WorldWideScience

Sample records for crystal vertical cavity

  1. Low index contrast heterostructure photonic crystal cavities with high quality factors and vertical radiation coupling

    Science.gov (United States)

    Ge, Xiaochen; Minkov, Momchil; Fan, Shanhui; Li, Xiuling; Zhou, Weidong

    2018-04-01

    We report here design and experimental demonstration of heterostructure photonic crystal cavities resonating near the Γ point with simultaneous strong lateral confinement and highly directional vertical radiation patterns. The lateral confinement is provided by a mode gap originating from a gradual modulation of the hole radii. High quality factor resonance is realized with a low index contrast between silicon nitride and quartz. The near surface-normal directional emission is preserved when the size of the core region is scaled down. The influence of the cavity size parameters on the resonant modes is also investigated theoretically and experimentally.

  2. Hybrid vertical cavity laser

    DEFF Research Database (Denmark)

    Chung, Il-Sug; Mørk, Jesper

    2010-01-01

    A new hybrid vertical cavity laser structure for silicon photonics is suggested and numerically investigated. It incorporates a silicon subwavelength grating as a mirror and a lateral output coupler to a silicon ridge waveguide.......A new hybrid vertical cavity laser structure for silicon photonics is suggested and numerically investigated. It incorporates a silicon subwavelength grating as a mirror and a lateral output coupler to a silicon ridge waveguide....

  3. Vertical cavity laser

    DEFF Research Database (Denmark)

    2016-01-01

    The present invention provides a vertical cavity laser comprising a grating layer comprising an in-plane grating, the grating layer having a first side and having a second side opposite the first side and comprising a contiguous core grating region having a grating structure, wherein an index...

  4. Optimization of photonic crystal cavities

    DEFF Research Database (Denmark)

    Wang, Fengwen; Sigmund, Ole

    2017-01-01

    We present optimization of photonic crystal cavities. The optimization problem is formulated to maximize the Purcell factor of a photonic crystal cavity. Both topology optimization and air-hole-based shape optimization are utilized for the design process. Numerical results demonstrate...... that the Purcell factor of the photonic crystal cavity can be significantly improved through optimization....

  5. Hybrid Vertical-Cavity Laser

    DEFF Research Database (Denmark)

    2010-01-01

    The present invention provides a light source (2) for light circuits on a silicon platform (3). A vertical laser cavity is formed by a gain region (101) arranged between a top mirror (4) and a bottom grating-mirror (12) in a grating region (11) in a silicon layer (10) on a substrate. A waveguide...... (18, 19) for receiving light from the grating region (11) is formed within or to be connected to the grating region, and functions as an 5 output coupler for the VCL. Thereby, vertical lasing modes (16) are coupled to lateral in-plane modes (17, 20) of the in-plane waveguide formed in the silicon...

  6. Electrically Pumped Vertical-Cavity Amplifiers

    DEFF Research Database (Denmark)

    Greibe, Tine

    2007-01-01

    In this work, the design of electrically pumped vertical cavity semiconductor optical amplifiers (eVCAs) for use in a mode-locked external-cavity laser has been developed, investigated and analysed. Four different eVCAs, one top-emitting and three bottom emitting structures, have been designed...... and discussed. The thesis concludes with recommendations for further work towards the realisation of compact electrically pumped mode-locked vertical externalcavity surface emitting lasers....

  7. Vertical-Cavity In-plane Heterostructures: Physics and Applications

    DEFF Research Database (Denmark)

    Taghizadeh, Alireza; Mørk, Jesper; Chung, Il-Sug

    2015-01-01

    We show that the in-plane heterostructures realized in vertical cavities with high contrast grating(HCG) reflector enables exotic configurations of heterostructure and photonic wells. In photonic crystal heterostructures forming a photonic well, the property of a confined mode is determined...... by the well width and barrier height. We show that in vertical-cavity in-plane heterostructures, anisotropic dispersion curvatures plays a key role as well, leading to exotic effects such as a photonic well with conduction band like well and a valence band like barrier. We investigate three examples...

  8. Cavity QED experiments with ion Coulomb crystals

    DEFF Research Database (Denmark)

    Herskind, Peter Fønss; Dantan, Aurélien; Marler, Joan

    2009-01-01

    Cavity QED experimental results demonstrating collective strong coupling between ensembles of atomic ions cooled into Coulomb crystals and optical cavity fields have been achieved. Collective Zeeman coherence times of milliseconds have furthermore been obtained.......Cavity QED experimental results demonstrating collective strong coupling between ensembles of atomic ions cooled into Coulomb crystals and optical cavity fields have been achieved. Collective Zeeman coherence times of milliseconds have furthermore been obtained....

  9. Coupled Photonic Crystal Cavity Array Laser

    DEFF Research Database (Denmark)

    Schubert, Martin

    in the quadratic lattice. Processing techniques are developed and optimized in order fabricate photonic crystals membranes in gallium arsenide with quantum dots as gain medium and in indium gallium arsenide phosphide with quantum wells as gain medium. Several key issues in process to ensure good quality....... The results are in good agreement with standard coupled mode theory. Also a novel type of photonic crystal structure is proposed called lambda shifted cavity which is a twodimensional photonic crystal laser analog of a VCSEL laser. Detailed measurements of the coupled modes in the photonic crystals...... with quantum dots are carried out. In agreement with a simple gain model the structures do not show stimulated emission. The spectral splitting due to the coupling between single cavities as well as arrays of cavities is studied theoretically and experimentally. Lasing is observed for photonic crystal cavity...

  10. Optical microfiber-based photonic crystal cavity

    International Nuclear Information System (INIS)

    Yu, Yang; Sun, Yi-zhi; Li, Zhi-yuan; Ding, Wei; Andrews, Steve

    2016-01-01

    Using a focused ion beam milling technique, we fabricate broad stop band (∼10% wide) photonic crystal (PhC) cavities in adiabatically-tapered silica fibers. Abrupt structural design of PhC mirrors efficiently reduces radiation loss, increasing the cavity finesse to ∼7.5. Further experiments and simulations verify that the remaining loss is mainly due to Ga ion implantation. Such a microfiber PhC cavity probably has potentials in many light-matter interaction applications. (paper)

  11. A novel nano-sensor based on optomechanical crystal cavity

    Science.gov (United States)

    Zhang, Yeping; Ai, Jie; Ma, Jingfang

    2017-10-01

    Optical devices based on new sensing principle are widely used in biochemical and medical area. Nowadays, mass sensing based on monitoring the frequency shifts induced by added mass in oscillators is a well-known and widely used technique. It is interesting to note that for nanoscience and nanotechnology applications there is a strong demand for very sensitive mass sensors, being the target a sensor for single molecule detection. The desired mass resolution for very few or even single molecule detection, has to be below the femtogram range. Considering the strong interaction between high co-localized optical mode and mechanical mode in optomechanical crystal (OMC) cavities, we investigate OMC splitnanobeam cavities in silicon operating near at the 1550nm to achieve high optomechanical coupling rate and ultra-small motion mass. Theoretical investigations of the optical and mechanical characteristic for the proposed cavity are carried out. By adjusting the structural parameters, the cavity's effective motion mass below 10fg and mechanical frequency exceed 10GHz. The transmission spectrum of the cavity is sensitive to the sample which located on the center of the cavity. We conducted the fabrication and the characterization of this cavity sensor on the silicon-on-insulator (SOI) chip. By using vertical coupling between the tapered fiber and the SOI chip, we measured the transmission spectrum of the cavity, and verify this cavity is promising for ultimate precision mass sensing and detection.

  12. All-optical tunable photonic crystal cavity

    DEFF Research Database (Denmark)

    Pu, Minhao; Liu, Liu; Ou, Haiyan

    2010-01-01

    We demonstrate an ultra-small photonic crystal cavity with two resonant modes. An all-optical tuning operation based on the free-carrier plasma effect is, for the first time, realized utilizing a continuous wave light source. The termo-optical effect is minimized by isoproponal infiltration...

  13. Lambda shifted photonic crystal cavity laser

    DEFF Research Database (Denmark)

    Schubert, Martin; Skovgård, Troels Suhr; Ek, Sara

    2010-01-01

    We propose and demonstrate an alternative type of photonic crystal laser design that shifts all the holes in the lattice by a fixed fraction of the targeted emission wavelength. The structures are realized in InGaAsP =1.15 with InGaAsP quantum wells =1.52 as gain material. Cavities with shifts of...

  14. Plasmon resonant cavities in vertical nanowire arrays

    Science.gov (United States)

    Bora, Mihail; Bond, Tiziana C.; Fasenfest, Benjamin J.; Behymer, Elaine M.

    2014-07-15

    Tunable plasmon resonant cavity arrays in paired parallel nanowire waveguides are presented. Resonances can be observed when the waveguide length is an odd multiple of quarter plasmon wavelengths, consistent with boundary conditions of node and antinode at the ends. Two nanowire waveguides can satisfy the dispersion relation of a planar metal-dielectric-metal waveguide of equivalent width equal to the square field average weighted gap. Confinement factors of over 10.sup.3 are possible due to plasmon focusing in the inter-wire space.

  15. Lithographic wavelength control of an external cavity laser with a silicon photonic crystal cavity-based resonant reflector.

    Science.gov (United States)

    Liles, Alexandros A; Debnath, Kapil; O'Faolain, Liam

    2016-03-01

    We report the experimental demonstration of a new design for external cavity hybrid lasers consisting of a III-V semiconductor optical amplifier (SOA) with fiber reflector and a photonic crystal (PhC)-based resonant reflector on SOI. The silicon reflector is composed of an SU8 polymer bus waveguide vertically coupled to a PhC cavity and provides a wavelength-selective optical feedback to the laser cavity. This device exhibits milliwatt-level output power and side-mode suppression ratios of more than 25 dB.

  16. Vertical-cavity laser with a novel grating mirror

    DEFF Research Database (Denmark)

    Park, Gyeong Cheol

    Hybrid III-V on silicon (Si) ‘vertical cavity lasers’ (hybrid VCLs), which can emit light laterally into a Si waveguide, are fabricated and investigated. The Si-integrated hybrid VCL consists of a top dielectric Bragg reflector (DBR), a III-V active layer, and a bottom high contrast grating (HCG...... the vertical cavity laterally into the Si waveguide. The measured inplane emission proves the lasing action with a side-mode suppression ratio (SMSR) of 27.5 dB at a peak wavelength of 1486 nm. The threshold pumping power corresponds to a current injection of 1.1 mA. A signature of highly anisotropic cavity...... dispersion has been observed and discussed, which is unique for HCG-based vertical cavities. The second version proves the potential for high-speed operation of hybrid VCL structure. In the hybrid VCL structure, the effective cavity length is substantially reduced by using a dielectric DBR and a TM...

  17. Cryogenic infrastructure for Fermilab's ILC vertical cavity test facility

    International Nuclear Information System (INIS)

    Carcagno, R.; Ginsburg, C.; Huang, Y.; Norris, B.; Ozelis, J.; Peterson, T.; Poloubotko, V.; Rabehl, R.; Sylvester, C.; Wong, M.; Fermilab

    2006-01-01

    Fermilab is building a Vertical Cavity Test Facility (VCTF) to provide for R and D and pre-production testing of bare 9-cell, 1.3-GHz superconducting RF (SRF) cavities for the International Linear Collider (ILC) program. This facility is located in the existing Industrial Building 1 (IB1) where the Magnet Test Facility (MTF) also resides. Helium and nitrogen cryogenics are shared between the VCTF and MTF including the existing 1500-W at 4.5-K helium refrigerator with vacuum pumping for super-fluid operation (125-W capacity at 2-K). The VCTF is being constructed in multiple phases. The first phase is scheduled for completion in mid 2007, and includes modifications to the IB1 cryogenic infrastructure to allow helium cooling to be directed to either the VCTF or MTF as scheduling demands require. At this stage, the VCTF consists of one Vertical Test Stand (VTS) cryostat for the testing of one cavity in a 2-K helium bath. Planning is underway to provide a total of three Vertical Test Stands at VCTF, each capable of accommodating two cavities. Cryogenic infrastructure improvements necessary to support these additional VCTF test stands include a dedicated ambient temperature vacuum pump, a new helium purification skid, and the addition of helium gas storage. This paper describes the system design and initial cryogenic operation results for the first VCTF phase, and outlines future cryogenic infrastructure upgrade plans for expanding to three Vertical Test Stands

  18. CRYOGENIC INFRASTRUCTURE FOR FERMILAB'S ILC VERTICAL CAVITY TEST FACILITY

    International Nuclear Information System (INIS)

    Carcagno, R.; Ginsburg, C.; Huang, Y.; Norris, B.; Ozelis, J.; Peterson, T.; Poloubotko, V.; Rabehl, R.; Sylvester, C.; Wong, M.

    2008-01-01

    Fermilab is building a Vertical Cavity Test Facility (VCTF) to provide for R and D and pre-production testing of bare 9-cell, 1.3-GHz superconducting RF (SRF) cavities for the International Linear Collider (ILC) program. This facility is located in the existing Industrial Building 1 (IB1) where the Magnet Test Facility (MTF) also resides. Helium and nitrogen cryogenics are shared between the VCTF and MTF including the existing 1500-W at 4.5-K helium refrigerator with vacuum pumping for super-fluid operation (125-W capacity at 2-K). The VCTF is being constructed in multiple phases. The first phase is scheduled for completion in mid 2007, and includes modifications to the IB1 cryogenic infrastructure to allow helium cooling to be directed to either the VCTF or MTF as scheduling demands require. At this stage, the VCTF consists of one Vertical Test Stand (VTS) cryostat for the testing of one cavity in a 2-K helium bath. Planning is underway to provide a total of three Vertical Test Stands at VCTF, each capable of accommodating two cavities. Cryogenic infrastructure improvements necessary to support these additional VCTF test stands include a dedicated ambient temperature vacuum pump, a new helium purification skid, and the addition of helium gas storage. This paper describes the system design and initial cryogenic operation results for the first VCTF phase, and outlines future cryogenic infrastructure upgrade plans for expanding to three Vertical Test Stands

  19. Vertical-cavity surface-emitting lasers for medical diagnosis

    DEFF Research Database (Denmark)

    Ansbæk, Thor

    This thesis deals with the design and fabrication of tunable Vertical-Cavity Surface-Emitting Lasers (VCSELs). The focus has been the application of tunable VCSELs in medical diagnostics, specifically OCT. VCSELs are candidates as light sources for swept-source OCT where their high sweep rate, wide...

  20. Anticrab cavities for the removal of spurious vertical bunch rotations caused by crab cavities

    Directory of Open Access Journals (Sweden)

    G. Burt

    2008-09-01

    Full Text Available Many particle accelerators are proposing the use of crab cavities to correct for accelerator crossing angles or for the production of short bunches in light sources. These cavities produce a rotation to the bunch in a well-defined polarization plane. If the plane of the rotation does not align with the horizontal axis of the accelerator, the bunch will receive a small amount of spurious vertical bunch rotation. For accelerators with small vertical beam sizes and large beam-beam effects, this can cause significant unwanted effects. In this paper we propose the use of a 2nd smaller crab cavity in the vertical plane in order to cancel this effect and investigate its use in numerical simulations.

  1. Porous photonic crystal external cavity laser biosensor

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Qinglan [Department of Electrical and Computer Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801 (United States); Peh, Jessie; Hergenrother, Paul J. [Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801 (United States); Cunningham, Brian T. [Department of Electrical and Computer Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801 (United States); Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801 (United States)

    2016-08-15

    We report the design, fabrication, and testing of a photonic crystal (PC) biosensor structure that incorporates a porous high refractive index TiO{sub 2} dielectric film that enables immobilization of capture proteins within an enhanced surface-area volume that spatially overlaps with the regions of resonant electromagnetic fields where biomolecular binding can produce the greatest shifts in photonic crystal resonant wavelength. Despite the nanoscale porosity of the sensor structure, the PC slab exhibits narrowband and high efficiency resonant reflection, enabling the structure to serve as a wavelength-tunable element of an external cavity laser. In the context of sensing small molecule interactions with much larger immobilized proteins, we demonstrate that the porous structure provides 3.7× larger biosensor signals than an equivalent nonporous structure, while the external cavity laser (ECL) detection method provides capability for sensing picometer-scale shifts in the PC resonant wavelength caused by small molecule binding. The porous ECL achieves a record high figure of merit for label-free optical biosensors.

  2. Far-field coupling in nanobeam photonic crystal cavities

    Energy Technology Data Exchange (ETDEWEB)

    Rousseau, Ian, E-mail: ian.rousseau@epfl.ch; Sánchez-Arribas, Irene; Carlin, Jean-François; Butté, Raphaël; Grandjean, Nicolas [Institute of Physics, École Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne (Switzerland)

    2016-05-16

    We optimized the far-field emission pattern of one-dimensional photonic crystal nanobeams by modulating the nanobeam width, forming a sidewall Bragg cross-grating far-field coupler. By setting the period of the cross-grating to twice the photonic crystal period, we showed using three-dimensional finite-difference time-domain simulations that the intensity extracted to the far-field could be improved by more than three orders of magnitude compared to the unmodified ideal cavity geometry. We then experimentally studied the evolution of the quality factor and far-field intensity as a function of cross-grating coupler amplitude. High quality factor (>4000) blue (λ = 455 nm) nanobeam photonic crystals were fabricated out of GaN thin films on silicon incorporating a single InGaN quantum well gain medium. Micro-photoluminescence spectroscopy of sets of twelve identical nanobeams revealed a nine-fold average increase in integrated far-field emission intensity and no change in average quality factor for the optimized structure compared to the unmodulated reference. These results are useful for research environments and future nanophotonic light-emitting applications where vertical in- and out-coupling of light to nanocavities is required.

  3. Emerging applications for vertical cavity surface emitting lasers

    International Nuclear Information System (INIS)

    Harris, J S; O'sullivan, T; Sarmiento, T; Lee, M M; Vo, S

    2011-01-01

    Vertical cavity surface emitting lasers (VCSELs) emitting at 850 nm have experienced explosive growth in the past decade because of their many attractive optical features and incredibly low-cost manufacturability. This review reviews the foundations for GaAs-based VCSEL technology as well as the materials and device challenges to extend the operating wavelength to both shorter and longer wavelengths. We discuss some of the applications that are enabled by the integration of VCSELs with both active and passive semiconductor elements for telecommunications, both in vivo and in vitro biosensing, high-density optical storage and imaging at wavelengths much less than the diffraction limit of light

  4. Wavelength-controlled external-cavity laser with a silicon photonic crystal resonant reflector

    Science.gov (United States)

    Gonzalez-Fernandez, A. A.; Liles, Alexandros A.; Persheyev, Saydulla; Debnath, Kapil; O'Faolain, Liam

    2016-03-01

    We report the experimental demonstration of an alternative design of external-cavity hybrid lasers consisting of a III-V Semiconductor Optical Amplifier with fiber reflector and a Photonic Crystal (PhC) based resonant reflector on SOI. The Silicon reflector comprises a polymer (SU8) bus waveguide vertically coupled to a PhC cavity and provides a wavelength-selective optical feedback to the laser cavity. This device exhibits milliwatt-level output power and sidemode suppression ratio of more than 25 dB.

  5. Sub-threshold investigation of two coupled photonic crystal cavities

    DEFF Research Database (Denmark)

    Schubert, Martin; Frandsen, Lars Hagedorn; Skovgård, Troels Suhr

    2009-01-01

    The behavior of two coupled photonic crystal membrane cavities with quantum dots separated by different number of holes is investigated. The measured spectral splitting with increased coupling is verified by 3D calculations and discussed.......The behavior of two coupled photonic crystal membrane cavities with quantum dots separated by different number of holes is investigated. The measured spectral splitting with increased coupling is verified by 3D calculations and discussed....

  6. Numerical demonstration of neuromorphic computing with photonic crystal cavities.

    Science.gov (United States)

    Laporte, Floris; Katumba, Andrew; Dambre, Joni; Bienstman, Peter

    2018-04-02

    We propose a new design for a passive photonic reservoir computer on a silicon photonics chip which can be used in the context of optical communication applications, and study it through detailed numerical simulations. The design consists of a photonic crystal cavity with a quarter-stadium shape, which is known to foster interesting mixing dynamics. These mixing properties turn out to be very useful for memory-dependent optical signal processing tasks, such as header recognition. The proposed, ultra-compact photonic crystal cavity exhibits a memory of up to 6 bits, while simultaneously accepting bitrates in a wide region of operation. Moreover, because of the inherent low losses in a high-Q photonic crystal cavity, the proposed design is very power efficient.

  7. Crystallization of Organic Semiconductor Molecules in Nanosized Cavities

    DEFF Research Database (Denmark)

    Milita, Silvia; Dionigi, Chiara; Borgatti, Francesco

    2008-01-01

    The crystallization of an organic semiconductor, viz., tetrahexil-sexithiophene (H4T6) molecules, confined into nanosized cavities of a self-organized polystyrene beads template, has been investigated by means of in situ grazing incidence X-ray diffraction measurements, during the solvent evapora...

  8. Coherent Dynamics of Quantum Dots in Photonic-Crystal Cavities

    DEFF Research Database (Denmark)

    Madsen, Kristian Høeg

    deviations. Similar measurements on a quantum dot in a photonic-crystal cavity sow a Rabi splitting on resonance, while time-resolved measurements prove that the system is in the weak coupling regime. Whle tuning the quantum dot through resonance of the high-Q mode we observe a strong and surprisingly...

  9. Cavity-type hypersonic phononic crystals

    International Nuclear Information System (INIS)

    Sato, A; Fytas, G; Pennec, Y; Djafari-Rouhani, B; Yanagishita, T; Masuda, H; Knoll, W

    2012-01-01

    We report on the engineering of the phonon dispersion diagram in monodomain anodic porous alumina (APA) films through the porosity and physical state of the material residing in the nanopores. Lattice symmetry and inclusion materials are theoretically identified to be the main factors which control the hypersonic acoustic wave propagation. This involves the interaction between the longitudinal and the transverse modes in the effective medium and a flat band characteristic of the material residing in the cavities. Air and filled nanopores, therefore, display markedly different dispersion relations and the inclusion materials lead to a locally resonant structural behavior uniquely determining their properties under confinement. APA films emerge as a new platform to investigate the rich acoustic phenomena of structured composite matter. (paper)

  10. Fabrication and Measurements on Coupled Photonic Crystal Cavities

    DEFF Research Database (Denmark)

    Schubert, Martin

    Quasi-three dimensional photonic crystals can be realized by fabricating thin membranes of high index material hanging in air patterned with sub-micron holes to create a photonic band gap for optical confinement in plane and total internal reflection for out of plane confinement. Introducing...... defects into the photonic crystal gives rise to defect states in the form of small confined modes. By embedding an active gain medium like quantum dots into the membrane makes it possible to realize lasers with ultra-small mode volumes and low thresholds. Unfortunately single cavity photonic crystal...

  11. Enhanced photoelastic modulation in silica phononic crystal cavities

    Science.gov (United States)

    Kim, Ingi; Iwamoto, Satoshi; Arakawa, Yasuhiko

    2018-04-01

    The enhanced photoelastic modulation in quasi-one-dimensional (1D) phononic crystal (PnC) cavities made of fused silica is experimentally demonstrated. A confined acoustic wave in the cavity can induce a large birefringence through the photoelastic effect and enable larger optical modulation amplitude at the same acoustic power. We observe a phase retardation of ∼26 mrad of light passing through the cavity when the exciting acoustic frequency is tuned to the cavity mode resonance of ∼500 kHz at 2.5 V. In the present experiment, a 16-fold enhancement of retardation in the PnC cavity is demonstrated compared with that in a bar-shaped silica structure. Spatially resolved optical retardation measurement reveals that the large retardation is realized only around the cavity reflecting the localized nature of the acoustic cavity mode. The enhanced interactions between acoustic waves and light can be utilized to improve the performance of acousto-optic devices such as photoelastic modulators.

  12. Theoretical Investigation of Subwavelength Gratings and Vertical Cavity Lasers Employing Grating Structures

    DEFF Research Database (Denmark)

    Taghizadeh, Alireza

    This thesis deals with theoretical investigations of a newly proposed grating structure, referred to as hybrid grating (HG) as well as vertical cavity lasers based on the grating reflectors. The HG consists of a near-subwavelength grating layer and an unpatterned high-refractive-index cap layer...... directions, which is analogous to electronic quantum wells in conduction or valence bands. Several interesting configurations of heterostructures have been investigated and their potential in fundamental physics study and applications are discussed. For numerical and theoretical studies, a three...... feasibility than the HCG-based ones. Furthermore, the concept of cavity dispersion in vertical cavities is introduced and its importance in the modal properties is numerically investigated. The dispersion curvature of a cavity mode is interpreted as the effective photon mass of the cavity mode. In a vertical...

  13. All-Optical Switching in Photonic Crystal Cavities

    DEFF Research Database (Denmark)

    Heuck, Mikkel

    All-Optical switching in photonic crystal waveguide-cavity structures is studied predominantly theoretically and numerically, but also from an experimental point of view. We have calculated the first order perturbations to the resonance frequency and decay rate of cavity modes, using a mathematical...... exhibiting Fano resonances. These devices were predicted to be superior to structures with the more well-known Lorentzian line shape in terms of energy consumption and switching contrast. Finally, the mathematical framework of optimal control theory was employed as a general setting, in which the optical...... faster than the photon lifetime by utilizing interference effects....

  14. Hybrid III-V-on-Si Vertical Cavity laser for Optical Interconnects

    DEFF Research Database (Denmark)

    Park, Gyeong Cheol; Semenova, Elizaveta; Chung, Il-Sug

    2013-01-01

    Combining a III-V active material onto the Si platform is an attractive approach for silicon photonics light source. We have developed fabrication methods for novel III-V on Si vertical cavity lasers.......Combining a III-V active material onto the Si platform is an attractive approach for silicon photonics light source. We have developed fabrication methods for novel III-V on Si vertical cavity lasers....

  15. Efficient quality-eactor estimation of a vertical cavity employing a high-contrast grating

    DEFF Research Database (Denmark)

    Taghizadeh, Alireza; Mørk, Jesper; Chung, Il-Sug

    2017-01-01

    Hybrid vertical cavity lasers employing high-contrast grating reflectors are attractive for Si-integrated light source applications. Here, a method for reducing a three-dimensional (3D) optical simulation of this laser structure to lower-dimensional simulations is suggested, which allows for very...... fast and approximate analysis of the quality-factor of the 3D cavity. This approach enables us to efficiently optimize the laser cavity design without performing cumbersome 3D simulations....

  16. Resonant spin wave excitations in a magnonic crystal cavity

    Science.gov (United States)

    Kumar, N.; Prabhakar, A.

    2018-03-01

    Spin polarized electric current, injected into permalloy (Py) through a nano contact, exerts a torque on the magnetization. The spin waves (SWs) thus excited propagate radially outward. We propose an antidot magnonic crystal (MC) with a three-hole defect (L3) around the nano contact, designed so that the frequency of the excited SWs, lies in the band gap of the MC. L3 thus acts as a resonant SW cavity. The energy in this magnonic crystal cavity can be tapped by an adjacent MC waveguide (MCW). An analysis of the simulated micromagnetic power spectrum, at the output port of the MCW reveals stable SW oscillations. The quality factor of the device, calculated using the decay method, was estimated as Q > 105 for an injected spin current density of 7 ×1012 A/m2.

  17. Bistable output from a coupled-resonator vertical-cavity laser diode

    International Nuclear Information System (INIS)

    Fischer, A. J.; Choquette, K. D.; Chow, W. W.; Allerman, A. A.; Geib, K.

    2000-01-01

    We report a monolithic coupled-resonator vertical-cavity laser with an ion-implanted top cavity and a selectively oxidized bottom cavity which exhibits bistable behavior in the light output versus injection current. Large bistability regions over current ranges as wide as 18 mA have been observed with on/off contrast ratios of greater than 20 dB. The position and width of the bistability region can be varied by changing the bias to the top cavity. Switching between on and off states can be accomplished with changes as small as 250 μW to the electrical power applied to the top cavity. The bistable behavior is the response of the nonlinear susceptibility in the top cavity to the changes in the bottom intracavity laser intensity as the bottom cavity reaches the thermal rollover point

  18. Numerical Investigation of Vertical Cavity Lasers With High-Contrast Gratings Using the Fourier Modal Method

    DEFF Research Database (Denmark)

    Taghizadeh, Alireza; Mørk, Jesper; Chung, Il-Sug

    2016-01-01

    We explore the use of a modal expansion technique, Fourier modal method (FMM), for investigating the optical properties of vertical cavities employing high-contrast gratings (HCGs). Three techniques for determining the resonance frequency and quality factor (Q-factor) of a cavity mode are compared......, the scattering losses of several HCG-based vertical cavities with inplane heterostructures which have promising prospects for fundamental physics studies and on-chip laser applications, are investigated. This type of parametric study of 3D structures would be numerically very demanding using spatial...

  19. Vertical and horizontal test results of 3.9-GHz accelerating cavities at FNAL

    Energy Technology Data Exchange (ETDEWEB)

    Khabiboulline, T.; Edwards, H.; Foley, M.; Harms, E.; Hocker, James Andrew; Mitchell, D.; Rowe, A.; Solyak, N.; /Fermilab

    2008-06-01

    The 3rd harmonic 3.9GHz accelerating cavity was proposed to improve the beam performance of the VUV FEL, FLASH. In the frame of a collaborative agreement, Fermilab will provide DESY with a cryomodule containing a string of four cavities. Seven 9-cell Nb cavities were tested and six of them did reach accelerating gradient up to 24 MV/m almost twice more than design value of 14 MV/m. Two of these cavities are with new HOM couplers with improved design. In this paper we present all results of the vertical and horizontal tests.

  20. Low-loss tunable 1D ITO-slot photonic crystal nanobeam cavity

    Science.gov (United States)

    Amin, Rubab; Tahersima, Mohammad H.; Ma, Zhizhen; Suer, Can; Liu, Ke; Dalir, Hamed; Sorger, Volker J.

    2018-05-01

    Tunable optical material properties enable novel applications in both versatile metamaterials and photonic components including optical sources and modulators. Transparent conductive oxides (TCOs) are able to highly tune their optical properties with applied bias via altering their free carrier concentration and hence plasma dispersion. The TCO material indium tin oxide (ITO) exhibits unity-strong index change and epsilon-near-zero behavior. However, with such tuning the corresponding high optical losses, originating from the fundamental Kramers–Kronig relations, result in low cavity finesse. However, achieving efficient tuning in ITO-cavities without using light–matter interaction enhancement techniques such as polaritonic modes, which are inherently lossy, is a challenge. Here we discuss a novel one-dimensional photonic crystal nanobeam cavity to deliver a cavity system offering a wide range of resonance tuning range, while preserving physical compact footprints. We show that a vertical silicon-slot waveguide incorporating an actively gated-ITO layer delivers ∼3.4 nm of tuning. By deploying distributed feedback, we are able to keep the Q-factor moderately high with tuning. Combining this with the sub-diffraction limited mode volume (0.1 (λ/2n)3) from the photonic (non-plasmonic) slot waveguide, facilitates a high Purcell factor exceeding 1000. This strong light–matter-interaction shows that reducing the mode volume of a cavity outweighs reducing the losses in diffraction limited modal cavities such as those from bulk Si3N4. These tunable cavities enable future modulators and optical sources such as tunable lasers.

  1. Hybrid vertical-cavity laser with lateral emission into a silicon waveguide

    DEFF Research Database (Denmark)

    Park, Gyeong Cheol; Xue, Weiqi; Taghizadeh, Alireza

    2015-01-01

    into the waveguide integrated with the laser. This laser has the advantages of long-wavelength vertical-cavity surface-emitting lasers, such as low threshold and high side-mode suppression ratio, while allowing integration with silicon photonic circuits, and is fabricated using CMOS compatible processes. It has......We experimentally demonstrate an optically-pumped III-V/Si vertical-cavity laser with lateral emission into a silicon waveguide. This on-chip hybrid laser comprises a distributed Bragg reflector, a III-V active layer, and a high-contrast grating reflector, which simultaneously funnels light...

  2. Novel automatic phase lock determination for superconducting cavity tests at vertical test stand at RRCAT

    International Nuclear Information System (INIS)

    Singh, Kunver Adarsh Pratap; Mohania, Praveen; Rajput, Vikas; Baxy, Deodatta; Shrivastava, Purushottam

    2015-01-01

    RRCAT has developed a Vertical Test Stand (VTS) which is used to test the Nb superconducting cavities under cryogenic conditions. In the VTS, RF cavity is characterized for its quality factor variation vs the accelerating gradient. The RF system is an essential part of the VTS which is required to provide stable RF power to the cavity in terms of amplitude, frequency and phase. RF system of VTS consists of several modules including the LLRF system. The LLRF system consists of the 'Frequency Control Module' which controls the input frequency to the SCRF cavity. Due to high quality factor, bandwidth of the cavity is less than 1 Hz. Even slight mechanical vibrations (microphonics) causes change in cavity resonance frequency resulting in total reflection of incident power. A PLL based frequency tracking module has been used to track the resonant frequency of RF cavity. This module changes RF source frequency according to change in Cavity resonance frequency. A novel method using a LabView based computer program has been developed which changes the phase of input RF signal using IQ modulator and monitors the transmitted power, incident and reflected power. The program plots the graph between phase and ratio of transmitted power to incident/reflected power and gives optimum locking phase for operation which has resulted in significant saving in the overall process time for the tests of the cavities in VTS. (author)

  3. Continuous-wave optically pumped green perovskite vertical-cavity surface-emitter

    KAUST Repository

    Alias, Mohd Sharizal; Liu, Zhixiong; Alatawi, Abdullah; Ng, Tien Khee; Wu, Tao; Ooi, Boon S.

    2017-01-01

    We report an optically pumped green perovskite vertical-cavity surface-emitter operating in continuous-wave (CW) with a power density threshold of ~89 kW/cm2. The device has an active region of CH3NH3PbBr3 embedded in a dielectric microcavity

  4. Cryogenic infrastructure for Fermilab's ILC vertical cavity test facility

    Energy Technology Data Exchange (ETDEWEB)

    Carcagno, R.; Ginsburg, C.; Huang, Y.; Norris, B.; Ozelis, J.; Peterson, T.; Poloubotko, V.; Rabehl, R.; Sylvester, C.; Wong, M.; /Fermilab

    2006-06-01

    Fermilab is building a Vertical Cavity Test Facility (VCTF) to provide for R&D and pre-production testing of bare 9-cell, 1.3-GHz superconducting RF (SRF) cavities for the International Linear Collider (ILC) program. This facility is located in the existing Industrial Building 1 (IB1) where the Magnet Test Facility (MTF) also resides. Helium and nitrogen cryogenics are shared between the VCTF and MTF including the existing 1500-W at 4.5-K helium refrigerator with vacuum pumping for super-fluid operation (125-W capacity at 2-K). The VCTF is being constructed in multiple phases. The first phase is scheduled for completion in mid 2007, and includes modifications to the IB1 cryogenic infrastructure to allow helium cooling to be directed to either the VCTF or MTF as scheduling demands require. At this stage, the VCTF consists of one Vertical Test Stand (VTS) cryostat for the testing of one cavity in a 2-K helium bath. Planning is underway to provide a total of three Vertical Test Stands at VCTF, each capable of accommodating two cavities. Cryogenic infrastructure improvements necessary to support these additional VCTF test stands include a dedicated ambient temperature vacuum pump, a new helium purification skid, and the addition of helium gas storage. This paper describes the system design and initial cryogenic operation results for the first VCTF phase, and outlines future cryogenic infrastructure upgrade plans for expanding to three Vertical Test Stands.

  5. Vertical-cavity surface-emitting laser vapor sensor using swelling polymer reflection modulation

    DEFF Research Database (Denmark)

    Ansbæk, Thor; Nielsen, Claus Højgård; Dohn, Søren

    2012-01-01

    Vapor detection using a low-refractive index polymer for reflection modulation of the top mirror in a vertical-cavity surface-emitting laser (VCSEL) is demonstrated. The VCSEL sensor concept presents a simple method to detect the response of a sensor polymer in the presence of volatile organic...

  6. Acetone vapor sensing using a vertical cavity surface emitting laser diode coated with polystyrene

    DEFF Research Database (Denmark)

    Ansbæk, Thor; Nielsen, Claus Højgaard; Larsen, Niels Bent

    2009-01-01

    We report theoretical and experimental on a new vapor sensor, using a single-mode vertical-cavity surface-emitting laser (VCSEL) coated with a polymer sensor coating, which can detect acetone vapor at a volume fraction of 2.5%. The sensor provides the advantage of standard packaging, small form...

  7. Polymer-coated vertical-cavity surface-emitting laser diode vapor sensor

    DEFF Research Database (Denmark)

    Ansbæk, Thor; Nielsen, Claus Højgaard; Larsen, Niels Bent

    2010-01-01

    We report a new method for monitoring vapor concentration of volatile organic compounds using a vertical-cavity surface-emitting laser (VCSEL). The VCSEL is coated with a polymer thin film on the top distributed Bragg reflector (DBR). The analyte absorption is transduced to the electrical domain ...

  8. Transverse-mode-selectable microlens vertical-cavity surface-emitting laser

    DEFF Research Database (Denmark)

    Chung, Il-Sug; Debernardi, Pierluigi; Lee, Yong Tak

    2010-01-01

    A new vertical-cavity surface-emitting laser structure employing a thin microlens is suggested and numerically investigated. The laser can be made to emit in either a high-power Gaussian-shaped single-fundamental mode or a high-power doughnut-shaped higher-order mode. The physical origin...

  9. Continuously tunable monomode mid-infrared vertical external cavity surface emitting laser on Si

    Science.gov (United States)

    Khiar, A.; Rahim, M.; Fill, M.; Felder, F.; Hobrecker, F.; Zogg, H.

    2010-10-01

    A tunable PbTe based mid-infrared vertical external cavity surface emitting laser is described. The active part is a ˜1 μm thick PbTe layer grown epitaxially on a Bragg mirror on the Si-substrate. The cavity is terminated with a curved Si/SiO Bragg top mirror and pumped optically with a 1.55 μm laser. Cavity length is <100 μm in order that only one longitudinal mode is supported. By changing the cavity length, up to 5% wavelength continuous and mode-hop free tuning is achieved at fixed temperature. The total tuning extends from 5.6 to 4.7 μm at 100-170 K operation temperature.

  10. Cavity Pull Rod: Device to Promote Single Crystal Growth from the Melt

    Science.gov (United States)

    Goldsby, Jon (Inventor)

    2017-01-01

    A pull rod for use in producing a single crystal from a molten alloy is provided that includes an elongated rod having a first end and a second end, a first cavity defined at the first end and a second cavity defined at the first end and in communication with the first cavity. The first cavity receives the molten alloy and the second cavity vents a gas from the molten alloy to thereby template a single crystal when the pull rod is dipped into and extracted from the molten alloy.

  11. High-Q silicon-on-insulator slot photonic crystal cavity infiltrated by a liquid

    International Nuclear Information System (INIS)

    Caër, Charles; Le Roux, Xavier; Cassan, Eric

    2013-01-01

    We report the experimental realization of a high-Q slot photonic crystal cavity in Silicon-On-Insulator (SOI) configuration infiltrated by a liquid. Loaded Q-factor of 23 000 is measured at telecom wavelength. The intrinsic quality factor inferred from the transmission spectrum is higher than 200 000, which represents a record value for slot photonic crystal cavities on SOI, whereas the maximum of intensity of the cavity is roughly equal to 20% of the light transmitted in the waveguide. This result makes filled slot photonic crystal cavities very promising for silicon-based light emission and ultrafast nonlinear optics

  12. Effect of cathode shape on vertical buffered electropolishing for niobium SRF cavities

    Science.gov (United States)

    Jin, S.; Wu, A. T.; Lu, X. Y.; Rimmer, R. A.; Lin, L.; Zhao, K.; Mammosser, J.; Gao, J.

    2013-09-01

    This paper reports the research results of the effect of cathode shape during vertical buffered electropolishing (BEP) by employing a demountable single cell niobium (Nb) superconducting radio frequency (SRF) cavity. Several different cathode shapes such as, for instance, bar, ball, ellipsoid, and wheels of different diameters have been tested. Detailed electropolishing parameters including I-V characteristic, removal rate, surface roughness, and polishing uniformity at different locations inside the demountable cavity are measured. Similar studies are also done on conventional electropolishing (EP) for comparison. It is revealed that cathode shape has dominant effects for BEP especially on the obtaining of a suitable polishing condition and a uniform polishing rate in an Nb SRF single cell cavity. EP appears to have the same tendency. This paper demonstrates that a more homogeneous polishing result can be obtained by optimizing the electric field distribution inside the cavity through the modification of the cathode shape given the conditions that temperature and electrolyte flow are kept constant. Electric field distribution and electrolyte flow patterns inside the cavity are simulated via Poisson-Superfish and Solidworks respectively. With the optimal cathode shape, BEP shows a much faster polishing rate of ∼2.5 μm/min and is able to produce a smoother surface finish in the treatments of single cell cavities in comparison with EP.

  13. Cryogenics for a vertical test stand facility for testing superconducting radio frequency cavities at RRCAT

    International Nuclear Information System (INIS)

    Gupta, Prabhat Kumar; Kumar, Manoj; Kush, P.K.

    2015-01-01

    Vertical Test Stand (VTS) Facility is located in a newly constructed building of Cryo-Engineering and Cryo-Module Development Division (CCDD). This test facility is one of the important facilities to develop SCRF technologies for superconducting accelerators like Indian Spallation Neutron Source. VTS has to be used for regular testing of the Superconducting Radio Frequency (SRF) Niobium cavities at nominal frequency of 1.3 GHz/ 650 MHz at 4 K / 2 K liquid helium (LHe) bath temperatures. Testing of these cavities at 2 K evaluates cavity processing methods, procedures and would also serve as a pre-qualification test for cavity to test it in horizontal cryostat, called horizontal test stand, with other cavity components such as tuner and helium vessel. Cryogenic technologies play a major role in these cavity testing facilities. Achieving and maintaining a stable temperature of 2 K in these test stands on regular and reliable basis is a challenging task and require broad range of cryogenic expertise, large scale system level understanding and many in-house technological and process developments. Furthermore this test stand will handle large amount of liquid helium. Therefore, an appropriately designed infrastructure is required to handle such large amount of helium gas generated during the operation of VTS .This paper describes the different cryogenic design aspects, initial cryogenic operation results and different cryogenic safety aspects. (author)

  14. Effect of cathode shape on vertical buffered electropolishing for niobium SRF cavities

    International Nuclear Information System (INIS)

    Jin, S.; Wu, A.T.; Lu, X.Y.; Rimmer, R.A.; Lin, L.; Zhao, K.; Mammosser, J.; Gao, J.

    2013-01-01

    This paper reports the research results of the effect of cathode shape during vertical buffered electropolishing (BEP) by employing a demountable single cell niobium (Nb) superconducting radio frequency (SRF) cavity. Several different cathode shapes such as, for instance, bar, ball, ellipsoid, and wheels of different diameters have been tested. Detailed electropolishing parameters including I–V characteristic, removal rate, surface roughness, and polishing uniformity at different locations inside the demountable cavity are measured. Similar studies are also done on conventional electropolishing (EP) for comparison. It is revealed that cathode shape has dominant effects for BEP especially on the obtaining of a suitable polishing condition and a uniform polishing rate in an Nb SRF single cell cavity. EP appears to have the same tendency. This paper demonstrates that a more homogeneous polishing result can be obtained by optimizing the electric field distribution inside the cavity through the modification of the cathode shape given the conditions that temperature and electrolyte flow are kept constant. Electric field distribution and electrolyte flow patterns inside the cavity are simulated via Poisson–Superfish and Solidworks respectively. With the optimal cathode shape, BEP shows a much faster polishing rate of ∼2.5 μm/min and is able to produce a smoother surface finish in the treatments of single cell cavities in comparison with EP.

  15. Heat transfer of natural convection in a rectangular cavity with vertical walls of different temperatures

    International Nuclear Information System (INIS)

    Seki, Nobuhiro; Fukusako, Shoichiro; Inaba, Hideo

    1978-01-01

    In the present study the behavior of heat transfer in a rectangular cavity with one isothermal vertical wall heated and the other cooled is investigated. Heat transfer coefficients on the vertical walls are measured for fluids with Prandtl number Pr of 3 to 40,000 in case of aspect-ratio H/W from 5 to 47.5 and their correlated results are presented for laminar, transition and turbulent regions, respectively. It is shown that the present arrangement (Nu sub(H) - Ra sub(H)) using the height of cavity as a representative length may significantly be useful in the various heat transfer modes accompanied with flow patterns of them. (auth.)

  16. Ultrafast directional beam switching in coupled vertical-cavity surface-emitting lasers

    International Nuclear Information System (INIS)

    Ning, C. Z.; Goorjian, P.

    2001-01-01

    We propose a strategy to performing ultrafast directional beam switching using two coupled vertical-cavity surface-emitting lasers (VCSELs). The proposed strategy is demonstrated for two VCSELs of 5.6 μm in diameter placed about 1 μm apart from the edges, showing a switching speed of 42 GHz with a maximum far-field angle span of about 10 degree. [copyright] 2001 American Institute of Physics

  17. Bistable laser device with multiple coupled active vertical-cavity resonators

    Science.gov (United States)

    Fischer, Arthur J.; Choquette, Kent D.; Chow, Weng W.

    2003-08-19

    A new class of bistable coupled-resonator vertical-cavity semiconductor laser devices has been developed. These bistable laser devices can be switched, either electrically or optically, between lasing and non-lasing states. A switching signal with a power of a fraction of a milliwatt can change the laser output of such a device by a factor of a hundred, thereby enabling a range of optical switching and data encoding applications.

  18. Imaging and tuning of coupled photonic crystal cavities (Conference Presentation)

    Science.gov (United States)

    Gurioli, Massimo

    2016-04-01

    Photonic microcavities (PMC) coupled through their evanescent field are used for a large variety of classical and quantum devices. In such systems, a molecular-like spatial delocalization of the coupled modes is achieved by an evanescent tunnelling. The tunnelling rate depends on the height and depth of the photonic barrier between two adjacent resonators and therefore it is sensitive to the fabrication-induced disorder present in the center of the molecule. In this contribution, we address the problem of developing a post fabrication control of the tunnelling rate in photonic crystal coupled PMCs. The value of the photonic coupling (proportional to the tunnelling rate) is directly measured by the molecular mode splitting at the anticrossing point. By exploiting a combination of tuning techniques such as local infiltration of water, micro-evaporation, and laser induced non thermal micro-oxidation, we are able to either increase or decrease the detuning and the photonic coupling, independently. Near field imaging is also used for mapping the modes and establish delocalization. By water micro-infiltration, we were able to increase the photon coupling by 28%. On the contrary, by laser induced non thermal oxidation, we got a reduction of g by 30%. The combination of the two methods would therefore give a complete control of g with excellent accuracy. This could make possible the realization of array of photonic cavities with on demand tunnelling rate between each pair of coupled resonators. We believe that this peculiar engineering of photonic crystal molecules would open the road to possible progress in the exploitation of coherent interference between coupled optical resonators both for quantum information processing and optical communication.

  19. Temporal dynamics of all-optical switching in Photonic Crystal Cavity

    DEFF Research Database (Denmark)

    Colman, Pierre; Heuck, Mikkel; Yu, Yi

    2014-01-01

    The temporal dynamics of all-optical switching has been investigated in a Photonic Crystal Cavity with a 150fs-40aJ/pulse resolution. This allowed observing for the first time effects like pulse reshaping, pulse delay and intra-cavity Four-Wave-Mixing.......The temporal dynamics of all-optical switching has been investigated in a Photonic Crystal Cavity with a 150fs-40aJ/pulse resolution. This allowed observing for the first time effects like pulse reshaping, pulse delay and intra-cavity Four-Wave-Mixing....

  20. Self-similar photonic crystal cavity with ultrasmall mode volume for single-photon nonlinearities

    DEFF Research Database (Denmark)

    Choi, Hyeongrak; Heuck, Mikkel; Englund, Dirk

    2017-01-01

    We propose a photonic crystal cavity design with self-similar structure to achieve ultrasmall mode volume. We describe the concept with a silicon-air nanobeam cavity at λ ∼ 1550nm, reaching a mode volume of ∼ 7.01 × 10∼5λ3.......We propose a photonic crystal cavity design with self-similar structure to achieve ultrasmall mode volume. We describe the concept with a silicon-air nanobeam cavity at λ ∼ 1550nm, reaching a mode volume of ∼ 7.01 × 10∼5λ3....

  1. Self-cavity lasing in optically pumped single crystals of p-sexiphenyl

    International Nuclear Information System (INIS)

    Yanagi, Hisao; Tamura, Kenji; Sasaki, Fumio

    2016-01-01

    Organic single-crystal self-cavities are prepared by solution growth of p-sexiphenyl (p-6P). Based on Fabry-Pérot feedback inside a quasi-lozenge-shaped platelet crystal, edge-emitting laser is obtained under optical pumping. The multimode lasing band appears at the 0-1 or 0-2 vibronic progressions depending on the excitation conditions which affect the self-absorption effect. Cavity-size dependence of amplified spontaneous emission (ASE) is investigated with laser-etched single crystals of p-6P. As the cavity length of square-shaped crystal is reduced from 100 to 10 μm, ASE threshold fluence is decreased probably due to size-dependent light confinement in the crystal cavity.

  2. Design and development of RF system for vertical test stand for characterization of superconducting RF cavities

    International Nuclear Information System (INIS)

    Mohania, Praveen; Rajput, Vikas; Baxy, Deodatta; Agrawal, Ankur; Mahawar, Ashish; Adarsh, Kunver; Singh, Pratap; Shrivastava, Purushottam

    2011-01-01

    RRCAT is developing a Vertical Test Stand (VTS) to test and qualify 1.3 GHz/650 MHz, SCRF Cavities in collaboration with Fermi National Accelerator Laboratory (FNAL) under Indian Institutions' Fermilab Collaboration. The technical details for VTS is being provided by FNAL, USA. The RF System of VTS needs to provide stable RF power to SCRF cavity with control of amplitude, relative phase and frequency. The incident, reflected, transmitted power and field decay time constant of the cavity are measured to evaluate cavity performance parameters (E, Qo). RF Power is supplied via 500 W Solid State amplifier, 1270-1310 MHz being developed by PHPMS, RRCAT. VTS system is controlled by PXI Platform and National Instruments LabVIEW software. Low Level RF (LLRF) system is used to track the cavity frequency using Phase Locked Loop (PLL). The system is comprised of several integrated functional modules which would be assembled, optimized, and tested separately. Required components and instruments have been identified and procurement for the same is underway. Inhouse development for the Solid State RF amplifier and instrument interfacing is in progress. This paper describes the progress on the development of the RF system for VTS. (author)

  3. Acoustic energy harvesting by piezoelectric curved beams in the cavity of a sonic crystal

    International Nuclear Information System (INIS)

    Wang, Wei-Chung; Wu, Liang-Yu; Chen, Lien-Wen; Liu, Chia-Ming

    2010-01-01

    Acoustic energy harvesting by piezoelectric curved beams in the cavity of a sonic crystal is investigated. A resonant cavity of the sonic crystal is used to localize the acoustic wave as the acoustic waves are incident into the sonic crystal at the resonant frequency. The piezoelectric curved beam is placed in the resonant cavity and vibrated by the acoustic wave. The energy harvesting can be achieved as the acoustic waves are incident at the resonant frequency. A model for energy harvesting of the piezoelectric curved beam is also developed to predict the output voltage and power of the energy harvesting. The experimental results are compared with the theoretical

  4. 980 nm tapered lasers with photonic crystal structure for low vertical divergence

    Science.gov (United States)

    Ma, Xiaolong; Qu, Hongwei; Zhao, Pengchao; Liu, Yun; Zheng, Wanhua

    2016-10-01

    High power tapered lasers with nearly diffraction-limited beam quality have attracted much attention in numerous applications such as nonlinear frequency conversion, optical pumping of solid-state and fiber lasers, medical treatment and others. However, the large vertical divergence of conventional tapered lasers is a disadvantage, which makes beam shaping difficult and expensive in applications. Diode lasers with photonic crystal structure can achieve a large mode size and a narrow vertical divergence. In this paper, we present tapered lasers with photonic crystal structure emitting at 980 nm. The epitaxial layer is grown using metal organic chemical vapor deposition. The device has a total cavity length of 2 mm, which consists of a 400-um long ridge-waveguide section and a 1600-um long tapered section. The taper angle is 4°. An output power of 3.3 W is achieved with a peak conversion efficiency of 35% in pulsed mode. The threshold current is 240 mA and the slope efficiency is 0.78 W/A. In continuous wave mode, the output power is 2.87 W, which is limited by a suddenly failure resulting from catastrophic optical mirror damage. The far field divergences with full width at half maximum are 12.3° in the vertical direction and 2.9° in the lateral direction at 0.5 A. At high injection level the vertical divergence doesn't exceed 16°. Beam quality factor M2 is measured based on second moment definition in CW mode. High beam quality is demonstrated by M2 value of less than 2 in both vertical and lateral directions.

  5. DURATION LIMIT OF LASER PULSES EMITTED FROM A Ce-DOPED CRYSTAL SHORT CAVITY

    Directory of Open Access Journals (Sweden)

    Le Hoang Hai

    2017-11-01

    Full Text Available Based on the rate equation set for broadband cavities, the dependence of pulse duration on cavity and pumping parameters is analyzed. The cavity uses a Ce-doped crystal as a gain medium. Computation results show the variation of the pulse width with the change of cavity length, mirror reflectivity, pumping energy and pumping pulse duration. A significant influence of multiple-pulse operation in limiting pulse duration is realized and a pulse-width of the order 200 ps is found to be the limit for the direct generation of ultraviolet single picosecond pulses from a Ce:LLF short cavity.

  6. Liquid Crystal Microlens Using Nanoparticle-Induced Vertical Alignment

    Directory of Open Access Journals (Sweden)

    Shug-June Hwang

    2015-01-01

    Full Text Available The nanoparticle-induced vertical alignment (NIVA of the nematic liquid crystals (LC is applied to achieve an adaptive flat LC microlens with hybrid-aligned nematic (HAN mode by dropping polyhedral oligomeric silsesquioxane (POSS nanoparticle solution on a homogeneous alignment layer. The vertical alignment induced by the POSS nanoparticles resulted in the formation of a hybrid-aligned LC layer with concentric nonuniform distribution of the refractive index in the planar LC cell, which subsequently played the role of the lens, even in the absence of any applied voltages. The dimensions of the concentric HAN structure significantly depend on the volume of the microdroplet and the POSS concentration. The focus effect of this flat microlens was observed while electrically controlling its focal length using the applied voltages from −50 mm to −90 mm.

  7. Quantum Control of a Spin Qubit Coupled to a Photonic Crystal Cavity

    Science.gov (United States)

    2012-12-01

    Cavities in Monocrystalline Diamond. Physical Review Letters 109, 033604 (2012). 14. Kroutvar, M. et al. Optically programmable electron spin...temperatures, varying the detuning of X− from the cavity. The dashed blue lines in panel a are fits to the reflectivity. The spectra are vertically

  8. Fibre Coupled Photonic Crystal Cavity Arrays on Transparent Substrates for Spatially Resolved Sensing

    Directory of Open Access Journals (Sweden)

    Mark G. Scullion

    2014-11-01

    Full Text Available We introduce a photonic crystal cavity array realised in a silicon thin film and placed on polydimethlysiloxane (PDMS as a new platform for the in-situ sensing of biomedical processes. Using tapered optical fibres, we show that multiple independent cavities within the same waveguide can be excited and their resonance wavelength determined from camera images without the need for a spectrometer. The cavity array platform combines sensing as a function of location with sensing as a function of time.

  9. Spatial mode effects in a cavity-EIT based quantum memory with ion Coulomb crystals

    DEFF Research Database (Denmark)

    Zangenberg, Kasper Rothe; Dantan, Aurelien Romain; Drewsen, Michael

    2012-01-01

    Quantum storage and retrieval of light in ion Coulomb crystals using cavity electromagnetically induced transparency are investigated theoretically. It is found that when both the control and the probe fields are coupled to the same spatial cavity mode, their transverse mode profile affects the q...

  10. Viewing angle switching of patterned vertical alignment liquid crystal display

    International Nuclear Information System (INIS)

    Lim, Young Jin; Jeong, Eun; Chin, Mi Hyung; Lee, Seung Hee; Ji, Seunghoon; Lee, Gi-Dong

    2008-01-01

    Viewing angle control of a patterned vertical alignment (PVA) liquid crystal display using only one panel is investigated. In conventional PVA modes, a vertically aligned liquid crystal (LC) director tilts down in four directions making 45 deg. with respect to crossed polarizers to exhibit a wide viewing angle. In the viewing angle control device, one pixel was divided into two sub-pixels such that the LC director in the main pixel is controlled to be tilted down in multiple directions making an angle with the polarizer, playing the role of main display with the wide viewing angle, while the LC director in the sub-pixel is controlled to be tilted down to the polarizer axis, playing the role of sub-pixel to the viewing angle control for the narrow viewing angle. Using sub-pixel control, light leakage or any type of information such as characters and image can be generated in oblique viewing directions without distorting the image quality in the normal direction, which will prevent others from peeping at the displayed image by overlapping the displayed image with the made image

  11. Experimental Study of Electronic Quantum Interference, Photonic Crystal Cavity, Photonic Band Edge Effects for Optical Amplification

    Science.gov (United States)

    2016-01-26

    AFRL-RV-PS- AFRL-RV-PS- TR-2016-0003 TR-2016-0003 EXPERIMENTAL STUDY OF ELECTRONIC QUANTUM INTERFERENCE , PHOTONIC CRYSTAL CAVITY, PHOTONIC BAND...EDGE EFFECTS FOR OPTICAL AMPLIFICATION Shawn-Yu Lin Rensselaer Polytechnic Institute 110 8th Street Troy, New York 12180 26 Jan 2016 Final Report...2014 – 11 Jan 2016 4. TITLE AND SUBTITLE Experimental Study of Electronic Quantum Interference , Photonic Crystal Cavity, Photonic Band Edge Effects

  12. Continuous-wave optically pumped green perovskite vertical-cavity surface-emitter

    KAUST Repository

    Alias, Mohd Sharizal

    2017-09-11

    We report an optically pumped green perovskite vertical-cavity surface-emitter operating in continuous-wave (CW) with a power density threshold of ~89 kW/cm2. The device has an active region of CH3NH3PbBr3 embedded in a dielectric microcavity; this feat was achieved with a combination of optimal spectral alignment of the optical cavity modes with the perovskite optical gain, an adequate Q-factor of the microcavity, adequate thermal stability, and improved material quality with a smooth, passivated, and annealed thin active layer. Our results signify a way towards efficient CW perovskite emitter operation and electrical injection using low-cost fabrication methods for addressing monolithic optoelectronic integration and lasing in the green gap.

  13. Design and commissioning of Fermilab's vertical test stand for ILC SRF cavities.

    Energy Technology Data Exchange (ETDEWEB)

    Ozelis, Joseph P.; Carcagno, Ruben; Ginsburg, Camille M.; Huang, Yuenian; Norris, Barry; Peterson, Thomas; Poloubotko, Valeri; Rabehl, roger; Rakhno, Igor; Reid, Clark; Sergatskov, Dmitri A.; /Fermilab

    2007-06-01

    As part of its ILC program, Fermilab is developing a facility for vertical testing of SRF cavities. It operates at a nominal temperature of 2K, using a cryoplant that can supply LHe in excess of 20g/sec and provide bath pumping capacity of 125W at 2K. The below-grade cryostat consists of a vacuum vessel and LHe vessel, equipped with magnetic shielding to reduce the ambient magnetic field to <10mG. Internal fixed and external movable radiation shielding ensures that exposure to personnel is minimized. The facility features an integrated personnel safety system consisting of RF switches, interlocks, and area radiation monitors.

  14. Design and commissioning of Fermilab's vertical test stand for ILC SRF cavities

    International Nuclear Information System (INIS)

    Ozelis, Joseph P.; Carcagno, Ruben; Ginsburg, Camille M.; Huang, Yuenian; Norris, Barry; Peterson, Thomas; Poloubotko, Valeri; Rabehl, roger; Rakhno, Igor; Reid, Clark; Sergatskov, Dmitri A.

    2007-01-01

    As part of its ILC program, Fermilab is developing a facility for vertical testing of SRF cavities. It operates at a nominal temperature of 2K, using a cryoplant that can supply LHe in excess of 20g/sec and provide bath pumping capacity of 125W at 2K. The below-grade cryostat consists of a vacuum vessel and LHe vessel, equipped with magnetic shielding to reduce the ambient magnetic field to <10mG. Internal fixed and external movable radiation shielding ensures that exposure to personnel is minimized. The facility features an integrated personnel safety system consisting of RF switches, interlocks, and area radiation monitors

  15. Self-mixing interferometry in vertical-cavity surface-emitting lasers for nanomechanical cantilever sensing

    Science.gov (United States)

    Larsson, David; Greve, Anders; Hvam, Jørn M.; Boisen, Anja; Yvind, Kresten

    2009-03-01

    We have experimentally investigated self-mixing interference produced by the feedback of light from a polymer micrometer-sized cantilever into a vertical-cavity surface-emitting laser for sensing applications. In particular we have investigated how the visibility of the optical output power and the junction voltage depends on the laser injection current and the distance to the cantilever. The highest power visibility obtained from cantilevers without reflective coatings was ˜60%, resulting in a very high sensitivity of 45 mV/nm with a noise floor below 1.2 mV. Different detection schemes are discussed.

  16. Self-mixing interferometry in vertical-cavity surface-emitting lasers for nanomechanical cantilever sensing

    DEFF Research Database (Denmark)

    Larsson, David; Greve, Anders; Hvam, Jørn Märcher

    2009-01-01

    We have experimentally investigated self-mixing interference produced by the feedback of light from a polymer micrometer-sized cantilever into a vertical-cavity surface-emitting laser for sensing applications. In particular we have investigated how the visibility of the optical output power...... and the junction voltage depends on the laser injection current and the distance to the cantilever. The highest power visibility obtained from cantilevers without reflective coatings was 60%, resulting in a very high sensitivity of 45 mV/nm with a noise floor below 1.2 mV. Different detection schemes are discussed....

  17. Spectral-Modulation Characteristics of Vertical-Cavity Surface-Emitting Lasers

    Science.gov (United States)

    Vas'kovskaya, M. I.; Vasil'ev, V. V.; Zibrov, S. A.; Yakovlev, V. P.; Velichanskii, V. L.

    2018-01-01

    The requirements imposed on vertical-cavity surface-emitting lasers in a number of metrological problems in which optical pumping of alkali atoms is used are considered. For lasers produced by different manufacturers, these requirements are compared with the experimentally observed spectral characteristics at a constant pump current and in the microwave modulation mode. It is shown that a comparatively small number of lasers in the microwave modulation mode make it possible to obtain the spectrum required for atomic clocks based on the coherent population-trapping effect.

  18. Sub-monolayer dot vertical-cavity surface-emitting lasers

    International Nuclear Information System (INIS)

    Blokhin, S.A.; Maleev, N.A.; Kuz'menkov, A.G.

    2006-01-01

    Vertical-cavity surface-emitting lasers (VCSELs) based on submonolayer InGaAs quantum-dot active region and doped with AlGaAs/GaAs distributed Bragg reflectors were grown by molecular beam epitaxy. 3 μm aperture single-mode VCSELs demonstrate lasing at 980 nm with threshold current of 0.6 mA, maximum output power of 4 mW and external differential efficiency as high as 68%. Ultimately low internal optical losses were measured for these multimode sub-monolayer quantum dot VCSELs [ru

  19. Flexible nanomembrane photonic-crystal cavities for tensilely strained-germanium light emission

    Energy Technology Data Exchange (ETDEWEB)

    Yin, Jian; Wang, Xiaowei; Paiella, Roberto [Department of Electrical and Computer Engineering and Photonics Center, Boston University, 8 Saint Mary' s Street, Boston, Massachusetts 02215 (United States); Cui, Xiaorui; Sookchoo, Pornsatit; Lagally, Max G. [Department of Materials Science and Engineering, University of Wisconsin – Madison, 1509 University Avenue, Madison, Wisconsin 53706 (United States)

    2016-06-13

    Flexible photonic-crystal cavities in the form of Si-column arrays embedded in polymeric films are developed on Ge nanomembranes using direct membrane assembly. The resulting devices can sustain large biaxial tensile strain under mechanical stress, as a way to enhance the Ge radiative efficiency. Pronounced emission peaks associated with photonic-crystal cavity resonances are observed in photoluminescence measurements. These results show that ultrathin nanomembrane active layers can be effectively coupled to an optical cavity, while still preserving their mechanical flexibility. Thus, they are promising for the development of strain-enabled Ge lasers, and more generally uniquely flexible optoelectronic devices.

  20. Paired modes of heterostructure cavities in photonic crystal waveguides with split band edges

    DEFF Research Database (Denmark)

    Mahmoodian, Sahand; Sukhorukov, Andrey A.; Ha, Sangwoo

    2010-01-01

    We investigate the modes of double heterostructure cavities where the underlying photonic crystal waveguide has been dispersion engineered to have two band-edges inside the Brillouin zone. By deriving and using a perturbative method, we show that these structures possess two modes. For unapodized...... cavities, the relative detuning of the two modes can be controlled by changing the cavity length, and for particular lengths, a resonant-like effect makes the modes degenerate. For apodized cavities no such resonances exist and the modes are always non-degenerate....

  1. 1.3 μm wavelength vertical cavity surface emitting laser fabricated by orientation-mismatched wafer bonding: A prospect for polarization control

    Science.gov (United States)

    Okuno, Yae L.; Geske, Jon; Gan, Kian-Giap; Chiu, Yi-Jen; DenBaars, Steven P.; Bowers, John E.

    2003-04-01

    We propose and demonstrate a long-wavelength vertical cavity surface emitting laser (VCSEL) which consists of a (311)B InP-based active region and (100) GaAs-based distributed Bragg reflectors (DBRs), with an aim to control the in-plane polarization of output power. Crystal growth on (311)B InP substrates was performed under low-migration conditions to achieve good crystalline quality. The VCSEL was fabricated by wafer bonding, which enables us to combine different materials regardless of their lattice and orientation mismatch without degrading their quality. The VCSEL was polarized with a power extinction ratio of 31 dB.

  2. Acoustic pressure in cavity of variously sized two-dimensional sonic crystals with various filling fractions

    International Nuclear Information System (INIS)

    Wu Liangyu; Chen Lienwen; Liu Chiaming

    2009-01-01

    This study theoretically and experimentally investigates the acoustic pressure in the cavity of a 2D sonic crystal. Such crystals are composed of polymethyl methacrylate cylinders with a square array embedded in air background. The plane wave expansion method and the supercell calculation are employed to calculate the band structure and obtain the defect band. The finite element method is adopted to simulate the pressure field in the sonic crystal and calculate the pressure in the middle of the cavity as a function of frequency. The effects of sizes and filling fractions are investigated, and the quality factor of the cavity is discussed. The measured spectra and pressures in the defect of the sonic crystal demonstrate that the acoustic waves can be localized in the defect at the resonant frequency

  3. Advanced Si solid phase crystallization for vertical channel in vertical NANDs

    Directory of Open Access Journals (Sweden)

    Sangsoo Lee

    2014-07-01

    Full Text Available The advanced solid phase crystallization (SPC method using the SiGe/Si bi-layer structure is proposed to obtain high-mobility poly-Si thin-film transistors in next generation vertical NAND (VNAND devices. During the SPC process, the top SiGe thin film acts as a selective nucleation layer to induce surface nucleation and equiaxial microstructure. Subsequently, this SiGe thin film microstructure is propagated to the underlying Si thin film by epitaxy-like growth. The initial nucleation at the SiGe surface was clearly observed by in situ transmission electron microscopy (TEM when heating up to 600 °C. The equiaxial microstructures of both SiGe nucleation and Si channel layers were shown in the crystallized bi-layer plan-view TEM measurements. Based on these experimental results, the large-grained and less-defective Si microstructure is expected to form near the channel region of each VNAND cell transistor, which may improve the electrical characteristics.

  4. Asymmetric light transmission based on coupling between photonic crystal waveguides and L1/L3 cavity

    Science.gov (United States)

    Zhang, Jinqiannan; Chai, Hongyu; Yu, Zhongyuan; Cheng, Xiang; Ye, Han; Liu, Yumin

    2017-09-01

    A compact design of all-optical diode with mode conversion function based on a two-dimensional photonic crystal waveguide and an L1 or L3 cavity is theoretically investigated. The proposed photonic crystal structures comprise a triangular arrangement of air holes embedded in a silicon substrate. Asymmetric light propagation is achieved via the spatial mode match/mismatch in the coupling region. The simulations show that at each cavity's resonance frequency, the transmission efficiency of the structure with the L1 and L3 cavities reach 79% and 73%, while the corresponding unidirectionalities are 46 and 37 dB, respectively. The functional frequency can be controlled by simply adjusting the radii of specific air holes in the L1 and L3 cavities. The proposed structure can be used as a frequency filter, a beam splitter and has potential applications in all-optical integrated circuits.

  5. Radio frequency regenerative oscillations in monolithic high-Q/V heterostructured photonic crystal cavities

    International Nuclear Information System (INIS)

    Yang, Jinghui; Gu, Tingyi; Zheng, Jiangjun; Wei Wong, Chee; Yu, Mingbin; Lo, Guo-Qiang; Kwong, Dim-Lee

    2014-01-01

    We report temporal and spectral domain observation of regenerative oscillation in monolithic silicon heterostructured photonic crystals cavities with high quality factor to mode volume ratios (Q/V). The results are interpreted by nonlinear coupled mode theory (CMT) tracking the dynamics of photon, free carrier population, and temperature variations. We experimentally demonstrate effective tuning of the radio frequency tones by laser-cavity detuning and laser power levels, confirmed by the CMT simulations with sensitive input parameters

  6. The simulation of thermal characteristics of 980 nm vertical cavity surface emitting lasers

    Science.gov (United States)

    Fang, Tianxiao; Cui, Bifeng; Hao, Shuai; Wang, Yang

    2018-02-01

    In order to design a single mode 980 nm vertical cavity surface emitting laser (VCSEL), a 2 μm output aperture is designed to guarantee the single mode output. The effects of different mesa sizes on the lattice temperature, the output power and the voltage are simulated under the condition of continuous working at room temperature, to obtain the optimum process parameters of mesa. It is obtained by results of the crosslight simulation software that the sizes of mesa radius are between 9.5 to 12.5 μm, which cannot only obtain the maximum output power, but also improve the heat dissipation of the device. Project supported by the Beijing Municipal Eduaction Commission (No. PXM2016_014204_500018) and the Construction of Scientific and Technological Innovation Service Ability in 2017 (No. PXM2017_014204_500034).

  7. VCSELs Fundamentals, Technology and Applications of Vertical-Cavity Surface-Emitting Lasers

    CERN Document Server

    2013-01-01

    The huge progress which has been achieved in the field is covered here, in the first comprehensive monograph on vertical-cavity surface-emitting lasers (VCSELs) since eight years. Apart from chapters reviewing the research field and the laser fundamentals, there are comprehensive updates on red and blue emitting VCSELs, telecommunication VCSELs, optical transceivers, and parallel-optical links for computer interconnects. Entirely new contributions are made to the fields of vectorial three-dimensional optical modeling, single-mode VCSELs, polarization control, polarization dynamics, very-high-speed design, high-power emission, use of high-contrast gratings, GaInNAsSb long-wavelength VCSELs, optical video links, VCSELs for optical mice and sensing, as well as VCSEL-based laser printing. The book appeals to researchers, optical engineers and graduate students.

  8. Development of Vertical Buffered Electropolishing for Its Post-Treatment Technology on 1.5 GHz Niobium SRF Cavities

    International Nuclear Information System (INIS)

    Jin Song; Lu Xiang-Yang; Lin Lin; Zhao Kui; Wu, A. T.; Rimmer, R. A.

    2011-01-01

    We report the latest research development of vertical buffered electropolishing on its post-treatment procedure as well as the effects of several major post-treatment techniques for buffered electropolishing (BEP) processed 1.5 GHz niobium (Nb) superconducting radio frequency (SRF) cavities. With the established post-treatment procedure, an accelerating gradient of 28.4 MV/m is obtained on a single cell cavity of the cebaf shape. This is the best result in the history of BEP development. The cavity is limited by quench with a high quality factor over 1.2 × 10 10 at the quench point. Analyses from optical inspection and temperature-mapping show that the quench should be originated from the pits that were already present on the cavity before this BEP treatment. All of these factors indicate that this procedure will have a great potential to produce better results if cavities without intrinsic performance limiting imperfections are used. (nuclear physics)

  9. Spin-controlled ultrafast vertical-cavity surface-emitting lasers

    Science.gov (United States)

    Höpfner, Henning; Lindemann, Markus; Gerhardt, Nils C.; Hofmann, Martin R.

    2014-05-01

    Spin-controlled semiconductor lasers are highly attractive spintronic devices providing characteristics superior to their conventional purely charge-based counterparts. In particular, spin-controlled vertical-cavity surface emitting lasers (spin-VCSELs) promise to offer lower thresholds, enhanced emission intensity, spin amplification, full polarization control, chirp control and ultrafast dynamics. Most important, the ability to control and modulate the polarization state of the laser emission with extraordinarily high frequencies is very attractive for many applications like broadband optical communication and ultrafast optical switches. We present a novel concept for ultrafast spin-VCSELs which has the potential to overcome the conventional speed limitation for directly modulated lasers by the relaxation oscillation frequency and to reach modulation frequencies significantly above 100 GHz. The concept is based on the coupled spin-photon dynamics in birefringent micro-cavity lasers. By injecting spin-polarized carriers in the VCSEL, oscillations of the coupled spin-photon system can by induced which lead to oscillations of the polarization state of the laser emission. These oscillations are decoupled from conventional relaxation oscillations of the carrier-photon system and can be much faster than these. Utilizing these polarization oscillations is thus a very promising approach to develop ultrafast spin-VCSELs for high speed optical data communication in the near future. Different aspects of the spin and polarization dynamics, its connection to birefringence and bistability in the cavity, controlled switching of the oscillations, and the limitations of this novel approach will be analysed theoretically and experimentally for spin-polarized VCSELs at room temperature.

  10. Nonpolar III-nitride vertical-cavity surface-emitting lasers incorporating an ion implanted aperture

    KAUST Repository

    Leonard, J. T.; Cohen, D. A.; Yonkee, B. P.; Farrell, R. M.; Margalith, T.; Lee, S.; DenBaars, S. P.; Speck, J. S.; Nakamura, S.

    2015-01-01

    © 2015 AIP Publishing LLC. We report on our recent progress in improving the performance of nonpolar III-nitride vertical-cavity surface-emitting lasers (VCSELs) by using an Al ion implanted aperture and employing a multi-layer electron-beam evaporated ITO intracavity contact. The use of an ion implanted aperture improves the lateral confinement over SiNx apertures by enabling a planar ITO design, while the multi-layer ITO contact minimizes scattering losses due to its epitaxially smooth morphology. The reported VCSEL has 10 QWs, with a 3nm quantum well width, 1nm barriers, a 5nm electron-blocking layer, and a 6.95- λ total cavity thickness. These advances yield a single longitudinal mode 406nm nonpolar VCSEL with a low threshold current density (∼16kA/cm2), a peak output power of ∼12μW, and a 100% polarization ratio. The lasing in the current aperture is observed to be spatially non-uniform, which is likely a result of filamentation caused by non-uniform current spreading, lateral optical confinement, contact resistance, and absorption loss.

  11. Nonpolar III-nitride vertical-cavity surface-emitting lasers incorporating an ion implanted aperture

    KAUST Repository

    Leonard, J. T.

    2015-07-06

    © 2015 AIP Publishing LLC. We report on our recent progress in improving the performance of nonpolar III-nitride vertical-cavity surface-emitting lasers (VCSELs) by using an Al ion implanted aperture and employing a multi-layer electron-beam evaporated ITO intracavity contact. The use of an ion implanted aperture improves the lateral confinement over SiNx apertures by enabling a planar ITO design, while the multi-layer ITO contact minimizes scattering losses due to its epitaxially smooth morphology. The reported VCSEL has 10 QWs, with a 3nm quantum well width, 1nm barriers, a 5nm electron-blocking layer, and a 6.95- λ total cavity thickness. These advances yield a single longitudinal mode 406nm nonpolar VCSEL with a low threshold current density (∼16kA/cm2), a peak output power of ∼12μW, and a 100% polarization ratio. The lasing in the current aperture is observed to be spatially non-uniform, which is likely a result of filamentation caused by non-uniform current spreading, lateral optical confinement, contact resistance, and absorption loss.

  12. Optical properties of organic-silicon photonic crystal nanoslot cavity light source

    Directory of Open Access Journals (Sweden)

    Ming-Jay Yang

    2017-03-01

    Full Text Available We theoretically study a dielectric photonic crystal nanoslot cavity immersed in an organic fluid containing near-infrared dyes by means of a full rate equation model including the complete cavity QED effects. Based on the modeling results, we numerically design an organic-silicon cavity light source in which its mode volume, quality factor, and far-field emission pattern are optimized for energy-efficient, high-speed applications. Dye quantum efficiency improved by two orders of magnitude and 3dB modulation bandwidth of a few hundred GHz can be obtained.

  13. Coupled quantum electrodynamics in photonic crystal cavities towards controlled phase gate operations

    International Nuclear Information System (INIS)

    Xiao, Y-F; Gao, J; McMillan, J F; Yang, X; Wong, C W; Zou, X-B; Chen, Y-L; Han, Z-F; Guo, G-C

    2008-01-01

    In this paper, a scalable photonic crystal cavity array, in which single embedded quantum dots (QDs) are coherently interacting, is studied theoretically. Firstly, we examine the spectral character and optical delay brought about by the coupled cavities interacting with single QDs, in an optical analogue to electromagnetically induced transparency. Secondly, we then examine the usability of this coupled QD-cavity system for quantum phase gate operation and our numerical examples suggest that a two-qubit system with fidelity above 0.99 and photon loss below 0.04 is possible.

  14. Lasing cavities and ultra-fast switch based on self-collimation of photonic crystal

    International Nuclear Information System (INIS)

    Zhao Deyin; Zhou Chuanhong; Gong Qian; Jiang Xunya

    2008-01-01

    The lasing cavities and ultra-fast switch based on the self-collimation (SC) of photonic crystal have been studied in this work. Some special properties of these devices are demonstrated, such as the higher quality factors and concise integration of the lasing cavities, the tolerance of the non-parallel reflectors in Fabry-Perot cavities. With nonlinearity, the ultra-fast switch can also be realized around the SC frequency. All these functional devices are designed based on the strong beam confinement of SC

  15. Lasing cavities and ultra-fast switch based on self-collimation of photonic crystal

    Energy Technology Data Exchange (ETDEWEB)

    Zhao Deyin; Zhou Chuanhong; Gong Qian; Jiang Xunya [State Key Laboratory of Functional Materials for Informatics, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 200050 (China)], E-mail: xyjiang@mit.edu

    2008-06-07

    The lasing cavities and ultra-fast switch based on the self-collimation (SC) of photonic crystal have been studied in this work. Some special properties of these devices are demonstrated, such as the higher quality factors and concise integration of the lasing cavities, the tolerance of the non-parallel reflectors in Fabry-Perot cavities. With nonlinearity, the ultra-fast switch can also be realized around the SC frequency. All these functional devices are designed based on the strong beam confinement of SC.

  16. High-Q Defect-Free 2D Photonic Crystal Cavity from Random Localised Disorder

    Directory of Open Access Journals (Sweden)

    Kelvin Chung

    2014-07-01

    Full Text Available We propose a high-Q photonic crystal cavity formed by introducing random disorder to the central region of an otherwise defect-free photonic crystal slab (PhC. Three-dimensional finite-difference time-domain simulations determine the frequency, quality factor, Q, and modal volume, V, of the localized modes formed by the disorder. Relatively large Purcell factors of 500–800 are calculated for these cavities, which can be achieved for a large range of degrees of disorders.

  17. Optoelectronic integrated circuits utilising vertical-cavity surface-emitting semiconductor lasers

    International Nuclear Information System (INIS)

    Zakharov, S D; Fyodorov, V B; Tsvetkov, V V

    1999-01-01

    Optoelectronic integrated circuits with additional optical inputs/outputs, in which vertical-cavity surface-emitting (VCSE) lasers perform the data transfer functions, are considered. The mutual relationship and the 'affinity' between optical means for data transfer and processing, on the one hand, and the traditional electronic component base, on the other, are demonstrated in the case of implementation of three-dimensional interconnects with a high transmission capacity. Attention is drawn to the problems encountered when semiconductor injection lasers are used in communication lines. It is shown what role can be played by VCSE lasers in solving these problems. A detailed analysis is made of the topics relating to possible structural and technological solutions in the fabrication of single lasers and of their arrays, and also of the problems hindering integrating of lasers into emitter arrays. Considerable attention is given to integrated circuits with optoelectronic smart pixels. Various technological methods for vertical integration of GaAs VCSE lasers with the silicon substrate of a microcircuit (chip) are discussed. (review)

  18. Transition of lasing modes in polymeric opal photonic crystal resonating cavity.

    Science.gov (United States)

    Shi, Lan-Ting; Zheng, Mei-Ling; Jin, Feng; Dong, Xian-Zi; Chen, Wei-Qiang; Zhao, Zhen-Sheng; Duan, Xuan-Ming

    2016-06-10

    We demonstrate the transition of lasing modes in the resonating cavity constructed by polystyrene opal photonic crystals and 7 wt. % tert-butyl Rhodamine B doped polymer film. Both single mode and multiple mode lasing emission are observed from the resonating cavity. The lasing threshold is determined to be 0.81  μJ/pulse for single mode lasing emission and 2.25  μJ/pulse for multiple mode lasing emission. The single mode lasing emission is attributed to photonic lasing resulting from the photonic bandgap effect of the opal photonic crystals, while the multiple mode lasing emission is assigned to random lasing due to the defects in the photonic crystals. The result would benefit the development of low threshold polymeric solid state photonic crystal lasers.

  19. Benchmarking state-of-the-art numerical simulation techniques for analyzing large photonic crystal membrane line defect cavities

    DEFF Research Database (Denmark)

    Gregersen, Niels; de Lasson, Jakob Rosenkrantz; Frandsen, Lars Hagedorn

    2018-01-01

    In this work, we perform numerical studies of two photonic crystal membrane microcavities, a short line-defect L5 cavity with relatively low quality (Q) factor and a longer L9 cavity with high Q. We compute the cavity Q factor and the resonance wavelength λ of the fundamental M1 mode in the two...

  20. Cavity quantum electrodynamics with three-dimensional photonic bandgap crystals

    NARCIS (Netherlands)

    Vos, Willem L.; Woldering, L.A.; Ghulinyan, M.; Pavesi, L.

    2015-01-01

    This paper is Chapter 8 of the book "Light Localisation and Lasing: Random and Pseudorandom Photonic Structures", edited by Mher Ghulinyan and Lorenzo Pavesi (Cambridge University Press, Cambridge, 2015). It provides an overview of much recent work on 3D photonic crystals with a complete photonic

  1. Relativistic electron Wigner crystal formation in a cavity for electron acceleration

    CERN Document Server

    Thomas, Johannes; Pukhov, Alexander

    2014-01-01

    It is known that a gas of electrons in a uniform neutralizing background can crystallize and form a lattice if the electron density is less than a critical value. This crystallization may have two- or three-dimensional structure. Since the wake field potential in the highly-nonlinear-broken-wave regime (bubble regime) has the form of a cavity where the background electrons are evacuated from and only the positively charged ions remain, it is suited for crystallization of trapped and accelerated electron bunch. However, in this case, the crystal is moving relativistically and shows new three-dimensional structures that we call relativistic Wigner crystals. We analyze these structures using a relativistic Hamiltonian approach. We also check for stability and phase transitions of the relativistic Wigner crystals.

  2. A Bloch modal approach for engineering waveguide and cavity modes in two-dimensional photonic crystals

    DEFF Research Database (Denmark)

    de Lasson, Jakob Rosenkrantz; Kristensen, Philip Trøst; Mørk, Jesper

    2014-01-01

    uses no external excitation and determines the quasi-normal modes as unity eigenvalues of the cavity roundtrip matrix. We demonstrate the method and the quasi-normal modes for two types of two-dimensional photonic crystal structures, and discuss the quasi-normal mode eld distributions and Q-factors...

  3. Comparison of Five Computational Methods for Computing Q Factors in Photonic Crystal Membrane Cavities

    DEFF Research Database (Denmark)

    Novitsky, Andrey; de Lasson, Jakob Rosenkrantz; Frandsen, Lars Hagedorn

    2017-01-01

    Five state-of-the-art computational methods are benchmarked by computing quality factors and resonance wavelengths in photonic crystal membrane L5 and L9 line defect cavities. The convergence of the methods with respect to resolution, degrees of freedom and number of modes is investigated. Specia...

  4. Thermal tuning of a silicon photonic crystal cavity infilled with an elastomer

    NARCIS (Netherlands)

    Erdamar, A.K.; Van Leest, M.M.; Picken, S.J.; Caro, J.

    2011-01-01

    Thermal tuning of the transmission of an elastomer infilled photonic crystal cavity is studied. An elastomer has a thermal expansion-induced negative thermo-optic coefficient that leads to a strong decrease of the refractive index upon heating. This property makes elastomer highly suitable for

  5. Transient dynamics in cavity electromagnetically induced transparency with ion Coulomb crystals

    Science.gov (United States)

    Albert, Magnus; Dantan, Aurélien; Drewsen, Michael

    2018-03-01

    We experimentally investigate the transient dynamics of an optical cavity field interacting with large ion Coulomb crystals in a situation of electromagnetically induced transparency (EIT). EIT is achieved by injecting a probe field at the single photon level and a more intense control field with opposite circular polarization into the same mode of an optical cavity to couple Zeeman substates of a metastable level in ? ions. The EIT interaction dynamics are investigated both in the frequency-domain - by measuring the probe field steady state reflectivity spectrum - and in the time-domain - by measuring the progressive buildup of transparency. The experimental results are observed to be in excellent agreement with theoretical predictions taking into account the inhomogeneity of the control field in the interaction volume, and confirm the high degree of control on light-matter interaction that can be achieved with ion Coulomb crystals in optical cavities.

  6. 5-μm vertical external-cavity surface-emitting laser (VECSEL) for spectroscopic applications

    Science.gov (United States)

    Rahim, M.; Khiar, A.; Felder, F.; Fill, M.; Zogg, H.; Sigrist, M. W.

    2010-08-01

    Mid-IR tunable VECSELs (Vertical External-Cavity Surface-Emitting Lasers) emitting at 4-7 μm wavelengths and suitable for spectroscopic sensing applications are described. They are realized with lead-chalcogenide (IV-VI) narrow band gap materials. The active part, a single 0.6-2-μm thick PbTe or PbSe gain layer, is grown onto an epitaxial Bragg mirror consisting of two or three Pb1- y Eu y Te/BaF2 quarter-wavelength layer pairs. All layers are deposited by MBE in a single run employing a BaF2 or Si substrate, no further processing is needed. The cavity is completed with an external curved top mirror, which is again realized with an epitaxial Bragg structure. Pumping is performed optically with a 1.5-μm laser. Maximum output power for pulsed operation is currently up to >1 Wp at -173°C and >10 mW at 10°C. In continuous wave (CW) operation, 18 mW at 100 K are reached. Still higher operating temperatures and/or powers are expected with better heat-removal structures and better designs employing QW (Quantum-Wells). Advantages of mid-IR VECSELs compared to edge-emitting lasers are their very good beam quality (circular beam with 15 μm are accessible with Pb1- y X y Z (X=Sr, Eu, Sn, Z=Se, Te) and/or including QW.

  7. Numerical study of the thermal and aerodynamic insulation of a cavity with a vertical downstream air jet

    Energy Technology Data Exchange (ETDEWEB)

    Mhiri, H.; El Golli, S. [Ecole Nationale d`Ingenieurs, Monastir (Tunisia). Lab. d`Energetique; Berthon, A.; Le Palec, G.; Bournot, P. [Technopole de Chateau-Gombert, Marseille (France)

    1998-10-01

    Because of its numerous industrial applications (air conditioning, thermal insulation, behavior of fires), heat transfer in rectangular cavities has made the subject of many works which concern both theoretical numerical studies and experimental investigations. This work is devoted to a numerical approach of the laminar mixed convection in a cavity which one of the boundaries is materialized by a laminar vertical downstream air jet. The purpose is to analyze the interaction of this flow with the natural movement that grows in the cavity under the combined action of boundary thermal gradients and external medium of the cavity in order to examine thermal insulation qualities of the jet. Calculations have been made with the help of the finite volume method.

  8. Sub-threshold wavelength splitting in coupled photonic crystal cavity arrays

    DEFF Research Database (Denmark)

    Schubert, Martin; Frandsen, Lars Hagedorn; Skovgård, Troels Suhr

    Coupled photonic crystal (PhC) cavity arrays have recently been found to increase the output power of nanocavity lasers by coherent coupling of a large number of cavities [1]. We have measured the sub-threshold behaviour of such structures in order to gain better understanding of the mode structure....... PhC structures defined by circular holes placed in a quadratic lattice with pitch a=280 nm were fabricated in a GaAs membrane and cavity arrays were realized by introducing single missing holes with intracavity hole distances of two, three, five and seven holes. Arrays with different number...... of coupled cavities were fabricated and characterized using photoluminescence measurements of quantum dots embedded in the GaAs PhC membrane. Since the collection spot size was ~2.5 μm and therefore small compared to the arrays, spectra were taken at several positions of each array....

  9. Nonlinear dynamic behaviors of an optically injected vertical-cavity surface-emitting laser

    International Nuclear Information System (INIS)

    Li Xiaofeng; Pan Wei; Luo Bin; Ma Dong; Wang Yong; Li Nuohan

    2006-01-01

    Nonlinear dynamics of a vertical-cavity surface-emitting laser (VCSEL) with external optical injection are studied numerically. We consider a master-slave configuration where the dynamic characteristics of the slave are affected by the optical injection from the master, and we also establish the corresponding Simulink model. The period-doubling route as well as the period-halving route is observed, where the regular, double-periodic, and chaotic pulsings are found. By adjusting the injection strength properly, the laser can be controlled to work at a given state. The effects of frequency detuning on the nonlinear behaviors are also investigated in terms of the bifurcation diagrams of photon density with the frequency detuning. For weak injection case, the nonlinear dynamics shown by the laser are quite different when the value of frequency detuning varies contrarily (positive and negative direction). If the optical injection is strong enough, the slave can be locked by the master even though the frequency detuning is relatively large

  10. Proton irradiation effects in oxide-confined vertical cavity surface emitting laser (VCSEL) diodes

    International Nuclear Information System (INIS)

    Barnes, C.E.; Swift, G.M.; Guertin, S.; Schwank, J.R.; Armendariz, M.G.; Hash, G.L.; Choquette, K.D.

    1999-01-01

    Vertical cavity surface emitting laser (VCSEL) diodes are employed as the emitter portion of opto-couplers that are used in space applications. Proton irradiation studies on VCSELs were performed at the Indiana University cyclotron facility. The beam energy was set at 192 MeV, the beam current was 200 nA that is equivalent to a flux of approximately 1*10 11 protons/cm 2 .s. We conclude that the oxide confined VCSELs examined in this study show more than sufficient radiation hardness for nearly all space applications. The observed proton-induced decreases in light output and the corresponding increases in laser threshold current can be explained in terms of proton-induced displacement damage which introduces non-radiative recombination centers in the active region of the lasers and causes a decrease in laser efficiency. These radiation effects accentuate the detrimental thermal effects observed at high currents. We also note that forward bias annealing is effective in these devices in producing at least partial recovery of the light output, and that this may be a viable hardness assurance technique during a flight mission. (A.C.)

  11. Vertical cavity surface emitting lasers from all-inorganic perovskite quantum dots

    Science.gov (United States)

    Sun, Handong; Wang, Yue; Li, Xiaoming; Zeng, Haibo

    We report the breakthrough in realizing the challenging while practically desirable vertical cavity surface emitting lasers (VCSELs) based on the CsPbX3 inorganic perovskite nanocrystals (IPNCs). These laser devices feature record low threshold (9 µJ/cm2), unidirectional output (beam divergence of 3.6º) and superb stability. We show that both single-mode and multimode lasing operation are achievable in the device. In contrast to traditional metal chacogenide colloidal quantum dots based lasers where the pump thresholds for the green and blue wavelengths are typically much higher than that of the red, these CsPbX3 IPNC-VCSEL devices are able to lase with comparable thresholds across the whole visible spectral range, which is appealing for achieving single source-pumped full-color lasers. We further reveal that these lasers can operate in quasi-steady state regime, which is very practical and cost-effective. Given the facile solution processibility, our CsPbX3 IPNC-VCSEL devices may hold great potential in developing low-cost yet high-performance lasers, promising in revolutionizing the vacuum-based epitaxial semiconductor lasers.

  12. Novel Cavities in Vertical External Cavity Surface Emitting Lasers for Emission in Broad Spectral Region by Means of Nonlinear Frequency Conversion

    Science.gov (United States)

    Lukowski, Michal L.

    Optically pumped semiconductor vertical external cavity surface emitting lasers (VECSEL) were first demonstrated in the mid 1990's. Due to the unique design properties of extended cavity lasers VECSELs have been able to provide tunable, high-output powers while maintaining excellent beam quality. These features offer a wide range of possible applications in areas such as medicine, spectroscopy, defense, imaging, communications and entertainment. Nowadays, newly developed VECSELs, cover the spectral regions from red (600 nm) to around 5 microm. By taking the advantage of the open cavity design, the emission can be further expanded to UV or THz regions by the means of intracavity nonlinear frequency generation. The objective of this dissertation is to investigate and extend the capabilities of high-power VECSELs by utilizing novel nonlinear conversion techniques. Optically pumped VECSELs based on GaAs semiconductor heterostructures have been demonstrated to provide exceptionally high output powers covering the 900 to 1200 nm spectral region with diffraction limited beam quality. The free space cavity design allows for access to the high intracavity circulating powers where high efficiency nonlinear frequency conversions and wavelength tuning can be obtained. As an introduction, this dissertation consists of a brief history of the development of VECSELs as well as wafer design, chip fabrication and resonator cavity design for optimal frequency conversion. Specifically, the different types of laser cavities such as: linear cavity, V-shaped cavity and patented T-shaped cavity are described, since their optimization is crucial for transverse mode quality, stability, tunability and efficient frequency conversion. All types of nonlinear conversions such as second harmonic, sum frequency and difference frequency generation are discussed in extensive detail. The theoretical simulation and the development of the high-power, tunable blue and green VECSEL by the means of type I

  13. Analysis of the cool down related cavity performance of the European XFEL vertical acceptance tests

    Energy Technology Data Exchange (ETDEWEB)

    Wenskat, Marc; Schaffran, J.

    2017-09-15

    For the European X-Ray Free Electron Laser (XFEL) cavity production, the cold radio-frequency (RF) test of the cavities at 2 K after delivery from the two vendors was the mandatory acceptance test. It has been previously reported, that the cool down dynamics of a cavity across T{sub c} has a significant influence on the observed intrinsic quality factor Q{sub 0}, which is a measure of the losses on the inner cavity surface. A total number of 367 cool downs is used to analyze this correlation and we show that such a correlation is not observed during the European XFEL cavity production.

  14. Self-consistent Maxwell-Bloch model of quantum-dot photonic-crystal-cavity lasers

    Science.gov (United States)

    Cartar, William; Mørk, Jesper; Hughes, Stephen

    2017-08-01

    We present a powerful computational approach to simulate the threshold behavior of photonic-crystal quantum-dot (QD) lasers. Using a finite-difference time-domain (FDTD) technique, Maxwell-Bloch equations representing a system of thousands of statistically independent and randomly positioned two-level emitters are solved numerically. Phenomenological pure dephasing and incoherent pumping is added to the optical Bloch equations to allow for a dynamical lasing regime, but the cavity-mediated radiative dynamics and gain coupling of each QD dipole (artificial atom) is contained self-consistently within the model. These Maxwell-Bloch equations are implemented by using Lumerical's flexible material plug-in tool, which allows a user to define additional equations of motion for the nonlinear polarization. We implement the gain ensemble within triangular-lattice photonic-crystal cavities of various length N (where N refers to the number of missing holes), and investigate the cavity mode characteristics and the threshold regime as a function of cavity length. We develop effective two-dimensional model simulations which are derived after studying the full three-dimensional passive material structures by matching the cavity quality factors and resonance properties. We also demonstrate how to obtain the correct point-dipole radiative decay rate from Fermi's golden rule, which is captured naturally by the FDTD method. Our numerical simulations predict that the pump threshold plateaus around cavity lengths greater than N =9 , which we identify as a consequence of the complex spatial dynamics and gain coupling from the inhomogeneous QD ensemble. This behavior is not expected from simple rate-equation analysis commonly adopted in the literature, but is in qualitative agreement with recent experiments. Single-mode to multimode lasing is also observed, depending on the spectral peak frequency of the QD ensemble. Using a statistical modal analysis of the average decay rates, we also

  15. Lateral shearing optical gradient force in coupled nanobeam photonic crystal cavities

    Energy Technology Data Exchange (ETDEWEB)

    Du, Han; Zhang, Xingwang; Chau, Fook Siong; Zhou, Guangya, E-mail: mpezgy@nus.edu.sg [Department of Mechanical Engineering, National University of Singapore, 9 Engineering Drive 1, Singapore 117575 (Singapore); Deng, Jie [Institute of Materials Research and Engineering, 2 Fusionopolis Way, Innovis, #08-03, Singapore 138634 (Singapore); Zhao, Yunshan [Department of Electrical and Computer Engineering, National University of Singapore, 4 Engineering Drive 3, Singapore 117583 (Singapore)

    2016-04-25

    We report the experimental observation of lateral shearing optical gradient forces in nanoelectromechanical systems (NEMS) controlled dual-coupled photonic crystal (PhC) nanobeam cavities. With an on-chip integrated NEMS actuator, the coupled cavities can be mechanically reconfigured in the lateral direction while maintaining a constant coupling gap. Shearing optical gradient forces are generated when the two cavity centers are laterally displaced. In our experiments, positive and negative lateral shearing optical forces of 0.42 nN and 0.29 nN are observed with different pumping modes. This study may broaden the potential applications of the optical gradient force in nanophotonic devices and benefit the future nanooptoelectromechanical systems.

  16. High-power, format-flexible, 885-nm vertical-cavity surface-emitting laser arrays

    Science.gov (United States)

    Wang, Chad; Talantov, Fedor; Garrett, Henry; Berdin, Glen; Cardellino, Terri; Millenheft, David; Geske, Jonathan

    2013-03-01

    High-power, format flexible, 885 nm vertical-cavity surface-emitting laser (VCSEL) arrays have been developed for solid-state pumping and illumination applications. In this approach, a common VCSEL size format was designed to enable tiling into flexible formats and operating configurations. The fabrication of a common chip size on ceramic submount enables low-cost volume manufacturing of high-power VCSEL arrays. This base VCSEL chip was designed to be 5x3.33 mm2, and produced up to 50 Watts of peak continuous wave (CW) power. To scale to higher powers, multiple chips can be tiled into a combination of series or parallel configurations tailored to the application driver conditions. In actively cooled CW operation, the VCSEL array chips were packaged onto a single water channel cooler, and we have demonstrated 0.5x1, 1x1, and 1x3 cm2 formats, producing 150, 250, and 500 Watts of peak power, respectively, in under 130 A operating current. In QCW operation, the 1x3 cm2 VCSEL module, which contains 18 VCSEL array chips packaged on a single water cooler, produced over 1.3 kW of peak power. In passively cooled packages, multiple chip configurations have been developed for illumination applications, producing over 300 Watts of peak power in QCW operating conditions. These VCSEL chips use a substrate-removed structure to allow for efficient thermal heatsinking to enable high-power operation. This scalable, format flexible VCSEL architecture can be applied to wavelengths ranging from 800 to 1100 nm, and can be used to tailor emission spectral widths and build high-power hyperspectral sources.

  17. Transverse and polarization effects in index-guided vertical-cavity surface-emitting lasers

    International Nuclear Information System (INIS)

    Torre, M. S.; Masoller, C.; Mandel, Paul

    2006-01-01

    We study numerically the polarization dynamics of vertical-cavity surface-emitting lasers (VCSEL's) operating in the fundamental transverse mode. We use an extension of the spin-flip model that not only accounts for the vector nature of the laser field, but also considers spatial transverse effects. The model assumes two orthogonal, linearly polarized fields, which are coupled to two carrier populations, associated with different spin sublevels of the conduction and valence bands in the quantum-well active region. Spatial effects are taken into account by considering transverse profiles for the two polarizations, for the two carrier populations, and for the carrier diffusion. The optical profile is the LP 01 mode, suitable for describing index-guided VCSEL's with cylindrical symmetry emitting on the fundamental transverse mode for both polarizations. We find that in small-active-region VCSEL's, fast carrier diffusion induces self-sustained oscillations of the total laser output, which are not present in larger-area devices or with slow carrier diffusion. These self-pulsations appear close to threshold, and, as the injection current increases, they grow in amplitude; however, there is saturation and the self-pulsations disappear at higher injection levels. The dependence of the oscillation amplitude on various laser parameters is investigated, and the results are found to be in good qualitative agreement with those reported by Van der Sande et al. [Opt. Lett. 29, 53 (2004)], based on a rate-equation model that takes into account transverse inhomogeneities through an intensity-dependent confinement factor

  18. Numerical study of three-dimensional natural convection and entropy generation in a cubical cavity with partially active vertical walls

    Directory of Open Access Journals (Sweden)

    Abdullah A.A.A Al-Rashed

    2017-09-01

    Full Text Available Natural convection and entropy generation due to the heat transfer and fluid friction irreversibilities in a three-dimensional cubical cavity with partially heated and cooled vertical walls has been investigated numerically using the finite volume method. Four different arrangements of partially active vertical sidewalls of the cubical cavity are considered. Numerical calculations are carried out for Rayleigh numbers from (103 ≤ Ra ≤ 106, various locations of the partial heating and cooling vertical sidewalls, while the Prandtl number of air is considered constant as Pr=0.7 and the irreversibility coefficient is taken as (φ=10−4. The results explain that the total entropy generation rate increases when the Rayleigh number increases. While, the Bejan number decreases as the Rayleigh number increases. Also, it is found that the arrangements of heating and cooling regions have a significant effect on the fluid flow and heat transfer characteristics of natural convection and entropy generation in a cubical cavity. The Middle-Middle arrangement produces higher values of average Nusselt numbers.

  19. Scanning near-field optical microscopy of quantum dots in photonic crystal cavities

    Energy Technology Data Exchange (ETDEWEB)

    Skacel, Matthias; Fiore, Andrea [COBRA Research Institute, Technical University Eindhoven, Den Dolech 2, 5600 MB Eindhoven (Netherlands); Prancardi, Marco; Gerardino, Annamaria [Institute of Photonics and Nanotechnology, CNR, via del Cineto Romano 42, 00156 Roma (Italy); Alloing, Blandine; Li Lianhe, E-mail: m.s.skacel@tue.n [Institute of Photonics and Quantum Electronics, EPFL, CH-1015 Lausanne (Switzerland)

    2010-09-01

    Nanophotonic devices are of major interest for research and future quantum communication applications. Due to their nanometer feature size the resolution limit of far-field microscopy poses a limitation on the characterization of their optical properties. A method to overcome the resolution limit is the Scanning Near-Field Optical Microscope (SNOM). By approaching a fiber tip into the close vicinity of the sample the optical emission in the near-field regime is collected. This way of collecting the light is not affected by the diffraction limit. We employ a low temperature SNOM to investigate the photoluminescence of InAs QDs emitting at 1300nm wavelength embedded in photonic crystal cavities. At each location of an image scan the tip is stopped and a spectrum is acquired. We then plot maps of the photoluminescence for each wavelength. With this instrument it is now possible to directly observe the coupling of QDs to photonic crystal cavities both spectrally and spatially. We show first results of photoluminescence mapping of InAs QDs in photonic crystal cavities.

  20. Study on the spectrum of photonic crystal cavity and its application in measuring the concentration of NaCl solution

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Yun [Nanjing Agricultural Univ., Nanjing (China). Dept. of Physics; Wuxi Institute of Commerce, Wuxi (China). School of Electromechanical Technology; Xie, Xun; Hao, Jiong-Ju; Yang, Hong-Wei [Nanjing Agricultural Univ., Nanjing (China). Dept. of Physics; Yang, Ze-Kun [Lanzhou Univ. (China). School of Information Science and Engineering; Xu, Zhi-Gang [Nanjing Agricultural Univ., Nanjing (China). College of Agriculture

    2017-07-01

    In this article, we propose an approach to measure solution concentrations by using photonic crystal cavities. Based on the experimental data, the refractive index of a NaCl solution is proportional to the concentration. Filling the proposed photonic crystal cavity with a NaCl solution, we calculate the spectral transmission using the transfer matrix method. We found that the cavity transmittance was proportional to the refractive index of the NaCl solution, and thus we obtained a linear relationship between cavity transmittance and the concentration of the NaCl solution. The formula was found by fitting the simulation results with experimental data. Such a formula can be applied to the measurement of an unknown concentration of NaCl solution utilizing a photonic crystal cavity.

  1. Growth of lead molybdate crystals by vertical Bridgman method

    Indian Academy of Sciences (India)

    Unknown

    The seeds were put in the seed wells, then the feed materials were filled in the cylinder of crucibles. The assembled crucible was sealed in order to prevent the volatilization of the melt during crystal growth. The cru- cible was installed in a refractory tube filled with Al2O3 powder to isolate it from external temperature fluctua-.

  2. Optical Injection Locking of Vertical Cavity Surface-Emitting Lasers: Digital and Analog Applications

    Science.gov (United States)

    Parekh, Devang

    With the rise of mobile (cellphones, tablets, notebooks, etc.) and broadband wireline communications (Fiber to the Home), there are increasing demands being placed on transmitters for moving data from device to device and around the world. Digital and analog fiber-optic communications have been the key technology to meet this challenge, ushering in ubiquitous Internet and cable TV over the past 20 years. At the physical layer, high-volume low-cost manufacturing of semiconductor optoelectronic devices has played an integral role in allowing for deployment of high-speed communication links. In particular, vertical cavity surface emitting lasers (VCSEL) have revolutionized short reach communications and are poised to enter more markets due to their low cost, small size, and performance. However, VCSELs have disadvantages such as limited modulation performance and large frequency chirp which limits fiber transmission speed and distance, key parameters for many fiber-optic communication systems. Optical injection locking is one method to overcome these limitations without re-engineering the VCSEL at the device level. By locking the frequency and phase of the VCSEL by the direct injection of light from another laser oscillator, improved device performance is achieved in a post-fabrication method. In this dissertation, optical injection locking of VCSELs is investigated from an applications perspective. Optical injection locking of VCSELs can be used as a pathway to reduce complexity, cost, and size of both digital and analog fiber-optic communications. On the digital front, reduction of frequency chirp via bit pattern inversion for large-signal modulation is experimentally demonstrated showing up to 10 times reduction in frequency chirp and over 90 times increase in fiber transmission distance. Based on these results, a new reflection-based interferometric model for optical injection locking was established to explain this phenomenon. On the analog side, the resonance

  3. Kinetic characteristics of crystallization from model solutions of the oral cavity

    Science.gov (United States)

    Golovanova, O. A.; Chikanova, E. S.

    2015-11-01

    The kinetic regularities of crystallization from model solutions of the oral cavity are investigated and the growth order and constants are determined for two systems: saliva and dental plaque fluid (DPF). It is found that the stage in which the number of particles increases occurs in the range of mixed kinetics and their growth occurs in the diffusion range. The enhancing effect of additives HCO- 3 > C6H12O6 > F- and the retarding effect of Mg2+ are demonstrated. The HCO- 3 and Mg2+ additives, taken in high concentrations, affect the corresponding rate constants. It is revealed the crystallization in DPF is favorable for the growth of small crystallites, while the model solution of saliva is, vice versa, favorable for the growth of larger crystals.

  4. Investigations of Residual Stresses and Mechanical Properties of Single Crystal Niobium for SRF Cavities

    Science.gov (United States)

    Gnäupel-Herold, Thomas; Myneni, Ganapati Rao; Ricker, Richard E.

    2007-08-01

    This work investigates properties of large grained, high purity niobium with respect to the forming of superconducting radio frequency (SRF) cavities from such large grained sheets. The yield stresses were examined using tensile specimens that were essentially single crystals in orientations evenly distributed in the standard projection triangle. No distinct yield anisotropy was found, however, vacuum annealing increased the yield strength by a factor 2…3. The deep drawing forming operation of the half cells raises the issues of elastic shape changes after the release of the forming tool (springback) and residual stresses, both of which are indicated to be negligible. This is a consequence of the low yield stress (sheet metal forming). However, the significant anisotropy of the transversal plastic strains after uniaxial deformation points to potentially critical thickness variations for large grained / single crystal half cells, thus raising the issue of controlling grain orientation or using single crystal sheet material.

  5. Single-nanoparticle detection with slot-mode photonic crystal cavities

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Cheng; Kita, Shota; Lončar, Marko, E-mail: loncar@seas.harvard.edu [School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02138 (United States); Quan, Qimin [Rowland Institute at Harvard University, Cambridge, Massachusetts 02142 (United States); Li, Yihang [School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02138 (United States); Department of Electronic Engineering, Tsinghua University, Beijing 100084 (China)

    2015-06-29

    Optical cavities that are capable for detecting single nanoparticles could lead to great progress in early stage disease diagnostics and the study of biological interactions on the single-molecule level. In particular, photonic crystal (PhC) cavities are excellent platforms for label-free single-nanoparticle detection, owing to their high quality (Q) factors and wavelength-scale modal volumes. Here, we demonstrate the design and fabrication of a high-Q (>10{sup 4}) slot-mode PhC nanobeam cavity, which is able to strongly confine light in the slotted regions. The enhanced light-matter interaction results in an order of magnitude improvement in both refractive index sensitivity (439 nm/RIU) and single-nanoparticle sensitivity compared with conventional dielectric-mode PhC cavities. Detection of single polystyrene nanoparticles with radii of 20 nm and 30 nm is demonstrated in aqueous environments (D{sub 2}O), without additional laser and temperature stabilization techniques.

  6. High-Speed Semiconductor Vertical-Cavity Surface-Emitting Lasers for Optical Data-Transmission Systems (Review)

    Science.gov (United States)

    Blokhin, S. A.; Maleev, N. A.; Bobrov, M. A.; Kuzmenkov, A. G.; Sakharov, A. V.; Ustinov, V. M.

    2018-01-01

    The main problems of providing a high-speed operation semiconductor lasers with a vertical microcavity (so-called "vertical-cavity surface-emitting lasers") under amplitude modulation and ways to solve them have been considered. The influence of the internal properties of the radiating active region and the electrical parasitic elements of the equivalent circuit of lasers are discussed. An overview of approaches that lead to an increase of the cutoff parasitic frequency, an increase of the differential gain of the active region, the possibility of the management of mode emission composition and the lifetime of photons in the optical microcavities, and reduction of the influence of thermal effects have been presented. The achieved level of modulation bandwidth of ˜30 GHz is close to the maximum achievable for the classical scheme of the direct-current modulation, which makes it necessary to use a multilevel modulation format to further increase the information capacity of optical channels constructed on the basis of vertical-cavity surface-emitting lasers.

  7. Natural convection with evaporation in a vertical cylindrical cavity under the effect of temperature-dependent surface tension

    Science.gov (United States)

    Kozhevnikov, Danil A.; Sheremet, Mikhail A.

    2018-01-01

    The effect of surface tension on laminar natural convection in a vertical cylindrical cavity filled with a weak evaporating liquid has been analyzed numerically. The cylindrical enclosure is insulated at the bottom, heated by a constant heat flux from the side, and cooled by a non-uniform evaporative heat flux from the top free surface having temperature-dependent surface tension. Governing equations with corresponding boundary conditions formulated in dimensionless stream function, vorticity, and temperature have been solved by finite difference method of the second-order accuracy. The influence of Rayleigh number, Marangoni number, and aspect ratio on the liquid flow and heat transfer has been studied. Obtained results have revealed that the heat transfer rate at free surface decreases with Marangoni number and increases with Rayleigh number, while the average temperature inside the cavity has an opposite behavior; namely, it growths with Marangoni number and reduces with Rayleigh number.

  8. Impact of optical feedback on current-induced polarization behavior of 1550 nm vertical-cavity surface-emitting lasers.

    Science.gov (United States)

    Deng, Tao; Wu, Zheng-Mao; Xie, Yi-Yuan; Wu, Jia-Gui; Tang, Xi; Fan, Li; Panajotov, Krassimir; Xia, Guang-Qiong

    2013-06-01

    Polarization switching (PS) between two orthogonal linearly polarized fundamental modes is experimentally observed in commercial free-running 1550 nm vertical-cavity surface-emitting lasers (VCSELs) (Raycan). The characteristics of this PS are strongly modified after introducing a polarization-preserved (PP) or polarization-orthogonal (PO) optical feedback. Under the case that the external cavity is approximately 30 cm, the PP optical feedback results in the PS point shifting toward a lower injection current, and the region within which the two polarization modes coexist is enlarged with the increase of the PP feedback strength. Under too-strong PP feedback levels, the PS disappears. The impact of PO optical feedback on VCSEL polarization behavior is quite similar to that of PP optical feedback, but larger feedback strength is needed to obtain similar results.

  9. Steady-state characteristics of lateral p-n junction vertical-cavity surface-emitting lasers

    Science.gov (United States)

    Ryzhii, V.; Tsutsui, N.; Khmyrova, I.; Ikegami, T.; Vaccaro, P. O.; Taniyama, H.; Aida, T.

    2001-09-01

    We developed an analytical device model for lateral p-n junction vertical-cavity surface-emitting lasers (LJVCSELs) with a quantum well active region. The model takes into account the features of the carrier injection, transport, and recombination in LJVCSELs as well as the features of the photon propagation in the cavity. This model is used for the calculation and analysis of the LJVCSEL steady-state characteristics. It is shown that the localization of the injected electrons primarily near the p-n junction and the reabsorption of lateral propagating photons significantly effects the LJVCSELs performance, in particular, the LJVCSEL threshold current and power-current characteristics. The reincarnation of electrons and holes due to the reabsorption of lateral propagating photons can substantially decrease the threshold current.

  10. GaN-based vertical-cavity laser performance improvements using tunnel-junction-cascaded active regions

    International Nuclear Information System (INIS)

    Piprek, Joachim

    2014-01-01

    This Letter investigates the output power enhancement achieved by tunnel junction insertion into the InGaN multi-quantum well (MQW) active region of a 410 nm vertical-cavity surface-emitting laser which enables the repeated use of carriers for light generation (carrier recycling). While the number of quantum wells remains unchanged, the tunnel junction eliminates absorption caused by the non-uniform MQW carrier distribution. The thermal resistance drops and the excess bias lead to a surprisingly small rise in self-heating.

  11. Development of III-Sb metamorphic DBR membranes on InP for vertical cavity laser applications

    Science.gov (United States)

    Addamane, S. J.; Mansoori, A.; Renteria, E. J.; Dawson, N.; Shima, D. M.; Rotter, T. J.; Hains, C. P.; Dawson, L. R.; Balakrishnan, G.

    2016-04-01

    Sb-based metamorphic DBR membranes are developed for InP-based vertical cavity laser applications. The reflectivity of the metamorphic DBR membrane is compared to the reflectivity of a lattice-matched DBR to characterize the optical quality of the DBR membrane. The metamorphic interface between InP and the III-antimonides is found to degrade the reflectivity of the DBR. Therefore, the growth temperature for the metamorphic DBR is optimized in order to obtain highly reflective (>99.8%) III-Sb thin-film membranes.

  12. Few-mode vertical-cavity surface-emitting laser: Optional emission of transverse modes with different polarizations

    Science.gov (United States)

    Zhong, Chuyu; Zhang, Xing; Hofmann, Werner; Yu, Lijuan; Liu, Jianguo; Ning, Yongqiang; Wang, Lijun

    2018-05-01

    Few-mode vertical-cavity surface-emitting lasers that can be controlled to emit certain modes and polarization states simply by changing the biased contacts are proposed and fabricated. By directly etching trenches in the p-doped distributed Bragg reflector, the upper mesa is separated into several submesas above the oxide layer. Individual contacts are then deposited. Each contact is used to control certain transverse modes with different polarization directions emitted from the corresponding submesa. These new devices can be seen as a prototype of compact laser sources in mode division multiplexing communications systems.

  13. Highly Selective Volatile Organic Compounds Breath Analysis Using a Broadly-Tunable Vertical-External-Cavity Surface-Emitting Laser.

    Science.gov (United States)

    Tuzson, Béla; Jágerská, Jana; Looser, Herbert; Graf, Manuel; Felder, Ferdinand; Fill, Matthias; Tappy, Luc; Emmenegger, Lukas

    2017-06-20

    A broadly tunable mid-infrared vertical-external-cavity surface-emitting laser (VECSEL) is employed in a direct absorption laser spectroscopic setup to measure breath acetone. The large wavelength coverage of more than 30 cm -1 at 3.38 μm allows, in addition to acetone, the simultaneous measurement of isoprene, ethanol, methanol, methane, and water. Despite the severe spectral interferences from water and alcohols, an unambiguous determination of acetone is demonstrated with a precision of 13 ppbv that is achieved after 5 min averaging at typical breath mean acetone levels in synthetic gas samples mimicking human breath.

  14. 4.5 μm wavelength vertical external cavity surface emitting laser operating above room temperature

    Science.gov (United States)

    Rahim, M.; Khiar, A.; Felder, F.; Fill, M.; Zogg, H.

    2009-05-01

    A midinfrared vertical external cavity surface emitting laser with 4.5 μm emission wavelength and operating above room temperature has been realized. The active part consists of a single 850 nm thick epitaxial PbSe gain layer. It is followed by a 2 1/2 pair Pb1-yEuyTe/BaF2 Bragg mirror. No microstructural processing is needed. Excitation is done optically with a 1.5 μm wavelength laser. The device operates up to 45 °C with 100 ns pulses and delivers 6 mW output power at 27 °C heat-sink temperature.

  15. New generation of one-dimensional photonic crystal cavities as robust high-efficient frequency converter

    Science.gov (United States)

    Parvini, T. S.; Tehranchi, M. M.; Hamidi, S. M.

    2017-07-01

    An effective method is proposed to design finite one-dimensional photonic crystal cavities (PhCCs) as robust high-efficient frequency converter. For this purpose, we consider two groups of PhCCs which are constructed by stacking m nonlinear (LiNbO3) and n linear (air) layers with variable thicknesses. In the first group, the number of linear layers is less than the nonlinear layers by one and in the second group by two. The conversion efficiency is calculated as a function of the arrangement and thicknesses of the linear and nonlinear layers by benefiting from nonlinear transfer matrix method. Our numerical simulations show that for each group of PhCCs, there is a structural formula by which the configurations with the highest efficiency can be constructed for any values of m and n (i.e. any number of layers). The efficient configurations are equivalent to Fabry-Pérot cavities that depend on the relationship between m and n and the mirrors in two sides of these cavities can be periodic or nonperiodic. The conversion efficiencies of these designed PhCCs are more than 5 orders of magnitude higher than the perfect ones which satisfy photonic bandgap edge and quasi-phase matching. Moreover, the results reveal that conversion efficiencies of Fabry-Pérot cavities with non-periodic mirrors are one order of magnitude higher than those with periodic mirrors. The major physical mechanisms of the enhancement are quasi-phase matching effect, cavity effect induced by dispersive mirrors, and double resonance for the pump and the harmonic fields in defect state. We believe that this method is very beneficial to the design of high-efficient compact optical frequency converters.

  16. On-chip spectroscopy with thermally tuned high-Q photonic crystal cavities

    Energy Technology Data Exchange (ETDEWEB)

    Liapis, Andreas C., E-mail: andreas.liapis@gmail.com; Gao, Boshen; Siddiqui, Mahmudur R. [The Institute of Optics, University of Rochester, Rochester, New York 14627 (United States); Shi, Zhimin [Department of Physics, University of South Florida, Tampa, Florida 33620 (United States); Boyd, Robert W. [The Institute of Optics, University of Rochester, Rochester, New York 14627 (United States); Department of Physics and School of Electrical Engineering and Computer Science, University of Ottawa, Ottawa, Ontario K1N 6N5 (Canada)

    2016-01-11

    Spectroscopic methods are a sensitive way to determine the chemical composition of potentially hazardous materials. Here, we demonstrate that thermally tuned high-Q photonic crystal cavities can be used as a compact high-resolution on-chip spectrometer. We have used such a chip-scale spectrometer to measure the absorption spectra of both acetylene and hydrogen cyanide in the 1550 nm spectral band and show that we can discriminate between the two chemical species even though the two materials have spectral features in the same spectral region. Our results pave the way for the development of chip-size chemical sensors that can detect toxic substances.

  17. Coupling of erbium dopants to yttrium orthosilicate photonic crystal cavities for on-chip optical quantum memories

    Energy Technology Data Exchange (ETDEWEB)

    Miyazono, Evan; Zhong, Tian; Craiciu, Ioana; Kindem, Jonathan M.; Faraon, Andrei, E-mail: faraon@caltech.edu [T. J. Watson Laboratory of Applied Physics, California Institute of Technology, 1200 E California Blvd, Pasadena, California 91125 (United States)

    2016-01-04

    Erbium dopants in crystals exhibit highly coherent optical transitions well suited for solid-state optical quantum memories operating in the telecom band. Here, we demonstrate coupling of erbium dopant ions in yttrium orthosilicate to a photonic crystal cavity fabricated directly in the host crystal using focused ion beam milling. The coupling leads to reduction of the photoluminescence lifetime and enhancement of the optical depth in microns-long devices, which will enable on-chip quantum memories.

  18. Dynamical dispersion engineering in coupled vertical cavities employing a high-contrast grating

    DEFF Research Database (Denmark)

    Taghizadeh, Alireza; Chung, Il-Sug

    2017-01-01

    , including a case capable of dynamically controlling the photon’s effective mass to a large extent while keeping the resonance frequency same. We believe that full-control and dynamical-tuning of the photon’s effective mass may enable new possibilities for cavity quantum electrodynamics studies...

  19. Performance in the vertical test of the 832 nine-cell 1.3 GHz cavities for the European X-ray Free Electron Laser

    Science.gov (United States)

    Reschke, D.; Gubarev, V.; Schaffran, J.; Steder, L.; Walker, N.; Wenskat, M.; Monaco, L.

    2017-04-01

    The successful production and associated vertical testing of over 800 superconducting 1.3 GHz accelerating cavities for the European X-ray Free Electron Laser (XFEL) represents the culmination of over 20 years of superconducting radio-frequency R&D. The cavity production took place at two industrial vendors under the shared responsibility of INFN Milano-LASA and DESY. Average vertical testing rates at DESY exceeded 10 cavities per week, peaking at up to 15 cavities per week. The cavities sent for cryomodule assembly at Commissariat à l'énergie atomique (CEA) Saclay achieved an average maximum gradient of approximately 33 MV /m , reducing to ˜30 MV /m when the operational specifications on quality factor (Q) and field emission were included (the so-called usable gradient). Only 16% of the cavities required an additional surface retreatment to recover their low performance (usable gradient less than 20 MV /m ). These cavities were predominantly limited by excessive field emission for which a simple high pressure water rinse (HPR) was sufficient. Approximately 16% of the cavities also received an additional HPR, e.g. due to vacuum problems before or during the tests or other reasons, but these were not directly related to gradient performance. The in-depth statistical analyses presented in this report have revealed several features of the series produced cavities.

  20. Performance in the vertical test of the 832 nine-cell 1.3 GHz cavities for the European X-ray Free Electron Laser

    Directory of Open Access Journals (Sweden)

    D. Reschke

    2017-04-01

    Full Text Available The successful production and associated vertical testing of over 800 superconducting 1.3 GHz accelerating cavities for the European X-ray Free Electron Laser (XFEL represents the culmination of over 20 years of superconducting radio-frequency R&D. The cavity production took place at two industrial vendors under the shared responsibility of INFN Milano–LASA and DESY. Average vertical testing rates at DESY exceeded 10 cavities per week, peaking at up to 15 cavities per week. The cavities sent for cryomodule assembly at Commissariat à l’énergie atomique (CEA Saclay achieved an average maximum gradient of approximately 33  MV/m, reducing to ∼30  MV/m when the operational specifications on quality factor (Q and field emission were included (the so-called usable gradient. Only 16% of the cavities required an additional surface retreatment to recover their low performance (usable gradient less than 20  MV/m. These cavities were predominantly limited by excessive field emission for which a simple high pressure water rinse (HPR was sufficient. Approximately 16% of the cavities also received an additional HPR, e.g. due to vacuum problems before or during the tests or other reasons, but these were not directly related to gradient performance. The in-depth statistical analyses presented in this report have revealed several features of the series produced cavities.

  1. High sensitive photonic crystal multiplexed biosensor array using H0 sandwiched cavities

    Directory of Open Access Journals (Sweden)

    Arafa Safia

    2017-01-01

    Full Text Available We theoretically investigate a high sensitive photonic crystal integrated biosensor array structure which is potentially used for label-free multiplexed sensing. The proposed device consists of an array of three sandwiched H0 cavities patterned above silicon on insulator (SOI substrate; each cavity has been designed for different cavity spacing and different resonant wavelength. Results obtained by performing finite-difference time-domain (FDTD simulations, indicate that the response of each detection unit shifts independently in terms of refractive index variations. The optimized design makes possible the combination of sensing as a function of location, as well as a function of time in the same platform. A refractive index sensitivity of 520nm/RIU and a quality factor over 104 are both achieved with an accompanied crosstalk of less than -26 dB. In addition, the device presents an improved detection limit (DL of 1.24.10-6 RIU and a wide measurement range. These features make the designed device a promising element for performing label-free multiplexed detection in monolithic substrate for medical diagnostics and environmental monitoring.

  2. A GaInAsP/InP Vertical Cavity Surface Emitting Laser for 1.5 m m operation

    Science.gov (United States)

    Sceats, R.; Balkan, N.; Adams, M. J.; Masum, J.; Dann, A. J.; Perrin, S. D.; Reid, I.; Reed, J.; Cannard, P.; Fisher, M. A.; Elton, D. J.; Harlow, M. J.

    1999-04-01

    We present the results of our studies concerning the pulsed operation of a bulk GaInAsP/InP vertical cavity surface emitting laser (VCSEL). The device is tailored to emit at around 1.5 m m at room temperature. The structure has a 45 period n-doped GaInAsP/InP bottom distributed Bragg reflector (DBR), and a 4 period Si/Al2O3 dielectric top reflector defining a 3-l cavity. Electroluminescence from a 16 m m diameter top window was measured in the pulsed injection mode. Spectral measurements were recorded in the temperature range between 125K and 240K. Polarisation, lasing threshold current and linewidth measurements were also carried out at the same temperatures. The threshold current density has a broad minimum at temperatures between 170K and 190K, (Jth=13.2 kA/cm2), indicating a good match between the gain and the cavity resonance in this temperature range. Maximum emitted power from the VCSEL is 0.18 mW at 180K.

  3. Comparison of four computational methods for computing Q factors and resonance wavelengths in photonic crystal membrane cavities

    DEFF Research Database (Denmark)

    de Lasson, Jakob Rosenkrantz; Frandsen, Lars Hagedorn; Burger, Sven

    2016-01-01

    We benchmark four state-of-the-art computational methods by computing quality factors and resonance wavelengths in photonic crystal membrane L5 and L9 line defect cavities.The convergence of the methods with respect to resolution, degrees of freedom and number ofmodes is investigated. Special att...... attention is paid to the influence of the size of the computational domain. Convergence is not obtained for some of the methods, indicating that some are moresuitable than others for analyzing line defect cavities....

  4. Terahertz gas sensing based on a simple one-dimensional photonic crystal cavity with high-quality factors

    DEFF Research Database (Denmark)

    Chen, T.; Han, Z. H.; Liu, J. J.

    2014-01-01

    We report in this paper terahertz gas sensing using a simple 1D photonic crystal cavity. The resonant frequencies of the cavity depend linearly on the refractive index of the ambient gas, which can then be measured by monitoring the resonance shift. Although quite easy to manufacture, this cavity...... exhibits high-quality factors, facilitating the realization of high sensitivity in the gas refractive index sensing. In our experiment, 6% of the change of hydrogen concentration in air, which corresponds to a refractive index change of 1.4 x 10(-5), can be steadily detected, and different gas samples can...

  5. Investigations of Residual Stresses and Mechanical Properties of Single Crystal Niobium for SRF Cavities

    International Nuclear Information System (INIS)

    Gnaeupel-Herold, Thomas; Myneni, Ganapati Rao; Ricker, Richard E.

    2007-01-01

    This work investigates properties of large grained, high purity niobium with respect to the forming of superconducting radio frequency (SRF) cavities from such large grained sheets. The yield stresses were examined using tensile specimens that were essentially single crystals in orientations evenly distributed in the standard projection triangle. No distinct yield anisotropy was found, however, vacuum annealing increased the yield strength by a factor 2...3. The deep drawing forming operation of the half cells raises the issues of elastic shape changes after the release of the forming tool (springback) and residual stresses, both of which are indicated to be negligible. This is a consequence of the low yield stress (< 100 MPa) and the large thickness (compared to typical thicknesses in sheet metal forming). However, the significant anisotropy of the transversal plastic strains after uniaxial deformation points to potentially critical thickness variations for large grained / single crystal half cells, thus raising the issue of controlling grain orientation or using single crystal sheet material

  6. Single-exposure two-dimensional superresolution in digital holography using a vertical cavity surface-emitting laser source array.

    Science.gov (United States)

    Granero, Luis; Zalevsky, Zeev; Micó, Vicente

    2011-04-01

    We present a new implementation capable of producing two-dimensional (2D) superresolution (SR) imaging in a single exposure by aperture synthesis in digital lensless Fourier holography when using angular multiplexing provided by a vertical cavity surface-emitting laser source array. The system performs the recording in a single CCD snapshot of a multiplexed hologram coming from the incoherent addition of multiple subholograms, where each contains information about a different 2D spatial frequency band of the object's spectrum. Thus, a set of nonoverlapping bandpass images of the input object can be recovered by Fourier transformation (FT) of the multiplexed hologram. The SR is obtained by coherent addition of the information contained in each bandpass image while generating an enlarged synthetic aperture. Experimental results demonstrate improvement in resolution and image quality.

  7. Fast pulsing dynamics of a vertical-cavity surface-emitting laser operating in the low-frequency fluctuation regime

    International Nuclear Information System (INIS)

    Sciamanna, M.; Rogister, F.; Megret, P.; Blondel, M.; Masoller, C.; Abraham, N. B.

    2003-01-01

    We analyze the dynamics of a vertical-cavity surface-emitting laser with optical feedback operating in the low-frequency fluctuation regime. By focusing on the fast pulsing dynamics, we show that the two linearly polarized modes of the laser exhibit two qualitatively different behaviors: they emit pulses in phase just after a power dropout and they emit pulses out of phase after the recovery process of the output power. As a consequence, two distinct statistical distributions of the fast pulsating total intensity are observed, either monotonically decaying from the noise level or peaked around the mean intensity value. We further show that gain self-saturation of the lasing transition strongly modifies the shape of the intensity distribution

  8. Lead-chalcogenide mid-infrared vertical external cavity surface emitting lasers with improved threshold: Theory and experiment

    Science.gov (United States)

    Fill, Matthias; Debernardi, Pierluigi; Felder, Ferdinand; Zogg, Hans

    2013-11-01

    Mid-infrared Vertical External Cavity Surface Emitting Lasers (VECSEL) based on narrow gap lead-chalcogenide (IV-VI) semiconductors exhibit strongly reduced threshold powers if the active layers are structured laterally for improved optical confinement. This is predicted by 3-d optical calculations; they show that lateral optical confinement is needed to counteract the anti-guiding features of IV-VIs due to their negative temperature dependence of the refractive index. An experimental proof is performed with PbSe quantum well based VECSEL grown on a Si-substrate by molecular beam epitaxy and emitting around 3.3 μm. With proper mesa-etching, the threshold intensity is about 8-times reduced.

  9. Modular PbSrS/PbS mid-infrared vertical external cavity surface emitting laser on Si

    Science.gov (United States)

    Khiar, A.; Rahim, M.; Fill, M.; Felder, F.; Zogg, H.; Cao, D.; Kobayashi, S.; Yokoyama, T.; Ishida, A.

    2011-07-01

    A mid-infrared vertical external cavity surface emitting laser (VECSEL) based on undoped PbS is described herein. A 200 nm-thick PbS active layer embedded between PbSrS cladding layers forms a double heterostructure. The layers are grown on a lattice and thermal expansion mismatched Si-substrate. The substrate is placed onto a flat bottom Bragg mirror again grown on a Si substrate, and the VECSEL is completed with a curved top mirror. Pumping is done optically with a 1.55 μm laser diode. This leads to an extremely simple modular fabrication process. Lasing wavelengths range from 3-3.8 μm at 100-260 K heat sink temperature. The lowest threshold power is ˜210 mWp and highest output power is ˜250 mWp. The influence of the different recombination mechanism as well as free carrier absorption on the threshold power is modeled.

  10. Lead-chalcogenide mid-infrared vertical external cavity surface emitting lasers with improved threshold: Theory and experiment

    Energy Technology Data Exchange (ETDEWEB)

    Fill, Matthias [ETH Zurich, Laser Spectroscopy and Sensing Lab, 8093 Zurich (Switzerland); Phocone AG, 8005 Zurich (Switzerland); Debernardi, Pierluigi [IEIIT-CNR, Torino 10129 (Italy); Felder, Ferdinand [Phocone AG, 8005 Zurich (Switzerland); Zogg, Hans [ETH Zurich (Switzerland)

    2013-11-11

    Mid-infrared Vertical External Cavity Surface Emitting Lasers (VECSEL) based on narrow gap lead-chalcogenide (IV-VI) semiconductors exhibit strongly reduced threshold powers if the active layers are structured laterally for improved optical confinement. This is predicted by 3-d optical calculations; they show that lateral optical confinement is needed to counteract the anti-guiding features of IV-VIs due to their negative temperature dependence of the refractive index. An experimental proof is performed with PbSe quantum well based VECSEL grown on a Si-substrate by molecular beam epitaxy and emitting around 3.3 μm. With proper mesa-etching, the threshold intensity is about 8-times reduced.

  11. PbSe quantum well mid-infrared vertical external cavity surface emitting laser on Si-substrates

    Science.gov (United States)

    Fill, M.; Khiar, A.; Rahim, M.; Felder, F.; Zogg, H.

    2011-05-01

    Mid-infrared vertical external cavity surface emitting lasers based on PbSe/PbSrSe multi-quantum-well structures on Si-substrates are realized. A modular design allows growing the active region and the bottom Bragg mirror on two different Si-substrates, thus facilitating comparison between different structures. Lasing is observed from 3.3 to 5.1 μm wavelength and up to 52 °C heat sink temperature with 1.55 μm optical pumping. Simulations show that threshold powers are limited by Shockley-Read recombination with lifetimes as short as 0.1 ns. At higher temperatures, an additional threshold power increase occurs probably due to limited carrier diffusion length and carrier leakage, caused by an unfavorable band alignment.

  12. A Dual-Crystal Cavity Ho,Tm:GdVO4 Laser

    International Nuclear Information System (INIS)

    Zhu Guo-Li; Ju You-Lun; Yao Bao-Quan; Wang Yue-Zhu

    2012-01-01

    We report a 31.2 W cw diode-pumped cryogenic Ho(0.4at.%),Tm(4at.%):GdVO 4 laser in a dual-crystal cavity. The pumping sources are two fiber-coupled laser diodes with a fiber core diameter of 0.4 mm, both of which can supply 42 W near 802 nm. With an incident pump power of 70.3 W at 802.4 nm, a cw output power of 31.2 W at 2.05 μm is attained, corresponding to an optical-to-optical conversion efficiency of 44.4%. The M 2 factor is measured as ∼1.3 under an output power of 20 W. (fundamental areas of phenomenology(including applications))

  13. Temporal coupled mode analysis of one-dimensional magneto-photonic crystals with cavity structures

    Energy Technology Data Exchange (ETDEWEB)

    Saghirzadeh Darki, Behnam, E-mail: b.saghirzadeh@ec.iut.ac.ir; Zeidaabadi Nezhad, Abolghasem; Firouzeh, Zaker Hossein

    2016-12-01

    In this paper, we propose the time-dependent coupled mode analysis of one-dimensional magneto-photonic crystals including one, two or multiple defect layers. The performance of the structures, namely the total transmission, Faraday rotation and ellipticity, is obtained using the proposed method. The results of the developed analytic approach are verified by comparing them to the results of the exact numerical transfer matrix method. Unlike the widely used numerical method, our proposed analytic method seems promising for the synthesis as well as the analysis purposes. Moreover, the proposed method has not the restrictions of the previously examined analytic methods. - Highlights: • A time-dependent coupled mode analysis is proposed for the cavity-type 1D MPCs. • Analytical formalism is presented for the single, double and multiple-defect MPCs. • Transmission, Faraday rotation and ellipticity are gained using the proposed method. • The proposed analytic method has advantages over the previously examined methods.

  14. Cavity electromagnetically induced transparency and all-optical switching using ion Coulomb crystals

    DEFF Research Database (Denmark)

    Albert, Magnus; Dantan, Aurelien Romain; Drewsen, Michael

    2011-01-01

    The control of one light field by another, ultimately at the single photon level1, 2, 3, 4, 5, 6, 7, is a challenging task that has numerous interesting applications within nonlinear optics4, 5 and quantum information science6, 7, 8. This type of control can only be achieved through highly...... nonlinear interactions, such as those based on electromagnetic induced transparency (EIT)2, 3, 4, 5, 6, 9, 10, 11, 12. Here, we demonstrate for the first time EIT as well as all-optical EIT-based light switching using ion Coulomb crystals situated in an optical cavity. Changes from essentially full...... milestones for future realizations of quantum information processing devices, such as high-efficiency quantum memories8, 13, 14, single-photon transistors15, 16 and single-photon gates4, 6, 9....

  15. Vectorial near-field imaging of a GaN based photonic crystal cavity

    International Nuclear Information System (INIS)

    La China, F.; Intonti, F.; Caselli, N.; Lotti, F.; Vinattieri, A.; Gurioli, M.; Vico Triviño, N.; Carlin, J.-F.; Butté, R.; Grandjean, N.

    2015-01-01

    We report a full optical deep sub-wavelength imaging of the vectorial components of the electric local density of states for the confined modes of a modified GaN L3 photonic crystal nanocavity. The mode mapping is obtained with a scanning near-field optical microscope operating in a resonant forward scattering configuration, allowing the vectorial characterization of optical passive samples. The optical modes of the investigated cavity emerge as Fano resonances and can be probed without the need of embedded light emitters or evanescent light coupling into the nanocavity. The experimental maps, independently measured in the two in-plane polarizations, turn out to be in excellent agreement with numerical predictions

  16. Characteristics of strain-sensitive photonic crystal cavities in a flexible substrate.

    Science.gov (United States)

    No, You-Shin; Choi, Jae-Hyuck; Kim, Kyoung-Ho; Park, Hong-Gyu

    2016-11-14

    High-index semiconductor photonic crystal (PhC) cavities in a flexible substrate support strong and tunable optical resonances that can be used for highly sensitive and spatially localized detection of mechanical deformations in physical systems. Here, we report theoretical studies and fundamental understandings of resonant behavior of an optical mode excited in strain-sensitive rod-type PhC cavities consisting of high-index dielectric nanorods embedded in a low-index flexible polymer substrate. Using the three-dimensional finite-difference time-domain simulation method, we calculated two-dimensional transverse-electric-like photonic band diagrams and the three-dimensional dispersion surfaces near the first Γ-point band edge of unidirectionally strained PhCs. A broken rotational symmetry in the PhCs modifies the photonic band structures and results in the asymmetric distributions and different levels of changes in normalized frequencies near the first Γ-point band edge in the reciprocal space, which consequently reveals strain-dependent directional optical losses and selected emission patterns. The calculated electric fields, resonant wavelengths, and quality factors of the band-edge modes in the strained PhCs show an excellent agreement with the results of qualitative analysis of modified dispersion surfaces. Furthermore, polarization-resolved time-averaged Poynting vectors exhibit characteristic dipole-like emission patterns with preferentially selected linear polarizations, originating from the asymmetric band structures in the strained PhCs.

  17. Modelling investigations of DBRs and cavities with photonic crystal holes for application in VCSELs

    International Nuclear Information System (INIS)

    Ivanov, P; Ho, Y-L D; Cryan, M J; Rorison, J

    2012-01-01

    We investigate the reflection spectra of distributed Bragg reflectors (DBRs) and DBR cavities with and without photonic crystal holes fabricated within them. A finite-difference time domain (FDTD) electromagnetic model which is considered to provide the exact solution of Maxwell equations is used as a reference model. Two simplified modelling approaches are compared to the FDTD results: an effective index model where the individual DBR constituent layers penetrated by holes possess an effective index and a spatial loss model where optical losses are introduced spatially where the holes are fabricated. Results of the FDTD and the spatial loss model show that optical loss determines the properties of an etched DBR and DBR cavity when the lattice constant of the holes of exceeds 1 μm and the hole depth is small. The spatial loss model compares well to the FDTD results for holes with a lattice period exceeding 1 μm. We also consider the realistic effect of angling the sides of the etched holes. (paper)

  18. Comparison of nonpolar III-nitride vertical-cavity surface-emitting lasers with tunnel junction and ITO intracavity contacts

    KAUST Repository

    Leonard, J. T.

    2016-03-01

    We report on the lasing of III-nitride nonpolar, violet, vertical-cavity surface-emitting lasers (VCSELs) with III-nitride tunnel-junction (TJ) intracavity contacts and ion implanted apertures (IIAs). The TJ VCSELs are compared to similar VCSELs with tin-doped indium oxide (ITO) intracavity contacts. Prior to analyzing device results, we consider the relative advantages of III-nitride TJs for blue and green emitting VCSELs. The TJs are shown to be most advantageous for violet and UV VCSELs, operating near or above the absorption edge for ITO, as they significantly reduce the total internal loss in the cavity. However, for longer wavelength III-nitride VCSELs, TJs primarily offer the advantage of improved cavity design flexibility, allowing one to make the p-side thicker using a thick n-type III-nitride TJ intracavity contact. This offers improved lateral current spreading and lower loss, compare to using ITO and p-GaN, respectively. These aspects are particularly important for achieving high-power CW VCSELs, making TJs the ideal intracavity contact for any III-nitride VCSEL. A brief overview of III-nitride TJ growth methods is also given, highlighting the molecular-beam epitaxy (MBE) technique used here. Following this overview, we compare 12 mu m aperture diameter, violet emitting, TJ and ITO VCSEL experimental results, which demonstrate the significant improvement in differential efficiency and peak power resulting from the reduced loss in the TJ design. Specifically, the TJ VCSEL shows a peak power of similar to 550 mu W with a threshold current density of similar to 3.5 kA/cm(2), while the ITO VCSELs show peak powers of similar to 80 mu W and threshold current densities of similar to 7 kA/cm

  19. Comparison of nonpolar III-nitride vertical-cavity surface-emitting lasers with tunnel junction and ITO intracavity contacts

    KAUST Repository

    Leonard, J. T.; Young, E. C.; Yonkee, B. P.; Cohen, D. A.; Shen, Chao; Margalith, T.; Ng, Tien Khee; Denbaars, S. P.; Ooi, Boon S.; Speck, J. S.; Nakamura, S.

    2016-01-01

    We report on the lasing of III-nitride nonpolar, violet, vertical-cavity surface-emitting lasers (VCSELs) with III-nitride tunnel-junction (TJ) intracavity contacts and ion implanted apertures (IIAs). The TJ VCSELs are compared to similar VCSELs with tin-doped indium oxide (ITO) intracavity contacts. Prior to analyzing device results, we consider the relative advantages of III-nitride TJs for blue and green emitting VCSELs. The TJs are shown to be most advantageous for violet and UV VCSELs, operating near or above the absorption edge for ITO, as they significantly reduce the total internal loss in the cavity. However, for longer wavelength III-nitride VCSELs, TJs primarily offer the advantage of improved cavity design flexibility, allowing one to make the p-side thicker using a thick n-type III-nitride TJ intracavity contact. This offers improved lateral current spreading and lower loss, compare to using ITO and p-GaN, respectively. These aspects are particularly important for achieving high-power CW VCSELs, making TJs the ideal intracavity contact for any III-nitride VCSEL. A brief overview of III-nitride TJ growth methods is also given, highlighting the molecular-beam epitaxy (MBE) technique used here. Following this overview, we compare 12 mu m aperture diameter, violet emitting, TJ and ITO VCSEL experimental results, which demonstrate the significant improvement in differential efficiency and peak power resulting from the reduced loss in the TJ design. Specifically, the TJ VCSEL shows a peak power of similar to 550 mu W with a threshold current density of similar to 3.5 kA/cm(2), while the ITO VCSELs show peak powers of similar to 80 mu W and threshold current densities of similar to 7 kA/cm

  20. Single-mode temperature and polarisation-stable high-speed 850nm vertical cavity surface emitting lasers

    International Nuclear Information System (INIS)

    Nazaruk, D E; Blokhin, S A; Maleev, N A; Bobrov, M A; Pavlov, M M; Kulagina, M M; Vashanova, K A; Zadiranov, Yu M; Ustinov, V M; Kuzmenkov, A G; Vasil'ev, A P; Gladyshev, A G; Blokhin, A A; Salut, 7 Larina Str, N Novgorod, 603950 (Russian Federation))" data-affiliation=" (JSV Salut, 7 Larina Str, N Novgorod, 603950 (Russian Federation))" >Fefelov, A G

    2014-01-01

    A new intracavity-contacted design to realize temperature and polarization-stable high-speed single-mode 850 nm vertical cavity surface emitting lasers (VCSELs) grown by molecular-beam epitaxy is proposed. Temperature dependences of static and dynamic characteristics of the 4.5 pm oxide aperture InGaAlAs VCSEL were investigated in detail. Due to optimal gain-cavity detuning and enhanced carrier localization in the active region the threshold current remains below 0.75 mA for the temperature range within 20-90°C, while the output power exceeds 1 mW up to 90°C. Single-mode operation with side-mode suppression ratio higher than 30 dB and orthogonal polarization suppression ratio more than 18 dB was obtained in the whole current and temperature operation range. Device demonstrates serial resistance less than 250 Ohm, which is rather low for any type of single-mode short- wavelength VCSELs. VCSEL demonstrates temperature robust high-speed operation with modulation bandwidth higher than 13 GHz in the entire temperature range of 20-90°C. Despite high resonance frequency the high-speed performance of developed VCSELs was limited by the cut-off frequency of the parasitic low pass filter created by device resistances and capacitances. The proposed design is promising for single-mode high-speed VCSEL applications in a wide spectral range

  1. Integration of electro-absorption modulator in a vertical-cavity surface-emitting laser

    Science.gov (United States)

    Marigo-Lombart, L.; Calvez, S.; Arnoult, A.; Rumeau, A.; Viallon, C.; Thienpont, H.; Panajotov, K.; Almuneau, G.

    2018-02-01

    VCSELs became dominant laser sources in many short optical link applications such as datacenter, active cables, etc. Actual standards and commercialized VCSEL are providing 25 Gb/s data rates, but new solutions are expected to settle the next device generation enabling 100 Gb/s. Directly modulated VCSEL have been extensively studied and improved to reach bandwidths in the range of 26-32 GHz [Chalmers, TU Berlin], however at the price of increased applied current and thus reduced device lifetime. Furthermore, the relaxation oscillation limit still subsists with this solution. Thus, splitting the emission and the modulation functions as done with DFB lasers is a very promising alternative [TI-Tech, TU Berlin]. Here, we study the vertical integration of an ElectroAbsorption Modulator (EAM) within a VCSEL, where the output light of the VCSEL is modulated through the EAM section. In our original design, we finely optimized the EAM design to maximize the modulation depth by implementing perturbative Quantum Confined Stark Effect (QCSE) calculations, while designing the vertical integration of the EAM without penalty on the VCSEL static performances. We will present the different fabricated vertical structures, as well as the experimental electrical and optical static measurements for those configurations demonstrating a very good agreement with the reflectivity and absorption simulations obtained for both the VCSEL and the EAM-VCSEL structures. Finally, to reach very high frequency modulation we studied the BCB electrical properties up to 110 GHz and investigated coplanar and microstrip lines access to decrease both the parasitic capacitance and the influence of the substrate.

  2. Coupling of single nitrogen-vacancy defect centers in diamond nanocrystals to optical antennas and photonic crystal cavities

    Energy Technology Data Exchange (ETDEWEB)

    Wolters, Janik; Kewes, Guenter; Schell, Andreas W.; Aichele, Thomas; Benson, Oliver [Humboldt-Universitaet zu Berlin, Institut fuer Physik, Berlin (Germany); Nuesse, Nils; Schoengen, Max; Loechel, Bernd [Helmholtz-Zentrum Berlin fuer Materialien und Energie GmbH, Berlin (Germany); Hanke, Tobias; Leitenstorfer, Alfred [Department of Physics and Center for Applied Photonics, Universitaet Konstanz, Konstanz (Germany); Bratschitsch, Rudolf [Department of Physics and Center for Applied Photonics, Universitaet Konstanz, Konstanz (Germany); Technische Universitaet Chemnitz, Institut fuer Physik, Chemnitz (Germany)

    2012-05-15

    We demonstrate the ability to modify the emission properties and enhance the interaction strength of single-photon emitters coupled to nanophotonic structures based on metals and dielectrics. Assembly of individual diamond nanocrystals, metal nanoparticles, and photonic crystal cavities to meta-structures is introduced. Experiments concerning controlled coupling of single defect centers in nanodiamonds to optical nanoantennas made of gold bowtie structures are reviewed. By placing one and the same emitter at various locations with high precision, a map of decay rate enhancements was obtained. Furthermore, we demonstrate the formation of a hybrid cavity quantum electrodynamics system in which a single defect center is coupled to a single mode of a gallium phosphite photonic crystal cavity. (Copyright copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  3. Growth of NH4Cl Single Crystal from Vapor Phase in Vertical Furnace

    Science.gov (United States)

    Nigara, Yutaka; Yoshizawa, Masahito; Fujimura, Tadao

    1983-02-01

    A pure and internally stress-free single crystal of NH4Cl was grown successfully from the vapor phase. The crystal measured 1.6 cmφ× 2 cm and had the disordered CsCl structure, which was stable below 184°C. The crystal was grown in an ampoule in a vertical furnace, in which the vapor was efficiently transported both by diffusion and convection. In line with the growth mechanism of a single crystal, the temperature fluctuation (°C/min) on the growth interface was kept smaller than the product of the temperature gradient (°C/cm) and the growth rate (cm/min). The specific heat of the crystal was measured around -31°C (242 K) during cooling and heating cycles by AC calorimetry. The thermal hysteresis (0.4 K) obtained here was smaller than that (0.89 K) of an NH4Cl crystal grown from its aqueous solution with urea added as a habit modifier.

  4. EFFECT OF DISCRETE HEATER AT THE VERTICAL WALL OF THE CAVITY OVER THE HEAT TRANSFER AND ENTROPY GENERATION USING LBM

    Directory of Open Access Journals (Sweden)

    Mousa Farhadi

    2011-01-01

    Full Text Available In this paper Lattice Boltzmann Method (LBM was employed for investigation the effect of the heater location on flow pattern, heat transfer and entropy generation in a cavity. A 2D thermal lattice Boltzmann model with 9 velocities, D2Q9, is used to solve the thermal flow problem. The simulations were performed for Rayleigh numbers from 103 to 106 at Pr = 0.71. The study was carried out for heater length of 0.4 side wall length which is located at the right side wall. Results are presented in the form of streamlines, temperature contours, Nusselt number and entropy generation curves. Results show that the location of heater has a great effect on the flow pattern and temperature fields in the enclosure and subsequently on entropy generation. The dimensionless entropy generation decreases at high Rayleigh number for all heater positions. The ratio of averaged Nusselt number and dimensionless entropy generation for heater located on vertical and horizontal walls was calculated. Results show that higher heat transfer was observed from the cold walls when the heater located on vertical wall. On the other hand, heat transfer increases from the heater surface when it located on the horizontal wall.

  5. Optical transmission properties of an anisotropic defect cavity in one-dimensional photonic crystal

    Science.gov (United States)

    Ouchani, Noama; El Moussaouy, Abdelaziz; Aynaou, Hassan; El Hassouani, Youssef; El Boudouti, El Houssaine; Djafari-Rouhani, Bahram

    2018-01-01

    We investigate theoretically the possibility to control the optical transmission in the visible and infrared regions by a defective one dimensional photonic crystal formed by a combination of a finite isotropic superlattice and an anisotropic defect layer. The Green's function approach has been used to derive the reflection and the transmission coefficients, as well as the densities of states of the optical modes. We evaluate the delay times of the localized modes and we compare their behavior with the total densities of states. We show that the birefringence of an anisotropic defect layer has a significant impact on the behavior of the optical modes in the electromagnetic forbidden bands of the structure. The amplitudes of the defect modes in the transmission and the delay time spectrum, depend strongly on the position of the cavity layer within the photonic crystal. The anisotropic defect layer induces transmission zeros in one of the two components of the transmission as a consequence of a destructive interference of the two polarized waves within this layer, giving rise to negative delay times for some wavelengths in the visible and infrared light ranges. This property is a typical characteristic of the anisotropic photonic layer and is without analogue in their counterpart isotropic defect layers. This structure offers several possibilities for controlling the frequencies, transmitted intensities and the delay times of the optical modes in the visible and infrared regions. It can be a good candidate for realizing high-precision optical filters.

  6. Ultrafast pulse amplification in mode-locked vertical external-cavity surface-emitting lasers

    Energy Technology Data Exchange (ETDEWEB)

    Böttge, C. N., E-mail: boettge@optics.arizona.edu; Hader, J.; Kilen, I.; Moloney, J. V. [College of Optical Sciences, The University of Arizona, 1630 E. University Blvd., Tucson, Arizona 85721 (United States); Koch, S. W. [College of Optical Sciences, The University of Arizona, 1630 E. University Blvd., Tucson, Arizona 85721 (United States); Department of Physics and Material Sciences Center, Philipps-Universität Marburg, Renthof 5, 35032 Marburg (Germany)

    2014-12-29

    A fully microscopic many-body Maxwell–semiconductor Bloch model is used to investigate the influence of the non-equilibrium carrier dynamics on the short-pulse amplification in mode-locked semiconductor microlaser systems. The numerical solution of the coupled equations allows for a self-consistent investigation of the light–matter coupling dynamics, the carrier kinetics in the saturable absorber and the multiple-quantum-well gain medium, as well as the modification of the light field through the pulse-induced optical polarization. The influence of the pulse-induced non-equilibrium modifications of the carrier distributions in the gain medium and the saturable absorber on the single-pulse amplification in the laser cavity is identified. It is shown that for the same structure, quantum wells, and gain bandwidth the non-equilibrium carrier dynamics lead to two preferred operation regimes: one with pulses in the (sub-)100 fs-regime and one with multi-picosecond pulses. The recovery time of the saturable absorber determines in which regime the device operates.

  7. Operation of a novel hot-electron vertical-cavity surface-emitting laser

    Science.gov (United States)

    Balkan, Naci; O'Brien-Davies, Angela; Thoms, A. B.; Potter, Richard J.; Poolton, Nigel; Adams, Michael J.; Masum, J.; Bek, Alpan; Serpenguzel, Ali; Aydinli, Atilla; Roberts, John S.

    1998-07-01

    The hot Electron Light Emission and Lasing in Semiconductor Heterostructures devices (HELLISH-1) is novel surface emitter consisting of a GaAs quantum well, within the depletion region, on the n side of Ga1-xAlxAs p- n junction. It utilizes hot electron transport parallel to the layers and injection of hot electron hole pairs into the quantum well through a combination of mechanisms including tunnelling, thermionic emission and diffusion of `lucky' carriers. Super Radiant HELLISH-1 is an advanced structure incorporating a lower distributed Bragg reflector (DBR). Combined with the finite reflectivity of the upper semiconductor-air interface reflectivity it defines a quasi- resonant cavity enabling emission output from the top surface with a higher spectral purity. The output power has increased by two orders of magnitude and reduced the full width at half maximum (FWHM) to 20 nm. An upper DBR added to the structure defines HELLISH-VCSEL which is currently the first operational hot electron surface emitting laser and lases at room temperature with a 1.5 nm FWHM. In this work we demonstrate and compare the operation of UB-HELLISH-1 and HELLISH-VCSEL using experimental and theoretical reflectivity spectra over an extensive temperature range.

  8. Tuning the Cavity Size and Chirality of Self-Assembling 3D DNA Crystals

    Energy Technology Data Exchange (ETDEWEB)

    Simmons, Chad R.; Zhang, Fei; MacCulloch, Tara; Fahmi, Noureddine; Stephanopoulos, Nicholas; Liu, Yan; Seeman, Nadrian C. [Department; Yan, Hao

    2017-08-02

    The foundational goal of structural DNA nanotechnology—the field that uses oligonucleotides as a molecular building block for the programmable self-assembly of nanostructured systems—was to use DNA to construct three-dimensional (3D) lattices for solving macromolecular structures. The programmable nature of DNA makes it an ideal system for rationally constructing self-assembled crystals and immobilizing guest molecules in a repeating 3D array through their specific stereospatial interactions with the scaffold. In this work, we have extended a previously described motif (4 × 5) by expanding the structure to a system that links four double-helical layers; we use a central weaving oligonucleotide containing a sequence of four six-base repeats (4 × 6), forming a matrix of layers that are organized and dictated by a series of Holliday junctions. In addition, we have assembled mirror image crystals (l-DNA) with the identical sequence that are completely resistant to nucleases. Bromine and selenium derivatives were obtained for the l- and d-DNA forms, respectively, allowing phase determination for both forms and solution of the resulting structures to 3.0 and 3.05 Å resolution. Both right- and left-handed forms crystallized in the trigonal space groups with mirror image 3-fold helical screw axes P32 and P31 for each motif, respectively. The structures reveal a highly organized array of discrete and well-defined cavities that are suitable for hosting guest molecules and allow us to dictate a priori the assembly of guest–DNA conjugates with a specified crystalline hand.

  9. Analysis of fluid-solid interaction in MHD natural convection in a square cavity equally partitioned by a vertical flexible membrane

    International Nuclear Information System (INIS)

    Mehryan, S.A.M.; Ghalambaz, Mohammad; Ismael, Muneer A.; Chamkha, Ali J.

    2017-01-01

    This paper investigates numerically the problem of unsteady natural convection inside a square cavity partitioned by a flexible impermeable membrane. The finite element method with the arbitrary Lagrangian-Eulerian (ALE) technique has been used to model the interaction of the fluid and the membrane. The horizontal walls of the cavity are kept adiabatic while the vertical walls are kept isothermal at different temperatures. A uniform magnetic field is applied onto the cavity with different orientations. The cavity has been provided by two eyelets to compensate volume changes due the movement of the flexible membrane. A parametric study is carried out for the pertinent parameters, which are the Rayleigh number (10"5–10"8), Hartmann number (0–200) and the orientation of the magnetic field (0–180°). The change in the Hartmann number affects the shape of the membrane and the heat transfer in the cavity. The angle of the magnetic field orientation also significantly affects the shape of the membrane and the heat transfer in the cavity. - Highlights: • Magnetohydrodynamics heat transfer in a partitioned cavity is studied. • There is a flexible membrane in the cavity. • The membrane is modeled using fluid-solid structure interaction. • A moving grid formulation based on ALE is adopted. • The effect of the magnetic field on the natural convection heat transfer is examined.

  10. Analysis of fluid-solid interaction in MHD natural convection in a square cavity equally partitioned by a vertical flexible membrane

    Energy Technology Data Exchange (ETDEWEB)

    Mehryan, S.A.M., E-mail: a.mansuri1366@gmail.com [Department of Mechanical Engineering, Dezful Branch, Islamic Azad University, Dezful (Iran, Islamic Republic of); Ghalambaz, Mohammad, E-mail: m.ghalambaz@iaud.ac.ir [Department of Mechanical Engineering, Dezful Branch, Islamic Azad University, Dezful (Iran, Islamic Republic of); Ismael, Muneer A., E-mail: muneerismael@yahoo.com [Mechanical Engineering Department, Engineering College, University of Basrah, Basrah (Iraq); Chamkha, Ali J., E-mail: achamkha@pmu.edu.sa [Mechanical Engineering Department, Prince Mohammad Bin Fahd University, Al-Khobar 31952 (Saudi Arabia); Prince Sultan Endowment for Energy and Environment, Prince Mohammad Bin Fahd University, Al-Khobar 31952 (Saudi Arabia)

    2017-02-15

    This paper investigates numerically the problem of unsteady natural convection inside a square cavity partitioned by a flexible impermeable membrane. The finite element method with the arbitrary Lagrangian-Eulerian (ALE) technique has been used to model the interaction of the fluid and the membrane. The horizontal walls of the cavity are kept adiabatic while the vertical walls are kept isothermal at different temperatures. A uniform magnetic field is applied onto the cavity with different orientations. The cavity has been provided by two eyelets to compensate volume changes due the movement of the flexible membrane. A parametric study is carried out for the pertinent parameters, which are the Rayleigh number (10{sup 5}–10{sup 8}), Hartmann number (0–200) and the orientation of the magnetic field (0–180°). The change in the Hartmann number affects the shape of the membrane and the heat transfer in the cavity. The angle of the magnetic field orientation also significantly affects the shape of the membrane and the heat transfer in the cavity. - Highlights: • Magnetohydrodynamics heat transfer in a partitioned cavity is studied. • There is a flexible membrane in the cavity. • The membrane is modeled using fluid-solid structure interaction. • A moving grid formulation based on ALE is adopted. • The effect of the magnetic field on the natural convection heat transfer is examined.

  11. Crystallization Behavior of Poly(ethylene oxide) in Vertically Aligned Carbon Nanotube Array.

    Science.gov (United States)

    Sheng, Jiadong; Zhou, Shenglin; Yang, Zhaohui; Zhang, Xiaohua

    2018-03-27

    We investigate the effect of the presence of vertically aligned multiwalled carbon nanotubes (CNTs) on the orientation of poly(ethylene oxide) (PEO) lamellae and PEO crystallinity. The high alignment of carbon nanotubes acting as templates probably governs the orientation of PEO lamellae. This templating effect might result in the lamella planes of PEO crystals oriented along a direction parallel to the long axis of the nanotubes. The presence of aligned carbon nanotubes also gives rise to the decreases in PEO crystallinity, crystallization temperature, and melting temperature due to the perturbation of carbon nanotubes to the crystallization of PEO. These effects have significant implications for controlling the orientation of PEO lamellae and decreasing the crystallinity of PEO and thickness of PEO lamellae, which have significant impacts on ion transport in PEO/CNT composite and the capacitive performance of PEO/CNT composite. Both the decreased PEO crystallinity and the orientation of PEO lamellae along the long axes of vertically aligned CNTs give rise to the decrease in the charge transfer resistance, which is associated with the improvements in the ion transport and capacitive performance of PEO/CNT composite.

  12. Design of a Novel Polarized Beam Splitter Based on a Two-Dimensional Photonic Crystal Resonator Cavity

    International Nuclear Information System (INIS)

    Zhang Xuan; Chen Shu-Wen; Liao Qing-Hua; Yu Tian-Bao; Liu Nian-Hua; Huang Yong-Zhen

    2011-01-01

    We propose and analyze a novel ultra-compact polarization beam splitter based on a resonator cavity in a two-dimensional photonic crystal. The two polarizations can be separated efficiently by the strong coupling between the microcavities and the waveguides occurring around the resonant frequency of the cavities. The transmittance of two polarized light around 1.55 μm can be more than 98.6%, and the size of the device is less than 15 μm×13 μm, so these features will play an important role in future integrated optical circuits. (fundamental areas of phenomenology(including applications))

  13. Transverse mode selection in vertical-cavity surface-emitting lasers via deep impurity-induced disordering

    Science.gov (United States)

    O'Brien, Thomas R.; Kesler, Benjamin; Dallesasse, John M.

    2017-02-01

    Top emission 850-nm vertical-cavity surface-emitting lasers (VCSELs) demonstrating transverse mode selection via impurity-induced disordering (IID) are presented. The IID apertures are fabricated via closed ampoule zinc diffusion. A simple 1-D plane wave model based on the intermixing of Group III atoms during IID is presented to optimize the mirror loss of higher-order modes as a function of IID strength and depth. In addition, the impact of impurity diffusion into the cap layer of the lasers is shown to improve contact resistance. Further investigation of the mode-dependent characteristics of the device imply an increase in the thermal impedance associated with the fraction of IID contained within the oxide aperture. The optimization of the ratio of the IID aperture to oxide aperture is experimentally determined. Single fundamental mode output of 1.6 mW with 30 dBm side mode suppression ratio is achieved by a 3.0 μm oxide-confined device with an IID aperture of 1.3 μm indicating an optimal IID aperture size of 43% of the oxide aperture.

  14. Upstream vertical cavity surface-emitting lasers for fault monitoring and localization in WDM passive optical networks

    Science.gov (United States)

    Wong, Elaine; Zhao, Xiaoxue; Chang-Hasnain, Connie J.

    2008-04-01

    As wavelength division multiplexed passive optical networks (WDM-PONs) are expected to be first deployed to transport high capacity services to business customers, real-time knowledge of fiber/device faults and the location of such faults will be a necessity to guarantee reliability. Nonetheless, the added benefit of implementing fault monitoring capability should only incur minimal cost associated with upgrades to the network. In this work, we propose and experimentally demonstrate a fault monitoring and localization scheme based on a highly-sensitive and potentially low-cost monitor in conjunction with vertical cavity surface-emitting lasers (VCSELs). The VCSELs are used as upstream transmitters in the WDM-PON. The proposed scheme benefits from the high reflectivity of the top distributed Bragg reflector (DBR) mirror of optical injection-locked (OIL) VCSELs to reflect monitoring channels back to the central office for monitoring. Characterization of the fault monitor demonstrates high sensitivity, low bandwidth requirements, and potentially low output power. The added advantage of the proposed fault monitoring scheme incurs only a 0.5 dB penalty on the upstream transmissions on the existing infrastructure.

  15. Chaos synchronization in vertical-cavity surface-emitting laser based on rotated polarization-preserved optical feedback.

    Science.gov (United States)

    Nazhan, Salam; Ghassemlooy, Zabih; Busawon, Krishna

    2016-01-01

    In this paper, the influence of the rotating polarization-preserved optical feedback on the chaos synchronization of a vertical-cavity surface-emitting laser (VCSEL) is investigated experimentally. Two VCSELs' polarization modes (XP) and (YP) are gradually rotated and re-injected back into the VCSEL. The anti-phase dynamics synchronization of the two polarization modes is evaluated using the cross-correlation function. For a fixed optical feedback, a clear relationship is found between the cross-correlation coefficient and the polarization angle θp. It is shown that high-quality anti-phase polarization-resolved chaos synchronization is achieved at higher values of θp. The maximum value of the cross-correlation coefficient achieved is -0.99 with a zero time delay over a wide range of θp beyond 65° with a poor synchronization dynamic at θp less than 65°. Furthermore, it is observed that the antiphase irregular oscillation of the XP and YP modes changes with θp. VCSEL under the rotating polarization optical feedback can be a good candidate as a chaotic synchronization source for a secure communication system.

  16. Attractor hopping between polarization dynamical states in a vertical-cavity surface-emitting laser subject to parallel optical injection

    Science.gov (United States)

    Denis-le Coarer, Florian; Quirce, Ana; Valle, Angel; Pesquera, Luis; Rodríguez, Miguel A.; Panajotov, Krassimir; Sciamanna, Marc

    2018-03-01

    We present experimental and theoretical results of noise-induced attractor hopping between dynamical states found in a single transverse mode vertical-cavity surface-emitting laser (VCSEL) subject to parallel optical injection. These transitions involve dynamical states with different polarizations of the light emitted by the VCSEL. We report an experimental map identifying, in the injected power-frequency detuning plane, regions where attractor hopping between two, or even three, different states occur. The transition between these behaviors is characterized by using residence time distributions. We find multistability regions that are characterized by heavy-tailed residence time distributions. These distributions are characterized by a -1.83 ±0.17 power law. Between these regions we find coherence enhancement of noise-induced attractor hopping in which transitions between states occur regularly. Simulation results show that frequency detuning variations and spontaneous emission noise play a role in causing switching between attractors. We also find attractor hopping between chaotic states with different polarization properties. In this case, simulation results show that spontaneous emission noise inherent to the VCSEL is enough to induce this hopping.

  17. Non-linear mixing in coupled photonic crystal nanobeam cavities due to cross-coupling opto-mechanical mechanisms

    Energy Technology Data Exchange (ETDEWEB)

    Ramos, Daniel, E-mail: daniel.ramos@csic.es; Frank, Ian W.; Deotare, Parag B.; Bulu, Irfan; Lončar, Marko [School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02138 (United States)

    2014-11-03

    We investigate the coupling between mechanical and optical modes supported by coupled, freestanding, photonic crystal nanobeam cavities. We show that localized cavity modes for a given gap between the nanobeams provide weak optomechanical coupling with out-of-plane mechanical modes. However, we show that the coupling can be significantly increased, more than an order of magnitude for the symmetric mechanical mode, due to optical resonances that arise from the interaction of the localized cavity modes with standing waves formed by the reflection from thesubstrate. Finally, amplification of motion for the symmetric mode has been observed and attributed to the strong optomechanical interaction of our hybrid system. The amplitude of these self-sustained oscillations is large enough to put the system into a non-linear oscillation regime where a mixing between the mechanical modes is experimentally observed and theoretically explained.

  18. Effort towards symmetric removal and surface smoothening of 1.3-GHz niobium single-cell cavity in vertical electropolishing using a unique cathode

    Science.gov (United States)

    Chouhan, Vijay; Kato, Shigeki; Nii, Keisuke; Yamaguchi, Takanori; Sawabe, Motoaki; Hayano, Hitoshi; Ida, Yoshiaki

    2017-08-01

    A detailed study on vertical electropolishing (VEP) of a 1.3-GHz single-cell niobium coupon cavity, which contains six coupons and four viewports at different positions, is reported. The cavity was vertically electropolished using a conventional rod and three types of unique cathodes named as Ninja cathodes, which were designed to have four retractable blades made of either an insulator or a metal or a combination of both. This study reveals the effect of the cathodes and their rotation speed on uniformity in removal thickness and surface morphology at different positions inside the cavity. Removal thickness was measured at several positions of the cavity using an ultrasonic thickness gauge and the surface features of the coupons were examined by an optical microscope and a surface profiler. The Ninja cathode with partial metallic blades was found to be effective not only in reducing asymmetric removal, which is one of the major problems in VEP and might be caused by the accumulation of hydrogen (H2 ) gas bubbles on the top iris of the cavity, but also in yielding a smooth surface of the entire cavity. A higher rotation speed of the Ninja cathode prevents bubble accumulation on the upper iris, and might result in a viscous layer of similar thickness in the cavity cell. Moreover, a higher electric field at the equator owing to the proximity of partial metallic blades to the equator surface resulted in a smooth surface. The effects of H2 gas bubbles and stirring were also observed in lab EP experiments.

  19. Effort towards symmetric removal and surface smoothening of 1.3-GHz niobium single-cell cavity in vertical electropolishing using a unique cathode

    Directory of Open Access Journals (Sweden)

    Vijay Chouhan

    2017-08-01

    Full Text Available A detailed study on vertical electropolishing (VEP of a 1.3-GHz single-cell niobium coupon cavity, which contains six coupons and four viewports at different positions, is reported. The cavity was vertically electropolished using a conventional rod and three types of unique cathodes named as Ninja cathodes, which were designed to have four retractable blades made of either an insulator or a metal or a combination of both. This study reveals the effect of the cathodes and their rotation speed on uniformity in removal thickness and surface morphology at different positions inside the cavity. Removal thickness was measured at several positions of the cavity using an ultrasonic thickness gauge and the surface features of the coupons were examined by an optical microscope and a surface profiler. The Ninja cathode with partial metallic blades was found to be effective not only in reducing asymmetric removal, which is one of the major problems in VEP and might be caused by the accumulation of hydrogen (H_{2} gas bubbles on the top iris of the cavity, but also in yielding a smooth surface of the entire cavity. A higher rotation speed of the Ninja cathode prevents bubble accumulation on the upper iris, and might result in a viscous layer of similar thickness in the cavity cell. Moreover, a higher electric field at the equator owing to the proximity of partial metallic blades to the equator surface resulted in a smooth surface. The effects of H_{2} gas bubbles and stirring were also observed in lab EP experiments.

  20. Ductile–brittle behavior at blunted cavities in 3D iron crystals uncovered and covered by copper atoms

    Czech Academy of Sciences Publication Activity Database

    Pelikán, Vladimír; Hora, Petr; Červená, Olga; Spielmannová, Alena; Machová, Anna

    2010-01-01

    Roč. 4, č. 2 (2010), s. 191-200 ISSN 1802-680X R&D Projects: GA ČR(CZ) GA101/07/0789; GA AV ČR KJB200760802 Institutional research plan: CEZ:AV0Z20760514 Keywords : molecular dynamics * bcc iron crystal * blunted cavity * copper cover * ductile –brittle behavior Subject RIV: JG - Metallurgy http://www.kme.zcu.cz/acm/index.php/acm/article/view/48

  1. Photo polymerization-induced vertical phase separation and homeotropic alignment in liquid crystal and polymer mixtures

    International Nuclear Information System (INIS)

    Kang, Hyo; Joo, Sangwoo; Kang, Daeseung

    2012-01-01

    We presented a novel method for the homeotropic alignment of LC by using the irradiation of UV light on the LC/NOA65 mixture cell, in which the photo-initiated-polymerization-induced phase separation lowers the surface energy. When the amount of polymer content is sufficiently small, the gravel and network patterns were formed at the substrates via the vertical phase separation. We found that surface roughness plays an important role in the formation of the homeotropic alignment of LC. We also observed the alignment transition of the cells by varying the mixing ratio of LC/NOA65 or the UV radiation time. Furthermore, the present proposed method has great potential for application in display devices. For decades, studies on the alignment of liquid crystal (LC) molecules have been of significant interest due to their immediate applications for display devices and the intriguing physiochemical properties they exhibit at the surface of mixtures. Usually, homeotropic (or vertical) alignment, in which the long axes of the LC molecules are oriented in a direction perpendicular to the surface, is achieved by using surfactants such as lecithin, silanes or polyimide. Recently homeotropic alignment of liquid crystal molecules was achieved by irradiating photosensitive polymers, by doping nanoparticles into LC, by utilizing nano/micro patterns, or by incorporating self-assembled monolayers (SAMs). However, a clear understanding about the alignment mechanism is still elusive. In this paper, we report a novel method for homeotropic alignment of LC by utilizing the phase separation of LC/polymer mixtures

  2. Free convection performance of circular cavities having two active curved vertical sides and two inactive curved horizontal sides

    International Nuclear Information System (INIS)

    Ridouane, El Hassan; Campo, Antonio

    2006-01-01

    A detailed review of the archival reveals that the heat transfer and fluid flow characteristics of circular cavities have not been investigated so far and of course their physical features are not understood. A prominent application of these cavities arises in the miniaturized packaging of electronic components that are subject to strict constraints. This paper addresses primarily steady-state laminar natural convection of air in a circular cavity of diameter H inscribed in a square cavity of side H where the corresponding sides are in contact at four points. A third cavity, an arc-square cavity whose shape lies between the square and circular cavity shapes is included in the analysis. The finite volume method is used to perform the numerical simulations. The methodology takes into account the second-order-accurate QUICK scheme for the discretization of the convective term, whereas the pressure-velocity coupling is handled with the SIMPLE scheme. Since the air is not assumed a Boussinesq gas, it was decided to take all thermophysical properties as temperature-dependent. In the end, it has been demonstrated that the circular cavity possesses a superior balance between heat transfer enhancement and size in cross-section area in comparison with the standard square cavity. The side of the square cavity is similar to the diameter of the circular cavity

  3. Investigation of the influence of the proximity effect and randomness on a photolithographically fabricated photonic crystal nanobeam cavity

    Science.gov (United States)

    Tetsumoto, Tomohiro; Kumazaki, Hajime; Ishida, Rammaru; Tanabe, Takasumi

    2018-01-01

    Recent progress on the fabrication techniques used in silicon photonics foundries has enabled us to fabricate photonic crystal (PhC) nanocavities using a complementary metal-oxide-semiconductor (CMOS) compatible process. A high Q two-dimensional PhC nanocavity and a one-dimensional nanobeam PhC cavity with a Q exceeding 100 thousand have been fabricated using ArF excimer laser immersion lithography. These are important steps toward the fusion of silicon photonics devices and PhC devices. Although the fabrication must be reproducible for industrial applications, the properties of PhC nanocavities are sensitively affected by the proximity effect and randomness. In this study, we quantitatively investigated the influence of the proximity effect and randomness on a silicon nanobeam PhC cavity. First, we discussed the optical properties of cavities defined with one- and two-step exposure methods, which revealed the necessity of a multi-stage exposure process for our structure. Then, we investigated the impact of block structures placed next to the cavities. The presence of the blocks modified the resonant wavelength of the cavities by about 10 nm. The highest Q we obtained was over 100 thousand. We also discussed the influence of photomask misalignment, which is also a possible cause of disorders in the photolithographic fabrication process. This study will provide useful information for fabricating integrated photonic circuits with PhC nanocavities using a photolithographic process.

  4. Thermoluminescence kinetic features of Lithium Iodide (LiI) single crystal grown by vertical Bridgman technique

    Science.gov (United States)

    Daniel, D. Joseph; Kim, H. J.; Kim, Sunghwan; Khan, Sajid

    2017-08-01

    Single crystal of pure Lithium Iodide (LiI) has been grown from melt by using the vertical Bridgman technique. Thermoluminescence (TL) Measurements were carried out at 1 K/s following X-ray irradiation. The TL glow curve consists of a dominant peak at (peak-maximum Tm) 393 K and one low temperature peak of weaker intensity at 343 K. The order of kinetics (b), activation energy (E), and the frequency factor (S) for a prominent TL glow peak observed around 393 K for LiI crystals are reported for the first time. The peak shape analysis of the glow peak indicates the kinetics to be of the first order. The value of E is calculated using various standard methods such as initial rise (IR), whole glow peak (WGP), peak shape (PS), computerized glow curve deconvolution (CGCD) and Variable Heating rate (VHR) methods. An average value of 1.06 eV is obtained in this case. In order to validate the obtained parameters, numerically integrated TL glow curve has been generated using experimentally determined kinetic parameters. The effective atomic number (Zeff) for this material was determined and found to be 52. X-ray induced emission spectra of pure LiI single crystal are studied at room temperature and it is found that the sample exhibit sharp emission at 457 nm and broad emission at 650 nm.

  5. Vertical gradient freeze of 4 inch Ge crystals in a heater-magnet module

    Science.gov (United States)

    Frank-Rotsch, Ch.; Rudolph, P.

    2009-04-01

    For the first time 4-in. Ge single crystals were grown using the vertical gradient freeze technique (VGF) in a traveling magnetic field (TMF) generated in a heater-magnet module (HMM). The HMM was placed closely around the growth container inside the chamber of the industrial Bridgman equipment "Kronos". The HMM generates heat and a TMF together. It has a coil-shaped design and replaces the standard meander-type heater. Direct current (DC) for heat production and out-of-phase-accelerated currents (AC) for TMF generation were simultaneously delivered to three equally spaced coil segments connected by star-type wiring. In order to achieve a nearly flat and slightly convex growing interface the AC amplitude, frequency and phase shift have been optimized numerically by using the 3D CrysMAS code and validated by striation analysis on as-grown crystals. Low-field frequencies in the range f=20-50 Hz proved to be of most suitable condition. TMF programming is required to obtain constant interface morphology over the whole growth run. First Ge single crystals grown under nearly optimal conditions show reduced macro- and micro-inhomogeneities, relatively low dislocation density of (3-10)×10 2 cm -2, and high carrier mobility of μp=2800 cm 2 V -1 s -1.

  6. Crystalline perfection and mechanical investigations on vertical Bridgman grown Bismuth telluride (Bi_2Te_3) single crystals for thermoelectric applications

    International Nuclear Information System (INIS)

    Krishna, Anuj; Vijayan, N.; Singh, Budhendra; Thukral, Kanika; Maurya, K.K.

    2016-01-01

    High efficiency thermoelectric materials plays a vital role in power generation and refrigeration applications. Bismuth telluride (Bi_2Te_3) is one among them. In the present work single crystal of bismuth telluride was grown using vertical Bridgman technique. The phase of grown crystals was analysed using a powder X-ray diffractometer. Quality of the grown crystal was assessed by using high resolution X-ray diffractometer and observed that it is fairly good. Further mechanical investigations on grown crystal was carried out using nano-indentation technique and various mechanical properties like hardness, stiffness and Young’s modulus were evaluated. Observed results clearly indicate its suitability for thermoelectric applications.

  7. Performance test of a vertically-directed electric-field cavity resonator made for the rapid gelation apparatus with microwave heating

    International Nuclear Information System (INIS)

    Yamagishi, Shigeru; Ogawa, Toru; Hasegawa, Atsushi.

    1996-06-01

    A cavity resonator with vertically-directed electric field was produced and attached to 'the rapid gelation apparatus with microwave heating' previously reported. Using the rapid gelation apparatus, drops of a simulated solution and of U-containing solutions for internal gelation were heated. The results indicated that the heating required for gelation of the U-containing solutions was possible. However, the electric field strength in the cavity resonator at that time was comparable to that causing the discharge due to the gaseous ammonia released from the heated drops. As a result, gel microspheres were not obtained in a stable state. The discussion suggests that the stable gelation would be realized by improving the cavity resonator shape and/or by modifying the power supply accompanied with using a power stabilizer. (author)

  8. Nonpolar III-nitride vertical-cavity surface-emitting laser with a photoelectrochemically etched air-gap aperture

    Energy Technology Data Exchange (ETDEWEB)

    Leonard, J. T., E-mail: jtleona01@gmail.com; Yonkee, B. P.; Cohen, D. A.; Megalini, L.; Speck, J. S. [Materials Department, University of California, Santa Barbara, California 93106 (United States); Lee, S. [Department of Electrical and Computer Engineering, University of California, Santa Barbara, California 93106 (United States); DenBaars, S. P.; Nakamura, S. [Materials Department, University of California, Santa Barbara, California 93106 (United States); Department of Electrical and Computer Engineering, University of California, Santa Barbara, California 93106 (United States)

    2016-01-18

    We demonstrate a III-nitride nonpolar vertical-cavity surface-emitting laser (VCSEL) with a photoelectrochemically (PEC) etched aperture. The PEC lateral undercut etch is used to selectively remove the multi-quantum well (MQW) region outside the aperture area, defined by an opaque metal mask. This PEC aperture (PECA) creates an air-gap in the passive area of the device, allowing one to achieve efficient electrical confinement within the aperture, while simultaneously achieving a large index contrast between core of the device (the MQW within the aperture) and the lateral cladding of the device (the air-gap formed by the PEC etch), leading to strong lateral confinement. Scanning electron microscopy and focused ion-beam analysis is used to investigate the precision of the PEC etch technique in defining the aperture. The fabricated single mode PECA VCSEL shows a threshold current density of ∼22 kA/cm{sup 2} (25 mA), with a peak output power of ∼180 μW, at an emission wavelength of 417 nm. The near-field emission profile shows a clearly defined single linearly polarized (LP) mode profile (LP{sub 12,1}), which is in contrast to the filamentary lasing that is often observed in III-nitride VCSELs. 2D mode profile simulations, carried out using COMSOL, give insight into the different mode profiles that one would expect to be displayed in such a device. The experimentally observed single mode operation is proposed to be predominantly a result of poor current spreading in the device. This non-uniform current spreading results in a higher injected current at the periphery of the aperture, which favors LP modes with high intensities near the edge of the aperture.

  9. Amplification of an Autodyne Signal in a Bistable Vertical-Cavity Surface-Emitting Laser with the Use of a Vibrational Resonance

    Science.gov (United States)

    Chizhevsky, V. N.

    2018-01-01

    For the first time, it is demonstrated experimentally that a vibrational resonance in a polarization-bistable vertical-cavity surface-emitting laser can be used to increase the laser response in autodyne detection of microvibrations from reflecting surfaces. In this case, more than 25-fold signal amplification is achieved. The influence of the asymmetry of the bistable potential on the microvibration-detection efficiency is studied.

  10. Vertical Cavity Surface Emitting Laser for Operation at 1.5 µm with Integral AlGaInAs/InP Bragg mirrors

    OpenAIRE

    Linnik, M.; Christou, A.

    2001-01-01

    The design and performance of a low threshold selectively oxidized Vertical Cavity Surface Emitting Laser (VCSEL) fabricated for operation at a wavelength of 1.55 µm is based on III-V quaternary semiconductor alloys and is grown by Molecular Beam Epitaxy technique. The theoretical investigation of the optical properties of the compound semiconductor alloys allows one to select the optimum materials for highly reflective Bragg mirrors. The simulation of the designed VCSEL performance has been ...

  11. Transfer behavior of quantum states between atoms in photonic crystal coupled cavities

    International Nuclear Information System (INIS)

    Zhang Ke; Li Zhiyuan

    2010-01-01

    In this article, we discuss the one-excitation dynamics of a quantum system consisting of two two-level atoms each interacting with one of two coupled single-mode cavities via spontaneous emission. When the atoms and cavities are tuned into resonance, a wide variety of time-evolution behaviors can be realized by modulating the atom-cavity coupling strength g and the cavity-cavity hopping strength λ. The dynamics is solved rigorously via the eigenproblem of an ordinary coupled linear system and simple analytical solutions are derived at several extreme situations of g and λ. In the large hopping limit where g >λ, the time-evolution behavior of the system is characterized by the usual slowly varying carrier envelope superimposed upon a fast and violent oscillation. At a certain instant, the energy is fully transferred from the one quantum subsystem to the other. When the two interaction strengths are comparable in magnitude, the dynamics acts as a continuous pulse having irregular frequency and line shape of peaks and valleys, and the complicated time-evolution behaviors are ascribed to the violent competition between all the one-excitation quantum states. The coupled quantum system of atoms and cavities makes a good model to study cavity quantum electrodynamics with great freedoms of many-body interaction.

  12. Acousto-optical interaction of surface acoustic and optical waves in a two-dimensional phoxonic crystal hetero-structure cavity.

    Science.gov (United States)

    Ma, Tian-Xue; Zou, Kui; Wang, Yue-Sheng; Zhang, Chuanzeng; Su, Xiao-Xing

    2014-11-17

    Phoxonic crystal is a promising material for manipulating sound and light simultaneously. In this paper, we theoretically demonstrate the propagation of acoustic and optical waves along the truncated surface of a two-dimensional square-latticed phoxonic crystal. Further, a phoxonic crystal hetero-structure cavity is proposed, which can simultaneously confine surface acoustic and optical waves. The interface motion and photoelastic effects are taken into account in the acousto-optical coupling. The results show obvious shifts in eigenfrequencies of the photonic cavity modes induced by different phononic cavity modes. The symmetry of the phononic cavity modes plays a more important role in the single-phonon exchange process than in the case of the multi-phonon exchange. Under the same deformation, the frequency shift of the photonic transverse electric mode is larger than that of the transverse magnetic mode.

  13. Efficient continuous-wave nonlinear frequency conversion in high-Q gallium nitride photonic crystal cavities on silicon

    Directory of Open Access Journals (Sweden)

    Mohamed Sabry Mohamed

    2017-03-01

    Full Text Available We report on nonlinear frequency conversion from the telecom range via second harmonic generation (SHG and third harmonic generation (THG in suspended gallium nitride slab photonic crystal (PhC cavities on silicon, under continuous-wave resonant excitation. Optimized two-dimensional PhC cavities with augmented far-field coupling have been characterized with quality factors as high as 4.4 × 104, approaching the computed theoretical values. The strong enhancement in light confinement has enabled efficient SHG, achieving a normalized conversion efficiency of 2.4 × 10−3 W−1, as well as simultaneous THG. SHG emission power of up to 0.74 nW has been detected without saturation. The results herein validate the suitability of gallium nitride for integrated nonlinear optical processing.

  14. Growth of 1.5 micron gallium indium nitrogen arsenic antimonide vertical cavity surface emitting lasers by molecular beam epitaxy

    Science.gov (United States)

    Wistey, Mark Allan

    Fiber optics has revolutionized long distance communication and long haul networks, allowing unimaginable data speeds and noise-free telephone calls around the world for mere pennies per hour at the trunk level. But the high speeds of optical fiber generally do not extend to individual workstations or to the home, in large part because it has been difficult and expensive to produce lasers which emitted light at wavelengths which could take advantage of optical fiber. One of the most promising solutions to this problem is the development of a new class of semiconductors known as dilute nitrides. Dilute nitrides such as GaInNAs can be grown directly on gallium arsenide, which allows well-established processing techniques. More important, gallium arsenide allows the growth of vertical-cavity surface-emitting lasers (VCSELs), which can be grown in dense, 2D arrays on each wafer, providing tremendous economies of scale for manufacturing, testing, and packaging. Unfortunately, GaInNAs lasers have suffered from what has been dubbed the "nitrogen penalty," with high thresholds and low efficiency as the fraction of nitrogen in the semiconductor was increased. This thesis describes the steps taken to identify and essentially eliminate the nitrogen penalty. Protecting the wafer surface from plasma ignition, using an arsenic cap, greatly improved material quality. Using a Langmuir probe, we further found that the nitrogen plasma source produced a large number of ions which damaged the wafer during growth. The ions were dramatically reduced using deflection plates. Low voltage deflection plates were found to be preferable to high voltages, and simulations showed low voltages to be adequate for ion removal. The long wavelengths from dilute nitrides can be partly explained by wafer damage during growth. As a result of these studies, we demonstrated the first CW, room temperature lasers at wavelengths beyond 1.5mum on gallium arsenide, and the first GaInNAs(Sb) VCSELs beyond 1

  15. Dynamically controlling the emission of single excitons in photonic crystal cavities

    NARCIS (Netherlands)

    Pagliano, F.; Cho, Y.; Xia, T.; Otten, van F.W.M.; Johne, R.; Fiore, A.

    2014-01-01

    Single excitons in semiconductor microcavities represent a solid state and scalable platform for cavity quantum electrodynamics, potentially enabling an interface between flying (photon) and static (exciton) quantum bits in future quantum networks. While both singlephoton emission and the strong

  16. Fabrication and vertical test experience of the European X-ray Free Electron Laser 3.9 GHz superconducting cavities

    Science.gov (United States)

    Pierini, P.; Bertucci, M.; Bosotti, A.; Chen, J. F.; Maiano, C. G.; Michelato, P.; Monaco, L.; Moretti, M.; Pagani, C.; Paparella, R.; Sertore, D.; Vogel, E.

    2017-04-01

    We report the experience of the production, processing and qualification testing of the superconducting radio frequency cavities at 3.9 GHz for the third harmonic system at the European XFEL (EXFEL) injector. The rf structure concept, originally developed for the FLASH FEL facility, was adapted to the new interfaces provided by the EXFEL design and the cavities were procured from a qualified vendor, delivered ready for the testing at the INFN infrastructure. A total of 23 cavities, three prototypes and two batches of 10, have been realized and tested up to specifications.

  17. Voltage-Controlled Quantum Dynamics and Generation Entanglement between Two Separated Quantum-Dot Molecules Embedded in Photonic Crystal Cavities

    International Nuclear Information System (INIS)

    Cheng Mu-Tian; Song Yan-Yan; Ma Xiao-San; Wang Xia

    2014-01-01

    Voltage-controlled quantum dynamics of two quantum-dot molecules (QDMs) embedded in two separated photonic crystal cavities are theoretically investigated. We show numerically that generation of entangled states and population transfer between the two QDMs can be realized with the same coupling parameters. The effects of parameters deviation and dissipations on generation entangled states and populations transfer are also discussed. The results may be used for realization of new-type of solid state quantum devices and integrated electro-optical devices

  18. Characterization of 2.3 μm GaInAsSb-based vertical-cavity surface-emitting laser structures using photo-modulated reflectance

    Energy Technology Data Exchange (ETDEWEB)

    Chai, G. M. T. [Ibnu Sina Institute for Fundamental Science Studies, Universiti Teknologi Malaysia, Johor Bahru 81310 (Malaysia); Hosea, T. J. C., E-mail: j.hosea@surrey.ac.uk [Ibnu Sina Institute for Fundamental Science Studies, Universiti Teknologi Malaysia, Johor Bahru 81310 (Malaysia); Advanced Technology Institute and Department of Physics, University of Surrey, Guildford GU2 7XH (United Kingdom); Fox, N. E.; Hild, K.; Ikyo, A. B.; Marko, I. P.; Sweeney, S. J. [Advanced Technology Institute and Department of Physics, University of Surrey, Guildford GU2 7XH (United Kingdom); Bachmann, A.; Arafin, S.; Amann, M.-C. [Walter Schottky Institut, Technische Universität Munchen, Am Coulombwall 4, D-85748 Garching (Germany)

    2014-01-07

    We report angle dependent and temperature dependent (9 K–300 K) photo-modulated reflectance (PR) studies on vertical-cavity surface-emitting laser (VCSEL) structures, designed for 2.3 μm mid-infrared gas sensing applications. Changing the temperature allows us to tune the energies of the quantum well (QW) transitions relative to the VCSEL cavity mode (CM) energy. These studies show that this VCSEL structure has a QW-CM offset of 21 meV at room temperature. Consequently the QW ground-state transition comes into resonance with the CM at 220 ± 2 K. The results from these PR studies are closely compared with those obtained in a separate study of actual operating devices and show how the PR technique may be useful for device optimisation without the necessity of having first to process the wafers into working devices.

  19. Characterization of 2.3 μm GaInAsSb-based vertical-cavity surface-emitting laser structures using photo-modulated reflectance

    International Nuclear Information System (INIS)

    Chai, G. M. T.; Hosea, T. J. C.; Fox, N. E.; Hild, K.; Ikyo, A. B.; Marko, I. P.; Sweeney, S. J.; Bachmann, A.; Arafin, S.; Amann, M.-C.

    2014-01-01

    We report angle dependent and temperature dependent (9 K–300 K) photo-modulated reflectance (PR) studies on vertical-cavity surface-emitting laser (VCSEL) structures, designed for 2.3 μm mid-infrared gas sensing applications. Changing the temperature allows us to tune the energies of the quantum well (QW) transitions relative to the VCSEL cavity mode (CM) energy. These studies show that this VCSEL structure has a QW-CM offset of 21 meV at room temperature. Consequently the QW ground-state transition comes into resonance with the CM at 220 ± 2 K. The results from these PR studies are closely compared with those obtained in a separate study of actual operating devices and show how the PR technique may be useful for device optimisation without the necessity of having first to process the wafers into working devices

  20. Development of a compact vertical-cavity surface-emitting laser end-pumped actively Q-switched laser for laser-induced breakdown spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Li, Shuo; Chen, Rongzhang; Nelsen, Bryan; Chen, Kevin, E-mail: pec9@pitt.edu [Department of Electrical and Computer Engineering, University of Pittsburgh, Pittsburgh, Pennsylvania 15260 (United States); Liu, Lei; Huang, Xi; Lu, Yongfeng [Department of Electrical and Computer Engineering, University of Nebraska-Lincoln, Lincoln, Nebraska 68588 (United States)

    2016-03-15

    This paper reports the development of a compact and portable actively Q-switched Nd:YAG laser and its applications in laser-induced breakdown spectroscopy (LIBS). The laser was end-pumped by a vertical-cavity surface-emitting laser (VCSEL). The cavity lases at a wavelength of 1064 nm and produced pulses of 16 ns with a maximum pulse energy of 12.9 mJ. The laser exhibits a reliable performance in terms of pulse-to-pulse stability and timing jitter. The LIBS experiments were carried out using this laser on NIST standard alloy samples. Shot-to-shot LIBS signal stability, crater profile, time evolution of emission spectra, plasma electron density and temperature, and limits of detection were studied and reported in this paper. The test results demonstrate that the VCSEL-pumped solid-state laser is an effective and compact laser tool for laser remote sensing applications.

  1. Mid-infrared PbTe vertical external cavity surface emitting laser on Si-substrate with above 1 W output power

    Science.gov (United States)

    Rahim, M.; Fill, M.; Felder, F.; Chappuis, D.; Corda, M.; Zogg, H.

    2009-12-01

    Mid-infrared vertical external cavity surface emitting lasers (VECSELs) emitting above 1 W output power in pulsed mode and up to 17 mW in continuous mode at -172 °C were realized. Emission wavelength changes from 5 μm at -172 °C to 3.6 μm at 20 °C heat sink temperature. The active medium is a one wavelength thick PbTe layer grown by molecular beam epitaxy on a Si-substrate. It is followed by a 2.5 pair Pb1-yEuyTe/EuTe epitaxial Bragg mirror. The cavity is completed with an external curved Pb1-yEuyTe/BaF2 mirror. The VECSEL is optically pumped with 1.55 μm wavelength laser and In-soldered to Cu heat sink. No microstructural processing is needed.

  2. Self-consistent Maxwell-Bloch model of quantum-dot photonic-crystal-cavity lasers

    DEFF Research Database (Denmark)

    Cartar, William; Mørk, Jesper; Hughes, Stephen

    2017-01-01

    -level emitters are solved numerically. Phenomenological pure dephasing and incoherent pumping is added to the optical Bloch equations to allow for a dynamical lasing regime, but the cavity-mediated radiative dynamics and gain coupling of each QD dipole (artificial atom) is contained self-consistently within......-mode to multimode lasing is also observed, depending on the spectral peak frequency of the QD ensemble. Using a statistical modal analysis of the average decay rates, we also show how the average radiative decay rate decreases as a function of cavity size. In addition, we investigate the role of structural disorder...

  3. Self-sustained pulsation in the oxide-confined vertical-cavity surface-emitting lasers based on submonolayer InGaAs quantum dots

    International Nuclear Information System (INIS)

    Kuzmenkov, A. G.; Ustinov, V. M.; Sokolovskii, G. S.; Maleev, N. A.; Blokhin, S. A.; Deryagin, A. G.; Chumak, S. V.; Shulenkov, A. S.; Mikhrin, S. S.; Kovsh, A. R.; McRobbie, A. D.; Sibbett, W.; Cataluna, M. A.; Rafailov, E. U.

    2007-01-01

    The authors report the observation of strong self-pulsations in molecular-beam epitaxy-grown oxide-confined vertical-cavity surface-emitting lasers based on submonolayer InGaAs quantum dots. At continuous-wave operation, self-pulsations with pulse durations of 100-300 ps and repetition rates of 0.2-0.6 GHz were measured. The average optical power of the pulsations was 0.5-1.0 mW at the laser continuous-wave current values of 1.5-2.5 mA

  4. Enhancement of acousto-optical coupling in two-dimensional air-slot phoxonic crystal cavities by utilizing surface acoustic waves

    Energy Technology Data Exchange (ETDEWEB)

    Ma, Tian-Xue [Institute of Engineering Mechanics, Beijing Jiaotong University, Beijing 100044 (China); Wang, Yue-Sheng, E-mail: yswang@bjtu.edu.cn [Institute of Engineering Mechanics, Beijing Jiaotong University, Beijing 100044 (China); Zhang, Chuanzeng [Department of Civil Engineering, University of Siegen, D-57068 Siegen (Germany)

    2017-01-30

    A phoxonic crystal is a periodically patterned material that can simultaneously localize optical and acoustic modes. The acousto-optical coupling in two-dimensional air-slot phoxonic crystal cavities is investigated numerically. The photons can be well confined in the slot owing to the large electric field discontinuity at the air/dielectric interfaces. Besides, the surface acoustic modes lead to the localization of the phonons near the air-slot. The high overlap of the photonic and phononic cavity modes near the slot results in a significant enhancement of the moving interface effect, and thus strengthens the total acousto-optical interaction. The results of two cavities with different slot widths show that the coupling strength is dependent on the slot width. It is expected to achieve a strong acousto-optical/optomechanical coupling in air-slot phoxonic crystal structures by utilizing surface acoustic modes. - Highlights: • Two-dimensional air-slot phoxonic crystal cavities which can confine simultaneously optical and acoustic waves are proposed. • The acoustic and optical waves are highly confined near/in the air-slot. • The high overlap of the photonic and phononic cavity modes significantly enhances the moving interface effect. • Different factors which affect the acousto-optical coupling are discussed.

  5. Realization of collective strong coupling with ion Coulomb crystals in an optical cavity

    DEFF Research Database (Denmark)

    Herskind, Peter Fønss; Dantan, Aurélien; Marler, Joan

    2009-01-01

    Cavity quantum electrodynamics (CQED) focuses on understanding the interactions between matter and the electromagnetic field in cavities at the quantum level 1, 2 . In the past years, CQED has attracted attention 3, 4, 5, 6, 7, 8, 9 especially owing to its importance for the field of quantum...... information 10 . At present, photons are the best carriers of quantum information between physically separated sites 11, 12 and quantum-information processing using stationary qubits 10 is most promising, with the furthest advances having been made with trapped ions 13, 14, 15 . The implementation of complex...... quantum-information-processing networks 11, 12 hence requires devices to efficiently couple photons and stationary qubits. Here, we present the first CQED experiments demonstrating that the collective strong-coupling regime 2 can be reached in the interaction between a solid in the form of an ion Coulomb...

  6. High-contrast controllable switching based on polystyrene nonlinear cavities in 2D hole-type photonic crystals

    Science.gov (United States)

    Paghousi, Roohollah; Fasihi, Kiazand

    2018-05-01

    We present a new high-contrast controllable switch, which is based on a polystyrene nonlinear cavity, and is implemented in a two dimensional (2D) hole-type photonic crystal (PC). We show that by applying a control signal, the input power can be transmitted to the output waveguide with a high contrast ratio. The operation of the proposed device is investigated through the use of coupled-mode theory (CMT) and finite-difference time-domain (FDTD) method. The contrast ratio of the proposed device varies between 18 and 23, which is higher than the corresponding value in the previous investigations. Based on the simulation results, with increasing the control power the range of operating power will be increased, while the contrast ratio will be decreased. It has been shown that in a modified structure, at the expense of the range of operating power and the contrast ratio, the control power can be decreased, considerably.

  7. Ultra-wide tuning single channel filter based on one-dimensional photonic crystal with an air cavity

    Science.gov (United States)

    Zhao, Xiaodan; Yang, Yibiao; Chen, Zhihui; Wang, Yuncai; Fei, Hongming; Deng, Xiao

    2017-02-01

    By inserting an air cavity into a one-dimensional photonic crystal of LiF/GaSb, a tunable filter covering the whole visible range is proposed. Following consideration of the dispersion of the materials, through modulating the thickness of the air cavity, we demonstrate that a single resonant peak can shift from 416.1 to 667.3 nm in the band gap at normal incidence by means of the transfer matrix method. The research also shows that the transmittance of the channel can be maximized when the number of periodic LiF/GaSb layers on one side of the air defect layer is equal to that of the other side. When adding a period to both sides respectively, the full width at half maximum of the defect mode is reduced by one order of magnitude. This structure will provide a promising approach to fabricate practical tunable filters in the visible region with ultra-wide tuning range. Project supported by the National Natural Science Foundation of China (Nos. 61575138, 61307069, 51205273), and the Top Young Academic Leaders and the Outstanding Innovative Teams of Higher Learning Institutions of Shanxi.

  8. Ultra-compact air-mode photonic crystal nanobeam cavity integrated with bandstop filter for refractive index sensing.

    Science.gov (United States)

    Sun, Fujun; Fu, Zhongyuan; Wang, Chunhong; Ding, Zhaoxiang; Wang, Chao; Tian, Huiping

    2017-05-20

    We propose and investigate an ultra-compact air-mode photonic crystal nanobeam cavity (PCNC) with an ultra-high quality factor-to-mode volume ratio (Q/V) by quadratically tapering the lattice space of the rectangular holes from the center to both ends while other parameters remain unchanged. By using the three-dimensional finite-difference time-domain method, an optimized geometry yields a Q of 7.2×10 6 and a V∼1.095(λ/n Si ) 3 in simulations, resulting in an ultra-high Q/V ratio of about 6.5×10 6 (λ/n Si ) -3 . When the number of holes on either side is 8, the cavity possesses a high sensitivity of 252 nm/RIU (refractive index unit), a high calculated Q-factor of 1.27×10 5 , and an ultra-small effective V of ∼0.758(λ/n Si ) 3 at the fundamental resonant wavelength of 1521.74 nm. Particularly, the footprint is only about 8×0.7  μm 2 . However, inevitably our proposed PCNC has several higher-order resonant modes in the transmission spectrum, which makes the PCNC difficult to be used for multiplexed sensing. Thus, a well-designed bandstop filter with weak sidelobes and broad bandwidth based on a photonic crystal nanobeam waveguide is created to connect with the PCNC to filter out the high-order modes. Therefore, the integrated structure presented in this work is promising for building ultra-compact lab-on-chip sensor arrays with high density and parallel-multiplexing capability.

  9. All-solid-state cavity QED using Anderson-localized modes in disordered photonic crystal waveguides

    DEFF Research Database (Denmark)

    Lodahl, Peter; Sapienza, Luca; Nielsen, Henri Thyrrestrup

    2010-01-01

    We employ Anderson-localized modes in deliberately disordered photonic crystal waveguides to confine light and enhance the interaction with matter. A 15-fold enhancement of the decay rate of a single quantum dot is observed meaning that 94% of the emitted single photons are coupled to an Anderson...

  10. A picogram- and nanometre-scale photonic-crystal optomechanical cavity.

    Science.gov (United States)

    Eichenfield, Matt; Camacho, Ryan; Chan, Jasper; Vahala, Kerry J; Painter, Oskar

    2009-05-28

    The dynamic back-action caused by electromagnetic forces (radiation pressure) in optical and microwave cavities is of growing interest. Back-action cooling, for example, is being pursued as a means of achieving the quantum ground state of macroscopic mechanical oscillators. Work in the optical domain has revolved around millimetre- or micrometre-scale structures using the radiation pressure force. By comparison, in microwave devices, low-loss superconducting structures have been used for gradient-force-mediated coupling to a nanomechanical oscillator of picogram mass. Here we describe measurements of an optical system consisting of a pair of specially patterned nanoscale beams in which optical and mechanical energies are simultaneously localized to a cubic-micron-scale volume, and for which large per-photon optical gradient forces are realized. The resulting scale of the per-photon force and the mass of the structure enable the exploration of cavity optomechanical regimes in which, for example, the mechanical rigidity of the structure is dominantly provided by the internal light field itself. In addition to precision measurement and sensitive force detection, nano-optomechanics may find application in reconfigurable and tunable photonic systems, light-based radio-frequency communication and the generation of giant optical nonlinearities for wavelength conversion and optical buffering.

  11. Heterodyne pump probe measurements of nonlinear dynamics in an indium phosphide photonic crystal cavity

    DEFF Research Database (Denmark)

    Heuck, Mikkel; Combrié, S.; Lehoucq, G.

    2013-01-01

    Using a sensitive two-color heterodyne pump-probe technique, we investigate the carrier dynamics of an InP photonic crystal nanocavity. The heterodyne technique provides unambiguous results for all wavelength configurations, including the degenerate case, which cannot be investigated with the wid......Using a sensitive two-color heterodyne pump-probe technique, we investigate the carrier dynamics of an InP photonic crystal nanocavity. The heterodyne technique provides unambiguous results for all wavelength configurations, including the degenerate case, which cannot be investigated...... with the widely used homodyne technique. A model based on coupled mode theory including two carrier distributions is introduced to account for the relaxation dynamics, which is assumed to be governed by both diffusion and recombination....

  12. Control of emitted light polarization in a 1310 nm dilute nitride spin-vertical cavity surface emitting laser subject to circularly polarized optical injection

    Energy Technology Data Exchange (ETDEWEB)

    Alharthi, S. S., E-mail: ssmalh@essex.ac.uk; Hurtado, A.; Al Seyab, R. K.; Henning, I. D.; Adams, M. J. [School of Computer Science and Electronic Engineering, University of Essex, Wivenhoe Park, Colchester CO4 3SQ (United Kingdom); Korpijarvi, V.-M.; Guina, M. [Optoelectronics Research Centre (ORC), Tampere University of Technology, P.O. Box 692, FIN-33101 Tampere (Finland)

    2014-11-03

    We experimentally demonstrate the control of the light polarization emitted by a 1310 nm dilute nitride spin-Vertical Cavity Surface Emitting Laser (VCSEL) at room temperature. This is achieved by means of a combination of polarized optical pumping and polarized optical injection. Without external injection, the polarization of the optical pump controls that of the spin-VCSEL. However, the addition of the externally injected signal polarized with either left- (LCP) or right-circular polarization (RCP) is able to control the polarization of the spin-VCSEL switching it at will to left- or right-circular polarization. A numerical model has been developed showing a very high degree of agreement with the experimental findings.

  13. Comparison of Mesa and Device Diameter Variation in Double Wafer-Fused Multi Quantum-Well, Long-Wavelength, Vertical Cavity Surface Emitting Lasers

    International Nuclear Information System (INIS)

    Menon, P.S.; Kandiah, K.; Burhanuddin Yeop Majlis; Shaari, S.

    2011-01-01

    Long-wavelength vertical-cavity surface-emitting lasers (LW-VCSELs) have profound advantages compared to traditional edge-emitting lasers offering improved properties with respect to mode selectivity, fibre coupling, threshold currents and integration into 2D arrays or with other electronic devices. Its commercialization is gaining momentum as the local and access network in optical communication system expand. Numerical modeling of LW-VCSEL utilizing wafer-fused InP-based multi-quantum wells (MQW) and GaAs-based distributed Bragg reflectors (DBRs) is presented in this paper. Emphasis is on the device and mesa/pillar diameter design parameter comparison and its effect on the device characteristics. (author)

  14. A UWOC system based on a 6 m/5.2 Gbps 680 nm vertical-cavity surface-emitting laser

    Science.gov (United States)

    Li, Chung-Yi; Tsai, Wen-Shing

    2018-02-01

    This study proves that an underwater wireless optical communication (UWOC) based on a 6 m/5.2 Gbps 68 nm vertical-cavity surface-emitting laser (VCSEL)-based system is superior to a 405 nm UWOC system. This UWOC application is the first to use a VCSEL at approximately 680 nm. The experiment also proved that a 680 nm VCSEL has the same transmission distance as that of an approximately 405 nm laser diode. The 680 nm VCSEL has a 5.2 Gbps high transmission rate and can transmit up to 6 m. Thus, the setup is the best alternative solution for high-speed UWOC applications.

  15. GaN-based vertical-cavity surface-emitting lasers with tunnel junction contacts grown by metal-organic chemical vapor deposition

    Science.gov (United States)

    Lee, SeungGeun; Forman, Charles A.; Lee, Changmin; Kearns, Jared; Young, Erin C.; Leonard, John T.; Cohen, Daniel A.; Speck, James S.; Nakamura, Shuji; DenBaars, Steven P.

    2018-06-01

    We report the first demonstration of III–nitride vertical-cavity surface-emitting lasers (VCSELs) with tunnel junction (TJ) intracavity contacts grown completely by metal–organic chemical vapor deposition (MOCVD). For the TJs, n++-GaN was grown on in-situ activated p++-GaN after buffered HF surface treatment. The electrical properties and epitaxial morphologies of the TJs were first investigated on TJ LED test samples. A VCSEL with a TJ intracavity contact showed a lasing wavelength of 408 nm, a threshold current of ∼15 mA (10 kA/cm2), a threshold voltage of 7.8 V, a maximum output power of 319 µW, and a differential efficiency of 0.28%.

  16. Generating a 2.4-W cw Green Laser by Intra-Cavity Frequency Doubling of a Diode-Pumped Nd:GdVO4 Laser with a MgO:PPLN Crystal

    International Nuclear Information System (INIS)

    Lu Jun; Liu Yan-Hua; Zhao Gang; Hu Xiao-Peng; Zhu Shi-Ning

    2012-01-01

    High-power cw green laser radiation is generated by intra-cavity frequency doubling of a diode-pumped Nd:GdVO 4 laser with a MgO-doped periodically-poled LiNbO 3 (MgO:PPLN) crystal at room temperature. An average power of 2.4 W at 0.53 μm is obtained under the pump 15 W at 808 nm, corresponding to an overall optical-to-optical conversion efficiency of 16%. The M 2 factor of the green beam is 3.90 and 1.34 for the horizontal and vertical direction, respectively. In addition, the power fluctuation is measured to be about ±5%

  17. An efficient approach to characterizing and calculating carrier loss due to heating and barrier height variation in vertical-cavity surface-emitting lasers

    International Nuclear Information System (INIS)

    Jian, Wu; Summers, H. D.

    2010-01-01

    It is important to determine quantitatively the internal carrier loss arising from heating and barrier height variation in a vertical-cavity surface-emitting quantum well laser (VCSEL). However, it is generally difficult to realize this goal using purely theoretical formulas due to difficulty in deriving the parameters relating to the quantum well structure. In this paper, we describe an efficient approach to characterizing and calculating the carrier loss due to the heating and the barrier height change in the VCSEL. In the method, the thermal carrier loss mechanism is combined with gain measurement and calculation. The carrier loss is re-characterized in a calculable form by constructing the threshold current and gain detuning-related loss current using the measured gain data and then substituting them for the quantum well-related parameters in the formula. The result can be expressed as a product of an exponential weight factor linked to the barrier height change and the difference between the threshold current and gain detuning-related loss current. The gain variation at cavity frequency due to thermal carrier loss and gain detuning processes is measured by using an AlInGaAs–AlGaAs VCSEL structure. This work provides a useful approach to analysing threshold and loss properties of the VCSEL, particularly, gain offset design for high temperature operation of VCSELs. (classical areas of phenomenology)

  18. Compact electro-absorption modulator integrated with vertical-cavity surface-emitting laser for highly efficient millimeter-wave modulation

    International Nuclear Information System (INIS)

    Dalir, Hamed; Ahmed, Moustafa; Bakry, Ahmed; Koyama, Fumio

    2014-01-01

    We demonstrate a compact electro-absorption slow-light modulator laterally-integrated with an 850 nm vertical-cavity surface-emitting laser (VCSEL), which enables highly efficient millimeter-wave modulation. We found a strong leaky travelling wave in the lateral direction between the two cavities via widening the waveguide width with a taper shape. The small signal response of the fabricated device shows a large enhancement of over 55 dB in the modulation amplitude at frequencies beyond 35 GHz; thanks to the photon-photon resonance. A large group index of over 150 in a Bragg reflector waveguide enables the resonance at millimeter wave frequencies for 25 μm long compact modulator. Based on the modeling, we expect a resonant modulation at a higher frequency of 70 GHz. The resonant modulation in a compact slow-light modulator plays a significant key role for high efficient narrow-band modulation in the millimeter wave range far beyond the intrinsic modulation bandwidth of VCSELs.

  19. Detection of Myoglobin with an Open-Cavity-Based Label-Free Photonic Crystal Biosensor.

    Science.gov (United States)

    Zhang, Bailin; Tamez-Vela, Juan Manuel; Solis, Steven; Bustamante, Gilbert; Peterson, Ralph; Rahman, Shafiqur; Morales, Andres; Tang, Liang; Ye, Jing Yong

    2013-01-01

    The label-free detection of one of the cardiac biomarkers, myoglobin, using a photonic-crystal-based biosensor in a total-internal-reflection configuration (PC-TIR) is presented in this paper. The PC-TIR sensor possesses a unique open optical microcavity that allows for several key advantages in biomolecular assays. In contrast to a conventional closed microcavity, the open configuration allows easy functionalization of the sensing surface for rapid biomolecular binding assays. Moreover, the properties of PC structures make it easy to be designed and engineered for operating at any optical wavelength. Through fine design of the photonic crystal structure, biochemical modification of the sensor surface, and integration with a microfluidic system, we have demonstrated that the detection sensitivity of the sensor for myoglobin has reached the clinically significant concentration range, enabling potential usage of this biosensor for diagnosis of acute myocardial infarction. The real-time response of the sensor to the myoglobin binding may potentially provide point-of-care monitoring of patients and treatment effects.

  20. Semi-analytical quasi-normal mode theory for the local density of states in coupled photonic crystal cavity-waveguide structures

    DEFF Research Database (Denmark)

    de Lasson, Jakob Rosenkrantz; Kristensen, Philip Trøst; Mørk, Jesper

    2015-01-01

    We present and validate a semi-analytical quasi-normal mode (QNM) theory for the local density of states (LDOS) in coupled photonic crystal (PhC) cavity-waveguide structures. By means of an expansion of the Green's function on one or a few QNMs, a closed-form expression for the LDOS is obtained, ......-trivial spectrum with a peak and a dip is found, which is reproduced only when including both the two relevant QNMs in the theory. In both cases, we find relative errors below 1% in the bandwidth of interest.......We present and validate a semi-analytical quasi-normal mode (QNM) theory for the local density of states (LDOS) in coupled photonic crystal (PhC) cavity-waveguide structures. By means of an expansion of the Green's function on one or a few QNMs, a closed-form expression for the LDOS is obtained......, and for two types of two-dimensional PhCs, with one and two cavities side-coupled to an extended waveguide, the theory is validated against numerically exact computations. For the single cavity, a slightly asymmetric spectrum is found, which the QNM theory reproduces, and for two cavities a non...

  1. In-situ temperature field measurements and direct observation of crystal/melt at vertical Bridgman growth of lead chloride under stationary and dynamic arrangement

    Czech Academy of Sciences Publication Activity Database

    Král, Robert; Nitsch, Karel

    2015-01-01

    Roč. 427, Oct (2015), 7-15 ISSN 0022-0248 R&D Projects: GA MŠk(CZ) LH14266 Institutional support: RVO:68378271 Keywords : single crystal growth * temperature field measurements * crystal/melt interface * lead chloride * vertical Bridgman method Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 1.462, year: 2015

  2. Study of thermally-induced optical bistability and the role of surface treatments in Si-based mid-infrared photonic crystal cavities.

    Science.gov (United States)

    Shankar, Raji; Bulu, Irfan; Leijssen, Rick; Lončar, Marko

    2011-11-21

    We report the observation of optical bistability in Si-based photonic crystal cavities operating around 4.5 µm. Time domain measurements indicate that the source of this optical bistability is thermal, with a time constant on the order of 5 µs. Quality (Q) factor improvement is shown by the use of surface treatments (wet processes and annealing), resulting in a significant increase in Q-factor, which in our best devices is on the order of ~45,000 at 4.48 µm. After annealing in a N(2) environment, optical bistability is no longer seen in our cavities. © 2011 Optical Society of America

  3. The vertical-cavity surface-emitting laser incorporating a high contrast grating mirror as a sensing device

    Science.gov (United States)

    Marciniak, Magdalena; Gebski, Marcin; Piskorski, Łukasz; Dems, Maciej; Wasiak, M.; Panajotov, Krassimir; Lott, James A.; Czyszanowski, Tomasz

    2018-02-01

    We propose a novel optical sensing system based on one device that both emits and detects light consisting of a verticalcavity surface-emitting laser (VCSEL) incorporating an high contrast grating (HCG) as a top mirror. Since HCGs can be very sensitive to the optical properties of surrounding media, they can be used to detect gases and liquid. The presence of a gas or a liquid around an HCG mirror causes changes of the power reflectance of the mirror, which corresponds to changes of the VCSEL's cavity quality factor and current-voltage characteristic. By observation of the current-voltage characteristic we can collect information about the medium around the HCG. In this paper we investigate how the properties of the HCG mirror depend on the refractive index of the HCG surroundings. We present results of a computer simulation performed with a three-dimensional fully vectorial model. We consider silicon HCGs on silica and designed for a 1300 nm VCSEL emission wavelength. We demonstrate that our approach can be applied to other wavelengths and material systems.

  4. Genetic optimization of magneto-optic Kerr effect in lossy cavity-type magnetophotonic crystals

    Energy Technology Data Exchange (ETDEWEB)

    Ghanaatshoar, M., E-mail: m-ghanaat@cc.sbu.ac.i [Laser and Plasma Research Institute, Shahid Beheshti University, G.C., Evin 1983963113, Tehran (Iran, Islamic Republic of); Alisafaee, H. [Laser and Plasma Research Institute, Shahid Beheshti University, G.C., Evin 1983963113, Tehran (Iran, Islamic Republic of)

    2011-07-15

    We have demonstrated an optimization approach in order to obtain desired magnetophotonic crystals (MPCs) composed of a lossy magnetic layer (TbFeCo) placed within a multilayer structure. The approach is an amalgamation between a 4x4 transfer matrix method and a genetic algorithm. Our objective is to enhance the magneto-optic Kerr effect of TbFeCo at short visible wavelength of 405 nm. Through the optimization approach, MPC structures are found meeting definite criteria on the amount of reflectivity and Kerr rotation. The resulting structures are fitted more than 99.9% to optimization criteria. Computation of the internal electric field distribution shows energy localization in the vicinity of the magnetic layer, which is responsible for increased light-matter interaction and consequent enhanced magneto-optic Kerr effect. Versatility of our approach is also exhibited by examining and optimizing several MPC structures. - Research highlights: Structures comprising a highly absorptive TbFeCo layer are designed to work for data storage applications at 405 nm. Optimization algorithm resulted in structures fitted 99.9% to design criteria. More than 10 structures are found exhibiting magneto-optical response of about 1{sup o} rotation and 20% reflection. The ratio of the Kerr rotation to the Kerr ellipticity is enhanced by a factor of 30.

  5. Optical and mechanical design of a "zipper" photonic crystal optomechanical cavity.

    Science.gov (United States)

    Chan, Jasper; Eichenfield, Matt; Camacho, Ryan; Painter, Oskar

    2009-03-02

    Design of a doubly-clamped beam structure capable of localizing mechanical and optical energy at the nanoscale is presented. The optical design is based upon photonic crystal concepts in which patterning of a nanoscale-cross-section beam can result in strong optical localization to an effective optical mode volume of 0.2 cubic wavelengths ( (lambdac)(3)). By placing two identical nanobeams within the near field of each other, strong optomechanical coupling can be realized for differential motion between the beams. Current designs for thin film silicon nitride beams at a wavelength of lambda?= 1.5 microm indicate that such structures can simultaneously realize an optical Q-factor of 7x10(6), motional mass m(u) approximately 40 picograms, mechanical mode frequency Omega(M)/2pi approximately 170 MHz, and an optomechanical coupling factor (g(OM) identical with domega(c)/dx = omega(c)/L(OM)) with effective length L(OM) approximately lambda= 1.5 microm.

  6. Single and Coupled Nanobeam Cavities

    DEFF Research Database (Denmark)

    Ivinskaya, Aliaksandra; Lavrinenko, Andrei; Shyroki, Dzmitry M.

    2013-01-01

    for analysis and design of photonic crystal devices, such as 2D ring resonators for filters, single and coupled nanobeam cavities, birefringence in photonic crystal cavities, threshold analysis in photonic crystal lasers, gap solitons in photonic crystals, novel photonic atolls, dynamic characteristics...

  7. Dynamic control of the asymmetric Fano resonance in side-coupled Fabry–Pérot and photonic crystal nanobeam cavities

    Energy Technology Data Exchange (ETDEWEB)

    Lin, Tong; Chau, Fook Siong; Zhou, Guangya, E-mail: mpezgy@nus.edu.sg [Department of Mechanical Engineering, National University of Singapore, 9 Engineering Drive 1, Singapore 117576 (Singapore); Deng, Jie [Institute of Materials Research and Engineering, A*STAR (Agency for Science, Technology and Research), 3 Research Link, Singapore 117602 (Singapore)

    2015-11-30

    Fano resonance is a prevailing interference phenomenon that stems from the intersection between discrete and continuum states in many fields. We theoretically and experimentally characterize the asymmetric Fano lineshape in side-coupled waveguide Fabry–Pérot and photonic crystal nanobeam cavities. The measured quality-factor of the Fano resonance before tuning is 28 100. A nanoelectromechanical systems bidirectional actuator is integrated seamlessly to control the shape of the Fano resonance through in-plane translations in two directions without sacrificing the quality-factor. The peak intensity level of the Fano resonance can be increased by 8.5 dB from 60 nW to 409 nW while the corresponding dip intensity is increased by 12.8 dB from 1 nW to 18 nW. The maximum recorded quality-factor throughout the tuning procedure is up to 32 500. Potential applications of the proposed structure include enhancing the sensitivity of sensing, reconfigurable nanophotonics devices, and on-chip intensity modulator.

  8. A Study of the interaction of radiation and semiconductor lasers: an analysis of transient and permanent effects induced on edge emitting and vertical cavity surface emitting laser diodes

    International Nuclear Information System (INIS)

    Pailharey, Eric

    2000-01-01

    The behavior of laser diodes under transient environment is presented in this work. The first section describes the basic phenomena of radiation interaction with matter. The radiative environments, the main characteristics of laser diodes and the research undertaken on the subject are presented and discussed. The tests on 1300 nm edge emitting laser diode are presented in the second section. The response to a transient ionizing excitation is explored using a 532 nm laser beam. The time of return to steady state after the perturbation is decomposed into several steps: decrease of the optical power during excitation, turn-on delay, relaxation oscillations and optical power offset. Their origins are analyzed using the device structure. To include all the phenomena in a numerical simulation of the device, an individual study of low conductivity materials used for the lateral confinement of the current density is undertaken. The effects of a single particle traversing the optical cavity and an analysis of permanent damages induced by neutrons are also determined. In the last section, 850 nm vertical cavity surface emitting laser diodes (VCSEL) are studied. The behavior of these devices which performances are in constant evolution, is investigated as a function of both temperature and polarization. Then VCSEL are submitted to transient ionizing irradiation and their responses are compared to those of edge emitting diodes. When proton implantation is used in the process, we observe the same behavior for both technologies. VCSEL were submitted to neutron fluence and we have studied the influence of the damages on threshold current, emission patterns and maximum of optical power. (author) [fr

  9. High sensitivity and high Q-factor nanoslotted parallel quadrabeam photonic crystal cavity for real-time and label-free sensing

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Daquan [Rowland Institute at Harvard University, Cambridge, Massachusetts 02142 (United States); State Key Laboratory of Information Photonics and Optical Communications, School of Information and Communication Engineering, Beijing University of Posts and Telecommunications, Beijing 100876 (China); School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02138 (United States); Kita, Shota; Wang, Cheng; Lončar, Marko [School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02138 (United States); Liang, Feng; Quan, Qimin [Rowland Institute at Harvard University, Cambridge, Massachusetts 02142 (United States); Tian, Huiping; Ji, Yuefeng [State Key Laboratory of Information Photonics and Optical Communications, School of Information and Communication Engineering, Beijing University of Posts and Telecommunications, Beijing 100876 (China)

    2014-08-11

    We experimentally demonstrate a label-free sensor based on nanoslotted parallel quadrabeam photonic crystal cavity (NPQC). The NPQC possesses both high sensitivity and high Q-factor. We achieved sensitivity (S) of 451 nm/refractive index unit and Q-factor >7000 in water at telecom wavelength range, featuring a sensor figure of merit >2000, an order of magnitude improvement over the previous photonic crystal sensors. In addition, we measured the streptavidin-biotin binding affinity and detected 10 ag/mL concentrated streptavidin in the phosphate buffered saline solution.

  10. Growth of high quality Bi2Sr2CaCu2Oy single crystals by the modified vertical Bridgman method

    International Nuclear Information System (INIS)

    Nagashima, O.; Tanaka, H.; Echizen, Y.; Kishida, S.

    2004-01-01

    We grew Bi 2 Sr 2 CaCu 2 O y (Bi-2212) single crystals by the modified vertical Bridgman (VB) method, and investigated their characteristics in order to clarify the optimum growth conditions for obtaining high-quality Bi-2212 single crystals. The Bi-2212 single crystals were grown changing pulling rates or using starting materials after pre-treatments. We found that the superconducting critical temperature (T c ) of the single crystal prepared at a slow growth rate of 0.25 mm/h was about 88 K and that the single crystals were a Bi-2212 single phase. Moreover, the single crystals grown using the starting materials pre-treated in Ar and O 2 atmospheres, had the T c of about 88 and 86 K, respectively. In addition, both of single crystals were Bi-2212 single phase

  11. Direct visualization of the in-plane leakage of high-order transverse modes in vertical-cavity surface-emitting lasers mediated by oxide-aperture engineering

    Science.gov (United States)

    Ledentsov, N.; Shchukin, V. A.; Kropp, J.-R.; Burger, S.; Schmidt, F.; Ledentsov, N. N.

    2016-03-01

    Oxide-confined apertures in vertical cavity surface emitting laser (VCSEL) can be engineered such that they promote leakage of the transverse optical modes from the non- oxidized core region to the selectively oxidized periphery of the device. The reason of the leakage is that the VCSEL modes in the core can be coupled to tilted modes in the periphery if the orthogonality between the core mode and the modes at the periphery is broken by the oxidation-induced optical field redistribution. Three-dimensional modeling of a practical VCSEL design reveals i) significantly stronger leakage losses for high-order transverse modes than that of the fundamental one as high-order modes have a higher field intensity close to the oxide layers and ii) narrow peaks in the far-field profile generated by the leaky component of the optical modes. Experimental 850-nm GaAlAs leaky VCSELs produced in the modeled design demonstrate i) single-mode lasing with the aperture diameters up to 5μm with side mode suppression ratio >20dB at the current density of 10kA/cm2; and ii) narrow peaks tilted at 37 degrees with respect to the vertical axis in excellent agreement with the modeling data and confirming the leaky nature of the modes and the proposed mechanism of mode selection. The results indicate that in- plane coupling of VCSELs, VCSELs and p-i-n photodiodes, VCSEL and delay lines is possible allowing novel photonic integrated circuits. We show that the approach enables design of oxide apertures, air-gap apertures, devices created by impurity-induced intermixing or any combinations of such designs through quantitative evaluation of the leaky emission.

  12. Characteristics evaluation of stilbene single crystal grown by vertical bridgman technique

    International Nuclear Information System (INIS)

    Jo, Kwang Ho

    2012-02-01

    As the nature of organic scintillator, stilbene single crystal's decay time is only a couple of nano seconds, which makes it suitable for fast neutron detection. However, the entire amount of stilbene single crystal being used relies on import currently. As the necessity of fast neutron detection equipment such as KSTAR and Sodium-cooled Fast Reactor system increases, the goal is to have our own domestic technology through the growth of stilbene single crystal. The emission wavelength of grown stilbene single crystal is confirmed, and the property of grown stilbene single crystal is assessed compared to commercial stilbene (Ukraine ISMA research center) through gamma ray and neutron tests. In this research, we have grown stilbenes through Bridgman technique, and obtained three stilbenes out of two amples. (Two ones of Φ 30 mm x 15 mm, and Φ 40 mm x 17 mm from the first ample, and size of Φ 25 mm x 13 mm from the other) The grown stilbene's emission wavelength and inherent property of stilbene are confirmed. As the result of gamma ray test, we have confirmed linearity of grown stilbene's scintillator, and the relative light yield ratio is proven 101% efficiency to reference stilbene. Neutron detection efficiency of the three stilbenes amounts to 80% of reference stilbene, and FOM of them is 108% efficiency to reference stilbene's one. Although Ukraine ISMA research center still holds a dominant position with world-class efficiency and performance of its stilbene, we expect to produce a better stilbene with our domestic technology development. Through this, fast neutron detection technique can be obtained, which opens up an opportunity to be used not only in neutron monitoring system in nuclear fusion reactor, but also in alternative measurement technique as the unit price of He-3 increases recently

  13. In situ crystallized zirconium phenylphosphonate films with crystals vertically to the substrate and their hydrophobic, dielectric, and anticorrosion properties.

    Science.gov (United States)

    Cui, Zhaohui; Zhang, Fazhi; Wang, Lei; Xu, Sailong; Guo, Xiaoxiao

    2010-01-05

    The in situ crystallization technique has been utilized to fabricate zirconium phenylphosphonate (ZrPP) films with their hexagonal crystallite perpendicular to the copper substrate. The micro/nano roughness surface structure, as well as the intrinsic hydrophobic characteristic of the surface functional groups, affords ZrPP films excellent hydrophobicity with water contact angle (CA) ranging from 134 degrees to 151 degrees , without any low-surface-energy modification. Particularly, in the corrosive solutions such as acidic or basic solutions over a wide pH from 2 to 12, no obvious fluctuation in CA was observed for all the ZrPP film. The k values of the hydrophobic ZrPP films are in the low-k range (k feature is proposed to bear ZrPP film a more stable low-k value in an ambient atmosphere. Besides, the polarization current of ZrPP films is reduced by 2 orders of magnitude, compared to that of the untreated copper substrate. Even deposited in a vacuum oven for 30 days at room temperature, ZrPP films also show excellent corrosion resistance, indicating a stable anticorrosion property.

  14. Continuous wave vertical cavity surface emitting lasers at 2.5 μm with InP-based type-II quantum wells

    International Nuclear Information System (INIS)

    Sprengel, S.; Andrejew, A.; Federer, F.; Veerabathran, G. K.; Boehm, G.; Amann, M.-C.

    2015-01-01

    A concept for electrically pumped vertical cavity surface emitting lasers (VCSEL) for emission wavelength beyond 2 μm is presented. This concept integrates type-II quantum wells into InP-based VCSELs with a buried tunnel junction as current aperture. The W-shaped quantum wells are based on the type-II band alignment between GaInAs and GaAsSb. The structure includes an epitaxial GaInAs/InP and an amorphous AlF 3 /ZnS distributed Bragg reflector as bottom and top (outcoupling) mirror, respectively. Continuous-wave operation up to 10 °C at a wavelength of 2.49 μm and a peak output power of 400 μW at −18 °C has been achieved. Single-mode emission with a side-mode suppression ratio of 30 dB for mesa diameters up to 14 μm is presented. The long emission wavelength and current tunability over a wavelength range of more than 5 nm combined with its single-mode operation makes this device ideally suited for spectroscopy applications

  15. Complex-enhanced chaotic signals with time-delay signature suppression based on vertical-cavity surface-emitting lasers subject to chaotic optical injection

    Science.gov (United States)

    Chen, Jianjun; Duan, Yingni; Zhong, Zhuqiang

    2018-03-01

    A chaotic system is constructed on the basis of vertical-cavity surface-emitting lasers (VCSELs), where a slave VCSEL subject to chaotic optical injection (COI) from a master VCSEL with the external feedback. The complex degree (CD) and time-delay signature (TDS) of chaotic signals generated by this chaotic system are investigated numerically via permutation entropy (PE) and self-correlation function (SF) methods, respectively. The results show that, compared with master VCSEL subject to optical feedback, complex-enhanced chaotic signals with TDS suppression can be achieved for S-VCSEL subject to COI. Meanwhile, the influences of several controllable parameters on the evolution maps of CD of chaotic signals are carefully considered. It is shown that the CD of chaotic signals for S-VCSEL is always higher than that for M-VCSEL due to the CIO effect. The TDS of chaotic signals can be significantly suppressed by choosing the reasonable parameters in this system. Furthermore, TDS suppression and high CD chaos can be obtained simultaneously in the specific parameter ranges. The results confirm that this chaotic system may effectively improve the security of a chaos-based communication scheme.

  16. Demonstration of a III-nitride vertical-cavity surface-emitting laser with a III-nitride tunnel junction intracavity contact

    International Nuclear Information System (INIS)

    Leonard, J. T.; Young, E. C.; Yonkee, B. P.; Cohen, D. A.; Margalith, T.; Speck, J. S.; DenBaars, S. P.; Nakamura, S.

    2015-01-01

    We report on a III-nitride vertical-cavity surface-emitting laser (VCSEL) with a III-nitride tunnel junction (TJ) intracavity contact. The violet nonpolar VCSEL employing the TJ is compared to an equivalent VCSEL with a tin-doped indium oxide (ITO) intracavity contact. The TJ VCSEL shows a threshold current density (J th ) of ∼3.5 kA/cm 2 , compared to the ITO VCSEL J th of 8 kA/cm 2 . The differential efficiency of the TJ VCSEL is also observed to be significantly higher than that of the ITO VCSEL, reaching a peak power of ∼550 μW, compared to ∼80 μW for the ITO VCSEL. Both VCSELs display filamentary lasing in the current aperture, which we believe to be predominantly a result of local variations in contact resistance, which may induce local variations in refractive index and free carrier absorption. Beyond the analyses of the lasing characteristics, we discuss the molecular-beam epitaxy (MBE) regrowth of the TJ, as well as its unexpected performance based on band-diagram simulations. Furthermore, we investigate the intrinsic advantages of using a TJ intracavity contact in a VCSEL using a 1D mode profile analysis to approximate the threshold modal gain and general loss contributions in the TJ and ITO VCSEL

  17. Demonstration of a III-nitride vertical-cavity surface-emitting laser with a III-nitride tunnel junction intracavity contact

    Energy Technology Data Exchange (ETDEWEB)

    Leonard, J. T., E-mail: jtleona01@gmail.com; Young, E. C.; Yonkee, B. P.; Cohen, D. A.; Margalith, T.; Speck, J. S. [Materials Department, University of California, Santa Barbara, California 93106 (United States); DenBaars, S. P.; Nakamura, S. [Materials Department, University of California, Santa Barbara, California 93106 (United States); Department of Electrical and Computer Engineering, University of California, Santa Barbara, California 93106 (United States)

    2015-08-31

    We report on a III-nitride vertical-cavity surface-emitting laser (VCSEL) with a III-nitride tunnel junction (TJ) intracavity contact. The violet nonpolar VCSEL employing the TJ is compared to an equivalent VCSEL with a tin-doped indium oxide (ITO) intracavity contact. The TJ VCSEL shows a threshold current density (J{sub th}) of ∼3.5 kA/cm{sup 2}, compared to the ITO VCSEL J{sub th} of 8 kA/cm{sup 2}. The differential efficiency of the TJ VCSEL is also observed to be significantly higher than that of the ITO VCSEL, reaching a peak power of ∼550 μW, compared to ∼80 μW for the ITO VCSEL. Both VCSELs display filamentary lasing in the current aperture, which we believe to be predominantly a result of local variations in contact resistance, which may induce local variations in refractive index and free carrier absorption. Beyond the analyses of the lasing characteristics, we discuss the molecular-beam epitaxy (MBE) regrowth of the TJ, as well as its unexpected performance based on band-diagram simulations. Furthermore, we investigate the intrinsic advantages of using a TJ intracavity contact in a VCSEL using a 1D mode profile analysis to approximate the threshold modal gain and general loss contributions in the TJ and ITO VCSEL.

  18. An iterative model for the steady state current distribution in oxide-confined vertical-cavity surface-emitting lasers (VCSELs)

    Science.gov (United States)

    Chuang, Hsueh-Hua

    The purpose of this dissertation is to develop an iterative model for the analysis of the current distribution in vertical-cavity surface-emitting lasers (VCSELs) using a circuit network modeling approach. This iterative model divides the VCSEL structure into numerous annular elements and uses a circuit network consisting of resistors and diodes. The measured sheet resistance of the p-distributed Bragg reflector (DBR), the measured sheet resistance of the layers under the oxide layer, and two empirical adjustable parameters are used as inputs to the iterative model to determine the resistance of each resistor. The two empirical values are related to the anisotropy of the resistivity of the p-DBR structure. The spontaneous current, stimulated current, and surface recombination current are accounted for by the diodes. The lateral carrier transport in the quantum well region is analyzed using drift and diffusion currents. The optical gain is calculated as a function of wavelength and carrier density from fundamental principles. The predicted threshold current densities for these VCSELs match the experimentally measured current densities over the wavelength range of 0.83 mum to 0.86 mum with an error of less than 5%. This model includes the effects of the resistance of the p-DBR mirrors, the oxide current-confining layer and spatial hole burning. Our model shows that higher sheet resistance under the oxide layer reduces the threshold current, but also reduces the current range over which single transverse mode operation occurs. The spatial hole burning profile depends on the lateral drift and diffusion of carriers in the quantum wells but is dominated by the voltage drop across the p-DBR region. To my knowledge, for the first time, the drift current and the diffusion current are treated separately. Previous work uses an ambipolar approach, which underestimates the total charge transferred in the quantum well region, especially under the oxide region. However, the total

  19. Vertical Magnetic Levitation Force Measurement on Single Crystal YBaCuO Bulk at Different Temperatures

    Science.gov (United States)

    Celik, Sukru; Guner, Sait Baris; Ozturk, Kemal; Ozturk, Ozgur

    Magnetic levitation force measurements of HTS samples are performed with the use of liquid nitrogen. It is both convenient and cheap. However, the temperature of the sample cannot be changed (77 K) and there is problem of frost. So, it is necessary to build another type of system to measure the levitation force high Tc superconductor at different temperatures. In this study, we fabricated YBaCuO superconducting by top-seeding-melting-growth (TSMG) technique and measured vertical forces of them at FC (Field Cooling) and ZFC (Zero Field Cooling) regimes by using our new designed magnetic levitation force measurement system. It was used to investigate the three-dimensional levitation force and lateral force in the levitation system consisting of a cylindrical magnet and a permanent cylindrical superconductor at different temperatures (37, 47, 57, 67 and 77 K).

  20. Vectorial analysis of dielectric photonic crystal VCSEL

    DEFF Research Database (Denmark)

    Chung, Il-Sug; Mørk, Jesper

    2009-01-01

    A new vertical-cavity surface-emitting laser structure employing a dielectric photonic crystal mirror has been suggested and been numerically investigated. The new structure has a smaller threshold gain, a moderate strength of single-transverse-mode operation, a high quality of emission beam free...

  1. Improvement in device performance from a mixture of a liquid crystal and photosensitive acrylic prepolymer with the photoinduced vertical alignment method

    Directory of Open Access Journals (Sweden)

    Czung-Yu Ho, Fa-Hsin Lin, Yu-Tai Tao and Jiunn-Yih Lee

    2011-01-01

    Full Text Available In a multicomponent nematic liquid crystal (NLC mixture of a liquid crystal (negative-type NLC and a photosensitive acrylic prepolymer, photopolymerization upon UV irradiation induces the separation of the LC and photosensitive acrylic prepolymer layers, thereby leading to a vertical arrangement of LC molecules. In this study, we propose a simple vertical alignment method for LC molecules, by adding a chiral smectic A (SmA* liquid crystal having homeotropic texture characteristics to an NLC mixture solution. Measurements of electro-optical properties revealed that the addition of the SmA* LC not only strengthened the anchoring force of the copolymer alignment film surface, but also significantly enhanced the contrast ratio (~73%, response time and grayscale switching performance of the device.

  2. Crystalline perfection and mechanical investigations on vertical Bridgman grown Bismuth telluride (Bi{sub 2}Te{sub 3}) single crystals for thermoelectric applications

    Energy Technology Data Exchange (ETDEWEB)

    Krishna, Anuj [Academy of Scientific and Innovative Research, CSIR- National Physical Laboratory, New Delhi 110012 (India); X-ray Analysis and Crystal Growth Section, CSIR-National Physical Laboratory, Dr. K.S. Krishnan Road, New Delhi 110012 (India); Vijayan, N., E-mail: nvijayan@nplindia.org [X-ray Analysis and Crystal Growth Section, CSIR-National Physical Laboratory, Dr. K.S. Krishnan Road, New Delhi 110012 (India); Singh, Budhendra [TEMA-NRD, Mechanical Engineering Department and Aveiro Institute of Nanotechnology (AIN), University of Aveiro, 3810-193 Aveiro (Portugal); Thukral, Kanika [Academy of Scientific and Innovative Research, CSIR- National Physical Laboratory, New Delhi 110012 (India); X-ray Analysis and Crystal Growth Section, CSIR-National Physical Laboratory, Dr. K.S. Krishnan Road, New Delhi 110012 (India); Maurya, K.K. [X-ray Analysis and Crystal Growth Section, CSIR-National Physical Laboratory, Dr. K.S. Krishnan Road, New Delhi 110012 (India)

    2016-03-07

    High efficiency thermoelectric materials plays a vital role in power generation and refrigeration applications. Bismuth telluride (Bi{sub 2}Te{sub 3}) is one among them. In the present work single crystal of bismuth telluride was grown using vertical Bridgman technique. The phase of grown crystals was analysed using a powder X-ray diffractometer. Quality of the grown crystal was assessed by using high resolution X-ray diffractometer and observed that it is fairly good. Further mechanical investigations on grown crystal was carried out using nano-indentation technique and various mechanical properties like hardness, stiffness and Young’s modulus were evaluated. Observed results clearly indicate its suitability for thermoelectric applications.

  3. Enhancement of slope efficiency and output power in GaN-based vertical-cavity surface-emitting lasers with a SiO2-buried lateral index guide

    Science.gov (United States)

    Kuramoto, Masaru; Kobayashi, Seiichiro; Akagi, Takanobu; Tazawa, Komei; Tanaka, Kazufumi; Saito, Tatsuma; Takeuchi, Tetsuya

    2018-03-01

    We have achieved a high output power of 6 mW from a 441 nm GaN-based vertical-cavity surface-emitting laser (VCSEL) under continuous wave (CW) operation, by reducing both the internal loss and the reflectivity of the front cavity mirror. A preliminary analysis of the internal loss revealed an enormously high transverse radiation loss in a conventional GaN-based VCSEL without lateral optical confinement (LOC). Introducing an LOC structure enhanced the slope efficiency by a factor of 4.7, with a further improvement to a factor of 6.7 upon reducing the front mirror reflectivity. The result was a slope efficiency of 0.87 W/A and an external differential quantum efficiency of 32% under pulsed operation. A flip-chip-bonded VCSEL also exhibited a high slope efficiency of 0.64 W/A and an external differential quantum efficiency of 23% for the front-side output under CW operation. The reflectivity of the cavity mirror was adjusted by varying the number of AlInN/GaN distributed Bragg reflector pairs from 46 to 42, corresponding to reflectivity values from 99.8% to 99.5%. These results demonstrate that a combination of internal loss reduction and cavity mirror control is a very effective way of obtaining a high output GaN-based VCSEL.

  4. Tunable waveguide and cavity in a phononic crystal plate by controlling whispering-gallery modes in hollow pillars

    DEFF Research Database (Denmark)

    Jin, Yabin; Fernez, Nicolas; Pennec, Yan

    2016-01-01

    We investigate the properties of a phononic crystal plate with hollow pillars and introduce the existence of whispering-gallery modes (WGMs). We show that by tuning the inner radius of the hollow pillar, these modes can merge inside both Bragg and low frequency band gaps, deserving phononic crystal...... and acoustic metamaterial applications. These modes can be used as narrow pass bands for which the quality factor can be greatly enhanced by the introduction of an additional cylinder between the hollow cylinder and the plate. We discuss some functionalities of these confined WGM in both Bragg and low...

  5. A new crystal form of human tear lipocalin reveals high flexibility in the loop region and induced fit in the ligand cavity

    International Nuclear Information System (INIS)

    Breustedt, Daniel A.; Chatwell, Lorenz; Skerra, Arne

    2009-01-01

    The crystal structure of tear lipocalin determined in space group P2 1 revealed large structural deviations from the previously solved X-ray structure in space group C2, especially in the loop region and adjoining parts of the β-barrel which give rise to the ligand-binding site. These findings illustrate a novel mechanism for promiscuity in ligand recognition by the lipocalin protein family. Tear lipocalin (TLC) with the bound artificial ligand 1,4-butanediol has been crystallized in space group P2 1 with four protein molecules in the asymmetric unit and its X-ray structure has been solved at 2.6 Å resolution. TLC is a member of the lipocalin family that binds ligands with diverse chemical structures, such as fatty acids, phospholipids and cholesterol as well as microbial siderophores and the antibiotic rifampin. Previous X-ray structural analysis of apo TLC crystallized in space group C2 revealed a rather large bifurcated ligand pocket and a partially disordered loop region at the entrace to the cavity. Analysis of the P2 1 crystal form uncovered major conformational changes (i) in β-strands B, C and D, (ii) in loops 1, 2 and 4 at the open end of the β-barrel and (iii) in the extended C-terminal segment, which is attached to the β-barrel via a disulfide bridge. The structural comparison indicates high conformational plasticity of the loop region as well as of deeper parts of the ligand pocket, thus allowing adaptation to ligands that differ vastly in size and shape. This illustrates a mechanism for promiscuity in ligand recognition which may also be relevant for some other physiologically important members of the lipocalin protein family

  6. Short-cavity DBR laser using an InP/InGaAsP deep-ridge waveguide with vertical-groove gratings

    NARCIS (Netherlands)

    Segawa, T.; Docter, B.; Kakitsuka, T.; Matsuo, S.; Ishii, T.; Kawaguchi, Y.; Kondo, Y.; Karouta, F.; Smit, M.K.; Suzuki, H.

    2007-01-01

    A compact distributed Bragg reflector (DBR) laser was fabricated using an InP/InGaAsP deep-ridge waveguide with vertical-groove gratings. We achieved stable single-mode laser operation with an active length of only 25-µm with low threshold current.

  7. Development of superconducting cavities at JAERI

    International Nuclear Information System (INIS)

    Ouchi, N.

    2001-01-01

    Development of superconducting (SC) cavities is continued for the high intensity proton accelerator in JAERI. In FY-1999, we carried out R and D work; (1) 2nd vertical test of β=0.886 single-cell cavity, (2) vertical test for observation of Q-disease without heat treatment after electropolishing, (3) vertical test of β=0.5 5-cell cavity, (4) pretuning, surface treatment and vertical test of β=0.886 5-cell cavity, (5) pulsed operation of β=0.886 single-cell cavity in the vertical test to confirm the validity of a new model calculation. This paper describes the present status of the R and D work for the SC cavities in JAERI. (author)

  8. Anion binding in the C3v-symmetric cavity of a protonated tripodal amine receptor: potentiometric and single crystal X-ray studies.

    Science.gov (United States)

    Bose, Purnandhu; Ravikumar, I; Ghosh, Pradyut

    2011-11-07

    Tris(2-aminoethyl)amine (tren) based pentafluorophenyl-substituted tripodal L, tris[[(2,3,4,5,6-pentafluorobenzyl)amino]ethyl]amine receptor is synthesized in good yield and characterized by single crystal X-ray diffraction analysis. Detailed structural aspects of binding of different anionic guests toward L in its triprotonated form are examined thoroughly. Crystallographic results show binding of fluoride in the C(3v)-symmetric cavity of [H(3)L](3+) where spherical anion fluoride is in tricoordinated geometry via (N-H)(+)···F interaction in the complex [H(3)L(F)]·[F](2)·2H(2)O, (3). In the case of complexes [H(3)L(OTs)]·[OTs](2), (4) and [H(3)L(OTs)]·[NO(3)]·[OTs], (5), tetrahedral p-toluenesulphonate ion is engulfed in the cavity of [H(3)L](3+) via (N-H)(+)···O interactions. Interestingly, complex [(H(3)L)(2)(SiF(6))]·[BF(4)](4)·CH(3)OH·H(2)O, (6) shows encapsulation of octahedral hexafluorosilicate in the dimeric capsular assembly of two [H(3)L](3+) units, via a number of (N-H)(+)···F interactions. The kinetic parameters of L upon binding with different anions are evaluated using a potentiometric study in solution state. The potentiometric titration experiments in a polar protic methanol/water (1:1 v/v) binary solvent system show high affinity of the receptor toward more basic fluoride and acetate anions, with a lesser affinity for other inorganic anions (e.g., chloride, bromide, nitrate, sulfate, dihydrogenphosphate, and p-toluenesulphonate). © 2011 American Chemical Society

  9. Comparison of Sn-doped and nonstoichiometric vertical-Bridgman-grown crystals of the topological insulator Bi{sub 2}Te{sub 2}Se

    Energy Technology Data Exchange (ETDEWEB)

    Kushwaha, S. K., E-mail: kushwaha@princeton.edu; Gibson, Q. D.; Cava, R. J. [Department of Chemistry, Princeton University, Princeton, New Jersey 08544 (United States); Xiong, J.; Ong, N. P. [Department of Physics, Princeton University, Princeton, New Jersey 08544 (United States); Pletikosic, I. [Department of Physics, Princeton University, Princeton, New Jersey 08544 (United States); Condensed Matter Physics and Materials Science Department, Brookhaven National Lab, Upton, New York 11973 (United States); Weber, A. P. [National Synchrotron Light Source, Brookhaven National Lab, Upton, New York 11973 (United States); Fedorov, A. V. [Advanced Light Source, Lawrence Berkeley National Laboratory, Berkeley, California 94720 (United States); Valla, T. [Condensed Matter Physics and Materials Science Department, Brookhaven National Lab, Upton, New York 11973 (United States)

    2014-04-14

    A comparative study of the properties of topological insulator Bi{sub 2}Te{sub 2}Se (BTS) crystals grown by the vertical Bridgeman method is described. Two defect mechanisms that create acceptor impurities to compensate for the native n-type carriers are compared: Bi excess, and light Sn doping. Both methods yield low carrier concentrations and an n-p crossover over the length of the grown crystal boules, but lower carrier concentrations and higher resistivities are obtained for the Sn-doped crystals, which reach carrier concentrations as low as 8 × 10{sup 14} cm{sup −3}. Further, the temperature dependent resistivities for the Sn-doped crystals display strongly activated behavior at high temperatures, with a characteristic energy of half the bulk band gap. The (001) cleaved Sn-doped BTS crystals display high quality Shubnikov de Haas (SdH) quantum oscillations due to the topological surface state electrons. Angle resolved photoelectron spectroscopy (ARPES) characterization shows that the Fermi energy (E{sub F}) for the Sn-doped crystals falls cleanly in the surface states with no interference from the bulk bands, which the Dirac point for the surface states lies approximately 60 meV below the top of the bulk valence band maximum, and allows for a determination of the bulk and surface state carrier concentrations as a function of Energy near E{sub F}. Electronic structure calculations that compare Bi excess and Sn dopants in BTS demonstrate that Sn acts as a special impurity, with a localized impurity band that acts as a charge buffer occurring inside the bulk band gap. We propose that the special resonant level character of Sn in BTS gives rise to the exceptionally low carrier concentrations and activated resistivities observed.

  10. Comparison of Sn-doped and nonstoichiometric vertical-Bridgman-grown crystals of the topological insulator Bi2Te2Se

    International Nuclear Information System (INIS)

    Kushwaha, S. K.; Gibson, Q. D.; Cava, R. J.; Xiong, J.; Ong, N. P.; Pletikosic, I.; Weber, A. P.; Fedorov, A. V.; Valla, T.

    2014-01-01

    A comparative study of the properties of topological insulator Bi 2 Te 2 Se (BTS) crystals grown by the vertical Bridgeman method is described. Two defect mechanisms that create acceptor impurities to compensate for the native n-type carriers are compared: Bi excess, and light Sn doping. Both methods yield low carrier concentrations and an n-p crossover over the length of the grown crystal boules, but lower carrier concentrations and higher resistivities are obtained for the Sn-doped crystals, which reach carrier concentrations as low as 8 × 10 14  cm −3 . Further, the temperature dependent resistivities for the Sn-doped crystals display strongly activated behavior at high temperatures, with a characteristic energy of half the bulk band gap. The (001) cleaved Sn-doped BTS crystals display high quality Shubnikov de Haas (SdH) quantum oscillations due to the topological surface state electrons. Angle resolved photoelectron spectroscopy (ARPES) characterization shows that the Fermi energy (E F ) for the Sn-doped crystals falls cleanly in the surface states with no interference from the bulk bands, which the Dirac point for the surface states lies approximately 60 meV below the top of the bulk valence band maximum, and allows for a determination of the bulk and surface state carrier concentrations as a function of Energy near E F . Electronic structure calculations that compare Bi excess and Sn dopants in BTS demonstrate that Sn acts as a special impurity, with a localized impurity band that acts as a charge buffer occurring inside the bulk band gap. We propose that the special resonant level character of Sn in BTS gives rise to the exceptionally low carrier concentrations and activated resistivities observed

  11. Swept-source optical coherence tomography powered by a 1.3-μm vertical cavity surface emitting laser enables 2.3-mm-deep brain imaging in mice in vivo

    Science.gov (United States)

    Choi, Woo June; Wang, Ruikang K.

    2015-10-01

    We report noninvasive, in vivo optical imaging deep within a mouse brain by swept-source optical coherence tomography (SS-OCT), enabled by a 1.3-μm vertical cavity surface emitting laser (VCSEL). VCSEL SS-OCT offers a constant signal sensitivity of 105 dB throughout an entire depth of 4.25 mm in air, ensuring an extended usable imaging depth range of more than 2 mm in turbid biological tissue. Using this approach, we show deep brain imaging in mice with an open-skull cranial window preparation, revealing intact mouse brain anatomy from the superficial cerebral cortex to the deep hippocampus. VCSEL SS-OCT would be applicable to small animal studies for the investigation of deep tissue compartments in living brains where diseases such as dementia and tumor can take their toll.

  12. Fabrication and Characterization of Vertically Aligned ZnO Nanorod Arrays via Inverted Monolayer Colloidal Crystals Mask

    Science.gov (United States)

    Chen, Cheng; Ding, Taotao; Qi, Zhiqiang; Zhang, Wei; Zhang, Jun; Xu, Juan; Chen, Jingwen; Dai, Jiangnan; Chen, Changqing

    2018-04-01

    The periodically ordered ZnO nanorod (NR) arrays have been successfully synthesized via a hydrothermal approach on the silicon substrates by templating of the TiO2 ring deriving from the polystyrene (PS) nanosphere monolayer colloidal crystals (MCC). With the inverted MCC mask, sol-gel-derived ZnO seeds could serve as the periodic nucleation positions for the site-specific growth of ZnO NRs. The large-scale patterned arrays of single ZnO NR with good side-orientation can be readily produced. According to the experimental results, the as-integrated ZnO NR arrays showed an excellent crystal quality and optical property, very suitable for optoelectronic applications such as stimulated emitters and ZnO photonic crystal devices.

  13. crystal

    Science.gov (United States)

    Yu, Yi; Huang, Yisheng; Zhang, Lizhen; Lin, Zhoubin; Sun, Shijia; Wang, Guofu

    2014-07-01

    A Nd3+:Na2La4(WO4)7 crystal with dimensions of ϕ 17 × 30 mm3 was grown by the Czochralski method. The thermal expansion coefficients of Nd3+:Na2La4(WO4)7 crystal are 1.32 × 10-5 K-1 along c-axis and 1.23 × 10-5 K-1 along a-axis, respectively. The spectroscopic characteristics of Nd3+:Na2La4(WO4)7 crystal were investigated. The Judd-Ofelt theory was applied to calculate the spectral parameters. The absorption cross sections at 805 nm are 2.17 × 10-20 cm2 with a full width at half maximum (FWHM) of 15 nm for π-polarization, and 2.29 × 10-20 cm2 with a FWHM of 14 nm for σ-polarization. The emission cross sections are 3.19 × 10-20 cm2 for σ-polarization and 2.67 × 10-20 cm2 for π-polarization at 1,064 nm. The fluorescence quantum efficiency is 67 %. The quasi-cw laser of Nd3+:Na2La4(WO4)7 crystal was performed. The maximum output power is 80 mW. The slope efficiency is 7.12 %. The results suggest Nd3+:Na2La4(WO4)7 crystal as a promising laser crystal fit for laser diode pumping.

  14. Dental cavities

    Science.gov (United States)

    ... this page: //medlineplus.gov/ency/article/001055.htm Dental cavities To use the sharing features on this page, please enable JavaScript. Dental cavities are holes (or structural damage) in the ...

  15. Fast-Response Photonic Device Based on Organic-Crystal Heterojunctions Assembled into a Vertical-Yet-Open Asymmetric Architecture.

    Science.gov (United States)

    Zhang, Lei; Pavlica, Egon; Zhong, Xiaolan; Liscio, Fabiola; Li, Songlin; Bratina, Gvido; Orgiu, Emanuele; Samorì, Paolo

    2017-03-01

    Crystalline dioctyl-3,4,9,10-perylenedicarboximide nanowires and 6,13-bis(triisopropylsilylethynyl) pentacene microplates are integrated into a vertical-yet-open asymmetrical heterojunction for the realization of a high-performance organic photovoltaic detector, which shows fast photoresponse, ultrahigh signal-to-noise ratio, and high sensitivity to weak light. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Measuring the Dispersion in Laser Cavity Mirrors using White-Light Interferometry

    Science.gov (United States)

    2008-03-01

    mirrors. Two AlGaInP (aluminum gallium indium phosphide ) diode lasers are aligned such that one is polarized vertically while one is polarized...linear crystals, where the index of refraction depends on beam intensity. Short pulses with high peak intensities are well 14 suited to induce the...MEASURING THE DISPERSION OF LASER CAVITY MIRRORS USING WHITE-LIGHT INTERFEROMETRY THESIS Allison S

  17. Source of ultra-short laser pulses at 1,55μm in vertical-external-cavity for linear optical sampling applications

    International Nuclear Information System (INIS)

    Khadour, A.

    2009-12-01

    The objectives of this thesis were, in a first step, to develop and implement VECSEL structures containing an active zone formed by GaAlInAs/InP quantum wells located at the anti-nodes of the resonant electric field, positioned on a Bragg mirror, all this being bonded to a substrate of good thermal conductivity. For this, we have designed structures optimizing the evacuation of heat generated in the active zone. This has greatly improved the VECSEL performances, especially their output power. The VECSEL performances were evaluated in a simple cavity with two mirrors (plane-concave). The second point was to develop and implement SESAM structures which, owing to their nonlinear characteristics, would allow a passively mode-locked laser operation. The structures contained InGaAsN/GaAs quantum wells. The studied parameters were the number of quantum wells, and the resonant or anti-resonant behavior of the structure. The linear and nonlinear optical characterizations were used to optimize the SESAM structure and estimate their performances. Finally, the compatibility between the VECSEL and SESAM structures, in terms of modulation depth and resonance wavelength, made it possible to obtain the passive mode locking operation. The obtained pulses show two different behaviors depending on the dispersion properties of the structures. With low dispersion, we have made the first demonstration of a passively mode-locked VECSEL at 1550 nm, operating at room temperature. An all-optical sampling device implementing the linear optical sampling technique using short laser pulses has been realized and tested. This device will allow displaying eye diagrams and constellation diagrams with an expected sensitivity around -20 dBm of average power. Testing the device allowed to visualize the acquisition of very high repetition rate signals (40 Gb/s). (author)

  18. Fabrication, measurement and tuning of a photonic crystal H1-cavity in deeply etched InP/InGaAsP/InP

    NARCIS (Netherlands)

    Kicken, H.H.J.E.; Barbu, I.; Gabriels, J.; Heijden, van der R.W.; Nötzel, R.; Karouta, F.; Salemink, H.W.M.; Drift, van der E.W.J.M.

    2008-01-01

    A point defect cavity (H1) was fabricated by deep etching in the InP/InGaAsP/InP system. The optical properties of the devices were experimentally investigated by transmission spectroscopy yielding a Q-factor of ~65. The resonance frequency of the defect cavity was shifted, by infiltrating the

  19. Monomial Crystals and Partition Crystals

    Science.gov (United States)

    Tingley, Peter

    2010-04-01

    Recently Fayers introduced a large family of combinatorial realizations of the fundamental crystal B(Λ0) for ^sln, where the vertices are indexed by certain partitions. He showed that special cases of this construction agree with the Misra-Miwa realization and with Berg's ladder crystal. Here we show that another special case is naturally isomorphic to a realization using Nakajima's monomial crystal.

  20. Metasurface external cavity laser

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Luyao, E-mail: luyaoxu.ee@ucla.edu; Curwen, Christopher A.; Williams, Benjamin S. [Department of Electrical Engineering, University of California, Los Angeles, California 90095 (United States); California NanoSystems Institute, University of California, Los Angeles, California 90095 (United States); Hon, Philip W. C.; Itoh, Tatsuo [Department of Electrical Engineering, University of California, Los Angeles, California 90095 (United States); Chen, Qi-Sheng [Northrop Grumman Aerospace Systems, Redondo Beach, California 90278 (United States)

    2015-11-30

    A vertical-external-cavity surface-emitting-laser is demonstrated in the terahertz range, which is based upon an amplifying metasurface reflector composed of a sub-wavelength array of antenna-coupled quantum-cascade sub-cavities. Lasing is possible when the metasurface reflector is placed into a low-loss external cavity such that the external cavity—not the sub-cavities—determines the beam properties. A near-Gaussian beam of 4.3° × 5.1° divergence is observed and an output power level >5 mW is achieved. The polarized response of the metasurface allows the use of a wire-grid polarizer as an output coupler that is continuously tunable.

  1. Single-photon emission at a rate of 143 MHz from a deterministic quantum-dot microlens triggered by a mode-locked vertical-external-cavity surface-emitting laser

    Energy Technology Data Exchange (ETDEWEB)

    Schlehahn, A.; Gschrey, M.; Schnauber, P.; Schulze, J.-H.; Rodt, S.; Strittmatter, A.; Heindel, T., E-mail: tobias.heindel@tu-berlin.de; Reitzenstein, S. [Institut für Festkörperphysik, Technische Universität Berlin, Berlin 10623 (Germany); Gaafar, M.; Vaupel, M.; Stolz, W.; Rahimi-Iman, A.; Koch, M. [Department of Physics and Materials Science Center, Philipps-Universität Marburg, 35032 Marburg (Germany)

    2015-07-27

    We report on the realization of a quantum dot (QD) based single-photon source with a record-high single-photon emission rate. The quantum light source consists of an InGaAs QD which is deterministically integrated within a monolithic microlens with a distributed Bragg reflector as back-side mirror, which is triggered using the frequency-doubled emission of a mode-locked vertical-external-cavity surface-emitting laser (ML-VECSEL). The utilized compact and stable laser system allows us to excite the single-QD microlens at a wavelength of 508 nm with a pulse repetition rate close to 500 MHz at a pulse width of 4.2 ps. Probing the photon statistics of the emission from a single QD state at saturation, we demonstrate single-photon emission of the QD-microlens chip with g{sup (2)}(0) < 0.03 at a record-high single-photon flux of (143 ± 16) MHz collected by the first lens of the detection system. Our approach is fully compatible with resonant excitation schemes using wavelength tunable ML-VECSELs, which will optimize the quantum optical properties of the single-photon emission in terms of photon indistinguishability.

  2. Systematic characterization of a 1550 nm microelectromechanical (MEMS)-tunable vertical-cavity surface-emitting laser (VCSEL) with 7.92 THz tuning range for terahertz photomixing systems

    Science.gov (United States)

    Haidar, M. T.; Preu, S.; Cesar, J.; Paul, S.; Hajo, A. S.; Neumeyr, C.; Maune, H.; Küppers, F.

    2018-01-01

    Continuous-wave (CW) terahertz (THz) photomixing requires compact, widely tunable, mode-hop-free driving lasers. We present a single-mode microelectromechanical system (MEMS)-tunable vertical-cavity surface-emitting laser (VCSEL) featuring an electrothermal tuning range of 64 nm (7.92 THz) that exceeds the tuning range of commercially available distributed-feedback laser (DFB) diodes (˜4.8 nm) by a factor of about 13. We first review the underlying theory and perform a systematic characterization of the MEMS-VCSEL, with particular focus on the parameters relevant for THz photomixing. These parameters include mode-hop-free CW tuning with a side-mode-suppression-ratio >50 dB, a linewidth as narrow as 46.1 MHz, and wavelength and polarization stability. We conclude with a demonstration of a CW THz photomixing setup by subjecting the MEMS-VCSEL to optical beating with a DFB diode driving commercial photomixers. The achievable THz bandwidth is limited only by the employed photomixers. Once improved photomixers become available, electrothermally actuated MEMS-VCSELs should allow for a tuning range covering almost the whole THz domain with a single system.

  3. Burgers Vector Analysis of Vertical Dislocations in Ge Crystals by Large-Angle Convergent Beam Electron Diffraction.

    Science.gov (United States)

    Groiss, Heiko; Glaser, Martin; Marzegalli, Anna; Isa, Fabio; Isella, Giovanni; Miglio, Leo; Schäffler, Friedrich

    2015-06-01

    By transmission electron microscopy with extended Burgers vector analyses, we demonstrate the edge and screw character of vertical dislocations (VDs) in novel SiGe heterostructures. The investigated pillar-shaped Ge epilayers on prepatterned Si(001) substrates are an attempt to avoid the high defect densities of lattice mismatched heteroepitaxy. The Ge pillars are almost completely strain-relaxed and essentially defect-free, except for the rather unexpected VDs. We investigated both pillar-shaped and unstructured Ge epilayers grown either by molecular beam epitaxy or by chemical vapor deposition to derive a general picture of the underlying dislocation mechanisms. For the Burgers vector analysis we used a combination of dark field imaging and large-angle convergent beam electron diffraction (LACBED). With LACBED simulations we identify ideally suited zeroth and second order Laue zone Bragg lines for an unambiguous determination of the three-dimensional Burgers vectors. By analyzing dislocation reactions we confirm the origin of the observed types of VDs, which can be efficiently distinguished by LACBED. The screw type VDs are formed by a reaction of perfect 60° dislocations, whereas the edge types are sessile dislocations that can be formed by cross-slips and climbing processes. The understanding of these origins allows us to suggest strategies to avoid VDs.

  4. Modal gain and confinement factors in top- and bottom-emitting photonic-crystal VCSEL

    International Nuclear Information System (INIS)

    Czyszanowski, T; Thienpont, H; Panajotov, K; Dems, M

    2008-01-01

    We investigate the modal characteristics of a phosphide photonic-crystal vertical-cavity surface-emitting diode laser (VCSEL) by using the three-dimensional, full vectorial plane wave admittance method. A single-defect, photonic crystal is defined as a regular, hexagonal net of holes with varying depths. The modal gain and confinement factors are compared for two VCSEL structures: with emission either through the DBR with the photonic crystal or through the DBR free of photonic crystal. Significant improvement in the beam quality is demonstrated for the second design

  5. accelerating cavity

    CERN Multimedia

    On the inside of the cavity there is a layer of niobium. Operating at 4.2 degrees above absolute zero, the niobium is superconducting and carries an accelerating field of 6 million volts per metre with negligible losses. Each cavity has a surface of 6 m2. The niobium layer is only 1.2 microns thick, ten times thinner than a hair. Such a large area had never been coated to such a high accuracy. A speck of dust could ruin the performance of the whole cavity so the work had to be done in an extremely clean environment.

  6. Fiscal 1974 Sunshine Project result report. R and D on photovoltaic power generation system (R and D on Si ribbon crystal vertical pulling method); 1974 nendo taiyoko hatsuden system no kenkyu kaihatsu seika hokokusho. Silicon tatehiki ribbon kessho no kenkyu kaihatsu

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1975-05-30

    This research includes (1) basic study on Si ribbon crystal vertical pulling method, (2) basic design of continuous Si ribbon crystal vertical pulling mechanism, (3) basic study on vertically pulled Si ribbon crystal, (4) study on capillary materials for capillary crystal pulling method, and (5) basic study on AlAs-GaAs system compound semiconductors. In the 1st research, for Si ribbon crystal vertical pulling growth, the ribbon crystal pulling equipment was prepared and modified, and Si crystals were obtained by capillary and web methods. In the 2nd research, for development of Si ribbon crystal vertical pulling growth technology, study was made on the simple energy-saving resource-saving continuous automatic production process. In the 3rd research, measurement was made on various characteristics of ribbon crystals. In the 4th research, study was made on requirements of capillary materials from the viewpoint of capillary growth mechanism. In the 5th research, basic technology for solar cell production was established through growth experiments of AlAs-GaAs mixed crystals and multiple epitaxial crystal layers. (NEDO)

  7. Pb{sub 1–x}Eu{sub x}Te alloys (0 ⩽ x ⩽ 1) as materials for vertical-cavity surface-emitting lasers in the mid-infrared spectral range of 4–5 μm

    Energy Technology Data Exchange (ETDEWEB)

    Pashkeev, D. A., E-mail: d.pashkeev@gmail.com; Selivanov, Yu. G.; Chizhevskii, E. G.; Zasavitskiy, I. I. [Russian Academy of Sciences, Lebedev Physical Institute (Russian Federation)

    2016-02-15

    The optical properties of epitaxial layers and heterostructures based on Pb{sub 1–x}Eu{sub x}Te alloys (0 ⩽ x ⩽ 1) are analyzed in the context of designing Bragg mirrors and vertical-cavity surface-emitting lasers for the midinfrared spectral range. It is shown that the optimal heteropair for laser microcavities is Pb{sub 1–x}Eu{sub x}Te(x ≈ 0.06)/EuTe. On the basis of this heteropair, highly reflective Bragg mirrors consisting of just three periods and featuring a reflectance of R ⩾ 99.8% at the center of the stop band are grown by molecular-beam epitaxy on BaF{sub 2} (111) substrates. Single-mode optically pumped vertical-cavity surface-emitting lasers for the 4–5 μm spectral range operating at liquid-nitrogen temperatures are demonstrated.

  8. 850-nm Zn-diffusion vertical-cavity surface-emitting lasers with with oxide-relief structure for high-speed and energy-efficient optical interconnects from very-short to medium (2km) reaches

    Science.gov (United States)

    Shi, Jin-Wei; Wei, Chia-Chien; Chen, Jason (Jyehong); Yang, Ying-Jay

    2015-03-01

    High-speed and "green" ~850 nm vertical-cavity surface-emitting lasers (VCSELs) have lately attracted lots of attention due to their suitability for applications in optical interconnects (OIs). To further enhance the speed and its maximum allowable linking distance of VCSELs are two major trends to meet the requirement of OI in next generation data centers. Recently, by use of the advanced 850 nm VCSEL technique, data rate as high as 64 Gbit/sec over 57m and 20 Gbit/sec over 2km MMF transmission have been demonstrated, respectively. Here, we will review our recent work about 850 nm Zn-diffusion VCSELs with oxide-relief apertures to further enhance the above-mentioned performances. By using Zn-diffusion, we can not only reduce the device resistance but also manipulate the number of optical modes to benefit transmission. Combing such device, which has excellent single-mode (SMSR >30 dB) and high-power (~7mW) performance, with advanced modulation format (OFDM), record-high bit-rate-distance-product through MMF (2.3 km×28 Gbit/sec) has been demonstrated. Furthermore, by selective etching away the oxide aperture inside Zn-diffusion VCSEL, significant enhancement of device speed, D-factor, and reliability can be observed. With such unique VCSEL structure, >40 Gbit/sec energy-efficient transmission over 100m MMF under extremely low-driving current density (<10kA/cm2) has been successfully demonstrated.

  9. Single-mode 850-nm vertical-cavity surface-emitting lasers with Zn-diffusion and oxide-relief apertures for > 50 Gbit/sec OOK and 4-PAM transmission

    Science.gov (United States)

    Shi, Jin-Wei; Wei, Chia-Chien; Chen, Jyehong; Ledentsov, N. N.; Yang, Ying-Jay

    2017-02-01

    Vertical-cavity surface-emitting lasers (VCSELs) has become the most important light source in the booming market of short-reach (targeted at 56 Gbit/sec data rate per channel (CEI-56G) with the total data rate up to 400 Gbit/sec. However, the serious modal dispersion of multi-mode fiber (MMF), limited speed of VCSEL, and its high resistance (> 150 Ω) seriously limits the >50 Gbit/sec linking distance (50 Gbit/sec transmission due to that it can save one-half of the required bandwidth. Nevertheless, a 4.7 dB optical power penalty and the linearity of transmitter would become issues in the 4-PAM linking performance. Besides, in the modern OI system, the optics transreceiver module must be packaged as close as possible with the integrated circuits (ICs). The heat generated from ICs will become an issue in speed of VSCEL. Here, we review our recent work about 850 nm VCSEL, which has unique Zn-diffusion/oxide-relief apertures and special p- doping active layer with strong wavelength detuning to further enhance its modulation speed and high-temperature (85°C) performances. Single-mode (SM) devices with high-speed ( 26 GHz), reasonable resistance ( 70 Ω) and moderate output power ( 1.5 mW) can be achieved. Error-free 54 Gbit/sec OOK transmission through 1km MMF has been realized by using such SM device with signal processing techniques. Besides, the volterra nonlinear equalizer has been applied in our 4-PAM 64 Gbit/sec transmission through 2-km OM4 MMF, which significantly enhance the linearity of device and outperforms fed forward equalization (FFE) technique. Record high bit-rate distance product of 128.km is confirmed for optical-interconnect applications.

  10. radiofrequency cavity

    CERN Multimedia

    1988-01-01

    The pulse of a particle accelerator. 128 of these radio frequency cavities were positioned around CERN's 27-kilometre LEP ring to accelerate electrons and positrons. The acceleration was produced by microwave electric oscillations at 352 MHz. The electrons and positrons were grouped into bunches, like beads on a string, and the copper sphere at the top stored the microwave energy between the passage of individual bunches. This made for valuable energy savings as it reduced the heat generated in the cavity.

  11. Performance experience with the CEBAF SRF cavities

    International Nuclear Information System (INIS)

    Reece, C.; Benesch, J.; Drury, M.; Hovater, C.; Mammosser, J.; Preble, J.

    1995-01-01

    The full complement of 169 pairs of niobium superconducting cavities has been installed in the CEBAF accelerator. This paper surveys the performance characteristics of these cavities in vertical tests, commissioning in the tunnel, and operational experience to date. Although installed performance exceeds specifications, and 3.2 GeV beam has been delivered on target, present systems do not consistently preserve the high performance obtained in vertical dewar tests as operational capability. Principal sources of these limitations are discussed

  12. 20 Gbit/s error free transmission with ~850 nm GaAs-based vertical cavity surface emitting lasers (VCSELs) containing InAs-GaAs submonolayer quantum dot insertions

    Science.gov (United States)

    Lott, J. A.; Shchukin, V. A.; Ledentsov, N. N.; Stinz, A.; Hopfer, F.; Mutig, A.; Fiol, G.; Bimberg, D.; Blokhin, S. A.; Karachinsky, L. Y.; Novikov, I. I.; Maximov, M. V.; Zakharov, N. D.; Werner, P.

    2009-02-01

    We report on the modeling, epitaxial growth, fabrication, and characterization of 830-845 nm vertical cavity surface emitting lasers (VCSELs) that employ InAs-GaAs quantum dot (QD) gain elements. The GaAs-based VCSELs are essentially conventional in design, grown by solid-source molecular beam epitaxy, and include top and bottom gradedheterointerface AlGaAs distributed Bragg reflectors, a single selectively-oxidized AlAs waveguiding/current funneling aperture layer, and a quasi-antiwaveguiding microcavity. The active region consists of three sheets of InAs-GaAs submonolayer insertions separated by AlGaAs matrix layers. Compared to QWs the InAs-GaAs insertions are expected to offer higher exciton-dominated modal gain and improved carrier capture and retention, thus resulting in superior temperature stability and resilience to degradation caused by operating at the larger switching currents commonly employed to increase the data rates of modern optical communication systems. We investigate the robustness and temperature performance of our QD VCSEL design by fabricating prototype devices in a high-frequency ground-sourceground contact pad configuration suitable for on-wafer probing. Arrays of VCSELs are produced with precise variations in top mesa diameter from 24 to 36 μm and oxide aperture diameter from 1 to 12 μm resulting in VCSELs that operate in full single-mode, single-mode to multi-mode, and full multi-mode regimes. The single-mode QD VCSELs have room temperature threshold currents below 0.5 mA and peak output powers near 1 mW, whereas the corresponding values for full multi-mode devices range from about 0.5 to 1.5 mA and 2.5 to 5 mW. At 20°C we observe optical transmission at 20 Gb/s through 150 m of OM3 fiber with a bit error ratio better than 10-12, thus demonstrating the great potential of our QD VCSELs for applications in next-generation short-distance optical data communications and interconnect systems.

  13. Dispersion of coupled mode-gap cavities

    NARCIS (Netherlands)

    Lian, Jin; Sokolov, Sergei; Yuce, E.; Combrie, S.; de Rossi, A.; Mosk, Allard

    2015-01-01

    The dispersion of a coupled resonator optical waveguide made of photonic crystal mode-gap cavities is pronouncedly asymmetric. This asymmetry cannot be explained by the standard tight binding model. We show that the fundamental cause of the asymmetric dispersion is the inherent dispersive cavity

  14. Strong exciton-photon coupling in organic single crystal microcavity with high molecular orientation

    Energy Technology Data Exchange (ETDEWEB)

    Goto, Kaname [Department of Electronics, Graduate School of Science and Technology, Kyoto Institute of Technology, Matsugasaki, Sakyo-ku, Kyoto 606-8585 (Japan); Yamashita, Kenichi, E-mail: yamasita@kit.ac.jp [Faculty of Electrical Engineering and Electronics, Kyoto Institute of Technology, Matsugasaki, Sakyo-ku, Kyoto 606-8585 (Japan); Yanagi, Hisao [Graduate School of Materials Science, Nara Institute of Science and Technology (NAIST), 8916-5 Takayama, Ikoma, Nara 630-0192 (Japan); Yamao, Takeshi; Hotta, Shu [Faculty of Materials Science and Technology, Kyoto Institute of Technology, Matsugasaki, Sakyo-ku, Kyoto 606-8585 (Japan)

    2016-08-08

    Strong exciton-photon coupling has been observed in a highly oriented organic single crystal microcavity. This microcavity consists of a thiophene/phenylene co-oligomer (TPCO) single crystal laminated on a high-reflection distributed Bragg reflector. In the TPCO crystal, molecular transition dipole was strongly polarized along a certain horizontal directions with respect to the main crystal plane. This dipole polarization causes significantly large anisotropies in the exciton transition and optical constants. Especially the anisotropic exciton transition was found to provide the strong enhancement in the coupling with the cavity mode, which was demonstrated by a Rabi splitting energy as large as ∼100 meV even in the “half-vertical cavity surface emitting lasing” microcavity structure.

  15. Strong exciton-photon coupling in organic single crystal microcavity with high molecular orientation

    Science.gov (United States)

    Goto, Kaname; Yamashita, Kenichi; Yanagi, Hisao; Yamao, Takeshi; Hotta, Shu

    2016-08-01

    Strong exciton-photon coupling has been observed in a highly oriented organic single crystal microcavity. This microcavity consists of a thiophene/phenylene co-oligomer (TPCO) single crystal laminated on a high-reflection distributed Bragg reflector. In the TPCO crystal, molecular transition dipole was strongly polarized along a certain horizontal directions with respect to the main crystal plane. This dipole polarization causes significantly large anisotropies in the exciton transition and optical constants. Especially the anisotropic exciton transition was found to provide the strong enhancement in the coupling with the cavity mode, which was demonstrated by a Rabi splitting energy as large as ˜100 meV even in the "half-vertical cavity surface emitting lasing" microcavity structure.

  16. Strong exciton-photon coupling in organic single crystal microcavity with high molecular orientation

    International Nuclear Information System (INIS)

    Goto, Kaname; Yamashita, Kenichi; Yanagi, Hisao; Yamao, Takeshi; Hotta, Shu

    2016-01-01

    Strong exciton-photon coupling has been observed in a highly oriented organic single crystal microcavity. This microcavity consists of a thiophene/phenylene co-oligomer (TPCO) single crystal laminated on a high-reflection distributed Bragg reflector. In the TPCO crystal, molecular transition dipole was strongly polarized along a certain horizontal directions with respect to the main crystal plane. This dipole polarization causes significantly large anisotropies in the exciton transition and optical constants. Especially the anisotropic exciton transition was found to provide the strong enhancement in the coupling with the cavity mode, which was demonstrated by a Rabi splitting energy as large as ∼100 meV even in the “half-vertical cavity surface emitting lasing” microcavity structure.

  17. FY 1979 Annual report on Sunshine Project results. Research and development of photovoltaic power generation systems (Research and development of vertically drawn ribbon crystals of silicon); 1979 nendo taiyoko hatsuden system no kenkyu kaihatsu seika hokokusho. Silicon tatehiki ribon kessho no kenkyu kaihatsu

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1980-03-01

    The efforts in this fiscal year for development of methods for vertically drawing ribbon crystals of silicon are directed to the following items, in order to further improve the techniques for vertically drawing two or more ribbon crystals on a continuous basis, developed in the previous fiscal year: (1) tests of the drawing apparatus, developed in the previous fiscal year, to deepen the techniques for drawing the ribbon crystals, (2) modification of the above apparatus to further develop the apparatus for vertically drawing two or more ribbon crystals on a continuous basis, (3) comparison of drawing a single ribbon crystal, conducted separately, with drawing two or more ribbon crystals, to clarify the problems involved in the latter, and (4) basic investigations on the materials for the furnace internals exposed to high temperature, other than the carbon material used at present. The vertically drawn ribbon crystals of silicon is investigated, based on the results obtained in the previous fiscal year that ribbon crystal quality depends on impurities present therein, mainly for (1) quantitative analysis of the impurity elements present in the ribbon crystal, (2) relationship between impurity elements and characteristics of the solar cells made on a trial basis, and (3) investigations on local concentration of the impurity elements. (NEDO)

  18. Inhibited emission of electromagnetic modes confined in subwavelength cavities

    International Nuclear Information System (INIS)

    Le Thomas, N.; Houdre, R.

    2011-01-01

    We experimentally demonstrate the active inhibition of subwavelength confined cavity modes emission and quality factor enhancement by controlling the cavity optical surrounding. The intrinsic radiation angular spectrum of modes confined in planar photonics crystal cavities as well as its modifications depending on the environment are inferred via a transfer matrix modeling and k-space imaging.

  19. TESLA superconducting RF cavity development

    International Nuclear Information System (INIS)

    Koepke, K.

    1995-01-01

    The TESLA collaboration has made steady progress since its first official meeting at Cornell in 1990. The infrastructure necessary to assemble and test superconducting rf cavities has been installed at the TESLA Test Facility (TTF) at DESY. 5-cell, 1.3 GHz cavities have been fabricated and have reached accelerating fields of 25 MV/m. Full sized 9-cell copper cavities of TESLA geometry have been measured to verify the higher order modes present and to evaluate HOM coupling designs. The design of the TESLA 9-cell cavity has been finalized and industry has started delivery. Two prototype 9-cell niobium cavities in their first tests have reached accelerating fields of 10 MV/m and 15 MV/m in a vertical dewar after high peak power (HPP) conditioning. The first 12 m TESLA cryomodule that will house 8 9-cell cavities is scheduled to be delivered in Spring 1995. A design report for the TTF is in progress. The TTF test linac is scheduled to be commissioned in 1996/1997. (orig.)

  20. Mounting system for optical frequency reference cavities

    Science.gov (United States)

    Notcutt, Mark (Inventor); Hall, John L. (Inventor); Ma, Long-Sheng (Inventor)

    2008-01-01

    A technique for reducing the vibration sensitivity of laser-stabilizing optical reference cavities is based upon an improved design and mounting method for the cavity, wherein the cavity is mounted vertically. It is suspended at one plane, around the spacer cylinder, equidistant from the mirror ends of the cavity. The suspension element is a collar of an extremely low thermal expansion coefficient material, which surrounds the spacer cylinder and contacts it uniformly. Once the collar has been properly located, it is cemented in place so that the spacer cylinder is uniformly supported and does not have to be squeezed at all. The collar also includes a number of cavities partially bored into its lower flat surface, around the axial bore. These cavities are support points, into which mounting base pins will be inserted. Hence the collar is supported at a minimum of three points.

  1. Performance of TESLA Cavities After Fabrication and Preparation in Industry

    CERN Document Server

    Pekeler, Michael; Bauer, Stefan; Knobloch, Jens; Vom Stein, Peter

    2005-01-01

    In order to demonstrate cw operation of TESLA cavities in linear accelerators driving FEL applications, two TESLA cavities were manufactured and prepared by ACCEL for BESSY. After production, both cavities were prepared for vertical test at ACCEL's premises using state of the art chemical polishing and high pressure water rinsing techniques. The cavities were tested in DESY's vertical RF test installation. Accelerating gradients close to 25 MV/m were reached. One cavity was completed with a helium vessel modified for cw operation and prepared with chemical polishing, high pressure water rinsing, and assembled with the required High Power Coupler at ACCEL. The fully dressed cavity was then shipped under vacuum to BESSY and tested in the horizontal cryostat HoBiCaT. Horizontal RF test results will be presented and compared with the vertical test results.

  2. Fiscal 1976 Sunshine Project result report. R and D on photovoltaic power generation system (R and D on Si ribbon crystal vertical pulling method); 1976 nendo taiyoko hatsuden system no kenkyu kaihatsu seika hokokusho. Silicon tatehiki ribbon kessho no kenkyu kaihatsu

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1977-03-31

    This report describes the fiscal 1976 research result on Si ribbon crystal vertical pulling method for photovoltaic power generation systems. The equipment for simultaneous growth of 3 ribbon crystals was designed and prepared in consideration of capillary die arrangement, vertical pulling method and control method of temperature profiles on the die surface. The temperature profiles on the die surface were controlled by subheaters for 3 parts of each capillary die which were divided longitudinally. Ribbon crystals grew up to 5mm simultaneously through both end dies. By cooling a part of crystal, fast pulling is probably possible. Study was made on the correlation between various crystal defects of Si ribbon crystals and cell characteristics, and in particular, basic characteristics of SiC deposited particles by SEM observation to reduce their impacts. Possibility of simultaneous vertical pulling of crystals was verified by using a capillary carbon die for multi-pulling. Although crystals grew by eutectic reaction under saturated dissolution of carbon, crystals with no transition were obtained. An SiC-coated die was excellent rather than carbon one. (NEDO)

  3. Injection molding of micro pillars on vertical side walls using polyether-ether-ketone (PEEK)

    DEFF Research Database (Denmark)

    Zhang, Yang; Hansen, Hans Nørgaard; Sørensen, Søren

    2016-01-01

    This paper investigates the replication of microstructures on a vertical wall by PEEK injection molding. A 4-cavity insert was used in the injection molding. Pre-fabricated nickel plates with ø 4 μm micro holes on the surface were glued on vertical walls in the cavities. 3 cavities were coated by...

  4. Luminescence properties of pure and Eu-doped SrI{sub 2} crystals purified by a “Liquinert” process and grown by vertical Bridgman method

    Energy Technology Data Exchange (ETDEWEB)

    Kawai, Taketoshi, E-mail: buri@p.s.osakafu-u.ac.jp [Osaka Prefecture University, Gakuen-cho 1-1, Naka-ku, Sakai, Osaka 599-8531 (Japan); Sakuragi, Shiro; Hashimoto, Satoshi [Union Materials Inc. 1640 Oshido, Tone-machi, Ibaraki 300-1602 (Japan)

    2016-08-15

    We have prepared high quality crystals of pure SrI{sub 2} and Eu-doped SrI{sub 2} by our original “Liquinert” process and investigated their luminescence properties. Under the excitation with the 193 nm light of an ArF excimer laser, which corresponds to the wavelength above the bandgap of SrI{sub 2} bulk crystals, the pure and Eu doped SrI{sub 2} crystals exhibit no luminescence band related to defects or impurities around 560 nm. This fact indicates that the crystals prepared by the “Liquinert” process contain lower defects and/or impurities. When the Eu-doped SrI{sub 2} crystals are excited with the 325 nm light of a He–Cd laser, only the luminescence band due to the 5d→4f transition in the Eu{sup 2+} ions is observed around 425 nm. The 425 nm band observed at a forward configuration exhibits the shift to the longer wavelength side and the decrease of the luminescence intensity with increasing Eu concentration. The Eu concentration dependences of the peak wavelength and luminescence intensity are simulated on the basis of a simple self-absorption model. - Highlights: • Our original “Liquinert” process allows us to prepare high quality crystals of SrI{sub 2}. • No luminescence band related with impurities and/or defects is observed. • The 425 nm luminescence bands due to Eu{sup 2+} ions are affected by a self-absorption. • A simple self-absorption model reproduces the changes of the 425 nm bands.

  5. Present status of superconducting cavity developments

    Energy Technology Data Exchange (ETDEWEB)

    Ouchi, Nobuo; Kusano, Joichi; Hasegawa, Kazuo [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment] [and others

    1997-11-01

    An R and D work of a superconducting (SC) cavity for the high intensity proton linac has begun at JAERI in collaboration with KEK. The RF field calculation and the structural analysis have been made to determine the cavity shape in the proton energy range between 100 and 1500 MeV. The results indicate the feasibility of a SC proton linac. A vertical test stand with clean room, water rinsing system, cavity evacuation pumping system, cryostat and data acquisition system has been installed to demonstrate the cavity performance. A single cell cavity of {beta}=0.5 has been fabricated and tested at the test stand to obtain the Q-value and the maximum surface electric field strength. The measured Q-values have been found to be high enough for our requirement while the field strength was limited to about 75% of the specification by the multipacting. We describe the preliminary design of the SC cavity, the overview of the vertical test stand and experimental results of the single cell cavity. (author)

  6. Fabrication of elliptical SRF cavities

    Science.gov (United States)

    Singer, W.

    2017-03-01

    The technological and metallurgical requirements of material for high-gradient superconducting cavities are described. High-purity niobium, as the preferred metal for the fabrication of superconducting accelerating cavities, should meet exact specifications. The content of interstitial impurities such as oxygen, nitrogen, and carbon must be below 10 μg g-1. The hydrogen content should be kept below 2 μg g-1 to prevent degradation of the quality factor (Q-value) under certain cool-down conditions. The material should be free of flaws (foreign material inclusions or cracks and laminations) that can initiate a thermal breakdown. Traditional and alternative cavity mechanical fabrication methods are reviewed. Conventionally, niobium cavities are fabricated from sheet niobium by the formation of half-cells by deep drawing, followed by trim machining and electron beam welding. The welding of half-cells is a delicate procedure, requiring intermediate cleaning steps and a careful choice of weld parameters to achieve full penetration of the joints. A challenge for a welded construction is the tight mechanical and electrical tolerances. These can be maintained by a combination of mechanical and radio-frequency measurements on half-cells and by careful tracking of weld shrinkage. The main aspects of quality assurance and quality management are mentioned. The experiences of 800 cavities produced for the European XFEL are presented. Another cavity fabrication approach is slicing discs from the ingot and producing cavities by deep drawing and electron beam welding. Accelerating gradients at the level of 35-45 MV m-1 can be achieved by applying electrochemical polishing treatment. The single-crystal option (grain boundary free) is discussed. It seems that in this case, high performance can be achieved by a simplified treatment procedure. Fabrication of the elliptical resonators from a seamless pipe as an alternative is briefly described. This technology has yielded good

  7. Full 3D FDTD analysis of Electromagnetic Field in Photonic Crystal VCSEL

    International Nuclear Information System (INIS)

    Liu Fa; Xu Chen; Xie Yiyang; Zhao Zhenbo; Zhou Kang; Wang Baoqiang; Liu Yingming; Shen Guangdi

    2011-01-01

    The effect of etch damage to the mode characteristics of photonic crystal vertical cavity surface emitting lasers was simulated in this paper. The devices simulated in this paper are 850-nm GaAs-based VCSELs with photonic crystal. And the devices were simulated by using finite difference time domain (FDTD) method. Limited to the computer resource, the top DBR was simulated only, and the traverse size was smaller than the real size. In order to highlight the impact of the etch damage, several kinds of light sources and photonic crystal structures were simulated separately, and each situation is calculated in the condition of ideal photonic crystal and photonic crystal with etch damage respectively. All parameters of device and light feature are referred to the real condition.

  8. Full 3D FDTD analysis of Electromagnetic Field in Photonic Crystal VCSEL

    Energy Technology Data Exchange (ETDEWEB)

    Liu Fa; Xu Chen; Xie Yiyang; Zhao Zhenbo; Zhou Kang; Wang Baoqiang; Liu Yingming; Shen Guangdi, E-mail: liufa20719@126.com [Key Laboratory of Opto-electronics Technology (Beijing University of Technology), Ministry of Education, Beijing University of Technology, 100 Ping Le Yuan, Chaoyang District, Beijing 100124 (China)

    2011-02-01

    The effect of etch damage to the mode characteristics of photonic crystal vertical cavity surface emitting lasers was simulated in this paper. The devices simulated in this paper are 850-nm GaAs-based VCSELs with photonic crystal. And the devices were simulated by using finite difference time domain (FDTD) method. Limited to the computer resource, the top DBR was simulated only, and the traverse size was smaller than the real size. In order to highlight the impact of the etch damage, several kinds of light sources and photonic crystal structures were simulated separately, and each situation is calculated in the condition of ideal photonic crystal and photonic crystal with etch damage respectively. All parameters of device and light feature are referred to the real condition.

  9. FY 1977 Annual report on Sunshine Project results. Research and development of photovoltaic power generation systems (Research and development of vertically drawn ribbon crystals of silicon); 1977 nendo taiyoko hatsuden system no kenkyu kaihatsu seika hokokusho. Silicon tatehiki ribon kessho no kenkyu kaihatsu

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1978-03-31

    This project is aimed at establishment of ribbon crystal production techniques and development of photovoltaic power generation systems incorporating the ribbon crystals, in order to greatly reduce cost of photovoltaic power generation systems. The research efforts in this fiscal year is focused on development of the techniques for continuously growing the ribbons, to attain the above goal by accelerating growth of the ribbon crystals in unit time and clarifying, in the early stage, the problems to be solved before commercializing the ribbon crystals for the future solar cells. The major research results are (1) development of the method for vertically drawing ribbon crystals of silicon, and (2) analysis of the vertically drawn ribbon crystals of silicon. For the item (1), the technological development efforts are focused on continuously drawing mechanisms and furnace for continuous drawing, with the structural studies as the center for the former and solution of heat-related problems for the latter, which eventually lead to development of a 800 mm long ribbon crystal passing over the roll. For the item (2), the crystal structure is analyzed by the electron channeling pattern method. The results suggest that use of a p-type substrate can improve average efficiency of the ribbon crystal type solar cell. (NEDO)

  10. Optical Material Characterization Using Microdisk Cavities

    Science.gov (United States)

    Michael, Christopher P.

    Since Jack Kilby recorded his "Monolithic Idea" for integrated circuits in 1958, microelectronics companies have invested billions of dollars in developing the silicon material system to increase performance and reduce cost. For decades, the industry has made Moore's Law, concerning cost and transistor density, a self-fulfilling prophecy by integrating technical and material requirements vertically down their supply chains and horizontally across competitors in the market. At recent technology nodes, the unacceptable scaling behavior of copper interconnects has become a major design constraint by increasing latency and power consumption---more than 50% of the power consumed by high speed processors is dissipated by intrachip communications. Optical networks at the chip scale are a potential low-power high-bandwidth replacement for conventional global interconnects, but the lack of efficient on-chip optical sources has remained an outstanding problem despite significant advances in silicon optoelectronics. Many material systems are being researched, but there is no ideal candidate even though the established infrastructure strongly favors a CMOS-compatible solution. This thesis focuses on assessing the optical properties of materials using microdisk cavities with the intention to advance processing techniques and materials relevant to silicon photonics. Low-loss microdisk resonators are chosen because of their simplicity and long optical path lengths. A localized photonic probe is developed and characterized that employs a tapered optical-fiber waveguide, and it is utilized in practical demonstrations to test tightly arranged devices and to help prototype new fabrication methods. A case study in AlxGa1-xAs illustrates how the optical scattering and absorption losses can be obtained from the cavity-waveguide transmission. Finally, single-crystal Er2O3 epitaxially grown on silicon is analyzed in detail as a potential CMOS-compatable gain medium due to its high Er3

  11. Quartz substrate infrared photonic crystal

    Science.gov (United States)

    Ghadiri, Khosrow; Rejeb, Jalel; Vitchev, Vladimir N.

    2003-01-01

    This paper presents the fabrication of a planar photonic crystal (p2c) made of a square array of dielectric rods embedded in air, operating in the infrared spectrum. A quartz substrate is employed instead of the commonly used silicon or column III-V substrate. Our square structure has a normalized cylinder radius-to-pitch ratio of r/a = 0.248 and dielectric material contrast ɛr of 4.5. We choose a Z-cut synthetic quartz for its cut (geometry), and etching properties. Then a particular Z-axis etching process is employed in order to ensure the sharp-edged verticality of the rods and fast etching speed. We also present the computer simulations that allowed the establishment of the photonic band gaps (PBG) of our photonic crystal, as well as the actual measurements. An experimental measurement have been carried out and compared with different simulations. It was found that experimental results are in good agreement with different simulation results. Finally, a frequency selective device for optical communication based on the introduction of impurity sites in the photonic crystal is presented. With our proposed structure Optical System on a Chip (OsoC) with micro-cavity based active devices such as lasers, diodes, modulators, couplers, frequency selective emitters, add-drop filters, detectors, mux/demuxes and polarizers connected by passive waveguide links can be realized.

  12. Segmented trapped vortex cavity

    Science.gov (United States)

    Grammel, Jr., Leonard Paul (Inventor); Pennekamp, David Lance (Inventor); Winslow, Jr., Ralph Henry (Inventor)

    2010-01-01

    An annular trapped vortex cavity assembly segment comprising includes a cavity forward wall, a cavity aft wall, and a cavity radially outer wall there between defining a cavity segment therein. A cavity opening extends between the forward and aft walls at a radially inner end of the assembly segment. Radially spaced apart pluralities of air injection first and second holes extend through the forward and aft walls respectively. The segment may include first and second expansion joint features at distal first and second ends respectively of the segment. The segment may include a forward subcomponent including the cavity forward wall attached to an aft subcomponent including the cavity aft wall. The forward and aft subcomponents include forward and aft portions of the cavity radially outer wall respectively. A ring of the segments may be circumferentially disposed about an axis to form an annular segmented vortex cavity assembly.

  13. Vertical integration

    International Nuclear Information System (INIS)

    Antill, N.

    1999-01-01

    This paper focuses on the trend in international energy companies towards vertical integration in the gas chain from wellhead to power generation, horizontal integration in refining and marketing businesses, and the search for larger projects with lower upstream costs. The shape of the petroleum industry in the next millennium, the creation of super-major oil companies, and the relationship between size and risk are discussed. The dynamics of vertical integration, present events and future developments are considered. (UK)

  14. Deflecting cavity for beam diagnostics at Cornell ERL injector

    International Nuclear Information System (INIS)

    Belomestnykh, Sergey; Bazarov, Ivan; Shemelin, Valery; Sikora, John; Smolenski, Karl; Veshcherevich, Vadim

    2010-01-01

    A single-cell, 1300-MHz, TM110-like mode vertically deflecting cavity is designed and built for beam slice emittance measurements, and to study the temporal response of negative electron affinity photocathodes in the ERL injector at Cornell University. We describe the cavity shape optimization procedure, RF and mechanical design, its performance with beam.

  15. Optomechanic interactions in phoxonic cavities

    Directory of Open Access Journals (Sweden)

    Bahram Djafari-Rouhani

    2014-12-01

    Full Text Available Phoxonic crystals are periodic structures exhibiting simultaneous phononic and photonic band gaps, thus allowing the confinement of both excitations in the same cavity. The phonon-photon interaction can be enhanced due to the overlap of both waves in the cavity. In this paper, we discuss some of our recent theoretical works on the strength of the optomechanic coupling, based on both photoelastic and moving interfaces mechanisms, in different (2D, slabs, strips phoxonic crystals cavities. The cases of two-dimensional infinite and slab structures will enable us to mention the important role of the symmetry and degeneracy of the modes, as well as the role of the materials whose photoelastic constants can be wavelength dependent. Depending on the phonon-photon pair, the photoelastic and moving interface mechanisms can contribute in phase or out-of-phase. Then, the main part of the paper will be devoted to the optomechanic interaction in a corrugated nanobeam waveguide exhibiting dual phononic/photonic band gaps. Such structures can provide photonic modes with very high quality factor, high frequency phononic modes of a few GHz inside a gap and optomechanical coupling rate reaching a few MHz.

  16. Optically pumped lasing in single crystals of organometal halide perovskites prepared by cast-capping method

    Energy Technology Data Exchange (ETDEWEB)

    Nguyen, Van-Cao; Katsuki, Hiroyuki; Yanagi, Hisao, E-mail: yanagi@ms.naist.jp [Graduate School of Materials Science, Nara Institute of Science and Technology (NAIST), 8916-5 Takayama, Ikoma, Nara 630-0192 (Japan); Sasaki, Fumio [Electronics and Photonics Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1 Umezono, Tsukuba, Ibaraki 305-8568 (Japan)

    2016-06-27

    A simple “cast-capping” method is adopted to prepare single-crystal perovskites of methyl ammonium lead bromide (CH{sub 3}NH{sub 3}PbBr{sub 3}). By capping a CH{sub 3}NH{sub 3}PbBr{sub 3} solution casted on one substrate with another substrate such as glass, mica, and distributed Bragg reflector (DBR), the slow evaporation of solvent enables large-size cubic crystals to grow between the two substrates. Under optical pumping, edge-emitting lasing is observed based on Fabry–Pérot resonation between parallel side facets of a strip-shaped crystal typically with a lateral cavity length of a few tens of μm. On the other hand, vertical-cavity surface-emitting lasing (VCSEL) is obtained from a planar crystal grown between two DBRs with a cavity thickness of a few μm. Simultaneous detection of those edge- and surface-emissions reveals that the threshold excitation fluence of VCSEL is higher than that of the edge-emitting lasing due to thickness gradient in the planar crystal.

  17. A simple route to vertical array of quasi-1D ZnO nanofilms on FTO surfaces: 1D-crystal growth of nanoseeds under ammonia-assisted hydrolysis process

    Directory of Open Access Journals (Sweden)

    Abd Rahman Mohd Yusri

    2011-01-01

    Full Text Available Abstract A simple method for the synthesis of ZnO nanofilms composed of vertical array of quasi-1D ZnO nanostructures (quasi-NRs on the surface was demonstrated via a 1D crystal growth of the attached nanoseeds under a rapid hydrolysis process of zinc salts in the presence of ammonia at room temperature. In a typical procedure, by simply controlling the concentration of zinc acetate and ammonia in the reaction, a high density of vertically oriented nanorod-like morphology could be successfully obtained in a relatively short growth period (approximately 4 to 5 min and at a room-temperature process. The average diameter and the length of the nanostructures are approximately 30 and 110 nm, respectively. The as-prepared quasi-NRs products were pure ZnO phase in nature without the presence of any zinc complexes as confirmed by the XRD characterisation. Room-temperature optical absorption spectroscopy exhibits the presence of two separate excitonic characters inferring that the as-prepared ZnO quasi-NRs are high-crystallinity properties in nature. The mechanism of growth for the ZnO quasi-NRs will be proposed. Due to their simplicity, the method should become a potential alternative for a rapid and cost-effective preparation of high-quality ZnO quasi-NRs nanofilms for use in photovoltaic or photocatalytics applications. PACS: 81.07.Bc; 81.16.-c; 81.07.Gf.

  18. Vertical Bridgman growth and characterization of Cd0.95-xMnxZn0.05Te (x=0.20, 0.30) single-crystal ingots

    Energy Technology Data Exchange (ETDEWEB)

    Bolotnikov, A. [Brookhaven National Lab. (BNL), Upton, NY (United States); Kopach, V. [Brookhaven National Lab. (BNL), Upton, NY (United States); Kopach, O. [Brookhaven National Lab. (BNL), Upton, NY (United States); Shcherbak, L. [Brookhaven National Lab. (BNL), Upton, NY (United States); Fochuk, P. [Brookhaven National Lab. (BNL), Upton, NY (United States); Filonenko, S. [Brookhaven National Lab. (BNL), Upton, NY (United States); James, R. [Brookhaven National Lab. (BNL), Upton, NY (United States)

    2017-08-01

    Solid-liquid phase transitions in Cd0.95-xMnxZn0.05Te alloys with x = 0.20 and 0.30 were investigated by differential thermal analysis (DTA). The heating/cooling rates were 5 and 10 K/min with a melt dwell time of 10, 30 and 60 minutes. Cd0.95-xMnxZn0.05Te (x=0.20, 0.30) single-crystal ingots were grown by the vertical Bridgman method guided using the DTA results. Te inclusions (1-20 microns), typical for CdTe and Cd(Zn)Te crystals, were observed in the ingots by infrared transmission microscopy. The measured X-ray diffraction patterns showed that all compositions are found to be in a single phase. Using current-voltage (I-V) measurements, the resistivity of the samples from each ingot was estimated to be about 105 Ohm·cm. The optical transmission analysis demonstrated that the band-gap width of the investigated ingots increased from 1.77 to 1.88 eV with the increase of the MnTe content from 20 to 30 mol. %.

  19. Heat and mass transfer in porous cavity: Assisting flow

    Energy Technology Data Exchange (ETDEWEB)

    Badruddin, Irfan Anjum [Dept. of Mechanical Engineering, University of Malaya, Kuala Lumpur, 50603 (Malaysia); Quadir, G. A. [School of Mechatronic Engineering, University Malaysia Perlis, Pauh Putra, 02600 Arau, Perlis (Malaysia)

    2016-06-08

    In this paper, investigation of heat and mass transfer in a porous cavity is carried out. The governing partial differential equations are non-dimensionalised and solved using finite element method. The left vertical surface of the cavity is maintained at constant temperature and concentration which are higher than the ambient temperature and concentration applied at right vertical surface. The top and bottom walls of the cavity are adiabatic. Heat transfer is assumed to take place by natural convection and radiation. The investigation is carried out for assisting flow when buoyancy and gravity force act in same direction.

  20. Design of half-reentrant SRF cavities

    International Nuclear Information System (INIS)

    Meidlinger, M.; Grimm, T.L.; Hartung, W.

    2006-01-01

    The shape of a TeSLA inner cell can be improved to lower the peak surface magnetic field at the expense of a higher peak surface electric field by making the cell reentrant. Such a single-cell cavity was designed and tested at Cornell, setting a world record accelerating gradient [V. Shemelin et al., An optimized shape cavity for TESLA: concept and fabrication, 11th Workshop on RF Superconductivity, Travemuende, Germany, September 8-12, 2003; R. Geng, H. Padamsee, Reentrant cavity and first test result, Pushing the Limits of RF Superconductivity Workshop, Argonne National Laboratory, September 22-24, 2004]. However, the disadvantage to a cavity is that liquids become trapped in the reentrant portion when it is vertically hung during high pressure rinsing. While this was overcome for Cornell's single-cell cavity by flipping it several times between high pressure rinse cycles, this may not be feasible for a multi-cell cavity. One solution to this problem is to make the cavity reentrant on only one side, leaving the opposite wall angle at six degrees for fluid drainage. This idea was first presented in 2004 [T.L. Grimm et al., IEEE Transactions on Applied Superconductivity 15(6) (2005) 2393]. Preliminary designs of two new half-reentrant (HR) inner cells have since been completed, one at a high cell-to-cell coupling of 2.1% (high-k cc HR) and the other at 1.5% (low-k cc HR). The parameters of a HR cavity are comparable to a fully reentrant cavity, with the added benefit that a HR cavity can be easily cleaned with current technology

  1. Improved reactor cavity

    International Nuclear Information System (INIS)

    Katz, L.R.; Demarchais, W.E.

    1984-01-01

    A reactor pressure vessel disposed in a cavity has coolant inlet or outlet pipes extending through passages in the cavity walls and welded to pressure nozzles. The cavity wall has means for directing fluid away from a break at a weld away from the pressure vessel, and means for inhibiting flow of fluid toward the vessel. (author)

  2. SRF Cavity Fabrication and Materials

    Energy Technology Data Exchange (ETDEWEB)

    Singer, W [DESY (Germany)

    2014-07-01

    The technological and metallurgical requirements of material for highgradient superconducting cavities are described. High-purity niobium, as the preferred metal for the fabrication of superconducting accelerating cavities, should meet exact specifications. The content of interstitial impurities such as oxygen, nitrogen, and carbon must be below 10μg/g. The hydrogen content should be kept below 2μg/g to prevent degradation of the Q-value under certain cool-down conditions. The material should be free of flaws (foreign material inclusions or cracks and laminations) that can initiate a thermal breakdown. Defects may be detected by quality control methods such as eddy current scanning and identified by a number of special methods. Conventional and alternative cavity fabrication methods are reviewed. Conventionally, niobium cavities are fabricated from sheet niobium by the formation of half-cells by deep drawing, followed by trim machining and Electron-Beam Welding (EBW). The welding of half-cells is a delicate procedure, requiring intermediate cleaning steps and a careful choice of weld parameters to achieve full penetration of the joints. The equator welds are particularly critical. A challenge for a welded construction is the tight mechanical and electrical tolerances. These can be maintained by a combination of mechanical and radio-frequency measurements on halfcells and by careful tracking of weld shrinkage. The established procedure is suitable for large series production. The main aspects of quality assurance management are mentioned. Another cavity fabrication approach is slicing discs from the ingot and producing cavities by deep drawing and EBW. Accelerating gradients at the level of 35–45 MV·m–1 can be achieved by applying Electropolishing (EP) treatment. Furthermore, the single-crystal option (grain boundary free) is promising. It seems that in this case, high performance can be achieved by a simplified treatment procedure. Fabrication of the

  3. Cavity enhanced interference of orthogonal modes in a birefringent medium

    Science.gov (United States)

    Kolluru, Kiran; Saha, Sudipta; Gupta, S. Dutta

    2018-03-01

    Interference of orthogonal modes in a birefringent crystal mediated by a rotator is known to lead to interesting physical effects (Solli et al., 2003). In this paper we show that additional feedback offered by a Fabry-Perot cavity (containing the birefringent crystal and the rotator) can lead to a novel strong interaction regime. Usual signatures of the strong interaction regime like the normal mode splitting and avoided crossings, sensitive to the rotator orientation, are reported. A high finesse cavity is shown to offer an optical setup for measuring small angles. The results are based on direct calculations of the cavity transmissions along with an analysis of its dispersion relation.

  4. Active Photonic Crystal Waveguides

    DEFF Research Database (Denmark)

    Ek, Sara

    This thesis deals with the fabrication and characterization of active photonic crystal waveguides, realized in III-V semiconductor material with embedded active layers. The platform offering active photonic crystal waveguides has many potential applications. One of these is a compact photonic...... due to photonic crystal dispersion. The observations are explained by the enhancement of net gain by light slow down. Another application based on active photonic crystal waveguides is micro lasers. Measurements on quantum dot micro laser cavities with different mirror configurations and photonic...

  5. Fabry-Pérot Oscillation and Room Temperature Lasing in Perovskite Cube-Corner Pyramid Cavities

    KAUST Repository

    Mi, Yang; Liu, Zhixiong; Shang, Qiuyu; Niu, Xinxiang; Shi, Jia; Zhang, Shuai; Chen, Jie; Du, Wenna; Wu, Zhiyong; Wang, Rui; Qiu, Xiaohui; Hu, Xiaoyong; Zhang, Qing; Wu, Tao; Liu, Xinfeng

    2018-01-01

    Recently, organometal halide perovskite-based optoelectronics, particularly lasers, have attracted intensive attentions because of its outstanding spectral coherence, low threshold, and wideband tunability. In this work, high-quality CH3 NH3 PbBr3 single crystals with a unique shape of cube-corner pyramids are synthesized on mica substrates using chemical vapor deposition method. These micropyramids naturally form cube-corner cavities, which are eminent candidates for small-sized resonators and retroreflectors. The as-grown perovskites show strong emission ≈530 nm in the vertical direction at room temperature. A special Fabry-Pérot (F-P) mode is employed to interpret the light confinement in the cavity. Lasing from the perovskite pyramids is observed from 80 to 200 K, with threshold ranging from ≈92 µJ cm-2 to 2.2 mJ cm-2 , yielding a characteristic temperature of T0 = 35 K. By coating a thin layer of Ag film, the threshold is reduced from ≈92 to 26 µJ cm-2 , which is accompanied by room temperature lasing with a threshold of ≈75 µJ cm-2 . This work advocates the prospect of shape-engineered perovskite crystals toward developing micro-sized optoelectronic devices and potentially investigating light-matter coupling in quantum optics.

  6. Fabry-Pérot Oscillation and Room Temperature Lasing in Perovskite Cube-Corner Pyramid Cavities

    KAUST Repository

    Mi, Yang

    2018-01-10

    Recently, organometal halide perovskite-based optoelectronics, particularly lasers, have attracted intensive attentions because of its outstanding spectral coherence, low threshold, and wideband tunability. In this work, high-quality CH3 NH3 PbBr3 single crystals with a unique shape of cube-corner pyramids are synthesized on mica substrates using chemical vapor deposition method. These micropyramids naturally form cube-corner cavities, which are eminent candidates for small-sized resonators and retroreflectors. The as-grown perovskites show strong emission ≈530 nm in the vertical direction at room temperature. A special Fabry-Pérot (F-P) mode is employed to interpret the light confinement in the cavity. Lasing from the perovskite pyramids is observed from 80 to 200 K, with threshold ranging from ≈92 µJ cm-2 to 2.2 mJ cm-2 , yielding a characteristic temperature of T0 = 35 K. By coating a thin layer of Ag film, the threshold is reduced from ≈92 to 26 µJ cm-2 , which is accompanied by room temperature lasing with a threshold of ≈75 µJ cm-2 . This work advocates the prospect of shape-engineered perovskite crystals toward developing micro-sized optoelectronic devices and potentially investigating light-matter coupling in quantum optics.

  7. Vortex capturing vertical axis wind turbine

    International Nuclear Information System (INIS)

    Zannetti, L; Gallizio, F; Ottino, G

    2007-01-01

    An analytical-numerical study is presented for an innovative lift vertical axis turbine whose blades are designed with vortex trapping cavities that act as passive flow control devices. The unsteady flow field past one-bladed and two-bladed turbines is described by a combined analytical and numerical method based on conformal mapping and on a blob vortex method

  8. The LHC superconducting cavities

    CERN Document Server

    Boussard, Daniel; Häbel, E; Kindermann, H P; Losito, R; Marque, S; Rödel, V; Stirbet, M

    1999-01-01

    The LHC RF system, which must handle high intensity (0.5 A d.c.) beams, makes use of superconducting single-cell cavities, best suited to minimizing the effects of periodic transient beam loading. There will be eight cavities per beam, each capable of delivering 2 MV (5 MV/m accelerating field) at 400 MHz. The cavities themselves are now being manufactured by industry, using niobium-on-copper technology which gives full satisfaction at LEP. A cavity unit includes a helium tank (4.5 K operating temperature) built around a cavity cell, RF and HOM couplers and a mechanical tuner, all housed in a modular cryostat. Four-unit modules are ultimately foreseen for the LHC (two per beam), while at present a prototype version with two complete units is being extensively tested. In addition to a detailed description of the cavity and its ancillary equipment, the first test results of the prototype will be reported.

  9. LEP copper accelerating cavities

    CERN Multimedia

    Laurent Guiraud

    1999-01-01

    These copper cavities were used to generate the radio frequency electric field that was used to accelerate electrons and positrons around the 27-km Large Electron-Positron (LEP) collider at CERN, which ran from 1989 to 2000. The copper cavities were gradually replaced from 1996 with new superconducting cavities allowing the collision energy to rise from 90 GeV to 200 GeV by mid-1999.

  10. The Mechanical Behavior of Bone Cement in THR in the Presense of Cavities

    Directory of Open Access Journals (Sweden)

    A. Benouis

    2014-06-01

    Full Text Available In this work we analyze three-dimensionally using the finite element method, the level and the Von Mises stress equivalent distribution induced around a cavity and between two cavities located in the proximal and distal bone cement polymethylmethacrylate (PMMA. The effects of the position around two main axes (vertical and horizontal of the cavity with respect to these axes, of the cavity - cavity interdistance and of the type of loading (static on the mechanical behavior of cement orthopedic are highlighted. We show that the breaking strain of the cement is largely taken when the cement in its proximal-lateral part contains cavities very close adjacent to each other. This work highlights not only the effect of the density of cavities, in our case simulated by cavity-cavity interdistance, but also the nature of the activity of the patient (patient standing corresponding to static efforts on the mechanical behavior of cement.

  11. Heat transfer in window frames with internal cavities

    Energy Technology Data Exchange (ETDEWEB)

    Gustavsen, Arild

    2001-07-01

    rates. From the results it appears that the thermal transmittance of a four-sided section can be found by calculating the average of the thermal transmittance of the respective single horizontal and vertical sections. In addition, it was found that two-dimensional conduction heat transfer simulation software agrees well with three-dimensional CFD simulations if the natural convection correlations used for the internal cavities are correct. Numerical simulations were done with natural convection in three-dimensional cavities with a high vertical aspect ratio and a low horizontal aspect ratio. The cavities studied had vertical aspect ratios of 20, 40, and 80 and horizontal aspect ratios ranging from 0.2 to 5. It was shown that three-dimensional cavities with a horizontal aspect ratio larger than five can be considered to be a two-dimensional cavity to within 4 % when considering heat transfer rates. Nusselt number correlations for the different horizontal aspect ratios are presented for cavities with vertical aspect ratios of 20 and 40. Complex multicellular flow was studied for the case where the vertical and horizontal aspect ratios were 40 and 2, respectively. Experimental studies included the normal spectral and total emissivity of specimens from six meter long untreated and anodized aluminum profiles. Specimens facing the internal cavities (thermal break cavity and all aluminum cavity) were measured. Some masking tapes often used in hot box experiments were also measured. The normal total emissivity was found to be is fairly constant (between 0.834 and 0.856) for exterior parts of the anodized profile and for surfaces facing the thermal break cavity. The normal total emissivity of the all-aluminum internal cavities was found to vary between 0.055 and 0.82. The experiments were performed with a Fourier transform infrared spectrometer in the wavelength interval from 4.5 to 40 mm. (author)

  12. Cavity design programs

    International Nuclear Information System (INIS)

    Nelson, E.M.

    1996-01-01

    Numerous computer programs are available to help accelerator physicists and engineers model and design accelerator cavities and other microwave components. This article discusses the problems these programs solve and the principles upon which these programs are based. Some examples of how these programs are used in the design of accelerator cavities are also given

  13. Cavity quantum electrodynamics

    International Nuclear Information System (INIS)

    Walther, Herbert; Varcoe, Benjamin T H; Englert, Berthold-Georg; Becker, Thomas

    2006-01-01

    This paper reviews the work on cavity quantum electrodynamics of free atoms. In recent years, cavity experiments have also been conducted on a variety of solid-state systems resulting in many interesting applications, of which microlasers, photon bandgap structures and quantum dot structures in cavities are outstanding examples. Although these phenomena and systems are very interesting, discussion is limited here to free atoms and mostly single atoms because these systems exhibit clean quantum phenomena and are not disturbed by a variety of other effects. At the centre of our review is the work on the one-atom maser, but we also give a survey of the entire field, using free atoms in order to show the large variety of problems dealt with. The cavity interaction can be separated into two main regimes: the weak coupling in cavity or cavity-like structures with low quality factors Q and the strong coupling when high-Q cavities are involved. The weak coupling leads to modification of spontaneous transitions and level shifts, whereas the strong coupling enables one to observe a periodic exchange of photons between atoms and the radiation field. In this case, atoms and photons are entangled, this being the basis for a variety of phenomena observed, some of them leading to interesting applications in quantum information processing. The cavity experiments with free atoms reached a new domain with the advent of experiments in the visible spectral region. A review on recent achievements in this area is also given

  14. Formation of coronal cavities

    International Nuclear Information System (INIS)

    An, C.H.; Suess, S.T.; Tandberg-Hanssen, E.; Steinolfson, R.S.

    1986-01-01

    A theoretical study of the formation of a coronal cavity and its relation to a quiescent prominence is presented. It is argued that the formation of a cavity is initiated by the condensation of plasma which is trapped by the coronal magnetic field in a closed streamer and which then flows down to the chromosphere along the field lines due to lack of stable magnetic support against gravity. The existence of a coronal cavity depends on the coronal magnetic field strength; with low strength, the plasma density is not high enough for condensation to occur. Furthermore, we suggest that prominence and cavity material is supplied from the chromospheric level. Whether a coronal cavity and a prominence coexist depends on the magnetic field configuration; a prominence requires stable magnetic support

  15. Different optical properties in different periodic slot cavity geometrical morphologies

    Science.gov (United States)

    Zhou, Jing; Shen, Meng; Du, Lan; Deng, Caisong; Ni, Haibin; Wang, Ming

    2016-09-01

    In this paper, optical properties of two-dimensional periodic annular slot cavity arrays in hexagonal close-packing on a silica substrate are theoretically characterized by finite difference time domain (FDTD) simulation method. By simulating reflectance spectra, electric field distribution, and charge distribution, we confirm that multiple cylindrical surface plasmon resonances can be excited in annular inclined slot cavities by linearly polarized light, in which the four reflectance dips are attributed to Fabry-Perot cavity resonances in the coaxial cavity. A coaxial waveguide mode TE11 will exist in these annular cavities, and the wavelengths of these reflectance dips are effectively tailored by changing the geometrical pattern of slot cavity and the dielectric materials filled in the cavities. These resonant wavelengths are localized in annular cavities with large electric field enhancement and dissipate gradually due to metal loss. The formation of an absorption peak can be explained from the aspect of phase matching conditions. We observed that the proposed structure can be tuned over the broad spectral range of 600-4000 nm by changing the outer and inner radii of the annular gaps, gap surface topography. Meanwhile, different lengths of the cavity may cause the shift of resonance dips. Also, we study the field enhancement at different vertical locations of the slit. In addition, dielectric materials filling in the annular gaps will result in a shift of the resonance wavelengths, which make the annular cavities good candidates for refractive index sensors. The refractive index sensitivity of annular cavities can also be tuned by the geometry size and the media around the cavity. Annular cavities with novel applications can be implied as surface enhanced Raman spectra substrates, refractive index sensors, nano-lasers, and optical trappers. Project supported by the National Natural Science Foundation of China (Grant No. 61178044), the Natural Science Foundation

  16. Hybrid III-V/SOI resonant cavity enhanced photodetector

    DEFF Research Database (Denmark)

    Learkthanakhachon, Supannee; Taghizadeh, Alireza; Park, Gyeong Cheol

    2016-01-01

    A hybrid III–V/SOI resonant-cavity-enhanced photodetector (RCE-PD) structure comprising a high-contrast grating (HCG) reflector, a hybrid grating (HG) reflector, and an air cavity between them, has been proposed and investigated. In the proposed structure, a light absorbing material is integrated...... as part of the HG reflector, enabling a very compact vertical cavity. Numerical investigations show that a quantum efficiency close to 100 % and a detection linewidth of about 1 nm can be achieved, which are desirable for wavelength division multiplexing applications. Based on these results, a hybrid RCE...

  17. SPS RF Accelerating Cavity

    CERN Multimedia

    1979-01-01

    This picture shows one of the 2 new cavities installed in 1978-1979. The main RF-system of the SPS comprises four cavities: two of 20 m length and two of 16.5 m length. They are all installed in one long straight section (LSS 3). These cavities are of the travelling-wave type operating at a centre frequency of 200.2 MHz. They are wideband, filling time about 700 ns and untuned. The power amplifiers, using tetrodes are installed in a surface building 200 m from the cavities. Initially only two cavities were installed, a third cavity was installed in 1978 and a forth one in 1979. The number of power amplifiers was also increased: to the first 2 MW plant a second 2 MW plant was added and by end 1979 there were 8 500 kW units combined in pairs to feed each of the 4 cavities with up to about 1 MW RF power, resulting in a total accelerating voltage of about 8 MV. See also 7412016X, 7412017X, 7411048X

  18. Quasi-periodicity and chaos in a differentially heated cavity

    Energy Technology Data Exchange (ETDEWEB)

    Mercader, Isabel; Batiste, Oriol [Universitat Politecnica de Catalunya, Dep. Fisica Aplicada, Barcelona (Spain); Ruiz, Xavier [Univesitat Rovira i Virgili, Lab. Fisica Aplicada, Facultat de Ciencies Quimiques, Tarragona (Spain)

    2004-11-01

    Convective flows of a small Prandtl number fluid contained in a two-dimensional vertical cavity subject to a lateral thermal gradient are studied numerically. The chosen geometry and the values of the material parameters are relevant to semiconductor crystal growth experiments in the horizontal configuration of the Bridgman method. For increasing Rayleigh numbers we find a transition from a steady flow to periodic solutions through a supercritical Hopf bifurcation that maintains the centro-symmetry of the basic circulation. For a Rayleigh number of about ten times that of the Hopf bifurcation, the periodic solution loses stability in a subcritical Neimark-Sacker bifurcation, which gives rise to a branch of quasiperiodic states. In this branch, several intervals of frequency locking have been identified. Inside the resonance horns the stable limit cycles lose and gain stability via some typical scenarios in the bifurcation of periodic solutions. After a complicated bifurcation diagram of the stable limit cycle of the 1:10 resonance horn, a soft transition to chaos is obtained. (orig.)

  19. Commercial mode-locked vertical external cavity surface emitting lasers

    Science.gov (United States)

    Head, C. Robin; Paboeuf, David; Ortega, Tiago; Lubeigt, Walter; Bialkowski, Bartlomiej; Lin, Jipeng; Hempler, Nils; Maker, Gareth T.; Malcolm, Graeme P. A.

    2018-02-01

    This paper presents the latest efforts in the development of commercial optically-pumped semiconductor disk lasers (SDLs) at M Squared Lasers. Two types of SDLs are currently being developed: an ultrafast system and a continuous wave single frequency system under the names of Dragonfly and Infinite, respectively. Both offer a compact, low-cost, easy-to-use and maintenance-free tool for a range of growing markets including nonlinear microscopy and quantum technology. To facilitate consumer uptake of the SDL technology, the performance specifications aim to closely match the currently employed systems. An extended Dragonfly system is being developed targeting the nonlinear microscopy market, which typically requires 1-W average power pulse trains with pulse durations below 200 fs. The pulse repetition frequency (PRF) of the commonly used laser systems, typically Titanium-sapphire lasers, is 80 MHz. This property is particularly challenging for mode-locked SDLs which tend to operate at GHz repetition rates, due to their short upper state carrier lifetime. Dragonfly has found a compromise at 200 MHz to balance mode-locking instabilities with a low PRF. In the ongoing development of Dragonfly, additional pulse compression and nonlinear spectral broadening stages are used to obtain pulse durations as short as 130 fs with an average power of 0.85 W, approaching the required performance. A variant of the Infinite system was adapted to provide a laser source suitable for the first stage of Sr atom cooling at 461 nm. Such a source requires average powers of approximately 1 W with a sub-MHz linewidth. As direct emission in the blue is not a viable approach at this stage, an SDL emitting at 922 nm followed by an M Squared Lasers SolTiS ECD-X doubler is currently under development. The SDL oscillator delivered >1 W of single frequency (RMS frequency noise <150kHz) light at 922 nm.

  20. Dilute nitride vertical-cavity surface-emitting lasers

    International Nuclear Information System (INIS)

    Jouhti, T; Okhotnikov, O; Konttinen, J; Gomes, L A; Peng, C S; Karirinne, S; Pavelescu, E-M; Pessa, M

    2003-01-01

    A novel quaternary compound semiconductor material, Ga 1-x In x N y As 1-y (0 0.65 In 0.35 N 0.014 As 0.986 /GaAs quantum wells with special strain-mediating layers. The laser characterization was carried out by using a fibre pigtailed 980 nm pump laser diode, 980/1300 nm wavelength division multiplexer and an optical spectrum analyser. A high optical output power of 3.5 mW was coupled lenslessly into a standard single-mode fibre

  1. Superconducting TESLA cavities

    Directory of Open Access Journals (Sweden)

    B. Aune

    2000-09-01

    Full Text Available The conceptional design of the proposed linear electron-positron collider TESLA is based on 9-cell 1.3 GHz superconducting niobium cavities with an accelerating gradient of E_{acc}≥25 MV/m at a quality factor Q_{0}≥5×10^{9}. The design goal for the cavities of the TESLA Test Facility (TTF linac was set to the more moderate value of E_{acc}≥15 MV/m. In a first series of 27 industrially produced TTF cavities the average gradient at Q_{0}=5×10^{9} was measured to be 20.1±6.2 MV/m, excluding a few cavities suffering from serious fabrication or material defects. In the second production of 24 TTF cavities, additional quality control measures were introduced, in particular, an eddy-current scan to eliminate niobium sheets with foreign material inclusions and stringent prescriptions for carrying out the electron-beam welds. The average gradient of these cavities at Q_{0}=5×10^{9} amounts to 25.0±3.2 MV/m with the exception of one cavity suffering from a weld defect. Hence only a moderate improvement in production and preparation techniques will be needed to meet the ambitious TESLA goal with an adequate safety margin. In this paper we present a detailed description of the design, fabrication, and preparation of the TESLA Test Facility cavities and their associated components and report on cavity performance in test cryostats and with electron beam in the TTF linac. The ongoing research and development towards higher gradients is briefly addressed.

  2. Cavity-enhanced spectroscopies

    CERN Document Server

    van Zee, Roger

    2003-01-01

    ""Cavity-Enhanced Spectroscopy"" discusses the use of optical resonators and lasers to make sensitive spectroscopic measurements. This volume is written by the researcchers who pioneered these methods. The book reviews both the theory and practice behind these spectroscopic tools and discusses the scientific discoveries uncovered by these techniques. It begins with a chapter on the use of optical resonators for frequency stabilization of lasers, which is followed by in-depth chapters discussing cavity ring-down spectroscopy, frequency-modulated, cavity-enhanced spectroscopy, intracavity spectr

  3. Tuned optical cavity magnetometer

    Science.gov (United States)

    Okandan, Murat; Schwindt, Peter

    2010-11-02

    An atomic magnetometer is disclosed which utilizes an optical cavity formed from a grating and a mirror, with a vapor cell containing an alkali metal vapor located inside the optical cavity. Lasers are used to magnetically polarize the alkali metal vapor and to probe the vapor and generate a diffracted laser beam which can be used to sense a magnetic field. Electrostatic actuators can be used in the magnetometer for positioning of the mirror, or for modulation thereof. Another optical cavity can also be formed from the mirror and a second grating for sensing, adjusting, or stabilizing the position of the mirror.

  4. Hydroforming of elliptical cavities

    Science.gov (United States)

    Singer, W.; Singer, X.; Jelezov, I.; Kneisel, P.

    2015-02-01

    Activities of the past several years in developing the technique of forming seamless (weldless) cavity cells by hydroforming are summarized. An overview of the technique developed at DESY for the fabrication of single cells and multicells of the TESLA cavity shape is given and the major rf results are presented. The forming is performed by expanding a seamless tube with internal water pressure while simultaneously swaging it axially. Prior to the expansion the tube is necked at the iris area and at the ends. Tube radii and axial displacements are computer controlled during the forming process in accordance with results of finite element method simulations for necking and expansion using the experimentally obtained strain-stress relationship of tube material. In cooperation with industry different methods of niobium seamless tube production have been explored. The most appropriate and successful method is a combination of spinning or deep drawing with flow forming. Several single-cell niobium cavities of the 1.3 GHz TESLA shape were produced by hydroforming. They reached accelerating gradients Eacc up to 35 MV /m after buffered chemical polishing (BCP) and up to 42 MV /m after electropolishing (EP). More recent work concentrated on fabrication and testing of multicell and nine-cell cavities. Several seamless two- and three-cell units were explored. Accelerating gradients Eacc of 30 - 35 MV /m were measured after BCP and Eacc up to 40 MV /m were reached after EP. Nine-cell niobium cavities combining three three-cell units were completed at the company E. Zanon. These cavities reached accelerating gradients of Eacc=30 - 35 MV /m . One cavity is successfully integrated in an XFEL cryomodule and is used in the operation of the FLASH linear accelerator at DESY. Additionally the fabrication of bimetallic single-cell and multicell NbCu cavities by hydroforming was successfully developed. Several NbCu clad single-cell and double-cell cavities of the TESLA shape have been

  5. Hydroforming of elliptical cavities

    Directory of Open Access Journals (Sweden)

    W. Singer

    2015-02-01

    Full Text Available Activities of the past several years in developing the technique of forming seamless (weldless cavity cells by hydroforming are summarized. An overview of the technique developed at DESY for the fabrication of single cells and multicells of the TESLA cavity shape is given and the major rf results are presented. The forming is performed by expanding a seamless tube with internal water pressure while simultaneously swaging it axially. Prior to the expansion the tube is necked at the iris area and at the ends. Tube radii and axial displacements are computer controlled during the forming process in accordance with results of finite element method simulations for necking and expansion using the experimentally obtained strain-stress relationship of tube material. In cooperation with industry different methods of niobium seamless tube production have been explored. The most appropriate and successful method is a combination of spinning or deep drawing with flow forming. Several single-cell niobium cavities of the 1.3 GHz TESLA shape were produced by hydroforming. They reached accelerating gradients E_{acc} up to 35  MV/m after buffered chemical polishing (BCP and up to 42  MV/m after electropolishing (EP. More recent work concentrated on fabrication and testing of multicell and nine-cell cavities. Several seamless two- and three-cell units were explored. Accelerating gradients E_{acc} of 30–35  MV/m were measured after BCP and E_{acc} up to 40  MV/m were reached after EP. Nine-cell niobium cavities combining three three-cell units were completed at the company E. Zanon. These cavities reached accelerating gradients of E_{acc}=30–35  MV/m. One cavity is successfully integrated in an XFEL cryomodule and is used in the operation of the FLASH linear accelerator at DESY. Additionally the fabrication of bimetallic single-cell and multicell NbCu cavities by hydroforming was successfully developed. Several NbCu clad single-cell and

  6. Cavity Optomechanics at Millikelvin Temperatures

    Science.gov (United States)

    Meenehan, Sean Michael

    The field of cavity optomechanics, which concerns the coupling of a mechanical object's motion to the electromagnetic field of a high finesse cavity, allows for exquisitely sensitive measurements of mechanical motion, from large-scale gravitational wave detection to microscale accelerometers. Moreover, it provides a potential means to control and engineer the state of a macroscopic mechanical object at the quantum level, provided one can realize sufficiently strong interaction strengths relative to the ambient thermal noise. Recent experiments utilizing the optomechanical interaction to cool mechanical resonators to their motional quantum ground state allow for a variety of quantum engineering applications, including preparation of non-classical mechanical states and coherent optical to microwave conversion. Optomechanical crystals (OMCs), in which bandgaps for both optical and mechanical waves can be introduced through patterning of a material, provide one particularly attractive means for realizing strong interactions between high-frequency mechanical resonators and near-infrared light. Beyond the usual paradigm of cavity optomechanics involving isolated single mechanical elements, OMCs can also be fashioned into planar circuits for photons and phonons, and arrays of optomechanical elements can be interconnected via optical and acoustic waveguides. Such coupled OMC arrays have been proposed as a way to realize quantum optomechanical memories, nanomechanical circuits for continuous variable quantum information processing and phononic quantum networks, and as a platform for engineering and studying quantum many-body physics of optomechanical meta-materials. However, while ground state occupancies (that is, average phonon occupancies less than one) have been achieved in OMC cavities utilizing laser cooling techniques, parasitic absorption and the concomitant degradation of the mechanical quality factor fundamentally limit this approach. On the other hand, the high

  7. Spectral investigation of hot-spot and cavity resonance effects on the terahertz radiation emitted from high-Tc superconducting Bi2Sr2CaCu2O8+δ single crystal mesa structures

    Science.gov (United States)

    Kadowaki, Kazuo; Watanabe, Chiharu; Minami, Hidetoshi; Yamamoto, Takashi; Kashiwagi, Takanari; Klemm, Richard

    2014-03-01

    Terahertz (THz) electromagnetic radiation emitted from high-Tc superconducting Bi2Sr2CaCu2O8+δ mesa structures in the case of single mesa and series-connected mesas is investigated by the FTIR spectroscopic technique while observing its temperature distribution simultaneously by a SiC photoluminescence technique. Changing the bias level, sudden jumps of the hot-spot position were clearly observed. Although the radiation intensity changes drastically associated with the jump of the hot spot position, the frequency is unaffected as long as the voltage per junction is kept constant. Since the frequency of the intense radiation satisfies the cavity resonance condition, we confirmed that the cavity resonance is of primarily importance for the synchronization of whole intrinsic Josephson junctions in the mesa for high power radiation. This work was supported in part by the Grant-in-Aid for challenging Exploratory Research, the Ministry of Education, Culture, Sports, Science & Technology (MEXT).

  8. Analysis of the Qualification-Tests Performance of the Superconducting Cavities for the SNS Linac

    CERN Document Server

    Delayen, J R; Ozelis, O

    2004-01-01

    Thomas Jefferson National Accelerating Facility (Jefferson Lab) is producing superconducting radio frequency (SRF) cryomodules for the Spallation Neutron Source (SNS) cold linac. This consists of 11 medium-beta (β=0.61) cyomodules of 3 cavities each, and 12 high-beta (β=0.81) cryomodules of 4 cavities each. Before assembly into cavity strings the cavities undergo individual qualification tests in a vertical cryostat (VTA). In this paper we analyze the performance of the cavities during these qualification tests, and attempt to correlate this performance with cleaning, assembly, and testing procedures. We also compare VTA performance with performance in completed cryomodules.

  9. SPS accelerating cavity

    CERN Multimedia

    CERN PhotoLab

    1976-01-01

    The SPS started up with 2 accelerating cavities (each consisting of 5 tank sections) in LSS3. They have a 200 MHz travelling wave structure (see 7411032 and 7802190) and 750 kW of power is fed to each of the cavities from a 1 MW tetrode power amplifier, located in a surface building above, via a coaxial transmission line. Clemens Zettler, builder of the SPS RF system, is standing at the side of one of the cavities. In 1978 and 1979 another 2 cavities were added and entered service in 1980. These were part of the intensity improvement programme and served well for the new role of the SPS as proton-antiproton collider. See also 7411032, 8011289, 8104138, 8302397.

  10. Dental Sealants Prevent Cavities

    Science.gov (United States)

    ... Digital Press Kit Read the MMWR Science Clips Dental Sealants Prevent Cavities Effective protection for children Language: ... more use of sealants and reimbursement of services. Dental care providers can Apply sealants to children at ...

  11. Statistical electromagnetics: Complex cavities

    NARCIS (Netherlands)

    Naus, H.W.L.

    2008-01-01

    A selection of the literature on the statistical description of electromagnetic fields and complex cavities is concisely reviewed. Some essential concepts, for example, the application of the central limit theorem and the maximum entropy principle, are scrutinized. Implicit assumptions, biased

  12. accelerating cavity from LEP

    CERN Multimedia

    This is an accelerating cavity from LEP, with a layer of niobium on the inside. Operating at 4.2 degrees above absolute zero, the niobium is superconducting and carries an accelerating field of 6 million volts per metre with negligible losses. Each cavity has a surface of 6 m2. The niobium layer is only 1.2 microns thick, ten times thinner than a hair. Such a large area had never been coated to such a high accuracy. A speck of dust could ruin the performance of the whole cavity so the work had to be done in an extremely clean environment. These challenging requirements pushed European industry to new achievements. 256 of these cavities are now used in LEP to double the energy of the particle beams.

  13. The Superconducting TESLA Cavities

    CERN Document Server

    Aune, B.; Bloess, D.; Bonin, B.; Bosotti, A.; Champion, M.; Crawford, C.; Deppe, G.; Dwersteg, B.; Edwards, D.A.; Edwards, H.T.; Ferrario, M.; Fouaidy, M.; Gall, P-D.; Gamp, A.; Gössel, A.; Graber, J.; Hubert, D.; Hüning, M.; Juillard, M.; Junquera, T.; Kaiser, H.; Kreps, G.; Kuchnir, M.; Lange, R.; Leenen, M.; Liepe, M.; Lilje, L.; Matheisen, A.; Möller, W-D.; Mosnier, A.; Padamsee, H.; Pagani, C.; Pekeler, M.; Peters, H-B.; Peters, O.; Proch, D.; Rehlich, K.; Reschke, D.; Safa, H.; Schilcher, T.; Schmüser, P.; Sekutowicz, J.; Simrock, S.; Singer, W.; Tigner, M.; Trines, D.; Twarowski, K.; Weichert, G.; Weisend, J.; Wojtkiewicz, J.; Wolff, S.; Zapfe, K.

    2000-01-01

    The conceptional design of the proposed linear electron-positron colliderTESLA is based on 9-cell 1.3 GHz superconducting niobium cavities with anaccelerating gradient of Eacc >= 25 MV/m at a quality factor Q0 > 5E+9. Thedesign goal for the cavities of the TESLA Test Facility (TTF) linac was set tothe more moderate value of Eacc >= 15 MV/m. In a first series of 27industrially produced TTF cavities the average gradient at Q0 = 5E+9 wasmeasured to be 20.1 +- 6.2 MV/m, excluding a few cavities suffering fromserious fabrication or material defects. In the second production of 24 TTFcavities additional quality control measures were introduced, in particular aneddy-current scan to eliminate niobium sheets with foreign material inclusionsand stringent prescriptions for carrying out the electron-beam welds. Theaverage gradient of these cavities at Q0 = 5E+9 amounts to 25.0 +- 3.2 MV/mwith the exception of one cavity suffering from a weld defect. Hence only amoderate improvement in production and preparation technique...

  14. Tunneling effect in cavity-resonator-coupled arrays

    International Nuclear Information System (INIS)

    Ma Hua; Xu Zhuo; Qu Shao-Bo; Zhang Jie-Qiu; Wang Jia-Fu; Liang Chang-Hong

    2013-01-01

    The quantum tunneling effect (QTE) in a cavity-resonator-coupled (CRC) array was analytically and numerically investigated. The underlying mechanism was interpreted by treating electromagnetic waves as photons, and then was generalized to acoustic waves and matter waves. It is indicated that for the three kinds of waves, the QTE can be excited by cavity resonance in a CRC array, resulting in sub-wavelength transparency through the narrow splits between cavities. This opens up opportunities for designing new types of crystals based on CRC arrays, which may find potential applications such as quantum devices, micro-optic transmission, and acoustic manipulation. (condensed matter: electronic structure, electrical, magnetic, and optical properties)

  15. Phonon Routing in Integrated Optomechanical Cavity-waveguide Systems

    Science.gov (United States)

    2015-08-20

    cavity (bottom beam of Fig. 1b), allowing for evanescent cou- pling of laser light into and out of the cavity. A single optical fiber taper is used to...couple light into the on- chip coupling waveguide, and a photonic crystal mirror is etched in to the end of the optical coupling waveguide so that light...coupled into the nanobeam cavity can be recollected by the optical fiber taper as per Ref. [36]. Figure 1c shows the band structure of the phonon

  16. Development of an advanced electropolishing setup for multicell high gradient niobium cavities

    Directory of Open Access Journals (Sweden)

    F. Éozénou

    2012-08-01

    Full Text Available Reproducible operation at high performances of superconducting cavities is required for linear accelerators. High beta elliptical cavities are thus of concern and, to achieve required performances for such resonators, surface preparation including electropolishing is recommended. We have designed and operate a setup for electropolishing in the vertical position of multicell cavities in order to: (i obtain high yield with large elliptical cavities for Superconducting Linac (SPL or European Spallation Source projects; (ii develop a reference installation demonstrating that this process is appropriate for the large scale treatment of cavities in industry. The setup described here is the first one able to electropolish vertically multicell cavities with circulating acid and high safety standards. This equipment makes it possible to use a wide range of parameters such as voltage, acid flow rate, temperature, and nitrogen injection with an R&D purpose in mind. Optimization is studied using modeling with COMSOL software for different cavities. As examples, we present some results for the 704 MHz high-beta SPL cavity and the 1300 MHz International Linear Collider cavity and show the influence of cathode shape on both acid flow and electric field distribution during the process. Importance of the size of the cavity and first results achieved on single-cell and nine-cell cavities will be discussed.

  17. Quantum dynamics of crystals of molecular magnets inside microwave resonators

    Energy Technology Data Exchange (ETDEWEB)

    Amigo, R.; Tejada, J.; Chudnovsky, E.M.; Hernandez, J.M.; Garcia-Santiago, A. E-mail: antonio@ubxlab.comtoni@ubxlab.com

    2004-05-01

    It is shown that crystals of molecular nanomagnets exhibit enhanced magnetic relaxation when placed inside a resonant cavity. Strong dependence of the magnetization curve on the geometry of the cavity has been observed, providing evidence of the coherent microwave radiation by the crystals. These observations open the possibility of building a nanomagnetic microwave laser pumped by the magnetic field.

  18. Quantum dynamics of crystals of molecular magnets inside microwave resonators

    International Nuclear Information System (INIS)

    Amigo, R.; Tejada, J.; Chudnovsky, E.M.; Hernandez, J.M.; Garcia-Santiago, A.

    2004-01-01

    It is shown that crystals of molecular nanomagnets exhibit enhanced magnetic relaxation when placed inside a resonant cavity. Strong dependence of the magnetization curve on the geometry of the cavity has been observed, providing evidence of the coherent microwave radiation by the crystals. These observations open the possibility of building a nanomagnetic microwave laser pumped by the magnetic field

  19. Results of Cavity Series Fabrication at Jefferson Laboratory for the Cryomodule 'R100'

    International Nuclear Information System (INIS)

    Marhauser, F.; Clemens, W.A.; Drury, M.A.; Forehand, D.; Henry, J.; Manning, S.; Overton, R.B.; Williams, R.S.

    2011-01-01

    A series production of eight superconducting RF cavities for the cryomodule R100 was conducted at JLab in 2010. The cavities underwent chemical post-processing prior to vertical high power testing and routinely exceeded the envisaged performance specifications. After cryomodule assembly, cavities were successfully high power acceptance tested. In this paper, we present the achievements paving the way for the first demonstration of 100 MV (and beyond) in a single cryomodule to be operated at CEBAF.

  20. Quarter-lambda-shifted photonic crystal lasers

    DEFF Research Database (Denmark)

    Schubert, Martin; Skovgård, Troels Suhr; Ek, Sara

    A new design for photonic crystal lasers is proposed and realised. It allows an intuitive design for ultralow mode volume and high Q cavities which can be realized in a connected membrane structure.......A new design for photonic crystal lasers is proposed and realised. It allows an intuitive design for ultralow mode volume and high Q cavities which can be realized in a connected membrane structure....

  1. Lasers with intra-cavity phase elements

    Science.gov (United States)

    Gulses, A. Alkan; Kurtz, Russell; Islas, Gabriel; Anisimov, Igor

    2018-02-01

    Conventional laser resonators yield multimodal output, especially at high powers and short cavity lengths. Since highorder modes exhibit large divergence, it is desirable to suppress them to improve laser quality. Traditionally, such modal discriminations can be achieved by simple apertures that provide absorptive loss for large diameter modes, while allowing the lower orders, such as the fundamental Gaussian, to pass through. However, modal discrimination may not be sufficient for short-cavity lasers, resulting in multimodal operation as well as power loss and overheating in the absorptive part of the aperture. In research to improve laser mode control with minimal energy loss, systematic experiments have been executed using phase-only elements. These were composed of an intra-cavity step function and a diffractive out-coupler made of a computer-generated hologram. The platform was a 15-cm long solid-state laser that employs a neodymium-doped yttrium orthovanadate crystal rod, producing 1064 nm multimodal laser output. The intra-cavity phase elements (PEs) were shown to be highly effective in obtaining beams with reduced M-squared values and increased output powers, yielding improved values of radiance. The utilization of more sophisticated diffractive elements is promising for more difficult laser systems.

  2. Video Toroid Cavity Imager

    Energy Technology Data Exchange (ETDEWEB)

    Gerald, Rex E. II; Sanchez, Jairo; Rathke, Jerome W.

    2004-08-10

    A video toroid cavity imager for in situ measurement of electrochemical properties of an electrolytic material sample includes a cylindrical toroid cavity resonator containing the sample and employs NMR and video imaging for providing high-resolution spectral and visual information of molecular characteristics of the sample on a real-time basis. A large magnetic field is applied to the sample under controlled temperature and pressure conditions to simultaneously provide NMR spectroscopy and video imaging capabilities for investigating electrochemical transformations of materials or the evolution of long-range molecular aggregation during cooling of hydrocarbon melts. The video toroid cavity imager includes a miniature commercial video camera with an adjustable lens, a modified compression coin cell imager with a fiat circular principal detector element, and a sample mounted on a transparent circular glass disk, and provides NMR information as well as a video image of a sample, such as a polymer film, with micrometer resolution.

  3. Earth-ionosphere cavity

    International Nuclear Information System (INIS)

    Tran, A.; Polk, C.

    1976-01-01

    To analyze ELF wave propagation in the earth-ionosphere cavity, a flat earth approximation may be derived from the exact equations, which are applicable to the spherical cavity, by introducing a second-order or Debye approximation for the spherical Hankel functions. In the frequency range 3 to 30 Hz, however, the assumed conditions for the Debye approximation are not satisfied. For this reason an exact evaluation of the spherical Hankel functions is used to study the effects of the flat earth approximation on various propagation and resonance parameters. By comparing the resonance equation for a spherical cavity with its flat earth counterpart and by assuming that the surface impedance Z/sub i/ at the upper cavity boundary is known, the relation between the eigenvalue ν and S/sub v/, the sine of the complex angle of incidence at the lower ionosphere boundary, is established as ν(ν + 1) = (kaS/sub v/) 2 . It is also shown that the approximation ν(ν + 1) approximately equals (ν + 1/2) 2 which was used by some authors is not adequate below 30 Hz. Numerical results for both spherical and planar stratification show that (1) planar stratification is adequate for the computation of the lowest three ELF resonance frequencies to within 0.1 Hz; (2) planar stratification will lead to errors in cavity Q and wave attenuation which increase with frequency; (3) computation of resonance frequencies to within 0.1 Hz requires the extension of the lower boundary of the ionosphere to a height where the ratio of conduction current to displacement current, (sigma/ωepsilon 0 ), is less than 0.3; (4) atmospheric conductivity should be considered down to ground level in computing cavity Q and wave attenuation

  4. Materials for superconducting cavities

    International Nuclear Information System (INIS)

    Bonin, B.

    1996-01-01

    The ideal material for superconducting cavities should exhibit a high critical temperature, a high critical field, and, above all, a low surface resistance. Unfortunately, these requirements can be conflicting and a compromise has to be found. To date, most superconducting cavities for accelerators are made of niobium. The reasons for this choice are discussed. Thin films of other materials such as NbN, Nb 3 Sn, or even YBCO compounds can also be envisaged and are presently investigated in various laboratories. It is shown that their success will depend critically on the crystalline perfection of these films. (author)

  5. Growing Crystals on the Ceiling.

    Science.gov (United States)

    Christman, Robert A.

    1980-01-01

    Described is a method of studying growing crystals in a classroom utilizing a carrousel projector standing vertically. A saturated salt solution is placed on a slide on the lens of the projector and the heat from the projector causes the water to evaporate and salt to crystalize. (Author/DS)

  6. Experimental investigation of cavity flows

    Energy Technology Data Exchange (ETDEWEB)

    Loeland, Tore

    1999-12-31

    This thesis uses LDV (Laser Doppler Velocimetry), PIV (Particle Image Velocimetry) and Laser Sheet flow Visualisation to study flow inside three different cavity configurations. For sloping cavities, the vortex structure inside the cavities is found to depend upon the flow direction past the cavity. The shape of the downstream corner is a key factor in destroying the boundary layer flow entering the cavity. The experimental results agree well with numerical simulations of the same geometrical configurations. The results of the investigations are used to find the influence of the cavity flow on the accuracy of the ultrasonic flowmeter. A method to compensate for the cavity velocities is suggested. It is found that the relative deviation caused by the cavity velocities depend linearly on the pipe flow. It appears that the flow inside the cavities should not be neglected as done in the draft for the ISO technical report on ultrasonic flowmeters. 58 refs., 147 figs., 2 tabs.

  7. Experimental investigation of cavity flows

    Energy Technology Data Exchange (ETDEWEB)

    Loeland, Tore

    1998-12-31

    This thesis uses LDV (Laser Doppler Velocimetry), PIV (Particle Image Velocimetry) and Laser Sheet flow Visualisation to study flow inside three different cavity configurations. For sloping cavities, the vortex structure inside the cavities is found to depend upon the flow direction past the cavity. The shape of the downstream corner is a key factor in destroying the boundary layer flow entering the cavity. The experimental results agree well with numerical simulations of the same geometrical configurations. The results of the investigations are used to find the influence of the cavity flow on the accuracy of the ultrasonic flowmeter. A method to compensate for the cavity velocities is suggested. It is found that the relative deviation caused by the cavity velocities depend linearly on the pipe flow. It appears that the flow inside the cavities should not be neglected as done in the draft for the ISO technical report on ultrasonic flowmeters. 58 refs., 147 figs., 2 tabs.

  8. Tunable single quantum dot nanocavities for cavity QED experiments

    International Nuclear Information System (INIS)

    Kaniber, M; Laucht, A; Neumann, A; Bichler, M; Amann, M-C; Finley, J J

    2008-01-01

    We present cavity quantum electrodynamics experiments performed on single quantum dots embedded in two-dimensional photonic crystal nanocavities. We begin by describing the structural and optical properties of the quantum dot sample and the photonic crystal nanocavities and compare the experimental results with three-dimensional calculations of the photonic properties. The influence of the tailored photonic environment on the quantum dot spontaneous emission dynamics is studied using spectrally and spatially dependent time-resolved spectroscopy. In ensemble and single dot measurements we show that the photonic crystals strongly enhance the photon extraction efficiency and, therefore, are a promising concept for realizing efficient single-photon sources. Furthermore, we demonstrate single-photon emission from an individual quantum dot that is spectrally detuned from the cavity mode. The need for controlling the spectral dot-cavity detuning is discussed on the basis of shifting either the quantum dot emission via temperature tuning or the cavity mode emission via a thin film deposition technique. Finally, we discuss the recently discovered non-resonant coupling mechanism between quantum dot emission and cavity mode for large detunings which drastically lowers the purity of single-photon emission from dots that are spectrally coupled to nanocavity modes.

  9. Modes and Mode Volumes for Leaky Optical Cavities and Plasmonic Nanoresonators

    DEFF Research Database (Denmark)

    Hughes, Stephen; Kristensen, Philip Trøst

    2013-01-01

    Electromagnetic cavity modes in photonic and plasmonic resonators offer rich and attractive regimes for tailoring the properties of light–matter interactions, yet there is a disturbing lack of a precise definition for what constitutes a cavity mode, and as a result their mathematical properties r...... methods for quasinormal modes of both photonic and plasmonic resonators and the concept of a generalized effective mode volume, and we illustrate the theory with several representative cavity structures from the fields of photonic crystals and nanoplasmonics....

  10. Multipactors in klystron cavities

    International Nuclear Information System (INIS)

    Hayashi, Kazutaka; Iyeki, Hiroshi; Kikunaga, Toshiyuki.

    1993-01-01

    A multipactor phenomenon in a klystron causes gain shortage or instability problem. Some tests using a prototype klystron input cavity revealed the microwave discharges in vacuum with magnetic field. The test results and the methods to avoid multipactors are discussed in this paper. (author)

  11. What's a Cavity?

    Science.gov (United States)

    ... and deeper over time. Cavities are also called dental caries (say: KARE-eez), and if you have a ... made up mostly of the germs that cause tooth decay. The bacteria in your mouth make acids and when plaque clings to your teeth, the acids can eat away at the outermost ...

  12. Oral cavity and jaw

    International Nuclear Information System (INIS)

    Solntsev, A.M.; Koval', G.Yu.

    1984-01-01

    Radioanatome of oral cavity and jaw is described. Diseases of the teeth, jaw, large salivary glands, temporo-mandibular articulation are considered. Roentgenograms of oral cacity and jaw of healthy people are presented and analyzed as well as roentgenograms in the above-mentioned diseases

  13. Niobium superconducting cavity

    CERN Multimedia

    CERN PhotoLab

    1980-01-01

    This 5-cell superconducting cavity, made from bulk-Nb, stems from the period of general studies, not all directed towards direct use at LEP. This one is dimensioned for 1.5 GHz, the frequency used at CEBAF and also studied at Saclay (LEP RF was 352.2 MHz). See also 7908227, 8007354, 8209255, 8210054, 8312339.

  14. Superconducting elliptical cavities

    CERN Document Server

    Sekutowicz, J K

    2011-01-01

    We give a brief overview of the history, state of the art, and future for elliptical superconducting cavities. Principles of the cell shape optimization, criteria for multi-cell structures design, HOM damping schemes and other features are discussed along with examples of superconducting structures for various applications.

  15. Additive Manufactured Superconducting Cavities

    Science.gov (United States)

    Holland, Eric; Rosen, Yaniv; Woolleet, Nathan; Materise, Nicholas; Voisin, Thomas; Wang, Morris; Mireles, Jorge; Carosi, Gianpaolo; Dubois, Jonathan

    Superconducting radio frequency cavities provide an ultra-low dissipative environment, which has enabled fundamental investigations in quantum mechanics, materials properties, and the search for new particles in and beyond the standard model. However, resonator designs are constrained by limitations in conventional machining techniques. For example, current through a seam is a limiting factor in performance for many waveguide cavities. Development of highly reproducible methods for metallic parts through additive manufacturing, referred to colloquially as 3D printing\\x9D, opens the possibility for novel cavity designs which cannot be implemented through conventional methods. We present preliminary investigations of superconducting cavities made through a selective laser melting process, which compacts a granular powder via a high-power laser according to a digitally defined geometry. Initial work suggests that assuming a loss model and numerically optimizing a geometry to minimize dissipation results in modest improvements in device performance. Furthermore, a subset of titanium alloys, particularly, a titanium, aluminum, vanadium alloy (Ti - 6Al - 4V) exhibits properties indicative of a high kinetic inductance material. This work is supported by LDRD 16-SI-004.

  16. Cavity Nesting Birds

    Science.gov (United States)

    Virgil E. Scott; Keith E. Evans; David R. Patton; Charles P. Stone

    1977-01-01

    Many species of cavity-nesting birds have declined because of habitat reduction. In the eastern United States, where primeval forests are gone, purple martins depend almost entirely on man-made nesting structures (Allen and Nice 1952). The hole-nesting population of peregrine falcons disappeared with the felling of the giant trees upon which they depended (Hickey and...

  17. LEP superconducting cavity

    CERN Multimedia

    1995-01-01

    Engineers work in a clean room on one of the superconducting cavities for the upgrade to the LEP accelerator, known as LEP-2. The use of superconductors allow higher electric fields to be produced so that higher beam energies can be reached.

  18. Open microwave cavities

    Czech Academy of Sciences Publication Activity Database

    Šeba, Petr; Rotter, I.; Mueller, M.; Persson, C.; Pichugin, Konstantin N.

    2001-01-01

    Roč. 9, - (2001), s. 484-487 ISSN 1386-9477 Institutional research plan: CEZ:A02/98:Z1-010-914 Keywords : microwave cavity * resonances Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 1.009, year: 2001

  19. Filling a Conical Cavity

    Science.gov (United States)

    Nye, Kyle; Eslam-Panah, Azar

    2016-11-01

    Root canal treatment involves the removal of infected tissue inside the tooth's canal system and filling the space with a dense sealing agent to prevent further infection. A good root canal treatment happens when the canals are filled homogeneously and tightly down to the root apex. Such a tooth is able to provide valuable service for an entire lifetime. However, there are some examples of poorly performed root canals where the anterior and posterior routes are not filled completely. Small packets of air can be trapped in narrow access cavities when restoring with resin composites. Such teeth can cause trouble even after many years and lead the conditions like acute bone infection or abscesses. In this study, the filling of dead-end conical cavities with various liquids is reported. The first case studies included conical cavity models with different angles and lengths to visualize the filling process. In this investigation, the rate and completeness at which a variety of liquids fill the cavity were observed to find ideal conditions for the process. Then, a 3D printed model of the scaled representation of a molar with prepared post spaces was used to simulate the root canal treatment. The results of this study can be used to gain a better understanding of the restoration for endodontically treated teeth.

  20. Engineering design of vertical test stand cryostat

    International Nuclear Information System (INIS)

    Suhane, S.K.; Sharma, N.K.; Raghavendra, S.; Joshi, S.C.; Das, S.; Kush, P.K.; Sahni, V.C.; Gupta, P.D.; Sylvester, C.; Rabehl, R.; Ozelis, J.

    2011-01-01

    Under Indian Institutions and Fermilab collaboration, Raja Ramanna Centre for Advanced Technology and Fermi National Accelerator Laboratory are jointly developing 2K Vertical Test Stand (VTS) cryostats for testing SCRF cavities at 2K. The VTS cryostat has been designed for a large testing aperture of 86.36 cm for testing of 325 MHz Spoke resonators, 650 MHz and 1.3 GHz multi-cell SCRF cavities for Fermilab's Project-X. Units will be installed at Fermilab and RRCAT and used to test cavities for Project-X. A VTS cryostat comprises of liquid helium (LHe) vessel with internal magnetic shield, top insert plate equipped with cavity support stand and radiation shield, liquid nitrogen (LN 2 ) shield and vacuum vessel with external magnetic shield. The engineering design and analysis of VTS cryostat has been carried out using ASME B and PV Code and Finite Element Analysis. Design of internal and external magnetic shields was performed to limit the magnetic field inside LHe vessel at the cavity surface 2 shield has been performed to check the effectiveness of LN 2 cooling and for compliance with ASME piping code allowable stresses.

  1. Calculation, normalization and perturbation of quasinormal modes in coupled cavity-waveguide systems

    DEFF Research Database (Denmark)

    Kristensen, Philip Trøst; de Lasson, Jakob Rosenkrantz; Gregersen, Niels

    2014-01-01

    of divergent series to provide a framework for modeling of optical phenomena in such coupled cavity-waveguide systems. As an example, we apply the framework to study perturbative changes in the resonance frequency and Q value of a photonic crystal cavity coupled to a defect waveguide....

  2. Simplified analytical model for thermal transfer in vertical hollow brick

    Energy Technology Data Exchange (ETDEWEB)

    Lorente, S [Lab. d` Etudes Thermiques et Mecaniques, INSA, UPS, Toulouse (France); Petit, M [Lab. d` Etudes Thermiques et Mecaniques, INSA, UPS, Toulouse (France); Javelas, R [Lab. d` Etudes Thermiques et Mecaniques, INSA, UPS, Toulouse (France)

    1996-12-01

    A modern building envelope has a lot of little cavities. Most of them are vertical with a high height to thickness ratio. We present here the conception of a software to determine heat transfer through terra-cotta bricks full of large vertical cavities. After a bibliographic study on convective heat transfer in such cavities, we made an analytical model based on Karman-Polhausen`s method for convection and on the radiosity method for radiative heat transfer. We used a test apparatus of a single cavity to determine the temperature field inside the cavity. Using these experimental results, we showed that the exchange was two-dimensional. We also realised heat flux measurements. Then we expose our theoretical study: We propose relations between central core temperatures and active face temperatures, then between outside and inside active face temperatures. We calculate convective superficial heat transfer because we noticed we have boundary layers along the active faces. We realise a heat flux balance between convective plus radiative heat transfer and conductive heat transfer, so we propose an algorithm to calculate global heat transfer through a single cavity. Finally, we extend our model to a whole hollow brick with lined-up cavities and propose an algorithm to calculate heat flux and thermal resistance with a good accuracy ({approx}7.5%) compared to previous experimental results. (orig.)

  3. Implosion of the small cavity and large cavity cannonball targets

    International Nuclear Information System (INIS)

    Nishihara, Katsunobu; Yamanaka, Chiyoe.

    1984-01-01

    Recent results of cannonball target implosion research are briefly reviewed with theoretical predictions for GEKKO XII experiments. The cannonball targets are classified into two types according to the cavity size ; small cavity and large cavity. The compression mechanisms of the two types are discussed. (author)

  4. Hollow waveguide cavity ringdown spectroscopy

    Science.gov (United States)

    Dreyer, Chris (Inventor); Mungas, Greg S. (Inventor)

    2012-01-01

    Laser light is confined in a hollow waveguide between two highly reflective mirrors. This waveguide cavity is used to conduct Cavity Ringdown Absorption Spectroscopy of loss mechanisms in the cavity including absorption or scattering by gases, liquid, solids, and/or optical elements.

  5. Nuclear reactor cavity streaming shield

    International Nuclear Information System (INIS)

    Klotz, R.J.; Stephen, D.W.

    1978-01-01

    The upper portion of a nuclear reactor vessel supported in a concrete reactor cavity has a structure mounted below the top of the vessel between the outer vessel wall and the reactor cavity wall which contains hydrogenous material which will attenuate radiation streaming upward between vessel and the reactor cavity wall while preventing pressure buildup during a loss of coolant accident

  6. Compressibility effects in the shear layer over a rectangular cavity

    Energy Technology Data Exchange (ETDEWEB)

    Beresh, Steven J.; Wagner, Justin; Casper, Katya Marie

    2016-10-26

    we studied the influence of compressibility on the shear layer over a rectangular cavity of variable width in a free stream Mach number range of 0.6–2.5 using particle image velocimetry data in the streamwise centre plane. As the Mach number increases, the vertical component of the turbulence intensity diminishes modestly in the widest cavity, but the two narrower cavities show a more substantial drop in all three components as well as the turbulent shear stress. Furthermore, this contrasts with canonical free shear layers, which show significant reductions in only the vertical component and the turbulent shear stress due to compressibility. The vorticity thickness of the cavity shear layer grows rapidly as it initially develops, then transitions to a slower growth rate once its instability saturates. When normalized by their estimated incompressible values, the growth rates prior to saturation display the classic compressibility effect of suppression as the convective Mach number rises, in excellent agreement with comparable free shear layer data. The specific trend of the reduction in growth rate due to compressibility is modified by the cavity width.

  7. Quasilinear infiltration from an elliptical cavity

    Science.gov (United States)

    Kuhlman, Kristopher L.; Warrick, Arthur W.

    2008-08-01

    We develop analytic solutions to the linearized steady-state Richards equation for head and total flowrate due to an elliptic cylinder cavity with a specified pressure head boundary condition. They are generalizations of the circular cylinder cavity solutions of Philip [Philip JR. Steady infiltration from circular cylindrical cavities. Soil Sci Soc Am J 1984;48:270-8]. The circular and strip sources are limiting cases of the elliptical cylinder solution, derived for both horizontally- and vertically-aligned ellipses. We give approximate rational polynomial expressions for total flowrate from an elliptical cylinder over a range of sizes and shapes. The exact elliptical solution is in terms of Mathieu functions, which themselves are generalizations of and computed from trigonometric and Bessel functions. The required Mathieu functions are computed from a matrix eigenvector problem, a modern approach that is straightforward to implement using available linear algebra libraries. Although less efficient and potentially less accurate than the iterative continued fraction approach, the matrix approach is simpler to understand and implement and is valid over a wider parameter range.

  8. Metallic dielectric photonic crystals and methods of fabrication

    Energy Technology Data Exchange (ETDEWEB)

    Chou, Jeffrey Brian; Kim, Sang-Gook

    2016-12-20

    A metallic-dielectric photonic crystal is formed with a periodic structure defining a plurality of resonant cavities to selectively absorb incident radiation. A metal layer is deposited on the inner surfaces of the resonant cavities and a dielectric material fills inside the resonant cavities. This photonic crystal can be used to selectively absorb broadband solar radiation and then reemit absorbed radiation in a wavelength band that matches the absorption band of a photovoltaic cell. The photonic crystal can be fabricated by patterning a sacrificial layer with a plurality of holes, into which is deposited a supporting material. Removing the rest of the sacrificial layer creates a supporting structure, on which a layer of metal is deposited to define resonant cavities. A dielectric material then fills the cavities to form the photonic crystal.

  9. Metallic dielectric photonic crystals and methods of fabrication

    Energy Technology Data Exchange (ETDEWEB)

    Chou, Jeffrey Brian; Kim, Sang-Gook

    2017-12-05

    A metallic-dielectric photonic crystal is formed with a periodic structure defining a plurality of resonant cavities to selectively absorb incident radiation. A metal layer is deposited on the inner surfaces of the resonant cavities and a dielectric material fills inside the resonant cavities. This photonic crystal can be used to selectively absorb broadband solar radiation and then reemit absorbed radiation in a wavelength band that matches the absorption band of a photovoltaic cell. The photonic crystal can be fabricated by patterning a sacrificial layer with a plurality of holes, into which is deposited a supporting material. Removing the rest of the sacrificial layer creates a supporting structure, on which a layer of metal is deposited to define resonant cavities. A dielectric material then fills the cavities to form the photonic crystal.

  10. Global Vertical Reference Frame

    Czech Academy of Sciences Publication Activity Database

    Burša, Milan; Kenyon, S.; Kouba, J.; Šíma, Zdislav; Vatrt, V.; Vojtíšková, M.

    2004-01-01

    Roč. 33, - (2004), s. 404-407 ISSN 1436-3445 Institutional research plan: CEZ:AV0Z1003909 Keywords : geopotential WO * vertical systems * global vertical frame Subject RIV: BN - Astronomy, Celestial Mechanics, Astrophysics

  11. Colloquium: cavity optomechanics

    CERN Multimedia

    2011-01-01

    Monday 14 November 2011, 17:00 Ecole de Physique, Auditoire Stueckelberg Université de Genève Cavity optomechanics: controlling micro mechanical oscillators with laser light Prof. Tobias Kippenberg EPFL, Lausanne Laser light can be used to cool and to control trapped ions, atoms and molecules at the quantum level. This has lead to spectacular advances such as the most precise atomic clocks. An outstanding frontier is the control with lasers of nano- and micro-mechancial systems. Recent advances in cavity optomechanics have allowed such elementary control for the first time, enabling mechanical systems to be ground state cooled leading to readout with quantum limited sensitivity and permitting to explore new device concepts resulting from radiation pressure.  

  12. Leaching materials from cavities

    International Nuclear Information System (INIS)

    Hodgson, T.D.; Jordan, T.W.J.

    1980-01-01

    A material is leached from a cavity by contacting the material with a liquid and subjecting the liquid to a number of pressure cycles, each pressure cycle involving a decrease in pressure to cause boiling of the liquid, followed by a rise in pressure to inhibit the boiling. The method may include the step of heating the liquid to a temperature near to its boiling point. The material may be nuclear fuel pellets or calcium carbonate pellets. (author)

  13. Superconducting cavities for HERA

    International Nuclear Information System (INIS)

    Dwersteg, B.; Ebeling, W.; Moeller, W.D.; Renken, D.; Proch, D.; Sekutowicz, J.; Susta, J.; Tong, D.

    1988-01-01

    Superconducting 500 MHz cavities are developed to demonstrate the feasibility of upgrading the e-beam energy of the HERA storage ring. A prototype module with 2 x 4 cell resonators and appropriate fundamental and higher mode couplers has been designed at DESY and is being built by industrial firms. The design and results of RF and cryogenic measurements are reported in detail. 17 references, 10 figures, 2 tables

  14. Construction and present status of KEKB superconducting cavities

    International Nuclear Information System (INIS)

    Tajima, T.; Akai, K.; Ezura, E; Furuya, T.; Hosoyama, K.; Mitsunobu, S.

    2000-01-01

    The superconducting cavity (SCC) for KEKB is 508 MHz single-cell cavity that has large beam pipes (22 cm and 30 cm i.d.) so that higher-order modes propagate out of the cavity and be absorbed by a lossy material. The input coupler is the TRISTAN-type coaxial one with some modifications such that dc bias voltage can be applied to avoid multipactoring during beam operation, fins to efficiently cool the outer conductor and a heater to remove condensed gases. The higher-order mode absorber is made of ferrite directly sinter-bonded on the inner surface of the copper pipe using a technique called Hot Isostatic Press (HIP). One prototype cavity was tested up to 0.57 A at TRISTAN Accumulation Ring (AR) in 1996. Then, four cavities were constructed for KEKB. One of the cavities achieved an accelerating field of 19 MV/m at a test in a vertical cryostat; this field is the world record at this frequency to our knowledge. No degradation of the field after assembly into horizontal cryostats was observed up to the available power of 300 kW that corresponds to ∼12 MV/m. These four cavities were installed in KEKB tunnel and are expected to supply 6 MV in total voltage to the 1.1 A electron beam in high energy ring (HER). Since beam commissioning started in Dec. 1998, the system has been supplying 6 MV and working very smoothly without any trouble. The maximum current has been 0.51 A and power delivered to beam per cavity is 370-380 kW/cavity up to the end of Apr., 1999. (author)

  15. The quest for high-gradient superconducting cavities

    International Nuclear Information System (INIS)

    Padamsee, H.

    1999-01-01

    Superconducting RF cavities excel in applications requiring continuous waves or long pulse voltages. Since power losses in the walls of the cavity increase as the square of the accelerating voltage, copper cavities become uneconomical as demand for high continuous wave voltage grows with particle energy. For these reasons, RF superconductivity has become an important technology for high energy and high luminosity accelerators. The state of art in performance of sheet metal niobium cavities is best represented by the statistics of more than 300 5-cell, 1.5-GHz cavities built for CEBAF. Key aspects responsible for the outstanding performance of the CEBAF cavities set are the anti-multipactor, elliptical cell shape, good fabrication and welding techniques, high thermal conductivity niobium, and clean surface preparation. On average, field emission starts at the electric field of 8.7 MV/m, but there is a large spread, even though the cavities received nominally the same surface treatment and assembly procedures. In some cavities, field emission was detected as low as 3 MV/m. In others, it was found to be as high as 19 MV/m. As we will discuss, the reason for the large spread in the gradients is the large spread in emitter characteristics and the random occurrence of emitters on the surface. One important phenomenon that limits the achievable RF magnetic field is thermal breakdown of superconductivity, originating at sub-millimeter-size regions of high RF loss, called defects. Simulation reveal that if the defect is a normal conducting region of 200 mm radius, it will break down at 5 MV/m. Producing high gradients and high Q in superconducting cavities demands excellent control of material properties and surface cleanliness. The spread in gradients that arises from the random occurrence of defects and emitters must be reduced. It will be important to improve installation procedures to preserve the excellent gradients now obtained in laboratory test in vertical cryostats

  16. Electromagnetic characterization of superconducting radio-frequency cavities for gw detection

    Science.gov (United States)

    Ballantini, R.; Bernard, Ph; Chincarini, A.; Gemme, G.; Parodi, R.; Picasso, E.

    2004-03-01

    The electromagnetic properties of a prototype gravitational wave detector, based on two coupled superconducting microwave cavities, were tested. The radio-frequency (rf) detection system was carefully analysed. With the use of piezoelectric crystals small harmonic displacements of the cavity walls were induced and the parametric conversion of the electromagnetic field inside the cavities explored. Experimental results of bandwidth and sensitivity of the parametric converter versus stored energy and voltage applied to the piezoelectric crystal are reported. A rf control loop, developed to stabilize phase changes on signal paths, gave a 125 dBc rejection of the drive mode on a time scale of 1 h.

  17. Electromagnetic characterization of superconducting radio-frequency cavities for gw detection

    International Nuclear Information System (INIS)

    Ballantini, R; Bernard, Ph; Chincarini, A; Gemme, G; Parodi, R; Picasso, E

    2004-01-01

    The electromagnetic properties of a prototype gravitational wave detector, based on two coupled superconducting microwave cavities, were tested. The radio-frequency (rf) detection system was carefully analysed. With the use of piezoelectric crystals small harmonic displacements of the cavity walls were induced and the parametric conversion of the electromagnetic field inside the cavities explored. Experimental results of bandwidth and sensitivity of the parametric converter versus stored energy and voltage applied to the piezoelectric crystal are reported. A rf control loop, developed to stabilize phase changes on signal paths, gave a 125 dBc rejection of the drive mode on a time scale of 1 h

  18. Lead salt resonant cavity enhanced detector with MEMS mirror

    Science.gov (United States)

    Felder, F.; Fill, M.; Rahim, M.; Zogg, H.; Quack, N.; Blunier, S.; Dual, J.

    2010-01-01

    We describe a tunable resonant cavity enhanced detector (RCED) for the mid-infrared employing narrow gap lead-chalcogenide (IV-VI) layers on a Si substrate. The device consists of an epitaxial Bragg reflector layer, a thin p-n+ heterojunction with PbSrTe as detecting layer and a micro-electro-mechanical system (MEMS) micromirror as second mirror. Despite the thin absorber layer the sensitivity is even higher than for a conventional detector. Tunability is achieved by changing the cavity length with a vertically movable MEMS mirror. The device may be used as miniature infrared spectrometer to cover the spectral range from 30 μm.

  19. Crab cavities for linear colliders

    CERN Document Server

    Burt, G; Carter, R; Dexter, A; Tahir, I; Beard, C; Dykes, M; Goudket, P; Kalinin, A; Ma, L; McIntosh, P; Shulte, D; Jones, Roger M; Bellantoni, L; Chase, B; Church, M; Khabouline, T; Latina, A; Adolphsen, C; Li, Z; Seryi, Andrei; Xiao, L

    2008-01-01

    Crab cavities have been proposed for a wide number of accelerators and interest in crab cavities has recently increased after the successful operation of a pair of crab cavities in KEK-B. In particular crab cavities are required for both the ILC and CLIC linear colliders for bunch alignment. Consideration of bunch structure and size constraints favour a 3.9 GHz superconducting, multi-cell cavity as the solution for ILC, whilst bunch structure and beam-loading considerations suggest an X-band copper travelling wave structure for CLIC. These two cavity solutions are very different in design but share complex design issues. Phase stabilisation, beam loading, wakefields and mode damping are fundamental issues for these crab cavities. Requirements and potential design solutions will be discussed for both colliders.

  20. Computational Modeling of Photonic Crystal Microcavity Single-Photon Emitters

    Science.gov (United States)

    Saulnier, Nicole A.

    Conventional cryptography is based on algorithms that are mathematically complex and difficult to solve, such as factoring large numbers. The advent of a quantum computer would render these schemes useless. As scientists work to develop a quantum computer, cryptographers are developing new schemes for unconditionally secure cryptography. Quantum key distribution has emerged as one of the potential replacements of classical cryptography. It relics on the fact that measurement of a quantum bit changes the state of the bit and undetected eavesdropping is impossible. Single polarized photons can be used as the quantum bits, such that a quantum system would in some ways mirror the classical communication scheme. The quantum key distribution system would include components that create, transmit and detect single polarized photons. The focus of this work is on the development of an efficient single-photon source. This source is comprised of a single quantum dot inside of a photonic crystal microcavity. To better understand the physics behind the device, a computational model is developed. The model uses Finite-Difference Time-Domain methods to analyze the electromagnetic field distribution in photonic crystal microcavities. It uses an 8-band k · p perturbation theory to compute the energy band structure of the epitaxially grown quantum dots. We discuss a method that combines the results of these two calculations for determining the spontaneous emission lifetime of a quantum dot in bulk material or in a microcavity. The computational models developed in this thesis are used to identify and characterize microcavities for potential use in a single-photon source. The computational tools developed are also used to investigate novel photonic crystal microcavities that incorporate 1D distributed Bragg reflectors for vertical confinement. It is found that the spontaneous emission enhancement in the quasi-3D cavities can be significantly greater than in traditional suspended slab

  1. Vertical axis wind turbines

    Science.gov (United States)

    Krivcov, Vladimir [Miass, RU; Krivospitski, Vladimir [Miass, RU; Maksimov, Vasili [Miass, RU; Halstead, Richard [Rohnert Park, CA; Grahov, Jurij [Miass, RU

    2011-03-08

    A vertical axis wind turbine is described. The wind turbine can include a top ring, a middle ring and a lower ring, wherein a plurality of vertical airfoils are disposed between the rings. For example, three vertical airfoils can be attached between the upper ring and the middle ring. In addition, three more vertical airfoils can be attached between the lower ring and the middle ring. When wind contacts the vertically arranged airfoils the rings begin to spin. By connecting the rings to a center pole which spins an alternator, electricity can be generated from wind.

  2. In-phased second harmonic wave array generation with intra-Talbot-cavity frequency-doubling.

    Science.gov (United States)

    Hirosawa, Kenichi; Shohda, Fumio; Yanagisawa, Takayuki; Kannari, Fumihiko

    2015-03-23

    The Talbot cavity is one promising method to synchronize the phase of a laser array. However, it does not achieve the lowest array mode with the same phase but the highest array mode with the anti-phase between every two adjacent lasers, which is called out-phase locking. Consequently, their far-field images exhibit 2-peak profiles. We propose intra-Talbot-cavity frequency-doubling. By placing a nonlinear crystal in a Talbot cavity, the Talbot cavity generates an out-phased fundamental wave array, which is converted into an in-phase-locked second harmonic wave array at the nonlinear crystal. We demonstrate numerical calculations and experiments on intra-Talbot-cavity frequency-doubling and obtain an in-phase-locked second harmonic wave array for a Nd:YVO₄ array laser.

  3. Study of superconducting cavities for high power proton accelerators

    International Nuclear Information System (INIS)

    Biarrotte, J.L.

    2000-01-01

    The research program on hybrid reactors has started in France in order to study the technologies allowing the transmutation of radioactive wastes thanks to a spallation neutron source supplied by a linear high intensity proton accelerator. The study of the high energy part of this accelerator (superconducting accelerator for hybrid) has started, and its aim is the design of superconducting radiofrequency cavities which make the two different sections of the accelerator (0.47 and 0.65). This thesis presents the advance of the work carried out on this topic since 1997, in particular the design and optimization of the 5-cell cavities which work at the 704.4 MHz frequency. The experimental part of the study has been carried out in parallel with the industrial fabrication (Cerca) of several prototypes of mono-cell cavities. These cavities have shown very good RF performances during the tests in vertical cryostat; the A 102 A cavity, in particular develops a Q0 of 7.10 10 (indicating very low RF losses) and reaches an accelerator field of 25 MV/m, i.e. more than two times the specified value (about 10 MV/V). Finally, a new risk analysis method for the excitation of the upper modes is proposed. This method shows in particular the uselessness of the implementation of HOM couplers on the cavities for a continuous beam use. (J.S.)

  4. Preparation of TiC single crystals

    International Nuclear Information System (INIS)

    Scheerer, B.; Fink, J.; Reichardt, W.

    1975-07-01

    TiC single crystals were prepared by vertical zone melting for measurements of the phonon dispersion by inelastic neutron scattering. The influence of the starting material and of the growing conditions on the growth of the crystal were studied. The crystals were characterized by chemical methods, EMX and neutron diffraction. It was possible to grow single crystals with a volume of up to 0.6 cm 3 and mosaic spread of less then 0.4 0 . (orig.) [de

  5. Crystal Collimation Cleaning Measurements with Proton Beams in LHC

    CERN Document Server

    Rossi, Roberto; Andreassen, Odd Oyvind; Butcher, Mark; Dionisio Barreto, Cristovao Andre; Masi, Alessandro; Mirarchi, Daniele; Montesano, Simone; Lamas Garcia, Inigo; Redaelli, Stefano; Scandale, Walter; Serrano Galvez, Pablo; Rijllart, Adriaan; Valentino, Gianluca; CERN. Geneva. ATS Department

    2016-01-01

    During this MD, performed on July 29th, 2016, bent silicon crystal were tested with proton beams for a possible usage of crystal-assisted collimation. Tests were performed at both injection energy and flat top using horizontal and vertical crystal. Loss maps with crystals at 6.5 TeV were measured.

  6. ISR RF cavities

    CERN Multimedia

    1983-01-01

    In each ISR ring the radiofrequency cavities were installed in one 9 m long straight section. The RF system of the ISR had the main purpose to stack buckets of particles (most of the time protons)coming from the CPS and also to accelerate the stacked beam. The installed RF power per ring was 18 kW giving a peak accelerating voltage of 20 kV. The system had a very fine regulation feature allowing to lower the voltage down to 75 V in a smooth and well controlled fashion.

  7. Oral cavity eumycetoma

    Directory of Open Access Journals (Sweden)

    Gisele Alborghetti Nai

    2011-06-01

    Full Text Available Mycetoma is a pathological process in which eumycotic (fungal or actinomycotic causative agents from exogenous source produce grains. It is a localized chronic and deforming infectious disease of subcutaneous tissue, skin and bones. We report the first case of eumycetoma of the oral cavity in world literature. CASE REPORT: A 43-year-old male patient, complaining of swelling and fistula in the hard palate. On examination, swelling of the anterior and middle hard palate, with fistula draining a dark liquid was observed. The panoramic radiograph showed extensive radiolucent area involving the region of teeth 21-26 and the computerized tomography showed communication with the nasal cavity, suggesting the diagnosis of periapical cyst. Surgery was performed to remove the lesion. Histopathological examination revealed purulent material with characteristic grain. Gram staining for bacteria was negative and Grocott-Gomori staining for the detection of fungi was positive, concluding the diagnosis of eumycetoma. The patient was treated with ketoconazole for nine months, and was considered cured at the end of treatment. CONCLUSION: Histopathological examination, using histochemical staining, and direct microscopic grains examination can provide the distinction between eumycetoma and actinomycetoma accurately.

  8. A lateral cephalometric study of pharyngeal cavity in Korean adults

    International Nuclear Information System (INIS)

    Lee, Sang Rae

    1976-01-01

    A study was performed to investigate the size of pharyngeal cavity and sexual differences between Korean adult mal e and female by introducing linear analysis of the lateral cephalogram. The radiograms were composed of 46 adult male aged 24.64 and 52 adult female aged 22.74 respectively. In order to study and measure the pharyngeal area, the following skeletal landmarks were selected: S,N,A,Ptm, B,H,H', M ,S-N, FH and CV, and the angle CV-FH was measured to provide a factor for correction of error resulting from improper he ad positioning of subjects, especially in the relative positions of A and H, while radiography. All points to be measured were projected at right angles to the Frankfort plane. For the purpose of measuring the anteroposterior dimensions of pharyngeal cavity the distances were measured in A-Ptm, A-S, S-Ptm and CV-H, and vertical measurements were made in SN-A, SN-PNS, SN-H' and M-H. The obtained results were as follows: 1. The pharyngeal cavity is broader in the vertical than in the anteroposterior diameter in both sex and the maximum sexual differences were showed in the distances between SN and H', and minimal sexual differences in the distances between S and Ptm. 2. In general, the measurements of male were larger than those of female in the anteroposterior dimensions of pharyngea l cavity, but the distances between A and S, between CV and H showed significant sexual differences when evaluated statistically. 3. All of the measurements were larger in male than in female in vertical dimensions of pharyngeal cavity, and there were statistical significances of sexual differences in all variables.

  9. A lateral cephalometric study of pharyngeal cavity in Korean adults

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Sang Rae [Department of Dental Radiology, College of Dentistry, Kyung Hee University, Seoul (Korea, Republic of)

    1976-11-15

    A study was performed to investigate the size of pharyngeal cavity and sexual differences between Korean adult mal e and female by introducing linear analysis of the lateral cephalogram. The radiograms were composed of 46 adult male aged 24.64 and 52 adult female aged 22.74 respectively. In order to study and measure the pharyngeal area, the following skeletal landmarks were selected: S,N,A,Ptm, B,H,H', M ,S-N, FH and CV, and the angle CV-FH was measured to provide a factor for correction of error resulting from improper he ad positioning of subjects, especially in the relative positions of A and H, while radiography. All points to be measured were projected at right angles to the Frankfort plane. For the purpose of measuring the anteroposterior dimensions of pharyngeal cavity the distances were measured in A-Ptm, A-S, S-Ptm and CV-H, and vertical measurements were made in SN-A, SN-PNS, SN-H' and M-H. The obtained results were as follows: 1. The pharyngeal cavity is broader in the vertical than in the anteroposterior diameter in both sex and the maximum sexual differences were showed in the distances between SN and H', and minimal sexual differences in the distances between S and Ptm. 2. In general, the measurements of male were larger than those of female in the anteroposterior dimensions of pharyngea l cavity, but the distances between A and S, between CV and H showed significant sexual differences when evaluated statistically. 3. All of the measurements were larger in male than in female in vertical dimensions of pharyngeal cavity, and there were statistical significances of sexual differences in all variables.

  10. Cryostat for TRISTAN superconducting cavity

    International Nuclear Information System (INIS)

    Mitsunobu, S.; Furuya, T.; Hara, K.

    1990-01-01

    Superconducting cavities generate rather high heat load of hundreds watts in one cryostat and have high sensitivity for pressure. We adopted usual pool-boiling type cooling for its stable pressure operation. Two 5-cell Nb cavities were installed in one flange type cryostat. Tuning mechanics actuated by a pulse-motor and a Piezo-electric element are set at outside of vacuum end flange. The design and performance of the cryostat for TRISTAN superconducting cavities are described. (author)

  11. Superconducting Radio-Frequency Cavities

    Science.gov (United States)

    Padamsee, Hasan S.

    2014-10-01

    Superconducting cavities have been operating routinely in a variety of accelerators with a range of demanding applications. With the success of completed projects, niobium cavities have become an enabling technology, offering upgrade paths for existing facilities and pushing frontier accelerators for nuclear physics, high-energy physics, materials science, and the life sciences. With continued progress in basic understanding of radio-frequency superconductivity, the performance of cavities has steadily improved to approach theoretical capabilities.

  12. CEBAF: Accelerating cavities look good

    Energy Technology Data Exchange (ETDEWEB)

    Anon.

    1990-09-15

    The first assembled pairs of superconducting accelerating cavities from German supplier Interatom for the Continuous Electron Beam Accelerator Facility, Newport News, Virginia, have exceeded performance specifications.

  13. CEBAF: Accelerating cavities look good

    International Nuclear Information System (INIS)

    Anon.

    1990-01-01

    The first assembled pairs of superconducting accelerating cavities from German supplier Interatom for the Continuous Electron Beam Accelerator Facility, Newport News, Virginia, have exceeded performance specifications

  14. Numerical Studies on Natural Convection Heat Losses from Open Cubical Cavities

    Directory of Open Access Journals (Sweden)

    M. Prakash

    2013-01-01

    Full Text Available The natural convection heat losses occurring from cubical open cavities are analysed in this paper. Open cubical cavities of sides 0.1 m, 0.2 m, 0.25 m, 0.5 m, and 1 m with constant temperature back wall boundary conditions and opening ratio of 1 are studied. The Fluent CFD software is used to analyse the three-dimensional (3D cavity models. The studies are carried out for cavities with back wall temperatures between 35°C and 100°C. The effect of cavity inclination on the convective loss is analysed for angles of 0° (cavity facing sideways, 30°, 45°, 60°, and 90° (cavity facing vertically downwards. The Rayleigh numbers involved in this study range between 4.5 × 105 and 1.5 × 109. The natural convection loss is found to increase with an increase in back wall temperature. The natural convection loss is observed to decrease with an increase in cavity inclination; the highest convective loss being at 0° and the lowest at 90° inclination. This is observed for all cavities analysed here. Nusselt number correlations involving the effect of Rayleigh number and the cavity inclination angle have been developed from the current studies. These correlations can be used for engineering applications such as electronic cooling, low- and medium-temperature solar thermal systems, passive architecture, and also refrigeration systems.

  15. Industrialization of the nitrogen-doping preparation for SRF cavities for LCLS-II

    Science.gov (United States)

    Gonnella, D.; Aderhold, S.; Burrill, A.; Daly, E.; Davis, K.; Grassellino, A.; Grimm, C.; Khabiboulline, T.; Marhauser, F.; Melnychuk, O.; Palczewski, A.; Posen, S.; Ross, M.; Sergatskov, D.; Sukhanov, A.; Trenikhina, Y.; Wilson, K. M.

    2018-03-01

    The Linac Coherent Light Source II (LCLS-II) is a new state-of-the-art coherent X-ray source being constructed at SLAC National Accelerator Laboratory. It employs 280 superconducting radio frequency (SRF) cavities in order operate in continuous wave (CW) mode. To reduce the overall cryogenic cost of such a large accelerator, nitrogen-doping of the SRF cavities is being used. Nitrogen-doping has consistently been shown to increase the efficiency of SRF cavities operating in the 2.0 K regime and at medium fields (15-20 MV/m) in vertical cavity tests and horizontal cryomodule tests. While nitrogen-doping's efficacy for improvement of cavity performance was demonstrated at three independent labs, Fermilab, Jefferson Lab, and Cornell University, transfer of the technology to industry for LCLS-II production was not without challenges. Here we present results from the beginning of LCLS-II cavity production. We discuss qualification of the cavity vendors and the first cavities from each vendor. Finally, we demonstrate that nitrogen-doping has been successfully transferred to SRF cavity vendors, resulting in consistent production of cavities with better cryogenic efficiency than has ever been achieved for a large-scale accelerator.

  16. Breakdown of Bose-Einstein distribution in photonic crystals.

    Science.gov (United States)

    Lo, Ping-Yuan; Xiong, Heng-Na; Zhang, Wei-Min

    2015-03-30

    In the last two decades, considerable advances have been made in the investigation of nano-photonics in photonic crystals. Previous theoretical investigations of photon dynamics were carried out at zero temperature. Here, we investigate micro/nano cavity photonics in photonic crystals at finite temperature. Due to photonic-band-gap-induced localized long-lived photon dynamics, we discover that cavity photons in photonic crystals do not obey Bose-Einstein statistical distribution. Within the photonic band gap and in the vicinity of the band edge, cavity photons combine the long-lived non-Markovain dynamics with thermal fluctuations together to form photon states that memorize the initial cavity state information. As a result, Bose-Einstein distribution is completely broken down in these regimes, even if the thermal energy is larger or much larger than the cavity detuning energy. In this investigation, a crossover phenomenon from equilibrium to nonequilibrium steady states is also revealed.

  17. Climate Modeling: Ocean Cavities below Ice Shelves

    Energy Technology Data Exchange (ETDEWEB)

    Petersen, Mark Roger [Los Alamos National Lab. (LANL), Los Alamos, NM (United States). Computer, Computational, and Statistical Sciences Division

    2016-09-12

    The Accelerated Climate Model for Energy (ACME), a new initiative by the U.S. Department of Energy, includes unstructured-mesh ocean, land-ice, and sea-ice components using the Model for Prediction Across Scales (MPAS) framework. The ability to run coupled high-resolution global simulations efficiently on large, high-performance computers is a priority for ACME. Sub-ice shelf ocean cavities are a significant new capability in ACME, and will be used to better understand how changing ocean temperature and currents influence glacial melting and retreat. These simulations take advantage of the horizontal variable-resolution mesh and adaptive vertical coordinate in MPAS-Ocean, in order to place high resolution below ice shelves and near grounding lines.

  18. Vertical pump assembly

    International Nuclear Information System (INIS)

    Dohnal, M.; Rosel, J.; Skarka, V.

    1988-01-01

    The mounting is described of the drive assembly of a vertical pump for nuclear power plants in areas with seismic risk. The assembly is attached to the building floor using flexible and damping elements. The design allows producing seismically resistant pumps without major design changes in the existing types of vertical pumps. (E.S.). 1 fig

  19. Technical tasks in superconducting cavities

    Energy Technology Data Exchange (ETDEWEB)

    Saito, Kenji [High Energy Accelerator Research Organization, Tsukuba, Ibaraki (Japan)

    1997-11-01

    The feature of superconducting rf cavities is an extremely small surface resistance on the wall. It brings a large energy saving in the operation, even those are cooled with liquid helium. That also makes possible to operate themselves in a higher field gradient comparing to normal conducting cavities, and brings to make accelerators compact. These merits are very important for the future accelerator engineering which is planed at JAERI for the neutron material science and nuclear waste transmutation. This machine is a high intensity proton linac and uses sc cavities in the medium and high {beta} sections. In this paper, starting R and D of proton superconducting cavities, several important technical points which come from the small surface resistance of sc cavities, are present to succeed it and also differences between the medium and high - {beta} structures are discussed. (author)

  20. Pacer processing: cavity inventory relationships

    International Nuclear Information System (INIS)

    Dietz, R.J.; Gritzo, L.A.

    1975-09-01

    The pacer cavity and its associated primary power loop comprise a recirculating system in which materials are introduced by a series of thermonuclear explosions while debris is continuously removed by radioactive decay, sorption phenomena, and deliberate processing. Safe, reliable, and economical realization of the Pacer concept depends on the removal and control of both noxious and valuable by-products of the fusion reaction. Mathematical relationships are developed that describe the quantities of materials that are introduced into the Pacer cavity by a series of discrete events and are removed continuously by processing and decay. An iterative computer program based on these relationships is developed that allows both the total cavity inventory and the amounts of important individual species to be determined at any time during the lifetime of the cavity in order to establish the effects of the thermonuclear event, the cavity, the flow, and various processing parameters on Pacer design requirements

  1. HOM/LOM Coupler Study for the ILC Crab Cavity

    International Nuclear Information System (INIS)

    Xiao, L.; Li, Z.; Ko, K.

    2007-01-01

    The FNAL 9-cell 3.9GHz deflecting mode cavity designed for the CKM experiment was chosen as the baseline design for the ILC BDS crab cavity. The full 9-cell CKM cavity including the coupler end-groups was simulated using the parallel eigensolver Omega3P and scattering parameter solver S3P. It was found that both the notch filters for the HOM/LOM couplers are very sensitive to the notch gap, which is about 1.6MHz/micron and is more than 10 times more sensitive than the TTF cavity. It was also found in the simulation that the unwanted vertical π-mode (SOM) is strongly coupled to the horizontal 7π/9 mode which causes x-y coupling and reduces the effectiveness of the SOM damping. To meet the ILC requirements, the HOM/LOM couplers are redesigned to address these issues. With the new designs, the damping of the HOM/LOM modes is improved. The sensitivity of the notch filter for the HOM coupler is reduced by one order of magnitude. The notch filter for the LOM coupler is eliminated in the new design which significantly simplifies the geometry. In this paper, we will present the simulation results of the original CKM cavity and the progresses on the HOM/LOM coupler re-design and optimization

  2. Reactor cavity seal ring

    International Nuclear Information System (INIS)

    Hankinson, M.F.

    1986-01-01

    A hydrostatic seal is described for sealing an annular gap between two flat substantially horizontal coplanar surfaces comprising, in combination: a generally flat annular plate of a width sufficient to span a gap between two surfaces: compressible annular sealing means disposed on the bottom surface of the flat annular plate for sealingly engaging the two flat surfaces in response to a downward force exerted on the plate; and fastening means, distributed along the center line of the plate, for releasably fastening the plate in a position to span the gap to be sealed and exert a downward force on the plate, each fastening means including a pair of elongated members of a size to fit into the gap to be sealed, means for mounting the members on the bottom surface of the plate so that at least a portion of each member is radially moveable in a direction toward a respective one of the vertical side surfaces defining the gap to be sealed to engage same and so that the plate is moveable relative to the members in a downward direction in response to hydrostatic pressure applied to the upper surface of the plate when the members are engaging the vertical side surfaces of an annular gap, and an actuating means, mounted on the plate for movement therewith in response to hydrostatic pressure, for radially moving the members, the actuating means extending through a bore in the plate to the upper surface of the plate

  3. Slow-light effects in photonic crystal membrane lasers

    DEFF Research Database (Denmark)

    Xue, Weiqi; Yu, Yi; Ottaviano, Luisa

    2015-01-01

    In this paper, we present a systematic investigation of photonic crystal cavity laser operating in the slow-light regime. The dependence of lasing threshold on the effect of slow-light will be particularly highlighted.......In this paper, we present a systematic investigation of photonic crystal cavity laser operating in the slow-light regime. The dependence of lasing threshold on the effect of slow-light will be particularly highlighted....

  4. Analysis of thin-film photonic crystal microstructures

    International Nuclear Information System (INIS)

    Pottage, John Mark

    2003-01-01

    Optical-scale microstructures containing thin-film photonic crystals (TFPCs) are modelled by transfer/scattering matrix methods, based on Fourier-series expansion of the optical Bloch eigenmodes. The majority of the TFPCs considered consist of 2D arrays of holes arranged in a triangular lattice, etched into high-index Al x Ga 1-x As and placed on a low-index oxidised substrate. These TFPCs can be easily fabricated by standard electron-beam lithography techniques. Unlike most photonic crystal devices that have been proposed, our 'intra-pass-band' TFPCs would work by exploiting the somewhat surprising properties of propagating optical Bloch waves rather than directly relying on photonic bandgaps. By numerical modelling, it is demonstrated that 2D-patterned TFPCs can support highly dispersive high-Q quasi-guided and truly-guided resonant modes, and the unusual properties of these modes are explained in terms of their Bloch-wave compositions. Modal dispersion diagrams of TFPCs, showing the loci of the resonant modes in in-plane wavevector space at fixed frequency, are calculated. These so-called 'resonance diagrams' and variants thereof, are shown to be a useful design tool for TFPC-based integrated optical components. It is suggested that TFPCs may be a viable alternative to distributed Bragg reflectors in semiconductor vertical cavity surface-emitting lasers, possessing potential advantages in terms of compactness and ease of fabrication. The high angular and spectral dispersion of the resonant modes implies that TFPCs could form the basis of a new family of compact devices for performing such functions as wavelength-division multiplexing/demultiplexing, beam-steering and frequency-selective filtering. Enhancement of nonlinear effects could also be achieved in TFPC resonators, because in them a high cavity Q-factor and a low in-plane group-velocity can be attained simultaneously. (author)

  5. Development of Infrastructure Facilities for Superconducting RF Cavity Fabrication, Processing and 2 K Characterization at RRCAT

    Science.gov (United States)

    Joshi, S. C.; Raghavendra, S.; Jain, V. K.; Puntambekar, A.; Khare, P.; Dwivedi, J.; Mundra, G.; Kush, P. K.; Shrivastava, P.; Lad, M.; Gupta, P. D.

    2017-02-01

    An extensive infrastructure facility is being established at Raja Ramanna Centre for Advanced Technology (RRCAT) for a proposed 1 GeV, high intensity superconducting proton linac for Indian Spallation Neutron Source. The proton linac will comprise of a large number of superconducting Radio Frequency (SCRF) cavities ranging from low beta spoke resonators to medium and high beta multi-cell elliptical cavities at different RF frequencies. Infrastructure facilities for SCRF cavity fabrication, processing and performance characterization at 2 K are setup to take-up manufacturing of large number of cavities required for future projects of Department of Atomic Energy (DAE). RRCAT is also participating in a DAE’s approved mega project on “Physics and Advanced technology for High intensity Proton Accelerators” under Indian Institutions-Fermilab Collaboration (IIFC). In the R&D phase of IIFC program, a number of high beta, fully dressed multi-cell elliptical SCRF cavities will be developed in collaboration with Fermilab. A dedicated facility for SCRF cavity fabrication, tuning and processing is set up. SCRF cavities developed will be characterized at 2K using a vertical test stand facility, which is already commissioned. A Horizontal Test Stand facility has also been designed and under development for testing a dressed multi-cell SCRF cavity at 2K. The paper presents the infrastructure facilities setup at RRCAT for SCRF cavity fabrication, processing and testing at 2K.

  6. Numerical study of free convection in an enclosure with two vertical isothermal walls

    International Nuclear Information System (INIS)

    Barletta, A.; Rossi di Schio, E.; Zanchini, E.; Nobile, E.; Pinto, F.

    2005-01-01

    In this paper, natural convection is studied in a 2D-cavity with two vertical isothermal walls, kept at different temperatures, and two adiabatic walls which are either straight (rectangular cavity) or elliptic (modified rectangular cavity). The local mass, momentum and energy balance equations are written in a dimensionless form and solved numerically, by means of two different software packages based on Galerkin finite element methods. With reference to a Prandtl number of 0.71, two rectangular cavities are studied: a square one and a cavity with height double than width. Then, for each value of the ratio between height and width, two cavities with elliptic boundaries are investigated. The numerical solution shows that the elliptic boundaries enhance the mean Nusselt number and the dimensionless mean kinetic energy of the fluid. (authors)

  7. Buffer Chemical Polishing and RF Testing of the 56 MHz SRF Cavity

    Energy Technology Data Exchange (ETDEWEB)

    Burrill,A.

    2009-01-01

    The 56 MHz cavity presents a unique challenge in preparing it for RF testing prior to construction of the cryomodule. This challenge arises due to the physical dimensions and subsequent weight of the cavity, and is further complicated by the coaxial geometry, and the need to properly chemically etch and high pressure rinse the entire inner surface prior to RF testing. To the best of my knowledge, this is the largest all niobium SRF cavity to be chemically etched and subsequently tested in a vertical dewar at 4K, and these processes will be the topic of this technical note.

  8. Design, prototyping, and testing of a compact superconducting double quarter wave crab cavity

    Science.gov (United States)

    Xiao, Binping; Alberty, Luis; Belomestnykh, Sergey; Ben-Zvi, Ilan; Calaga, Rama; Cullen, Chris; Capatina, Ofelia; Hammons, Lee; Li, Zenghai; Marques, Carlos; Skaritka, John; Verdu-Andres, Silvia; Wu, Qiong

    2015-04-01

    We proposed a novel design for a compact superconducting crab cavity with a double quarter wave (DQWCC) shape. After fabrication and surface treatments, this niobium proof-of-principle cavity was tested cryogenically in a vertical cryostat. The cavity is extremely compact yet has a low frequency of 400 MHz, an essential property for service in the Large Hadron Collider luminosity upgrade. The cavity's electromagnetic properties are well suited for this demanding task. The demonstrated deflecting voltage of 4.6 MV is well above the required 3.34 MV for a crab cavity in the future High Luminosity LHC. In this paper, we present the design, prototyping, and results from testing the DQWCC.

  9. Mid infrared resonant cavity detectors and lasers with epitaxial lead-chalcogenides

    Science.gov (United States)

    Zogg, H.; Rahim, M.; Khiar, A.; Fill, M.; Felder, F.; Quack, N.

    2010-09-01

    Wavelength tunable emitters and detectors in the mid-IR wavelength region allow applications including thermal imaging and gas spectroscopy. One way to realize such tunable devices is by using a resonant cavity. By mechanically changing the cavity length with MEMS mirror techniques, the wavelengths may be tuned over a considerable range. Resonant cavity enhanced detectors (RCED) are sensitive at the cavity resonance only. They may be applied for low resolution spectroscopy, and, when arrays of such detectors are realized, as multicolour IR-FPA or "IR-AFPA", adaptive focal plane arrays. We report the first room temperature mid-IR VECSEL (vertical external cavity surface emitting laser) with a wavelength above 3 μm. The active region is just 850 nm PbSe, followed by a 2.5 pair Bragg mirror. Output power is > 10 mW at RT.

  10. Frequency-feedback cavity enhanced spectrometer

    Science.gov (United States)

    Hovde, David Christian; Gomez, Anthony

    2015-08-18

    A spectrometer comprising an optical cavity, a light source capable of producing light at one or more wavelengths transmitted by the cavity and with the light directed at the cavity, a detector and optics positioned to collect light transmitted by the cavity, feedback electronics causing oscillation of amplitude of the optical signal on the detector at a frequency that depends on cavity losses, and a sensor measuring the oscillation frequency to determine the cavity losses.

  11. Nonlocal Intracranial Cavity Extraction

    Science.gov (United States)

    Manjón, José V.; Eskildsen, Simon F.; Coupé, Pierrick; Romero, José E.; Collins, D. Louis; Robles, Montserrat

    2014-01-01

    Automatic and accurate methods to estimate normalized regional brain volumes from MRI data are valuable tools which may help to obtain an objective diagnosis and followup of many neurological diseases. To estimate such regional brain volumes, the intracranial cavity volume (ICV) is often used for normalization. However, the high variability of brain shape and size due to normal intersubject variability, normal changes occurring over the lifespan, and abnormal changes due to disease makes the ICV estimation problem challenging. In this paper, we present a new approach to perform ICV extraction based on the use of a library of prelabeled brain images to capture the large variability of brain shapes. To this end, an improved nonlocal label fusion scheme based on BEaST technique is proposed to increase the accuracy of the ICV estimation. The proposed method is compared with recent state-of-the-art methods and the results demonstrate an improved performance both in terms of accuracy and reproducibility while maintaining a reduced computational burden. PMID:25328511

  12. Nonlocal Intracranial Cavity Extraction

    Directory of Open Access Journals (Sweden)

    José V. Manjón

    2014-01-01

    Full Text Available Automatic and accurate methods to estimate normalized regional brain volumes from MRI data are valuable tools which may help to obtain an objective diagnosis and followup of many neurological diseases. To estimate such regional brain volumes, the intracranial cavity volume (ICV is often used for normalization. However, the high variability of brain shape and size due to normal intersubject variability, normal changes occurring over the lifespan, and abnormal changes due to disease makes the ICV estimation problem challenging. In this paper, we present a new approach to perform ICV extraction based on the use of a library of prelabeled brain images to capture the large variability of brain shapes. To this end, an improved nonlocal label fusion scheme based on BEaST technique is proposed to increase the accuracy of the ICV estimation. The proposed method is compared with recent state-of-the-art methods and the results demonstrate an improved performance both in terms of accuracy and reproducibility while maintaining a reduced computational burden.

  13. Generation of single-frequency tunable green light in a coupled ring tapered diode laser cavity

    DEFF Research Database (Denmark)

    Jensen, Ole Bjarlin; Petersen, Paul Michael

    2013-01-01

    in the broad wavelength range from 1049 nm to 1093 nm and the beam propagation factor is improved from M2 = 2.8 to below 1.1. The laser frequency is automatically locked to the cavity resonance frequency using optical feedback. Furthermore, we show that this adaptive external cavity approach leads to efficient......We report the realization of a tapered diode laser operated in a coupled ring cavity that significantly improves the coherence properties of the tapered laser and efficiently generates tunable light at the second harmonic frequency. The tapered diode laser is tunable with single-frequency output...... frequency doubling. More than 500 mW green output power is obtained by placing a periodically poled LiNbO3 crystal in the external cavity. The single frequency green output from the laser system is tunable in the 530 nm to 533 nm range limited by the LiNbO3 crystal. The optical to optical conversion...

  14. Comparison of Deformation in High-Purity Single/Large Grain and Polycrystalline Niobium Superconducting Cavities

    International Nuclear Information System (INIS)

    Ganapati Rao Myneni; Peter Kneisel

    2005-01-01

    The current approach for the fabrication of superconducting radio frequency (SRF) cavities is to roll and deep draw sheets of polycrystalline high-purity niobium. Recently, a new technique was developed at Jefferson Laboratory that enables the fabrication of single-crystal high-purity Nb SRF cavities. To better understand the differences between SRF cavities fabricated out of fine-grained polycrystalline sheet in the standard manner and single crystal cavities fabricated by the new technique, two half-cells were produced according to the two different procedures and compared using a variety of analytical techniques including optical microscopy, scanning laser confocal microscopy, profilometry, and X-ray diffraction. Crystallographic orientations, texture, and residual stresses were determined in the samples before and after forming and this poster presents the results of this ongoing study

  15. Development of vertical electropolishing process applied on 1300 and 704 MHz superconducting niobium resonators

    Directory of Open Access Journals (Sweden)

    F. Eozénou

    2014-08-01

    Full Text Available An advanced setup for vertical electropolishing of superconducting radio-frequency niobium elliptical cavities has been installed at CEA Saclay. Cavities are vertically electropolished with circulating standard HF-HF-H_{2}SO_{4} electrolytes. Parameters such as voltage, cathode shape, acid flow, and temperature have been investigated. A low voltage (between 6 and 10 V depending on the cavity geometry, a high acid flow (25  L/min, and a low acid temperature (20° C are considered as promising parameters. Such a recipe has been tested on single-cell and nine-cell International Linear Collider (ILC as well as 704 MHz five-cell Super Proton Linac (SPL cavities. Single-cell cavities showed similar performances at 1.6 K being either vertically or horizontally electropolished. The applied baking process provides similar benefit. An asymmetric removal is observed with faster removal in the upper half-cells. Multicell cavities (nine-cell ILC and five-cell SPL cavities exhibit a standard Q_{0} value at low and medium accelerating fields though limited by power losses due to field emitted electrons.

  16. Photons in a spherical cavity

    International Nuclear Information System (INIS)

    Ionescu-Pallas, N.; Vlad, V.I.

    1999-01-01

    The spectrum of black body radiation at the absolute temperature T, in an ideal spherical cavity of radius R, is studied. The departures from the classical predictions of Planck's theory, due to the discrete energies of the radiation quanta confined inside the cavity, depend on the adiabatic invariant RT and are significant for RT≤ 1 cm K. Special attention was paid to evidence sudden changes in the spectrum intensities, forbidden bands of frequency, as well as major modifications of the total energy for RT≤ 1 cm K. Similar effects were present in case of a cubic cavity too. (authors)

  17. Coordination in vertical jumping

    NARCIS (Netherlands)

    Bobbert, Maarten F.; van Ingen Schenau, Gerrit Jan

    1988-01-01

    The present study was designed to investigate for vertical jumping the relationships between muscle actions, movement pattern and jumping achievement. Ten skilled jumpers performed jumps with preparatory countermovement. Ground reaction forces and cinematographic data were recorded. In addition,

  18. Crystallization method employing microwave radiation

    Energy Technology Data Exchange (ETDEWEB)

    Chu, P; Dwyer, F G; Vartuli, J C

    1992-12-01

    This invention relates to a method of crystallizing materials from aqueous crystallization media. Zeolite materials, both natural and synthetic, have been demonstrated in the past to have catalytic properties for various types of hydrocarbon conversion. Certain zeolitic materials are ordered, porous crystalline metallosilicates having a definite crystalline structure as determined by X-ray diffraction within which there are a number of smaller cavities which may be interconnected by a number of still smaller channels or pores. These cavities and pores are uniform in size within a specific zeolite material. Since the dimensions of these pores are such as to accept for adsorption molecules of certain dimensions while rejecting those of large dimensions, these materials have come to be known as molecular sieves and are utilized in a variety of ways to take advantage of these properties. (author). 3 tabs.

  19. Crystallization method employing microwave radiation

    International Nuclear Information System (INIS)

    Chu, P.; Dwyer, F.G.; Vartuli, J.C.

    1992-01-01

    This invention relates to a method of crystallizing materials from aqueous crystallization media. Zeolite materials, both natural and synthetic, have been demonstrated in the past to have catalytic properties for various types of hydrocarbon conversion. Certain zeolitic materials are ordered, porous crystalline metallosilicates having a definite crystalline structure as determined by X-ray diffraction within which there are a number of smaller cavities which may be interconnected by a number of still smaller channels or pores. These cavities and pores are uniform in size within a specific zeolite material. Since the dimensions of these pores are such as to accept for adsorption molecules of certain dimensions while rejecting those of large dimensions, these materials have come to be known as molecular sieves and are utilized in a variety of ways to take advantage of these properties. (author). 3 tabs

  20. Optimization of High-Q Coupled Nanobeam Cavity for Label-Free Sensing

    OpenAIRE

    Yaseen, Mohammad; Yang, Yi-Chun; Shih, Min-Hsiung; Chang, Yia-Chung

    2015-01-01

    We numerically and experimentally investigated the lateral coupling between photonic crystal (PhC) nanobeam (NB) cavities, pursuing high sensitivity and figure of merit (FOM) label-free biosensor. We numerically carried out 3D finite-difference time-domain (3D-FDTD) and the finite element method (FEM) simulations. We showed that when two PhC NB cavities separated by a small gap are evanescently coupled, the variation in the gap width significantly changes the coupling efficiency between the ...

  1. Cavity and goaf control

    Energy Technology Data Exchange (ETDEWEB)

    Stassen, P

    1978-01-01

    A summary of stowing, including a definition, calculation of stowing material requirements and settling of packs is given. A) Stowing using dirt found locally - the dirt bands in the seam - the use of ripping dirt brought down by the scraper loader and used for packing purposes and the construction of dummy roads. B) Control of cavities by leaving short, thick props and timber chocks in place. C) Stowing methods involving imported firt: packing by hand, use of scraper loaders, slinger stowing and control led-gravity stowing. D) Pneumatic stowing: describes the various types of machine and their scope; pipelines, their installation and cost price; pneumatic stowing in conjunc tion with powered supports; the use of crusher-stowers for stowing ripping dirt; construction of anhydrite packs by means of a pneumatic stower. E) Hydraulic stowing: how it works, the materials involved, utilization conditions, the surface storage post, pipes, stoppings with stowed material, water removal, rates of hydraulic stowing, results of theoretical studies, and the use of hydraulic stowing in the metal-mines. F) Pumped packs: how they work, how the packs are installed, the strength of the packs and their various uses. G) Caving: describes the principle of caving, support patterns, caving with packs and makes a comparison between caving and stowing. H) Comparison between the various methods of stowing compares pneumatic with hydraulic stowing methods; compares packing by hand and mechanical stowing compares surface subsidence in terms of the method of goaf used underground. An appendix gives details of equipment used. (15 refs.) (In French)

  2. Loggerhead oral cavity morphometry study

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Standard external morphometrics and internal oral cavity morphometrics data were collected on wild and captive reared loggerhead sea turtles in size classes ranging...

  3. Niobium LEP 2 accelerating cavities

    CERN Multimedia

    An accelerating cavity from LEP. This could be cut open to show the layer of niobium on the inside. Operating at 4.2 degrees above absolute zero, the niobium is superconducting and carries an accelerating field of 6 million volts per metre with negligible losses. Each cavity has a surface of 6 m2. The niobium layer is only 1.2 microns thick, ten times thinner than a hair. Such a large area had never been coated to such a high accuracy. A speck of dust could ruin the performance of the whole cavity so the work had to be done in an extremely clean environment. These challenging requirements pushed European industry to new achievements. 256 of these cavities were used in an upgrade of the LEP accelerator to double the energy of the particle beams.

  4. Bistability of Cavity Magnon Polaritons

    Science.gov (United States)

    Wang, Yi-Pu; Zhang, Guo-Qiang; Zhang, Dengke; Li, Tie-Fu; Hu, C.-M.; You, J. Q.

    2018-01-01

    We report the first observation of the magnon-polariton bistability in a cavity magnonics system consisting of cavity photons strongly interacting with the magnons in a small yttrium iron garnet (YIG) sphere. The bistable behaviors emerged as sharp frequency switchings of the cavity magnon polaritons (CMPs) and related to the transition between states with large and small numbers of polaritons. In our experiment, we align, respectively, the [100] and [110] crystallographic axes of the YIG sphere parallel to the static magnetic field and find very different bistable behaviors (e.g., clockwise and counter-clockwise hysteresis loops) in these two cases. The experimental results are well fitted and explained as being due to the Kerr nonlinearity with either a positive or negative coefficient. Moreover, when the magnetic field is tuned away from the anticrossing point of CMPs, we observe simultaneous bistability of both magnons and cavity photons by applying a drive field on the lower branch.

  5. Design of rf conditioner cavities

    International Nuclear Information System (INIS)

    Govil, R.; Rimmer, R.A.; Sessler, A.; Kirk, H.G.

    1992-06-01

    Theoretical studies are made of radio frequency structures which can be used to condition electron beams so as to greatly reduce the stringent emittance requirements for successful lasing in a free-electron laser. The basic strategy of conditioning calls for modulating an electron beam in the transverse dimension, by a periodic focusing channel, while it traverses a series of rf cavities, each operating in a TM 210 mode. In this paper, we analyze the cavities both analytically and numerically (using MAFIA simulations). We find that when cylindrical symmetry is broken the coupling impedance can be greatly enhanced. We present results showing various performance characteristics as a function of cavity parameters, as well as possible designs for conditioning cavities

  6. SRF Cavity Fabrication and Materials

    CERN Document Server

    Singer, W

    2014-07-17

    The technological and metallurgical requirements of material for highgradient superconducting cavities are described. High-purity niobium, as the preferred metal for the fabrication of superconducting accelerating cavities, should meet exact specifications. The content of interstitial impurities such as oxygen, nitrogen, and carbon must be below 10μg/g. The hydrogen content should be kept below 2μg/g to prevent degradation of the Q-value under certain cool-down conditions. The material should be free of flaws (foreign material inclusions or cracks and laminations) that can initiate a thermal breakdown. Defects may be detected by quality control methods such as eddy current scanning and identified by a number of special methods. Conventional and alternative cavity fabrication methods are reviewed. Conventionally, niobium cavities are fabricated from sheet niobium by the formation of half-cells by deep drawing, followed by trim machining and Electron-Beam Welding (EBW). The welding of half-cells is a delicate...

  7. LEP Radio Frequency Copper Cavity

    CERN Multimedia

    The pulse of a particle accelerator. 128 of these radio frequency cavities were positioned around CERN's 27-kilometre LEP ring to accelerate electrons and positrons. The acceleration was produced by microwave electric oscillations at 352 MHz. The electrons and positrons were grouped into bunches, like beads on a string, and the copper sphere at the top stored the microwave energy between the passage of individual bunches. This made for valuable energy savings as it reduced the heat generated in the cavity.

  8. Crystals in crystals

    DEFF Research Database (Denmark)

    Christensen, Claus H.; Schmidt, I.; Carlsson, A.

    2005-01-01

    A major factor governing the performance of catalytically active particles supported on a zeolite carrier is the degree of dispersion. It is shown that the introduction of noncrystallographic mesopores into zeolite single crystals (silicalite-1, ZSM-5) may increase the degree of particle dispersion....... As representative examples, a metal (Pt), an alloy (PtSn), and a metal carbide (beta-Mo2C) were supported on conventional and mesoporous zeolite carriers, respectively, and the degree of particle dispersion was compared by TEM imaging. On conventional zeolites, the supported material aggregated on the outer surface...

  9. Virtual Crystallizer

    Energy Technology Data Exchange (ETDEWEB)

    Land, T A; Dylla-Spears, R; Thorsness, C B

    2006-08-29

    Large dihydrogen phosphate (KDP) crystals are grown in large crystallizers to provide raw material for the manufacture of optical components for large laser systems. It is a challenge to grow crystal with sufficient mass and geometric properties to allow large optical plates to be cut from them. In addition, KDP has long been the canonical solution crystal for study of growth processes. To assist in the production of the crystals and the understanding of crystal growth phenomena, analysis of growth habits of large KDP crystals has been studied, small scale kinetic experiments have been performed, mass transfer rates in model systems have been measured, and computational-fluid-mechanics tools have been used to develop an engineering model of the crystal growth process. The model has been tested by looking at its ability to simulate the growth of nine KDP boules that all weighed more than 200 kg.

  10. single crystals

    Indian Academy of Sciences (India)

    2018-05-18

    May 18, 2018 ... Abstract. 4-Nitrobenzoic acid (4-NBA) single crystals were studied for their linear and nonlinear optical ... studies on the proper growth, linear and nonlinear optical ..... between the optic axes and optic sign of the biaxial crystal.

  11. Crystal Systems.

    Science.gov (United States)

    Schomaker, Verner; Lingafelter, E. C.

    1985-01-01

    Discusses characteristics of crystal systems, comparing (in table format) crystal systems with lattice types, number of restrictions, nature of the restrictions, and other lattices that can accidently show the same metrical symmetry. (JN)

  12. Efficiency of different methods of extra-cavity second harmonic generation of continuous wave single-frequency radiation.

    Science.gov (United States)

    Khripunov, Sergey; Kobtsev, Sergey; Radnatarov, Daba

    2016-01-20

    This work presents for the first time to the best of our knowledge a comparative efficiency analysis among various techniques of extra-cavity second harmonic generation (SHG) of continuous-wave single-frequency radiation in nonperiodically poled nonlinear crystals within a broad range of power levels. Efficiency of nonlinear radiation transformation at powers from 1 W to 10 kW was studied in three different configurations: with an external power-enhancement cavity and without the cavity in the case of single and double radiation pass through a nonlinear crystal. It is demonstrated that at power levels exceeding 1 kW, the efficiencies of methods with and without external power-enhancement cavities become comparable, whereas at even higher powers, SHG by a single or double pass through a nonlinear crystal becomes preferable because of the relatively high efficiency of nonlinear transformation and fairly simple implementation.

  13. Vertical and horizontal subsidiarity

    Directory of Open Access Journals (Sweden)

    Ivan V. Daniluk

    2016-02-01

    Full Text Available This article makes an attempt to analyze the principle of subsidiarity in its two main manifestations, namely vertical and horizontal, to outline the principles of relations between the state and regions within the vertical subsidiarity, and features a collaboration of the government and civil society within the horizontal subsidiarity. Scientists identify two types, or two levels of the subsidiarity principle: vertical subsidiarity and horizontal subsidiarity. First, vertical subsidiarity (or territorial concerning relations between the state and other levels of subnational government, such as regions and local authorities; second, horizontal subsidiarity (or functional concerns the relationship between state and citizen (and civil society. Vertical subsidiarity expressed in the context of the distribution of administrative responsibilities to the appropriate higher level lower levels relative to the state structure, ie giving more powers to local government. However, state intervention has subsidiary-lower action against local authorities in cases of insolvency last cope on their own, ie higher organisms intervene only if the duties are less authority is insufficient to achieve the goals. Horizontal subsidiarity is within the relationship between power and freedom, and is based on the assumption that the concern for the common good and the needs of common interest community, able to solve community members (as individuals and citizens’ associations and role of government, in accordance horizontal subsidiarity comes to attracting features subsidiarity assistance, programming, coordination and possibly control.

  14. Effect of cooldown and residual magnetic field on the performance of niobium–copper clad superconducting radio-frequency cavity

    International Nuclear Information System (INIS)

    Dhakal, Pashupati; Ciovati, Gianluigi

    2017-01-01

    Here, we present the results of rf measurements on a niobium–copper clad superconducting radio-frequency cavity with different cooldown conditions and residual magnetic field in a vertical test Dewar in order to explore the effect of thermal current induced magnetic field and its trapping on the performance of the cavity. The residual resistance, extracted from the Q 0 (T) curves in the temperature range 4.3–1.5 K, showed no dependence on a temperature gradient along the cavity during the cooldown across the critical temperature up to ~50 K m –1 . The rf losses due to the trapping of residual magnetic field during the cavity cooldown were found to be ~4.3 nΩ μT –1 , comparable to the values measured in bulk niobium cavities. An increase of residual resistance following multiple cavity quenches was observed along with evidence of trapping of magnetic flux generated by thermoelectric currents.

  15. 21 CFR 872.3260 - Cavity varnish.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Cavity varnish. 872.3260 Section 872.3260 Food and... DENTAL DEVICES Prosthetic Devices § 872.3260 Cavity varnish. (a) Identification. Cavity varnish is a device that consists of a compound intended to coat a prepared cavity of a tooth before insertion of...

  16. Vertical and horizontal seismometric observations of tides

    Science.gov (United States)

    Lambotte, S.; Rivera, L.; Hinderer, J.

    2006-01-01

    Tidal signals have been largely studied with gravimeters, strainmeters and tiltmeters, but can also be retrieved from digital records of the output of long-period seismometers, such as STS-1, particularly if they are properly isolated. Horizontal components are often noisier than the vertical ones, due to sensitivity to tilt at long periods. Hence, horizontal components are often disturbed by local effects such as topography, geology and cavity effects, which imply a strain-tilt coupling. We use series of data (duration larger than 1 month) from several permanent broadband seismological stations to examine these disturbances. We search a minimal set of observable signals (tilts, horizontal and vertical displacements, strains, gravity) necessary to reconstruct the seismological record. Such analysis gives a set of coefficients (per component for each studied station), which are stable over years and then can be used systematically to correct data from these disturbances without needing heavy numerical computation. A special attention is devoted to ocean loading for stations close to oceans (e.g. Matsushiro station in Japon (MAJO)), and to pressure correction when barometric data are available. Interesting observations are made for vertical seismometric components; in particular, we found a pressure admittance between pressure and data 10 times larger than for gravimeters for periods larger than 1 day, while this admittance reaches the usual value of -3.5 nm/s 2/mbar for periods below 3 h. This observation may be due to instrumental noise, but the exact mechanism is not yet understood.

  17. TEM observations of crack tip: cavity interactions

    International Nuclear Information System (INIS)

    Horton, J.A.; Ohr, S.M.; Jesser, W.A.

    1981-01-01

    Crack tip-cavity interactions have been studied by performing room temperature deformation experiments in a transmission electron microscope on ion-irradiated type 316 stainless steel with small helium containing cavities. Slip dislocations emitted from a crack tip cut, sheared, and thereby elongated cavities without a volume enlargement. As the crack tip approached, a cavity volume enlargement occurred. Instead of the cavities continuing to enlarge until they touch, the walls between the cavities fractured. Fracture surface dimples do not correlate in size or density with these enlarged cavities

  18. Transverse jet-cavity interactions with the influence of an impinging shock

    International Nuclear Information System (INIS)

    Zare-Behtash, H.; Lo, K.H.; Kontis, K.; Ukai, T.; Obayashi, S.

    2015-01-01

    Highlights: • Experimental study of shock-jet-cavity in a supersonic freestream is conducted. • Shock impingement at the cavity leading edge lifts the shear layer, encouraging momentum transfer. • Shock impingement close to the jet location increases the number of smaller turbulent structures. - Abstract: For high-speed air breathing engines, fuel injection and subsequent mixing with air is paramount for combustion. The high freestream velocity poses a great challenge to efficient mixing both in macroscale and microscale. Utilising cavities downstream of fuel injection locations, as a means to hold the flow and stabilise the combustion, is one mechanism which has attracted much attention, requiring further research to study the unsteady flow features and interactions occurring within the cavity. In this study we combine the transverse jet injection upstream of a cavity with an impinging shock to see how this interaction influences the cavity flow, since impinging shocks have been shown to enhance mixing of transverse jets. Utilising qualitative and quantitative methods: schlieren, oilflow, PIV, and PSP the induced flowfield is analysed. The impinging shock lifts the shear layer over the cavity and combined with the instabilities generated by the transverse jet creates a highly complicated flowfield with numerous vertical structures. The interaction between the oblique shock and the jet leads to a relatively uniform velocity distribution within the cavity

  19. Intracavity doubling of CW Ti:sapphire laser to 392.5 nm using BiBO-crystal

    DEFF Research Database (Denmark)

    Mortensen, Jesper Liltorp; Thorhauge, Morten; Tidemand-Lichtenberg, Peter

    2005-01-01

    In this work we present results obtained for intra-cavity frequency-doubling of a 785 nm CW Ti:sapphire laser utilising BiBO as the non-linear crystal. Intracavity doubling offers several advantages compared to extra-cavity doubling, such as no need to couple to an external resonance cavity...

  20. Hydroforming of superconducting TESLA cavities

    International Nuclear Information System (INIS)

    Singer, W.; Kaiser, H.; Singer, X.

    2003-01-01

    Seamless fabrication of single-cell and multi-cell TESLA shape cavities by hydroforming has been developed at DESY. The forming takes place by expanding the seamless tube with internal water pressure while simultaneously swaging it axially. Tube radius and axial displacement are being computer controlled in accordance with results of FEM simulations and the experimentally obtained strain-stress curve of tube material. Several Nb single cell cavities have been produced. A first bulk Nb double cell cavity has been fabricated. The Nb seamless tubes have been produced by spinning and deep drawing. Surface treatment such as buffered chemical polishing, (BCP), electropolishing (EP), high pressure ultra pure water rinsing (HPR), annealing at 800degC and baking at ca. 150degC have been applied. The best single cell bulk Nb cavity has reached an accelerating gradient of Eacc > 42 MV/m after ca. 250 μm BCP and 100 μm EP. Several bimetallic NbCu single cell cavities of TESLA shape have been fabricated. The seamless tubes have been produced by explosive bonding and subsequent flow forming. The thicknesses of Nb and Cu layers in the tube wall are about 1 mm and 3 mm respectively. The RF performance of NbCu clad cavities is similar to that of bulk Nb cavities. The highest accelerating gradient achieved was 40 MV/m after ca. 180 μm BCP, annealing at 800degC and baking at 140degC for 30 hours. The degradation of the quality factor Qo after repeated quenching is moderate, after ca. 150 quenches it reaches the saturation point of Qo=1.4x10 10 at low field. This indicates that on the basis of RF performance and material costs the combination of hydroforming with tube cladding is a very promising option. (author)

  1. Partial Cavity Flows at High Reynolds Numbers

    Science.gov (United States)

    Makiharju, Simo; Elbing, Brian; Wiggins, Andrew; Dowling, David; Perlin, Marc; Ceccio, Steven

    2009-11-01

    Partial cavity flows created for friction drag reduction were examined on a large-scale. Partial cavities were investigated at Reynolds numbers up to 120 million, and stable cavities with frictional drag reduction of more than 95% were attained at optimal conditions. The model used was a 3 m wide and 12 m long flat plate with a plenum on the bottom. To create the partial cavity, air was injected at the base of an 18 cm backwards-facing step 2.1 m from the leading edge. The geometry at the cavity closure was varied for different flow speeds to optimize the closure of the cavity. Cavity gas flux, thickness, frictional loads, and cavity pressures were measured over a range of flow speeds and air injection fluxes. High-speed video was used extensively to investigate the unsteady three dimensional cavity closure, the overall cavity shape and oscillations.

  2. [Duane vertical surgical treatment].

    Science.gov (United States)

    Merino, M L; Gómez de Liaño, P; Merino, P; Franco, G

    2014-04-01

    We report 3 cases with a vertical incomitance in upgaze, narrowing of palpebral fissure, and pseudo-overaction of both inferior oblique muscles. Surgery consisted of an elevation of both lateral rectus muscles with an asymmetrical weakening. A satisfactory result was achieved in 2 cases, whereas a Lambda syndrome appeared in the other case. The surgical technique of upper-insertion with a recession of both lateral rectus muscles improved vertical incomitance in 2 of the 3 patients; however, a residual deviation remains in the majority of cases. Copyright © 2011 Sociedad Española de Oftalmología. Published by Elsevier Espana. All rights reserved.

  3. Vertical market participation

    DEFF Research Database (Denmark)

    Schrader, Alexander; Martin, Stephen

    1998-01-01

    Firms that operate at both levels of vertically related Cournot oligopolies will purchase some input supplies from independent rivals, even though they can produce the good at a lower cost, driving up input price for nonintegrated firms at the final good level. Foreclosure, which avoids this stra......Firms that operate at both levels of vertically related Cournot oligopolies will purchase some input supplies from independent rivals, even though they can produce the good at a lower cost, driving up input price for nonintegrated firms at the final good level. Foreclosure, which avoids...

  4. Vertical Protocol Composition

    DEFF Research Database (Denmark)

    Groß, Thomas; Mödersheim, Sebastian Alexander

    2011-01-01

    The security of key exchange and secure channel protocols, such as TLS, has been studied intensively. However, only few works have considered what happens when the established keys are actually used—to run some protocol securely over the established “channel”. We call this a vertical protocol.......e., that the combination cannot introduce attacks that the individual protocols in isolation do not have. In this work, we prove a composability result in the symbolic model that allows for arbitrary vertical composition (including self-composition). It holds for protocols from any suite of channel and application...

  5. Normal Conducting RF Cavity for MICE

    International Nuclear Information System (INIS)

    Li, D.; DeMello, A.; Virostek, S.; Zisman, M.; Summers, D.

    2010-01-01

    Normal conducting RF cavities must be used for the cooling section of the international Muon Ionization Cooling Experiment (MICE), currently under construction at Rutherford Appleton Laboratory (RAL) in the UK. Eight 201-MHz cavities are needed for the MICE cooling section; fabrication of the first five cavities is complete. We report the cavity fabrication status including cavity design, fabrication techniques and preliminary low power RF measurements.

  6. Deep drawing experiences of niobium disk for PEFP SRF cavity prototype

    International Nuclear Information System (INIS)

    Kim, Han Sung; An, Sun; Zhang, Liping; Tang, Yazhe; Li, Ying Min; Kwon, Hyeok Jung; Cho, Yong Sub

    2009-01-01

    A superconducting radio frequency (SRF) cavity with a geometrical beta of 0.42 has been designed to accelerate a proton beam after 100 MeV for an extension of Proton Engineering Frontier Project (PEFP). The designed cavity shape is an elliptical and the resonant frequency is 700 MHz. In order to confirm the RF and mechanical properties of the cavity, two prototypes of copper cavities have been fabricated and tested. Based on the experiences gained with the copper prototypes, two niobium prototypes have been designed. One is two-cell cavity and the other is five cell cavity. The two-cell cavity is for finalizing the niobium cavity production procedure and testing the cavity RF properties at a low temperature and moderate power level. The five-cell cavity is for checking the production quality and testing vertical test system in the future. Both of them are under fabrication. Through the fabrication of the niobium prototype, several issues such as deep drawing, electron beam welding and surface treatment will be addressed. The drawing of the PEPF SRF low beta cavity is shown in Fig. 1. Major parameters for the cavity are like following. - Frequency: 700 MHz - Operating mode: TM010 pi mode - Cavity type: Elliptical - Geometrical beta: 0.42 - Number of cells: 5 per cavity - Accelerating gradient: 8 MV/m - Epeak/Eacc: 3.71 - Bpeak/Eacc: 7.47 mT/(MV/m) - R/Q: 102.3 ohm - Epeak: 29.68 MV/m - Field flatness: 1.56 % - Cell to cell coupling: 1.41 % - Geometrical factor: 121.68 ohm - Cavity wall thickness: 4.3 mm - Lorentz force detuning: 0.4 Hz/(MV/m)2 - Stiffening structure: Double ring - Effective length: 0.45 m - External Q of FPC: 8.0E5 ±20 % - HOM load: less than 2 W - HOM Qext requirement: less than 3.0E5 At present, all the niobium disk and plates for cavity and NbTi flanges for beam pipe flange are prepared

  7. Thermal conditions within tree cavities in ponderosa pine (Pinus ponderosa) forests: potential implications for cavity users

    Science.gov (United States)

    Vierling, Kerri T.; Lorenz, Teresa J.; Cunningham, Patrick; Potterf, Kelsi

    2017-11-01

    Tree cavities provide critical roosting and breeding sites for multiple species, and thermal environments in these cavities are important to understand. Our objectives were to (1) describe thermal characteristics in cavities between June 3 and August 9, 2014, and (2) investigate the environmental factors that influence cavity temperatures. We placed iButtons in 84 different cavities in ponderosa pine (Pinus ponderosa) forests in central Washington, and took hourly measurements for at least 8 days in each cavity. Temperatures above 40 °C are generally lethal to developing avian embryos, and 18% of the cavities had internal temperatures of ≥ 40 °C for at least 1 h of each day. We modeled daily maximum cavity temperature, the amplitude of daily cavity temperatures, and the difference between the mean internal cavity and mean ambient temperatures as a function of several environmental variables. These variables included canopy cover, tree diameter at cavity height, cavity volume, entrance area, the hardness of the cavity body, the hardness of the cavity sill (which is the wood below the cavity entrance which forms the barrier between the cavity and the external environment), and sill width. Ambient temperature had the largest effect size for maximum cavity temperature and amplitude. Larger trees with harder sills may provide more thermally stable cavity environments, and decayed sills were positively associated with maximum cavity temperatures. Summer temperatures are projected to increase in this region, and additional research is needed to determine how the thermal environments of cavities will influence species occupancy, breeding, and survival.

  8. Red-cockaded woodpecker nest-cavity selection: relationships with cavity age and resin production

    Science.gov (United States)

    Richard N. Conner; Daniel Saenz; D. Craig Rudolph; William G. Ross; David L. Kulhavy

    1998-01-01

    The authors evaluated selection of nest sites by male red-cockaded woodpeckers (Picoides borealis) in Texas relative to the age of the cavity when only cavities excavated by the woodpeckers were available and when both naturally excavated cavities and artificial cavities were available. They also evaluated nest-cavity selection relative to the ability of naturally...

  9. Coldbox installation for HL-LHC crab cavity test in the SPS tunnel (BA6)

    CERN Document Server

    Ordan, Julien Marius

    2018-01-01

    The Cold-box, produced by Linde Kryotechnik for the SPS crab-cavity test stand for HL-LHC, on its arrival at CERN. It wll be transported into the tunnel in horizontal position and then will have to be tilted in its operational position, on its vertical axis, before connecting it to cryogenics lines.

  10. Hydroforming SRF Three-cell Cavity from Seamless Niobium Tube

    Energy Technology Data Exchange (ETDEWEB)

    Yamanaka, Masashi [KEK, Tsukuba; Dohmae, Takeshi [KEK, Tsukuba; Hocker, Andy [Fermilab; Inoue, Hitoshi [KEK, Tsukuba; Park, Gunn-Tae [KEK, Tsukuba; Tajima, Tsuyoshi [Los Alamos; Umemori, Kensei [KEK, Tsukuba

    2016-06-01

    We are developing the manufacturing method for superconducting radio frequency (SRF) cavities by using a hydroforming instead of using conventional electron beam welding. We expect higher reliability and reduced cost with hydroforming. For successful hydroforming, high-purity seamless niobium tubes with good formability as well as advancing the hydroforming technique are necessary. Using a seamless niobium tube from ATI Wah Chang, we were able to successfully hydroform a 1.3 GHz three-cell TESLA-like cavity and obtained an Eacc of 32 MV/m. A barrel polishing process was omitted after the hydroforming. The vertical test was carried out with very rough inside surface. We got amazing and interesting result.

  11. CEBAF's SRF cavity manufacturing experience

    International Nuclear Information System (INIS)

    Benesch, J.F.; Reece, C.E.

    1994-01-01

    Construction of the Continuous Electron Beam Accelerator Facility (CEBAF) recirculating linac represents the largest scale application of superconducting rf (SRF) technology to date. The accelerating structures in CEBAF are 169 pairs of 1.5 GHz superconducting rf cavities -- 9 pairs in an injector and 80 pairs each in two linacs. The beam is to be recirculated up to five passes through each linac. Data is presented on mechanical tolerances achieved by the industrial fabricator of the rf cavities (Siemens). Liquid helium leak rates integrated over 22 vacuum seals have been measured on over 110 cavity pairs. A roughly normal distribution of the log 10 (leak rate) is seen, centered about a rate of 10 -10.4 torr-l/s. Over 140 pairs of the cavities have been assembled and have completed rf testing at 2.0 K. Among these, 54% demonstrated usable accelerating gradients greater than 10 MV/m. Although the rf performance characteristics well exceed the CEBAF baseline requirements of 5 MV/m at Q 0 = 2.4x10 9 , the usual limiting phenomena are encountered: field emission, quenching, and occasional multipacting. A discussion of the occurrence conditions and severity of these phenomena during production cavity testing is presented. The frequency with which performance is limited by quenching suggests that additional material advances may be required for applications which require the reliable achievement of accelerating gradients of more than 15 MV/m

  12. Coupling of an overdriven cavity

    International Nuclear Information System (INIS)

    Garbin, H.D.

    1993-01-01

    It is well known that when a nuclear test is conducted in a sufficiently large cavity, the resulting seismic signal is sharply reduced when compared to a normal tamped event. Cavity explosions are of interest in the seismic verification community because of this possibility of reducing the seismic energy generated which can lower signal amplitudes and make detection difficult. Reduced amplitudes would also lower seismic yield estimates which has implications in a Threshold Test Ban Treaty (TTBT). In the past several years, there have been a number of nuclear tests at NTS (Nevada Test Site) inside hemispherical cavities. Two such tests were MILL YARD and MISTY ECHO which had instrumentation at the surface and in the free-field. These two tests differ in one important aspect. MILL YARD was completely decoupled i.e., the cavity wall behaved in an elastic manner. It was estimated that MILL YARD's ground motion was reduced by a factor of at least 70. In contrast, MISTY ECHO was detonated in a hemispherical cavity with the same dimensions as MILL YARD, but with a much larger device yield. This caused an inelastic behavior on the wall and the explosion was not fully decoupled

  13. Development of Side Coupled Cavities

    International Nuclear Information System (INIS)

    Conto, J.M. de; Carretta, J.M.; Gomez-Martinez, Y.; Micoud, R.

    2008-01-01

    Side coupled Cavities are good candidates for proton accelerations in the 90-180 MeV range, as it has been first proposed for the CERN LINAC4 project. A side coupled Linac is made of a lump chain of resonant cavities, alternatively accelerating and coupling. A side coupled cavity has been designed in a CERN-LPSC collaboration to achieve LINAC4 requirements. After RF studies, a complete thermal study has been done, showing that 10-15% is the absolute maximum duty-cycle achievable by such a cavity. Error studies have been developed. They have shown that a tuning ring is mandatory and that a K equals 3% coupling factor is a good choice. A prototype has been built and each cell has been measured and tuned. A simple and accurate method has been used to get both the resonant frequency and the coupling factor, with a movable tuner and a linear fit. A similar method has been used to get the second order coupling factor. A large dispersion is observed on K. This is mainly due to the shape of the coupling apertures, which are very sensitive to mechanical errors. A future and realistic design must be very careful to guarantee a constant aperture (the important parameter is more the dispersion of k than its exact value). Finally, we analyse how to tune the cavity. This has to checked carefully and probably improved or corrected. Results are expected for mid-2008

  14. Photonic crystal nanostructures for optical biosensing applications

    DEFF Research Database (Denmark)

    Dorfner, D.; Zabel, T.; Hürlimann, T.

    2009-01-01

    We present the design, fabrication and optical investigation of photonic crystal (PhC) nanocavity drop filters for use as optical biosensors. The resonant cavity mode wavelength and Q-factor are studied as a function of the ambient refractive index and as a function of adsorbed proteins (bovine...

  15. Transient heating and entropy generation of a fluid inside a large aspect ratio cavity

    International Nuclear Information System (INIS)

    Cajas, J.C.; Trevino, C.

    2013-01-01

    In this work, the transient heating of a fluid inside a vertical cavity of large aspect ratio (height/length) was studied numerically by the use of the SIMPLE algorithm. The heat sources are two vertical plates localized in the side walls of the cavity near the bottom. Calculations were performed for a fixed value of the Prandtl number, Pr = 7, aspect ratio of 12 and six different Rayleigh numbers between 10 3 and 10 6 . The temperature and entropy production fields, the non-dimensional heat flux on the heated plates (given by the average Nusselt number) have been obtained. From a clear dependence on the Rayleigh number, different mechanisms of symmetry break and heat transfer in the cavity were found, where vortices dynamics play a very important role. A universal behavior of the mean values of the overall reduced entropy production rate was found, valid after a short initial transient. (authors)

  16. Vertical Search Engines

    OpenAIRE

    Curran, Kevin; Mc Glinchey, Jude

    2017-01-01

    This paper outlines the growth in popularity of vertical search engines, their origins, the differences between them and well-known broad based search engines such as Google and Yahoo. We also discuss their use in business-to-business, their marketing and advertising costs, what the revenue streams are and who uses them.

  17. Global Vertical Reference Frame

    Czech Academy of Sciences Publication Activity Database

    Burša, Milan; Kenyon, S.; Kouba, J.; Šíma, Zdislav; Vatrt, V.; Vojtíšková, M.

    -, č. 5 (2009), s. 53-63 ISSN 1801-8483 R&D Projects: GA ČR GA205/08/0328 Institutional research plan: CEZ:AV0Z10030501 Keywords : sea surface topography * satellite altimetry * vertical frames Subject RIV: BN - Astronomy, Celestial Mechanics, Astrophysics

  18. A SURVEY OF CORONAL CAVITY DENSITY PROFILES

    International Nuclear Information System (INIS)

    Fuller, J.; Gibson, S. E.

    2009-01-01

    Coronal cavities are common features of the solar corona that appear as darkened regions at the base of coronal helmet streamers in coronagraph images. Their darkened appearance indicates that they are regions of lowered density embedded within the comparatively higher density helmet streamer. Despite interfering projection effects of the surrounding helmet streamer (which we refer to as the cavity rim), Fuller et al. have shown that under certain conditions it is possible to use a Van de Hulst inversion of white-light polarized brightness (pB) data to calculate the electron density of both the cavity and cavity rim plasma. In this article, we apply minor modifications to the methods of Fuller et al. in order to improve the accuracy and versatility of the inversion process, and use the new methods to calculate density profiles for both the cavity and cavity rim in 24 cavity systems. We also examine trends in cavity morphology and how departures from the model geometry affect our density calculations. The density calculations reveal that in all 24 cases the cavity plasma has a flatter density profile than the plasma of the cavity rim, meaning that the cavity has a larger density depletion at low altitudes than it does at high altitudes. We find that the mean cavity density is over four times greater than that of a coronal hole at an altitude of 1.2 R sun and that every cavity in the sample is over twice as dense as a coronal hole at this altitude. Furthermore, we find that different cavity systems near solar maximum span a greater range in density at 1.2 R sun than do cavity systems near solar minimum, with a slight trend toward higher densities for systems nearer to solar maximum. Finally, we found no significant correlation of cavity density properties with cavity height-indeed, cavities show remarkably similar density depletions-except for the two smallest cavities that show significantly greater depletion.

  19. FDTD simulation of microwave sintering of ceramics in multimode cavities

    Energy Technology Data Exchange (ETDEWEB)

    Iskander, M.F.; Smith, R.L.; Andrade, A.O.M.; Walsh, L.M. (Univ. of Utah, Salt Lake City, UT (United States). Dept. of Electrical Engineering); Kimrey, H. Jr. (Oak Ridge National Lab., TN (United States))

    1994-05-01

    At present, various aspects of the sintering process such as preparation of sample sizes and shapes, types of insulations, and the desirability of including a process stimulus such as SiC rods are considered forms of art and highly dependent on human expertise. The simulation of realistic sintering experiments in a multimode cavity may provide an improved understanding of critical parameters involved and allow for the development of guidelines towards the optimization of the sintering process. In this paper, the authors utilize the FDTD technique to model various geometrical arrangements and material compatibility aspects in multimode microwave cavities and to simulate realistic sintering experiments. The FDTD procedure starts with the simulation of a field distribution in multimode microwave cavities that resembles a set of measured data using liquid crystal sheets. Also included in the simulation is the waveguide feed as well as a ceramic loading plate placed at the base of the cavity. The FDTD simulation thus provides realistic representation of a typical sintering experiment. Aspects that have been successfully simulated include the effects of various types of insulation, the role of SiC rods on the uniformity of the resulting microwave fields, and the possible shielding effects that may result from excessive use of SiC. These results as well as others showing the electromagnetic fields and power-deposition patterns in multiple ceramic samples are presented.

  20. Review of cavity optomechanical cooling

    International Nuclear Information System (INIS)

    Liu Yong-Chun; Hu Yu-Wen; Xiao Yun-Feng; Wong Chee Wei

    2013-01-01

    Quantum manipulation of macroscopic mechanical systems is of great interest in both fundamental physics and applications ranging from high-precision metrology to quantum information processing. For these purposes, a crucial step is to cool the mechanical system to its quantum ground state. In this review, we focus on the cavity optomechanical cooling, which exploits the cavity enhanced interaction between optical field and mechanical motion to reduce the thermal noise. Recent remarkable theoretical and experimental efforts in this field have taken a major step forward in preparing the motional quantum ground state of mesoscopic mechanical systems. This review first describes the quantum theory of cavity optomechanical cooling, including quantum noise approach and covariance approach; then, the up-to-date experimental progresses are introduced. Finally, new cooling approaches are discussed along the directions of cooling in the strong coupling regime and cooling beyond the resolved sideband limit. (topical review - quantum information)

  1. Slotted Photonic Crystal Sensors

    Science.gov (United States)

    Scullion, Mark G.; Krauss, Thomas F.; Di Falco, Andrea

    2013-01-01

    Optical biosensors are increasingly being considered for lab-on-a-chip applications due to their benefits such as small size, biocompatibility, passive behaviour and lack of the need for fluorescent labels. The light guiding mechanisms used by many of them results in poor overlap of the optical field with the target molecules, reducing the maximum sensitivity achievable. This review article presents a new platform for optical biosensors, namely slotted photonic crystals, which provide higher sensitivities due to their ability to confine, spatially and temporally, the optical mode peak within the analyte itself. Loss measurements showed values comparable to standard photonic crystals, confirming their ability to be used in real devices. A novel resonant coupler was designed, simulated, and experimentally tested, and was found to perform better than other solutions within the literature. Combining with cavities, microfluidics and biological functionalization allowed proof-of-principle demonstrations of protein binding to be carried out. Higher sensitivities were observed in smaller structures than possible with most competing devices reported in the literature. This body of work presents slotted photonic crystals as a realistic platform for complete on-chip biosensing; addressing key design, performance and application issues, whilst also opening up exciting new ideas for future study. PMID:23503295

  2. Slotted Photonic Crystal Sensors

    Directory of Open Access Journals (Sweden)

    Andrea Di Falco

    2013-03-01

    Full Text Available Optical biosensors are increasingly being considered for lab-on-a-chip applications due to their benefits such as small size, biocompatibility, passive behaviour and lack of the need for fluorescent labels. The light guiding mechanisms used by many of them results in poor overlap of the optical field with the target molecules, reducing the maximum sensitivity achievable. This review article presents a new platform for optical biosensors, namely slotted photonic crystals, which provide higher sensitivities due to their ability to confine, spatially and temporally, the optical mode peak within the analyte itself. Loss measurements showed values comparable to standard photonic crystals, confirming their ability to be used in real devices. A novel resonant coupler was designed, simulated, and experimentally tested, and was found to perform better than other solutions within the literature. Combining with cavities, microfluidics and biological functionalization allowed proof-of-principle demonstrations of protein binding to be carried out. Higher sensitivities were observed in smaller structures than possible with most competing devices reported in the literature. This body of work presents slotted photonic crystals as a realistic platform for complete on-chip biosensing; addressing key design, performance and application issues, whilst also opening up exciting new ideas for future study.

  3. On niobium sputter coated cavities

    International Nuclear Information System (INIS)

    Arnolds-Mayer, G.; Kaufmann, U.; Downar, H.

    1988-01-01

    To coat copper cavities with a thin film of niobium, facilities for electropolishing and sputter deposition have been installed at Dornier. Experiments have been performed on samples to optimize electropolishing and deposition parameters. In this paper, characteristics concerning surface properties, adhesion of the niobium film to the copper substrate, and film properties were studied on planar samples. A 1.5 GHz single cell cavity made from oxygen free high conductivity (OFHC) copper was sputter coated twice. First rf measurements were performed in the temperature range from 300 K to 2 K

  4. RNA Crystallization

    Science.gov (United States)

    Golden, Barbara L.; Kundrot, Craig E.

    2003-01-01

    RNA molecules may be crystallized using variations of the methods developed for protein crystallography. As the technology has become available to syntheisize and purify RNA molecules in the quantities and with the quality that is required for crystallography, the field of RNA structure has exploded. The first consideration when crystallizing an RNA is the sequence, which may be varied in a rational way to enhance crystallizability or prevent formation of alternate structures. Once a sequence has been designed, the RNA may be synthesized chemically by solid-state synthesis, or it may be produced enzymatically using RNA polymerase and an appropriate DNA template. Purification of milligram quantities of RNA can be accomplished by HPLC or gel electrophoresis. As with proteins, crystallization of RNA is usually accomplished by vapor diffusion techniques. There are several considerations that are either unique to RNA crystallization or more important for RNA crystallization. Techniques for design, synthesis, purification, and crystallization of RNAs will be reviewed here.

  5. Cavity quantum electrodynamics with Anderson-localized modes

    DEFF Research Database (Denmark)

    Sapienza, Luca; Nielsen, Henri Thyrrestrup; Stobbe, Søren

    2010-01-01

    by a factor of 15 on resonance with the Anderson-localized mode, and 94% of the emitted single photons coupled to the mode. Disordered photonic media thus provide an efficient platform for quantum electrodynamics, offering an approach to inherently disorder-robust quantum information devices.......A major challenge in quantum optics and quantum information technology is to enhance the interaction between single photons and single quantum emitters. This requires highly engineered optical cavities that are inherently sensitive to fabrication imperfections. We have demonstrated a fundamentally...... different approach in which disorder is used as a resource rather than a nuisance. We generated strongly confined Anderson-localized cavity modes by deliberately adding disorder to photonic crystal waveguides. The emission rate of a semiconductor quantum dot embedded in the waveguide was enhanced...

  6. Design, prototyping, and testing of a compact superconducting double quarter wave crab cavity

    Directory of Open Access Journals (Sweden)

    Binping Xiao

    2015-04-01

    Full Text Available We proposed a novel design for a compact superconducting crab cavity with a double quarter wave (DQWCC shape. After fabrication and surface treatments, this niobium proof-of-principle cavity was tested cryogenically in a vertical cryostat. The cavity is extremely compact yet has a low frequency of 400 MHz, an essential property for service in the Large Hadron Collider luminosity upgrade. The cavity’s electromagnetic properties are well suited for this demanding task. The demonstrated deflecting voltage of 4.6 MV is well above the required 3.34 MV for a crab cavity in the future High Luminosity LHC. In this paper, we present the design, prototyping, and results from testing the DQWCC.

  7. CFD Simulation of Flow Tones from Grazing Flow past a Deep Cavity

    International Nuclear Information System (INIS)

    T Bagwell

    2006-01-01

    Locked-in flow tones due to shear flow over a deep cavity are investigated using Large Eddy Simulation (LES). An isentropic form of the compressible Navier-Stokes equations (pseudo-compressibility) is used to couple the vertical flow over the cavity mouth with the deep cavity resonances (1). Comparisons to published experimental data (2) show that the pseudo-compressible LES formulation is capable of predicting the feedforward excitation of the deep cavity resonator, as well as the feedback process from the resonator to the flow source. By systematically increasing the resonator damping level, it is shown that strong lock-in results in a more organized shear layer than is observed for the locked-out flow state. By comparison, weak interactions (non-locked-in) produce no change in the shear layer characteristics. This supports the 40 dB definition of lock-in defined in the experiment

  8. Effect of Perpendicular Magnetic Field on Free Convection in a Rectangular Cavity

    Directory of Open Access Journals (Sweden)

    Anand Kumar

    2015-12-01

    Full Text Available The steady free convective flow of a viscous incompressible and electrically conducting fluid in a two-dimensional cavity in the presence of a magnetic field applied normal to the plane of the cavity is investigated. The side vertical walls of the cavity are heated differentially while the horizontal walls are assumed to be insulated. The governing equations are re-formulated in terms of vorticity and stream function. The resulting boundary value problem is solved numerically using an alternating direction implicit (ADI method. A number of plots illustrating the influence of Hartmann number and Rayleigh number on the streamlines and isotherms as well as the velocity and temperature profiles are shown. Furthermore, results for the average Nusselt number and the maximum absolute stream function have been obtained, and these are compared with the corresponding results in the literature when the magnetic field is applied along the cavity in the horizontal direction.

  9. Beam Acceleration by a Multicell RF Cavity Structure Proposed for an Improved Yield in Hydroforming

    International Nuclear Information System (INIS)

    Kang, Yoon W.; Shin, Ki; Fathy, A.E.; Holmes, Jeffrey A.

    2012-01-01

    We study the accelerating properties of a new multicell cavity structure with irises forming a rectangular aperture between the cavity cells. We are interested in this structure because, from a mechanical point of view, it may be possible to manufacture with high quality using a hydroforming process. RF analysis shows that the rectangular iris shape provides some asymmetric transverse focusing per half RF period, particularly for low beam energies. If the horizontal and vertical rectangular irises are interleaved, the net transverse focusing could be increased. Here we present studies of the acceleration and transport properties of these cavities by tracking particles using the ORBIT Code through time-dependent 3D cavity fields taken from CST MWS.

  10. Crystallization mechanisms of acicular crystals

    Science.gov (United States)

    Puel, François; Verdurand, Elodie; Taulelle, Pascal; Bebon, Christine; Colson, Didier; Klein, Jean-Paul; Veesler, Stéphane

    2008-01-01

    In this contribution, we present an experimental investigation of the growth of four different organic molecules produced at industrial scale with a view to understand the crystallization mechanism of acicular or needle-like crystals. For all organic crystals studied in this article, layer-by-layer growth of the lateral faces is very slow and clear, as soon as the supersaturation is high enough, there is competition between growth and surface-activated secondary nucleation. This gives rise to pseudo-twinned crystals composed of several needle individuals aligned along a crystallographic axis; this is explained by regular over- and inter-growths as in the case of twinning. And when supersaturation is even higher, nucleation is fast and random. In an industrial continuous crystallization, the rapid growth of needle-like crystals is to be avoided as it leads to fragile crystals or needles, which can be partly broken or totally detached from the parent crystals especially along structural anisotropic axis corresponding to weaker chemical bonds, thus leading to slower growing faces. When an activated mechanism is involved such as a secondary surface nucleation, it is no longer possible to obtain a steady state. Therefore, the crystal number, size and habit vary significantly with time, leading to troubles in the downstream processing operations and to modifications of the final solid-specific properties. These results provide valuable information on the unique crystallization mechanisms of acicular crystals, and show that it is important to know these threshold and critical values when running a crystallizer in order to obtain easy-to-handle crystals.

  11. Conduction cooling systems for linear accelerator cavities

    Science.gov (United States)

    Kephart, Robert

    2017-05-02

    A conduction cooling system for linear accelerator cavities. The system conducts heat from the cavities to a refrigeration unit using at least one cavity cooler interconnected with a cooling connector. The cavity cooler and cooling connector are both made from solid material having a very high thermal conductivity of approximately 1.times.10.sup.4 W m.sup.-1 K.sup.-1 at temperatures of approximately 4 degrees K. This allows for very simple and effective conduction of waste heat from the linear accelerator cavities to the cavity cooler, along the cooling connector, and thence to the refrigeration unit.

  12. Vertical steam generator

    International Nuclear Information System (INIS)

    Cuda, F.; Kondr, M.; Kresta, M.; Kusak, V.; Manek, O.; Turon, S.

    1982-01-01

    A vertical steam generator for nuclear power plants and dual purpose power plants consists of a cylindrical vessel in which are placed heating tubes in the form upside-down U. The heating tubes lead to the jacket of the cylindrical collector placed in the lower part of the steam generator perpendicularly to its vertical axis. The cylindrical collector is divided by a longitudinal partition into the inlet and outlet primary water sections of the heating tubes. One ends of the heating tube leads to the jacket of the collector for primary water feeding and the second ends of the heating tubes into the jacket of the collector which feeds and offtakes primary water from the heating tubes. (B.S.)

  13. Vertical organic transistors.

    Science.gov (United States)

    Lüssem, Björn; Günther, Alrun; Fischer, Axel; Kasemann, Daniel; Leo, Karl

    2015-11-11

    Organic switching devices such as field effect transistors (OFETs) are a key element of future flexible electronic devices. So far, however, a commercial breakthrough has not been achieved because these devices usually lack in switching speed (e.g. for logic applications) and current density (e.g. for display pixel driving). The limited performance is caused by a combination of comparatively low charge carrier mobilities and the large channel length caused by the need for low-cost structuring. Vertical Organic Transistors are a novel technology that has the potential to overcome these limitations of OFETs. Vertical Organic Transistors allow to scale the channel length of organic transistors into the 100 nm regime without cost intensive structuring techniques. Several different approaches have been proposed in literature, which show high output currents, low operation voltages, and comparatively high speed even without sub-μm structuring technologies. In this review, these different approaches are compared and recent progress is highlighted.

  14. Large-Grain Superconducting Gun Cavity Testing Program Phase One Closing Report

    Energy Technology Data Exchange (ETDEWEB)

    Hammons, L. [Brookhaven National Lab. (BNL), Upton, NY (United States); Bellavia, S. [Brookhaven National Lab. (BNL), Upton, NY (United States); Belomestnykh, S. [Brookhaven National Lab. (BNL), Upton, NY (United States); Ben-Zvi, I. [Brookhaven National Lab. (BNL), Upton, NY (United States); Cullen, C. [Brookhaven National Lab. (BNL), Upton, NY (United States); Dai, J. [Brookhaven National Lab. (BNL), Upton, NY (United States); Degen, C. [Brookhaven National Lab. (BNL), Upton, NY (United States); Hahn, H. [Brookhaven National Lab. (BNL), Upton, NY (United States); Masi, L. [Brookhaven National Lab. (BNL), Upton, NY (United States); McIntyre, G. [Brookhaven National Lab. (BNL), Upton, NY (United States); Schultheiss, C. [Brookhaven National Lab. (BNL), Upton, NY (United States); Seda, T. [Brookhaven National Lab. (BNL), Upton, NY (United States); Kellerman, R. [Brookhaven National Lab. (BNL), Upton, NY (United States); Tallerico, T. [Brookhaven National Lab. (BNL), Upton, NY (United States); Todd, R. [Brookhaven National Lab. (BNL), Upton, NY (United States); Tuozzolo, S. [Brookhaven National Lab. (BNL), Upton, NY (United States); Xu, W. [Brookhaven National Lab. (BNL), Upton, NY (United States); Than, Y. [Brookhaven National Lab. (BNL), Upton, NY (United States)

    2013-10-31

    This report details the experimental configuration and RF testing results for the first phase of a large-grained niobium electron gun cavity testing program being conducted in the Small Vertical Testing Facility in the Collider-Accelerator Department. This testing is meant to explore multi-pacting in the cavity and shed light on the behavior of a counterpart cavity of identical geometry installed in the Energy Recovery LINAC being constructed in the Collider-Accelerator Department at Brookhaven National Laboratory. This test found that the Q of the large-grained cavity at 4 K reached ~6.5 × 108 and at 2 K reached a value of ~6 × 109. Both of these values are about a factor of 10 lower than would be expected for this type of cavity given the calculated surface resistance and the estimated geometry factor for this half-cell cavity. In addition, the cavity reached a peak voltage of 0.6 MV before there was sig-nificant decline in the Q value and a substantial increase in field emission. This relatively low volt-age, coupled with the low Q and considerable field emission suggest contamination of the cavity interior, possibly during experimental assembly. The results may also suggest that additional chemical etching of the interior surface of the cavity may be beneficial. Throughout the course of testing, various challenges arose including slow helium transfer to the cryostat and cable difficulties. These difficulties and others were eventually resolved, and the re-port discusses the operating experience of the experiment thus far and the plans for future work aimed at exploring the nature of multipacting with a copper cathode inserted into the cavity.

  15. MHD natural convection in open inclined square cavity with a heated circular cylinder

    Science.gov (United States)

    Hosain, Sheikh Anwar; Alim, M. A.; Saha, Satrajit Kumar

    2017-06-01

    MHD natural convection in open cavity becomes very important in many scientific and engineering problems, because of it's application in the design of electronic devices, solar thermal receivers, uncovered flat plate solar collectors having rows of vertical strips, geothermal reservoirs, etc. Several experiments and numerical investigations have been presented for describing the phenomenon of natural convection in open cavity for two decades. MHD natural convection and fluid flow in a two-dimensional open inclined square cavity with a heated circular cylinder was considered. The opposite wall to the opening side of the cavity was first kept to constant heat flux q, at the same time the surrounding fluid interacting with the aperture was maintained to an ambient temperature T∞. The top and bottom wall was kept to low and high temperature respectively. The fluid with different Prandtl numbers. The properties of the fluid are assumed to be constant. As a result a buoyancy force is created inside the cavity due to temperature difference and natural convection is formed inside the cavity. The Computational Fluid Dynamics (CFD) code are used to discretize the solution domain and represent the numerical result to graphical form.. Triangular meshes are used to obtain the solution of the problem. The streamlines and isotherms are produced, heat transfer parameter Nu are obtained. The results are presented in graphical as well as tabular form. The results show that heat flux decreases for increasing inclination of the cavity and the heat flux is a increasing function of Prandtl number Pr and decreasing function of Hartmann number Ha. It is observed that fluid moves counterclockwise around the cylinder in the cavity. Various recirculations are formed around the cylinder. The almost all isotherm lines are concentrated at the right lower corner of the cavity. The object of this work is to develop a Mathematical model regarding the effect of MHD natural convection flow around

  16. Sterility of the uterine cavity

    DEFF Research Database (Denmark)

    Møller, Birger R.; Kristiansen, Frank V.; Thorsen, Poul

    1995-01-01

    from the same sites. Nearly a quarter of all the patients harbored one or more microorganisms in the uterus, mostly Gardnerella vaginalis, Enterobacter and Streptococcus agalactiae. We found that in a significant number of cases, the uterine cavity is colonized with potentially pathogenic organisms...

  17. Flux trapping in superconducting cavities

    International Nuclear Information System (INIS)

    Vallet, C.; Bolore, M.; Bonin, B.; Charrier, J.P.; Daillant, B.; Gratadour, J.; Koechlin, F.; Safa, H.

    1992-01-01

    The flux trapped in various field cooled Nb and Pb samples has been measured. For ambient fields smaller than 3 Gauss, 100% of the flux is trapped. The consequences of this result on the behavior of superconducting RF cavities are discussed. (author) 12 refs.; 2 figs

  18. Field emission in RF cavities

    International Nuclear Information System (INIS)

    Bonin, B.

    1996-01-01

    Electron field emission limits the accelerating gradient in superconducting cavities. It is shown how and why it is an important problem. The phenomenology of field emission is then described, both in DC and RF regimes. Merits of a few plausible 'remedies' to field emission are discussed. (author)

  19. Superconducting cavity development at RRCAT

    International Nuclear Information System (INIS)

    Joshi, S.C.

    2015-01-01

    Raja Ramanna Centre for Advanced Technology (RRCAT), Indore pursuing a program on 'R and D Activities for High Energy Proton Linac based Spallation Neutron Source'. Spallation neutron source (SNS) facility will provide high flux pulse neutrons for research in the areas of condensed matter physics, materials science, chemistry, biology and engineering. This will complement the existing synchrotron light source facility, INDUS-2 at RRCAT and reactor based neutron facilities at BARC. RRCAT is also participating in approved mega project on 'Physics and Advanced Technology for High Intensity Proton Accelerator' to support activities of Indian Institutions - Fermilab Collaboration (IIFC). The SNS facility will have a 1 GeV superconducting proton injector linac and 1 GeV accumulator ring. The linac will comprise of large number of superconducting radio-frequency (SCRF) cavities operating at different RF frequencies housed in suitable cryomodules. Thus, an extensive SCRF cavity infrastructure setup is being established. In addition, a scientific and technical expertise are also being developed for fabrication, processing and testing of the SCRF cavities for series production. The paper presents the status of superconducting cavity development at RRCAT

  20. Thoracic cavity after thoracic operations

    International Nuclear Information System (INIS)

    Rabkin, I.Kh.

    1983-01-01

    The problems of roentgenologic method application to detect postoperative c omplications in pulmonary tissue, bronchi, pleural cavity, mediastinum, have been considered. It is shown, that the use of the above mentioned method permit s to judge on the rates and degrees of the lungs straightening, anatomic structures shift, the change in air- and blood-filling, accumulation of liquid a nd air in pleuritic

  1. "Grinding" cavities in polyurethane foam

    Science.gov (United States)

    Brower, J. R.; Davey, R. E.; Dixon, W. F.; Robb, P. H.; Zebus, P. P.

    1980-01-01

    Grinding tool installed on conventional milling machine cuts precise cavities in foam blocks. Method is well suited for prototype or midsize production runs and can be adapted to computer control for mass production. Method saves time and materials compared to bonding or hot wire techniques.

  2. Droplet based cavities and lasers

    DEFF Research Database (Denmark)

    Mølhave, Kristian; Kristensen, Anders; Mortensen, Asger

    2009-01-01

    The self-organized and molecularly smooth surface on liquid microdroplets makes them attractive as optical cavities with very high quality factors. This chapter describes the basic theory of optical modes in spherical droplets. The mechanical properties including vibrational excitation are also d...

  3. Superconducting cavities for beauty factories

    International Nuclear Information System (INIS)

    Lengeler, H.

    1992-01-01

    The possibilities and merits of superconducting accelerating cavities for Beauty-factories are considered. There exist already large sc systems of size and frequency comparable to the ones needed for Beauty-factories. Their status and operation experience is discussed. A comparison of normal conducting and superconducting systems is done for two typical Beauty-factory rings

  4. Chip-integrated plasmonic cavity-enhanced single nitrogen-vacancy center emission

    DEFF Research Database (Denmark)

    Siampour, Hamidreza; Kumar, Shailesh; Bozhevolnyi, Sergey I.

    2017-01-01

    High temporal stability and spin dynamics of individual nitrogen-vacancy (NV) centers in diamond crystals make them one of the most promising quantum emitters operating at room temperature. We demonstrate a chip-integrated cavity-coupled emission into propagating surface plasmon polariton (SPP...

  5. Threshold for strong thermal dephasing in periodically poled KTP in external cavity frequency doubling

    DEFF Research Database (Denmark)

    Lundeman, Jesper Holm; Jensen, Ole Bjarlin; Andersen, Peter E.

    2009-01-01

    We present a measurement series of the efficiency of periodically poled KTP used for second-harmonic generation in an external phase-locked cavity. Due to the high absorption (0.01 cm^−1) in the PPKTP crystal at the pump wavelength a strong thermal dephasing of the periodically poled grating...

  6. Operational characteristics of dual gain single cavity Nd:YVO 4 laser

    Indian Academy of Sciences (India)

    Operational characteristics of a dual gain single cavity Nd:YVO4 laser have been investigated. With semiconductor diode laser pump power of 2 W, 800 mW output was obtained with a slope efficiency of 49%. Further, by changing the relative orientation of the two crystals the polarization characteristics of the output could be ...

  7. Tuner Design for PEFP Superconducting RF Cavities

    International Nuclear Information System (INIS)

    Tang, Yazhe; An, Sun; Zhang, Liping; Cho, Yong Sub

    2009-01-01

    A superconducting radio frequency (SRF) cavity will be used to accelerate a proton beam after 100 MeV at 700 MHz in a linac of the Proton Engineering Frontier Project (PEFP) and its extended project. In order to control the SRF cavity's operating frequency at a low temperature, a new tuner has been developed for the PEFP SRF cavities. Each PEFP superconducting RF cavity has one tuner to match the cavity resonance frequency with the desired accelerator operating frequency; or to detune a cavity frequency a few bandwidths away from a resonance, so that the beam will not excite the fundamental mode, when the cavity is not being used for an acceleration. The PEFP cavity tuning is achieved by varying the total length of the cavity. The length of the cavity is controlled differentially by tuner acting with respect to the cavity body. The PEFP tuner is attached to the helium vessel and drives the cavity Field Probe (FP) side to change the frequency of the cavity

  8. Occurrence, frequency, and significance of cavities in fractured-rock aquifers near Oak Ridge National Laboratory, Tennessee

    International Nuclear Information System (INIS)

    Moore, G.K.

    1988-01-01

    Virtually all wells drilled into bedrock intercept a water-bearing fracture, but cavities occur only in areas underlaid by limy rocks. Multiple cavities are common in wells in the Conasauga and Knox Groups but are rare in the Rome Formation and the Chickamauga Group. The geometric mean height (vertical dimension) of the cavities is 0.59 m, the geometric mean depth is 14 m, the average lateral spatial frequency is 0.16, and the average vertical spatial frequency is 0.019. Differences in cavity parameter values are caused partly by geologic factors such as lithology, bed thickness, and spatial fracture frequency. However, hydrologic factors such as percolation rate, recharge amount, aquifer storage capacity, and differences between lateral and vertical permeability may also be important. Tracer tests show that groundwater velocity in some cavities is in the range 20-300 m/d, and relatively rapid flow rates occur near springs. In contrast, wells that intercept cavities have about the same range in hydraulic conductivity as wells in regolith and fractured rock. The hydraulic conductivity data indicate a flow rate of less than 1.0 m/d. This difference cannot be adequately explained, but rapid groundwater movement may be much more common above the water table than below. Rapid groundwater flows below the water table might be rare except near springs in the Knox Group. 10 refs., 3 figs., 4 tabs

  9. A chip-scale integrated cavity-electro-optomechanics platform

    DEFF Research Database (Denmark)

    Winger, M.; Blasius, T. D.; Mayer Alegre, T. P.

    2011-01-01

    We present an integrated optomechanical and electromechanical nanocavity, in which a common mechanical degree of freedom is coupled to an ultrahigh-Q photonic crystal defect cavity and an electrical circuit. The system allows for wide-range, fast electrical tuning of the optical nanocavity...... resonances, and for electrical control of optical radiation pressure back-action effects such as mechanical amplification (phonon lasing), cooling, and stiffening. These sort of integrated devices offer a new means to efficiently interconvert weak microwave and optical signals, and are expected to pave...

  10. Waveguide based external cavity semiconductor lasers

    NARCIS (Netherlands)

    Oldenbeuving, Ruud; Klein, E.J.; Offerhaus, Herman L.; Lee, Christopher James; Verhaegen, M.; Boller, Klaus J.

    2012-01-01

    We report on progress of the project waveguide based external cavity semiconductor laser (WECSL) arrays. Here we present the latest results on our efforts to mode lock an array of tunable, external cavity semiconductor lasers.

  11. Optical cavity furnace for semiconductor wafer processing

    Science.gov (United States)

    Sopori, Bhushan L.

    2014-08-05

    An optical cavity furnace 10 having multiple optical energy sources 12 associated with an optical cavity 18 of the furnace. The multiple optical energy sources 12 may be lamps or other devices suitable for producing an appropriate level of optical energy. The optical cavity furnace 10 may also include one or more reflectors 14 and one or more walls 16 associated with the optical energy sources 12 such that the reflectors 14 and walls 16 define the optical cavity 18. The walls 16 may have any desired configuration or shape to enhance operation of the furnace as an optical cavity 18. The optical energy sources 12 may be positioned at any location with respect to the reflectors 14 and walls defining the optical cavity. The optical cavity furnace 10 may further include a semiconductor wafer transport system 22 for transporting one or more semiconductor wafers 20 through the optical cavity.

  12. An economical wireless cavity-nest viewer

    Science.gov (United States)

    Daniel P. Huebner; Sarah R. Hurteau

    2007-01-01

    Inspection of cavity nests and nest boxes is often required during studies of cavity-nesting birds, and fiberscopes and pole-mounted video cameras are sometimes used for such inspection. However, the cost of these systems may be prohibitive for some potential users. We describe a user-built, wireless cavity viewer that can be used to access cavities as high as 15 m and...

  13. Nanometer cavities studied by positron annihilation

    International Nuclear Information System (INIS)

    Mogensen, O.E.

    1992-01-01

    Positronium (Ps) is trapped in cavities in insulating solids, and the lifetime of ortho Ps is determined by the size of the cavity. The information on the properties of the cavities obtained by use of the standard slow positron beam and the 'normal' positron annihilation techniques is compared for several selected cases. (author)

  14. Computer codes for RF cavity design

    International Nuclear Information System (INIS)

    Ko, K.

    1992-08-01

    In RF cavity design, numerical modeling is assuming an increasingly important role with the help of sophisticated computer codes and powerful yet affordable computers. A description of the cavity codes in use in the accelerator community has been given previously. The present paper will address the latest developments and discuss their applications to cavity toning and matching problems

  15. Diagram of a LEP superconducting cavity

    CERN Multimedia

    1991-01-01

    This diagram gives a schematic representation of the superconducting radio-frequency cavities at LEP. Liquid helium is used to cool the cavity to 4.5 degrees above absolute zero so that very high electric fields can be produced, increasing the operating energy of the accelerator. Superconducting cavities were used only in the LEP-2 phase of the accelerator, from 1996 to 2000.

  16. Computer codes for RF cavity design

    International Nuclear Information System (INIS)

    Ko, K.

    1992-01-01

    In RF cavity design, numerical modeling is assuming an increasingly important role with the help of sophisticated computer codes and powerful yet affordable computers. A description of the cavity codes in use in the accelerator community has been given previously. The present paper will address the latest developments and discuss their applications to cavity tuning and matching problems. (Author) 8 refs., 10 figs

  17. Novel dielectric photonic-band-gap resonant cavity loaded in a gyrotron

    International Nuclear Information System (INIS)

    Chen Xiaoan; Liu Gaofeng; Tang Changjian

    2010-01-01

    A novel resonant cavity composed of a periodic, multilayer, dielectric photonic crystal is proposed. Using the transfer matrix method and the Bloch theorem for periodic systems, an analysis on the band-gap property of such a structure is made, and the basic electromagnetic property of the photonic-band-gap resonant cavity (PBGC) is preliminarily exhibited. The theoretical studies and the cold cavity simulation results obtained from a high-frequency structure simulator are presented. On the basis of the present research, such a PBGC is quite similar to the two-dimensional PBGC made of triangular lattices of metal rods with a defect at its centre, in which a frequency selectivity is similarly demonstrated. Because of its unique electromagnetic property, the cavity has many promising applications in active and passive devices operating in the millimetre, sub-millimetre, and even THz wave range. As a specific application, the feasibility of substituting the traditional cylindrical resonant cavity loaded in a gyrotron for a dielectric PBGC to achieve a transverse high-order operation is discussed under the consideration of the electromagnetic features of the cavity. The study shows the great potential value of such a cavity for gyrotron devices.

  18. Spread of smoke and heat along narrow air cavity in double-skin façade fires

    Directory of Open Access Journals (Sweden)

    Chow Lun Cheuk

    2014-01-01

    Full Text Available A scenario on double-skin façade fire was identified earlier for hazard assessment. A flashover room fire occurred next to the façade, broke the interior glass pane and spread to the façade cavity. As observed in experiments, hot gas moved up as a vertical channel flow for narrow façade cavity. Heat and smoke spread along the narrow air cavity of a double-skin façade will be studied in this paper. A simple mathematical model is developed from basic heat transfer theory for studying the vertical air temperature profiles of the hot gas flowing along the cavity. Assuming one-dimensional flow for hot gas moving up the façade cavity, conservation equations on mass and enthalpy were solved. Experimental results on two double-skin façade rigs of height 6 m and 15 m with narrow cavity depth were used to justify the results. A total of 11 tests were carried out. Correlation expressions between cavity air temperature and the height above ceiling of the fire room were derived.

  19. A Many-Atom Cavity QED System with Homogeneous Atom-Cavity Coupling

    OpenAIRE

    Lee, Jongmin; Vrijsen, Geert; Teper, Igor; Hosten, Onur; Kasevich, Mark A.

    2013-01-01

    We demonstrate a many-atom-cavity system with a high-finesse dual-wavelength standing wave cavity in which all participating rubidium atoms are nearly identically coupled to a 780-nm cavity mode. This homogeneous coupling is enforced by a one-dimensional optical lattice formed by the field of a 1560-nm cavity mode.

  20. Vertical axis wind turbine

    International Nuclear Information System (INIS)

    Obretenov, V.; Tsalov, T.; Chakarov, T.

    2012-01-01

    In recent years, the interest in wind turbines with vertical axis noticeably increased. They have some important advantages: low cost, relatively simple structure, reliable packaging system of wind aggregate long period during which require no maintenance, low noise, independence of wind direction, etc.. The relatively low efficiency, however, makes them applicable mainly for small facilities. The work presents a methodology and software for approximately aerodynamic design of wind turbines of this type, and also analyzed the possibility of improving the efficiency of their workflow