temperatures. An inverse temperature dependence of amorphization dose was observed for all three zeolites: electron dose for amorphization decreased with increasing temperature. This unique temperature effect is attributed to the fact that zeolites are thermally unstable. A semi-empirical model was derived to describe the temperature effect of amorphization in these zeolites

  11. Modificação de zeólitas para uso em catálise Modifying zeolites for use in catalysis

    Directory of Open Access Journals (Sweden)

    Fernando J. Luna

    2001-12-01

    Full Text Available The use of zeolites and other molecular sieves as catalysts is discussed at an introductory level. The text includes a brief historic background on the use of zeolites in catalysis, and a discussion of some chemical and physical properties of silicalite, aluminosilicate, and aluminophosphate molecular sieves. The strategies currently used to chemically modify zeolites and related materials to produce catalysts with increased activity and selectivity are discussed, including the use of redox molecular sieves for hydrocarbon oxidation and the leaching of the active metals from the support.

  12. Catalytic pyrolysis using UZM-39 aluminosilicate zeolite

    Science.gov (United States)

    Nicholas, Christpher P; Boldingh, Edwin P

    2013-12-17

    A new family of coherently grown composites of TUN and IMF zeotypes has been synthesized and show to be effective catalysts for catalytic pyrolysis of biomass. These zeolites are represented by the empirical formula. Na.sub.nM.sub.m.sup.n+R.sub.rQ.sub.qAl.sub1-xE.sub.xSi.sub.yO.s- ub.z where M represents zinc or a metal or metals from Group 1, Group 2, Group 3 or the lanthanide series of the periodic table, R is an A,.OMEGA.-dihalosubstituted paraffin such as 1,4-dibromobutane, Q is a neutral amine containing 5 or fewer carbon atoms such as 1-methylpyrrolidine and E is a framework element such as gallium. The process involves contacting a carbonaceous biomass feedstock with UZM-39 at pyrolysis conditions to produce pyrolysis gases comprising hydrocarbons. The catalyst catalyzes a deoxygenation reaction converting oxygenated hyrdocarbons into hydrocarbons removing the oxygen as carbon oxides and water. A portion of the pyrolysis gases is condensed to produce low oxygen biomass-derived pyrolysis oil.

  13. Dissolution of crystalline ceramics

    International Nuclear Information System (INIS)

    White, W.B.

    1982-01-01

    The present program objectives are to lay out the fundamentals of crystalline waste form dissolution. Nuclear waste ceramics are polycrystalline. An assumption of the work is that to the first order, the release rate of a particular radionuclide is the surface-weighted sum of the release rates of the radionuclide from each crystalline form that contains it. In the second order, of course, there will be synergistic effects. There will be also grain boundary and other microstructural influences. As a first approximation, we have selected crystalline phases one at a time. The sequence of investigations and measurements is: (i) Identification of the actual chemical reactions of dissolution including identification of the solid reaction products if such occur. (ii) The rates of these reactions are then determined empirically to give what may be called macroscopic kinetics. (iii) Determination of the rate-controlling mechanisms. (iv) If the rate is controlled by surface reactions, the final step would be to determine the atomic kinetics, that is the specific atomic reactions that occur at the dissolving interface. Our concern with the crystalline forms are in two areas: The crystalline components of the reference ceramic waste form and related ceramics and the alumino-silicate phases that appear in some experimental waste forms and as waste-rock interaction products. Specific compounds are: (1) Reference Ceramic Phases (zirconolite, magnetoplumbite, spinel, Tc-bearing spinel and perovskite); (2) Aluminosilicate phases (nepheline, pollucite, CsAlSi 5 O 12 , Sr-feldspar). 5 figures, 1 table

  14. Picosecond infrared activation of methanol in acid zeolites

    NARCIS (Netherlands)

    Bonn, Miacha; van Santen, Rutger A.; Lercher, J.A.; Kleyn, Aart W.; Bakker, H.J.; Bakker, Huib J.

    1997-01-01

    Highly porous, crystalline zeolite catalysts are used industrially to catalyze the conversion of methanol to gasoline. We have performed a picosecond spectroscopic study providing insights into both the structure and the dynamics of methanol adsorbed to acid zeolites. We reveal the adsorption

  15. Atmospheric Pressure Plasma Jet-Assisted Synthesis of Zeolite-Based Low-k Thin Films.

    Science.gov (United States)

    Huang, Kai-Yu; Chi, Heng-Yu; Kao, Peng-Kai; Huang, Fei-Hung; Jian, Qi-Ming; Cheng, I-Chun; Lee, Wen-Ya; Hsu, Cheng-Che; Kang, Dun-Yen

    2018-01-10

    Zeolites are ideal low-dielectric constant (low-k) materials. This paper reports on a novel plasma-assisted approach to the synthesis of low-k thin films comprising pure-silica zeolite MFI. The proposed method involves treating the aged solution using an atmospheric pressure plasma jet (APPJ). The high reactivity of the resulting nitrogen plasma helps to produce zeolite crystals with high crystallinity and uniform crystal size distribution. The APPJ treatment also remarkably reduces the time for hydrothermal reaction. The zeolite MFI suspensions synthesized with the APPJ treatment are used for the wet deposition to form thin films. The deposited zeolite thin films possessed dense morphology and high crystallinity, which overcome the trade-off between crystallinity and film quality. Zeolite thin films synthesized using the proposed APPJ treatment achieve low leakage current (on the order of 10 -8 A/cm 2 ) and high Young's modulus (12 GPa), outperforming the control sample synthesized without plasma treatment. The dielectric constant of our zeolite thin films was as low as 1.41. The overall performance of the low-k thin films synthesized with the APPJ treatment far exceed existing low-k films comprising pure-silica MFI.

  16. Syntheses, characterizations, and catalytic activities of mesostructured aluminophosphates with tailorable acidity assembled with various preformed zeolite nanoclusters

    KAUST Repository

    Suo, Hongri

    2015-02-25

    © 2015, Springer Science+Business Media New York. A series of ordered hexagonal mesoporous zeolites have been successfully synthesized by the assembly of various preformed aluminosilicates zeolite (MFI, FAU, BEA etc.) with surfactants (cetyltrimethylammonium chloride) under hydrothermal conditions. These unique samples were further characterized by X-ray diffraction, transmission electron microscopy, N2 adsorption, infrared spectroscopy. Characterization results showed that these samples contain primary and secondary structural building units of various zeolites, which may be responsible for their distinguished acidic strength, suggesting that the acidic strength of these mesoporous silicoaluminophosphates could be tailored and controlled. Furthermore, the prepared samples were catalytically active in the cracking of cumene.

  17. Applications of high resolution NMR to geochemistry: crystalline, glass, and molten silicates

    International Nuclear Information System (INIS)

    Schneider, E.

    1985-11-01

    The nuclear spin interactions and the associated quantum mechanical dynamics which are present in solid state NMR are introduced. A brief overview of aluminosilicate structure is presented and crystalline structure is then reviewed, with emphasis on the contributions made by 29 Si NMR spectroscopy. The local structure of glass aluminosilicates as observed by NMR, is presented with analysis of the information content of 29 Si spectra. A high-temperature (to 1300 0 C) NMR spectroscopic investigation of the local environment and dynamics of molecular motion in molten aluminosilicates is described. A comparison is made of silicate liquid, glass, and crystalline local structure. The atomic and molecular motions present in a melt are investigated through relaxation time (T 1 and T 2 ) measurements as a function of composition and temperature for 23 Na and 29 Si

  18. Formation and stability of aluminosilicate colloids by coprecipitation

    Energy Technology Data Exchange (ETDEWEB)

    Putri, Kirana Yuniati

    2011-02-15

    Colloids are ubiquitous in natural waters. Colloid-facilitated migration is of importance in safety assessment of a nuclear waste disposal. Aluminosilicate colloids are considered to be the kernel of aquatic colloids. Their stability is affected by a number of geochemical parameters. This work aims to study qualitatively and quantitatively the stability of aluminosilicate colloids formed by coprecipitation under various geochemical conditions, i.e. pH, concentration of Al and Si metal ions, ionic strength, and omnipresent cations (Na{sup +}, Ca{sup 2+}, and Mg{sup 2+}). The work is performed by colorimetric method and laser-induced breakdown detection (LIBD). Two consecutive phase separations at 450 nm and 1 kDa are applied to separate the precipitates and colloids from the ionic species. By means of colorimetry, Si and Al can be detected down to 5.8 x10{sup -8} M and 7.4x10{sup -7} M, respectively. On the other hand, LIBD is able to quantify the colloidal size and its number density down to several ppt. Depending on the concentration of Al and Si metal ions, the formation trend of aluminosilicate colloid changes following its solubility curve. The lower the concentration, the higher the pH range in which the colloids start to emerge. Furthermore, the colloids are stable at higher Al and Si concentration and at low ionic strength. In the low pH range, cations provide different effects at low and high ionic strengths. At high ionic strength, the colloids are stable in the presence of a larger cation, while all cations exhibit similar effects at low ionic strength. However, in the high pH range, valence seems to have a stronger effect than ionic radius; colloids are more stable in the presence of monovalent cations than divalent ones. Meanwhile, XRD shows non- and/or poor crystalline structure of the aluminosilicate species. Nevertheless, results from XPS may suggest that the chemical composition (Si/Al ∼ 0.6) of the aluminosilicate precipitates is sillimanite or

  19. Enhanced catalytic oxidation by hierarchically structured TS-1 zeolite

    NARCIS (Netherlands)

    Xin, H.; Zhao, Jiao; Zhao, J.; Xu, S.; Li, Junping; Zhang, Weiping; Guo, X.; Hensen, E.J.M.; Yang, Q.; Li, Can

    2010-01-01

    A TS-1 zeolite with a disordered network of mesopores penetrating the microporous crystalline zeolite framework was successfully synthesized by a one-pot carbon hard-templating synthesis approach. Besides conventional methods to characterize the mesoporosity, the use of variable-temperature 129Xe

  20. Hydrothermally grown zeolite crystals

    International Nuclear Information System (INIS)

    Durrani, S.K.; Qureshi, A.H.; Hussain, M.A.; Qazi, N.K.

    2009-01-01

    The aluminium-deficient and ferrosilicate zeolite-type materials were synthesized by hydrothermal process at 150-170 degree C for various periods of time from the mixtures containing colloidal reactive silica, sodium aluminate, sodium hydroxide, iron nitrate and organic templates. Organic polycation templates were used as zeolite crystal shape modifiers to enhance relative growth rates. The template was almost completely removed from the zeolite specimens by calcination at 550 degree C for 8h in air. Simultaneous thermogravimetric (TG) and differential thermal analysis (DTA) was performed to study the removal of water molecules and the amount of organic template cations occluded inside the crystal pore of zeolite framework. The 12-13% weight loss in the range of (140-560 degree C) was associated with removal of the (C/sub 3/H/sub 7/)/sub 4/ N+ cation and water molecules. X-ray diffraction (XRD) analysis and scanning electron microscope (SEM) techniques were employed to study the structure, morphology and surface features of hydrothermally grown aluminium-deficient and ferrosilicate zeolite-type crystals. In order to elucidate the mode of zeolite crystallization the crystallinity and unit cell parameters of the materials were determined by XRD, which are the function of Al and Fe contents of zeolites. (author)

  1. Applications of high resolution NMR to geochemistry: crystalline, glass, and molten silicates

    Energy Technology Data Exchange (ETDEWEB)

    Schneider, E.

    1985-11-01

    The nuclear spin interactions and the associated quantum mechanical dynamics which are present in solid state NMR are introduced. A brief overview of aluminosilicate structure is presented and crystalline structure is then reviewed, with emphasis on the contributions made by /sup 29/Si NMR spectroscopy. The local structure of glass aluminosilicates as observed by NMR, is presented with analysis of the information content of /sup 29/Si spectra. A high-temperature (to 1300/sup 0/C) NMR spectroscopic investigation of the local environment and dynamics of molecular motion in molten aluminosilicates is described. A comparison is made of silicate liquid, glass, and crystalline local structure. The atomic and molecular motions present in a melt are investigated through relaxation time (T/sub 1/ and T/sub 2/) measurements as a function of composition and temperature for /sup 23/Na and /sup 29/Si.

  2. PREPARATION, CHARACTERIZATIONS AND MODIFICATION OF Ni-Pd/NATURAL ZEOLITE CATALYSTS

    Directory of Open Access Journals (Sweden)

    Wega Trisunaryanti

    2010-06-01

    Full Text Available Preparation, and modification of Ni-Pd/natural zeolite as well as their characterizations had been carried out. The aim of this research for the fututure is to prepare the best characters catalyst for the conversion of waste plastics fraction to gasoline fraction (C5-C12 hydrocarbons. The preparation of catalysts was performed by reacting a natural zeolite with the precursor of Ni(NO32. 9H2O and PdCl2 in an ammonia solution (25%. The modifications were performed by varying the rasio of Ni/Pd loaded to the zeolite, whereas the Pd was previously loaded and total metal content was 1 wt.% based on the zeolite. The characterization of catalysts included determination of acidity gravimetrically by adsorption of ammonia or pyridine vapour  base method, metal content by Atomic Adsorption Spectrophotometer (AAS and X-ray Fluoresence (XRF and crystallinity by X-ray Diffraction (XRD. The treatment of catalysts using Etilene Diamine Tetra Acetic acid  (EDTA was performed to study the metal distribution on the outer or inner surface of the zeolite. The characterization results showed that the loading of metals to the zeolite increased its acidity and decreased its spesific surface area, however, did not defect its crystallnity.  The metals loaded on the zeolite were distributed inside the pore and at outer surface of the zeolite. For all catalyst samples, the acidities determined using ammonia were higher than those of pyridine, and the acidities determined before the EDTA treatment was lower than those after the treatment.  Metal contents of the zeolite before the EDTA treatment were higher than those after the treatment. The EDTA treatment enhanced the crystallinity of the sampel. The relationship between the metal rasio towards the acidity of the catalyst samples were in variation. Catalyst samples produced in this research have good characters, thus promisingly can be used for conversion process of waste plastics to gasoline fraction.    Keywords

  3. Characterization of Mexican zeolite minerals

    International Nuclear Information System (INIS)

    Jimenez C, M.J.

    2005-01-01

    50% of the Mexican territory is formed by volcanic sequences of the Pliocene type, which appear extensively in the northwest states (Sonora, Sinaloa, Chihuahua, Durango) and west of Mexico (Jalisco and Nayarit), in central Mexico (Zacatecas, Guanajuato, San Luis Potosi, Queretaro, Hidalgo) and south of Mexico (Guerrero, Oaxaca); therefore, it is to be expected that in our country big locations of natural zeolites exist in its majority of the clinoptilolite type. The present study was focused toward the characterization of two Mexican natural zeolite rocks presumably of the clinoptilolite and filipsite types, one of them comes from the state of Chihuahua and the other of a trader company of non metallic minerals, due that these materials are not characterized, its are not known their properties completely and therefore, the uses that can be given to these materials. In this investigation work it was carried out the characterization of two Mexican zeolite rocks, one coming from the Arroyo zone, municipality of La Haciendita, in the state of Chihuahua; and the other one was bought to a trader company of non metallic minerals. The two zeolites so much in their natural form as conditioned with sodium; they were characterized by means of X-ray diffraction, scanning electron microscopy of high vacuum and elementary microanalysis (EDS), surface area analysis (BET), thermal gravimetric analysis. To differentiate the heulandite crystalline phase of the other clinoptilolite rock, its were carried out thermal treatments. The quantification of Al, Na, Ca, K, Mg, Fe was carried out in solution, by means of atomic absorption spectroscopy and the quantity of Si was determined by gravimetry. The zeolite rocks presented for the major part the crystalline heulandite and clinoptilolite phases for the most part, and it was found that the zeolite coming from the state of Chihuahua possesses a bigger content of heulandite and the denominated filipsite it is really a zeolite

  4. Behavior of fluorine 18 in neutron irradiated zeolites

    International Nuclear Information System (INIS)

    Estevez Lopez, D.R.

    1992-01-01

    The transformation of Li-exchanged H-Y zeolite has been investigated at 300, 550, 850 and 1050 Centigrade degree, formation of quartz structure in addition to an amorphous phase, was nited. The Li-aluminosilicate obtained was neutron irradiated and the chemical behavior of 18 F produced by the reaction sequence 6 Li (n, α) 3 H, 16 O ( 3 H, n) 18 F, was studied. The neutron irradiated material was purged with argon-hydron gas streams. It was found that the amount of released 18 F depends on the temperature used (Author)

  5. Sorption of Fe3+ , Co2+ , Ce3+ , Cs+ and Ba2+ in zeolite X

    International Nuclear Information System (INIS)

    Martinez M, V.

    1994-01-01

    The sorption behavior of Fe 3+ , Co 2+ , Ce 3+ , Cs + , and Ba 2+ in aqueous solutions, was studied in presence of zeolite X. Solutions of Fe(NO 3 ) 3 . 9 H 2 O, Co(NO 3 ) 2 . 6 H 2 O, Ce(NO 3 ) 3 . 6 H 2 O, Cs NO 3 and Ba(NO 3 ) 2 were labelled with the respectively radioactive isotopes Fe 59 , Co 60 , Cs 134 , Ba 139 and Ce 141 . 20 ml. of each solution was left in contact with 200 mg. of zeolite for different periods. Later the zeolites were separated by centrifugation from the aqueous solutions and the radioactivity of the aqueous phases was measured with a NaI(Tl) solid-state well detector coupled to a single-channel Picker analyzer or with a Gel hyper pure solid-state detector coupled to a 2048 channel pulse height analyzer. When Cs + in the aqueous solutions was left in contact with zeolite X it was found that it does not occupy all cationic sites in the zeolite due to the ionic radium effect. A similar behavior was found for the divalent ions. In all cases, when the pH was not controlled, the zeolite lost part of its crystallinity and when the divalent ions were exchanged again by Na + , the zeolite recovered completely its crystallinity. During the sorption, the ionic radius, and the charge are important parameters as well as the pH. When the pH of the solution was adjusted between 6.5 - 7.0 the crystallinity was maintained in some cases. For Fe 3+ the crystallinity after the ion exchange was 94 % and when the pH was not adjusted the crystallinity was completely lost. It was found as well that the zeolite X induces the formation of H 3 O + which competes with the cations for the sites in the zeolite. (Author)

  6. Selective preparation of zeolite X and A from flyash and its use as catalyst for biodiesel production

    Energy Technology Data Exchange (ETDEWEB)

    Volli, Vikranth; Purkait, M.K., E-mail: mihir@iitg.ernet.in

    2015-10-30

    Highlights: • Flyash was utilized for zeolites preparation for transesterification. • Single phase and highly crystalline zeolite was obtained at flyash/NaOH ratio of 1:1.2. • Si/Al ratio of 2 resulted in the formation of zeolite X. • At 5 wt% of catalyst loading conversion was 84.6%. • The biodiesel obtained has a calorific value of 37.5 MJ/Kg. - Abstract: This work discusses the utilization of flyash for synthesis of heterogeneous catalyst for transesterification. Different types of zeolites were synthesized from alkali fusion followed by hydrothermal treatment of coal flyash as source material. The synthesis conditions were optimized to obtain highly crystalline zeolite based on degree of crystallinity and cation exchange capacity (CEC). The effect of CEC, acid treatment, Si/Al ratio and calcination temperature (800, 900 and 1000 °C) on zeolite formation was also studied. Pure, single phase and highly crystalline zeolite was obtained at flyash/NaOH ratio (1:1.2), fusion temperature (550 °C), fusion time (1 h), hydrothermal temperature (110 °C) and hydrothermal time (12 h). The synthesized zeolite was ion-exchanged with potassium and was used as catalyst for transesterification of mustard oil to obtain a maximum conversion of 84.6% with 5 wt% catalyst concentration, 12:1 methanol to oil molar ratio, reaction time of 7 h at 65 °C. The catalyst was reused for 3 times with marginal reduction in activity.

  7. Antibacterial properties of Ag-exchanged Philippine natural zeolite-chitosan composites

    Science.gov (United States)

    Taaca, Kathrina Lois M.; Olegario, Eleanor M.; Vasquez, Magdaleno R.

    2017-12-01

    Zeolites are microporous minerals composed of silicon, aluminum and oxygen. These aluminosilicates consist of tetrahedral units which produce open framework structures to generate a system of pores and cavities of molecular dimensions. Zeolites are naturally abundant and can be mined in most parts of the world. In this study, natural zeolites (NaZ) which are locally-sourced here in the Philippines were investigated to determine its properties. An ion-exchange process was utilized, using the zeolite to silver (Ag) solution ratio of 1:20 (w/v), to incorporate Ag into the zeolite framework. Characterizations such as XRD, AAS, and Agar diffusion assay were used to evaluate the properties of the synthesized Ag-exchanged zeolites (AgZ). X-ray diffraction revealed that both NaZ and AgZ have peaks mostly corresponding to the clinoptilolite structure, with some trace peaks of the mordenite and quartz. Absorption spectroscopy revealed that the ion exchange process added about 0.61188g of silver into the zeolite structure. This Ag content was seen to be enough to make the AgZ sample exhibit an antibacterial effect where clearing zones against E. coli and S. aureus were observed in the agar diffusion assay, respectively. The AgZ sample was also tested as ceramic filler to a polymer matrix-chitosan. The diffusion assay revealed presence of antibacterial activity to the polymer composite with AgZ fillers. These results indicate that the Philippine natural zeolite, incorporated with metals such as Ag, can be used as an antibacterial agent and can be developed as a ceramic filler to improve the antibacterial property of composite materials for biomedical application.

  8. Small-angle neutron scattering studies of the template-mediated crystallization of ZSM-5 type zeolite

    International Nuclear Information System (INIS)

    Iton, L.E.; Brun, T.O.; Epperson, J.E.

    1988-03-01

    Small-angle neutron scattering is a useful new approach to the study of zeolite crystallization from aluminosilicate gels and the action of template molecules. It has been applied to gels for synthesis of zeolite ZSM-5 using tetrapropylammonium ions as templates where the scattering length densities of the gel particles and their texture were determined using contrast variation methods. Gels formulated from soluble silicate incorporate template molecules promptly into an amorphous ''embryonic'' structure and crystallization ensues via a solid hydrogel transformation mechanism. Gels formulated from colloidal silica show different scattering behavior, and a liquid phase transport mechanism is inferred. 8 refs., 4 figs., 2 tabs

  9. PHYSICAL, CHEMICAL AND STRUCTURAL EVOLUTIION OF ZEOLITE-CONTAINING WASTE FORMS PRODUCED FROM METAKAOLINITE AND CALCINED SODUIM BEARING WASTE (HLW AND/OR LLW)

    International Nuclear Information System (INIS)

    Grutzeck, Michael W.

    2004-01-01

    Zeolites are extremely versatile. They can adsorb liquids and gases and serve as cation exchange media. They occur in nature as well cemented deposits. The Romans used blocks of zeolitized tuff as a building material. Using zeolites for the management of radioactive waste is not new, but a process by which the zeolites can be made to act as a cementing agent is. Zeolitic materials are relatively easy to synthesize from a wide range of both natural and man-made precursors. The process under study is derived from a well known method in which metakaolin (thermally dehydroxylated kaolin a mixture of kaolinite and smaller amounts of quartz and mica that has been heated to ∼700 C) is mixed with sodium hydroxide (NaOH) and water and reacted in slurry form (for a day or two) at mildly elevated temperatures. The zeolites form as finely divided powders containing micrometer ((micro)m) sized crystals. However, if the process is changed slightly and just enough concentrated sodium hydroxide solution is added to the metakaolinite to make a thick paste and then the paste is cured under mild hydrothermal conditions (60-200 C), the mixture forms a concrete-like ceramic material made up of distinct crystalline tectosilicate minerals (zeolites and feldspathoids) imbedded in an X-ray amorphous hydrated sodium aluminosilicate matrix. Due to its vitreous character we have chosen to call this composite a ''hydroceramic''. Similar to zeolite powders, a hydroceramic is able to sequester cations in both lattice positions and within the channels and voids present in its tectosilicate framework structure. It can also accommodate a wide range of salt molecules (e.g., sodium nitrate) within these same openings thus rendering them insoluble. Due to its fine crystallite size and cementing character, the matrix develops significant physical strength. The obvious similarities between a hydroceramic waste form and a waste form based on solidified Portland cement grout are only superficial because

  10. High-aluminum-affinity silica is a nanoparticle that seeds secondary aluminosilicate formation.

    Directory of Open Access Journals (Sweden)

    Ravin Jugdaohsingh

    Full Text Available Despite the importance and abundance of aluminosilicates throughout our natural surroundings, their formation at neutral pH is, surprisingly, a matter of considerable debate. From our experiments in dilute aluminum and silica containing solutions (pH ~ 7 we previously identified a silica polymer with an extraordinarily high affinity for aluminium ions (high-aluminum-affinity silica polymer, HSP. Here, further characterization shows that HSP is a colloid of approximately 2.4 nm in diameter with a mean specific surface area of about 1,000 m(2 g(-1 and it competes effectively with transferrin for Al(III binding. Aluminum binding to HSP strongly inhibited its decomposition whilst the reaction rate constant for the formation of the β-silicomolybdic acid complex indicated a diameter between 3.6 and 4.1 nm for these aluminum-containing nanoparticles. Similarly, high resolution microscopic analysis of the air dried aluminum-containing silica colloid solution revealed 3.9 ± 1.3 nm sized crystalline Al-rich silica nanoparticles (ASP with an estimated Al:Si ratio of between 2 and 3 which is close to the range of secondary aluminosilicates such as imogolite. Thus the high-aluminum-affinity silica polymer is a nanoparticle that seeds early aluminosilicate formation through highly competitive binding of Al(III ions. In niche environments, especially in vivo, this may serve as an alternative mechanism to polyhydroxy Al(III species binding monomeric silica to form early phase, non-toxic aluminosilicates.

  11. High-Aluminum-Affinity Silica Is a Nanoparticle That Seeds Secondary Aluminosilicate Formation

    Science.gov (United States)

    Jugdaohsingh, Ravin; Brown, Andy; Dietzel, Martin; Powell, Jonathan J.

    2013-01-01

    Despite the importance and abundance of aluminosilicates throughout our natural surroundings, their formation at neutral pH is, surprisingly, a matter of considerable debate. From our experiments in dilute aluminum and silica containing solutions (pH ~ 7) we previously identified a silica polymer with an extraordinarily high affinity for aluminium ions (high-aluminum-affinity silica polymer, HSP). Here, further characterization shows that HSP is a colloid of approximately 2.4 nm in diameter with a mean specific surface area of about 1,000 m2 g-1 and it competes effectively with transferrin for Al(III) binding. Aluminum binding to HSP strongly inhibited its decomposition whilst the reaction rate constant for the formation of the β-silicomolybdic acid complex indicated a diameter between 3.6 and 4.1 nm for these aluminum-containing nanoparticles. Similarly, high resolution microscopic analysis of the air dried aluminum-containing silica colloid solution revealed 3.9 ± 1.3 nm sized crystalline Al-rich silica nanoparticles (ASP) with an estimated Al:Si ratio of between 2 and 3 which is close to the range of secondary aluminosilicates such as imogolite. Thus the high-aluminum-affinity silica polymer is a nanoparticle that seeds early aluminosilicate formation through highly competitive binding of Al(III) ions. In niche environments, especially in vivo, this may serve as an alternative mechanism to polyhydroxy Al(III) species binding monomeric silica to form early phase, non-toxic aluminosilicates. PMID:24349573

  12. Effect of SrO content on Zeolite Structure

    Science.gov (United States)

    Widiarti, N.; Sari, U. S.; Mahatmanti, F. W.; Harjito; Kurniawan, C.; Prasetyoko, D.; Suprapto

    2018-04-01

    The aims of current studies is to investigate the effect of strontium oxide content (SrO) on synthesized zeolite. Zeolite was synthesized from Tetraethyl orthosilicate (TEOS) as precursors of SiO2 and aluminum isopropoxide (AIP) precursors. The mixture was aged for 3 days and hydrothermally treated for 6 days. The SrO content was added by impregnation method. The products were then characterized using X-Ray Diffraction (XRD), Fourier Transform Infrared (FTIR), and Surface Area Analyzer (SAA). The diffractogram confirmed the formation of Faujasite-like zeolite. However, after the addition of SrO, the crystallinity of zeolite was deformed. The diffractograms shows the amorphous phase of zeolite were decrease as the SrO content is increase. The structural changes was also observed from FTIR spectra which shows the shifting and peak formation. The surface area analysis showed that the increasing loading of SrO/Zeolites reduced the catalyst surface area.

  13. Modifikasi Zeolit Dengan Tembaga (Cu) Dan Uji Sifat Katalitiknya Pada Reaksi Esterifikasi

    OpenAIRE

    Arjek, Orien Claudia Handayani; Fatimah, Is

    2017-01-01

    Zeolite modification with Cu has been conducted. Material modification is done by impregnating Cu through a zeolite powder reflux process with CuSO4.5H2O solution so that theoretical Cu concentration is 5% followed by oxidation and reduction of solids. Material characterization was performed by x-ray diffraction analysis (XRD), Fourier Transform Infra-Red (FTIR) and acidity testing of Cu/Zeolite catalyst.The results showed that the crystallinity level of Cu/Zeolite did not change significantl...

  14. Effects of ultrasonic irradiation on crystallization and structural properties of EMT-type zeolite nanocrystals

    Energy Technology Data Exchange (ETDEWEB)

    Ng, Eng-Poh, E-mail: epng@usm.my [School of Chemical Sciences, Universiti Sains Malaysia, USM, 11800 Penang (Malaysia); Awala, Hussein [Laboratoire Catalyse & Spectrochimie, CNRS-ENSICAEN, Université de Caen (France); Ghoy, Jia-Pei [School of Chemical Sciences, Universiti Sains Malaysia, USM, 11800 Penang (Malaysia); Vicente, Aurélie [Laboratoire Catalyse & Spectrochimie, CNRS-ENSICAEN, Université de Caen (France); Ling, Tau Chuan [Institute of Biological Sciences, Faculty of Science, University of Malaya (Malaysia); Ng, Yun Hau [School of Chemical Engineering, The University of New South Wales, Sydney (Australia); Mintova, Svetlana [Laboratoire Catalyse & Spectrochimie, CNRS-ENSICAEN, Université de Caen (France); Adam, Farook, E-mail: farook@usm.my [School of Chemical Sciences, Universiti Sains Malaysia, USM, 11800 Penang (Malaysia)

    2015-06-01

    Synthesis of EMT zeolite nanocrystals from rice husk ash biomass (RHA) under continuous ultrasonic irradiation is reported. The aging, nucleation and crystallization stages of EMT zeolite in the system were monitored at ambient temperature, and compared with the conventional hydrothermal method. It was found that ultrasonic wave induced rapid crystal growth of the nanosized EMT zeolite. Complete crystallization of EMT nanocrystals was achieved within 24 h which was much faster than conventional hydrothermal synthesis (36 h). Furthermore, XRD and TEM analyses revealed that more nuclei were formed during the nucleation stage, allowing the preparation of smaller zeolite nanocrystals with high crystallinity. The results also showed that sonocrystallization produced EMT zeolite with high yield (ca. 80%). The ultrasound-prepared EMT nanocrystals were also found to have high porosity and high hydrophilicity, making the material promising for water sorption applications including vapor sensing, heat pump and adsorption technologies. - Highlights: • Nanosized EMT zeolites are formed from rice husk ash under ultrasonic irradiation. • The effects of ultrasonic waves in nanosized EMT zeolite synthesis are studied. • Ultrasound induces rapid crystal growth and produces high zeolite yield. • Smaller zeolite nanocrystals with high crystallinity and large defect sites are obtained. • Improved surface hydrophilicity of crystals is beneficial for water sorption applications.

  15. Synthesis and characterization of zeolite material from coal ashes modified by surfactant

    International Nuclear Information System (INIS)

    Fungaro, D.A.; Borrely, S.I.

    2010-01-01

    Coal ash was used as starting material for zeolite synthesis by means of hydrothermal treatment. The surfactant-modified zeolite (SMZ) was prepared by adsorbing the cationic surfactant hexadecyltrimethylammonium bromide (HDTMA-Br) on the external surface of the zeolite from coal ash. The zeolite structure stability was monitored during the characterization of the materials by FTIR, XDR and SEM. The structural parameters of surfactant-modified zeolite are very close to that of corresponding non-modified zeolite which indicates that the crystalline nature of the zeolite remained intact after required chemical treatment with HDTMA-Br molecules and heating treatment for drying. The most intense peaks in the FTIR spectrum of HDTMA-Br were observed in SMZ spectrum confirming adsorption of surfactant on zeolites. (author)

  16. Efficacy of supplemental natural zeolite in broiler chickens subjected to dietary calcium deficiency

    Directory of Open Access Journals (Sweden)

    Erol Bintaş

    2014-04-01

    Full Text Available Natural zeolite, or sodium aluminosilicate, influences calcium (Ca and phosphorus (P utilisation in chicks. A 2×2 factorial arrangement of treatments was used to investigate the effect of dietary Ca (recommended and below recommended levels and zeolite (0 and 0.8% on growth, plasma, tibia and faeces in chickens from 1 to 42 days of age. Zeolite supplementation did not affect overall body weight (BW gain, feed intake (FI or feed conversion ratio (FCR of broiler chickens (P>0.05. Overall mortality of zeolite-fed chickens was lower than in untreated ones (P<0.01. Reduction of dietary Ca of approximately 10 to 18% decreased (P<0.05 BW at 14 and 42 days of age in association with reduced FI, but overall FCR was unchanged. Serum protein and sodium constituents were reduced in birds fed zeolite (P<0.05. Decreasing dietary Ca level increased (P<0.01 serum, total protein and glucose concentrations, but decreased Ca level. Zeolite decreased bone ash in birds fed a Ca-deficient diet while increased faecal excretion of ash, Ca, P and aluminum. However, zeolite increased tibia weight (P<0.05 and thickness (P<0.01. No significant response (P>0.05 in relative weight and gross lesion scores of liver or footpad lesion scores was found related to changes in dietary regimens. The results of the present study do not corroborate the hypothesis that the effectiveness of zeolite may be improved in Ca-deficient diets in association with its ion exchange capability.

  17. Phosphorus promotion and poisoning in zeolite-based materials: synthesis, characterisation and catalysis.

    Science.gov (United States)

    van der Bij, Hendrik E; Weckhuysen, Bert M

    2015-10-21

    Phosphorus and microporous aluminosilicates, better known as zeolites, have a unique but poorly understood relationship. For example, phosphatation of the industrially important zeolite H-ZSM-5 is a well-known, relatively inexpensive and seemingly straightforward post-synthetic modification applied by the chemical industry not only to alter its hydrothermal stability and acidity, but also to increase its selectivity towards light olefins in hydrocarbon catalysis. On the other hand, phosphorus poisoning of zeolite-based catalysts, which are used for removing nitrogen oxides from exhaust fuels, poses a problem for their use in diesel engine catalysts. Despite the wide impact of phosphorus-zeolite chemistry, the exact physicochemical processes that take place require a more profound understanding. This review article provides the reader with a comprehensive and state-of-the-art overview of the academic literature, from the first reports in the late 1970s until the most recent studies. In the first part an in-depth analysis is undertaken, which will reveal universal physicochemical and structural effects of phosphorus-zeolite chemistry on the framework structure, accessibility, and strength of acid sites. The second part discusses the hydrothermal stability of zeolites and clarifies the promotional role that phosphorus plays. The third part of the review paper links the structural and physicochemical effects of phosphorus on zeolite materials with their catalytic performance in a variety of catalytic processes, including alkylation of aromatics, catalytic cracking, methanol-to-hydrocarbon processing, dehydration of bioalcohol, and ammonia selective catalytic reduction (SCR) of NOx. Based on these insights, we discuss potential applications and important directions for further research.

  18. Double rotation NMR studies of zeolites and aluminophosphate molecular sieves

    Energy Technology Data Exchange (ETDEWEB)

    Jelinek, Raz [Univ. of California, Berkeley, CA (United States)

    1993-07-01

    Goal is to study the organization and structures of guest atoms and molecules and their reactions on internal surfaces within pores of zeolites and aluminophosphate molecular sieves. 27Al and 23Na double rotation NMR (DOR) is used since it removes the anisotropic broadening in NMR spectra of quadrupolar nuclei, thus increasing resolution. This work concentrates on probing aluminum framework atoms in aluminophosphate molecular sieves and sodium extra framework cations in porous aluminosilicates. In aluminophosphates, ordering and electronic environments of the framework 27Al nuclei are modified upon adsorption of water molecules within the channels; a relation is sought between the sieve channel topology and the organization of adsorbed water, as well as the interaction between the Al nuclei and the water molecules. Extra framework Na+ cations are directly involved in adsorption processes and reactions in zeolite cavities.

  19. Catalytic performance of Metal‐Organic‐Frameworks vs. extra‐large pore zeolite UTL incondensation reactions

    Directory of Open Access Journals (Sweden)

    Mariya eShamzhy

    2013-08-01

    Full Text Available Catalytic behavior of isomorphously substituted B‐, Al‐, Ga‐, and Fe‐containing extra‐large pore UTLzeolites was investigated in Knoevenagel condensation involving aldehydes, Pechmann condensationof 1‐naphthol with ethylacetoacetate, and Prins reaction of β‐pinene with formaldehyde andcompared with large‐pore aluminosilicate zeolite BEA and representative Metal‐Organic‐FrameworksCu3(BTC2 and Fe(BTC. The yield of the target product over the investigated catalysts in Knoevenagelcondensation increases in the following sequence: (AlBEA < (AlUTL < (GaUTL < (FeUTL < Fe(BTC <(BUTL < Cu3(BTC2 being mainly related to the improving selectivity with decreasing strength ofactive sites of the individual catalysts. The catalytic performance of Fe(BTC, containing the highestconcentration of Lewis acid sites of the appropriate strength is superior over large‐pore zeolite(AlBEA and B‐, Al‐, Ga‐, Fe‐substituted extra‐large pore zeolites UTL in Prins reaction of β‐pinene withformaldehyde and Pechmann condensation of 1‐naphthol with ethylacetoacetate.

  20. Selective preparation of zeolite X and A from flyash and its use as catalyst for biodiesel production.

    Science.gov (United States)

    Volli, Vikranth; Purkait, M K

    2015-10-30

    This work discusses the utilization of flyash for synthesis of heterogeneous catalyst for transesterification. Different types of zeolites were synthesized from alkali fusion followed by hydrothermal treatment of coal flyash as source material. The synthesis conditions were optimized to obtain highly crystalline zeolite based on degree of crystallinity and cation exchange capacity (CEC). The effect of CEC, acid treatment, Si/Al ratio and calcination temperature (800, 900 and 1000 °C) on zeolite formation was also studied. Pure, single phase and highly crystalline zeolite was obtained at flyash/NaOH ratio (1:1.2), fusion temperature (550 °C), fusion time (1 h), hydrothermal temperature (110 °C) and hydrothermal time (12h). The synthesized zeolite was ion-exchanged with potassium and was used as catalyst for transesterification of mustard oil to obtain a maximum conversion of 84.6% with 5 wt% catalyst concentration, 12:1 methanol to oil molar ratio, reaction time of 7 h at 65 °C. The catalyst was reused for 3 times with marginal reduction in activity. Copyright © 2015 Elsevier B.V. All rights reserved.

  1. Synthesis and luminescent properties of Eu{sup 3+}/Eu{sup 2+} co-doped calcium aluminosilicate glass–ceramics

    Energy Technology Data Exchange (ETDEWEB)

    Bouchouicha, H. [Institut Lumière Matière, UMR5306 Université Lyon 1-CNRS, Université de Lyon, 69622 Villeurbanne Cedex (France); Panczer, G., E-mail: gerard.panczer@univ-lyon1.fr [Institut Lumière Matière, UMR5306 Université Lyon 1-CNRS, Université de Lyon, 69622 Villeurbanne Cedex (France); Ligny, D. de [Universität Erlangen-Nürnberg, Department Werkstoffwissenschaften, Lehrstuhl für Glas und Keramik, D-91058 Erlangen (Germany); Guyot, Y. [Institut Lumière Matière, UMR5306 Université Lyon 1-CNRS, Université de Lyon, 69622 Villeurbanne Cedex (France); Baesso, M.L. [Departemento de Fisica, Universidade Estadual de Maringa, 87020-900 Maringa, PR (Brazil); Andrade, L.H.C.; Lima, S.M. [Grupo de Espectroscopia Óptica e Fototérmica, Universidade Estadual de Mato Grosso do Sul – UEMS, C.P. 351, Dourados, MS (Brazil); Ternane, R. [Laboratoire d' Application de la Chimie aux Ressources et Substances Naturelles et à l' Environnement (LACReSNE), Université de Carthage, Faculté des Sciences de Bizerte, 7021 Zarzouna, Bizerte (Tunisia)

    2016-01-15

    Eu{sup 3+} and Eu{sup 2+} co-doped calcium aluminosilicate glass–ceramics have been prepared by devitrification of calcium aluminosilicate glass using heat-treatment. Control of crystallization in the glass–ceramics was studied by X-ray diffraction (XRD) and Raman spectroscopy. The results showed that crystalline phases in glass–ceramic belong to the family of melilite Ca{sub 2}Mg{sub 0.25}Al{sub 1.5}Si{sub 1.25}O{sub 7} as the major phase and anorthite CaAl{sub 2}Si{sub 2}O{sub 8} as the minor phase. Luminescent properties were investigated by emission; lifetime and the color points were calculated. Emission spectra showed that Eu{sup 2+} entered into the crystalline phase in a two steps mechanism: first as Eu{sup 3+} which is then reduced to Eu{sup 2+}. This incorporation in the crystal enhanced Eu{sup 2+} emission with increasing time of heat-treatment and therefore crystallization. - Highlights: • Crystallization of doped glass–ceramics by heat-treatment controlled by microRaman. • Crystalline phases consist of melilite and anorthite. • Eu{sup 3+} and Eu{sup 2+} emissions characterized by their lifetime and color indexes. • Crystallization process modified efficiently the emission color point.

  2. Influence of adsorption thermodynamics on guest diffusivities in nanoporous crystalline materials

    NARCIS (Netherlands)

    Krishna, R.; van Baten, J.M.

    2013-01-01

    Published experimental data, underpinned by molecular simulations, are used to highlight the strong influence of adsorption thermodynamics on diffusivities of guest molecules inside ordered nanoporous crystalline materials such as zeolites, metal-organic frameworks (MOFs), and zeolitic imidazolate

  3. Synthesis of zeolite membrane (Y / α-alumina)

    International Nuclear Information System (INIS)

    Araujo, Ana Paula; Silva, Valmir Jose da; Crispin, Alana Carolyne; Rodrigues, Meiry Glaucia F.; Menezes, Romualdo R.

    2009-01-01

    The general aim of this study was to develop materials of the type: Y zeolite (hydrothermal synthesis), ceramic support (forming of powder) and zeolite membrane (rubbing). The preparation of the Y zeolite was conducted in accordance with the hydrothermal synthesis method, the time of crystallization was one day. The ceramic support was prepared by means of the forming of powder technique and subsequently subjected to sintering at a temperature of 1400 deg C/1h. The zeolite membrane (Y/α- alumina) was prepared by secondary growth method (rubbing). These materials were characterized by XRD and SEM. Obtaining Y zeolite could be confirmed by X ray diffractograms. From the images obtained by SEM, it was possible to derive from analysis that the Y zeolite is composed of a homogeneous morphology, where the particles are crowded, with uniform size. The results obtained for the ceramic support (α-alumina) showed that it displays characteristics peaks of aluminum oxide. By using micrographs it was possible to observe a heterogeneous microstructure with a compact form, without cracks upon the layers. According to the XRD, for the method of secondary growth (rubbing), it was observed that the Y zeolite which had been synthesized on the ceramic support displayed a crystalline structure. The micrography of the zeolite membrane (Y/α-alumina) showed the formation of a layer of zeolite on the ceramic support. (author)

  4. Structural simulation of natural zeolites; Simulacion estructural de zeolitas naturales

    Energy Technology Data Exchange (ETDEWEB)

    Sanchez P, E.; Carrera G, L.M. [Instituto Nacional de Investigaciones Nucleares, A.P. 18-1027, 11801 Mexico D.F. (Mexico)

    1997-07-01

    The application of X-ray diffraction (XRD) in the study of crystalline structures of the natural and modified zeolites allows the identification, lattice parameter determination and the crystallinity grade of the sample of interest. Until two decades ago, simulation methods of X-ray diffraction patterns were developed with which was possible to do reliable determinations of their crystalline structure. In this work it is presented the first stage of the crystalline structure simulation of zeolitic material from Etla, Oaxaca which has been studied for using it in the steam production industry and purification of industrial water. So that the natural material was modified for increasing its sodium contents and this material in its turn was put in contact with aqueous solutions of Na, Mg and Ca carbonates. All the simulations were done with the Lazy-Pulverix method. The considered phase was clinoptilolite. It was done the comparison with three clinoptilolite reported in the literature. (Author)

  5. PHYSICAL, CHEMICAL, AND STRUCTURAL EVOLUTION OF ZEOLITE-CONTAINING WASTE FORMS PRODUCED FROM METAKAOLINITE AND CALCINED HLW

    International Nuclear Information System (INIS)

    Pareizs, J. M.; Jantzenm, C.M.

    2000-01-01

    Natural and synthetic zeolites are extremely versatile materials. They can adsorb a variety of liquids and gases, and also take part in cation exchange reactions. Zeolites have the ability to sequester ions in lattice positions or within their networks of channels and voids. The zeolites can host alkali, alkaline earth and a variety of higher valance cations. As such they may be a viable alternative for immobilization of low activity waste (LAW) salts and calcines. The process for synthesizing zeolites is well documented for pure starting materials. A reactive aluminosilicate is reacted with an alkaline hydroxide at low temperature (<300 C) to form a zeolite. Processing time and temperature and specific reactants determine the type of zeolite formed. Zeolites are easy to make, and can be synthesized from a wide variety of natural and man made materials. However, relatively little is known about the process if one of the starting materials is a poorly characterized complex mixture of oxides (waste) containing nearly every element in the periodic table. The purpose of this work is to develop a clearer understanding of the advantages and limitations of producing a zeolite waste form from radioactive waste. Dr. M. W. Grutzeck at the Pennsylvania State University is investigating the production of a zeolite waste form using nonradioactive simulants. Dr. C. M. Jantzen and J. M. Pareizs at the Savannah River Technology Center will use the results from simulant work as a starting point for producing a zeolite waste form from an actual Savannah River Site radioactive waste stream

  6. Physical, chemical, and structural evolution of zeolite-containing waste forms produced from metakaolinite and calcined HLW

    International Nuclear Information System (INIS)

    Pareizs, J.M.

    2000-01-01

    Natural and synthetic zeolites are extremely versatile materials. They can adsorb a variety of liquids and gases, and also take part in cation exchange reactions. Zeolites have the ability to sequester ions in lattice positions or within their networks of channels and voids. The zeolites can host alkali, alkaline earth and a variety of higher valence cations. As such they may be a viable alternative for immobilization of low activity waste (LAW) salts and calcines. The process for synthesizing zeolites is well documented for pure starting materials. A reactive aluminosilicate is reacted with an alkaline hydroxide at low temperature to form a zeolite. Processing time and temperature and specific reactants determine the type of zeolite formed. Zeolites are easy to make, and can be synthesized from a wide variety of natural and man made materials. However, relatively little is known about the process if one of the starting materials is a poorly characterized complex mixture of oxides (waste) containing nearly every element in the periodic table. The purpose of this work is to develop a clearer understanding of the advantages and limitations of producing a zeolite waste form from radioactive waste. Dr. M. W. Grutzeck at the Pennsylvania State University is investigating the production of a zeolite waste form using non-radioactive simulants. Dr. C. M. Jantzen and J. M. Pareizs at the Savannah River Technology Center will use the results from simulant work as a starting point for producing a zeolite waste form from an actual Savannah River Site radioactive waste stream

  7. Synthesis of Zeolite-X from Bottom Ash for H2 Adsorption

    Science.gov (United States)

    Kurniawan, R. Y.; Romadiansyah, T. Q.; Tsamarah, A. D.; Widiastuti, N.

    2018-01-01

    Zeolite-X was synthesized from bottom ash power plant waste using fusion method on air atmosphere. The fused product dissolved in demineralized water and aluminate solution was added to adjust the SiO2/Al2O3 molar ratio gel prior hydrothermal process. The synthesis results were characterized using X-Ray Diffraction (XRD), Scanning Electron Microscope (SEM), and Fourier Transform Infrared (FTIR). The results showed that the zeolite-X has a high crystallinity with octahedral particle. The pure-form zeolite-X then was characterized and tested for H2 gas adsorption by gravimetric method to determine the H2 gas adsorption capacity of zeolite-X from bottom ash and it was compared to synthetic zeolite-X.

  8. The potential of Saudi Arabian natural zeolites in energy recovery technologies

    International Nuclear Information System (INIS)

    Nizami, A.S.; Ouda, O.K.M.; Rehan, M.; El-Maghraby, A.M.O.; Gardy, J.; Hassanpour, A.; Kumar, S.; Ismail, I.M.I.

    2016-01-01

    Energy consumption in KSA (kingdom of Saudi Arabia) is growing rapidly due to economic development with raised levels of population, urbanization and living standards. Fossil fuels are currently solely used to meet the energy requirements. The KSA government have planned to double its energy generating capacity (upto 120 GW (gigawatts)) by 2032. About half of the electricity capacity of this targeted energy will come from renewable resources such as nuclear, wind, solar, WTE (waste-to-energy) etc. Natural zeolites are found abundantly in KSA at Jabal Shamah occurrence near Jeddah city, whose characteristics have never been investigated in energy related applications. This research aims to study the physical and chemical characteristics of natural zeolite in KSA and to review its potential utilization in selected WTE technologies and solar energy. The standard zeolite group of alumina–silicate minerals were found with the presence of other elements such as Na, Mg and K etc. A highly crystalline structure and thermal stability of natural zeolites together with unique ion exchange, adsorption properties, high surface area and porosity make them suitable in energy applications such as WTE and solar energy as an additive or catalyst. A simple solid–gas absorption system for storing solar energy in natural zeolites will be a cheap alternative method for KSA. In AD (anaerobic digestion), the dual characteristics of natural zeolite like Mordenite will increase the CH_4 production of OFMSW (organic fraction of municipal solid waste). Further investigations are recommended to study the technical, economical, and environmental feasibility of natural zeolite utilization in WTE technologies in KSA. - Highlights: • A highly crystalline structure is found in natural zeolites. • Natural zeolites will store solar energy in solid–gas absorption system. • The composites of natural zeolites will produce more liquid fuel like gasoline. • The natural zeolite will increase

  9. Methylcellulose-Directed Synthesis of Nanocrystalline Zeolite NaA with High CO₂ Uptake.

    Science.gov (United States)

    Shakarova, Dilshod; Ojuva, Arto; Bergström, Lennart; Akhtar, Farid

    2014-07-28

    Zeolite NaA nanocrystals with a narrow particle size distribution were prepared by template-free hydrothermal synthesis in thermo-reversible methylcellulose gels. The effects of the amount of methylcellulose, crystallization time and hydrothermal treatment temperature on the crystallinity and particle size distribution of the zeolite NaA nanocrystals were investigated. We found that the thermogelation of methylcellulose in the alkaline Na₂O-SiO₂-Al₂O₃-H₂O system played an important role in controlling the particle size. The synthesized zeolite nanocrystals are highly crystalline, as demonstrated by X-ray diffraction (XRD), and scanning electron microscopy (SEM) shows that the nanocrystals can also display a well-defined facetted morphology. Gas adsorption studies on the synthesized nanocrystalline zeolite NaA showed that nanocrystals with a size of 100 nm displayed a high CO₂ uptake capacity (4.9 mmol/g at 293 K at 100 kPa) and a relatively rapid uptake rate compared to commercially available, micron-sized particles. Low-cost nanosized zeolite adsorbents with a high and rapid uptake are important for large scale gas separation processes, e.g., carbon capture from flue gas.

  10. Aflatoxin B1 adsorption by the natural aluminosilicates - concentrate of montmorillonite and zeolite

    Directory of Open Access Journals (Sweden)

    Marković Marija A.

    2016-01-01

    Full Text Available Aflatoxin B1 adsorption by the concentrate of bentonite clay - montmorillonite and the natural zeolite - clinoptilolite and was investigated at the initial toxin concentration 4 ppm, with different amonunts of solid phase in suspension (10, 5, 2 and 1 mg/10 mL and different pH values - 3, 7 and 9. Results indicated that for both minerals, decreasing the amount of solid phase in suspension, decrease the amount of active sites relevant for adsorption of aflatoxin B1. Thus, for concentrate of montnorillonite, at the lowest level of solid phase in suspension (1 mg/10 mL, aflatoxin B1 adsorption indexes were 97% at pH 3, 88% at pH 7 and 82% at pH 9, while for the natural zeolite, adsorption of toxin was 9% at pH 3 and 7% at pH 7 and 9. Since inorganic cations in minerals are mainly responsible for aflatoxin B1 adsorption, even the natural zeolite - clinoptilite has much higher cation exchange capacity (the content of inorganic exchangeable cations compared to the concentrate of montmorillonite, adsorption of aflatoxin B1 by this mineral is much lower. Comparing the molecular dimensions of aflatoxin B1 molecule with the dimension of channels of clinoptilolite and interlamellar space of montmorillonite it is obvious that this toxin is adsorbed only at the external surface of clinoptilolite while in the montmorillonite all active sites are equally available for its adsorption. Thus, the concentrate of montmorillonite posess by higher adsorption capacity for aflatoxin B1. Results presented in this paper confirmed the fact the differences in the structure of minerals led to their different efficiency for adsorption of aflatoxin B1. Mineralogical and chemical composition, determination of cation exchange capacity, etc., are very important parameters influencing the effectiveness of minerals as aflatoxin B1 adsorbents. [Projekat Ministarstva nauke Republike Srbije, br. 451-03-2802-IP Tip1/142, br. 172018 i br. 34013

  11. Preparation of Synthetic Zeolites from Myanmar Clay Mineral

    International Nuclear Information System (INIS)

    Phyu Phyu Win

    2004-04-01

    Faujasite type zeolite X was successfully synthesized from Myanmar clay mineral kaolinite, by treating with sodium hydroxide at 820 C followed by dissolution in water and hydrothermal treatment. It was found that the solution of fused clay powder can be crystallized at 90C under ambient pressure to synthesize faujasite type zeolite X. The effects of aging time and the amount of water on the formation of the product phase and Si/ Al ratios of the resulting products were investigated. Most of the Si and Al components in kaolinite might be dissolved into an alkaline solution and reacted to form ring-like structures. Then it was effectively transformed into zeolite materials. The maximum relative crystallinity of faujasite zeolite obtained was found to be 100%. Zeolite P was found to be a competitive phase present in some resulting products during hydrothermal treatment. The cation exchange capacity of kaolinite is very low, but increased after a proper treatment. It was found that the prepared faujasite type zeolite X, zeolite P and hydrogen zeolite (HZ) can reduce the hardness, the alkalinity, the total dissolved solid and the dissolved iron of raw water in the batch wise operation of water treatment. Therefore, it can be used as the cation exchanged resin for water treatment

  12. Characterization of extra-framework species in zeolites

    DEFF Research Database (Denmark)

    Andersen, Casper Welzel

    Sometimes it is difficult to see the wood for the trees. Crystallography is a great tool to take a step back, to observe and analyze the effects and implications caused by atoms and molecules in a crystalline material. In catalysis, the goal is to uncover the chemical pathway from reactant...... zeolites for an in-depth structural exploration. The amount of information that can be retrieved using such excellent data is pushed to the limit. Finally, combined diffraction and absorption experiments were performed in situ on copper-loaded chabazite zeolite. Catalytic intermediate species...

  13. Hydrothermal reaction of albite and a sodium aluminosilicate glass: A solid-state NMR study

    Science.gov (United States)

    Yang, Wang-hong Alex; Kirkpatrick, R. James

    1989-04-01

    We present here a solid-state NMR study of the structure and chemical composition of the products and mechanisms of the reaction of crystalline low albite and a glass of nearly albite composition with aqueous solutions of pH from 1 to 11 at 250°C. For the crystalline albite, there are no detectable bulk or surface structural changes due to aqueous attack, consistent with the idea that both cation exchange and disruption of the aluminosilicate framework occur only near the mineral/solution interface and that the hydrated surface layer, if it exists, is not more than about 30 Å thick. This reaction occurs by solution/reprecipitation, and its rate decreases with increasing solution pH, supporting the idea that the dissolution of feldspar is initiated by cation-exchange. For the glass, the reaction proceeds by cation exchange of protons for Na +, incorporation of molecular water into the bulk glass, and a small amount of depolymerization of the aluminosilicate framework in the interior of the glass. Cation exchange becomes less important with increasing solution pH. The incorporation of molecular water and cation-exchange cause structural changes in the glass via solidstate adjustment without dissolution/reprecipitation. The large cations in the hydrated glass (Na and K) probably have a shell of water molecules around them, with a maximum average coordination number of six. The secondary phases formed from both albite and the glass are often amorphous and can be well characterized by NMR. The compositional and structural variations of the amorphous phases are important factors in these reactions and cannot be ignored in theoretical models of aluminosilicate dissolution. As expected, the aluminum coordination in the secondary phases changes from six-fold to four-fold as the solution pH increases.

  14. Pioneering In Situ Recrystallization during Bead Milling: A Top-down Approach to Prepare Zeolite A Nanocrystals.

    Science.gov (United States)

    Anand, Chokkalingam; Yamaguchi, Yudai; Liu, Zhendong; Ibe, Sayoko; Elangovan, Shanmugam P; Ishii, Toshihiro; Ishikawa, Tsuyoshi; Endo, Akira; Okubo, Tatsuya; Wakihara, Toru

    2016-07-05

    Top-down approach has been viewed as an efficient and straightforward method to prepare nanosized zeolites. Yet, the mechanical breaking of zeolite causes amorphization, which usually requires a post-milling recrystallization to obtain fully crystalline nanoparticles. Herein we present a facile methodology to prepare zeolite nanocrystals, where milling and recrystallization can be performed in situ. A milling apparatus specially designed to work under conditions of high alkalinity and temperature enables the in situ recrystallization during milling. Taking zeolite A as an example, we demonstrate its size reduction from ~3 μm to 66 nm in 30 min, which is quite faster than previous methods reported. Three functions, viz., miniaturization, amorphization and recrystallization were found to take effect concurrently during this one-pot process. The dynamic balance between these three functions was achieved by adjusting the milling period and temperature, which lead to the tuning of zeolite A particle size. Particle size and crystallinity of the zeolite A nanocrystals were confirmed by X-ray diffraction, scanning electron microscopy, transmission electron microscopy and water adsorption-desorption. This work presents a pioneering advancement in this field of nanosized zeolites, and will facilitate the mass production as well as boost the wide applications of nanosized zeolites.

  15. Detergents - Zeolites and Enzymes Excel Cleaning Power

    Indian Academy of Sciences (India)

    Presently used detergent formulations generally consist of surfactants, builder and cobuilder, bleaching agents, addi- tives for secondary benefits and enzymes. Zeolites are basically hydrated crystalline aluminium silicates which function as ion exchangers and make the water soft by removing calcium, magnesium and ...

  16. Lactic acid production on liquid distillery stillage by Lactobacillus rhamnosus immobilized onto zeolite.

    Science.gov (United States)

    Djukić-Vuković, Aleksandra P; Mojović, Ljiljana V; Jokić, Bojan M; Nikolić, Svetlana B; Pejin, Jelena D

    2013-05-01

    In this study, lactic acid and biomass production on liquid distillery stillage from bioethanol production with Lactobacillus rhamnosus ATCC 7469 was studied. The cells were immobilized onto zeolite, a microporous aluminosilicate mineral and the lactic acid production with free and immobilized cells was compared. The immobilization allowed simple cell separation from the fermentation media and their reuse in repeated batch cycles. A number of viable cells of over 10(10) CFU g(-1) of zeolite was achieved at the end of fourth fermentation cycle. A maximal process productivity of 1.69 g L(-1), maximal lactic acid concentration of 42.19 g L(-1) and average yield coefficient of 0.96 g g(-1) were achieved in repeated batch fermentation on the liquid stillage without mineral or nitrogen supplementation. Copyright © 2012 Elsevier Ltd. All rights reserved.

  17. Sustained release of doxorubicin from zeolite-magnetite nanocomposites prepared by mechanical activation

    International Nuclear Information System (INIS)

    Arruebo, Manuel; Fernandez-Pacheco, Rodrigo; Irusta, Silvia; Arbiol, Jordi; Ibarra, M Ricardo; SantamarIa, Jesus

    2006-01-01

    Nanocomposites consisting of magnetite and FAU zeolite with a high surface area and adsorption capacity have been prepared by mechanical activation using high-energy milling at room temperature. FTIR results, as well as HRTEM, EFTEM, and XPS measurements, show that the resulting magnetic nanoparticles are covered by a thin aluminosilicate coating. A saturation magnetization as high as 16 emu g -1 and 94.2 Oe of coercivity were observed for the obtained composites. The main advantages of this synthesis procedure are (i) simplicity of the preparation procedure (ii) prevention of agglomeration of the magnetite nanoparticles to a large extent, and (iii) absence of free magnetite outside the zeolitic matrix. In addition, in vitro experiments revealed that the nanoparticles prepared were able to store and release substantial amounts of doxorubicin. In view of these advantages, these magnetic nanoparticles can be considered as potential candidates for drug-delivery applications

  18. Synthesis and characterization of mesoporous NaY zeolite from natural Blitar’s kaolin

    Science.gov (United States)

    Khalifah, S. N.; aini, Z. N.; Hayati, E. K.; Aini, N.; Prasetyo, A.

    2018-03-01

    Mesoporous NaY Zeolite has been synthesized from calcined natural Blitar’s kaolin with the addition of NaOH and CTABr surfactant as mesoporous template by hydrothermal method. Natural kaolin was calcinated with different time and temperature to change kaolin to metakaolin. X-ray diffraction data showed that mesoporous NaY zeolite was formed with impurities compound of sodalite, kaolin and quartz phases. The BET analysis resulted that the pore of NaY Zeolite belongs to mesoporous type with pore size 9,421 nm. Characterization from FTIR confirmed about the functional group of zeolites (988, 776, 663, 464 cm-1). Scanning electron microscopy characterization showed that the morphological of mesoporous NaY zeolites have uniform and crystalline particles formed.

  19. New approach for determination of the influence of long-range order and selected ring oscillations on IR spectra in zeolites

    Science.gov (United States)

    Mikuła, Andrzej; Król, Magdalena; Mozgawa, Włodzimierz; Koleżyński, Andrzej

    2018-04-01

    Vibrational spectroscopy can be considered as one of the most important methods used for structural characterization of various porous aluminosilicate materials, including zeolites. On the other hand, vibrational spectra of zeolites are still difficult to interpret, particularly in the pseudolattice region, where bands related to ring oscillations can be observed. Using combination of theoretical and computational approach, a detailed analysis of these regions of spectra is possible; such analysis should be, however, carried out employing models with different level of complexity and simultaneously the same theory level. In this work, an attempt was made to identify ring oscillations in vibrational spectra of selected zeolite structures. A series of ab initio calculations focused on S4R, S6R, and as a novelty, 5-1 isolated clusters, as well as periodic siliceous frameworks built from those building units (ferrierite (FER), mordenite (MOR) and heulandite (HEU) type) have been carried out. Due to the hierarchical structure of zeolite frameworks it can be expected that the total envelope of the zeolite spectra should be with good accuracy a sum of the spectra of structural elements that build each zeolite framework. Based on the results of HF calculations, normal vibrations have been visualized and detailed analysis of pseudolattice range of resulting theoretical spectra have been carried out. Obtained results have been applied for interpretation of experimental spectra of selected zeolites.

  20. Self-templating synthesis of hollow spheres of zeolite ZSM-5 from spray-dried aluminosilicate precursor

    Czech Academy of Sciences Publication Activity Database

    Pashková, Veronika; Tokarová, V.; Brabec, Libor; Dědeček, Jiří

    2016-01-01

    Roč. 228, JUL 2016 (2016), s. 59-63 ISSN 1387-1811 R&D Projects: GA ČR GA15-13876S; GA MŠk LM2015073 Institutional support: RVO:61388955 Keywords : MFI * zeolite shells * template free synthesis Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 3.615, year: 2016

  1. Investigation into interaction of CO/sub 2/ molecules with zeolites by infrared spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Ignat' eva, L A; Levshin, L V; Chukin, G D; Efimenko, L V; Kozlova, T I [Moskovskij Gosudarstvennyj Univ. (USSR). Kafedra Optiki

    1975-07-01

    Interaction of CO/sub 2/ molecules with zeolites, particularly with SrNaJ was studied by infrared-spectroscopy. To obtain infrared-spectra the zeolites were pressed into tablets and were calcinated at 500 deg. In the spectra the bands of chemisorbed CO/sub 2/ absorption were found in the range 1300 - 1600 cm/sup -1/. The CO/sub 2/ molecule was found to be strongly deformed due to chemisorption. In terms of electronic structure of the zeolite crystalline skeleton several types of CO/sub 2/ molecules interaction with different active zeolites were found. The position of the high-frequency band of CO/sub 2/ absorption in zeolites spectra was found to be a linear function of electrostatic field of the cations.

  2. Microwave preparation of Li-zeolite directly from alumatrane and silatrane

    International Nuclear Information System (INIS)

    Sathupunya, Mathavee; Gulari, Erdogan; Wongkasemjit, Sujitra

    2004-01-01

    Li-zeolites were successfully synthesized in a one-step sol-gel process and microwave technique using silatrane and alumatrane as precursors and lithium hydroxide as the hydrolytic agent. Many types of Li-zeolites were obtained by controlling synthesis parameters. Perfect crystalline zeolite, EDI type zeolite, was obtained at 90 deg. C after heating for 60 min while ABW type zeolite was produced after heating for 300 min at 110 deg. C. With increasing temperature, a higher packing density product was generated. Changing Si/Al loading ratio highly influenced the morphology of the synthesized product. With increasing Al loading, more irregular morphology products were obtained. Changing Li 2 O/SiO 2 ratio, led to changes in the unit cell structure and crystal morphology. Lowering the Li 2 O/SiO 2 ratio to one produced FAU type zeolite at 110 deg. C for 240 min. The thermal stability of EDI and ABW were very low while that of FAU was higher which might come from the effect of low ring strain construction of FAU

  3. Decomposition of aluminosilicate ores of Afghanistan by hydrochloric acid

    International Nuclear Information System (INIS)

    Mamatov, E.D.; Khomidi, A.K.

    2015-01-01

    Present article is devoted to decomposition of aluminosilicate ores of Afghanistan by hydrochloric acid. The physicochemical properties of initial aluminosilicate ores were studied by means of X-ray phase, differential-thermal analysis methods. The chemical and mineral composition of aluminosilicate ores was considered. The kinetics of acid decomposition of aluminosilicate ores composed of two stages was studied as well. The flowsheets of complex processing of aluminium comprising ores by means of chloric and acid methods were proposed.

  4. Densification of Silica Spheres: A New Pathway to Nano-Dimensioned Zeolite-Based Catalysts.

    Science.gov (United States)

    Machoke, Albert Gonche Fortunatus; Apeleo Zubiri, Benjamin; Leonhardt, Rainer; Marthala, Venkata Ramana Reddy; Schmiele, Martin; Unruh, Tobias; Hartmann, Martin; Spiecker, Erdman; Schwieger, Wilhelm

    2017-08-16

    Nanosized materials are expected to play a unique role in the development of future catalytic processes. Herein, pre-prepared and geometrically well-defined amorphous silica spheres are densified into silica-rich zeolites with nanosized dimensions. After the densification, the obtained nanosized zeolites exhibit the same spherical morphology like the starting precursor but characterized by a drastically reduced size, higher density, and high crystallinity. The phase transformation into crystalline zeolite material and the densification effect are achieved through a well-controlled steam-assisted treatment of the larger precursor particles so that the transformation process proceeds always towards the center of the spheres, just like a shrinking process. Furthermore, this procedure is applicable also to commercially available silica particles, as well as aluminum-containing systems (precursors) leading to acidic nano-catalysts with improved catalytic performance. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Characterization of Mexican zeolite minerals; Caracterizacion de minerales zeoliticos mexicanos

    Energy Technology Data Exchange (ETDEWEB)

    Jimenez C, M.J

    2005-07-01

    50% of the Mexican territory is formed by volcanic sequences of the Pliocene type, which appear extensively in the northwest states (Sonora, Sinaloa, Chihuahua, Durango) and west of Mexico (Jalisco and Nayarit), in central Mexico (Zacatecas, Guanajuato, San Luis Potosi, Queretaro, Hidalgo) and south of Mexico (Guerrero, Oaxaca); therefore, it is to be expected that in our country big locations of natural zeolites exist in its majority of the clinoptilolite type. The present study was focused toward the characterization of two Mexican natural zeolite rocks presumably of the clinoptilolite and filipsite types, one of them comes from the state of Chihuahua and the other of a trader company of non metallic minerals, due that these materials are not characterized, its are not known their properties completely and therefore, the uses that can be given to these materials. In this investigation work it was carried out the characterization of two Mexican zeolite rocks, one coming from the Arroyo zone, municipality of La Haciendita, in the state of Chihuahua; and the other one was bought to a trader company of non metallic minerals. The two zeolites so much in their natural form as conditioned with sodium; they were characterized by means of X-ray diffraction, scanning electron microscopy of high vacuum and elementary microanalysis (EDS), surface area analysis (BET), thermal gravimetric analysis. To differentiate the heulandite crystalline phase of the other clinoptilolite rock, its were carried out thermal treatments. The quantification of Al, Na, Ca, K, Mg, Fe was carried out in solution, by means of atomic absorption spectroscopy and the quantity of Si was determined by gravimetry. The zeolite rocks presented for the major part the crystalline heulandite and clinoptilolite phases for the most part, and it was found that the zeolite coming from the state of Chihuahua possesses a bigger content of heulandite and the denominated filipsite it is really a zeolite

  6. Natural zeolites: characteristic, properties and uses

    International Nuclear Information System (INIS)

    Bosch, P.; Bulbulian, S.; Olguin, M. T.

    2011-01-01

    The zeolites are a crystalline aluminium silicates family of volcanic origin. It characterizes them a porous structure, nano metric, regular and homogeneous. Therefore, they turn out to be excellent molecular sieves besides exchangers of ions. This last property it has been extremely exploited, in order to retain the radioactive ions of the contaminated waters in the accident of Three Mile Island (USA), of Chernobyl (Russia) and Fukushima Daiichi (Japan). Nevertheless, the use of the zeolites goes but there ... these they can work as much as nutritional supplement for chickens and pigs, as well as for to retain odors or to separate gases. The construction industry has welcomed this mineral, when either using it as quarry or additive in the called pozzolanic cements. In this book the authors explain the zeolites formation in the nature, their structure and the main uses of these minerals that some authors have baptized as the magic rocks. (Author)

  7. Influence of zeolite structure on the activity and durability of Co-Pd-zeolite catalysts in the reduction of NOx with methane

    International Nuclear Information System (INIS)

    Pieterse, J.A.Z.; Van den Brink, R.W.; Booneveld, S.; De Bruijn, F.A.

    2003-01-01

    Selective catalytic reduction of NO with CH 4 was studied over ZSM-5, MOR, FER and BEA zeolite-based cobalt (Co) and palladium (Pd) catalysts in the presence of oxygen and water. As compared to other catalytic systems reported in literature for CH 4 -SCR in the presence of water, zeolite supported Co-Pd combination catalysts are very active and selective. The most active catalysts, based on MOR and ZSM-5, are characterised by well-dispersed Pd ions in the zeolite that activate methane. Wet ion exchange is a good method to achieve high dispersion of Pd provided that it is carried out in a competitive manner. The presence of cobalt (Co 3 O 4 , Co-oxo ions) boosts SCR activity by oxidising NO to NO 2 . The activity of the zeolite-based Co-Pd combination catalysts decreases with prolonged times on stream. The severity of the deactivation was found to be different for different zeolite topologies. The characterisation and evaluation of freshly calcined catalysts and spent catalysts show two things that occur during reaction: (1) zeolite solvated metal cations disappear in favour of (inactive) metal oxides and presumably larger metal entities, i.e. loss of dispersion; (2) loss of crystallinity affiliated with steam-dealumination and the concomitant formation of extra-framework aluminium (EFAL) in the presence of water. Both phenomena strongly depend on the (reaction) temperature. The deactivation of Co-Pd-zeolite resembles the deactivation of Pd-zeolite. Hence, future research could encompass the stabilisation of Pd (cations) in the zeolite pores by exploring additives other than cobalt. For this, detailed understanding on the siting of Pd in zeolites is important

  8. Aluminum sulphate production and zeolite from residual muds of the company Extralum S.A

    International Nuclear Information System (INIS)

    Carranza, C.; Montero, M.

    2002-01-01

    As part of our research on alternative raw materials for the chemical industry we studied sludge from an anodizing process at Extralum S.A. The sludge contains mainly bayerite, Al(OH) 3 and bohemite A1O (OH). Starting from these we developed a hydrothermal synthesis of Aluminium sulphate and Zeolite A. The Zeolite A was identified by Powder X-ray crystallography. The scanning electron microscope image of the Zeolite A shows a very high degree of crystallinity. (Author) [es

  9. Cyclic Acetalization of Furfural on Porous Aluminosilicate Acid Catalysts

    Directory of Open Access Journals (Sweden)

    Hartati Hartati

    2016-12-01

    Full Text Available Porous aluminosilicate materials included microporous and mesoporous ZSM-5, hierarchical aluminosilicates, and mesoporous aluminosilicate were tested for acetalization of furfural (furan-2-carbaldehyde with propylene glycol. The existing synthesis methods for aluminosilicate and ZSM-5 were modified to produce aluminosilicate material with hierarchical porous structure. Catalytic activity in acetalization of furfural by propylene glycol were conducted by refluxed of the mixture of furfural, propylene glycol and catalyst, using toluene as solvent and nitrobenzene as internal standard, at 106 °C for 4 h. The result showed that a combination of two structure directing agents, tetrapropylammonium hydroxide (TPAOH and cetyltrimethylammonium bromide (CTAB and modification of catalytic crystallization produced an active aluminosilicate framework that provides a wide access for a bulky reactants and strong acid sites to catalyze the reaction. The pore structure and the strength of the Brønsted acid sites were crucial for the high conversion of furfural to produce a cyclic acetal.

  10. Influence of man-made aluminosilicate raw materials on physical and mechanical properties of building materials.

    Science.gov (United States)

    Volodchenko, A. A.; Lesovik, V. S.; Stoletov, A. A.; Glagolev, E. S.; Volodchenko, A. N.; Magomedov, Z. G.

    2018-03-01

    It has been identified that man-made aluminosilicate raw materials represented by clay rock of varied genesis can be used as energy-efficient raw materials to obtain efficient highly-hollow non-autoclaved silicate materials. A technique of structure formation in the conditions of pressureless steam treatment has been offered. Cementing compounds of non- autoclaved silicate materials based on man-made aluminosilicate raw materials possess hydraulic properties that are conditioned by the process of further formation and recrystallization of calcium silicate hydrates, which optimizes the ratio between gellike and crystalline components and densifies the cementing compound structure, which leads to improvement of performance characteristics. Increasing the performance characteristics of the obtained products is possible by changing the molding conditions. For this reason, in order to create high-density material packaging and, as a result, to increase the strength properties of the products, it is reasonable to use higher pressure, under which raw brick is formed, which will facilitate the increase of quality of highly-hollow products.

  11. Synthesis, characterization, and mercury adsorption properties of hybrid mesoporous aluminosilicate sieve prepared with fly ash

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Minmin [School of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092 (China); Hou, Li-an, E-mail: 11liuminmin@tongji.edu.cn [School of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092 (China); Xi, Beidou; Zhao, Ying; Xia, Xunfeng [China Research Academy of Environmental Science, Beijing 200012 (China)

    2013-05-15

    A novel hybrid mesoporous aluminosilicate sieve (HMAS) was prepared with fly ash and impregnated with zeolite A precursors. This improved the mercury adsorption of HMAS compared to original MCM-41. The HMAS was characterized by X-ray diffraction (XRD), nitrogen adsorption–desorption, Fourier transform infrared (FTIR) analysis, transmission electron microscopy (TEM) images and {sup 29}Si and {sup 27}Al magic angle spinning nuclear magnetic resonance (MAS NMR) spectra. These showed that the HMAS structure was still retained after impregnated with zeolite A. But the surface area and pore diameter of HMAS decreased due to pore blockage. Adsorption of mercury from aqueous solution was studied on untreated MCM-41and HMAS. The mercury adsorption rate of HMAS was higher than that of origin MCM-41. The adsorption of mercury was investigated on HMAS regarding the pH of mercury solution, initial mercury concentration, and the reaction temperature. The experimental data fit well to Langmuir and Freundlich isotherm models. The Dublin–Radushkevich isotherm and the characterization show that the mercury adsorption on HMAS involved the ion-exchange mechanisms. In addition, the thermodynamic parameters suggest that the adsorption process was endothermic in nature. The adsorption of mercury on HMAS followed the first order kinetics.

  12. Synthesis, characterization, and mercury adsorption properties of hybrid mesoporous aluminosilicate sieve prepared with fly ash.

    Science.gov (United States)

    Liu, Minmin; Hou, Li-An; Xi, Beidou; Zhao, Ying; Xia, Xunfeng

    2013-05-15

    A novel hybrid mesoporous aluminosilicate sieve (HMAS) was prepared with fly ash and impregnated with zeolite A precursors. This improved the mercury adsorption of HMAS compared to original MCM-41. The HMAS was characterized by X-ray diffraction (XRD), nitrogen adsorption-desorption, Fourier transform infrared (FTIR) analysis, transmission electron microscopy (TEM) images and 29 Si and 27 Al magic angle spinning nuclear magnetic resonance (MAS NMR) spectra. These showed that the HMAS structure was still retained after impregnated with zeolite A. But the surface area and pore diameter of HMAS decreased due to pore blockage. Adsorption of mercury from aqueous solution was studied on untreated MCM-41and HMAS. The mercury adsorption rate of HMAS was higher than that of origin MCM-41. The adsorption of mercury was investigated on HMAS regarding the pH of mercury solution, initial mercury concentration, and the reaction temperature. The experimental data fit well to Langmuir and Freundlich isotherm models. The Dublin-Radushkevich isotherm and the characterization show that the mercury adsorption on HMAS involved the ion-exchange mechanisms. In addition, the thermodynamic parameters suggest that the adsorption process was endothermic in nature. The adsorption of mercury on HMAS followed the first order kinetics.

  13. Thermal properties and modeling of aluminosilicate materials for low-temperature bulk applications

    International Nuclear Information System (INIS)

    Kaushal, S.

    1988-01-01

    This thesis concerns itself with the thermal properties of aluminosilicate materials such as cements, blended cements and clays and their application to the problem of radioactive waste encapsulation. The objective of this thesis is to study the thermal properties (heat of hydration, thermal conductivity and diffusivity) of these materials and to determine their effect on the temperature in large monoliths and on the material itself. In this thesis the hydration temperatures for the extreme conditions (adiabatic) were experimentally measured and compared to those predicted under real conditions. Such a simulation can be made by measuring the thermal properties and studying the temperature distribution predicted by a finite differences computer model. Measurements of adiabatic temperature rise were made using a computer-controlled adiabatic calorimeter which was designed and developed for this thesis. Conditions very close to zero heat exchange with the environment were achieved. The existence of this method made it possible to actually observe the fact that cement hydration results in boiling off of the water in such conditions. A number of additives were tried to prevent this. It was observed that waste or by-product materials such as blast furnace slag and fly ash could be used to dramatically reduced the temperature in large bodies. These materials also reacted extensively with the highly alkaline radioactive waste solution to form hydrogarnet and zeolitic material which had useful cementing properties. The conclusion was reached that a selection of blends of aluminosilicate materials can be utilized for providing the proper thermal environment for long-term geological disposal of radioactive waste

  14. Precipitation of Aluminum Containing Species in Tank Wastes

    International Nuclear Information System (INIS)

    Mattigod, Shas V.; Hobbs, David; Parker, Kent E.; McCready, David E.

    2001-01-01

    Aluminisilicate deposit buildup experienced during the tank waste volume-reduction process at the Savannah River Site (SRS) required an evaporator to be shut down in October 1999. The Waste Processing Technology Section (WPTS) of Westinghouse Savannah River Company at SRS is now collaborating with team members from Pacific Northwest National Laboratory (PNNL) to verify the steady-state thermodynamic stability of aluminosilicate compounds under waste tank conditions in an attempt to eliminate the deposition and clogging problems. The data obtained at 40?C showed that formation and persistence of crystalline phases was dependent on the initial hydroxide concentrations. The formation and persistence of zeolite A occurred only at lower hydroxide concentrations, whereas increasing hydroxide concentrations appeared to promote the formation of sodalite and cancrinite. The data also showed that although zeolite A forms initially, it is a metastable phase that converts to more stable crystalline materials such as sodalite and cancrinite. Additionally, the rate of transformation of zeolite A appeared to increase with increasing hydroxide concentration. The data from tests conducted at 80?C revealed relatively rapid formation of sodalite and cancrinite. Although minor amounts of zeolite A were initially detected in some cases, the higher reaction temperatures seemed to promote very rapid transformation of this phase into more stable phases. Also, the higher temperature and hydroxide concentrations appeared to initiate kinetically fast crystallization of sodalite and cancrinite. More recent testing at SRS in support of the HLW evaporator plugging issue has shown similar trends in the formation of aluminosilicate phases. These tests were carried out under conditions more similar to those that occur in HLW tanks and evaporators. Comparison of our results with those reported above show very similar trends

  15. Formation of zeolite A. Properties of the alumina--silicate hydrogel. Formation of zeolite A on prolonged maturation of the hydrogel

    Energy Technology Data Exchange (ETDEWEB)

    Polak, F; Cichocki, A

    1974-01-01

    Analytic, adsorption, and x-ray investigations of a maturated hydrogel A, crystallized at 94/sup 0/ during 6 hr and of a hydrogel A kept for 2 months at room temperature showed that the zeolite A was formed easily and that maturation of the hydrogel A had little effect on its crystallization at 94/sup 0/. The hydrogel A kept for 2 months at room temperature passed almost completely into the crystalline zeolite A. Changes in the content of SiO/sub 2/, Al/sub 2/O/sub 3/, and Na/sub 2/O in the liquid and solid phases during the maturation and crystallization of the hydrogels A were studied.

  16. Selective synthesis of FAU-type zeolites

    Science.gov (United States)

    Garcia, Gustavo; Cabrera, Saúl; Hedlund, Jonas; Mouzon, Johanne

    2018-05-01

    In the present work, parameters influencing the selectivity of the synthesis of FAU-zeolites from diatomite were studied. The final products after varying synthesis time were characterized by scanning electron microscopy, energy dispersive spectroscopy, X-ray diffraction and gas adsorption. It was found that high concentrations of NaCl could completely inhibit the formation of zeolite P, which otherwise usually forms as soon as maximum FAU crystallinity is reached. In the presence of NaCl, the FAU crystals were stable for extended time after completed crystallization of FAU before formation of sodalite. It was also found that addition of NaCl barely changed the crystallization kinetics of FAU zeolite and only reduced the final FAU particle size and SiO2/Al2O3 ratio slightly. Other salts containing either Na or Cl were also investigated. Our results suggest that there is a synergistic effect between Na+ and Cl-. This is attributed to the formation of (Na4Cl)3+ clusters that stabilize the sodalite cages. This new finding may be used to increase the selectivity of syntheses leading to FAU-zeolites and avoid the formation of undesirable by-products, especially if impure natural sources of aluminosilica are used.

  17. The influence of modified zeolites as nucleating agents on crystallization behavior and mechanical properties of polypropylene

    International Nuclear Information System (INIS)

    Lv, Zhiping; Wang, Kunjun; Qiao, Zhihua; Wang, Wenjie

    2010-01-01

    Polypropylene (PP) composites with unmodified and modified zeolites were prepared by melt blending in single-screw extruder. The modified zeolites, diethoxy (distearoyl) silane (DDS)-zeolite 13X (DDS-13X) and diethoxy (distearoyl) silane-zeolite 5A (DDS-5A), were obtained by grafting diethoxy (distearoyl) silane onto zeolite 13X and 5A, respectively. The influence of the unmodified and modified zeolites as nucleating agents on properties of polypropylene was investigated with X-ray diffraction (XRD), differential scanning calorimetry (DSC), polarized light microscopy (PLM), Vicat softening temperature (VST) and mechanical properties test. The XRD results revealed that zeolite 13X and DDS-13X had a great influence on nucleation of PP compared to zeolite 5A and DDS-5A. The DSC results showed that the addition of small amount of modified zeolites lead to increase in crystallization temperature (T c ), initial crystallization temperature (T onset ) and crystallinity (X c ) of PP composites compared to unmodified zeolites, especially, DDS-13X was more effective than DDS-5A, and the highest crystallinity X c (50.48%) was observed in PP/0.3 wt.% DDS-13X, which was responsible to the higher tensile strength and flexural strength of PP/DDS-13X. The PP/DDS-5A, however, exhibited evident increase in flexural strength and a little change in tensile strength compared to pure PP. Moreover, as the addition amount of DDS-5A or DDS-13X up to 1 wt.%, the impact strength of both PP/DDS-5A and PP/DDS-13X reached 43 kJ/m 2 , which was about 2.8 times greater than that of the pure PP (11.3 kJ/m 2 ). These results were in good agreement with the spherulite morphology observed from PLM micrographs.

  18. Investigation of aluminosilicate refractory for solid oxide fuel cell applications

    Science.gov (United States)

    Gentile, Paul Steven

    Stationary solid oxide fuel cells (SOFCs) have been demonstrated to provide clean and reliable electricity through electro-chemical conversion of various fuel sources (CH4 and other light hydrocarbons). To become a competitive conversion technology the costs of SOFCs must be reduced to less than $400/kW. Aluminosilicate represents a potential low cost alternative to high purity alumina for SOFC refractory applications. The objectives of this investigation are to: (1) study changes of aluminosilicate chemistry and morphology under SOFC conditions, (2) identify volatile silicon species released by aluminosilicates, (3) identify the mechanisms of aluminosilicate vapor deposition on SOFC materials, and (4) determine the effects of aluminosilicate vapors on SOFC electrochemical performance. It is shown thermodynamically and empirically that low cost aluminosilicate refractory remains chemically and thermally unstable under SOFC operating conditions between 800°C and 1000°C. Energy dispersive spectroscopy (EDS) and X-ray photoelectron spectroscopy (XPS) of the aluminosilicate bulk and surface identified increased concentrations of silicon at the surface after exposure to SOFC gases at 1000°C for 100 hours. The presence of water vapor accelerated surface diffusion of silicon, creating a more uniform distribution. Thermodynamic equilibrium modeling showed aluminosilicate remains stable in dry air, but the introduction of water vapor indicative of actual SOFC gas streams creates low temperature (active anode interface.

  19. On the potential of positron lifetime spectroscopy for the study of early stages of zeolites formation from their amorphous precursors

    International Nuclear Information System (INIS)

    Bosnar, S.; Kosanovic, C.; Subotic, B.; Bosnar, D.; Kajcsos, Zs.; Liszkay, L.; Lohonyai, L.; Molnar, B.; Lazar, K.

    2007-01-01

    The applicability of positron lifetime (LT) spectroscopy to the study of progress of formation of Secondary Building Units (SBU) in gels yielding in FAU and LTA type zeolites was investigated. Samples were prepared from aluminosilicate gels with various degrees of local structural order. LT measurements were performed at room temperature in air and in vacuum. Coexistence of annihilation modi with long lifetime components was shown; a correlation with precursors of nucleation and type of exchanged ions was also indicated

  20. Preparatory of X zeolite (faujasite) with surfactant hexa decyl trimethyl ammonium bromide (HMDTA) for adsorption of organic compounds

    International Nuclear Information System (INIS)

    Gonzalez R, V.

    2003-01-01

    The water represents one of the most valuable natural resources for the alive beings, since it is the essential component of the alive matter. Also, it is fundamental part of our planet, since is an indispensable element for the integral development of the same one. The demographic growth, the human being's activities and the industrial growth, he/she brings as consequence an increase in the use of the water and the generation of residual waters that successively contaminate the hydrological basins, becoming an environmental problem urgent. The contamination of the water with compound such as phenol and benzene, it is a problem that it requires the search of solutions, since it is of compound not very biodegradable, able to accumulate through the food chains and very toxic to the alive beings that they enter in contact with them (Tolgyessy, 1993). In the human beings it can take place damages in liver and kidney, the Agency of Protection to the Atmosphere of the United States (EPA) it considers that the exhibition for benzene is related with the leukemia, it is also considered as a carcinogen substance. Of the methods that are used for the treatment of polluted waters, it highlights the use of adsorber and one of them is the zeolites, since they are broadly used in those separation processes. The zeolites is crystalline aluminosilicates, they are characterized for to have a big superficial area and for their great capacity of exchange cationic, due to it the process of adsorption depends on these two characteristics, since to the modified being superficially for surfactants cationic it originates an enriched layer of carbon organic, which has the capacity to remove pollutants of the water. The present work outlines as objective to carry out the superficial modification of zeolite X using hexa decyl trimethyl ammonium bromide (HMDTA-Br) to different concentrations, with the purpose of making it useful in the removal of pollutants organic, present in watery solution

  1. Synthesis, characterization, and catalytic properties of stable mesoporous molecular sieve MCM-41 prepared from zeolite mordenite

    International Nuclear Information System (INIS)

    Wang Shan; Dou Tao; Li Yuping; Zhang Ying; Li Xiaofeng; Yan Zichun

    2004-01-01

    Mesoporous molecular sieves (denoted as M-MCM-41) with ordered hexagonal structure have been successfully synthesized from the assembly of precursors from preformed zeolite Mordenite with CTAB surfactant micelle in alkaline media. The samples were characterized by XRD, N 2 adsorption, IR and DTG. The materials exhibit highly hydrothermal stability, as compared with conventional MCM-41. Characterization results indicate that the mesoporous walls of M-MCM-41 contain the secondary building units similar to those in microporous crystal of zeolite Mordenite. In catalytic dealkylation of C10 + aromatic hydrocarbon, M-MCM-41 shows higher activities in comparison with Mordenite and MCM-41, which would be ascribed to the combination of advantages of both MCM-41 (large pores) and Mordenite (strong acidity). Furthermore, this synthesis strategy could be used as a new general method for the preparation of hydrothermally stable mesoporous aluminosilicate materials under alkaline conditions

  2. Zeolite A synthesized from wastes of kaolin improvement process; Zeolita A sintetizada a partir de rejeitos do processo de beneficiamento de caulim

    Energy Technology Data Exchange (ETDEWEB)

    Santana, D.L.; Neves, R.F.; Silva, D.L., E-mail: danielaliraeq@yahoo.com.br, E-mail: dasilva@ufpa.br [Programa de Pos-Graduacao em Engenharia Quimica, Universidade Federal do Para - UFPA, Belem, PA (Brazil); Saraiva, A.C.F. [Centro de Tecnologia da Eletronorte, Belem, PA (Brazil)

    2012-04-15

    Raw materials were used to synthesize zeolite A as an alternative and more economical source of silica and aluminum, using waste from the kaolin of the paper industry. Zeolites are crystalline substances with a structure characterized by a framework of linked tetrahedra, each one consisting of four oxygen atoms surrounding a cation. The development of processes for the synthesis of zeolites is of great interest for use in the areas of purification, adsorption and catalysis. The starting materials for the synthesis of zeolite A consisted of wastes from kaolin beneficiation of paper companies of Para state, Brazil. The zeolite was obtained after calcination at 85 and 110 deg C during 24 h. The characterization of the starting material was performed by X-ray diffraction, chemical analysis, thermogravimetric and differential thermal analysis, and scanning electron microscopy. The characterization of zeolite A was done by X-ray diffraction and scanning electron microscopy. The kaolin waste used as starting material showed to be essentially kaolinite mineral. For the temperatures and time used in the synthesis it was possible to form the crystalline phase of zeolite A for the two starting materials. (author)

  3. Na-A4 zeolites as host of PbS nanoparticles

    International Nuclear Information System (INIS)

    Flores A, M.; Perez S, R.; Aceves T, R.; Arizpe C, H.; Sotelo L, M.; Ramirez B, R.

    2006-01-01

    In this work we report the optical and structural properties of composite materials based on the semiconductor PbS enclosed in type A zeolite. The composite materials were obtained by chemical reaction in several steps of the zeolite in alkaline aqueous solutions containing Pb 2+ and S 2- ions successively. Three samples were prepared at temperatures of 40, 50 and 60 C during the chemical reaction with S 2- ions. The obtained materials were studied by x-ray diffraction, scanning and transmission electron microscopy, diffuse reflectance spectroscopy and photoluminescence. The experimental results show the formation of spherical-shaped PbS particles with nano metric size and cubic crystalline structure embedded in the zeolite matrix. The absorption spectra of the samples display a well defined absorption band at about 300 nm due to the PbS nanoparticles in the zeolite matrix. In addition, an absorption peak appears in the absorption spectra at about 400 nm assigned to exciton transitions. (Author)

  4. Evaluation of the rheological behavior of asphaltic binder modified with zeolite material

    Energy Technology Data Exchange (ETDEWEB)

    Silveira, E.M. da; Sant' ana, Hosiberto B.; Soares, Sandra A.; Soares, Jorge B. [Federal University of Ceara, Fortaleza, CE (Brazil)

    2008-07-01

    Several new processes have been developed to reduce mixing and compaction temperatures of hot mix asphalt without sacrificing the quality of the resulting pavement. One of these processes utilizes the zeolite, a crystalline hydrated aluminum silicate. A laboratory study was conducted to determine the applicability of zeolite to improve the rheological and chemical behavior of an asphaltic binder. The synthetic asphaltic binder was produced with different zeolite contents (0,1; 0.3; and 0.5% w/w) by wet process. The rheological and chemical behavior was verified by Dynamic Shear Rheometer and Infrared Spectroscopy, respectively. The zeolite's chemical composition and morphology was studied by Dispersive X-ray Spectroscopy (EDX). Additionally, the scanning electron microscope (SEM) was utilized to establish the zeolite elemental composition. The results showed that investigated zeolite was classified as a sodium aluminum silicate and it was able to modify the rheological properties of the neat asphalt binder. The G*/sin{delta} parameter was affected by the zeolite presence, indicating better performance for the binders with zeolite. The results show that synthetic binders can partly replicate the rheological properties of conventional AB. Comparable complex modulus values was obtained. No significant difference was found in viscoelastic response, given by the phase angles as a function of both temperature and frequency. (author)

  5. Transition phases of zeolite Faujasite type to Sodalite by thermal treatment

    Directory of Open Access Journals (Sweden)

    Katia K. Kaminishikawahara

    2015-10-01

    Full Text Available The zeolites can have several functions as catalysts (biofuel production and molecular sieves (treatment of contaminated areas. This study aims to characterize the zeolites obtained in the transition of a Faujasite like zeolite into a Sodalite, when submitted to different thermal treatment times. The synthesized zeolites were characterized by X-ray diffraction where the crystalline phases were identified: Faujasite, Sodalite, SiO2 and amorphous material. The 4 hours heat treatment produces zeolite crystal structure similar to Faujasite, having basic sites, surface area of 552.7 m2 g-1 , and pore volume of 0.3391 cm3 g-1. With increasing time of heat treatment was observed the transition to the Sodalite phase witch containing 0.277 mmol g-1 of basic active sites with surface area of 11.38 m2 g-1 and pore volume of 0.0651 cm3 g-1. By the Rietveld method was identified and quantified the presence of Sodalite and Hidrossodalite in samples with 24 and 30 hours of reaction times.

  6. Hierarchical zeolites from class F coal fly ash

    Science.gov (United States)

    Chitta, Pallavi

    Fly ash, a coal combustion byproduct is classified as types class C and class F. Class C fly ash is traditionally recycled for concrete applications and Class F fly ash often disposed in landfills. Class F poses an environmental hazard due to disposal and leaching of heavy metals into ground water and is important to be recycled in order to mitigate the environmental challenges. A major recycling option is to reuse the fly ash as a low-cost raw material for the production of crystalline zeolites, which serve as catalysts, detergents and adsorbents in the chemical industry. Most of the prior literature of fly ash conversion to zeolites does not focus on creating high zeolite surface area zeolites specifically with hierarchical pore structure, which are very important properties in developing a heterogeneous catalyst for catalysis applications. This research work aids in the development of an economical process for the synthesis of high surface area hierarchical zeolites from class F coal fly ash. In this work, synthesis of zeolites from fly ash using classic hydrothermal treatment approach and fusion pretreatment approach were examined. The fusion pretreatment method led to higher extent of dissolution of silica from quartz and mullite phases, which in turn led to higher surface area and pore size of the zeolite. A qualitative kinetic model developed here attributes the difference in silica content to Si/Al ratio of the beginning fraction of fly ash. At near ambient crystallization temperatures and longer crystallization times, the zeolite formed is a hierarchical faujasite with high surface area of at least 360 m2/g. This work enables the large scale recycling of class F coal fly ash to produce zeolites and mitigate environmental concerns. Design of experiments was used to predict surface area and pore sizes of zeolites - thus obviating the need for intense experimentation. The hierarchical zeolite catalyst supports tested for CO2 conversion, yielded hydrocarbons

  7. Polyphosphates substitution for zeolite to in detergents

    International Nuclear Information System (INIS)

    Restrepo V, Gloria M.; Ocampo G, Aquiles; Saldarriaga M, Carlos

    1996-01-01

    The detergents, as well as the cleaning products, contain active ingredients that are good to increase their efficiency and some of them, as the sodium Tripoli-phosphate (TPF), they have turned out to be noxious for the environment. The zeolites use in the formulation of detergents has grown substantially since they fulfill the same function of the TPF and they have been recommended ecologically as substitutes from these when not being polluting. The objective of this work is to obtain a zeolite with appropriate characteristics for its use in the formulation of detergents, reproducing those of the zeolites used industrially. The zeolite synthesis is studied 4A starting from hydro-gels of different composition, varying the operation conditions and using two raw materials: (sodium meta-silicate, commercial degree and metallic aluminum) and clay type kaolin like silica source and aluminum It is looked for to get a product of beveled cubic morphology, or spherical, with glass size between 1 and 3 microns and that it possesses good capacity of conical exchange. Since the capacity and speed of ionic exchange is influenced by the particle size, time of contact and temperature, experimentation conditions settle down to measure the exchange of ions calcium and magnesium in watery solutions that they simulate the real situation of a laundry process in the country. This way the ability of the zeolite 4A obtained to diminish the concentration of these ions in the laundry waters is evaluated and its possibilities like component in the formulation of detergents non-phosphatates. Of the synthesized zeolites, the best in agreement is chosen with chemical properties as ionic and physical exchange capacity as crystalline, particle size and color, to prepare a detergent in which the polyphosphates is substituted partial and totally for the synthesized zeolite

  8. The chemical durability of alkali aluminosilicate glasses

    International Nuclear Information System (INIS)

    Tait, J.C.; Mandolesi, D.L.

    1983-09-01

    The aqueous durabilities of a series of glasses based on the sodium aluminosilicate system (Na 2 O-Al 2 O 3 -SiO 2 ) have been studied. The effects of molecular substitution of K 2 O or CaO for Na 2 O, and B 2 O 3 for Al 2 O 3 have been investigated. The temperature dependence of leaching in the Na 2 O-B 2 O 3 -Al 2 O 3 -SiO 2 system was studied with glasses containing 2 wt percent simulated UO 2 fuel recycle waste. The results confirm that aluminosilicate glasses are more durable than their borosilicate counterparts. The leaching results are explained in terms of glass structure and bonding, and a general leaching mechanism for aluminosilicate glasses is presented

  9. Sodium Aluminosilicate Formation in Tank 43H Simulants

    International Nuclear Information System (INIS)

    Wilmarth, W.R.; Walker, D.D.; Fink, S.D.

    1997-11-01

    This work studied the formation of a sodium aluminosilicate, Na 8 Al 6 Si 6 O 24 (NO 3 ) 2?4 H 2 O, at 40 degree 110 degree C in simulated waste solutions with varied amounts of silicon and aluminum. The data agree well with literature solubility data for sodalite, the analogous chloride salt. The following conclusions result from this work: (1) The study shows, by calculation and experiments, that evaporation of the September 1997 Tank 43H inventory will only form minor quantities of the aluminosilicate. (2) The data indicate that the rate of formation of the nitrate enclathrated sodalite solid at these temperatures falls within the residence time (<; 4 h) of liquid in the evaporator. (3) The silicon in entrained Frit 200 transferred to the evaporator with the Tank 43H salt solution will quantitatively convert to the sodium aluminosilicate. One kilogram of Frit 200 produces 2.1 kg of the sodium aluminosilicate

  10. Crystallization of Yttrium and Samarium Aluminosilicate Glasses

    OpenAIRE

    Lago, Diana Carolina; Prado, Miguel Oscar

    2016-01-01

    Aluminosilicate glasses containing samarium and yttrium (SmAS and YAS glasses) exhibit high glass transition temperatures, corrosion resistance, and glass stability on heating which make them useful for technological applications. Yttrium aluminosilicate glass microspheres are currently being used for internal selective radiotherapy of liver cancer. During the preparation process, crystallization needs to be totally or partially avoided depending on the final application. Thus knowing the cry...

  11. Synthesis and characterization of Al-TON zeolite using a dialkylimizadolium as structure-directing agent

    Energy Technology Data Exchange (ETDEWEB)

    Lopes, Christian Wittee; Pergher, Sibele Berenice Castella, E-mail: chriswittee@gmail.com [Universidade Federal do Rio Grande do Norte (UFRN), Natal, RN (Brazil); Villarroel-Rocha, Jhonny [Laboratorio de Solidos Porosos, Instituto de Fisica Aplicada, Universidad Nacional de San Luis, Chacabuco, San Luis (Argentina); Silva, Bernardo Araldi Da; Mignoni, Marcelo Luis [Universidade Regional Integrada, Erechim, RS (Brazil)

    2016-11-15

    In this work, the synthesis of zeolites using 1-butyl-3-methylimidazolium chloride [C{sub 4}MI]Cl as a structure-directing agent was investigated. The organic cation shows effectiveness and selectivity for the syntheses of TON zeolites under different reaction conditions compared to the traditional structure directing agent, 1,8-diaminooctane. The 1-butyl-3-methylimidazolium cation lead to highly crystalline materials and its role as OSDA in our synthesis conditions has been confirmed by characterization techniques. ICP-OES confirms the presence of Al in the samples and {sup 27}Al MAS NMR analysis indicated that aluminum atoms were incorporated in tetrahedral coordination. Scanning electron microscopy indicated that changing the crystallization condition (static or stirring), zeolites with different crystal size were obtained, which consequently affects the textural properties of the zeolites. Moreover, varying some synthesis parameters MFI zeolite can also be obtained. (author)

  12. Solvent-free synthesis of nanosized hierarchical sodalite zeolite with a multi-hollow polycrystalline structure

    KAUST Repository

    Zeng, Shangjing; Wang, Runwei; Li, Ang; Huang, Weiwei; Zhang, Zongtao; Qiu, Shilun

    2016-01-01

    A solvent-free route is developed for preparing nanoscale sodalite zeolite with a multi-hollow structure. Furthermore, the synthesis of nanosized hollow sodalite polycrystalline aggregates with a mesoporous structure and high crystallinity

  13. Zeolite A synthesis employing a brazilian coal ash as the silicon and aluminum source and its applications in adsorption and pigment formulation

    Directory of Open Access Journals (Sweden)

    Lindiane Bieseki

    2012-01-01

    Full Text Available Zeolite A was synthesized using the coal ash from Siderópolis/RS - Brazil. The synthesis was based on a standard IZA synthesis using coal ash as the Si and Al source. XRF analysis showed that the coal ash has a Si/Al ratio of 1.52, which is close to the Si/Al ratio required to produce zeolite A (1.0. The synthesized materials were analyzed by XRD, SEM and N2 adsorption. More crystalline materials were obtained during synthesis when an additional treatment was applied at a temperature of 353 K at the dissolution of NaOH step. The product formed after 4 hours was the most crystalline, but even the product formed after 1 hour proved to be better than that formed using the standard 4 hours IZA synthesis. The zeolites synthesized by this method had an adsorption capacity of 120 mg.g-1 for Ca2+, half the capacity of commercial zeolite A (300 mg.g-1. It was not possible to obtain blue or green pigments using the synthesized zeolite A.

  14. Zeolite formation from coal fly ash and its adsorption potential

    Energy Technology Data Exchange (ETDEWEB)

    Duangkamol Ruen-ngam; Doungmanee Rungsuk; Ronbanchob Apiratikul; Prasert Pavasant [Chulalongkorn University, Bangkok (Thailand). Department of Chemical Engineering

    2009-10-15

    The possibility in converting coal fly ash (CFA) to zeolite was evaluated. CFA samples from the local power plant in Prachinburi province, Thailand, were collected during a 3-month time span to account for the inconsistency of the CFA quality, and it was evident that the deviation of the quality of the raw material did not have significant effects on the synthesis. The zeolite product was found to be type X. The most suitable weight ratio of sodium hydroxide (NaOH) to CFA was approximately 2.25, because this gave reasonably high zeolite yield with good cation exchange capacity (CEC). The silica (Si)-to-aluminum (Al) molar ratio of 4.06 yielded the highest crystallinity level for zeolite X at 79% with a CEC of 240 meq/100 g and a surface area of 325 m{sup 2}/g. Optimal crystallization temperature and time were 90{sup o}C and 4 hr, respectively, which gave the highest CEC of approximately 305 meq/100 g. Yields obtained from all experiments were in the range of 50-72%. 29 refs., 5 tabs., 7 figs.

  15. IR and NMR studies of hierarchical material obtained by the treatment of zeolite Y by ammonia solution

    Science.gov (United States)

    Gackowski, Mariusz; Kuterasiński, Łukasz; Podobiński, Jerzy; Sulikowski, Bogdan; Datka, Jerzy

    2018-03-01

    Ammonia treatment of ultrastable zeolite Y has a great impact on its features. XRD showed a partial loss of crystallinity coupled with a loss of long-distance zeolite ordering. However, a typical short-range zeolite ordering, in the light of 29Si NMR studies, was largely preserved. 27Al MAS NMR spectra evidenced that most of Al was located in zeolitic tetrahedral positions, but some of them adopted a distorted configuration. Evolution of zeolites acidity was followed quantitatively by using IR. In particular, such studies revealed the presence of strongly acidic Sisbnd OHsbnd Al groups. IR studies suggest also heterogeneity of these OH groups. The heterogeneity of Sisbnd OHsbnd Al groups was a consequence of the less ordered structure of zeolites treated with ammonia solutions. It was also found that the treatment with ammonia solutions yields hierarchical material. The samples revealed promising catalytic properties in the liquid phase isomerization of α-pinene. Zeolites desilicated with ammonia may constitute an inexpensive route yielding viable hierarchical catalysts.

  16. Sorption of cobalt in zeolites and natural clays of the clinoptilolite and kaolinite type

    International Nuclear Information System (INIS)

    Davila R, J.I.; Solache R, M.

    2006-01-01

    In this work the sorption of cobalt of aqueous solutions in two natural zeolites (clinoptilolite) and a clay (kaolinite) of origin in the center-north region of Mexico is evaluated. The effect of the pH and the time of contact in the process of sorption were evaluated. The cobalt retained in the aluminosilicates was determined by neutron activation analysis. The cobalt sorption in the materials in a range of pH from 4 to 7 does not present significant variations. The studies of reaction kinetics show a very fast sorption in the first 5 hours of contact, reaching the equilibrium in approximately 24 hours. The kinetics of sorption of the cobalt ions was represented better by the Ritchie reaction model modified of second order. The experimental data for the zeolites obtained at ambient temperature and varying the concentration were adjusted to the models of Freundlich, Langmuir and Freundlich-Langmuir isotherms and it was observed that the cobalt sorption it behaves according to the Freundlich isotherm model. (Author)

  17. The evolution of strength and crystalline phases for alkali-activated ground blast furnace slag and fly ash-based geopolymers

    KAUST Repository

    Oh, Jae Eun

    2010-02-01

    The increase in strength and evolution of crystalline phases in inorganic polymer cement, made by the alkali activation of slag, Class C and Class F fly ashes, was followed using compressive strength test and synchrotron X-ray diffraction. In order to increase the crystallinity of the product the reactions were carried out at 80 °C. We found that hydrotalcite formed in both the alkali-activated slag cements and the fly ash-based geopolymers. Hydroxycancrinite, one member of the ABC-6 family of zeolites, was found only in the fly ash geopolymers. Assuming that the predominantly amorphous geopolymer formed under ambient conditions relates to the crystalline phases found when the mixture is cured at high temperature, we propose that the structure of this zeolitic precursor formed in Na-based high alkaline environment can be regarded as a disordered form of the basic building unit of the ABC-6 group of zeolites which includes poly-types such as hydroxycancrinite, hydroxysodalite and chabazite-Na. © 2009 Elsevier Ltd.

  18. The evolution of strength and crystalline phases for alkali-activated ground blast furnace slag and fly ash-based geopolymers

    International Nuclear Information System (INIS)

    Oh, Jae Eun; Monteiro, Paulo J.M.; Jun, Ssang Sun; Choi, Sejin; Clark, Simon M.

    2010-01-01

    The increase in strength and evolution of crystalline phases in inorganic polymer cement, made by the alkali activation of slag, Class C and Class F fly ashes, was followed using compressive strength test and synchrotron X-ray diffraction. In order to increase the crystallinity of the product the reactions were carried out at 80 deg. C. We found that hydrotalcite formed in both the alkali-activated slag cements and the fly ash-based geopolymers. Hydroxycancrinite, one member of the ABC-6 family of zeolites, was found only in the fly ash geopolymers. Assuming that the predominantly amorphous geopolymer formed under ambient conditions relates to the crystalline phases found when the mixture is cured at high temperature, we propose that the structure of this zeolitic precursor formed in Na-based high alkaline environment can be regarded as a disordered form of the basic building unit of the ABC-6 group of zeolites which includes poly-types such as hydroxycancrinite, hydroxysodalite and chabazite-Na.

  19. A Hierarchically Micro-Meso-Macroporous Zeolite CaA for Methanol Conversion to Dimethyl Ether

    Directory of Open Access Journals (Sweden)

    Yan Wang

    2016-11-01

    Full Text Available A hierarchical zeolite CaA with microporous, mesoporous and macroporous structure was hydrothermally synthesized by a ”Bond-Blocking” method using organo-functionalized mesoporous silica (MS as a silica source. The characterization by XRD, SEM/TEM and N2 adsorption/desorption techniques showed that the prepared material had well-crystalline zeolite Linde Type A (LTA topological structure, microspherical particle morphologies, and hierarchically intracrystalline micro-meso-macropores structure. With the Bond-Blocking principle, the external surface area and macro-mesoporosity of the hierarchical zeolite CaA can be adjusted by varying the organo-functionalized degree of the mesoporous silica surface. Similarly, the distribution of the micro-meso-macroporous structure in the zeolite CaA can be controlled purposely. Compared with the conventional microporous zeolite CaA, the hierarchical zeolite CaA as a catalyst in the conversion of methanol to dimethyl ether (DME, exhibited complete DME selectivity and stable catalytic activity with high methanol conversion. The catalytic performances of the hierarchical zeolite CaA results clearly from the micro-meso-macroporous structure, improving diffusion properties, favoring the access to the active surface and avoiding secondary reactions (no hydrocarbon products were detected after 3 h of reaction.

  20. Synthesis of all-silica zeolites from highly concentrated gels containing hexamethonium cations

    KAUST Repository

    Liu, Xiaolong; Ravon, Ugo; Tuel, Alain

    2012-01-01

    A pure and highly crystalline all-silica EU-1 zeolite has been obtained from the crystallization of gels containing very low water contents in the presence of hexamethonium cations. Decreasing the water content in the gel down to H 2O/Si < 1

  1. Structure–Property Relationships of Inorganically Surface-Modified Zeolite Molecular Sieves for Nanocomposite Membrane Fabrication

    KAUST Repository

    Lydon, Megan E.

    2012-05-03

    A multiscale experimental study of the structural, compositional, and morphological characteristics of aluminosilicate (LTA) and pure-silica (MFI) zeolite materials surface-modified with MgO xH y nanostructures is presented. These characteristics are correlated with the suitability of such materials in the fabrication of LTA/Matrimid mixed-matrix membranes (MMMs) for CO 2/CH 4 separations. The four functionalization methods studied in this work produce surface nanostructures that may appear superficially similar under SEM observation but in fact differ considerably in shape, size, surface coverage, surface area/roughness, degree of attachment to the zeolite surface, and degree of zeolite pore blocking. The evaluation of these characteristics by a combination of TEM, HRTEM, N 2 physisorption, multiscale compositional analysis (XPS, EDX, and ICP-AES elemental analysis), and diffraction (ED and XRD) allows improved understanding of the origin of disparate gas permeation properties observed in MMMs made with four types of surface-modified zeolite LTA materials, as well as a rational selection of the method expected to result in the best enhancement of the desired properties (in the present case, CO 2/CH 4 selectivity increase without sacrificing permeability). A method based on ion exchange of the LTA with Mg 2+, followed by base-induced precipitation and growth of MgO xH y nanostructures, deemed "ion exchange functionalization" here, offers modified particles with the best overall characteristics resulting in the most effective MMMs. LTA/Matrimid MMMs containing ion exchange functionalized particles had a considerably higher CO 2/CH 4 selectivity (∼40) than could be obtained with the other functionalization techniques (∼30), while maintaining a CO 2 permeability of ∼10 barrers. A parallel study on pure silica MFI surface nanostructures is also presented to compare and contrast with the zeolite LTA case. © 2012 American Chemical Society.

  2. Characterization of Uranium Solids Precipitated with Aluminosilicates

    International Nuclear Information System (INIS)

    DUFF, MC

    2004-01-01

    At the Savannah River Site (SRS), the High-Level Waste (HLW) Tank Farms store and process high-level liquid radioactive wastes from the Canyons and recycle water from the Defense Waste Processing Facility. The waste is concentrated using evaporators to minimize the volume of space required for HLW storage. Recently, the 2H Evaporator was shutdown due to the crystallization of sodium aluminosilicate (NAS) solids (such as cancrinite and sodalite) that contained close to 10 weight percent of elementally-enriched uranium (U). Prior to extensive cleaning,the evaporator deposits resided on the evaporator walls and other exposed internal surfaces within the evaporator pot. Our goal is to support the basis for the continued safe operation of SRS evaporators and to gain more information that could be used to help mitigate U accumulation during evaporator operation. To learn more about the interaction between U(VI) and NAS in HLW salt solutions, we performed several fundamental studies to examine the mechanisms of U accumulation with NAS in highly caustic solutions. This larger group of studies focused on the following processes: co-precipitation/structural incorporation, sorption, and precipitation (with or without NAS), which will be reviewed in this presentation. We will present and discuss local atomic structural characterization data about U that has been co-precipitated with NAS solids (such as amorphous zeolite precursor material and sodalite) using X-ray absorption fine-structure (XAFS) spectroscopic techniques

  3. UKURAN PARTIKEL DAN KONFORMASI KRISTAL ZEOLIT-A HASIL SINTESIS DENGAN PENAMBAHAN TETRAPROPILAMMONIUM HIDROKSIDA (TPAOH

    Directory of Open Access Journals (Sweden)

    Nurul - Widiastuti

    2014-12-01

    Full Text Available Abstract PARTICLE SIZE AND CRYSTAL CONFORMATION OF SYNTHESIZED ZEOLITE-A WITH TETRAPROPYLAMMONIUM HYDROXIDE (TPAOH ADDITION. The aims of this research is to study the effect of tetrapropylammonium hydroxide (TPAOH concentration in the synthesis of zeolite A to its physical characteristics such as crystallinity, crystal conformation and average crystal size. The zeolite A was synthesized with composition 3.165 Na2O : 1.000 Al2O3 : 1.926 SiO2 : 128 H2O : x TPAOH where x was 0; 0.0385; 0.0577; 0.0770; 0.1540 and 4.1602. The zeolite was crystalized under hydrothermal condition in a stainless steel autoclave at 100°C for 5 hours. The resulting crystal was washed with distilled water until pH 8 and then dried in an oven at 80oC for 24 hours. FT-IR and XRD analysis results show that the synthesized zeolite A at x = 4.1602 has the lowest crystallinity. It is estimated due to the mass of TPAOH was four times higger than the mass of zeolite framework components (Si and Al. SEM and PSD (Particle Size Distribution analysis results show that TPAOH concentration affected the crystal conformation and the average size of zeolite A particles. The formation of chained crystal conformation was caused by the electrostatic interactions between TPA+ and negatively charge of zeolite framework. In addition, the particel size of the synthesized zeolite A at x = 0.1540 was 2.024 µm which was smaller than the particel size of the synthesized zeolite A without TPAOH, which was 3.534 µm. Keywords: average size of particles; crystal conformation; TPAOH; zeolite A Abstrak Penelitian ini bertujuan untuk mempelajari pengaruh konsentrasi TPAOH (Tetrapropilamonium hidroksida dalam sintesis zeolit A terhadap sifat fisikanya yang meliputi kekristalan, konformasi kristal dan ukuran rata-rata kristal yang terbentuk. Pada penelitian   ini   zeolit A   disintesis    dengan komposisi 3,165 Na2O : 1 Al2O3 : 1,926 SiO2 :128 H2O: x TPAOH. Konsentrasi TPAOH divariasikan dengan

  4. Sorption of Fe{sup 3+} , Co{sup 2+} , Ce{sup 3+} , Cs{sup +} and Ba{sup 2+} in zeolite X.; Sorcion de Hierro (III), Cobalto (II), Cerio (III), Cesio (I), Bario (II) en Zeolita X.

    Energy Technology Data Exchange (ETDEWEB)

    Martinez M, V

    1994-12-31

    The sorption behavior of Fe{sup 3+} , Co{sup 2+} , Ce{sup 3+} , Cs{sup +} , and Ba{sup 2+} in aqueous solutions, was studied in presence of zeolite X. Solutions of Fe(NO{sub 3}){sub 3} . 9 H{sub 2} O, Co(NO{sub 3}){sub 2} . 6 H{sub 2} O, Ce(NO{sub 3}){sub 3} . 6 H{sub 2} O, Cs NO{sub 3} and Ba(NO{sub 3}){sub 2} were labelled with the respectively radioactive isotopes Fe{sup 59} , Co{sup 60}, Cs{sup 134}, Ba{sup 139} and Ce{sup 141}. 20 ml. of each solution was left in contact with 200 mg. of zeolite for different periods. Later the zeolites were separated by centrifugation from the aqueous solutions and the radioactivity of the aqueous phases was measured with a NaI(Tl) solid-state well detector coupled to a single-channel Picker analyzer or with a Gel hyper pure solid-state detector coupled to a 2048 channel pulse height analyzer. When Cs{sup +} in the aqueous solutions was left in contact with zeolite X it was found that it does not occupy all cationic sites in the zeolite due to the ionic radium effect. A similar behavior was found for the divalent ions. In all cases, when the pH was not controlled, the zeolite lost part of its crystallinity and when the divalent ions were exchanged again by Na{sup +}, the zeolite recovered completely its crystallinity. During the sorption, the ionic radius, and the charge are important parameters as well as the pH. When the pH of the solution was adjusted between 6.5 - 7.0 the crystallinity was maintained in some cases. For Fe{sup 3+} the crystallinity after the ion exchange was 94 % and when the pH was not adjusted the crystallinity was completely lost. It was found as well that the zeolite X induces the formation of H{sub 3} O{sup +} which competes with the cations for the sites in the zeolite. (Author).

  5. One-pot pseudomorphic crystallization of mesoporous porous silica to hierarchical porous zeolites

    Energy Technology Data Exchange (ETDEWEB)

    Xing, Jun-Ling; Jiang, Shu-Hua; Pang, Jun-Ling; Yuan, En-Hui; Ma, Xiao-Jing [Shanghai Key Laboratory of Green Chemistry and Chemical Processes, College of Chemistry and Molecular Engineering, East China Normal University, No. 3663 Zhongshan North Road, 200062 Shanghai (China); Lam, Koon-Fung [Department of Chemical Engineering, University College London, Torrington Place, London (United Kingdom); Xue, Qing-Song, E-mail: qsxue@chem.ecnu.edu.cn [Shanghai Key Laboratory of Green Chemistry and Chemical Processes, College of Chemistry and Molecular Engineering, East China Normal University, No. 3663 Zhongshan North Road, 200062 Shanghai (China); Zhang, Kun, E-mail: kzhang@chem.ecnu.edu.cn [Shanghai Key Laboratory of Green Chemistry and Chemical Processes, College of Chemistry and Molecular Engineering, East China Normal University, No. 3663 Zhongshan North Road, 200062 Shanghai (China)

    2015-09-15

    Hierarchically porous silica with mesopore and zeolitic micropore was synthesized via pseudomorphic crystallization under high-temperature hydrothermal treatment in the presence of cetyltrimethylammonium tosylate and tetrapropylammonium ions. A combined characterization using small-angle X-ray diffraction (XRD), nitrogen adsorption, high-resolution transmission electron microscopy (TEM), thermogravimetric analysis (TG), and elemental analysis showed that dual templates, CTA{sup +} and TPA{sup +} molecules, can work in a cooperative manner to synthesize mesoporous zeolite in a one-pot system by precisely tuning the reaction conditions, such as reaction time and temperature, and type and amount of heterometal atoms. It is found that the presence of Ti precursor is critical to the successful synthesis of such nanostructure. It not only retards the nucleation and growth of crystalline MFI domains, but also acts as nano-binder or nano-glue to favor the assembly of zeolite nanoblocks. - Graphical abstract: Display Omitted - Highlights: • A facile method to synthesize mesoporous zeolites with hierarchical porosity was presented. • It gives a new insight into keeping the balance between mesoscopic and molecular ordering in hierarchical porous materials. • A new understanding on the solid–solid transformation mechanism for the synthesis of titanosilicate zeolites was proposed.

  6. Synthesis and characterization of zeolite material from coal ashes modified by surfactant; Sintese e caracterizacao de material zeolitico de cinzas de carvao modificado por surfactante

    Energy Technology Data Exchange (ETDEWEB)

    Fungaro, D.A., E-mail: dfungaro@ipen.b [Instituto de Pesquisas Energeticas e Nucleares (CQMA/IPEN/CNEN-SP), Sao Paulo, SP (Brazil). Centro de Quimica e Meio Ambiente; Borrely, S.I. [Instituto de Pesquisas Energeticas e Nucleares (CTR/IPEN/CNEN-SP), Sao Paulo, SP (Brazil). Centro de Tecnologia das Radiacoes

    2010-07-01

    Coal ash was used as starting material for zeolite synthesis by means of hydrothermal treatment. The surfactant-modified zeolite (SMZ) was prepared by adsorbing the cationic surfactant hexadecyltrimethylammonium bromide (HDTMA-Br) on the external surface of the zeolite from coal ash. The zeolite structure stability was monitored during the characterization of the materials by FTIR, XDR and SEM. The structural parameters of surfactant-modified zeolite are very close to that of corresponding non-modified zeolite which indicates that the crystalline nature of the zeolite remained intact after required chemical treatment with HDTMA-Br molecules and heating treatment for drying. The most intense peaks in the FTIR spectrum of HDTMA-Br were observed in SMZ spectrum confirming adsorption of surfactant on zeolites. (author)

  7. Hierarchical zeolites: Enhanced utilisation of microporous crystals in catalysis by advances in materials design

    DEFF Research Database (Denmark)

    Perez-Ramirez, Javier; Christensen, Claus H.; Egeblad, Kresten

    2008-01-01

    The introduction of synthetic zeolites has led to a paradigm shift in catalysis, separations, and adsorption processes, due to their unique properties such as crystallinity, high-surface area, acidity, ion-exchange capacity, and shape-selective character. However, the sole presence of micropores...... the properties of the resulting materials and the catalytic function. We particularly dwell on the exciting field of hierarchical zeolites, which couple in a single material the catalytic power of micropores and the facilitated access and improved transport consequence of a complementary mesopore network...

  8. Preparation of fly ash based zeolite for removal of fluoride from drinking water

    Science.gov (United States)

    Panda, Laxmidhar; Kar, Biswabandita; Dash, Subhakanta

    2018-05-01

    Fluoride contamination of drinking water is a worldwide phenomenon and scientists are working relentlessly to find ways to remove fluoride from drinking water. Out of the different methods employed for removal fluoride from drinking water adsorption process is the most suitable because in this process the adsorbent is regenerated and the process is cost effective. In the present study fly ash is used as the raw material, which is treated with alkali (NaOH) to form NaP1 zeolite. This zeolite is then subjected to characterization by standard procedures. It is found that the synthesized zeolite has more crystalline character than the raw fly ash and has also more voids and channels on its surface. The surface of the synthesized zeolite is modified with calcium chloride and the same is employed for removal of fluoride under varying pH, contact time, initial concentration of fluoride, temperature and adsorbent dose etc so as to assess the suitably or otherwise of the synthesized product.

  9. Adsorption of aqueous Zn(II) species on synthetic zeolites

    International Nuclear Information System (INIS)

    Badillo-Almaraz, Veronica; Trocellier, Patrick; Davila-Rangel, Ignacio

    2003-01-01

    To supply a good quality drinkable water tends to become a strategic task in both developed and under development countries in the world due to the number of potential contamination sources. One of the major problems is derived from the presence of heavy toxic metals like zinc or lead resulting from industrial activities. Zeolites are known as very efficient mineral substrates for fixing aqueous ionic species through their wide range of channels present in the crystalline structure and due to their strong surface reactivity. MicroPIXE coupled with microRBS (3.05 MeV 4 He + ions) have been used to quantify the incorporation of zinc within two commercial zeolites containing alkali elements (zeolite X and clinoptilolite) in the concentration range of: 0.0002-0.05 M at neutral pH. At the beginning of the interaction between zeolite and Zn(II) solution, the adsorption process exhibits a direct proportionality between the content of zinc fixed on the mineral substrate and the aqueous concentration up to 0.01 M. Beyond this point a saturation effect seems to occur, indicating the strong decrease of available adsorption sites. Sodium or potassium ions are probably exchanged with Zn(II) ions during this process. The compared behaviour of the two zeolites is then discussed in terms of kinetic effects based on ionic radius values. A co-adsorption test carried on with a 50-50% Zn(II) 0.001 M-Pb(II) 0.001 M solution shows that lead does not occupy the same sites as zinc because the content of zinc fixed on the zeolite sample exactly corresponds to the result obtained with a pure 0.001 M Zn(II) solution. All these data clearly showed that zeolite surface reactivity is greatly influenced by the mineral cage-like structure and particularly the presence of pockets, spaces and channels

  10. Synthesis of cubic Y zeolite using a pulsed microwave heating system

    Directory of Open Access Journals (Sweden)

    Araújo L.R.G. de

    1999-01-01

    Full Text Available Cubic Y zeolite were successfully synthesized using microwave heating for 18 - 25 min, whereas 10 - 50 h are required by hydrothermal heating technique depending upon the lattice Si/Al ratio. To this end, we used a commercial microwave oven modified in order to provide pulsed microwave pumping on the synthesis mixtures. The obtained samples were analyzed by X-ray diffraction, BET surface area and infrared spectroscopy measurements. As a result, we verify that Y zeolite samples obtained from hydrogels containing low aluminum contents, present a good degree of crystallinity and then can be suitable for using in adsorption and catalysis experiments.

  11. Studies on the formation of hierarchical zeolite T aggregates with well-defined morphology in different template systems

    Science.gov (United States)

    Yin, Xiaoyan; Chu, Naibo; Lu, Xuewei; Li, Zhongfang; Guo, Hong

    2016-01-01

    In this paper, the disk-like and pumpkin-like hierarchical zeolite T aggregates consisted of primary nano-grains have been hydrothermally synthesized with and without the aid of the second template. The first template is used with tetramethylammonium hydroxide (TMAOH) and the second template is used with triethanolamine (TEA) or polyving akohol (PVA). A combination of characterization techniques, including XRD, SEM, TEM and N2 adsorption-desorption to examine the crystal crystallinity, morphology and surface properties of hierarchical zeolite T aggregates. In the single-template preparation process, the two-step varying-temperature treatment has been used to improve the meso-porosity of zeolite T aggregates. In the double-template preparation process, the amounts of PVA or TEA on the crystallinity, morphology and meso-porosity of zeolite T aggregates have been studied. It has been proved that the interstitial voids between the primary grains of aggregates are the origin of additional mesopores of samples. The micro- and meso-porosities of samples prepared with and without the second template have been contrasted in detail at last. In particular, the sample synthesized with the addition of PVA presents a hierarchical pore structure with the highest Sext value of 122 m2/g and Vmeso value of 0.255 cm3/g.

  12. Adsorption Equilibrium and Kinetics of the Removal of Ammoniacal Nitrogen by Zeolite X/Activated Carbon Composite Synthesized from Elutrilithe

    Directory of Open Access Journals (Sweden)

    Yong Zhang

    2017-01-01

    Full Text Available Zeolite X/activated carbon composite material (X/AC was prepared from elutrilithe, by a process consisting of carbonization, activation, and subsequent hydrothermal transformation of aluminosilicate in alkaline solution, which was used for the removal of ammoniacal nitrogen from aqueous solutions. Adsorption kinetics, equilibrium, and thermodynamic were studied and fitted by various models. The adsorption kinetics is best depicted by pseudosecond-order model, and the adsorption isotherm fits the Freundlich and Redlich-Peterson model. This explains the ammoniacal nitrogen adsorption onto X/AC which was chemical adsorption in nature. Thermodynamic properties such as ΔG, ΔH, and ΔS were determined for the ammoniacal nitrogen adsorption, and the positive enthalpy confirmed that the adsorption process was endothermic. It can be inferred that ammoniacal nitrogen removal by X/AC composite is attributed to the ion exchange ability of zeolite X. Further, as a novel sorbent, this material has the potential application in removing ammoniacal nitrogen coexisting with other organic compounds from industrial wastewater.

  13. Synthesis and characterization of alumina application in support of zeolite membrane

    International Nuclear Information System (INIS)

    Barbosa, A.S.; Rodrigues, M.G.F.

    2012-01-01

    Much interest has been aroused in process applications using zeolite membrane. The physicochemical properties of the support have a strong effect on the quality of zeolite membrane. This work is to synthesize and characterize alumina for use as a support for zeolite membrane. In this work was synthesized α-alumina: 40% alumina, 0.2% for PABA, 0.5% oleic acid and 59.3% ethyl alcohol. The mixture was ground in ball mill and placed in an oven for 24 hours at 60 °C, allowed to stand for 24h. The pressing was performed with 4 tons. The pressed material was subjected to sintering at 1400 °C/hour. The samples were characterized by EDX, XRD and SEM. The results for the media by XRD showed that they are crystalline and pure. By EDX was observed that the supports consist essentially of alumina. (author)

  14. XPS analysis of aluminosilicate microspheres bioactivity tested in vitro

    Energy Technology Data Exchange (ETDEWEB)

    Todea, M.; Vanea, E. [Faculty of Physics and Institute of Interdisciplinary Research on Bio-Nano-Sciences, Babes Bolyai University, Cluj-Napoca 400084 (Romania); Bran, S. [University of Medicine and Pharmacy “Iuliu Haţieganu”, Department of Cranio-Maxillofacial Surgery, 400029 Cluj-Napoca (Romania); Berce, P. [Technical University of Cluj-Napoca, Faculty of Machine Building and National Centre of Rapid Prototyping, 400641 Cluj-Napoca (Romania); Simon, S., E-mail: simons@phys.ubbcluj.ro [Faculty of Physics and Institute of Interdisciplinary Research on Bio-Nano-Sciences, Babes Bolyai University, Cluj-Napoca 400084 (Romania)

    2013-04-01

    The study aims to characterize surface properties of aluminosilicate microspheres incorporating yttrium, with potential biomedical applications. Micrometric particles of spherical shape were obtained by spray drying method. The behavior of aluminosilicate microspheres without yttrium and with yttrium was investigated under in vitro conditions, by seven days incubation in simulated body fluid (SBF). The surface elemental composition and the atomic environments on outermost layer of the microspheres, prior to and after incubation in SBF were evaluated by X-ray photoelectron spectroscopy (XPS) in order to investigate their bioactivity. The results were analyzed to underline the effect of yttrium addition on surface properties of the aluminosilicate microspheres and implicitly on the behavior of the samples in simulated body environments.

  15. Zeolite-zeolite composite composed of Y zeolite and single-crystal-like ZSM-5 zeolite: Fabricated by a process like “big fish swallowing little one”

    Energy Technology Data Exchange (ETDEWEB)

    Pan, Meng; Li, Peng [Research Centre of Energy Chemical & Catalytic Technology, Taiyuan University of Technology, Taiyuan 030024 (China); Zheng, Jiajun, E-mail: zhengjiajun@tyut.edu.cn [Research Centre of Energy Chemical & Catalytic Technology, Taiyuan University of Technology, Taiyuan 030024 (China); Liu, Yujian [SINOPEC Research Institute of Petroleum Processing, Beijing, 100083 (China); Kong, Qinglan [Research Centre of Energy Chemical & Catalytic Technology, Taiyuan University of Technology, Taiyuan 030024 (China); Tian, Huiping [SINOPEC Research Institute of Petroleum Processing, Beijing, 100083 (China); Li, Ruifeng, E-mail: rfli@tyut.edu.cn [Research Centre of Energy Chemical & Catalytic Technology, Taiyuan University of Technology, Taiyuan 030024 (China)

    2017-06-15

    Zeolite-zeolite composite composed of Y and ZSM-5 zeolite was prepared using depolymerized Y as partial nutrients for the growth of ZSM-5. The as-synthesized samples were characterized by X-ray powder diffraction (XRD), FT-IR, scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS), transmission electron microscopy (TEM), N{sub 2} adsorption-desorption measurement and Thermogravimetric analysis (TG). Chemical equilibrium at the solution-crystal interface was changed because of the partially depolymerized Y zeolite, the conditions necessary for the growth of ZSM-5 were therefore obtained. ZSM-5 zeolite crystals nucleated and grew on the interface, and Y zeolite crystals were then gradually swallowed by the growing single-crystal-like ZSM-5. - Graphical abstract: Y zeolite crystals in the hydrothermal system were partially depolymerized and an ambience in favor of the formation of ZSM-5 was formed, and ZSM-5 zeolite crystals nucleated and grew up on the external surfaces of Y zeolite crystals. As a consequence, Y zeolite crystals were swallowed by single-crystal-like ZSM-5. - Highlights: • Zeolite composite is composed by Y zeolite and single-crystal-like ZSM-5. • A composite material formed by a process like “big fish swallowing little one”. • Ratio of two zeolites in the as-synthesized sample can be adjusted.

  16. Enhancing nitrification at low temperature with zeolite in a mining operations retention pond

    Directory of Open Access Journals (Sweden)

    Misha eMiazga-Rodriguez

    2012-07-01

    Full Text Available Ammonium nitrate explosives are used in mining operations at Diavik Diamond Mines Inc. in the Northwest Territories, Canada. Residual nitrogen is washed into the mine pit and piped to a nearby retention pond where its removal is accomplished by microbial activity prior to a final water treatment step and release into the sub-Arctic lake, Lac de Gras. Microbial removal of ammonium in the retention pond is rapid during the brief ice-free summer, but often slows under ice cover that persists up to nine months of the year. The aluminosilicate mineral zeolite was tested as an additive to retention pond water to increase rates of ammonium removal at 4 °C. Water samples were collected across the length of the retention pond monthly over a year. The structure of the microbial community (bacteria, archaea, and eukarya, as determined by denaturing gradient gel electrophoresis of PCR-amplified small subunit ribosomal RNA genes, was more stable during cold months than during July-September, when there was a marked phytoplankton bloom. Of the ammonia-oxidizing community, only bacterial amoA genes were consistently detected. Zeolite (10 g was added to retention pond water (100 mL amended with 5 mM ammonium and incubated at 12 °C to encourage development of a nitrifying biofilm. The biofilm community was composed of different amoA phylotypes from those identified in gene clone libraries of native water samples. Zeolite biofilm was added to fresh water samples collected at different times of the year, resulting in a significant increase in laboratory measurements of potential nitrification activity at 4 °C. A significant positive correlation between the amount of zeolite biofilm and potential nitrification activity was observed; rates were unaffected in incubations containing 1-20 mM ammonium. Addition of zeolite to retention ponds in cold environments could effectively increase nitrification rates year round by concentrating active nitrifying biomass.

  17. Enhancing nitrification at low temperature with zeolite in a mining operations retention pond.

    Science.gov (United States)

    Miazga-Rodriguez, Misha; Han, Sukkyun; Yakiwchuk, Brian; Wei, Kai; English, Colleen; Bourn, Steven; Bohnert, Seth; Stein, Lisa Y

    2012-01-01

    Ammonium nitrate explosives are used in mining operations at Diavik Diamond Mines Inc. in the Northwest Territories, Canada. Residual nitrogen is washed into the mine pit and piped to a nearby retention pond where its removal is accomplished by microbial activity prior to a final water treatment step and release into the sub-Arctic lake, Lac de Gras. Microbial removal of ammonium in the retention pond is rapid during the brief ice-free summer, but often slows under ice cover that persists up to 9 months of the year. The aluminosilicate mineral zeolite was tested as an additive to retention pond water to increase rates of ammonium removal at 4°C. Water samples were collected across the length of the retention pond monthly over a year. The structure of the microbial community (bacteria, archaea, and eukarya), as determined by denaturing gradient gel electrophoresis of PCR-amplified small subunit ribosomal RNA genes, was more stable during cold months than during July-September, when there was a marked phytoplankton bloom. Of the ammonia-oxidizing community, only bacterial amoA genes were consistently detected. Zeolite (10 g) was added to retention pond water (100 mL) amended with 5 mM ammonium and incubated at 12°C to encourage development of a nitrifying biofilm. The biofilm community was composed of different amoA phylotypes from those identified in gene clone libraries of native water samples. Zeolite biofilm was added to fresh water samples collected at different times of the year, resulting in a significant increase in laboratory measurements of potential nitrification activity at 4°C. A significant positive correlation between the amount of zeolite biofilm and potential nitrification activity was observed; rates were unaffected in incubations containing 1-20 mM ammonium. Addition of zeolite to retention ponds in cold environments could effectively increase nitrification rates year-round by concentrating active nitrifying biomass.

  18. INTERKALASI XILENOL ORANGE PADA ZEOLIT ALAM LAMPUNG SEBAGAI ELEKTRODA ZEOLIT TERMODIFIKASI

    Directory of Open Access Journals (Sweden)

    Fitriyah Fitriyah

    2016-07-01

    Full Text Available Zeolit terbagi menjadi zeolit alam dan zeolit sintesis, kapasitas adsorpsi zeolit alam umumnya lebih rendah daripada zeolit sintesis, sehingga untuk meningkatkan kapasitas adsorpsinya, karakter permukaan zeolit alam perlu diubah dengan melakukan proses modifikasi permukaan melalui berbagai metode, salah satunya dengan metode interkalasi. Tujuan penelitian ini yaitu menginterkalasi zat warna xilenol orange ke dalam zeolit alam Lampung dan mengaplikasikannya sebagai elektroda zeolit termodifikasi. Melalui proses interkalasi diharapkan dapat meningkatkan kegunaan dan nilai tambah dari zeolit. Data hasil penelitian menunjukkan bahwa xilenol orange (XO dapat diinterkalasikan ke dalam zeolit, hal ini dapat dilihat dari pita spektrum FTIR yang memiliki serapan pada bilangan gelombang 1383 cm-1, yaitu menunjukkan serapan dari S=O simetris dan asimetris pada gugus –SO3H,hal ini diduga karena XO memiliki gugus SO3 sehingga menyebabkan adanya serangan pada proton zeolit. Berdasarkan penelitian dapat disarikan bahwa xilanol orange dapat terinterkalasi pada zeolit alam Lampung dan dapat dimanfaatkan sebagai elektroda pendeteksi logam.

  19. Directing factors affecting the synthesis of a MFI-type zeolite

    Energy Technology Data Exchange (ETDEWEB)

    Vinaches, P.; Pergher, S.B.C. [Universidade Federal de Rio Grande do Norte (UFRN), RN (Brazil); Lopes, C.W. [Institute of Chemical Technology, Mumbai (India); Gomez-Hortiguela, L. [Instituto de Catalisis y Petroleoquimica, Madrid (Spain); Finger, P.H.; Silva, B.A. da; Dallago, R.M.; Mignoni, M.L. [Universidade Regional Integrada do Alto Uruguai e das Missoes (URI), Erechim, RS (Brazil)

    2016-07-01

    Full text: Zeolites are crystalline tectosilicates constituted by (TO4) tetrahedra connected through the oxygens of their vertices. The importance of these materials is that their properties differ, due to their variable compositions and structures, leading to the possibility of applying them into different industries, for example, as catalyst in petroleum industry or sensors in quality control. One of the big questions in this area is about the understanding of the chemistry that directs to one or another type of zeolite. Another important question is the search of new zeolitic structures for new applications. One approach to answer both is the study of the structure-directing agents, which are inorganic or organic molecules used in the synthesis of zeolites. New and already-used molecules have been studied within different synthesis conditions and different techniques, as characterization or computational studies. And several attempts of rationalization were and, still, will be performed. In this research, an imidazolium-based compound was studied in hydrothermal zeolite synthesis as organic structure-directing agent (OSDA). The products were obtained with Si/Al or Si/(Al+Zn) compositions, proved by ICP data. X-ray diffractograms showed two different zeolitic types: MFI and TON. It was observed that when Zn was present in the synthesis gel, pure MFI phases were able to appear. But in his absence, the products were all mixtures of MFI and TON zeolites. It was also possible to distinguish both phases by SEM micrographs, as MFI had brick-like shape and TON appeared as needles. The obtained zeolites were stable until 900°C minimum, as tested by a TG/DTG/DSC experiment. To prove that the chosen OSDA directed these structures, a CHN analysis was performed, resulting in integrity of the molecules inside the zeolitic pores and cavities. Finally, a rationale about the location and conformation of the OSDA was needed to understand these experimental results. So, it was

  20. Directing factors affecting the synthesis of a MFI-type zeolite

    International Nuclear Information System (INIS)

    Vinaches, P.; Pergher, S.B.C.; Lopes, C.W.; Gomez-Hortiguela, L.; Finger, P.H.; Silva, B.A. da; Dallago, R.M.; Mignoni, M.L.

    2016-01-01

    Full text: Zeolites are crystalline tectosilicates constituted by (TO4) tetrahedra connected through the oxygens of their vertices. The importance of these materials is that their properties differ, due to their variable compositions and structures, leading to the possibility of applying them into different industries, for example, as catalyst in petroleum industry or sensors in quality control. One of the big questions in this area is about the understanding of the chemistry that directs to one or another type of zeolite. Another important question is the search of new zeolitic structures for new applications. One approach to answer both is the study of the structure-directing agents, which are inorganic or organic molecules used in the synthesis of zeolites. New and already-used molecules have been studied within different synthesis conditions and different techniques, as characterization or computational studies. And several attempts of rationalization were and, still, will be performed. In this research, an imidazolium-based compound was studied in hydrothermal zeolite synthesis as organic structure-directing agent (OSDA). The products were obtained with Si/Al or Si/(Al+Zn) compositions, proved by ICP data. X-ray diffractograms showed two different zeolitic types: MFI and TON. It was observed that when Zn was present in the synthesis gel, pure MFI phases were able to appear. But in his absence, the products were all mixtures of MFI and TON zeolites. It was also possible to distinguish both phases by SEM micrographs, as MFI had brick-like shape and TON appeared as needles. The obtained zeolites were stable until 900°C minimum, as tested by a TG/DTG/DSC experiment. To prove that the chosen OSDA directed these structures, a CHN analysis was performed, resulting in integrity of the molecules inside the zeolitic pores and cavities. Finally, a rationale about the location and conformation of the OSDA was needed to understand these experimental results. So, it was

  1. Templating mesoporous zeolites

    DEFF Research Database (Denmark)

    Egeblad, Kresten; Christensen, Christina Hviid; Kustova, Marina

    2008-01-01

    The application of templating methods to produce zeolite materials with hierarchical bi- or trimodal pore size distributions is reviewed with emphasis on mesoporous materials. Hierarchical zeolite materials are categorized into three distinctly different types of materials: hierarchical zeolite...... crystals, nanosized zeolite crystals, and supported zeolite crystals. For the pure zeolite materials in the first two categories, the additional meso- or macroporosity can be classified as being either intracrystalline or intercrystalline, whereas for supported zeolite materials, the additional porosity...... originates almost exclusively from the support material. The methods for introducing mesopores into zeolite materials are discussed and categorized. In general, mesopores can be templated in zeolite materials by use of solid templating, supramolecular templating, or indirect templating...

  2. Investigation on the Stability of Aluminosilicate Colloids by Various Analytical Tools

    Energy Technology Data Exchange (ETDEWEB)

    Putri, Kirana Y.; Lee, D. H.; Yun, J. I. [Korea Advanced Institute of Science and Technology, Daejeon (Korea, Republic of)

    2010-05-15

    Colloids are ubiquitous in natural aquatic systems. Aquatic colloids may play a significant carrier role for radionuclide migration in aquifer systems. Being omnipresent in natural aquatic systems, aluminosilicate colloids are considered as a kernel for various aquatic colloids. Characterization of aluminosilicate colloids formed under various geochemical conditions is of importance to understand their chemical behavior in natural aquatic systems. In this work, a preliminary study on the formation of aluminosilicate colloids with a help of colorimetry and other colloid detection techniques is presented

  3. Synthesis and characterization of zeolite NaP using kaolin waste as a source of silicon and aluminum

    Energy Technology Data Exchange (ETDEWEB)

    Hildebrando, Edemarino Araujo, E-mail: edemarino@ufpa.br [Universidae Federal do Para (UFPA), Maraba, PA (Brazil). Fac. de Engenharia de Materias. Lab. de Materiais Ceramicos; Andrade, Christiano Gianesi Bastos; Valenzuela-Diaz, Francisco Rolando [Universidade de Sao Paulo (USP), Sao Paulo, SP (Brazil). Dept. de Metalurgia e Engenharia de Materiais; Rocha Junior, Carlos Augusto Ferreira da; Neves, Roberto de Freitas [Universidae Federal do Para (UFPA), Maraba, PA (Brazil). Int. de Tecnologia. Fac. de Engenharia Quimica; Angelica, Romulo Simoes [Universidae Federal do Para (UFPA), Maraba, PA (Brazil). Inst. de Geociencias. Fac. de Geologia

    2014-08-15

    The synthesis of zeolite NaP using kaolin waste, from the Amazon region, as a predominant source of silicon and aluminum has been studied. The zeolitisation process occurred in hydrothermal conditions using static autoclaving and the effects of time, temperature, and the Si/Al ratio were investigated. The starting material and the phases formed as reaction products were characterized by XRD, SEM and FTIR. The results showed that pure zeolite NaP is hydrothermally synthesized, at 100 °C for 20 hours, using meta kaolin waste material in alkaline medium in presence of additional silica. The XRD and SEM analyses indicate that the synthesized zeolite presents good crystallinity. (author)

  4. Synthesis and characterization of zeolite NaP using kaolin waste as a source of silicon and aluminum

    International Nuclear Information System (INIS)

    Hildebrando, Edemarino Araujo; Andrade, Christiano Gianesi Bastos; Valenzuela-Diaz, Francisco Rolando; Rocha Junior, Carlos Augusto Ferreira da; Neves, Roberto de Freitas; Angelica, Romulo Simoes

    2014-01-01

    The synthesis of zeolite NaP using kaolin waste, from the Amazon region, as a predominant source of silicon and aluminum has been studied. The zeolitisation process occurred in hydrothermal conditions using static autoclaving and the effects of time, temperature, and the Si/Al ratio were investigated. The starting material and the phases formed as reaction products were characterized by XRD, SEM and FTIR. The results showed that pure zeolite NaP is hydrothermally synthesized, at 100 °C for 20 hours, using meta kaolin waste material in alkaline medium in presence of additional silica. The XRD and SEM analyses indicate that the synthesized zeolite presents good crystallinity. (author)

  5. Zeolite studies. Aluminium phosphate zeolites

    Energy Technology Data Exchange (ETDEWEB)

    Haegh, G.S.; Blindheim, U.

    1983-12-01

    Alpo-zeolites (ALPO4-zeolites) have been synthesized by hydrothermal synthesis in an autoclave from alumina, tetralkylammonium hydroxide and phosphorus acid. Catalysis tests with hydrocarbons indicate that the compounds have good olefinisomerization activity and selectivity.

  6. Processing of radioactive ruthenium with aluminosilicate gels

    International Nuclear Information System (INIS)

    Kanno, Takuji; Ichinose, Yasuhiro; Ito, Katsuo

    1979-01-01

    Coprecipitation of radioactive Ru with hydroxides has been studied for the purpose of the management of the high level waste from the nuclear fuel reprocessing. Aluminosilicate gel used as coprecipitant was prepared by addition of aqueous sodium hydroxide to sodium aluminate-sodium silicate solution containing ruthenium nitrate. Ruthenium quantitatively precipitates under the conditions, aluminate > 4 x 10 -2 M, Al/Si 0 C. However, volatilization rate of Ru is suppressed by coating with mullite phase into which aluminosilicate gel transformes above 900 0 C. The amount of Ru volatilized in Ar-flow was reduced to about 10% of that in air-flow. (author)

  7. Fly ash from a Mexican mineral coal. II. Source of W zeolite and its effectiveness in arsenic (V) adsorption

    International Nuclear Information System (INIS)

    Medina, Adriana; Gamero, Procoro; Almanza, Jose Manuel; Vargas, Alfredo; Montoya, Ascencion; Vargas, Gregorio; Izquierdo, Maria

    2010-01-01

    Coal-fired plants in Coahuila (Mexico) produce highly reactive fly ash (MFA), which is used in a one-step process as a raw material in producing zeolite. We explored two routes in the synthesis of zeolite: (a) direct MFA zeolitization, which resulted in the formation of W zeolite with KOH and analcime with NaOH and (b) a MFA fusion route, which resulted in the formation of zeolite W or chabazite with KOH and zeolite X or P with NaOH. No residual crystalline phases were present. When LiOH was employed, ABW zeolite with quartz and mullite were obtained. For both zeolitization routes, the nature of the alkali (KOH, NaOH, LiOH), the alkali/MFA ratio (0.23-1.46), and the crystallization temperature and time (90-175 o C; 8-24 h) were evaluated. Additionally, the effect of temperature and time on MFA fusion was studied. W zeolite was obtained by both zeolitization methods. The direct route is preferred because it is a straightforward method using soft reaction conditions that results in a high yield of low cost zeolites with large crystal agglomerates. It was demonstrated that aluminum modified W zeolite has the ability to remove 99% of the arsenic (V) from an aqueous solution of Na 2 HAsO 4 .7H 2 O originally containing 740 ppb.

  8. Fly ash from a Mexican mineral coal. II. Source of W zeolite and its effectiveness in arsenic (V) adsorption

    Energy Technology Data Exchange (ETDEWEB)

    Medina, Adriana [CINVESTAV IPN-Unidad Saltillo, Carretera Saltillo-Monterrey Km 13.5, C.P. 25900, Ramos Arizpe, Coahuila (Mexico); Gamero, Procoro, E-mail: pgamerom@hotmail.com [CINVESTAV IPN-Unidad Saltillo, Carretera Saltillo-Monterrey Km 13.5, C.P. 25900, Ramos Arizpe, Coahuila (Mexico); Almanza, Jose Manuel [CINVESTAV IPN-Unidad Saltillo, Carretera Saltillo-Monterrey Km 13.5, C.P. 25900, Ramos Arizpe, Coahuila (Mexico); Vargas, Alfredo; Montoya, Ascencion [Instituto Mexicano del Petroleo, Eje Central Lazaro Cardenas 152, G.A. Madero, C.P. 07730, Distrito Federal (Mexico); Vargas, Gregorio [CINVESTAV IPN-Unidad Saltillo, Carretera Saltillo-Monterrey Km 13.5, C.P. 25900, Ramos Arizpe, Coahuila (Mexico); Izquierdo, Maria [Instituto de Ciencias de la Tierra ' Jaume Almera' , CSIC, C/Luis Sole Sabaris, s/n 08028 Barcelona (Spain)

    2010-09-15

    Coal-fired plants in Coahuila (Mexico) produce highly reactive fly ash (MFA), which is used in a one-step process as a raw material in producing zeolite. We explored two routes in the synthesis of zeolite: (a) direct MFA zeolitization, which resulted in the formation of W zeolite with KOH and analcime with NaOH and (b) a MFA fusion route, which resulted in the formation of zeolite W or chabazite with KOH and zeolite X or P with NaOH. No residual crystalline phases were present. When LiOH was employed, ABW zeolite with quartz and mullite were obtained. For both zeolitization routes, the nature of the alkali (KOH, NaOH, LiOH), the alkali/MFA ratio (0.23-1.46), and the crystallization temperature and time (90-175 {sup o}C; 8-24 h) were evaluated. Additionally, the effect of temperature and time on MFA fusion was studied. W zeolite was obtained by both zeolitization methods. The direct route is preferred because it is a straightforward method using soft reaction conditions that results in a high yield of low cost zeolites with large crystal agglomerates. It was demonstrated that aluminum modified W zeolite has the ability to remove 99% of the arsenic (V) from an aqueous solution of Na{sub 2}HAsO{sub 4}.7H{sub 2}O originally containing 740 ppb.

  9. Solvent-free synthesis of nanosized hierarchical sodalite zeolite with a multi-hollow polycrystalline structure

    KAUST Repository

    Zeng, Shangjing

    2016-08-03

    A solvent-free route is developed for preparing nanoscale sodalite zeolite with a multi-hollow structure. Furthermore, the synthesis of nanosized hollow sodalite polycrystalline aggregates with a mesoporous structure and high crystallinity is investigated by adding an organosilane surfactant as a mesopore-generating agent.

  10. Preparation, Characterization, and Activation of Co-Mo/Y Zeolite Catalyst for Coal Tar Conversion to Liquid Fuel

    Directory of Open Access Journals (Sweden)

    Didi Dwi Anggoro

    2017-05-01

    Full Text Available One of many efforts to convert coal tar into alternative liquid fuel is by hydrocracking. This research aims to determine the impregnation of Co-Mo/Y zeolite, its characteristics, the effect of impregnation temperature and time, and also the best Co-Mo/Y zeolite impregnation condition for the conversion of coal tar. This research was conducted in several steps, impregnating Co from Co(NO32.6H2O and Mo from (NH46Mo7O24.4H2O into Zeolite Y in liquid media, drying at 100 °C for 24 hours, and calcination at 550 °C for 3 hours. Coal tar was then reacted with hydrogen gas (as a reactant, and Co-Mo/Zeolite Y (as a catalyst was conducted at 350 °C. Characteristic analysis showed that Co and Mo had impregnated into the Y zeolite, as well as it made no change of catalyst’s structure and increased the total acidity. The higher of impregnation temperature was increased the catalyst crystallinity, total acidity, and yield of gasoline. The longer impregnation time was reduced crystallinity value, but total acidity and yield were increased. GC analysis showed that products included into the gasoline product (C8, C9, and C10. Copyright © 2017 BCREC Group. All rights reserved Received: 13rd November 2016; Revised: 12nd February 2017; Accepted: 16th February 2017 How to Cite: Anggoro, D.D., Buchori, L., Silaen, G.C., Utami, R.N. (2017. Preparation, Characterization, and Activation of Co-Mo/Y Zeolite Catalyst for Coal Tar Conversion to Liquid Fuel. Bulletin of Chemical Reaction Engineering & Catalysis, 12 (2: 219-226 (doi:10.9767/bcrec.12.2.768.219-226 Permalink/DOI: http://dx.doi.org/10.9767/bcrec.12.2.768.219-226

  11. Development of Li+ alumino-silicate ion source

    International Nuclear Information System (INIS)

    Roy, P.K.; Seidl, P.A.; Waldron, W.; Greenway, W.; Lidia, S.; Anders, A.; Kwan, J.

    2009-01-01

    To uniformly heat targets to electron-volt temperatures for the study of warm dense matter, one strategy is to deposit most of the ion energy at the peak of energy loss (dE/dx) with a low (E < 5 MeV) kinetic energy beam and a thin target. Lower mass ions have a peak dE/dx at a lower kinetic energy. To this end, a small lithium (Li+) alumino-silicate source has been fabricated, and its emission limit has been measured. These surface ionization sources are heated to 1000-1150 C where they preferentially emit singly ionized alkali ions. Alumino-silicates sources of K+ and Cs+ have been used extensively in beam experiments, but there are additional challenges for the preparation of high-quality Li+ sources: There are tighter tolerances in preparing and sintering the alumino-silicate to the substrate to produce an emitter that gives uniform ion emission, sufficient current density and low beam emittance. We report on recent measurements ofhigh ( up to 35 mA/cm2) current density from a Li+ source. Ion species identification of possible contaminants is being verified with a Wien (E x B) filter, and via time-of-flight.

  12. Semi-Passive Oxidation-Based Approaches for Control of Large, Dilute Groundwater Plumes of Chlorinated Ethylenes

    Science.gov (United States)

    2014-04-01

    Chemical US DHHS United States Department of Human and Health Services UV-VIS Ultraviolet-Visible XRD X-Ray Diffraction Keywords Slow-release solids...biopolymers prompted us to more to geopolymers. Aluminosilicate gels, also known as zeolite gels, are formed through a sol-gel process in which an...precursors used in this study was Linde Type A (LTA) or zeolite A. This type of aluminosilicate typically has an extremely small cell volume of

  13. Mesoporous zeolite single crystal catalysts: Diffusion and catalysis in hierarchical zeolites

    DEFF Research Database (Denmark)

    Christensen, Christina Hviid; Johannsen, Kim; Toernqvist, Eric

    2007-01-01

    During the last years, several new routes to produce zeolites with controlled mesoporosity have appeared. Moreover, an improved catalytic performance of the resulting mesoporous zeolites over conventional zeolites has been demonstrated in several reactions. In most cases, the mesoporous zeolites...... exhibit higher catalytic activity, but in some cases also improved selectivity and longer catalyst lifetime has been reported. The beneficial effects of introducing mesopores into the zeolites has in most instances been attributed to improved mass transport to and from the active sites located...... in the zeolite micropores. Here, we briefly discuss the most important ways of introducing mesopores into zeolites and, for the first time, we show experimentally that the presence of mesopores dramatically increases the rate of diffusion in zeolite catalysts. This is done by studying the elution of iso...

  14. Treatment of effluent containing uranium with magnetic zeolite

    International Nuclear Information System (INIS)

    Craesmeyer, Gabriel Ramos

    2013-01-01

    Within this work, a magnetic-zeolite composite was successfully synthesized using ferrous sulfate as raw material for the magnetic part of the composite, magnetite, and coal fly ash as raw material for the zeolitic phase. The synthesis of the zeolitic phase was made by alkali hydrothermal treatment and the magnetite nanoparticles were obtained through Fe 2+ precipitation on alkali medium. The synthetic process was repeated many times and showed good reproducibility comparing the zeolitic nanocomposite from different batches. The final product was characterized using infrared spectroscopy, powder X-ray diffraction, X-ray fluorescence, scanning electron microscopy with coupled EDS. Specific mass, specific surface area and other physicochemical proprieties. The main crystalline phases found in the final product were magnetite, zeolites types NaP1 and hydroxysodalite, quartz and mullite, those last two remaining from the raw materials. Uranium removal capacity of the magnetic zeolite composite was tested using batch techniques. The effects of contact time and initial concentration of the adsorbate over the adsorption process were evaluated. Equilibrium time was resolved and the following kinetics and diffusion models were evaluated: pseudo-first order kinetic model, pseudo-second order kinetic model and interparticle diffusion model. A contact time of 120 min turned out to be enough to reach equilibrium of the adsorption process. The rate of adsorption followed the pseudo-second order model and the intra particle diffusion did not turn out to be a speed determinant step. Two adsorption isotherms models, the Langmuir model and the Freundlich model, were also evaluated. The Langmuir model was the best fit for the obtained experimental data. Using the best fitted adsorption isotherm and kinetic model, the theoretical maximum adsorption capacity of uranium over the composite was determined for both models. The maximum removal capacity calculated was 20.7 mg.g -1 for the

  15. Adsorption and desorption of carbaryl on hexadecyl trimethyl ammonium bromide modified zeolite NaY using RGB portable photometer

    Science.gov (United States)

    Patdhanagul, Nopbhasinthu; Chanpaka, Saiphon; Intharaksa, Orapan; Sirival, Rujikarn; Thanomsith, Kannikar; Wongkwanklom, Sarayuth

    2018-04-01

    The carbaryl adsorption-desorption isotherms of zeolite NaY and hexadecyl trimethyl ammonium bromide (HTAB) modified zeolite NaY were investigated. Zeolite NaY was synthesized and modified by HTAB in the concentration range 0.1 - 10.0 mM. The adsorption isotherms indicated that zeolite modified with HTAB could significantly enhance the carbaryl adsorption capacity. Zeolite NaY modified with 5.0 mM HTAB gave great carbaryl adsorption because of hydrophilic surface. The 5.0 mM HTAB could adsorb up to 145.75 ppm g-1 of carbaryl which was equivalent to a 36.7% increase. The Surface area characterization showed the remaining of pore volume and pore size diameter and external surface area whereas the BET surface area and micropore surface area of modified zeolite slightly decreased. The XRD results indicate that modification of zeolite NaY with HTAB does not change the crystallinity of the starting zeolite. The elemental analysis indicated that the Si/Al ratio of synthesized zeolite NaY was close to 2.43. Desorption of carbaryl was tested by organic solvents such as methanol, ethanol, tetrahydrofuran, hexane and Deionized water. The results demonstrated that the percentage desorption of methanol is the highest. Carbaryl was quantitatively desorbed with percentage desorption of 82-100 %. It indicated sorption mechanism of carbaryl on the modified sorbent which was principally driven by hydrophobic forces.

  16. Identifying low and high density amorphous phases during zeolite amorphisation using small and wide angle X-ray scattering

    International Nuclear Information System (INIS)

    Meneau, F.; Greaves, G.N.

    2005-01-01

    In situ experiments following the thermal amorphisation of zeolites reveal massive increases in small angle X-ray scattering (SAXS), persisting well beyond the stage where wide angle X-ray scattering (WAXS) can detect that any crystalline phase is present. This heterogeneity in the amorphised phase is attributed to the transition from a low density amorphous phase (LDA) to a high density amorphous phase (HDA) at the glass transition. The fractions of zeolite, LDA and HDA phases obtained from SAXS analysis are discussed in the context of non-linear changes detected in 29 Si solid state NMR during zeolite amorphisation. Whilst the HDA phase is chemically disordered, the LDA phase exhibits much of the Al-Si ordering present in the starting zeolite. These findings are considered in the context of perfect glasses predicted to occur when super strong liquids are supercooled

  17. Determination of the bulk modulus of hydroxycancrinite, a possible zeolitic precursor in geopolymers, by high-pressure synchrotron X-ray diffraction

    KAUST Repository

    Oh, Jae Eun; Clark, Simon M.; Monteiro, Paulo J.M.

    2011-01-01

    Crystalline zeolitic materials, such as hydroxycancrinite, hydroxysodalite, herschelite and nepheline, are often synthesized from geopolymerization using fly-ash and solutions of NaOH at high temperatures. Comprised mainly of 6-membered

  18. Potassic zeolites from Brazilian coal ash for use as a fertilizer in agriculture.

    Science.gov (United States)

    Flores, Camila Gomes; Schneider, Helena; Marcilio, Nilson Romeu; Ferret, Lizete; Oliveira, João Carlos Pinto

    2017-12-01

    Brazilian coal has an ash content ranging from 30 to 50% by weight. Consequently, its use in coal-fired thermoelectric for power production generates a lot of waste. The construction sector is the largest consumer of coal ash, but it cannot absorb the entire amount generated. Thus, other applications for coal ash should be studied in aim to optimize the use of this industrial waste. This research had as focus to synthesize potassic zeolite from of the coal ash into on potassium fertilizer for the grown wheat plant. In this work, it was used a subbituminous coal from Mina do Leão (RS, Brazil) presenting 48.7% ash content on a dry basis. Concerning the synthesis of potassic zeolite, it was adopted the conventional method of hydrothermal treatment with potassium hydroxide. A schedule of experiments was conducted in order to define the optimum condition of zeolite synthesis that was then used an alkaline solution of 5M KOH with a reaction time of 24h at 150°C. According to this procedure, it was obtained a zeolite with a single crystalline phase, identified through X-ray diffraction as Merlinoite. Subsequently, it was performed a set of tests using potassic zeolite asa fertilizer for plants in a greenhouse. The synthesized potassic zeolite showed a good potential for its use as fertilizer in agriculture. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. Synthesis and characterization of zeolite from coal ashes modified by cationic surfactant; Sintese e caracterizacao de zeolita de cinzas de carvao modificada por surfactante cationico

    Energy Technology Data Exchange (ETDEWEB)

    Fungaro, D.A.; Borrely, S.I., E-mail: dfungaro@ipen.br [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)

    2012-01-15

    Zeolite synthesized from coal fly ash was modified with different concentrations (2 and 20 mmol.L{sup -1}) of hexadecyltrimethylammonium bromide (HDTMA-Br). The Non-Modified Zeolite (NMZ) and Surfactant-Modified Zeolites (SMZ) were characterized by X-ray fluorescence spectrometry, X-ray diffraction, Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy, thermogravimetric analysis, among others. The SMS presented negative charge probably due to the formation of a partial bilayer of HDTMA on exchangeable active sites on the external surface of NMZ. A decrease in surface area was observed for SMZ as compared to NMZ indicating zeolite surface coverage with HDTMA-Br molecules. The crystalline nature of the zeolite remained intact after adsorption of surfactant and heating for drying. FTIR analysis indicated that there were no significant changes in the structure of the zeolite after adsorption of surfactant. (author)

  20. PHYSICAL, CHEMICAL AND STRUCTURAL EVOLUTIION OF ZEOLITE-CONTAINING WASTE FORMS PRODUCED FROM METAKAOLINITE AND CALCINED SODUIM BEARING WASTE (HLW AND/OR LLW)

    International Nuclear Information System (INIS)

    Grutzeck, Michael W.

    2003-01-01

    Zeolites can adsorb liquids and gases, take part in catalytic reactions and serve as cation exchange media. They are commercially available as finely divided powders. Using zeolites to manage radioactive waste is not new, but a process by which zeolites can be made to act both as a host phase and a cementing agent is. It is notable that zeolites occur in nature as well consolidated/cemented deposits. The Romans used blocks of Neapolitan zeolitized tuff as a building material and some of these buildings are still standing. Zeolites are easy to synthesize from a wide range of both natural and man-made precursor materials. The method of making a ''hydroceramic'' is derived from a process in which metakaolinite (thermally dehydroxylated kaolinite) is slurried with a dilute sodium hydroxide (NaOH) solution and then reacted for hours to days at mildly elevated temperatures (60-200 C). The zeolites that form in solution are finely divided powders containing micrometer sized crystals. However, if the process is changed and only enough concentrated sodium hydroxide solution (e.g. 12 M) is added to the metakaolinite to give the mixture a putty-like consistency and the mixture is then cured under similar conditions, the mixture becomes a very hard ceramic-like material containing distinct tectosilicate crystallites (zeolites and feldspathoids) imbedded in an X-ray amorphous sodium aluminosilicate hydrate matrix. Due to the material's vitreous character, the composite has been called a hydroceramic. Similar to zeolite/feldspathoid powders, a hydroceramic is able to sequester cations and a wide range of salt molecules (e.g., nitrate, nitrite and sulfate) in lattice positions and within structural channels and voids thus rendering them ''insoluble'' and making them an ideal contingency waste form for solidifying radioactive waste. The obvious similarities between a hydroceramic waste form and a waste form based on solidified Portland-cement grout are superficial because their

  1. Fluoride removal from double four-membered ring (D4R) units in As-synthesized Ge-containing zeolites

    KAUST Repository

    Liu, Xiaolong; Ravon, Ugo; Tuel, Alain

    2011-01-01

    Fluoride anions can be removed from the framework of as-prepared Ge-containing zeolites ITQ-13 and ITQ-17 without modification of the crystallinity and crystal habit. By contrast to all-silica ITQ-13 for which fluoride could not get out from D4R

  2. Nucleation and growth process of sodalite and cancrinite from kaolinite-rich clay under low-temperature hydrothermal conditions

    Directory of Open Access Journals (Sweden)

    Carlos Alberto Ríos Reyes

    2013-04-01

    Full Text Available The synthesis of low-silica zeotypes by hydrothermal transformation of kaolinite-rich clay and the nucleation and growth processes of sodalite and cancrinite in the system Na2O-Al2O3-SiO2-H2O at 100 °C were investigated. The synthesis products were characterized by X-ray powder diffraction (XRPD, scanning electron microscopy (SEM, Fourier transform infrared spectroscopy (FT-IR, 29Si and 27Al Magic Angle Spinning Nuclear Magnetic Resonance (MAS-NMR and thermogravimetric analysis (TGA. Our data show that the sequence of the transformation of phases is: Poorly crystalline aluminosilicate → zeolite LTA → sodalite → sodalite + cancrinite → cancrinite. Synthesized materials appeared stable thermodynamically under the experimental conditions, with zeolite LTA (a metastable phase occurring as a minor phase, compared with the presence of sodalite and cancrinite.

  3. Ceramic phases for immobilization of 129I

    International Nuclear Information System (INIS)

    Vance, E.R.; Agrawal, D.K.; Scheetz, B.E.; Pepin, J.G.; Atkinson, S.D.; White, W.B.

    1981-01-01

    Materials for ultimate disposal of 129 I have been studied. At present, iodide-sodalite, though not ideal, appears to be the best material for 129 I immobilization from the aspects of ease of preparation, thermal stability, cost of materials, and leach resistance. Good consolidation of the material was achieved by sintering in air at 1000 to 1200 0 C, but the iodine content was significantly below stoichiometric expectations. Hot aqueous media preferentially removed iodine, apparently by OH - substitution in near-neutral solutions, and I reversible reaction Cl - exchange occurred in brine. Alternation of the sodalite also took place. Soxhlet leach rates were about 5 x 10 -4 g/cm 2 -day by total weight loss, but physical weathering contributed significantly to this value. Moderate doses of radiation had no observable deleterious structural effects. Iodoboracites seemingly cannot be prepared by ceramic or nonhydrothermal wet chemical techniques. Fe-iodoboracite has inferior thermal stability to iodide-sodalite and was completely altered to hematite after treatment at 200 0 C in deionized water. Silver zeolites retained some iodine in the form of crystalline α-AgI at temperatures up to 1300 0 C even though heating above approx. 700 0 C altered the alumino-silicate framework. However, some of the iodine appeared to be present as soluble iodine, even in heated materials. Treatment at 200 0 C in deionized water or 2M NaCl significantly decreased the crystallinity of the aluminosilicate framework and the α-AgI reflections in the x-ray patterns were enhanced. Mild γ irradiations (approx. 50 MR) affected the x-ray diffraction patterns of some of the zeolites. Various lead oxyhalides had very poor thermal stability

  4. Synthesis of Zeolite NaA from Low Grade (High Impurities) Indonesian Natural Zeolite

    OpenAIRE

    Mustain, Asalil; Wibawa, Gede; Nais, Mukhammad Furoiddun; Falah, Miftakhul

    2014-01-01

    The zeolite NaA has been successfully synthesized from the low grade natural zeolite with high impurities. The synthesis method was started by mixing natural zeolite powder with NH4Cl aqueous solution in the reactor as pretreatment. The use of pretreatment was to reduce the impurities contents in the zeolite. The process was followed by alkaline fusion hydrothermal treatment to modify the framework structure of natural zeolite and reduce the SiO2/Al2O3 ratio. Finally, the synthesized zeolite ...

  5. Fluoride removal from double four-membered ring (D4R) units in As-synthesized Ge-containing zeolites

    KAUST Repository

    Liu, Xiaolong

    2011-11-22

    Fluoride anions can be removed from the framework of as-prepared Ge-containing zeolites ITQ-13 and ITQ-17 without modification of the crystallinity and crystal habit. By contrast to all-silica ITQ-13 for which fluoride could not get out from D4R units, F is completely removed from Ge rich zeolites, even from D4R cages. This has been explained by the relaxing effect of germanium, making F less necessary for the stabilization of the small D4R units. Si/Ge ratios are similar in as-prepared and treated zeolites, indicating that the framework composition is not affected by the removal of anions. The fluoride-free zeolites possess XRD patterns similar to those of the as-made solids but their 29Si NMR spectra are significantly different, revealing the sensitivity of the method to the environment of silicon atoms in the framework. The extent of fluoride that can be removed from D4R units depends not only on the framework Ge content but also on the zeolite topology: for similar contents, F is much more easily eliminated from ITQ-17 than from ITQ-13. © 2011 American Chemical Society.

  6. Study of iron exchanged zeolites by Moessbauer effect and electron spin resonance spectroscopy

    International Nuclear Information System (INIS)

    Aguirre Campuzano, C.E.

    1993-01-01

    Crystalline iron exchanged NaY zeolites, prepared from aqueous solutions and calcined at atmospheric conditions, have been studied and characterized by XRD, Moessbauer and EPR spectroscopies and TGA analysis. Three iron sites are clearly distinguished from Moessbauer and EPR measurements. Firstly, characteristic Moessbauer and EPR spectra may arise from framework sites, suggesting that Fe has substituted Al. It is also found that their spectroscopic signals are not intensity affected by thermal treatments. Secondly, a Moessbauer doublet which may arise from octahedral sites in the large cavity of the zeolite, shows however, that this doublet and its EPR signal are intensity temperature affected. An additional line broadening is observed on the low velocity line of this doublet, Thirdly, characteristic Moessbauer and EPR signals, which are also intensity temperature dependent have been associated to accluded material, where the Moessbauer doublet presents the line broadening effect before mentioned. Such line broadening effect may be due to perturbing signals from iron ions in tetrahedral sites. Finally, it has been observed that during calcination of the FeY zeolites, the three characteristic EPR signals for the three iron sites, do not increase at the expenses of the other. A result that may suggest a strong bonding between Fe-site of the Y zeolite, irrespective of the iron source. (Author)

  7. Hydrodeoxygenation of Methyl Laurate over Ni Catalysts Supported on Hierarchical HZSM-5 Zeolite

    Directory of Open Access Journals (Sweden)

    Nana Li

    2017-12-01

    Full Text Available The hierarchical HZSM-5 zeolite was prepared successfully by a simple NaOH treatment method. The concentration of NaOH solution was carefully tuned to optimal the zeolite acidity and pore structure. Under NaOH treatment conditions, a large number of mesopores, which interconnected with the retained micropores, were created to facilitate mass transfer performance. There are very good correlations between the decline of the relative zeolite crystallinity and the loss of micropores volume. The Ni nanoclusters were uniformly confined in the mesopores of hierarchical HZSM-5 by the excessive impregnation method. The direct deoxygenation in N2 and hydrodeoxygenation in H2 of the methyl laurate were compared respectively over the Ni/HZSM-5 catalysts. In the N2 atmosphere, the deoxygenation rate of the methyl laurate on the Ni/HZSM-5 catalyst is relatively slow. In the presence of H2, the synergistic effect between the hydrogenation function of the metal and the acid function of the zeolite supports can make the deoxygenation level more obvious. The yield of hydrocarbon products gradually reached the maximum with the appropriate treatment concentration of 1M NaOH, which could be attributed to the improved mass transfer in the hierarchical HZSM-5 supports.

  8. Determination of the crystalline structure of scale solids from the 16H evaporator gravity drain line to tank 38H

    Energy Technology Data Exchange (ETDEWEB)

    Oji, L. N. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2015-10-01

    August 2015, scale solids from the 16H Evaporator Gravity Drain Line (GDL) to the Tank 38H were delivered to SRNL for analysis. The desired analytical goal was to identify and confirm the crystalline structure of the scale material and determine if the form of the aluminosilicate mineral was consistent with previous analysis of the scale material from the GDL.

  9. Substitution clustering in a non-stoichiometric celsian synthesized by the thermal transformation of barium exchanged zeolite X

    International Nuclear Information System (INIS)

    Clayden, Nigel J.; Esposito, Serena; Ferone, Claudio; Pansini, Michele

    2006-01-01

    The thermal transformation of Ba exchanged zeolite X to celsian has been studied by 27 Al and 29 Si MAS NMR spectroscopy. Evidence for the degradation of the zeolite framework is present in the 29 Si NMR spectra after thermal treatment at 850 deg. C. Confirmation is provided by the 29 Si NMR data that synthesis of celsian via the decomposition of Ba exchanged zeolite leads to a single defect phase. Clustering of the isomorphous replacement of aluminium by silicon must occur to explain the observed 29 Si chemical shifts. The 27 Al NMR data show distorted aluminium co-ordination sites upon the thermal transformation of Ba exchanged zeolite X. The distortions present in the amorphous matrix are greater than those present in the monoclinic and hexagonal crystalline phases of celsian. - Graphical abstract: Monte Carlo simulation of the Q 4 (mAl) silicon connectivity in the α-hexagonal celsian lattice, for a Si/Al ratio of 1:1. Si atoms are shown in yellow and the Al atoms in black

  10. Process for paraffin isomerization of a distillate range hydrocarbon feedstock

    Energy Technology Data Exchange (ETDEWEB)

    Chen, N.Y.; Garwood, W.E.; McCullen, S.B.

    1993-01-19

    Various catalytic processes have been proposed to isomerize n-paraffins so as to lower the pour point of distillate range hydrocarbon feedstocks. However, many available feedstocks contain nitrogen impurities which tend to poison conventional paraffin isomerization catalysts. A process has been developed to obviate or alleviate this problem. According to the invention, the paraffin-containing feedstock is contacted with a crystalline aluminosilicate zeolite catalyst having pore openings defined by a ratio of sorption of n-hexane to o-xylene of over 3 vol % and the ability to crack 3-methylpentane in preference to 2,3 dimethylbutane under defined conditions. The zeolite catalyst includes a Group VIII metal and has a zeolite SiO[sub 2]/Al[sub 2]O[sub 3] ratio of at least 20:1. The contacting is carried out at 199-454 C and a pressure of 100-1,000 psig, preferably 250-600 psig. The group of medium pore zeolites which can be used in the process of the invention includes ZSM-22, ZSM-23, and ZSM-35. The Group VIII metals used in the catalyst are preferably selected from Pt, Pd, Ir, Os, Rh, and Ru and the metal is preferably incorporated into the zeolite by ion exchange up to a metal content of preferably 0.1-3 wt %. Experiments are described to illustrate the invention. 1 tab.

  11. Aluminosilicate glass thin films elaborated by pulsed laser deposition

    Energy Technology Data Exchange (ETDEWEB)

    Carlier, Thibault [Univ. Lille, CNRS, Centrale Lille, ENSCL, Univ. Artois, UMR 8181 – UCCS – Unité de Catalyse et Chimie du Solide, F-59000 Lille (France); Saitzek, Sébastien [Univ. Artois, CNRS, Centrale Lille, ENSCL, Univ. Lille, UMR 8181, Unité de Catalyse et de Chimie du Solide (UCCS), F-62300 Lens (France); Méar, François O., E-mail: francois.mear@univ-lille1.fr [Univ. Lille, CNRS, Centrale Lille, ENSCL, Univ. Artois, UMR 8181 – UCCS – Unité de Catalyse et Chimie du Solide, F-59000 Lille (France); Blach, Jean-François; Ferri, Anthony [Univ. Artois, CNRS, Centrale Lille, ENSCL, Univ. Lille, UMR 8181, Unité de Catalyse et de Chimie du Solide (UCCS), F-62300 Lens (France); Huvé, Marielle; Montagne, Lionel [Univ. Lille, CNRS, Centrale Lille, ENSCL, Univ. Artois, UMR 8181 – UCCS – Unité de Catalyse et Chimie du Solide, F-59000 Lille (France)

    2017-03-01

    Highlights: • Successfully deposition of a glassy thin film by PLD. • A good homogeneity and stoichiometry of the coating. • Influence of the deposition temperature on the glassy thin-film structure. - Abstract: In the present work, we report the elaboration of aluminosilicate glass thin films by Pulsed Laser Deposition at various temperatures deposition. The amorphous nature of glass thin films was highlighted by Grazing Incidence X-Ray Diffraction and no nanocristallites were observed in the glassy matrix. Chemical analysis, obtained with X-ray Photoelectron Spectroscopy and Time of Flight Secondary Ion Mass Spectroscopy, showed a good transfer and homogeneous elementary distribution with of chemical species from the target to the film a. Structural studies performed by Infrared Spectroscopy showed that the substrate temperature plays an important role on the bonding configuration of the layers. A slight shift of Si-O modes to larger wavenumber was observed with the synthesis temperature, assigned to a more strained sub-oxide network. Finally, optical properties of thins film measured by Spectroscopic Ellipsometry are similar to those of the bulk aluminosilicate glass, which indicate a good deposition of aluminosilicate bulk glass.

  12. Optimum conditions of the synthesis of zeolite A by the direct hydrolysis of ethyl orthosilicate

    Energy Technology Data Exchange (ETDEWEB)

    Hino, R; Toki, K

    1975-11-01

    Synthesis of various types of zeolites has been reported using as a starting material silica sols, gels, silicates or silicate minerals, all of which are polymers of silicic acid. In this study Zeolite A was synthesized from ethyl orthosilicate which was probably a monomer at the beginning of hydrolysis. Optimum conditions of synthesis and factors which influence the formation of Zeolite A were examined. Ethyl orthosilicate was directly hydrolyzed by sodium aluminate solution in the presence of excess sodium hydroxide. After ultrasonic and mechanical stirring for an hour at 70/sup 0/C, the solution was kept in the air bath at 70/sup 0/C under atmospheric pressure for 48 approximately 120 hours. Zeolite A with high purity and crystallinity was obtained in a good yield from the starting mixture with the composition of 2 approximately 4.5 Na/sub 2/O . Al/sub 2/O/sub 3/ . 0.5 approximately 2 SiO/sub 2/ . 200 approximately 400 H/sub 2/O. Present method was effective for the synthesis of Zeolite A in the lower molar ratios of SiO/sub 2//Al/sub 2/O/sub 3/ as compared with the ordinary methods using silica or silicates. The species formed were also investigated by the optical, x-ray diffraction, DTA, TGA, IR and chemical methods.

  13. Modification of Lime Mortars with Synthesized Aluminosilicates

    Science.gov (United States)

    Loganina, Valentina I.; Sadovnikova, Marija E.; Jezierski, Walery; Małaszkiewicz, Dorota

    2017-10-01

    The increasing attention for restoration of buildings of historical and architectural importance has increased the interest for lime-based binders, which could be applied for manufacturing repair mortars and plasters compatible with historical heritage. Different additives, admixtures or fibers may be incorporated to improve mechanical and thermal features of such materials. In this study synthesized aluminosilicates (SA) were applied as an additive for lime mortar. The technology of synthesis consisted in the deposition of aluminosilicates from a sodium liquid glass by the aluminum sulphate Al2(SO4)3. The goal of this investigation was developing a new method of aluminosilicates synthesis from a sodium liquid glass and using this new material as a component for a lime mortar. Aluminosilicates were precipitated from the solution of aluminum sulphate Al2(SO)3 and sodium silicate. SA were then used as an additive to calcareous compositions and their influence was tested. Mortars were prepared with commercial air lime and siliceous river sand. Air lime binder was replaced by 5 and 10 wt.% of SA. Calcareous composition specimens were formed at water/lime ratio 1.0. The following analyses were made: grain size distribution of SA, X-ray diffraction analysis (XRD), sorption properties, plastic strength and compressive strength of lime mortars. XRD pattern of the SA shows the presence of thenardite, gibbsite and amorphous phase represented by aggregate of nano-size cristobalite-like crystallites. Application of SA leads to increase of compressive strength after 90 days of hardening by 28% and 53% at SA content 5 and 10% respectively comparing to specimens without this additive. Contents of chemically bound lime in the reference specimens after 28 days of hardening in air-dry conditions was 46.5%, while in specimens modified with SA contained 50.0-55.3% of bound lime depending on filtrate pH. This testifies to high activity of calcareous composition. The new blended lime

  14. Mixed cation effect in sodium aluminosilicate glasses

    DEFF Research Database (Denmark)

    Kjeldsen, Jonas; Smedskjær, Morten Mattrup; Mauro, John C.

    , network structure, and the resistances associated with the deformation processes in mixed cation glasses by partially substituting magnesium for calcium and calcium for lithium in sodium aluminosilicate glasses. We use Raman and 27Al NMR spectroscopies to obtain insights into the structural...

  15. Synthesis of zeolite-P from coal fly ash derivative and its utilisation in mine-water remediation

    Directory of Open Access Journals (Sweden)

    Leslie F. Petrik

    2010-05-01

    Full Text Available Solid residues resulting from the active treatment of acid mine drainage with coal fly ash were successfully converted to zeolite-P under mild hydrothermal treatment conditions. Scanning electron microscopy showed that the zeolite-P product was highly crystalline. The product had a high cation exchange capacity (178.7 meq / 100 g and surface area (69.1 m2/g and has potential application in waste-water treatment. A mineralogical analysis of the final product identified zeolite-P, as well as mullite and quartz phases, which indicated incomplete dissolution of the fly ash feedstock during the ageing step. Further optimisation of the synthesis conditions would be required to attain complete utilisation of the feedstock. The zeolite-P was tested for decontamination potential of circumneutral mine water. High removal efficiency was observed in the first treatment, but varied for different contaminants. The synthesised zeolite-P exhibited a high efficiency for the removal of heavy metal cations, such as aluminium, iron, manganese, zinc, copper and nickel, from contaminated mine water, even with repeated use. For potassium, calcium, strontium and barium, the removal was only efficient in the first treatment and decreased rapidly with subsequent treatments, indicating preferential adsorption of the other metals. A continuous release of sodium was observed during decontamination experiments, which decreased with subsequent treatments, confirming that sodium was the main exchangeable charge-balancing cation present in the zeolite-P product.

  16. Synthesis of zeolite-zeolite (mfi-fau) composite catalysts for the isomerization of n-hexane

    International Nuclear Information System (INIS)

    Ghouri, A.S; Usman, M.R.

    2017-01-01

    In this research work, the aim is to produce a relatively novel zeolite-zeolite (MFI-FAU) composite catalyst having better potential of catalyzing isomerization of lighter hydrocarbons such as light naphtha, n-pentane, n-hexane, n-heptane and mixture thereof. A series of zeolite-zeolite (MFI-FAU) composite catalysts have been synthesized by incorporating previous practices and techniques. The catalytic performance of as-synthesized zeolite-zeolite (MFI-FAU) composite catalysts have been investigated by isomerizing 95% pure n-hexane in conventional fixed bed flow micro-reactor at temperature 200-240 ºC under atmospheric pressure. In order to explore chemical and physical features of zeolite-zeolite (MFI-FAU) composite catalysts, they are examined and characterized using powder X-ray diffraction (XRD), scanning electron microscopy (SEM) coupled with energy-dispersive X-ray spectrometry (EDX), N2 adsorption-desorption measurements (BET, BJH, t-plot measurements) and Fourier transform infrared (FTIR) spectroscopy equipped with attenuated total reflectance (ATR) arrangements. (author)

  17. Utilização de zeólitas sintetizadas a partir de xisto retortado na remoção de arsênio em águas contaminadas Use of zeolites synthesized from oil shale ash for arsenic removal from polluted water

    Directory of Open Access Journals (Sweden)

    Nádia Regina Camargo Fernandes-Machado

    2007-10-01

    Full Text Available The solid by-product of the oil shale processing (PETROBRAS - Brazil was used as raw material to synthesize zeolites A and faujasite. Alkaline fusion followed by hydrothermal treatment was the synthesis procedure used, and five different starting material compositions were obtained. The more crystalline zeolite-type materials synthesized, the pretreated oil shale ash and commercial zeolites were used as adsorbents in the purification of pollutant solutions with arsenic. The zeolite-type material composed of a mixture of zeolite A (42.6% and faujasite (52.9% presented an ion exchange capacity comparable to the pure zeolites A and faujasite, much better than the pretreated ash.

  18. Improved Catalysts for Heavy Oil Upgrading Based on Zeolite Y Nanoparticles Encapsulated Stable Nanoporous Host

    Energy Technology Data Exchange (ETDEWEB)

    Conrad Ingram; Mark Mitchell

    2006-09-30

    The addition of hydrothermally-aged zeolite Y precursor to an SBA-15 synthesis mixture under a mildly acidic condition resulted in the formation of mesoporous aluminosilicate catalyst, Al-SBA-15, containing strong Broensted acid sites and aluminum (Al) stabilized in a totally tetrahedral coordination. The physicochemical characteristics of the catalyst varied as a function of the synthesis conditions. The catalyst possessed surface areas ranging between 690 and 850 m{sup 2}/g, pore sizes ranging from 5.6 to 7.5 nm, and pore volumes up 1.03 cm{sup 3}, which were comparable to the parent SBA-15 synthesized under similar conditions. Two wt% Al was present in the catalyst that was obtained from the reaction mixture that contained the highest Al content. The Al remained stable in totally tetrahedral coordination after calcination at 550 C. The Al-SBA-15 mesoporous catalyst showed significant catalytic activity for cumene dealkylation, and the activity increased as the amount of zeolite precursor added to the SBA-15 mixture was increased. In preparation for the final phase of the project, the catalyst was embedded into psuedoboemite alumina (catapal B) matrix and then formed into pellets. In the final phase of the project, the pelletized catalyst will be evaluated for the conversion of heavy petroleum feedstocks to naphtha and middle distillates.

  19. Preparatory of X zeolite (faujasite) with surfactant hexa decyl trimethyl ammonium bromide (HMDTA) for adsorption of organic compounds; Acondicionamiento de zeolita X (faujasita) con surfactante bromuro de hexa decil trimetil amonio (HDTMA) para adsorcion de compuestos organicos

    Energy Technology Data Exchange (ETDEWEB)

    Gonzalez R, V

    2003-07-01

    The water represents one of the most valuable natural resources for the alive beings, since it is the essential component of the alive matter. Also, it is fundamental part of our planet, since is an indispensable element for the integral development of the same one. The demographic growth, the human being's activities and the industrial growth, he/she brings as consequence an increase in the use of the water and the generation of residual waters that successively contaminate the hydrological basins, becoming an environmental problem urgent. The contamination of the water with compound such as phenol and benzene, it is a problem that it requires the search of solutions, since it is of compound not very biodegradable, able to accumulate through the food chains and very toxic to the alive beings that they enter in contact with them (Tolgyessy, 1993). In the human beings it can take place damages in liver and kidney, the Agency of Protection to the Atmosphere of the United States (EPA) it considers that the exhibition for benzene is related with the leukemia, it is also considered as a carcinogen substance. Of the methods that are used for the treatment of polluted waters, it highlights the use of adsorber and one of them is the zeolites, since they are broadly used in those separation processes. The zeolites is crystalline aluminosilicates, they are characterized for to have a big superficial area and for their great capacity of exchange cationic, due to it the process of adsorption depends on these two characteristics, since to the modified being superficially for surfactants cationic it originates an enriched layer of carbon organic, which has the capacity to remove pollutants of the water. The present work outlines as objective to carry out the superficial modification of zeolite X using hexa decyl trimethyl ammonium bromide (HMDTA-Br) to different concentrations, with the purpose of making it useful in the removal of pollutants organic, present in watery solution

  20. Preparatory of X zeolite (faujasite) with surfactant hexa decyl trimethyl ammonium bromide (HMDTA) for adsorption of organic compounds; Acondicionamiento de zeolita X (faujasita) con surfactante bromuro de hexa decil trimetil amonio (HDTMA) para adsorcion de compuestos organicos

    Energy Technology Data Exchange (ETDEWEB)

    Gonzalez R, V

    2003-07-01

    The water represents one of the most valuable natural resources for the alive beings, since it is the essential component of the alive matter. Also, it is fundamental part of our planet, since is an indispensable element for the integral development of the same one. The demographic growth, the human being's activities and the industrial growth, he/she brings as consequence an increase in the use of the water and the generation of residual waters that successively contaminate the hydrological basins, becoming an environmental problem urgent. The contamination of the water with compound such as phenol and benzene, it is a problem that it requires the search of solutions, since it is of compound not very biodegradable, able to accumulate through the food chains and very toxic to the alive beings that they enter in contact with them (Tolgyessy, 1993). In the human beings it can take place damages in liver and kidney, the Agency of Protection to the Atmosphere of the United States (EPA) it considers that the exhibition for benzene is related with the leukemia, it is also considered as a carcinogen substance. Of the methods that are used for the treatment of polluted waters, it highlights the use of adsorber and one of them is the zeolites, since they are broadly used in those separation processes. The zeolites is crystalline aluminosilicates, they are characterized for to have a big superficial area and for their great capacity of exchange cationic, due to it the process of adsorption depends on these two characteristics, since to the modified being superficially for surfactants cationic it originates an enriched layer of carbon organic, which has the capacity to remove pollutants of the water. The present work outlines as objective to carry out the superficial modification of zeolite X using hexa decyl trimethyl ammonium bromide (HMDTA-Br) to different concentrations, with the purpose of making it useful in the removal of pollutants organic, present in watery

  1. Equilibrium CO{sub 2} adsorption on zeolite 13X prepared from natural clays

    Energy Technology Data Exchange (ETDEWEB)

    Garshasbi, Vahid [Faculty of Chemical, Petroleum and Gas Eng., Semnan University, P.O. Box 35196-45399, Semnan, Islamic Republic of Iran (Iran, Islamic Republic of); Jahangiri, Mansour, E-mail: mjahangiri@semnan.ac.ir [Faculty of Chemical, Petroleum and Gas Eng., Semnan University, P.O. Box 35196-45399, Semnan, Islamic Republic of Iran (Iran, Islamic Republic of); Anbia, Mansoor [Research Laboratory of Nanoporous Materials, Faculty of Chemistry, Iran University of Science and Technology, Tehran 16846-13114, Islamic Republic of Iran (Iran, Islamic Republic of)

    2017-01-30

    Highlights: • Zeolite 13X was successfully synthesized by hydrothermal treatment using natural kaolin, natural bentonite and natural feldspath. • The optimum conditions of synthesis zeolite 13X were found to be NaOH concentration = 4 M and crystallized at 65 °C for 72 h after homogenization by agitated at room temperature for 120 h. • The prepared zeolite 13X from natural kaolin (13X-K) showed a high BET surface area of 591 m{sup 2}/g and high micropore volume (0.250 cm{sup 3}/g) than other materials in this study. • The adsorption behavior of carbon dioxide and methane on zeolite 13X sample at different temperature from 298 K to 328 K was investigated. • It was found that the Langmuir–Freundlich model was more suitable than the others for description of CO{sub 2} adsorption isotherms. - Abstract: Zeolite 13X was successfully synthesized by hydrothermal treatment using natural clays extracted from Iranian resources. The preliminary natural materials and the final zeolite 13X samples were characterized by X-ray Diffraction (XRD), Fourier-Transfer Infrared (FTIR) spectroscopy, Scanning Electron Microscopy (SEM) and N{sub 2} adsorption–desorption isotherm. The effects of various factors such as NaOH addition amount and aging time on the crystalline products were studied during the synthesis process. The optimum conditions related to the synthesis of zeolite 13X were set. Accordingly, NaOH concentration was equal to 4 M. It was further crystallized at 65 °C for 72 h after its homogenization by agitation at room temperature for 120 h. In this study, the zeolite 13X prepared from natural kaolin (13X-K) showed a high BET surface area of 591 m{sup 2}/g with higher micropore volume (0.250 cm{sup 3}/g) than other materials. Adsorption equilibrium isotherms of CO{sub 2} were investigated using a static, volumetric method. In addition, pressures for the pure component data extended up to 20 bar. The adsorption equilibrium data of CO{sub 2} was fitted to

  2. Method of producing zeolite encapsulated nanoparticles

    DEFF Research Database (Denmark)

    2015-01-01

    The invention therefore relates to a method for producing zeolite, zeolite-like or zeotype encapsulated metal nanoparticles, the method comprises the steps of: 1) Adding one or more metal precursors to a silica or alumina source; 2) Reducing the one or more metal precursors to form metal...... nanoparticles on the surface of the silica or alumina source; 3) Passing a gaseous hydrocarbon, alkyl alcohol or alkyl ether over the silica or alumina supported metal nanoparticles to form a carbon template coated zeolite, zeolite-like or zeotype precursor composition; 4a) Adding a structure directing agent...... to the carbon template coated zeolite, zeolite-like or zeotype precursor composition thereby creating a zeolite, zeolite-like or zeotype gel composition; 4b) Crystallising the zeolite, zeolite-like or zeotype gel composition by subjecting said composition to a hydrothermal treatment; 5) Removing the carbon...

  3. Method for producing zeolites and zeotypes

    DEFF Research Database (Denmark)

    2015-01-01

    The invention relates to a method for producing zeolite, zeolite-like or zeotype particles comprising the steps of: 1 ) Adding one or more metal precursors to a silica or alumina source; 2) Reducing the one or more metal precursors to form metal nanoparticles on the surface of the silica or alumina...... source; 3) Passing a gaseous hydrocarbon, alkyl alcohol or alkyl ether over the silica or alumina supported metal nanoparticle to form a carbon template coated zeolite, zeolite-like or zeotype precursor composition; 4a) Adding a structure directing agent to the carbon template coated zeolite, zeolite......-like or zeotype precursor composition thereby creating a zeolite, zeolite-like or zeotype gel composition; 4b) Crystallising the zeolite, zeolite-like or zeotype gel composition by subjecting said composition to a hydrothermal treatment; 5) Removing the carbon template and structure directing agent and isolating...

  4. Modification of zeolite 4A for use as an adsorbent for glyphosate and as an antibacterial agent for water.

    Science.gov (United States)

    Zavareh, Siamak; Farrokhzad, Zahra; Darvishi, Farshad

    2018-07-15

    The aim of this work was to design a low cost adsorbent for efficient and selective removal of glyphosate from water at neutral pH conditions. For this purpose, zeolite 4A, a locally abundant and cheap mineral material, was ion-exchanged with Cu 2+ to produce Cu-zeolite 4A. The FTIR results revealed that the modification has no important effect on chemical structure of zeolite 4A. After modification, highly crystalline zeolite 4A was converted to amorphous Cu-zeolite 4A according to XRD studies. The SEM images showed spherical-like particles with porous surfaces for Cu-zeolite 4A compared to cubic particles with smooth surfaces for zeolite 4A. Adsorption equilibrium data were well fitted with non-linear forms of Langmuir, Freundlich and Temkin isotherms. The maximum adsorption capacity for Cu-zeolite 4A was calculated to be 112.7 mg g -1 based on the Langmuir model. The adsorption of glyphosate by the modified adsorbent had fast kinetics fitted both pseudo-first-order and pseudo-second-order models. A mechanism based on chemical adsorption was proposed for the removal process. The modified adsorbent had a good selectivity to glyphosate over natural waters common cations and anions. It also showed desired regeneration ability as an important feature for practical uses. The potential use of the developed material as antibacterial agent for water disinfection filters was also investigated by MIC method. Relatively strong antibacterial activity was observed for Cu-zeolite 4A against Gram-positive and Gram-negative model bacteria while zeolite 4A had no antibacterial properties. No release of Cu 2+ to aqueous solutions was detected as unique feature of the developed material. Copyright © 2018 Elsevier Inc. All rights reserved.

  5. Design and characterization of chitosan/zeolite composite films — Effect of zeolite type and zeolite dose on the film properties

    International Nuclear Information System (INIS)

    Barbosa, Gustavo P.; Debone, Henrique S.; Severino, Patrícia; Souto, Eliana B.; Silva, Classius F. da

    2016-01-01

    Chitosan films can be used as wound dressings for the treatment of chronic wounds and severe burns. The antimicrobial properties of these films may be enhanced by the addition of silver. Despite the antimicrobial activity of silver, several studies have reported the cytotoxicity as a factor limiting its biomedical applications. This problem may, however, be circumvented by the provision of sustained release of silver. Silver zeolites can be used as drug delivery platforms to extend the release of silver. The objective of this study was to evaluate the addition of clinoptilolite and A-type zeolites in chitosan films. Sodium zeolites were initially subjected to ion-exchange in a batch reactor. Films were prepared by casting technique using a 2% w/w chitosan solution and two zeolite doses (0.1 or 0.2% w/w). Films were characterized by thermal analysis, color analysis, scanning electron microscopy, X-ray diffraction, and water vapor permeation. The results showed that films present potential for application as dressing. The water vapor permeability is one of the main properties in wound dressings, the best results were obtained for A-type zeolite/chitosan films, which presented a brief reduction of this property in relation to zeolite-free chitosan film. On the other hand, the films containing clinoptilolite showed lower water vapor permeation, which may be also explained by the best distribution of the particles into the polymer which also promoted greater thermal resistance. - Highlights: • Zeolite/chitosan composite films were prepared by casting technique. • Micrographs showed slight difference according to the content and A-type zeolite. • The barrier properties of the films were suitable to the dressing application. • Film characterization suggested that zeolites interacted with the chitosan chain.

  6. Design and characterization of chitosan/zeolite composite films — Effect of zeolite type and zeolite dose on the film properties

    Energy Technology Data Exchange (ETDEWEB)

    Barbosa, Gustavo P.; Debone, Henrique S. [Instituto de Ciências Ambientais, Químicas e Farmacêuticas, Universidade Federal de São Paulo, Diadema (Brazil); Severino, Patrícia [Universidade Tiradentes, Instituto de Tecnologia e Pesquisa, Aracaju (Brazil); Souto, Eliana B. [Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Coimbra (FFUC), Pólo das Ciências da Saúde, Azinhaga de Santa Comba, 3000-548, Coimbra (Portugal); Center for Neuroscience and Cell Biology & Institute for Biomedical Imaging and Life Sciences (CNC-IBILI), University of Coimbra, Pólo das Ciências da Saúde, Azinhaga de Santa Comba, 3000-548, Coimbra (Portugal); Silva, Classius F. da, E-mail: cfsilva@unifesp.br [Instituto de Ciências Ambientais, Químicas e Farmacêuticas, Universidade Federal de São Paulo, Diadema (Brazil)

    2016-03-01

    Chitosan films can be used as wound dressings for the treatment of chronic wounds and severe burns. The antimicrobial properties of these films may be enhanced by the addition of silver. Despite the antimicrobial activity of silver, several studies have reported the cytotoxicity as a factor limiting its biomedical applications. This problem may, however, be circumvented by the provision of sustained release of silver. Silver zeolites can be used as drug delivery platforms to extend the release of silver. The objective of this study was to evaluate the addition of clinoptilolite and A-type zeolites in chitosan films. Sodium zeolites were initially subjected to ion-exchange in a batch reactor. Films were prepared by casting technique using a 2% w/w chitosan solution and two zeolite doses (0.1 or 0.2% w/w). Films were characterized by thermal analysis, color analysis, scanning electron microscopy, X-ray diffraction, and water vapor permeation. The results showed that films present potential for application as dressing. The water vapor permeability is one of the main properties in wound dressings, the best results were obtained for A-type zeolite/chitosan films, which presented a brief reduction of this property in relation to zeolite-free chitosan film. On the other hand, the films containing clinoptilolite showed lower water vapor permeation, which may be also explained by the best distribution of the particles into the polymer which also promoted greater thermal resistance. - Highlights: • Zeolite/chitosan composite films were prepared by casting technique. • Micrographs showed slight difference according to the content and A-type zeolite. • The barrier properties of the films were suitable to the dressing application. • Film characterization suggested that zeolites interacted with the chitosan chain.

  7. Investigating the relative influences of molecular dimensions and binding energies on diffusivities of guest species inside nanoporous crystalline materials

    NARCIS (Netherlands)

    Krishna, R.; van Baten, J.M.

    2012-01-01

    The primary objective of this article is to investigate the relative influences of molecular dimensions and adsorption binding energies on unary diffusivities of guest species inside nanoporous crystalline materials such as zeolites and metal-organic frameworks (MOFs). The investigations are based

  8. Li+ alumino-silicate ion source development for the Neutralized Drift Compression Experiment (NDCX)

    Energy Technology Data Exchange (ETDEWEB)

    Roy, Prabir K.; Greenway, Wayne G.; Kwan, Joe W.; Seidl, Peter A.; Waldron, William L.; Wu, James K.

    2010-10-01

    We report results on lithium alumino-silicate ion source development in preparation for warmdense-matter heating experiments on the new Neutralized Drift Compression Experiment (NDCXII). The practical limit to the current density for a lithium alumino-silicate source is determined by the maximum operating temperature that the ion source can withstand before running into problems of heat transfer, melting of the alumino-silicate material, and emission lifetime. Using small prototype emitters, at a temperature of ~;;1275 oC, a space-charge-limited Li+ beam current density of J ~;;1 mA/cm2 was obtained. The lifetime of the ion source was ~;;50 hours while pulsing at a rate of 0.033 Hz with a pulse duration of 5-6 mu s.

  9. Li+ alumino-silicate ion source development for the Neutralized Drift Compression Experiment (NDCX)

    International Nuclear Information System (INIS)

    Roy, Prabir K.; Greenway, Wayne G.; Kwan, Joe W.; Seidl, Peter A.; Waldron, William L.; Wu, James K.

    2010-01-01

    We report results on lithium alumino-silicate ion source development in preparation for warm-dense-matter heating experiments on the new Neutralized Drift Compression Experiment (NDCX-II). The practical limit to the current density for a lithium alumino-silicate source is determined by the maximum operating temperature that the ion source can withstand before running into problems of heat transfer, melting of the alumino-silicate material, and emission lifetime. Using small prototype emitters, at a temperature of ∼1275 C, a space-charge-limited Li + beam current density of J ∼1 mA/cm 2 was obtained. The lifetime of the ion source was ∼50 hours while pulsing at a rate of 0.033 Hz with a pulse duration of 5-6 (micro) s.

  10. Zeolite function studied by neutron diffraction

    International Nuclear Information System (INIS)

    Newsam, J.M.

    1988-01-01

    Some recent figures relating to industrial uses of zeolites are summarized. Recent advances in the application of neutron diffraction to zeolite science are overviewed, with particular emphasis on powder diffraction (PND) results. Single crystal neutron diffraction studies of some 17 hydrated natural and synthetic zeolites have now appeared and they provide a consistent picture of zeolite-water interactions. Complete PND studies of hydrated synthetic ABW- and SOD-framework zeolites have also been reported. Other PND studies have explored the structural consequences of non-framework cation exchange, of framework modification by dealumination, and of framework cation substitution. Relatively simple zeolite-hydrocarbon sorbate complexes that have been studied include benzene in zeolite Y, and benzene and pyridine in zeolite L. Areas that are well poised for further development include further extensions to lower symmetry systems, the use of PND data for zeolite structure solution, studies at elevated temperatures and pressures, and further studies of zeolite sorbate complexes. (author) 68 refs., 7 figs

  11. Mechanical Properties of Densified Tectosilicate Calcium-Aluminosilicate Glasses

    DEFF Research Database (Denmark)

    Johnson, Nicole; Lamberson, Lisa; Smedskjær, Morten Mattrup

    Aluminosilicate glasses are widely used in applications such as LCD glass, touchscreens for hand held devices and car windows. We have shown that the tectosilicate compositions exhibit an interesting non-monotonic variation in hardness with increasing SiO2 content. From 40% to 85 mol% SiO2......, hardness and indentation modulus both decrease, consistent with the topological constraint theory. Above 85 mol% SiO2 , hardness increases rapidly with increasing SiO2 content while modulus continues to decrease. A switch from shear to densification based on the species present in the glass has been...... proposed to explain this behavior. To reduce densification and study shear deformation independently, a series of calcium aluminosilicate glasses with tectosilicate compositions were densified by isostatic compression in a gas pressure chamber at elevated temperatures. The compressed glasses have increased...

  12. Soil Crystallinity As a Climate Indicator: Field Experiments on Earth and Mars

    Science.gov (United States)

    Horgan, Briony; Scudder, Noel; Rampe, Elizabeth; Rutledge, Alicia

    2016-01-01

    Soil crystallinity is largely determined by leaching rates, as high leaching rates favor the rapid precipitation of short order or poorly-crystalline phases like the aluminosilicate allophane. High leaching rates can occur due to high precipitation rates, seasonal monsoons, or weathering of glass, but are also caused by the rapid onset of seasonal melting of snow and ice in cold environments. Thus, cold climate soils are commonly dominated by poorly crystalline phases, which mature into kaolin minerals over time. Thus, we hypothesize that, in some contexts, soils with high abundances of poorly crystalline phases could indicate formation under cold climatic conditions. This model could be helpful in interpreting the poorly-constrained paleoclimate of ancient Mars, as the crystallinity of ancient soils and soil-derived sediments appears to be highly variable in time and space. While strong signatures of crystalline phyllosilicates have been identified in possible ancient paleosols on Mars, Mars Science Laboratory rover investigations of diverse ancient sediments at Gale Crater has shown that they can contain very high abundances (40-50 wt%) of poorly crystalline phases. We hypothesize that these poorly crystalline phases could be the result of weathering by ice/snow melt, perhaps providing support for sustained cold climates on early Mars punctuated by more limited warm climates. Furthermore, such poorly crystalline soils could be highly fertile growth media for future human exploration and colonization on Mars. To test this hypothesis, we are currently using rover-like instrumentation to investigate the mineralogy and chemistry of weathering products generated by snow and ice melt in a Mars analog alpine environment: the glaciated Three Sisters volcanic complex in central Oregon. Alteration in this glacial environment generates high abundances of poorly crystalline phases, many of which have compositions distinct from those identified in previous terrestrial

  13. Removal of paraquat solution onto zeolite material

    Science.gov (United States)

    Sirival, Rujikarn; Patdhanagul, Nopbhasinthu; Preecharram, Sutthidech; Photharin, Somkuan

    2018-04-01

    The purpose of this research was to study the adsorption of paraquat herbicides onto zeolite Y materials by the batch method. Three adsorbents material: Zeolite-3, Zeolite-10, and Zeolite-100 were Si/Al ratio at 3.58, 8.57 and 154.37, respectively. The factors for adsorption of paraquat as follows, adsorption time, initial concentrations of paraquat, pH and adsorption isotherm were investigated. The results showed that zeolite-10 had higher adsorption capacity than zeolite-3 and zeolite-100. The appropriate conditions for adsorption were 24 h., Zeolite 0.1 g., Initial paraquat concentration 100 ppm at pH 6. The adsorption isotherm was found to correspond with Langmuir Isotherm and the maximum paraquat adsorption is 26.38 mg/g for zeolite-10, 21.41 mg/g and 9.60 mg/g for zeolite-3 and zeolite-100, respectively. The characterization of zeolite material with XRD, XRF and BET. Furthermore, the zeolite materials applied to remove other organic and inorganic wastewater.

  14. ADSORPSI POLUTAN ION DIKROMAT MENGGUNAKAN ZEOLIT ALAM TERMODIFIKASI AMINA (Adsorption of Dichromate Ions Pollutant Using Ammine Modified-Natural Zeolites

    Directory of Open Access Journals (Sweden)

    Eko Sri Kunarti

    2015-11-01

    Full Text Available ABSTRAK Kromium (VI merupakan polutan logam berat berbahaya bagi kesehatan dan lingkungan oleh karena itu pengambilan ion Cr(VI dalam air penting dilakukan untuk mengatasi pencemaran lingkungan. Proses adsorpsi merupakan salah satu teknik sederhana yang dapat digunakan untuk pengambilan ion logam. Pada penelitian ini telah dilakukan kajian adsorpsi ion dikromat sebagai model limbah Cr(VI dalam air menggunakan adsorben zeolit alam termodifikasi amina. Penelitian diawali dengan preparasi adsorben zeolit alam termodifikasi amina. Preparasi dimulai dengan pencucian zeolit alam menggunakan akuades, kemudian refluks zeolit alam menggunakan HCl 3M. Zeolit hasil refluks selanjutnya dimodifikasi menggunakan garam ammonium kuarterner, N-cethyl-N,N,N-trimethylammonium bromide (CTAB dan amina primer, propilamin (PA. Zeolit alam (Z, zeolit teraktivasi asam (ZA dan zeolit hasil modifikasi amina selanjutnya digunakan sebagai adsorben untuk adsorpsi anion dikromat. Karakterisasi adsorben dilakukan dengan mengunakan metode spektroskopi infaramerah dan difraksi sinar-X, sedangkan jumlah anion dikromat yang teradsorpsi dianalisis dengan spektroskopi serapan atom. Hasil penelitian menunjukkan bahwa sampel zeolit mengandung mineral klinoptilolit, mordernit dan kuarsa. Struktur zeolit tidak mengalami kerusakan oleh perlakuan termal dan perlakuan kimia. Modifikasi zeolit meningkatkan efisiensi adsorpsi zeolit alam. Ion dikromat dapat teradsorpsi dengan lebih baik oleh zeolit termodifikasi amina daripada zeolit teraktivasi asam dan zeolit tanpa modifikasi, dengan kemampuan adsorpsi zeolit termodifikasi CTAB (CTAB-Z lebih besar daripada zeolit termodifikasi propilamin (PA-Z. Adsorpsi ion dikromat pada adsorben zeolit berlangsung baik dengan urutan CTAB-Z > PA-Z > ZA > Z, dengan kemampuan adsorpsi masing-masing sebesar 1,96; 1,74; 0,90 dan 0,48 mg/g. Adsorpsi anion dikromat oleh zeolit termodifikasi CTAB merupakan adsorpsi kimia (kemisorpsi dengan energi adsorpsi sebesar

  15. Hydration of Blended Portland Cements Containing Calcium-Aluminosilicate Glass Powder and Limestone

    DEFF Research Database (Denmark)

    Moesgaard, M; Poulsen, Søren Lundsted; Herfort, D

    2012-01-01

    M. MOESGAARD, S.L. POULSEN, D. HERFORT, M. STEENBERG, L.F. KIRKEGAARD, J. SKIBSTED, Y. YUE, Hydration of Blended Portland Cements Containing Calcium-Aluminosilicate Glass Powder and Limestone, Journal of the American Ceramic Society 95, 403 – 409 (2012).......M. MOESGAARD, S.L. POULSEN, D. HERFORT, M. STEENBERG, L.F. KIRKEGAARD, J. SKIBSTED, Y. YUE, Hydration of Blended Portland Cements Containing Calcium-Aluminosilicate Glass Powder and Limestone, Journal of the American Ceramic Society 95, 403 – 409 (2012)....

  16. Immobilization of Co2+ and Cs+ in zeolites by thermal treatment and by combustion

    International Nuclear Information System (INIS)

    Rodriguez T, R.; Bulbulian G, S.

    2005-01-01

    The radioactive waste, either those that take place in the 235 U fission or those that are used in the radiochemical laboratories, are dangerous for the human being and for the one environment. The liquid radioactive wastes are of those that present bigger problem. It has intended to retain by the ion exchange method the radioactive ions of the liquids using, for example, zeolites. In this work so much synthetic zeolites was used (A and X) like a natural zeolite (clinoptilolite). Its were put in contact with cobalt or cesium solutions to simulate radioactive solutions. A part of the zeolite cations were exchanged with cobalt or cesium cations, eliminating them by this way of the solution. However, in extreme conditions these cations can be leached of the solids. To immobilize the cobalt or cesium cations in the zeolites net its are usually carried out thermal treatments to such temperatures that the structure is destroyed and that the contaminating ions are trapped in a solid often vitreous. The exchanged zeolites with cobalt or cesium, on one hand, its were thermally treated to different temperatures during three hours and by the other one, according to the treatment method by combustion, to different temperatures during five minutes in presence of urea, later its were put in contact with a solution of NaCl to measure the leaching of the interest cations. These solutions were analyzed by neutron activation. In general it was found that as the treatment temperature increases (in both methods) the so much immobility of the cesium like of the cobalt it increases. The grade of crystallinity of the samples before and after the treatments it was determined by X-ray diffraction. (Author)

  17. for zeolite coating

    Directory of Open Access Journals (Sweden)

    Carlos Renato Rambo

    2006-01-01

    Full Text Available Biotemplating is the processing of microcellular ceramics by reproduction of natural morphologies, where the microstructural features of the biotemplate are maintained in the biomorphic ceramic. Different biotemplates with distinct pore anatomies were used to produce biomorphic supports for the zeolite coating: wood, cardboard, sea-sponge and sisal. The biomorphic ceramics were produced by distinguished processing routes: Al-gas infiltration-reaction, liquid-metal infiltration, dip-coating and sol-gel synthesis, in order to produce nitrides, carbides and oxides, depending on the processing conditions. The zeolite coating was performed by hydrothermal growth of MFI-type (Silicalite-1 and ZSM-5 zeolite crystals onto the internal pore walls of the biomorphic templates. The final biomorphic ceramic-zeolite composites were physically characterized, evaluated in terms of their gas adsorption capabilities and correlated to their microstructure and specific pore anatomy. The combination of the properties of the biomorphic ceramics with the adsorption properties of zeolites results in materials with distinct properties as potential candidates for adsorption and catalytic applications due to their characteristic porosity, molecular sieving capabilities and high thermo-mechanical strength.

  18. Effects of zeolite supplementation on parameters of intestinal barrier integrity, inflammation, redoxbiology and performance in aerobically trained subjects.

    Science.gov (United States)

    Lamprecht, Manfred; Bogner, Simon; Steinbauer, Kurt; Schuetz, Burkhard; Greilberger, Joachim F; Leber, Bettina; Wagner, Bernhard; Zinser, Erwin; Petek, Thomas; Wallner-Liebmann, Sandra; Oberwinkler, Tanja; Bachl, Norbert; Schippinger, Gert

    2015-01-01

    Zeolites are crystalline compounds with microporous structures of Si-tetrahedrons. In the gut, these silicates could act as adsorbents, ion-exchangers, catalysts, detergents or anti-diarrheic agents. This study evaluated whether zeolite supplementation affects biomarkers of intestinal wall permeability and parameters of oxidation and inflammation in aerobically trained individuals, and whether it could improve their performance. In a randomized, double-blinded, placebo controlled trial, 52 endurance trained men and women, similar in body fat, non-smokers, 20-50 years, received 1.85 g of zeolite per day for 12 weeks. Stool samples for determination of intestinal wall integrity biomarkers were collected. From blood, markers of redox biology, inflammation, and DNA damage were determined at the beginning and the end of the study. In addition, VO2max and maximum performance were evaluated at baseline and after 12 weeks of treatment. For statistical analyses a 2-factor ANOVA was used. At baseline both groups showed slightly increased stool zonulin concentrations above normal. After 12 weeks with zeolite zonulin was significantly (p zeolite group. There were no significant changes observed in the other measured parameters. Twelve weeks of zeolite supplementation exerted beneficial effects on intestinal wall integrity as indicated via decreased concentrations of the tight junction modulator zonulin. This was accompanied by mild anti-inflammatory effects in this cohort of aerobically trained subjects. Further research is needed to explore mechanistic explanations for the observations in this study.

  19. Synthesis of hybrid chitosan/calcium aluminosilicate using a sol-gel method for optical applications

    Energy Technology Data Exchange (ETDEWEB)

    Elnahrawy, Amany Mohamed [Department of Solid State, Physics Division, National Research Center (NRC), Giza 12622, Cairo (Egypt); Kim, Yong Soo, E-mail: yskim2@ulsan.ac.kr [Department of Physics and Energy Harvest-Storage Research Center (EHSRC), University of Ulsan, Ulsan 44610 (Korea, Republic of); Ali, Ahmed I., E-mail: Ahmed_ali_2010@helwan.edu.eg [Department of Physics and Energy Harvest-Storage Research Center (EHSRC), University of Ulsan, Ulsan 44610 (Korea, Republic of); Basic Science Department, Faculty of Industrial Education & Technology, Helwan University, Cairo 11281 (Egypt)

    2016-08-15

    Hybrid chitosan (CS)/calcium aluminosilicate nanocomposites thin films and membranes were prepared using a sol–gel method with three different concentrations of Al{sub 2}O{sub 3} (5, 7 and 10 mol. %). The prepared nanocomposites were characterized by transmission electron microscopy, X-ray diffraction and Fourier Transform Infrared spectroscopy. The optical properties of the prepared samples were analyzed by UV/Vis spectrophotometry and photoluminescence (PL) spectroscopy. The optical parameters revealed an increase in both the refractive index and band gap of the nanocomposites with increasing Al concentration. In addition, the PL spectra revealed a blue shift that was consistent with an increase in the optical band gap. These results suggest that CS/calcium aluminosilicate in two different forms can be a good candidate for optical sensors applications. - Highlights: • We show a large specific surface area of hybrid CS/calcium aluminosilicate thin films and membranes using sol-gel method. • Inorganic SiO{sub 2}-based phase are perfectly embedded onto chitosan matrix has a reliable stability. • CS/calcium aluminosilicate could be usable for optical sensors, planar waveguide, and bio-sensing.

  20. Characterization and antibacterial activity of silver exchanged regenerated NaY zeolite from surfactant-modified NaY zeolite

    Energy Technology Data Exchange (ETDEWEB)

    Salim, Mashitah Mad; Malek, Nik Ahmad Nizam Nik, E-mail: niknizam@fbb.utm.my

    2016-02-01

    The antibacterial activity of regenerated NaY zeolite (thermal treatment from cetyltrimethyl ammonium bromide (CTAB)-modified NaY zeolite and pretreatment with Na ions) loaded with silver ions were examined using the broth dilution minimum inhibitory concentration (MIC) method against Escherichia coli (E. coli ATCC 11229) and Staphylococcus aureus (S. aureus ATCC 6538). X-ray diffraction (XRD), attenuated total reflectance–Fourier transform infrared (ATR–FTIR) spectroscopy, field emission scanning electron microscopy (FESEM), energy dispersive X-ray (EDX) and chemical elemental analyses were used to characterize the regenerated NaY and AgY zeolites. The XRD patterns indicated that the calcination and addition of silver ions on regenerated NaY zeolite did not affect the structure of the regenerated NaY zeolite as the characteristic peaks of the NaY zeolite were retained, and no new peaks were observed. The regenerated AgY zeolite showed good antibacterial activity against both bacteria strains in distilled water, and the antibacterial activity of the samples increased with increasing Ag loaded on the regenerated AgY zeolite; the regenerated AgY zeolite was more effective against E. coli than S. aureus. However, the antibacterial activity of the regenerated AgY was not effective in saline solution for both bacteria. The study showed that CTAB-modified NaY zeolite materials could be regenerated to NaY zeolite using thermal treatment (550 °C, 5 h) and this material has excellent performance as an antibacterial agent after silver ions loading. - Highlights: • Thermal treatment was used to regenerate surfactant modified zeolite. • The regenerated NaY zeolite formed was added with different silver loadings. • Regenerated AgY zeolite was tested for antibacterial activity on E. coli and S. aureus. • The antibacterial activity increased with increased of the amount of silver loadings. • The zeolite structure did not change with thermal and modification

  1. Characterization and antibacterial activity of silver exchanged regenerated NaY zeolite from surfactant-modified NaY zeolite

    International Nuclear Information System (INIS)

    Salim, Mashitah Mad; Malek, Nik Ahmad Nizam Nik

    2016-01-01

    The antibacterial activity of regenerated NaY zeolite (thermal treatment from cetyltrimethyl ammonium bromide (CTAB)-modified NaY zeolite and pretreatment with Na ions) loaded with silver ions were examined using the broth dilution minimum inhibitory concentration (MIC) method against Escherichia coli (E. coli ATCC 11229) and Staphylococcus aureus (S. aureus ATCC 6538). X-ray diffraction (XRD), attenuated total reflectance–Fourier transform infrared (ATR–FTIR) spectroscopy, field emission scanning electron microscopy (FESEM), energy dispersive X-ray (EDX) and chemical elemental analyses were used to characterize the regenerated NaY and AgY zeolites. The XRD patterns indicated that the calcination and addition of silver ions on regenerated NaY zeolite did not affect the structure of the regenerated NaY zeolite as the characteristic peaks of the NaY zeolite were retained, and no new peaks were observed. The regenerated AgY zeolite showed good antibacterial activity against both bacteria strains in distilled water, and the antibacterial activity of the samples increased with increasing Ag loaded on the regenerated AgY zeolite; the regenerated AgY zeolite was more effective against E. coli than S. aureus. However, the antibacterial activity of the regenerated AgY was not effective in saline solution for both bacteria. The study showed that CTAB-modified NaY zeolite materials could be regenerated to NaY zeolite using thermal treatment (550 °C, 5 h) and this material has excellent performance as an antibacterial agent after silver ions loading. - Highlights: • Thermal treatment was used to regenerate surfactant modified zeolite. • The regenerated NaY zeolite formed was added with different silver loadings. • Regenerated AgY zeolite was tested for antibacterial activity on E. coli and S. aureus. • The antibacterial activity increased with increased of the amount of silver loadings. • The zeolite structure did not change with thermal and modification

  2. Influence of aluminium source on the crystal structure and framework coordination of Al and Si in fly ash-based zeolite NaA

    CSIR Research Space (South Africa)

    Ameh, AE

    2017-01-01

    Full Text Available In this study zeolite NaA with different crystal sizes and % crystallinity was prepared from a clear solution extract of fused fly ash. Sodium aluminate or aluminium hydroxide was used to adjust the aluminium content in the fused fly ash extract...

  3. Sorption of cobalt in zeolites and natural clays of the clinoptilolite and kaolinite type; Sorcion de cobalto en zeolitas y arcillas naturales del tipo clinoptilolita y caolinita

    Energy Technology Data Exchange (ETDEWEB)

    Davila R, J.I.; Solache R, M. [ININ, 52045 Ocoyoacac, Estado de Mexico (Mexico)

    2006-07-01

    In this work the sorption of cobalt of aqueous solutions in two natural zeolites (clinoptilolite) and a clay (kaolinite) of origin in the center-north region of Mexico is evaluated. The effect of the pH and the time of contact in the process of sorption were evaluated. The cobalt retained in the aluminosilicates was determined by neutron activation analysis. The cobalt sorption in the materials in a range of pH from 4 to 7 does not present significant variations. The studies of reaction kinetics show a very fast sorption in the first 5 hours of contact, reaching the equilibrium in approximately 24 hours. The kinetics of sorption of the cobalt ions was represented better by the Ritchie reaction model modified of second order. The experimental data for the zeolites obtained at ambient temperature and varying the concentration were adjusted to the models of Freundlich, Langmuir and Freundlich-Langmuir isotherms and it was observed that the cobalt sorption it behaves according to the Freundlich isotherm model. (Author)

  4. Process for producing zeolite adsorbent and process for treating radioactive liquid waste with the zeolite adsorbent

    International Nuclear Information System (INIS)

    Motojima, K.; Kawamura, F.

    1984-01-01

    Zeolite is contacted with an aqueous solution containing at least one of copper, nickel, cobalt, manganese and zinc salts, preferably copper and nickel salts, particularly preferably copper salt, in such a form as sulfate, nitrate, or chloride, thereby adsorbing the metal on the zeolite in its pores by ion exchange, then the zeolite is treated with a water-soluble ferrocyanide compound, for example, potassium ferrocyanide, thereby forming metal ferrocyanide on the zeolite in its pores. Then, the zeolite is subjected to ageing treatment, thereby producing a zeolite adsorbent impregnated with metal ferrocyanide in the pores of zeolite. The adsorbent can selectively recover cesium with a high percent cesium removal from a radioactive liquid waste containing at least radioactive cesium, for example, a radioactive liquid waste containing cesium and such coexisting ions as sodium, magnesium, calcium and carbonate ions at the same time at a high concentration. The zeolite adsorbent has a stable adsorbability for a prolonged time

  5. Catalysts based on mesoporous aluminosilicates for the hydroisomerization and hydrodearomatization processes

    Energy Technology Data Exchange (ETDEWEB)

    Vilesov, A.S.; Kulikov, A.B. [Russian Academy of Sciences (Russian Federation). A.V. Topchiev Inst. of Petrochemical Synthesis; Ostroumova, V.A.; Baranova, S.V.; Lysenko, S.V.; Kardashev, S.V.; Lasarev, A.V.; Egazaryants, S.V.; Karakhanov, E.A. [Lomonosov Moscow State Univ. (Russian Federation). Chemistry Dept.; Maximov, A.L. [Russian Academy of Sciences (Russian Federation). A.V. Topchiev Inst. of Petrochemical Synthesis; Lomonosov Moscow State Univ. (Russian Federation). Chemistry Dept.

    2011-07-01

    In the present work the activity of bifunctional catalysts based on mesoporous aluminosilicates in the hydroisomerization of n-alkanes and the hydrodearomatization (HDA) process has been investigated. The structured mesoporous aluminosilicates (Si/Al = 5/30) were prepared using hexadecylamine and Pluronic P{sub 123} as templates, with a specific surface area up to 1030 m{sup 2}/g and a pore size from 33 to 84 A. Bifunctional catalysts were prepared in the form of extrudates using boehmite as a binder with the platinum content of 0,5% by mass. The experiment was carried out in a flow reactor. The highest selectivity in the isomerization of n-dodecane and n-hexadecane was shown by catalysts based on mesoporous aluminosilicates with Si/Al =10 and 20. In the hydrogenation of a model feed of 10% (wt.) naphthalene in benzene, it was established that, depending on the module aluminosilicate, the conversion of naphthalene to decalin and tetralin may proceed quantitatively with no conversion of benzene to cyclohexane. Selectivity was in the range from 55 to 90% by decalin, and from 10 to 45% by tetralin. We found the conditions under which the only product of the hydrogenation of naphthalene is tetralin, but the conversion of naphthalene was up to 65%. Also, the activity of such catalysts for hydroisomerization and hydrodearomatization processes on the hydrotreated straight-run diesel fraction was investigated. It was established, that due to hydroisomerization, the maximum filtration temperature goes under -38 C, that allows to use it as a component of winter and arctic diesel fuels. (orig.)

  6. Electro-optical parameters of bond polarizability model for aluminosilicates.

    Science.gov (United States)

    Smirnov, Konstantin S; Bougeard, Daniel; Tandon, Poonam

    2006-04-06

    Electro-optical parameters (EOPs) of bond polarizability model (BPM) for aluminosilicate structures were derived from quantum-chemical DFT calculations of molecular models. The tensor of molecular polarizability and the derivatives of the tensor with respect to the bond length are well reproduced with the BPM, and the EOPs obtained are in a fair agreement with available experimental data. The parameters derived were found to be transferable to larger molecules. This finding suggests that the procedure used can be applied to systems with partially ionic chemical bonds. The transferability of the parameters to periodic systems was tested in molecular dynamics simulation of the polarized Raman spectra of alpha-quartz. It appeared that the molecular Si-O bond EOPs failed to reproduce the intensity of peaks in the spectra. This limitation is due to large values of the longitudinal components of the bond polarizability and its derivative found in the molecular calculations as compared to those obtained from periodic DFT calculations of crystalline silica polymorphs by Umari et al. (Phys. Rev. B 2001, 63, 094305). It is supposed that the electric field of the solid is responsible for the difference of the parameters. Nevertheless, the EOPs obtained can be used as an initial set of parameters for calculations of polarizability related characteristics of relevant systems in the framework of BPM.

  7. Mixed alkaline earth effect in sodium aluminosilicate glasses

    DEFF Research Database (Denmark)

    Kjeldsen, Jonas; Smedskjær, Morten Mattrup; Mauro, John C.

    2013-01-01

    While the mixed alkali effect has received significant attention in the glass literature, the mixed alkaline earth effect has not been thoroughly studied. Here, we investigate the latter effect by partial substitution of magnesium for calcium in sodium aluminosilicate glasses. We use Raman and NMR...

  8. Study of the Cd (II) removal in the presence of methyl orange with a natural zeolite conditioned with iron nanoparticles

    International Nuclear Information System (INIS)

    Xingu C, E. G.

    2015-01-01

    This work presents a study on the removal of cadmium and/or methyl-orange dye in aqueous solution, using natural zeolite clinoptilolite, as sodium homo-ionized and impregnated with iron nanoparticles. Iron nanoparticles were synthesized in the presence of the zeolite by chemical reduction. The evaluation of the removal ability was performed in a monocomponent (cadmium or methyl-orange dye) system by varying the contact time and its initial concentration. Removal capacity in a bi-component (cadmium and methyl orange) system was also studied while varying their concentrations. The characterization of the zeolites, before and after the sorption process, was carried out using several analytical techniques. The characteristics of zeolite clinoptilolite and iron particles were observed by scanning electron microscopy. The iron particles showed diameter sizes between 60 and 200 nm, localized on the surface of the zeolite. By IR spectroscopy no structural changes were detected for any of the treatments made to the zeolitic materials. By X-ray diffraction the clinoptilolite crystalline phase was mainly identified, however, it failed to detect any phase of iron in the zeolite impregnated with iron nanoparticles. Moessbauer spectroscopy indeed detected the impregnated iron phase as iron borides. The homo-ionized and iron nanoparticles impregnated zeolite showed no change in the specific surface area, or the isoelectric point, their values were 22.3 m"2/g and ph 9.8, respectively. However, whereas the active site density for the homo-ionized zeolite was 2.87 sites/nm"2, for iron nanoparticles impregnated zeolite was 20.32 sites/nm"2. As a result of the analysis of the isotherms of cadmium, the maximum sorption capacity of the homo-ionized zeolite was 35.03 mg/g and for the iron nanoparticles impregnated zeolite was 36.43 mg/g. These maximum sorption capacities represent up to 85% of removed cadmium from concentrations of 50 to 600 mg/L. For the removal of methyl orange dye

  9. Synthesis of 4A zeolites from kaolin for obtaining 5A zeolites through ionic exchange for adsorption of arsenic

    International Nuclear Information System (INIS)

    Resmini Melo, Carolina; Gracher Riella, Humberto; Cabral Kuhnen, Nivaldo; Angioletto, Elidio; Melo, Aline Resmini; Bernardin, Adriano Michael; Rocha, Marcio Roberto da; Silva, Luciano da

    2012-01-01

    Highlights: ► We synthesize 4A zeolite from kaolin by hydrothermal reaction with sodium hydroxide. ► The 4A zeolite synthesized underwent ion exchange with calcium ions, with different parameters, to obtain 5A zeolites. ► The best 4A zeolite obtained was used as adsorbent material for arsenic ions. ► The results showed that the 5A zeolite material obtained is a good adsorber of heavy ions. - Abstract: The synthesis of adsorbing zeolite materials requires fine control of the processing variables. There are distinct process variable settings for obtaining specific desired types of zeolites. The intent of this study was to obtain 4A zeolites from kaolin in order to obtain 5A zeolites through ionic exchange with the previously synthesized zeolite. This zeolite 5A was used as an adsorbent for arsenic ions. The results obtained were satisfactory.

  10. Synthesis of zeolite-like crystals by means of sorption of bases on polysilicic acids

    Energy Technology Data Exchange (ETDEWEB)

    Belyakova, L A; Il' in, V G; Peresun' ko, T F; Kryuchkova, I I; Neymark, I E [AN Ukrainskoj SSR, Kiev. Inst. Fizicheskoj Khimii

    1974-11-21

    Investigation into the sorption of bases on crystalline polysilicic acids is of particular interest from the viewpoint of synthesis of new types of porous zeolite-like materials. A synthesis of polysilicate acids was carried out by treating respective sodium polysilicates with mineral acid solutions. The sorption of alkali metal hydroxides in the neutral and alkaline pH region was studied by the method of potentiometric titration of individual weighed quantities. A marked sorption of alkali metal hydroxides on polysilicic acids starts in the weakly acid and neutral regions and reaches saturation at pH=10.5. The process of ion exchange is accompanied by a change in the crystal structure of polysilicic acids. The sorption of bases on polysilicic acids may be used as a method of synthesis of zeolite-like porous crystals in different cationic forms.

  11. Synthesis of zeolite-like crystals by means of sorption of bases on polysilicic acids

    International Nuclear Information System (INIS)

    Belyakova, L.A.; Il'in, V.G.; Peresun'ko, T.F.; Kryuchkova, I.I.; Nejmark, I.E.

    1974-01-01

    Investigation into the sorption of bases on crystalline polysilicic acids is of particular interest from the viewpoint of synthesis of new types of porous zeolite-like materials. A synthesis of polysilicate acids was carried out by treating respective sodium polysilicates with mineral acid solutions. The sorption of alkali metal hydroxides in the neutral and alkaline pH region was studied by the method of potentiometric titration of individual weighed quantities. A marked sorption of alkali metal hydroxides on polysilicic acids starts in the weakly acid and neutral regions and reaches saturation at pHapproximately10.5. The process of ion exchange is accompanied by a change in the crystal structure of polysilicic acids. The sorption of bases on polysilicic acids may be used as a method of synthesis of zeolite-like porous crystals in different cationic forms

  12. Improving the osteointegration of Ti6Al4V by zeolite MFI coating

    Energy Technology Data Exchange (ETDEWEB)

    Li, Yong [Department of Orthopedics, Xijing Hospital, Fourth Military Medical University, Xi' an, Shaanxi 710032 (China); Jiao, Yilai [Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang, Liaoning 110016 (China); Li, Xiaokang [Department of Orthopedics, Xijing Hospital, Fourth Military Medical University, Xi' an, Shaanxi 710032 (China); Guo, Zheng, E-mail: guozheng@fmmu.edu.cn [Department of Orthopedics, Xijing Hospital, Fourth Military Medical University, Xi' an, Shaanxi 710032 (China)

    2015-05-01

    Osteointegration is crucial for success in orthopedic implantation. In recent decades, there have been numerous studies aiming to modify titanium alloys, which are the most widely used materials in orthopedics. Zeolites are solid aluminosilicates whose application in the biomedical field has recently been explored. To this end, MFI zeolites have been developed as titanium alloy coatings and tested in vitro. Nevertheless, the effect of the MFI coating of biomaterials in vivo has not yet been addressed. The aim of the present work is to evaluate the effects of MFI-coated Ti6Al4V implants in vitro and in vivo. After surface modification, the surface was investigated using field emission scanning electron microscopy (FE-SEM) and energy dispersive spectroscopy (EDS). No difference was observed regarding the proliferation of MC3T3-E1 cells on the Ti6Al4V (Ti) and MFI-coated Ti6Al4V (M−Ti) (p > 0.05). However, the attachment of MC3T3-E1 cells was found to be better in the M−Ti group. Additionally, ALP staining and activity assays and quantitative real-time RT-PCR indicated that MC3T3-E1 cells grown on the M−Ti displayed high levels of osteogenic differentiation markers. Moreover, Van-Gieson staining of histological sections demonstrated that the MFI coating on Ti6Al4V scaffolds significantly enhanced osteointegration and promoted bone regeneration after implantation in rabbit femoral condylar defects at 4 and 12 weeks. Therefore, this study provides a method for modifying Ti6Al4V to achieve improved osteointegration and osteogenesis. - Highlights: • Osteointegration is a crucial factor for orthopedic implants. • We coated MFI zeolite on Ti6Al4V substrates and investigated the effects in vitro and in vivo. • The MFI coating displayed good biocompatibility and promoted osteogenic differentiation in vitro. • The MFI coating promoted osteointegration and osteogenesis peri-implant in vivo.

  13. Effect of vanadium contamination on the framework and micropore structure of ultra stable Y-zeolite.

    Science.gov (United States)

    Etim, U J; Xu, B; Ullah, Rooh; Yan, Z

    2016-02-01

    Y-zeolites are the main component of fluid catalytic cracking (FCC) catalyst for conversion of crude petroleum to products of high demand including transportation fuel. We investigated effects of vanadium which is present as one of the impurities in FCC feedstock on the framework and micropore structure of ultra-stable (US) Y-zeolite. The zeolite samples were prepared and characterized using standard techniques including: (1) X-ray diffraction, (2) N2 adsorption employing non local density functional theory method, NLDFT, (3) Transmittance and Pyridine FTIR, (4) Transmittance electron microscopy (TEM), and (5) (27)Al and (29)Si MAS-NMR. Results revealed that in the presence of steam, vanadium caused excessive evolution of non inter-crystalline mesopores and structural damage. The evolved mesopore size averaged about 25.0nm at 0.5wt.% vanadium loading, far larger than mesopore size in zeolitic materials with improved hydrothermal stability and performance for FCC catalyst. A mechanism of mesopore formation based on accelerated dealumination has been proposed and discussed. Vanadium immobilization experiments conducted to mitigate vanadium migration into the framework clearly showed vanadium is mobile at reaction conditions. From the results, interaction of vanadium with the passivator limits and decreases mobility and activity of vanadium into inner cavities of the zeolite capable of causing huge structure breakdown and acid sites destruction. This study therefore deepens insight into the causes of alteration in activity and selectivity of vanadium contaminated catalyst and hints on a possible mechanism of passivation in vanadium passivated FCC catalyst. Copyright © 2015 Elsevier Inc. All rights reserved.

  14. Design and characterization of chitosan/zeolite composite films--Effect of zeolite type and zeolite dose on the film properties.

    Science.gov (United States)

    Barbosa, Gustavo P; Debone, Henrique S; Severino, Patrícia; Souto, Eliana B; da Silva, Classius F

    2016-03-01

    Chitosan films can be used as wound dressings for the treatment of chronic wounds and severe burns. The antimicrobial properties of these films may be enhanced by the addition of silver. Despite the antimicrobial activity of silver, several studies have reported the cytotoxicity as a factor limiting its biomedical applications. This problem may, however, be circumvented by the provision of sustained release of silver. Silver zeolites can be used as drug delivery platforms to extend the release of silver. The objective of this study was to evaluate the addition of clinoptilolite and A-type zeolites in chitosan films. Sodium zeolites were initially subjected to ion-exchange in a batch reactor. Films were prepared by casting technique using a 2% w/w chitosan solution and two zeolite doses (0.1 or 0.2% w/w). Films were characterized by thermal analysis, color analysis, scanning electron microscopy, X-ray diffraction, and water vapor permeation. The results showed that films present potential for application as dressing. The water vapor permeability is one of the main properties in wound dressings, the best results were obtained for A-type zeolite/chitosan films, which presented a brief reduction of this property in relation to zeolite-free chitosan film. On the other hand, the films containing clinoptilolite showed lower water vapor permeation, which may be also explained by the best distribution of the particles into the polymer which also promoted greater thermal resistance.

  15. Synthesis And Characterization Of Pure-Silica- Zeolite-Beta Membrane

    Directory of Open Access Journals (Sweden)

    Yeong Yin Fong

    2017-11-01

    Full Text Available The semiconductor industry needs low dielectric constant (low k-value materials to more advance microprocessor and chips by reducing the size of the device features. In fabricate this context, a new material with lower k value than conventional silica ( k = 3.9 - 4.2 is needed in order to improve the circuit performance. As per the recent International Semiconductor Technology plan, a low-k material with a k = 1.6 will be needed by 2010. The choice of the inorganic zeolite membrane is an attractive option for low k material and suitable for microprocess application.  In the present study, a pure silica zeolite beta membrane coated on the non-porous stainless steel support was synthesized using in situ crystallization of a gel with the composition of  SiO2 : 0.6 TEAOH : 0.6 HF : 10.1 H2O. The crystallization was carried in the presence of tetraethylammonium hydroxide TEA(OH as structure directing agent, fumed silica, HF and deionized water at pH value of 9. The crystallization under hydrothermal conditions at 130oC was carried out for the time period of 14 days. The membrane was characterized by X-Ray Diffraction ( XRD ,  Thermogravimetric Analysis ( TGA , Nitrogen Adsorption and Scanning Electron Microscope ( SEM .   SEM micrographs show highly crystalline, truncated square bipyramidal morphology of pure silica zeolite beta was coated on the non-porous stainless steel support. The membrane dielectric constant, k-value was measured as 2.64 which makes it suitable for the microprocessor applications.

  16. Poly(vinyl chloride) membrane alkali metal ion-selective electrodes based on crystalline synthetic zeolite of the Faujasite type

    International Nuclear Information System (INIS)

    Aghai, H.; Giahi, M.; Arvand Barmehi, M.

    2002-01-01

    Potentiometric electrodes based on the incorporation of zeolite particle in to poly (vinyl chloride) (pvc) membranes are described. The electrodes characteristics are evaluated regarding the response towards alkali ions. Pvc membranes plasticised with dibutyl phthalate and without lipophilic additives (co-exchanger) were used throughout this study. The electrode exhibits a Nernst ion response over the alkali metal cations concentration a range of 1.0x10 - 4 - 1.0 x 10 1 M with a slop of 57.0 ± 0.9 mV per decade of concentration a working ph range (3.0- 9.0) and a fast response time (≤15 c). The selective coefficients for cesium ion as test species with respect to alkaline earth, ammonium and some heavy metal ions were determined. Zeolite-PVC electrodes were applied to the determination of ionic surfactant

  17. Catalytic Fast Pyrolysis of Cellulose Using Nano Zeolite and Zeolite/Matrix Catalysts in a GC/Micro-Pyrolyzer.

    Science.gov (United States)

    Lee, Kyong-Hwan

    2016-05-01

    Cellulose, as a model compound of biomass, was catalyzed over zeolite (HY,.HZSM-5) and zeolite/matrix (HY/Clay, HM/Clay) in a GC/micro-pyrolyzer at 500 degrees C, to produce the valuable products. The catalysts used were pure zeolite and zeolite/matrix including 20 wt% matrix content, which were prepared into different particle sizes (average size; 0.1 mm, 1.6 mm) to study the effect of the particle size of the catalyst for the distribution of product yields. Catalytic pyrolysis had much more volatile products as light components and less content of sugars than pyrolysis only. This phenomenon was strongly influenced by the particle size of the catalyst in catalytic fast pyrolysis. Also, in zeolite and zeolite/matrix catalysts the zeolite type gave the dominant impact on the distribution of product yields.

  18. Thermal behavior of natural zeolites

    International Nuclear Information System (INIS)

    Bish, D.L.

    1993-01-01

    Thermal behavior of natural zeolites impacts their application and identification and varies significantly from zeolite to zeolite. Zeolites evolve H 2 0 upon heating, but recent data show that distinct ''types'' of water (e.g., loosely bound or tightly bound zeolitic water) do not exist. Rather water is bound primarily to extra-framework cations with a continuum of energies, giving rise to pseudocontinuous loss of water accompanied by a dynamic interaction between remaining H 2 0 molecules and extra-framework cations. These interactions in the channels of zeolites give rise to dehydration dependent on the extra-framework cation, in addition to temperature and water vapor pressure. The dehydration reaction and the extra-framework cation also affect the thermal expansion/contraction. Most zeolites undergo dehydration-induced contractions that may be anisotropic, although minor thermal expansion can be seen with some zeolites. Such contractions can be partially or completely irreversible if they involve modifications of the tetrahedral framework and/or if rehydration is sluggish. Thermally induced structural modifications are also driven initially by dehydration and the concomitant contraction and migration of extra-framework cations. Contraction is accommodated by rotations of structural units and tetrahedral cation-oxygen linkages may break. Thermal reactions that involve breaking of tetrahedral cation-oxygen bonds markedly irreversible and may be kinetically limited, producing large differences between short- and long-term heating

  19. Spin probes of chemistry in zeolites

    International Nuclear Information System (INIS)

    Werst, D.W.; Trifunac, A.D.

    1997-09-01

    Electron spin resonance (EPR) studies in zeolites are reviewed in which radiolysis was used to ionize the zeolite lattice, create reactive intermediates, spin label reaction products and to provide a window onto chemistry and transport of adsorbates and matrix control of chemistry. The review examines reactions of radical cations and the influence of the geometry constraints inside the zeolite, explores how zeolite model systems can be used to learn about energy and charge transfer in solids and illustrates the use of radiolysis and EPR for in situ spectroscopic studies of solid-acid catalysis. The various spin probes created inside the zeolite pores report on properties of the zeolites as well as shed light on radiolytic processes

  20. Characterization and antibacterial activity of silver exchanged regenerated NaY zeolite from surfactant-modified NaY zeolite.

    Science.gov (United States)

    Salim, Mashitah Mad; Malek, Nik Ahmad Nizam Nik

    2016-02-01

    The antibacterial activity of regenerated NaY zeolite (thermal treatment from cetyltrimethyl ammonium bromide (CTAB)-modified NaY zeolite and pretreatment with Na ions) loaded with silver ions were examined using the broth dilution minimum inhibitory concentration (MIC) method against Escherichia coli (E. coli ATCC 11229) and Staphylococcus aureus (S. aureus ATCC 6538). X-ray diffraction (XRD), attenuated total reflectance-Fourier transform infrared (ATR-FTIR) spectroscopy, field emission scanning electron microscopy (FESEM), energy dispersive X-ray (EDX) and chemical elemental analyses were used to characterize the regenerated NaY and AgY zeolites. The XRD patterns indicated that the calcination and addition of silver ions on regenerated NaY zeolite did not affect the structure of the regenerated NaY zeolite as the characteristic peaks of the NaY zeolite were retained, and no new peaks were observed. The regenerated AgY zeolite showed good antibacterial activity against both bacteria strains in distilled water, and the antibacterial activity of the samples increased with increasing Ag loaded on the regenerated AgY zeolite; the regenerated AgY zeolite was more effective against E. coli than S. aureus. However, the antibacterial activity of the regenerated AgY was not effective in saline solution for both bacteria. The study showed that CTAB-modified NaY zeolite materials could be regenerated to NaY zeolite using thermal treatment (550°C, 5h) and this material has excellent performance as an antibacterial agent after silver ions loading. Copyright © 2015 Elsevier B.V. All rights reserved.

  1. Deaminated zeolite, ITQ-6 as heterogeneous catalyst for Friedel crafts alkylation

    International Nuclear Information System (INIS)

    Zainab Ramli; Noor Ashikin Mohd Yusoff; Halimaton Hamdan

    2007-01-01

    The ability of ITQ-6, a kind of meso porous zeolitic material to replace microporous zeolite as catalyst has attracted particular attention. In this study, modification of a precursor of microporous ferrierite, PREFER to meso porous material, ITQ-6 was carried out by delamination technique. The XRD results show that the crystalline phase of PREFER diminished for the sample after delamination. Porosity study of the ITQ-6 sample shows formation of homogeneous meso pores in the size between 3.5-4.0 nm. The acidity study indicates that ITQ-6 still contains appreciable amounts of Bronsted and Lewis acidities. Catalytic evaluation of the resulting material, ITQ-6 was carried out in the alkylation of resorcinol with methyl tert-butyl ether which gave 4-tert-butyl resorcinol and 4, 6-di-tert-butyl resorcinol as main products. The conversion of resorcinol when using ITQ-6 was ten times higher than ferrierite, FER with similar selectivity of disubstituted product. It shows that the meso porosity of ITQ-6 was responsible for the higher activity of the catalyst in the reaction. (author)

  2. Glass forming ability of calcium aluminosilicate melts

    DEFF Research Database (Denmark)

    Moesgaard, Mette; Yue, Yuanzheng

    2011-01-01

    The glass forming ability (GFA) of two series of calcium aluminosilicate melts is studied by measuring their viscous behavior and crystallization tendency. The first series consists of five compositions on the joining line between the eutectic point of anorthite-wollastonite-tridymite and that of......The glass forming ability (GFA) of two series of calcium aluminosilicate melts is studied by measuring their viscous behavior and crystallization tendency. The first series consists of five compositions on the joining line between the eutectic point of anorthite......-wollastonite-tridymite and that of anorthite-wollastonite-gehlenite. The series includes the eutectic compositions as end members. The second series consists of five compositions on a line parallel to the joining line on the alumina rich side. In the present work, GFA is described in terms of glass stability, i.e., the ability of a glass...... to resist crystallization during reheating. In addition, the fragility index (m) is derived by fitting the viscosity data with the Avramov-Milchev equation. The results show that m is inversely proportional to the glass stability for the two series of melts, implying that m is an indirect measure of GFA...

  3. Polypropylene obtained through zeolite supported catalysts

    Directory of Open Access Journals (Sweden)

    Queli C. Bastos

    2004-01-01

    Full Text Available Propylene polymerizations were carried out with f2C(Flu(CpZrCl2 and SiMe2(Ind2ZrCl2 catalysts supported on silica, zeolite sodic mordenite (NaM and acid mordenite (HM. The polymerizations were performed at different temperatures and varying aluminium/zirconium molar ratios ([Al]/[Zr]. The effect of these reaction parameters on the catalyst activity was investigated using a proposed statistical experimental planning. In the case of f2C(Flu(CpZrCl2, SiO2 and NaM were used as support and the catalyst performance evaluated using toluene and pentane as polymerization solvent. The molecular weight, molecular weight distribution, melting point and crystallinity of the polymers were examined. The results indicate very high activities for the syndiospecific heterogeneous system. Also, the polymers obtained had superior Mw and stereoregularity.

  4. Polypropylene obtained through zeolite supported catalysts

    International Nuclear Information System (INIS)

    Bastos, Queli C.; Marques, Maria de Fatima V.

    2004-01-01

    Propylene polymerizations were carried out with φ 2 C(Flu)(Cp)ZrCl 2 and SiMe 2 (Ind)2ZrCl 2 catalysts supported on silica, zeolite sodic mordenite (NaM) and acid mordenite (HM). The polymerizations were performed at different temperatures and varying aluminium/zirconium molar ratios ([Al]/[Zr]). The effect of these reaction parameters on the catalyst activity was investigated using a proposed statistical experimental planning. In the case of f 2 C(Flu)(Cp)ZrCl 2 , SiO 2 and NaM were used as support and the catalyst performance evaluated using toluene and pentane as polymerization solvent. The molecular weight, molecular weight distribution, melting point and crystallinity of the polymers were examined. The results indicate very high activities for the syndiospecific heterogeneous system. Also, the polymers obtained had superior Mw and stereo regularity. (author)

  5. Probing ge distribution in zeolite frameworks by post-synthesis introduction of fluoride in as-made materials

    KAUST Repository

    Liu, Xiaolong

    2012-08-14

    A new method has been developed to introduce fluoride in the structure of as-made germanium-containing zeolites prepared under pure alkaline media. Incorporation of fluoride species occurs without modification of the framework composition (Si/Ge ratio) and of the crystallinity, as evidenced by X-ray diffraction and electron microscopy. After incorporation, 19F solid-state NMR has been used to probe the location and distribution of Ge atoms in the framework. In the case of ITQ-13 and ITQ-17, which can be prepared from both hydroxide and fluoride routes, incorporated F anions are located in the same structural units as those occupied when zeolites are prepared in the presence of fluoride. In the case of ITQ-22 and ITQ-24, fluoride goes mainly in D4R units, which appear to be in the most energetically favorable positions for these zeolites. All experiments clearly show that zeolites prepared in the absence of fluoride in the synthesis medium are enriched in germanium, compared to the same materials obtained from F-containing gels. Moreover, Ge plays a strong structure-directing role by replacing Si atoms preferentially in D4R, leading to zeolites with mainly [4Si, 4Ge] units in the framework. In the particular case of ITQ-22, a new line observed around -2 ppm in 19F NMR spectra has been tentatively assigned to [3Si, 5Ge] D4R units, which corroborates the structural data obtained via X-ray diffraction. © 2012 American Chemical Society.

  6. Stability of glucose oxidase and catalase adsorbed on variously activated 13X zeolite.

    Science.gov (United States)

    Pifferi, P G; Vaccari, A; Ricci, G; Poli, G; Ruggeri, O

    1982-10-01

    The use of 13X zeolite (0.1-0.4-mm granules), treated with 2N and 0.01N HCI, 0.01M citric acid, 0.1M citric-phosphate buffer (pH 3.6), and in untreated form to adsorb glucose oxidase of fungal origin and microbial catalase was examined. Physicochemical analysis of the support demonstrated that its crystalline structure, greatly altered by the HCl and buffer, could be partially maintained with citric acid. The specific adsorption of the enzymes increased with decreasing pH and proved to be considerable for all the supports. The stability with storage at 25 degrees C is strictly correlated with the titrable acidity of the activated zeolite expressed as meq NaOH/g and with pH value of the activation solution. It proved to be lower than 55 h for both enzymes if adsorbed on zeolite treated with 2N HCl, and 15-fold and 30-fold higher for glucose oxidase and catalase adsorbed, respectively, on zeolite treated with the 0.1M citric-phosphate buffer and 0.01M citric acid. The specific adsorption of glucose oxidase and catalase was, respectively, 1840 U/g at pH 3.0 and 6910 U/g at pH 5.0. Their half-life at 25 degrees C with storage at pH 3.5 for the former and at pH 5.0 for the latter was 800 and 1560 h vs. 40 and 110 h for the corresponding free enzymes.

  7. Separation of cesium and strontium with zeolites

    Energy Technology Data Exchange (ETDEWEB)

    Kanno, T; Hashimoto, H [Tohoku Univ., Sendai (Japan). Research Inst. of Mineral Dressing and Metallurgy

    1976-06-01

    The basic studies of separation of cesium and strontium were made with specimens of zeolite, which are synthetic zeolites A, X and Y; synthetic mordenite; natural mordenite; and clinoptilolite. Ammonium chloride was used as eluent, because it was considered to be a most appropriate eluent in alkaline chlorides. Cesium was easily eluted from the zeolites A and X by ammonium chloride solution, but it was difficult to elute from the synthetic mordenite, natural mordenite and clinoptilolite by ammonium chloride solution, but it was difficult to elute from the zeolites A and X. The zeolite Y is the only one zeolite among these zeolites from which both of cesium and strontium were easily eluted by ammonium chloride solution. Strontium could be separated from cesium with zeolites by formation of Sr-EDTA chelate at pH above 11. In this process, cesium was only exchanged in zeolite column, but strontium flow out from it.

  8. Separation of cesium and strontium with zeolites

    International Nuclear Information System (INIS)

    Kanno, Takuji; Hashimoto, Hiroyuki

    1976-01-01

    The basic studies of separation of cesium and strontium were made with specimens of zeolite, which are synthetic zeolites A, X and Y; synthetic mordenite; natural mordenite; and clinoptilolite. Ammonium chloride was used as eluent, because it was considered to be a most appropriate eluent in alkaline chlorides. Cesium was easily eluted from the zeolites A and X by ammonium chloride solution, but it was difficult to elute from the synthetic mordenite, natural mordenite and clinoptilolite by ammonium chloride solution, but it was difficult to elute from the zeolites A and X. The zeolite Y is the only one zeolite among these zeolites from which both of cesium and strontium were easily eluted by ammonium chloride solution. Strontium could be separated from cesium with zeolites by formation of Sr-EDTA chelate at pH above 11. In this process, cesium was only exchanged in zeolite column, but strontium flow out from it. (auth.)

  9. Synthesis and Characterization of Zeolite Na−Y and Its Conversion to the Solid Acid Zeolite H−Y

    DEFF Research Database (Denmark)

    Warner, Terence Edwin; Galsgaard Klokker, Mads; Nielsen, Ulla Gro

    2017-01-01

    Zeolite Y has an iconic crystal structure, but more importantly, the hydrogen modification zeolite H−Y is the classic example of a solid acid which is used extensively as a catalyst in the oil industry. This metastable compound cannot be synthesized directly, which creates an opportunity to discuss...... various preparative strategies with the students, such as the three-stage procedure described here. Stage I concerns the hydrothermal synthesis of zeolite Na−Y, followed by ion-exchange with an ammonium acetate solution to form zeolite NH4−Y, and the latter is subsequently converted to zeolite H......−Y by thermolysis. Stages II and III may instead be performed using commercially available zeolites, Na−Y and NH4−Y, respectively, which shifts the learning objectives to structural characterization of zeolites. The characterization of the product and intermediate materials gives the students a practical insight...

  10. Removal of pyridine and quinoline by bio-zeolite composed of mixed degrading bacteria and modified zeolite

    International Nuclear Information System (INIS)

    Bai Yaohui; Sun Qinghua; Xing Rui; Wen Donghui; Tang Xiaoyan

    2010-01-01

    In the process of the biodegradation of pyridine and quinoline, ammonium is often generated because of the transformation of N from pyridine and quinoline. Zeolite has been proven to be an effective sorbent for the removal of the ammonium. The natural zeolite can be modified to be the macroporous carrier in the biological wastewater treatment process. In this study, a specific bio-zeolite composed of mixed bacteria (a pyridine-degrading bacterium and a quinoline-degrading bacterium) and modified zeolite was used for biodegradation and adsorption in two types of wastewater: sterile synthetic and coking wastewater. The experimental results indicated that pyridine and quinoline could be degraded simultaneously by the mixed bacteria. Furthermore, NH 4 + -N transformed from pyridine and quinoline could be removed by the modified zeolite. In addition, the bacterial community structures of the coking wastewater and the bio-zeolite were monitored by the amplicon length heterogeneity polymerase-chain reaction (LH-PCR) technique. Both LH-PCR results and scanning electron microscope (SEM) observations indicated that the microorganisms, including BW001 and BW003, could be easily attached on the surface of the modified zeolite and that the bio-zeolite could be used in the treatment of wastewater containing pyridine and/or quinoline.

  11. Catalysis with hierarchical zeolites

    DEFF Research Database (Denmark)

    Holm, Martin Spangsberg; Taarning, Esben; Egeblad, Kresten

    2011-01-01

    Hierarchical (or mesoporous) zeolites have attracted significant attention during the first decade of the 21st century, and so far this interest continues to increase. There have already been several reviews giving detailed accounts of the developments emphasizing different aspects of this research...... topic. Until now, the main reason for developing hierarchical zeolites has been to achieve heterogeneous catalysts with improved performance but this particular facet has not yet been reviewed in detail. Thus, the present paper summaries and categorizes the catalytic studies utilizing hierarchical...... zeolites that have been reported hitherto. Prototypical examples from some of the different categories of catalytic reactions that have been studied using hierarchical zeolite catalysts are highlighted. This clearly illustrates the different ways that improved performance can be achieved with this family...

  12. The role of zeolite in the Fischer–Tropsch synthesis over cobalt–zeolite catalysts

    International Nuclear Information System (INIS)

    Sineva, L V; Mordkovich, V Z; Asalieva, E Yu

    2015-01-01

    The review deals with the specifics of the Fischer–Tropsch synthesis for the one-stage syncrude production from CO and H 2 in the presence of cobalt–zeolite catalytic systems. Different types of bifunctional catalysts (hybrid, composite) combining a Fischer–Tropsch catalyst and zeolite are reviewed. Special attention focuses on the mechanisms of transformations of hydrocarbons produced in the Fischer–Tropsch process on zeolite acid sites under the synthesis conditions. The bibliography includes 142 references

  13. Carbon monoxide hydrogenation over ruthenium zeolites

    Energy Technology Data Exchange (ETDEWEB)

    Jacobs, P.A.; Nijs, H.H.; Verdonck, J.J.; Uytterhoeven, J.B.

    1978-03-01

    Ru zeolites are active and stable methanation catalysts. Under Fischer--Tropsch conditions they show a narrow product distribution. Further work is needed to assign this to a possible effect exerted by the zeolite cages. When the size of the Ru particles enclosed in the zeolite cages is increased, a lower methanation activity is found and a higher amount of C/sub 2/ and C/sub 3/ products are formed under Fischer--Tropsch conditions. This effect has not been reported until now on other supports. The less acidic zeolites act as promoters of the CO hydrogenation: under methanation conditions the activity is increased; under Fischer--Tropsch conditions, the selectivity is shifted toward higher hydrocarbons. This is explained by the particular zeolite property that electron deficient metal agglomerates seem to be formed on the acidic zeolites. With respect to kinetic behavior, relative activity of different metals, influence of reaction temperature on product distribution, the zeolite behaves in the same way a conventional alumina support. 4 figs., 4 tables.

  14. Detergent zeolite filtration plant

    OpenAIRE

    Stanković Mirjana S.; Pezo Lato L.

    2003-01-01

    The IGPC Engineering Department designed basic projects for detergent zeolite filtration plant, using technology developed in the IGPC laboratories. Several projects were completed: technological, machine, electrical, automation. On the basis of these projects, a production plant with a capacity of 75,000 t/y was manufactured, at "Zeolite Mira", Mira (VE), Italy, in 1997, for increasing detergent zeolite production, from 50,000 to 100,000 t/y. The main goal was to increase the detergent zeoli...

  15. Interface induced growth and transformation of polymer-conjugated proto-crystalline phases in aluminosilicate hybrids: a multiple-quantum 23Na-23Na MAS NMR correlation spectroscopy study

    Czech Academy of Sciences Publication Activity Database

    Brus, Jiří; Kobera, Libor; Urbanová, Martina; Doušová, B.; Lhotka, M.; Koloušek, D.; Kotek, Jiří; Čuba, P.; Czernek, Jiří; Dědeček, Jiří

    2016-01-01

    Roč. 32, č. 11 (2016), s. 2787-2797 ISSN 0743-7463 R&D Projects: GA ČR(CZ) GA13-24155S; GA MŠk(CZ) LD14010; GA MŠk(CZ) LO1507 Grant - others:European Commission(XE) COST Action MP1202 HINT Institutional support: RVO:61389013 ; RVO:61388955 Keywords : aluminosilicate hybrids * hybrid geopolymers * interface Subject RIV: CD - Macromolecular Chemistry; CF - Physical ; Theoretical Chemistry (UFCH-W) Impact factor: 3.833, year: 2016

  16. Synthesis of Zeolite from Fly Ash and Removal of Heavy Metal Ions from Newly Synthesized Zeolite

    OpenAIRE

    Solanki, Parag; Gupta, Vikal; Kulshrestha, Ruchi

    2010-01-01

    Coal fly ash was used to synthesize X-type zeolite by alkali fusion followed by hydrothermal treatment. Characteristics of the various Fly ash samples were carried out. Coal proximate analysis was done. Batch experiment was carried out for the adsorption of some heavy metal ions on to synthesized Zeolite. The cost of synthesized zeolite was estimated to be almost one-fifth of that of commercial 13X zeolite available in the market.

  17. Applications for special-purpose minerals at a lunar base

    Science.gov (United States)

    Ming, Douglas W.

    1992-01-01

    Maintaining a colony on the Moon will require the use of lunar resources to reduce the number of launches necessary to transport goods from the Earth. It may be possible to alter lunar materials to produce minerals or other materials that can be used for applications in life support systems at a lunar base. For example, mild hydrothermal alteration of lunar basaltic glasses can produce special-purpose minerals (e.g., zeolites, smectites, and tobermorites) that in turn may be used in life support, construction, waste renovation, and chemical processes. Zeolites, smectites, and tobermorites have a number of potential applications at a lunar base. Zeolites are hydrated aluminosilicates of alkali and alkaline earth cations that possess infinite, three-dimensional crystal structures. They are further characterized by an ability to hydrate and dehydrate reversibly and to exchange some of their constituent cations, both without major change of structure. Based on their unique absorption, cation exchange, molecular sieving, and catalytic properties, zeolites may be used as a solid support medium for the growth of plants, as an adsorption medium for separation of various gases (e.g., N2 from O2), as catalysts, as molecular sieves, and as a cation exchanger in sewage-effluent treatment, in radioactive waste disposal, and in pollution control. Smectites are crystalline, hydrated 2:1 layered aluminosilicates that also have the ability to exchange some of their constituent cations. Like zeolites, smectites may be used as an adsorption medium for waste renovation, as adsorption sites for important essential plant growth cations in solid support plant growth mediums (i.e., 'soils'), as cation exchangers, and in other important application. Tobermorites are cystalline, hydrated single-chained layered silicates that have cation-exchange and selectivity properties between those of smectites and most zeolites. Tobermorites may be used as a cement in building lunar base structures, as

  18. Effect of different glasses in glass bonded zeolite

    International Nuclear Information System (INIS)

    Lewis, M.A.; Ackerman, J.P.; Verma, S.

    1995-01-01

    A mineral waste form has been developed for chloride waste salt generated during the pyrochemical treatment of spent nuclear fuel. The waste form consists of salt-occluded zeolite powders bound within a glass matrix. The zeolite contains the salt and immobilizes the fission products. The zeolite powders are hot pressed to form a mechanically stable, durable glass bonded zeolite. Further development of glass bonded zeolite as a waste form requires an understanding of the interaction between the glass and the zeolite. Properties of the glass that enhance binding and durability of the glass bonded zeolite need to be identified. Three types of glass, boroaluminosilicate, soda-lime silicate, and high silica glasses, have a range of properties and are now being investigated. Each glass was hot pressed by itself and with an equal amount of zeolite. MCC-1 leach tests were run on both. Soda-lime silicate and high silica glasses did not give a durable glass bonded zeolite. Boroaluminosilicate glasses rich in alkaline earths did bind the zeolite and gave a durable glass bonded zeolite. Scanning electron micrographs suggest that the boroaluminosilicate glasses wetted the zeolite powders better than the other glasses. Development of the glass bonded zeolite as a waste form for chloride waste salt is continuing

  19. Design and fabrication of zeolite macro- and micromembranes

    Science.gov (United States)

    Chau, Lik Hang Joseph

    2001-07-01

    The chemical nature of the support surface influences zeolite nucleation, crystal growth and elm adhesion. It had been demonstrated that chemical modification of support surface can significantly alter the zeolite film and has a good potential for large-scale applications for zeolite membrane production. The incorporation of titanium and vanadium metal ions into the structural framework of MFI zeolite imparts the material with catalytic properties. The effects of silica and metal (i.e., Ti and V) content, template concentration and temperature on the zeolite membrane growth and morphology were investigated. Single-gas permeation experiments were conducted for noble gases (He and Ar), inorganic gases (H2, N2, SF6) and hydrocarbons (methane, n-C4, i-C4) to determine the separation performance of these membranes. Using a new fabrication method based on microelectronic fabrication and zeolite thin film technologies, complex microchannel geometry and network (supported zeolite films. The zeolite micropatterns were stable even after repeated thermal cycling between 303 K and 873 K for prolonged periods of time. This work also demonstrates that zeolites (i.e., Sil-1, ZSM-5 and TS-1) can be employed as catalyst, membrane or structural materials in miniature chemical devices. Traditional semiconductor fabrication technology was employed in micromachining the device architecture. Four strategies for the manufacture of zeolite catalytic microreactors were discussed: zeolite powder coating, uniform zeolite film growth, localized zeolite growth, and etching of zeolite-silicon composite film growth inhibitors. Silicalite-1 was also prepared as free-standing membrane for zeolite membrane microseparators.

  20. Organosilane with gemini-type structure as the mesoporogen for synthesis of hierarchical porous ZSM-5 zeolite

    KAUST Repository

    Zhu, Haibo

    2016-02-08

    A new kind of organosilane (1,6-bis (diethyl(3-trimethoxysilylpropyl)ammonium) hexane bromide) with a gemini-type structure was prepared and used as a mesoporogen for the synthesis of hierarchical porous ZSM-5 zeolite. There are two quaternary ammonium centers along with double hydrolysable -RSi(OMe)3 fragments in the organosilane, which results in a strong interaction between this mesoporogen and silica-alumina gel. The organosilane can be easily incorporated into ZSM-5 zeolite structure during the crystallization process, and it was finally removed by calcination leading to secondary pores in ZSM-5. The synthesized ZSM-5 has been systematically studied by XRD, nitrogen adsorption, SEM, TEM, TG and solid-state one-dimensional (1D) and two-dimensional (2D) NMR, which reveals information on its detailed structure. It has a hierarchical porosity system, which combines the intrinsic micropores coming from the crystalline structure and irregular mesopores created by the organosilane template. Moreover, the mesoposity including pore size and volume within ZSM-5 can be systematically tuned by changing the organosilane/TEOS ratios, which confirms this organosilane has high flexibility of using as template for the synthesis of hierarchical porous zeolite.

  1. Organosilane with gemini-type structure as the mesoporogen for synthesis of hierarchical porous ZSM-5 zeolite

    KAUST Repository

    Zhu, Haibo; Abou-Hamad, Edy; Chen, Yin; Saih, Youssef; Liu, Weibing; Basset, Jean-Marie; Samal, Akshaya Kumar

    2016-01-01

    A new kind of organosilane (1,6-bis (diethyl(3-trimethoxysilylpropyl)ammonium) hexane bromide) with a gemini-type structure was prepared and used as a mesoporogen for the synthesis of hierarchical porous ZSM-5 zeolite. There are two quaternary ammonium centers along with double hydrolysable -RSi(OMe)3 fragments in the organosilane, which results in a strong interaction between this mesoporogen and silica-alumina gel. The organosilane can be easily incorporated into ZSM-5 zeolite structure during the crystallization process, and it was finally removed by calcination leading to secondary pores in ZSM-5. The synthesized ZSM-5 has been systematically studied by XRD, nitrogen adsorption, SEM, TEM, TG and solid-state one-dimensional (1D) and two-dimensional (2D) NMR, which reveals information on its detailed structure. It has a hierarchical porosity system, which combines the intrinsic micropores coming from the crystalline structure and irregular mesopores created by the organosilane template. Moreover, the mesoposity including pore size and volume within ZSM-5 can be systematically tuned by changing the organosilane/TEOS ratios, which confirms this organosilane has high flexibility of using as template for the synthesis of hierarchical porous zeolite.

  2. A survey on radon reduction efficiency of zeolite and bentonite in a chamber with artificially elevated radon concentration

    International Nuclear Information System (INIS)

    Mortazavi, S.M.J.

    2007-01-01

    Complete text of publication follows. Objective: Zeolite which is made of a special crystalline structure is a naturally occurring mineral group and can be used in radioactive waste management for site remediation /decontamination. There are a wide variety of naturally occurring and synthetic zeolites, each with a unique structure. The cations in zeolite are highly mobile and can be exchanged for other cationic species. On the other hand, bentonite forms from weathering of volcanic ash. This material may be used as an engineering barrier to enclose nuclear waste. In this study, radon reducing properties of zeolite and bentonite have been investigated. Methods: Using radioactive lantern mantle, a radon prone area with radon levels reaching the EPA's action level (200 Bq/m 3 ) was designed. Two sets of identical chambers (cylindrical chambers, diameter 10 cm, height 16 cm) were used in this study. No zeolite/bentonite was used in the 1 st set of the chambers. A thin layer of either zeolite or bentonite powder was applied to the base of the first set of chambers. An unburned radioactive lantern mantle (activity 800 Bq) was placed in all chambers (both sets) to artificially increase the radon level inside the chamber and simulate the condition of a radon prone area. Radon level monitoring was performed by using a PRASSI portable radon gas survey meter. Results: After placing the cap on its place, the radon levels inside the 1 st set of the chambers were 871.9, 770.3, 769.2 and 635.7 Bq/m 3 after 15, 30, 45 and 60 minutes respectively. Zeolite significantly decreased the radon concentration inside the chambers and radon levels were 367.9, 435.4, 399.0 and 435.4 Bq/m 3 after 15, 30, 45 and 60 minutes. The observed reduction in the radon level was statistically significant. As the radon concentrations in identical chambers with Bentonite were 550.7, 526.5, 536.2 and 479.8 Bq/m 3 after 15, 30, 45 and 60 minutes respectively, it is evident that zeolite is more efficient in

  3. Dry matter production and nutrient accumulation after successive crops of lettuce, tomato, rice, and andropogongrass in a substrate with zeolite Produção de matéria seca e acúmulo de nutrientes após cultivos sucessivos com alface, tomate, arroz e capim andropogon em substrato com zeólita

    Directory of Open Access Journals (Sweden)

    Alberto C. de Campos Bernardi

    2010-04-01

    Full Text Available Zeolites are hydrated crystalline aluminosilicate minerals of natural occurrence, structured in rigid third dimension net that can be used as slow release plant-nutrient source. The main objective of this study was to evaluate the effects of plant growth substrate under zeolite application, enriched with N, P and K, on dry matter yield and on nutrient contents in consecutive crops of lettuce, tomato, rice, and andropogon grass. The experiment was carried out in a greenhouse, with 3 kg pots with an inert substrate, evaluated in a randomized block design with three replications. Treatments consisted of four types of enrichment of concentrated natural zeolite: concentrated zeolite (Z only, zeolite + KNO3 (ZNK, zeolite + K2HPO4 (ZPK and zeolite + H3PO4 + apatite (ZP, and a control grown in substrate fertilized with a zeolite-free nutrient solution. Four levels of enriched zeolite were tested: 20, 40, 80, and 160 g/pot. Four successive crops were grown on the same substrate in each pot: lettuce, tomato, rice, and andropogon grass. Results indicated that N, P and K enriched zeolite was an adequate slow-release nutrient source for plants. The total dry matter production of above-ground biomass of four successive crops followed a descending order: ZP > ZPK > ZNK > Z.Zeólitas são minerais aluminossilicatos cristalinos hidratados de ocorrência natural, estruturados em redes cristalinas tridimensionais rígidas que podem ser usados como fonte de liberação lenta de nutrientes para as plantas. O objetivo deste trabalho foi avaliar o efeito da adição de zeólita enriquecida com N, P e K ao substrato de cultivo sobre a produção de matéria seca e o acúmulo de nutrientes pelas culturas sucessivas de alface, de tomate, de arroz e de capim-andropogon. O experimento foi conduzido em vasos em casa de vegetação, em vasos contendo 3 kg de substrato inerte. O delineamento experimental foi o de blocos ao acaso, com três repetições. A zeólita natural

  4. Separation and effect of residual moisture in liquid phase adsorption of xylene on y zeolites

    Directory of Open Access Journals (Sweden)

    P. Lahot

    2014-06-01

    Full Text Available The separation of p-xylene and m-xylene from C8 aromatic hydrocarbon feed using Y zeolites is investigated. Effect of residual moisture on p-xylene adsorption on BaY was measured in order to optimize the activation temperature of the adsorbent. The results show that with an increase in temperature the moisture on the adsorbent decreases. An optimum loading of moisture is required for adsorption of xylene on the adsorbents. The Everett equation is used to determine the adsorption capacity and selectivity. It has been found that the adsorbents best suited for the separation of p-xylene, m-xylene, o-xylene and ethyl benzene from the mixture of C8 aromatics are NaY, NaY, BaY and KY, respectively. The XRD results show that the crystallinity of the adsorbent decreases upon exchanging the zeolites to K+ and Ba2+ ions.

  5. Oxidative regeneration of toluene-saturated natural zeolite by gaseous ozone: the influence of zeolite chemical surface characteristics.

    Science.gov (United States)

    Alejandro, Serguei; Valdés, Héctor; Manéro, Marie-Hélène; Zaror, Claudio A

    2014-06-15

    In this study, the effect of zeolite chemical surface characteristics on the oxidative regeneration of toluene saturated-zeolite samples is investigated. A Chilean natural zeolite (53% clinoptilolite, 40% mordenite and 7% quartz) was chemically modified by acid treatment with hydrochloric acid and by ion-exchange with ammonium sulphate. Thermal pre-treatments at 623 and 823K were applied and six zeolite samples with different chemical surface characteristics were generated. Chemical modification of natural zeolite followed by thermal out-gassing allows distinguishing the role of acidic surface sites on the regeneration of exhausted zeolites. An increase in Brønsted acid sites on zeolite surface is observed as a result of ammonium-exchange treatment followed by thermal treatment at 623K, thus increasing the adsorption capacity toward toluene. High ozone consumption could be associated to a high content of Lewis acid sites, since these could decompose ozone into atomic active oxygen species. Then, surface oxidation reactions could take part among adsorbed toluene at Brønsted acid sites and surface atomic oxygen species, reducing the amount of adsorbed toluene after the regenerative oxidation with ozone. Experimental results show that the presence of adsorbed oxidation by-products has a negative impact on the recovery of zeolite adsorption capacity. Copyright © 2014 Elsevier B.V. All rights reserved.

  6. Energetics of sodium-calcium exchanged zeolite A.

    Science.gov (United States)

    Sun, H; Wu, D; Guo, X; Shen, B; Navrotsky, A

    2015-05-07

    A series of calcium-exchanged zeolite A samples with different degrees of exchange were prepared. They were characterized by powder X-ray diffraction (XRD) and differential scanning calorimetry (DSC). High temperature oxide melt drop solution calorimetry measured the formation enthalpies of hydrated zeolites CaNa-A from constituent oxides. The water content is a linear function of the degree of exchange, ranging from 20.54% for Na-A to 23.77% for 97.9% CaNa-A. The enthalpies of formation (from oxides) at 25 °C are -74.50 ± 1.21 kJ mol(-1) TO2 for hydrated zeolite Na-A and -30.79 ± 1.64 kJ mol(-1) TO2 for hydrated zeolite 97.9% CaNa-A. Dehydration enthalpies obtained from differential scanning calorimetry are 32.0 kJ mol(-1) H2O for hydrated zeolite Na-A and 20.5 kJ mol(-1) H2O for hydrated zeolite 97.9% CaNa-A. Enthalpies of formation of Ca-exchanged zeolites A are less exothermic than for zeolite Na-A. A linear relationship between the formation enthalpy and the extent of calcium substitution was observed. The energetic effect of Ca-exchange on zeolite A is discussed with an emphasis on the complex interactions between the zeolite framework, cations, and water.

  7. Ion-exchange properties of zeolite/glass hybrid materials

    International Nuclear Information System (INIS)

    Taira, Nobuyuki; Yoshida, Kohei; Fukushima, Takuya

    2017-01-01

    Hybrid materials were prepared from ground glass powder and various zeolites such as A-type, mordenite, X-type, and Y-type zeolites, and their ion removal effect was investigated. The hybrid materials of A-type, Y-type, and mordenite zeolites showed similar Sr"2"+ removal rates from aqueous solutions. The removal rate of Sr"2"+ ions increased as the amount of zeolite in the hybrid materials increased. Compared with other hybrid materials, the hybrid materials of X-type zeolite showed higher Sr"2"+ removal rates, especially for zeolite content greater than 25%. As the amount of X-type zeolite in the hybrid materials increased, the Sr"2"+ removal rate increased greatly, with a 100% removal rate when the content of X-type zeolite exceeded 62.5%. (author)

  8. Introduction to zeolite theory and modelling

    NARCIS (Netherlands)

    Santen, van R.A.; Graaf, van de B.; Smit, B.; Bekkum, van H.

    2001-01-01

    A review. Some of the recent advances in zeolite theory and modeling are present. In particular the current status of computational chem. in Bronsted acid zeolite catalysis, mol. dynamics simulations of mols. adsorbed in zeolites, and novel Monte Carlo technique are discussed to simulate the

  9. Producing zeolites from fly ash

    International Nuclear Information System (INIS)

    Rayalu, S.; Labhestwar, N.K.; Biniwale, R.B.; Udhoji, J.S.; Meshram, S.U.; Khanna, P.

    1998-01-01

    Fly ash has virtually become a menace of thermal power generation, leading to its devastating effects on the environment. Development of alternate methods of its disposal - especially those with recourse to recovery of valuable materials-has thus become imperative. This paper deals with the utilisation of fly ash for the production of high value-added products, viz., commercial grade zeolites. The physico-chemical and morphological characteristics of fly ash based Zeolite-A (FAZ-A) compares well with commercial Zeolite-A. High calcium binding capacity, appropriate particle/pore size and other detergency characteristics of FAZ-A brings forth its potential as a substitute for phosphatic detergent builder. The technology is extremely versatile, and other products like Zeolite-X, Zeolite-Y, sodalite and mordenite are also amenable for cost effective production with modifications in certain reaction parameters. Low temperature operations, ready availability of major raw materials, simplicity of process and recycling of unused reactants and process water are special features of the process. (author)

  10. Human bile sorption by cancrinite-type zeolites

    International Nuclear Information System (INIS)

    Linares, Carlos F.; Colmenares, Maryi; Ocanto, Freddy; Valbuena, Oscar

    2009-01-01

    A nitrated cancrinite-type zeolite was synthesized from zeolite X, NaOH and NaNO 3 solutions under autogeneous pressure at 80 deg. C for 48 h. This zeolite was characterized by X-ray diffraction (XRD), FT-IR-spectroscopy, scanning electron microscopy (SEM) and BET surface area. XRD, SEM and FT-IR confirmed the presence of nitrated cancrinite-type zeolite without other collateral phases as sodalite. Then, this sodium zeolite was exchanged with potassium and calcium cations and finally, these modified zeolites were reacted with biliar solutions from human gallbladder. Several factors such as: mass of used cancrinite, nature of the exchanged cation and reaction time of the cancrinite-bile solution interactions were studied. The composition of bile solutions (bile acids, phospholipids and bilirubin) was analyzed before and after the cancrinite-bile solution reaction. Results showed that the components of the bile were notably reduced after the contact with solids. Ca-cancrinite, 120 min of reaction time and 500 mg of solids were the best conditions determined for the bile acid reduction in human bile. When the modified zeolites were compared with the commercial cholestyramine, it was found that zeolites were more active than the latter. These zeolites may be an alternative choice to diminish cholesterol levels in hypercholesterolemic patients

  11. Properties of glass-bonded zeolite monoliths

    International Nuclear Information System (INIS)

    Lewis, M.A.; Fischer, D.F.; Murphy, C.D.

    1994-01-01

    It has been shown that mineral waste forms can be used to immobilize waste salt generated during the pyrochemical processing of spent fuel from the Integral Fast Reactor (IFR). Solid, leach resistant monoliths were formed by hot-pressing mixtures of salt-occluded zeolite A powders and glass frit at 990 K and 28 MPa. Additional samples have now been fabricated and tested. Normalized release rates for all elements, including iodide and chloride, were less than 1 g/m 2 d in 28-day tests in deionized water and in brine at 363 K (90 degrees C). Preliminary results indicate that these rates fall with time with both leachants and that the zeolite phase in the glass-bonded zeolite does not function as an ion exchanger. Some material properties were measured. The Poisson ratio and Young's modulus were slightly smaller in glass-bonded zeolite than in borosilicate glass. Density depended on zeolite fraction. The glass-bonded zeolite represents a promising mineral waste form for IFR salt

  12. Catalytically active and hierarchically porous SAPO-11 zeolite synthesized in the presence of polyhexamethylene biguanidine

    KAUST Repository

    Liu, Yan

    2014-03-01

    Hierarchically porous SAPO-11 zeolite (H-SAPO-11) is rationally synthesized from a starting silicoaluminophosphate gel in the presence of polyhexamethylene biguanidine as a mesoscale template. The sample is well characterized by XRD, N2 sorption, SEM, TEM, NMR, XPS, NH3-TPD, and TG techniques. The results show that the sample obtained has good crystallinity, hierarchical porosity (mesopores at ca. 10nm and macropores at ca. 50-200nm), high BET surface area (226m2/g), large pore volume (0.25cm3/g), and abundant medium and strong acidic sites (0.36mmol/g). After loading Pt (0.5wt.%) on H-SAPO-11 by using wet impregnation method, catalytic hydroisomerization tests of n-dodecane show that the hierarchical Pt/SAPO-11 zeolite exhibits high conversion of n-dodecane and enhanced selectivity for branched products as well as reduced selectivity for cracking products, compared with conventional Pt/SAPO-11 zeolite. This phenomenon is reasonably attributed to the presence of hierarchical porosity, which is favorable for access of reactants on catalytically active sites. The improvement in catalytic performance in long-chain paraffin hydroisomerization over Pt/SAPO-11-based catalyst is of great importance for its industrial applications in the future. © 2013 Elsevier Inc.

  13. Fabrication of 6FDA-durene membrane incorporated with zeolite T and aminosilane grafted zeolite T for CO2/CH4 separation

    Science.gov (United States)

    Jusoh, Norwahyu; Fong Yeong, Yin; Keong Lau, Kok; Shariff, Azmi Mohd

    2017-08-01

    In the present work, zeolite T and aminosilane grafted zeolite T are embedded into 6FDA-durene polyimide phase for the fabrication of mixed matrix membranes (MMMs). FESEM images demonstrated that the improvement of interfacial adhesion between zeolite and polymer phases in MMM loaded with aminosilane grafted zeolite T was not significant as compared to zeolite T/6FDA-durene MMM. From the gas permeation test, CO2/CH4 selectivity up to 26.4 was achieved using MMM containing aminosilane grafted zeolite T, while MMM loaded with ungrafted zeolite T showed CO2/CH4 selectivity of 19.1. In addition, MMM incorporated with aminosilane grafted zeolite T particles successfully lies on Robeson upper bound 2008, which makes it an attractive candidate for CO2/CH4 separation.

  14. Aluminum-induced dreierketten chain cross-links increase the mechanical properties of nanocrystalline calcium aluminosilicate hydrate

    Science.gov (United States)

    Geng, Guoqing; Myers, Rupert J.; Li, Jiaqi; Maboudian, Roya; Carraro, Carlo; Shapiro, David A.; Monteiro, Paulo J. M.

    2017-03-01

    The incorporation of Al and increased curing temperature promotes the crystallization and cross-linking of calcium (alumino)silicate hydrate (C-(A-)S-H), which is the primary binding phase in most contemporary concrete materials. However, the influence of Al-induced structural changes on the mechanical properties at atomistic scale is not well understood. Herein, synchrotron radiation-based high-pressure X-ray diffraction is used to quantify the influence of dreierketten chain cross-linking on the anisotropic mechanical behavior of C-(A-)S-H. We show that the ab-planar stiffness is independent of dreierketten chain defects, e.g. vacancies in bridging tetrahedra sites and Al for Si substitution. The c-axis of non-cross-linked C-(A-)S-H is more deformable due to the softer interlayer opening but stiffens with decreased spacing and/or increased zeolitic water and Ca2+ of the interlayer. Dreierketten chain cross-links act as ‘columns’ to resist compression, thus increasing the bulk modulus of C-(A-)S-H. We provide the first experimental evidence on the influence of the Al-induced atomistic configurational change on the mechanical properties of C-(A-)S-H. Our work advances the fundamental knowledge of C-(A-)S-H on the lowest level of its hierarchical structure, and thus can impact the way that innovative C-(A-)S-H-based cementitious materials are developed using a ‘bottom-up’ approach.

  15. Oxidative regeneration of toluene-saturated natural zeolite by gaseous ozone: The influence of zeolite chemical surface characteristics

    Energy Technology Data Exchange (ETDEWEB)

    Alejandro, Serguei [Laboratorio de Tecnologías Limpias (F. Ingeniería), Universidad Católica de la Santísima Concepción, Alonso de Ribera 2850, Concepción (Chile); Núcleo de Energías Renovables (F. Ingeniería), Universidad Católica de Temuco, Rudecindo Ortega 02950, Temuco (Chile); Valdés, Héctor, E-mail: hvaldes@ucsc.cl [Laboratorio de Tecnologías Limpias (F. Ingeniería), Universidad Católica de la Santísima Concepción, Alonso de Ribera 2850, Concepción (Chile); Manéro, Marie-Hélène [Université de Toulouse (France); INPT, UPS (France); Laboratoire de Génie Chimique, 4, Allée Emile Monso, F–31030 Toulouse (France); CNRS (France); Laboratoire de Génie Chimique, F–31030 Toulouse (France); Zaror, Claudio A. [Departamento de Ingeniería Química (F. Ingeniería), Universidad de Concepción, Concepción, Correo 3, Casilla 160–C (Chile)

    2014-06-01

    Highlights: • Surface acidity of modified natural zeolite is related to its chemical reactivity. • Brønsted acid sites are associated to toluene adsorption. • Lewis acid sites could decompose ozone generating surface active oxygen species. • Infrared spectra evidence active atomic oxygen and oxidation by-product formation. • 2NH4Z1 sample shows the highest reactivity toward adsorbed toluene. - Abstract: In this study, the effect of zeolite chemical surface characteristics on the oxidative regeneration of toluene saturated-zeolite samples is investigated. A Chilean natural zeolite (53% clinoptilolite, 40% mordenite and 7% quartz) was chemically modified by acid treatment with hydrochloric acid and by ion-exchange with ammonium sulphate. Thermal pre-treatments at 623 and 823 K were applied and six zeolite samples with different chemical surface characteristics were generated. Chemical modification of natural zeolite followed by thermal out-gassing allows distinguishing the role of acidic surface sites on the regeneration of exhausted zeolites. An increase in Brønsted acid sites on zeolite surface is observed as a result of ammonium-exchange treatment followed by thermal treatment at 623 K, thus increasing the adsorption capacity toward toluene. High ozone consumption could be associated to a high content of Lewis acid sites, since these could decompose ozone into atomic active oxygen species. Then, surface oxidation reactions could take part among adsorbed toluene at Brønsted acid sites and surface atomic oxygen species, reducing the amount of adsorbed toluene after the regenerative oxidation with ozone. Experimental results show that the presence of adsorbed oxidation by-products has a negative impact on the recovery of zeolite adsorption capacity.

  16. Oxidative regeneration of toluene-saturated natural zeolite by gaseous ozone: The influence of zeolite chemical surface characteristics

    International Nuclear Information System (INIS)

    Alejandro, Serguei; Valdés, Héctor; Manéro, Marie-Hélène; Zaror, Claudio A.

    2014-01-01

    Highlights: • Surface acidity of modified natural zeolite is related to its chemical reactivity. • Brønsted acid sites are associated to toluene adsorption. • Lewis acid sites could decompose ozone generating surface active oxygen species. • Infrared spectra evidence active atomic oxygen and oxidation by-product formation. • 2NH4Z1 sample shows the highest reactivity toward adsorbed toluene. - Abstract: In this study, the effect of zeolite chemical surface characteristics on the oxidative regeneration of toluene saturated-zeolite samples is investigated. A Chilean natural zeolite (53% clinoptilolite, 40% mordenite and 7% quartz) was chemically modified by acid treatment with hydrochloric acid and by ion-exchange with ammonium sulphate. Thermal pre-treatments at 623 and 823 K were applied and six zeolite samples with different chemical surface characteristics were generated. Chemical modification of natural zeolite followed by thermal out-gassing allows distinguishing the role of acidic surface sites on the regeneration of exhausted zeolites. An increase in Brønsted acid sites on zeolite surface is observed as a result of ammonium-exchange treatment followed by thermal treatment at 623 K, thus increasing the adsorption capacity toward toluene. High ozone consumption could be associated to a high content of Lewis acid sites, since these could decompose ozone into atomic active oxygen species. Then, surface oxidation reactions could take part among adsorbed toluene at Brønsted acid sites and surface atomic oxygen species, reducing the amount of adsorbed toluene after the regenerative oxidation with ozone. Experimental results show that the presence of adsorbed oxidation by-products has a negative impact on the recovery of zeolite adsorption capacity

  17. Zeolites in poultry and swine production

    Directory of Open Access Journals (Sweden)

    Aline Félix Schneider

    Full Text Available ABSTRACT: Zeolites are minerals that have intriguing properties such as water absorption, ion adsorption and cation exchange capacity. There are approximately 80 species of natural zeolites recognized and hundreds of artificial zeolites, which have been researched in several fields. Due to their chemical characteristics, zeolites have great potential for use in animal production, especially in poultry and swine farms, as food additives, litter amendment and treatment of residues, with direct and indirect effects on performance, yield and quality of carcass, ambience of farm sheds and reduction of environmental pollution.

  18. Zeolites as supports for transition-metal complexes

    Energy Technology Data Exchange (ETDEWEB)

    Le Van Mao, R

    1979-01-01

    The unique structural characteristics of the zeolites, including the presence of molecular-size cages and channels and of an internal electrostatic field, make them promising as supports for converting homogeneous to heterogeneous catalysts. The acidic sites on the zeolites may also contribute to catalysis of reactions, such as hydrocracking; may stabilize metal complexes in a highly disperse state; and may improve activity or selectivity. Recent studies on the synthesis of new types of zeolite-supported complexes of transition metals (TM), such as Co, Cu, Ag, Fe, Mo, Ru, Rh, Re, and Os, suggest the feasibility of the direct introduction of some TM complexes into the zeolitic cages during zeolite synthesis, especially during the crystallization phase. This method may considerably reduce the structural limitations associated with the incorporation of TM complexes into zeolites by conventional methods.

  19. Acidity in zeolite catalysis

    NARCIS (Netherlands)

    Santen, van R.A.; Gauw, de F.J.M.M.; Corma, A.; Melo, F.; Mendioroz, S.; Fierro, J.L.G.

    2000-01-01

    A review with 21 refs. is provided on our current understanding of the activation of hydrocarbons by protonic zeolites. One has to distinguish the proton affinity of a zeolite, measured in an equil. expt., from proton activation that dets. a kinetic catalytic result. The proton affinity depends on

  20. Zeolite Nanoparticles for Selective Sorption of Plasma Proteins.

    Science.gov (United States)

    Rahimi, M; Ng, E-P; Bakhtiari, K; Vinciguerra, M; Ali Ahmad, H; Awala, H; Mintova, S; Daghighi, M; Bakhshandeh Rostami, F; de Vries, M; Motazacker, M M; Peppelenbosch, M P; Mahmoudi, M; Rezaee, F

    2015-11-30

    The affinity of zeolite nanoparticles (diameter of 8-12 nm) possessing high surface area and high pore volume towards human plasma proteins has been investigated. The protein composition (corona) of zeolite nanoparticles has been shown to be more dependent on the plasma protein concentrations and the type of zeolites than zeolite nanoparticles concentration. The number of proteins present in the corona of zeolite nanoparticles at 100% plasma (in vivo state) is less than with 10% plasma exposure. This could be due to a competition between the proteins to occupy the corona of the zeolite nanoparticles. Moreover, a high selective adsorption for apolipoprotein C-III (APOC-III) and fibrinogen on the zeolite nanoparticles at high plasma concentration (100%) was observed. While the zeolite nanoparticles exposed to low plasma concentration (10%) exhibited a high selective adsorption for immunoglobulin gamma (i.e. IGHG1, IGHG2 and IGHG4) proteins. The zeolite nanoparticles can potentially be used for selectively capture of APOC-III in order to reduce the activation of lipoprotein lipase inhibition during hypertriglyceridemia treatment. The zeolite nanoparticles can be adapted to hemophilic patients (hemophilia A (F-VIII deficient) and hemophilia B (F-IX deficient)) with a risk of bleeding, and thus might be potentially used in combination with the existing therapy.

  1. Treatment of effluent containing uranium with magnetic zeolite; Tratamento de efluente contendo uranio com zeolita magnetica

    Energy Technology Data Exchange (ETDEWEB)

    Craesmeyer, Gabriel Ramos

    2013-07-01

    Within this work, a magnetic-zeolite composite was successfully synthesized using ferrous sulfate as raw material for the magnetic part of the composite, magnetite, and coal fly ash as raw material for the zeolitic phase. The synthesis of the zeolitic phase was made by alkali hydrothermal treatment and the magnetite nanoparticles were obtained through Fe{sup 2+} precipitation on alkali medium. The synthetic process was repeated many times and showed good reproducibility comparing the zeolitic nanocomposite from different batches. The final product was characterized using infrared spectroscopy, powder X-ray diffraction, X-ray fluorescence, scanning electron microscopy with coupled EDS. Specific mass, specific surface area and other physicochemical proprieties. The main crystalline phases found in the final product were magnetite, zeolites types NaP1 and hydroxysodalite, quartz and mullite, those last two remaining from the raw materials. Uranium removal capacity of the magnetic zeolite composite was tested using batch techniques. The effects of contact time and initial concentration of the adsorbate over the adsorption process were evaluated. Equilibrium time was resolved and the following kinetics and diffusion models were evaluated: pseudo-first order kinetic model, pseudo-second order kinetic model and interparticle diffusion model. A contact time of 120 min turned out to be enough to reach equilibrium of the adsorption process. The rate of adsorption followed the pseudo-second order model and the intra particle diffusion did not turn out to be a speed determinant step. Two adsorption isotherms models, the Langmuir model and the Freundlich model, were also evaluated. The Langmuir model was the best fit for the obtained experimental data. Using the best fitted adsorption isotherm and kinetic model, the theoretical maximum adsorption capacity of uranium over the composite was determined for both models. The maximum removal capacity calculated was 20.7 mg.g{sup -1

  2. Examination of zeolites by neutron reflection method

    International Nuclear Information System (INIS)

    Szegedi, S.; Varadi, M.; Boedy, Z.T.; Vas, L.

    1991-01-01

    Neutron reflection method has been used for the determination of zeolite content in minerals. The basis of this measurement is to observe the large difference between the water content of zeolite and that of other mineralic parts of the sample. The method suggested can be used in a zeolite mine for measuring the zeolite content continuously and controlling the quality of the end products. (author) 5 refs.; 3 figs.; 3 tabs

  3. Increased thermal conductivity monolithic zeolite structures

    Science.gov (United States)

    Klett, James; Klett, Lynn; Kaufman, Jonathan

    2008-11-25

    A monolith comprises a zeolite, a thermally conductive carbon, and a binder. The zeolite is included in the form of beads, pellets, powders and mixtures thereof. The thermally conductive carbon can be carbon nano-fibers, diamond or graphite which provide thermal conductivities in excess of about 100 W/mK to more than 1,000 W/mK. A method of preparing a zeolite monolith includes the steps of mixing a zeolite dispersion in an aqueous colloidal silica binder with a dispersion of carbon nano-fibers in water followed by dehydration and curing of the binder is given.

  4. Effects of heating on salt-occluded zeolite

    International Nuclear Information System (INIS)

    Lewis, M.A.; Hash, M.C.; Pereira, C.; Ackerman, J.P.

    1996-01-01

    The electrometallurgical treatment of spent nuclear fuel generates a waste stream of fission products in the electrolyte, LiCl-KCl eutectic salt. Argonne National Laboratory is developing a mineral waste form for this waste stream. The waste form consists of a composite formed by hot pressing salt-occluded zeolite and a glass binder. Pressing conditions must be judiciously chosen. For a given pressure, increasing temperatures and hold times give denser products but the zeolite is frequently converted to sodalite. Reducing the temperature or hold time leads to a porous zeolite composite. Therefore, conditions that affect the thermal stability of salt-occluded zeolite both with and without glass are being investigated in an ongoing study. The parameters varied in this stage of the work were heating time, temperature, salt loading, and glass content. The heat-treated samples were examined primarily by X-ray diffraction. Large variations were found in the rate at which salt-occluded zeolite converted to other phases such as nepheline, salt, and sodalite. The products depended on the initial salt loading. Heating times required for these transitions depended on the procedure and temperature used to prepare the salt-occluded zeolite. Mixtures of glass and zeolite reacted much faster than the pure salt-occluded zeolite and were almost always converted to sodalite

  5. Self-construction of core-shell and hollow zeolite analcime icositetrahedra: a reversed crystal growth process via oriented aggregation of nanocrystallites and recrystallization from surface to core.

    Science.gov (United States)

    Chen, Xueying; Qiao, Minghua; Xie, Songhai; Fan, Kangnian; Zhou, Wuzong; He, Heyong

    2007-10-31

    Zeolite analcime with a core-shell and hollow icositetrahedron architecture was prepared by a one-pot hydrothermal route in the presence of ethylamine and Raney Ni. Detailed investigations on samples at different preparation stages revealed that the growth of the complex single crystalline geometrical structure did not follow the classic crystal growth route, i.e., a crystal with a highly symmetric morphology (such as polyhedra) is normally developed by attachment of atoms or ions to a nucleus. A reversed crystal growth process through oriented aggregation of nanocrystallites and surface recrystallization was observed. The whole process can be described by the following four successive steps. (1) Primary analcime nanoplatelets undergo oriented aggregation to yield discus-shaped particles. (2) These disci further assemble into polycrystalline microspheres. (3) The relatively large platelets grow into nanorods by consuming the smaller ones, and meanwhile, the surface of the microspheres recrystallizes into a thin single crystalline icositetrahedral shell via Ostwald ripening. (4) Recrystallization continues from the surface to the core at the expense of the nanorods, and the thickness of the monocrystalline shell keeps on increasing until all the nanorods are consumed, leading to hollow single crystalline analcime icositetrahedra. The present work adds new useful information for the understanding of the principles of zeolite growth.

  6. Exfoliation of two-dimensional zeolites in liquid polybutadienes

    KAUST Repository

    Sabnis, Sanket

    2017-06-16

    Layered zeolite precursors were successfully exfoliated by brief shearing or sonication with the assistance of commercially available telechelic liquid polybutadienes at room temperature. The exfoliated zeolite nanosheets can form a stable suspension in an organic solvent, providing exciting potential for the fabrication of zeolite membranes, composite materials and hierarchical zeolites.

  7. Nuclear waste treatment using Iranian natural zeolites

    International Nuclear Information System (INIS)

    Kazemian, H.; Ghannadi Maraghe, M.

    2001-01-01

    Full text: The zeolite researches in Iran is a relatively new subject which has started about 10 years ago. The motivation for this scientific and interesting field was provided after discovery of significant deposits of natural zeolites in different regions of Iran as well as further developments of research institutions and the national concern to environmental protection especially the wastewater clean-up in point of view of recycling of such waste water to compensate some needs to water in other utilizations. This paper intends to review and describes scientific researches which have done on using zeolites in the field of nuclear waste treatment in Iran to introduce the potential resources to the world in more details. Zeolite tuffs are widely distributed in huge deposits in different regions of Iran. So far, the clinoptilolite tuffs are the most abundant natural zeolite which exist with zeolite content of 65%- 95%. Nowadays several different types of Iranian natural zeolites are characterized in point of view of chemical composition, type of structure, chemical, thermal, and radiation resistance using different instrumental and classical methods such as; X-ray diffraction (XRD), X-ray fluoresce (XRF), thermal methods of analysis (TA), scanning electron microscopy (SEM), analytical chemistry and radioanalytical methods as well as different ion-exchange techniques (e.g.3-7). The ability of Iranian natural clinoptilolite for removal of some fission products from nuclear wastewaters have been investigated. The selectivity of all investigated zeolites toward radiocesium and radiostrontium have been promising (e.g. 8-10). The successful synthesize of P zeolite from Iranian clinoptilolite-reach tuffs under different conditions were performed. The compatibility of zeolites with glass and cement matrices, for final disposal of radwaste, as well as their selectivity toward most dangerous heat generating radionuclides (e.g. 137 Cs and 90 Sr) is very important in using

  8. Origins of saccharide-dependent hydration at aluminate, silicate, and aluminosilicate surfaces.

    Science.gov (United States)

    Smith, Benjamin J; Rawal, Aditya; Funkhouser, Gary P; Roberts, Lawrence R; Gupta, Vijay; Israelachvili, Jacob N; Chmelka, Bradley F

    2011-05-31

    Sugar molecules adsorbed at hydrated inorganic oxide surfaces occur ubiquitously in nature and in technologically important materials and processes, including marine biomineralization, cement hydration, corrosion inhibition, bioadhesion, and bone resorption. Among these examples, surprisingly diverse hydration behaviors are observed for oxides in the presence of saccharides with closely related compositions and structures. Glucose, sucrose, and maltodextrin, for example, exhibit significant differences in their adsorption selectivities and alkaline reaction properties on hydrating aluminate, silicate, and aluminosilicate surfaces that are shown to be due to the molecular architectures of the saccharides. Solid-state (1)H, (13)C, (29)Si, and (27)Al nuclear magnetic resonance (NMR) spectroscopy measurements, including at very high magnetic fields (19 T), distinguish and quantify the different molecular species, their chemical transformations, and their site-specific adsorption on different aluminate and silicate moieties. Two-dimensional NMR results establish nonselective adsorption of glucose degradation products containing carboxylic acids on both hydrated silicates and aluminates. In contrast, sucrose adsorbs intact at hydrated silicate sites and selectively at anhydrous, but not hydrated, aluminate moieties. Quantitative surface force measurements establish that sucrose adsorbs strongly as multilayers on hydrated aluminosilicate surfaces. The molecular structures and physicochemical properties of the saccharides and their degradation species correlate well with their adsorption behaviors. The results explain the dramatically different effects that small amounts of different types of sugars have on the rates at which aluminate, silicate, and aluminosilicate species hydrate, with important implications for diverse materials and applications.

  9. Source fabrication and lifetime for Li+ ion beams extracted from alumino-silicate sources

    Energy Technology Data Exchange (ETDEWEB)

    Roy, Prabir K.; Greenway, Wayne G.; Kwan, Joe W

    2012-03-05

    A space-charge-limited beam with current densities (J) exceeding 1 mA/cm2 have been measured from lithium alumino-silicate ion sources at a temperature of ~1275 °C. At higher extraction voltages, the source appears to become emission limited with J ≥ 1.5 mA/cm2, and J increases weakly with the applied voltage. A 6.35 mm diameter source with an alumino-silicate coating, ≤0.25 mm thick, has a measured lifetime of ~40 h at ~1275 °C, when pulsed at 0.05 Hz and with pulse length of ~6 μs each. At this rate, the source lifetime was independent of the actual beam charge extracted due to the loss of neutral atoms at high temperature. Finally, the source lifetime increases with the amount of alumino-silicate coated on the emitting surface, and may also be further extended if the temperature is reduced between pulses.

  10. Source fabrication and lifetime for Li+ ion beams extracted from alumino-silicate sources

    Energy Technology Data Exchange (ETDEWEB)

    Roy, Prabir K.; Greenway, Wayne G.; Kwan, Joe W.

    2012-04-01

    A space-charge-limited beam with current densities (J) exceeding 1 mA/cm2 have been measured from lithium alumino-silicate ion sources at a temperature of ~1275 °C. At higher extraction voltages, the source appears to become emission limited with J ≥ 1.5 mA/cm2, and J increases weakly with the applied voltage. A 6.35 mm diameter source with an alumino-silicate coating, ≤0.25 mm thick, has a measured lifetime of ~40 h at ~1275 °C, when pulsed at 0.05 Hz and with pulse length of ~6 μs each. At this rate, the source lifetime was independent of the actual beam charge extracted due to the loss of neutral atoms at high temperature. Finally, the source lifetime increases with the amount of alumino-silicate coated on the emitting surface, and may also be further extended if the temperature is reduced between pulses.

  11. New developments in zeolite science and technology

    International Nuclear Information System (INIS)

    Murakami, Y.

    1986-01-01

    The contributions in this volume introduce numerous new results and concepts. MAS-NMR has become a powerful tool in the structural analysis of zeolite, metallosilicate and aluminophosphate, enabling definition at the atomic level of the silicon and aluminum forming the zeolite framework. Detailed knowledge on the structure of natural zeolite has increased. Regarding synthesis, studies on the preparation of various metallosilicates, the role of various organic compounds at templates and the kinetics of crystallization and crystal growth are presented. Developments in zeolite catalysts focus not only on the solid-acid catalysts and the shape selective catalysts but on the bifunctional type catalysts as well. Catalyses by metallosilicates or silicoaluminophosphates are reported. Attempts to improve the catalytic performance by modification are presented. Effort is also being devoted to the analysis of adsorption state and diffusion in zeolites. Zeolite deposits of economic value are reported from several countries. (Auth.)

  12. PENJERAPAN P-KHLOROFENOL DALAM AIR LIMBAH DENGAN ZEOLIT (Adsorption of p-Chlorophenol from Wastewater using Zeolite

    Directory of Open Access Journals (Sweden)

    Sarto Sarto

    2007-07-01

    Full Text Available ABSTRAK Penelitian ini bertujuan untuk mempelajari kemampuan zeolit untuk menjerap p-khlorofenol dari limbah cair secara batch, pada suhu 30 °C dan tekanan 1 atmosfer. Hasil penelitian menunjukkan bahwa proses penjerapan mengikuti persamaan Freundlich dan bersifat reversibel sebagian. Nisbah kinerja desorbsi dan penjerapan adalah antara 31,85 % dan 49,36 %. Kemampuan zeolit untuk menjerap p-khlorofenol meningkat dengan semakin rendahnya pH. pada nilai pH 3,92, berat zeolit 30 g, dan konsentrasi awal p-khlorofenol 97,302 mg/L. Adapun jumlah p-khlorofenol yang terjerap adalah sebesar 8,319 mg/L.   ABSTRACT The aim of this research is to study the characteristics of zeolit to adsorb p-chlorophenol from wastewater in a batch reactor at 30 oC and atmospheric conditions. The experimental results show that the adsorbtion process is partially reversible and fits with Freundlich Equation. The ratio of  desorption and adsortion performance is between 31.85 % and 49.36 %.  The performance of zeolit to adsorb p-chlorophenol increases with decreasing pH. At  pH about 3.92, using 30 g zeolit and 97.302 mg  p-chlorophenol/L. The concentration of adsorbed p-chlorophenol is about 8.319 mg/L.

  13. Zeolitic materials with hierarchical porous structures.

    Science.gov (United States)

    Lopez-Orozco, Sofia; Inayat, Amer; Schwab, Andreas; Selvam, Thangaraj; Schwieger, Wilhelm

    2011-06-17

    During the past several years, different kinds of hierarchical structured zeolitic materials have been synthesized due to their highly attractive properties, such as superior mass/heat transfer characteristics, lower restriction of the diffusion of reactants in the mesopores, and low pressure drop. Our contribution provides general information regarding types and preparation methods of hierarchical zeolitic materials and their relative advantages and disadvantages. Thereafter, recent advances in the preparation and characterization of hierarchical zeolitic structures within the crystallites by post-synthetic treatment methods, such as dealumination or desilication; and structured devices by in situ and ex situ zeolite coatings on open-cellular ceramic foams as (non-reactive as well as reactive) supports are highlighted. Specific advantages of using hierarchical zeolitic catalysts/structures in selected catalytic reactions, such as benzene to phenol (BTOP) and methanol to olefins (MTO) are presented. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Ion beam analysis of zeolites type Li-ABW synthesized by hydrothermal method

    Energy Technology Data Exchange (ETDEWEB)

    Andrade, E.; De Lucio, O. G.; Solis, C.; Zavala, E. P.; Cruz, J. [UNAM, Instituto de Fisica, Circuito Exterior, Ciudad Universitaria, 04510 Mexico D. F. (Mexico); Alfaro, S.; Rodriguez, C.; Valenzuela, M. A. [IPN, Escuela Superior de Ingenieria Quimica e Industrias Extractivas, Laboratorio de Catalisis y Materiales, Zacantenco, 07738 Mexico D. F. (Mexico); Rocha, M. F. [IPN, Escuela Superior de Ingenieria Mecanica y Electrica, Av. Instituto Politecnico Nacional s/n, Col. Lindavista, 07738 Mexico D. F. (Mexico); Murillo, G.; Policroniades, R. [ININ, Carretera Mexico-Toluca s/n, Ocoyoacac 52750, Estado de Mexico (Mexico)

    2010-02-15

    This work reports a method to synthesize and characterize Li-ABW zeolites by a hydrothermal method. These materials are good candidates for CO{sub 2} capture because of the high reactivity between the Li{sup +} with CO{sub 2} to form Li{sub 2}CO{sub 3}. We performed and elemental profile concentration using ion beam analysis. The elastic backscattered proton energy spectra from the Al, Si, O and Li nuclei, in combination with the {alpha} particles from the {sup 7}Li ({rho}, {alpha}){sup 4}He nuclear reaction energy spectra, were employed for this task. X-ray diffraction was also applied to determine the crystalline structure. (Author)

  15. Metal immobilization in soils using synthetic zeolites

    NARCIS (Netherlands)

    Osté, L.A.; Lexmond, T.M.; Riemsdijk, van W.H.

    2002-01-01

    In situ immobilization of heavy metals in contaminated soils is a technique to improve soil quality. Synthetic zeolites are potentially useful additives to bind heavy metals. This study selected the most effective zeolite in cadmium and zinc binding out of six synthetic zeolites (mordenite-type,

  16. Comparing gas separation performance between all known zeolites and their zeolitic imidazolate framework counterparts.

    Science.gov (United States)

    Gómez-Álvarez, Paula; Hamad, Said; Haranczyk, Maciej; Ruiz-Salvador, A Rabdel; Calero, Sofia

    2016-01-07

    To find optimal porous materials for adsorption-based separations is a challenging task due to the extremely large number of possible pore topologies and compositions. New porous material classes such as Metal Organic Frameworks (MOFs) are emerging, and hope to replace traditionally used materials such as zeolites. Computational screening offers relatively fast searching for candidate structures as well as side-by-side comparisons between material families. This work is pioneering at examining the families comprised by the experimentally known zeolites and their respective Zeolitic Imidazolate Framework (ZIF) counterparts in the context of a number of environmental and industrial separations involving carbon dioxide, nitrogen, methane, oxygen, and argon. Additionally, unlike related published work, here all the targeted structures have been previously relaxed through energy minimization. On the first level of characterization, we considered a detailed pore characterization, identifying 24 zeolites as promising candidates for gas separation based on adsorbate sizes. The second level involved interatomic potential-based calculations to assess the adsorption performance of the materials. We found no correlation in the values of heat of adsorption between zeolites and ZIFs sharing the same topology. A number of structures were identified as potential experimental targets for CO2/N2, and CO2/CH4 affinity-based separations.

  17. Natural zeolites in diet or litter of broilers.

    Science.gov (United States)

    Schneider, A F; Almeida, D S De; Yuri, F M; Zimmermann, O F; Gerber, M W; Gewehr, C E

    2016-04-01

    This study aims to analyse the influence of adding natural zeolites (clinoptilolite) to the diet or litter of broilers and their effects on growth performance, carcass yield and litter quality. Three consecutive flocks of broilers were raised on the same sawdust litter, from d 1 to d 42 of age, and distributed in three treatments (control with no added zeolites, addition of 5 g/kg zeolite to diet and addition of 100 g/kg zeolites to litter). The addition of zeolites to the diet or litter did not affect growth performance or carcass yield. The addition of zeolites to the diet did not influence moisture content of the litter, ammonia volatilisation was reduced only in the first flock and pH of litter was reduced in the second and third flock. However, the addition of zeolites to the litter reduced moisture content, litter pH and ammonia volatilisation in all flocks analysed. The addition of 5 g/kg zeolite to the diet in three consecutive flocks was not effective in maintaining litter quality, whereas the addition of 100 g/kg natural zeolites to sawdust litter reduced litter moisture and ammonia volatilisation in three consecutive flocks raised on the same litter.

  18. Investigation of Al–O–Al sites in an Na-aluminosilicate glass

    Indian Academy of Sciences (India)

    Unknown

    Despite 17OMAS NMR spectra of the sample in both fields do not give much information about the ... not be enough alkali or alkaline earth oxides for charge balancing to ... Although oxygen is the most abundant element in the aluminosilicates ...

  19. Methane emissions abatement by multi-ion-exchanged zeolite A prepared from both commercial-grade zeolite and coal fly ash.

    Science.gov (United States)

    Hui, K S; Chao, C Y H

    2008-10-01

    The performance of multimetal-(Cu, Cr, Zn, Ni, and Co)-ion-exchanged zeolite A prepared from both a commercial-grade sample and one produced from coal fly ash in methane emissions abatement was evaluated in this study. The ion-exchange process was used to load the metal ions in zeolite A samples. The methane conversion efficiency by the samples was studied under various parameters including the amount of metal loading (7.3-19.4 wt%), reaction temperature (25-500 degrees C), space velocity (8400-41 900 h(-1)), and methane concentration (0.5-3.2 vol %). At 500 degrees C, the original commercial-grade zeolite A catalyzed 3% of the methane only, whereas the addition of different percentages of metals in the sample enhanced the methane conversion efficiency by 40-85%. Greater methane conversion was observed by increasing the percentage of metals added to the zeolite even though the BET surface area of the zeolite consequently decreased. Higher percentage methane conversion over the multi-ion-exchanged samples was observed at lower space velocities indicating the importance of the mass diffusion of reactants and products in the zeolite. Compared to the multi-ion-exchanged zeolite A prepared from the commercial-grade zeolite, the one produced from coal fly ash demonstrated similar performances in methane emissions abatement, showing the potential use of this low cost recycled material in gaseous pollutant treatment.

  20. Computational approach in zeolite science

    NARCIS (Netherlands)

    Pidko, E.A.; Santen, van R.A.; Chester, A.W.; Derouane, E.G.

    2009-01-01

    This chapter presents an overview of different computational methods and their application to various fields of zeolite chemistry. We will discuss static lattice methods based on interatomic potentials to predict zeolite structures and topologies, Monte Carlo simulations for the investigation of

  1. Process wastewater treatment with hydrogen-form CST and chabazite zeolite

    International Nuclear Information System (INIS)

    DePaoli, S.M.; Bostick, D.T.

    1998-05-01

    Ion-exchange materials have been investigated for the removal of radionuclides from near-neutral-pH wastewaters containing competing cations at concentrations greater than those of the targeted species. Natural chabazite zeolite was chosen as the baseline material for the removal of fission products, namely 90 Sr and 137 Cs, from wastewater and groundwater. The sorbent IONSIV reg-sign IE-911, a crystalline silicotitanate manufactured by UOP, was recently tested in this capacity and found to compare extremely well against the baseline material in removing 90 Sr and 137 Cs from process wastewater. This paper presents results of similar column tests performed using both materials, as well as results from batch experiments on actual wastewaters using IONSIV reg-sign IE-911

  2. Characterization of nano-porous oxides containing aqueous heavy metallic ions

    International Nuclear Information System (INIS)

    Louisfrema, Wilfried

    2016-01-01

    Porous crystalline aluminosilicates such as cationic zeolites, are widely studied because of their adsorption, ion exchange and catalytic properties, which explain their use in many industrial applications. Examples of the latter, which involve in particular multivalent cations, include detergents/softeners, catalytic cracking, or decontamination. Such industrial applications of zeolites all exploit their adsorption properties, which vary as a function of the pore size, comparable to the adsorbing molecules, or chemical composition, which results in charges within the framework, and in turn strong binding or repulsive sites. Importantly, in such applications zeolites are hydrated. Water is involved in the microscopic processes and thus influences all properties of the material. Molecular modeling is a weapon of choice to predict and understand the microscopic properties of the hydrated material, which are difficult to access experimentally. More precisely, the present modeling work deals with the behavior of multivalent cations in hydrated zeolites, in collaboration with experimentalists. Our study on zeolite Y faujasite first allowed us to clarify the migration of sodium cations upon dehydration and to predict the cation localization in the hydrated material in the presence of divalent cations. Furthermore, we rationalized the coupled migration of cations and deformation of the framework upon water adsorption. To this end, we have developed a new method for the analysis of cation localization. The good performance of a polarizable force field demonstrated here paves the way for the study of the dynamics of the whole system, following in particular the simultaneous migration of cations and deformation of the framework. Such an approach could be later extended to other multivalent ions of industrial interest (rare Earths, f-block elements,...). (author)

  3. A general method to incorporate metal nanoparticles in zeolites and zeotypes

    DEFF Research Database (Denmark)

    2015-01-01

    Disclosed herein is a method for producing a zeolite, zeolite-like or zeotype structure with selective formation of metal, metal oxide or metal sulphide nanoparticles and/or clusters inside the zeolite, zeolite-like or zeotype structure.......Disclosed herein is a method for producing a zeolite, zeolite-like or zeotype structure with selective formation of metal, metal oxide or metal sulphide nanoparticles and/or clusters inside the zeolite, zeolite-like or zeotype structure....

  4. Alkali-activated blast furnace slag-zeolite cements and concretes

    International Nuclear Information System (INIS)

    Rakhimov, R.; Rakhimova, N.

    2012-01-01

    The aim of this work has been the study of alkali-activated slag-zeolite cements and concretes based on them. Various compositions have been tested and some characteristics such as the compressive strength have been measured versus zeolite additions. A table lists the specific surface area and particle size distributions of different cements. The conclusions of the study are the following. First, alkali-activated slag cements and concretes based on them are effective for immobilization of radioactive wastes and the production of building structures, designed for high radiation load. Secondly, zeolite-containing mineral additions are able to increase the immobilization capacity and radiation resistance of alkali-activated blast furnace slag cements and concretes. Thirdly, the efficiency of different zeolite-containing additions - 10% to increase alkali-activated blast furnace slag-zeolite cement strength was established. It is with alkaline components of water-glass, sodium carbonate, sodium sulphate. Fourth, the effective way of introducing zeolite additions in alkali-activated blast furnace slag-zeolite cement is inter-grinding of the slag and addition. Increase in strength of alkali-activated blast furnace slag-zeolite cement stone is 40% higher than that of the stone of a mixture of separately milled components. Fifth, Alkali-activated blast furnace slag-zeolite cements with zeolite-containing additions with a compressive strength of 10.1 to 140 MPa; alkali-activated blast furnace slag-zeolite cements mortars with compressive strength from 35.2 to 97.7 MPa; alkali-activated blast furnace slag-zeolite cements concretes with compressive strength up to 84.5 MPa and frost resistant up to 800 cycles were obtained

  5. Vitrification of highly-loaded SDS zeolites

    International Nuclear Information System (INIS)

    Siemens, D.H.; Bryan, G.H.; Knowlton, D.E.; Knox, C.A.

    1982-11-01

    Pacific Northwest Laboratory (PNL) is demonstrating a vitrification system designed for immobilization of highly loaded SDS zeolites. The Zeolite Vitrification Demonstration Project (ZVDP) utilizes an in-can melting process. All steps of the process have been demonstrated, from receipt of the liners through characterization of the vitrified product. The system has been tested with both nonradioactive and radioactive zeolite material. Additional high-radioactivity demonstrations are scheduled to begin in FY-83. 5 figures, 4 tables

  6. Chemical reactivity of cation-exchanged zeolites

    OpenAIRE

    Pidko, E.A.

    2008-01-01

    Zeolites modified with metal cations have been extensively studied during the last two decades because of their wide application in different technologically important fields such as catalysis, adsorption and gas separation. Contrary to the well-understood mechanisms of chemical reactions catalyzed by Brønsted acid sites in the hydrogen forms of zeolites, the nature of chemical reactivity, and related, the structure of the metal-containing ions in cation-exchanged zeolites remains the subject...

  7. Antimicrobial properties of zeolite-X and zeolite-A ion-exchanged with silver, copper, and zinc against a broad range of microorganisms.

    Science.gov (United States)

    Demirci, Selami; Ustaoğlu, Zeynep; Yılmazer, Gonca Altın; Sahin, Fikrettin; Baç, Nurcan

    2014-02-01

    Zeolites are nanoporous alumina silicates composed of silicon, aluminum, and oxygen in a framework with cations, water within pores. Their cation contents can be exchanged with monovalent or divalent ions. In the present study, the antimicrobial (antibacterial, anticandidal, and antifungal) properties of zeolite type X and A, with different Al/Si ratio, ion exchanged with Ag(+), Zn(2+), and Cu(2+) ions were investigated individually. The study presents the synthesis and manufacture of four different zeolite types characterized by scanning electron microscopy and X-ray diffraction. The ion loading capacity of the zeolites was examined and compared with the antimicrobial characteristics against a broad range of microorganisms including bacteria, yeast, and mold. It was observed that Ag(+) ion-loaded zeolites exhibited more antibacterial activity with respect to other metal ion-embedded zeolite samples. The results clearly support that various synthetic zeolites can be ion exchanged with Ag(+), Zn(2+), and Cu(2+) ions to acquire antimicrobial properties or ion-releasing characteristics to provide prolonged or stronger activity. The current study suggested that zeolite formulations could be combined with various materials used in manufacturing medical devices, surfaces, textiles, or household items where antimicrobial properties are required.

  8. Catalase-like activity studies of the manganese(II) adsorbed zeolites

    Science.gov (United States)

    Ćiçek, Ekrem; Dede, Bülent

    2013-12-01

    Preparation of manganese(II) adsorbed on zeolite 3A, 4A, 5A. AW-300, ammonium Y zeolite, organophilic, molecular sieve and catalase-like enzyme activity of manganese(II) adsorbed zeolites are reported herein. Firstly zeolites are activated at 873 K for two hours before contact manganese(II) ions. In order to observe amount of adsorption, filtration process applied for the solution. The pure zeolites and manganese(II) adsorbed zeolites were analysed by FT-IR. As a result according to the FT-IR spectra, the incorporation of manganese(II) cation into the zeolite structure causes changes in the spectra. These changes are expected particularly in the pseudolattice bands connected with the presence of alumino and silicooxygen tetrahedral rings in the zeolite structure. Furthermore, the catalytic activities of the Mn(II) adsorbed zeolites for the disproportionation of hydrogen peroxide were investigated in the presence of imidazole. The Mn(II) adsorbed zeolites display efficiency in the disproportion reactions of hydrogen peroxide, producing water and dioxygen in catalase-like activity.

  9. Comparative Potential Protect Effect of HSCAS, Diatomite and ...

    African Journals Online (AJOL)

    mdenli

    bentonite (Rosa et al., 2001), zeolite (Miazzo et al., 2000), hydrated sodium calcium aluminosilicate. (HSCAS) ... Due to these properties diatomite was selected for use in this experiment to compare ..... Aflatoxins in animal and human health.

  10. AKTIVASI ZEOLIT ALAM SEBAGAI ADSORBEN PADA ALAT PENGERING BERSUHU RENDAH

    Directory of Open Access Journals (Sweden)

    Laeli Kurniasari

    2012-04-01

    Full Text Available ACTIVATION OF NATURAL ZEOLITE AS AN ADSORBENT FOR LOW TEMPERATURE DRYING SYSTEM. Drying is one process which is used in many industries, especially in food product. The process usually still has low energy efficiency and can make food deterioration because of the usage of high temperature. One alternative in drying technology is the use of zeolite as a water vapor adsorbent. This kind of drying method make it possible to operate in lower temperature, hence it will be suitable for heat sensitive product. Natural zeolit can be one promising adsorbent since it is spreadly abundant in Indonesia. Natural zeolite must be activated first before used, in order to get zeolite with high adsorption capacity. Activation process in natural zeolite will change the Si/Al ratio, polarity, and affinity of zeolite toward water vapor and also increase the porosity. Activation of natural zeolite can be done with two methods, chemical activation use NaOH and physical activation use heat. In the activation using NaOH, natural zeolite is immersed with NaOH solution 0.5-2N in 2 hour with temperature range 60-900C. The process is continued with the drying of zeolite in oven with 1100C for 4 hours. While in heat treatment, zeolit is heated into 200-5000C in furnace for 2-5 hours. SEM analysis is used to compare the change in zeolite morphology before and after each treatment, while to know the adsorption capacity of zeolite, the analyses were done in many temperature and relative humidity. Result gives the best condition in NaOH activation is NaOH 1N and temperature 700C, with water vapor loading is 0.171 gr/gr adsorbent. In heat treatment, the best condition is 3000C and 3 hours with loading 0.137 gr water vapor/gr adsorbent.  Pengeringan merupakan salah satu proses yang banyak digunakan pada produk pangan. Proses ini umumnya menyebabkan kerusakan pada bahan pangan, disamping masih rendahnya efisiensi energi. Salah satu alternatif pada proses pengeringan yaitu

  11. ASETILASI PADA FENOL DAN ANISOL MENGGUNAKAN ANHIDRIDA ASAM ASETAT BERKATALIS Zr4+-ZEOLIT BETA

    Directory of Open Access Journals (Sweden)

    DA Retnoningrum

    2015-07-01

    Full Text Available Zeolit beta pada umumnya memiliki keasaman tinggi dan berpotensi aktif sebagai katalis heterogen dalam asilasi Friedel-Crafts senyawa aromatik. Untuk meningkatkan stabilitas dan selektivitasnya, zeolit beta perlu diaktivasi dan dimodifikasi terlebih dahulu dengan mengembankan logam aktif zirkonium dengan metode pertukaran ion. Karakterisasi katalis meliputi analisis kristalinitas katalis dengan XRD, sifat permukaan katalis dengan Surface Area Analyzer dan uji keasaman dengan pengadsorbsi piridin. Dalam penelitian ini, dipelajari aktivitas dan selektivitas katalis Zr4+-zeolit beta dalam reaksi asetilasi fenol dan anisol. Reaksi dilakukan pada berbagai variasi suhu yaitu 100 dan 130C dengan waktu reaksi yaitu pada jam ke 4, 8 dan 12. Hasil asetilasi kemudian dianalisis menggunakan GC, FTIR dan analisis produk menggunakan GC-MS. Asetilasi fenol dengan katalis Zr4+-zeolit beta menghasilkan produk fenil etanoat dengan kadar 95,87% dan selektivitas 100%. Hasil ini didapatkan pada suhu reaksi 130C dan waktu reaksi 8 jam. Asetilasi pada cincin benzena baik pada fenol maupun anisol tidak terjadi, hal ini karena asetilasi pada cincin benzena lebih sukar dibandingkan asetilasi pada gugus OH fenol. Perlu adanya kondisi lain untuk melakukan asetilasi pada cincin benzena. Asetilasi anisol pada waktu reaksi 24 jam dan temperatur 130C didapatkan produk dengan kadar 74%.Beta zeolite generally has a high acidity and potentially active as heterogeneous catalyst in the Friedel-Crafts acylation of aromatic compounds. To improve its stability and selectivity, beta zeolite needs to be activated and modified in advance with zirconium to elicit active metal using ion exchange method. Characterization of catalyst include catalyst’s crystallinity using XRD analysis, the nature of the catalyst surface with the Surface Area Analyzer and the acidity test using pyridine adsorption. In the current study the activity and the selectivity of catalyst Zr4+-beta zeolite

  12. Absorption behavior of iodine from molten salt mixture to zeolite

    International Nuclear Information System (INIS)

    Sugihara, Kei; Terai, Takayuki; Suzuki, Akihiro; Uozumi, Koichi; Tsukada, Takeshi; Koyama, Tadafumi

    2011-01-01

    Behavior of zeolite to absorb anion fission product (FP) elements in molten LiCl-KCl eutectic salt was studied using iodine. At first, zeolite-A was selected as the suitable type of zeolite among zeolite-A (powder), zeolite-X (powder and granule), and zeolite-Y (powder) through experiments to heat the zeolite together with LiCl-KCl-KI salt, respectively. As the next step, similar experiments to immerse zeolite-A in molten LiCl-KCl-KI salt containing various concentrations of iodine were performed. The affinity of iodine to zeolite was evaluated using the separation factor (SF) value, which is defined as [I/(I+Cl) mol ratio in zeolite after immersion]/[I/(I+Cl) mol ratio in salt after immersion]. Since the SF values ranged between 4.3 and 9.1, stronger affinity of iodine than chlorine to zeolite-A was revealed. Finally, influence of co-existing cation FPs was studied by similar absorption experiments in LiCl-KCl-KI salt containing CsCl, SrCl 2 , or NdCl 3 . The SF values were less than those obtained in the LiCl-KCl-KI salt and this can be ascribed to the sharing of inner space of zeolite cage among absorbed cations and anions. (author)

  13. Hydrogen Selective Exfoliated Zeolite Membranes

    Energy Technology Data Exchange (ETDEWEB)

    Tsapatsis, Michael [Univ. of Minnesota, Minneapolis, MN (United States). Department of Chemical Engineering and Materials Science; Daoutidis, Prodromos [Univ. of Minnesota, Minneapolis, MN (United States). Department of Chemical Engineering and Materials Science; Elyassi, Bahman [Univ. of Minnesota, Minneapolis, MN (United States). Department of Chemical Engineering and Materials Science; Lima, Fernando [Univ. of Minnesota, Minneapolis, MN (United States). Department of Chemical Engineering and Materials Science; Iyer, Aparna [Univ. of Minnesota, Minneapolis, MN (United States). Department of Chemical Engineering and Materials Science; Agrawal, Kumar [Univ. of Minnesota, Minneapolis, MN (United States). Department of Chemical Engineering and Materials Science; Sabnis, Sanket [Univ. of Minnesota, Minneapolis, MN (United States). Department of Chemical Engineering and Materials Science

    2015-04-06

    The objective of this project was to develop and evaluate an innovative membrane technology at process conditions that would be representative of Integrated Gasification Combined Cycle (IGCC) advanced power generation with pre-combustion capture of carbon dioxide (CO2). This research focused on hydrogen (H2)-selective zeolite membranes that could be utilized to separate conditioned syngas into H2-rich and CO2-rich components. Both experiments and process design and optimization calculations were performed to evaluate the concept of ultra-thin membranes made from zeolites nanosheets. In this work, efforts in the laboratory were made to tackle two fundamental challenges in application of zeolite membranes in harsh industrial environments, namely, membrane thickness and membrane stability. Conventional zeolite membranes have thicknesses in the micron range, limiting their performance. In this research, we developed a method for fabrication of ultimately thin zeolite membranes based on zeolite nanosheets. A range of layered zeolites (MWW, RWR, NSI structure types) suitable for hydrogen separation was successfully exfoliated to their constituent nanosheets. Further, membranes were made from one of these zeolites, MWW, to demonstrate the potential of this group of materials. Moreover, long-term steam stability of these zeolites (up to 6 months) was investigated in high concentrations of steam (35 mol% and 95 mole%), high pressure (10 barg), and high temperatures (350 °C and 600 °C) relevant to conditions of water-gas-shift and steam methane reforming reactions. It was found that certain nanosheets are stable, and that stability depends on the concentration of structural defects. Additionally, models that represent a water-gas-shift (WGS) membrane reactor equipped with the zeolite membrane were developed for systems studies. These studies had the aim of analyzing the effect of the membrane reactor integration into IGCC plants

  14. Progress on Zeolite-membrane-aided Organic Acid Esterification

    Science.gov (United States)

    Makertiharta, I. G. B. N.; Dharmawijaya, P. T.

    2017-07-01

    Esterification is a common route to produce carboxylic acid esters as important intermediates in chemical and pharmaceutical industries. However, the reaction is equilibrium limited and needs to be driven forward by selective removal one of the products. There have been some efforts to selectively remove water from reaction mixture via several separation processes (such as pervaporation and reactive distillation). Integrated pervaporation and esterification has gained increasing attention towards. Inorganic zeolite is the most popular material for pervaporation due to its high chemical resistant and separation performance towards water. Zeolite also has proven to be an effective material in removing water from organic compound. Zeolite can act not only as selective layer but also simultaneously act as a catalyst on promoting the reaction. Hence, there are many configurations in integrating zeolite membrane for esterification reaction. As a selective layer to remove water from reaction mixture, high Si/Al zeolite is preferred to enhance its hydrophilicity. However, low Si/Al zeolite is unstable in acid condition due to dealumination thus eliminate its advantages. As a catalyst, acid zeolites (e.g. H-ZSM-5) provide protons for autoprotolysis of the carboxylic acid similar to other catalyst for esterification (e.g. inorganic acid, and ion exchange resins). There are many studies related to zeolite membrane aided esterification. This paper will give brief information related to zeolite membrane role in esterification and also research trend towards it.

  15. ZEOLITIZATION OF SEWAGE SLUDGE ASH WITH A FUSION METHOD

    Directory of Open Access Journals (Sweden)

    Jolanta Latosińska

    2016-11-01

    Full Text Available The study shows the results of zeolitization of municipal sewage sludge ash with the indirect fusion method followed by a hydrothermal method. The zeolitization of sewage sludge ash was conducted at the melting temperature of 550°C and the melting time of 60 minutes, crystallization temperatures of 60°C and 90°C, crystallization time of 6 hours and the SSA:NaOH ratio of 1:1.8; 1:1.4. The research of modified sewage sludge ashes included the observation of changes of ash particles surface and the identification of crystalized phases. The zeolitization of sewage sludge ash at the ratio of SSA:NaOH 1.0:1.4 did not cause the formation of zeolite phases. On the other hand, the zeolitization at the ratio of SSA:NaOH 1.0:1.8 resulted in the formation of desired zeolite phases such as zeolite Y (faujasite and hydroxysodalite. The presented method of sewage sludge ash zeolitization allows to obtain highly usable material. Synthesized zeolites may be used as adsorbents and ion exchangers. They can be potentially used to remove heavy metals as well as ammonia from water and wastewater.

  16. Strong white photoluminescence from annealed zeolites

    International Nuclear Information System (INIS)

    Bai, Zhenhua; Fujii, Minoru; Imakita, Kenji; Hayashi, Shinji

    2014-01-01

    The optical properties of zeolites annealed at various temperatures are investigated for the first time. The annealed zeolites exhibit strong white photoluminescence (PL) under ultraviolet light excitation. With increasing annealing temperature, the emission intensity of annealed zeolites first increases and then decreases. At the same time, the PL peak red-shifts from 495 nm to 530 nm, and then returns to 500 nm. The strongest emission appears when the annealing temperature is 500 °C. The quantum yield of the sample is measured to be ∼10%. The PL lifetime monotonously increases from 223 μs to 251 μs with increasing annealing temperature. The origin of white PL is ascribed to oxygen vacancies formed during the annealing process. -- Highlights: • The optical properties of zeolites annealed at various temperatures are investigated. • The annealed zeolites exhibit strong white photoluminescence. • The maximum PL enhancement reaches as large as 62 times. • The lifetime shows little dependence on annealing temperature. • The origin of white emission is ascribed to the oxygen vacancies

  17. Preparation and characterization of rice hull silica products

    International Nuclear Information System (INIS)

    Quirit, Leni L.; Llaguno, Elma C.; Pagdanganan, Fernando C.; Hernandez, Karen N.

    2008-01-01

    Rice hull is an abundant agricultural waste material which could be a renewable energy source when combusted. The combustion residue (called rice hull ash or RHA) contains a significant amount (20% of the hull) of potentially high grade silica. Silica gels prepared from rice hull were found to have properties comparable to two commercial desiccant silica gels (Blue Merck and FNG-A) in terms of chemical and amorphous structure, surface area, desiccant characteristics, microstructure and heats of adsorption. These properties were determined from water vapor adsorption measurements, electron microscopy, and from infrared and x-ray diffraction spectra. The acid treated rice hull gels were found to have fewer elemental impurities detected by qualitative x-ray fluorescence, compared to the commercial gels. Thermogravimetric analysis (TGA) data showed that this technique can also be used to indirectly compare impurity levels in the samples, in terms of the amorphous to crystalline phase transition. Using an improved acid treatment method, a silica gel sample was prepared from rice hull and compared to three commercial chromatographic silica gels using quantitative elemental x-ray fluorescence analysis. Elemental levels in the rice hull gel were within the range of levels or close to the detection limits of corresponding elements in the chromatographic gels. Water vapor adsorption, x-ray diffraction, infrared spectroscopy and scanning electron microscopy showed that the rice hull gel was similar to the commercial chromatographic silica gel Davison 12. Zeolites are crystalline aluminosilicates used as molecular sieves for purification and catalytic purposes. Zeolites X and Y were synthesized from rice hull silica gel and aluminum hydroxide. For comparison, controls were synthesized from commercial silica gel. The samples and controls exhibited characteristics infrared peaks corresponding to the vibrations of the TO 4 (T=Si, Al) of the zeolite framework. The x

  18. Reaction mechanisms in zeolite catalysis

    NARCIS (Netherlands)

    Rozanska, X.; Santen, van R.A.; Auerbach, S.C.; Carrado, K.A.; Dutta, P.D.

    2003-01-01

    A review; described are the most basic mechanistic reaction steps that are induced by zeolite catalysts. Details on the zeolitic properties that are relevant to mol. reactivity are also provided. The theor. methods and models at hand to allow the investigation of these reaction steps and that have

  19. Electrical conductivity of polyaniline/zeolite composites and synergetic interaction with CO

    International Nuclear Information System (INIS)

    Densakulprasert, Nataporn; Wannatong, Ladawan; Chotpattananont, Datchanee; Hiamtup, Piyanoot; Sirivat, Anuvat; Schwank, Johannes

    2005-01-01

    The effects of zeolite content, pore size and ion exchange capacity on electrical conductivity response to carbon monoxide (CO) of polyaniline/zeolite composites were investigated. Zeolite Y, 13X, and synthesized AlMCM41, all having the common cation Cu 2+ , were dry mixed with synthesized maleic acid (MA) doped polyaniline and compressed to form polyaniline (PANI)/zeolite pellet composites. The Y, 13X and AlMCM41 zeolite have the nominal pore sizes of 7, 10, 36 A, and the Cu 2+ exchange capacities of 0.161, 0.087, and 0.044 mol/g, respectively. With an addition of 13X zeolite to pristine polyaniline, the electrical conductivity sensitivity to CO/N 2 gas increases with zeolite content. For the effect of zeolite type, the highest electrical conductivity sensitivity is obtained with the 13X zeolite, followed by the Y zeolite, and the AlMCM41 zeolite, respectively. Poor sensitivity of zeolite AlMCM41 is probably due to its very large pore size and its lowest Cu 2+ exchange capacity. Y zeolite and 13X zeolite have comparable pore sizes but the latter has a greater pore free volume and a more favorable location distribution of the Cu 2+ ions within the pore. The temporal response time increases with the amount of zeolite in the composites but it is inversely related to the amount of ion exchange capacity

  20. Development of spent salt treatment technology by zeolite column system. Performance evaluation of zeolite column

    International Nuclear Information System (INIS)

    Miura, Hidenori; Uozumi, Koichi

    2009-01-01

    At electrorefining process, fission products(FPs) accumulate in molten salt. To avoid influence on heating control by decay heat and enlargement of FP amount in the recovered fuel, FP elements must be removed from the spent salt of the electrorefining process. For the removal of the FPs from the spent salt, we are investigating the availability of zeolite column system. For obtaining the basic data of the column system, such as flow property and ion-exchange performance while high temperature molten salt is passing through the column, and experimental apparatus equipped with fraction collector was developed. By using this apparatus, following results were obtained. 1) We cleared up the flow parameter of column system with zeolite powder, such as flow rate control by argon pressure. 2) Zeolite 4A in the column can absorb cesium that is one of the FP elements in molten salt. From these results, we got perspective on availability of the zeolite column system. (author)

  1. Adsorption Cooling System Using Metal-Impregnated Zeolite-4A

    Directory of Open Access Journals (Sweden)

    Somsuk Trisupakitti

    2016-01-01

    Full Text Available The adsorption cooling systems have been developed to replace vapor compression due to their benefits of being environmentally friendly and energy saving. We prepared zeolite-4A and experimental cooling performance test of zeolite-water adsorption system. The adsorption cooling test-rig includes adsorber, evaporator, and condenser which perform in vacuum atmosphere. The maximum and minimum water adsorption capacity of different zeolites and COP were used to assess the performance of the adsorption cooling system. We found that loading zeolite-4A with higher levels of silver and copper increased COP. The Cu6%/zeolite-4A had the highest COP at 0.56 while COP of zeolite-4A alone was 0.38. Calculating the acceleration rate of zeolite-4A when adding 6% of copper would accelerate the COP at 46%.

  2. Natural zeolite reactivity towards ozone: The role of compensating cations

    International Nuclear Information System (INIS)

    Valdés, Héctor; Alejandro, Serguei; Zaror, Claudio A.

    2012-01-01

    Highlights: ► Chemical and thermal treatment enhances catalytic activity of natural zeolite. ► Modified natural zeolite exhibits high stability after thermal treatment. ► Reducing the compensating cation content leads to an increase on ozone abatement. ► Surface active atomic oxygen was detected using the DRIFT technique. ► The highest reactivity toward ozone was performed by NH4Z3 zeolite sample. - Abstract: Among indoor pollutants, ozone is recognised to pose a threat to human health. Recently, low cost natural zeolites have been applied as alternative materials for ozone abatement. In this work, the effect of compensating cation content of natural zeolite on ozone removal is studied. A Chilean natural zeolite is used here as starting material. The amount of compensating cations in the zeolite framework was modified by ion exchange using an ammonium sulphate solution (0.1 mol L −1 ). Characterisation of natural and modified zeolites were performed by X-ray powder diffraction (XRD), nitrogen adsorption at 77 K, elemental analysis, X-ray fluorescence (XRF), thermogravimetric analysis coupled with mass spectroscopy (TGA-MS), and temperature-programmed desorption of ammonia (NH 3 -TPD). Ozone adsorption and/or decomposition on natural and modified zeolites were studied by diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS). Results show that the zeolite compensating cation content affects ozone interaction with zeolite active sites. Ammonium ion-exchange treatments followed by thermal out-gassing at 823 K, reduces ozone diffusion resistance inside the zeolite framework, increasing ozone abatement on zeolite surface active sites. Weak and strong Lewis acid sites of zeolite surface are identified here as the main active sites responsible of ozone removal.

  3. Zeolitization at uranium ore manifestation

    International Nuclear Information System (INIS)

    Petrosyan, R.V.; Buntikova, A.F.

    1981-01-01

    The process of zeolitization at uranium ore manifestation is studied. A specific type of low-temperature wall endogenous alteration of rocks due to the effect of primary acid solution with low content of carbonic acid is established. Leaching of calcium from enclosing rocks and its deposition in ore-accompanying calcium zeolites is a characteristic feature of wall-metasomatosis. Formation of desmin- calcite-laumontite and quartz-fluoroapatite of vein associations, including ore minerals (uranophane and metaotenite), is genetically connected with calcium metasomatosis. On the basis of the connection of ore minerals with endogeneous process of zeolitization a conclusion can be made on endogenous origin of uranophane and metaotenite [ru

  4. Natural zeolite reactivity towards ozone: the role of compensating cations.

    Science.gov (United States)

    Valdés, Héctor; Alejandro, Serguei; Zaror, Claudio A

    2012-08-15

    Among indoor pollutants, ozone is recognised to pose a threat to human health. Recently, low cost natural zeolites have been applied as alternative materials for ozone abatement. In this work, the effect of compensating cation content of natural zeolite on ozone removal is studied. A Chilean natural zeolite is used here as starting material. The amount of compensating cations in the zeolite framework was modified by ion exchange using an ammonium sulphate solution (0.1 mol L(-1)). Characterisation of natural and modified zeolites were performed by X-ray powder diffraction (XRD), nitrogen adsorption at 77K, elemental analysis, X-ray fluorescence (XRF), thermogravimetric analysis coupled with mass spectroscopy (TGA-MS), and temperature-programmed desorption of ammonia (NH(3)-TPD). Ozone adsorption and/or decomposition on natural and modified zeolites were studied by diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS). Results show that the zeolite compensating cation content affects ozone interaction with zeolite active sites. Ammonium ion-exchange treatments followed by thermal out-gassing at 823 K, reduces ozone diffusion resistance inside the zeolite framework, increasing ozone abatement on zeolite surface active sites. Weak and strong Lewis acid sites of zeolite surface are identified here as the main active sites responsible of ozone removal. Copyright © 2012 Elsevier B.V. All rights reserved.

  5. Fructose dehydration to 5-hydroxymethylfurfural over solid acid catalysts in a biphasic system

    NARCIS (Netherlands)

    Ordomskiy, V.; Schouten, J.C.; Schaaf, van der J.; Nijhuis, T.A.

    2012-01-01

    Different acidic heterogeneous catalysts like alumina, aluminosilicate, zirconium phosphate, niobic acid, ion-exchange resin Amberlyst-15, and zeolite MOR have been studied in fructose dehydration to 5-hydroxymethylfurfural (HMF). The acidity of these materials was characterized using

  6. Zeolite and swine inoculum effect on poultry manure biomethanation

    DEFF Research Database (Denmark)

    Kougias, Panagiotis; Fotidis, Ioannis; Zaganas, I.D.

    2013-01-01

    Poultry manure is an ammonia-rich substrate that inhibits methanogenesis, causing severe problems to the anaerobic digestion process. In this study, the effect of different natural zeolite concentrations on the mesophilic anaerobic digestion of poultry waste inoculated with well-digested swine...... manure was investigated. A significant increase in methane production was observed in treatments where zeolite was added, compared to the treatment without zeolite.Methane production in the treatment with 10 g dm-3 of natural zeolite was found to be 109.75% higher compared to the treatment without...... zeolite addition. The results appear to be influenced by the addition of zeolite, which reduces ammonia toxicity in anaerobic digestion and by the ammonia-tolerant swine inoculum....

  7. Zeolite and swine inoculum effect on poultry manure biomethanation

    Science.gov (United States)

    Kougias, P. G.; Fotidis, I. A.; Zaganas, I. D.; Kotsopoulos, T. A.; Martzopoulos, G. G.

    2013-03-01

    Poultry manure is an ammonia-rich substrate that inhibits methanogenesis, causing severe problems to the anaerobic digestion process. In this study, the effect of different natural zeolite concentrations on the mesophilic anaerobic digestion of poultry waste inoculated with well-digested swine manure was investigated. A significant increase in methane production was observed in treatments where zeolite was added, compared to the treatment without zeolite.Methane production in the treatment with 10 g dm-3 of natural zeolite was found to be 109.75% higher compared to the treatment without zeolite addition. The results appear to be influenced by the addition of zeolite, which reduces ammonia toxicity in anaerobic digestion and by the ammonia-tolerant swine inoculum.

  8. Three Mile Island zeolite vitirification demonstration program

    International Nuclear Information System (INIS)

    Siemens, D.H.; Knowlton, D.E.; Shupe, M.W.

    1981-06-01

    The cleanup of the high-activity-level water at Three Mile Island (TMI) provides an opportunity to further develop waste management technology. Approximately 790,000 gallons of high-activity-level water at TMI's Unit-2 Nuclear Power Station will be decontaminated at the site using the submerged demineralizer system (SDS). In the SDS process, the cesium and strontium in the water are sorbed onto zeolite that is contained within metal liners. The Department of Energy has asked the Pacific Northwest Laboratory (PNL) to take a portion of the zeolite from the SDS process and demonstrate, on a production scale, that this zeolite can be vitrified using the in-can melting process. This paper is a brief overview of the TMI zeolite vitrification program. The first section discusses the formulation of a glass suitable for immobilizing SDS zeolite. The following section describes a feed system that was developed to feed zeolite to the in-can melter. It also describes the in-can melting process and the government owned facilities in which the demonstrations will take place. Finally, the schedule for completing the program activities is outlined

  9. Zeolites and Zeotypes for Oil and Gas Conversion

    NARCIS (Netherlands)

    Vogt, Eelco T C; Whiting, Gareth T.; Dutta Chowdhury, Abhishek; Weckhuysen, Bert M.

    2015-01-01

    Zeolite-based catalyst materials are widely used in chemical industry. In this chapter, the applications of zeolites and zeotypes in the catalytic conversion of oil and gas are reviewed. After a general introduction to zeolite science and technology, we discuss refinery applications, such as fluid

  10. Natural zeolite reactivity towards ozone: The role of compensating cations

    Energy Technology Data Exchange (ETDEWEB)

    Valdes, Hector, E-mail: hvaldes@ucsc.cl [Laboratorio de Tecnologias Limpias (F. Ingenieria), Universidad Catolica de la Santisima Concepcion, Alonso de Ribera 2850, Concepcion (Chile); Alejandro, Serguei; Zaror, Claudio A. [Departamento de Ingenieria Quimica (F. Ingenieria), Universidad de Concepcion, Concepcion (Chile)

    2012-08-15

    Highlights: Black-Right-Pointing-Pointer Chemical and thermal treatment enhances catalytic activity of natural zeolite. Black-Right-Pointing-Pointer Modified natural zeolite exhibits high stability after thermal treatment. Black-Right-Pointing-Pointer Reducing the compensating cation content leads to an increase on ozone abatement. Black-Right-Pointing-Pointer Surface active atomic oxygen was detected using the DRIFT technique. Black-Right-Pointing-Pointer The highest reactivity toward ozone was performed by NH4Z3 zeolite sample. - Abstract: Among indoor pollutants, ozone is recognised to pose a threat to human health. Recently, low cost natural zeolites have been applied as alternative materials for ozone abatement. In this work, the effect of compensating cation content of natural zeolite on ozone removal is studied. A Chilean natural zeolite is used here as starting material. The amount of compensating cations in the zeolite framework was modified by ion exchange using an ammonium sulphate solution (0.1 mol L{sup -1}). Characterisation of natural and modified zeolites were performed by X-ray powder diffraction (XRD), nitrogen adsorption at 77 K, elemental analysis, X-ray fluorescence (XRF), thermogravimetric analysis coupled with mass spectroscopy (TGA-MS), and temperature-programmed desorption of ammonia (NH{sub 3}-TPD). Ozone adsorption and/or decomposition on natural and modified zeolites were studied by diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS). Results show that the zeolite compensating cation content affects ozone interaction with zeolite active sites. Ammonium ion-exchange treatments followed by thermal out-gassing at 823 K, reduces ozone diffusion resistance inside the zeolite framework, increasing ozone abatement on zeolite surface active sites. Weak and strong Lewis acid sites of zeolite surface are identified here as the main active sites responsible of ozone removal.

  11. Sorption of radioactive cobalt with sepiolite and erionite

    International Nuclear Information System (INIS)

    Bonifacio M, G.

    1994-01-01

    60 Co present in aqueous solutions may be sorbed in clays or zeolites. If the solids are suspended in aqueous solutions, the cations of the solids may be exchanged with 60 Co 2+ ions present in the solutions. Natural aluminosilicate are used for separation of radioactive cations which are present in waste liquids from radiochemical laboratories. The natural sepiolite lattice is almost neutral, having a cation exchange capacity in the order of 0.05 meg/g. It is shown that mild treatment with NaOH solution (2M) results in partial substitution by cations present in the natural sepiolite, in the other hand, during treatment with NaAlO 2 in a 6N NaOH solution at 90 Centigrade degrees it has been produced an aluminated sepiolite resulting in partial Mg-by-Al substitution in the octahedral layer. The crystallinity of the samples before and after the ion exchange was studied by X-ray diffraction. The aim of this paper is to study the Co 2+ ion exchange behavior in this aluminosilicate and to compare it with natural mexican erionite. The natural sepiolite from Vallecas, Spain is recommended as 60 Co adsorbent. This clay is directly obtained from the mineral field without any treatment. (Author)

  12. CoX zeolites and their exchange with deuterium

    Energy Technology Data Exchange (ETDEWEB)

    Novakova, J; Kubelkova, L; Jiru, P [Ceskoslovenska Akademie Ved, Prague. Ustav Fyzikalni Chemie

    1976-04-01

    An analysis of the gaseous phase using a mass spectrometer and analysis of the solid phase using an infrared spectrophotometer was made to investigate the deuterium exchange with hydrogen mostly bound in hydroxyl groups of zeolites CoX(21 and 47%) and NaX. It was found that with the increasing amount of cobalt ions the number of exchangeable hydrogens of the zeolite increases; the respective types of the hydrogen are discussed with respect to the particular dehydration temperatures. The rate of the D/sub 2/+OH exchange is substantially faster with the CoX than with the NaX zeolite, and exhibits a decrease with increasing dehydration. On the other hand, the rate of D/sub 2/+H/sub 2/ exchange without zeolite hydrogen incorporation, catalyzed by CoX zeolites, increases with increasing dehydration. The increased activation of gaseous hydrogen molecules is related to the presence in the zeolite of cobalt ions whose properties change during dehydration with the change in their environment. Hydroxyl groups of the CoX zeolites are not equivalent during the exchange; the hydroxyl hydrogens of the 3740 cm/sup -1/ band are exchanged more slowly than are the other hydrogens.

  13. CoX zeolites and their exchange with deuterium

    International Nuclear Information System (INIS)

    Novakova, J.; Kubelkova, L.; Jiru, P.

    1976-01-01

    An analysis of the gaseous phase using a mass spectrometer and analysis of the solid phase using an infrared spectrophotometer was made to investigate the deuterium exchange with hydrogen mostly bound in hydroxyl groups of zeolites CoX(21 and 47%) and NaX. It was found that with the increasing amount of cobalt ions the number of exchangeable hydrogens of the zeolite increases; the respective types of the hydrogen are discussed with respect to the particular dehydration temperatures. The rate of the D 2 +OH exchange is substantially faster with the CoX than with the NaX zeolite, and exhibits a decrease with increasing dehydration. On the other hand, the rate of D 2 +H 2 exchange without zeolite hydrogen incorporation, catalyzed by CoX zeolites, increases with increasing dehydration. The increased activation of gaseous hydrogen molecules is related to the presence in the zeolite of cobalt ions whose properties change during dehydration with the change in their environment. Hydroxyl groups of the CoX zeolites are not equivalent during the exchange; the hydroxyl hydrogens of the 3740 cm -1 band are exchanged more slowly than are the other hydrogens. (author)

  14. Dry method for recycling iodine-loaded silver zeolite

    International Nuclear Information System (INIS)

    Thomas, T.R.; Staples, B.A.; Murphy, L.P.

    1978-01-01

    Fission product iodine is removed from a waste gas stream and stored by passing the gas stream through a bed of silver-exchanged zeolite until the zeolite is loaded with iodine, passing dry hydrogen gas through the bed to remove the iodine and regenerate the bed, and passing the hydrogen stream containing the hydrogen iodide thus formed through a lead-exchanged zeolite which absorbs the radioactive iodine from the gas stream and permanently storing the lead-exchanged zeolite loaded with radioactive iodine

  15. Properties of Aluminosilicate Refractories with Synthesized Boron-Modified TiO2 Nanocrystals

    Directory of Open Access Journals (Sweden)

    Claudia Carlucci

    2015-03-01

    ture was analysed by Scanning Electron Microscopy (SEM and energy dispersion spectroscopy (EDS. The bricks obtained with nanoadditives presented improved mechanical characteristics with respect to the typical aluminosilicates, presumably because of a better compac‐ tion during the raw materials’ mixing stage.

  16. Improved Catalysts for Heavy Oil Upgrading Based on Zeolite Y Nanoparticles Encapsulated Stable Nanoporous Host

    Energy Technology Data Exchange (ETDEWEB)

    Conrad Ingram; Mark Mitchell

    2007-03-31

    The addition of hydrothermally-aged zeolite Y precursor to an SBA-15 synthesis mixture under a mildly acidic condition resulted in the formation of a mesoporous aluminosilicate catalyst, AlSBA-15. The Al-SBA-15 mesoporous catalyst contains strong Br{umlt o}nsted acid sites and aluminum (Al) stabilized in a totally tetrahedral coordination. The physicochemical characteristics of the catalyst varied as a function of the synthesis conditions. The catalyst possessed surface areas ranging between 690 and 850 m{sup 2}/g, pore sizes ranging from 5.6 to 7.5 nm, and pore volumes up 1.03 cm{sup 3}, which were comparable to the parent SBA-15 synthesized under similar conditions. Two wt % Al was present in the catalyst that was obtained from the reaction mixture that contained the highest Al content. The Al remained stable in totally tetrahedral coordination after calcination at a temperature of 550 C. The Al-SBA-15 mesoporous catalyst showed significant catalytic activity for cumene dealkylation, and the activity increased as the amount of zeolite precursor added to the SBA-15 mixture was increased. In preparation for the final phase of the project, the catalyst was embedded into a psuedoboemite alumina (catapal B) matrix and then formed into pellets. In the final phase of the project, the pelletized catalyst is being evaluated for the conversion of a heavy petroleum feedstock to naphtha and middle distillates. This phase was significantly delayed during the past six months due to a serious malfunction of the fume hoods in the Clark Atlanta University's Research Center for Science and Technology, where the project is being conducted. The fume hood system was repaired and the catalyst evaluation is now underway.

  17. Suspending Zeolite Particles In Tanks

    International Nuclear Information System (INIS)

    Poirier, M.R.

    1999-01-01

    The Savannah River Site (SRS) is in the process of removing waste (sludge and salt cake) from million gallon waste tanks. The current practice for removing waste from the tanks is adding water, agitating the tanks with long shaft vertical centrifugal pumps, and pumping the sludge/salt solution from the tank to downstream treatment processes. This practice has left sludge heels (tilde 30,000 gallons) in the bottom of the tanks. SRS is evaluating shrouded axial impeller mixers for removing the sludge heels in the waste tanks. The authors conducted a test program to determine mixer requirements for suspending sludge heels using the shrouded axial impeller mixers. The tests were performed with zeolite in scaled tanks which have diameters of 1.5, 6.0, and 18.75 feet. The mixer speeds required to suspend zeolite particles were measured at each scale. The data were analyzed with various scaling methods to compare their ability to describe the suspension of insoluble solids with the mixers and to apply the data to a full-scale waste tank. The impact of changes in particle properties and operating parameters was also evaluated. The conclusions of the work are: Scaling of the suspension of fast settling zeolite particles was best described by the constant power per unit volume method. Increasing the zeolite particle concentration increased the required mixer power needed to suspend the particles. Decreasing the zeolite particle size from 0.7 mm 0.3 mm decreased the required mixer power needed to suspend the particles. Increasing the number of mixers in the tank decreased the required mixer power needed to suspend the particles. A velocity of 1.6 ft/sec two inches above the tank bottom is needed to suspend zeolite particles

  18. Removal of strontium ions from solutions using granulated zeolites

    International Nuclear Information System (INIS)

    Bronic, J.; Subotic, B.

    1992-01-01

    The ion-exchange process on columns filled with granulated zeolites is determined by several physico-chemical parameters. The influence of these parameters (zeolite type, concentration of exchangeable ions in solution, temperature, flow rate, etc.) on the kinetics of ion-exchange process was studied by measuring the Sr 2+ ion concentration in solution before and after passing through a column filled with various granulated zeolites (zeolite 13X, zeolite A and synthetic mordenite). Using the experimental technique of radioactive labeling by 89 Sr, the distribution of Sr 2+ ions in column fillings were also determined. From the results obtained, the optimal conditions for the most efficient removal of strontium ions from solutions using granulated zeolites can be defined. (author) 24 refs.; 9 figs

  19. Exchange of deuterium with hydrogen of zeolite catalyst surface

    International Nuclear Information System (INIS)

    Minachev, Kh.M.; Dmitriev, R.V.; Penchev, V.; Kanazirev, V.; Minchev, Kh.; Kasimov, Ch.K.; Bylgarska Akademiya na Naukite, Sofia. Inst. za Obshta i Organichna Khimiya; AN Azerbajdzhanskoj SSR, Baku. Inst. Neftekhimicheskikh Protsessov)

    1981-01-01

    Isotope heteromolecular exchange of hydrogen on the reduced nickel-containing zeolites takes places at the temperatures above 100 deg and it is controlled by activated hydrogen transfer from metal particles on the substrate surface. High-temperature redox treatment of nickel-containing zeolites results in the formation of large nickel crystallites on zeolite external faces. The rest part of nickel remains in zeolite pores and conditions a high promoting effect in the exchange reaction. Catalytic activity of reduced zeolites NiCaNaY in toluene disproportionation increases considerably only in the cases when nickel is introduced into zeolite by means of ion exchange. Close spatial location of nickel particles and OH groups promotes the procedure of both isotope exchange and disproportionation of toluene [ru

  20. Catalytic upgrading of oleic acid into biofuel using Mo modified zeolite supported Ni oxalate catalyst functionalized with fluoride ion

    International Nuclear Information System (INIS)

    Ayodele, O.B.; Abbas, Hazzim F.; Daud, Wan Mohd Ashri Wan

    2014-01-01

    Highlights: • Modification of zeolite with freshly prepared molybdenum oxalate. • Functionalization of Ni oxalate with HF and incorporation into Mo modified zeolite. • Characterization of synthesized Mo modified zeolite supported Ni oxalate catalyst. • Deoxygenation of oleic acid with the synthesized zeolite supported catalyst. • Reusability study on the synthesized zeolite supported catalyst. - Abstract: In this study, fluoride ion functionalized nickel oxalate supported on molybdenum modified zeolite (NiMoFOx/Zeol) catalyst was synthesized, characterized and tested on the hydrodeoxygenation (HDO) of oleic acid (OA) into paraffinic fuel. The NiMoFOx/Zeol characterization results confirmed the presence of both Ni and Mo as well as the formation of NiMoO 4 which is a highly HDO reactive specie at 2θ value of 43.6° according to the XRD result. NiMoFOx/Zeol also showed loss in crystallinity and reduction in the average particle size leading to increase in the pore volume and specific surface area due to the combined effects of fluoride ion presence, oxalic acid functionalization and calcination. The effect of temperature, pressure and NiMoFOx/Zeol loading studied showed that initial increase in their values increased the yield of the target fractions until some points where reduction was observed. The best observed experimental conditions to hydrodeoxygenate 40 g (∼45 mL) of OA into 75% n-C 18 and 23% i-C 18 were 360 °C, 30 mg NiMoFOx/Zeol loading and 20 bar using 100 mL H 2 /min. The presence of i-C 18 was due to the functionalization of the catalyst with fluoride ion. The catalyst reusability result displayed excellent qualities with marginal loss of only 2% in activity after third reuse due to the improved synthesis protocol that employed organometallic precursor. The results are strongly encouraging for further studies toward industrialization of HDO process

  1. Structure modification of natural zeolite for waste removal application

    Science.gov (United States)

    Widayatno, W. B.

    2018-03-01

    Tremendous industrialization in the last century has led to the generation of huge amount of waste. One of the recent hot research topics is utilizing any advance materials and methods for waste removal. Natural zeolite as an inexpensive porous material with a high abundance holds a key for efficient waste removal owing to its high surface area. However, the microporous structure of natural zeolite hinders the adsorption of waste with a bigger molecular size. In addition, the recovery of natural zeolite after waste adsorption into its pores should also be considered for continuous utilization of this material. In this study, the porosity of natural zeolite from Tasikmalaya, Indonesia, was hydrothermally-modified in a Teflon-lined autoclave filled with certain pore directing agent such as distilled water, KOH, and NH4OH to obtain hierarchical pore structure. After proper drying process, the as-treated natural zeolite is impregnated with iron cation and heat-treated at specified temperature to get Fe-embedded zeolite structure. XRD observation is carried out to ensure the formation of magnetic phase within the zeolite pores. The analysis results show the formation of maghemite phase (γ-Fe2O3) within the zeolite pore structure.

  2. Oxidation of cyclohexane catalyzed by metal-ion-exchanged zeolites.

    Science.gov (United States)

    Sökmen, Ilkay; Sevin, Fatma

    2003-08-01

    The ion-exchange rates and capacities of the zeolite NaY for the Cu(II), Co(II), and Pb(II) metal ions were investigated. Ion-exchange equilibria were achieved in approximately 72 h for all the metal ions. The maximum ion exchange of metal ions into the zeolite was found to be 120 mg Pb(II), 110 mg Cu(II), and 100 mg Co(II) per gram of zeolite NaY. It is observed that the exchange capacity of a zeolite varies with the exchanged metal ion and the amount of metal ions exchanged into zeolite decreases in the sequence Pb(II) > Cu(II) > Co(II). Application of the metal-ion-exchanged zeolites in oxidation of cyclohexane in liquid phase with visible light was examined and it is observed that the order of reactivity of the zeolites for the conversion of cyclohexane to cyclohexanone and cyclohexanol is CuY > CoY > PbY. It is found that conversion increases by increase of the empty active sites of a zeolite and the formation of cyclohexanol is favored initially, but the cyclohexanol is subsequently converted to cyclohexanone.

  3. Calcium-Magnesium-Aluminosilicate (CMAS) Reactions and Degradation Mechanisms of Advanced Environmental Barrier Coatings

    Science.gov (United States)

    Ahlborg, Nadia L.; Zhu, Dongming

    2013-01-01

    The thermochemical reactions between calcium-magnesium-aluminosilicate- (CMAS-) based road sand and several advanced turbine engine environmental barrier coating (EBC) materials were studied. The phase stability, reaction kinetics and degradation mechanisms of rare earth (RE)-silicates Yb2SiO5, Y2Si2O7, and RE-oxide doped HfO2 and ZrO2 under the CMAS infiltration condition at 1500 C were investigated, and the microstructure and phase characteristics of CMAS-EBC specimens were examined using Scanning Electron Microscopy (SEM) and X-ray Diffraction (XRD). Experimental results showed that the CMAS dissolved RE-silicates to form crystalline, highly non-stoichiometric apatite phases, and in particular attacking the silicate grain boundaries. Cross-section images show that the CMAS reacted with specimens and deeply penetrated into the EBC grain boundaries and formed extensive low-melting eutectic phases, causing grain boundary recession with increasing testing time in the silicate materials. The preliminary results also showed that CMAS reactions also formed low melting grain boundary phases in the higher concentration RE-oxide doped HfO2 systems. The effect of the test temperature on CMAS reactions of the EBC materials will also be discussed. The faster diffusion exhibited by apatite and RE-doped oxide phases and the formation of extensive grain boundary low-melting phases may limit the CMAS resistance of some of the environmental barrier coatings at high temperatures.

  4. Ion exchange and hydrolysis reactions in zeolites

    International Nuclear Information System (INIS)

    Harjula, Risto.

    1993-09-01

    Among other uses, zeolites are efficient cation exchangers for aquatic pollution control. At present they they are mainly used in nuclear waste effluent treatment and in detergency. In the thesis, several ion exchange equilibria, important in these main fields of zeolite applications, were studied, with special emphasis on the formulation and calculation of the equilibria. The main interest was the development of thermodynamic formulations for the calculation of zeolite ion exchange equilibria in solutions of low or very low (trace) ion concentration, which are relevant for the removal of trace pollutants, such as radionuclides, from waste waters. Two groups of zeolite-cation systems were studied. First, binary Ca 2+ /Na + exchange in zeolites X and Y, which are of interest for detergency applications. Second, binary Cs + /Na + and Cs + /K + exchanges, and ternary Cs + /Na + /K + exchange in mordenite, which are important in nuclear waste effluent treatment. The thesis is based on five previous publications by author. (100 refs., 7 figs.)

  5. Positron spectroscopy studies of zeolites

    Science.gov (United States)

    Hung, Ku-Jung

    The lineshapes of two-dimensional angular correlation of electron-positron annihilation radiation (2D-ACAR) in alumina and several zeolites were measured as a function of internal surface areas. In all cases, the lineshape parameter S from 2D-ACAR spectra were found to vary proportionally with internal surface area. In order to investigate the Bronsted acidity in NaHY zeolite, the lineshape parameter evaluation from 2D-ACAR measurements for varied acidity in NaHY zeolites by ion-exchange and thermal desorption were presented. The result from this investigation has demonstrated that the Bronsted acidity in NaHY zeolite was found to vary linearly with the lineshape parameter of the angular correlation spectrum of the sample. The lineshapes of 2D-ACAR spectra were determined for different base adsorbed HY-zeolite samples under a temperature controlled heating system in order to investigate, in-situ, the acid strength and number of Bronsted acid sites in the sample. Results have shown that the lineshape parameter of the angular correlation spectrum of the sample increases with the strength of adsorbed base and decreases with the number of Bronsted acid sites in the sample. This indicated that the lineshape parameter is sensitive to all of the strengths and concentrations of Bronsted acid sites in the HY-zeolite samples. The result from this study has also demonstrated that the large size base, pyridine, would reduce the possibility of positronium formation in the sample by filling the cage to eliminate the internal surface areas where the positroniums are likely to form. However, the small size base, ammonia, did not show any effect on the internal surface areas. Owing to the fact that this technique monitors only the Bronsted acid sites that situate on the surface which relates to the catalytic activity, there is little ambiguity about the location of the source of information obtained. The findings presented in this dissertation point out the fact that such lineshape

  6. Mechanism of nitric acid generation on Ag-X Zeolite

    International Nuclear Information System (INIS)

    Kanazawa, T.; Kishimoto, T.; Haseba, S.; Mitoh, Y.; Itoh, S.; Nakai, I.

    1983-01-01

    When Ag-X Zeolite is used for the removal of iodine from the off gas streams of nuclear facilities, it is possible that nitric acid is formed on Ag-X Zeolite from co-existing nitrogen dioxide and water vapor. If nitric acid is formed on the surface of Ag-X zeolite, Ag-X zeolite is damaged and is not able to operate for a long time. When Ag-X zeolite is used in NO 2 -O 2 -H 2 O mixture, the nitric acid generation reaction is varied, depending upon the reaction temperature, and concentration of NO 2 and H 2 O. At a temperature of more than 40 deg. C, however, only the surface reaction will be progressed on the zeolite surface. The generation of nitric acid solution on the zeolite can be forecasted through the relationship between the concentration of nitric acid solution, equilibrium vapor pressure of H 2 O, and equilibrium vapor pressure of HNO 3 . Concerning the surface reaction caused on the zeolite, the adsorption water reacts on NO 2 , and the resulting HNO 3 is adsorbed firmly by the zeolite, which is thought to interfere with the surface reaction for generation of the HNO 3 . When the adsorption bed is long, the time required for adsorbed HNO 3 to saturate is increased in proportion to the bed length

  7. Environmental effects on fatigue of alkaline earth aluminosilicate glass with varying fictive temperature

    DEFF Research Database (Denmark)

    Striepe, Simon; Deubener, Joachim; Smedskjær, Morten Mattrup

    2013-01-01

    The influence of relative humidity on microhardness, stress intensity, crack resistance, and sub-critical crack growth of an alkaline earth aluminosilicate glass has been studied by Vickers indentation. Quenched and annealed glasses with a wide range of fictive temperatures (ΔTf ≈ 130 K) are comp......The influence of relative humidity on microhardness, stress intensity, crack resistance, and sub-critical crack growth of an alkaline earth aluminosilicate glass has been studied by Vickers indentation. Quenched and annealed glasses with a wide range of fictive temperatures (ΔTf ≈ 130 K....... The glasses with lower fictive temperature exhibit a larger change in the micromechanical properties when comparing wet and dry conditions. Finally, it is found that sub-critical crack growth is larger in the low fictive temperature glasses, indicating a diminished resistance against fatigue and stress...

  8. Synthesis and characterization of zeolite from coal fly ash

    Science.gov (United States)

    Liu, Yong; Luo, Qiong; Wang, Guodong; Li, Xianlong; Na, Ping

    2018-05-01

    Fly ash (FA) from coal-based thermal power plant was used to synthesize zeolite in NaOH solution with hydrothermal method in this work. Firstly, the effects of calcination and acid treatment on the removal of impurities in fly ash were studied. Then based on the pretreated FA, the effects of alkali concentration, reaction temperature and Si/Al ratio on the synthesis of zeolite were studied in detail. The mineralogy, morphology, thermal behavior, infrared spectrum and specific surface for the synthetic sample were investigated. The results indicated that calcination at 750 °C for 1.5 h can basically remove unburned carbon from FA, and 4 M hydrochloric acid treatment of calcined FA at 90 °C for 2 h will reduce the quality of about 34.3%wt, which are mainly iron, calcium and sulfur elements. The concentration of NaOH, reaction temperature and Si/Al ratio have important effect on the synthesis of zeolite. In this study, 0.5 M NaOH cannot obtain any zeolite. High temperature is beneficial to zeolite synthesis from FA, but easily lead to a variety of zeolites. The synthetic sample contains three kinds of zeolites such as zeolite P, sodalite and zeolite X, when the reaction conditions are 2 M NaOH and 120 °C for 24 h. In this research, quartz always exists in the synthetic sample, but will reduce with the increase of temperature. The synthetic zeolite has the specific surface area of about 42 m2 g‑1 and better thermal stability.

  9. Synthesis of LTA zeolite for bacterial adhesion

    Energy Technology Data Exchange (ETDEWEB)

    Belaabed, R.; Eabed, S.; Addaou, A.; Laajab, A.; Rodriguez, M.A.; Lahsini, A.

    2016-07-01

    High affinity and adhesion capacity for Gram-positive bacteria on minerals has been widely studied. In this work the adhesion of bacteria on synthesized zeolite has been studied. The Zeolite Linde Type A (LTA) has been synthesized using hydrothermal route using processing parameters to obtain low cost materials. For adhesion studies Staphylococcus aureus and Bacillus subtilis were used as Gram-positive bacteria, Escherichia coli and Pseudomonas aeruginosa are used as Gram-negative bacteria. X-ray diffraction, environmental scanning electron microscope and attenuated total reflection-Fourier transform infrared spectroscopy were used to characterize the synthesized zeolite. To evaluate the bacterial adhesion to zeolite LTA the hydrophobicity and surface properties are examined using contact angle measurement. (Author)

  10. Nanocellulose-Zeolite Composite Films for Odor Elimination.

    Science.gov (United States)

    Keshavarzi, Neda; Mashayekhy Rad, Farshid; Mace, Amber; Ansari, Farhan; Akhtar, Farid; Nilsson, Ulrika; Berglund, Lars; Bergström, Lennart

    2015-07-08

    Free standing and strong odor-removing composite films of cellulose nanofibrils (CNF) with a high content of nanoporous zeolite adsorbents have been colloidally processed. Thermogravimetric desorption analysis (TGA) and infrared spectroscopy combined with computational simulations showed that commercially available silicalite-1 and ZSM-5 have a high affinity and uptake of volatile odors like ethanethiol and propanethiol, also in the presence of water. The simulations showed that propanethiol has a higher affinity, up to 16%, to the two zeolites compared with ethanethiol. Highly flexible and strong free-standing zeolite-CNF films with an adsorbent loading of 89 w/w% have been produced by Ca-induced gelation and vacuum filtration. The CNF-network controls the strength of the composite films and 100 μm thick zeolite-CNF films with a CNF content of less than 10 vol % displayed a tensile strength approaching 10 MPa. Headspace solid phase microextraction (SPME) coupled to gas chromatography-mass spectroscopy (GC/MS) analysis showed that the CNF-zeolite films can eliminate the volatile thiol-based odors to concentrations below the detection ability of the human olfactory system. Odor removing zeolite-cellulose nanofibril films could enable improved transport and storage of fruits and vegetables rich in odors, for example, onion and the tasty but foul-smelling South-East Asian Durian fruit.

  11. Composite media for fluid stream processing, a method of forming the composite media, and a related method of processing a fluid stream

    Science.gov (United States)

    Garn, Troy G; Law, Jack D; Greenhalgh, Mitchell R; Tranter, Rhonda

    2014-04-01

    A composite media including at least one crystalline aluminosilicate material in polyacrylonitrile. A method of forming a composite media is also disclosed. The method comprises dissolving polyacrylonitrile in an organic solvent to form a matrix solution. At least one crystalline aluminosilicate material is combined with the matrix solution to form a composite media solution. The organic solvent present in the composite media solution is diluted. The composite media solution is solidified. In addition, a method of processing a fluid stream is disclosed. The method comprises providing a beads of a composite media comprising at least one crystalline aluminosilicate material dispersed in a polyacrylonitrile matrix. The beads of the composite media are contacted with a fluid stream comprising at least one constituent. The at least one constituent is substantially removed from the fluid stream.

  12. Diagenetic Quartz Morphologies and Zeolite formation

    DEFF Research Database (Denmark)

    Kazerouni, Afsoon Moatari; Hansen, Rikke Weibel; Friis, Henrik

    the Siri Canyon wells.  Volcanic lithoclasts are strongly altered and associated with diagenetic opal/ microquartz coatings and zeoliteZeolite crystals formed simultaneously with opal and prior to microquartz but dissolved with increased burial depth.  The dissolution of zeolite followed two steps...... in samples where no volcanic ash is demonstrated; it seems that a rapid supply of dissolved silica from dissolution of siliceous fossils was the main reason for the early co-precipitation of opal and zeolite. There are two important sources for Si: 1) Biogenic opal from diatoms or radiolarians, which...... are abundant in some of associated shales; and 2) volcanic ash. The dissolution of biogenic silica may result in a rapid release of silica thereby promoting the formation of diagenetic opal/microquartz, but there may be a limited release of Al. A limited release of Al may result in precipitation of Si...

  13. Structure and properties of sodium aluminosilicate glasses from molecular dynamics simulations

    DEFF Research Database (Denmark)

    Xiang, Ye; Du, Jincheng; Smedskjær, Morten Mattrup

    2013-01-01

    the recent Corning® Gorilla® Glass. In this paper, the structures of sodium aluminosilicate glasses with a wide range of Al/Na ratios (from 1.5 to 0.6) have been studied using classical molecular dynamics simulations in a system containing around 3000 atoms, with the aim to understand the structural role...

  14. Multi-elemental characterization of Cuban natural zeolites

    International Nuclear Information System (INIS)

    Rizo, O.D.; Peraza, E.F.H.

    1997-01-01

    Concentration of 38 elements in samples from four important Cuban zeolite beds have been obtained by Instrumental Neutron Activation (INAA) and X-ray Fluorescence analyses (XRFA). In comparison with other analytical techniques good agreement was reached. The concentration values of minor element Ba, Sr, Zn and Mn and 25 trace element (including 9 REE) are at the first time reported in Cuban zeolite. It is important for the zeolite evaluation in different industrial uses. (author)

  15. Multi-elemental characterization of Cuban natural zeolites

    International Nuclear Information System (INIS)

    Diaz Rizo, O.; Herrera Peraza, E.F.

    1996-01-01

    Concentrations of 38 elements in samples from four important Cuban zeolite bed have beam obtained by Instrumental Neutron Activation (INAA) and X-Ray Fluorescence Analysis (XRFA). In comparison with other analytical techniques good agreement was achieved. The concentration values of minor element Ba, Sr, Zn, and Mn, and 25 trace element (including 9 REE) are at the first time reported in Cuban zeolite. It is important for the zeolite evaluation in different industrial uses

  16. Synthesis of uniform-sized zeolite from windshield waste

    International Nuclear Information System (INIS)

    Kim, Jae-Chan; Choi, Mingu; Song, Hee Jo; Park, Jung Eun; Yoon, Jin-Ho; Park, Kyung-Soo; Lee, Chan Gi; Kim, Dong-Wan

    2015-01-01

    We demonstrate the synthesis of A-type zeolite from mechanically milled windshield waste via acid treatment and a low-temperature hydrothermal method. As-received windshield cullet was crushed to a fine powder and impurities were removed by HNO 3 treatment. The resulting glass powder was used as the source material for the hydrothermal synthesis of A-type zeolite. Crystal structure, morphology, and elemental composition changes of the windshield waste were evaluated at each step of the process through scanning electron microscopy, X-ray diffraction, X-ray fluorescence spectrometry, etc. After a high-energy milling process, the glass had an average particle size of 520 nm; after acid treatment, its composition was over 94% silica. Zeolite was successfully synthesized in the A-type phase with a uniform cubic shape. - Highlights: • Environmental-friendly recycling of windshield waste for high valuable product of zeolite. • Synthesis of zeolite form windshield waste via a low-temperature hydrothermal process. • High-energy milling effect on the uniform cubic shape and high-purity A-type zeolite.

  17. Zeolites with Continuously Tuneable Porosity**

    Science.gov (United States)

    Wheatley, Paul S; Chlubná-Eliášová, Pavla; Greer, Heather; Zhou, Wuzong; Seymour, Valerie R; Dawson, Daniel M; Ashbrook, Sharon E; Pinar, Ana B; McCusker, Lynne B; Opanasenko, Maksym; Čejka, Jiří; Morris, Russell E

    2014-01-01

    Zeolites are important materials whose utility in industry depends on the nature of their porous structure. Control over microporosity is therefore a vitally important target. Unfortunately, traditional methods for controlling porosity, in particular the use of organic structure-directing agents, are relatively coarse and provide almost no opportunity to tune the porosity as required. Here we show how zeolites with a continuously tuneable surface area and micropore volume over a wide range can be prepared. This means that a particular surface area or micropore volume can be precisely tuned. The range of porosity we can target covers the whole range of useful zeolite porosity: from small pores consisting of 8-rings all the way to extra-large pores consisting of 14-rings. PMID:25284344

  18. Environmental application of modified natural zeolites

    International Nuclear Information System (INIS)

    Nikashina, V.A.; Myasoedov, B.F.

    1998-01-01

    The following techniques were used for the chemical modification of the natural zeolites: (1) treatment of natural zeolites with organic substances. Examples of applications of these sorbents to the decontamination and disinfection of solutions of different composition and surface waters are presented. (2) Treatment of the natural zeolites with a inorganic substances. (2.1) The clinoptilolite-rich tuffs were treated with a hot suspensions of freshly precipitated magnetite. This leads to the preparation of sorbents possessing magnetic properties. The radionuclides and heavy metals recovery from soils and silts was investigated using different soil and ferromagnetic zeolite weights ratios and contact times. Different soils and sorbent of varying capacities were used for these investigations. As example, the recovery 137 Cs and 85 Sr from soils of different nature is presented. (2.2) Treatment of natural zeolites with Fe-containing solutions of Fe-containing natural waters. The filtration of these solutions through clinoptilolite-rich tuffs makes leads to preparation of materials possessing high selectivity to PO 4 3- ions. The properties of these sorbents can be utilized for the PO 4 3+ decontamination of waters (e.g. waste waters) and for the subsequent use of these materials in agriculture as fertilizers.(author)

  19. Removal of cesium radioisotopes from solutions using granulated zeolites

    International Nuclear Information System (INIS)

    Bronic, J.; Subotic, B.

    1991-01-01

    The influence of type of zeolite and the flow rate of solution through the column on the removal efficiency of radioactive cesium ions from solution has been investigated. The analysis of the change in the concentration of cesium ions in the solutions and distribution of cesium ions in the column fillings (granulated zeolites), after passing the solutions through the columns filled with various granulated zeolites (zeolite 4A, zeolite 13X, synthetic mordenite) was performed. On the basis of the results of this study, the conditions for the most efficient removal of cesium ions from solutions have been discussed. (author) 35 refs.; 9 figs.; 1 tab

  20. Creating large second-order optical nonlinearity in optical waveguides written by femtosecond laser pulses in boro-aluminosilicate glass

    Science.gov (United States)

    An, Hong-Lin; Arriola, Alexander; Gross, Simon; Fuerbach, Alexander; Withford, Michael J.; Fleming, Simon

    2014-01-01

    The thermal poling technique was applied to optical waveguides embedded in a commercial boro-aluminosilicate glass, resulting in high levels of induced second-order optical nonlinearity. The waveguides were fabricated using the femtosecond laser direct-write technique, and thermally poled samples were characterized with second harmonic optical microscopy to reveal the distribution profile of the induced nonlinearity. It was found that, in contrast to fused silica, the presence of waveguides in boro-aluminosilicate glass led to an enhancement of the creation of the second-order nonlinearity, which is larger in the laser written waveguiding regions when compared to the un-modified substrate. The magnitude of the nonlinear coefficient d33 achieved in the core of the laser-written waveguides, up to 0.2 pm/V, was comparable to that in thermally poled fused silica, enabling the realization of compact integrated electro-optic devices in boro-aluminosilicate glasses.

  1. Catalytic Oxidation by Transition Metal Ions in Zeolites.

    Science.gov (United States)

    1984-09-28

    exotic schemes were developed. It was previously demonstrated that MoCI5 may be reacted with a HYu (here Yu denotes a steam-stabilized or...34ultrastable" zeolite) to form a MoYu zeolite and HC1 which is removed from the system.1 In this study, MoYu zeolites have been prepared by reacting HYu with Mo

  2. Ion exchange properties of zeolite-containing catalysts

    Energy Technology Data Exchange (ETDEWEB)

    Koval' chuk, L V; Takhtarova, G N; Topchieva, K V [Moskovskii Gosudarstvennyi Univ. (USSR). Kafedra Fizicheskoi Khimii

    1975-03-01

    In the paper the reaction of sodium ion exchange for ammonium cations, cations of calcium and lanthanum in the amorphous aluminium silicate Na/sub 0,856/(AlO/sub 2/)(SiO/sub 2/)/sub 9,831/, zeolite Na/sub 1/(AlO/sub 2/)(SiO/sub 2/)/sub 2,33/ and zeolite containing catalyst Na/sub 1,09/(AlO/sub 2/)(SiOsub(2))/sub 7,93/ were studied; exchange isotherms of sodium for ammonium, calcium and lanthanium are presented. Results received in the study indicate high selectivity of zeolite for calcium and lanthanum cations in comparison with amorphous aluminium silicate and also display electroselectivity effect. The highest separation coefficient takes place for lanthanum in the sodium exchange in zeolite.

  3. Advances in nanosized zeolites

    Science.gov (United States)

    Mintova, Svetlana; Gilson, Jean-Pierre; Valtchev, Valentin

    2013-07-01

    This review highlights recent developments in the synthesis of nanosized zeolites. The strategies available for their preparation (organic-template assisted, organic-template free, and alternative procedures) are discussed. Major breakthroughs achieved by the so-called zeolite crystal engineering and encompass items such as mastering and using the physicochemical properties of the precursor synthesis gel/suspension, optimizing the use of silicon and aluminium precursor sources, the rational use of organic templates and structure-directing inorganic cations, and careful adjustment of synthesis conditions (temperature, pressure, time, heating processes from conventional to microwave and sonication) are addressed. An on-going broad and deep fundamental understanding of the crystallization process, explaining the influence of all variables of this complex set of reactions, underpins an even more rational design of nanosized zeolites with exceptional properties. Finally, the advantages and limitations of these methods are addressed with particular attention to their industrial prospects and utilization in existing and advanced applications.

  4. Impact Of Sodium Oxalate, Sodium Aluminosilicate, and Gibbsite/Boehmite on ARP Filter Performance

    Energy Technology Data Exchange (ETDEWEB)

    Poirier, M. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Burket, P. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2015-11-01

    The Savannah River Site (SRS) is currently treating radioactive liquid waste with the Actinide Removal Process (ARP) and the Modular Caustic Side Solvent Extraction Unit (MCU). Recently, the low filter flux through the ARP of approximately 5 gallons per minute has limited the rate at which radioactive liquid waste can be treated. Salt Batch 6 had a lower processing rate and required frequent filter cleaning. Savannah River Remediation (SRR) has a desire to understand the causes of the low filter flux and to increase ARP/MCU throughput. SRR requested SRNL to conduct bench-scale filter tests to evaluate whether sodium oxalate, sodium aluminosilicate, or aluminum solids (i.e., gibbsite and boehmite) could be the cause of excessive fouling of the crossflow or secondary filter at ARP. The authors conducted the tests by preparing slurries containing 6.6 M sodium Salt Batch 6 supernate, 2.5 g MST/L slurry, and varying concentrations of sodium oxalate, sodium aluminosilicate, and aluminum solids, processing the slurry through a bench-scale filter unit that contains a crossflow primary filter and a dead-end secondary filter, and measuring filter flux and transmembrane pressure as a function of time. Among the conclusions drwn from this work are the following: (1) All of the tests showed some evidence of fouling the secondary filter. This fouling could be from fine particles passing through the crossflow filter. (2) The sodium oxalate-containing feeds behaved differently from the sodium aluminosilicate- and gibbsite/boehmite-containing feeds.

  5. Eu2+-doped OH− free calcium aluminosilicate glass: A phosphor for smart lighting

    International Nuclear Information System (INIS)

    Lima, S.M.; Andrade, L.H.C.; Rocha, A.C.P.; Silva, J.R.; Farias, A.M.; Medina, A.N.; Baesso, M.L.; Nunes, L.A.O.; Guyot, Y.; Boulon, G.

    2013-01-01

    In this paper, a broad emission band from Eu 2+ -doped OH − free calcium aluminosilicate glass is reported. By changing the excitation wavelengths, the results showed it is possible to tune the emission from green to orange, what combined with the scattered light from the same blue LED used for excitation, provided a color rendering index of 71 and a correlated color temperature of 6550 K. Our preliminary tests indicate this material as a promising phosphor towards the development of smart lighting devices. -- Highlights: • We report a broad emission band from Eu 2+ -doped OH − free calcium aluminosilicate glass. • The maximum emission peak can be tune from green to orange region. • The test with a LED provided a color rendering index of 71 and a correlated color temperature of 6550 K

  6. Pengaruh Kandungan Ca Pada Cao-zeolit Terhadap Kemampuan Adsorpsi Nitrogen

    OpenAIRE

    M Nasikin; Tania Surya Utami; Agustina TP Siahaan

    2002-01-01

    In industry, Ca zeolite is used as nitrogen selective adsorbent with the use of PSA (Pressure Swing Adsorption)/VSA (Vacuum Swing Adsorption) methods. Natural zeolite modified to be Cao-zeolite by ion exchange process using Ca(OH)2. Adsorption test was done on CaO-zeolite with different Ca concentration to understand how it's adsorption phenomena on oxygen and nitrogen. Adsorption test has been done for CaO-zeolite with Ca concentration = 0,682%, 0,849% and 1,244% to oxygen and nitrogen with ...

  7. Synthesis of Zeolite Nanomolecular Sieves of Different Si/Al Ratios

    Directory of Open Access Journals (Sweden)

    Pankaj Sharma

    2015-01-01

    Full Text Available Nanosized zeolite molecular sieves of different Si/Al ratios have been prepared using microwave hydrothermal reactor (MHR for their greater application in separation and catalytic science. The as-synthesized molecular sieves belong to four different type zeolite families: MFI (infinite and high silica, FAU (moderate silica, LTA (low silica and high alumina, and AFI (alumina rich and silica-free. The phase purity of molecular sieves has been assessed by X-ray diffraction (XRD analysis and morphological evaluation done by electron microscopy. Broad XRD peaks reveal that each zeolite molecular sieve sample is composed of nanocrystallites. Scanning electron microscopic images feature the notion that the incorporation of aluminum to MFI zeolite synthesis results in morphological change. The crystals of pure silica MFI zeolite (silicalite-1 have hexagon lump/disk-like shape, whereas MFI zeolite particles with Si/Al molar ratios 250 and 100 have distorted hexagonal lump/disk and pseudo spherical shapes, respectively. Furthermore, phase pure zeolite nanocrystals of octahedron (FAU, cubic (LTA, and rod (AFI shape have been synthesized. The average sizes of MFI, FAU, LTA, and AFI zeolite crystals are 250, 150, 50, and 3000 nm, respectively. Although the length of AFI zeolite rods is in micron scale, the thickness and width are of a few nanometers.

  8. Influence the of Na-LTA synthesis route on low-carnegieite crystallization and stability

    Directory of Open Access Journals (Sweden)

    Radulović Aleksandra M.

    2007-01-01

    Full Text Available The thermal transformation of zeolite precursor is a relatively novel route for the synthesis of aluminosilicate-based ceramic materials which had found numerous uses in the production of dielectric ceramics, microelectronic packaging electromagnetic windows, high-temperature electrical insulators, glass ceramic materials, etc. The mechanism of a thermally induced transformation strongly depends on the extra framework cations and the type of used zeolites. The sodium form of LTA zeolite transforms to low-carnegieite (lt-Carn in the temperature range between 800 and 900°C. The formed low-carnegieite transforms to nepheline at >900°C. However, the mechanisms of the thermal transformation of Na-LTA zeolite into the low-carnegieite (lt-Carn phase are still not completely understood. Different structure transformation mechanisms of Na-LTA zeolite into lt-Carn heve been reported. The carnegieite can be formed by a direct solid-solid topotactic transformation: Na-LTA -> lt-Carn. A two step mechanism: Na-LTA -> Am -> lt-Carn can also take place. Such behavior is probably the consequence of the applied synthesis route in the precursor preparation. Therefore, it is of interest to consider the influence of the zeolite preparation route on the processes of thermal transformation of Na-LTA zeolite into lt-Carn. The present paper deals with a systematic study on the thermally induced phase transformation of sodium LTA zeolites synthesized by the gel route under different reaction conditionss. Different gel compositions Na2O(2.4-3.9:Al2O3(l:SiO2(1.5-2.0:H2O(90-170 were used and several zeolite samples were prepared. The prepared zeolite samples were thermally treated at different temperatures from 600 to 950°C at an interval of 20 °C and the products were analyzed by X-ray diffraction. The zeolites and formed products were characterized by various methods including XRPD, IR, DTA, SEM. It was shown that the rate of lt-Carn formation is dependent on the

  9. Characterization of UO22+ exchanged Y zeolite

    International Nuclear Information System (INIS)

    Olguin, M.T.; Bosch, P.; Bulbulian, S.; Duque, J.; Pomes, R.; Villafuerte-Castrejon, M.E.; Sansores, L.E.; Bosch, P.

    1997-01-01

    The present study discusses the incorporation of uranyl ion into Y-zeolite framework. The UO 2 2+ sorption was measured by neutron activation analyses. The Y-zeolite framework distorts in response to the cations present in the structure. Hence, depending on the amount and the location of the exchanged cations, the features of the X-ray diffraction pattern may vary. From the Rietveld analysis of these patterns, the positions occupied by the UO 2 2 + cations in the zeolite network were determined. (author)

  10. Potentiated clinoptilolite: artificially enhanced aluminosilicate reduces symptoms associated with endoscopically negative gastroesophageal reflux disease and nonsteroidal anti-inflammatory drug induced gastritis

    Directory of Open Access Journals (Sweden)

    Potgieter W

    2014-07-01

    clinoptilolite. Treatment with the potentiated clinoptilolite resulted in significant prevention (P≤0.05 of mucosal erosion severity as graded by the gastroenterologist.Conclusion: Absorbatox is a nonabsorbable aluminosilicate with potential gastroprotective benefits as it protected against ENGORD symptoms and NSAID-induced gastric events. The exact mechanism of action is not clear but may be due to its binding to hydrogen ions and biologically active amines and nitrates.Keywords: cation exchanger, gastro-protective agent, endoscopy, zeolite

  11. Stability and activity of doped transition metal zeolites in the hydrothermal processing

    Directory of Open Access Journals (Sweden)

    Thomas François Robin

    2015-12-01

    Full Text Available This study investigates the stability and activity of HZSM-5 doped with metals such as molybdenum, nickel, copper and iron in under hydrothermal conditions used for the direct liquefaction of microalgae. Catalysts have been prepared by ion exchange techniques, and MoZSM-5 was also prepared by wet incipient impregnation for comparison. Hydrothermal liquefaction is considered as a potential route to convert microalgae into a sustainable fuel. One of the drawbacks of this process is that the bio-crude produced contains significant levels of nitrogen and oxygen compounds which have an impact on the physical and chemical propriety of the fuel. Heterogeneous catalysts have been shown to improve the quality of the bio-crude by reducing nitrogen and oxygen contents. Zeolites, such as HZSM-5, are strong candidates due to their low cost compared to noble metal catalysts but their stability and activity under hydrothermal conditions is not well understood. The stability of the catalysts has been determined under hydrothermal conditions at 350 °C. Catalysts have been characterised before and after treatment using XRD, BET physisorption and STEM microscopy. Metal leaching was determined by analysis of the water phase following hydrothermal treatment. The inserted cation following ion-exchange can influence the physical properties of HZSM-5 for example molybdenum improves the crystallinity of the zeolite. In general, metal doped zeolites were relatively stable under subcritical water. Activity of the catalysts for processing lipids, protein and microalgae has been assessed. Four feedstocks were selected: sunflower oil, soya proteins, Chlorella and P. ellipsoidea. The catalysts exhibited greater activity towards converting lipids for example MoZSM-5 enhanced the formation of aromatic compounds. NiZSM-5 and CuZSM-5 were observed to be more efficient for deoxygenation.

  12. Stability and Activity of Doped Transition Metal Zeolites in the Hydrothermal Processing

    International Nuclear Information System (INIS)

    Robin, Thomas François; Ross, Andrew B.; Lea-Langton, Amanda R.; Jones, Jenny M.

    2015-01-01

    This study investigates the stability and activity of HZSM-5 doped with metals such as molybdenum, nickel, copper, and iron under hydrothermal conditions used for the direct liquefaction of microalgae. Catalysts have been prepared by ion-exchange techniques, and MoZSM-5 was also prepared by wet incipient impregnation for comparison. Hydrothermal liquefaction is considered a potential route to convert microalgae into a sustainable fuel. One of the drawbacks of this process is that the bio-crude produced contains significant levels of nitrogen and oxygen compounds that have an impact on the physical and chemical properties of the fuel. Heterogeneous catalysts have been shown to improve the quality of the bio-crude by reducing nitrogen and oxygen contents. Zeolites, such as HZSM-5, are strong candidates due to their low cost compared to noble metal catalysts, but their stability and activity under hydrothermal conditions are not well understood. The stability of the catalysts has been determined under hydrothermal conditions at 350°C. Catalysts have been characterized before and after treatment using X-ray diffraction, BET physisorption, and scanning transmission electronic microscopy. Metal leaching was determined by the analysis of the water phase following the hydrothermal treatment. The inserted cation following ion-exchange can influence the physical properties of HZSM-5, for example, molybdenum improves the crystallinity of the zeolite. In general, metal-doped zeolites were relatively stable in subcritical water. The activity of the catalysts for processing lipids, protein, and microalgae has been assessed. Four feedstocks were selected: sunflower oil, soya proteins, Chlorella, and Pseudochoricystis ellipsoidea. The catalysts exhibited greater activity toward converting lipids, for example, MoZSM-5 enhanced the formation of aromatic compounds. NiZSM-5 and CuZSM-5 were observed to be more efficient for deoxygenation.

  13. Stability and Activity of Doped Transition Metal Zeolites in the Hydrothermal Processing

    Energy Technology Data Exchange (ETDEWEB)

    Robin, Thomas François, E-mail: thomas.cognac@gmail.com; Ross, Andrew B.; Lea-Langton, Amanda R.; Jones, Jenny M. [School of Chemical and Process Engineering, University of Leeds, Leeds (United Kingdom)

    2015-12-14

    This study investigates the stability and activity of HZSM-5 doped with metals such as molybdenum, nickel, copper, and iron under hydrothermal conditions used for the direct liquefaction of microalgae. Catalysts have been prepared by ion-exchange techniques, and MoZSM-5 was also prepared by wet incipient impregnation for comparison. Hydrothermal liquefaction is considered a potential route to convert microalgae into a sustainable fuel. One of the drawbacks of this process is that the bio-crude produced contains significant levels of nitrogen and oxygen compounds that have an impact on the physical and chemical properties of the fuel. Heterogeneous catalysts have been shown to improve the quality of the bio-crude by reducing nitrogen and oxygen contents. Zeolites, such as HZSM-5, are strong candidates due to their low cost compared to noble metal catalysts, but their stability and activity under hydrothermal conditions are not well understood. The stability of the catalysts has been determined under hydrothermal conditions at 350°C. Catalysts have been characterized before and after treatment using X-ray diffraction, BET physisorption, and scanning transmission electronic microscopy. Metal leaching was determined by the analysis of the water phase following the hydrothermal treatment. The inserted cation following ion-exchange can influence the physical properties of HZSM-5, for example, molybdenum improves the crystallinity of the zeolite. In general, metal-doped zeolites were relatively stable in subcritical water. The activity of the catalysts for processing lipids, protein, and microalgae has been assessed. Four feedstocks were selected: sunflower oil, soya proteins, Chlorella, and Pseudochoricystis ellipsoidea. The catalysts exhibited greater activity toward converting lipids, for example, MoZSM-5 enhanced the formation of aromatic compounds. NiZSM-5 and CuZSM-5 were observed to be more efficient for deoxygenation.

  14. Influencing the selectivity of zeolite Y for triglycine adsorption

    NARCIS (Netherlands)

    Wijntje, R.; Bosch, H.; Haan, A.B. de; Bussmann, P.J.T.

    2007-01-01

    In prior work we studied the adsorption of triglycine on zeolite Y under reference conditions. This study aims to solve the question of which adsorbent properties and process conditions influence the adsorption triglycine from an aqueous solution by zeolite Y. Relevant zeolite parameters to study

  15. Catalytic transformation of methyl benzenes over zeolite catalysts

    KAUST Repository

    Al-Khattaf, S.

    2011-02-01

    Catalytic transformation of three methyl benzenes (toluene, m-xylene, and 1,2,4-trimethyl benzene) has been investigated over ZSM-5, TNU-9, mordenite and SSZ-33 catalysts in a novel riser simulator at different operating conditions. Catalytic experiments were carried out in the temperature range of 300-400 °C to understand the transformation of these alkyl benzenes over large pore (mordenite and SSZ-33) in contrast to medium-pore (ZSM-5 and TNU-9) zeolite-based catalysts. The effect of reaction conditions on the isomerization to disproportionation product ratio, distribution of trimethylbenzene (TMB) isomers, and p-xylene/o-xylene ratios are reported. The sequence of reactivity of the three alkyl benzenes depends upon the pore structure of zeolites. The zeolite structure controls primarily the diffusion of reactants and products while the acidity of these zeolites is of a secondary importance. In the case of medium pore zeolites, the order of conversion was m-xylene > 1,2,4-TMB > toluene. Over large pore zeolites the order of reactivity was 1,2,4-TMB > m-xylene > toluene for SSZ-33 catalyst, and m-xylene ∼ 1,2,4-TMB > toluene over mordenite. Significant effect of pore size between ZSM-5 and TNU-9 was observed; although TNU-9 is also 3D 10-ring channel system, its slightly larger pores compared with ZSM-5 provide sufficient reaction space to behave like large-pore zeolites in transformation of aromatic hydrocarbons. We have also carried out kinetic studies for these reactions and activation energies for all three reactants over all zeolite catalysts under study have been calculated. © 2011 Elsevier B.V.

  16. Crystallization and melting behavior of isotactic polypropylene composites filled by zeolite supported β-nucleator

    International Nuclear Information System (INIS)

    Jiang, Juan; Li, Gu; Tan, Nanshu; Ding, Qian; Mai, Kancheng

    2012-01-01

    Highlights: ► The supported calcium pimelate β-zeolite was prepared. ► The β-nucleation of zeolite was enhanced dramatically through reaction. ► High β-phase content iPP composites were obtained by introducing the β-zeolite into iPP. - Abstract: In order to prepare the zeolite filled β-iPP composites, the calcium pimelate as β-nucleator supported on the surface of zeolite (β-zeolite) was prepared by the interaction between calcified zeolite and pimelic acid. The β-nucleation, crystallization behavior and melting characteristic of zeolite, calcified zeolite and β-zeolite filled iPP composites were investigated by differential scanning calorimetry and wide-angle X-ray diffractometer. The results indicated that addition of the zeolite and calcified zeolite as well as β-zeolite increased the crystallization temperature of iPP. The zeolite and calcified zeolite filled iPP composites mainly crystallized in the α-crystal form and the strong β-heterogeneous nucleation of β-zeolite results in the formation of only β-crystal in β-zeolite filled iPP composites. The zeolite filled β-iPP composites with high β-crystal contents (above 0.90) can be easily obtained by adding β-zeolite into iPP matrix.

  17. PREPARASI DAN KARAKTERISASI ZEOLIT DARI ABU LAYANG BATUBARA SECARA ALKALI HIDROTERMAL

    Directory of Open Access Journals (Sweden)

    Jumaeri Jumaeri

    2012-01-01

    Full Text Available Preparasi zeolit dari abu layang batubara PLTU Suralaya secara alkali hidrotermal telah dilakukan. Preparasi dilakukan terhadap abu layang yang telah direfluks dengan HCl 1M dan tanpa refluks. Larutan NaOH dengan konsentrasi tertentu ( 1 ; 2 dan 3 M dicampur dengan abu layang batu bara dengan rasio 10 ml larutan tiap 1 gram abu layang, ke dalam tabung Teflon 100 ml dalam suatu autoclave stainless-steel. Autoclave kemudian dipanaskan pada temperature 80-16 oC selama tiga hari. Zeolit sintesis yang dihasilkan selanjutnya diuji secara kualitatif dengan menggunakan Spektroskopi Inframerah, dan Difraksi Sinar-X. Hasil penelitian menunjukkan bahwa aktivasi abu layang dengan proses alkali hidrotermal dapat menghasilkan material yang mempunyai struktur mirip zeolit (zeolit-like. Produk hidrotermal terdiri dari campuran zeolit (Zeolit P, Zeolit Y serta kristal sodalit dan mullit. Pada temperatur 160 oC, diperoleh zeolit dengan kristalinitas lebih tinggi dari pada 100 oC, baik melalui refluks atau tanpa refluks. Karakteristik zeolit yang terbentuk sangat ditentukan oleh kondisi proses, yang meliputi konsentrasi NaOH, waktu, dan temperatur.

  18. Basic deposits of zeolites of the Republic of Tajikistan

    International Nuclear Information System (INIS)

    Normatov, I.Sh.; Mirsaidov, U.M.

    2003-01-01

    Natural zeolites increasingly using in the different fields of human economical activity. As a result of investigations of last years was determined that zeolites are the wide-spread rock forming minerals. In the Republic of Tajikistan zeolites was found out an the north of the Republic

  19. Estimation of Frost Resistance of the Tile Adhesive on a Cement Based with Application of Amorphous Aluminosilicates as a Modifying Additive

    Science.gov (United States)

    Ivanovna Loganina, Valentina; Vladimirovna Zhegera, Christina

    2017-10-01

    In the article given information on the possibility of using amorphous aluminosilicates as a modifying additive in the offered tile cement adhesive. In the article, the data on the preparation of an additive based on amorphous aluminosilicates, on its microstructure and chemical composition. Presented information on the change in the porosity of cement stone when introduced of amorphous aluminosilicates in the his composition. The formulation of a dry building mix on a cement base is proposed with use of an additive based on amorphous aluminosilicates as a modifying additive. Recipe of dry adhesive mixes include Portland cement M400, mineral aggregate in proportion fraction 0.63-0.315:0.315-0.14 respectively 80:20 (%) and filling density of 1538.2 kg/m3, a plasticizer Kratasol, redispersible powder Neolith P4400 and amorphous alumnosilicates. The developed formulation can be used as a tile adhesive for finishing walls of buildings and structure with tiles. Presented results of the evaluation of frost resistance of adhesives based on cement with using of amorphous aluminosilicates as a modifying additive. Installed the mark on the frost resistance of tile glue and frost resistance of the contact zone of adhesive. Established, that the adhesive layer based on developed formulation dry mixture is crack-resistant and frost-resistant for conditions city Penza and dry humidity zone - zone 3 and climatic subarea IIB (accordance with Building codes and regulations 23-01-99Ȋ) cities Russia’s.

  20. Influence of Gd2O3 on thermal and spectroscopic properties of aluminosilicate glasses

    Science.gov (United States)

    Kasprzyk, Marta; Środa, Marcin

    2018-06-01

    A series of aluminosilicate glasses 25SiO2·(20-x)Al2O3·40Na2O·15BaO-xGd2O3 with 0 ≤ x ≤ 10 were prepared in order to analyze the influence of gadolinium on thermal and spectroscopic properties of these materials. Increasing of thermal parameters (Tg, Tx, Δcp, ΔT) values with higher Gd2O3 content was determined using DSC method. Crystalline phases, formed during heat treatment, were identified with XRD - NaAlSiO4 and BaSiO3 in glass with 0% mol. Gd2O3 and Gd9.33(SiO4)6O2, NaAlSiO4 and BaAl2Si2O6 in glass with 10% mol. Gd2O3. Spectroscopic analysis - FTIR and Raman - revealed Gd2O3 influence on glass structure in the same way like Al2O3, but some differences appear due to the differ bond strength and ionic radius between Gd and Al. Raman spectra confirmed higher network polymerization (enriched with Q2 units). Optical band gap energy (Eopt) and Urbach energy (ΔE) were calculated from the Tauc plot. Mechanical tests demonstrated lower microhardness with increasing content of Gd2O3 content, as a result of higher concentration of atoms with larger radius.

  1. X-ray Excited Optical Fluorescence and Diffraction Imaging of Reactivity and Crystallinity in a Zeolite Crystal : Crystallography and Molecular Spectroscopy in One

    NARCIS (Netherlands)

    Ristanovic, Zoran; Hofmann, Jan P; Richard, Marie-Ingrid; Jiang, Tao; Chahine, Gilbert A; Schülli, Tobias U; Meirer, Florian; Weckhuysen, Bert M

    2016-01-01

    Structure-activity relationships in heterogeneous catalysis are challenging to be measured on a single-particle level. For the first time, one X-ray beam is used to determine the crystallographic structure and reactivity of a single zeolite crystal. The method generates μm-resolved X-ray diffraction

  2. Comprehensive Study of the Solubility, Thermochemistry, Ion Exchange, and Precipitation Kinetics of NO3 Cancrinite and NO3 Sodalite

    International Nuclear Information System (INIS)

    Navrotsky, Alexandra; Liu, Qinyuan

    2004-01-01

    The precipitation of aluminosilicate phases from caustic nuclear wastes has proven to be problematic in a number of processes including radionuclide separations (cementation of columns by aluminosilicate phases), tank emptying (aluminosilicate tank heels), and condensation of wastes in evaporators (aluminosilicate precipitates in the evaporators, providing nucleation sites for growth of critical masses of radioactive actinide salts). In a collaboration between SNL and UCD, we have investigated why and how these phases form, and which conditions favor the formation of which phases. These studies have involved synthesis and characterization of aluminosilicate phases formed using a variety of synthesis techniques, kinetics of precipitation, structural investigations of aluminosilicate phases, thermodynamic calculations of aluminosilicate solubility, calorimetric studies of aluminosilicate precipitation, and a limited investigation of radionuclide partitioning and ion exchange processes (involving typical tank fluid chemistries and these materials). The predominant phases that are observed in the aluminosilicate precipitates from basic tanks wastes (i.e. Hanford, Savannah River Site ''SRS'' wastes) are the salt enclathrated zeolites: sodium nitrate, sodium carbonate and sodium hydroxide sodalite and cancrinite. These phases precipitate readily from the high ionic strength, highly basic solutions at ambient temperatures as well as at elevated temperatures, with or without the presence of an external Al and Si source (both are contained in the waste solutions), and upon interactions with reactive soil components such as clays

  3. X-ray emission spectroscopy study of iron silicate catalyst FeZSM-5

    International Nuclear Information System (INIS)

    Csencsits, R.; Lyman, C.E.; Gronsky, R.

    1988-03-01

    Iron silicate analogs of the zeolite ZMS-5 may be directly synthesized from iron silicate gels in a manner which differs slightly from the alumino-silicate ZSM-5. The resultant white, crystalline iron silicate is referred to as FeZSM-5 in the as-synthesized form. Thermal treatment removes the organic crystal-directing agent and moves some of the framework iron into non-framework sites producing the calcined form of the molecular sieve FeZSM-5. Homogeneity in the distribution of catalytic iron throughout the particles is desired in an optimal catalyst. Distribution of the iron throughout the framework in the as-synthesized forms would affect the final distribution of catalytic iron in the calcined and steamed forms; thus, the iron distribution throughout the as-synthesized and calcined forms of FeZSM-5 were studied using the high spatial resolution on the analytical electron microscope. 7 refs., 3 figs

  4. CaE-T zeolite - a new effective adsorber for vacuum technique

    International Nuclear Information System (INIS)

    Skvazyvaev, V.E.; Khvoshchev, S.S.; Zhdanov, S.P.

    1975-01-01

    Adsorption of air at low pressures on type E zeolites was studied as a function of their composition and dehydration regime. It was shown that zeolite CaE-T has a greatly increased sorption capacity for air at low pressures and that this is more than 3 times that of industrial zeolites currently used in vacuum technology. Mass-spectrometer studies were made of the gas phase over zeolites type E and A after adsorption of air at pressures from 10 -8 to 10 -5 mm Hg at liquid nitrogen temperatures under conditions approximating equilibrium. It was shown that zeolite CaE-T has a high adsorption capacity for Ar, O 2 , and H 2 . Adsorption of H 2 and Ar by zeolites of different structural types at low pressures was studied. It was shown that zeolite CaE-T has a significantly higher adsorption capacity for hydrogen and argon than all industrial zeolites

  5. Fixing noble gas in zeolites

    International Nuclear Information System (INIS)

    Rocha Dorea, A.L. da.

    1980-09-01

    In order to increase safety during the long-term storage of Kr-85 it has been proposed to encaosulate this gas in zeolite 5A. Due to the decay heat of Kr-85 it is expected, however, that the inorganic matrix will be at an increased temperature over several decades. Below 600 0 C only very small Kr-desorption rates are observed when a linear temperature gradient is applied to a loaded 5A zeolite sample. If heating is interrupted and the temperature kept konstant at a certain value (>600 0 C), it is observed that the desorption rate either decreased below the detection limit or stayed constant at some measurable value. The overall activation energy in the temperature range 570 0 C-745 0 C is found to be 250 kJ/mol. At temperature above 790 0 C the total encapsulated gas is rapidly liberated. No significant leakage was apparent from zeolite 5A samples containing between 19 and 57 cm 3 STP Kr/g kept at 200 0 C for up to 2500 h and 400 0 C for up to 3500 h. From these studies it is found that type 5A zeolites are particularly suitable as a matrix for the inmobilization of Kr-85. (Author) [pt

  6. Use of Natural Zeolite to Upgrade Activated Sludge Process

    Directory of Open Access Journals (Sweden)

    Hanife Büyükgüngör

    2003-01-01

    Full Text Available The objective of this study was to achieve better efficiency of phosphorus removal in an enhanced biological phosphorus removal process by upgrading the system with different amounts of natural zeolite addition. The system performance for synthetic wastewater containing different carbon sources applied at different initial concentrations of phosphorus, as well as for municipal wastewater, was investigated. Natural zeolite addition in the aerobic phase of the anaerobic/aerobic bioaugmented activated sludge system contributed to a significant improvement of phosphorus removal in systems with synthetic wastewater and fresh municipal wastewater. Improvement of phosphorus removal with regard to the control reactors was higher with the addition of 15 than with 5 g/L of natural zeolite. In reactors with natural zeolite addition with regard to the control reactors significantly decreased chemical oxygen demand, ammonium and nitrate, while higher increment and better-activated sludge settling were achieved, without changes in the pH-values of the medium. It was shown that the natural zeolite particles are suitable support material for the phosphate-accumulating bacteria Acinetobacter calcoaceticus (DSM 1532, which were adsorbed on the particle surface, resulting in increased biological activity of the system. The process of phosphorus removal in a system with bioaugmented activated sludge and natural zeolite addition consisted of: metabolic activity of activated sludge, phosphorus uptake by phosphate-accumulating bacteria adsorbed on the natural zeolite particles and suspended in solution, and phosphorus adsorption on the natural zeolite particles.

  7. Recent Advances on Bioethanol Dehydration using Zeolite Membrane

    Science.gov (United States)

    Makertihartha, I. G. B. N.; Dharmawijaya, P. T.; Wenten, I. G.

    2017-07-01

    Renewable energy has gained increasing attention throughout the world. Bioethanol has the potential to replace existing fossil fuel usage without much modification in existing facilities. Bioethanol which generally produced from fermentation route produces low ethanol concentration. However, fuel grade ethanol requires low water content to avoid engine stall. Dehydration process has been increasingly important in fuel grade ethanol production. Among all dehydration processes, pervaporation is considered as the most promising technology. Zeolite possesses high potential in pervaporation of bioethanol into fuel grade ethanol. Zeolite membrane can either remove organic (ethanol) from aqueous mixture or water from the mixture, depending on the framework used. Hydrophilic zeolite membrane, e.g. LTA, can easily remove water from the mixture leaving high ethanol concentration. On the other hand, hydrophobic zeolite membrane, e.g. silicate-1, can remove ethanol from aqueous solution. This review presents the concept of bioethanol dehydration using zeolite membrane. Special attention is given to the performance of selected pathway related to framework selection.

  8. High-power microcavity lasers based on highly erbium-doped sol-gel aluminosilicate glasses

    International Nuclear Information System (INIS)

    Le Ngoc Chung; Chu Thi Thu Ha; Nguyen Thu Trang; Pham Thu Nga; Pham Van Hoi; Bui Van Thien

    2006-01-01

    High-power whispering-gallery-mode (WGM) lasing from highly erbium-doped sol-gel aluminosilicate microsphere cavity coupled to a half-tapered optical fiber is presented. The lasing output power as high as 0.45 mW (-3.5 dBm) was obtained from sol-gel glass microsphere cavity with diameters in the range of 40-150 μm. The sol-gel method for making highly concentration Er-doped aluminosilicate glasses with Er-ion concentrations from 0.125 to 0.65 mol% of Er 3+ is described. Controlling collected lasing wavelength at each WGM is possible by adjusting the distance between the half-taper fiber and the microcavity and by diameter of the waist of half-taper fiber. Using the analytic formulas we calculated the TE and TM lasing modes and it is shown that the experimental results are in good agreement with the calculation prediction

  9. Investigation of zeolites by solid state quadrapole NMR

    International Nuclear Information System (INIS)

    Janssen, R.

    1990-01-01

    The subject of this thesis is the NMR investigation of zeolites. The nature and properties of zeolites are discussed. Some of the basic priniples of NMR techniques on quadrupole nuclei are presented. A special technique, namely a two-dimensional nutation experiment is discussed in detail. The theory of the nutation experiment for quadrupole spin species with spin quantum number 3/2 as well as 5/2 is presented. For both spin spcies the theoretical spectra are compared with experimental results. It is also shown that the nutation expeirment can be performed with several pulse schemes. It is shown how phase-sensitive pure-absorption nutation spectra can be obtained and an NMR-probe is presented that is capable of performing NMR experiments at high (up to 500 degree C) temperatures. The two-dimensional nutation NMR technique has been applied to sodium cations in zeolite NaA. For this purpose a numbre of zeolite samples were prepared that contained different amounts of water. With the aid of nutation NMR the hydration of the zeolite can be studied and conclusions can be drawn about the symmetry of the surrounding of the sodium cations. With the aid of an extension of the nutation NMR experiment: Rotary Echo Nutation NMR, it is shown that in zeolite NaA, in various stages of hydration, the sodium cations or water molecules are mobile. Proof is given by means of high-temperature 23 Na-NMR that dehydrates zeolite NaA undergoes a phase transition at ca. 120 degree C. In a high-temperature NMR investigation of zeolite ZSM-5 it is shown that the sodium ions start to execute motions when the temperature is increased. (author). 198 refs.; 72 figs.; 6 tabs

  10. Multicolor photoluminescence in ITQ-16 zeolite film

    KAUST Repository

    Chen, Yanli; Dong, Xinglong; Zhang, Zhenyu; Feng, Lai

    2016-01-01

    Exploring the native defects of zeolites is highly important for understanding the properties of zeolites, such as catalysis and optics. Here, ITQ-16 films were prepared via the secondary growth method in the presence of Ge atoms. Various intrinsic

  11. Study of 63Ni adsorption on NKF-6 zeolite

    International Nuclear Information System (INIS)

    Zhang Hui; Yu Xianjin; Chen Lei; Jing Yongjie; Ge Zhiwei

    2010-01-01

    The adsorption of 63 Ni from aqueous solutions using NKF-6 zeolite was investigated by a batch technique under ambient conditions. The adsorption was investigated as a function of contact time, pH, ionic strength, foreign ions, humic substances (FA/HA) and temperature. The kinetic adsorption was well described by the pseudo-second-order rate equation. The adsorption of 63 Ni on NKF-6 zeolite was strongly dependent on pH and ionic strength, and the adsorption of 63 Ni increased with increasing NKF-6 zeolite content. At low pH values, the presence of FA enhanced the adsorption of 63 Ni on NKF-6 zeolite, but the presence of HA had no drastic effect. At high pH values, the presence of FA or HA decreased the adsorption of 63 Ni on NKF-6 zeolite. The adsorption isotherms were well represented by the Langmuir model. The thermodynamic parameters (i.e., ΔH 0 , ΔS 0 and ΔG 0 ) for the adsorption of 63 Ni were determined from the temperature dependent isotherms at 293.15, 313.15 and 333.15 o K, respectively, and the results indicate that the adsorption reaction was favored at high temperature. The results suggest that the adsorption process of 63 Ni on NKF-6 zeolite is spontaneous and endothermic. - Research highlights: → As an economical and efficient method, adsorption technique has been widely applied in the disposal of wastewaters. The study of 63 Ni on NKF-6 zeolite, especially the thermodynamic data of 63 Ni adsorption on NKF-6 zeolite and the effect of humic substances on 63 Ni uptake to humic-zeolite hybrids, is still scarce. In this paper, the sorption of 63 Ni on NKF-6 zeolite is studied as a function of various environmental conditions such as contact time, pH, ionic strength, foreign ions, humic substances and temperature. Based on the obtained experimental results, the adsorption mechanism of 63 Ni on NKF-6 zeolite is stated in detail. This study will have an important reference value in evaluating the physiochemical behavior of radionuclide 63 Ni.

  12. Performance of zeolite scavenge column in Xe monitoring system

    International Nuclear Information System (INIS)

    Wang Qian; Wang Hongxia; Li Wei; Bian Zhishang

    2010-01-01

    In order to improve the performance of zeolite scavenge column, its ability of removal of humidity and carbon dioxide was studied by both static and dynamic approaches. The experimental results show that various factors, including the column length and diameter, the mass of zeolite, the content of water in air, the temperature rise during adsorption, and the activation effectiveness all effect the performance of zeolite column in scavenging humanity and carbon dioxide. Based on these results and previous experience, an optimized design of the zeolite column is made for use in xenon monitoring system. (authors)

  13. Zeolites with continuously tuneable porosity

    OpenAIRE

    Wheatley, Paul S; Chlubná-Eliášová, Pavla; Greer, Heather; Zhou, Wuzong; Seymour, Valerie R; Dawson, Daniel M; Ashbrook, Sharon E; Pinar, Ana B; McCusker, Lynne B; Opanasenko, Maksym; Cejka, Jiří; Morris, Russell E

    2014-01-01

    Czech Science Foundation. Grant Number: P106/12/G015 Zeolites are important materials whose utility in industry depends on the nature of their porous structure. Control over microporosity is therefore a vitally important target. Unfortunately, traditional methods for controlling porosity, in particular the use of organic structure-directing agents, are relatively coarse and provide almost no opportunity to tune the porosity as required. Here we show how zeolites with a continuously tuneabl...

  14. Distribution of metal and adsorbed guest species in zeolites

    Energy Technology Data Exchange (ETDEWEB)

    Chmelka, B.F.

    1989-12-01

    Because of their high internal surface areas and molecular-size cavity dimensions, zeolites are used widely as catalysts, shape- selective supports, or adsorbents in a variety of important chemical processes. For metal-catalyzed reactions, active metal species must be dispersed to sites within the zeolite pores that are accessible to diffusing reactant molecules. The distribution of the metal, together with transport and adsorption of reactant molecules in zeolite powders, are crucial to ultimate catalyst performance. The nature of the metal or adsorbed guest distribution is known, however, to be dramatically dependent upon preparatory conditions. Our objective is to understand, at the molecular level, how preparatory treatments influence the distribution of guest species in zeolites, in order that macroscopic adsorption and reaction properties of these materials may be better understood. The sensitivity of xenon to its adsorption environment makes {sup 129}Xe NMR spectroscopy an important diagnostic probe of metal clustering and adsorbate distribution processes in zeolites. The utility of {sup 129}Xe NMR depends on the mobility of the xenon atoms within the zeolite-guest system, together with the length scale of the sample heterogeneity being studied. In large pore zeolites containing dispersed guest species, such as Pt--NaY, {sup 129}Xe NMR is insensitive to fine structural details at room temperature.

  15. Distribution of metal and adsorbed guest species in zeolites

    International Nuclear Information System (INIS)

    Chmelka, B.F.

    1989-12-01

    Because of their high internal surface areas and molecular-size cavity dimensions, zeolites are used widely as catalysts, shape- selective supports, or adsorbents in a variety of important chemical processes. For metal-catalyzed reactions, active metal species must be dispersed to sites within the zeolite pores that are accessible to diffusing reactant molecules. The distribution of the metal, together with transport and adsorption of reactant molecules in zeolite powders, are crucial to ultimate catalyst performance. The nature of the metal or adsorbed guest distribution is known, however, to be dramatically dependent upon preparatory conditions. Our objective is to understand, at the molecular level, how preparatory treatments influence the distribution of guest species in zeolites, in order that macroscopic adsorption and reaction properties of these materials may be better understood. The sensitivity of xenon to its adsorption environment makes 129 Xe NMR spectroscopy an important diagnostic probe of metal clustering and adsorbate distribution processes in zeolites. The utility of 129 Xe NMR depends on the mobility of the xenon atoms within the zeolite-guest system, together with the length scale of the sample heterogeneity being studied. In large pore zeolites containing dispersed guest species, such as Pt--NaY, 129 Xe NMR is insensitive to fine structural details at room temperature

  16. Positron annihilation in modified zeolites LTA and 13X

    Energy Technology Data Exchange (ETDEWEB)

    Cabral-Prieto, A.; Garcia-Sosa, I.; Jimenez-Becerril, J. [Departamento de Quimica, Instituto Nacional de Investigaciones Nucleares, Apartado Postal 18-1027, Col. Escandon, Del. M. Hidalgo, Mexico D. F., c. p. 11801 (Mexico); Lopez-Castanares, R.; Olea-Cardoso, O. [Facultad de Quimica, Universidad Autonoma del Estado de Mexico, Paseo Tollocan esquina paseo Tollocan, esquina paseo Colon, Toluca, c. p. 50120, Estado de Mexico (Mexico)

    2007-07-01

    The pick-off annihilation lifetimes of o -Ps, {tau}{sub po}, in dehydrated Co{sup 2+} and Mn{sup 2+} exchanged zeolites LTA, in dehydrated Co{sup 2+} exchanged zeolite 13X, and in dehydrated Na{sup +} zeolites LTA and 13X, are estimated. Although {tau}{sub po} can be estimated from the lifetime spectra of the cation exchanged zeolites LTA and 13X, this lifetime can not be estimated from those spectra of Na{sup +} zeolite LTA unambiguously. The estimated pick-off lifetimes due to the annihilation of o-Ps in the internal walls of the zeolites are systematically lower than the average lifetime of p-Ps and o-Ps in vacuum {tau}{sub a}=0.5 ns. Since the pick-off process of o-Ps occurs particularly on the internal cavity walls of dehydrated zeolites, the replacement of {tau}{sub a} by {tau}{sub po} within the classical model of Tao-Eldrup to calculate cavity radius should provide more realistic cavity radii of these porous materials than when using {l_brace}{tau}{sub a}{r_brace}. This suggestion is supported by previous and present results. (copyright 2007 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  17. Impact of steel slag on the ammonium adsorption by zeolite and a new configuration of zeolite-steel slag substrate for constructed wetlands.

    Science.gov (United States)

    Shi, Pengbo; Jiang, Yingbo; Zhu, Hongtao; Sun, Dezhi

    2017-07-01

    The CaO dissolution from slag, as well as the effects of influencing parameters (i.e. pH and Ca 2+ concentration) on the ammonium adsorption onto zeolite, was systematically studied in this paper. Modeling results of Ca 2+ and OH - release from slag indicated that pseudo-second-order reaction had a better fitness than pseudo-first-order reaction. Changing pH value from 7 to 12 resulted in a drastic reduction of the ammonium adsorption capacity on zeolite, from the peak adsorption capacity at pH 7. High Ca 2+ concentration in solution also inhibited the adsorption of ammonium onto zeolite. There are two proposed mechanisms for steel slag inhibiting the ammonium adsorption capacity of zeolite. On the one hand, OH - released from steel slag can react with ammonium ions to produce the molecular form of ammonia (NH 3 ·H 2 O), which would cause the dissociation of NH 4 + from zeolite. On the other hand, Ca 2+ could replace the NH 4 + ions to adhere onto the surface of zeolite. An innovative substrate filling configuration with zeolite placed upstream of the steel slag was then proposed to eliminate the disadvantageous effects of steel slag. Experimental results showed that this novel filling configuration was superior to two other filling configurations in terms of ammonium removal.

  18. Effects of Zeolite (Clinoptelolite on Performance Characteristics of

    Directory of Open Access Journals (Sweden)

    A Hassan Abadim

    2011-12-01

    Full Text Available A 70-days experiment was conducted to investigate the effects of natural zeolite (clinoptelolite on the performance of commercial laying hens. 288 Hy-Line W36 strain laying hens (50 weeks old were allotted to 6 dietary treatments including basal diet as control and basal diet supplemented with 1, 2, 3, 4 and 5% zeolite that were fed ad -libitum throughout the experiment. Experimental diets for the 6 treatments were prepared to be iso-caloric and iso-nitrogenous. A completely randomized design with six treatments, eight replicates of six birds per replicate was used at this experiment. Daily feed intake (DFI, feed conversion ratio (FCR, egg production, egg weight, egg white quality, eggshell quality (thickness and percentage and body weight changes were measured during the experiment. Results of this experiment showed that DFI, FCR, egg production and egg abnormality were not significantly (P>0.05 affected by zeolite supplementation. Zeolite supplementation significantly increased egg weight, eggshell thickness and live body weight gain of the hens. Dietary zeolite significantly decreased haugh unit of the eggs. In conclusion, natural zeolite significantly improved egg weight and eggshell quality, decreased haugh unit and live weight gain, and had no significant effects on other parameters.

  19. Synthesis and catalytic applications of combined zeolitic/mesoporous materials

    Directory of Open Access Journals (Sweden)

    Jarian Vernimmen

    2011-11-01

    Full Text Available In the last decade, research concerning nanoporous siliceous materials has been focused on mesoporous materials with intrinsic zeolitic features. These materials are thought to be superior, because they are able to combine (i the enhanced diffusion and accessibility for larger molecules and viscous fluids typical of mesoporous materials with (ii the remarkable stability, catalytic activity and selectivity of zeolites. This review gives an overview of the state of the art concerning combined zeolitic/mesoporous materials. Focus is put on the synthesis and the applications of the combined zeolitic/mesoporous materials. The different synthesis approaches and formation mechanisms leading to these materials are comprehensively discussed and compared. Moreover, Ti-containing nanoporous materials as redox catalysts are discussed to illustrate a potential implementation of combined zeolitic/mesoporous materials.

  20. Investigating the Influence of Mesoporosity in Zeolite Beta on its Catalytic Performance for the Conversion of Methanol to Hydrocarbons

    KAUST Repository

    Liu, Zhaohui

    2015-08-26

    Hierarchically porous zeolite Beta (Beta-MS) synthesized by a soft-templating method contains remarkable intra-crystalline mesoporosity, which reduces the diffusion length in zeolite channels down to several nanometers and alters the distribution of Al among distinct crystallographic sites. When used as a catalyst for the conversion of methanol to hydrocarbons (MTH) at 330 oC, Beta-MS exhibited a 2.7-fold larger conversion capacity, a 2.0-fold faster reaction rate, and a remarkably longer lifetime than conventional zeolite Beta (Beta-C). The superior catalytic performance of Beta-MS is attributed to its hierarchical structure, which offers full accessibility to all catalytic active sites. In contrast, Beta-C was easily deactivated because a layer of coke quickly deposited on the outer surfaces of the catalyst crystals, impeding access to interior active sites. This difference is clearly demonstrated by using electron microscopy combined with electron energy loss spectroscopy to probe the distribution of coke in the deactivated catalysts. At both low and high conversions, ranging from 20% to 100%, Beta-MS gave higher selectivity towards higher aliphatics (C4-C7) but lower ethene selectivity compared to Beta-C. Therefore, we conclude that a hierarchical structure decreases the residence time of methylbenzenes in zeolite micropores, disfavoring the propagation of the aromatic-based catalytic cycle. This conclusion is consistent with a recent report on ZSM-5 and is also strongly supported by our analysis of soluble coke species residing in the catalysts. Moreover, we identified an oxygen-containing compound, 4-methyl-benzaldehyde, in the coke, which has not been observed in the MTH reaction before.  

  1. Investigating the Influence of Mesoporosity in Zeolite Beta on its Catalytic Performance for the Conversion of Methanol to Hydrocarbons

    KAUST Repository

    Liu, Zhaohui; Dong, Xinglong; Zhu, Yihan; Emwas, Abdul-Hamid M.; Zhang, Daliang; Tian, Qiwei; Han, Yu

    2015-01-01

    Hierarchically porous zeolite Beta (Beta-MS) synthesized by a soft-templating method contains remarkable intra-crystalline mesoporosity, which reduces the diffusion length in zeolite channels down to several nanometers and alters the distribution of Al among distinct crystallographic sites. When used as a catalyst for the conversion of methanol to hydrocarbons (MTH) at 330 oC, Beta-MS exhibited a 2.7-fold larger conversion capacity, a 2.0-fold faster reaction rate, and a remarkably longer lifetime than conventional zeolite Beta (Beta-C). The superior catalytic performance of Beta-MS is attributed to its hierarchical structure, which offers full accessibility to all catalytic active sites. In contrast, Beta-C was easily deactivated because a layer of coke quickly deposited on the outer surfaces of the catalyst crystals, impeding access to interior active sites. This difference is clearly demonstrated by using electron microscopy combined with electron energy loss spectroscopy to probe the distribution of coke in the deactivated catalysts. At both low and high conversions, ranging from 20% to 100%, Beta-MS gave higher selectivity towards higher aliphatics (C4-C7) but lower ethene selectivity compared to Beta-C. Therefore, we conclude that a hierarchical structure decreases the residence time of methylbenzenes in zeolite micropores, disfavoring the propagation of the aromatic-based catalytic cycle. This conclusion is consistent with a recent report on ZSM-5 and is also strongly supported by our analysis of soluble coke species residing in the catalysts. Moreover, we identified an oxygen-containing compound, 4-methyl-benzaldehyde, in the coke, which has not been observed in the MTH reaction before.  

  2. Nanostructured Ag-zeolite Composites as Luminescence-based Humidity Sensors

    Science.gov (United States)

    Dieu, Bjorn; Roeffaers, Maarten B.J.; Hofkens, Johan

    2016-01-01

    Small silver clusters confined inside zeolite matrices have recently emerged as a novel type of highly luminescent materials. Their emission has high external quantum efficiencies (EQE) and spans the whole visible spectrum. It has been recently reported that the UV excited luminescence of partially Li-exchanged sodium Linde type A zeolites [LTA(Na)] containing luminescent silver clusters can be controlled by adjusting the water content of the zeolite. These samples showed a dynamic change in their emission color from blue to green and yellow upon an increase of the hydration level of the zeolite, showing the great potential that these materials can have as luminescence-based humidity sensors at the macro and micro scale. Here, we describe the detailed procedure to fabricate a humidity sensor prototype using silver-exchanged zeolite composites. The sensor is produced by suspending the luminescent Ag-zeolites in an aqueous solution of polyethylenimine (PEI) to subsequently deposit a film of the material onto a quartz plate. The coated plate is subjected to several hydration/dehydration cycles to show the functionality of the sensing film. PMID:27911397

  3. Application of positron annihilation to the characterization of zeolites

    International Nuclear Information System (INIS)

    Nakanishi, H.; Ujihira, Y.

    1982-01-01

    Positron annihilation lifetime and Doppler-broadening measurements were carried out for synthetic zeolite 13X, SK-40, NH 4 -X, and NH 4 -Y by varying the evacuation temperature in order to study the character of the zeolite cages. Four components of the positron annihilation, derived from the lifetime spectra, were interpreted from the results of the authors' measurements and other studies on zeolites. The o-Ps lifetimes in the cages became longer as the desorption of water molecules proceeded. It was found that some active groups in zeolites interacted with o-Ps and reduced the o-Ps lifetime after all the water molecules had detected. Bronsted acid in the zeolite acted not only as an oxidizer but also as an inhibitor of Ps formation. An attempt was made to estimate the amount of Bronsted acids by the positron lifetime technique. The longest lifetime of 50 ns indicates o-Ps annihilation in a pore with 60 A free diameter, which seems to exist irregularly in the faujasite zeolites. It was found that o-Ps was oxidized in this large cavity

  4. Nonionic emulsion-mediated synthesis of zeolite beta

    Indian Academy of Sciences (India)

    Zeolite beta synthesis was first carried out in a newly developed emulsion system containing nonionic polyoxyethylated alkylphenol surfactant, which showed interesting non-conventional features. Compared to the conventional hydrothermal synthesis of zeolite beta, the reported nonionic emulsion system showed a faster ...

  5. Reactive oxygen species mediated DNA damage in human lung alveolar epithelial (A549) cells from exposure to non-cytotoxic MFI-type zeolite nanoparticles.

    Science.gov (United States)

    Bhattacharya, Kunal; Naha, Pratap C; Naydenova, Izabela; Mintova, Svetlana; Byrne, Hugh J

    2012-12-17

    Increasing utilization of engineered nanoparticles in the field of electronics and biomedical applications demands an assessment of risk associated with deliberate or accidental exposure. Metal based nanoparticles are potentially most important of all the nanoparticles in terms of health risks. Microporous alumino-silicates and pure silicates named as zeolites and zeo-type materials with variety of structures, chemical compositions, particle sizes and morphologies have a significant number of industrial uses such as in catalysis, sorption and ion-exchange processes. In particular, the nanosized particles due to their unique properties are used in hybrid organic-inorganic materials for photography, photonics, electronics, labeling, imaging, and sensing. The aim of the current study is to investigate pure silica MFI-type zeolites nanoparticles with sizes of 50nm and 100nm (samples MFI-50 and MFI-100) under suspended conditions and their toxicological effects on human lung alveolar (A549) cells under in vitro conditions. Live cell imaging showed that the nanoparticles precipitated from the colloidal suspension of cell culture media as large agglomerates, coming in contact with the cell surface through sedimentation. A cellular proliferative capacity test showed the zeolite nanoparticles to exhibit no significant cytotoxicity below a concentration of 100μg/ml. However, both the MFI-50 and MFI-100 nanoparticles induced high intracellular reactive oxygen species (ROS) generation and elevated mitochondrial membrane potential in the A549 cells over the measured time period of 12h and at concentrations up to ≤50μg/ml. DNA fragmentation analysis using the comet assay showed that the MFI-50 and MFI-100 nanoparticles cause genotoxicity in a concentration dependent manner. Furthermore, the rate at which maximum genomic damage was caused by MFI-100 nanoparticles in the A549 cells was found to be high as compared to the MFI-50 nanoparticles. However, the damage caused by the

  6. Application of Zeolitic Additives in the Fluid Catalytic Cracking (FCC

    Directory of Open Access Journals (Sweden)

    A. Nemati Kharat

    2013-06-01

    Full Text Available Current article describes application of zeolites in fluid catalytic cracking (FCC. The use of several zeolitic additives for the production light olefins and reduction of pollutants is described. Application of zeolites as fluid catalytic cracking (FCC catalysts and additives due to the presence of active acid sites in the zeolite framework  increase the formation of desired cracking products (i.e., olefin and branched products  in the FCC unit.

  7. Effect of alkali-treatment on the characteristics of natural zeolites with different compositions.

    Science.gov (United States)

    Ates, Ayten

    2018-08-01

    A series of natural zeolites with different compositions were modified by post-synthesis modification with sodium hydroxide (NaOH) solution. Natural and modified zeolites were characterized by XRD, SEM, nitrogen adsorption, FTIR, zeta potential and temperature programmed desorption of ammonia (NH 3 -TPD). The adsorption capacities of these samples were evaluated by the adsorption of manganese from aqueous solution. The treatment with NaOH led to a decrease in the surface area and microporosity of all natural zeolites as well as partly damage of the zeolite structure depending on zeolite composition. In addition, the amount of weak, medium and strong acid sites in the zeolites was changed significantly by NaOH treatment depending on zeolite composition. The NaOH treatment resulted in a four-fold improvement in adsorption capacity of natural zeolite originated from Bigadic and a twofold decrease in that of the natural zeolite originated from Manisa-Gordes. Although the improved adsorption capacity might be mainly due to modification of porosity in the zeolites and formation of hydroxysodalite, the reduced adsorption capacity of the zeolite might be mainly due to a significant deformation of the zeolite structure. The pseudo-second-order kinetic model for the adsorption of manganese on all natural and modified zeolites fits well. Copyright © 2018 Elsevier Inc. All rights reserved.

  8. A database of new zeolite-like materials.

    Science.gov (United States)

    Pophale, Ramdas; Cheeseman, Phillip A; Deem, Michael W

    2011-07-21

    We here describe a database of computationally predicted zeolite-like materials. These crystals were discovered by a Monte Carlo search for zeolite-like materials. Positions of Si atoms as well as unit cell, space group, density, and number of crystallographically unique atoms were explored in the construction of this database. The database contains over 2.6 M unique structures. Roughly 15% of these are within +30 kJ mol(-1) Si of α-quartz, the band in which most of the known zeolites lie. These structures have topological, geometrical, and diffraction characteristics that are similar to those of known zeolites. The database is the result of refinement by two interatomic potentials that both satisfy the Pauli exclusion principle. The database has been deposited in the publicly available PCOD database and in www.hypotheticalzeolites.net/database/deem/. This journal is © the Owner Societies 2011

  9. EFFECT OF GRAIN SIZE AND ACTIVATION TIME OF ZEOLITE TO ADSORPTION AND DESORPTION OF NH4OH AND KCL AS MODEL OF FERTILIZER-ZEOLITE MIX

    Directory of Open Access Journals (Sweden)

    Muhammad Prasantio Bimantio

    2017-10-01

    Full Text Available Zeolites can be used as adsorbent, ion exchange, catalyst, or catalyst carrier. Application of fertilizer use in the zeolite also be one of the interesting topic. Zeolites in a mixture of fertilizer can use to control the release of nutrients. The purpose of this research is to study the effect of grain size and time of the activation of zeolite to adsorption and desorption of NH4OH and KCl as modeling of ZA and KCl fertilizer, to obtain the value of adsorption rate constant (ka and desorption rate constant (kd. This research procedure include: the process of adsorption by adding zeolite with various size and time of activation into a sealed beaker glass and let the adsorption process occurs for 24 hours. After 24 hours, the solution was filtered, the zeolite then put in 100 ml of aquadest into a sealed beaker glass and let the desorption process happened for another 24 hours. Three samples with the largest difference solution concentrations looked for the value of the ka and kd. Zeolite configuration with the largest ka is trialed with fertilizer and compared with the value of ka obtained from modeling. The result for NH4OH adsorbate, -50+60 mesh 2 hours configuration zeolite give the largest ka. For KCl adsorbate, -30+40 mesh 4 hours configuration zeolite give the largest ka. The value between modeling and trials with fertilizers are not much different.

  10. Nanodispersed Suspensions of Zeolite Catalysts for Converting Dimethyl Ether into Olefins

    Science.gov (United States)

    Kolesnichenko, N. V.; Yashina, O. V.; Ezhova, N. N.; Bondarenko, G. N.; Khadzhiev, S. N.

    2018-01-01

    Nanodispersed suspensions that are effective in DME conversion and stable in the reaction zone in a three-phase system (slurry reactor) are obtained from MFI zeolite commercial samples (TsVM, IK-17-1, and CBV) in liquid media via ultrasonic treatment (UST). It is found that the dispersion medium, in which ultrasound affects zeolite commercial sample, has a large influence on particle size in the suspension. UST in the aqueous medium produces zeolite nanoparticles smaller than 50 nm, while larger particles of MFI zeolite samples form in silicone or hydrocarbon oils. Spectral and adsorption data show that when zeolites undergo UST in an aqueous medium, the acid sites are redistributed on the zeolite surface and the specific surface area of the mesopores increases. Preliminary UST in aqueous media of zeolite commercial samples (TsVM, IK-17-1, and CBV) affects the catalytic properties of MFI zeolite nanodispersed suspensions. The selectivity of samples when paraffins and olefins form is largely due to superacid sites consisting of OH groups of hydroxonium ion H3O+.

  11. Ion-exchange properties of cesium and strontium into zeolites from sodium salt solutions

    International Nuclear Information System (INIS)

    Kanno, Takuji; Hashimoto, Hiroyuki; Ohtani, Tozo.

    1978-01-01

    The ion-exchange properties of cesium and strontium into zeolite from sodium salt solution has been studied in zeolite A, zeolite X, zeolite Y, mordenite and clinoptilolite. The distribution of cesium into mordenite from about 1 -- 2 M sodium chloride and sodium hydroxide solutions is considerably larger than that into zeolite A. The distribution coefficient for 2 M solution of sodium salts was about 300. Therefore, the separation of cesium from sodium salt solution is possible by using mordenite. The distribution of strontium into zeolites form 1 -- 2 M solutions of sodium chloride and sodium nitrate were in the order of zeolite A>zeolite X>zeolite Y asymptoticaly equals mordenite. The distribution coefficient of 230 was obtained for 1 M solutions of sodium salts. The anion in solutions had no effect on the distribution of cesium and strontium into zeolite from sodium salt solution. (author)

  12. Application of zeolite-based catalyst to hydrocracking of coal-derived liquids

    Energy Technology Data Exchange (ETDEWEB)

    Shimada, H.; Sato, T.; Yoshimura, Y.; Hinata, A.; Yoshitomi, S.; Castillo Mares, A.; Nishijima, A. (National Chemical Laboratory for Industry, Tsukuba (Japan))

    1990-06-01

    Y-zeolite supported catalysts were applied to the hydrocracking of coal-derived liquids. By the introduction of two-stage upgrading consisting of hydrotreating and hydrocracking, Wandoan coal-derived middle distillate was hydrocracked over Ni-Mo/Y-zeolite, producing a high gasoline fraction yield. Zeolite supported catalysts gave little hydrocracked compounds in the hydroprocessing of coal-derived heavy oils, even after hydrotreatment. The reaction inhibitors which seriously poison the active sites of zeolites were found to be small nitrogen-containing molecules. In the hydroprocessing of coal-derived heavy oils, zeolite supported catalysts were inferior to alumina supported catalysts. This is due to the high hydrocracking but low hydrogenation activity of zeolite supported catalysts. 22 refs., 5 figs., 11 tabs.

  13. A comparative evaluation of IONSIV reg-sign IE-911 and chabazite zeolite for the removal of radiostrontium and cesium from wastewater

    International Nuclear Information System (INIS)

    Bostick, D.T.; DePaoli, S.M.; Guo, B.

    1998-01-01

    Natural chabazite zeolite was selected as the baseline treatment technology for the removal of fission products, namely 90 Sr and 137 Cs, from near-neutral-pH process wastewater and groundwater. The sorbent IONSIV reg-sign IE-911, a crystalline silicotitanate manufactured by UOP, was recently tested in this capacity and found to compare extremely well against the baseline material. This paper presents and compares the results of similar batch and column tests performed using both materials, and summarizes the physical and chemical characteristics of the sorbents

  14. Preparation and characterization of cesium-137 aluminosilicate pellets for radioactive source applications

    International Nuclear Information System (INIS)

    Schultz, F.J.; Tompkins, J.A.; Haff, K.W.; Case, F.N.

    1981-07-01

    Twenty-seven fully loaded 137 Cs aluminosilicate pellets were fabricated in a hot cell by the vacuum hot pressing of a cesium carbonate/montmorillonite clay mixture at 1500 0 C and 570 psig. Four pellets were selected for characterization studies which included calorimetric measurements, metallography, scanning electron microscope and electron backscattering (SEM-BSE), electron microprobe, x-ray diffraction, and cesium ion leachability measurements. Each test pellet contained 437 to 450 curies of 137 Cs as determined by calorimetric measurements. Metallographic examinations revealed a two-phase system: a primary, granular, gray matrix phase containing large and small pores and small pore agglomerations, and a secondary fused phase interspersed throughout the gray matrix. SEM-BSE analyses showed that cesium and silicon were uniformly distributed throughout both phases of the pellet. This indicated that the cesium-silicon-clay reaction went to completion. Aluminum homogeneity was unconfirmed due to the high background noise associated with the inherent radioactivity of the test specimens. X-ray diffraction analyses of both radioactive and non-radioactive aluminosilicate pellets confirmed the crystal lattice structure to be pollucite. Cesium ion quasistatic leachability measurements determined the leach rates of fully loaded 137 Cs sectioned pollucite pellets to date to be 4.61 to 34.4 x 10 -10 kg m -2 s -1 , while static leach tests performed on unsectioned fully loaded pellets showed the leach rates of the cesium ion to date to be 2.25 to 3.41 x 10 -12 kg m -2 s -1 . The cesium ion diffusion coefficients through the pollucite pellet were calculated using Fick's first and second laws of diffusion. The diffusion coefficients calculated for three tracer level 137 Cs aluminosilicate pellets were 1.29 x 10 -16 m 2 s -1 , 6.88 x 10 -17 m 2 s -1 , and 1.35 x 10 -17 m 2 s -1 , respectively

  15. Zeolite from fly ash: synthesis and characterization

    Indian Academy of Sciences (India)

    Coal fly ash was used to synthesize X-type zeolite by alkali fusion followed by hydrothermal treatment. The synthesized zeolite was characterized using various techniques such as X-ray diffraction, scanning electron microscopy, Fourier transform infrared spectroscopy, BET method for surface area measurement etc.

  16. Exfoliation of two-dimensional zeolites in liquid polybutadienes

    KAUST Repository

    Sabnis, Sanket; Tanna, Vijesh A.; Li, Chao; Zhu, Jiaxin; Vattipalli, Vivek; Nonnenmann, Stephen S.; Sheng, Guan; Lai, Zhiping; Winter, H. Henning; Fan, Wei

    2017-01-01

    Layered zeolite precursors were successfully exfoliated by brief shearing or sonication with the assistance of commercially available telechelic liquid polybutadienes at room temperature. The exfoliated zeolite nanosheets can form a stable

  17. Morpho-chemical characterization and surface properties of carcinogenic zeolite fibers

    International Nuclear Information System (INIS)

    Mattioli, Michele; Giordani, Matteo; Dogan, Meral; Cangiotti, Michela; Avella, Giuseppe; Giorgi, Rodorico; Dogan, A. Umran; Ottaviani, Maria Francesca

    2016-01-01

    Highlights: • Differently carcinogenic zeolite fibers were investigated combining physico-chemical methods. • For the first time, zeolite fibers were studied by means of the EPR technique using different spin probes. • The structural properties and the adsorption capability are function of different types and distributions of adsorption sites. • The interacting ability of erionite is higher than that of other fibrous zeolites. • The surface interacting properties may be related with the carcinogenicity of the zeolite fibers. - Abstract: Erionite belonging to the zeolite family is a human health-hazard, since it was demonstrated to be carcinogenic. Conversely, offretite family zeolites were suspected carcinogenic. Mineralogical, morphological, chemical, and surface characterizations were performed on two erionites (GF1, MD8) and one offretite (BV12) fibrous samples and, for comparison, one scolecite (SC1) sample. The specific surface area analysis indicated a larger availability of surface sites for the adsorption onto GF1, while SC1 shows the lowest one and the presence of large pores in the poorly fibrous zeolite aggregates. Selected spin probes revealed a high adsorption capacity of GF1 compared to the other zeolites, but the polar/charged interacting sites were well distributed, intercalated by less polar sites (Si–O–Si). MD8 surface is less homogeneous and the polar/charged sites are more interacting and closer to each other compared to GF1. The interacting ability of BV12 surface is much lower than that found for GF1 and MD8 and the probes are trapped in small pores into the fibrous aggregates. In comparison with the other zeolites, the non-carcinogenic SC1 shows a poor interacting ability and a lower surface polarity. These results helped to clarify the chemical properties and the surface interacting ability of these zeolite fibers which may be related to their carcinogenicity.

  18. Cure kinetics and mechanical interfacial characteristics of zeolite/DGEBA composites

    International Nuclear Information System (INIS)

    Park, Soo Jin; Kim, Young Mi; Shin, Jae Sup

    2003-01-01

    In this work, the zeolite/diglycidylether of bisphenol A(DGEBA) systems were investigated in terms of the cure kinetics and mechanical interfacial properties of the composites. The 4, 4-Diamino Diphenyl Methane(DDM) was used as a curing agent for epoxy. Two types of zeolite(PZ) were prepared with 15 and 35 wt% KOH treatments(15-BZ and 35-BZ, respectively) for 24 h, and their surface characteristics were studied by X-ray Photoelectron Spectroscopy (XPS) and X-Ray Diffraction (XRD). Cure kinetics of the composites were examined in the context of Differential Scanning Calorimetry(DSC), and mechanical interfacial properties were investigated in critical stress intensity factor(K IC ) and critical strain energy release rate(G IC ). In the results of XPS and XRD, sodium ion(Na) of zeolite was exchanged for potassium ion(K), resulting from the treatment of KOH. Also, Si 2p /A1 2p composition ratios of the treated zeolite were increased, which could be attributed to the weakening of A1-O bond in framework. Cure activation energy(E a ) of 15-BZ composites was decreased, whereas K IC and G IC were increased, compared with those of the pure zeolite/DGEBA composites. It was probably accounted that the acidity of zeolite was increased by surface treatments and the cure reaction between zeolite and epoxy was influenced on the increased acidity of zeolite

  19. Thallium and manganese complexes involved in the luminescence emission of potassium-bearing aluminosilicates

    Energy Technology Data Exchange (ETDEWEB)

    Gomez-Gonzalez, Miguel A., E-mail: miguel.gomez@mncn.csic.es [Museo Nacional de Ciencias Naturales, CSIC, Jose Gutierrez Abascal 2, Madrid E-28006 (Spain); Garcia-Guinea, Javier, E-mail: guinea@mncn.csic.es [Museo Nacional de Ciencias Naturales, CSIC, Jose Gutierrez Abascal 2, Madrid E-28006 (Spain); Garrido, Fernando, E-mail: fernando.garrido@mncn.csic.es [Museo Nacional de Ciencias Naturales, CSIC, Jose Gutierrez Abascal 2, Madrid E-28006 (Spain); Townsend, Peter D., E-mail: pdtownsend@gmail.com [School of Science and Technology, University of Sussex, Brighton BN1 9QH (United Kingdom); Marco, Jose-Francisco, E-mail: jfmarco@iqfr.csic.es [Instituto de Química-Física Rocasolano, CSIC, Calle Serrano 119, Madrid E-28006 (Spain)

    2015-03-15

    The luminescence emission at 285 nm in natural K-feldspar has been studied by Russian groups and associated with thallium ions in structural positions of K{sup +} sites as artificially thallium-doped feldspars display the same emission band. Here attention is focussed on spectra of CL emission bands centered near 285 and 560 nm from paragenetic adularia, moscovite and quartz micro-inclusions. With accesorial thallium they show clear resemblances to each other. Associated sedimentary and hydrothermal aluminosilicate samples collected from Guadalix (Madrid, Spain) were analyzed with a wide range of experimental techniques including Environmental Scanning Electron Microscopy (ESEM) with an attached X-Ray Energy-Dispersive Spectrometer (EDS) and a cathodoluminescence probe (CL) and Electron Probe Microanalysis (EPMA), X-Ray Fluorescence Spectrometry (XRF), Inductively Coupled Plasma-Optical Emission Spectrometry (ICP-OES), Differential and Thermogravimetric Analyses (DTA-TG), radioluminescence (RL), Mössbauer spectroscopy and X-Ray Photoelectron Spectrometry (XPS). The luminescence emission bands at 285 and 560 nm seem to be associated with hydrous thallium–manganese complexes bonded to potassium-bearing aluminosilicates since various minerals such as K-feldspar, moscovite and quartz micro-inclusions display similar CL spectra, accesorial thallium and hydroxyl groups. The presence of iron introduces a brown color which is attributed to submicroscopic iron oxides detectable in the optical and chemical microanalysis, but this does not contribute to the luminescence emission. The XPS Mn 2p spectrum of the adularia sample at room temperature is composed of a spin–orbit doublet plus clear shake-up satellite structure ∼4 eV above the main photoemision lines and is consistent with Mn{sup 2+} in good agreement with the observed luminescence emission at 560 nm for aluminosilicates produced by a {sup 4}T1({sup 4}G)→{sup 6}A1({sup 6}S) transition in tetrahedrally

  20. Reduction volume of radioactive wastes using natural zeolite

    International Nuclear Information System (INIS)

    Endro Kismolo; Nurimaniwathy; Vemi Ridantami

    2013-01-01

    The aim of this experience was to know of the characteristics of zeolite as the sorbent for reduction volume of liquid waste with the Pb contaminant contain. The experiment was done by sorption method a batch performed by using zeolite from Gedangsari Gunung Kidul with the grain size (-60+80) mesh, (-80+100) mesh dan (-100+120) mesh which was activated by (NH 4 ) CI and NH 4 N0 3 1.0 M. Weight of sorbent was added was variated from 5.0 to 40.0 %, and variation of silica sand to added from 0.5 to 2.5 % of weight sorbent. Stirring speed was varied from 30 to 180 rpm and the stirring time of 10 to 120 minutes, and filtrates from filtering process to analyzed by Absorption Analysis Spectrophotometry utilities. From the experience can be achieved of data that the best sorption to obtained at the condition of zeolite on (-80+100) mesh, sorbent added of 25 %, stirring speed of 120 rpm, time of stirring of 90 minutes, and the setting time of 120 minutes. At this condition to obtained sorption efficiency are 64.162 % for natural zeolite, 7.034 % for zeolite be activated with NH 4 N0 3 and 77.414 % for zeolite be activated with NH 4 Cl 1.0 M. (author)

  1. Catalytic conversion of ethanol on H-Y zeolite

    Directory of Open Access Journals (Sweden)

    Čegar Nedeljko

    2005-01-01

    Full Text Available The catalytic activity of the H-form of synthetic zeolite NaY was examined in this study. The catalytic activity was determined according to the rate of ethanol conversion in a gas phase in the static system. In the conversion of ethanol on synthetic NaY zeolite at 585, 595, and 610 K, on which the reaction develops at an optimal rate, ethene and diethyl ether are evolved in approximately the same quantity. After transforming the NaY zeolite into the H-form, its catalytic activity was extremely increases so, the reaction develops at a significantly lower temperature with a very large increase in the reaction rate. The distribution of the products also changes, so that at lower temperatures diethyl ether is elvolved in most cases, and the development of ethene is favored at higher ones, and after a certain period of time there is almost complete conversion of ethanol into ethene. The increase in catalytic activity, as well as the change of selectivity of conversion of ethanol on the H-form of zeolite, is the result of removing Na+ cations in the NaY zeolite, so that more acidic catalyst is obtained which contains a number of acidic catalytically active centers, as well as a more powerful one compared to the original NaY zeolite.

  2. Inhibition of palm oil oxidation by zeolite nanocrystals.

    Science.gov (United States)

    Tan, Kok-Hou; Awala, Hussein; Mukti, Rino R; Wong, Ka-Lun; Rigaud, Baptiste; Ling, Tau Chuan; Aleksandrov, Hristiyan A; Koleva, Iskra Z; Vayssilov, Georgi N; Mintova, Svetlana; Ng, Eng-Poh

    2015-05-13

    The efficiency of zeolite X nanocrystals (FAU-type framework structure) containing different extra-framework cations (Li(+), Na(+), K(+), and Ca(2+)) in slowing the thermal oxidation of palm oil is reported. The oxidation study of palm oil is conducted in the presence of zeolite nanocrystals (0.5 wt %) at 150 °C. Several characterization techniques such as visual analysis, colorimetry, rheometry, total acid number (TAN), FT-IR spectroscopy, (1)H NMR spectroscopy, and Karl Fischer analyses are applied to follow the oxidative evolution of the oil. It was found that zeolite nanocrystals decelerate the oxidation of palm oil through stabilization of hydroperoxides, which are the primary oxidation product, and concurrently via adsorption of the secondary oxidation products (alcohols, aldehydes, ketones, carboxylic acids, and esters). In addition to the experimental results, periodic density functional theory (DFT) calculations are performed to elucidate further the oxidation process of the palm oil in the presence of zeolite nanocrystals. The DFT calculations show that the metal complexes formed with peroxides are more stable than the complexes with alkenes with the same ions. The peroxides captured in the zeolite X nanocrystals consequently decelerate further oxidation toward formation of acids. Unlike the monovalent alkali metal cations in the zeolite X nanocrystals (K(+), Na(+), and Li(+)), Ca(2+) reduced the acidity of the oil by neutralizing the acidic carboxylate compounds to COO(-)(Ca(2+))1/2 species.

  3. SODIUM ALUMINOSILICATE FOULING AND CLEANING OF DECONTAMINATED SALT SOLUTION COALESCERS

    International Nuclear Information System (INIS)

    Poirier, M.; Thomas Peters, T.; Fernando Fondeur, F.; Samuel Fink, S.

    2008-01-01

    During initial non-radioactive operations at the Modular Caustic Side Solvent Extraction Unit (MCU), the pressure drop across the decontaminated salt solution coalescer reached ∼10 psi while processing ∼1250 gallons of salt solution, indicating possible fouling or plugging of the coalescer. An analysis of the feed solution and the 'plugged coalescer' concluded that the plugging was due to sodium aluminosilicate solids. MCU personnel requested Savannah River National Laboratory (SRNL) to investigate the formation of the sodium aluminosilicate solids (NAS) and the impact of the solids on the decontaminated salt solution coalescer. Researchers performed developmental testing of the cleaning protocols with a bench-scale coalescer container 1-inch long segments of a new coalescer element fouled using simulant solution. In addition, the authors obtained a 'plugged' Decontaminated Salt Solution coalescer from non-radioactive testing in the MCU and cleaned it according to the proposed cleaning procedure. Conclusions from this testing include the following: (1) Testing with the bench-scale coalescer showed an increase in pressure drop from solid particles, but the increase was not as large as observed at MCU. (2) Cleaning the bench-scale coalescer with nitric acid reduced the pressure drop and removed a large amount of solid particles (11 g of bayerite if all aluminum is present in that form or 23 g of sodium aluminosilicate if all silicon is present in that form). (3) Based on analysis of the cleaning solutions from bench-scale test, the 'dirt capacity' of a 40 inch coalescer for the NAS solids tested is calculated as 450-950 grams. (4) Cleaning the full-scale coalescer with nitric acid reduced the pressure drop and removed a large amount of solid particles (60 g of aluminum and 5 g of silicon). (5) Piping holdup in the full-scale coalescer system caused the pH to differ from the target value. Comparable hold-up in the facility could lead to less effective cleaning and

  4. Mixing of zeolite powders and molten salt

    International Nuclear Information System (INIS)

    Pereira, C.; Zyryanov, V.N.; Lewis, M.A.; Ackerman, J.P.

    1996-01-01

    Transuranics and fission products in a molten salt can be incorporated into zeolite A by an ion exchange process and by a batch mixing or blending process. The zeolite is then mixed with glass and consolidated into a monolithic waste form for geologic disposal. Both processes require mixing of zeolite powders with molten salt at elevated temperatures (>700 K). Complete occlusion of salt and a uniform distribution of chloride and fission products are desired for incorporation of the powders into the final waste form. The relative effectiveness of the blending process was studied over a series of temperature, time, and composition profiles. The major criteria for determining the effectiveness of the mixing operations were the level and uniformity of residual free salt in the mixtures. High operating temperatures (>775 K) improved salt occlusion. Reducing the chloride levels in the mixture to below 80% of the full salt capacity of the zeolite significantly reduced the free salt level in the final product

  5. Detergent zeolite complex "Alusil", Zvornik

    OpenAIRE

    Stanković Mirjana S.; Pezo Lato L.

    2003-01-01

    The IGPC Engineering Department designed the basis technological and machine projects for a detergent zeolite complex, on the basis of which a pilot plant with an initial capacity of 5,000 t/y was constructed in 1983 within Birač-Zvornik production complex. Additional projects were done afterwards and the starting capacity increased to 200,000 t/y in 1988. This plant became the biggest producer of detergent zeolite in the world. These projects were manufactured on the basis of specific techno...

  6. Preliminary study of zeolite-pva composite application in removal of SR-90

    International Nuclear Information System (INIS)

    Las, Thamzil; Zamroni, Huzen; Sugiarto; Darsono

    1998-01-01

    Zeolite-PAN composite was prepared by contacting the purified Bayah and Lampung zeolites with poly-vinyl alcohol binder and cured by using Gamma-ray of Co-60 at various doses, i.e., 10, 20, 30 dan 40 kGray with dose rates 7.5 kGy/hour. Zeolite-PAN composites were treated with solution containing Sr-90 up to 5 days and the Sr sorption was measured by Liquid Scintillation Counter for determination of their sorption efficiencies. The result obtained that, zeolite-PAN composites were shown high sorption efficiencies on the composites zeolite-PVA which was formulated from 20% zeolite, irradiated by 40 kGy and obtained the sorption efficiency of 94% with the Kd values similar to the purified zeolites. (author)

  7. Utilization of Zeolites in environmentally protection

    Energy Technology Data Exchange (ETDEWEB)

    Kallo, D. [Hungarian Academy of Sciences, Chemical Research Center, Institute of Chemistry, Budapest (Hungary)

    2000-07-01

    It has been attempted to present the most important fields of natural zeolite applications in environmental protection. Realized and approved utilizations were demonstrated inciting the reader to take these materials into consideration for solution of similar problems. The outlined properties can be used for other purposes not discussed in this review. They can be applied, e.g., in fish farming, transportation of living fishes when simultaneous ammonium and carbon dioxide removals is required: ammonium is exchanged for calcium present in the zeolite and CO{sub 2} is then precipitated in the form of CaCO{sub 3}; in treatment of diluted manure when undesired organics can be fixed and bactericide effects can be attained. Natural zeolites are used, therefore, as deodorant of litter of dogs or cats. Small amounts of metal cations, e.g., Cu{sup 2+}, Ag{sup +} or Zn{sup 2+}, introduced by ion exchange may disinfect contacting water. Due to water adsorption and desorption capability natural zeolite as construction materials exert some conditioning effect without any mechanical accessory. It seems likely the human ingenuity will continue to discover new applications in the future.

  8. The hydroisomerization activity of nickel-substituted mica montmorillonite clay

    NARCIS (Netherlands)

    Santen, van R.A.; Röbschläger, K.H.W.; Emeis, C.A.; Grasselli, R.K.; Brazdil, J.F.

    1985-01-01

    Three-layer sheet aluminosilicates, when exchanged into the acidic form, are far less active as hydroisomerization catalysts than zeolites having a comparable surface proton density. However, introducing Ni2+ or Co2+ into the octahedral positions of the Al3+ layer in synthetic beidellite results in

  9. Negative thermal expansion of lithium aluminosilicate ceramics at cryogenic temperatures

    International Nuclear Information System (INIS)

    Garcia-Moreno, Olga; Fernandez, Adolfo; Khainakov, Sergei; Torrecillas, Ramon

    2010-01-01

    Five lithium aluminosilicate compositions of the LAS system have been synthesized and sintered. The coefficient of thermal expansion of the sintered samples has been studied down to cryogenic conditions. The data presented here under cryogenic conditions will be of value in the future design of new composite materials with very low thermal expansion values. The variation in thermal expansion properties with composition and sintering temperature was studied and is discussed in relation to composition and crystal structure.

  10. Exploitation of Unique Properties of Zeolites in the Development of Gas Sensors

    Directory of Open Access Journals (Sweden)

    Prabir K. Dutta

    2012-04-01

    Full Text Available The unique properties of microporous zeolites, including ion-exchange properties, adsorption, molecular sieving, catalysis, conductivity have been exploited in improving the performance of gas sensors. Zeolites have been employed as physical and chemical filters to improve the sensitivity and selectivity of gas sensors. In addition, direct interaction of gas molecules with the extraframework cations in the nanoconfined space of zeolites has been explored as a basis for developing new impedance-type gas/vapor sensors. In this review, we summarize how these properties of zeolites have been used to develop new sensing paradigms. There is a considerable breadth of transduction processes that have been used for zeolite incorporated sensors, including frequency measurements, optical and the entire gamut of electrochemical measurements. It is clear from the published literature that zeolites provide a route to enhance sensor performance, and it is expected that commercial manifestation of some of the approaches discussed here will take place. The future of zeolite-based sensors will continue to exploit its unique properties and use of other microporous frameworks, including metal organic frameworks. Zeolite composites with electronic materials, including metals will lead to new paradigms in sensing. Use of nano-sized zeolite crystals and zeolite membranes will enhance sensor properties and make possible new routes of miniaturized sensors.

  11. Thermal Analysis of Lampung Zeolite as Ion Cesium Replacement

    International Nuclear Information System (INIS)

    Aslina-Br-Ginting; Dian-Anggraini; Arif-Nugroho

    2007-01-01

    Zeolite have the cation can move freely and as exchangeable partly or totally with other cations. Therefore, it can serve the purpose of ion exchanger very selectively to ion cesium which is present in fuel waste. In this research analysis of pore surface area, radius pore, and adsorption have been done. After the characters of Lampung zeolite is known and then analysis of cation exchange capacity (CEC) toward ion 137 Cs is conducted, analysis of Lampung zeolite adsorption to ion 137 Cs in waste of fissile product and in research waste is subsequently done. Result of analysis show Lampung zeolite has surface area of 10,0478 m 2 , specific surface area of 47,0841 m 2 /g, pore radius of 19,3020 o A and adsorption of 24,500 cc/g. For application as a ion exchange, Lampung zeolite can adsorb ion 137 Cs reaching maximum at concentration of CsCl 0,5 N with the contact time 1 day and the optimum KTK value is 0,8360 m eq/g. While Lampung zeolite is able to adsorb 86,4 % ion Cs in waste of fission product. (author)

  12. Characterization of ion distributions near the surface of sodium-containing and sodium-depleted calcium aluminosilicate glass melts

    International Nuclear Information System (INIS)

    Corrales, Louis R.; Du, Jincheng

    2006-01-01

    The distribution of cation and anion components of sodium containing calcium aluminosilicate glass was studied by classical molecular dynamics simulations in a high temperature melt in the bulk and at the vacuum-melt interface. A significant redistribution of the sodium and non-bridging oxygen ions was observed. Subsequently, a sodium depleted calcium aluminosilicate glass melt was simulated to determine the sensitivity of the redistribution of ions near the vacuum-melt interface to the presence of sodium ions. It is found that the thermodynamic equilibrium condition near a surface favors the enrichment of non-bridging oxygen ions that is closely associated with enrichment of the sodium ions

  13. The Effect of Zeolite on Aggregate Stability Indices

    Directory of Open Access Journals (Sweden)

    F. Sohrab

    2016-02-01

    Full Text Available Introduction: Soil structural stability affects the profitability and sustainability of agricultural systems. Particle size distribution (PSD and aggregate stability are the important characteristics of soil. Aggregate stability has a significant impact on the development of the root system, water and carbon cycle and soil resistance against soil erosion. Soil aggregate stability, defined as the ability of the aggregates to remain intact when subject to a given stress, is an important soil property that affects the movement and storage of water, aeration, erosion, biological activity and growth of crops. Dry soil aggregate stability (Mean Weight Diameter (MWD, Geometric Mean Diameter (GMD and Wet Aggregate Stability (WAS are important indices for evaluating soil aggregate stability.To improve soil physical properties, including modifying aggregate, using various additives (organic, inorganic and chemicals, zeolites are among what has been studied.According to traditional definition, zeolites are hydratealuminosilicates of alkaline and alkaline-earth minerals. Their structure is made up of a framework of[SiO4]−4 and [AlO4]−5 tetrahedron linked to each other's cornersby sharing oxygen atoms. The substitution of Si+4 by Al+3 intetrahedral sites results inmore negative charges and a high cation exchange capacity.Zeolites, as natural cation exchangers, are suitable substitutes to remove toxic cations. Among the natural zeolites,Clinoptilolite seems to be the most efficient ion exchanger and ion-selective material forremoving and stabilizing heavy metals.Due to theexisting insufficient technical information on the effects of using different levels of zeolite on physical properties of different types of soils in Iran, the aim of this research was to assess the effects of two different types of zeolite (Clinoptilolite natural zeolite, Z4, and Synthetic zeolite, A4 on aggregate stability indicesof soil. Materials and Methods: In this study at first

  14. Adsorption Device Based on a Langatate Crystal Microbalance for High Temperature High Pressure Gas Adsorption in Zeolite H-ZSM-5.

    Science.gov (United States)

    Ding, Wenjin; Baracchini, Giulia; Klumpp, Michael; Schwieger, Wilhelm; Dittmeyer, Roland

    2016-08-25

    We present a high-temperature and high-pressure gas adsorption measurement device based on a high-frequency oscillating microbalance (5 MHz langatate crystal microbalance, LCM) and its use for gas adsorption measurements in zeolite H-ZSM-5. Prior to the adsorption measurements, zeolite H-ZSM-5 crystals were synthesized on the gold electrode in the center of the LCM, without covering the connection points of the gold electrodes to the oscillator, by the steam-assisted crystallization (SAC) method, so that the zeolite crystals remain attached to the oscillating microbalance while keeping good electroconductivity of the LCM during the adsorption measurements. Compared to a conventional quartz crystal microbalance (QCM) which is limited to temperatures below 80 °C, the LCM can realize the adsorption measurements in principle at temperatures as high as 200-300 °C (i.e., at or close to the reaction temperature of the target application of one-stage DME synthesis from the synthesis gas), owing to the absence of crystalline-phase transitions up to its melting point (1,470 °C). The system was applied to investigate the adsorption of CO2, H2O, methanol and dimethyl ether (DME), each in the gas phase, on zeolite H-ZSM-5 in the temperature and pressure range of 50-150 °C and 0-18 bar, respectively. The results showed that the adsorption isotherms of these gases in H-ZSM-5 can be well fitted by Langmuir-type adsorption isotherms. Furthermore, the determined adsorption parameters, i.e., adsorption capacities, adsorption enthalpies, and adsorption entropies, compare well to literature data. In this work, the results for CO2 are shown as an example.

  15. Dealuminization treatment effect of krypton gas adsorption on zeolite

    International Nuclear Information System (INIS)

    Shin, J. M.; Shin, S. W.; Park, J. J.; Lee, H. H.; Yang, M. S.

    2003-01-01

    During the OREOX process of DUPIC fuel fabrication, krypton is released as a noble fission gas. In order to treat Kr safely, adsorption method on solids havs been selected. In order to determine the optimum extraction conditions of zeolite for Kr adsorption, the preliminary experiments for the concentration of hydrochloric acid were conducted. It was found that zeolite treated with 2N hydrochloric acid solution is superior to the zeolite untreated with HCl solution. When the zeolite was treated with 2N hydrochloric acid, it was found that the surface area was decreased. The micropores and the pore volume were increased and the adsorption amount of Kr gas was increased

  16. Regeneration of zeolite catalysts of isobutane alkylation with butenes

    Energy Technology Data Exchange (ETDEWEB)

    Manza, I.A.; Tsupryk, I.N.; Bartyshevskii, V.A.; Gaponenko, O.I.; Petrilyak, K.I.

    1986-12-10

    The industrial adoption of alkylation of isoalkanes with alkenes is held back by the rapid and irreversible deactivation of the zeolite catalysts appropriate to the process. This paper is aimed specifically at the restoration of the catalytic activity and increase in the service life of zeolite alkylation catalysts. The catalyst chosen for the investigation was HLaCaNaX zeolite both unmodified and modified with various multivalence cations. The thermochemical and oxidative regeneration process as well as the equipment utilized are described. Both the advantages and the drawbacks of the method are given; explanations for the possibly irreversible losses of the catalytic properties in the regenerated zeolites are also put forward.

  17. Desulfurization of the exhaust gas with zeolite synthesized from diatomaceous earth

    Energy Technology Data Exchange (ETDEWEB)

    Miyamoto, M

    1975-07-01

    Both A type and X type zeolites were prepared from diatomaceous earth and tested for use in flue gas desulfurization. Several diatomaceous earths of known chemical compositions were mixed to obtain a desired molar ratio of silicates, whose maturation was achieved in two steps; room temperature maturation and reflux maturation by heating. If the second maturation was carried out for more than 12 hr, the X type zeolite formation was low. At the best conditions, 80% pure zeolite could be prepared for both types according to their x-ray diffraction spectra. The synthesized x type zeolite adsorbed sulfur dioxide more efficiently than A type zeolite. When a simulated flue gas containing 680 to 840 ppM sulfur dioxide was passed at a flow rate of 9.0 Nl/min through a 250 g zeolite column, the column breaking time (time required for the SO/sub 2/ concentration of the column effluent to reach 10% of the initial SO/sub 2/ concentration) was 5.3 hr, while that for the commercial zeolite and activated carbon was 6.8 hr and 8.0 hr, respectively. If the flue gas contained more than 1% moisture, the adsorbed water reacted with SO/sub 2/ and the zeolite crystal tended to break down. The use of zeolite for flue gas desulfurization was more costly than the use of activated carbon.

  18. The initial step of silicate versus aluminosilicate formation in zeolite synthesis: a reaction mechanism in water with a tetrapropylammonium template

    KAUST Repository

    Trinh, Thuat T.

    2012-01-01

    The initial step for silicate and aluminosilicate condensation is studied in water in the presence of a realistic tetrapropylammonium template under basic conditions. The model corresponds to the synthesis conditions of ZSM5. The free energy profile for the dimer formation ((OH) 3Si-O-Si-(OH) 2O - or [(OH) 3Al-O-Si-(OH) 3] -) is calculated with ab initio molecular dynamics and thermodynamic integration. The Si-O-Si dimer formation occurs in a two-step manner with an overall free energy barrier of 75 kJ mol -1. The first step is associated with the Si-O bond formation and results in an intermediate with a five-coordinated Si, and the second one concerns the removal of the water molecule. The template is displaced away from the Si centres upon dimer formation, and a shell of water molecules is inserted between the silicate and the template. The main effect of the template is to slow down the backward hydrolysis reaction with respect to the condensation one. The Al-O-Si dimer formation first requires the formation of a metastable precursor state by proton transfer from Si(OH) 4 to Al(OH) 4 - mediated by a solvent molecule. It then proceeds through a single step with an overall barrier of 70 kJ mol -1. The model with water molecules explicitly included is then compared to a simple calculation using an implicit continuum model for the solvent. The results underline the importance of an explicit and dynamical treatment of the water solvent, which plays a key role in assisting the reaction. © the Owner Societies 2012.

  19. Solid-support substrates for plant growth at a lunar base

    Science.gov (United States)

    Ming, D. W.; Galindo, C.; Henninger, D. L.

    1990-01-01

    Zeoponics is only in its developmental stages at the Johnson Space Center and is defined as the cultivation of plants in zeolite substrates that contain several essential plant growth cations on their exchange sites, and have minor amounts of mineral phases and/or anion-exchange resins that supply essential plant growth anions. Zeolites are hydrated aluminosilicates of alkali and alkaline earth cations with the ability to exchange most of their constituent exchange cations as well as hydrate/dehydrate without change to their structural framework. Because zeolites have extremely high cation exchange capabilities, they are very attractive media for plant growth. It is possible to partially or fully saturate plant-essential cations on zeolites. Zeoponic systems will probably have their greatest applications at planetary bases (e.g., lunar bases). Lunar raw materials will have to be located that are suited for the synthesis of zeolites and other exchange resings. Lunar 'soil' simulants have been or are being prepared for zeolite/smectite synthesis and 'soil' dissolution studies.

  20. Electrochemical water splitting using nano-zeolite Y supported tungsten oxide electrocatalysts

    Science.gov (United States)

    Anis, Shaheen Fatima; Hashaikeh, Raed

    2018-02-01

    Zeolites are often used as supports for metals and metal oxides because of their well-defined microporous structure and high surface area. In this study, nano-zeolite Y (50-150 nm range) and micro-zeolite Y (500-800 nm range) were loaded with WO3, by impregnating the zeolite support with ammonium metatungstate and thermally decomposing the salt thereafter. Two different loadings of WO3 were studied, 3 wt.% and 5 wt.% with respect to the overall catalyst. The prepared catalysts were characterized for their morphology, structure, and surface areas through scanning electron microscope (SEM), XRD, and BET. They were further compared for their electrocatalytic activity for hydrogen evolution reaction (HER) in 0.5 M H2SO4. On comparing the bare micro-zeolite particles with the nano-form, the nano-zeolite Y showed higher currents with comparable overpotentials and lower Tafel slope of 62.36 mV/dec. WO3 loading brought about a change in the electrocatalytic properties of the catalyst. The overpotentials and Tafel slopes were observed to decrease with zeolite-3 wt.% WO3. The smallest overpotential of 60 mV and Tafel slope of 31.9 mV/dec was registered for nano-zeolite with 3 wt.% WO3, while the micro-zeolite gave an overpotential of 370 mV and a Tafel slope of 98.1 mV/dec. It was concluded that even with the same metal oxide loading, nano-zeolite showed superior performance, which is attributed to its size and hence easier escape of hydrogen bubbles from the catalyst.

  1. The Effect of Zeolite Composition and Grain Size on Gas Sensing Properties of SnO2/Zeolite Sensor

    Directory of Open Access Journals (Sweden)

    Yanhui Sun

    2018-01-01

    Full Text Available In order to improve the sensing properties of tin dioxide gas sensor, four kinds of different SiO2/Al2O3 ratio, different particle size of MFI type zeolites (ZSM-5 were coated on the SnO2 to prepared zeolite modified gas sensors, and the gas sensing properties were tested. The measurement results showed that the response values of ZSM-5 zeolite (SiO2/Al2O3 = 70, grain size 300 nm coated SnO2 gas sensors to formaldehyde vapor were increased, and the response to acetone decreased compared with that of SnO2 gas sensor, indicating an improved selectivity property. The other three ZSM-5 zeolites with SiO2/Al2O3 70, 150 and 470, respectively, and grain sizes all around 1 μm coated SnO2 sensors did not show much difference with SnO2 sensor for the response properties to both formaldehyde and acetone. The sensing mechanism of ZSM-5 modified sensors was briefly analyzed.

  2. Fluorescence labelling as tool for zeolite particle tracking in nanoremediation approaches

    International Nuclear Information System (INIS)

    Gillies, Glenn; Mackenzie, Katrin; Kopinke, Frank-Dieter; Georgi, Anett

    2016-01-01

    Colloidal Fe-zeolites such as Fe-BEA-35 are currently under study as new adsorbent and catalyst materials for in-situ chemical oxidation with H_2O_2. As for nanoremediation in general, the availability of suitable particle detection methods is a requirement for successful process development and particle tracing. Detection and distinguishing between natural colloids and introduced particles with a similar composition are a challenge. By means of fluorescence labelling, a highly specific detection option for Fe-BEA-35 was developed. ‘Ship-in-a-bottle’ synthesis of fluorescein within the zeolite pores, which was applied for the first time for a BEA type zeolite, provides a product with stable and non-extractable fluorescence. When the fluorescent labelled zeolite is added at a concentration of 1 wt.% referring to the total zeolite mass, a very low detection limit of 1 mg/L of total zeolite is obtained. Compared to commonly applied turbidity measurements, detection via fluorescence labelling is much more specific and sensitive. Fluorescence is only marginally affected by carboxymethyl cellulose, which is frequently applied as stabilizer in application suspensions but will be depleted upon contact with H_2O_2. Transport properties of fluorescent labelled and non-labelled Fe-zeolite particles are in agreement as determined in a column study with quartz sand and synthetic groundwater (classified as very hard). - Highlights: • Fluorescent BEA zeolite was prepared for first time by ‘ship-in-a-bottle’ synthesis. • Fluorescein synthesized inside zeolite channels is stable and non-extractable. • Detection limit of Fe-zeolite particles in suspension with 1 wt.% fluorescent zeolite is 1 mg/L. • Transport properties of fluorescent and Fe-loaded BEA particles are identical.

  3. Calculation of the 13C NMR shieldings of the C0 2 complexes of aluminosilicates

    Science.gov (United States)

    Tossell, J. A.

    1995-04-01

    13C NMR shieldings have been calculated using the random-phase-approximation, localized-orbital local-origins version of ab initio coupled Hartree-Fuck perturbation theory for CO 2 and and for several complexes formed by the reaction of CO 2 with molecular models for aluminosilicate glasses, H 3TOT'H3 3-n, T,T' = Si,Al. Two isomeric forms of the CO 2-aluminosilicate complexes have been considered: (1) "CO 2-like" complexes, in which the CO 2 group is bound through carbon to a bridging oxygen and (2) "CO 3-like" complexes, in which two oxygens of a central CO 3 group form bridging bonds to the two TH 3 groups. The CO 2-like isomer of CO 2-H 3SiOSiH 3 is quite weakly bonded and its 13C isotropic NMR shielding is almost identical to that in free CO 2. As Si is progressively replaced by Al in the - H terminated aluminosilicate model, the CO 2-like isomers show increasing distortion from the free CO 2 geometry and their 13C NMR shieldings decrease uniformly. The calculated 13C shielding value for H 3AlO(CO 2)AlH 3-2 is only about 6 ppm larger than that calculated for point charge stabilized CO 3-2. However, for a geometry of H 3SiO(CO 2) AlH 3-1, in which the bridging oxygen to C bond length has been artificially increased to that found in the - OH terminated cluster (OH) 3SiO(CO 2)Al(OH) 3-1, the calculated 13C shielding is almost identical to that for free CO 2. The CO 3-like isomers of the CO 2-aluminosili-cate complexes show carbonate like geometries and 13C NMR shieldings about 4-9 ppm larger than those of carbonate for all T,T' pairs. For the Si,Si tetrahedral atom pair the CO 2-like isomer is more stable energetically, while for the Si,Al and Al,Al cases the CO 3-like isomer is more stable. Addition of Na + ions to the CO 3-2 or H 3AlO(CO 2)AlH 3-2 complexes reduces the 13C NMR shieldings by about 10 ppm. Complexation with either Na + or CO 2 also reduces the 29Si NMR shieldings of the aluminosilicate models, while the changes in 27Al shielding with Na + or CO 2

  4. CO hydrogenation on zeolite-supported Ru: Effect of neutralizing cations

    International Nuclear Information System (INIS)

    Oukaci, R.; Wu, J.C.S.; Goodwin, J.G. Jr.

    1986-01-01

    Previous results for zeolite-supported Ru prepared by ion exchange suggested a possible effect of the nature and concentration of the neutralizing cations in the zeolite on the catalytic properties of the metal. However, the interpretation of these results was complicated by the fact that a series of zeolites with different Si/Al ratios was used. The present study was undertaken to investigate systematically the influence of the nature of alkali neutralizing cations on CO hydrogenation over ion-exchanged Y-zeolite-supported ruthenium catalysts

  5. The aluminosilicate fraction of North Pacific manganese nodules

    Science.gov (United States)

    Bischoff, J.L.; Piper, D.Z.; Leong, K.

    1981-01-01

    Nine nodules collected from throughout the deep North Pacific were analyzed for their mineralogy and major-element composition before and after leaching with Chester-Hughes solution. Data indicate that the mineral phillipsite accounts for the major part (> 75%) of the aluminosilicate fraction of all nodules. It is suggested that formation of phillipsite takes place on growing nodule surfaces coupled with the oxidation of absorbed manganous ion. All the nodules could be described as ternary mixtures of amorphous iron fraction (Fe-Ti-P), manganese oxide fraction (Mn-Mg Cu-Ni), and phillipsite fraction (Al-Si-K-Na), these fractions accounting for 96% of the variability of the chemical composition. ?? 1981.

  6. Hybrid Zeolitic Imidazolate Frameworks: Controlling Framework Porosity and Functionality by Mixed-Linker Synthesis

    KAUST Repository

    Thompson, Joshua A.

    2012-05-22

    Zeolitic imidazolate frameworks (ZIFs) are a subclass of nanoporous metal-organic frameworks (MOFs) that exhibit zeolite-like structural topologies and have interesting molecular recognition properties, such as molecular sieving and gate-opening effects associated with their pore apertures. The synthesis and characterization of hybrid ZIFs with mixed linkers in the framework are described in this work, producing materials with properties distinctly different from the parent frameworks (ZIF-8, ZIF-90, and ZIF-7). NMR spectroscopy is used to assess the relative amounts of the different linkers included in the frameworks, whereas nitrogen physisorption shows the evolution of the effective pore size distribution in materials resulting from the framework hybridization. X-ray diffraction shows these hybrid materials to be crystalline. In the case of ZIF-8-90 hybrids, the cubic space group of the parent frameworks is continuously maintained, whereas in the case of the ZIF-7-8 hybrids there is a transition from a cubic to a rhombohedral space group. Nitrogen physisorption data reveal that the hybrid materials exhibit substantial changes in gate-opening phenomena, either occurring at continuously tunable partial pressures of nitrogen (ZIF-8-90 hybrids) or loss of gate-opening effects to yield more rigid frameworks (ZIF-7-8 hybrids). With this synthetic approach, significant alterations in MOF properties may be realized to suit a desired separation or catalytic process. © 2012 American Chemical Society.

  7. Utilization of Natural Zeolite from Ponorogo and Purworejo for Naphthol Substance Adsorption

    Science.gov (United States)

    Imandiani, Sundus; Indira, Christine; Johan, Anthony; Budiyono

    2018-02-01

    Indonesia has many zeolite producing areas yet untapped. Researchers developed the utilization of natural zeolites useful for the adsorption of naphthol dyes commonly found in batik waste. In this study researchers used natural zeolites from Purworejo and Ponorogo that are activated using hydrochloric acid that is used for adsorption. The purpose of this research is to know the effect of natural zeolite activation from Ponorogo and Purworejo on the effectiveness of adsorption of naphthol dyes widely used in batik industry. Natural zeolite was activated using HCl concentration of 1.3N; 1.8N; 3.2N; and 3.9N for 60 minutes. The methods are preparation of natural zeolite from Purworejo and Ponorogo, dealumination using hydrochloric acid, adsorption process of naphthol dyes using activated zeolite, and test of adsorption result with uv-vis spectrophotometry. The test results showed that the higher HCl concentration will increase adsorption capacity. This can be known from the concentration of naphthol dye which decreased both using natural zeolite Ponorogo and Purworejo. While the effectiveness of adsorption shows natural zeolite Purworejo has a greater adsorption capacity than Ponorogo with optimum conditions of dealumination using concentration HCl 3,9N.

  8. In-situ high-temperature Raman spectroscopic studies of aluminosilicate liquids

    Science.gov (United States)

    Daniel, Isabelle; Gillet, Philippe; Poe, Brent T.; McMillan, Paul F.

    1995-03-01

    We have measured in-situ Raman spectra of aluminosilicate glasses and liquids with albite (NaAlSi3 O8) and anorthite (CaAl2Si2O8) compositions at high temperatures, through their glass transition range up to 1700 and 2000 K, respectively. For these experiments, we have used a wire-loop heating device coupled with micro-Raman spectroscopy, in order to achieve effective spatial filtering of the extraneous thermal radiation. A major concern in this work is the development of methodology for reliably extracting the first and second order contributions to the Raman scattering spectra of aluminosilicate glasses and liquids from the high temperature experimental data, and analyzing these in terms of vibrational (anharmonic) and configurational changes. The changes in the first order Raman spectra with temperature are subtle. The principal low frequency band remains nearly constant with increasing temperature, indicating little change in the T-O-T angle, and that the angle bending vibration is quite harmonic. This is in contrast to vitreous SiO2, studied previously. Above Tg, intensity changes in the 560 590 cm-1 regions of both sets of spectra indicate configurational changes in the supercooled liquids, associated with formation of additional Al-O-Al linkages, or 3-membered (Al, Si)-containing rings. Additional intensity at 800 cm-1 reflects also some rearrangement of the Si-O-Al network.

  9. Generalized synthesis of mesoporous shells on zeolite crystals

    KAUST Repository

    Han, Yu; Pitukmanorom, Pemakorn; Zhao, L. J.; Ying, Jackie

    2010-01-01

    A simple and generalized synthetic approach is developed for creating mesoporous shells on zeolite crystals. This method allows for the tailoring of thickness, pore size, and composition of the mesoporous shell, and can be applied to zeolites

  10. Facile Fabrication of Uniform Polyaniline Nanotubes with Tubular Aluminosilicates as Templates

    OpenAIRE

    Zhang, Long; Liu, Peng

    2008-01-01

    AbstractThe uniform polyaniline (PANI) nanotubes, with inner diameter, outer diameter, and tubular thickness of 40, 60, and 10 nm, respectively, were prepared successfully by using natural tubular aluminosilicates as templates. The halloysite nanotubes were coated with PANI via the in situ chemical oxidation polymerization. Then the templates were etched with HCl/HF solution. The PANI nanotubes were characterized using FTIR, X-ray diffraction, and transmission electron microscopy. The conduct...

  11. Synthesis of Zeolite Materials for Noble Gas Separation

    International Nuclear Information System (INIS)

    Achey, R.; Rivera, O.; Wellons, M.; Hunter, D.

    2017-01-01

    Microporous zeolite adsorbent materials are widely used as a medium for separating gases. Adsorbent gas separation systems can run at ambient temperature and require minimal pressure to flow the input gas stream across the adsorbent bed. This allows for low energy consumption relative to other types of separation systems. Specific zeolites also have a high capacity and selectivity for the gases of interest, leading to compact and efficient separation systems. These characteristics are particularly advantageous for the application of signatures detection for non-proliferation, which often requires portable systems with low power draw. Savannah River National Laboratory currently is the leader in using zeolites for noble gas sampling for non-proliferation detection platforms. However, there is a constant customer need for improved sampling capabilities. Development of improved zeolite materials will lead to improved sampling technology. Microwave-assisted and conventional hydrothermal synthesis have been used to make a variety of zeolites tailored for noble gas separation. Materials characterization data collected in this project has been used to help guide the synthesis of improved zeolite materials. Candidate materials have been down-selected based on highest available surface area, maximum overall capacity for gas adsorption and highest selectivity. The creation of improved adsorbent materials initiated in this project will lead to development of more compact, efficient and effective noble gas collectors and concentrators. The work performed in this project will be used as a foundation for funding proposals for further material development as well as possible industrial applications.

  12. Synthesis of Zeolite Materials for Noble Gas Separation

    Energy Technology Data Exchange (ETDEWEB)

    Achey, R. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Rivera, O. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Wellons, M. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Hunter, D. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2017-10-02

    Microporous zeolite adsorbent materials are widely used as a medium for separating gases. Adsorbent gas separation systems can run at ambient temperature and require minimal pressure to flow the input gas stream across the adsorbent bed. This allows for low energy consumption relative to other types of separation systems. Specific zeolites also have a high capacity and selectivity for the gases of interest, leading to compact and efficient separation systems. These characteristics are particularly advantageous for the application of signatures detection for non-proliferation, which often requires portable systems with low power draw. Savannah River National Laboratory currently is the leader in using zeolites for noble gas sampling for non-proliferation detection platforms. However, there is a constant customer need for improved sampling capabilities. Development of improved zeolite materials will lead to improved sampling technology. Microwave-assisted and conventional hydrothermal synthesis have been used to make a variety of zeolites tailored for noble gas separation. Materials characterization data collected in this project has been used to help guide the synthesis of improved zeolite materials. Candidate materials have been down-selected based on highest available surface area, maximum overall capacity for gas adsorption and highest selectivity. The creation of improved adsorbent materials initiated in this project will lead to development of more compact, efficient and effective noble gas collectors and concentrators. The work performed in this project will be used as a foundation for funding proposals for further material development as well as possible industrial applications.

  13. Characterization of gallium-containing zeolites for catalytic applications

    Energy Technology Data Exchange (ETDEWEB)

    Garcia Sanchez, M.

    2003-12-08

    The present study considers the synthesis, characterization, and catalytic evaluation of extra-framework gallium-containing zeolites. We focus on modification of zeolites by chemical vapor deposition of trimethylgallium on HZSM-5 and Mordenite zeolites. Chapter 2 is dedicated to the chemisorption and stability of TMG on HZSM-5 and HMOR zeolites. The effect of silylation is also addressed. Some theoretical calculations are also shown in this study to support part of the experimental results. In Chapter 3, the effect of oxidation and reduction treatments on these catalysts is investigated by FTIR, ICP and multinuclei NMR. In Chapter 4, the oxidation state and Ga coordination obtained during and after thermal treatment with H2 and O2 is analysed by X-ray adsorption spectroscopy (XANES and EXAFS) and IR analysis of CO adsorption. These results allow a better understanding of the catalytic behaviour of Ga-containing zeolites catalyst. Chapter 5 consists of two parts: one discusses the H2 activation over Ga/HZSM5 and Ga/MOR catalysts by H2/D2 isotopic exchange reaction, and the second part deals with the aromatization of n-heptane over the same catalysts.

  14. Computer simulation study of in-zeolites templated carbon replicas: structural and adsorption properties for hydrogen storage application

    International Nuclear Information System (INIS)

    Roussel, T.

    2007-05-01

    Hydrogen storage is the key issue to envisage this gas for instance as an energy vector in the field of transportation. Porous carbons are materials that are considered as possible candidates. We have studied well-controlled microporous carbon nano-structures, carbonaceous replicas of meso-porous ordered silica materials and zeolites. We realized numerically (using Grand Canonical Monte Carlo Simulations, GCMC) the atomic nano-structures of the carbon replication of four zeolites: AlPO 4 -5, silicalite-1, and Faujasite (FAU and EMT). The faujasite replicas allow nano-casting of a new form of carbon crystalline solid made of tetrahedrally or hexagonally interconnected single wall nano-tubes. The pore size networks are nano-metric giving these materials optimized hydrogen molecular storage capacities (for pure carbon phases). However, we demonstrate that these new carbon forms are not interesting for room temperature efficient storage compared to the void space of a classical gas cylinder. We showed that doping with an alkaline element, such as lithium, one could store the same quantities at 350 bar compared to a classical tank at 700 bar. This result is a possible route to achieve interesting performances for on-board docking systems for instance. (author)

  15. ADSORPTION MALACHITE GREEN ON NATURAL ZEOLITE

    OpenAIRE

    Eko Ariyanto

    2012-01-01

    A natural zeolite was employed as adsorbent for reducing of malachite green from aqueous solution. A batch system was applied to study the adsorption of malachite green in single system on natural zeolite. The adsorption studies indicate that malachite green in single component system follows the second-order kinetics and the adsorption is diffusion process with two stages for malachite green. Malachite green adsorption isotherm follows the Langmuir model.

  16. Zeolite Vitrification Demonstration Program nonradioactive-process operations summary

    International Nuclear Information System (INIS)

    Bryan, G.H.; Knox, C.A.; Goles, R.G.; Ethridge, L.J.; Siemens, D.H.

    1982-09-01

    The Submerged Demineralizer System is a process developed to decontaminate high-activity level water at Three Mile Island by sorbing the activity (primarily Cs and Sr) onto beds of zeolite. Pacific Northwest Laboratory's Zeolite Vitrification Demonstration Program has the responsibility of demonstrating the full-scale vitrification of this zeolite material. The first phase of this program has been to develop a glass formulation and demonstrate the vitrification process with the use of nonradioactive materials. During this phase, four full-scale nonradioactive demonstration runs were completed. The same zeolite mixture being used in the SDS system was loaded with nonradioactive isotopes of Cs and Sr, dried, blended with glass-forming chemicals and fed to a canister in an in-can melter furnace. During each run, the gaseous effluents were sampled. After each run, glass samples were removed and analyzed

  17. Facile synthesis of hierarchical nanocrystalline ZSM-5 zeolite under mild conditions and its catalytic performance.

    Science.gov (United States)

    Ni, Youming; Sun, Aiming; Wu, Xiaoling; Hai, Guoliang; Hu, Jianglin; Li, Tao; Li, Guangxing

    2011-09-15

    Hierarchical nanocrystalline ZSM-5 zeolite (NZ5) was synthesized at 100 °C under atmospheric pressure using methylamine as a mineralizing agent. The crystallization process of NZ5 was characterized by dynamic light scattering (DLS), X-ray diffraction (XRD), and infrared spectroscopy (FTIR). The results of contrastive experiments showed that evaporation of the solvent promoted the aggregation of primary particles, and the addition of methylamine accelerated the crystallization process. The NZ5 aggregate consisted of 20 nm individual particles, as shown in scanning electron microscope (SEM). The lattice fringes in the transmission electron microscope (TEM) images and the XRD results indicated that individual particles of NZ5 were highly crystalline. N(2) adsorption-desorption isotherms showed that NZ5 had high BET surface areas with mesopores having a mean diameter of about 9 nm. NZ5 exhibited a long lifetime, a stable and high yield of liquid hydrocarbons, and a high anti-coking performance in methanol-to-hydrocarbons reaction. Catalytic testing and TGA results showed that the lifetime of NZ5 was about ten times longer than that of micro-sized ZSM-5 zeolite (MZ5), and the average coking rate with NZ5 was one fifth over that of MZ5. Copyright © 2011 Elsevier Inc. All rights reserved.

  18. Zeolite-catalyzed biomass conversion to fuels and chemicals

    DEFF Research Database (Denmark)

    Taarning, Esben; Osmundsen, Christian Mårup; Yang, Xiaobo

    2011-01-01

    Heterogeneous catalysts have been a central element in the efficient conversion of fossil resources to fuels and chemicals, but their role in biomass utilization is more ambiguous. Zeolites constitute a promising class of heterogeneous catalysts and developments in recent years have demonstrated...... their potential to find broad use in the conversion of biomass. In this perspective we review and discuss the developments that have taken place in the field of biomass conversion using zeolites. Emphasis is put on the conversion of lignocellulosic material to fuels using conventional zeolites as well...

  19. Oxidation of Bioethanol using Zeolite-Encapsulated Gold Nanoparticles

    DEFF Research Database (Denmark)

    Mielby, Jerrik Jørgen; Abildstrøm, Jacob Oskar; Wang, Feng

    2014-01-01

    With the ongoing developments in biomass conversion, the oxidation of bioethanol to acetaldehyde may become a favorable and green alternative to the preparation from ethylene. Here, a simple and effective method to encapsulate gold nanoparticles in zeolite silicalite-1 is reported and their high...... zeolite crystals comprise a broad range of mesopores and contain up to several hundred gold nanoparticles with a diameter of 2-3nm that are distributed inside the zeolites rather than on the outer surface. The encapsulated nanoparticles have good stability and result in 50% conversion of ethanol with 98...

  20. Oxidation of Bioethanol using Zeolite-Encapsulated Gold Nanoparticles

    DEFF Research Database (Denmark)

    Mielby, Jerrik Jørgen; Abildstrøm, Jacob Oskar; Wang, Feng

    2014-01-01

    With the ongoing developments in biomass conversion, the oxidation of bioethanol to acetaldehyde may become a favorable and green alternative to the preparation from ethylene. Here, a simple and effective method to encapsulate gold nanoparticles in zeolite silicalite‐1 is reported and their high...... zeolite crystals comprise a broad range of mesopores and contain up to several hundred gold nanoparticles with a diameter of 2–3 nm that are distributed inside the zeolites rather than on the outer surface. The encapsulated nanoparticles have good stability and result in 50 % conversion of ethanol with 98...

  1. FUNDAMENTALS AND APPLICATIONS OF PERVAPORATION THROUGH ZEOLITE MEMBRANES

    Science.gov (United States)

    Zeolite membranes are well suited for separating liquid-phase mixtures by pervaporation because of their molecular-sized pores and their hydrophilic/hydrophobic nature, and the first commercial application of zeolite membranes has been for dehydrating organics [1]. Because of ...

  2. Crystallization of Nanocomposite Glasses Made by the SSG Process

    Science.gov (United States)

    1993-01-12

    network structures of aluminosilicate. aluminophosph- ate IALPO) and silicoaluminophosphate ( SAPO ) composition 2.4 g t mik Nalucompstes and are porous...the pores being in the range 2.8-10 A. Many of the highly siliceous. ALPO and SAPO zeolites have been Newnham and co-workers have developed a large

  3. Encapsulation of ferro- and ferricyanide complexes inside ZSM-5 zeolite synthesized from rice straw: Implications for synthesis of Prussian blue pigment

    International Nuclear Information System (INIS)

    Ali, Ibraheem O.; Salama, Tarek M.; Thabet, Mohamed S.; El-Nasser, Karam S.; Hassan, Ali M.

    2013-01-01

    Encapsulation of [Fe(CN) 6 ] 4− and [Fe(CN) 6 ] 3− complexes in the intracrystalline pores of ZSM-5 zeolite, Fe II L/Z and Fe III L/Z respectively, by the zeolite synthesis method was reported. The modified zeolites were characterized by powder XRD, FT-IR and UV–vis spectroscopy. The nitrogen adsorption isotherms allow for the evaluation of pore structure of the complex-modified zeolites, whereas the thermal analysis (TGA/DTA) measurements provide insight into the decomposition products of the immobilized complexes. The modified zeolites exhibited smaller pore volumes and surface areas as compared with those of unpromoted ZSM-5, suggesting the inclusion of iron cyanides inside the interconnecting channels of ZSM-5. While the ferricyanide complex enhanced the formation of highly crystalline zeolite, the ferrocyanide one resulted in a lesser effect. The electronic spectra of the colloidal species developed when Fe III L/Z brought in contact with an aqueous solution of [Fe(CN) 6 ] 3− exhibit absorptions attributed to CN − → iron charge-transfer. New bands at 294 and 319 nm due to d–d transitions of Fe III tetrahedral monomeric moieties were emitted concurrently under successive adsorption of [Fe(CN) 6 ] aq 3− over Fe III L/Z, along with a broad band at 555 nm assigned to polymeric [Fe II –C–N–Fe III ] of Prussian blue (PB). The FT-IR spectra of Fe III/II L/Z devoted to the adsorption of an aqueous solution of [Fe(CN) 6 ] 3− showed a band at 2092 cm −1 assigned to the C–N stretch in the Fe II –CN–Fe III linkages. The vibrations attributable to Fe–O–Si bonding along with hydrocarbon and nitroprusside appeared only in the spectrum of Fe III L/Z, thus was found to be strong evidence for the mutual interaction between [Fe(CN) 6 ] 3− and the latter sample. - Highlights: • We synthesized ferrous and ferric cyanide complexes inside ZSM-5 zeolite. • The decomposition of the encapsulated complexes occurred at high temperatures.

  4. Influence of zeolite and cement additions on mechanical behavior of sandy soil

    Directory of Open Access Journals (Sweden)

    Hossein Mola-Abasi

    2016-10-01

    Full Text Available It is well known that the cemented sand is one of economic and environmental topics in soil stabilization. In this instance, a blend of sand, cement and other materials such as fiber, glass, nanoparticle and zeolite can be commercially available and effectively used in soil stabilization in road construction. However, the influence and effectiveness of zeolite on the properties of cemented sand systems have not been completely explored. In this study, based on an experimental program, the effects of zeolite on the characteristics of cemented sands are investigated. Stabilizing agent includes Portland cement of type II and zeolite. Results show the improvements of unconfined compressive strength (UCS and failure properties of cemented sand when the cement is replaced by zeolite at an optimum proportion of 30% after 28 days. The rate of strength improvement is approximately between 20% and 78%. The efficiency of using zeolite increases with the increases in cement amount and porosity. Finally, a power function of void-cement ratio and zeolite content is demonstrated to be an appropriate method to assess UCS of zeolite-cemented mixtures.

  5. β-Zeolite modified by ethylenediamine for sorption of Th(IV)

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Peng; Wu, Hanyu; Yuan, Ni; Yin, Zhuoxin; Pan, Duoqiang; Wu, Wangsuo [Lanzhou Univ. (China). Radiochemistry Lab.; Ministry of Education, Lanzhou (China). Key Lab. of Special Function Materials and Structure Design

    2017-08-01

    β-Zeolite-EDA was modified with ethylenediamine (EDA) after synthesized. The synthesized material was characterized and used for removal of Th(IV) from aqueous solutions. The influences of pH, ionic strength, contact time, temperature and humic acid (HA) on Th(IV) sorption onto synthesized β-zeolite-EDA was studied by batch technique. The dynamic process showed that the sorption of Th(IV) onto β-zeolite-EDA matched the pseudo-second-order kinetics model. The sorption of Th(IV) on β-zeolite-EDA was significantly dependent on pH values, the sorption percentage increased markedly at pH 3.5-4.5, and then maintained a steady state as pH values increased. Through simulating the sorption isotherms by Langmuir, Freundlich and Dubini-Radushkevich (D-R) models, it could be seen respectively that the sorption pattern of Th(IV) on β-zeolite-EDA was mainly controlled by surface complexation, and that the sorption processes was endothermic and spontaneous. The presence of HA increased Th(IV) sorption on β-zeolite-EDA.

  6. Nanosized zeolites as a perspective material for conductometric biosensors creation

    Science.gov (United States)

    Kucherenko, Ivan; Soldatkin, Oleksandr; Kasap, Berna Ozansoy; Kirdeciler, Salih Kaan; Kurc, Burcu Akata; Jaffrezic-Renault, Nicole; Soldatkin, Alexei; Lagarde, Florence; Dzyadevych, Sergei

    2015-05-01

    In this work, the method of enzyme adsorption on different zeolites and mesoporous silica spheres (MSS) was investigated for the creation of conductometric biosensors. The conductometric transducers consisted of gold interdigitated electrodes were placed on the ceramic support. The transducers were modified with zeolites and MSS, and then the enzymes were adsorbed on the transducer surface. Different methods of zeolite attachment to the transducer surface were used; drop coating with heating to 200°C turned out to be the best one. Nanozeolites beta and L, zeolite L, MSS, and silicalite-1 (80 to 450 nm) were tested as the adsorbents for enzyme urease. The biosensors with all tested particles except zeolite L had good analytical characteristics. Silicalite-1 (450 nm) was also used for adsorption of glucose oxidase, acetylcholinesterase, and butyrylcholinesterase. The glucose and acetylcholine biosensors were successfully created, whereas butyrylcholinesterase was not adsorbed on silicalite-1. The enzyme adsorption on zeolites and MSS is simple, quick, well reproducible, does not require use of toxic compounds, and therefore can be recommended for the development of biosensors when these advantages are especially important.

  7. Adsorption methods for hydrogen isotope storage on zeolite sieves

    International Nuclear Information System (INIS)

    Cristescu, Ioana; Cristescu, Ion; Vasut, Felicia; Brad, Sebastian; Lazar, Alin

    2001-01-01

    Adsorption molecular sieves and activated carbon were used for hydrogen isotopes. The adsorption process proceeds at liquid nitrogen and liquid hydrogen temperatures. The synthetic zeolites have similar properties as natural zeolites, but they have a regular pore structure and affinity for molecules of different size with defined shapes. Experimental results obtained at liquid nitrogen and liquid hydrogen temperatures evidenced the efficient behavior of the activated carbon and zeolite sieves for hydrogen isotope temporary storage. (authors)

  8. Hot isostatically-pressed aluminosilicate glass-ceramic with natural crystalline analogues for immobilizing the calcined high-level nuclear waste at the Idaho Chemical Processing Plant

    International Nuclear Information System (INIS)

    Raman, S.

    1993-12-01

    The additives Si, Al, MgO, P 2 O 5 were mechanically blended with fluorinelsodium calcine in varying proportions. The batches were vacuum sealed in stainless steel canisters and hot isostatically pressed at 20,000 PSI and 1000 C for 4 hours. The resulting suite of glass-ceramic waste forms parallels the natural rocks in microstructural and compositional heterogeneity. Several crystalline phases ar analogous in composition and structure to naturally occurring minerals. Additional crystalline phases are zirconia and Ca-Mg borate. The glasses are enriched in silica and alumina. Approximately 7% calcine elements occur dissolved in this glass and the total glass content in the waste forms averages 20 wt%. The remainder of the calcine elements are partitioned into crystalline phases at 75 wt% calcine waste loading. The waste forms were tested for chemical durability in accordance with the MCC1-test procedure. The leach rates are a function of the relative proportions of additives and calcine, which in turn influence the composition and abundances of the glass and crystalline phases. The DOE leach rate criterion of less than 1 g/m 2 -day is met by all the elements B, Cs and Na are increased by lowering the melt viscosity. This is related to increased crystallization or devitrification with increases in MgO addition. This exploratory work has shown that the increases in waste loading occur by preferred partitioning of the calcine components among crystalline and glass phases. The determination of optimum processing parameters in the form of additive concentration levels, homogeneous blending among the components, and pressure-temperature stabilities of phases must be continued to eliminate undesirable effects of chemical composition, microstructure and glass devitrification

  9. Cupric natural zeolites as microbic ides

    International Nuclear Information System (INIS)

    Contreras A, D.; Olguin G, M. T.; Alcantara D, D.; Burrola A, C.

    2009-01-01

    The Escherichia coli and the Candida albicans are considered contamination indicators for what these organisms reflect the water quality. The natural zeolites by their characteristics and properties, they could incorporate to a waters treatment system, as ion exchange, adsorbents and/or microbiocid agents, representing an alternative method of low cost. Inside this investigation work was found that depending on the microorganism type, it varies the quantity of cupric zeolite that is required to carry out the water disinfection, being great for the case of yeasts than the bacteria s. In addition to that marked differences are presented in the required time to reach this process. The characterization of the natural zeolite material, sodium and cupric, was realized by means of scanning electron microscopy, determining the elementary composition (Energy Dispersive Spectroscopy) of each one of them, and by X-ray diffraction. (Author)

  10. Charge-transfer state excitation as the main mechanism of the photodarkening process in ytterbium-doped aluminosilicate fibres

    Energy Technology Data Exchange (ETDEWEB)

    Bobkov, K K; Rybaltovsky, A A; Vel' miskin, V V; Likhachev, M E; Bubnov, M M; Dianov, E M [Fiber Optics Research Center, Russian Academy of Sciences, Moscow (Russian Federation); Umnikov, A A; Gur' yanov, A N; Vechkanov, N N [G.G.Devyatykh Institute of Chemistry of High-Purity Substances, Russian Academy of Sciences, Nizhnii Novgorod (Russian Federation); Shestakova, I A [Open Joint-Stock Company M.F. Stel' makh Polyus Research Institute, Moscow (Russian Federation)

    2014-12-31

    We have studied photodarkening in ytterbium-doped fibre preforms with an aluminosilicate glass core. Analysis of their absorption and luminescence spectra indicates the formation of stable Yb{sup 2+} ions in the glass network under IR laser pumping at a wavelength λ = 915 nm and under UV irradiation with an excimer laser (λ = 193 nm). We have performed comparative studies of the luminescence spectra of the preforms and crystals under excitation at a wavelength of 193 nm. The mechanism behind the formation of Yb{sup 2+} ions and aluminium – oxygen hole centres (Al-OHCs), common to ytterbium-doped YAG crystals and aluminosilicate glass, has been identified: photoinduced Yb{sup 3+} charge-transfer state excitation. (optical fibres)

  11. Nanotechnology Role for the Production of Clean Fuel E-85 and Petrochemical Raw Materials

    Directory of Open Access Journals (Sweden)

    Iskander K. Basily

    2012-01-01

    Full Text Available There have been a number of substantive technical changes that can be described as revolutionary process and evolutionary process. One of these approaches is the use of nanotechnology in the two-stage pyrolysis of petroleum residues of the heavy distillates separated from the Arabian crude oil. Two-stage catalytic pyrolysis technique proved to be an excellent method for the production of unsaturated hydrocarbons (which easily can be converted to alcohol, by addition of H2O, for the production of E-85, i.e., clean fuel regardless the type of feed stocks used. Basically, the catalysts are arranged into three large groups; amorphous and crystalline alumino-silicates, alkaline or alkaline earth alumino compounds, and different metal oxides on different catalyst carriers such as Zeolites. The high yield of ethylene (30–40% brought by different catalysts at temperatures of 700–750°C appear to justify the intensive research work in this field.

  12. ADSORPTION MALACHITE GREEN ON NATURAL ZEOLITE

    Directory of Open Access Journals (Sweden)

    Eko Ariyanto

    2012-02-01

    Full Text Available A natural zeolite was employed as adsorbent for reducing of malachite green from aqueous solution. A batch system was applied to study the adsorption of malachite green in single system on natural zeolite. The adsorption studies indicate that malachite green in single component system follows the second-order kinetics and the adsorption is diffusion process with two stages for malachite green. Malachite green adsorption isotherm follows the Langmuir model.

  13. Detergent zeolite complex "Ceosil", Tallinn, Estonia

    OpenAIRE

    Stanković Mirjana S.; Pezo Lato L.

    2003-01-01

    The IGPC Engineering Department, together with the "Birac", Zvornik Engineering Department designed basic projects for detergent zeolite production, using waste flotation sand and hydrates. Several projects were completed: technological, machine, electrical, automation. On the basis of these projects, production plant in Tallinn, Estonia was constructed, with a capacity of 100,000 t/y from 1989. to 1993. This plant became the biggest producer of detergent zeolite in the world.Several goals we...

  14. PHOTODEGRADATION OF ALIZARIN S DYE USING TiO2-ZEOLITE AND UV RADIATION

    Directory of Open Access Journals (Sweden)

    Karna Wijaya

    2010-06-01

    Full Text Available An investigation of Alizarin S photodegradation using TiO2-zeolite and UV radiation was performed. TiO2-zeolite was prepared by dispersing oligocations of titanium into suspension of zeolite. The suspension was stirred and then filtered to separate the solid phase from the filtrate. the solid phase was calcined by microwave oven at 800 Watt for 5 minutes to convert the oligocations into its oxide forms. The calcined product and unmodified zeolite were characterized using x-ray diffractometry, FT-IR spectrophotometry, X-ray fluorescence and gas sorption analysis methods to determine their physicochemical properties. Photocatalytic activity of TiO2-zeolite was tested on Alizarin S solution using following method: 50 mg of zeolite was dispersed into 25 mL of 10-4 M Alizarin S. The dispersion was irradiated using 365 nm UV light at room temperature on various irradiation times, i.e. 10, 20, 30, 40 and 60 minutes. At certain irradiation time, the dispersion was filtered and the filtrate was then analyzed its concentration using UV-Vis spectrophotometry method. Characterization results exhibited that the formation of TiO2 on internal as well as external surfaces of zeolite could not be detected  with x-ray diffractometry and FT-IR spectrophotometry, however determination of titanium using x-ray fluorescence analysis on the calcined product showed that the concentration of titanium was much higher than zeolite (0.22% on zeolite and 12.08% on TiO2-zeolite. Gas sorption analysis result indicated that the the calcination  resulted in the increase of specific surface area (16,31 m2/g on zeolite and 100.96 m2/g on TiO2-zeolite as well as total pore volume of calcined product (13.34 mL/Å/g on zeolite and 57.54 mL/Å/g on TiO2-zeolite. The result of photocatalytic activitiy study showed that ca 99 % of Alizarin S was degraded by TiO2-zeolite after UV irradiation for 60 min.   Keywords: TiO2-zeolite, photocatalytic, Alizarin S.

  15. Cr(VI) retention and transport through Fe(III)-coated natural zeolite

    Energy Technology Data Exchange (ETDEWEB)

    Du, Gaoxiang [School of Materials Science and Technology, China University of Geosciences, Beijing 100083 (China); Li, Zhaohui, E-mail: li@uwp.edu [School of Materials Science and Technology, China University of Geosciences, Beijing 100083 (China); Geosciences Department, University of Wisconsin-Parkside, Kenosha, WI 53144 (United States); Department of Earth Sciences, National Cheng Kung University, 1 University Road, Tainan 70101, Taiwan (China); Liao, Libing [School of Materials Science and Technology, China University of Geosciences, Beijing 100083 (China); Hanson, Renee; Leick, Samantha; Hoeppner, Nicole [Geosciences Department, University of Wisconsin-Parkside, Kenosha, WI 53144 (United States); Jiang, Wei-Teh [Department of Earth Sciences, National Cheng Kung University, 1 University Road, Tainan 70101, Taiwan (China)

    2012-06-30

    Graphical abstract: Breakthrough curves of Cr(VI) from columns packed with raw zeolite (a) and Fe(III)-zeolite (b). The solid line in (b) is the HYDRUS-1D fit to the observed data with adsorption term only, while the dashed line in (b) includes a reduction term in the HYDRUS-1D fit. Highlights: Black-Right-Pointing-Pointer Zeolite modified with Fe(III) could be used for adsorption and retention of Cr(VI). Black-Right-Pointing-Pointer The Fe present on zeolite was in an amorphous Fe(OH){sub 3} form. Black-Right-Pointing-Pointer A Cr(VI) adsorption capacity of 82 mg/kg was found on Fe(III)-zeolite. Black-Right-Pointing-Pointer A Cr(VI) retardation factor of 3 or 5 was determined from column and batch studies. - Abstract: Cr(VI) is a group A chemical based on the weight of evidence of carcinogenicity. Its transport and retention in soils and groundwater have been studied extensively. Zeolite is a major component in deposits originated from volcanic ash and tuff after alteration. In this study, zeolite aggregates with the particle size of 1.4-2.4 mm were preloaded with Fe(III). The influence of present Fe(III) on Cr(VI) retention by and transport through zeolite was studied under batch and column experiments. The added Fe(III) resulted in an enhanced Cr(VI) retention by the zeolite with a capacity of 82 mg/kg. The Cr(VI) adsorption on Fe(III)-zeolite followed a pseudo-second order kinetically and the Freundlich adsorption isotherm thermodynamically. Fitting the column experimental data to HYDRUS-1D resulted in a retardation factor of 3 in comparison to 5 calculated from batch tests at an initial Cr(VI) concentration of 3 mg/L. The results from this study showed that enhanced adsorption and retention of Cr(VI) may happen in soils derived from volcanic ash and tuff that contains significant amounts of zeolite with extensive Fe(III) coating.

  16. Zeolite from fly ash: synthesis and characterization

    Indian Academy of Sciences (India)

    Unknown

    to attempt making zeolite from fly ash (Höller and Wir- sching 1985; Henmi ... thermal treatment method to synthesize low silica NaX- type zeolite from .... catalytic applications. Mixture of ... amount of Fe2O3 and the oxides of Mg, Ca, P, Ti etc. The chemical ..... This work is partly supported by the Ministry of Human. Resource ...

  17. Defluorination of drinking water using surfactant modified zeolites ...

    African Journals Online (AJOL)

    This study focused on the removal of fluoridefrom groundwater by employing surfactant modified zeolites (SMZ) synthesized using locallyavailable kaolin material as precursor. The zeolite synthesis involved calcination of kaolin, alkaline fusion and hydrothermal treatment. The final product was modified with 5g/L ...

  18. Calcining natural zeolites to improve their effect on cementitious mixture workability

    International Nuclear Information System (INIS)

    Seraj, Saamiya; Ferron, Raissa D.; Juenger, Maria C.G.

    2016-01-01

    Despite the benefits to long-term concrete durability, the use of natural zeolites as supplementary cementitious materials (SCMs) is uncommon due to their high water demand. The motivation of the research presented here was to better understand how the physical and chemical characteristics of natural zeolites influenced the workability of cementitious mixtures and whether those properties could be modified through calcination to mitigate the high water demand of natural zeolites. In this research, three different natural zeolites were characterized in their original and calcined states using x-ray diffraction (XRD) and Brunauer–Emmett–Teller (BET) surface area measurements. Rheology experiments were then conducted on cementitious pastes containing these natural zeolites, in their original and calcined states, to assess mixture viscosity and yield stress. Results showed that calcination destabilized the structure of the natural zeolites and reduced their surface area, which led to an improvement in mixture viscosity and yield stress.

  19. Fly ash based zeolitic pigments for application in anticorrosive paints

    International Nuclear Information System (INIS)

    Shaw, Ruchi; Tiwari, Sangeeta

    2016-01-01

    The purpose of this work is to evaluate the utilization of waste fly ash in anticorrosive paints. Zeolite NaY was synthesized from waste fly ash and subsequently modified by exchanging its nominal cation Na + with Mg 2+ and Ca 2+ ions. The metal ion exchanged zeolite was then used as anticorrosive zeolitic pigments in paints. The prepared zeolite NaY was characterized using X-Ray diffraction technique and Scanning electron microscopy. The size, shape and density of the prepared fly ash based pigments were determined by various techniques. The paints were prepared by using fly ash based zeolitic pigments in epoxy resin and the percentages of pigments used in paints were 2% and 5%. These paints were applied to the mild steel panels and the anticorrosive properties of the pigments were assessed by the electrochemical spectroscopy technique (EIS).

  20. Biogas cleaning and upgrading with natural zeolites from tuffs.

    Science.gov (United States)

    Paolini, Valerio; Petracchini, Francesco; Guerriero, Ettore; Bencini, Alessandro; Drigo, Serena

    2016-01-01

    CO2 adsorption on synthetic zeolites has become a consolidated approach for biogas upgrading to biomethane. As an alternative to synthetic zeolites, tuff waste from building industry was investigated in this study: indeed, this material is available at a low price and contains a high fraction of natural zeolites. A selective adsorption of CO2 and H2S towards CH4 was confirmed, allowing to obtain a high-purity biomethane (CO2 biogas samples were used, and no significant effects due to biogas impurities (e.g. humidity, dust, moisture, etc.) were observed. Thermal and vacuum regenerations were also optimized and confirmed to be possible, without significant variations in efficiency. Hence, natural zeolites from tuffs may successfully be used in a pressure/vacuum swing adsorption process.