WorldWideScience

Sample records for crystal superalloy turbine

  1. Effect of Crystal Orientation on Fatigue Failure of Single Crystal Nickel Base Turbine Blade Superalloys

    Science.gov (United States)

    Arakere, Nagaraj K.; Swanson, Gregory R.

    2000-01-01

    High Cycle Fatigue (HCF) induced failures in aircraft gas-turbine engines is a pervasive problem affecting a wide range of components and materials. HCF is currently the primary cause of component failures in gas turbine aircraft engines. Turbine blades in high performance aircraft and rocket engines are increasingly being made of single crystal nickel superalloys. Single-crystal Nickel-base superalloys were developed to provide superior creep, stress rupture, melt resistance and thermomechanical fatigue capabilities over polycrystalline alloys previously used in the production of turbine blades and vanes. Currently the most widely used single crystal turbine blade superalloys are PWA 1480/1493 and PWA 1484. These alloys play an important role in commercial, military and space propulsion systems. PWA1493, identical to PWA1480, but with tighter chemical constituent control, is used in the NASA SSME (Space Shuttle Main Engine) alternate turbopump, a liquid hydrogen fueled rocket engine. Objectives for this paper are motivated by the need for developing failure criteria and fatigue life evaluation procedures for high temperature single crystal components, using available fatigue data and finite element modeling of turbine blades. Using the FE (finite element) stress analysis results and the fatigue life relations developed, the effect of variation of primary and secondary crystal orientations on life is determined, at critical blade locations. The most advantageous crystal orientation for a given blade design is determined. Results presented demonstrates that control of secondary and primary crystallographic orientation has the potential to optimize blade design by increasing its resistance to fatigue crack growth without adding additional weight or cost.

  2. Novel casting processes for single-crystal turbine blades of superalloys

    Science.gov (United States)

    Ma, Dexin

    2018-03-01

    This paper presents a brief review of the current casting techniques for single-crystal (SC) blades, as well as an analysis of the solidification process in complex turbine blades. A series of novel casting methods based on the Bridgman process were presented to illustrate the development in the production of SC blades from superalloys. The grain continuator and the heat conductor techniques were developed to remove geometry-related grain defects. In these techniques, the heat barrier that hinders lateral SC growth from the blade airfoil into the extremities of the platform is minimized. The parallel heating and cooling system was developed to achieve symmetric thermal conditions for SC solidification in blade clusters, thus considerably decreasing the negative shadow effect and its related defects in the current Bridgman process. The dipping and heaving technique, in which thinshell molds are utilized, was developed to enable the establishment of a high temperature gradient for SC growth and the freckle-free solidification of superalloy castings. Moreover, by applying the targeted cooling and heating technique, a novel concept for the three-dimensional and precise control of SC growth, a proper thermal arrangement may be dynamically established for the microscopic control of SC growth in the critical areas of large industrial gas turbine blades.

  3. Multiscale modelling and simulation of single crystal superalloy turbine blade casting during directional solidification process

    Directory of Open Access Journals (Sweden)

    Xu Qingyan

    2014-07-01

    Full Text Available As the key parts of an aero-engine, single crystal (SX superalloy turbine blades have been the focus of much attention. However, casting defects often occur during the manufacturing process of the SX turbine blades. Modeling and simulation technology can help to optimize the manufacturing process of SX blades. Multiscale coupled models were proposed and used to simulate the physical phenomena occurring during the directional solidification (DS process. Coupled with heat transfer (macroscale and grain growth (meso-scale, 3D dendritic grain growth was calculated to show the competitive grain growth at micro-scale. SX grain selection behavior was studied by the simulation and experiments. The results show that the geometrical structure and technical parameters had strong influences on the grain selection effectiveness. Based on the coupled models, heat transfer, grain growth and microstructure evolution of a complex hollow SX blade were simulated. Both the simulated and experimental results show that the stray grain occurred at the platform of the SX blade when a constant withdrawal rate was used in manufacturing process. In order to avoid the formation of the stray crystal, the multi-scale coupled models and the withdrawal rate optimized technique were applied to the same SX turbine blade. The modeling results indicated that the optimized variable withdrawal rate can achieve SX blade castings with no stray grains, which was also proved by the experiments.

  4. On the Mechanical Behavior of a New Single-Crystal Superalloy for Industrial Gas Turbine Applications

    Science.gov (United States)

    Sato, Atsushi; Moverare, Johan J.; Hasselqvist, Magnus; Reed, Roger C.

    2012-07-01

    The mechanical behavior of a new single-crystal nickel-based superalloy for industrial gas turbine (IGT) applications is studied under creep and out-of-phase (OP) thermomechanical fatigue (TMF) conditions. Neutron diffraction methods and thermodynamic modeling are used to quantify the variation of the gamma prime ( γ') strengthening phase around the γ' solvus temperature; these aid the design of primary aging heat treatments to develop either uniform or bimodal microstructures of the γ' phase. Under creep conditions in the temperature range 1023 K to 1123 K (750 °C to 850 °C), with stresses between 235 to 520 MPa, the creep performance is best with a finer and uniform γ' microstructure. On the other hand, the OP TMF performance improves when the γ' precipitate size is larger. Thus, the micromechanical degradation mechanisms occurring during creep and TMF are distinct. During TMF, localized shear banding occurs with the γ' phase penetrated by dislocations; however, during creep, the dislocation activity is restricted to the matrix phase. The factors controlling TMF resistance are rationalized.

  5. Computer Aided Design of Ni-Based Single Crystal Superalloy for Industrial Gas Turbine Blades

    Science.gov (United States)

    Wei, Xianping; Gong, Xiufang; Yang, Gongxian; Wang, Haiwei; Li, Haisong; Chen, Xueda; Gao, Zhenhuan; Xu, Yongfeng; Yang, Ming

    The influence of molybdenum, tungsten and cobalt on stress-rupture properties of single crystal superalloy PWA1483 has been investigated using the simulated calculation of JMatPro software which ha s been widely used to develop single crystal superalloy, and the effect of alloying element on the stability of strengthening phase has been revealed by using the Thermo-Calc software. Those properties calculation results showed that the increasing of alloy content could facilitate the precipitation of TCP phases and increase the lattice misfit between γ and γ' phase, and the effect of molybdenum, tantalum was the strongest and that of cobalt was the weakest. Then the chemical composition was optimized, and the selected compositions showed excellent microstructure stability and stress-rupture properties by the confirmation of d-electrons concept and software calculation.

  6. Grinding of Inconel 713 superalloy for gas turbines

    Czech Academy of Sciences Publication Activity Database

    Čapek, J.; Kyncl, J.; Kolařík, K.; Beránek, L.; Pitrmuc, Z.; Medřický, Jan; Pala, Z.

    2016-01-01

    Roč. 16, č. 1 (2016), s. 14-15 ISSN 1213-2489 Institutional support: RVO:61389021 Keywords : Casting defects * Gas turbine * Grinding * Nickel superalloy * Residual stresses Subject RIV: JJ - Other Materials

  7. Techniques Optimized for Reducing Instabilities in Advanced Nickel-Base Superalloys for Turbine Blades

    Science.gov (United States)

    MacKay, Rebecca A.; Locci, Ivan E.; Garg, anita; Ritzert, Frank J.

    2002-01-01

    The High-Speed Research (HSR) Airfoil Alloy program developed fourth-generation single-crystal superalloys with up to an 85 F increase in creep rupture capability over current production airfoil alloys. Recent results have been generated at the NASA Glenn Research Center on these fourth-generation alloys, but in coated form, for subsonic turbine blade applications under NASA's Ultra-Efficient Engine Technology (UEET) Program. One goal for UEET is to optimize the airfoil alloy/thermal barrier coating system for 3100 F turbine inlet temperatures. The state-of-the art turbine blade airfoil system consists of a superalloy single crystal that provides the basic mechanical performance of the airfoil. A thermal barrier coating is used to reduce the temperature of the base superalloy, and a bondcoat is deposited between the base material and the thermal barrier coating. The bondcoat improves the oxidation and corrosion resistance of the base superalloy and improves the spallation resistance of the thermal barrier coating. A commercial platinum aluminide bondcoat was applied to the HSR-developed alloys, and a diffusion zone developed as a result of interaction between the bondcoat and the superalloy. Optimized strength is obtained for superalloys when the refractory element content is high and the limits of microstructural stability are approached or exceeded slightly. For fourthgeneration alloys, instability leads to the formation of topologically close packed (TCP) phases, which form internally in the superalloy, and a secondary reaction zone (SRZ), which forms under the diffusion zone. There was a concern that excessive quantities of either TCP or SRZ might decrease the mechanical properties of the superalloy, with SRZ thought to be particularly detrimental and its formation unpredictable. Thus, an SRZreduction effort was initiated in the NASA UEET Program so that methods developed during the HSR project could be optimized further to reduce or eliminate the SRZ. An SRZ

  8. Joint Development of a Fourth Generation Single Crystal Superalloy

    Science.gov (United States)

    Walston, S.; Cetel, A.; MacKay, R.; OHara, K.; Duhl, D.; Dreshfield, R.

    2004-01-01

    A new, fourth generation, single crystal superalloy has been jointly developed by GE Aircraft Engines, Pratt & Whitney, and NASA. The focus of the effort was to develop a turbine airfoil alloy with long-term durability for use in the High Speed Civil Transport. In order to achieve adequate long-time strength improvements at moderate temperatures and retain good microstructural stability, it was necessary to make significant composition changes from 2nd and 3rd generation single crystal superalloys. These included lower chromium levels, higher cobalt and rhenium levels and the inclusion of a new alloying element, ruthenium. It was found that higher Co levels were beneficial to reducing both TCP precipitation and SRZ formation. Ruthenium caused the refractory elements to partition more strongly to the ' phase, which resulted in better overall alloy stability. The final alloy, EPM 102, had significant creep rupture and fatigue improvements over the baseline production alloys and had acceptable microstructural stability. The alloy is currently being engine tested and evaluated for advanced engine applications.

  9. Effects of a High Magnetic Field on the Microstructure of Ni-Based Single-Crystal Superalloys During Directional Solidification

    Science.gov (United States)

    Xuan, Weidong; Lan, Jian; Liu, Huan; Li, Chuanjun; Wang, Jiang; Ren, Weili; Zhong, Yunbo; Li, Xi; Ren, Zhongming

    2017-08-01

    High magnetic fields are widely used to improve the microstructure and properties of materials during the solidification process. During the preparation of single-crystal turbine blades, the microstructure of the superalloy is the main factor that determines its mechanical properties. In this work, the effects of a high magnetic field on the microstructure of Ni-based single-crystal superalloys PWA1483 and CMSX-4 during directional solidification were investigated experimentally. The results showed that the magnetic field modified the primary dendrite arm spacing, γ' phase size, and microsegregation of the superalloys. In addition, the size and volume fractions of γ/ γ' eutectic and the microporosity were decreased in a high magnetic field. Analysis of variance (ANOVA) results showed that the effect of a high magnetic field on the microstructure during directional solidification was significant ( p Ni-based single-crystal superalloy blades by applying a high magnetic field.

  10. Mechanisms of High Temperature/Low Stress Creep of Ni-Based Superalloy Single Crystals

    Energy Technology Data Exchange (ETDEWEB)

    Michael J. Mills

    2009-03-05

    Cast nickel-based superalloys are used for blades in land-based, energy conversion and powerplant applications, as well as in aircraft gas turbines operating at temperatures up to 1100 C, where creep is one of the life-limiting factors. Creep of superalloy single crystals has been extensively studied over the last several decades. Surprisingly, only recently has work focused specifically on the dislocation mechanisms that govern high temperature and low stress creep. Nevertheless, the perpetual goal of better engine efficiency demands that the creep mechanisms operative in this regime be fully understood in order to develop alloys and microstructures with improved high temperature capability. At present, the micro-mechanisms controlling creep before and after rafting (the microstructure evolution typical of high temperature creep) has occurred have yet to be identified and modeled, particularly for [001] oriented single crystals. This crystal orientation is most interesting technologically since it exhibits the highest creep strength. The major goal of the program entitled ''Mechanisms of High Temperature/Low Stress Creep of Ni-Based Superalloy Single Crystals'' (DOE Grant DE-FG02-04ER46137) has been to elucidate these creep mechanisms in cast nickel-based superalloys. We have utilized a combination of detailed microstructure and dislocation substructure analysis combined with the development of a novel phase-field model for microstructure evolution.

  11. Misorientation related microstructure at the grain boundary in a nickel-based single crystal superalloy

    International Nuclear Information System (INIS)

    Huang, Ming; Zhuo, Longchao; Liu, Zhanli; Lu, Xiaogang; Shi, Zhenxue; Li, Jiarong; Zhu, Jing

    2015-01-01

    The mechanical properties of nickel-based single crystal superalloys deteriorate with increasing misorientation, thus the finished product rate of the casting of single crystal turbine airfoils may be reduced due to the formation of grain boundaries especially when the misorientation angle exceeds to some extent. To this day, evolution of the microstructures at the grain boundaries with misorientation and the relationship between the microstructures and the mechanical properties are still unclear. In this work a detailed characterization of the misorientation related microstructure at the grain boundary in DD6 single crystal superalloy has been carried out using scanning electron microscopy (SEM) and transmission electron microscopy (TEM) techniques; the elemental distribution at the grain boundaries has been analyzed by energy dispersive (EDS) X-ray mapping; and the effect of precipitation of μ phases at the grain boundary on the mechanical property has been evaluated by finite element calculation. It is shown that the proportion of γ phase at the grain boundaries decreases, while the proportion of γ′ phase at the grain boundaries increases with increasing misorientation; the μ phase is precipitated at the grain boundaries when the misorientation angle exceeds about 10° and thus it could lead to a dramatic deterioration of the mechanical properties, as well as that the enrichment of Re and W gradually disappears as the misorientation angle increases. All these factors may result in the degradation of the mechanical properties at the grain boundaries as the misorientation increases. Furthermore, the finite element calculation confirms that precipitation of μ phases at the grain boundary is responsible for the significant deterioration of the mechanical properties when the misorientation exceeds about 10°. This work provides a physical imaging of the microstructure for understanding the relationship between the mechanical properties and the misorientation

  12. Double minimum creep of single crystal Ni-base superalloys

    Czech Academy of Sciences Publication Activity Database

    WU, X.; Wollgramm, P.; Somsen, C.; Dlouhý, Antonín; Kostka, A.; Eggeler, G.

    2016-01-01

    Roč. 112, JUN (2016), s. 242-260 ISSN 1359-6454 R&D Projects: GA ČR(CZ) GA14-22834S Institutional support: RVO:68081723 Keywords : Single crystal Ni-base superalloys * Primary creep * Transmission electron microscopy * Dislocations * Stacking fault s Subject RIV: JG - Metallurgy Impact factor: 5.301, year: 2016

  13. Prediction of recrystallisation in single crystal nickel-based superalloys during investment casting

    Directory of Open Access Journals (Sweden)

    Panwisawas Chinnapat

    2014-01-01

    Full Text Available Production of gas turbines for jet propulsion and power generation requires the manufacture of turbine blades from single crystal nickel-based superalloys, most typically using investment casting. During the necessary subsequent solution heat treatment, the formation of recrystallised grains can occur. The introduction of grain boundaries into a single crystal component is potentially detrimental to performance, and therefore manufacturing processes and/or component geometries should be designed to prevent their occurrence. If the boundaries have very low strength, they can degrade the creep and fatigue properties. The root cause for recrystallisation is microscale plasticity caused by differential thermal contraction of metal, mould and core; when the plastic deformation is sufficiently large, recrystallisation takes place. In this work, numerical and thermo-mechanical modelling is carried out, with the aim of establishing computational methods by which recrystallisation during the heat treatment of single crystal nickel-based superalloys can be predicted and prevented prior to their occurrence. Elasto-plastic law is used to predict the plastic strain necessary for recrystallisation. The modelling result shows that recrystallisation is most likely to occur following 1.5–2.5% plastic strain applied at temperatures between 1000 ∘C and 1300 ∘C; this is validated with tensile tests at these elevated temperatures. This emphasises that high temperature deformation is more damaging than low temperature deformation.

  14. The Mechanical Properties of Candidate Superalloys for a Hybrid Turbine Disk

    Science.gov (United States)

    Gabb, Timothy P.; MacKay, Rebecca A.; Draper, Susan L.; Sudbrack, Chantal K.; Nathal, Michael V.

    2013-01-01

    The mechanical properties of several cast blade superalloys and one powder metallurgy disk superalloy were assessed for potential use in a dual alloy hybrid disk concept of joined dissimilar bore and web materials. Grain size was varied for each superalloy class. Tensile, creep, fatigue, and notch fatigue tests were performed at 704 to 815 degC. Typical microstructures and failure modes were determined. Preferred materials were then selected for future study as the bore and rim alloys in this hybrid disk concept. Powder metallurgy superalloy LSHR at 15 micron grain size and single crystal superalloy LDS-1101+Hf were selected for further study, and future work is recommended to develop the hybrid disk concept.

  15. Interfacial dislocation motion and interactions in single-crystal superalloys

    Energy Technology Data Exchange (ETDEWEB)

    Liu, B. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Raabe, D. [Max Planck Inst. fur Eisenforshung. Dusseldorf (Germany); Roters, F. [Max Planck Inst. fur Eisenforshung. Dusseldorf (Germany); Arsenlis, A. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2014-10-01

    The early stage of high-temperature low-stress creep in single-crystal superalloys is characterized by the rapid development of interfacial dislocation networks. Although interfacial motion and dynamic recovery of these dislocation networks have long been expected to control the subsequent creep behavior, direct observation and hence in-depth understanding of such processes has not been achieved. Incorporating recent developments of discrete dislocation dynamics models, we simulate interfacial dislocation motion in the channel structures of single-crystal superalloys, and investigate how interfacial dislocation motion and dynamic recovery are affected by interfacial dislocation interactions and lattice misfit. Different types of dislocation interactions are considered: self, collinear, coplanar, Lomer junction, glissile junction, and Hirth junction. The simulation results show that strong dynamic recovery occurs due to the short-range reactions of collinear annihilation and Lomer junction formation. The misfit stress is found to induce and accelerate dynamic recovery of interfacial dislocation networks involving self-interaction and Hirth junction formation, but slow down the steady interfacial motion of coplanar and glissile junction forming dislocation networks. The insights gained from these simulations on high-temperature low-stress creep of single-crystal superalloys are also discussed.

  16. Preparation and analysis of evaporatively bonded superalloys for use in hydrogen burning gas turbines

    Science.gov (United States)

    Tatsinkou Nguelo, Serges Eric

    Superalloys for use in hydrogen-burning gas turbines must demonstrate long-term durability in environments that may be more corrosive than typical turbines due to the presence of impurities in the combusted syngas. This long-term durability implies high oxidation and spallation resistance to different types of corrosion attacks as well as a high strength to be able to withstand the residual stresses induced by the temperature gradients. The performance of these superalloys in these environments can only be realistically assessed if their design involves a good understanding of the types of microcontaminants present in the syngas as well as resulting stresses induced during high temperature operation. This work has two main goals: 1) Characterize the composition of typical syngas combustion flue gases and 2) Successfully fabricate bi-layer structures of iron- and nickel-based superalloys using evaporative metal bonding (EMB) and perform a finite element analysis to predict the stresses at the bonding surface at all temperatures.

  17. Effects of withdrawal rate and starter block size on crystal orientation of a single crystal Ni-based superalloy

    Science.gov (United States)

    Rezaei, M.; Kermanpur, A.; Sadeghi, F.

    2018-03-01

    Fabrication of single crystal (SC) Ni-based gas turbine blades with a minimum crystal misorientation has always been a challenge in gas turbine industry, due to its significant influence on high temperature mechanical properties. This paper reports an experimental investigation and numerical simulation of the SC solidification process of a Ni-based superalloy to study effects of withdrawal rate and starter block size on crystal orientation. The results show that the crystal misorientation of the sample with 40 mm starter block height is decreased with increasing withdrawal rate up to about 9 mm/min, beyond which the amount of misorientation is increased. It was found that the withdrawal rate, height of the starter block and temperature gradient are completely inter-dependent and indeed achieving a SC specimen with a minimum misorientation needs careful optimization of these process parameters. The height of starter block was found to have higher impact on crystal orientation compared to the withdrawal rate. A suitable withdrawal rate regime along with a sufficient starter block height was proposed to produce SC parts with the lowest misorientation.

  18. Small-angle neutron-scattering studies on oriented single-crystal superalloys

    Science.gov (United States)

    Gilles, R.; Mukherji, D.; Strunz, P.; Wiedenmann, A.; Wahi, R. P.

    A single-crystal nickel-base superalloy SC16, recently developed for blade applications in land-based gas turbines, was investigated using the SANS instrument (V4) at the BERII reactor in HMI Berlin. The two-dimensional scattering patterns were measured as a function of the crystallographic orientation and analysed by comparing with iso-intensity profiles simulated on the base of a microstructural model of the SC16. Sizes, interparticle distances, volume fraction and morphology of precipitates were determined. Depending on the heat treatment conditions different scattering patterns were observed corresponding to different morphologies of γ‧ precipitates. Additionally some samples showed streaks in the two-dimensional scattering patterns, indicating the presence of precipitates other than γ‧. This was also confirmed by TEM, SEM and X-ray diffraction studies.

  19. Turbine superalloy component defect repair with low-temperature curing resin

    Science.gov (United States)

    Hunt, David W.; Allen, David B.

    2015-09-08

    Voids, cracks or other similar defects in substrates of thermal barrier coated superalloy components, such as turbine blades or vanes, are filled with resin, without need to remove substrate material surrounding the void by grinding or other processes. The resin is cured at a temperature under 200.degree. C., eliminating the need for post void-filling heat treatment. The void-filled substrate and resin are then coated with a thermal barrier coating.

  20. Development of advanced P/M Ni-base superalloys for turbine disks

    Directory of Open Access Journals (Sweden)

    Garibov Genrikh S.

    2014-01-01

    Full Text Available In the process of evolution of powder metallurgy in Russia the task permanently formulated was the following: to improve strength properties of P/M superalloys without application of additional complex HIPed blanks deformation operation. On the other hand development of a turbine disk material structure to ensure an improvement in aircraft engine performance requires the use of special HIP and heat treatment conditions. To ensure maximum strength properties of disk materials it is necessary to form a structure which would have optimum size of solid solution grains, γ′-phases and carbides. Along with that heating of the material up to a temperature determined by solvus of an alloy ensures a stable and reproducible level of mechanical properties of the disks. The above-said can be illustrated by successful mastering of new complex-alloyed VVP-class superalloys with the use of powder size − 100 μm. Application of special HIP and heat treatment conditions for these superalloys to obtain the desired grain size and the strengthening γ′-phase precipitates allowed a noticeable improvement in ultimate tensile strength and yield strength up to ≥1600 MPa and ≥1200 MPa respectively. 100 hrs rupture strength at 650 ∘C and 750 ∘C was improved up to 1140 MPa and 750 MPa respectively. P/M VVP nickel-base superalloys offer higher characteristics in comparison with many superalloys designed for the same purposes. HIPed disc compacts manufactured from PREP-powder have a homogeneous micro- and macrostructure, a stable level of mechanical properties.

  1. AN INVESTIGATION INTO THE MECHANICS OF SINGLE CRYSTAL TURBINE BLADES WITH A VIEW TOWARDS ENHANCING GAS TURBINE EFFICIENCY

    Energy Technology Data Exchange (ETDEWEB)

    K.R. Rajagopal; I.J. Rao

    2006-05-05

    The demand for increased efficiency of gas turbines used in power generation and aircraft applications has fueled research into advanced materials for gas turbine blades that can withstand higher temperatures in that they have excellent resistance to creep. The term ''Superalloys'' describes a group of alloys developed for applications that require high performance at elevated temperatures. Superalloys have a load bearing capacity up to 0.9 times their melting temperature. The objective of the investigation was to develop a thermodynamic model that can be used to describe the response of single crystal superalloys that takes into account the microstructure of the alloy within the context of a continuum model. Having developed the model, its efficacy was to be tested by corroborating the predictions of the model with available experimental data. Such a model was developed and it is implemented in the finite element software ABAQUS/STANDARD through a user subroutine (UMAT) so that the model can be used in realistic geometries that correspond to turbine blades.

  2. New wrought Ni-based superalloys with low thermal expansion for 700C steam turbines

    Energy Technology Data Exchange (ETDEWEB)

    Yamamoto, R.; Kadoya, Y. [Takasago Research and Development Center, Mitsubishi Heavy Industries, Ltd., Takasago, Hyogo (Japan); Kawai, H.; Magoshi, R. [Takasago Machinery Works, Mitsubishi Heavy Industries, Ltd., Takasago, Hyogo (Japan); Noda, T.; Hamano, S.; Ueta, S.; Isobe, S. [Research and Development Lab., Daido Steel Co., Ltd., Minamiku, Nagoya (Japan)

    2002-07-01

    Advanced 700C class steam turbines require austenitic alloys to replace conventional ferritic 12Cr steels, which lose creep strength and oxidation resistance above 650C. The austenitic alloys, however, possess a higher thermal expansion coefficient than ferritic 12Cr steels. Therefore, Ni-based superalloys were tailored to reduce their coefficients to the level of 12Cr steels. A regression analysis of commercial superalloys proves that Ti, Mo and Al decrease the coefficient quantitatively in this order, while Cr increases it so significantly that Cr should be limited to 12wt% to secure oxidation resistance. The newly designed Ni-18Mo-12Cr-1.1Ti-0.9Al alloy is strengthened by gamma-prime [Ni{sub 3}(Al,Ti)] and also Laves [Ni{sub 2}(Mo,Cr)] phase precipitates. It bears a RT/700C mean expansion coefficient equivalent to that of 12Cr steels and far lower than that of low-alloyed heat resistant steels. It surpasses a current turbine alloy, Refractaloy 26, in tensile strength at RT to 700C and SCC life in 330C deaerated pure water. Its creep rupture life at 700C is equivalent to that of Refractaloy 26. The developed alloy will be suitable for fasteners and/or blades in steam turbines at present and future USC power plants. (orig.)

  3. Eutectic Formation During Solidification of Ni-Based Single-Crystal Superalloys with Additional Carbon

    Science.gov (United States)

    Wang, Fu; Ma, Dexin; Bührig-Polaczek, Andreas

    2017-11-01

    γ/ γ' eutectics' nucleation behavior during the solidification of a single-crystal superalloy with additional carbon was investigated by using directional solidification quenching method. The results show that the nucleation of the γ/ γ' eutectics can directly occur on the existing γ dendrites, directly in the remaining liquid, or on the primary MC-type carbides. The γ/γ' eutectics formed through the latter two mechanisms have different crystal orientations than that of the γ matrix. This suggests that the conventional Ni-based single-crystal superalloy castings with additional carbon only guarantee the monocrystallinity of the γ matrix and some γ/ γ' eutectics and, in addition to the carbides, there are other misoriented polycrystalline microstructures existing in macroscopically considered "single-crystal" superalloy castings.

  4. What is the role of rhenium in single crystal superalloys?

    Directory of Open Access Journals (Sweden)

    Mottura Alessandro

    2014-01-01

    Full Text Available Rhenium plays a critical role in single-crystal superalloys –its addition to first generation alloys improves creep life by a factor of at least two, with further benefits for fatigue performance. Its use in alloys such as PWA1484, CMSX-4 and Rene N5 is now widespread, and many in this community regard Re as the “magic dust”. In this paper, the latest thinking concerning the origins of the “rhenium-effect” is presented. We start by reviewing the hypothesis that rhenium clusters represent barriers to dislocation motion. Recent atom probe tomography experiments have shown that Re may instead form a solid solution with Ni at low concentrations (< 7 at.%. Density functional theory calculations indicate that, in the solid solution, short range ordering of Re may be expected. Finally, Re has been shown to diffuse slowly in the γ-Ni phase. Calculations using a semi-analytical dislocation climb/glide model based upon the work of McLean and Dyson have been used to rationalise the composition-dependence of creep deformation in these materials. All evidence points to two important factors: (i the preferred partitioning of Re to the γ phase, where dislocation activity preferentially occurs during the tertiary creep regime and (ii a retardation effect on dislocation segments at γ/γ′ interfaces, which require non-conservative climb and thus an associated vacancy flux.

  5. A New Superalloy Enabling Heavy Duty Gas Turbine Wheels for Improved Combined Cycle Efficiency

    Energy Technology Data Exchange (ETDEWEB)

    Detor, Andrew [General Electric Company, Niskayuna, NY (United States). GE Global Research; DiDomizio, Richard [General Electric Company, Niskayuna, NY (United States). GE Global Research; McAllister, Don [The Ohio State Univ., Columbus, OH (United States); Sampson, Erica [General Electric Company, Niskayuna, NY (United States). GE Global Research; Shi, Rongpei [The Ohio State Univ., Columbus, OH (United States); Zhou, Ning [General Electric Company, Niskayuna, NY (United States). GE Global Research

    2017-01-03

    The drive to increase combined cycle turbine efficiency from 62% to 65% for the next-generation advanced cycle requires a new heavy duty gas turbine wheel material capable of operating at 1200°F and above. Current wheel materials are limited by the stability of their major strengthening phase (gamma double prime), which coarsens at temperatures approaching 1200°F, resulting in a substantial reduction in strength. More advanced gamma prime superalloys, such as those used in jet engine turbine disks, are also not suitable due to size constraints; the gamma prime phase overages during the slow cooling rates inherent in processing thick-section turbine wheels. The current program addresses this need by screening two new alloy design concepts. The first concept exploits a gamma prime/gamma double prime coprecipitation reaction. Through manipulation of alloy chemistry, coprecipitation is controlled such that gamma double prime is used only to slow the growth of gamma prime during slow cooling, preventing over-aging, and allowing for subsequent heat treatment to maximize strength. In parallel, phase field modeling provides fundamental understanding of the coprecipitation reaction. The second concept uses oxide dispersion strengthening to improve on two existing alloys that exhibit excellent hold time fatigue crack growth resistance, but have insufficient strength to be considered for gas turbine wheels. Mechanical milling forces the dissolution of starting oxide powders into a metal matrix allowing for solid state precipitation of new, nanometer scale oxides that are effective at dispersion strengthening.

  6. Mechanisms for tertiary creep of single crystal superalloy

    Science.gov (United States)

    Staroselsky, Alexander; Cassenti, Brice

    2008-12-01

    During the thermal-mechanical loading of high temperature single crystal turbine components, all three creep—stages: primary, secondary and tertiary, manifest themselves and, hence, none of them can be neglected. The development of a creep law that includes all three stages is especially important in the case of non-homogeneous thermal loading of the component where significant stress redistribution and relaxation will result. Thus, local creep analysis is crucial for proper design of damage tolerant airfoils. We have developed a crystallographic-based constitutive model and fully coupled it with damage kinetics. The model extends existing approaches for cyclic and thermal-cyclic loading of anisotropic elasto-viscoplastic deformation behavior and damage kinetics of single-crystal materials, allowing prediction of tertiary creep and failure initiation of high temperature components. Our damage model bridges the gap between dislocation dynamics and the continuum mechanics scales and can be used to represent tertiary as well as primary and secondary creep.

  7. Alloying effects of refractory elements in the dislocation of Ni-based single crystal superalloys

    Directory of Open Access Journals (Sweden)

    Shiyu Ma

    2016-12-01

    Full Text Available The alloying effects of W, Cr and Re in the [100] (010 edge dislocation cores (EDC of Ni-based single crystal superalloys are investigated using first-principles based on the density functional theory (DFT. The binding energy, Mulliken orbital population, density of states, charge density and radial distribution functions are discussed, respectively. It is clearly demonstrated that the addition of refractory elements improves the stability of the EDC systems. In addition, they can form tougher bonds with their nearest neighbour (NN Ni atoms, which enhance the mechanical properties of the Ni-based single crystal superalloys. Through comparative analysis, Cr-doped system has lower binding energy, and Cr atom has evident effect to improve the systemic stability. However, Re atom has the stronger alloying effect in Ni-based single crystal superalloys, much more effectively hindering dislocation motion than W and Cr atoms.

  8. Solidification process control for advanced superalloys

    Science.gov (United States)

    Gray, H. R.; Dreshfield, R. L.

    1982-01-01

    The importance of understanding and controlling the basic solidification process in high temperature alloy technology as applied to gas turbine engine production is discussed. Resultant tailoring of the superalloy macro- and microstructure offers significant potential for continued advances in superalloy use temperatures in turbine engines. Atomized superalloy powders, rapidly solidified superalloys, microstructural control, and advanced superalloys are discussed.

  9. Influence of Cooling Holes Distribution on High Cycle Fatigue Fracture Behavior of DD6 Single Crystal Superalloy

    Directory of Open Access Journals (Sweden)

    HU Chun-yan

    2017-04-01

    Full Text Available The modeling air-cooled turbine blades specimens of DD6 single crystal superalloy with different distributions of cooling film holes were used to study the high cycle fatigue properties at room temperature. The SEM fracture observation was carried out. The results indicate that the cooling holes have significant effects on the high fatigue life of DD6 single crystal superalloy. The average life of non-hole specimens is four times of that of the three-row holes specimens under the same testing conditions. However, the distribution of cooling film holes has relatively less influence on fatigue life. The fracture of the specimens with non-hole is linear source by SEM analysis, but the cracks are found around the cooling film holes and the fracture of the specimens with single row to three rows is a typical multi-source rupture, and cracks all initiate from near film holes. According to fracture and crystallography theoretical conjecture, the cracks propagate along the {001} slip plane for non-hole, single-row holes and the middle location of the multi-row holes specimens. However, the cracks around the holes grow along the {111} slip plane for upper and lower holes of the specimens with multi-row holes. In addition, the distribution of stress field along cooling holes of four different specimens was analysed by FEM method. The results show that the fracture location and morphology of specimens are consistent well with numerical simulation analysis.

  10. Effect of tensile mean stress on fatigue behavior of single-crystal and directionally solidified superalloys

    Science.gov (United States)

    Kalluri, Sreeramesh; Mcgaw, Michael A.

    1990-01-01

    Two nickel base superalloys, single crystal PWA 1480 and directionally solidified MAR-M 246 + Hf, were studied in view of the potential usage of the former and usage of the latter as blade materials for the turbomachinery of the space shuttle main engine. The baseline zero mean stress (ZMS) fatigue life (FL) behavior of these superalloys was established, and then the effect of tensile mean stress (TMS) on their FL behavior was characterized. At room temperature these superalloys have lower ductilities and higher strengths than most polycrystalline engineering alloys. The cycle stress-strain response was thus nominally elastic in most of the fatigue tests. Therefore, a stress range based FL prediction approach was used to characterize both the ZMS and TMS fatigue data. In the past, several researchers have developed methods to account for the detrimental effect of tensile mean stress on the FL for polycrystalline engineering alloys. However, the applicability of these methods to single crystal and directionally solidified superalloys has not been established. In this study, these methods were applied to characterize the TMS fatigue data of single crystal PWA 1480 and directionally solidified MAR-M 246 + Hf and were found to be unsatisfactory. Therefore, a method of accounting for the TMS effect on FL, that is based on a technique proposed by Heidmann and Manson was developed to characterize the TMS fatigue data of these superalloys. Details of this method and its relationship to the conventionally used mean stress methods in FL prediction are discussed.

  11. Compositional Effects on Nickel-Base Superalloy Single Crystal Microstructures

    Science.gov (United States)

    MacKay, Rebecca A.; Gabb, Timothy P.; Garg,Anita; Rogers, Richard B.; Nathal, Michael V.

    2012-01-01

    Fourteen nickel-base superalloy single crystals containing 0 to 5 wt% chromium (Cr), 0 to 11 wt% cobalt (Co), 6 to 12 wt% molybdenum (Mo), 0 to 4 wt% rhenium (Re), and fixed amounts of aluminum (Al) and tantalum (Ta) were examined to determine the effect of bulk composition on basic microstructural parameters, including gamma' solvus, gamma' volume fraction, volume fraction of topologically close-packed (TCP) phases, phase chemistries, and gamma - gamma'. lattice mismatch. Regression models were developed to describe the influence of bulk alloy composition on the microstructural parameters and were compared to predictions by a commercially available software tool that used computational thermodynamics. Co produced the largest change in gamma' solvus over the wide compositional range used in this study, and Mo produced the largest effect on the gamma lattice parameter and the gamma - gamma' lattice mismatch over its compositional range, although Re had a very potent influence on all microstructural parameters investigated. Changing the Cr, Co, Mo, and Re contents in the bulk alloy had a significant impact on their concentrations in the gamma matrix and, to a smaller extent, in the gamma' phase. The gamma phase chemistries exhibited strong temperature dependencies that were influenced by the gamma and gamma' volume fractions. A computational thermodynamic modeling tool significantly underpredicted gamma' solvus temperatures and grossly overpredicted the amount of TCP phase at 982 C. Furthermore, the predictions by the software tool for the gamma - gamma' lattice mismatch were typically of the wrong sign and magnitude, but predictions could be improved if TCP formation was suspended within the software program. However, the statistical regression models provided excellent estimations of the microstructural parameters based on bulk alloy composition, thereby demonstrating their usefulness.

  12. Ab-Initio Molecular Dynamics Simulations of Molten Ni-Based Superalloys

    National Research Council Canada - National Science Library

    Asta, Mark; Trinkle, Dallas; Woodward, Christopher

    2007-01-01

    In casting of single-crystal turbine blades for jet engines, the formation of solidification defects has become an increasingly important problem due to the rising levels of refractory elements in Ni-based superalloys...

  13. Ab-Initio Molecular Dynamics Simulations of Molten Ni-Based Superalloys (Preprint)

    National Research Council Canada - National Science Library

    Woodward, Christopher; Asta, Mark; Trinkle, Dallas R; Lill, James; Angioletti-Uberti, Stefano

    2008-01-01

    In casting of single-crystal turbine blades for jet engines, the formation of solidification defects has become an increasingly important problem due to the rising levels of refractory elements in Ni-based superalloys...

  14. Importance of crystal orientation in linear friction joining of single crystal to polycrystalline nickel-based superalloys

    International Nuclear Information System (INIS)

    Karadge, M.; Preuss, M.; Withers, P.J.; Bray, S.

    2008-01-01

    Effects of crystal orientation on weldability and microstructural evolution occurring during linear friction joining of single crystal nickel-base superalloy to polycrystalline nickel-base superalloy were studied. Electron microscopy was used to characterize deformation and microstructural development. Changes in friction coefficient with changes in crystal orientation were observed and correlated to the metallurgical adhesion. These changes were explained by taking into consideration the single crystal deformation mechanisms. It was concluded that the orientation of the single crystal with reference to the principal axes of the pressure force is of utmost importance during linear friction welding (LFW) due to changes in orientation of the primary slip system in the fcc-based single crystal lattice

  15. Progress on modeling and simulation of directional solidification of superalloy turbine blade casting

    Directory of Open Access Journals (Sweden)

    Xu Qingyan

    2012-02-01

    Full Text Available Directional solidified turbine blades of Ni-based superalloy are widely used as key parts of the gas turbine engines. The mechanical properties of the blade are greatly influenced by the final microstructure and the grain orientation determined directly by the grain selector geometry of the casting. In this paper, mathematical models were proposed for three dimensional simulation of the grain growth and microstructure evolution in directional solidification of turbine blade casting. Ray-tracing method was applied to calculate the temperature variation of the blade. Based on the thermo model of heat transfer, the competitive grain growth within the starter block and the spiral of the grain selector, the grain growth in the blade and the microstructure evolution were simulated via a modified Cellular Automaton method. Validation experiments were carried out, and the measured results were compared quantitatively with the predicted results. The simulated cooling curves and microstructures corresponded well with the experimental results. The proposed models could be used to predict the grain morphology and the competitive grain evolution during directional solidification.

  16. The impact of carbon on single crystal nickel-base superalloys: Carbide behavior and alloy performance

    Science.gov (United States)

    Wasson, Andrew Jay

    Advanced single crystal nickel-base superalloys are prone to the formation of casting grain defects, which hinders their practical implementation in large gas turbine components. Additions of carbon (C) have recently been identified as a means of reducing grain defects, but the full impact of C on single crystal superalloy behavior is not entirely understood. A study was conducted to determine the effects of C and other minor elemental additions on the behavior of CMSX-4, a commercially relevant 2nd generation single crystal superalloy. Baseline CMSX-4 and three alloy modifications (CMSX-4 + 0.05 wt. % C, CMSX-4 + 0.05 wt. % C and 68 ppm boron (B), and CMSX-4 + 0.05 wt. % C and 23 ppm nitrogen (N)) were heat treated before being tested in high temperature creep and high cycle fatigue (HCF). Select samples were subjected to long term thermal exposure (1000 °C/1000 hrs) to assess microstructural stability. The C modifications resulted in significant differences in microstructure and alloy performance as compared to the baseline. These variations were generally attributed to the behavior of carbide phases in the alloy modifications. The C modification and the C+B modification, which both exhibited script carbide networks, were 25% more effective than the C+N modification (small blocky carbides) and 10% more effective than the baseline at preventing grain defects in cast bars. All C-modified alloys exhibited reduced as-cast gamma/gamma' eutectic and increased casting porosity as compared to baseline CMSX-4. The higher levels of porosity (volume fractions 0.002 - 0.005 greater than the baseline) were attributed to carbides blocking molten fluid flow during the final stages of solidification. Although the minor additions resulted in reduced solidus temperature by up to 16 °C, all alloys were successfully heat treated without incipient melting by modifying commercial heat treatment schedules. In the B-containing alloy, heat treatment resulted in the transformation of

  17. High-temperature and low-stress creep anisotropy of single-crystal superalloys

    Czech Academy of Sciences Publication Activity Database

    Jacome, L. A.; Nortershauser, P.; Heyer, J. K.; Lahni, A.; Frenzel, J.; Dlouhý, Antonín; Somsen, C.; Eggeler, G.

    2013-01-01

    Roč. 61, č. 8 (2013), s. 2926-2943 ISSN 1359-6454 R&D Projects: GA ČR(CZ) GA202/09/2073 Institutional support: RVO:68081723 Keywords : superalloy single crystals * creep anisotropy * rafting * dislocations * deformation mechanisms Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 3.940, year: 2013

  18. Ledges and grooves at γ/γ′ interfaces of single crystal superalloys

    Czech Academy of Sciences Publication Activity Database

    Parsa, A. B.; Wollgramm, P.; Buck, H.; Kostka, A.; Somsen, C.; Dlouhý, Antonín; Eggeler, G.

    2015-01-01

    Roč. 90, MAY (2015), s. 105-117 ISSN 1359-6454 R&D Projects: GA ČR(CZ) GA14-22834S Institutional support: RVO:68081723 Keywords : Ni-base single crystal superalloys * γ/γ′ interfaces * Interface dislocations * Rafting * Grooves Subject RIV: JG - Metallurgy Impact factor: 5.058, year: 2015

  19. Creep resistance of single crystal superalloys CMSX-4 and CM186LC

    Czech Academy of Sciences Publication Activity Database

    Lukáš, Petr; Čadek, Josef; Kunz, Ludvík; Svoboda, Milan; Klusák, Jan

    2005-01-01

    Roč. 43, č. 1 (2005), s. 5-19 ISSN 0023-432X R&D Projects: GA AV ČR(CZ) 1QS200410502 Institutional research plan: CEZ:AV0Z20410507 Keywords : creep of single crystal superalloys Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 0.973, year: 2005

  20. Time-incremental creep–fatigue damage rule for single crystal Ni-base superalloys

    NARCIS (Netherlands)

    Tinga, Tiedo; Brekelmans, W.A.M.; Geers, M.G.D.

    2009-01-01

    In the present paper a damage model for single crystal Ni-base superalloys is proposed that integrates time-dependent and cyclic damage into a generally applicable time-incremental damage rule. A criterion based on the Orowan stress is introduced to detect slip reversal on the microscopic level and

  1. Effect of structure on creep behaviour of superalloy single crystals

    Czech Academy of Sciences Publication Activity Database

    Lukáš, Petr; Kunz, Ludvík; Svoboda, Milan; Čadek, Josef

    2005-01-01

    Roč. 482, - (2005), s. 267-270 ISSN 0255-5476 R&D Projects: GA AV ČR(CZ) IBS2041001 Institutional research plan: CEZ:AV0Z2041904; CEZ:AV0Z20410507 Keywords : Superalloys CMSX-4 and CM186LC Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 0.399, year: 2005

  2. Extension of an anisotropic creep model to general high temperature deformation of a single crystal superalloy

    International Nuclear Information System (INIS)

    Pan, L.M.; Ghosh, R.N.; McLean, M.

    1993-01-01

    A physics based model has been developed that accounts for the principal features of anisotropic creep deformation of single crystal superalloys. The present paper extends this model to simulate other types of high temperature deformation under strain controlled test conditions, such as stress relaxation and tension tests at constant strain rate in single crystals subject to axial loading along an arbitrary crystal direction. The approach is applied to the SRR99 single crystal superalloy where a model parameter database is available, determined via analysis of a database of constant stress creep curves. A software package has been generated to simulate the deformation behaviour under complex stress-strain conditions taking into account anisotropic elasticity. (orig.)

  3. Micromechanical Behavior of Single-Crystal Superalloy with Different Crystal Orientations by Microindentation

    Directory of Open Access Journals (Sweden)

    Jinghui Li

    2015-01-01

    Full Text Available In order to investigate the anisotropic micromechanical properties of single-crystal nickel-based superalloy DD99 of four crystallographic orientations, (001, (215, (405, and (605, microindentation test (MIT was conducted with different loads and loading velocities by a sharp Berkovich indenter. Some material parameters reflecting the micromechanical behavior of DD99, such as microhardness H, Young’s modulus E, yield stress σy, strain hardening component n, and tensile strength σb, can be obtained from load-displacement relations. H and E of four different crystal planes evidently decrease with the increase of h. The reduction of H is due to dislocation hardening while E is related to interplanar spacing and crystal variable. σy of (215 is the largest among four crystal planes, followed by (605, and (001 has the lowest value. n of (215 is the lowest, followed by (605, and that of (001 is the largest. Subsequently, a simplified elastic-plastic material model was employed for 3D microindentation simulation of DD99 with various crystal orientations. The simulation results agreed well with experimental, which confirmed the accuracy of the simplified material model.

  4. Interdiffusion behavior between NiAlHf coating and Ni-based single crystal superalloy with different crystal orientations

    International Nuclear Information System (INIS)

    Wang, Ruili; Gong, Xueyuan; Peng, Hui; Ma, Yue; Guo, Hongbo

    2015-01-01

    Highlights: • The interdiffusion behavior between the NiAlHf coating and the superalloy substrate was influenced by the crystal orientation of the substrate alloy. • The structure of TCP phases formed in SRZ and IDZ was studied. • Studying the effect of orientation crystal of substrate on the formation of SRZ. - Abstract: NiAlHf coatings were deposited onto Ni-based single crystal (SC) superalloy with different crystal orientations by electron beam physical vapor deposition (EB-PVD). The effects of the crystal orientations of the superalloy substrate on inter-diffusion behavior between the substrate and the NiAlHf coating were investigated. Substrate diffusion zone (SDZ) containing needle-like μ phases and interdiffusion zone (IDZ) mainly consisting of the ellipsoidal and rod-like μ phases were formed in the SC alloy after heat-treatment 10 h at 1100 °C. The thickness of secondary reaction zone (SRZ) formed in the SC alloy with (0 1 1) crystal orientation is about 14 μm after 50 h heat-treatment at 1100 °C, which is relatively thicker than that in the SC alloy with (0 0 1) crystal orientation, whereas the IDZ revealed similar thickness

  5. Investigation of grain competitive growth during directional solidification of single-crystal nickel-based superalloys

    International Nuclear Information System (INIS)

    Zhao, Xinbao; Liu, Lin; Zhang, Jun

    2015-01-01

    Grain competitive growth of nickel-based single-crystal superalloys during directional solidification was investigated. A detailed characterization of bi-crystals' competitive growth was performed to explore the competitive grain evolution. It was found that high withdrawal rate improved the efficiency of grain competitive growth. The overgrowth rate was increased when the misorientation increased. Four patterns of grain competitive growth with differently oriented dispositions were characterized. The results indicated that the positive branching of the dendrites played a significant role in the competitive growth process. The effect of crystal orientation and heat flow on the competitive growth can be attributed to the blocking mechanism between the adjacent grains. (orig.)

  6. Effect of cobalt on microstructural parameters and mechanical properties of Ni-base single crystal superalloys

    International Nuclear Information System (INIS)

    Suzuki, Takanobu; Imai, Hachiro; Yokokawa, Tadaharu; Kobayashi, Toshiharu; Koizumi, Yutaka; Harada, Hiroshi

    2007-01-01

    The alloying effect of Cobalt (Co) to microstructural parameters and mechanical properties, such as partitioning ratios of alloying elements and creep strength, of Re-bearing Ni-base single crystal superalloys have been investigated. The second generation single crystal superalloys, TMS-82+, Ni-7.8Co-4.9Cr-1.9Mo-8.7W-5.3Al-6.0Ta-2.4Re-0.1Hf, in mass% (8Co) was compared to a Co-free (0Co) and 15 mass% Co (15Co) alloy which had the same chemical composition as TMS-82+ except that Co was changed. It was shown that the partitioning ratios of alloying elements trend to k(=X γ /X' γ )=1, as the content of Co was increased. Furthermore, it was found that there was suitable content of Co for the creep strength under various temperature-stress conditions. (author)

  7. Dislocation Interactions in .gamma.-Channels between .gamma.'-Particles of Superalloy Single Crystals

    Czech Academy of Sciences Publication Activity Database

    Probst-Hein, M.; Dlouhý, Antonín; Eggeler, G.

    319-321, - (2001), s. 379-382 ISSN 0921-5093. [International Conference on the Strength of Materials /12./. Asilomar, 27.08.2000-01.09.2000] R&D Projects: GA MŠk OC P3.50 Institutional research plan: CEZ:AV0Z2041904 Keywords : discrete dislocation modeling * single crystal superalloys * .gamma./.gamma.'-interface dislocations Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 0.978, year: 2001

  8. Additive Manufacturing of Single-Crystal Superalloy CMSX-4 Through Scanning Laser Epitaxy: Computational Modeling, Experimental Process Development, and Process Parameter Optimization

    Science.gov (United States)

    Basak, Amrita; Acharya, Ranadip; Das, Suman

    2016-08-01

    This paper focuses on additive manufacturing (AM) of single-crystal (SX) nickel-based superalloy CMSX-4 through scanning laser epitaxy (SLE). SLE, a powder bed fusion-based AM process was explored for the purpose of producing crack-free, dense deposits of CMSX-4 on top of similar chemistry investment-cast substrates. Optical microscopy and scanning electron microscopy (SEM) investigations revealed the presence of dendritic microstructures that consisted of fine γ' precipitates within the γ matrix in the deposit region. Computational fluid dynamics (CFD)-based process modeling, statistical design of experiments (DoE), and microstructural characterization techniques were combined to produce metallurgically bonded single-crystal deposits of more than 500 μm height in a single pass along the entire length of the substrate. A customized quantitative metallography based image analysis technique was employed for automatic extraction of various deposit quality metrics from the digital cross-sectional micrographs. The processing parameters were varied, and optimal processing windows were identified to obtain good quality deposits. The results reported here represent one of the few successes obtained in producing single-crystal epitaxial deposits through a powder bed fusion-based metal AM process and thus demonstrate the potential of SLE to repair and manufacture single-crystal hot section components of gas turbine systems from nickel-based superalloy powders.

  9. The erosion/corrosion of small superalloy turbine rotors operating in the effluent of a PFB coal combustor

    Science.gov (United States)

    Zellars, G. R.; Benford, S. M.; Rowe, A. P.; Lowell, C. E.

    1979-01-01

    The operation of a turbine in the effluent of a pressurized fluidized bed (PFB) coal combustor presents serious materials problems. Synergistic erosion/corrosion and deposition/corrosion interactions may favor the growth of erosion-resistant oxides on blade surfaces, but brittle cracking of these oxides may be an important source of damage along heavy particle paths. Integrally cast alloy 713LC and IN792 + Hf superalloy turbine rotors in a single-stage turbine with 6% partial admittance have been operated in the effluent of a PFB coal combustor for up to 164 hr. The rotor erosion pattern exhibits heavy particle separation with severe erosion at the leading edge, pressure side center, and suction side trailing edge at the tip. The erosion distribution pattern gives a spectrum of erosion/oxidation/deposition as a function of blade position. The data suggest that preferential degradation paths may exist even under the targeted lower loadings (less than 20 ppm).

  10. Kink structures induced in nickel-based single crystal superalloys by high-Z element migration

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Fei; Zhang, Jianxin [Key Laboratory for Liquid Structure and Heredity of Materials, Ministry of Education, Shandong University, Jinan 250061 (China); Mao, Shengcheng [Institute of Microstructure and Property of Advanced Materials, Beijing University of Technology, Beijing 100124 (China); Jiang, Ying [Center of Electron Microscopy and State Key Laboratory of Silicon Materials, Department of Materials Science and Engineering, Zhejiang University, Hangzhou 310027 (China); Feng, Qiang [National Center for Materials Service Safety, University of Science and Technology Beijing, Beijing 100083 (China); State Key Laboratory for Advanced Metals and Materials, University of Science and Technology Beijing, Beijing 100083 (China); Shen, Zhenju; Li, Jixue; Zhang, Ze [Center of Electron Microscopy and State Key Laboratory of Silicon Materials, Department of Materials Science and Engineering, Zhejiang University, Hangzhou 310027 (China); Han, Xiaodong [Institute of Microstructure and Property of Advanced Materials, Beijing University of Technology, Beijing 100124 (China)

    2015-01-05

    Highlights: • Innovative kink structures generate at the γ/γ′ interfaces in the crept superalloy. • Clusters of heavy elements congregate at the apex of the kinks. • Dislocation core absorbs hexagonal structural high-Z elements. - Abstract: Here, we investigate a new type of kink structure that is found at γ/γ′ interfaces in nickel-based single crystal superalloys. We studied these structures at the atomic and elemental level using aberration corrected high-angle annular dark-field scanning transmission electron microscopy (HAADF-STEM). The core of the dislocation absorbs high-Z elements (i.e., Co and Re) that adopt hexagonal arrangements, and it extrudes elements (i.e., Ni and Al) that adopt face centered cubic (fcc) structures. High-Z elements (i.e., Ta and W) and Cr, which is a low-Z element, are stabilized in body centered cubic (bcc) arrangements; Cr tends to behave like Re. High-Z elements, which migrate and adopt a hexagonal structure, induce kink formation at γ/γ′ interfaces. This process must be analyzed to fully understand the kinetics and dynamics of creep in nickel-based single crystal superalloys.

  11. The effects of ruthenium on the phase stability of fourth generation Ni-base single crystal superalloys

    International Nuclear Information System (INIS)

    Sato, Atsushi; Harada, Hiroshi; Yokokawa, Tadaharu; Murakumo, Takao; Koizumi, Yutaka; Kobayashi, Toshiharu; Imai, Hachiro

    2006-01-01

    The formation of topologically close-packed (TCP) phases in nickel-base single crystal superalloys causes considerable degradation of the mechanical properties. It has recently been found that platinum-group metals can be effective in controlling the precipitation of such phases, and this extent of precipitation control requires further investigation. This study compares Ru-containing and non-Ru-containing single crystal superalloys. Scanning electron microscopy microstructural observations showed that the rate of TCP phase precipitations decreased through Ru addition. Transmission electron microscopy microstructural observations showed that the P phase, one of the TCP phases, was eliminated through the addition of Ru. The occurrence of this phenomenon will be discussed

  12. Microstructure evolution of a [011] orientation single crystal nickel-base superalloy during tensile creep

    Energy Technology Data Exchange (ETDEWEB)

    Tian, Sugui; Yu, Lili; Qian, Benjiang [Shenyang University of Technology, School of Materials Science and Engineering, Shenyang (China); Su, Yong; Zhang, Shu [Shenyang University of Technology, School of Materials Science and Engineering, Shenyang (China); Shenyang University of Chemical Technology, College of Mechanical Engineering, Shenyang (China); Yu, Huichen [Beijing Institute of Aeronautical Materials, Beijing (China)

    2011-08-15

    Microstructure of [011] oriented single crystal nickel-base superalloy consists of the cubical {gamma}' phase embedded coherently in the {gamma} matrix, and arranged regularly along left angle 100 right angle orientations. After tensile creep, the cubical {gamma}' phase in the alloy is transformed into the strip-like rafted structure along [001] direction under the ordering transformation free-energy and strain energy change. And the directional growing of {gamma}' phase is attributed to the atoms Al and Ta into (001) plane to form the stable stacking mode. (orig.)

  13. Multi-Scale Computational Modeling of Ni-Base Superalloy Brazed Joints for Gas Turbine Applications

    Science.gov (United States)

    Riggs, Bryan

    Brazed joints are commonly used in the manufacture and repair of aerospace components including high temperature gas turbine components made of Ni-base superalloys. For such critical applications, it is becoming increasingly important to account for the mechanical strength and reliability of the brazed joint. However, material properties of brazed joints are not readily available and methods for evaluating joint strength such as those listed in AWS C3.2 have inherent challenges compared with testing bulk materials. In addition, joint strength can be strongly influenced by the degree of interaction between the filler metal (FM) and the base metal (BM), the joint design, and presence of flaws or defects. As a result, there is interest in the development of a multi-scale computational model to predict the overall mechanical behavior and fitness-for-service of brazed joints. Therefore, the aim of this investigation was to generate data and methodology to support such a model for Ni-base superalloy brazed joints with conventional Ni-Cr-B based FMs. Based on a review of the technical literature a multi-scale modeling approach was proposed to predict the overall performance of brazed joints by relating mechanical properties to the brazed joint microstructure. This approach incorporates metallurgical characterization, thermodynamic/kinetic simulations, mechanical testing, fracture mechanics and finite element analysis (FEA) modeling to estimate joint properties based on the initial BM/FM composition and brazing process parameters. Experimental work was carried out in each of these areas to validate the multi-scale approach and develop improved techniques for quantifying brazed joint properties. Two Ni-base superalloys often used in gas turbine applications, Inconel 718 and CMSX-4, were selected for study and vacuum furnace brazed using two common FMs, BNi-2 and BNi-9. Metallurgical characterization of these brazed joints showed two primary microstructural regions; a soft

  14. A model for high temperature creep of single crystal superalloys based on nonlocal damage and viscoplastic material behavior

    Science.gov (United States)

    Trinh, B. T.; Hackl, K.

    2014-07-01

    A model for high temperature creep of single crystal superalloys is developed, which includes constitutive laws for nonlocal damage and viscoplasticity. It is based on a variational formulation, employing potentials for free energy, and dissipation originating from plasticity and damage. Evolution equations for plastic strain and damage variables are derived from the well-established minimum principle for the dissipation potential. The model is capable of describing the different stages of creep in a unified way. Plastic deformation in superalloys incorporates the evolution of dislocation densities of the different phases present. It results in a time dependence of the creep rate in primary and secondary creep. Tertiary creep is taken into account by introducing local and nonlocal damage. Herein, the nonlocal one is included in order to model strain localization as well as to remove mesh dependence of finite element calculations. Numerical results and comparisons with experimental data of the single crystal superalloy LEK94 are shown.

  15. Morphology Dependent Flow Stress in Nickel-Based Superalloys in the Multi-Scale Crystal Plasticity Framework

    Directory of Open Access Journals (Sweden)

    Shahriyar Keshavarz

    2017-11-01

    Full Text Available This paper develops a framework to obtain the flow stress of nickel-based superalloys as a function of γ-γ’ morphology. The yield strength is a major factor in the design of these alloys. This work provides additional effects of γ’ morphology in the design scope that has been adopted for the model developed by authors. In general, the two-phase γ-γ’ morphology in nickel-based superalloys can be divided into three variables including γ’ shape, γ’ volume fraction and γ’ size in the sub-grain microstructure. In order to obtain the flow stress, non-Schmid crystal plasticity constitutive models at two length scales are employed and bridged through a homogenized multi-scale framework. The multi-scale framework includes two sub-grain and homogenized grain scales. For the sub-grain scale, a size-dependent, dislocation-density-based finite element model (FEM of the representative volume element (RVE with explicit depiction of the γ-γ’ morphology is developed as a building block for the homogenization. For the next scale, an activation-energy-based crystal plasticity model is developed for the homogenized single crystal of Ni-based superalloys. The constitutive models address the thermo-mechanical behavior of nickel-based superalloys for a large temperature range and include orientation dependencies and tension-compression asymmetry. This homogenized model is used to obtain the morphology dependence on the flow stress in nickel-based superalloys and can significantly expedite crystal plasticity FE simulations in polycrystalline microstructures, as well as higher scale FE models in order to cast and design superalloys.

  16. Improved Attachment Design for Ceramic Turbine Blades Via Hybrid Concepts, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — This proposal presents a hybrid metal-CMC turbine blade. A SiC/SiC CMC airfoil section will be bonded to a single crystal superalloy root section in order to...

  17. Transformed model fitting. A straightforward approach to evaluation of anisotropic SANS from nickel-base single-crystal superalloys

    International Nuclear Information System (INIS)

    Strunz, P.

    1999-01-01

    Schematic description of a special evaluation procedure for data treatment of anisotropic Small-Angle Neutron Scattering (SANS) is presented. The use of the discussed procedure is demonstrated on a data taken from investigation of precipitation in single-crystal nickel-base superalloys. (author)

  18. Role of tantalum in the hot corrosion of a Ni-base single crystal superalloy

    International Nuclear Information System (INIS)

    Chang, J.X.; Wang, D.; Liu, T.; Zhang, G.; Lou, L.H.; Zhang, J.

    2015-01-01

    Highlights: • Ta is beneficial to hot corrosion resistance. • Ta promoted the formation of a new type sulphide TaS 2 . • Thermodynamic factors affect the constituent of sulphide layer. • Ta can substitute Cr for sulphur catcher in hot corrosion. • The result provides new perspective in hot corrosion resistant superalloys design. - Abstract: Hot corrosion behaviour of a Ni-base single crystal superalloy with low Cr, Ti and high Ta contents in molten sodium sulphate (Na 2 SO 4 ) at 900 °C in static air was investigated using the “deposit recoat” method. The corrosion scale was composed of an outer NiO layer, an inner Al 2 O 3 -dominant oxide network layer and a (CrS x(1.000

  19. Comparative Investigation of the Downward and Upward Directionally Solidified Single-Crystal Blades of Superalloy CMSX-4

    Science.gov (United States)

    Wang, Fu; Ma, Dexin; Bogner, Samuel; Bührig-Polaczek, Andreas

    2016-05-01

    Single-crystal blades of Ni-base superalloys CMSX-4 have been directionally solidified using the downward directional solidification (DWDS) process. The possible benefits of the process were comparatively evaluated with respect to the Bridgman process' results. The DWDS process exhibits good capabilities for casting the single-crystal components. The thermal gradients of this process are approximately seven times higher than those of the Bridgman process. It provides more advantages for solidifying the single-crystal superalloy blades by reducing the casting defects, refining the microstructure, decreasing the size of the γ/ γ' eutectic pools, refining the γ' precipitates, alleviating the degree of the microsegregation, and minimizing the size and volume fraction of the micropores.

  20. Low Cycle Fatigue of Single Crystal Nickel-based Superalloy DD6 at 1100℃

    Directory of Open Access Journals (Sweden)

    ZHANG Shichao

    2018-02-01

    Full Text Available The total strain-controlled low cycle fatigue(LCF behaviors of a single crystal superalloy DD6 at 1100℃ for R=-1 and 0.05 were investigated. The results of LCF tests indicated that the cyclic hardening/softening behavior of the alloy not only has the relationship with the microstructure of the material, but also the loading status. The mean stress relaxation occurred under asymmetric straining. The rate of mean stress relaxation increased with the increasing of strain amplitude; when R=-1, the alloy shows tension-compression asymmetry behavior. All the LCF data obtain under various ratios were well correlated by three models for lifetime prediction, the precision rates predicted are fallen into the factor of±2 times scatter band.

  1. Influence of cobalt, tantalum, and tungsten on the microstructure and mechanical properties of superalloy single crystals

    International Nuclear Information System (INIS)

    Nathal, M.V.; Ebert, L.J.

    1982-01-01

    The influence of Co, Ta, and W on the microstructure and mechanical properties of nickel base super-alloy single crystals was investigated. A matrix of alloys was based on Mar-M 247 stripped of C, B, Zr, and Hf. The microstructures of the alloys were examined using optical and electron microscopy, phase extraction, X-ray diffraction, and differential thermal analysis. Tensile and creep-rupture tests were performed at 1000 C. An increase in tensile and creep strength resulted when Co was removed from alloys containing high refractory metal contents, but Co effects were negligible for alloys with lower refractory metal levels. In the composition range studied, W was more effective than Ta in increasing the creep resistance. The mechanical properties are discussed in relation to the microstructures of the alloys

  2. Influence of cobalt, tantalum, and tungsten on the microstructure and mechanical properties of superalloy single crystals

    Science.gov (United States)

    Nathal, M. V.; Ebert, L. J.

    1982-01-01

    The influence of Co, Ta, and W on the microstructure and mechanical properties of nickel base super-alloy single crystals was investigated. A matrix of alloys was based on Mar-M 247 stripped of C, B, Zr, and Hf. The microstructures of the alloys were examined using optical and electron microscopy, phase extraction, X-ray diffraction, and differential thermal analysis. Tensile and creep-rupture tests were performed at 1000 C. An increase in tensile and creep strength resulted when Co was removed from alloys containing high refractory metal contents, but Co effects were negligible for alloys with lower refractory metal levels. In the composition range studied, W was more effective than Ta in increasing the creep resistance. The mechanical properties are discussed in relation to the microstructures of the alloys.

  3. Effect of grain defects on the mechanical behavior of nickel-based single crystal superalloy

    Energy Technology Data Exchange (ETDEWEB)

    Tang, Haibin; Guo, Haiding [Nanjing Univ. of Aeronautics and Astronautics (China). Jiangsu Province Key Lab. of Aerospace Power System

    2017-03-15

    In this paper, a single crystal (SC) partition model, consisting of primary grains and grain defects, is proposed to simulate the weakening effect of grain defects generated at geometric discontinuities of SC materials. The plastic deformation of SC superalloy is described with the modified yield criterion, associated flow rule and hardening law. Then a bicrystal model containing only one group of misoriented grains under uniaxial loading is constructed and analyzed in the commercial finite element software ABAQUS. The simulation results indicate that the yield strength and elastic modulus of misoriented grains, which are determined by the crystallographic orientation, have a significant effect on the stress distribution of the bicrystal model. A critical stress, which is calculated by the stress state at critical regions, is proposed to evaluate the local stress rise at the sub-boundary of primary and misoriented grains.

  4. Modelling and simulation of superalloys. Book of abstracts

    Energy Technology Data Exchange (ETDEWEB)

    Rogal, Jutta; Hammerschmidt, Thomas; Drautz, Ralf (eds.)

    2014-07-01

    Superalloys are multi-component materials with complex microstructures that offer unique properties for high-temperature applications. The complexity of the superalloy materials makes it particularly challenging to obtain fundamental insight into their behaviour from the atomic structure to turbine blades. Recent advances in modelling and simulation of superalloys contribute to a better understanding and prediction of materials properties and therefore offer guidance for the development of new alloys. This workshop will give an overview of recent progress in modelling and simulation of materials for superalloys, with a focus on single crystal Ni-base and Co-base alloys. Topics will include electronic structure methods, atomistic simulations, microstructure modelling and modelling of microstructural evolution, solidification and process simulation as well as the modelling of phase stability and thermodynamics.

  5. Simulation of Ni-Based Super-Alloy and Optimizing of Its Mechanical Properties in a Near-Shaped Turbine Blade Part

    OpenAIRE

    Alizadeh, Mohammd Reza

    2015-01-01

    This paper presents simulation of a Ni-based super-alloy during filling of a near-shaped turbine blade part to optimize its mechanical properties. Since geometrical shape of the airfoil is so complicated, a simple near-shaped part was made by plexiglass to water modeling. Condition and parameters of water modeling were obtained from the Procast software simulation. The flow pattern of the transparent systems, recorded by a high speed video camera, was analyzed. Air bubble amounts were quantit...

  6. Anisotropic stress rupture properties of the nickel-base single crystal superalloy SRR99

    International Nuclear Information System (INIS)

    Han, G.M.; Yu, J.J.; Sun, Y.L.; Sun, X.F.; Hu, Z.Q.

    2010-01-01

    The influence of orientation on the stress rupture properties of a single crystal superalloy SRR99 was investigated at temperatures of 760 and 1040 deg. C. It is found that the creep anisotropic behaviour is pronounced at the lower temperature of 760 deg. C and the stress rupture life ranks in the order [0 0 1] > [1 1 1] > [0 1 1]. Despite the anisotropy of stress rupture life is evidently reduced at the higher temperature, the [1 1 1] orientation exhibits the longest life. At 760 deg. C, EBSD (electron back scattered diffraction) was adopted to measure the lattice rotation and the deduced results indicate that the dominant slip systems are {1 1 1} during stress rupture test. At 1040 deg. C, the ranking order of the stress rupture life is [1 1 1] > [0 0 1] > [0 1 1] and the single crystal close to [0 1 1] orientation still shows the poorest life. In the [0 0 1] and [1 1 1] samples, regular γ' raft structure is formed compared with [0 1 1] samples. Further observations made by TEM investigations reveal the underlying deformation mechanisms for crystals with orientations near [0 0 1], [0 1 1] and [1 1 1] under two test conditions.

  7. Correlation Between the Microstructural Defects and Residual Stress in a Single Crystal Nickel-Based Superalloy During Different Creep Stages

    Science.gov (United States)

    Mo, Fangjie; Wu, Erdong; Zhang, Changsheng; Wang, Hong; Zhong, Zhengye; Zhang, Jian; Chen, Bo; Hofmann, Michael; Gan, Weimin; Sun, Guangai

    2018-03-01

    The present work attempts to reveal the correlation between the microstructural defects and residual stress in the single crystal nickel-based superalloy, both of which play the significant role on properties and performance. Neutron diffraction was employed to investigate the microstructural defects and residual stresses in a single crystal (SC) nickel-based superalloy, which was subjected to creeping under 220 MPa and 1000 °C for different times. The measured superlattice and fundamental lattice reflections confirm that the mismatch and tetragonal distortions with c/a > 1 exist in the SC superalloy. At the initially unstrained state, there exists the angular distortion between γ and γ' phases with small triaxial compressive stresses, ensuring the structural stability of the superalloy. After creeping, the tetragonal distortion for the γ phase is larger than that for the γ' phase. With increasing the creeping time, the mismatch between γ and γ' phases increases to the maximum, then decreases gradually and finally remains unchanged. The macroscopic residual stress shows a similar behavior with the mismatch, indicating the correlation between them. Based on the model of shear and dislocations, the evolution of microstructural defects and residual stress are reasonably explained. The effect of shear is dominant at the primary creep stage, which greatly enlarges the mismatch and the residual stress. The dislocations weaken the effect of shear for the further creep stage, resulting in the decrease of the mismatch and relaxation of the residual stress. Those findings add some helpful understanding into the microstructure-performance relationship in the SC nickel-based superalloy, which might provide the insight to materials design and applications.

  8. On Post-Weld Heat Treatment of a Single Crystal Nickel-Based Superalloy Joint by Linear Friction Welding

    Directory of Open Access Journals (Sweden)

    T. J. Ma

    2015-09-01

    Full Text Available Three types of post-weld heat treatment (PWHT, i.e. solution treatment + primary aging + secondary aging (I, secondary aging (II, and primary aging + secondary aging (III, were applied to a single crystal nickel-based superalloy joint made with linear friction welding (LFW. The results show that the grains in the thermomechanically affected zone (TMAZ coarsen seriously and the primary γ' phase in the TMAZ precipitates unevenly after PWHT I. The primary γ' phase in the TMAZ and weld zone (WZ precipitates insufficiently and fine granular secondary γ' phase is observed in the matrix after PWHT II. After PWHT III, the primary γ' phase precipitates more sufficiently and evenly compared to PWHTs I and II. Moreover, the grains in the TMAZ have not coarsened seriously and fine granular secondary γ' phase is not found after PWHT III. PWHT III seems more suitable to the LFWed single crystal nickel-based superalloy joints when performing PWHT.

  9. Influence of composition on microstructural parameters of single crystal nickel-base superalloys

    Energy Technology Data Exchange (ETDEWEB)

    MacKay, R.A., E-mail: Rebecca.A.MacKay@nasa.gov [NASA Glenn Research Center, 21000 Brookpark Rd., Cleveland, Ohio 44135 (United States); Gabb, T.P. [NASA Glenn Research Center, 21000 Brookpark Rd., Cleveland, Ohio 44135 (United States); Garg, A. [NASA Glenn Research Center, 21000 Brookpark Rd., Cleveland, Ohio 44135 (United States); University of Toledo, 2801 W. Bancroft, Toledo, Ohio 43606 (United States); Rogers, R.B.; Nathal, M.V. [NASA Glenn Research Center, 21000 Brookpark Rd., Cleveland, Ohio 44135 (United States)

    2012-08-15

    Fourteen nickel-base superalloy single crystals containing a range of chromium (Cr), cobalt (Co), molybdenum (Mo), and rhenium (Re) levels, and fixed amounts of aluminum (Al) and tantalum (Ta), were examined to determine the effect of bulk composition on basic microstructural parameters, including {gamma} Prime solvus, {gamma} Prime volume fraction, topologically close-packed (TCP) phases, {gamma} and {gamma} Prime phase chemistries, and {gamma}-{gamma} Prime lattice mismatch. Regression models describing the influence of bulk alloy composition on each of the microstructural parameters were developed and compared to predictions by a commercially-available software tool that used computational thermodynamics. Co produced the largest change in {gamma} Prime solvus over the wide compositional range explored and Mo produced the biggest effect on the {gamma} lattice parameter over its range, although Re had a very potent influence on all microstructural parameters investigated. Changing the Cr, Co, Mo, and Re contents in the bulk alloy had an impact on their concentrations in the {gamma} matrix and to a smaller extent in the {gamma} Prime phase. The software tool under-predicted {gamma} Prime solvus temperatures and {gamma} Prime volume fractions, and over-predicted TCP phase volume fractions at 982 Degree-Sign C. However, the statistical regression models provided excellent estimations of the microstructural parameters and demonstrated the usefulness of such formulas. - Highlights: Black-Right-Pointing-Pointer Effects of Cr, Co, Mo, and Re on microstructure in new low density superalloys Black-Right-Pointing-Pointer Co produced a large change in {gamma} Prime solvus; Mo had a large effect on lattice mismatch. Black-Right-Pointing-Pointer Re exhibited very potent influence on all microstructural parameters was investigated. Black-Right-Pointing-Pointer {gamma} and {gamma} Prime phase chemistries both varied with temperature and alloy composition. Black

  10. Influence of composition on microstructural parameters of single crystal nickel-base superalloys

    International Nuclear Information System (INIS)

    MacKay, R.A.; Gabb, T.P.; Garg, A.; Rogers, R.B.; Nathal, M.V.

    2012-01-01

    Fourteen nickel-base superalloy single crystals containing a range of chromium (Cr), cobalt (Co), molybdenum (Mo), and rhenium (Re) levels, and fixed amounts of aluminum (Al) and tantalum (Ta), were examined to determine the effect of bulk composition on basic microstructural parameters, including γ′ solvus, γ′ volume fraction, topologically close-packed (TCP) phases, γ and γ′ phase chemistries, and γ–γ′ lattice mismatch. Regression models describing the influence of bulk alloy composition on each of the microstructural parameters were developed and compared to predictions by a commercially-available software tool that used computational thermodynamics. Co produced the largest change in γ′ solvus over the wide compositional range explored and Mo produced the biggest effect on the γ lattice parameter over its range, although Re had a very potent influence on all microstructural parameters investigated. Changing the Cr, Co, Mo, and Re contents in the bulk alloy had an impact on their concentrations in the γ matrix and to a smaller extent in the γ′ phase. The software tool under-predicted γ′ solvus temperatures and γ′ volume fractions, and over-predicted TCP phase volume fractions at 982 °C. However, the statistical regression models provided excellent estimations of the microstructural parameters and demonstrated the usefulness of such formulas. - Highlights: ► Effects of Cr, Co, Mo, and Re on microstructure in new low density superalloys ► Co produced a large change in γ′ solvus; Mo had a large effect on lattice mismatch. ► Re exhibited very potent influence on all microstructural parameters was investigated. ► γ and γ′ phase chemistries both varied with temperature and alloy composition. ► Computational thermodynamic modeling tool did not accurately predict microstructure.

  11. Experimental study of micro-milling mechanism and surface quality of a nickel-based single crystal superalloy

    Energy Technology Data Exchange (ETDEWEB)

    Gao, Qi; Gong, Yadong; Zhou, Yun Guang; Wen, Xue Long [School of Mechanical Engineering and Automation, Northeastern University, Shenyang (China)

    2017-01-15

    Micro-milling is widely used as a method for machining of micro-parts with high precision and efficiency. Taking the nickel-based single-crystal superalloy DD98 as the research object, the crystal characteristics of single-crystal materials were analysed, and the removal mechanism of single-crystal micro-milled parts was described. Based on molecular dynamics, a simulation model for nickel-based single-crystal superalloy DD98 micro-milling was established. Based on the response surface method of central composite design, the influences of spindle speed, feed rate, and milling depth on the surface roughness were examined, and a second-order regression model of the DD98 surface roughness was established. Using analysis of variance and the residuals of the model, a significant influence on surface roughness was found in the following order from large to small: Feed rate, spindle speed, and milling depth. Comparisons were conducted between the micro-milling experimental values and the predicted model values for different process parameters. The results show that the model fit is relatively high, and the adaptability is good. Scanning electron microscopy analysis of the micro-milling surfaces was performed to verify the slip and the removal mechanism of single-crystal materials. These results offer a theoretical reference and experimental basis for micro-milling of single-crystal materials.

  12. Morphological changes of gamma prime precipitates in nickel-base superalloy single crystals

    International Nuclear Information System (INIS)

    Mackay, R.A.

    1984-07-01

    Changes in the morphology of the gamma prime precipitate were examined during tensile creep at temperatures between 927 and 1038 C in 001-oriented single crystals of a Ni-Al-Mo-Ta superalloy. In this alloy, which has a large negative misfit of -0.80%, the gamma prime particles link together during creep to form platelets, or rafts, which are aligned with their broad faces perpendicular to the applied tensile axis. The dimensions of the gamma and gamma prime phases were measured as directional coarsening developed in an attempt to trace the changing morphology under various stress levels. In addition, the effects of initial microstructure, as well as slight compositional variations, were related to raft development and creep properties. The results showed that directional coarsening of gamma prime began during primary creep, and under certain conditions, continued to develop after the onset of steady-state creep. The length of the rafts increased linearly with time up to a plateau region. The thickness of the rafts, however, remained equal to the initial gamma prime size at least up through the onset of tertiary creep this is a clear indication of the stability of the finely-spaced gamma-gamma prime lamellar structure. It was found that the single crystals with the finest gamma prime size exhibited the longest creep lives, because the resultant rafted structure had a larger number of gamma-gamma prime interfaces per unit volume of material

  13. Castability of Traditionally Wrought Ni-Based Superalloys for USC Steam Turbines

    Energy Technology Data Exchange (ETDEWEB)

    Jablonski, P D; Cowen, C J; Hawk, J A; Evens, N; Maziasz, P

    2011-02-27

    The high temperature components within conventional coal fired power plants are manufactured from ferritic/martensitic steels. In order to reduce greenhouse gas emissions the efficiency of pulverized coal steam power plants must be increased. The proposed steam temperature in the Advanced Ultra Supercritical (A-USC) power plant is high enough (760°C) that ferritic/martensitic steels will not work due to temperature limitations of this class of materials; thus Ni-based superalloys are being considered. The full size castings are quite substantial: ~4in thick, several feet in diameter and weigh 5-10,000lb each half. Experimental castings were quite a bit smaller, but section size was retained and cooling rate controlled in order to produce relevant microstructures. A multi-step homogenization heat treatment was developed in order to better deploy the alloy constituents. The castability of two traditionally wrought Ni-based superalloys to which minor alloy adjustments have been made in order to improve foundry performance is further explored.

  14. The effect of temperature on the deformation structure of single crystal nickel based superalloys

    Science.gov (United States)

    Dollar, M.; Bernstein, I. M.

    1988-01-01

    Results for the temperature dependence of the yield and flow stress were obtained for the superalloys PWA 1480 and CMSX-2. An extended Copley-Kear (1967) model is used to predict flow stresses from the dislocation densities measured at different strains and temperatures. Differences found between the two superalloys include the development of their dislocation structure, their ductility, and their work hardening characteristics.

  15. Effect of microstructure on high-temperature mechanical behavior of nickel-base superalloys for turbine disc applications

    Science.gov (United States)

    Sharpe, Heather Joan

    2007-05-01

    Engineers constantly seek advancements in the performance of aircraft and power generation engines, including, lower costs and emissions, and improved fuel efficiency. Nickel-base superalloys are the material of choice for turbine discs, which experience some of the highest temperatures and stresses in the engine. Engine performance is proportional to operating temperatures. Consequently, the high-temperature capabilities of disc materials limit the performance of gas-turbine engines. Therefore, any improvements to engine performance necessitate improved alloy performance. In order to take advantage of improvements in high-temperature capabilities through tailoring of alloy microstructure, the overall objectives of this work were to establish relationships between alloy processing and microstructure, and between microstructure and mechanical properties. In addition, the projected aimed to demonstrate the applicability of neural network modeling to the field of Ni-base disc alloy development and behavior. The first phase of this work addressed the issue of how microstructure varies with heat treatment and by what mechanisms these structures are formed. Further it considered how superalloy composition could account for microstructural variations from the same heat treatment. To study this, four next-generation Ni-base disc alloys were subjected to various controlled heat-treatments and the resulting microstructures were then quantified. These quantitative results were correlated to chemistry and processing, including solution temperature, cooling rate, and intermediate hold temperature. A complex interaction of processing steps and chemistry was found to contribute to all features measured; grain size, precipitate distribution, grain boundary serrations. Solution temperature, above a certain threshold, and cooling rate controlled grain size, while cooling rate and intermediate hold temperature controlled precipitate formation and grain boundary serrations. Diffusion

  16. Pore annihilation in a single-crystal nickel-base superalloy during hot isostatic pressing: Experiment and modelling

    International Nuclear Information System (INIS)

    Epishin, Alexander; Fedelich, Bernard; Link, Thomas; Feldmann, Titus; Svetlov, Igor L.

    2013-01-01

    Pore annihilation during hot isostatic pressing (HIP) was investigated in the single-crystal nickel-base superalloy CMSX-4 experimentally by interrupted HIP tests at 1288 °C/103 MPa. The kinetics of pore annihilation was determined by density measurement and quantitative metallography. Transmission electron microscopy of a HIPed specimen showed that the pores shrink via dislocation movement on octahedral glide planes. Theoretically pore closure under HIP condition was modelled by the finite element method using crystal plasticity and large strain theories. The modelling gives a similar kinetics of pore annihilation as observed experimentally, however somewhat higher annihilation rate

  17. Twinning dislocation and twin propagation process in a nickel-base single crystal TMS-82 superalloy

    Energy Technology Data Exchange (ETDEWEB)

    Lv, Xianzi; Zhang, Jianxin [Shandong Univ., Jinan (China). Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials; Harada, Hiroshi [National Institute for Materials Science, Ibaraki (Japan)

    2014-03-15

    Thermomechanical fatigue cyclic loading tests have been carried out along the <001> orientation and the formation of twins during thermomechanical fatigue processing has been studied in detail in a nickel-base single crystal TMS-82 superalloy. The twinning dislocation is determined to be 1/6<112> in the γ' phase except for the 1/3<112> dislocation, which operates on every successive {111} plane. The 1/6<112> twinning dislocations can move independently in both γ and γ' phases. Although movement of a single 1/6<112> twining dislocation may destroy the ordering of γ' phase, its existence is rationalized on the basis of crystallographic analysis. The movement of a 1/3<112> dislocation on a single {111} plane will lead to a high-energy stacking sequence of head-to-head of two neighboring {111} layer atoms in the L1{sub 2} structure. Pre-existing dislocations have a significant effect on the growth of deformation twins. In the dislocation-free area, the twin can propagate without any notable impediment to lead to a twin plate with equal width. High dislocation density may hinder the propagation of twins to varying degrees. (orig.)

  18. Microstructures and mechanical properties of β-NiAlHf coated single crystal superalloy

    International Nuclear Information System (INIS)

    Gong, Xueyuan; Yang, Yonghong; Ma, Yue; Peng, Hui; Guo, Hongbo

    2016-01-01

    A β-NiAlHf coating was deposited by electron beam physical vapor deposition (EB-PVD) onto single crystal (SC) superalloy substrate. The microstructure evolution of the NiAlHf coating after annealing at 1100 °C was investigated and the mechanical properties of the coated substrate were also concerned. The crack initiation and propagation behavior of the coated substrate during three-point bending was studied. An interdiffusion zone (IDZ) was formed between the coating and substrate and the hardness of the precipitates in the IDZ layer was relatively higher than that of the coating and the substrate. The annealed specimen during bending revealed different crack initiation and propagation behavior from the uncoated specimen. Cracks were initiated at the carbides in the uncoated alloy. For the coated specimen after 10 h annealing, cracks were initiated mostly in the IDZ layer, due to the presence of μ-TCP phases. For the coated specimen after 50 h annealing, cracks were generated at the top of triangle-shaped γ′-Ni 3 Al phases where stress concentration occurred, which finally propagated into the substrate, leading to the reduction of the alloy in strength.

  19. Creep lifing methodologies applied to a single crystal superalloy by use of small scale test techniques

    Energy Technology Data Exchange (ETDEWEB)

    Jeffs, S.P., E-mail: s.p.jeffs@swansea.ac.uk [Institute of Structural Materials, Swansea University, Singleton Park SA2 8PP (United Kingdom); Lancaster, R.J. [Institute of Structural Materials, Swansea University, Singleton Park SA2 8PP (United Kingdom); Garcia, T.E. [IUTA (University Institute of Industrial Technology of Asturias), University of Oviedo, Edificio Departamental Oeste 7.1.17, Campus Universitario, 33203 Gijón (Spain)

    2015-06-11

    In recent years, advances in creep data interpretation have been achieved either by modified Monkman–Grant relationships or through the more contemporary Wilshire equations, which offer the opportunity of predicting long term behaviour extrapolated from short term results. Long term lifing techniques prove extremely useful in creep dominated applications, such as in the power generation industry and in particular nuclear where large static loads are applied, equally a reduction in lead time for new alloy implementation within the industry is critical. The latter requirement brings about the utilisation of the small punch (SP) creep test, a widely recognised approach for obtaining useful mechanical property information from limited material volumes, as is typically the case with novel alloy development and for any in-situ mechanical testing that may be required. The ability to correlate SP creep results with uniaxial data is vital when considering the benefits of the technique. As such an equation has been developed, known as the k{sub SP} method, which has been proven to be an effective tool across several material systems. The current work now explores the application of the aforementioned empirical approaches to correlate small punch creep data obtained on a single crystal superalloy over a range of elevated temperatures. Finite element modelling through ABAQUS software based on the uniaxial creep data has also been implemented to characterise the SP deformation and help corroborate the experimental results.

  20. Development and use of a new burner rig facility to mimic service loading conditions of Ni-based single crystal superalloys

    Directory of Open Access Journals (Sweden)

    Mauget Florent

    2014-01-01

    Full Text Available Performing representative experiments of in-service operating conditions of Ni-based superalloys used as high pressure turbine blades in aeroengines is a challenging issue due to the complex environmental, mechanical and thermal solicitations encountered by those components. A new burner rig test facility called MAATRE (French acronym for Mechanics and Aerothermics of Cooled Turbine Blades has been developed at ENSMA – Pprime Institute to mimic as close as possible those operating conditions. This new test bench has been used to perform complex non-isothermal creep tests representative of thermomechanical solicitations seen by some sections of HP turbine blades during engine certification procedure.

  1. Advanced Scale Bridging Microstructure Analysis of Single Crystal Ni-Base Superalloys

    Czech Academy of Sciences Publication Activity Database

    Parsa, A. B.; Wollgramm, P.; Buck, H.; Somsen, C.; Kostka, A.; Povstugar, I.; Choi, P.-P.; Raabe, D.; Dlouhý, Antonín; Müller, J.; Spiecker, E.; Demtroder, K.; Schreuer, J.; Neuking, K.; Eggeler, G.

    2015-01-01

    Roč. 17, č. 2 (2015), s. 216-230 ISSN 1438-1656 Institutional support: RVO:68081723 Keywords : High temperature materials * Nickel based superalloys * EPMA * HRTEM Subject RIV: JG - Metallurgy Impact factor: 1.817, year: 2015

  2. Microstructure evolution of a pre-compression nickel-base single crystal superalloy during tensile creep

    International Nuclear Information System (INIS)

    Yu Xingfu; Tian Sugui; Du Hongqiang; Yu Huichen; Wang Minggang; Shang Lijuan; Cui Shusen

    2009-01-01

    By pre-compressive creep treatment, the cubical γ' phase in the nickel-base single crystal superalloy is transformed into the P-type rafted structure along the direction parallel to the applied stress axis. And the microstructure evolution of the P-type γ' rafted alloy during tensile creep is investigated by means of the measurement of the creep curve and microstructure observation. Results show that the P-type γ' rafted phase in the alloy is transformed into the N-type structure along the direction perpendicular to the applied stress axis in the initial stage of the tensile creep. In the role of the tensile stress at high temperature, the change of the element's equilibrium concentration in the different regions of P-type γ' rafted phase occurs, which promotes the inhomogeneous coarsening of the P-type γ' phase. And then, the decomposition of the P-type γ' rafted phase in the alloy occurs to form the groove structure. As of result of the directional diffusion of the elements, the fact that the P-type γ' rafted phase is decomposed to transform into the cubical-like structure is attributed to the increment of the solute elements M(Ta, Al) chemical potential in the groove regions. Further, the lattice constriction in the horizontal interfaces of the cubical-like γ' phase may repel out the Al and Ta atoms with higher radius due to the role of the shearing stress, and the lattice expanding in the upright interfaces of the cubical-like γ' phase, due to the role of the tension stress, may trap the Ta and Al atoms, which promotes the directional growing of γ' phase into the N-type rafted structure. Therefore, the change of the strain energy density in different interfaces of the cubical-like γ' phase is thought to be the driving force of the elements diffusing and the directional coarsening of γ' phase

  3. Materials for Advanced Ultrasupercritical Steam Turbines Task 4: Cast Superalloy Development

    Energy Technology Data Exchange (ETDEWEB)

    Thangirala, Mani

    2015-09-30

    The Steam Turbine critical stationary structural components are high integrity Large Shell and Valve Casing heavy section Castings, containing high temperature steam under high pressures. Hence to support the development of advanced materials technology for use in an AUSC steam turbine capable of operating with steam conditions of 760°C (1400°F) and 35 Mpa (5000 psia), Casting alloy selection and evaluation of mechanical, metallurgical properties and castability with robust manufacturing methods are mandated. Alloy down select from Phase 1 based on producability criteria and creep rupture properties tested by NETL-Albany and ORNL directed the consortium to investigate cast properties of Haynes 282 and Haynes 263. The goals of Task 4 in Phase 2 are to understand a broader range of mechanical properties, the impact of manufacturing variables on those properties. Scale up the size of heats to production levels to facilitate the understanding of the impact of heat and component weight, on metallurgical and mechanical behavior. GE Power & Water Materials and Processes Engineering for the Phase 2, Task 4.0 Castings work, systematically designed and executed casting material property evaluation, multiple test programs. Starting from 15 lbs. cylinder castings to world’s first 17,000 lbs. poured weight, heavy section large steam turbine partial valve Haynes 282 super alloy casting. This has demonstrated scalability of the material for steam Turbine applications. Activities under Task 4.0, Investigated and characterized various mechanical properties of Cast Haynes 282 and Cast Nimonic 263. The development stages involved were: 1) Small Cast Evaluation: 4 inch diam. Haynes 282 and Nimonic 263 Cylinders. This provided effects of liquidus super heat range and first baseline mechanical data on cast versions of conventional vacuum re-melted and forged Ni based super alloys. 2) Step block castings of 300 lbs. and 600 lbs. Haynes 282 from 2 foundry heats were evaluated which

  4. Molecular dynamics study on the evolution of interfacial dislocation network and mechanical properties of Ni-based single crystal superalloys

    Science.gov (United States)

    Li, Nan-Lin; Wu, Wen-Ping; Nie, Kai

    2018-05-01

    The evolution of misfit dislocation network at γ /γ‧ phase interface and tensile mechanical properties of Ni-based single crystal superalloys at various temperatures and strain rates are studied by using molecular dynamics (MD) simulations. From the simulations, it is found that with the increase of loading, the dislocation network effectively inhibits dislocations emitted in the γ matrix cutting into the γ‧ phase and absorbs the matrix dislocations to strengthen itself which increases the stability of structure. Under the influence of the temperature, the initial mosaic structure of dislocation network gradually becomes irregular, and the initial misfit stress and the elastic modulus slowly decline as temperature increasing. On the other hand, with the increase of the strain rate, it almost has no effect on the elastic modulus and the way of evolution of dislocation network, but contributes to the increases of the yield stress and tensile strength. Moreover, tension-compression asymmetry of Ni-based single crystal superalloys is also presented based on MD simulations.

  5. L12-phase cutting during high temperature and low stress creep of a Re-containing Ni-base single crystal superalloy

    Czech Academy of Sciences Publication Activity Database

    Kostka, A.; Maelzer, G. (ed.); Eggeler, G.; Dlouhý, Antonín; Reese, S.; Mack, T.

    2007-01-01

    Roč. 42, č. 11 (2007), s. 3951-3957 ISSN 0022-2461 Institutional research plan: CEZ:AV0Z20410507 Keywords : nickel-base superalloys * single crystals * creep Subject RIV: JG - Metallurgy Impact factor: 1.081, year: 2007

  6. High resolution transmission electron microscopy studies of {sigma} phase in Ni-based single crystal superalloys

    Energy Technology Data Exchange (ETDEWEB)

    Sun Fei [Key Laboratory of Liquid Structure and Heredity of Materials, Ministry of Education, Shandong University, Jinan 250061 (China); Zhang Jianxin, E-mail: jianxin@sdu.edu.cn [Key Laboratory of Liquid Structure and Heredity of Materials, Ministry of Education, Shandong University, Jinan 250061 (China); Liu Pan [Institute of Microstructure and Property of Advanced Materials, Beijing University of Technology, Beijing 100124 (China); Feng Qiang [National Center for Materials Service Safety, University of Science and Technology Beijing, Beijing 100083 (China); State Key Laboratory for Advanced Metals and Materials, University of Science and Technology Beijing, Beijing 100083 (China); Han Xiaodong; Mao Shengcheng [Institute of Microstructure and Property of Advanced Materials, Beijing University of Technology, Beijing 100124 (China)

    2012-09-25

    Graphical abstract: (a) TEM micrograph of {sigma} phase; (b) HRTEM image of {sigma}/{gamma} interface corresponding to the area of the white frame in (a); (c) an enlarged image of area from the white frame in (b). The combination of {sigma}/{gamma} interface appears very well, and a two-atomic-layer step is shown on the {sigma}/{gamma} interface. In addition, {sigma} phase has the orientation relationship of [0 0 1]{sub {gamma}}//[1 1 2{sup Macron }]{sub {sigma}}, (2{sup Macron} 2 0){sub {gamma}}//(1{sup Macron} 1 0){sub {sigma}}, (2{sup Macron }2{sup Macron} 0){sub {gamma}}//(1 1 1){sub {sigma}}; [0 1 1]{sub {gamma}}//[1 1 0]{sub {sigma}}, (1 1{sup Macron} 1){sub {gamma}}//(0 0 1{sup Macron }){sub {sigma}} with the {gamma} phase. Highlights: Black-Right-Pointing-Pointer Elemental characteristic of {sigma} phase is studied by HAADF techniques and EDS analysis. Black-Right-Pointing-Pointer Interfacial characteristics of {sigma}/{gamma} interface are revealed by HRTEM. Black-Right-Pointing-Pointer An atomic structural {sigma}/{gamma} interface with a two-atomic-layer step has been proposed. - Abstract: By means of high resolution transmission electron microscopy (HRTEM) and high-angle annular dark-field image technique (HAADF), morphological of plate-shaped {sigma} phase and interfacial characteristics between plate-shaped {sigma} phase and {gamma} phase in Ni-based single crystal superalloys have been studied. On the basis of HRTEM observations, an atomic structural interface between {sigma} phase and {gamma} phase with a step has been proposed. {sigma} Phase has the relationship of [0 0 1]{sub {gamma}}//[1 1 2{sup Macron }]{sub {sigma}}, (2{sup Macron} 2 0){sub {gamma}}//(1{sup Macron} 1 0){sub {sigma},} (2{sup Macron }2{sup Macron} 0){sub {gamma}}//(1 1 1){sub {sigma}}; [0 1 1]{sub {gamma}}//[1 1 0]{sub {sigma}}, (1 1{sup Macron} 1){sub {gamma}}//(0 0 1{sup Macron }){sub {sigma}} with the {gamma} phase. The compositional characteristics of the {sigma} phase which

  7. Low-cycle fatigue and damage of an uncoated and coated single crystal nickel-base superalloy SCB

    International Nuclear Information System (INIS)

    Stekovic, S.; Ericsson, T.

    2007-01-01

    This paper presents low-cycle fatigue (LCF) behaviour and damage mechanisms of uncoated and coated specimens of a single crystal nickel-base superalloy SCB tested at 500 C and 900 C. Four coatings were deposited on the base material, an overlay coating AMDRY997, a platinum-modified aluminide diffusion coating RT22 and two innovative coatings called IC1 and IC3 with a NiW diffusion barrier in the interface. AMDRY997 and RT22 were used as reference coatings. The LCF tests were performed at three strain amplitudes, 1.0, 1.2 and 1.4%, with R = -1, in laboratory air and without any dwell time. The LCF life of the specimens is determined by crack initiation and propagation. Crack data are presented for different classes of crack size in the form of crack density, that is, the number of cracks normalised to the investigated interface length. Micrographs of damage of the coatings are also shown. The effect of the coatings on the LCF life of the superalloy was dependent on the test temperature and deposited coating. At 500 C all coatings had a detrimental effect on the LCF life of the superalloy. At 900 C both AMDRY997 and IC1 prolonged the fatigue life of the superalloy by factors ranging between 1.5 and 4 while RT22 and IC3 shortened the life of the coating-substrate system. Specimens coated with RT22 exhibited generally more damage than other tested coatings at 900 C. Most of the cracks observed initiated at the coating surface and a majority were arrested in the interdiffusion zone between the base material and the coating. No topologically close-packed phases were found. Delamination was only found in AMDRY997 at higher strains. Surface roughness or rumpling was found in the overlay coating AMDRY997 with some cracks initiating from the rumples. The failure morphology at 900 C reflected the role of oxidation in the fatigue life, the crack initiation and propagation of the coated specimens. The wake of the cracks grown into the substrate was severely oxidised leading to

  8. Determination of γ/ γ' Lattice Misfit in Ni-Based Single-Crystal Superalloys at High Temperatures by Neutron Diffraction

    Science.gov (United States)

    Huang, Shenyan; An, Ke; Gao, Yan; Suzuki, Akane

    2018-03-01

    Constrained γ/ γ' lattice misfit as a function of temperature (room temperature, 871 °C, 982 °C, 1093 °C, and 1204 °C) is measured by neutron diffraction on the first-generation Ni-based single-crystal superalloy René N4 and second-generation superalloys René N5, CMSX4, and PWA1484. All the alloys studied show negative misfit at temperatures above 871 °C. For René N4, René N5, and PWA1484, the misfit becomes less negative at temperatures above 1093 °C, possibly due to either the chemistry effect or internal stress relaxation. The magnitude of the misfit shows a qualitative agreement with Caron's misfit model based on Vegard's coefficients. The Re-free alloy René N4 was found to have a larger γ lattice parameter and γ/ γ' misfit due to higher fractions of Cr, Ti, and Mo. After 100 hours of annealing at high temperatures, René N5 shows a more negative misfit than the misfit after the standard heat treatment.

  9. Effect of Convection on the Isothermal Coupled Peritectic Solidification in the Single Crystal Superalloy

    Energy Technology Data Exchange (ETDEWEB)

    Gu, Jiho; Sung, Changhoon; Lee, Jehyun [Changwon National University, Changwon (Korea, Republic of); Shin, Jongho [Doosan Heavy Industries and Construction Co. Ltd, Changwon (Korea, Republic of); Seo, Seongmoon [Korea Institute of Materials Science, Changwon (Korea, Republic of)

    2016-04-15

    The γ/γ´ two-phase growth commonly observed at γ interdendritic regions in Ni-base superalloys is known to be the eutectic microstructure. However, it is still unclear whether this is due to a eutectic or peritectic reaction. Directional solidification experiments of the Ni-base superalloy CMSX-10 were performed at low solidification rates in order to induce the coupled growth of γ/γ´ phases and to investigate their growth behavior. The γ and γ´ phases were found to grow simultaneously, maintaining an isothermal interface. Directional solidification experiments in a thin tube (0.8 mm ID) suggest that convection enhances the formation of two phase peritectic growth with a planar interface and the γ/γ´ might be the couped peritectic.

  10. A novel strategy for the design of advanced engineering alloys - strengthening turbine disk superalloys via twinning structures

    Energy Technology Data Exchange (ETDEWEB)

    Yuan, Yong; Gu, Yuefeng; Cui, Chuanyong; Osada, Toshio; Yokokawa, Tadaharu; Harada, Hiroshi [High Temperature Materials Center, National Institute for Materials Science 1-2-1 Sengen, Ibaraki 305-0047 (Japan)

    2011-04-15

    A novel strategy for designing advanced engineering superalloys using twin structure is presented. By inducing numerous annealing and deformation twins, a new advanced polycrystalline Ni-Co-base superalloy (TMW-4M3 alloy) has been developed, which has low stacking fault energy, enhanced tensile and creep strength without degrading other mechanical properties such as low cycle fatigue and crack growth resistance. Based on TEM analysis, the twin strengthening mechanism is proposed. (Copyright copyright 2011 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  11. Simulation of Ni-Based Super-Alloy and Optimizing of Its Mechanical Properties in a Near-Shaped Turbine Blade Part

    Directory of Open Access Journals (Sweden)

    Mohammd Reza Alizadeh

    2015-01-01

    Full Text Available This paper presents simulation of a Ni-based super-alloy during filling of a near-shaped turbine blade part to optimize its mechanical properties. Since geometrical shape of the airfoil is so complicated, a simple near-shaped part was made by plexiglass to water modeling. Condition and parameters of water modeling were obtained from the Procast software simulation. The flow pattern of the transparent systems, recorded by a high speed video camera, was analyzed. Air bubble amounts were quantitatively measured by an image analysis software. Quantified results were used to compare two systems in terms of ability to prevent bubble formation and entrainment. Both water modeling and computer simulating methods indicated that highest turbulences in bottom- and top-poured systems form in first initially pouring times. According to the water modeling results amount of bubble values was 40 and 18 percent for top-poured and bottom-poured systems, respectively. Then the Ni-base super-alloy IN939 is poured by investment casting in bottom- and top-poured systems and compared with each other. The results stated that bottom-poured system had higher mechanical properties compared to top-poured one. Ultimate tensile strength for the former was 820 MPa while for the part which was cast by bottom-poured system it was 850 MPa.

  12. Influences of processing parameters on microstructure during investment casting of nickel-base single crystal superalloy DD3

    Directory of Open Access Journals (Sweden)

    Gao Sifeng

    2012-05-01

    Full Text Available The effects of solidification variables on the as-cast microstructures of nickel-base single crystal superalloy DD3 have been investigated by using the modified Bridgman apparatus. The experiments were performed under a thermal gradient of approximately 45 K·cm-1 and at withdrawal rates ranging from 30 to 200 m·s-1. The experimental results show that the primary and secondary dendritic arm spacings (PDAS and SDAS decrease when the withdrawal rate is increased. Compared with the theoretical models of PDAS, the results are in good agreement with Trivedi’s model. The relationships of PDAS and SDAS with withdrawal rates can be described as l1 = 649.7V -0.24±0.02 and l2 = 281V -0.32±0.03, respectively. In addition, the size of the γ′ phase significantly decreases with increasing withdrawal rate.

  13. Microstructure evolution of an EB-PVD NiAl coating and its underlying single crystal superalloy substrate

    International Nuclear Information System (INIS)

    Gong, Xueyuan; Peng, Hui; Ma, Yue; Guo, Hongbo; Gong, Shengkai

    2016-01-01

    A NiAl coating was deposited onto a Ni-based single crystal superalloy with (001) crystal orientation by electron beam physical vapor deposition (EB-PVD). The as-deposited NiAl coating showed a columnar microstructure with (110) preferred orientation. The microstructure evolution behavior near interface between the NiAl coating and superalloy substrate at 1100 °C was investigated. Kirkendall voids were formed in the NiAl coating, indicating the different elements diffusion coefficients in the coating and substrate. Interdiffusion zone (IDZ) with rod-like and granular topological close-packed (TCP) phases and substrate diffusion zone (SDZ) with needle-like TCP phases were formed during diffusion annealing at elevated temperature. The equi-axed β-NiAl grains were developed in the IDZ after diffusion annealing at 1100 °C for 10 h, which showed different orientations from the coating and substrate. However, after 50 h diffusion annealing, the equi-axed β-NiAl phases in the IDZ were transformed into γ′-Ni 3 Al phases which had the same orientation as the substrate. Furthermore, oriented rafting of the substrate occurred during diffusion annealing and the rafts were parallel to the coating/substrate interface. - Highlights: • The as-deposited NiAl coating by EB-PVD showed a (110) preferred orientation. • Kirkendall voids were formed in the NiAl coating near the interface. • Equi-axed β grains in the IDZ were transformed into γ′ after 50 h annealing. • The secondary γ′ phases in the IDZ showed the same orientation as substrate. • Oriented rafting of the substrate occurred during diffusion annealing.

  14. In situ TEM investigation on the precipitation behavior of μ phase in Ni-base single crystal superalloys

    International Nuclear Information System (INIS)

    Gao, Shuang; Liu, Zhi-Quan; Li, Cai-Fu; Zhou, Yizhou; Jin, Tao

    2016-01-01

    The precipitation behavior of μ phase in Ni-base single crystal superalloys was investigated by in situ transmission electron microscopy (TEM). A layer-by-layer growth process with a ledge propagation mechanism was first observed during in situ precipitation. Three types of μ phase with different morphologies were found, which grow along [001] μ with (001) μ planar defects, [-111] μ with (1–12) μ planar defects, as well as both directions with mixed planar defects. High-resolution TEM image and established atomic models reveal a basic growth mechanism of μ phase by stacking on (001) μ plane and randomly forming coherent planar defects, while the nucleation of incoherent (1–12) μ planar defects at the early stage of precipitation plays an important role in affecting the basic growth mechanism. The frequent faults during the stacking process of the sub-unit layers within μ lattice should be responsible for the defect formation. -- Graphical abstract: In situ transmission electron microscopy (TEM) investigations reveal the layer-by-layer growth mechanism of μ phase precipitated in Ni-base single crystal superalloys. Three types of μ phase with different morphologies were formed at 1050 °C, which grows along [001] μ with (001) μ planar defects, [-111] μ with (1–12) μ planar defects, as well as both directions with mixed planar defects respectively. Formation of (001) μ micro-twin and stacking fault is the essential feature for precipitated μ phase, while nucleation of incoherent (1–12) μ planar defects plays an important role in changing growth method. Display Omitted

  15. Unit-cell design for two-dimensional phase-field simulation of microstructure evolution in single-crystal Ni-based superalloys during solidification

    Directory of Open Access Journals (Sweden)

    Dongjia Cao

    2017-12-01

    Full Text Available Phase-field simulation serves as an effective tool for quantitative characterization of microstructure evolution in single-crystal Ni-based superalloys during solidification nowadays. The classic unit cell is either limited to γ dendrites along crystal orientation or too ideal to cover complex morphologies for γ dendrites. An attempt to design the unit cell for two-dimensional (2-D phase-field simulations of microstructure evolution in single-crystal Ni-based superalloys during solidification was thus performed by using the MICRESS (MICRostructure Evolution Simulation Software in the framework of the multi-phase-field (MPF model, and demonstrated in a commercial TMS-113 superalloy. The coupling to CALPHAD (CALculation of PHAse Diagram thermodynamic database was realized via the TQ interface and the experimental diffusion coefficients were utilized in the simulation. Firstly, the classic unit cell with a single γ dendrite along crystal orientation was employed for the phase-field simulation in order to reproduce the microstructure features. Then, such simple unit cell was extended into the cases with two other different crystal orientations, i.e., and . Thirdly, for crystal orientations, the effect of γ dendritic orientations and unit cell sizes on microstructure and microsegregation was comprehensively studied, from which a new unit cell with multiple γ dendrites was proposed. The phase-field simulation with the newly proposed unit cell was further performed in the TMS-113 superalloy, and the microstructure features including the competitive growth of γ dendrites, microsegregation of different solutes and distribution of γ′ grains, can be nicely reproduced.

  16. Factors which influence directional coarsening of Gamma prime during creep in nickel-base superalloy single crystals

    International Nuclear Information System (INIS)

    Mackay, R.A.; Ebert, L.J.

    1984-01-01

    Changes in the morphology of the gamma prime precipitate were examined as a function of time during creep at 982 C in 001 oriented single crystals of a Ni-Al-Mo-Ta superalloy. In this alloy, which has a large negative misfit of -0.80 pct., the gamma prime particles link together during creep to form platelets, or rafts, which are aligned with their broad faces perpendicular to the applied tensile axis. The effects of initial microstructure and alloy composition of raft development and creep properties were investigated. Directional coarsening of gamma prime begins during primary creep and continues well after the onset of second state creep. The thickness of the rafts remains constant up through the onset of tertiary creep a clear indication of the stability of the finely-spaced gamma/gamma prime lamellar structure. The thickness of the rafts which formed was equal to the initial gamma prime size which was present prior to testing. The single crystals with the finest gamma prime size exhibited the longest creep lives, because the resultant rafted structure had a larger number of gamma/gamma prime interfaces per unit volume of material. Reducing the Mo content by only 0.73 wt. pct. increased the creep life by a factor of three, because the precipitation of a third phase was eliminated

  17. The influence of cobalt, tantalum, and tungsten on the elevated temperature mechanical properties of single crystal nickel-base superalloys

    Science.gov (United States)

    Nathal, M. V.; Ebert, L. J.

    1985-01-01

    The influence of composition on the tensile and creep strength of 001-line oriented nickel-base superalloy single crystals at temperatures near 1000 C was investigated. Cobalt, tantalum, and tungsten concentrations were varied according to a matrix of compositions based on the single crystal version of MAR-M247. For alloys with the baseline refractory metal level of 3 wt pct Ta and 10 wt pct W, decreases in Co level from 10 to 0 wt pct resulted in increased tensile and creep strength. Substitution of 2 wt pct W for 3 wt pct Ta resulted in decreased creep life at high stresses, but improved life at low stresses. Substitution of Ni for Ta caused large reductions in tensile strength and creep resistance, and corresponding increases in ductility. For these alloys with low Ta-plus-W totals, strength was independent of Co level. The effects of composition on properties were related to the microstructural features of the alloys. In general, high creep strength was associated with high levels of gamma-prime volume fraction, gamma-gamma-prime lattice mismatch, and solid solution hardening.

  18. Creep deformation-induced antiphase boundaries in L12-containing single-crystal cobalt-base superalloys

    International Nuclear Information System (INIS)

    Eggeler, Yolita M.; Titus, Michael S.; Suzuki, Akane; Pollock, Tresa M.

    2014-01-01

    Creep-induced antiphase boundaries (APBs) in new Co-base single-crystal superalloys with coherent embedded L1 2 -γ′ precipitates have been observed. APBs formed during single-crystal tensile creep tests performed at 900 °C under vacuum at stresses between 275 and 310 MPa. The alloys investigated contained 30–39 at.% Ni, which was added to the Co–Al–W ternary system to expand the γ–γ′ phase field and increase the γ′-solvus. Transmission electron microscopy (TEM) using two-beam conditions with fundamental and superlattice reflections was performed for defect characterization. The Burgers vector b of dislocations associated with the APBs was determined to be of type b = a 0 /2[011] and a 0 /2[011 ¯ ]. The displacement vectors, R, of the APBs matched the dislocation Burgers vectors, with R = b = a 0 /2[011]. APBs were observed in nearly every precipitate beyond 0.5% creep strain for the compositions investigated. The implications for high-temperature properties are discussed

  19. DEVELOPMENT OF PROTECTIVE COATINGS FOR SINGLE CRYSTAL TURBINE BLADES

    Energy Technology Data Exchange (ETDEWEB)

    Amarendra K. Rai

    2006-12-04

    Turbine blades in coal derived syngas systems are subject to oxidation and corrosion due to high steam temperature and pressure. Thermal barrier coatings (TBCs) are developed to address these problems. The emphasis is on prime-reliant design and a better coating architecture, having high temperature and corrosion resistance properties for turbine blades. In Phase I, UES Inc. proposed to develop, characterize and optimize a prime reliant TBC system, having smooth and defect-free NiCoCrAlY bond layer and a defect free oxide sublayer, using a filtered arc technology. Phase I work demonstrated the deposition of highly dense, smooth and defect free NiCoCrAlY bond coat on a single crystal CMSX-4 substrate and the deposition of alpha-alumina and yttrium aluminum garnet (YAG) sublayer on top of the bond coat. Isothermal and cyclic oxidation test and pre- and post-characterization of these layers, in Phase I work, (with and without top TBC layer of commercial EB PVD YSZ) revealed significant performance enhancement.

  20. Coupling between Re segregation and γ/γ′ interfacial dislocations during high-temperature, low-stress creep of a nickel-based single-crystal superalloy

    International Nuclear Information System (INIS)

    Huang, Ming; Cheng, Zhiying; Xiong, Jichun; Li, Jiarong; Hu, Jianqiao; Liu, Zhanli; Zhu, Jing

    2014-01-01

    The synergistic action of local elemental distribution, and in particular Re doping, with interfacial dislocations at the γ/γ′ interface is still one of the most considered and unclear issues during creep of nickel-based single-crystal superalloys. In order to investigate this problem, a detailed characterization of interfacial dislocations in a DD6 superalloy after creep loading for 12 h at high temperature and low stress was carried out using transmission electron microscopy and high-angle annular dark field scanning transmission electron microscopy techniques. In addition, the local elemental distribution near dislocation core regions was determined by energy dispersive X-ray spectroscopy (EDS) mapping. It was found for the first time that three types of interfacial protrusions are formed at the γ/γ′ interface after creep loading for 12 h under conditions of high temperature and low stress and demonstrated that the formation of these features originates from dislocation motion. Additionally, EDS mapping provides evidence for co-segregation of Re with Cr and Co at the tip of the protrusions. Based on this, a model concerning dislocation core structure and dislocation climb was proposed to explain the different morphology of the protrusions. The observations highlight the importance of the coupling between Re segregation and γ/γ′ interfacial dislocations for improving creep properties in nickel-based superalloys. The results of the study will be beneficial for the design of new high-temperature materials and for understanding the origin of the effect of Re additions in nickel-based single-crystal superalloys

  1. Effect of Low Angle Grain Boundaries on Mechanical Properties of DD5 Single Crystal Ni-base Superalloy

    Directory of Open Access Journals (Sweden)

    QIN Jianchao

    2017-06-01

    Full Text Available The effects of low angle grain boundaries on the mechanical properties of second generation single crystal superalloy DD5 were investigated and the test specimens were prepared by using seeds. The results show that at 870 ℃, the yield strength and breaking strength showed no difference when the angle is below 16.1°. The elongation is higher than 15% when the angle is below 11.4°, but the elongation decreases quickly when angle is above 11.4°. At 980 ℃/250 MPa, the rupture life is higher than 130 h when the angle is below 5.1°, and decreased slowly when the angle is above 5.1°. The rupture life still remaines 85% when the angle is 14.8°. But the rupture life decreases quickly when the angle is above 14.8°.At 1093 ℃/158 MPa, the rupture life is higher than 30 h when the angle is below 5.1°, and decreases when the angle is above 5.1°.

  2. Dentritic morphology and microsegregation in directionally solidified superalloy, PWA-1480, single crystal: Effect of gravity; center director's discretionary fund report

    Science.gov (United States)

    Tewari, S. N.; Kumar, M. Vijaya; Lee, J. E.; Curreri, P. A.

    1990-01-01

    Primary dendrite spacings, secondary dendrite spacings, and microsegregation have been examined in PWA-1480 single crystal specimens which were directionally solidified during parabolic maneuvers on the KC-135 aircraft. Experimentally observed growth rate and thermal gradient dependence of primary dendrite spacings are in good agreement with predictions from dendrite growth models for binary alloys. Secondary dendrite coarsening kinetics show a reasonable fit with the predictions from an analytical model proposed by Kirkwood for a binary alloy. The partition coefficients of tantalum, titanium, and aluminum are observed to be less than unity, while that for tungsten and cobalt are greater than unity. This is qualitatively similar to the nickel base binaries. Microsegregation profiles experimentally observed for PWA-1480 superalloy show a good fit with Bower, Brody, and Flemings model developed for binary alloys. Transitions in gravity levels do not appear to affect primary dendrite spacings. A trend of decreased secondary arm spacings with transition from high gravity to the low gravity period was observed at a growth speed of 0.023 cm s(exp -1). However, definite conclusions can only be drawn by experiments at lower growth speeds which make it possible to examine the side-branch coarsening kinetics over a longer duration. Such experiments, not possible due to the insufficient low-gravity time of the KC-135, may be carried out in the low-gravity environment of space.

  3. Effect of hydrogen on deformation structure and properties of CMSX-2 nickel-base single-crystal superalloy

    Science.gov (United States)

    Dollar, M.; Bernstein, I. M.; Walston, S.; Prinz, F.; Domnanovich, A.

    1987-01-01

    Material used in this study was a heat of the alloy CMSX-2. This nickel-based superalloy was provided in the form of oriented single crystals, solutionized for 3 hrs at 1315 C. It was then usually heat treated as follows: 1050 C/16h/air cool + 850 C/48h/air cool. The resulting microstructure is dominated by cuboidal, ordered gamma precipitates with a volume fraction of about 75% and an average size of 0.5 microns. In brief, the most compelling hydrogen induced-changes in deformation structure are: (1) enhanced dislocation accumulation in the gamma matrix; and (2) more extensive cross-slip of superdislocations in the gamma precipitates. The enhanced dislocation density in gamma acts to decrease the mean free path of a superdislocation, while easier cross slip hinders superdislocation movement by providing pinning points in the form of sessile jobs. Both processes contribute to the increase of flow stress and the notable work hardening that occurs prior to fracture.

  4. Low cycle fatigue properties and microstructure evolution at 760 °C of a single crystal superalloy

    Directory of Open Access Journals (Sweden)

    Zhenxue Shi

    2015-02-01

    Full Text Available Low cycle fatigue (LCF behavior of a single crystal superalloy was investigated at 760 °C. Microstructure evolution and fracture mechanism were studied by scanning electron microscopy (SEM and transmission electron microscopy (TEM, respectively. The results show that the fatigue data fluctuation was small and the fatigue parameters of the alloy had been determined. On increasing the cyclic number, the alloy initially showed slight cyclic softening at the early two or three cycles and slowly hardened to some extent afterwards, then kept stable for the most of the remaining fatigue life. The LCF of the alloy at 760 °C can be attributed to the main elastic damage in fatigue processing. The initiation site of fatigue crack was at or near the surface of the samples. Crack propagated perpendicularly to the loading direction at first and then along {111} octahedral slip planes. The fatigue fracture mechanism was quasi-cleavage fracture. The γ′ phase morphology still maintained cubic shape after fracture. There were a number of slip bands shear the γ′ precipitates and γ matrix near the fracture surface of the specimen. The inhomogeneous deformation microstructure was developed by dislocation motion of cross-slip and a limited γ′ precipitate shearing by slip band, stacking faults or single dislocation was observed.

  5. The influence of orientation on the stress rupture properties of nickel-base superalloy single crystals

    Science.gov (United States)

    Mackay, R. A.; Maier, R. D.

    1982-01-01

    Constant load creep rupture tests were performed on MAR-M247 single crystals at 724 MPa and 774 C where the effect of anisotropy is prominent. The initial orientations of the specimens as well as the final orientations of selected crystals after stress rupture testing were determined by the Laue back-reflection X-ray technique. The stress rupture lives of the MAR-M247 single crystals were found to be largely determined by the lattice rotations required to produce intersecting slip, because second-stage creep does not begin until after the onset of intersecting slip. Crystals which required large rotations to become oriented for intersecting slip exhibited the shortest stress rupture lives, whereas crystals requiring little or no rotations exhibited the lowest minimum creep rates, and consequently, the longest stress rupture lives.

  6. Orientation dependence of the stress rupture properties of Nickel-base superalloy single crystals

    Science.gov (United States)

    Mackay, R. A.

    1981-01-01

    The influence of orientation of the stress rupture behavior of Mar-M247 single crystals was studied. Stress rupture tests were performed at 724 MPa and 774 C where the effect of anisotropy is prominent. The mechanical behavior of the single crystals was rationalized on the basis of the Schmid factors for the operative slip systems and the lattice rotations which the crystals underwent during deformation. The stress rupture lives were found to be greatly influenced by the lattice rotations required to produce intersecting slip, because steady-state creep does not begin until after the onset of intersecting slip. Crystals which required large rotations to become oriented for intersecting slip exhibited a large primary creep strain, a large effective stress level at the onset of steady-state creep, and consequently a short stress rupture life. A unified analysis was attained for the stress rupture behavior of the Mar-M247 single crystals tested in this study at 774 C and that of the Mar-M200 single crystals tested in a prior study at 760 C. In this analysis, the standard 001-011-111 stereographic triangle was divided into several regions of crystallographic orientation which were rank ordered according to stress rupture life for this temperature regime. This plot indicates that those crystals having orientations within about 25 deg of the 001 exhibited significantly longer lives when their orientations were closer to the 001-011 boundary of the stereographic triangle than to the 001-111 boundary.

  7. Integrated computational microstructure engineering for single-crystal nickel-base superalloys

    Science.gov (United States)

    Wang, Billie

    A methodology that integrates the phase field model with simpler models was developed to study the early stages of microstructural development in nickel base superalloys under non-isothermal conditions, allowing for faster, more comprehensive examination of the experimental system. Additionally, the parameters required for calibrating a phase field model were examined for uncertainty, and a comprehensive method for linking experimental data to a model was developed. The methodology developed was applied to analyze the formation of bimodal particle size distributions during linear continuous cooling. The dynamic competition for supersaturation by growth of existing precipitates and nucleation of new particles was modeled. The nucleation rate was calculated according to classical nucleation theory as function of local supersaturation and temperature. The depletion of matrix super-saturation by growth of existing particles was calculated from fully diffusion-controlled precipitate growth in an infinite matrix. Phase field simulations of gamma' precipitation in a binary Ni-Al alloy were performed under continuous cooling conditions. Then the average and maximum matrix supersaturations were calculated and plotted onto the contours of nucleation rate and growth rate in concentration and temperature space. These methods were used iteratively to identify the window for bimodal particle size distributions. Combining the models of different complexities produced a much more comprehensive understanding of the competing dynamics involved early in microstructure formation. A systemic method for calibrating a model to experimental alloy systems was developed. Calibrated to isothermal aging data along with literature, database and parametric values, a phase field model reproduced the precipitation kinetics. Quantitative phase field modeling techniques were developed to control the influence of uncertainty in the original data sources for model inputs. Using more data sources than

  8. The influence of high thermal gradient casting, hot isostatic pressing and alternate heat treatment on the structure and properties of a single crystal nickel base superalloy

    Science.gov (United States)

    Fritzemeier, L. G.

    1988-01-01

    A development program has been conducted to improve the cyclic properties of the PWA 1480 single-crystal superalloy by reducing or entirely eliminating casting porosity at fatigue-initiation sites, through the use of improved casting process parameters and HIPing; potential mechanical property improvements in a high-pressure hydrogen environment were also sought in alternatives to the standard coating and heat-treatment cycle. High thermal gradient casting was found to yield a reduction in overall casting porosity density and pore sizes. The most dramatic mechanical property improvement resulted from HIPing.

  9. Rafting in single crystal nickel-base superalloys – An overview

    Indian Academy of Sciences (India)

    R. Narasimhan (Krishtel eMaging) 1461 1996 Oct 15 13:05:22

    ture and high temperature mechanical properties are the major factors controlling the performance of SX ... controlled and optimized by a standard stepwise heat treatment in order to obtain a specific set of high temperature ..... effective tool in failure analysis of single crystal components operating at elevated temper- ature.

  10. Interaction of high cycle fatigue with high temperature creep in superalloy single crystals

    Czech Academy of Sciences Publication Activity Database

    Lukáš, Petr; Kunz, Ludvík; Svoboda, Milan

    2002-01-01

    Roč. 93, č. 7 (2002), s. 661-665 ISSN 0044-3093 R&D Projects: GA AV ČR IAA2041002; GA AV ČR KSK1010104 Institutional research plan: CEZ:AV0Z2041904 Keywords : Single crystals * Creep/fatigue interaction * Persistent slip bands Subject RIV: JL - Materials Fatigue, Friction Mechanics Impact factor: 0.636, year: 2002

  11. Morphology of {gamma}' precipitates of nickel-based superalloy serviced as first stage high pressure turbine nozzle guide vane

    Energy Technology Data Exchange (ETDEWEB)

    Miura, Nobuhiro; Nakada, Kouji; Kondo, Yoshihiro [National Defense Academy, Yokosuka, Kanagawa (Japan)

    2010-07-01

    The morphology of {gamma}' precipitates of the nickel-based superalloy serviced as the first stage high pressure turbine nozzle guide vane of the jet engine was examined. The aim of this work was to estimate the temperature and the stress distribution, and the stress direction of the vane in service. The vane was cut into four parts perpendicular to the longitudinal direction of the vane at 5, 25, 35 and 45mm from the root. These parts were designated as the root, 25mm, 35mm and tip parts. Microstructure observations by a FE-SEM were carried out on the forty-six portions at the vicinity of the interface between the coating layer and the matrix on the suction and pressure sides. At the root parts of the pressure and suction sides, most of the {gamma}' precipitates kept cuboidal in shape, and the secondary {gamma}' precipitates were observed in the {gamma} matrix channels. On the contrary, at the trailing edge side of the pressure and suction sides of the 25 and 35mm parts and at the leading edge of the pressure side of the tip part, well aligned rafted {gamma}/{gamma}' structures were appeared in the direction parallel to the surface at the vicinity of the interface of the vane. Furthermore, at the trailing edge of the pressure side of the middle parts, the rafted {gamma}/{gamma}' structures start to collapse. Consequently, the vane in service, at the trailing edge sides of the pressure side the 25 and 35mm parts were exposed to the highest temperature and stress conditions. And this microstructure evidence indicated that the multi-axial compressive stress parallel to the nozzle surface was expected to act on the vane in service. (orig.)

  12. Numerical Simulation of Directional Solidification Process of Single Crystal Ni- Based Superalloy Casting

    Directory of Open Access Journals (Sweden)

    Szeliga D.

    2017-06-01

    Full Text Available The analysis of influence of mould withdrawal rate on the solidification process of CMSX-4 single crystal castings produced by Bridgman method was presented in this paper. The predicted values of temperature gradient, solidification and cooling rate, were determined at the longitudinal section of casting blade withdrawn at rate from 1 to 6mm/min using ProCAST software. It was found that the increase of withdrawal rate of ceramic mould results in the decrease of temperature gradient and the growth of cooling rate, along blade height. Based on results of solidification parameter G/R (temperature gradient/solidification rate, maximum withdrawal rate of ceramic mould (3.5 mm/min, which ensures lower susceptibility to formation process of new grain defects in single crystal, was established. It was proved that these defects can be formed in the bottom part of casting at withdrawal rate of 4 mm/min. The increase of withdrawal rate to 5 and 6 mm/min results in additional growth of susceptibility of defects formation along the whole height of airfoil.

  13. Rotating bending fatigue property of the Ni3Al-based single crystal superalloy IC6SX at 900°C

    Science.gov (United States)

    Jiang, Liwu; Li, Shusuo; Han, Yafang

    2017-03-01

    The high cycle fatigue behavior of a Ni3Al base single crystal superalloy IC6SX has been investigated at 900°C in this work. The specimens used for the fatigue tests were prepared by screw selection crystal method in a directional solidification furnace. The rotating bending fatigue tests were carried out at 900°Cin air, the stress ratio of R(σmax/σmin) was -1, and the rotating speed of the fatigue tests was 6500r/min(108Hz). The stress-fatigue cycle life (S-Nf) curve was obtained based on the fatigue tests, and the fracture surfaces were examined using scanning electron microscopy (SEM). It has been found that the median fatigue strength is 457.5MPa and the safety fatigue strength is 413.93MPa. And the fatigue fracture was composed of three different characteristic regions.

  14. Identification of the partitioning characteristics of refractory elements in σ and γ phases of Ni-based single crystal superalloys based on first principles

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Fei [Key Laboratory of Liquid Structure and Heredity of Materials, Ministry of Education, Shandong University, Jinan 250061 (China); Mao, Shengcheng [Institute of Microstructure and Property of Advanced Materials, Beijing University of Technology, Beijing 100124 (China); Zhang, Jianxin, E-mail: jianxin@sdu.edu.cn [Key Laboratory of Liquid Structure and Heredity of Materials, Ministry of Education, Shandong University, Jinan 250061 (China)

    2014-10-15

    The impurity formation energies of the σ and γ phases of Ni-based single crystal superalloys doped with W, Cr and Co in different sublattices have been investigated using first-principles based on the density functional theory. The bonding characteristics of the doped σ phase were analyzed with the valence charge densities and the density of the states. The results of the calculations indicated that the typical refractory element W, which has a large atomic size, preferentially partitions into the σ phase due to the nature of the bonding and the unique crystal structure with close-packed planes and large interstitial spaces. In addition, the site preference of refractory elements in γ phase was in the order of W, Cr and Co. - Highlights: • A reasonable σ phase model was adopted in our calculation. • The site preference of refractory elements in σ and γ phases was investigated. • The bonding characteristic was analyzed on the basis of electronic microstructures.

  15. High-temperature ultra-high cycle fatigue damage of notched single crystal superalloys at high mean stresses

    Czech Academy of Sciences Publication Activity Database

    Lukáš, Petr; Kunz, Ludvík; Svoboda, Milan

    2005-01-01

    Roč. 27, - (2005), s. 1535-1540 ISSN 0142-1123 Institutional research plan: CEZ:AV0Z20410507 Keywords : fatigue damage of superalloys Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 1.180, year: 2005

  16. Temperature dependence of deformation behavior in a Co–Al–W-base single crystal superalloy

    Energy Technology Data Exchange (ETDEWEB)

    Shi, L.; Yu, J.J., E-mail: jjyu@imr.ac.cn; Cui, C.Y.; Sun, X.F.

    2015-01-03

    Tensile properties of a single-crystal Co–Al–W–Ni–Cr–Ta alloy with low tungsten content have been studied within the temperatures ranging from 20 to 1000 °C at a constant strain rate of 1.0×10{sup −4} s{sup −1}. The alloy exhibits comparable yield strength with that of Co–Al–W-base alloys containing more tungsten. From 600 °C to 800 °C, a yield strength anomaly is observed, probably due to the cross-slip of superdislocations from the octahedral plane to the cube plane. TEM analysis demonstrates that stacking faults (SFs) appear both in γ channels and γ′ precipitates in a wide temperature range. These SFs are responsible for the obvious strain hardening observed in stress–strain curves. From room temperature to 900 °C, the deformation is dominated by dislocations shearing γ′ particles. At 1000 °C, the main deformation mechanism is dislocations bypassing γ′ particles.

  17. Synthesis of alpha-aluminum oxide and hafnium-doped beta-nickel aluminide coatings on single crystal nickel-based superalloy by chemical vapor deposition

    Science.gov (United States)

    He, Limin

    Thermal barrier coatings (TBCs) are widely used for air-cooled turbine components in advanced aircraft engines and power generation systems. The dominant failure mode observed in TBCs is progressive fracture of the metal-oxide interface upon oxidation and thermal cycling. Two potential coating methods for improving TBC performance were studied: (1) preparing a high-quality alpha-Al 2O3 coating layer on the surface of a single crystal Ni-based superalloy (Rene N5) to extend the oxidative stability of the interface and (2) doping beta-NiAl bond coating with a small amount of Hf to improve the adhesion of thermally grown oxide (TGO) at the interface. In the first coating method, a novel chemical vapor deposition (CVD) procedure was developed using AlCl3, CO2 and H 2 as precursors. A critical part of this procedure was a short-time pre-oxidation step (1 min) with CO2 and H2 in the CVD chamber, prior to introducing the AlCl3, vapor. Without this pre-oxidation step, extensive whisker formation was observed on the alloy surface. Characterization results showed that the pre-oxidation step resulted in the formation of a continuous oxide layer (˜50 nm) on the alloy surface. The outer part of this layer (˜20 nm) appeared to contain mixed oxides whereas the inner part (˜30 nm) consisted of alpha-Al2O3 as a dominant major phase and theta-Al2O3 as a minor phase. It appeared that the preferential nucleation of beta-Al2O3 in the pre-oxidized layer was promoted by: (1) rapid heating (˜10 sec) of the alloy surface to the temperature region, where alpha-Al 2O3 was expected to nucleate instead of metastable Al 2O3 phases, (2) the low oxygen pressure environment of the pre-oxidation step which kept the rate of oxidation low, and (3) contamination of the CVD chamber with HfCl4. It appeared that the role of HfCl 4 was to enhance the preferential nucleation of alpha-Al2O 3 in the pre-oxidized layer. In our second coating method, we utilized the dynamic versatility of CVD as an avenue

  18. The promotion of Ru on topologically close-packed phase precipitation in the high Cr-containing (∼9wt.%) nickel-base single crystal superalloy

    Energy Technology Data Exchange (ETDEWEB)

    Lv, Xianzi [Key Laboratory for Liquid-Solid Structural Evolution & Processing of Materials, Ministry of Education, Shandong University, Jinan 250061 (China); Zhang, Jianxin, E-mail: jianxin@sdu.edu.cn [Key Laboratory for Liquid-Solid Structural Evolution & Processing of Materials, Ministry of Education, Shandong University, Jinan 250061 (China); Feng, Qiang [State Key Laboratory for Advanced Metals and Material, University of Science and Technology Beijing, Beijing 100083 (China); National Center for Materials Service Safety, University of Science and Technology Beijing, Beijing 100083 (China)

    2015-11-05

    The partitioning behaviors of alloying elements Cr, Co, Al, Ta, etc. on the γ and γ′ phases of high Cr-containing (∼9wt.%) nickel-base single crystal superalloys have been investigated with and without the addition of 3wt.% Ru. The “reverse partitioning effect” occurs, which means that the addition of Ru causes the partition of Cr and Co into γ′ phase, while Al an Ta concentrate into γ matrix. However, Ru promotes the precipitation of topologically close-packed (TCP) phases, since the diffusion coefficient between the TCP phase and the matrix interface increases with the diffusion behaviors of refractory elements. For the coarsening and slightly rafting of γ′ phases, the increase of elemental diffusion plays much more important role in its kinetic process than the decrease of lattice misfit. - Highlights: • The high Cr-containing (∼9wt.%) superalloys are chosen in this study. • The “reverse partitioning” behavior occurs with the addition of 3wt.% Ru. • Ru promotes the precipitation of topologically close-packed (TCP) phases. • Ru accelerates the diffusion process of alloying elements. • Increase of elemental diffusion plays important role in coarsening of γʹ phases.

  19. A Review on Inertia and Linear Friction Welding of Ni-Based Superalloys

    Science.gov (United States)

    Chamanfar, Ahmad; Jahazi, Mohammad; Cormier, Jonathan

    2015-04-01

    Inertia and linear friction welding are being increasingly used for near-net-shape manufacturing of high-value materials in aerospace and power generation gas turbines because of providing a better quality joint and offering many advantages over conventional fusion welding and mechanical joining techniques. In this paper, the published works up-to-date on inertia and linear friction welding of Ni-based superalloys are reviewed with the objective to make clarifications on discrepancies and uncertainties reported in literature regarding issues related to these two friction welding processes as well as microstructure, texture, and mechanical properties of the Ni-based superalloy weldments. Initially, the chemical composition and microstructure of Ni-based superalloys that contribute to the quality of the joint are reviewed briefly. Then, problems related to fusion welding of these alloys are addressed with due consideration of inertia and linear friction welding as alternative techniques. The fundamentals of inertia and linear friction welding processes are analyzed next with emphasis on the bonding mechanisms and evolution of temperature and strain rate across the weld interface. Microstructural features, texture development, residual stresses, and mechanical properties of similar and dissimilar polycrystalline and single crystal Ni-based superalloy weldments are discussed next. Then, application of inertia and linear friction welding for joining Ni-based superalloys and related advantages over fusion welding, mechanical joining, and machining are explained briefly. Finally, present scientific and technological challenges facing inertia and linear friction welding of Ni-based superalloys including those related to modeling of these processes are addressed.

  20. Effect of a Transverse Magnetic Field on Stray Grain Formation of Ni-Based Single Crystal Superalloy During Directional Solidification

    Science.gov (United States)

    Xuan, Weidong; Liu, Huan; Lan, Jian; Li, Chuanjun; Zhong, Yunbo; Li, Xi; Cao, Guanghui; Ren, Zhongming

    2016-12-01

    The effect of a transverse magnetic field on stray grain formation during directional solidification of superalloy was investigated. Experimental results indicated that the transverse magnetic field effectively suppressed the stray grain formation on the side the primary dendrite diverges from the mold wall. Moreover, the quenched experimental results indicated that the solid/liquid interface shape was obviously changed in a transverse magnetic field. The effect of a transverse magnetic field on stray grain formation was discussed.

  1. Atom probe tomography of secondary γ′ precipitation in a single crystal Ni-based superalloy after isothermal aging at 1100 °C

    Energy Technology Data Exchange (ETDEWEB)

    Tan, X.P., E-mail: xptan1985@gmail.com [IM 2NP, UMR 7334 CNRS, Université Aix-Marseille, 13397 Marseille Cedex 20 (France); Mangelinck, D.; Perrin-Pellegrino, C. [IM 2NP, UMR 7334 CNRS, Université Aix-Marseille, 13397 Marseille Cedex 20 (France); Rougier, L. [LSMX, MXG, Ecole Polytechnique Fédérale de Lausanne, 1015 Lausanne (Switzerland); Gandin, Ch.-A. [CEMEF, UMR 7635 CNRS, MINES ParisTech, 06904 Sophia Antipolis (France); Jacot, A. [LSMX, MXG, Ecole Polytechnique Fédérale de Lausanne, 1015 Lausanne (Switzerland); Ponsen, D.; Jaquet, V. [Snecma-SAFRAN Group, Service YQGC, 92702 Colombes (France)

    2014-10-25

    Highlights: • Bimodal size distribution of γ′ precipitates occurs after isothermal aging at 1100 °C. • Characterization of secondary γ′ by atom probe tomography. • It is proposed that the secondary γ′ occurs via a non-classical nucleation. • The coarsening of secondary γ′ precipitates well obeys the classical LSW theory. - Abstract: Secondary γ′ precipitation in a commercial single crystal Ni-based superalloy after the 1100 °C isothermal aging has been investigated by atom probe tomography. After the isothermal aging for 300 s, 1800 s and 3600 s, a bimodal size distribution of larger primary γ′ precipitates and numerous smaller secondary γ′ precipitates was obtained. It is proposed that the secondary γ′ precipitated via a non-classical nucleation mode. The coarsening of secondary γ′ precipitates well obeys the classical LSW theory.

  2. Wrought cobalt- base superalloys

    Science.gov (United States)

    Klarstrom, D. L.

    1993-08-01

    Wrought cobalt-base superalloys are used extensively in gas turbine engines because of their excellent high-temperature creep and fatigue strengths and resistance to hot corrosion attack. In addition, the unique character of the oxide scales that form on some of the alloys provides outstanding resistance to high-temperature sliding wear. This article provides a review of the evolutionary development of wrought cobalt-base alloys in terms of alloy design and physical metallurgy. The topics include solid-so-lution strengthening, carbide precipitation characteristics, and attempts to introduce age hardening. The use of PHACOMP to enhance thermal stability characteristics and the incorporation of rare-earth ele-ments to improve oxidation resistance is also reviewed and discussed. The further development of cobalt-base superalloys has been severely hampered by past political events, which have accentuated the strategic vulnerability of cobalt as a base or as an alloying element. Consequently, alternative alloys have been developed that use little or no cobalt. One such alternative, Haynes® 230TMalloy, is discussed briefly.

  3. Development of an experimental setup for testing the properties of γ/γ' superalloys

    Science.gov (United States)

    Christophe, Siret; Bernard, Viguier; Claude, Salabura Jean; Eric, Andrieu; Sandrine, Lesterlin

    2010-07-01

    Certification tests on turboshaft engines for helicopters can expose components as high pressure turbine blades to very high temperature during short time periods. To simulate these complex temperature and mechanical stress loadings and to study dimensional and microstructural stability under severe testing conditions, an experimental set-up has been recently developed. In this paper, we first present this new device and describe its performances. Then, the device is used to study the effect of heating procedure on creep results at 1200°C and rafting during primary creep on the single crystal nickel-based superalloy MC2.

  4. The role of stress relaxation and creep during high temperature deformation in Ni-base single crystal superalloys – Implications to strain build-up during directional solidification

    International Nuclear Information System (INIS)

    D'Souza, Neil; Kelleher, Joe; Qiu, Chunlei; Zhang, Shu-Yan; Gardner, Sam; Jones, Robert E.; Putman, Duncan; Panwisawas, Chinnapat

    2016-01-01

    The study of high temperature deformation of Ni-base superalloys finds a number of applications. In this study we consider how stress/strain resulting from directional solidification can be alleviated through phenomena such as relaxation and how this can be measured. Based on a modelling study, a range of stresses between 550 and 650 MPa were chosen for tensile testing at 900 °C in the Ni-base superalloy, CMSX4. In-situ neutron diffractometry together with ex-situ transmission electron microscopy have been used to study relaxation occurring during high-temperature deformation. The behaviour of (100) and (200) lattice strains with macroscopic stress has been quantitatively analysed for single crystals with axial orientations within 5° from [100]. The (200) γ+γ / fundamental peak has been used to relate the decay in applied macroscopic stress with lattice strain. At high stresses (above 600 MPa), relaxation was particularly pronounced with an immediate appreciable decay in lattice strain (and stress) within 20 min. At lower stresses, significant relaxation is only observed after prolonged hold. Relaxation occurs in both γ and γ / , as confirmed by presence of dislocations within both phases and it was also with minimal lattice rotation (<3°). Also, the decrease in lattice strain from relaxation was at least two/threefold lower than the creep strain, obtained from sample elongation. It is shown that in modelling of strain during solidification, it is important to consider the relaxation of lattice strain, rather than just creep. Implications of this study to the critical plastic strain for re-crystallisation are addressed.

  5. Precipitation in solid solution and structural transformations in single crystals of high rhenium ruthenium-containing nickel superalloys at high-temperature creep

    Energy Technology Data Exchange (ETDEWEB)

    Alekseev, A.A.; Petrushin, N.V.; Zaitsev, D.V.; Treninkov, I.A.; Filonova, E.V. [All-Russian Scientific Research Institute of Aviation Materials (VIAM), Moscow (Russian Federation)

    2010-07-01

    The phase composition and structure of single crystals of two superalloys (alloy 1 and alloy 2) were investigated in this work. For alloy 1 (Re - 9 wt%) the kinetics of precipitation in solid solution at heat treatment (HT) was investigated. TEM and X-Ray examinations have revealed that during HT rhombic phase (R-phase) precipitation (Immm class (BCR)) occurs. The TTT diagram is plotted, it contains the time-temperature area of the existence of R-phase particles. The element content of R-phase is identified (at. %): Re- 51.5; Co- 23.5; Cr- 14.8; Mo- 4.2; W- 3.3; Ta- 2.7. For alloy 2 (Re - 6.5 wt %, Ru - 4 wt %) structural transformations at high-temperature creep are investigated. By dark-field TEM methods it is established, that in alloy 2 the additional phase with a rhombic lattice is formed during creep. Particles of this phase precipitate in {gamma}-phase and their quantity increases during high-temperature creep. It is revealed that during creep 3-D dislocation network is formed in {gamma}-phase. At the third stage of creep the process of inversion structure formation is observed in the alloy, i.e. {gamma}'-phase becomes a matrix. Thus during modeling creep the volume fraction of {gamma}'-phase in the samples increases from 30% (at creep duration of 200 hrs) up to 55% (at 500 hrs). The processes of structure formation in Re and Ru-containing nickel superalloys are strongly affected by decomposition of solid solution during high-temperature creep that includes precipitation of additional TCP-phases. (orig.)

  6. Computational Design and Prototype Evaluation of Aluminide-Strengthened Ferritic Superalloys for Power-Generating Turbine Applications up to 1,033 K

    Energy Technology Data Exchange (ETDEWEB)

    Peter Liaw; Gautam Ghosh; Mark Asta; Morris Fine; Chain Liu

    2010-04-30

    The objective of the proposed research is to utilize modern computational tools, integrated with focused experiments, to design innovative ferritic NiAl-strengthened superalloys for fossil-energy applications at temperatures up to 1,033 K. Specifically, the computational alloy design aims toward (1) a steady-state creep rate of approximately 3 x 10{sup -11} s{sup -1} at a temperature of 1,033 K and a stress level of 35 MPa, (2) a ductility of 10% at room temperature, and (3) good oxidation and corrosion resistance at 1,033 K. The research yielded many outstanding research results, including (1) impurity-diffusion coefficients in {alpha} Fe have been calculated by first principles for a variety of solute species; (2) the precipitates were characterized by the transmission-electron microscopy (TEM) and analytical-electron microscopy (AEM), and the elemental partitioning has been determined; (3) a bending ductility of more than 5% has been achieved in the unrolled materials; and (4) optimal compositions with minimal secondary creep rates at 973 K have been determined. Impurity diffusivities in {alpha} Fe have been calculated within the formalisms of a harmonic transition-state theory and Le Claire nine-frequency model for vacancy-mediated diffusion. Calculated diffusion coefficients for Mo and W impurities are comparable to or larger than that for Fe self-diffusion. Calculated activation energies for Ta and Hf impurities suggest that these solutes should display impurity-diffusion coefficients larger than that for self-diffusion in the body-centered cubic Fe. Preliminary mechanical-property studies identified the alloy Fe-6.5Al-10Ni-10Cr-3.4Mo-0.25Zr-0.005B (FBB-8) in weight percent (wt.%) for detailed investigations. This alloy shows precipitation of NiAl particles with an average diameter of 130 nm. In conjunction with the computational alloy design, selected experiments are performed to investigate the effect of the Al content on the ductility and creep of

  7. Isothermal Low Cycle Fatigue of Uncoated and Coated Nickel-Base Superalloys

    International Nuclear Information System (INIS)

    Stekovic, Svjetlana

    2004-01-01

    High strength nickel-base superalloys have been used in turbine blades for many years because of their superior performance at high temperatures. However, the superalloys have limited oxidation and corrosion resistance and to solve this problem, protective coatings are deposited on the surface of the superalloys. The positive effect of coatings is based on protecting the surface zone in contact with hot gas atmosphere with elements like aluminium, chromium, which form a thermodynamically stable oxide layer that acts as a diffusion barrier to slow down the reaction between the substrate material and the aggressive environment. There are also other degradation mechanisms that affect nickel-base superalloys such as aging of microstructure, fatigue and creep. Long-term aging in metallic coating results in the changes of mechanical properties due to the significant interdiffusion of the main alloying elements between substrate and coatings. However, application of the coatings has mechanical side effects, the significance of which is not yet fully investigated. This work covers a study on the fatigue behaviour of a polycrystalline, IN792. and two single crystal nickel-base superalloys, CMSX-4 and SCB, coated with three different coatings. an overlay coating AMDRY997, a platinum aluminide modified diffusion coating RT22 and an innovative coating with an interdiffusion harrier of NiW called IC1, under low cycle fatigue loading conditions. Both low cycle fatigue properties, cyclic strain and stress response and fracture behaviour of the uncoated, coated and long-term aged coated specimens are presented. The main conclusions are that at 500 deg C the presence of the coatings have, in most cases, reduced the fatigue lives of the nickel-base substrates while at 900 deg C the coatings do improve the fatigue lives of the superalloys except RT22 coated on some superalloys and under certain test conditions. The reduction of the fatigue life at 500 deg C can be related to early

  8. Fatigue studies of superalloys in Japan

    International Nuclear Information System (INIS)

    Kitagawa, Masaki

    1985-01-01

    In the past 15 years, several national projects were advanced to develop high temperature machinery, such as high temperature gas-cooled reactors, gas turbines and fusion reactors. Before, the studies on the strength of superalloys were rarely carried out, however, by the above research works, superalloys are in rapid progress. Because these machinery are subjected to temperature cycles and vibration stress, the fatigue failure is the main concern in the safety analysis of the components. The purpose of this paper is to summarize the present status of the fatigue research on the alloys for high temperature use in Japan. The superalloys used for gas turbine and HTGR components are listed, and the materials tested were mostly the alloys of nickel base, cobalt base or iron base. In the above national projects, the main purpose was to clarify the high temperature properties including fatigue properties, to develop the method of forecasting the life span and to develop better materials. As the topics about the fatigue research on superalloys, the development of the method for forecasting the life span, the effect of directional solidification, coating and HIP process on the fatigue strength of gas turbine materials, the effect of helium and aging on the fatigue strength of HTGR materials, the fatigue strength of weldment of HTGR materials and others are reported. (Kako, I.)

  9. Analysis of stray grain formation in single crystal CMSX-4 superalloy; Analyse der Bildung von Fehlkoernern in einer einkristallinen CMSX-4-Superlegierung

    Energy Technology Data Exchange (ETDEWEB)

    Chmiela, Bartosz; Sozanska, Maria; Cwajna, Jan [Silesian Univ. of Technology, Katowice (Poland). Dept. of Materials Science; Szeliga, Dariusz [Rzeszow Univ. of Technology (Poland). Dept. of Materials Science; Jarczyk, Jerzy [ALD Vacuum Technologies, Hanau (Germany)

    2013-08-01

    Modern single crystal (SX) turbine blades are fabricated by directional solidification using a grain selector. The grain selection process was investigated by numerical simulation and verified by the experiment. A coupled ProCAST and cellular automaton finite element (CAFE) model was used in this study. According to the latest literature data, we designed the grain selector. Simulation confirmed an optimal grain selection efficiency of the applied selector geometry. The obtained experimental results reveal the possibility of stray grain formation in SX castings with a designed selector, in contrast to the simulation results. (orig.)

  10. New concept of composite strengthening in Co-Re based alloys for high temperature applications in gas turbines

    Energy Technology Data Exchange (ETDEWEB)

    Mukherji, D.; Roesler, J.; Fricke, T.; Schmitz, F. [Technische Univ. Braunschweig (DE). Inst. fuer Werkstoffkunde (IfW); Piegert, S. [Siemens AG, Berlin (DE). Energy Sector (F PR GT EN)

    2010-07-01

    High temperature material development is mainly driven by gas turbine needs. Today, Ni-based superalloys are the dominant material class in the hot section of turbines. Material development will continue to push the maximum service temperature of Ni-superalloys upwards. However, this approach has a fundamental limit and can not be sustained indefinitely, as the Ni-superalloys are already used very close to their melting point. Within the frame work of a DFG Forschergruppe program (FOR 727) - ''Beyond Ni-base Superalloys'' - Co-Re based alloys are being developed as a new generation of high temperature materials that can be used at +100 C above single crystal Ni-superalloys. Along with other strengthening concepts, hardening by second phase is explored to develop a two phase composite alloy. With quaternary Co-Re-Cr-Ni alloys we demonstrate this development concept, where Co{sub 2}Re{sub 3}-type {sigma} phase is used in a novel way as the hardening phase. Thermodynamic calculation was used for designing model alloy compositions. (orig.)

  11. Influence of composition on the microstructure and mechanical properties of a nickel-base superalloy single crystal

    Science.gov (United States)

    Nathal, M. V.; Ebert, L. J.

    1984-01-01

    The effects of cobalt, tantalum, and tungsten contents on the microstructure and mechanical properties of single crystal Mar-M247 were investigated. Elevated temperature tensile and creep-rupture properties of 001 oriented single crystals were related to microstructural features of the alloys. Substitution of Ni for Co in the high refractory metal alloys increased the lattice mismatch, which was considered to be the cause of the increases in tensile and creep strength. Substitution of Ni for Ta caused large decreases in tensile strength and creep life, consistent with decreases in gamma prime volume fraction, lattice mismatch, and solid solution hardening. Substitution of W for Ta resulted in decreased life at high stresses, which was related to small decreases in mismatch and volume fraction. However, the W substitution resulted in improved life at low stresses, which was related to solid solution strengthening by W.

  12. Stress coarsening of gamma-prime and its influence on creep properties of a single crystal superalloy

    International Nuclear Information System (INIS)

    Pearson, D.D.; Lemkey, F.D.; Kear, B.H.

    1980-01-01

    The effect of stress annealing on the gamma-prime morphology in single crystals of a Ni-13Al-9Mo-2Ta alloy is examined. It is found that a crystal subjected to tensile creep in the 100 line orientation develops platelets, or rafts, of gamma-prime in orientations perpendicular to the applied stress. Due to the large negative gamma/gamma-prime misfit (about 0.7%) in this alloy, the gamma/gamma-prime interfaces feature high-density misfit dislocations. Under a stress of 207 MPa at 1038 C, the rafted gamma-prime structure exhibits a rupture life of over 400 hr as compared with 100 hr for unrafted material

  13. Simulation of stray grain formation at the platform during Ni-base single crystal superalloy DD403 casting

    Directory of Open Access Journals (Sweden)

    Si-feng Gao

    2015-03-01

    Full Text Available The mechanism of stray grain formation at the platform of turbine blade simulator and the effect of withdrawal rate (V on the stray grain phenomenon have been investigated using a macro-scale ProCAST coupled with a 3D Cellular Automaton Finite Element (CAFE model. The results indicate that the stray grains nucleate at the edges of platform at V =150 μm·s-1 and 200 μm·s-1. Using ProCAST computer simulation software, it was proven that the stray grain formation is significantly dependent on the undercooling and the temperature field distribution in the platform. The macroscopic curvature of the liquidus isotherm becomes markedly concave with an increase in the withdrawal rate. The probability of stray grain formation at the edges of platform can be increased by increasing the withdrawal rate in the range of 70 μm·s-1 to 200 μm·s-1.

  14. Recent trends in superalloys research for critical aero-engine components

    Energy Technology Data Exchange (ETDEWEB)

    Remy, Luc [Mine ParisTech, CNRS UMR 7633, 91 - Evry (France). Centre des Materiaux; Guedou, Jean-Yves [Snecma Safran Group, Moissy-Cramayel (France). Materials and Processes Dept.

    2010-07-01

    This paper is a brief survey of common research activity on superalloys for aero-engines between Snecma and Mines ParisTech Centre des Materiaux during recent years. First in disks applications, the development of new powder metallurgy superalloys is shown. Then grain boundary engineering is investigated in a wrought superalloy. Secondly, design oriented research on single crystals blades is shown: a damage model for low cycle fatigue is used for life prediction when cracks initiated at casting pores. The methodology developed for assessing coating life is illustrated for thermal barrier coating deposited on AMI single crystal superalloy. (orig.)

  15. The creep deformation behavior of a single-crystal Co–Al–W-base superalloy at 900 °C

    Energy Technology Data Exchange (ETDEWEB)

    Shi, L.; Yu, J.J., E-mail: jjyu@imr.ac.cn; Cui, C.Y.; Sun, X.F.

    2015-05-21

    The creep deformation behavior of a single-crystal Co–Al–W–Ni–Cr–Ta alloy with low tungsten content has been studied at stresses between 275 and 310 MPa at 900 °C. The alloy exhibits comparable creep strength with that of Co–Al–W-base alloys containing more tungsten. The creep deformation consists of three stages, the primary stage, the steady-state stage and the tertiary stage, when described by the creep strain rate versus time curve. At 900 °C, γ′ precipitates tend to raft along the direction of applied tensile stress in the steady-state creep stage and a topologically inverted and rafting γ/γ′ microstructure is formed in the tertiary stage. The main deformation mechanism in the primary creep stage is dislocation shearing of γ′ precipitates, and in the following creep stages, the dominant deformation mechanism is dislocations bypassing γ′ precipitates.

  16. The creep deformation behavior of a single-crystal Co–Al–W-base superalloy at 900 °C

    International Nuclear Information System (INIS)

    Shi, L.; Yu, J.J.; Cui, C.Y.; Sun, X.F.

    2015-01-01

    The creep deformation behavior of a single-crystal Co–Al–W–Ni–Cr–Ta alloy with low tungsten content has been studied at stresses between 275 and 310 MPa at 900 °C. The alloy exhibits comparable creep strength with that of Co–Al–W-base alloys containing more tungsten. The creep deformation consists of three stages, the primary stage, the steady-state stage and the tertiary stage, when described by the creep strain rate versus time curve. At 900 °C, γ′ precipitates tend to raft along the direction of applied tensile stress in the steady-state creep stage and a topologically inverted and rafting γ/γ′ microstructure is formed in the tertiary stage. The main deformation mechanism in the primary creep stage is dislocation shearing of γ′ precipitates, and in the following creep stages, the dominant deformation mechanism is dislocations bypassing γ′ precipitates

  17. In Situ Investigation with Neutrons on the Evolution of γ ' Precipitates at High Temperatures in a Single Crystal Ni-Base Superalloy

    Czech Academy of Sciences Publication Activity Database

    Gilles, R.; Mukherji, D.; Eckerlebe, H.; Strunz, Pavel; Rösler, J.

    2011-01-01

    Roč. 278, - (2011), s. 42-47 ISSN 1022-6680 R&D Projects: GA ČR(CZ) GAP204/11/1453 Institutional research plan: CEZ:AV0Z10480505 Keywords : neutron scattering * SANS * superalloys Subject RIV: BM - Solid Matter Physics ; Magnetism

  18. Simulation and Experimental Studies on Grain Selection and Structure Design of the Spiral Selector for Casting Single Crystal Ni-Based Superalloy

    Directory of Open Access Journals (Sweden)

    Hang Zhang

    2017-10-01

    Full Text Available Grain selection is an important process in single crystal turbine blades manufacturing. Selector structure is a control factor of grain selection, as well as directional solidification (DS. In this study, the grain selection and structure design of the spiral selector were investigated through experimentation and simulation. A heat transfer model and a 3D microstructure growth model were established based on the Cellular automaton-Finite difference (CA-FD method for the grain selector. Consequently, the temperature field, the microstructure and the grain orientation distribution were simulated and further verified. The average error of the temperature result was less than 1.5%. The grain selection mechanisms were further analyzed and validated through simulations. The structural design specifications of the selector were suggested based on the two grain selection effects. The structural parameters of the spiral selector, namely, the spiral tunnel diameter (dw, the spiral pitch (hb and the spiral diameter (hs, were studied and the design criteria of these parameters were proposed. The experimental and simulation results demonstrated that the improved selector could accurately and efficiently produce a single crystal structure.

  19. Simulation and Experimental Studies on Grain Selection and Structure Design of the Spiral Selector for Casting Single Crystal Ni-Based Superalloy.

    Science.gov (United States)

    Zhang, Hang; Xu, Qingyan

    2017-10-27

    Grain selection is an important process in single crystal turbine blades manufacturing. Selector structure is a control factor of grain selection, as well as directional solidification (DS). In this study, the grain selection and structure design of the spiral selector were investigated through experimentation and simulation. A heat transfer model and a 3D microstructure growth model were established based on the Cellular automaton-Finite difference (CA-FD) method for the grain selector. Consequently, the temperature field, the microstructure and the grain orientation distribution were simulated and further verified. The average error of the temperature result was less than 1.5%. The grain selection mechanisms were further analyzed and validated through simulations. The structural design specifications of the selector were suggested based on the two grain selection effects. The structural parameters of the spiral selector, namely, the spiral tunnel diameter ( d w ), the spiral pitch ( h b ) and the spiral diameter ( h s ), were studied and the design criteria of these parameters were proposed. The experimental and simulation results demonstrated that the improved selector could accurately and efficiently produce a single crystal structure.

  20. Multi-scale simulation of single crystal hollow turbine blade manufactured by liquid metal cooling process

    Directory of Open Access Journals (Sweden)

    Xuewei Yan

    2018-02-01

    Full Text Available Liquid metal cooling (LMC process as a powerful directional solidification (DS technique is prospectively used to manufacture single crystal (SC turbine blades. An understanding of the temperature distribution and microstructure evolution in LMC process is required in order to improve the properties of the blades. For this reason, a multi-scale model coupling with the temperature field, grain growth and solute diffusion was established. The temperature distribution and mushy zone evolution of the hollow blade was simulated and discussed. According to the simulation results, the mushy zone might be convex and ahead of the ceramic beads at a lower withdrawal rate, while it will be concave and laggard at a higher withdrawal rate, and a uniform and horizontal mushy zone will be formed at a medium withdrawal rate. Grain growth of the blade at different withdrawal rates was also investigated. Single crystal structures were all selected out at three different withdrawal rates. Moreover, mis-orientation of the grains at 8 mm/min reached ~30°, while it was ~5° and ~15° at 10 mm/min and 12 mm/min, respectively. The model for predicting dendritic morphology was verified by corresponding experiment. Large scale for 2D dendritic distribution in the whole sections was investigated by experiment and simulation, and they presented a well agreement with each other. Keywords: Hollow blade, Single crystal, Multi-scale simulation, Liquid metal cooling

  1. Characterization and Modeling of Residual Stress and Cold Work Evolution in PM Nickel Base Disk Superalloy, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Powder metal (PM) superalloys used for critical compressor and turbine disk applications are prone to fatigue failures in stress concentration features such as holes...

  2. Understanding the roles of the strategic element cobalt in nickel base superalloys

    Science.gov (United States)

    Stephens, J. R.; Dreshfield, R. L.

    1983-01-01

    The United States imports over 90% of its cobalt, chromium, columbium, and tantalum, all key elements in high temperature nickel base superalloys for aircraft gas turbine disks and airfoils. Research progress in understanding the roles of cobalt and some possible substitutes effects on microstructure, mechanical properties, and environmental resistance of turbine alloys is discussed.

  3. Heat treatment for superalloy

    Science.gov (United States)

    Harf, Fredric H. (Inventor)

    1987-01-01

    A cobalt-free nickel-base superalloy composed of in weight % 15 Cr-5 Mo-3.5 Ti-4 Al-0.07 (max) C-remainder Ni is given a modified heat treatment. With this heat treatment the cobalt-free alloy achieves certain of the mechanical properties of the corresponding cobalt-containing nickel-base superalloy at 1200 F (650 C). Thus, strategic cobalt can be replaced by nickel in the alloy.

  4. Influences of MCrAlY coatings on oxidation resistance of single crystal superalloy DD98M and their inter-diffusion behaviors

    Energy Technology Data Exchange (ETDEWEB)

    Shi, Long [School of Materials and Metallurgy, Northeastern University, Shenyang 110819 (China); Laboratory for Corrosion and Protection, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016 (China); Xin, Li, E-mail: xli@imr.ac.cn [Laboratory for Corrosion and Protection, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016 (China); Wang, Xinyue; Wang, Xiaolan; Wei, Hua; Zhu, Shenglong; Wang, Fuhui [Laboratory for Corrosion and Protection, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016 (China)

    2015-11-15

    Oxidation and interdiffusion behaviors of Ni-based single crystal superalloy DD98M with nominal compositions Ni–5.0Co–6.0Cr–6.3Al–6.0W–2.0Mo–6.0Ta–1.0Ti (in wt.%) and two types of MCrAlY coatings at 1000 °C and 1050 °C were investigated. Complex oxides formed on the surface of DD98M alloy when oxidized at 1000 °C and 1050 °C, which stratified, cracked and spalled. The faceted-like AlN and the particle-like and strip-like TiN formed in the alloy. The application of the NiCrAlY and NiCoCrAlYHfSi coatings greatly improved the oxidation resistance of DD98M alloy. After 500 h oxidation, α-Al{sub 2}O{sub 3} was still the dominate phase in the oxide scales formed on the coated specimens. The adhesion of the oxide scale on the NiCoCrAlYHfSi coating was much better than that on the NiCrAlY coating. Interdiffusion occurred between the coatings and the substrate, which led to the formation of the IDZ and SRZ. The IDZ of the NiCrAlY coated specimen was composed of γ phase and Al- and Ta-rich γ′ phase. The γ′ phase in the IDZ accommodated most of the inward diffusing aluminum, so the SRZ formation was suppressed when oxidized at 1050 °C. However the formation of SRZ with μ-TCP still occurred when oxidized at 1000 °C probably due to the low solubility and slow diffusion rate of the alloying elements at lower temperature. The IDZ of the NiCoCrAlYHfSi coated specimen was a single γ phase. A large amount of μ-TCP precipitated in the SRZ of the NiCoCrAlYHfSi coated specimen when oxidized at 1000 °C and 1050 °C. It can be concluded coating composition has a significant effect on the development of the IDZ and SRZ. Thermal exposure temperature also has influences on the formation of the SRZ. The mechanism of SRZ formation and TCP precipitation are discussed. - Graphical abstract: The TEM micrograph of the IDZ and SRZ of the NiCoCrAlYHfSi-coated specimen oxidized at 1050 °C for 100 h and the respective diffraction patterns of the needle-like and the

  5. Low-Cobalt Powder-Metallurgy Superalloy

    Science.gov (United States)

    Harf, F. H.

    1986-01-01

    Highly-stressed jet-engine parts made with less cobalt. Udimet 700* (or equivalent) is common nickel-based superalloy used in hot sections of jet engines for many years. This alloy, while normally used in wrought condition, also gas-atomized into prealloyed powder-metallurgy (PM) product. Product can be consolidated by hot isostatically pressing (HIPPM condition) and formed into parts such as turbine disk. Such jet-engine disks "see" both high stresses and temperatures to 1,400 degrees F (760 degrees C).

  6. Microstructure and mechanical properties of high temperature creep resisting superalloy René 77 modified CoAl2O4

    OpenAIRE

    M. Poręba; J. Sieniawski; M. Zielinska

    2007-01-01

    Purpose: Nickel based superalloys are widely used for turbine and stator blades of compressor in aero-engines. The objective of this work is to determine the influence of the inoculant’s content (cobalt aluminate) in the surface layer of the ceramic mould on the microstructure and mechanical properties of high temperature creep resisting superalloy René 77.Design/methodology/approach: Experimentally investigated castings have been made of commercially produced nickel superalloy René 77. Stepp...

  7. Simulation of stray grain formation in Ni-base single crystal turbine blades fabricated by HRS and LMC techniques

    Directory of Open Access Journals (Sweden)

    Ya-feng Li

    2017-03-01

    Full Text Available The simulation models of the thermal and macrostructural evolutions during directional solidification of Ni-base single crystal (SX turbine blades under high rate solidification (HRS and liquid metal cooling (LMC have been constructed using ProCAST software, coupled with a 3D Cellular Automaton Finite Element (CAFE model. The models were used to investigate the tendencies of stray grain (SG formation in the platform region of turbine blades fabricated by HRS and LMC techniques. The results reveal that the LMC technique can prohibit SG formation by smoothing the concaved isotherm and in turn alleviating the undercooling in the platform ends to let the dendrites fill up the undercooled zone before SG nucleation. The simulation results agreed well with the experimental results, indicating that these models could be used to analyze the macrostructural evolution or to optimize process parameters to suppress SG formation. Using these models, the critical withdrawal rate for casting SX turbine blades without SG formation were determined to be around 75 μm·s-1 and 100 μm·s-1 for HRS and LMC respectively, suggesting that LMC can be used as an efficient technique in fabricating SX turbine blades without any SG defect formation.

  8. Development of a Refractory High Entropy Superalloy

    Directory of Open Access Journals (Sweden)

    Oleg N. Senkov

    2016-03-01

    Full Text Available Microstructure, phase composition and mechanical properties of a refractory high entropy superalloy, AlMo0.5NbTa0.5TiZr, are reported in this work. The alloy consists of a nano-scale mixture of two phases produced by the decomposition from a high temperature body-centered cubic (BCC phase. The first phase is present in the form of cuboidal-shaped nano-precipitates aligned in rows along <100>-type directions, has a disordered BCC crystal structure with the lattice parameter a1 = 326.9 ± 0.5 pm and is rich in Mo, Nb and Ta. The second phase is present in the form of channels between the cuboidal nano-precipitates, has an ordered B2 crystal structure with the lattice parameter a2 = 330.4 ± 0.5 pm and is rich in Al, Ti and Zr. Both phases are coherent and have the same crystallographic orientation within the former grains. The formation of this modulated nano-phase structure is discussed in the framework of nucleation-and-growth and spinodal decomposition mechanisms. The yield strength of this refractory high entropy superalloy is superior to the yield strength of Ni-based superalloys in the temperature range of 20 °C to 1200 °C.

  9. Ion beam analysis of gas turbine blades: evaluation of refurbishment ...

    Indian Academy of Sciences (India)

    sections of turbine blade samples by proton microbeam. In the cross-sections of refurbished and used samples, distinct regions were identified corresponding to the base superalloy, original protection layer and applied coating for refurbishment.

  10. 3D imaging using X-Ray tomography and SEM combined FIB to study non isothermal creep damage of (111) oriented samples of γ / γ ′ nickel base single crystal superalloy MC2

    KAUST Repository

    Jouiad, Mustapha

    2012-01-01

    An unprecedented investigation consisting of the association of X-Ray tomography and Scanning Electron Microscopy combined with Focus Ion Beam (SEM-FIB) is conducted to perform a 3D reconstruction imaging. These techniques are applied to study the non-isothermal creep behavior of close (111) oriented samples of MC2 nickel base superalloys single crystal. The issue here is to develop a strategy to come out with the 3D rafting of γ\\' particles and its interaction whether with dislocation structures or/and with the preexisting voids. This characterization is uncommonly performed away from the conventional studied orientation [001] in order to feed the viscoplastic modeling leading to its improvement by taking into account the crystal anisotropy. The creep tests were performed at two different conditions: classical isothermal tests at 1050°C under 140 MPa and a non isothermal creep test consisting of one overheating at 1200°C and 30 seconds dwell time during the isothermal creep life. The X-Ray tomography shows a great deformation heterogeneity that is pronounced for the non-isothermal tested samples. This deformation localization seems to be linked to the preexisting voids. Nevertheless, for both tested samples, the voids coalescence is the precursor of the observed damage leading to failure. SEM-FIB investigation by means of slice and view technique gives 3D views of the rafted γ\\' particles and shows that γ corridors evolution seems to be the main creep rate controlling parameter. © 2012 Trans Tech Publications, Switzerland.

  11. Solidification behaviour of Ni-base superalloy CMSX-6

    OpenAIRE

    Ma, D.; Meyer Ter Vehn, M.; Busse, P.; Sahm, P.

    1993-01-01

    The solidification behaviour of the single crystal superalloy CMSX-6 has been investigated using directional solidification technique. The longitudinal sections of the quenched samples were taken to identify the solidification structure. The experimentally determined solidification diagram gives the relationship between solidification structure and process parameters. The analysis of the transverse sections yields the solidification sequence and the solid fraction against the temperature decr...

  12. Innovative technologies for powder metallurgy-based disk superalloys: Progress and proposal

    Science.gov (United States)

    Chong-Lin, Jia; Chang-Chun, Ge; Qing-Zhi, Yan

    2016-02-01

    Powder metallurgy (PM) superalloys are an important class of high temperature structural materials, key to the rotating components of aero engines. In the purview of the present challenges associated with PM superalloys, two novel approaches namely, powder preparation and the innovative spray-forming technique (for making turbine disk) are proposed and studied. Subsequently, advanced technologies like electrode-induction-melting gas atomization (EIGA), and spark-plasma discharge spheroidization (SPDS) are introduced, for ceramic-free superalloy powders. Presently, new processing routes are sought after for preparing finer and cleaner raw powders for disk superalloys. The progress of research in spray-formed PM superalloys is first summarized in detail. The spray-formed superalloy disks specifically exhibit excellent mechanical properties. This paper reviews the recent progress in innovative technologies for PM superalloys, with an emphasis on new ideas and approaches, central to the innovation driving techniques like powder processing and spray forming. Project supported by the National Natural Science Foundation of China (Grant Nos. 50974016 and 50071014).

  13. High temperature properties of polycrystalline γ'-strengthened cobalt-base superalloys

    International Nuclear Information System (INIS)

    Bauer, Alexander

    2016-01-01

    The recent discovery of a stable γ ' -phase in Co-based superalloys opened up a pathway for the development of a new high temperature material class, which is similar in microstructure and properties to the modern γ ' -hardened Ni-based superalloys. In this work, the first attempt was done to check the influence of several for Ni-based superalloys typical alloying elements on the properties of the new Co-based superalloys. It became clear that the basic characteristics of the first experimental alloys are similar to those of the γ ' -hardened Ni-based alloys. The results of the multinary experimental alloys show that, based on the insight gained so far, targeted alloy development is possible. These materials have the potential to be used as disc materials in turbines.

  14. Deformation mechanisms in a precipitation-strengthened ferritic superalloy revealed by in situ neutron diffraction studies at elevated temperatures

    International Nuclear Information System (INIS)

    Huang, Shenyan; Gao, Yanfei; An, Ke; Zheng, Lili; Wu, Wei; Teng, Zhenke; Liaw, Peter K.

    2015-01-01

    The ferritic superalloy Fe–10Ni–6.5Al–10Cr–3.4Mo strengthened by ordered (Ni,Fe)Al B2-type precipitates is a candidate material for ultra-supercritical steam turbine applications above 923 K. Despite earlier success in improving its room-temperature ductility, the creep resistance of this material at high temperatures needs to be further improved, which requires a fundamental understanding of the high-temperature deformation mechanisms at the scales of individual phases and grains. In situ neutron diffraction has been utilized to investigate the lattice strain evolution and the microscopic load-sharing mechanisms during tensile deformation of this ferritic superalloy at elevated temperatures. Finite-element simulations based on the crystal plasticity theory are employed and compared with the experimental results, both qualitatively and quantitatively. Based on these interphase and intergranular load-partitioning studies, it is found that the deformation mechanisms change from dislocation slip to those related to dislocation climb, diffusional flow and possibly grain boundary sliding, below and above 873 K, respectively. Insights into microstructural design for enhancing creep resistance are also discussed

  15. Gas metal arc welding in refurbishment of cobalt base superalloys

    Science.gov (United States)

    Shahriary, M. S.; Miladi Gorji, Y.; Kolagar, A. M.

    2017-01-01

    Refurbishments of superalloys which are used in manufacturing gas turbine hot components usually consists of removing cracks and other defects by blending and then repair welding in order to reconstruct damaged area. In this study, the effects of welding parameters on repair of FSX-414 superalloy, as the most applicable cobalt base superalloy in order to manufacture gas turbine nozzles, by use of Gas Metal Arc Welding (GMAW) technic were investigated. Results then were compared by Gas Tungsten Arc Welding (GTAW). Metallographic and SEM studies of the microstructure of the weld and HAZ showed that there are no noticeable defects in the microstructure by use of GMAW. Also, chemical analysis and morphologies of carbide in both methods are similar. Hardness profile of the GM AW structure then also compared with GTAW and no noticeable difference was observed between the profiles. Also, proper tensile properties, compared with GTAW, can be achieved by use of optimum parameters that can be obtained by examining the current and welding speed. Tensile properties of optimized condition of the GMAW then were compared with GTAW. It was seen that the room and high temperature tensile properties of the GMAW structure is very similar and results confirmed that changing the technic did not have any significant influence on the properties.

  16. Rafting in superalloys

    Energy Technology Data Exchange (ETDEWEB)

    Nabarro, F.R.N. [Univ. of Witwatersrand, Johannesburg (South Africa)

    1996-03-01

    The phenomenon of rafting in superalloys is described, with particular reference to modern superalloys with a high volume fraction of the particulate {gamma}{prime} phase. It is shown that in the elastic regime, the thermodynamic driving force for rafting is proportional to the applied stress, to the difference between the lattice parameters of the {gamma} matrix and the {gamma}{prime} particles, and to the difference of their elastic constants. A qualitative argument gives the sign of this driving force, which agrees with that determined by Pineau for a single isolated particle. Drawing on the work of Pollock and Argon and of Socrate and Parks, it is shown that after a plastic strain of the sample of order 2 {times} 10{sup {minus}4}, the driving force is proportional to the product of the applied stress and the lattice misfit, in agreement with the results of the calculations of Socrate and Parks. The rate of rafting is controlled by the diffusion of alloying elements. Here, the tendency of large atoms to move from regions of high hydrostatic pressure to those of low may outweigh the influence of concentration gradients. The deformation of the sample directly produced by rafting is small, of order 4.5 {times} 10{sup {minus}4}. The rafted structure is resistant to creep under low stresses at high temperatures. Under most experimental conditions at relatively high stresses, rafting accelerates creep; this effect may be less pronounced at the small strains acceptable under operational conditions.

  17. Progress in advanced high temperature turbine materials, coatings, and technology

    Science.gov (United States)

    Freche, J. C.; Ault, G. M.

    1978-01-01

    Advanced materials, coatings, and cooling technology is assessed in terms of improved aircraft turbine engine performance. High cycle operating temperatures, lighter structural components, and adequate resistance to the various environmental factors associated with aircraft gas turbine engines are among the factors considered. Emphasis is placed on progress in development of high temperature materials for coating protection against oxidation, hot corrosion and erosion, and in turbine cooling technology. Specific topics discussed include metal matrix composites, superalloys, directionally solidified eutectics, and ceramics.

  18. Heavy duty gas turbines experience with ash-forming fuels

    OpenAIRE

    Molière, M.; Sire, J.

    1993-01-01

    The heavy duty gas turbines operating in power plants can burn various fuels ranging from natural gas to heavy oils. Ash-forming fuels can have detrimental effects on the turbine hardware such as : combustion troubles, erosion, corrosion and fouling by ashes. For decades, progress has been made by the gas turbine industry, especially in the fields of superalloy metallurgy, coating and cooling technology. Furthermore, fuel treatments inspired by the petroleum and marine-engine industries (elec...

  19. DEVELOPMENT AND ASSESSMENT OF COATINGS FOR FUTURE POWER GENERATION TURBINES

    Energy Technology Data Exchange (ETDEWEB)

    Alvin, Maryanne; Klotz, K.; McMordie, B.; Gleeson, B.; Zhu, D.; Warnes, B.; Kang, B.; Tannenbaum, J.

    2012-01-01

    The NETL-Regional University Alliance (RUA) continues to advance technology development critical to turbine manufacturer efforts for achieving DOE Fossil Energy (FE's) Advanced Turbine Program Goals. In conjunction with NETL, Coatings for Industry (CFI), the University of Pittsburgh, NASA GRC, and Corrosion Control Inc., efforts have been focused on development of composite thermal barrier coating (TBC) architectures that consist of an extreme temperature coating, a commercially applied 7-8 YSZ TBC, a reduced cost bond coat, and a diffusion barrier coating that are applied to nickel-based superalloys or single crystal airfoil substrate materials for use at temperatures >1450 C (> 2640 F). Additionally, construction of a unique, high temperature ({approx}1100 C; {approx}2010 F), bench-scale, micro-indentation, nondestructive (NDE) test facility at West Virginia University (WVU) was completed to experimentally address in-situ changes in TBC stiffness during extended cyclic oxidation exposure of coated single crystal coupons in air or steam containing environments. The efforts and technical accomplishments in these areas are presented in the following sections of this paper.

  20. Superalloys. Volume 2. 1977-February 1978 (citations from the NTIS data base). Report for 1977--Feb 78

    International Nuclear Information System (INIS)

    Smith, M.F.

    1978-03-01

    Federally-funded research on cobalt- and nickel-based superalloys is cited. Casting and powder metallurgy of these alloys are covered. Properties such as heat resistance, corrosion resistance, microstructure, fracture, and creep are described. The use of these materials in nuclear reactors, gas turbine parts, and high-temperature equipment is a major part of this compilation

  1. The effect of tantalum and carbon on the structure/properties of a single crystal nickel-base superalloy. M.S. Thesis. Final Report

    Science.gov (United States)

    Nguyen, H. C.

    1984-01-01

    The microstructure, phase chemistry, and creep and hot tensile properties were studied as a function of tantalum and carbon levels in Mar-M247 type single crystal alloys. Microstructural studies showed that several types of carbides (MC, M23C6 and M5C) are present in the normal carbon (0.10 wt % C) alloys after heat treatment. In general, the composition of the MC carbides changes from titanium rich to tantalum rich as the tantalum level in the alloy increases. Small M23C6 carbides are present in all alloys. Tungsten rich M6C carbides are also observed in the alloy containing no tantalum. No carbides are present in the low carbon (0.01 wt % C) alloy series. The morphology of gamma prime is observed to be sensitive to heat treatment and tantalum level in the alloy. Cuboidal gamma prime is present in all the as cast structures. After heat treatment, the gamma prime precipitates tend to have a more spheroidal like morphology, and this tendency increases as the tantalum level decreases. On prolonged aging, the gamma prime reverts back to a cuboidal morphology or under stress at high temperatures, forms a rafted structure. The weight fraction and lattice parameter of the spheroidal gamma prime increases with increasing tantalum content. Changes in the phase chemistry of the gamma prime matrix and gamma prime have also been analyzed using phase extraction techniques. The partitioning ratio decreases for tungsten and aluminum and increases for tantalum as the tantalum content increases for both alloy series; no significant changes occur in the partitioning ratios of the other alloying elements. A reduction in secondary creep rate and an increase in rupture time result from increasing the tantalum content and decreasing the carbon level.

  2. Refractory metal based superalloys

    International Nuclear Information System (INIS)

    Alonso, Paula R.; Vicente, Eduardo E.; Rubiolo, Gerardo H.

    1999-01-01

    Refractory metals are looked as promising materials for primary circuits in fission reactors and even as fusion reactor components. Indeed, superalloys could be developed which take advantage of their high temperature properties together with the benefits of a two- phase (intermetallic compound-refractory metal matrix) coherent structure. In 1993, researchers of the Office National d'Etudes et de Recherches Aerospatiales of France reported the observation of such a coherent structure in the Ta-Ti-Zr-Al-Nb-Mo system although the exact composition is not reported. The intermetallic compound would be Ti 2 AlMo based. However, the formation of this compound and its possible coexistence with a disordered bcc phase in the ternary system Ti-Al-Mo is a controversial subject in the related literature. In this work we develop a technique to obtain homogeneous alloys samples with 50 Ti-25 Al-25 Mo composition. The resulting specimens were characterized by optical and electronic metallography (SEM), microprobe composition measurements (EPMA) and X-ray diffraction (XRD) analyses. The results show the evidence for a bcc (A2→B2) ordering reaction in the Ti-Al-Mo system in the 50 Ti-25 Al-25 Mo composition. (author)

  3. Microstructural Changes during High Temperature Service of a Cobalt-Based Superalloy First Stage Nozzle

    OpenAIRE

    Luna Ramírez, A.; Porcayo-Calderon, J.; Mazur, Z.; Salinas-Bravo, V. M.; Martinez-Gomez, L.

    2016-01-01

    Superalloys are a group of alloys based on nickel, iron, or cobalt, which are used to operate at high temperatures (T > 540°C) and in situations involving very high stresses like in gas turbines, particularly in the manufacture of blades, nozzles, combustors, and discs. Besides keeping its high resistance to temperatures which may approach 85% of their melting temperature, these materials have excellent corrosion resistance and oxidation. However, after long service, these components undergo ...

  4. Fatigue of superalloys and intermetallics

    International Nuclear Information System (INIS)

    Stoloff, N.S.

    1993-01-01

    The fatigue behavior of intermetallic alloys and their composites is contrasted to that of nickel-base superalloys. The roles of microstructure and slip planarity are emphasized. Obstacles to use of intermetallics under cyclic loading conditions are described and future research directions are suggested

  5. Enabling Large Superalloy Parts Using Compact Coprecipitation of γ' and γ''

    Science.gov (United States)

    Detor, Andrew J.; DiDomizio, Richard; Sharghi-Moshtaghin, Reza; Zhou, Ning; Shi, Rongpei; Wang, Yunzhi; McAllister, Donald P.; Mills, Michael J.

    2018-03-01

    Next-generation gas turbines will require disk materials capable of operating at 923 K (650 °C) and above to achieve efficiencies well beyond today's 62 pct benchmark. This temperature requirement marks a critical turning point in materials selection. Current turbine disk alloys, such as 706 and 718, are limited by the stability of their major strengthening phase, γ'', which coarsens rapidly beyond 923 K (650 °C) resulting in significant degradation in properties. More capable γ' strengthened superalloys, such as those used in jet engine disks, are also limited due to the sheer size of gas turbine hardware; the γ' phase overages during the slow cooling rates inherent in processing thick-section parts. In the present work, we address this fundamental gap in available superalloy materials. Through careful control of Al, Ti, and Nb levels, we show that fine (stability of compact coprecipitates. The alloying strategies discussed here enable a new class of superalloys suitable for applications requiring large parts operating at high temperature.

  6. The Compositional Dependence of the Microstructure and Properties of CMSX-4 Superalloys

    NARCIS (Netherlands)

    Yu, H.; Xu, W.; van der Zwaag, S.

    2017-01-01

    The degradation of creep resistance in Ni-based single-crystal superalloys is essentially ascribed to their microstructural evolution. Yet there is a lack of work that manages to predict (even qualitatively) the effect of alloying element concentrations on the rate of microstructural degradation.

  7. High temperature properties of polycrystalline γ{sup '}-strengthened cobalt-base superalloys; Hochtemperatureigenschaften polykristalliner γ{sup '}-gehaerteter Kobaltbasis-Superlegierungen

    Energy Technology Data Exchange (ETDEWEB)

    Bauer, Alexander

    2016-07-01

    The recent discovery of a stable γ{sup '}-phase in Co-based superalloys opened up a pathway for the development of a new high temperature material class, which is similar in microstructure and properties to the modern γ{sup '}-hardened Ni-based superalloys. In this work, the first attempt was done to check the influence of several for Ni-based superalloys typical alloying elements on the properties of the new Co-based superalloys. It became clear that the basic characteristics of the first experimental alloys are similar to those of the γ{sup '}-hardened Ni-based alloys. The results of the multinary experimental alloys show that, based on the insight gained so far, targeted alloy development is possible. These materials have the potential to be used as disc materials in turbines.

  8. Computer Aided Design of Advanced Turbine Airfoil Alloys for Industrial Gas Turbines in Coal Fired Environments

    Energy Technology Data Exchange (ETDEWEB)

    G.E. Fuchs

    2007-12-31

    Recent initiatives for fuel flexibility, increased efficiency and decreased emissions in power generating industrial gas turbines (IGT's), have highlighted the need for the development of techniques to produce large single crystal or columnar grained, directionally solidified Ni-base superalloy turbine blades and vanes. In order to address the technical difficulties of producing large single crystal components, a program has been initiated to, using computational materials science, better understand how alloy composition in potential IGT alloys and solidification conditions during processing, effect castability, defect formation and environmental resistance. This program will help to identify potential routes for the development of high strength, corrosion resistant airfoil/vane alloys, which would be a benefit to all IGT's, including small IGT's and even aerospace gas turbines. During the first year, collaboration with Siemens Power Corporation (SPC), Rolls-Royce, Howmet and Solar Turbines has identified and evaluated about 50 alloy compositions that are of interest for this potential application. In addition, alloy modifications to an existing alloy (CMSX-4) were also evaluated. Collaborating with SPC and using computational software at SPC to evaluate about 50 alloy compositions identified 5 candidate alloys for experimental evaluation. The results obtained from the experimentally determined phase transformation temperatures did not compare well to the calculated values in many cases. The effects of small additions of boundary strengtheners (i.e., C, B and N) to CMSX-4 were also examined. The calculated phase transformation temperatures were somewhat closer to the experimentally determined values than for the 5 candidate alloys, discussed above. The calculated partitioning coefficients were similar for all of the CMSX-4 alloys, similar to the experimentally determined segregation behavior. In general, it appears that computational materials

  9. SUPERALLOYS: AN INTRODUCTION WITH THERMAL ANALYSIS ...

    African Journals Online (AJOL)

    2015-09-01

    Sep 1, 2015 ... J Fundam Appl Sci. 2015, 7(3), 364-374. 365 resistance, corrosion and oxidation resistance. The base metal is usually nickel, cobalt or nickel- iron. Superalloys are classified into three classes; nickel-based, cobalt-based and iron-based superalloys. These alloys are commonly used in the aerospace or gas ...

  10. Implementation of a structural dependent model for the superalloy IN738LC in ABAQUS-code

    International Nuclear Information System (INIS)

    Wolters, J.; Betten, J.; Penkalla, H.J.

    1994-05-01

    Superalloys, mainly consisting of nickel, are used for applications in aerospace as well as in stationary gas turbines. In the temperature range above 800 C the blades, which are manufactured of these superalloys, are subjected to high centrifugal forces and thermal induced loads. For computer based analysis of the thermo-mechanical behaviour of the blades models for the stress-strain behaviour are necessary. These models have to give a reliable description of the stress-strain behaviour, with emphasis on inelastic affects. The implementation of the model in finite element codes requires a numerical treatment of the constitutive equations with respect to the given interface of the used code. In this paper constitutive equations for the superalloy IN738LC are presented and the implementation in the finite element code ABAQUS with the numerical preparation of the model is described. In order to validate the model calculations were performed for simple uniaxial loading conditions as well as for a complete cross section of a turbine blade under combined thermal and mechanical loading. The achieved results were compared with those of additional calculations by using ABAQUS, including Norton's law, which was already implemented in this code. (orig.) [de

  11. N18, powder metallurgy superalloy for disks: Development and applications

    Energy Technology Data Exchange (ETDEWEB)

    Guedou, J.Y.; Lautridou, J.C.; Honnorat, Y. (SNECMA, Evry (France). Materials and Processes Dept.)

    1993-08-01

    The preliminary industrial development of a powder metallurgy (PM) superalloy, designated N18, for disk applications has been completed. This alloy exhibits good overall mechanical properties after appropriate processing of the material. These properties have been measured on both isothermally forged and extruded billets, as well as on specimens cut from actual parts. The temperature capability of the alloy is about 700 C for long-term applications and approximately 750 C for short-term use because of microstructural instability. Further improvements in creep and crack propagation properties, without significant reduction in tensile strength, are possible through appropriate thermomechanical processing, which results in a large controlled grain size. Spin pit tests on subscale disks have confirmed that the N18 alloy has a higher resistance than PM Astrology and is therefore an excellent alloy for modern turbine disk applications.

  12. A constitutive model with damage for high temperature superalloys

    Science.gov (United States)

    Sherwood, J. A.; Stouffer, D. C.

    1988-01-01

    A unified constitutive model is searched for that is applicable for high temperature superalloys used in modern gas turbines. Two unified inelastic state variable constitutive models were evaluated for use with the damage parameter proposed by Kachanov. The first is a model (Bodner, Partom) in which hardening is modeled through the use of a single state variable that is similar to drag stress. The other (Ramaswamy) employs both a drag stress and back stress. The extension was successful for predicting the tensile, creep, fatigue, torsional and nonproportional response of Rene' 80 at several temperatures. In both formulations, a cumulative damage parameter is introduced to model the changes in material properties due to the formation of microcracks and microvoids that ultimately produce a macroscopic crack. A back stress/drag stress/damage model was evaluated for Rene' 95 at 1200 F and is shown to predict the tensile, creep, and cyclic loading responses reasonably well.

  13. Cobalt-free nickel-base superalloys

    International Nuclear Information System (INIS)

    Koizumi, Yutaka; Yamazaki, Michio; Harada, Hiroshi

    1979-01-01

    Cobalt-free nickel-base cast superalloys have been developed. Cobalt is considered to be a beneficial element to strengthen the alloys but should be eliminated in alloys to be used for direct cycle helium turbine driven by helium gas from HTGR (high temp. gas reactor). The elimination of cobalt is required to avoid the formation of radioactive 60 Co from the debris or scales of the alloys. Cobalt-free alloys are also desirable from another viewpoint, i.e. recently the shortage of the element has become a serious problem in industry. Cobalt-free Mar-M200 type alloys modified by the additions of 0.15 - 0.2 wt% B and 1 - 1.5 wt% Hf were found to have a creep rupture strength superior or comparable to that of the original Mar-M200 alloy bearing cobalt. The ductility in tensile test at 800 0 C, as cast or after prolonged heating at 900 0 C (the tensile test was done without removing the surface layer affected by the heating), was also improved by the additions of 0.15 - 0.2% B and 1 - 1.5% Hf. The morphology of grain boundaries became intricated by the additions of 0.15 - 0.2% B and 1 - 1.5% Hf, to such a degree that one can hardly distinguish grain boundaries by microscopes. The change in the grain boundary morphology was considered, as suggested previously by one of the authors (M.Y.), to be the reason for the improvements in the creep rupture strength and tensile ductility. (author)

  14. Physical Metallurgy of Rene 65, a Next-Generation Cast and Wrought Nickel Superalloy for use in Aero Engine Components

    Science.gov (United States)

    Wessman, Andrew Ezekiel

    Advancements in the design of turbine engines are in large part made possible by advancements in the capability of nickel based superalloys. Greater temperature and stress capabilities in these materials allow for increased operating temperatures and speeds in the engines, which lead to increased fuel efficiency. Early jet engines were built using austenitic stainless steels, and moved to cast and wrought nickel alloys as higher temperatures were required. By the 1970s, the state of the art nickel superalloy was Inconel 718, which is strengthened by the Ni3Nb phase known as gamma double prime. This alloy performs well and is still in heavy use in turbine engines at temperatures up to approximately 650°C (1200°F), but at higher temperatures the main strengthening precipitate phase, gamma', is thermodynamically unstable, resulting in a loss of strength following exposure to high temperature. Further advancements in nickel superalloys generally involved alloys strengthened by the Ni3Al phase known as gamma'. This precipitate is stable at much higher temperatures, but due to compositional segregation in cast and wrought processing, these alloys were processed using powder metallurgy methods, at considerable economic cost. This study will examine the microstructure of a next generation cast and wrought nickel superalloy that can provide increased temperature capability relative to Inconel 718, at lower cost than powder metallurgy superalloys. The alloy chemistry is similar to that of the powder metallurgy superalloy Rene 88DT, with changes to make it better suited for cast and wrought processing and with a different processing route from billet processing through to final part heat treatment. It is a gamma prime strengthened superalloy. The alloy has been recently introduced into service in turbine engines by GE Aviation as the alloy Rene 65, the composition of which is shown below. In this work, the following has been shown: • Rene 65 gamma' precipitate structure

  15. QUANTITATIVE METALOGRAPHY OF HEAT TREATED ŽS6K SUPERALLOY

    Directory of Open Access Journals (Sweden)

    Juraj Belan

    2012-02-01

    Full Text Available Alloy ŽS6K is former USSR superalloy used in DV – 2 jet engine. It is used for turbine rotor blade and whole cast small sized rotors with working temperature up to 800 ÷ 1050°C. This alloy was evaluated after annealing at 800 °C/ 10 and followed by cooling with various rate, presented with cooling in water, oil and air. Cooling rates, represented by various cooling mediums, have a significant influence on diffusion processes, which are going in structure. Methods of quantitative metallography (Image Analyzer software NIS – Elements for carbides evaluation, measuring of secondary dendrite arm spacing and coherent testing grid for gama' - phase evaluation are used for evaluation of structural characteristics on experimental material – Ni base superalloy ŽS6K.

  16. Gamma Prime Precipitate Evolution During Aging of a Model Nickel-Based Superalloy

    Science.gov (United States)

    Goodfellow, A. J.; Galindo-Nava, E. I.; Christofidou, K. A.; Jones, N. G.; Martin, T.; Bagot, P. A. J.; Boyer, C. D.; Hardy, M. C.; Stone, H. J.

    2018-03-01

    The microstructural stability of nickel-based superalloys is critical for maintaining alloy performance during service in gas turbine engines. In this study, the precipitate evolution in a model polycrystalline Ni-based superalloy during aging to 1000 hours has been studied via transmission electron microscopy, atom probe tomography, and neutron diffraction. Variations in phase composition and precipitate morphology, size, and volume fraction were observed during aging, while the constrained lattice misfit remained constant at approximately zero. The experimental composition of the γ matrix phase was consistent with thermodynamic equilibrium predictions, while significant differences were identified between the experimental and predicted results from the γ' phase. These results have implications for the evolution of mechanical properties in service and their prediction using modeling methods.

  17. Superalloy applications in the nuclear field

    International Nuclear Information System (INIS)

    Ramanathan, L.V.; Padilha, A.F.

    1984-01-01

    The process conditions in the areas of nuclear fuel processing, fabrication, utilization, reprocessing and disposal are severe, demanding therefore the use of materials with high temperature mechanical strength and corrosion resistance. A number of refractory metal containing superalloys have found application in the diferrent areas of the nuclear field. The main aspects of the microstructure, strengthening mechanisms and corrosion resistance of 3 superalloys, namely Incoloy 825, Inconel 718 and Hastelloy C have been discussed. The role of the refractory metal elements in influencing the mechanical strength and corrosion resistance of superalloys has been emphasised. (Author) [pt

  18. Determinants of the quality of brazed joints of nickel-based superalloys

    Directory of Open Access Journals (Sweden)

    Katarzyna Strzelczak

    2017-10-01

    Full Text Available In the aerospace industry, passenger safety depends on proper quality control at each production stage. The main responsibility for the correct operation of the aircraft lies within a gas turbine. A proper and rigorous selection of the gas turbine construction material is required, and in a further step, the method of joining the construction parts. Nickel superalloys due to the high heat resistance, strength and creep resistance at high temperatures, toughness and corrosion resistance, are very often used for the construction of a gas turbine engine. In the next step, the selection of joining method is necessary. This method must be able to achieve high-quality connections, resistant to work at high temperatures and corrosive environments. The most effective bonding method that meets the above conditions is brazing. In this study non-destructive (visual test and destructive (metallographic test of brazed joint of Inconel 718 and Inconel 625 were conducted.

  19. Superalloy resources: Supply and availability

    Science.gov (United States)

    Stephens, Joseph R.

    1987-01-01

    Over the past several decades there have been shortages of strategic materials because of our near total import dependence on such metals as chromium, cobalt, and tantalum. In response to the continued vulnerability of U.S. superalloy producers to disruptions in resource supplies, NASA has undertaken a program to address alternatives to the super-alloys containing significant quantities of the strategic materials such as chromium, cobalt, niobium, and tantalum. The research program called Conservation of Strategic Aerospace Materials (COSAM) focuses on substitution, processing, and alternate materials to achieve its goals. In addition to NASA Lewis Research Center, universities and industry play an important role in the COSAM Program. This paper defines what is meant by strategic materials in the aerospace community, presents a strategic materials index, and reviews the resource supply and availability picture from the U.S. point of view. In addition, research results from the COSAM Program are highlighted and future directions for the use of low strategic material alloys or alternate materials are discussed.

  20. Low expansion superalloy with improved toughness

    Science.gov (United States)

    Smith, Darrell F.; Stein, Larry I.; Hwang, Il S.

    1995-01-01

    A high strength, low coefficient of thermal expansion superalloy exhibiting improved toughness over a broad temperature range down to about 4.degree. K. The composition is adapted for use with wrought superconducting sheathing.

  1. Turbinate surgery

    Science.gov (United States)

    Turbinectomy; Turbinoplasty; Turbinate reduction; Nasal airway surgery; Nasal obstruction - turbinate surgery ... There are several types of turbinate surgery: Turbinectomy: All or ... This can be done in several different ways, but sometimes a ...

  2. The metallurgy of superalloys part 2

    International Nuclear Information System (INIS)

    Abdelazim, M.E.; Hammad, F.H.

    1990-01-01

    This is part II of the report titled 'the metallurgy of superalloys'. It deals with the effect of heat treatment and operating conditions (thermal exposure and environment) on the mechanical properties of superalloys. The heat treatment is important in the development of superalloys through that it controls type, amount, size shape and distribution of the precipitate and the grain size of the matrix. The thermal exposure leads to reduction in the amount of the primary carbides and to precipitation of secondary carbides. Also it leads to the agglomeration and coarsening of gamma or the transformation of gamma phase to phase. The environment may lead to the internal oxidation, carburization, decarburization or sulphidization of the superalloys which may result in the degradation of their mechanical properties. This part gives also an example of applications of superalloys in the field of nuclear reactors especially high temperature-gas cooled reactors. Joined with this part a table which contains the major superalloys including its chemical analysis, creep rupture strength and some of its applications. 1 tab

  3. Crack initiation modeling of a directionally-solidified nickel-base superalloy

    Science.gov (United States)

    Gordon, Ali Page

    Combustion gas turbine components designed for application in electric power generation equipment are subject to periodic replacement as a result of cracking, damage, and mechanical property degeneration that render them unsafe for continued operation. In view of the significant costs associated with inspecting, servicing, and replacing damaged components, there has been much interest in developing models that not only predict service life, but also estimate the evolved microstructural state of the material. This thesis explains manifestations of microstructural damage mechanisms that facilitate fatigue crack nucleation in a newly-developed directionally-solidified (DS) Ni-base superalloy components exposed to elevated temperatures and high stresses. In this study, models were developed and validated for damage and life prediction using DS GTD-111 as the subject material. This material, proprietary to General Electric Energy, has a chemical composition and grain structure designed to withstand creep damage occurring in the first and second stage blades of gas-powered turbines. The service conditions in these components, which generally exceed 600°C, facilitate the onset of one or more damage mechanisms related to fatigue, creep, or environment. The study was divided into an empirical phase, which consisted of experimentally simulating service conditions in fatigue specimens, and a modeling phase, which entailed numerically simulating the stress-strain response of the material. Experiments have been carried out to simulate a variety of thermal, mechanical, and environmental operating conditions endured by longitudinally (L) and transversely (T) oriented DS GTD-111. Both in-phase and out-of-phase thermo-mechanical fatigue tests were conducted. In some cases, tests in extreme environments/temperatures were needed to isolate one or at most two of the mechanisms causing damage. Microstructural examinations were carried out via SEM and optical microscopy. A continuum

  4. Strain-induced γ{sup '}-coarsening during aging of Ni-based superalloys under uniaxial load. Modeling and analysis

    Energy Technology Data Exchange (ETDEWEB)

    Mushongera, Leslie T.

    2016-07-28

    Turbine blades which are used in the hot paths of aerospace or industrial gas turbines are usually manufactured as casted single crystalline parts. However, even though grain boundaries are excluded, the degradation behavior of respectively developed single crystal nickel-base superalloys, is still quite complex involving a number of very different microscopic effects. One of these is the diffusion-limited coarsening of the γ{sup '}-precipitates. Long-term aging or creep loading along the <100> crystallographic orientation results in the anisotropic coarsening of the γ{sup '}-precipitates. In the end, the microstructure contains quite large, irregularly shaped precipitates or plate-like precipitates aligned either parallel (P-type rafts) or perpendicular (N-type rafts) to the loading direction. This behavior is detrimental for the properties of these materials since their superior properties emanate from the size, morphology and distribution of the γ{sup '}-precipitates [R. Reed: Cambridge University Press, (2006)]. In order to efficiently design these materials, the phenomenon of coarsening should be known in detail to optimize the materials accurately. On this background, the general objective of this thesis is to develop an integrated computational approach for simulating morphological evolution in single crystal Ni-base superalloys. As a first step towards that aim, a multi-component phase field model coupled to inputs from CALPHAD-type and kinetic databases for the relevant driving forces was developed based on the grand-potential formalism similar to Plapp [Phys. Rev. E, 84: 031601 (2011)]. The thermodynamic formulation of the model was validated by comparisons to ThermoCalc equilibrium calculations and DICTRA sharp-interface simulations. Phase field approaches that allow for anisotropies of the interfacial energy sufficiently high so that the interface develops sharp corners due to missing crystallographic orientations were formulated. This

  5. The Compositional Dependence of the Microstructure and Properties of CMSX-4 Superalloys

    Science.gov (United States)

    Yu, Hao; Xu, Wei; Van Der Zwaag, Sybrand

    2018-01-01

    The degradation of creep resistance in Ni-based single-crystal superalloys is essentially ascribed to their microstructural evolution. Yet there is a lack of work that manages to predict (even qualitatively) the effect of alloying element concentrations on the rate of microstructural degradation. In this research, a computational model is presented to connect the rafting kinetics of Ni superalloys to their chemical composition by combining thermodynamics calculation and a modified microstructural model. To simulate the evolution of key microstructural parameters during creep, the isotropic coarsening rate and γ/ γ' misfit stress are defined as composition-related parameters, and the effect of service temperature, time, and applied stress are taken into consideration. Two commercial superalloys, for which the kinetics of the rafting process are selected as the reference alloys, and the corresponding microstructural parameters are simulated and compared with experimental observations reported in the literature. The results confirm that our physical model not requiring any fitting parameters manages to predict (semiquantitatively) the microstructural parameters for different service conditions, as well as the effects of alloying element concentrations. The model can contribute to the computational design of new Ni-based superalloys.

  6. A search for new cobalt-based high temperature superalloys

    Science.gov (United States)

    Nyshadham, Chandramouli; Hansen, Jacob; Curtarolo, Stefano; Hart, Gus L. W.

    2015-03-01

    The discovery of a high temperature Co3(Al,W) superalloy has provided a promising avenue for further search of other Co-based superalloys. The L12 Co3(Al,W) system is found to have higher strength and melting temperature than common Ni-based alloys. The high strength of super alloys is generally attributed to the stable or metastable austentic face-centered cubic crystal structure. We performed an extensive series of ab-initio calculations to search for stable or metastable Co-based ternary alloys of the form Co3(A0.5B0.5). A 32 atom cell special quasi random structure (SQS-32) is considered to mimic the properties of the alloy at high temperatures. The results from the DFT calculations for over 780 different Co-based ternary systems and the potential candidates of the future high temperature super alloys is presented. CN, SC and GLWH acknowledge support from ONR (MURI N00014-13-1-0635). JH acknowledges support by NSF (DMR-0908753).

  7. Deformation mechanisms of D022 ordered intermetallic phase in superalloys

    International Nuclear Information System (INIS)

    Lv, D.C.; McAllister, D.; Mills, M.J.; Wang, Y.

    2016-01-01

    High-temperature alloys in general and superalloys in particular are strengthened by ordered intermetallic phases that are relatively stable at elevated temperatures. Because of their low symmetry, however, these ordered intermetallic phases have rather complicated deformation mechanisms that are difficult to uncover by experiment alone. In this study we use a combination of ab initio calculation and phase field simulation at the elementary defect level to illustrate how dislocations interact with precipitates of an ordered intermetallic phase, γ″ (D0 22 , tetragonal), the primary strengthening phase in Ni-Nb-Fe-Cr-Ti-Al-Mo alloy (Inconel 718 or IN718 superalloy). A rich variety of new and sophisticated deformation mechanisms are discovered, including a novel mechanism of dislocation generation (accompanied by a spontaneous stacking fault (SF) transition), formation of superlattice intrinsic SF ribbons (SISF-ribbons) and 1/3<112>-type compact super-dislocations, along with ISF shearing and Orowan looping. The predicted deformation microstructures seem to agree with recent electron microscopy observations in IN718. The detailed deformation mechanisms uncovered can be incorporated in constitutive microstructure-property relationships for advanced crystal plasticity modeling and the approach developed can be used to study plastic deformation of other intermetallic phases in different alloy systems.

  8. Aging of vacuum plasma sprayed MCrAlY protective layers and their interaction with nickel- and cobalt-based γ/γ'-superalloys

    International Nuclear Information System (INIS)

    Terberger, Philipp J.

    2015-01-01

    γ/γ' single crystal superalloys with plasma-sprayed thermal barrier coating systems are used as turbine rotor blades in gas turbines if the blades are exposed to high temperatures and high mechanical loads. A bond coat (BC) is part of the thermal barrier coating system. It protects the substrate from oxidation and ensures good bonding of the ceramic coating that serves as a thermal insulator. MCrAlY (M=Ni,Co) alloys are commonly used as BCs. They form a protective Al 2 O 3 layer. This study investigates four different vacuum plasma-sprayed MCrAlY BCs with and without Re after thermal treatment of up to 1000 h at 1044 C in air. The employed substrates are the Ni-based superalloy ERBO1 and the novel Co-based γ/γ' superalloy ERBOCo-1. Additionally, the ternary γ/γ' alloy Co-9Al-9W (in at.%) was aged with a BC for up to 500 h at 900 C. Up to now little is known about the interaction of the Co-based substrates and the BCs. Oxidation and Al depletion of the BC as well as the interdiffusion of BCs and substrates are analysed primarily on the basis of SEM/EDX and XRD. The effect of Y and Hf on the microstructure of the oxide scale is discussed. Rate constants show that Hf results in higher oxidation rates while Re slows down the oxidation. The influence of the alloying elements on the BC microstructure is described. For example, Co prevents the formation of γ' phase, Re slows down diffusion and results in the formation of brittle phases. The choice of substrate material has no measurable influence on the oxidation. Qualitative and quantitative analysis of the interdiffusion zone (IDZ) shows that the choice of substrate surface pre-treatment (grit blasting or grinding) has a major influence on the interdiffusion behaviour with the BC. Grinding results in a thinner IDZ and fewer topologically closed packed (TCP) phases. The reason for this is the recrystallisation of the single crystal substrate. A study of the influence of the substrate crystal

  9. A Coupled Thermal, Fluid Flow, and Solidification Model for the Processing of Single-Crystal Alloy CMSX-4 Through Scanning Laser Epitaxy for Turbine Engine Hot-Section Component Repair (Part I)

    Science.gov (United States)

    Acharya, Ranadip; Bansal, Rohan; Gambone, Justin J.; Das, Suman

    2014-12-01

    Scanning laser epitaxy (SLE) is a new laser-based additive manufacturing technology under development at the Georgia Institute of Technology. SLE is aimed at the creation of equiaxed, directionally solidified, and single-crystal deposits of nickel-based superalloys through the melting of alloy powders onto superalloy substrates using a fast scanning Nd:YAG laser beam. The fast galvanometer control movement of the laser (0.2 to 2 m/s) and high-resolution raster scanning (20 to 200 µm line spacing) enables superior thermal control over the solidification process and allows the production of porosity-free, crack-free deposits of more than 1000 µm thickness. Here, we present a combined thermal and fluid flow model of the SLE process applied to alloy CMSX-4 with temperature-dependent thermo-physical properties. With the scanning beam described as a moving line source, the instantaneous melt pool assumes a convex hull shape with distinct leading edge and trailing edge characteristics. Temperature gradients at the leading and trailing edges are of order 2 × 105 and 104 K/m, respectively. Detailed flow analysis provides insights on the flow characteristics of the powder incorporating into the melt pool, showing velocities of order 1 × 10-4 m/s. The Marangoni effect drives this velocity from 10 to 15 times higher depending on the operating parameters. Prediction of the solidification microstructure is based on conditions at the trailing edge of the melt pool. Time tracking of solidification history is incorporated into the model to couple the microstructure prediction model to the thermal-fluid flow model, and to predict the probability of the columnar-to-equiaxed transition. Qualitative agreement is obtained between simulation and experimental result.

  10. Modeling Long-term Creep Performance for Welded Nickel-base Superalloy Structures for Power Generation Systems

    Energy Technology Data Exchange (ETDEWEB)

    Shen, Chen [GE Global Research, NIskayuna, NY (United States); Gupta, Vipul [GE Global Research, NIskayuna, NY (United States); Huang, Shenyan [GE Global Research, NIskayuna, NY (United States); Soare, Monica [GE Global Research, NIskayuna, NY (United States); Zhao, Pengyang [GE Global Research, NIskayuna, NY (United States); Wang, Yunzhi [GE Global Research, NIskayuna, NY (United States)

    2017-02-28

    The goal of this project is to model long-term creep performance for nickel-base superalloy weldments in high temperature power generation systems. The project uses physics-based modeling methodologies and algorithms for predicting alloy properties in heterogeneous material structures. The modeling methodology will be demonstrated on a gas turbine combustor liner weldment of Haynes 282 precipitate-strengthened nickel-base superalloy. The major developments are: (1) microstructure-property relationships under creep conditions and microstructure characterization (2) modeling inhomogeneous microstructure in superalloy weld (3) modeling mesoscale plastic deformation in superalloy weld and (4) a constitutive creep model that accounts for weld and base metal microstructure and their long term evolution. The developed modeling technology is aimed to provide a more efficient and accurate assessment of a material’s long-term performance compared with current testing and extrapolation methods. This modeling technology will also accelerate development and qualification of new materials in advanced power generation systems. This document is a final technical report for the project, covering efforts conducted from October 2014 to December 2016.

  11. Numerical simulation on vacuum solution heat treatment and gas quenching process of a low rhenium-containing Ni-based single crystal turbine blade

    Directory of Open Access Journals (Sweden)

    Zhe-xin Xu

    2016-11-01

    Full Text Available Numerical heat-transfer and turbulent flow model for an industrial high-pressure gas quenching vacuum furnace was established to simulate the heating, holding and gas fan quenching of a low rhenium-bearing Ni-based single crystal turbine blade. The mesh of simplified furnace model was built using finite volume method and the boundary conditions were set up according to the practical process. Simulation results show that the turbine blade geometry and the mutual shielding among blades have significant influence on the uniformity of the temperature distribution. The temperature distribution at sharp corner, thin wall and corner part is higher than that at thick wall part of blade during heating, and the isotherms show a toroidal line to the center of thick wall. The temperature of sheltered units is lower than that of the remaining part of blade. When there is no shelteration among multiple blades, the temperature distribution for all blades is almost identical. The fluid velocity field, temperature field and cooling curves of the single and multiple turbine blades during gas fan quenching were also simulated. Modeling results indicate that the loading tray, free outlet and the location of turbine blades have important influences on the flow field. The high-speed gas flows out from the nozzle is divided by loading tray, and the free outlet enhanced the two vortex flow at the end of the furnace door. The closer the blade is to the exhaust outlet and the nozzle, the greater the flow velocity is and the more adequate the flow is. The blade geometry has an effect on the cooling for single blade and multiple blades during gas fan quenching, and the effects in double layers differs from that in single layer. For single blade, the cooing rate at thin-walled part is lower than that at thick-walled part, the cooling rate at sharp corner is greater than that at tenon and blade platform, and the temperature at regions close to the internal position is

  12. crystal

    Science.gov (United States)

    Yu, Yi; Huang, Yisheng; Zhang, Lizhen; Lin, Zhoubin; Sun, Shijia; Wang, Guofu

    2014-07-01

    A Nd3+:Na2La4(WO4)7 crystal with dimensions of ϕ 17 × 30 mm3 was grown by the Czochralski method. The thermal expansion coefficients of Nd3+:Na2La4(WO4)7 crystal are 1.32 × 10-5 K-1 along c-axis and 1.23 × 10-5 K-1 along a-axis, respectively. The spectroscopic characteristics of Nd3+:Na2La4(WO4)7 crystal were investigated. The Judd-Ofelt theory was applied to calculate the spectral parameters. The absorption cross sections at 805 nm are 2.17 × 10-20 cm2 with a full width at half maximum (FWHM) of 15 nm for π-polarization, and 2.29 × 10-20 cm2 with a FWHM of 14 nm for σ-polarization. The emission cross sections are 3.19 × 10-20 cm2 for σ-polarization and 2.67 × 10-20 cm2 for π-polarization at 1,064 nm. The fluorescence quantum efficiency is 67 %. The quasi-cw laser of Nd3+:Na2La4(WO4)7 crystal was performed. The maximum output power is 80 mW. The slope efficiency is 7.12 %. The results suggest Nd3+:Na2La4(WO4)7 crystal as a promising laser crystal fit for laser diode pumping.

  13. Iron rich low cost superalloys. Ph.D. Thesis. Final Report

    Science.gov (United States)

    Wayne, S. F.

    1985-01-01

    An iron-rich low-cost superalloy was developed. The alloy, when processed by conventional chill casting, has physical and mechanical properties that compare favorably with existing nickel and cobalt based superalloys while containing significantly lower amounts of strategic elements. Studies were also made on the properties of Cr(20)-Mn(10)-C(3.4)-Fe(bal.), a eutectic alloy processed by chill casting and directional solidification which produced an aligned microstructure consisting of M7C3 fibers in a gamma-Fe matrix. Thermal expansion of the M7C3 (M = Fe, Cr, Mn) carbide lattice was measured up to 800 C and found to be highly anisotropic, with the a-axis being the predominant mode of expansion. Repetitive impact sliding wear experiments performed with the Fe rich eutectic alloy showed that the directionally solidified microstructure greatly improved the alloy's wear resistance as compared to the chill cast microstructure and conventional nickel base superalloys. Studies on the molybdenum cementite phase prove that the crystal structure of the xi phase is not orthorhombic. The crystal structure of the xi phase is made up of octahedra building elements consisting of four Mo and two Fe atoms and trigonal prisms consisting of four Fe and two Mo atoms. The voids are occupied by carbon atoms. The previous chemical formula for the molybdenum cementite MoFe2C is now clearly seen to be Mo12Fe22C10.

  14. Oxidation corrosion resistant superalloys and coatings

    Science.gov (United States)

    Jackson, Melvin R. (Inventor); Rairden, III, John R. (Inventor)

    1980-01-01

    An article of manufacture having improved high temperature oxidation and corrosion resistance comprising: (a) a superalloy substrate containing a carbide reinforcing phase, and (b) a coating consisting of chromium, aluminum, carbon, at least one element selected from iron, cobalt or nickel, and optionally an element selected from yttrium or the rare earth elements.

  15. Characterization of nanoporous superalloy by SANS

    Czech Academy of Sciences Publication Activity Database

    Strunz, Pavel; Mukherji, D.; Nath, O.; Gilles, R.; Rösler, J.

    2006-01-01

    Roč. 385, č. 1 (2006), s. 626-629 ISSN 0921-4526 R&D Projects: GA ČR GA202/06/0601 Institutional research plan: CEZ:AV0Z10480505 Keywords : superalloy * pores * small - angle neutron scattering Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 0.872, year: 2006

  16. Chemical driving force for rafting in superalloys

    CSIR Research Space (South Africa)

    Nabarro, FRN

    1997-08-15

    Full Text Available The author provides a brief overview of the chemical driving forces for rafting in superalloys. Until recently, all theories of the driving force for rafting have considered the compositions of the two phases to be fixed, although accepting...

  17. SUPERALLOYS: AN INTRODUCTION WITH THERMAL ANALYSIS

    Directory of Open Access Journals (Sweden)

    S. S. Raza

    2015-09-01

    Full Text Available Nickel based superalloys are commonly used materials in the aero industry and more specifically in the hot section of aero engines. These nickel and nickel iron based superalloys are precipitation strengthened alloys with a face centered cubic gamma matrix. Alloy 718, Allvac 718Plus and Waspaloy have been of great interest in the present study. Alloy 718 is a precipitation strengthened nickel-iron based alloy having gamma double prime phase (Ni3Nb as a main strengthening phase up to 650 °C. Waspaloy, another precipitation strengthened nickel base superalloy, has a very good strength at temperatures up to ~750 °C whereas Allvac 718Plus is a newly developed nickel based precipitation strengthened superalloy which retains good mechanical properties at up to ~700 °C. These three alloys were investigated in terms of how their respective solidification process reveals upon cooling.Latent heat of soloidification has been estimated for all three alloys. Differential thermal analyses (DTA have been used to approach the task. It was seen that Waspaloy has the smallest solidification range whereas Allvac 718Plus has the largest solidification interval in comparison. 

  18. ISOTHERMAL AND THERMOMECHANICAL FATIGUE OF A NICKEL-BASE SUPERALLOY

    Directory of Open Access Journals (Sweden)

    Carlos Carvalho Engler-Pinto Júnior

    2014-06-01

    Full Text Available Thermal gradients arising during transient regimes of start-up and shutdown operations produce a complex thermal and mechanical fatigue loading which limits the life of turbine blades and other engine components operating at high temperatures. More accurate and reliable assessment under non-isothermal fatigue becomes therefore mandatory. This paper investigates the nickel base superalloy CM 247LC-DS under isothermal low cycle fatigue (LCF and thermomechanical fatigue (TMF. Test temperatures range from 600°C to 1,000°C. The behavior of the alloy is strongly affected by the temperature variation, especially in the 800°C-1,000°C range. The Ramberg-Osgood equation fits very well the observed isothermal behavior for the whole temperature range. The simplified non-isothermal stress-strain model based on linear plasticity proposed to represent the thermo-mechanical fatigue behavior was able to reproduce the observed behavior for both in-phase and out-of-phase TMF cycling.

  19. Microstructure stability: Optimisation of 263 Ni-based superalloy

    Directory of Open Access Journals (Sweden)

    Crozet Coraline

    2014-01-01

    Full Text Available To reduce CO2 emissions on coal-fired power plant, A-ultra supercritical (A-USC power plant whose steam conditions exceed 700 °C are being developed. At these elevated temperatures, the use of Ni-base superalloys becomes necessary. In this context and within the European project NextGenPower, focus is made on commercial Nimonic C-263 as a candidate material for turbine rotors. Nimonic C-263 is known to have low sensitivity to segregation, high workability and high weldability which are major properties for the manufacture of large shafts. Long-term creep strength is also required for this application and unfortunately Nimonic C-263 shows η-phase precipitation after long-time exposure between 700 °C–900 °C which is detrimental for long-term creep properties. The composition of Nimonic C-263 was thus optimised to overcome the formation of η-phase. Trial tests were made in order to study the effect of hardening contribution elements on microstructural and mechanical properties. Then, a 500 mm diameter forged rotor was made from optimised 263 alloy and shows promising properties.

  20. Precipitate Rafting in a Polycrystalline Superalloy During Compression Creep

    Science.gov (United States)

    Altincekic, Arun; Balikci, Ercan

    2014-12-01

    Rafting is an industrially and scientifically important phenomenon for precipitate-strengthened alloys utilized at high temperatures. Although this phenomenon is observed in polycrystalline alloys as well, the literature lacks scientific work on rafting in polycrystals. Scientific work is usually conducted on single-crystal superalloys. Being one of the many polycrystalline nickel-base superalloys, IN738LC has a good high-temperature strength and hot corrosion resistance. Coherency strains between the FCC gamma matrix ( γ)- and L12 gamma prime ( γ')-precipitate phase particles mainly provide the high-temperature strength in IN738LC. Conical IN738LC specimens have been aged under compression for various times [24, 192, 480, and 960 hours at 1223 K (950 °C) and 12, 24, 192, and 480 hours at 1323 K (1050 °C)] in order to observe the morphological evolution of the γ' precipitate microstructure. Dislocations play a determining role in morphological changes. Fingerprints of matrix dislocations in the form of indentations on γ' precipitates have been identified by scanning electron microscope. Precipitate morphology has become more complex through dissolution/merging as temperature, aging time, and stress have increased. The precipitate morphology has evolved toward rafting at appropriate strain, temperature, and time. Localized slip bands have marked the beginning of rafting. The rafts have been observed at around a 45 deg angle away from the load direction. For higher stress positions, there is a trend toward N-type rafting which is expected of a positive misfit alloy under compression. Rafts eventually have collapsed due to severe creep deformation.

  1. Hydraulic turbines

    International Nuclear Information System (INIS)

    Meluk O, G.

    1998-01-01

    The hydraulic turbines are defined according to the specific speed, in impulse turbines and in reaction turbines. Currently, the Pelton turbines (of impulse) and the Francis and Kaplan turbines (of reaction), they are the most important machines in the hydroelectric generation. The hydraulic turbines are capable of generating in short times, large powers, from its loads zero until the total load and reject the load instantly without producing damages in the operation. When the hydraulic resources are important, the hydraulic turbines are converted in the axle of the electric system. Its combination with thermoelectric generation systems, it allow the continuing supply of the variations in demand of energy system. The available hydraulic resource in Colombia is of 93085 MW, of which solely 9% is exploited, become 79% of all the electrical country generation, 21% remaining is provided by means of the thermoelectric generation

  2. Looking for New Polycrystalline MC-Reinforced Cobalt-Based Superalloys Candidate to Applications at 1200°C

    OpenAIRE

    Patrice Berthod

    2017-01-01

    For applications for which temperatures higher than 1150°C can be encountered the currently best superalloys, the γ/γ′ single crystals, cannot be used under stress because of the disappearance of their reinforcing γ′ precipitates at such temperatures which are higher than their solvus. Cobalt-based alloys strengthened by refractory and highly stable carbides may represent an alternative solution. In this work the interest was focused on MC carbides of several types. Alloys were elaborated wit...

  3. Steam Turbines

    Science.gov (United States)

    1981-01-01

    Turbonetics Energy, Inc.'s steam turbines are used as power generating systems in the oil and gas, chemical, pharmaceuticals, metals and mining, and pulp and paper industries. The Turbonetics line benefited from use of NASA research data on radial inflow steam turbines and from company contact with personnel of Lewis Research Center, also use of Lewis-developed computer programs to determine performance characteristics of turbines.

  4. Effects of helium impurities on superalloys

    Energy Technology Data Exchange (ETDEWEB)

    Selle, J.E.

    1977-07-01

    A review of the literature on the effects of helium impurities on superalloys at elevated temperatures was undertaken. The actual effects of these impurities vary depending on the alloy, composition of the gas atmosphere, and temperature. In general, exposure in helium produces significant but not catastrophic changes in the structure and properties of the alloys. The effects of these treatments on the structure, creep, fatigue, and mechanical properties of the various alloys are reviewed and discussed. Suggestions for future work are presented.

  5. Effects of helium impurities on superalloys

    International Nuclear Information System (INIS)

    Selle, J.E.

    1977-07-01

    A review of the literature on the effects of helium impurities on superalloys at elevated temperatures was undertaken. The actual effects of these impurities vary depending on the alloy, composition of the gas atmosphere, and temperature. In general, exposure in helium produces significant but not catastrophic changes in the structure and properties of the alloys. The effects of these treatments on the structure, creep, fatigue, and mechanical properties of the various alloys are reviewed and discussed. Suggestions for future work are presented

  6. CLASSICAL AREAS OF PHENOMENOLOGY: First-principles calculations for the elastic properties of Ni-base model superalloys: Ni/Ni3Al multilayers

    Science.gov (United States)

    Wang, Yun-Jiang; Wang, Chong-Yu

    2009-10-01

    A model system consisting of Ni[001](100)/Ni3Al[001](100) multi-layers are studied using the density functional theory in order to explore the elastic properties of single crystal Ni-based superalloys. Simulation results are consistent with the experimental observation that rafted Ni-base superalloys virtually possess a cubic symmetry. The convergence of the elastic properties with respect to the thickness of the multilayers are tested by a series of multilayers from 2γ'+2γ to 10γ'+10γ atomic layers. The elastic properties are found to vary little with the increase of the multilayer's thickness. A Ni/Ni3Al multilayer with 10γ'+10γ atomic layers (3.54 nm) can be used to simulate the mechanical properties of Ni-base model superalloys. Our calculated elastic constants, bulk modulus, orientation-dependent shear modulus and Young's modulus, as well as the Zener anisotropy factor are all compatible with the measured results of Ni-base model superalloys R1 and the advanced commercial superalloys TMS-26, CMSX-4 at a low temperature. The mechanical properties as a function of the γ' phase volume fraction are calculated by varying the proportion of the γ and γ' phase in the multilayers. Besides, the mechanical properties of two-phase Ni/Ni3Al multilayer can be well predicted by the Voigt-Reuss-Hill rule of mixtures.

  7. Static recrystallization behavior of AEREX350 superalloy

    Energy Technology Data Exchange (ETDEWEB)

    Hosseinifar, Mehdi, E-mail: hossem@mcmaster.ca [Department of Materials Science and Engineering, Sharif University of Technology, P.O. Box 11365-9466, Tehran (Iran, Islamic Republic of); Asgari, Sirous, E-mail: sasgari@sharif.edu [Department of Materials Science and Engineering, Sharif University of Technology, P.O. Box 11365-9466, Tehran (Iran, Islamic Republic of)

    2010-10-25

    Research highlights: {yields} The static recrystallization behavior of a complex superalloy, AEREX 350, is investigated. {yields} It is found that this alloy resists recrystallization to very high temperatures (1025 deg. C, 0.81T{sub m}). {yields} TEM investigation showed evidence of grain boundary pinning by the Widmanstaetten {eta} platelets. {yields} Recrystallization of the AEREX 350 superalloy proceeds by the discontinuous precipitation of the {eta} particles behind the moving boundary. - Abstract: The recrystallization behavior of a commercial nickel-cobalt base superalloy, AEREX 350, is investigated by means of hardness test, X-ray diffraction, and microscopy. It is found that the alloy resists recrystallization up to a high temperature of 1025 deg. C. Recrystallized grains are readily formed at grain boundaries below this temperature; however, the growth of these new grains is inhibited by Widmanstaetten {eta} particles having coherent facets with the nickel matrix ({gamma}). The passage of the recrystallization front results in coherency loss and consequently dissolution of the {eta} platelets. Recrystallization proceeds with a discontinuous precipitation of the {eta} phase behind the moving boundary.

  8. L12-Strengthened Cobalt-Base Superalloys

    Science.gov (United States)

    Suzuki, Akane; Inui, Haruyuki; Pollock, Tresa M.

    2015-07-01

    The discovery of the γ'-Co3(Al,W) phase with an L12 structure provided Co-base alloys with a new strengthening mechanism, enabling a new class of high-temperature material: Co-base superalloys. This review discusses the current understanding of the phase stability, deformation, and oxidation behaviors of γ' single-phase and γ + γ' two-phase alloys in comparison with Ni-base γ'-L12 phase and γ + γ' superalloys. Relatively low stacking fault energies and phase stability of the γ' phase compared with those in Ni-base alloys are responsible for the unique deformation behaviors observed in Co-base γ' and γ + γ' alloys. Controlling energies of planar defects, such as stacking faults and antiphase boundaries, by alloying is critical for alloy development. Experimental and density functional theory studies indicate that additions of Ta, Ti, Nb, Hf, and Ni are effective in simultaneously increasing the phase stability and stacking fault energy of γ'-Co3(Al,W), thus improving the high-temperature strength of Co-base γ' phase and γ + γ' two-phase superalloys.

  9. Barrier Coatings for Refractory Metals and Superalloys

    Energy Technology Data Exchange (ETDEWEB)

    SM Sabol; BT Randall; JD Edington; CJ Larkin; BJ Close

    2006-02-23

    In the closed working fluid loop of the proposed Prometheus space nuclear power plant (SNPP), there is the potential for reaction of core and plant structural materials with gas phase impurities and gas phase transport of interstitial elements between superalloy and refractory metal alloy components during service. Primary concerns are surface oxidation, interstitial embrittlement of refractory metals and decarburization of superalloys. In parallel with kinetic investigations, this letter evaluates the ability of potential coatings to prevent or impede communication between reactor and plant components. Key coating requirements are identified and current technology coating materials are reviewed relative to these requirements. Candidate coatings are identified for future evaluation based on current knowledge of design parameters and anticipated environment. Coatings were identified for superalloys and refractory metals to provide diffusion barriers to interstitial transport and act as reactive barriers to potential oxidation. Due to their high stability at low oxygen potential, alumina formers are most promising for oxidation protection given the anticipated coolant gas chemistry. A sublayer of iridium is recommended to provide inherent diffusion resistance to interstitials. Based on specific base metal selection, a thin film substrate--coating interdiffusion barrier layer may be necessary to meet mission life.

  10. Barrier Coatings for Refractory Metals and Superalloys

    International Nuclear Information System (INIS)

    SM Sabol; BT Randall; JD Edington; CJ Larkin; BJ Close

    2006-01-01

    In the closed working fluid loop of the proposed Prometheus space nuclear power plant (SNPP), there is the potential for reaction of core and plant structural materials with gas phase impurities and gas phase transport of interstitial elements between superalloy and refractory metal alloy components during service. Primary concerns are surface oxidation, interstitial embrittlement of refractory metals and decarburization of superalloys. In parallel with kinetic investigations, this letter evaluates the ability of potential coatings to prevent or impede communication between reactor and plant components. Key coating requirements are identified and current technology coating materials are reviewed relative to these requirements. Candidate coatings are identified for future evaluation based on current knowledge of design parameters and anticipated environment. Coatings were identified for superalloys and refractory metals to provide diffusion barriers to interstitial transport and act as reactive barriers to potential oxidation. Due to their high stability at low oxygen potential, alumina formers are most promising for oxidation protection given the anticipated coolant gas chemistry. A sublayer of iridium is recommended to provide inherent diffusion resistance to interstitials. Based on specific base metal selection, a thin film substrate--coating interdiffusion barrier layer may be necessary to meet mission life

  11. 76 FR 8773 - Superalloy Degassed Chromium From Japan

    Science.gov (United States)

    2011-02-15

    ... INTERNATIONAL TRADE COMMISSION [Investigation No. 731-TA-1090 (Review)] Superalloy Degassed Chromium From Japan AGENCY: United States International Trade Commission. ACTION: Termination of five-year... revocation of the antidumping duty order on superalloy degassed chromium from Japan would be likely to lead...

  12. 75 FR 67100 - Superalloy Degassed Chromium From Japan

    Science.gov (United States)

    2010-11-01

    ... Chromium From Japan AGENCY: United States International Trade Commission. ACTION: Institution of a five-year review concerning the antidumping duty order on superalloy degassed chromium from Japan. SUMMARY... order on superalloy degassed chromium from Japan would be likely to lead to continuation or recurrence...

  13. Development of a structure-dependent material model for complex, high-temperature environments and stresses. Example: turbine blades, turbine discs

    International Nuclear Information System (INIS)

    Schubert, F.

    1988-01-01

    For the optimum use of new high-temperature superalloys for turbine discs and blades, it is necessary to develop new design concepts which, on the one hand, permit a quantitative allocation of the structural characteristics to the deformation behaviour and damage mechanisms and, on the other hand, take into account the real course of stress. It is planned to use PM-Udinet 700 as material for turbine discs and IN 738 LC with supplementary tests of IN 100 for turbine blades. For turbine discs, a probabilistic model is developed, for turbine blades, cooled at the interior, first a deterministic model is developed and then a probabilistic model is prepared. The concept for the development of the models is dealt with in detail. The project started in April 1987, therefore only first investigation results can be reported. (orig.) [de

  14. The solidification microstructure and carbide formation behaviors in the cobalt-based superalloy ECY768

    Energy Technology Data Exchange (ETDEWEB)

    Lee, J.S.; Lee, J.H. [Dept. of Metallurgy, Changwon National Univ., Chagwon (Korea); Choi, B.G.; Jo, C.Y. [High Temperature Materials Lab., KIMM, Changwon (Korea); Paik, U.; Gang, S.G. [Div. of Materials Sci. and Eng., Hanyang Univ., Seoul (Korea)

    2005-07-01

    Co-base superalloys have been applied in the stationary components of gas turbine owing to their excellent high temperature properties. The stationary Co-base alloy components are generally manufactured by casting. Solidification behavior of the alloy is an important factor in the selection of casting parameters. In the present study, solidification microstructure and carbide formation behaviors were studied by directional solidification. Directional solidification experiments were carried out at the solidification rates of 0.5 {proportional_to} 150 {mu}m/s with the Co-base superalloy ECY768. Between the dendrites just below the final freezing temperature, MC carbide and M{sub 23}C{sub 6} carbide were found. It was identified that the script or blocky carbides were Ta or W-rich MC carbide, and the lamellar carbides were Cr-rich M{sub 23}C{sub 6} eutectic carbides. The solid/liquid interface morphology clearly showed that freezing of the Cr-rich eutectic carbide occurred just after the script type MC carbide. (orig.)

  15. Effect of titanium, niobium and zirconium on creep rupture strength and ductility of cobalt base superalloys

    Science.gov (United States)

    Fukui, Y.; Sasaki, R.; Hataya, F.; Kashimura, T.

    1981-06-01

    An attempt has been made to develop a cobalt base casting superalloy (30Cr-10Ni-7W-Co) having high creep rupture strength and ductility for first stage nozzles of gas turbines. In cobalt base superalloys, there was found to exist a close correlation between the creep rupture strength and MC type carbide forming elements such as Ti, Nb and Zr. In cobalt base alloys with 0.25 wt pct C, precipitation and coarsening of carbides can be reduced by addition of Ti, Nb and Zr. Therefore, by adding the optimum amount of Ti, Nb and Zr, precipitation of carbides in the alloy reaches such an amount as to give the highest creep rupture strength. Excess addition of Ti, Nb and Zr does not improve the creep rupture strength. By adding C, creep rupture strength of the cobalt alloy with Ti, Nb and Zr can be improved and becomes the highest at 0.40 wt pct. C. According to the experimental results, the creep rupture strength becomes the highest at a value of (Ti + Nb + Zr)/C (atomic ratio) of about 0.3. Contrary to the expectation, it was found in this experiment that the ductility in creep rupture tests increases with increasing carbon content up to 0.6 wt pct.

  16. Cyclic Oxidation and Hot Corrosion Behavior of Nickel-Iron-Based Superalloy

    Science.gov (United States)

    Chellaganesh, D.; Adam Khan, M.; Winowlin Jappes, J. T.; Sathiyanarayanan, S.

    2018-01-01

    The high temperature oxidation and hot corrosion behavior of nickel-iron-based superalloy are studied at 900 ° and 1000 °C. The significant role of alloying elements with respect to the exposed medium is studied in detail. The mass change per unit area was catastrophic for the samples exposed at 1000 °C and gradual increase in mass change was observed at 900 °C for both the environments. The exposed samples were further investigated with SEM, EDS and XRD analysis to study the metallurgical characteristics. The surface morphology has expressed the in situ nature of the alloy and its affinity toward the environment. The EDS and XRD analysis has evidently proved the presence of protective oxides formation on prolonged exposure at elevated temperature. The predominant oxide formed during the exposure at high temperature has a major contribution toward the protection of the samples. The nickel-iron-based superalloy is less prone to oxidation and hot corrosion when compared to the existing alloy in gas turbine engine simulating marine environment.

  17. Influence of cooling rate on y'morphology in cast Ni – base superalloy

    Directory of Open Access Journals (Sweden)

    J. Belan

    2009-04-01

    Full Text Available The Ni – base superalloys, which are combined an unique physical and mechanical properties, are used in aircraft industry for productionof aero engine most stressed parts, as are turbine blades. From this reason a dendrite arm spacing, carbides size and distribution, morphology,number and value of y'- phase are very important structural characteristics for blade lifetime prediction as well as aero engine its self. In this article are used methods of quantitative metallography (software LUCIA for carbides evaluation, measuring of secondary dendrite arm spacing and coherent testing grid for y' - phase evaluation for evaluation of structural characteristics mentioned above on experimental material – Ni base superalloy ŽS6K. The high temperature effect represented here by heat treatment at 800°C followed with holding time about 10 hours, and cooling rate, here represented by three various cooling mediums as water, air, and oil, on structural characteristics and application of quantitative methods evaluation are presented in this paper.

  18. Microstructurally sensitive crack nucleation around inclusions in powder metallurgy nickel-based superalloys

    International Nuclear Information System (INIS)

    Jiang, J.; Yang, J.; Zhang, T.; Zou, J.; Wang, Y.; Dunne, F.P.E.; Britton, T.B.

    2016-01-01

    Nickel-based superalloys are used in high strength, high-value applications, such as gas turbine discs in aero engines. In these applications the integrity of the disc is critical and therefore understanding crack initiation mechanisms is of high importance. With an increasing trend towards powder metallurgy routes for discs, sometimes unwanted non-metallic inclusions are introduced during manufacture. These inclusions vary in size from ∼10 μm to 200 μm which is comparable to the grain size of the nickel-based superalloys. Cracks often initiate near these inclusions, and the precise size, shape, location and path of these cracks are microstructurally sensitive. In this study, we focus on crack initiation at the microstructural length scale using a controlled three-point bend test, with the inclusion deliberately located within the tensile fibre of the beam. Electron backscatter diffraction (EBSD) is combined with high spatial resolution digital image correlation (HR-DIC) to explore full field plastic strain distributions, together with finite element modelling, to understand the micro-crack nucleation mechanisms. This full field information and controlled sample geometry enable us to systematically test crack nucleation criteria. We find that a combined stored energy and dislocation density provide promising results. These findings potentially facilitate more reliable and accurate lifing prediction tools to be developed and applied to engineering components. - Highlights: • High resolution digital image correlation. • High resolution electron backscatter diffraction. • Crack nucleation. • Non-metallic inclusion.

  19. Residual Stresses in a NiCrY-Coated Powder Metallurgy Disk Superalloy

    Science.gov (United States)

    Gabb, Timothy P.; Rogers, Richard B.; Nesbitt, James A.; Puleo, Bernadette J.; Miller, Robert A.; Telesman, Ignacy; Draper, Susan L.; Locci, Ivan E.

    2017-01-01

    Protective ductile coatings will be necessary to mitigate oxidation and corrosion attack on superalloy disks exposed to increasing operating temperatures in some turbine engine environments. However, such coatings must be resistant to harmful surface cracking during service. The objective of this study was to investigate how residual stresses evolve in such coatings. Cylindrical gage fatigue specimens of powder metallurgy-processed disk superalloy LSHR were coated with a NiCrY coating, shot peened, and then subjected to fatigue in air at room and high temperatures. The effects of shot peening and fatigue cycling on average residual stresses and other aspects of the coating were assessed. Shot peening did induce beneficial compressive residual stresses in the coating and substrate. However, these stresses became more tensile in the coating with subsequent heating and contributed to cracking of the coating in long intervals of cycling at 760 C. Substantial compressive residual stresses remained in the substrate adjacent to the coating, sufficient to suppress fatigue cracking. The coating continued to protect the substrate from hot corrosion pitting, even after fatigue cracks initiated in the coating.

  20. Microstructural Changes during High Temperature Service of a Cobalt-Based Superalloy First Stage Nozzle

    Directory of Open Access Journals (Sweden)

    A. Luna Ramírez

    2016-01-01

    Full Text Available Superalloys are a group of alloys based on nickel, iron, or cobalt, which are used to operate at high temperatures (T > 540°C and in situations involving very high stresses like in gas turbines, particularly in the manufacture of blades, nozzles, combustors, and discs. Besides keeping its high resistance to temperatures which may approach 85% of their melting temperature, these materials have excellent corrosion resistance and oxidation. However, after long service, these components undergo mechanical and microstructural degradation; the latter is considered a major cause for replacement of the main components of gas turbines. After certain operating time, these components are very expensive to replace, so the microstructural analysis is an important tool to determine the mode of microstructure degradation, residual lifetime estimation, and operating temperature and most important to determine the method of rehabilitation for extending its life. Microstructural analysis can avoid catastrophic failures and optimize the operating mode of the turbine. A case study is presented in this paper.

  1. Subsurface characterization of an oxidation-induced phase transformation and twinning in nickel-based superalloy exposed to oxy-combustion environments

    International Nuclear Information System (INIS)

    Zhu Jingxi; Holcomb, Gordon R.; Jablonski, Paul D.; Wise, Adam; Li Jia; Laughlin, David E.; Sridhar, Seetharaman

    2012-01-01

    Highlights: ►Oxidation products of Ni-based superalloy were studied in oxy-fuel combustion conditions. ► An oxidation-induced phase transformation occurred in the subsurface region. ► One of the two product phases was not in the Ni database of Thermo-Calc. ► This unknown phase is an ordered derivative of FCC structure of Ni–Ti(–Ta) system. ► This phase is likely detrimental to the mechanical integrity of the alloy in use. - Abstract: In the integration of oxy-fuel combustion to turbine power generation system, turbine alloys are exposed to high temperature and an atmosphere comprised of steam, CO 2 and O 2 . While surface and internal oxidation of the alloy takes place, the microstructure in the subsurface region also changes due to oxidation. In this study, bare metal coupons of Ni-base superalloys were exposed in oxy-fuel combustion environment for up to 1000 h and the oxidation-related microstructures were examined. Phase transformation occurred in the subsurface region in Ni-based superalloy and led to twinning. The transformation product phases were analyzed through thermodynamic equilibrium calculations and various electron microscopy techniques, including scanning electron microscopy (SEM), orientation imaging microscopy (OIM) and transmission electron microscopy (TEM). The mechanism by which the phase transformation and the formation of the microstructure occurred was also discussed. The possible effects of the product phases on the performance of the alloy in service were discussed.

  2. Microstructure and mechanical properties of the superalloy ATI Allvac 718Plus

    International Nuclear Information System (INIS)

    Zickler, Gerald A.; Schnitzer, Ronald; Radis, Rene; Hochfellner, Rainer; Schweins, Ralf; Stockinger, Martin; Leitner, Harald

    2009-01-01

    ATI Allvac 718Plus is a novel nickel-based superalloy, which was designed for heavy-duty applications in aerospace turbines. In the present study the high-resolution investigation techniques, atom probe tomography, electron microscopy and in situ high-temperature small-angle neutron scattering were used for a comprehensive microstructural characterization. The alloy contains nanometer-sized spherical γ' phase precipitates (Ni 3 (Al,Ti)) and plate-shaped δ phase precipitates (Ni 3 Nb) of micrometer size. The precipitation kinetics of the γ' phase can be described by a classical model for coarsening. The precipitation strongly influences the mechanical properties and is of high scientific and technological interest.

  3. Effects of cobalt on structure, microchemistry and properties of a wrought nickel-base superalloy

    Science.gov (United States)

    Jarrett, R. N.; Tien, J. K.

    1982-01-01

    The effect of cobalt on the basic mechanical properties and microstructure of wrought nickel-base superalloys has been investigated experimentally by systematically replacing cobalt by nickel in Udimet 700 (17 wt% Co) commonly used in gas turbine (jet engine) applications. It is shown that the room temperature tensile yield strength and tensile strength only slightly decrease in fine-grained (disk) alloys and are basically unaffected in coarse-grained (blading) alloys as cobalt is removed. Creep and stress rupture resistances at 760 C are found to be unaffected by cobalt level in the blading alloys and decrease sharply only when the cobalt level is reduced below 8 vol% in the disk alloys. The effect of cobalt is explained in terms of gamma prime strengthening kinetics.

  4. Gas turbines

    Energy Technology Data Exchange (ETDEWEB)

    Farahan, E.; Eudaly, J.P.

    1978-10-01

    This evaluation provides performance and cost data for commercially available simple- and regenerative-cycle gas turbines. Intercooled, reheat, and compound cycles are discussed from theoretical basis only, because actual units are not currently available, except on a special-order basis. Performance characteristics investigated include unit efficiency at full-load and off-design conditions, and at rated capacity. Costs are tabulated for both simple- and regenerative-cycle gas turbines. The output capacity of the gas turbines investigated ranges from 80 to 134,000 hp for simple units and from 12,000 to 50,000 hp for regenerative units.

  5. ADVANCED TURBINE SYSTEMS PROGRAM

    Energy Technology Data Exchange (ETDEWEB)

    Gregory Gaul

    2004-04-21

    , combustion, cooling, materials, coatings and casting development. The market potential for the ATS gas turbine in the 2000-2014 timeframe was assessed for combined cycle, simple cycle and integrated gasification combined cycle, for three engine sizes. The total ATS market potential was forecasted to exceed 93 GW. Phase 3 and Phase 3 Extension involved further technology development, component testing and W501ATS engine detail design. The technology development efforts consisted of ultra low NO{sub x} combustion, catalytic combustion, sealing, heat transfer, advanced coating systems, advanced alloys, single crystal casting development and determining the effect of steam on turbine alloys. Included in this phase was full-load testing of the W501G engine at the McIntosh No. 5 site in Lakeland, Florida.

  6. Fabrication of Turbine Disk Materials by Additive Manufacturing

    Science.gov (United States)

    Sudbrack, Chantal; Bean, Quincy A.; Cooper, Ken; Carter, Robert; Semiatin, S. Lee; Gabb, Tim

    2014-01-01

    Precipitation-strengthened, nickel-based superalloys are widely used in the aerospace and energy industries due to their excellent environmental resistance and outstanding mechanical properties under extreme conditions. Powder-bed additive manufacturing (AM) technologies offer the potential to revolutionize the processing of superalloy turbine components by eliminating the need for extensive inventory or expensive legacy tooling. Like selective laser melting (SLM), electron beam melting (EBM) constructs three-dimensional dense components layer-by-layer by melting and solidification of atomized, pre-alloyed powder feedstock within 50-200 micron layers. While SLM has been more widely used for AM of nickel alloys like 718, EBM offers several distinct advantages, such as less retained residual stress, lower risk of contamination, and faster build rates with multiple-electron-beam configurations. These advantages are particularly attractive for turbine disks, for which excessive residual stress and contamination can shorten disk life during high-temperature operation. In this presentation, we will discuss the feasibility of fabricating disk superalloy components using EBM AM. Originally developed using powder metallurgy forging processing, disk superalloys contain a higher refractory content and precipitate volume fraction than alloy 718, thus making them more prone to thermal cracking during AM. This and other challenges to produce homogeneous builds with desired properties will be presented. In particular, the quality of lab-scale samples fabricated via a design of experiments, in which the beam current, build temperature, and beam velocity were varied, will be summarized. The relationship between processing parameters, microstructure, grain orientation, and mechanical response will be discussed.

  7. Pelton turbines

    CERN Document Server

    Zhang, Zhengji

    2016-01-01

    This book concerns the theoretical foundations of hydromechanics of Pelton turbines from the engineering viewpoint. For reference purposes, all relevant flow processes and hydraulic aspects in a Pelton turbine have been analyzed completely and systematically. The analyses especially include the quantification of all possible losses existing in the Pelton turbine and the indication of most available potential for further enhancing the system efficiency. As a guideline the book therefore supports further developments of Pelton turbines with regard to their hydraulic designs and optimizations. It is thus suitable for the development and design engineers as well as those working in the field of turbo machinery. Many laws described in the book can also be directly used to simplify aspects of computational fluid dynamics (CFD) or to develop new computational methods. The well-executed examples help better understand the related flow mechanics.

  8. Misfit in Inconel-Type Superalloy

    Directory of Open Access Journals (Sweden)

    Pavel Strunz

    2013-01-01

    Full Text Available An important parameter for the characterization of microstructural changes in nickel base superalloys is the misfit - the relative difference between lattice parameters of γ matrix and γ′ precipitates. The misfit in IN738LC superalloy was examined at POLDI time-of-flight (TOF neutron diffractometer both at room temperature and in situ at elevated temperatures using a high-temperature furnace. A careful out-of-furnace measurement yielded the lattice parameters of both γ and γ′ phase at room temperature (aγ=3.58611(10 Å, aγ′=3.58857(17 Å as well as the misfit (equal to 6.9(6×10-4. The in situ measurement at elevated temperatures provided the temperature dependence of the lattice parameters of γ (up to 1120°C and γ′ (up to 1000°C. Using these data, the evolution of the misfit with temperature was calculated. The misfit decreases with increasing temperature until it reaches zero value at a temperature around 800°C. Above 800°C, it becomes negative.

  9. A high-throughput search for new ternary superalloys

    Science.gov (United States)

    Nyshadham, Chandramouli; Hansen, Jacob; Oses, Corey; Curtarolo, Stefano; Hart, Gus

    In 2006 an unexpected new superalloy, Co3[Al,W], was discovered. This new alloy is cobalt-based, in contrast to conventional superalloys, which are nickel-based. Inspired by this new discovery, we performed first-principles calculations, searching through 2224 ternary metallic systems of the form A3[B0.5C0.5], where A = Ni/Co/Fe and [B, C] = all binary combinations of 40 different elements chosen from the periodic table. We found 175 new systems that are better than the Co3[Al, W] superalloy. 75 of these systems are brand new--they have never been reported in experimental literature. These 75 new potential superalloys are good candidates for further experiments. Our calculations are consistent with current experimental literature where data exists. Work supported under: ONR (MURI N00014-13-1-0635).

  10. Proceedings of the Conference on Refractory Alloying Elements in Superalloys

    International Nuclear Information System (INIS)

    1984-01-01

    Some papers about the use of refractory metals in superalloys are presented. Mechanical properties, thermodynamics properties, use for nuclear fuels and corrosion resistance of those alloys are studied. (E.G.) [pt

  11. Neutron and X-ray diffraction measurements on micro- and nano-sized precipitates embedded in a Ni-based superalloy and after their extraction from the alloy

    International Nuclear Information System (INIS)

    Gilles, R.; Mukherji, D.; Hoelzel, M.; Strunz, P.; Toebbens, D.M.; Barbier, B.

    2006-01-01

    Neutron and X-ray diffraction are eminently suitable techniques to determine lattice misfit in nickel-based superalloys. Due to the different measuring techniques and sensitivities of the probes, sometimes one method is preferable to the other. This paper demonstrates how the use of neutrons allows a better determination of the misfit value in a bulk single-crystal tungsten-rich nickel superalloy with oriented precipitates than the use of X-rays, although the resolution in neutron diffraction is generally inferior to that in X-ray diffraction. It also yields more accurate results when the precipitates are at the nanoscale. The neutron measurements were carried out using a special technique to detect a larger number of reflections in single-crystal samples than observed in standard diffraction geometry. A comparison of the measurements by neutron and X-ray diffraction of precipitates separated from the bulk is also included in the investigation

  12. Evaluation of premature failure of a gas turbine component

    CSIR Research Space (South Africa)

    Dedekind, MO

    1996-01-03

    Full Text Available about the actual engine operating histories. KEYWORDS Life assessment; MAR-M509; Gas turbine engines; CFD; finite element analysis. NOMENCLATURE a crack length E Young’s modulus k heat transfer coefficient N number of cycles Nf cycles to failure... of fatigue cracks of up to 10 mm in length at the leading and trailing edges. No cracks were visible anywhere else on the component. The material in question is MAR- M509, a cast cobalt-based superalloy commonly used in nozzle guide vanes. In this alloy...

  13. Wind turbine

    Science.gov (United States)

    Cheney, Jr., Marvin C.

    1982-01-01

    A wind turbine of the type having an airfoil blade (15) mounted on a flexible beam (20) and a pitch governor (55) which selectively, torsionally twists the flexible beam in response to wind turbine speed thereby setting blade pitch, is provided with a limiter (85) which restricts unwanted pitch change at operating speeds due to torsional creep of the flexible beam. The limiter allows twisting of the beam by the governor under excessive wind velocity conditions to orient the blades in stall pitch positions, thereby preventing overspeed operation of the turbine. In the preferred embodiment, the pitch governor comprises a pendulum (65,70) which responds to changing rotor speed by pivotal movement, the limiter comprising a resilient member (90) which engages an end of the pendulum to restrict further movement thereof, and in turn restrict beam creep and unwanted blade pitch misadjustment.

  14. Dissolution kinetics and morphological changes of γ′ in AD730TM superalloy

    Directory of Open Access Journals (Sweden)

    Masoumi F.

    2014-01-01

    Full Text Available Alloy AD730TM is a recently developed Nickel base superalloy for application as turbine disk in modern gas turbines with improved thermal efficiency. Ingot casting followed by open die-forging and then heat treatments are the main manufacturing steps for the production of parts made of this alloy. Solution heat treatment operations are applied at different stages of the manufacturing in order to ease the deformation processing and/or prepare the microstructure for final heat treatment. In this research, the influence of various solution heat treatment schedules on morphology and distribution of the γ′ phase are investigated and documented. The obtained results will contribute to a better understanding of microstructure evolution of AD730TM during solution heat treatments. Differential Thermal Analysis (DTA is used for the purposes of measurement of temperatures of phase transformations of the alloy. Based on DTA results, three solutionizing temperatures and three holding times were selected for performing and assessing the solution heat treatment process. Optical and electron microscopy were used to study the morphological evolution as well as the coarsening and dissolution of secondary phases at solvus and subsolvus temperatures. The results indicated that precipitate agglomeration and Ostwald ripening are the governing mechanisms during the initial stages and splitting and partial dissolution of γ′ precipitates takes place during subsolvus solution treatments.

  15. Low heat input welding of nickel superalloy GTD-111 with Inconel 625 filler metal

    Energy Technology Data Exchange (ETDEWEB)

    Athiroj, Athittaya; Wangyao, Panyawat; Hartung, Fritz; Lothongkum, Gobboon [Chulalongkorn Univ., Bangkok (Thailand). Dept. of Metallurgical Engineering

    2018-03-01

    GTD-111 precipitation-strengthened nickel-based superalloy is widely used in blades of gas turbine engines which operate at high temperature and in a hot localized corrosion atmosphere. After long-term exposure to high temperature, γ' precipitate is known to exhibit catastrophic changes in size and distribution which cause deterioration of its properties and failure of the component. In this study, a damaged blade removed from a land-based gas turbine generator was subjected to nonpre-heat-treated GTAW and laser welding repair with various welding powers in the range of 135 to 295 J x mm{sup -1}, followed by post-weld heat treatment (PWHT) at 1473 K for 7200 s and strain aging at 1118 K for 86 400 s. Results show no significant relationship between welding powers, size and area fraction of the γ' precipitate in the fcc γ matrix in both GTAW and laser-welded specimens. The final γ' precipitate size and distribution depend mainly on PWHT parameters as γ' precipitates in all GTAW and laser welded specimens showed similar size and area fraction independently of the heat input from welding. Unmixed zones are observed in all laser welding specimens which may cause preferential weld corrosion during service. Microcrack occurrence due to welding and PWHT processes is also discussed.

  16. Oxidation of a Commercial Nickel-Based Superalloy under Static Loading

    Science.gov (United States)

    Foss, B. J.; Hardy, M. C.; Child, D. J.; McPhail, D. S.; Shollock, B. A.

    2014-12-01

    The current demands of the aviation industry for increased gas-turbine efficiency necessitate higher turbine entry temperatures, requiring that alloys exhibit superior oxidation resistance. The synergistic effects of oxidation and mechanical stresses pose a complex issue. The purpose of the current research was to examine the effects of stress on the oxidation and oxygen transport in a commercial nickel-based superalloy. Fine grain RR1000 in both polished and shot-peened conditions was studied for classic (zero load) and statically loaded conditions using integrated two-stage isotopic tracing combined with focused-ion-beam secondary ion mass spectrometry (FIB-SIMS). Cr2O3 external oxide formed with semicontinuous TiO2 above and below. Preferential grain boundary Al2O3 internal oxide formation, γ'-dissolution, and recrystallization occurred subsurface. Oxidation mechanisms were dominated by anionic/cationic growth in the external oxide with inward oxygen transport, initially through the partially unprotective external oxide, then along internal oxide/alloy interfaces. Loading did not influence the oxidation products formed but did bring about expedited oxidation kinetics and changes to the oxide morphology. The oxygen diffusivity D {O/ * } (×10-13 cm2s-1) ranged from 0.39 for the polished alloy to 3.7 for the shot-peened condition under compressive stress. Arguably, the most significant effects took place in the subsurface regions. Increased oxidation kinetics were attributed to the development of fast cation diffusion paths as the alloy deformed by creep.

  17. Creep-fatigue of low cobalt superalloys

    Science.gov (United States)

    Halford, G. R.

    1982-01-01

    Testing for the low cycle fatigue and creep fatigue resistance of superalloys containing reduced amounts of cobalt is described. The test matrix employed involves a single high temperature appropriate for each alloy. A single total strain range, again appropriate to each alloy, is used in conducting strain controlled, low cycle, creep fatigue tests. The total strain range is based upon the level of straining that results in about 10,000 cycles to failure in a high frequency (0.5 Hz) continuous strain-cycling fatigue test. No creep is expected to occur in such a test. To bracket the influence of creep on the cyclic strain resistance, strain hold time tests with ore minute hold periods are introduced. One test per composition is conducted with the hold period in tension only, one in compression only, and one in both tension and compression. The test temperatures, alloys, and their cobalt compositions that are under study are given.

  18. Improving Turbine Performance with Ceramic Matrix Composites

    Science.gov (United States)

    DiCarlo, James A.

    2007-01-01

    Under the new NASA Fundamental Aeronautics Program, efforts are on-going within the Supersonics Project aimed at the implementation of advanced SiC/SiC ceramic composites into hot section components of future gas turbine engines. Due to recent NASA advancements in SiC-based fibers and matrices, these composites are lighter and capable of much higher service temperatures than current metallic superalloys, which in turn will allow the engines to operate at higher efficiencies and reduced emissions. This presentation briefly reviews studies within Task 6.3.3 that are primarily aimed at developing physics-based concepts, tools, and process/property models for micro- and macro-structural design, fabrication, and lifing of SiC/SiC turbine components in general and airfoils in particular. Particular emphasis is currently being placed on understanding and modeling (1) creep effects on residual stress development within the component, (2) fiber architecture effects on key composite properties such as design strength, and (3) preform formation processes so that the optimum architectures can be implemented into complex-shaped components, such as turbine vanes and blades.

  19. Aging of vacuum plasma sprayed MCrAlY protective layers and their interaction with nickel- and cobalt-based γ/γ'-superalloys; Alterung von Vakuum-plasmagespritzten MCrAlY-Schutzschichten und ihre Wechselwirkung mit Nickel- und Cobalt-basierten γ/γ'-Superlegierungen

    Energy Technology Data Exchange (ETDEWEB)

    Terberger, Philipp J.

    2015-07-01

    γ/γ' single crystal superalloys with plasma-sprayed thermal barrier coating systems are used as turbine rotor blades in gas turbines if the blades are exposed to high temperatures and high mechanical loads. A bond coat (BC) is part of the thermal barrier coating system. It protects the substrate from oxidation and ensures good bonding of the ceramic coating that serves as a thermal insulator. MCrAlY (M=Ni,Co) alloys are commonly used as BCs. They form a protective Al{sub 2}O{sub 3} layer. This study investigates four different vacuum plasma-sprayed MCrAlY BCs with and without Re after thermal treatment of up to 1000 h at 1044 C in air. The employed substrates are the Ni-based superalloy ERBO1 and the novel Co-based γ/γ' superalloy ERBOCo-1. Additionally, the ternary γ/γ' alloy Co-9Al-9W (in at.%) was aged with a BC for up to 500 h at 900 C. Up to now little is known about the interaction of the Co-based substrates and the BCs. Oxidation and Al depletion of the BC as well as the interdiffusion of BCs and substrates are analysed primarily on the basis of SEM/EDX and XRD. The effect of Y and Hf on the microstructure of the oxide scale is discussed. Rate constants show that Hf results in higher oxidation rates while Re slows down the oxidation. The influence of the alloying elements on the BC microstructure is described. For example, Co prevents the formation of γ' phase, Re slows down diffusion and results in the formation of brittle phases. The choice of substrate material has no measurable influence on the oxidation. Qualitative and quantitative analysis of the interdiffusion zone (IDZ) shows that the choice of substrate surface pre-treatment (grit blasting or grinding) has a major influence on the interdiffusion behaviour with the BC. Grinding results in a thinner IDZ and fewer topologically closed packed (TCP) phases. The reason for this is the recrystallisation of the single crystal substrate. A study of the influence of the substrate

  20. Hot Corrosion Behaviour of Detonation Gun Sprayed Al2O3-40TiO2 Coating on Nickel Based Superalloys at 900°C

    Directory of Open Access Journals (Sweden)

    N. K. Mishra

    2014-01-01

    Full Text Available Hot corrosion is the major degradation mechanism of failure of boiler and gas turbine components. These failures occur because of the usage of wide range of fuels such as, coal and oil at the elevated temperatures. Nickel based superalloys having excellent mechanical strength and creep resistance at elevated temperature are used under such environment but they lack resistance to hot corrosion at high temperature. To overcome these problems hot corrosion resistant coatings are deposited on these materials. In the current investigation Al2O3-40%TiO2 powder has been deposited on Superni 718 and AE 435 superalloys by Detonation Gun method. The hot corrosion performance of Al2O3-40%TiO2 coated as well as uncoated Superni 718 and AE 435 alloys has been evaluated in aggressive environment Na2SO4-82%Fe2(SO43 under cyclic conditions at an elevated temperature of 900°C. The kinetics of the corrosion is approximated by weight change measurements made after each cycle for total duration of 50 cycles. Scanning electron microscopy was used to characterize the hot corrosion products. The coated samples imparted better hot corrosion resistance than the uncoated ones. The AE 435 superalloy performed better than Superni 718 for hot corrosion in a given environment.

  1. Microstructural analysis of weld cracking in 718 Plus superalloy

    Science.gov (United States)

    Vishwakarma, Krutika

    Allvac 718RTM PLUS(TM) (718 Plus) is a new Ni-base superalloy developed to be used in land and aero gas turbine applications. 718 Plus was developed to have high temperature properties superior to its baseline superalloy Inconel 718, while maintaining its workability. Besides its high temperature properties superior to Inconel 718, limited information exists about its physical metallurgy or weldability. This project studied the microstructure and electron beam welding response of this new superalloy in two selected pre-weld heat treated conditions. To further understand the effect of minor alloying elements on its weldability, two versions of 718 Plus with varying concentrations of boron and phosphorus, HC 49 with higher B and P and HC 20 with normal B and P, were also studied. Finally, the weldability of 718 Plus alloys was compared to that of Inconel 718 and Waspaloy under similar welding conditions. Hot rolled wrought plates of Inconel 718, Waspaloy and 718 Plus alloys were supplied by ALLVAC Inc. 12.7 mm x 12.7 mm x 101.6 mm sections were cut normal to the rolling direction of the plates and were subjected to their recommended respective solution heat treatments, viz., 950°C for 1 hour for 718 Plus alloys and Inconel 718 and 1020°C for 1 hour for Waspaloy. 718 Plus alloys and Inconel 718 were also examined after another solution heat treatment at 1050°C for 1 hour. All the heat treatments were followed by water quenching. Thorough microstructural characterization before and after welding was carried out using optical microscopy, analytical scanning electron microscopy, electron microprobe analysis and analytical transmission electron microscopy. In addition, Secondary Ion Mass Spectrometer (SIMS) was used to study the grain boundary segregation in the two 718 Plus alloys. Interestingly, the microstructure of 718 Plus alloy, in the heat treated conditions it was studied, was very similar to that of Inconel 718 despite of the considerable difference in their

  2. Resistance of Silicon Nitride Turbine Components to Erosion and Hot Corrosion/oxidation Attack

    Science.gov (United States)

    Strangmen, Thomas E.; Fox, Dennis S.

    1994-01-01

    Silicon nitride turbine components are under intensive development by AlliedSignal to enable a new generation of higher power density auxiliary power systems. In order to be viable in the intended applications, silicon nitride turbine airfoils must be designed for survival in aggressive oxidizing combustion gas environments. Erosive and corrosive damage to ceramic airfoils from ingested sand and sea salt must be avoided. Recent engine test experience demonstrated that NT154 silicon nitride turbine vanes have exceptional resistance to sand erosion, relative to superalloys used in production engines. Similarly, NT154 silicon nitride has excellent resistance to oxidation in the temperature range of interest - up to 1400 C. Hot corrosion attack of superalloy gas turbine components is well documented. While hot corrosion from ingested sea salt will attack silicon nitride substantially less than the superalloys being replaced in initial engine applications, this degradation has the potential to limit component lives in advanced engine applications. Hot corrosion adversely affects the strength of silicon nitride in the 850 to 1300 C range. Since unacceptable reductions in strength must be rapidly identified and avoided, AlliedSignal and the NASA Lewis Research Center have pioneered the development of an environmental life prediction model for silicon nitride turbine components. Strength retention in flexure specimens following 1 to 3300 hour exposures to high temperature oxidation and hot corrosion has been measured and used to calibrate the life prediction model. Predicted component life is dependent upon engine design (stress, temperature, pressure, fuel/air ratio, gas velocity, and inlet air filtration), mission usage (fuel sulfur content, location (salt in air), and times at duty cycle power points), and material parameters. Preliminary analyses indicate that the hot corrosion resistance of NT154 silicon nitride is adequate for AlliedSignal's initial engine

  3. Hydraulic turbines and auxiliary equipment

    Energy Technology Data Exchange (ETDEWEB)

    Luo Gaorong [Organization of the United Nations, Beijing (China). International Centre of Small Hydroelectric Power Plants

    1995-07-01

    This document presents a general overview on hydraulic turbines and auxiliary equipment, emphasizing the turbine classification, in accordance with the different types of turbines, standard turbine series in China, turbine selection based on the basic data required for the preliminary design, general hill model curves, chart of turbine series and the arrangement of application for hydraulic turbines, hydraulic turbine testing, and speed regulating device.

  4. Morphology evolution of {gamma}' precipitates in GTD-111 Ni-based superalloy with heat treatment parameters

    Energy Technology Data Exchange (ETDEWEB)

    Berahmand, Mohamad; Abdolkarim Sajjadi, Seyed [Ferdowsi Univ. of Mashhad (Iran, Islamic Republic of). Dept. of Metallurgical and Materials Engineering

    2013-03-15

    GTD-111 is an Ni-based superalloy used in manufacturing of gas turbine blades. The superalloy attains appropriate high temperature strength through precipitation hardening. In this research the effect of isothermal aging on the morphology evolution and characteristics of precipitates was investigated. Two different heat treatment cycles were applied to the specimens. In cycle I all samples were solution-treated at 1200 C for 4h and water quenched to obtain supersaturated solid solution. A microstructure containing fine {gamma}' precipitates was produced after heat treatment cycle I. The second heat treatment, cycle II, consisted of reheating of the specimens in the precipitate partial dissolution zone at 1150 C for 2h to get coarse primary precipitates, and then water quenching to obtain fine secondary precipitates. The precipitate coarsening in the fine and duplex size precipitate distribution was studied by means of aging of the specimens for various times at 1000 C. The results showed that during long-term annealing of the single size distribution (Cycle I), precipitates line up to reduce interactive free energy and grow to fairly coarse sizes along a direction. In cycle II, the precipitates were split into a group of eight small cuboids or pairs of parallel plates and a large number of {gamma}' particles were closely aligned along a direction. (orig.)

  5. Cyclic Oxidation of High Mo, Reduced Density Superalloys

    Directory of Open Access Journals (Sweden)

    James L. Smialek

    2015-11-01

    Full Text Available Cyclic oxidation was characterized as part of a statistically designed, 12-alloy compositional study of 2nd generation single crystal superalloys as part of a broader study to co-optimize density, creep strength, and cyclic oxidation. The primary modification was a replacement of 5 wt. % W by 7% or 12% Mo for density reductions of 2%–7%. Compositions at two levels of Mo, Cr, Co, and Re were produced, along with a midpoint composition. Initially, polycrystalline vacuum induction samples were screened in 1100 °C cyclic furnace tests using 1 h cycles for 200 h. The behavior was primarily delimited by Cr content, producing final weight changes of −40 mg/cm2 to −10 mg/cm2 for 0% Cr alloys and −2 mg/cm2 to +1 mg/cm2 for 5% Cr alloys. Accordingly, a multiple linear regression fit yielded an equation showing a strong positive Cr effect and lesser negative effects of Co and Mo. The results for 5% Cr alloys compare well to −1 mg/cm2, and +0.5 mg/cm2 for Rene′ N4 and Rene′ N5 (or Rene′ N6, respectively. Scale phases commonly identified were Al2O3, NiAl2O4, NiTa2O6, and NiO, with (Ni,CoMoO4 found only on the least resistant alloys having 0% Cr and 12% Mo. Scale microstructures were complex and reflected variations in the regional spallation history. Large faceted NiO grains and fine NiTa2O6 particles distributed along NiAl2O4 grain boundaries were typical distinctive features. NiMoO4 formation, decomposition, and volatility occurred for a few high Mo compositions. A creep, density, phase stability, and oxidation balanced 5% Cr, 10% Co, 7% Mo, and 3% Re alloy was selected to be taken forward for more extensive evaluations in single crystal form.

  6. Numerical determination of the elastic driving force for directional coarsening in Ni-superalloys

    Energy Technology Data Exchange (ETDEWEB)

    Socrate, S.; Parks, D.M. (Massachusetts Inst. of Tech., Cambridge, MA (United States))

    1993-07-01

    The authors have developed a general methodology, in the framework of the finite element method, for locally evaluating the generalized force acting on a material interface which is work-conjugate with the normal displacement of the interface itself. This methodology has been applied to the study of directional coarsening of [gamma][prime] precipitates in Ni-superalloys. The flexibility of the proposed method has allowed us to closely model the actual microstructural morphology of the alloys and to account for the effects of applied boundary conditions, lattice misfit, elastic anisotropy and inelastic behavior of the crystals. They have positively compared the indications of the model with available experimental data for a few alloys, and a circumscribed parametric study has lead us to formulate a more general interpretation of the rafting phenomenon, which appears to give a satisfactory explanation for all the available experimental observations.

  7. Noburnium: Systems design of niobium superalloys

    Science.gov (United States)

    Misra, Abhijeet

    2005-11-01

    A systems-based approach, integrating quantum mechanical calculations with efficient experimentation, was employed to design niobium-based superalloys. The microstructural concept of gamma-gamma' nickel-based superalloys was adopted, where, the coherent gamma ' aluminides act both as the strengthening phase and a source of aluminum for Al2O3 passivation. Building on previous research, the selected bcc-type ordered aluminide was L2 1 structured Pd2HfAl phase. Comprehensive phase relations were measured on Nb-Pd-Hf-Al prototype alloys, and key tie-tetrahedra were identified. Aluminide precipitation in a bcc matrix was demonstrated in designed Nb+Pd2HfAl alloys. Thermodynamic databases were developed by integrating first-principles calculations with measured phase relations. Atomic volume models were developed for the bcc matrix and the Pd2HfAl phase and matrix elements which would reduce lattice misfit were identified. An experimental 2-phase alloy demonstrated a misfit of 3%. A modified Wagner's model was used to predict the required transient properties to form external Al2O3. The principal oxidation design goal was to decrease the oxygen permeability ( NSOx DO ) divided by the aluminum diffusivity (DAl) by 5 orders of magnitude. A multicomponent mobility database was developed to predict the diffusivities. Guided by first-principles calculations the effect of alloying elements on the oxygen diffusivity in Nb was measured, and the mobility database was experimentally validated. Based on the mobility database, it was found that increasing Al solubility in the bcc matrix greatly increased Al diffusivity. Alloying elements were identified that would increase Al solubility in the bcc matrix. Prototype alloys were prepared and the best oxidation performance was exhibited by a bcc+Nb2Al Nb-Hf-Al alloy, which exhibited parabolic oxidation behavior at 1300°C. The alloy was shown to have achieved the required 5 orders of magnitude reduction in the design parameter. The

  8. Turbine stage model

    International Nuclear Information System (INIS)

    Kazantsev, A.A.

    2009-01-01

    A model of turbine stage for calculations of NPP turbine department dynamics in real time was developed. The simulation results were compared with manufacturer calculations for NPP low-speed and fast turbines. The comparison results have shown that the model is valid for real time simulation of all modes of turbines operation. The model allows calculating turbine stage parameters with 1% accuracy. It was shown that the developed turbine stage model meets the accuracy requirements if the data of turbine blades setting angles for all turbine stages are available [ru

  9. Investigation of selected thermo-physical properties in the Co-based superalloy: Experiment and application study

    Directory of Open Access Journals (Sweden)

    J. Kasala

    2010-01-01

    Full Text Available Thermo-physical properties are the critical input parameters in computational models of solidification and casting simulations. In thermodynamics, the enthalpy is quotient of thermodynamic potential of a system, which can be used to calculate the useful work obtainable from a closed thermodynamic system under constant pressure. Differential thermal analysis has been used to study melting and solidification paths in the cobalt based superalloy FSX-414. The temperature enthalpy curve was determined from differential thermal analysis curves obtained from solidification curves. A solidification simulation of a cobalt base multi-component alloy casting was carried out to predict cooling and shrinkage porosity in the casting of a turbine engine vane segment. The effect of latent heat on the heat transfer calculation was considered by enthalpy method.

  10. Life Prediction of Low Cycle Fatigue for Ni-base Superalloy GTD111 DS at Elevated Temperature

    International Nuclear Information System (INIS)

    Kim, Jin Yeol; Yoon, Dong Hyun; Kim, Jae Hoon; Bae, Si Yeon; Chang, Sung Yong; Chang, Sung Ho

    2017-01-01

    GTD111 DS of nickel base superalloy has been used for gas turbine blades. In this study, low cycle fatigue test was conducted on the GTD111 DS alloy by setting conditions similar to the real operating environment. The low cycle fatigue tests were conducted at room temperature, 760 °C, 870 °C, and various strain amplitudes. Test results showed that fatigue life decreased with increasing total strain amplitude. Cyclic hardening response was observed at room temperature and 760 °C; however, tests conducted at 870 °C showed cyclic softening response. Stress relaxation was observed at 870 °C because creep effects occurred from holding time. A relationship between fatigue life and total strain range was obtained from the Coffin-Manson method. The fratography using a SEM was carried out at the crack initiation and propagation regions.

  11. Mechanical characterization of superalloys for space reactors

    International Nuclear Information System (INIS)

    Duchesne, J.

    1989-01-01

    The purpose of this work is the choice of materials usable between 600 and 900 0 C for nuclear space reactor structures. The main criterion of selection for these materials is their good creep behaviour. Consequently, macroscopic theories of creep and several extrapolation methods were described. Superalloys seem the best materials for the studied range of temperatures. Five of them, base nickel, ones unusual in nuclear industry were selected for their good mechanical properties. Three of them are industrial alloys: the first, HAYNES 230 is a recent one, HASTELLOY S and X are more standard materials. The last two, HASTELLOY XR and PYRAD 38 D are issued from special fabrications. Creep tests metallographic investigations, hardness and tensile tests were performed. A contraction of samples was observed during some creep tests under a low stress, 20MPa at 800 0 C, for HAYNES 230 and HASTELLOY X. This could be due to a structural evolution of these materials connected to a decrease of the cristalline parameter. In addition, correlations were observed between certain characteristics determined from slow tensile tests and short duration creep tests. These correlations present a large interest because, at the present time, creep tests cannot be executed on irradiated materials in our laboratories. Consequently creep behaviour of irradiated materials seem may be deduced. Further studies are needed to explain and confirm the behaviour of the most interesting materials under low stresses: HAYNES 230 and HASTELLOY XR to anticipate their behaviour in working conditions [fr

  12. Surface alloying of nickel based superalloys by laser

    International Nuclear Information System (INIS)

    Rodriguez, G.P.; Garcia, I.; Damborenea, J.J. de

    1998-01-01

    Ni based superalloys present a high oxidation resistance at high temperature as well as good mechanical properties. But new technology developments force to research in this materials to improve their properties at high temperature. In this work, two Ni based superalloys (Nimonic 80A and Inconel 600) were surface alloyed with aluminium using a high power laser. SEM and EDX were used to study the microstructure of the obtained coatings. Alloyed specimens were tested at 1.273 K between 24 and 250 h. Results showed the generation of a protective and continuous coating of alumina on the laser treated specimens surface that can improve oxidation resistance. (Author) 8 refs

  13. Synchrotron measurement of the 3D shape of X-ray reflections from the {gamma}/{gamma}{sup '}-microstructure of nickel-base superalloys

    Energy Technology Data Exchange (ETDEWEB)

    Epishin, Alexander; Link, Thomas; Ulbricht, Alexander; Bansal, Mamta [Technical Univ. of Berlin (Germany). Inst. of Material Science and Technology; Zizak, Ivo [Helmholtz-Zentrum Berlin for Materials and Energy BESSY II, Berlin (Germany)

    2011-12-15

    The 3D shape of X-ray reflections from the {gamma}/{gamma}{sup '}-microstructure of a nickel-base superalloy was investigated using synchrotron X-ray radiation and a position sensitive area detector. The measurements were performed on the 4{sup th} generation single-crystal nickel-base superalloy TMS138. The results show that X-ray reflections from non-cubic crystallographic planes have a complex 3D shape which changes during rafting. The 3D intensity distributions contain information about the spacing of the planes and their orientation as well. Whereas h00 reflections show the usual splitting into a {gamma}{sup '} and one {gamma}-subreflection, the hh0 and hhh reflections show two and three {gamma}-peaks respectively, resulting from the different types of {l_brace}100{r_brace} matrix channels. Therefore, these 3D diffraction measurements supply additional information about the spatial distribution of microstrains. (orig.)

  14. Turbine main engines

    CERN Document Server

    Main, John B; Herbert, C W; Bennett, A J S

    1965-01-01

    Turbine Main Engines deals with the principle of operation of turbine main engines. Topics covered include practical considerations that affect turbine design and efficiency; steam turbine rotors, blades, nozzles, and diaphragms; lubricating oil systems; and gas turbines for use with nuclear reactors. Gas turbines for naval boost propulsion, merchant ship propulsion, and naval main propulsion are also considered. This book is divided into three parts and begins with an overview of the basic mode of operation of the steam turbine engine and how it converts the pressure energy of the ingoing ste

  15. Turbine system and adapter

    Energy Technology Data Exchange (ETDEWEB)

    Hogberg, Nicholas Alvin; Garcia-Crespo, Andres Jose

    2017-05-30

    A turbine system and adapter are disclosed. The adapter includes a turbine attachment portion having a first geometry arranged to receive a corresponding geometry of a wheelpost of a turbine rotor, and a bucket attachment portion having a second geometry arranged to receive a corresponding geometry of a root portion of a non-metallic turbine bucket. Another adapter includes a turbine attachment portion arranged to receive a plurality of wheelposts of a turbine rotor, and a bucket attachment portion arranged to receive a plurality of non-metallic turbine buckets having single dovetail configuration root portions. The turbine system includes a turbine rotor wheel configured to receive metal buckets, at least one adapter secured to at least one wheelpost on the turbine rotor wheel, and at least one non-metallic bucket secured to the at least one adapter.

  16. Advanced alloy design technique: High temperature cobalt base superalloy

    Science.gov (United States)

    Dreshfield, R. L.; Freche, J. C.; Sandrock, G. D.

    1972-01-01

    Advanced alloy design technique was developed for treating alloys that will have extended life in service at high temperature and intermediate temperatures. Process stabilizes microstructure of the alloy by designing it so that compound identified with embrittlement is eliminated or minimized. Design process is being used to develop both nickel and cobalt-base superalloys.

  17. Nanosize boride particles in heat-treated nickel base superalloys

    International Nuclear Information System (INIS)

    Zhang, H.R.; Ojo, O.A.; Chaturvedi, M.C.

    2008-01-01

    Grain boundary microconstituents in aged nickel-based superalloys were studied by transmission electron microscopy techniques. A nanosized M 5 B 3 boride phase, possibly formed by intergranular solute desegregation-induced precipitation, was positively identified. The presence of these intergranular nanoborides provides reasonable clarification of a previously reported reduction of grain boundary liquation temperature during the weld heat affected zone thermal cycle

  18. Turbine maintenance and modernization

    Energy Technology Data Exchange (ETDEWEB)

    Unga, E. [Teollisuuden Voima Oy, Olkiluoto (Finland)

    1998-12-31

    The disturbance-free operation of the turbine plant plays an important role in reaching good production results. In the turbine maintenance of the Olkiluoto nuclear power plant the lifetime and efficiency of turbine components and the lifetime costs are taken into account in determining the turbine maintenance and modernization/improvement program. The turbine maintenance program and improvement/modernization measures taken in the plant units are described in this presentation. (orig.)

  19. Nonlinear analysis for high-temperature multilayered fiber composite structures. M.S. Thesis; [turbine blades

    Science.gov (United States)

    Hopkins, D. A.

    1984-01-01

    A unique upward-integrated top-down-structured approach is presented for nonlinear analysis of high-temperature multilayered fiber composite structures. Based on this approach, a special purpose computer code was developed (nonlinear COBSTRAN) which is specifically tailored for the nonlinear analysis of tungsten-fiber-reinforced superalloy (TFRS) composite turbine blade/vane components of gas turbine engines. Special features of this computational capability include accounting of; micro- and macro-heterogeneity, nonlinear (stess-temperature-time dependent) and anisotropic material behavior, and fiber degradation. A demonstration problem is presented to mainfest the utility of the upward-integrated top-down-structured approach, in general, and to illustrate the present capability represented by the nonlinear COBSTRAN code. Preliminary results indicate that nonlinear COBSTRAN provides the means for relating the local nonlinear and anisotropic material behavior of the composite constituents to the global response of the turbine blade/vane structure.

  20. High Temperature Brush Seal Tuft Testing of Selected Nickel-Chrome and Cobalt-Chrome Superalloys

    Science.gov (United States)

    Fellenstein, James A.; DellaCorte, Christopher; Moore, Kenneth D.; Boyes, Esther

    1997-01-01

    The tribology of brush seals is of considerable interest to turbine engine designers because bristle wear continues to limit long term seal performance and life. To provide better materials characterization and foster the development of improved seals, NASA Lewis has developed a brush seal tuft tester. In this test, a 'paintbrush' sample tuft is loaded under constant contact pressure against the outside diameter of a rotating journal. With this configuration, load and friction are directly measured and accurate wear measurements are possible. Previously reported research using this facility showed excellent data repeatability and wear morphology similar to published seal data and dynamic rig tests. This paper is an update of the ongoing research into the tribology of brush seals. The effects of wire materials processing on seal wear and the tribological results for three journal coatings are discussed. Included in the materials processing were two nickel-chrome superalloys each processed to two different yield strengths. The results suggest that seal wear is dependent more on material composition than processing conditions.

  1. Eutectic superalloys strengthened by delta Ni3Cb lamellae, and gamma prime, Ni3Al precipitates.

    Science.gov (United States)

    Lemkey, F. D.; Thompson, E. R.

    1972-01-01

    Bivariant eutectic alloys, located on a liquidus surface within the Ni-Cb-Cr-Al quaternary, were identified which permitted the production of aligned delta Ni3Cb lamellae within a nichrome matrix containing the fcc precipitate gamma prime Ni3Al. The volume fraction of delta and gamma prime could be varied significantly by compositional changes. After directional solidification certain alloys possessed improved ductility and corrosion resistance with respect to the Ni3Al-Ni3Cb eutectic, while their values of tensile and creep strength approached or exceeded those for the Ni3Al-Ni3Cb pseudobinary system. The mechanical properties of the directionally solidified alloy, Ni-19.7 wt % Cb-6.0 wt % Cr-2.5 wt % Al, were evaluated. Its longitudinal strength in tension and creep was found to be superior to all advanced nickel base superalloys. It is thus demonstrated that useful properties for gas turbine airfoil applications can be achieved by reinforcing a strong and tough gamma nichrome matrix containing precipitated gamma prime by a strong lamellar intermetallic compound having greater strength at elevated temperature.

  2. Additive Manufacturing of Nickel-Base Superalloy IN100 Through Scanning Laser Epitaxy

    Science.gov (United States)

    Basak, Amrita; Das, Suman

    2018-01-01

    Scanning laser epitaxy (SLE) is a laser powder bed fusion (LPBF)-based additive manufacturing process that uses a high-power laser to consolidate metal powders facilitating the fabrication of three-dimensional objects. In the present study, SLE is used to produce samples of IN100, a high-γ' non-weldable nickel-base superalloy on similar chemistry substrates. A thorough analysis is performed using various advanced material characterization techniques such as high-resolution optical microscopy, scanning electron microscopy, energy dispersive x-ray spectroscopy, and Vickers microhardness measurements to characterize and compare the quality of the SLE-fabricated IN100 deposits with the investment cast IN100 substrates. The results show that the IN100 deposits have a finer γ/γ' microstructure, weaker elemental segregation, and higher microhardness compared with the substrate. Through this study, it is demonstrated that the SLE process has tremendous potential in the repair and manufacture of gas turbine hot-section components.

  3. The role of particle ripening on the creep acceleration of Nimonic 263 superalloy

    Directory of Open Access Journals (Sweden)

    Angella Giuliano

    2014-01-01

    Full Text Available Physically based constitutive equations need to incorporate the most relevant microstructural features of materials to adequately describe their mechanical behaviour. To accurately model the creep behaviour of precipitation hardened alloys, the value and the evolution of strengthening particle size are important parameters to be taken into account. In the present work, creep tests have been run on virgin and overaged (up to 3500 h at 800 ∘C Nimonic 263, a polycrystalline nickel base superalloy used for combustion chambers of gas turbines. The experimental results suggest that the reinforcing particle evolution is not the main reason for the creep acceleration that seems to be better described by a strain correlated damage, such as the accumulation of mobile dislocations or the grain boundary cavitation. The coarsened microstructure, obtained by overageing the alloy at high temperature before creep testing, mainly influences the initial stage of the creep, resulting in a higher minimum creep rate and a corresponding reduction of the creep resistance.

  4. FY 1998 annual summary report on International Clean Energy Network Using Hydrogen Conversion (WE-NET) system technology. Subtask 8. Development of hydrogen combustion turbine and ultrahigh-temperature materials; 1998 nendo seika hokokusho. Suiso riyo kokusai clean energy system gijutsu (WE-NET) subtask 8 (suiro nensho turbine no kaihatsu/chokoon zairyo no kaihatsu)

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-03-01

    Summarized herein are the materials designs/production and tests/evaluation results of heat-resistant materials, i.e., alloys, ceramic composites and carbon-based composites, which are expected to be applicable to the hydrogen combustion turbines. These have been studied since 1993, and this paper summarizes the overall evaluation results of the phase I program. The intermetallic compound as one of the candidate materials has a high-temperature strength in a range from 1200 to 1400 degrees C by optimizing elements added. However, no prospect is obtained for heat resistance at 1700 degrees C or more for the material not coated or cooled moderately. Each of the other candidate materials tested shows a bright prospect of applicability at the base material and specimen levels. The single-crystal superalloy for hybrid cooling structures has novelty in that it is free of Cr but incorporated with Si and Hf, showing approximately 10 degrees C higher heat-resistant temperature than CMSX-4. CMC and C/C are inherently excellent heat-resistant materials, and are attractive advanced composites, because they are expected to realize no-cooled blades at 1700 degrees C. (NEDO)

  5. Gamma Prime Morphology and Creep Properties of Nickel Based Superalloys With Platinum Group Metal Additions (Preprint)

    Science.gov (United States)

    2008-04-01

    Cobalt on the Tensile and Stress Rupture Properties of the Nickel-Base Superalloy MAR-M247,” Metallurgical Transactions A, 13 (A) (1982), 1767-1774.           10 ...AFRL-RX-WP-TP-2008-4320 GAMMA PRIME MORPHOLOGY AND CREEP PROPERTIES OF NICKEL BASED SUPERALLOYS WITH PLATINUM GROUP METAL ADDITIONS...AND SUBTITLE GAMMA PRIME MORPHOLOGY AND CREEP PROPERTIES OF NICKEL BASED SUPERALLOYS WITH PLATINUM GROUP METAL ADDITIONS (PREPRINT) 5a.

  6. Two Dimensional Viscoelastic Stress Analysis of a Prototypical JIMO Turbine Wheel

    Science.gov (United States)

    Gayda, John; Gabb, Timothy

    2005-01-01

    The designers of the Jupiter Icy Moons Orbiter (JIMO) are investigating the potential of nuclear powered-electric propulsion technology to provide deep space propulsion. In one design scenario a closed-Brayton-cycle power converter is used to convert thermal energy from a nuclear reactor to electrical power for the spacecraft utilizing an inert gas as the working fluid to run a turboalternator as described in L.S. Mason, "A Power Conversion for the Jupiter Icy Moons Orbiter," Journal of Propulsion and Power, vol. 20, no. 5, pp. 902-910. A key component in the turboalternator is the radial flow turbine wheel which may be fabricated from a cast superalloy. This turbine wheel is envisioned to run continuously over the life of the mission, which is anticipated to be about ten years. This scenario places unusual material requirements on the turbine wheel. Unlike the case of terrestrial turbine engines, fatigue, associated with start-up and shut-down of the engine, foreign-object damage, and corrosion issues are insignificant and thus creep issues become dominate. The purpose of this paper is to present estimates for creep growth of a prototypical JIMO turbine wheel over a ten year life. Since an actual design and bill of materials does not exist, the results presented in this paper are based on preliminary concepts which are likely to evolve over time. For this reason, as well as computational efficiency, a simplified 2-D, in lieu of a 3-D, viscoelastic, finite element model of a prototypical turbine wheel will be utilized employing material properties for the cast superalloy MAR-M247. The creep data employed in this analysis are based on preliminary data being generated at NASA Glenn Research Center.

  7. Toward Predictive Understanding of Fatigue Crack Nucleation in Ni-Based Superalloys

    Science.gov (United States)

    Jiang, Jun; Dunne, Fionn P. E.; Britton, T. Ben

    2017-05-01

    Predicting when and where materials fail is a holy grail for structural materials engineering. Development of a predictive capability in this domain will optimize the employment of existing materials, as well as rapidly enhance the uptake of new materials, especially in high-risk, high-value applications, such as aeroengines. In this article, we review and outline recent efforts within our research groups that focus on utilizing full-field measurement and calculation of micromechanical deformation in Ni-based superalloys. In paticular, we employ high spatial resolution digital image correlation (HR-DIC) to measure surface strains and a high-angular resolution electron backscatter diffraction technique (HR-EBSD) to measure elastic distortion, and we combine these with crystal plasticity finite element (CPFE) modeling. We target our studies within a system of samples that includes single, oligo, and polycrystals where the boundary conditions, microstructure, and loading configuration are precisely controlled. Coupling of experiment and simulation in this manner enables enhanced understanding of crystal plasticity, as demonstrated with case studies in deformation compatibility; spatial distributions of slip evolution; deformation patterning around microstructural defects; and ultimately development of predictive capability that probes the location of microstructurally sensitive fatigue cracks. We believe that these studies present a careful calibration and validation of our experimental and simulation-based approaches and pave the way toward new understanding of crack formation in engineering alloys.

  8. Studies of the Influence of Beam Profile and Cooling Conditions on the Laser Deposition of a Directionally-Solidified Superalloy

    Directory of Open Access Journals (Sweden)

    Shuo Yang

    2018-02-01

    Full Text Available In the laser deposition of single crystal and directionally-solidified superalloys, it is desired to form laser deposits with high volume fractions of columnar grains by suppressing the columnar-to-equiaxed transition efficiently. In this paper, the influence of beam profile (circular and square shapes and cooling conditions (natural cooling and forced cooling on the geometric morphology and microstructure of deposits were experimentally studied in the laser deposition of a directionally-solidified superalloy, IC10, and the mechanisms of influence were revealed through a numerical simulation of the thermal processes during laser deposition. The results show that wider and thinner deposits were obtained with the square laser beam than those with the circular laser beam, regardless of whether natural or forced cooling conditions was used. The heights and contact angles of deposits were notably increased due to the reduced substrate temperatures by the application of forced cooling for both laser beam profiles. Under natural cooling conditions, columnar grains formed epitaxially at both the center and the edges of the deposits with the square laser beam, but only at the center of the deposits with the circular laser beam; under forced cooling conditions, columnar grains formed at both the center and the edges of deposits regardless of the laser beam profile. The high ratios of thermal gradient and solidification velocity in the height direction of the deposits were favorable to forming deposits with higher volume fractions of columnar grains.

  9. Processing of Advanced Cast Alloys for A-USC Steam Turbine Applications

    Science.gov (United States)

    Jablonski, Paul D.; Hawk, Jeffery A.; Cowen, Christopher J.; Maziasz, Philip J.

    2012-02-01

    The high-temperature components within conventional supercritical coal-fired power plants are manufactured from ferritic/martensitic steels. To reduce greenhouse-gas emissions, the efficiency of pulverized coal steam power plants must be increased to as high a temperature and pressure as feasible. The proposed steam temperature in the DOE/NETL Advanced Ultra Supercritical power plant is high enough (760°C) that ferritic/martensitic steels will not work for the majority of high-temperature components in the turbine or for pipes and tubes in the boiler due to temperature limitations of this class of materials. Thus, Ni-based superalloys are being considered for many of these components. Off-the-shelf forged nickel alloys have shown good promise at these temperatures, but further improvements can be made through experimentation within the nominal chemistry range as well as through thermomechanical processing and subsequent heat treatment. However, cast nickel-based superalloys, which possess high strength, creep resistance, and weldability, are typically not available, particularly those with good ductility and toughness that are weldable in thick sections. To address those issues related to thick casting for turbine casings, for example, cast analogs of selected wrought nickel-based superalloys such as alloy 263, Haynes 282, and Nimonic 105 have been produced. Alloy design criteria, melt processing experiences, and heat treatment are discussed with respect to the as-processed and heat-treated microstructures and selected mechanical properties. The discussion concludes with the prospects for full-scale development of a thick section casting for a steam turbine valve chest or rotor casing.

  10. Processing of Advanced Alloys for A-USC Steam Turbine Applications

    Energy Technology Data Exchange (ETDEWEB)

    Jablonski, P. D. [National Energy Technology Laboratory (NETL); Hawk, Jeffrey A. [National Energy Technology Laboratory (NETL); Cowen, Christopher J. [National Energy Technology Laboratory (NETL); Maziasz, Philip J [ORNL

    2010-01-01

    The high-temperature components within conventional supercritical coal-fired power plants are manufactured from ferritic/martensitic steels. To reduce greenhouse-gas emissions, the efficiency of pulverized coal steam power plants must be increased to as high a temperature and pressure as feasible. The proposed steam temperature in the DOE/NETL Advanced Ultra Supercritical power plant is high enough (760 C) that ferritic/martensitic steels will not work for the majority of high-temperature components in the turbine or for pipes and tubes in the boiler due to temperature limitations of this class of materials. Thus, Ni-based superalloys are being considered for many of these components. Off-the-shelf forged nickel alloys have shown good promise at these temperatures, but further improvements can be made through experimentation within the nominal chemistry range as well as through thermomechanical processing and subsequent heat treatment. However, cast nickel-based superalloys, which possess high strength, creep resistance, and weldability, are typically not available, particularly those with good ductility and toughness that are weldable in thick sections. To address those issues related to thick casting for turbine casings, for example, cast analogs of selected wrought nickel-based superalloys such as alloy 263, Haynes 282, and Nimonic 105 have been produced. Alloy design criteria, melt processing experiences, and heat treatment are discussed with respect to the as-processed and heat-treated microstructures and selected mechanical properties. The discussion concludes with the prospects for full-scale development of a thick section casting for a steam turbine valve chest or rotor casing.

  11. Aerodynamics of wind turbines

    DEFF Research Database (Denmark)

    Hansen, Martin Otto Laver

    Aerodynamics of Wind Turbines is the established essential text for the fundamental solutions to efficient wind turbine design. Now in its third edition, it has been substantially updated with respect to structural dynamics and control. The new control chapter now includes details on how to design...... Turbines (VAWT). Topics covered include increasing mass flow through the turbine, performance at low and high wind speeds, assessment of the extreme conditions under which the turbine will perform and the theory for calculating the lifetime of the turbine. The classical Blade Element Momentum method...... is also covered, as are eigenmodes and the dynamic behaviour of a turbine. The book describes the effects of the dynamics and how this can be modelled in an aeroelastic code, which is widely used in the design and verification of modern wind turbines. Furthermore, it examines how to calculate...

  12. Aerodynamics of Wind Turbines

    DEFF Research Database (Denmark)

    Hansen, Martin Otto Laver

    Aerodynamics of Wind Turbines is the established essential text for the fundamental solutions to efficient wind turbine design. Now in its second edition, it has been entirely updated and substantially extended to reflect advances in technology, research into rotor aerodynamics and the structural...... response of the wind turbine structure. Topics covered include increasing mass flow through the turbine, performance at low and high wind speeds, assessment of the extreme conditions under which the turbine will perform and the theory for calculating the lifetime of the turbine. The classical Blade Element...... Momentum method is also covered, as are eigenmodes and the dynamic behavior of a turbine. The new material includes a description of the effects of the dynamics and how this can be modeled in an aeroelastic code, which is widely used in the design and verification of modern wind turbines. Further...

  13. Microstructural Characterization and Modeling of SLM Superalloy 718

    Science.gov (United States)

    Smith, Tim M.; Sudbrack, Chantal K.; Bonacuse, Pete; Rogers, Richard

    2017-01-01

    Superalloy 718 is an excellent candidate for selective laser melting (SLM) fabrication due to a combination of excellent mechanical properties and workability. Predicting and validating the microstructure of SLM-fabricated Superalloy 718 after potential post heat-treatment paths is an important step towards producing components comparable to those made using conventional methods. At present, obtaining accurate volume fraction and size measurements of gamma-double-prime, gamma-prime and delta precipitates has been challenging due to their size, low volume fractions, and similar chemistries. A technique combining high resolution distortion corrected SEM imaging and with x-ray energy dispersive spectroscopy has been developed to accurately and independently measure the size and volume fractions of the three precipitates. These results were further validated using x-ray diffraction and phase extraction methods and compared to the precipitation kinetics predicted by PANDAT and JMatPro. Discrepancies are discussed in context of materials properties, model assumptions, sampling, and experimental errors.

  14. Analysis of laser beam weldability of Inconel 738 superalloy

    International Nuclear Information System (INIS)

    Egbewande, A.T.; Buckson, R.A.; Ojo, O.A.

    2010-01-01

    The susceptibility of pre-weld heat treated laser beam welded IN 738 superalloy to heat affected zone (HAZ) cracking was studied. A pre-weld heat treatment that produced the minimal grain boundary liquation resulted in a higher level of cracking compared to those with more intergranular liquation. This deviation from the general expectation of influence of intergranular liquation extent on HAZ microfissuring is attributable to the reduction in the ability of the base alloy to accommodate welding tensile stress that accompanied a pre-weld heat treatment condition designed to minimize intergranular liquation. Furthermore, in contrast to what has been generally reported in other nickel-based superalloys, a decrease in laser welding speed resulted in increased HAZ cracking in the IN 738, which can be attributed to exacerbated process instability at lower welding speeds.

  15. Superconducting Wind Turbine Generators

    OpenAIRE

    Yunying Pan; Danhzen Gu

    2016-01-01

    Wind energy is well known as a renewable energy because its clean and less polluted characteristic, which is the foundation of development modern wind electricity. To find more efficient wind turbine is the focus of scientists around the world. Compared from conventional wind turbines, superconducting wind turbine generators have advantages at zero resistance, smaller size and lighter weight. Superconducting wind turbine will inevitably become the main trends in this area. This paper intends ...

  16. Turbulence and wind turbines

    DEFF Research Database (Denmark)

    Brand, Arno J.; Peinke, Joachim; Mann, Jakob

    2011-01-01

    The nature of turbulent flow towards, near and behind a wind turbine, the effect of turbulence on the electricity production and the mechanical loading of individual and clustered wind turbines, and some future issues are discussed.......The nature of turbulent flow towards, near and behind a wind turbine, the effect of turbulence on the electricity production and the mechanical loading of individual and clustered wind turbines, and some future issues are discussed....

  17. Evaluation of Microstructure and Property of a Turbine Blade Made of GH4033 Alloy After Service for 1600h

    Directory of Open Access Journals (Sweden)

    FU Chao

    2016-06-01

    Full Text Available The microstructure and property degradation of turbine blades in aircraft engines during service would finally pose threat to service safety. But report on systematic research work about microstructure and property degradation of serviced turbine blades is limited. In this paper, the 2nd stage turbine blade made of wrought Ni-based superalloy GH4033 was taken from an aircraft engine and investigated by metallographic analysis and physical and chemical phase analysis after service exposure for about 1600 engine operating hours (EOH. Microstructural features including grain microstructure, γ+γ' matrix and grain boundary (GB carbides in different locations of the serviced blade were observed and quantitatively characterized. Vickers hardness and stress rupture tests were also conducted. The microstructure characterization indicates that the degradation in grain size, γ' precipitates and GB carbides is rarely observed in the airfoil. The service temperature is estimated to be lower than 700℃ based on the coarsen of γ' phase. The Vickers hardness and rupture lives of different locations in this blade are similar to those in the shank and met the requirement of Chinese Aeronautical Industry Standard HB/Z 91-1985. Therefore, it is suggested that the service exposure of this blade can be continuously prolonged. This study would be helpful for the evaluation of turbine blade made of wrought superalloys containing low volume fraction of γ' precipitates.

  18. High Temperature Oxidation of Superalloys and Intermetallic Compounds

    Science.gov (United States)

    2010-02-28

    7] The charpy impact energy is satisfactory at room temperature, and, depending on the grain size, the FeAI(40 at.%) offers a yielding point...alumina (Al203).[7] The charpy impact energy is satisfactory at room temperature, and, depending on the grain size, the FeAI(40 at.%) offers a yielding...IN 718) superalloy was investigated by Electrochemical Impedance Spectroscopy (EIS). The corrosion test temperatures used were salt melting points

  19. Surface modification, microstructure and mechanical properties of investment cast superalloy

    OpenAIRE

    M. Zielińska; K. Kubiak; J. Sieniawski

    2009-01-01

    Purpose: The aim of this work is to determine physical and chemical properties of cobalt aluminate (CoAl2O4) modifiers produced by different companies and the influence of different types of modifiers on the grain size, the microstructure and mechanical properties of high temperature creep resisting superalloy René 77.Design/methodology/approach: The first stage of the research work took over the investigations of physical and chemical properties of cobalt aluminate manufactured by three diff...

  20. Powder-metallurgy superalloy strengthened by a secondary gamma phase.

    Science.gov (United States)

    Kotval, P. S.

    1971-01-01

    Description of experiments in which prealloyed powders of superalloy compositions were consolidated by extrusion after the strengthening by precipitation of a body-centered tetragonal gamma secondary Ni3 Ta phase. Thin foil electron microscopy showed that the mechanical properties of the resultant powder-metallurgy product were correlated with its microstructure. The product exhibited high strength at 1200 F without loss of ductility, after thermomechanical treatment and aging.

  1. Sliding vane geometry turbines

    Science.gov (United States)

    Sun, Harold Huimin; Zhang, Jizhong; Hu, Liangjun; Hanna, Dave R

    2014-12-30

    Various systems and methods are described for a variable geometry turbine. In one example, a turbine nozzle comprises a central axis and a nozzle vane. The nozzle vane includes a stationary vane and a sliding vane. The sliding vane is positioned to slide in a direction substantially tangent to an inner circumference of the turbine nozzle and in contact with the stationary vane.

  2. Time-incremental creep–fatigue damage rule for single crystal Ni-base

    NARCIS (Netherlands)

    W.A.M. Brekelmans; T. Tinga; M.G.D. Geers

    2009-01-01

    In the present paper a damage model for single crystal Ni-base superalloys is proposed that integrates time-dependent and cyclic damage into a generally applicable time-incremental damage rule. A criterion based on the Orowan stress is introduced to detect slip reversal on the microscopic level

  3. 75 FR 80457 - Superalloy Degassed Chromium From Japan: Final Results of Sunset Review and Revocation of...

    Science.gov (United States)

    2010-12-22

    ... the sunset review of the antidumping duty order on superalloy degassed chromium (SDC) ] from Japan... applicable deadline, the Department is revoking the antidumping duty order on SDC from Japan. DATES... antidumping duty order on SDC from Japan. See Antidumping Duty Order: Superalloy Degassed Chromium from Japan...

  4. Turbine Imaging Technology Assessment

    Energy Technology Data Exchange (ETDEWEB)

    Moursund, Russell A.; Carlson, Thomas J.

    2004-12-31

    The goal of this project was to identify and evaluate imaging alternatives for observing the behavior of juvenile fish within an operating Kaplan turbine unit with a focus on methods to quantify fish injury mechanisms inside an operating turbine unit. Imaging methods are particularly needed to observe the approach and interaction of fish with turbine structural elements. This evaluation documents both the opportunities and constraints for observing juvenile fish at specific locations during turbine passage. The information may be used to acquire the scientific knowledge to make structural improvements and create opportunities for industry to modify turbines and improve fish passage conditions.

  5. Turbine related fish mortality

    International Nuclear Information System (INIS)

    Eicher, G.J.

    1993-01-01

    A literature review was conducted to assess the factors affecting turbine-related fish mortality. The mechanics of fish passage through a turbine is outlined, and various turbine related stresses are described, including pressure and shear effects, hydraulic head, turbine efficiency, and tailwater level. The methodologies used in determining the effects of fish passage are evaluated. The necessity of adequate controls in each test is noted. It is concluded that mortality is the result of several factors such as hardiness of study fish, fish size, concentrations of dissolved gases, and amounts of cavitation. Comparisons between Francis and Kaplan turbines indicate little difference in percent mortality. 27 refs., 5 figs

  6. Cast Alloys for Advanced Ultra Supercritical Steam Turbines

    Energy Technology Data Exchange (ETDEWEB)

    G. R. Holcomb, P. Wang, P. D. Jablonski, and J. A. Hawk,

    2010-05-01

    The proposed steam inlet temperature in the Advanced Ultra Supercritical (A-USC) steam turbine is high enough (760 °C) that traditional turbine casing and valve body materials such as ferritic/martensitic steels will not suffice due to temperature limitations of this class of materials. Cast versions of several traditionally wrought Ni-based superalloys were evaluated for use as casing or valve components for the next generation of industrial steam turbines. The full size castings are substantial: 2-5,000 kg each half and on the order of 100 cm thick. Experimental castings were quite a bit smaller, but section size was retained and cooling rate controlled to produce equivalent microstructures. A multi-step homogenization heat treatment was developed to better deploy the alloy constituents. The most successful of these cast alloys in terms of creep strength (Haynes 263, Haynes 282, and Nimonic 105) were subsequently evaluated by characterizing their microstructure as well as their steam oxidation resistance (at 760 and 800 °C).

  7. Determination of Remaining Useful Life of Gas Turbine Blade

    Directory of Open Access Journals (Sweden)

    Meor Said Mior Azman

    2016-01-01

    Full Text Available The aim of this research is to determine the remaining useful life of gas turbine blade, using service-exposed turbine blades. This task is performed using Stress Rupture Test (SRT under accelerated test conditions where the applied stresses to the specimen is between 400 MPa to 600 MPa and the test temperature is 850°C. The study will focus on the creep behaviour of the 52000 hours service-exposed blades, complemented with creep-rupture modelling using JMatPro software and microstructure examination using optical microscope. The test specimens, made up of Ni-based superalloy of the first stage turbine blades, are machined based on International Standard (ISO 24. The results from the SRT will be analyzed using these two main equations – Larson-Miller Parameter and Life Fraction Rule. Based on the results of the remaining useful life analysis, the 52000h service-exposed blade has the condition to operate in the range of another 4751 hr to 18362 hr. The microstructure examinations shows traces of carbide precipitation that deteriorate the grain boundaries that occurs during creep process. Creep-rupture life modelling using JMatPro software has shown good agreement with the accelerated creep rupture test with minimal error.

  8. High temperature oxidation and corrosion behavior of Ni-base superalloy in He environment

    International Nuclear Information System (INIS)

    Lee, Gyoeng Geun; Park, Ji Yeon; Jung, Su jin

    2010-11-01

    Ni-base superalloy is considered as a IHX (Intermediate Heat Exchanger) material for VHTR (Very High Temperature Gas-Cooled Reactor). The helium environment in VHTR contains small amounts of impure gases, which cause oxidation, carburization, and decarburization. In this report, we conducted the literature survey about the high temperature behavior of Ni-base superalloys in air and He environments. The basic information of Ni-base superalloy and the basic metal-oxidation theory were briefly stated. The He effect on the corrosion of Ni-base superalloy was also summarized. This works would provide a brief suggestion for the next research topic for the application of Ni-base superalloy to VHTR

  9. Micro-turbines

    International Nuclear Information System (INIS)

    Tashevski, Done

    2003-01-01

    In this paper a principle of micro-turbines operation, type of micro-turbines and their characteristics is presented. It is shown their usage in cogeneration and three generation application with the characteristics, the influence of more factors on micro-turbines operation as well as the possibility for application in Macedonia. The paper is result of the author's participation in the training program 'Micro-turbine technology' in Florida, USA. The characteristics of different types micro-turbines by several world producers are shown, with accent on US micro-turbines producers (Capstone, Elliott). By using the gathered Author's knowledge, contacts and the previous knowledge, conclusions and recommendations for implementation of micro-turbines in Macedonia are given. (Author)

  10. Wind Turbine Technologies

    DEFF Research Database (Denmark)

    Hansen, Anca Daniela

    2017-01-01

    The wind turbine technology is a very complex technology involving multidisciplinary and broad technical disciplines such as aerodynamics, mechanics, structure dynamics, meteorology as well as electrical engineering addressing the generation, transmission, and integration of wind turbines...... into the power system. Wind turbine technology has matured over the years and become the most promising and reliable renewable energy technology today. It has moved very fast, since the early 1980s, from wind turbines of a few kilowatts to today’s multimegawatt-sized wind turbines [13]. Besides their size......, the design of wind turbines has changed from being convention driven to being optimized driven within the operating regime and market environment. Wind turbine designs have progressed from fixed speed, passive controlled and with drive trains with gearboxes, to become variable speed, active controlled...

  11. A study on variations of the low cycle fatigue life of a high pressure turbine nozzle caused by inlet temperature profiles and installation conditions

    International Nuclear Information System (INIS)

    Huh, Jae Sung; Kang, Young Seok; Rhee, Dong Ho; Seo, Do Young

    2015-01-01

    High pressure components of a gas turbine engine must operate for a long life under severe conditions in order to maximize the performance and minimize the maintenance cost. Enhanced cooling design, thermal barrier coating techniques, and nickel-base superalloys have been applied for overcoming them and furthermore, material modeling, finite element analysis, statistical techniques, and etc. in design stage have been utilized widely. This article aims to evaluate the effects on the low cycle fatigue life of the high pressure turbine nozzle caused by different turbine inlet temperature profiles and installation conditions and to investigate the most favorable operating condition to the turbine nozzle. To achieve it, the structural analysis, which utilized the results of conjugate heat transfer analysis as loading boundary conditions, was performed and its results were the input for the assessment of low cycle fatigue life at several critical zones

  12. Studying the effect of Ruthenium on High Temperature Mechanical Properties of Nickel Based Superalloys and Determining the Universal Behavior of Ruthenium at Atomic Scale with respect to alloying elements, Stress and Temperature

    Directory of Open Access Journals (Sweden)

    Sriswaroop Dasari

    2016-10-01

    Full Text Available Any property of a material is a function of its microstructure and microstructure is a function of material composition. So, to maximize the desired properties of a material, one has to understand the evolution of microstructure which in turn is nothing but the reflection of the role of alloying elements. Research has not been done to understand the universal behavior of a certain base/alloying element. Let’s take the example of Cl- ion in HCl, we all know that in general, chloride ion can only be replaced by Fluoride or oxygen ion and that no other ion can replace it. But when you consider a metal like Ni, Co, Cr, Fe etc. there is no establishment that it behaves only in a certain way. Though I concord to the fact that discovery of universal behavior of Ni is lot complex than chloride ion, I think that future research should be focused in this direction also. Superalloys are the candidate materials required to improve thermal efficiency of a gas turbine by allowing higher turbine inlet gas temperatures. Gas turbines are the heart of local power systems, next generation jet engines and high performance space rockets. Recent research in superalloys showed that addition of some alloying elements in minor quantities can result in drastic change in properties. Such an alloying element is Ruthenium (Ru. Addition of Ruthenium to superalloys has shown improvement in mechanical properties by an order of magnitude. However reasons for such improvement are not known yet. Hence, there is a need to identify its role and discover the universal behavior of ruthenium to utilize it efficiently. In this proposal, we study materials with different compositions that are derived based on one ruthenium containing superalloy, and different thermomechanical history. Based on the evolution of microstructures and results of mechanical testing, we plan to determine the exact role of Ruthenium and prediction of its behavior with respect to other elements in the material

  13. Evaluation of mechanical properties of a low-cobalt wrought superalloy

    Science.gov (United States)

    Dreshfield, R. L.

    1993-08-01

    In the late 1970s and early 1980s, cobalt was subjected to significant supply and market pressures. Those pressures caused renewed attention to the use of cobalt in aircraft engines. A NASA-sponsored program called Conservation of Strategic Aerospace Materials (COSAM) was created in response to the supply problems with cobalt and other aerospace metals. Among the work performed in the COSAM program and simultaneously by others were several studies on laboratory-size heats of wrought nickel-base super-alloys. These studies suggested that the cobalt levels of the alloys might be reduced by about half, with minimal negative impact on mechanical properties. The Lewis Research Center procured a 1365-kg (3000-lb) heat of a modified Waspaloy having a reduced cobalt level. This article reports the results of a program performed at four gas turbine manufacturers which evaluated the mechanical properties of forgings fabricated from that heat. The alloy chemistry selected reduced the nominal cobalt level from 13.5 to 7.75 wt%. To compensate for the anticipated strength reduction caused by a slight reduction in the amount of γ, the nominal aluminum was increased from 1.3 to 1.5% and the titanium was increased from 3.0 to 3.2%. The increase in aluminum and titanium were intended to increase the amount of γ in the al-loy. Tensile, creep-rupture, low-cycle fatigue, and cyclic crack growth tests were performed. In addition the effect of hydrogen on the alloy was determined. It was concluded that, in the event of a cobalt short-age, a low-cobalt modification of Waspaloy alloy could be substituted for Waspaloy with little develop-ment in those applications that are not creep-rupture limited. With some additional development to better control the grain size, it is probable that most of the current Waspaloy requirements might be met with a lower cobalt alloy.

  14. Effects of cyclic stress and temperature on oxidation damage of a nickel-based superalloy

    Energy Technology Data Exchange (ETDEWEB)

    Karabela, A. [Department of Mechanical and Design Engineering, University of Portsmouth, Anglesea Building, Anglesea Road, Portsmouth PO1 3DJ (United Kingdom); Zhao, L.G., E-mail: liguo.zhao@port.ac.uk [Department of Mechanical and Design Engineering, University of Portsmouth, Anglesea Building, Anglesea Road, Portsmouth PO1 3DJ (United Kingdom); Tong, J. [Department of Mechanical and Design Engineering, University of Portsmouth, Anglesea Building, Anglesea Road, Portsmouth PO1 3DJ (United Kingdom); Simms, N.J.; Nicholls, J.R. [School of Applied Sciences, Cranfield University, Cranfield, MK43 0AL (United Kingdom); Hardy, M.C. [Rolls-Royce plc, Elton Road, Derby DE24 8BJ (United Kingdom)

    2011-07-25

    Highlights: {yields} FIB shows the formation of surface oxide scales and internal micro-voids. {yields} Oxidation damage at 800 deg. C is much more severe than that at 700 deg. C and 750 deg. C. {yields} Cyclic stress enhances the extent of oxidation damage at 750 deg. C and above. {yields} Enrichment of Cr and Ti, as well as lower Ni and Co levels, in the surface oxides. {yields} Penetration of oxygen into the material and internal oxidation are evidenced. - Abstract: Oxidation damage, combined with fatigue, is a concern for nickel-based superalloys utilised as disc rotors in high pressure compressor and turbine of aero-engines. A study has been carried out for a nickel-based alloy RR1000, which includes cyclic experiments at selected temperatures (700-800 deg. C) and microscopy examination using focused ion beam (FIB). The results suggest that the major mechanism of oxidation damage consists of the formation of surface oxide scales and internal micro-voids and oxide particles beneath the oxide scales, which become more severe with the increase of temperature. Applying a cyclic stress does not change the nature of oxidation damage but tends to enhance the extent of oxidation damage for temperatures at 750 deg. C and 800 deg. C. The influence of cyclic stress on oxidation damage appears to be insignificant at 700 deg. C, indicating a combined effect of cyclic stress and temperature. Further energy-dispersive X-ray spectrometry (EDXS) analyses show the enrichment of Cr and Ti, together with lower Ni and Co levels, in the surface oxide scales, suggesting the formation of brittle Cr{sub 2}O{sub 3}, TiO{sub 2}, NiO and Co{sub 3}O{sub 4} oxides on the specimen surface. Penetration of oxygen into the material and associated internal oxidation, which leads to further material embrittlement and associated failure, are evidenced from both secondary ion imaging and EDXS analyses.

  15. Design of a braze alloy for fast epitaxial brazing of superalloys

    Science.gov (United States)

    Piegert, S.; Laux, B.; Rösier, J.

    2012-07-01

    For the repair of directionally solidified turbine components made of nickel-based superalloys, a new high-temperature brazing method has been developed. Utilising heterogeneous nucleation on the crack surface, the microstructure of the base material can be reproduced, i.e. single crystallinity can be maintained. In contrast to commonly used eutectic braze alloys, such as nickel-boron or nickel-silicon systems, the process is not diffusion controlled but works with a consolute binary base system. The currently applied epitaxial brazing methods rely on isothermal solidification diffusing the melting point depressants into the base material until their concentration is reduced so that the liquid braze solidifies. Contrary, the identified Ni-Mn consolute system enables a temperature driven epitaxial solidification resulting in substantially reduced process duration. The development of the braze alloys was assisted using the CALPHAD software Thermo-Calc. The solidification behaviour was estimated by kinetic calculations with realistic boundary conditions. Finally, the complete system, including braze alloy as well as substrate material, was modelled by means of DICTRA. Subsequently, the thermodynamic properties of the braze alloys were experimentally analysed by DSC measurements. For brazing experiments 300 μm wide parallel gaps were used. Complete epitaxial solidification, i.e. the absence of high-angle grain boundaries, could be achieved within brazing times being up to two orders of magnitude shorter compared to diffusion brazing processes. Theoretically and experimentally evaluated process windows reveal similar shapes. However, a distinct shift has to be stated which can be ascribed to the limited accuracy of the underlying thermodynamic databases.

  16. Aerodynamics of wind turbines

    DEFF Research Database (Denmark)

    Hansen, Martin Otto Laver

    Aerodynamics of Wind Turbines is the established essential text for the fundamental solutions to efficient wind turbine design. Now in its third edition, it has been substantially updated with respect to structural dynamics and control. The new control chapter now includes details on how to design...... a classical pitch and torque regulator to control rotational speed and power, while the section on structural dynamics has been extended with a simplified mechanical system explaining the phenomena of forward and backward whirling modes. Readers will also benefit from a new chapter on Vertical Axis Wind...... Turbines (VAWT). Topics covered include increasing mass flow through the turbine, performance at low and high wind speeds, assessment of the extreme conditions under which the turbine will perform and the theory for calculating the lifetime of the turbine. The classical Blade Element Momentum method...

  17. Wind Turbines Wake Aerodynamics

    DEFF Research Database (Denmark)

    Vermeer, L.; Sørensen, Jens Nørkær; Crespo, A.

    2003-01-01

    The aerodynamics of horizontal axis wind turbine wakes is studied. The contents is directed towards the physics of power extraction by wind turbines and reviews both the near and the far wake region. For the near wake, the survey is restricted to uniform, steady and parallel flow conditions......, thereby excluding wind shear, wind speed and rotor setting changes and yawed conditions. The emphasis is put on measurements in controlled conditions.For the far wake, the survey focusses on both single turbines and wind farm effects, and the experimental and numerical work are reviewed; the main interest...... is to study how the far wake decays downstream, in order to estimate the effect produced in downstream turbines.The article is further restricted to horizontal axis wind turbines and excludes all other types of turbines....

  18. Integrated Electric Gas Turbine

    OpenAIRE

    Millsaps, Knox T.

    2010-01-01

    Patent An integrated electric gas turbine comprises a compressor that includes a plurality of airfoils. An electric motor is arranged to drive the compressor, and a combustor is arranged to receive compressed air from the compressor and further arranged to receive a fuel input. A turbine is arranged to receive the combustion gases from the combustor. A generator is integrated with the turbine and arranged to provide a power output. A controller is connected between the...

  19. Small wind turbine

    OpenAIRE

    Vélez Castellano, Didier

    2010-01-01

    The main objective is to develop a project on installing a small wind turbine at the University of Glyndwr in Wrexham Wales. Today are immersed in a world seeking clean energy for reduce greenhouse gases because this problem is becoming a global reality. So installing a small wind turbine at the university would provide large quantity of clean energy to supply a workshop and also reduce the expulsion of CO2 into the atmosphere. The main characteristic of the turbine under...

  20. Macro- and microhardness of IN-713C nickel superalloy constituents

    OpenAIRE

    F. Binczyk; J. Śleziona

    2009-01-01

    The results of investigations of the effect of modification and cooling rate on the macrohardness of castings and microhardness of phase constituents in IN-713C nickel superalloy were described. As an inoculant, cobalt aluminate CoAl2O4 in composition with aluminium powder and colloidal silica was used. Changes in the cooling rate were obtained using a cast stepped test piece with steps of 6, 11 and 17 mm thickness. Macrohardness of the cast test piece steps was measured by Brinell technique,...

  1. Superalloy microstructural variations induced by gravity level during directional solidification

    Science.gov (United States)

    Johnston, M. H.; Curreri, P. A.; Parr, R. A.; Alter, W. S.

    1985-01-01

    The Ni-base superalloy MAR-M246 (Hf) was directionally solidified during low gravity maneuvers aboard a NASA KC-135 aircraft. Gravity force variations during this process yielded a concomitant variation in microstructure and microsegregation. Secondary dendrite arm spacings are noted to be larger in the low-g portion; this, in turn, decreases the extent of interdendritic segregation. The amount of Hf in both the carbides and interdendritic eutectic increases as the gravity force diminishes. Fewer carbides are present in the low-g regions.

  2. Study of the oxidation kinetics of the MA 956 superalloy

    International Nuclear Information System (INIS)

    Garcia-Alonso, M.C.; Gonzalez-Carrasco, J.L.; Escudero, M.L.

    1998-01-01

    This work deals with the oxidation kinetics of the MA 956 superalloy in the temperature range of 800-1,200 degree centigree for up to 200 h exposure. During oxidation the alloy develops a fine, compact and very well adhered α-alumina layer, the thickness of which increases with increasing time and temperature. The oxidation kinetics obeys a sub parabolic type behaviour. The scale growth seems to occur by two different oxidation mechanisms; above 1,050 degree centigree, the oxidation process would be controlled by α-alumina, and below 900 degree centigree by γ-alumina. (Author) 17 refs

  3. Microstructural causes of negative creep in cast superalloys

    International Nuclear Information System (INIS)

    Frank, G.

    1990-01-01

    The dissertation examines by means of microstructural investigations and modelling calculations two types of superalloys: the nickel-base cast alloy IN 738 LC (γ'-hardened, containing MC and M 23 C 6 carbides), and the cobalt-base cast alloy FSX 414 (containing M 23 C 6 carbides, solid solution-hardened). The task was to determine the causes of microstructural volume contraction, in order to improve and facilitate explanation and extrapolation of the materials' long-term behaviour at high temperatures, and to derive if possible information on appropriate measures preventing negative creep, which may lead to critical damage of bolted joints, for instance. (orig./MM) [de

  4. Fatigue damage in superalloys determined using Doppler broadening positron annihilation

    Science.gov (United States)

    Hoeckelman, Donald; Leighly, H. P., Jr.

    1990-01-01

    Axial fatigue specimens of three superalloys, Inconel 718, Incoloy 903 and Haynes 188, were machined from solution-heat-treated material and artificially aged. They were subjected to cyclic loading for a selected number of cycles after which the S parameter was determined using Doppler broadening positron annihilation. Initially, the S parameter decreased, followed by a large increase and a subsequent decline leading to fracture. This has been interpreted as the removal of residual vacancies, the introduction of new defects by cyclic loading, and, finally, a clustering of the defects as microcracks which grow to cause failure.

  5. CT demonstration of accessory nasal turbinates: secondary middle turbinate and bifid inferior turbinate

    Energy Technology Data Exchange (ETDEWEB)

    Aksungur, Erol H. [Department of Radiodiagnosis, Cukurova University, Balcali Hospital, Adana, 01330 (Turkey); Bicakci, Kenan [Department of Radiodiagnosis, Cukurova University, Balcali Hospital, Adana, 01330 (Turkey); Inal, Mehmet [Department of Radiodiagnosis, Cukurova University, Balcali Hospital, Adana, 01330 (Turkey); Akguel, Erol [Department of Radiodiagnosis, Cukurova University, Balcali Hospital, Adana, 01330 (Turkey); Binokay, Figen [Department of Radiodiagnosis, Cukurova University, Balcali Hospital, Adana, 01330 (Turkey); Aydogan, Barlas [Department of ENT, Cukurova University, Balcali Hospital, Adana, 01330 (Turkey); Oguz, Mahmut [Department of Radiodiagnosis, Cukurova University, Balcali Hospital, Adana, 01330 (Turkey)

    1999-09-01

    Normally, there are three pairs of nasal turbinates in the nasal cavity. Coronal computed tomographies of 253 cases of sinusitis were examined for the presence of additional turbinates and bilateral secondary middle turbinates were detected in two cases. Also, we describe another accessory turbinate, 'bifid inferior turbinate', in one of these cases. Existence of these accessory turbinates may occur during embryologic development of lateral nasal wall.

  6. Effects of cobalt in nickel-base superalloys

    Science.gov (United States)

    Tien, J. K.; Jarrett, R. N.

    1983-01-01

    The role of cobalt in a representative wrought nickel-base superalloy was determined. The results show cobalt affecting the solubility of elements in the gamma matrix, resulting in enhanced gamma' volume fraction, in the stabilization of MC-type carbides, and in the stabilization of sigma phase. In the particular alloy studied, these microstructural and microchemistry changes are insufficient in extent to impact on tensile strength, yield strength, and in the ductilities. Depending on the heat treatment, creep and stress rupture resistance can be cobalt sensitive. In the coarse grain, fully solutioned and aged condition, all of the alloy's 17% cobalt can be replaced by nickel without deleteriously affecting this resistance. In the fine grain, partially solutioned and aged condition, this resistance is deleteriously affected only when one-half or more of the initial cobalt content is removed. The structure and property results are discussed with respect to existing theories and with respect to other recent and earlier findings on the impact of cobalt, if any, on the performance of nickel-base superalloys.

  7. Guide to hydro turbines

    International Nuclear Information System (INIS)

    Anon.

    1991-01-01

    This listing is a guide to turbines for hydroelectric projects of independent energy projects. The listing is in directory format and includes the supplier's name, the name of the supplier's contact, address, telephone and FAX numbers and a description of the company and the types of turbines, services and expertise available for energy projects. The listing is international in scope

  8. Single rotor turbine engine

    Science.gov (United States)

    Platts, David A.

    2002-01-01

    There has been invented a turbine engine with a single rotor which cools the engine, functions as a radial compressor, pushes air through the engine to the ignition point, and acts as an axial turbine for powering the compressor. The invention engine is designed to use a simple scheme of conventional passage shapes to provide both a radial and axial flow pattern through the single rotor, thereby allowing the radial intake air flow to cool the turbine blades and turbine exhaust gases in an axial flow to be used for energy transfer. In an alternative embodiment, an electric generator is incorporated in the engine to specifically adapt the invention for power generation. Magnets are embedded in the exhaust face of the single rotor proximate to a ring of stationary magnetic cores with windings to provide for the generation of electricity. In this alternative embodiment, the turbine is a radial inflow turbine rather than an axial turbine as used in the first embodiment. Radial inflow passages of conventional design are interleaved with radial compressor passages to allow the intake air to cool the turbine blades.

  9. Aerodynamics of wind turbines

    DEFF Research Database (Denmark)

    Hansen, Martin Otto Laver

    Aerodynamics of Wind Turbines is the established essential text for the fundamental solutions to efficient wind turbine design. Now in its third edition, it has been substantially updated with respect to structural dynamics and control. The new control chapter now includes details on how to design...

  10. Aerodynamics of Wind Turbines

    DEFF Research Database (Denmark)

    Hansen, Martin Otto Laver

    Aerodynamics of Wind Turbines is the established essential text for the fundamental solutions to efficient wind turbine design. Now in its second edition, it has been entirely updated and substantially extended to reflect advances in technology, research into rotor aerodynamics and the structural...

  11. Fracture of an industrial steam turbine horizontal joint nut upon tightening; Bruch der Mutter einer Horizontalteilfugenverschraubung einer Industriedampfturbine beim Anziehen

    Energy Technology Data Exchange (ETDEWEB)

    Fischer, Boromir; Giller, Madeleine; Neidel, Andreas; Riesenbeck, Susanne [Siemens AG - Gasturbinenwerk Berlin (Germany). Energy Sector Werkstoffprueflabor

    2017-11-01

    The nut of a horizontal joint fastener cracked upon tightening during assembly in an industrial steam turbine factory. It was previously used in an over-pressure test, but was otherwise not yet used in service. Nut and bolt were made of the nickel-based superalloy Nimonic 80A, a precipitation-hardenable wrought high-strength alloy with excellent creep and corrosion properties. Such alloys usually get a complex heat treatment after hot-rolling, comprising homogenizing and multiple ageing cycles. The subject nut failed due to an extreme case of mixed grain size which detrimentally affected mechanical properties and was attributed to an insufficient degree of deformation during hot rolling.

  12. Characterization of defects and nanostructural alterations in the Nimonic 80A superalloy by using Transmission Electron Microscopy

    International Nuclear Information System (INIS)

    Guillen Giron, Teodolito; Leon Salazar, Jose Luis

    2015-01-01

    TEM (Transmission Electron Microscopy) probes are analyzed in aeronautical applications. Intercrystalline defects present in the Nimonic 80A superalloy are studied after being thermally treated and then subjecting the specimens to cyclic stresses. The TEM test specimens are pre-tested under high frequency (1 000 Hz and 20 000 Hz) fatigue at the University of Siegen in Germany simulating the working conditions of this alloy in aircraft turbines or other types of aeronautical applications. The mechanical stress has generated many deformations and nanometric defects in this material, evidenced in the dislocations. Defects are observed using very powerful microscopy techniques such as TEM. The results are obtained from the TEM analysis and have revealed characteristic precipitates in the Nimonic 80A sample when subjected to thermal treatments. The alloy has evidenced the formation of dislocations resulting from the mechanical stresses of the specimens. The influence of rainfall is evidenced in the mechanism of formation, grouping and movement of the dislocations in the microstructure of the samples used. (author) [es

  13. Noise from wind turbines

    International Nuclear Information System (INIS)

    Andersen, B.; Larsen, P.

    1993-01-01

    Denmark has 3200 wind turbines with an installed maximum capacity of 418MW. The most important Danish research projects into wind turbine noise and the main results are listed. These date from 1983. Two comprehensive studies are currently in progress. The first is an analytical and empirical investigation of aerodynamic noise from wind turbine rotors and has so far dealt mainly with tip noise. The measurement method, using a hard board mounted microphone on the ground near the turbine, is described. Four different tip designs have been tested. Some examples of reference sound power level spectra for three of the designs are presented. During the past two years a computerbased data acquisition system has been used for real-time determination of sound power levels. The second study, which has just commenced, is on annoyance from wind turbine noise. It will include noise measurements, masking calculations and a social survey on the perceived nuisance. (UK)

  14. Graphene in turbine blades

    Science.gov (United States)

    Das, D. K.; Swain, P. K.; Sahoo, S.

    2016-07-01

    Graphene, the two-dimensional (2D) nanomaterial, draws interest of several researchers due to its many superior properties. It has extensive applications in numerous fields. A turbine is a hydraulic machine which extracts energy from a fluid and converts it into useful work. Recently, Gudukeya and Madanhire have tried to increase the efficiency of Pelton turbine. Beucher et al. have also tried the same by reducing friction between fluid and turbine blades. In this paper, we study the advantages of using graphene as a coating on Pelton turbine blades. It is found that the efficiency of turbines increases, running and maintenance cost is reduced with more power output. By the application of graphene in pipes, cavitation will be reduced, durability of pipes will increase, operation and maintenance cost of water power plants will be less.

  15. Floating offshore turbines

    DEFF Research Database (Denmark)

    Tande, John Olav Giæver; Merz, Karl; Schmidt Paulsen, Uwe

    2014-01-01

    Floating wind turbines enable harvesting the offshore wind resources over deep sea. About 20 concepts are under development, at varying stages of maturity. Two concepts are demonstrated in full scale; these are HyWind and WindFloat. Both employ a standard on-shore wind turbine with only minor...... modifications, but on a spar and a semi-submersible floater, respectively. Other concepts suggest new types of turbines, e.g., the DeepWind concept consisting of a vertical axis turbine and a subsea generator. The three concepts represent different approaches: HyWind and WindFloat are already in a demonstration...... metric of energy production per unit steel mass. Floating offshore wind turbines represent a promising technology. The successful operation of HyWind and WindFloat in full scale demonstrates a well advanced technology readiness level, where further development will go into refining the concepts, cost...

  16. Microstructure-Sensitive Notch Root Analysis for Ni-Base Superalloys (Preprint)

    National Research Council Canada - National Science Library

    Tjiptowidjojo, Yustianto; Shenoy, Mahesh; Przybyla, Craig; McDowell, David

    2007-01-01

    .... The principle microstructural features that can significantly affect the stress-strain response of y-y Ni-base superalloys are the grain size and precipitate volume fraction and size distributions...

  17. Recovery of creep properties of the nickel-base superalloy nimonic 105

    CSIR Research Space (South Africa)

    Girdwood, RB

    1996-01-01

    Full Text Available Uniaxial constant stress creep tests were performed on the wrought nickel-base superalloy Nimonic 105. Entire creep curves were recorded and curve shapes analysed using the Theta Projection Concept. Rejuventive procedures were applied to pre...

  18. Microstructural studies of carbides in MAR-M247 nickel-based superalloy

    Science.gov (United States)

    Szczotok, A.; Rodak, K.

    2012-05-01

    Carbides play an important role in the strengthening of microstructures of nickel-based superalloys. Grain boundary carbides prevent or retard grain-boundary sliding and make the grain boundary stronger. Carbides can also tie up certain elements that would otherwise promote phase instability during service. Various types of carbides are possible in the microstructure of nickel-based superalloys, depending on the superalloy composition and processing. In this paper, scanning electron and scanning transmission electron microscopy studies of carbides occurring in the microstructure of polycrystalline MAR-M247 nickel-based superalloy were carried out. In the present work, MC and M23C6 carbides in the MAR-M247 microstructure were examined.

  19. High Temperature Degradation of Powder-processed Ni-based Superalloy

    Czech Academy of Sciences Publication Activity Database

    Luptáková, Natália; Pizúrová, Naděžda; Roupcová, Pavla; Dymáček, Petr

    2015-01-01

    Roč. 22, č. 2 (2015), s. 85-94 ISSN 1335-0803 Institutional support: RVO:68081723 Keywords : powder materials * polycrystalline Ni-based superalloy * creep machine grips * oxidation Subject RIV: JG - Metallurgy

  20. Additional thermal fatigue data on nickel- and cobalt-base superalloys, part 1

    Science.gov (United States)

    Howes, M. A. H.

    1973-01-01

    The fluidized bed technique was used to measure the relative thermal fatigue resistance of twenty-one superalloys. Among the thirty-six variations of composition, solidification method, and surface protection the cycles to cracking differed by two to three orders of magnitude. Some alloys suffered serious weight losses and oxidation. Thermal fatigue data, oxidation, and dimensional changes are reported. The types of superalloys are identified.

  1. Analysis of Effective and Internal Cyclic Stress Components in the Inconel Superalloy Fatigued at Elevated Temperature

    Czech Academy of Sciences Publication Activity Database

    Šmíd, Miroslav; Petrenec, Martin; Polák, Jaroslav; Obrtlík, Karel; Chlupová, Alice

    2011-01-01

    Roč. 278, 4 July (2011), s. 393-398 ISSN 1022-6680. [European Symposium on Superalloys and their Application. Wildbad Kreuth, 25.5.2010-28.5.2010] R&D Projects: GA ČR GA106/08/1631 Institutional research plan: CEZ:AV0Z20410507 Keywords : low cycle fatigue * superalloys * high temperature * hysteresis loop * effective and internal stresses Subject RIV: JL - Materials Fatigue, Friction Mechanics; JL - Materials Fatigue, Friction Mechanics (UFM-A)

  2. Effects of cutting parameters on machinability characteristics of Ni-based superalloys: a review

    Directory of Open Access Journals (Sweden)

    Kaya Eren

    2017-12-01

    Full Text Available Nickel based superalloys offer high strength, corrosion resistance, thermal stability and superb thermal fatigue properties. However, they have been one of the most difficult materials to machine due to these properties. Although we are witnessing improved machining strategies with the developing machining, tooling and inspection technologies, machining of nickel based superalloys is still a challenging task due to in-process strains and post process part quality demands.

  3. Predicting the morphologies of {\\gamma}' precipitates in cobalt-based superalloys

    OpenAIRE

    Jokisaari, Andrea M.; Naghavi, Shahab S.; Wolverton, Chris; Voorhees, Peter W.; Heinonen, Olle G.

    2017-01-01

    Cobalt-based alloys with {\\gamma}/{\\gamma}' microstructures have the potential to become the next generation of superalloys, but alloy compositions and processing steps must be optimized to improve coarsening, creep, and rafting behavior. While these behaviors are different than in nickel-based superalloys, alloy development can be accelerated by understanding the thermodynamic factors influencing microstructure evolution. In this work, we develop a phase field model informed by first-princip...

  4. RESEARCH DIRECTED TOWARD THE DEVELOPMENT OF A WROUGHT SUPERALLOY.

    Science.gov (United States)

    HIGH TEMPERATURE, * COBALT ALLOYS, *NICKEL ALLOYS, *HEAT RESISTANT ALLOYS, HIGH TEMPERATURE, HIGH TEMPERATURE, CHROMIUM ALLOYS, TURBINE WHEELS...STRESSES, RUPTURE, LOADS(FORCES), TENSILE PROPERTIES, DUCTILITY, CARBIDES , INTERMETALLIC COMPOUNDS, HARDNESS, TABLES(DATA), HEAT TREATMENT, ADDITIVES, OXIDATION, MICROSTRUCTURE, HARDENING, HARDENING.

  5. Improved PFB operations: 400-hour turbine test results. [coal combustion products and hot corrosion in gas turbines

    Science.gov (United States)

    Rollbuhler, R. J.; Benford, S. M.; Zellars, G. R.

    1980-01-01

    A pressurized fluidized bed (PFB) coal-burning reactor was used to provide hot effluent gases for operation of a small gas turbine. Preliminary tests determined the optimum operating conditions that would result in minimum bed particle carryover in the combustion gases. Solids were removed from the gases before they could be transported into the test turbine by use of a modified two stage cyclone separator. Design changes and refined operation procedures resulted in a significant decrease in particle carryover, from 2800 to 93 ppm (1.5 to 0.05 grains/std cu ft), with minimal drop in gas temperature and pressure. The achievement of stable burn conditions and low solids loadings made possible a 400 hr test of small superalloy rotor, 15 cm (6 in.) in diameter, operating in the effluent. Blades removed and examined metallographically after 200 hr exhibited accelerated oxidation over most of the blade surface, with subsurface alumina penetration to 20 micron m. After 400 hours, average erosion loss was about 25 micron m (1 mil). Sulfide particles, indicating hot corrosion, were present in depletion zones, and their presence corresponded in general to the areas of adherent solids deposit. Sulfidation appears to be a materials problem equal in importance to erosion.

  6. Macro- and microhardness of IN-713C nickel superalloy constituents

    Directory of Open Access Journals (Sweden)

    F. Binczyk

    2009-10-01

    Full Text Available The results of investigations of the effect of modification and cooling rate on the macrohardness of castings and microhardness of phase constituents in IN-713C nickel superalloy were described. As an inoculant, cobalt aluminate CoAl2O4 in composition with aluminium powder and colloidal silica was used. Changes in the cooling rate were obtained using a cast stepped test piece with steps of 6, 11 and 17 mm thickness. Macrohardness of the cast test piece steps was measured by Brinell technique, while Vickers method was used to measure the microhardness of γ and γ’ phases present in the alloy matrix, as well as the hardness of eutectic carbide precipitates.A significant effect of the cooling rate and modification treatment on the results of the measurements was stated, and difficulties in performing correctly the microhardness measurements due to the precipitates dimensions, especially after the modification treatment, were highlighted.

  7. Surface Segregation during Directional Solidification of Ni-Base Superalloys

    Science.gov (United States)

    Brewster, G.; Dong, H. B.; Green, N. R.; D'Souza, N.

    2008-02-01

    Some aspects pertaining to the increased microsegregation at the external casting surface during directional solidification of a typical Ni-base superalloy, CMSX 10N, are presented. Increased eutectic coverage was observed at the external surface along the solidification length. This eutectic appears as a thin segregated layer proud of the secondary dendrite arms preventing them from impinging onto the mold wall. The extent of surface eutectic coverage was represented as a fractional measure of the ingot perimeter. Possible mechanisms focusing on the following: (1) interaction between mold and metal, (2) inclination of primary dendrite, and (3) contraction of the dendrite network have been investigated in relation to the observed phenomenon. We deduce that the most likely explanation is associated with the contraction of the dendritic network, which qualitatively accounts both for the observed morphology and the increased eutectic fraction at the external surface of the casting.

  8. Computer aided design of nickel-base superalloys

    International Nuclear Information System (INIS)

    Lawrence, P.J.

    1988-01-01

    This paper describes a computer aided design process for Ni-base superalloys developed and employed at ASEA Brown Boveri. The technique involves a series of modules each of which predicts a particular property of a hypothetical new composition. In the first stage of the development of this design techniques modules were produced to predict phase stability, using PHACOMP, and high temperature creep strength and hot corrosion resistance, using multiple linear regression equations derived from the data in the literature. Alloys designed using these technique are also discussed and, in particular, shortcomings of the design process are highlighted. This information was then used to produce a revamped design methodology involving extra modules, including prediction of an alloy's gamma-prime content. (orig.)

  9. Fiber laser welding of nickel based superalloy Inconel 625

    Science.gov (United States)

    Janicki, Damian M.

    2013-01-01

    The paper describes the application of single mode high power fiber laser (HPFL) for the welding of nickel based superalloy Inconel 625. Butt joints of Inconel 625 sheets 0,8 mm thick were laser welded without an additional material. The influence of laser welding parameters on weld quality and mechanical properties of test joints was studied. The quality and mechanical properties of the joints were determined by means of tensile and bending tests, and micro hardness tests, and also metallographic examinations. The results showed that a proper selection of laser welding parameters provides non-porous, fully-penetrated welds with the aspect ratio up to 2.0. The minimum heat input required to achieve full penetration butt welded joints with no defect was found to be 6 J/mm. The yield strength and ultimate tensile strength of the joints are essentially equivalent to that for the base material.

  10. Microstructure and deformation behavior of nickel based superalloy Inconel 740 prepared by electron beam smelting

    Energy Technology Data Exchange (ETDEWEB)

    Tan, Yi, E-mail: tanyi@dlut.edu.cn; You, Xiaogang; You, Qifan; Li, Jiayan; Shi, Shuang; Li, Pengting

    2016-04-15

    Electron beam smelting (EBS) has been used to fabricate the Inconel 740 superalloy. Microstructures, hardness, and deformation characteristics of the alloy are studied. It is observed that carbides and fine secondary phase nuclei are distributed in the hot worked EBS 740 superalloy. The Ostwald ripening occurs during solution treatment and leads to aggregation of the γ′ precipitates, the size of γ′ precipitates varies from several nanometers to more than one hundred nanometers as a result. The average size of the secondary phase is < 30 nm after aging treatment and the average Vickers hardness is measured to be about 370. The critical shear stress is calculated to be 0.627 GPa with governing mechanism of shearing, causing a stronger strengthening effect than the traditionally prepared Inconel 740 superalloy. The compression behavior indicates that the EBS 740 superalloy shows higher flow stress than 740H at low Zener-Hollomon parameter, which may arise from the undissolved γ′ precipitates and higher activation energy Q. The tensile results show that the fracture surface exhibits a ductile fracture pattern, in contrast to no obvious plastic deformation on the macroscopic fracture. Crack propagation proceeds in a transgranular fracture mode with facets and voids presented on the fracture surface. - Graphical abstract: Electron beam smelting (EBS) has been used to fabricate the Inconel 740 superalloy. Microstructures, hardness, and deformation characteristics of the alloy are studied. The average size of the secondary phase is < 30 nm after aging treatment and the average Vickers hardness is measured to be about 370. The critical shear stress is calculated to be 0.627 GPa with governing mechanism of shearing, causing a stronger strengthening effect than the traditionally prepared Inconel 740 superalloy. The EBS 740 superalloy shows higher flow stress than 740H at low Zener-Hollomon parameter, which may arise from the undissolved γ′ precipitates and higher

  11. Turbine disintegration debris

    International Nuclear Information System (INIS)

    Holecek, M.; Martinec, P.; Malotin, V.; Peleska, P.; Voldrich, J.

    1997-01-01

    The determination, evaluation and analysis of possible unacceptable consequences of the disintegration turbine (turbo-set) missiles is a part of the wide conceived project put by the company Nuclear Power Plant Mochovce (NPPM), the Slovak Republic. The aim of the project is to take measures reducing the probability of striking a target of safety importance in NPPM by a turbine (turbo-set) missile below the prescribed limit of 10 -6 per turbine year. Following the IAEA Safety Guides, all potential events leading to the generation of a missile are to be analysed. It is necessary to evaluate the probability of unacceptable consequences of such missiles and analyse each event whose probability is not acceptable low. This complex problem thus carries especially: complex analysis of fragment generation; evaluation of the probability of unacceptable events; location of strike zones of possible turbine missiles; assessment the possibility of the turbo-set casing penetration; and projection of additional design requirements if necessary

  12. Wind turbine state estimation

    DEFF Research Database (Denmark)

    Knudsen, Torben

    2014-01-01

    the results using full-scale wind turbine data. The previously developed methods were based on extended Kalman filtering. This method has several drawback compared to unscented Kalman filtering which has therefore been developed. The unscented Kalman filter was first tested on linear and non-linear test cases......Dynamic inflow is an effect which is normally not included in the models used for wind turbine control design. Therefore, potential improvement from including this effect exists. The objective in this project is to improve the methods previously developed for this and especially to verify...... which was successful. Then the estimation of a wind turbine state including dynamic inflow was tested on a simulated NREL 5MW turbine was performed. This worked perfectly with wind speeds from low to nominal wind speed as the output prediction errors where white. In high wind where the pitch actuator...

  13. Superconducting wind turbine generators

    DEFF Research Database (Denmark)

    Abrahamsen, Asger Bech; Mijatovic, Nenad; Seiler, Eugen

    2010-01-01

    We have examined the potential of 10 MW superconducting direct drive generators to enter the European offshore wind power market and estimated that the production of about 1200 superconducting turbines until 2030 would correspond to 10% of the EU offshore market. The expected properties of future...... offshore turbines of 8 and 10 MW have been determined from an up-scaling of an existing 5 MW turbine and the necessary properties of the superconducting drive train are discussed. We have found that the absence of the gear box is the main benefit and the reduced weight and size is secondary. However......, the main challenge of the superconducting direct drive technology is to prove that the reliability is superior to the alternative drive trains based on gearboxes or permanent magnets. A strategy of successive testing of superconducting direct drive trains in real wind turbines of 10 kW, 100 kW, 1 MW and 10...

  14. Aeroservoelasticity of Wind Turbines

    DEFF Research Database (Denmark)

    Kallesøe, Bjarne Skovmose

    2007-01-01

    This thesis deals with the fundamental aeroelastic interaction between structural motion, Pitch action and control for a wind turbine blade. As wind turbines become larger, the interaction between pitch action, blade motion, aerodynamic forces, and control become even more important to understand...... to a 2D blade section model, and it can be used instead of this in many applications, giving a transparent connection to a real wind turbine blade. In this work the aeroelastic blade model is used to analyze interaction between pitch action, blade motion and wind speed variations. Furthermore the model...... conditions. So, a new aeroelastic blade model has been derived, which includes important features of large wind turbines, yet simple enough to be suitable for analytical analysis and control design....

  15. Monitoring of wind turbines

    Science.gov (United States)

    White, Jonathan R.; Adams, Douglas E.; Paquette, Josh

    2017-07-25

    Method and apparatus for determining the deflection or curvature of a rotating blade, such as a wind turbine blade or a helicopter blade. Also, methods and apparatus for establishing an inertial reference system on a rotating blade.

  16. A study on microstructures and extended defects in Ni- and Co-base superalloys. Development and application of advanced TEM techniques

    Energy Technology Data Exchange (ETDEWEB)

    Mueller, Julian

    2016-04-21

    To improve the efficiency of stationary gas turbines and air craft jet engines, it is crucial to increase the maximum temperature capabilities of single crystalline superalloys by appropriate alloy design and microstructure tuning. The mechanical properties of superalloys are largely influenced by the physical constitution of the microstructure. To develop a better understanding of fundamental aspects of creep deformation, like the stress states, defect structures and other degradation processes, it is necessary to employ scale-bridging characterization. In the present work, Ni- and Co-based superalloys are investigated by a series of advanced transmission electron microscopy techniques and by the application of specifically developed characterization methods to identify dominating processes on atomic scale and hence to make a direct correlation to the macroscopic creep behavior. For instance, the misfit between γ and γ' in the initial microstructure is of great importance, since it strongly influences the rafting process and the interfacial dislocation network. To address the stress state, on the one hand misfit measurements in undeformed samples are conducted and are directly compared to finite-element simulations. On the other hand, deformed samples are investigated to assess the influence of an initial rafting process and the formation of an interface dislocation network. For this, characterization methods are used which are based on the evaluation of atomically resolved images and on electron diffraction. Moreover, the temperature dependency of the misfit and of the microstructure stability is specifically investigated for different Co-base alloys in in situ heating experiments. The characterization of defect structures in Ni-base superalloys after creep deformation builds the second pillar of this work. Specific cutting processes of superdislocations are studied to elucidate which atomic processes take place. A series of left angle 100 right angle and

  17. Wind turbine state estimation

    OpenAIRE

    Knudsen, Torben

    2014-01-01

    Dynamic inflow is an effect which is normally not included in the models used for wind turbine control design. Therefore, potential improvement from including this effect exists. The objective in this project is to improve the methods previously developed for this and especially to verify the results using full-scale wind turbine data. The previously developed methods were based on extended Kalman filtering. This method has several drawback compared to unscented Kalman filtering which has the...

  18. Wind turbines and infrasound

    International Nuclear Information System (INIS)

    Howe, B.

    2006-01-01

    This paper provided the results of a study conducted to assess the impacts of wind farm-induced infrasound on nearby residences and human populations. Infrasound occurs at frequencies below those considered as detectable by human hearing. Infrasonic levels caused by wind turbines are often similar to ambient levels of 85 dBG or lower that are caused by wind in the natural environment. This study examined the levels at which infrasound poses a threat to human health or can be considered as an annoyance. The study examined levels of infrasound caused by various types of wind turbines, and evaluated acoustic phenomena and characteristics associated with wind turbines. Results of the study suggested that infrasound near modern wind turbines is typically not perceptible to humans through either auditory or non-auditory mechanisms. However, wind turbines often create an audible broadband noise whose amplitude can be modulated at low frequencies. A review of both Canadian and international studies concluded that infrasound generated by wind turbines should not significantly impact nearby residences or human populations. 17 refs., 2 tabs., 4 figs

  19. Wind turbines and health

    International Nuclear Information System (INIS)

    Rideout, K.; Copes, R.; Bos, C.

    2010-01-01

    This document summarized the potential health hazards associated with wind turbines, such as noise and low frequency sound, vibration and infrasound; electromagnetic fields (EMF); shadow flicker; and ice throw and structural failure. Various symptoms can be attributed to wind turbines, including dizziness, sleep disruption, and headaches. A review of available research regarding potential health affects to residents living in close proximity to wind turbines showed that the sound level associated with wind turbines at common residential setbacks is not sufficient to damage hearing, but may lead to annoyance and sleep disturbance. Research has shown that wind turbines are not a significant source of EMF exposure, and although shadows caused by the blades may be annoying, they are not likely to cause epileptic seizures at normal operational speeds. The risk of injury from ice throw can be minimized with setbacks of 200 to 400 m. Examples of Canadian wind turbine setback guidelines and regulations were also offered. It was concluded that setbacks and operational guidelines can be utilized in combination to address safety hazards, sound levels, land use issues, and impacts on people. 46 refs., 2 tabs., 2 figs.

  20. European wind turbine catalogue

    International Nuclear Information System (INIS)

    1994-01-01

    The THERMIE European Community programme is designed to promote the greater use of European technology and this catalogue contributes to the fulfillment of this aim by dissemination of information on 50 wind turbines from 30 manufacturers. These turbines are produced in Europe and are commercially available. The manufacturers presented produce and sell grid-connected turbines which have been officially approved in countries where this approval is acquired, however some of the wind turbines included in the catalogue have not been regarded as fully commercially available at the time of going to print. The entries, which are illustrated by colour photographs, give company profiles, concept descriptions, measured power curves, prices, and information on design and dimension, safety systems, stage of development, special characteristics, annual energy production, and noise pollution. Lists are given of wind turbine manufacturers and agents and of consultants and developers in the wind energy sector. Exchange rates used in the conversion of the prices of wind turbines are also given. Information can be found on the OPET network (organizations recognised by the European Commission as an Organization for the Promotion of Energy Technologies (OPET)). An article describes the development of the wind power industry during the last 10-15 years and another article on certification aims to give an overview of the most well-known and acknowledged type approvals currently issued in Europe. (AB)

  1. Wind turbines and health

    Energy Technology Data Exchange (ETDEWEB)

    Rideout, K.; Copes, R.; Bos, C. [National Colaborating Centre for Environmental Health, Vancouver, BC (Canada)

    2010-01-15

    This document summarized the potential health hazards associated with wind turbines, such as noise and low frequency sound, vibration and infrasound; electromagnetic fields (EMF); shadow flicker; and ice throw and structural failure. Various symptoms can be attributed to wind turbines, including dizziness, sleep disruption, and headaches. A review of available research regarding potential health affects to residents living in close proximity to wind turbines showed that the sound level associated with wind turbines at common residential setbacks is not sufficient to damage hearing, but may lead to annoyance and sleep disturbance. Research has shown that wind turbines are not a significant source of EMF exposure, and although shadows caused by the blades may be annoying, they are not likely to cause epileptic seizures at normal operational speeds. The risk of injury from ice throw can be minimized with setbacks of 200 to 400 m. Examples of Canadian wind turbine setback guidelines and regulations were also offered. It was concluded that setbacks and operational guidelines can be utilized in combination to address safety hazards, sound levels, land use issues, and impacts on people. 46 refs., 2 tabs., 2 figs.

  2. Oxidation of Inconel 625 superalloy upon treatment with oxygen or hydrogen plasma at high temperature

    Energy Technology Data Exchange (ETDEWEB)

    Vesel, Alenka; Drenik, Aleksander; Elersic, Kristina; Mozetic, Miran; Kovac, Janez [Jozef Stefan Institute, Jamova 39, SI-1000 Ljubljana (Slovenia); Gyergyek, Tomaz [University of Ljubljana, Faculty of Electrical Engineering, Trzaska 25, SI-1000 Ljubljana (Slovenia); Stockel, Jan; Varju, Jozef; Panek, Radomir [Institute of Plasma Physics, Academy of Sciences of the Czech Republic, Ze Slovankou 3, Praha 8 (Czech Republic); Balat-Pichelin, Marianne, E-mail: marianne.balat@promes.cnrs.fr [PROMES-CNRS Laboratory, 7 rue du four solaire, 66120 Font Romeu Odeillo (France)

    2014-06-01

    Initial stages of Inconel 625 superalloy (Ni{sub 60}Cr{sub 30}Mo{sub 10}Ni{sub 4}Nb{sub 1}) oxidation upon short treatment with gaseous plasma at different temperatures up to about 1600 K were studied. Samples were treated for different periods up to a minute by oxygen or hydrogen plasma created with a microwave discharge in the standing-wave mode at a pressure of 40 Pa and a power 500 W. Simultaneous heating of the samples was realized by focusing concentrated solar radiation from a 5 kW solar furnace directly onto the samples. The morphological changes upon treatment were monitored using scanning electron microscopy, compositional depth profiling was performed using Auger electron spectroscopy, while structural changes were determined by X-ray diffraction. The treatment in oxygen plasma caused formation of metal oxide clusters of three dimensional crystallites initially rich in nickel oxide with the increasing chromium oxide content as the temperature was increasing. At about 1100 K iron and niobium oxides prevailed on the surface causing a drop of the material emissivity at 5 μm. Simultaneously the NiCr{sub 2}O{sub 4} compound started growing at the interface between the oxide film and bulk alloy and the compound persisted up to temperatures close to the Inconel melting point. Intensive migration of minority alloying elements such as Fe and Ti was observed at 1600 K forming mixed surface oxides of sub-micrometer dimensions. The treatment in hydrogen plasma with small admixture of water vapor did not cause much modification unless the temperature was close to the melting point. At such conditions aluminum segregated on the surface and formed well-defined Al{sub 2}O{sub 3} crystals.

  3. Oxidation of Inconel 625 superalloy upon treatment with oxygen or hydrogen plasma at high temperature

    Science.gov (United States)

    Vesel, Alenka; Drenik, Aleksander; Elersic, Kristina; Mozetic, Miran; Kovac, Janez; Gyergyek, Tomaz; Stockel, Jan; Varju, Jozef; Panek, Radomir; Balat-Pichelin, Marianne

    2014-06-01

    Initial stages of Inconel 625 superalloy (Ni60Cr30Mo10Ni4Nb1) oxidation upon short treatment with gaseous plasma at different temperatures up to about 1600 K were studied. Samples were treated for different periods up to a minute by oxygen or hydrogen plasma created with a microwave discharge in the standing-wave mode at a pressure of 40 Pa and a power 500 W. Simultaneous heating of the samples was realized by focusing concentrated solar radiation from a 5 kW solar furnace directly onto the samples. The morphological changes upon treatment were monitored using scanning electron microscopy, compositional depth profiling was performed using Auger electron spectroscopy, while structural changes were determined by X-ray diffraction. The treatment in oxygen plasma caused formation of metal oxide clusters of three dimensional crystallites initially rich in nickel oxide with the increasing chromium oxide content as the temperature was increasing. At about 1100 K iron and niobium oxides prevailed on the surface causing a drop of the material emissivity at 5 μm. Simultaneously the NiCr2O4 compound started growing at the interface between the oxide film and bulk alloy and the compound persisted up to temperatures close to the Inconel melting point. Intensive migration of minority alloying elements such as Fe and Ti was observed at 1600 K forming mixed surface oxides of sub-micrometer dimensions. The treatment in hydrogen plasma with small admixture of water vapor did not cause much modification unless the temperature was close to the melting point. At such conditions aluminum segregated on the surface and formed well-defined Al2O3 crystals.

  4. Wind turbines and idiopathic symptoms

    DEFF Research Database (Denmark)

    Blanes-Vidal, Victoria; Schwartz, Joel

    2016-01-01

    Whether or not wind turbines pose a risk to human health is a matter of heated debate. Personal reactions to other environmental exposures occurring in the same settings as wind turbines may be responsible of the reported symptoms. However, these have not been accounted for in previous studies. We...... investigated whether there is an association between residential proximity to wind turbines and idiopathic symptoms, after controlling for personal reactions to other environmental co-exposures. We assessed wind turbine exposures in 454 residences as the distance to the closest wind turbine (Dw) and number...... of wind turbines

  5. Next Generation Wind Turbine

    Energy Technology Data Exchange (ETDEWEB)

    Cheraghi, S. Hossein [Western New England Univ., Springfield, MA (United States); Madden, Frank [FloDesign Wind Turbine Corp., Waltham, MA (United States)

    2012-09-01

    The goal of this collaborative effort between Western New England University's College of Engineering and FloDesign Wind Turbine (FDWT) Corporation to wok on a novel areodynamic concept that could potentially lead to the next generation of wind turbines. Analytical studies and early scale model tests of FDWT's Mixer/Ejector Wind Turbine (MEWT) concept, which exploits jet-age advanced fluid dynamics, indicate that the concept has the potential to significantly reduce the cost of electricity over conventional Horizontal Axis Wind Turbines while reducing land usage. This project involved the design, fabrication, and wind tunnel testing of components of MEWT to provide the research and engineering data necessary to validate the design iterations and optimize system performance. Based on these tests, a scale model prototype called Briza was designed, fabricated, installed and tested on a portable tower to investigate and improve the design system in real world conditions. The results of these scale prototype efforts were very promising and have contributed significantly to FDWT's ongoing development of a product scale wind turbine for deployment in multiple locations around the U.S. This research was mutually beneficial to Western New England University, FDWT, and the DOE by utilizing over 30 student interns and a number of faculty in all efforts. It brought real-world wind turbine experience into the classroom to further enhance the Green Engineering Program at WNEU. It also provided on-the-job training to many students, improving their future employment opportunities, while also providing valuable information to further advance FDWT's mixer-ejector wind turbine technology, creating opportunities for future project innovation and job creation.

  6. Microstructural analysis of laser weld fusion zone in Haynes 282 superalloy

    Energy Technology Data Exchange (ETDEWEB)

    Osoba, L.O. [Department of Mechanical and Manufacturing Engineering, University of Manitoba, Winnipeg, Manitoba, R3T 5V6 (Canada); Ding, R.G. [Department of Metallurgy and Materials Engineering, University of Birmingham, Birmingham B15 2TT (United Kingdom); Ojo, O.A., E-mail: ojo@cc.umanitoba.ca [Department of Mechanical and Manufacturing Engineering, University of Manitoba, Winnipeg, Manitoba, R3T 5V6 (Canada)

    2012-03-15

    Analytical electron microscopy and spectroscopy analyses of the fusion zone (FZ) microstructure in autogenous laser beam welded Haynes 282 (HY 282) superalloy were performed. The micro-segregation patterns observed in the FZ indicate that Co, Cr and Al exhibited a nearly uniform distribution between the dendrite core and interdendritic regions while Ti and Mo were rejected into the interdendritic liquid during the weld solidification. Transmission electron diffraction analysis and energy dispersive X-ray microanalysis revealed the second phase particles formed along the FZ interdendritic region to be Ti-Mo rich MC-type carbide particles. Weld FZ solidification cracking, which is sometimes associated with the formation of {gamma}-{gamma}' eutectic in {gamma}' precipitation strengthened nickel-base superalloys, was not observed in the HY 282 superalloy. Modified primary solidification path due to carbon addition in the newly developed superalloy is used to explain preclusion of weld FZ solidification cracking in the material. - Highlights: Black-Right-Pointing-Pointer A newly developed superalloy was welded by CO{sub 2} laser beam joining technique. Black-Right-Pointing-Pointer Electron microscopy characterization of the weld microstructure was performed. Black-Right-Pointing-Pointer Identified interdendritic microconstituents consist of MC-type carbides. Black-Right-Pointing-Pointer Modification of primary solidification path is used to explain cracking resistance.

  7. The Precipitation Behavior and Hot Deformation Characteristics of Electron Beam Smelted Inconel 740 Superalloy

    Science.gov (United States)

    You, Xiaogang; Tan, Yi; Wu, Chang; You, Qifan; Zhao, Longhai; Li, Jiayan

    2018-03-01

    The Inconel 740 superalloy was prepared by the electron beam smelting (EBS) technology, the precipitation behavior and strengthening mechanism were studied, and the hot deformation characteristics of EBS 740 superalloy were investigated. The results indicate that the EBS 740 superalloy is mainly strengthened by the mechanism of weakly coupled dislocation shearing, and the resulting critical shear stress is calculated to be 234.6 MPa. The deformation parameters show a great influence on the flow behavior of EBS 740 superalloy. The strain rate sensitivity exponent increases with the increasing of deformation temperature, and the strain hardening exponent shows a decreasing trend with the increasing of strain. The activation energy of EBS 740 above 800 °C is measured to be 408.43 kJ/mol, which is higher than the 740H superalloy. A hyperbolic-sine-type relationship can be observed between the peak stress and Zener-Hollomon parameter. Nevertheless, the influence of deformation parameters is found to be considerably different at temperatures below and above 800 °C. The size of dynamic recrystallization (DRX) grains decreases with the increasing of strain rate when the strain rate is lower than 1/s, and reverse law can be found at higher strain rate. As a result, a piecewise function is established between the DRX grain size and hot working parameters.

  8. Influence of Short-time Oxidation on Corrosion Properties of Directionally Solidified Superalloys with Different Orientations

    Directory of Open Access Journals (Sweden)

    MA Luo-ning

    2016-07-01

    Full Text Available In order to investigate the corrosion performance on intersecting and longitudinal surfaces of unoxidized and oxidized directionally solidified superalloys, Ni-base directionally solidified superalloy DZ125 and Co-base directionally solidified superalloy DZ40M were selected. Oxidation behavior on both alloys with different orientations was investigated at 1050℃ at different times, simulating the oxidation process of vanes or blades in service; subsequent electrochemical performance in 3.5%NaCl aqueous solution was studied on two orientations of unoxidized and oxidized alloys, simulating the corrosion process of superalloy during downtime. The results show that grain boundaries and sub-boundaries of directionally solidified superalloys are susceptible to corrosion and thus longitudinal surface with lower area fraction of grain boundaries has higher corrosion resistance. Compared to intersecting surface of alloys, the structure of grain boundaries of longitudinal surface is less conducive to diffusion and thus the oxidation rate on longitudinal surface is lower. Formation of oxide layers on alloys after short-time oxidation provides protective effect and enhances the corrosion resistance.

  9. Microstructural analysis of laser weld fusion zone in Haynes 282 superalloy

    International Nuclear Information System (INIS)

    Osoba, L.O.; Ding, R.G.; Ojo, O.A.

    2012-01-01

    Analytical electron microscopy and spectroscopy analyses of the fusion zone (FZ) microstructure in autogenous laser beam welded Haynes 282 (HY 282) superalloy were performed. The micro-segregation patterns observed in the FZ indicate that Co, Cr and Al exhibited a nearly uniform distribution between the dendrite core and interdendritic regions while Ti and Mo were rejected into the interdendritic liquid during the weld solidification. Transmission electron diffraction analysis and energy dispersive X-ray microanalysis revealed the second phase particles formed along the FZ interdendritic region to be Ti–Mo rich MC-type carbide particles. Weld FZ solidification cracking, which is sometimes associated with the formation of γ–γ' eutectic in γ' precipitation strengthened nickel-base superalloys, was not observed in the HY 282 superalloy. Modified primary solidification path due to carbon addition in the newly developed superalloy is used to explain preclusion of weld FZ solidification cracking in the material. - Highlights: ► A newly developed superalloy was welded by CO 2 laser beam joining technique. ► Electron microscopy characterization of the weld microstructure was performed. ► Identified interdendritic microconstituents consist of MC-type carbides. ► Modification of primary solidification path is used to explain cracking resistance.

  10. Floating wind turbine system

    Science.gov (United States)

    Viterna, Larry A. (Inventor)

    2009-01-01

    A floating wind turbine system with a tower structure that includes at least one stability arm extending therefrom and that is anchored to the sea floor with a rotatable position retention device that facilitates deep water installations. Variable buoyancy for the wind turbine system is provided by buoyancy chambers that are integral to the tower itself as well as the stability arm. Pumps are included for adjusting the buoyancy as an aid in system transport, installation, repair and removal. The wind turbine rotor is located downwind of the tower structure to allow the wind turbine to follow the wind direction without an active yaw drive system. The support tower and stability arm structure is designed to balance tension in the tether with buoyancy, gravity and wind forces in such a way that the top of the support tower leans downwind, providing a large clearance between the support tower and the rotor blade tips. This large clearance facilitates the use of articulated rotor hubs to reduced damaging structural dynamic loads. Major components of the turbine can be assembled at the shore and transported to an offshore installation site.

  11. Wind turbine noise diagnostics

    International Nuclear Information System (INIS)

    Richarz, W.; Richarz, H.

    2009-01-01

    This presentation proposed a self-consistent model for broad-band noise emitted from modern wind turbines. The simple source model was consistent with the physics of sound generation and considered the unique features of wind turbines. Although the acoustics of wind turbines are similar to those of conventional propellers, the dimensions of wind turbines pose unique challenges in diagnosing noise emission. The general features of the sound field were deduced. Source motion and source directivity appear to be responsible for amplitude variations. The amplitude modulation is likely to make wind-turbine noise more audible, and may be partly responsible for annoyance that has been reported in the literature. Acoustic array data suggests that broad-band noise is emitted predominantly during the downward sweep of each rotor blade. Source motion and source directivity account for the observed pattern. Rotor-tower interaction effects are of lesser importance. Predicted amplitude modulation ranges from 1 dB to 6dB. 2 refs., 9 figs.

  12. Wind turbine control and monitoring

    CERN Document Server

    Luo, Ningsu; Acho, Leonardo

    2014-01-01

    Maximizing reader insights into the latest technical developments and trends involving wind turbine control and monitoring, fault diagnosis, and wind power systems, 'Wind Turbine Control and Monitoring' presents an accessible and straightforward introduction to wind turbines, but also includes an in-depth analysis incorporating illustrations, tables and examples on how to use wind turbine modeling and simulation software.   Featuring analysis from leading experts and researchers in the field, the book provides new understanding, methodologies and algorithms of control and monitoring, comput

  13. Banki turbines with power adjustment

    Energy Technology Data Exchange (ETDEWEB)

    Darzan, Mihai; Dumitrache, Marius

    2010-09-15

    The paper presents features of the BANKI turbine realized by SC. Electra Total Consulting SA Bucharest, member of Energy Services Group, in consortium with STRAERO SA Bucharest. In this way is presented the prototype of this turbine and its performances which recommends it for the interior rivers of Romania compared with the Ossberger and/or Cink turbines.

  14. Steam generators, turbines, and condensers. Volume six

    International Nuclear Information System (INIS)

    Anon.

    1986-01-01

    Volume six covers steam generators (How steam is generated, steam generation in a PWR, vertical U-tube steam generators, once-through steam generators, how much steam do steam generators make?), turbines (basic turbine principles, impulse turbines, reaction turbines, turbine stages, turbine arrangements, turbine steam flow, steam admission to turbines, turbine seals and supports, turbine oil system, generators), and condensers (need for condensers, basic condenser principles, condenser arrangements, heat transfer in condensers, air removal from condensers, circulating water system, heat loss to the circulating water system, factors affecting condenser performance, condenser auxiliaries)

  15. Wind Turbine Acoustics

    Science.gov (United States)

    Hubbard, Harvey H.; Shepherd, Kevin P.

    2009-01-01

    Wind turbine generators, ranging in size from a few kilowatts to several megawatts, are producing electricity both singly and in wind power stations that encompass hundreds of machines. Many installations are in uninhabited areas far from established residences, and therefore there are no apparent environmental impacts in terms of noise. There is, however, the potential for situations in which the radiated noise can be heard by residents of adjacent neighborhoods, particularly those neighborhoods with low ambient noise levels. A widely publicized incident of this nature occurred with the operation of the experimental Mod-1 2-MW wind turbine, which is described in detail elsewhere. Pioneering studies which were conducted at the Mod-1 site on the causes and remedies of noise from wind turbines form the foundation of much of the technology described in this chapter.

  16. Noise from wind turbines

    International Nuclear Information System (INIS)

    Andersen, B.; Jakobsen, J.

    1992-11-01

    Based on a previous project concerning the calculation of the amount of noise emanating from wind turbine arrays, this one examines the subject further by investigating whether there could be significant differences in the amount of noise made by individual wind turbines in an array, and whether the noise is transmitted in varying directions - so that when it is carried in the same direction as the wind blows it would appear to be louder. The aim was also to determine whether the previously used method of calculation lacked precision. It was found that differences in noise niveaux related to individual wind turbines were insignificant and that noise was not so loud when it was not borne in the direction of the wind. It was necessary to change the method of calculation as reckoning should include the influence of the terrain, wind velocity and distance. The measuring and calculation methods are exemplified and the resulting measurements are presented in detail. (AB)

  17. Wind turbine pitch optimization

    DEFF Research Database (Denmark)

    Biegel, Benjamin; Juelsgaard, Morten; Stoustrup, Jakob

    2011-01-01

    We consider a static wind model for a three-bladed, horizontal-axis, pitch-controlled wind turbine. When placed in a wind field, the turbine experiences several mechanical loads, which generate power but also create structural fatigue. We address the problem of finding blade pitch profiles......% compared to any constant pitch profile while sacrificing at most 7% of the maximum attainable output power. Using iterative learning, we show that very similar performance can be achieved by using only load measurements, with no knowledge of the wind field or wind turbine model....... for maximizing power production while simultaneously minimizing fatigue loads. In this paper, we show how this problem can be approximately solved using convex optimization. When there is full knowledge of the wind field, numerical simulations show that force and torque RMS variation can be reduced by over 96...

  18. Micro turbines on gas

    International Nuclear Information System (INIS)

    Kotevski, Darko

    2003-01-01

    Microturbines are small gas turbine engines that drive a generator with sizes ranging from 30-350 kW. Although similar in function to bigger gas turbines, their simple radial flow turbine and high-speed generator offer better performance, greater reliability, longer service intervals, reduced maintenance lower emission and lower noise. Microturbines can generate power continuously and very economically to reduce electricity costs or they can be operated selectively for peak shaving. These benefits are further enhanced by the economics of using the microturbine's waste heat for hot water needs or other heating applications. That is why on-site microturbine power is widely used for independent production of electricity and heat in industrial and commercial facilities, hotels, hospitals, office buildings, residential buildings etc. (Original)

  19. Wind turbine spoiler

    Science.gov (United States)

    Sullivan, W.N.

    An aerodynamic spoiler system for a vertical axis wind turbine includes spoilers on the blades initially stored near the rotor axis to minimize drag. A solenoid latch adjacent the central support tower releases the spoilers and centrifugal force causes the spoilers to move up the turbine blades away from the rotor axis, thereby producing a braking effect and actual slowing of the associated wind turbine, if desired. The spoiler system can also be used as an infinitely variable power control by regulated movement of the spoilers on the blades over the range between the undeployed and fully deployed positions. This is done by the use of a suitable powered reel and cable located at the rotor tower to move the spoilers.

  20. Fibrous dysplasia of inferior turbinate, middle turbinate, and frontal sinus.

    Science.gov (United States)

    Ozcan, K M; Akdogan, O; Gedikli, Y; Ozcan, I; Dere, H; Unal, T

    2007-01-01

    Fibrous dysplasia (FD) is a non-neoplastic fibro-osseous lesion. Paranasal sinus involvement is infrequent. Involvement of the frontal sinus, sphenoid sinus, and middle turbinate is rare, and only sporadic cases have been reported in the literature. Nasal turbinates and especially the inferior turbinate are the least involved bones of the craniofacial region. To the best of our knowledge, only one case with McCune-Albright syndrome had FD of the inferior turbinate. Here, we report a rare case with FD of inferior and middle turbinates and review literature concerning FD of the craniofacial region.

  1. Degradation of creep properties in a long-term thermally exposed nickel base superalloy

    International Nuclear Information System (INIS)

    Zrnik, J.; Strunz, P.; Vrchovinsky, V.; Muransky, O.; Novy, Z.; Wiedenmann, A.

    2004-01-01

    When exposed for long time at elevated temperatures of 430 and 650 deg. C the nickel base superalloy EI 698 VD can experience a significant decrease in creep resistance. The cause of the creep degradation of nickel base superalloy is generally attributed to the microstructural instability at prolonged high temperature exposure. In this article, the creep-life data, generated on long thermally exposed nickel base superalloy EI698 VD were related to the local microstructural changes observed using SEM and TEM analysing techniques. While structure analysis provided supporting evidence concerning the changes associated with grain boundary carbide precipitation, no persuasive evidence of a morphological and/or dimensional gamma prime change was showed. For clarifying of the role of gamma prime precipitates on alloy on creep degradation, the SANS (small angle neutron scattering) experiment was crucial in the characterization of the bulk-averaged gamma prime morphology and its size distribution with respect to the period of thermal exposure

  2. A comparative study of the corrosion resistance of incoloy MA 956 and PM 2000 superalloys

    Directory of Open Access Journals (Sweden)

    Maysa Terada

    2010-12-01

    Full Text Available Austenitic stainless steels, titanium and cobalt alloys are widely used as biomaterials. However, new medical devices require innovative materials with specific properties, depending on their application. The magnetic properties are among the properties of interest for some biomedical applications. However, due to the interaction of magnetic materials with Magnetic Resonance Image equipments they might used only as not fixed implants or for medical devices. The ferromagnetic superalloys, Incoloy MA 956 and PM 2000, produced by mechanical alloying, have similar chemical composition, high corrosion resistance and are used in high temperature applications. In this study, the corrosion resistance of these two ferritic superalloys was compared in a phosphate buffer solution. The electrochemical results showed that both superalloys are passive in this solution and the PM 2000 present a more protective passive film on it associated to higher impedances than the MA 956.

  3. Constitutive Model Based on Dynamic Recrystallization Behavior during Thermal Deformation of a Nickel-Based Superalloy

    Directory of Open Access Journals (Sweden)

    Peng Zhang

    2016-07-01

    Full Text Available The thermal deformation and dynamic recrystallization (DRX behavior of a nickel-based superalloy were investigated by the thermal compression test. The experimental results show that the process parameters have great influence on the flow stress of the superalloy. In addition, there is an inflection point on the DRX softening stage of the work-hardening rate versus stress curve. DRX under the conditions of higher temperatures and lower strain rates easily occurs when the strain reaches a critical level. Based on the classical dislocation density theory and the DRX kinetics models, a two-stage constitutive model considering the effect of work hardening-dynamic recovery and DRX is developed for the superalloy. Comparisons between the predicted and experimental data indicate that the values predicted by the proposed constitutive model are in good agreement with the experimental results.

  4. Advanced turbine study. [airfoil coling in rocket turbines

    Science.gov (United States)

    1982-01-01

    Experiments to determine the available increase in turbine horsepower achieved by increasing turbine inlet temperature over a range of 1800 to 2600 R, while applying current gas turbine airfoil cling technology are discussed. Four cases of rocket turbine operating conditions were investigated. Two of the cases used O2/H2 propellant, one with a fuel flowrate of 160 pps, the other 80 pps. Two cases used O2/CH4 propellant, each having different fuel flowrates, pressure ratios, and inlet pressures. Film cooling was found to be the required scheme for these rocket turbine applications because of the high heat flux environments. Conventional convective or impingement cooling, used in jet engines, is inadequate in a rocket turbine environment because of the resulting high temperature gradients in the airfoil wall, causing high strains and low cyclic life. The hydrogen-rich turbine environment experienced a loss, or no gain, in delivered horsepower as turbine inlet temperature was increased at constant airfoil life. The effects of film cooling with regard to reduced flow available for turbine work, dilution of mainstream gas temperature and cooling reentry losses, offset the relatively low specific work capability of hydrogen when increasing turbine inlet temperature over the 1800 to 2600 R range. However, the methane-rich environment experienced an increase in delivered horsepower as turbine inlet temperature was increased at constant airfoil life. The results of a materials survey and heat transfer and durability analysis are discussed.

  5. Vertical axis wind turbine

    International Nuclear Information System (INIS)

    Obretenov, V.; Tsalov, T.; Chakarov, T.

    2012-01-01

    In recent years, the interest in wind turbines with vertical axis noticeably increased. They have some important advantages: low cost, relatively simple structure, reliable packaging system of wind aggregate long period during which require no maintenance, low noise, independence of wind direction, etc.. The relatively low efficiency, however, makes them applicable mainly for small facilities. The work presents a methodology and software for approximately aerodynamic design of wind turbines of this type, and also analyzed the possibility of improving the efficiency of their workflow

  6. Aerodynamics of wind turbines

    CERN Document Server

    Hansen, Martin O L

    2015-01-01

    Aerodynamics of Wind Turbines is the established essential text for the fundamental solutions to efficient wind turbine design. Now in its third edition, it has been substantially updated with respect to structural dynamics and control. The new control chapter now includes details on how to design a classical pitch and torque regulator to control rotational speed and power, while the section on structural dynamics has been extended with a simplified mechanical system explaining the phenomena of forward and backward whirling modes. Readers will also benefit from a new chapter on Vertical Axis W

  7. Velocity pump reaction turbine

    Science.gov (United States)

    House, P.A.

    An expanding hydraulic/two-phase velocity pump reaction turbine including a dual concentric rotor configuration with an inter-rotor annular flow channel in which the inner rotor is mechanically driven by the outer rotor. In another embodiment, the inner rotor is immobilized and provided with gas recovery ports on its outer surface by means of which gas in solution may be recovered. This velocity pump reaction turbine configuration is capable of potential energy conversion efficiencies of up to 70%, and is particularly suited for geothermal applications.

  8. Ceramic gas turbine shroud

    Science.gov (United States)

    Shi, Jun; Green, Kevin E.

    2014-07-22

    An example gas turbine engine shroud includes a first annular ceramic wall having an inner side for resisting high temperature turbine engine gasses and an outer side with a plurality of radial slots. A second annular metallic wall is positioned radially outwardly of and enclosing the first annular ceramic wall and has a plurality of tabs in communication with the slot of the first annular ceramic wall. The tabs of the second annular metallic wall and slots of the first annular ceramic wall are in communication such that the first annular ceramic wall and second annular metallic wall are affixed.

  9. Offshore Wind Turbine Design

    DEFF Research Database (Denmark)

    Frandsen, Sten; Hansen, Erik Asp; Ibsen, Lars Bo

    2006-01-01

    Current offshore wind turbine design methods have matured to a 1st generation state, manifested in the draft of a possible standard, IEC 61400-3 (2005). It is now time to investigate the possibilities of improving existing methods. To do so in an efficient manner a clear identification of the most...... important uncertainty drivers specific for offshore wind turbine design loads is required. Describing the initial efforts in a Danish research project, the paper points to focal points for research and development. These are mainly: soil-structure interaction, improved modelling of wave loads from deep...

  10. Vertical axis wind turbines

    Science.gov (United States)

    Krivcov, Vladimir [Miass, RU; Krivospitski, Vladimir [Miass, RU; Maksimov, Vasili [Miass, RU; Halstead, Richard [Rohnert Park, CA; Grahov, Jurij [Miass, RU

    2011-03-08

    A vertical axis wind turbine is described. The wind turbine can include a top ring, a middle ring and a lower ring, wherein a plurality of vertical airfoils are disposed between the rings. For example, three vertical airfoils can be attached between the upper ring and the middle ring. In addition, three more vertical airfoils can be attached between the lower ring and the middle ring. When wind contacts the vertically arranged airfoils the rings begin to spin. By connecting the rings to a center pole which spins an alternator, electricity can be generated from wind.

  11. Crystallographic, Microstructural, and Mechanical Characterization of Dynamically Processed EP741NP Superalloy

    Science.gov (United States)

    Sharma, A. D.; Sharma, A. K.; Thakur, N.

    2016-08-01

    Considerable progress has been made for the solidification of metal powders with improved properties by using varieties of metallurgical methods. However, solidification of superalloy powders offers many difficulties under traditional processes. This article outlines an extensive program being undertaken to produce monoliths of superalloys with enhanced microstructural and mechanical properties. EP741NP superalloy has been subjected to explosive shock wave loading to obtain uniform and crack-free monoliths. An axisymmetric cylindrical configuration with a plastic explosive of high-detonation velocity has been used to consolidate the superalloy powder nearer to its theoretical density (~98 pct). By careful design of experiments, detonation velocity has been measured vis-à-vis compaction of metal powders in a single-shot experiment by employing instrumented detonics. The shock-processed specimens characterized for phase, lattice parameter, and structural variation by X-ray diffraction technique show intact crystalline structure. Results obtained from Williamson-Hall method indicate small micro-strain (2.8 × 10-3) and decreased crystallite size. Energy-dispersive spectroscopy suggests no segregation within the specimens. Scanning electron microscopy shows fracture-less and micro-cracks/void-free compacts of superalloy indicating satisfactory sub-structural strength. Indentation experiments with variable loads (1.96 N and 2.94 N) performed on the shock-processed specimen cut along transverse section show high order of Vicker's micro-hardness value up to 486 H v. The tensile and compressive strengths of the superalloy monoliths cut along the consolidation axes have been found to be 824 and 834 MPa, respectively.

  12. Cyclic Oxidation Behaviour of Domestic Superalloys at Elevated Temperature

    International Nuclear Information System (INIS)

    Kang, S. C.; Kim, G. M.; Chon, Y. G.

    1991-01-01

    The cyclic oxidation behaviour of commercial superalloys produced in Korea was investigated in air at 1000 .deg. C and 1100 .deg. C. Cyclic oxidation test was carried out by cyclically oxidizing the specimens in an apparatus which periodically removed the specimens from the furnace and reinserted them. The influence of growth stress and thermal stress on the cyclic oxidation was studied by examination of the oxide structures, their morphologies, and EDS line scanning of cross-section of cyclically oxidized specimens. The results showed that Inconel 601 was the best in the cyclic oxidation resistance among the tested alloys, followed by Nimonic 80A, Incoloy 825 and Inconel 718 at 1100 .deg. C. As in the case of the isothermal oxidation, relatively pure Cr 2 O 3 was effective in the beginning of cyclic oxidation experiment. But, later on, other oxidation products as well as Cr 2 O 3 were formed, resulting in the spallation of oxide scales. Especially, Nb and Mo in the alloys were determental to the cyclic oxidation behavior

  13. High Temperature Deformation Mechanisms in a DLD Nickel Superalloy

    Directory of Open Access Journals (Sweden)

    Sean Davies

    2017-04-01

    Full Text Available The realisation of employing Additive Layer Manufacturing (ALM technologies to produce components in the aerospace industry is significantly increasing. This can be attributed to their ability to offer the near-net shape fabrication of fully dense components with a high potential for geometrical optimisation, all of which contribute to subsequent reductions in material wastage and component weight. However, the influence of this manufacturing route on the properties of aerospace alloys must first be fully understood before being actively applied in-service. Specimens from the nickel superalloy C263 have been manufactured using Powder Bed Direct Laser Deposition (PB-DLD, each with unique post-processing conditions. These variables include two build orientations, vertical and horizontal, and two different heat treatments. The effects of build orientation and post-process heat treatments on the materials’ mechanical properties have been assessed with the Small Punch Tensile (SPT test technique, a practical test method given the limited availability of PB-DLD consolidated material. SPT testing was also conducted on a cast C263 variant to compare with PB-DLD derivatives. At both room and elevated temperature conditions, differences in mechanical performances arose between each material variant. This was found to be instigated by microstructural variations exposed through microscopic and Energy Dispersive X-ray Spectroscopy (EDS analysis. SPT results were also compared with available uniaxial tensile data in terms of SPT peak and yield load against uniaxial ultimate tensile and yield strength.

  14. Temperature Dependent Cyclic Deformation Mechanisms in Haynes 188 Superalloy

    Science.gov (United States)

    Rao, K. Bhanu Sankara; Castelli, Michael G.; Allen, Gorden P.; Ellis, John R.

    1995-01-01

    The cyclic deformation behavior of a wrought cobalt-base superalloy, Haynes 188, has been investigated over a range of temperatures between 25 and 1000 C under isothermal and in-phase thermomechanical fatigue (TMF) conditions. Constant mechanical strain rates (epsilon-dot) of 10(exp -3)/s and 10(exp -4)/s were examined with a fully reversed strain range of 0.8%. Particular attention was given to the effects of dynamic strain aging (DSA) on the stress-strain response and low cycle fatigue life. A correlation between cyclic deformation behavior and microstructural substructure was made through detailed transmission electron microscopy. Although DSA was found to occur over a wide temperature range between approximately 300 and 750 C the microstructural characteristics and the deformation mechanisms responsible for DSA varied considerably and were dependent upon temperature. In general, the operation of DSA processes led to a maximum of the cyclic stress amplitude at 650 C and was accompanied by pronounced planar slip, relatively high dislocation density, and the generation of stacking faults. DSA was evidenced through a combination of phenomena, including serrated yielding, an inverse dependence of the maximum cyclic hardening with epsilon-dot, and an instantaneous inverse epsilon-dot sensitivity verified by specialized epsilon-dot -change tests. The TMF cyclic hardening behavior of the alloy appeared to be dictated by the substructural changes occuring at the maximum temperature in the TMF cycle.

  15. Low temperature carbide precipitation in a nickel base superalloy

    Science.gov (United States)

    Garosshen, T. J.; McCarthy, G. P.

    1985-07-01

    A M23C6 carbide phase has been observed to precipitate at relatively low temperatures (732 to 760 °C) in a nickel base superalloy.* Transmission Electron Microscopy shows the low temperature carbide to reside at the grain boundaries in a continuous morphology. The continuous carbide has a typical width of 25 to 40 nm with aspect ratios on the order of 30:1. The structure of the carbide is face-centered cubic with a lattice parameter (α0) of approximately 1.063 nm, which is typical of the M23C6 carbides that form at higher temperatures. STEM analysis indicates the carbide to have a typical M23C6 chemistry, enriched in chromium with lesser amounts of molybdenum, cobalt, and nickel. The formation of the continuous carbide occurs readily around 760 °C; however, at temperatures 55 °C lower the precipitation kinetics are significantly reduced. The extent of the low temperature carbide reaction is observed to be dependent upon the duration of the low temperature exposure and the degree of prior M23C6 stabilization at an intermediate temperature. Alloy modifications, involving hafnium additions and lower carbon levels, were studied with the aim of reducing the extent of this carbide reaction. Despite these chemistry modifications, the low temperature carbide was still observed to form to an appreciable extent. The presence of the continuous carbide is also observed to reduce the stress-rupture life of the alloy.

  16. Cyclic creep and anelastic relaxation analysis of an ODS superalloy

    Science.gov (United States)

    Nardone, Vincent C.; Kimmerle, William L.; Tien, John K.

    1986-09-01

    This paper documents the effect of stress and temperature on the cyclic minimum strain rate at two different loading frequencies for the oxide dispersion strengthened (ODS) superalloy, INCONEL* MA 6000. The apparent stress exponent and activation energy for cyclic creep at both frequencies studied are shown to be greater than values observed for static creep. The large values of the stress exponent and activation energy for cyclic creep are proposed to result from anelastic strain storage delaying nonrecoverable creep during the on-load portion of the cyclic creep loading, such that the “effective stress” driving nonrecoverable creep is only a small fraction of the applied stress. In addition, the temperature dependence of the anelastic relaxation that occurs during the off-load portion of the cyclic creep loading is determined. The activation energy found for the relaxation process is equal to about one-half that for self-diffusion in nickel. A mechanism of localized climb of dislocations over the oxide dispersoids present in INCONEL MA 6000 is postulated to account for the observed activation energy of the relaxation process.

  17. Segregation to grain boundaries in nimonic PE16 superalloy

    International Nuclear Information System (INIS)

    Nettleship, D.J.; Wild, R.K.

    1990-01-01

    Nimonic PE16 alloy is a nickel-based superalloy containing 34 wt.% iron and 16wt.% chromium with additions of molybdenum, titanium and aluminium. It is used in the fuel assembly of the UK advanced gas-cooled reactors (AGR). This component supports significant loads in service and its mechanical integrity is therefore of paramount importance. Mechanical properties may be influenced by the grain size and grain boundary composition, both of which can themselves alter during service. Scanning Auger microscopy is a well-established method for investigating grain boundaries, and has now been applied to the study of PE16. In order to expose PE16 grain boundary surfaces it is necessary to hydrogen charge samples and fracture by pulling in tension at a slow strain rate within the ultra-high vacuum chamber of the Auger microprobe. A series of casts of nimonic PE16 alloy that have received a range of thermal ageing treatments have been fractured in an intergranular manner and the grain boundary composition determined. Segregation of trace and minority elements, particularly Mo and P, has been detected at grain boundaries. Significant variations between different as-manufactured casts were observed, whilst ageing brought about the growth of chromium-rich particles on the grain boundaries. Ductile fracture in PE16 followed a path through Ti(C, N) particles. Many of these particles incorporated large amounts of sulphur. (author)

  18. Structural Performance of Inconel 625 Superalloy Brazed Joints

    Science.gov (United States)

    Chen, Jianqiang; Demers, Vincent; Cadotte, Eve-Line; Turner, Daniel; Bocher, Philippe

    2017-02-01

    The purpose of this work was to investigate tensile and fatigue behaviors of Inconel 625 superalloy brazed joints after transient liquid-phase bonding process. Brazing was performed in a vacuum furnace using a nickel-based filler metal in a form of paste to join wrought Inconel 625 plates. Mechanical tests were carried out on single-lap joints under various lap distance-to-thickness ratios. The fatigue crack initiation and crack growth modes were examined via metallographic analysis, and the effect of local stress on fatigue life was assessed by finite element simulations. The fatigue results show that fatigue strength and endurance limit increase with overlap distance, leading to a relatively large scatter of results. Fatigue cracks nucleated in the high-stressed region of the weld fillets from brittle eutectic phases or from internal brazing cavities. The present work proposes to rationalize the results by using the local stress at the brazing fillet. When using this local stress, all fatigue-obtained results find themselves on a single S- N curve, providing a design curve for any joint configuration in fatigue solicitation.

  19. Reliability Analysis of Wind Turbines

    DEFF Research Database (Denmark)

    Toft, Henrik Stensgaard; Sørensen, John Dalsgaard

    2008-01-01

    In order to minimise the total expected life-cycle costs of a wind turbine it is important to estimate the reliability level for all components in the wind turbine. This paper deals with reliability analysis for the tower and blades of onshore wind turbines placed in a wind farm. The limit states......) the reliability level for a wind turbine placed in a wind farm is considered, and wake effects from neighbouring wind turbines is taken into account. An illustrative example with calculation of the reliability for mudline bending of the tower is considered. In the example the design is determined according...

  20. Mechanical (turbines and auxiliary equipment)

    CERN Document Server

    Sherry, A; Cruddace, AE

    2013-01-01

    Modern Power Station Practice, Volume 3: Mechanical (Turbines and Auxiliary Equipment) focuses on the development of turbines and auxiliary equipment used in power stations in Great Britain. Topics covered include thermodynamics and steam turbine theory; turbine auxiliary systems such as lubrication systems, feed water heating systems, and the condenser and cooling water plants. Miscellaneous station services, and pipework in power plants are also described. This book is comprised of five chapters and begins with an overview of thermodynamics and steam turbine theory, paying particular attenti

  1. Impact Deformation and Fracture Behaviour of Cobalt-Based Haynes 188 Superalloy

    OpenAIRE

    Woei-Shyan Lee; Hao-Chien Kao

    2014-01-01

    The impact deformation and fracture behaviour of cobalt-based Haynes 188 superalloy are investigated by means of a split Hopkinson pressure bar. Impact tests are performed at strain rates ranging from 1×103 s-1 to 5×103 s-1 and temperatures between 25°C and 800°C. The experimental results indicate that the flow response and fracture characteristics of cobalt-based Haynes 188 superalloy are significantly dependent on the strain rate and temperature. The flow stress, work hardening rate and str...

  2. Comparative coarsening kinetics of gamma prime precipitates in nickel and cobalt base superalloys

    Science.gov (United States)

    Meher, Subhashish

    The increasing technological need to push service conditions of structural materials to higher temperatures has motivated the development of several alloy systems. Among them, superalloys are an excellent candidate for high temperature applications because of their ability to form coherent ordered precipitates, which enable the retention of high strength close to their melting temperature. The accelerated kinetics of solute diffusion, with or without an added component of mechanical stress, leads to coarsening of the precipitates, and results in microstructural degradation, limiting the durability of the materials. Hence, the coarsening of precipitates has been a classical research problem for these alloys in service. The prolonged hunt for an alternative of nickel base superalloys with superior traits has gained hope after the recent discovery of Co-Al-W based alloys, which readily form high temperature gamma' precipitates, similar to Ni base superalloys. In the present study, coarsening behavior of gamma' precipitates in Co-10Al-10W (at. %) has been carried out at 800°C and 900°C. This study has, for the first time, obtained critical coarsening parameters in cobalt-base alloys. Apart from this, it has incorporated atomic scale compositional information across the gamma/gamma' interfaces into classical Cahn-Hilliard model for a better model of coarsening kinetics. The coarsening study of gamma' precipitates in Ni-14Al-7 Cr (at. %) has shown the importance of temporal evolution of the compositional width of the gamma/gamma' interfaces to the coarsening kinetics of gamma' precipitates. This study has introduced a novel, reproducible characterization method of crystallographic study of ordered phase by coupling of orientation microscopy with atom probe tomography (APT). Along with the detailed analysis of field evaporation behaviors of Ni and Co superalloys in APT, the present study determines the site occupancy of various solutes within ordered gamma' precipitates

  3. Mechanical Behavior of Three-Dimensional Braided Nickel-Based Superalloys Synthesized via Pack Cementation

    Science.gov (United States)

    Lippitz, Nicolas; Erdeniz, Dinc; Sharp, Keith W.; Dunand, David C.

    2018-03-01

    Braided tubes of Ni-based superalloys are fabricated via three-dimensional (3-D) braiding of ductile Ni-20Cr (wt pct) wires followed by post-textile gas-phase alloying with Al and Ti to create, after homogenization and aging, γ/ γ' strengthened lightweight, porous structures. Tensile tests reveal an increase in strength by 100 MPa compared to as-braided Ni-20Cr (wt pct). An interrupted tensile test, combined with X-ray tomographic scans between each step, sheds light on the failure behavior of the braided superalloy tubes.

  4. Microstructural evolution and deformation features in gas turbine blades operated in-service

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Fei [Key Laboratory of Liquid Structure and Heredity of Materials, Ministry of Education, Shandong University, Jinan 250061 (China); Tong, Jinyan [National Center for Materials Service Safety, University of Science and Technology Beijing, Beijing 100083 (China); Feng, Qiang [National Center for Materials Service Safety, University of Science and Technology Beijing, Beijing 100083 (China); State Key Laboratory for Advanced Metals and Materials, University of Science and Technology Beijing, Beijing 100083 (China); Zhang, Jianxin [Key Laboratory of Liquid Structure and Heredity of Materials, Ministry of Education, Shandong University, Jinan 250061 (China)

    2015-01-05

    Highlights: • Gas turbine blades operated in-service have been investigated. • Two primary MC decomposition reactions take place during servicing. • Deformation features during servicing have been analyzed. - Abstract: The nickel based superalloy GH4037 is employed in gas turbine blades because of its high temperature strength and oxidation resistance. Microstructural evolution and deformation features in gas turbine blades after 1600 h service have been investigated by Scanning Electron Microscopy (SEM) and Transmission Electron Microscopy (TEM). The microstructure of blade changes according to complex and comprehensive temperature and stress fields applied on it. Microstructural observations show that minor carbide precipitates dispersedly precipitate in the matrix. Two MC decomposition reactions occur: MC + γ → M{sub 23}C{sub 6} + γ′ and MC + γ → M{sub 23}C{sub 6} + η. Blocky, closely spaced M{sub 23}C{sub 6} particles continuously distribute along grain boundaries. The main deformation features, such as slip bands, APB-coupled dislocation pairs, stacking faults bound by partial dislocations and deformation twinning, have also been analyzed in terms of fundamental deformation mechanisms and environmental effects.

  5. Great expectations: large wind turbines

    International Nuclear Information System (INIS)

    De Vries, E.

    2001-01-01

    This article focuses on wind turbine product development, and traces the background to wind turbines from the first generation 1.5 MW machines in 1995-6, plans for the second generation 3-5 MW class turbines to meet the expected boom in offshore wind projects, to the anticipated installation of a 4.5 MW turbine, and offshore wind projects planned for 2000-2002. The switch by the market leader Vestas to variable speed operation in 2000, the new product development and marketing strategy taken by the German Pro + Pro consultancy in their design of a 1.5 MW variable speed pitch control concept, the possible limiting of the size of turbines due to logistical difficulties, opportunities offered by air ships for large turbines, and the commissioning of offshore wind farms are discussed. Details of some 2-5 MW offshore wind turbine design specifications are tabulated

  6. On the Feasibility of Eddy Current Characterization of the Near-Surface Residual Stress Distribution in Nickel-Base Superalloys

    International Nuclear Information System (INIS)

    Blodgett, Mark P.; Nagy, Peter B.

    2004-01-01

    In light of its frequency-dependent penetration depth, the measurement of eddy current conductivity has been suggested as a possible means to allow the nondestructive evaluation of subsurface residual stresses in shot-peened specimens. This technique is based on the so-called electroelastic effect, i.e., the stress-dependence of the electrical conductivity. Unfortunately, the relatively small (∼1%) change in electrical conductivity caused by the presence of compressive residual stresses is often distorted, or even completely overshadowed, by the accompanying conductivity loss caused by cold work and surface roughness effects. Recently, it was observed that, in contrast with most other materials, shot-peened Waspaloy and IN100 specimens exhibit an apparent increase in electrical conductivity at increasing inspection frequencies. This observation by itself indicates that in these materials the measured conductivity change is probably dominated by residual stress effects, since both surface roughness and increased dislocation density are known to decrease rather than increase the conductivity and the presence of crystallographic texture does not affect the electrical conductivity of these materials, which crystallize in cubic symmetry. Our preliminary experiments indicate that probably there exists a unique 'window of opportunity' for eddy current NDE in nickel-base superalloys. We identified five major effects that contribute to this fortunate constellation of material properties, which will be reviewed in this presentation

  7. Real-time microstructure imaging by Laue microdiffraction: A sample application in laser 3D printed Ni-based superalloys

    Science.gov (United States)

    Zhou, Guangni; Zhu, Wenxin; Shen, Hao; Li, Yao; Zhang, Anfeng; Tamura, Nobumichi; Chen, Kai

    2016-06-01

    Synchrotron-based Laue microdiffraction has been widely applied to characterize the local crystal structure, orientation, and defects of inhomogeneous polycrystalline solids by raster scanning them under a micro/nano focused polychromatic X-ray probe. In a typical experiment, a large number of Laue diffraction patterns are collected, requiring novel data reduction and analysis approaches, especially for researchers who do not have access to fast parallel computing capabilities. In this article, a novel approach is developed by plotting the distributions of the average recorded intensity and the average filtered intensity of the Laue patterns. Visualization of the characteristic microstructural features is realized in real time during data collection. As an example, this method is applied to image key features such as microcracks, carbides, heat affected zone, and dendrites in a laser assisted 3D printed Ni-based superalloy, at a speed much faster than data collection. Such analytical approach remains valid for a wide range of crystalline solids, and therefore extends the application range of the Laue microdiffraction technique to problems where real-time decision-making during experiment is crucial (for instance time-resolved non-reversible experiments).

  8. Transmission Electron Microscopy of a CMSX-4 Ni-Base Superalloy Produced by Selective Electron Beam Melting

    Directory of Open Access Journals (Sweden)

    Alireza B. Parsa

    2016-10-01

    Full Text Available In this work, the microstructures of superalloy specimens produced using selective electron beam melting additive manufacturing were characterized. The materials were produced using a CMSX-4 powder. Two selective electron beam melting processing strategies, which result in higher and lower effective cooling rates, are described. Orientation imaging microscopy, scanning transmission electron microscopy and conventional high resolution transmission electron microscopy are used to investigate the microstructures. Our results suggest that selective electron beam melting processing results in near equilibrium microstructures, as far as γ′ volume fractions, the formation of small amounts of TCP phases and the partitioning behavior of the alloy elements are concerned. As expected, higher cooling rates result in smaller dendrite spacings, which are two orders of magnitude smaller than observed during conventional single crystal casting. During processing, columnar grains grow in <100> directions, which are rotated with respect to each other. There are coarse γ/γ′ microstructures in high angle boundary regions. Dislocation networks form low angle boundaries. A striking feature of the as processed selective electron beam melting specimens is their high dislocation density. From a fundamental point of view, this opens new possibilities for the investigation of elementary dislocation processes which accompany solidification.

  9. The Influence of Dwell Time on Low Cycle Fatigue Behavior of Ni-base Superalloy IC10

    Science.gov (United States)

    Wang, Anqiang; Liu, Lu; Wen, Zhixun; Li, Zhenwei; Yue, Zhufeng

    2017-09-01

    Low cycle fatigue and creep-fatigue experiments of IC10 Ni-base superalloy plate specimens with multiple holes were performed below 1,000 °C. The average fatigue life is 105.4 cycles, while the creep-fatigue life is 103.4 cycles, which shows that the life of creep-fatigue is reduced 1-2 times compared with low cycle fatigue life. After tests, the detailed fracture and microscopic structure evolution were observed by scanning electron microscopy (SEM); meanwhile, the constitutive model based on crystal plasticity theory was established and the fracture mechanism was analyzed. Three conclusions have been obtained: First, the load during dwell time leads to the damage accumulation caused by deformation and the interaction of fatigue and creep shortens the service life of materials seriously. Second, in order to maintain the macroscopic deformation, a new slip plane starts to makes the dislocation slide in reverse direction, which leads to fatigue damage and initial cracks. Third, the inner free surface creates opportunities for escape of the dislocation line, which is caused by the cavity. What's more, the cure dislocation generated by cyclic loading contributes to the formation and growth of cavities.

  10. Radial gas turbine design

    Energy Technology Data Exchange (ETDEWEB)

    Krausche, S.; Ohlsson, Johan

    1998-04-01

    The objective of this work was to develop a program dealing with design point calculations of radial turbine machinery, including both compressor and turbine, with as few input data as possible. Some simple stress calculations and turbine metal blade temperatures were also included. This program was then implanted in a German thermodynamics program, Gasturb, a program calculating design and off-design performance of gas turbines. The calculations proceed with a lot of assumptions, necessary to finish the task, concerning pressure losses, velocity distribution, blockage, etc., and have been correlated with empirical data from VAT. Most of these values could have been input data, but to prevent the user of the program from drowning in input values, they are set as default values in the program code. The output data consist of geometry, Mach numbers, predicted component efficiency etc., and a number of graphical plots of geometry and velocity triangles. For the cases examined, the error in predicted efficiency level was within {+-} 1-2% points, and quite satisfactory errors in geometrical and thermodynamic conditions were obtained Examination paper. 18 refs, 36 figs

  11. Turbine imaging technology assessment

    Energy Technology Data Exchange (ETDEWEB)

    Moursund, R. A. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Carlson, T. J. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2004-12-01

    The goal of this project was to identify and evaluate imaging technologies for observing juvenile fish within a Kaplan turbine, and specifically that would enable scientists to determine mechanisms of fish injury within an operating turbine unit. This report documents the opportunities and constraints for observing juvenile fish at specific locations during turbine passage. These observations were used to make modifications to dam structures and operations to improve conditions for fish passage while maintaining or improving hydropower production. The physical and hydraulic environment that fish experience as they pass through the hydroelectric plants were studied and the regions with the greatest potential for injury were defined. Biological response data were also studied to determine the probable types of injuries sustained in the turbine intake and what types of injuries are detectable with imaging technologies. The study grouped injury-causing mechanisms into two categories: fluid (pressure/cavitation, shear, turbulence) and mechanical (strike/collision, grinding/pinching, scraping). The physical constraints of the environment, together with the likely types of injuries to fish, provided the parameters needed for a rigorous imaging technology evaluation. Types of technology evaluated included both tracking and imaging systems using acoustic technologies (such as sonar and acoustic tags) and optic technologies (such as pulsed-laser videography, which is high-speed videography using a laser as the flash). Criteria for determining image data quality such as frame rate, target detectability, and resolution were used to quantify the minimum requirements of an imaging sensor.

  12. Wind Turbine Blade

    DEFF Research Database (Denmark)

    2010-01-01

    The invention relates to a blade for a wind turbine, particularly to a blade that may be produced by an advanced manufacturing process for producing a blade with high quality structural components. Particularly, the structural components, which are preferably manufactured from fibre reinforced...

  13. Rotating turbine blade pyrometer

    Science.gov (United States)

    Buchele, D. R.; Lesco, D. J.

    1974-01-01

    Non-contacting pyrometer system optically measures surface temperature distribution on rotating turbine blade, comprising line-by-line scan via fiber optic probe. Each scan line output is converted to digital signals, temporarily stored in buffer memory, and then processed in minicomputer for display as temperature.

  14. Developing large steam turbines

    International Nuclear Information System (INIS)

    Brand, G.

    1975-01-01

    Turbo-sets constitute the most important machinery for power generation on a large scale. In the Federal Republic of Germany, they provide more than 90% of the electric power, and they will also be responsible for the bulk of the electricity generated in the future. The author discusses the most important economic and technical criteria for the construction of large turbines. (orig.) [de

  15. Eutectic Composite Turbine Blade Development

    Science.gov (United States)

    1976-11-01

    Eutectic alloys evaluated included MC (metallic carbide ) fiber reinforced nickel- and cobalt -base eutectics (NiTaC and CoTaC) and NisCb lamella reinforced...blade superalloy . The results in Figure 68 indicated that carbide defect structures tend to decrease 1500CHCF strength somewhat, but all...Surface finishes were in the range of 5 to 15 AA. Drilling - Parallel tests were made with carbide and cobalt H.S.S. drills under conditions listed in

  16. Crystals in crystals

    DEFF Research Database (Denmark)

    Christensen, Claus H.; Schmidt, I.; Carlsson, A.

    2005-01-01

    A major factor governing the performance of catalytically active particles supported on a zeolite carrier is the degree of dispersion. It is shown that the introduction of noncrystallographic mesopores into zeolite single crystals (silicalite-1, ZSM-5) may increase the degree of particle dispersion...... of the zeolite particles, particularly after thermal treatment. When using mesoporous zeolites, the particles were evenly distributed throughout the mesopore system of the zeolitic support, even after calcination, leading to nanocrystals within mesoporous zeolite single crystals....

  17. SMART POWER TURBINE

    Energy Technology Data Exchange (ETDEWEB)

    Nirm V. Nirmalan

    2003-11-01

    Gas turbines are the choice technology for high-performance power generation and are employed in both simple and combined cycle configurations around the world. The Smart Power Turbine (SPT) program has developed new technologies that are needed to further extend the performance and economic attractiveness of gas turbines for power generation. Today's power generation gas turbines control firing temperatures indirectly, by measuring the exhaust gas temperature and then mathematically calculating the peak combustor temperatures. But temperatures in the turbine hot gas path vary a great deal, making it difficult to control firing temperatures precisely enough to achieve optimal performance. Similarly, there is no current way to assess deterioration of turbine hot-gas-path components without shutting down the turbine. Consequently, maintenance and component replacements are often scheduled according to conservative design practices based on historical fleet-averaged data. Since fuel heating values vary with the prevalent natural gas fuel, the inability to measure heating value directly, with sufficient accuracy and timeliness, can lead to maintenance and operational decisions that are less than optimal. GE Global Research Center, under this Smart Power Turbine program, has developed a suite of novel sensors that would measure combustor flame temperature, online fuel lower heating value (LHV), and hot-gas-path component life directly. The feasibility of using the ratio of the integrated intensities of portions of the OH emission band to determine the specific average temperature of a premixed methane or natural-gas-fueled combustion flame was demonstrated. The temperature determined is the temperature of the plasma included in the field of view of the sensor. Two sensor types were investigated: the first used a low-resolution fiber optic spectrometer; the second was a SiC dual photodiode chip. Both methods worked. Sensitivity to flame temperature changes was

  18. Thin film thermocouples for high temperature turbine application

    Science.gov (United States)

    Martin, Lisa C.

    1991-01-01

    The objective is to develop thin film thermocouples (TFTC) for Space Shuttle Main Engine (SSME) components such as the high pressure fuel turbopump (HPFTP) blades and to test TFTC survivability and durability in the SSME environment. The purpose for developing TFTC's for SSME components is to obtain blade temperatures for computational models developed for fluid mechanics and structures. The TFTC must be able to withstand the presence of high temperature, high pressure hydrogen as well as a severe thermal transient due to a cryogenic to combustion temperature change. The TFTC's will eventually be installed and tested on SSME propulsion system components in the SSME test bed engine. The TFTC's were successfully fabricated on flat coupons of MAR-M 246 (Hf+), which is the superalloy material used for HPFTP turbine blades. The TFTC's fabricated on flat coupons survived thermal shock cycling as well as testing in a heat flux measurement facility which provided a rapid thermal transient. The same fabrication procedure was used to deposit TFTC's on HPFTP first stage rotor blades. Other results from the experiments are presented, and future testing plans are discussed.

  19. Modeling cast IN-738 superalloy gas tungsten arc welds

    International Nuclear Information System (INIS)

    Bonifaz, E.A.; Richards, N.L.

    2009-01-01

    A three-dimensional finite-element thermal model has been developed to generate weld profiles, and to analyze transient heat flow, thermal gradients and thermal cycles in cast IN-738 superalloy gas tungsten arc welds. Outputs of the model (cooling rates, the thermal gradient G and the growth rate R) were used to describe solidification structures found around the weld pool for three different welding speeds at constant heat input. Calculations around the weld pool indicate that the cooling rate increases from the fusion line to the centerline at all welding speeds. It was also observed that the cooling rate (G x R) and the ratio G/R fall with welding speed. For instance, as the welding speed is increased, the cooling rates at the centerline, fusion line and penetration depth decrease. Moreover, it was observed that as the power and welding speed both increase (but keeping the heat input constant), the weld pool becomes wider and more elongated, shifting from circular to elliptical shaped. The calculations were performed using ABAQUS FE code on the basis of a time-increment Lagrangian formulation. The heat source represented by a moving Gaussian power density distribution is applied over the top surface of the specimen during a period of time that depends on the welding speed. Temperature-dependent material properties and the effect of forced convection due to the flow of the shielding gas are included in the model. Numerically predicted sizes of the melt-pool zone and dendrite secondary arm spacing induced by the gas tungsten arc welding process are also given

  20. Analysis of Brazing Effect on Hot Corrosion Behavior of a Nickel-Based Aerospace Superalloy

    Science.gov (United States)

    Esmaeili, N.; Ojo, O. A.

    2018-02-01

    The effects of brazing and use of composite powder mixture as interlayer material on hot corrosion resistance of brazed IN738 superalloy were studied. Brazing was observed to result in significant reduction in the hot corrosion resistance of the superalloy. However, application of composite powder mixture, which consists of additive superalloy powder, enhanced the hot corrosion resistance of brazed samples. It is also found that although the use of composite powder mixture increased hot corrosion resistance of brazed alloy, if the additive powder completely melts, which is possible during brazing, it can significantly reduce the hot corrosion resistance of the brazed joint. Elemental micro-segregation during solidification of the joint with completely melted powder mixture produces chromium-depleted zones and consequently reduces hot corrosion resistance, since a uniform distribution and adequate chromium concentration are necessary to combat hot corrosion. This has not been previously reported in the literature and it is crucial to the use of composite powder mixture for enhancing the properties of brazed superalloys.

  1. Design and characterization of novel precipitation hardenable high Cr Ni-based superalloys

    DEFF Research Database (Denmark)

    Bihlet, Uffe; Dahl, Kristian Vinter; Somers, Marcel A. J.

    2012-01-01

    in the aircraft industry in the 1960’s. Five powder metallurgical Ni-based superalloys containing 35-45 wt % Cr and 4-6 wt % Nb were designed with the aim of maintaining the hardening mechanism found in Alloy 718, while drastically increasing the hot corrosion resistance. The alloys were manufactured...

  2. Investigation of nickel- and cobalt-based superalloys with protective coatings

    Science.gov (United States)

    Veksler, Yu. G.; Mal'tseva, L. A.; Pastukhov, M. V.

    2015-03-01

    The structure and composition of the surface layers of MAR-M247 and MAR-M509 superalloys are studied after the formation of protective coatings by gas-circulation aluminizing and a high-energy ion-plasma technology.

  3. Cobalt base superalloy has outstanding properties up to 1478 K (2200 F)

    Science.gov (United States)

    Harlow, R. A.; Harf, F. H.; Freche, J. C.

    1974-01-01

    Alloy VM-103 is especially promising for use in applications requiring short time exposure to very high temperatures. Its properties over broad range of temperatures are superior to those of comparable commercial wrought cobalt-base superalloys, L-605 and HS-188.

  4. Creep deformation and microstructural examination of a prior thermally exposed nickel base superalloy

    Czech Academy of Sciences Publication Activity Database

    Zrník, J.; Strunz, Pavel; Vrchovinský, V.; Muránsky, O.; Horňák, P.; Wiedenmann, A.

    2004-01-01

    Roč. 274 (2004), s. 925-930 ISSN 1013-9826 R&D Projects: GA AV ČR KSK1010104 Keywords : superalloy * thermal exposition * creep Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 0.278, year: 2004

  5. SANS investigation of precipitate microstructure in nickel-base superalloys Waspaloy and DT750

    Czech Academy of Sciences Publication Activity Database

    Strunz, Pavel; Zrník, J.; Seliga, T.; Penkalla, H.J.

    2006-01-01

    Roč. 2, č. 23 (2006), s. 363-368 ISSN 0044-2968 R&D Projects: GA ČR GA202/06/0601 Institutional research plan: CEZ:AV0Z10480505 Keywords : small-angle-neutron scattering * superalloys * precipitation Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 1.897, year: 2006

  6. Erosion–corrosion behaviour of Ni-based superalloy Superni-75 in ...

    Indian Academy of Sciences (India)

    Erosion–corrosion behaviour of Ni-based superalloy. Superni-75 in the real service environment of the boiler. T S SIDHU. 1,∗. , S PRAKASH. 2. , R D AGRAWAL. 2 and. RAMESH BHAGAT. 1. 1Shaheed Bhagat Singh College of Engineering and Technology,. Ferozepur 152 004. 2Indian Institute of Technology Roorkee, ...

  7. Erosion–corrosion behaviour of Ni-based superalloy Superni-75 in ...

    Indian Academy of Sciences (India)

    corrosion behaviour of Ni-based superalloy Superni-75 in the actual service environment of the coal- fired boiler of a thermal power plant at 900. ◦. C under cyclic conditions. This alloy is developed by Mishra Dhatu Nigam Limited, Hyderabad ...

  8. High temperature oxidation characteristics of developed Ni-Cr-W superalloys in air

    International Nuclear Information System (INIS)

    Suzuki, Tomio; Shindo, Masami

    1996-11-01

    For expanding utilization of the Ni-Cr-W superalloy, which has been developed as one of new high temperature structural materials used in the advanced High Temperature Gas-cooled Reactors (HTGRs), in various engineering fields including the structural material for heat utilization system, the oxidation behavior of this alloy in air as one of high oxidizing environments becomes one of key factors. The oxidation tests for the industrial scale heat of Ni-Cr-W superalloy with the optimized chemical composition and five kinds of experimental Ni-Cr-W alloys with different Cr/W ratio were carried out at high temperatures in the air compared with Hastelloy XR. The conclusions were obtained as follows. (1) The oxidation resistance of the industrial scale heat of Ni-Cr-W superalloy with the optimized chemical composition was superior to that of Hastelloy XR. (2) The most excellent oxidation resistance was obtained in an alloy with 19% Cr of the industrial scale heat of Ni-Cr-W superalloy. (author)

  9. Effects of cutting parameters on machinability characteristics of Ni-based superalloys: a review

    Science.gov (United States)

    Kaya, Eren; Akyüz, Birol

    2017-12-01

    Nickel based superalloys offer high strength, corrosion resistance, thermal stability and superb thermal fatigue properties. However, they have been one of the most difficult materials to machine due to these properties. Although we are witnessing improved machining strategies with the developing machining, tooling and inspection technologies, machining of nickel based superalloys is still a challenging task due to in-process strains and post process part quality demands. Selecting optimum machining parameters for quality, productivity and profitability is of paramount importance. Many studies have been conducted on various aspects of machinability of nickel based superalloys including defining the optimum cutting parameters, to develop a better understanding of machining them. The recent studies suggest new findings, and discuss previously reported results, related to the concerns of superalloy machining. This review presents the influences of the most significant cutting parameters on various machinability characteristics with respect to the recent studies as well as the previous ones. The reviewed machinability characteristics may be listed as: tool wear, cutting forces and surface integrity.

  10. Microstructural study of weld fusion zone of TIG welded IN 738LC nickel-based superalloy

    International Nuclear Information System (INIS)

    Ojo, O.A.; Richards, N.L.; Chaturvedi, M.C.

    2004-01-01

    The weld fusion zone microstructure of a commercial aerospace superalloy IN 738 was examined. Elemental segregation induced interdendritic microconstituents were identified to include terminal solidification product M 3 B 2 and Ni 7 Zr 2 in association with γ-γ' eutectic constituent, which require proper consideration during the development of optimum post weld heat treatment

  11. Erosion–corrosion behaviour of Ni-based superalloy Superni-75 in ...

    Indian Academy of Sciences (India)

    The super-heater and re-heater tubes of the boilers used in thermal power plants are subjected to unacceptable levels of surface degradation by the combined effect of erosion–corrosion mechanism, resulting in the tube wall thinning and premature failure. The nickel-based superalloys can be used as boiler tube materials ...

  12. Erosion–corrosion behaviour of Ni-based superalloy Superni-75

    Indian Academy of Sciences (India)

    The aim of the present investigation is to evaluate the erosion–corrosion behaviour of Ni-based superalloy Superni-75 in the real service environment of the coal-fired boiler of a thermal power plant. The cyclic experimental study was performed for 1000 h in the platen superheater zone of the coal-fired boiler where the ...

  13. Analysis of cyclic plastic response of nickel based IN738LC superalloy

    Czech Academy of Sciences Publication Activity Database

    Petrenec, Martin; Polák, Jaroslav; Tobiáš, Jiří; Šmíd, Miroslav; Chlupová, Alice; Petráš, Roman

    2014-01-01

    Roč. 65, AUG (2014), s. 44-50 ISSN 0142-1123 R&D Projects: GA ČR(CZ) GAP204/11/1453 Institutional support: RVO:68081723 Keywords : IN738LC superalloy * Hysteresis loop analysis * Effective and internal stresses * Dislocation structure Subject RIV: JL - Materials Fatigue, Friction Mechanics Impact factor: 2.275, year: 2014

  14. Elastic Properties of Novel Co- and CoNi-Based Superalloys Determined through Bayesian Inference and Resonant Ultrasound Spectroscopy

    Science.gov (United States)

    Goodlet, Brent R.; Mills, Leah; Bales, Ben; Charpagne, Marie-Agathe; Murray, Sean P.; Lenthe, William C.; Petzold, Linda; Pollock, Tresa M.

    2018-03-01

    Bayesian inference is employed to precisely evaluate single crystal elastic properties of novel γ -γ ' Co- and CoNi-based superalloys from simple and non-destructive resonant ultrasound spectroscopy (RUS) measurements. Nine alloys from three Co-, CoNi-, and Ni-based alloy classes were evaluated in the fully aged condition, with one alloy per class also evaluated in the solution heat-treated condition. Comparisons are made between the elastic properties of the three alloy classes and among the alloys of a single class, with the following trends observed. A monotonic rise in the c_{44} (shear) elastic constant by a total of 12 pct is observed between the three alloy classes as Co is substituted for Ni. Elastic anisotropy (A) is also increased, with a large majority of the nearly 13 pct increase occurring after Co becomes the dominant constituent. Together the five CoNi alloys, with Co:Ni ratios from 1:1 to 1.5:1, exhibited remarkably similar properties with an average A 1.8 pct greater than the Ni-based alloy CMSX-4. Custom code demonstrating a substantial advance over previously reported methods for RUS inversion is also reported here for the first time. CmdStan-RUS is built upon the open-source probabilistic programing language of Stan and formulates the inverse problem using Bayesian methods. Bayesian posterior distributions are efficiently computed with Hamiltonian Monte Carlo (HMC), while initial parameterization is randomly generated from weakly informative prior distributions. Remarkably robust convergence behavior is demonstrated across multiple independent HMC chains in spite of initial parameterization often very far from actual parameter values. Experimental procedures are substantially simplified by allowing any arbitrary misorientation between the specimen and crystal axes, as elastic properties and misorientation are estimated simultaneously.

  15. Marine gas turbine; Hakuyo gas turbine suishin plant

    Energy Technology Data Exchange (ETDEWEB)

    Gomi, I.; Shikina, T.; Chiba, M. [Ishikawajima-Harima Heavy Industries Co. Ltd., Tokyo (Japan)

    1998-09-01

    Aero-derivative gas turbines have been used widely worldwide in warship propulsion engines. On the other hand, their application is expanding to high-speed commercial ships, in which their advantage of being small in size and light in weight is most effectively utilized. In particular, the gas turbine LM6000 having high output in excess of 40 MW and high reliability realizes low operation cost in large high-speed ships. In addition, expanded gas turbine utilization may be expected in marine propulsion engines if fuel consumption of the gas turbine is improved, where the recuperated cycle use is one of the directions. IHI is continuing research and development of a heat exchanger which holds the key to the practical application of the recuperated cycle gas turbine, and a power turbine with variable nozzles which will further expand the advantage of the recuperated cycle use. The former turbine is a plate fin type with inner fins arranged off-set. The latter turbine controls air flow rate in the gas turbine by varying nozzle angle to match the output, and maintains the heat exchanger inlet temperature at a high level constantly. 3 refs., 7 figs., 2 tabs.

  16. LM6000 gas turbine plant; LM6000 gas turbine plant

    Energy Technology Data Exchange (ETDEWEB)

    Nozaki, N.; Sato, T. [Ishikawajima-Harima Heavy Industries Co. Ltd., Tokyo (Japan)

    1998-09-01

    The LM6000 gas turbine is a most advanced industrial gas turbine derived from an aero-engine. The gas turbine has a power output of 45 MW with over 42% thermal efficiency, and such features as high efficiency, compactness, and easy maintenance. The gas turbine is used widely for electric power generation, marine propulsion and mechanical drive applications, particularly frequently for medium-capacity power plants because of its high efficiency. This paper summarizes the newest form of this LM6000 gas turbine, and introduces as its application example to power plants two examples of practical use in combined cycle power generation which is anticipated of increased use in the future. A combined cycle power plant for a paper mill in Indonesia is characterized by the gas turbine being a back-pressure turbine, where low pressure steam after having been used for power generation is fed to the paper mill. A combined cycle power plant for the Xinzhu scientific and industrial complex in Taiwan is characterized by adoption of a sucked air cooling device, which cools gas turbine sucked air temperature down to 7.2 deg C, and the gas turbine power generator being operated upto its maximum output of 45 MW. 7 figs., 1 tab.

  17. Steam turbines for the future

    International Nuclear Information System (INIS)

    Trassl, W.

    1988-01-01

    Approximately 75% of the electrical energy produced in the world is generated in power plants with steam turbines (fossil and nuclear). Although gas turbines are increasingly applied in combined cycle power plants, not much will change in this matter in the future. As far as the steam parameters and the maximum unit output are concerned, a certain consolidation was noted during the past decades. The standard of development and mathematical penetration of the various steam turbine components is very high today and is applied in the entire field: For saturated steam turbines in nuclear power plants and for steam turbines without reheat, with reheat and with double reheat in fossil-fired power plants and for steam turbines with and without reheat in combined cycle power plants. (orig.) [de

  18. Wind Turbine Providing Grid Support

    DEFF Research Database (Denmark)

    2011-01-01

    A variable speed wind turbine is arranged to provide additional electrical power to counteract non-periodic disturbances in an electrical grid. A controller monitors events indicating a need to increase the electrical output power from the wind turbine to the electrical grid. The controller...... is arranged to control the wind turbine as follows: after an indicating event has been detected, the wind turbine enters an overproduction period in which the electrical output power is increased, wherein the additional electrical output power is taken from kinetic energy stored in the rotor and without...... changing the operation of the wind turbine to a more efficient working point.; When the rotational speed of the rotor reaches a minimum value, the wind turbine enters a recovery period to re-accelerate the rotor to the nominal rotational speed while further contributing to the stability of the electrical...

  19. Reliability Analysis of Wind Turbines

    DEFF Research Database (Denmark)

    Toft, Henrik Stensgaard; Sørensen, John Dalsgaard

    2008-01-01

    In order to minimise the total expected life-cycle costs of a wind turbine it is important to estimate the reliability level for all components in the wind turbine. This paper deals with reliability analysis for the tower and blades of onshore wind turbines placed in a wind farm. The limit states...... consideres are in the ultimate limit state (ULS) extreme conditions in the standstill position and extreme conditions during operating. For wind turbines, where the magnitude of the loads is influenced by the control system, the ultimate limit state can occur in both cases. In the fatigue limit state (FLS......) the reliability level for a wind turbine placed in a wind farm is considered, and wake effects from neighbouring wind turbines is taken into account. An illustrative example with calculation of the reliability for mudline bending of the tower is considered. In the example the design is determined according...

  20. Probabilistic Design of Wind Turbines

    DEFF Research Database (Denmark)

    Toft, Henrik Stensgaard

    During the last decades, wind turbines have been continuously developed with the aim of maximizing the life cycle benefits (production of electricity) minus the costs of planning, materials, installation, operation & maintenance as well as possible failure. In order to continue this development...... turbines and the central topics considered are statistical load extrapolation of extreme loads during operation and reliability assessment of wind turbine blades. Wind turbines differ from most civil engineering structures by having a control system which highly influences the loading. In the literature......, methods for estimating the extreme load-effects on a wind turbine during operation, where the control system is active, have been proposed. But these methods and thereby the estimated loads are often subjected to a significant uncertainty which influences the reliability of the wind turbine...

  1. Type IV Wind Turbine Model

    DEFF Research Database (Denmark)

    Hansen, Anca Daniela; Margaris, Ioannis D.

    (WPP) will be considered. The aggregate WPP model, which will be based on the upscaling of the individual wind turbine model on the electrical part, will make use of an equivalent wind speed. The implemented model follows the basic structure of the generic standard Type 4 wind turbine model proposed...... by the International Electrotechnical Commission (IEC), in the IEC61400-27-1 Committee Draft for electrical simulation models for wind power generation, which is currently under review, [1]. The Type 4 wind turbine model described in this report includes a set of adjustments of the standard Type 4 wind turbine model...... project to be incorporated in the wind power plant level. This document describes the Type 4 wind turbine simulation model, implemented in the EaseWind project. The implemented wind turbine model is one of the initial necessary steps toward integrating new control services in the wind power plant level...

  2. Turbine seal assembly

    Science.gov (United States)

    Little, David A.

    2013-04-16

    A seal assembly that limits gas leakage from a hot gas path to one or more disc cavities in a turbine engine. The seal assembly includes a seal apparatus that limits gas leakage from the hot gas path to a respective one of the disc cavities. The seal apparatus comprises a plurality of blade members rotatable with a blade structure. The blade members are associated with the blade structure and extend toward adjacent stationary components. Each blade member includes a leading edge and a trailing edge, the leading edge of each blade member being located circumferentially in front of the blade member's corresponding trailing edge in a direction of rotation of the turbine rotor. The blade members are arranged such that a space having a component in a circumferential direction is defined between adjacent circumferentially spaced blade members.

  3. Advanced Hydrogen Turbine Development

    Energy Technology Data Exchange (ETDEWEB)

    Marra, John [Siemens Energy, Inc., Orlando, FL (United States)

    2015-09-30

    Under the sponsorship of the U.S. Department of Energy (DOE) National Energy Technology Laboratories, Siemens has completed the Advanced Hydrogen Turbine Development Program to develop an advanced gas turbine for incorporation into future coal-based Integrated Gasification Combined Cycle (IGCC) plants. All the scheduled DOE Milestones were completed and significant technical progress was made in the development of new technologies and concepts. Advanced computer simulations and modeling, as well as subscale, full scale laboratory, rig and engine testing were utilized to evaluate and select concepts for further development. Program Requirements of: A 3 to 5 percentage point improvement in overall plant combined cycle efficiency when compared to the reference baseline plant; 20 to 30 percent reduction in overall plant capital cost when compared to the reference baseline plant; and NOx emissions of 2 PPM out of the stack. were all met. The program was completed on schedule and within the allotted budget

  4. Advanced turbine study

    Science.gov (United States)

    Castro, J. H.

    1985-01-01

    The feasibility of an advanced convective cooling concept applied to rocket turbine airfoils which operate in a high pressure hydrogen and methane environment was investigated. The concept consists of a central structural member in which grooves are machined. The grooves are temporarily filled with a removable filler and the entire airfoil is covered with a layer of electroformed nickel, or nickel base alloy. After removal of the filler, the low thermal resistance of the nickel closure causes the wall temperature to be reduced by heat transfer to the coolant. The program is divided in the following tasks: (1) turbine performance appraisal; (2) coolant geometry evaluation; (3) test hardware design and analysis; and (4) test airfoil fabrication.

  5. Solid solution strengthening and diffusion in nickel- and cobalt-based superalloys

    Energy Technology Data Exchange (ETDEWEB)

    Rehman, Hamad ur

    2016-07-01

    Nickel and cobalt-based superalloys with a γ-γ{sup '} microstructure are known for their excellent creep resistance at high temperatures. Their microstructure is engineered using different alloying elements, that partition either to the fcc γ matrix or to the ordered γ{sup '} phase. In the present work the effect of alloying elements on their segregation behaviour in nickel-based superalloys, diffusion in cobalt-based superalloys and the temperature dependent solid solution strengthening in nickel-based alloys is investigated. The effect of dendritic segregation on the local mechanical properties of individual phases in the as-cast, heat treated and creep deformed state of a nickel-based superalloy is investigated. The local chemical composition is characterized using Electron Probe Micro Analysis and then correlated with the mechanical properties of individual phases using nanoindentation. Furthermore, the temperature dependant solid solution hardening contribution of Ta, W and Re towards fcc nickel is studied. The room temperature hardening is determined by a diffusion couple approach using nanoindentation and energy dispersive X-ray analysis for relating hardness to the chemical composition. The high temperature properties are determined using compression strain rate jump tests. The results show that at lower temperatures, the solute size is prevalent and the elements with the largest size difference with nickel, induce the greatest hardening consistent with a classical solid solution strengthening theory. At higher temperatures, the solutes interact with the dislocations such that the slowest diffusing solute poses maximal resistance to dislocation glide and climb. Lastly, the diffusion of different technically relevant solutes in fcc cobalt is investigated using diffusion couples. The results show that the large atoms diffuse faster in cobalt-based superalloys similar to their nickel-based counterparts.

  6. Solid solution strengthening and diffusion in nickel- and cobalt-based superalloys

    International Nuclear Information System (INIS)

    Rehman, Hamad ur

    2016-01-01

    Nickel and cobalt-based superalloys with a γ-γ ' microstructure are known for their excellent creep resistance at high temperatures. Their microstructure is engineered using different alloying elements, that partition either to the fcc γ matrix or to the ordered γ ' phase. In the present work the effect of alloying elements on their segregation behaviour in nickel-based superalloys, diffusion in cobalt-based superalloys and the temperature dependent solid solution strengthening in nickel-based alloys is investigated. The effect of dendritic segregation on the local mechanical properties of individual phases in the as-cast, heat treated and creep deformed state of a nickel-based superalloy is investigated. The local chemical composition is characterized using Electron Probe Micro Analysis and then correlated with the mechanical properties of individual phases using nanoindentation. Furthermore, the temperature dependant solid solution hardening contribution of Ta, W and Re towards fcc nickel is studied. The room temperature hardening is determined by a diffusion couple approach using nanoindentation and energy dispersive X-ray analysis for relating hardness to the chemical composition. The high temperature properties are determined using compression strain rate jump tests. The results show that at lower temperatures, the solute size is prevalent and the elements with the largest size difference with nickel, induce the greatest hardening consistent with a classical solid solution strengthening theory. At higher temperatures, the solutes interact with the dislocations such that the slowest diffusing solute poses maximal resistance to dislocation glide and climb. Lastly, the diffusion of different technically relevant solutes in fcc cobalt is investigated using diffusion couples. The results show that the large atoms diffuse faster in cobalt-based superalloys similar to their nickel-based counterparts.

  7. Wind turbine reliability analysis

    OpenAIRE

    Pinar Pérez, Jesús María; García Márquez, Fausto Pedro; Tobias, Andrew Mark; Papaelias, Mayorkinos

    2013-01-01

    Against the background of steadily increasing wind power generation worldwide, wind turbine manufacturers are continuing to develop a range of configurations with different combinations of pitch control, rotor speeds, gearboxes, generators and converters. This paper categorizes the main designs, focusing on their reliability by bringing together and comparing data from a selection of major studies in the literature. These are not particularly consistent but plotting failure rates against hour...

  8. Gas turbine premixing systems

    Science.gov (United States)

    Kraemer, Gilbert Otto; Varatharajan, Balachandar; Evulet, Andrei Tristan; Yilmaz, Ertan; Lacy, Benjamin Paul

    2013-12-31

    Methods and systems are provided for premixing combustion fuel and air within gas turbines. In one embodiment, a combustor includes an upstream mixing panel configured to direct compressed air and combustion fuel through premixing zone to form a fuel-air mixture. The combustor includes a downstream mixing panel configured to mix additional combustion fuel with the fule-air mixture to form a combustion mixture.

  9. Controls of Hydraulic Wind Turbine

    OpenAIRE

    Zhang Yin; Kong Xiangdong; Hao Li; Ai Chao

    2016-01-01

    In this paper a hydraulic wind turbine generator system was proposed based on analysis the current wind turbines technologies. The construction and principles were introduced. The mathematical model was verified using MATLAB and AMsim. A displacement closed loop of swash plate of motor and a speed closed loop of generator were setup, a PID control is introduced to maintain a constant speed and fixed frequency at wind turbine generator. Simulation and experiment demonstrated that the system ca...

  10. Introduction to wind turbine aerodynamics

    CERN Document Server

    Schaffarczyk, Alois Peter

    2014-01-01

    Wind-Turbine Aerodynamics is a self-contained textbook which shows how to come from the basics of fluid mechanics to modern wind turbine blade design. It presents a fundamentals of fluid dynamics and inflow conditions, and gives a extensive introduction into theories describing the aerodynamics of wind turbines. After introducing experiments the book applies the knowledge to explore the impact on blade design.The book is an introduction for professionals and students of very varying levels.

  11. Toward a better understanding of strain incompatibilities at grain boundaries in the analysis of fatigue crack initiation at low temperature in the UdimetTM 720 Li superalloy

    Directory of Open Access Journals (Sweden)

    Larrouy Baptiste

    2014-01-01

    Full Text Available Low cycle fatigue properties of polycrystalline γ-γ′ Ni-based superalloys are dependent on many factors such as temperature, environment, grain size and distribution of the strengthening phases. Under LCF conditions at intermediate temperatures, an intergranular crack initiation could be observed. In this paper we propose to analyze the local conditions favouring such an intergranular cracking mode considering the high strength C&W UdimetTM720 Li alloy, widely used for manufacturing high pressure turbine disk for aeroengine applications. Tensile and fatigue tests were performed in air in the 20–465 ∘C range of temperature on micro-samples in order to focus on plasticity and damage processes developed near grain boundaries. A special attention was paid on the slip transfer between neighbouring grains taking into account their local crystallographic orientations. In some specific crystallographic configurations, small zones were detected at the tip of slip bands presenting an intense elastic/plastic activity. Although they are limited in size, they are associated to local crystalline rotations. High levels of local strain/stress were also evaluated in these volumes using an EBSD pattern cross correlation technique. The development of such specific zones was investigated at different stages of the tensile and LCF behaviour and was identified as leading to micro-cracks initiation for both solicitation modes.

  12. Development of Ni-Mn-based alloys for the fast epitaxial braze-repair of single-crystalline nickel-based superalloys

    Energy Technology Data Exchange (ETDEWEB)

    Laux, Britta; Roesler, Joachim [Technische Univ. Braunschweig (Germany). Inst. fuer Werkstoffe

    2010-05-15

    Diffusion brazing is a widely-used technology for the repair of cracks in hot section turbine components, mostly fabricated from nickel-based superalloys. However, the filling of wide cracks in the range of 100-300 ?m is difficult since the precipitation of brittle secondary phases, which are formed by the conventionally used melting point depressants B and Si, leads to deteriorating mechanical properties. Therefore, new Ni-Mn-based braze alloys were developed which allow a very fast epitaxial healing of particularly wide cracks in single-crystalline components. As B and Si are replaced by Mn, the repair process can be significantly shortened since the epitaxial solidification is not completely controlled by diffusion but can also be controlled by cooling. Ni-Mn-based systems enhanced by Al, Cr and Ti were investigated. In this work an improved brazing cycle for the minimization of porosity within the braze gap as well as an enhanced heat treatment, which produces a {gamma}/{gamma}' microstructure very similar to the parent material, are presented. Results from tensile tests at room temperature and at 900 C conducted on 300 {mu}m gap width samples are discussed. (orig.)

  13. Power turbine ventilation system

    Science.gov (United States)

    Wakeman, Thomas G. (Inventor); Brown, Richard W. (Inventor)

    1991-01-01

    Air control mechanism within a power turbine section of a gas turbine engine. The power turbine section includes a rotor and at least one variable pitch propulsor blade. The propulsor blade is coupled to and extends radially outwardly of the rotor. A first annular fairing is rotatable with the propulsor blade and interposed between the propulsor blade and the rotor. A second fairing is located longitudinally adjacent to the first fairing. The first fairing and the second fairing are differentially rotatable. The air control mechanism includes a platform fixedly coupled to a radially inner end of the propulsor blade. The platform is generally positioned in a first opening and a first fairing. The platform and the first fairing define an outer space. In a first position corresponding with a first propulsor blade pitch, the platform is substantially conformal with the first fairing. In a second position corresponding with the second propulsor blade pitch, an edge portion of the platform is displaced radially outwardly from the first fairing. When the blades are in the second position and rotating about the engine axis, the displacement of the edge portion with respect to the first fairing allows air to flow from the outer space to the annular cavity.

  14. Tornado type wind turbines

    Science.gov (United States)

    Hsu, Cheng-Ting

    1984-01-01

    A tornado type wind turbine has a vertically disposed wind collecting tower with spaced apart inner and outer walls and a central bore. The upper end of the tower is open while the lower end of the structure is in communication with a wind intake chamber. An opening in the wind chamber is positioned over a turbine which is in driving communication with an electrical generator. An opening between the inner and outer walls at the lower end of the tower permits radially flowing air to enter the space between the inner and outer walls while a vertically disposed opening in the wind collecting tower permits tangentially flowing air to enter the central bore. A porous portion of the inner wall permits the radially flowing air to interact with the tangentially flowing air so as to create an intensified vortex flow which exits out of the top opening of the tower so as to create a low pressure core and thus draw air through the opening of the wind intake chamber so as to drive the turbine.

  15. Preliminary Development of Spectrochemical Analysis of Superalloys with the Liquid-Layer Solid-Sample Spark Technique

    National Research Council Canada - National Science Library

    Barnes, Ramon

    1969-01-01

    A comparison study is made, for the spectrochemical analysis of cobalt-base superalloys, between the liquid-layer solid-sample spark technique and the conventional point-to-plane spark analysis in air...

  16. Effects of electrical discharge surface modification of superalloy Haynes 230 with aluminum and molybdenum on oxidation behavior

    International Nuclear Information System (INIS)

    Bai, C.-Y.

    2007-01-01

    The effects of the electrical discharge alloying (EDA) process on improving the high temperature oxidation resistance of the Ni-based superalloy Haynes 230 have been investigated. The 85 at.% Al and 15 at.% Mo composite electrode provided the surface alloying materials. An Al-rich layer is produced on the surface of the EDA specimen alloyed with positive electrode polarity, whereas, many discontinuous piled layers are attached to the surface of the EDA superalloy when negative electrode polarity is selected. The oxidation resistance of the specimen alloyed with positive electrode polarity is better than that of the unalloyed superalloy, and the effective temperature of oxidation resistance of the alloyed layer can be achieved to 1100 o C. Conversely, the oxidation resistance of the other EDA specimen alloyed with negative electrode polarity is even worse than that of the unalloyed superalloy

  17. Wind Turbine Radar Cross Section

    Directory of Open Access Journals (Sweden)

    David Jenn

    2012-01-01

    Full Text Available The radar cross section (RCS of a wind turbine is a figure of merit for assessing its effect on the performance of electronic systems. In this paper, the fundamental equations for estimating the wind turbine clutter signal in radar and communication systems are presented. Methods of RCS prediction are summarized, citing their advantages and disadvantages. Bistatic and monostatic RCS patterns for two wind turbine configurations, a horizontal axis three-blade design and a vertical axis helical design, are shown. The unique electromagnetic scattering features, the effect of materials, and methods of mitigating wind turbine clutter are also discussed.

  18. Biomass combustion gas turbine CHP

    Energy Technology Data Exchange (ETDEWEB)

    Pritchard, D.

    2002-07-01

    This report summarises the results of a project to develop a small scale biomass combustor generating system using a biomass combustor and a micro-gas turbine indirectly fired via a high temperature heat exchanger. Details are given of the specification of commercially available micro-turbines, the manufacture of a biomass converter, the development of a mathematical model to predict the compatibility of the combustor and the heat exchanger with various compressors and turbines, and the utilisation of waste heat for the turbine exhaust.

  19. Controls of Hydraulic Wind Turbine

    Directory of Open Access Journals (Sweden)

    Zhang Yin

    2016-01-01

    Full Text Available In this paper a hydraulic wind turbine generator system was proposed based on analysis the current wind turbines technologies. The construction and principles were introduced. The mathematical model was verified using MATLAB and AMsim. A displacement closed loop of swash plate of motor and a speed closed loop of generator were setup, a PID control is introduced to maintain a constant speed and fixed frequency at wind turbine generator. Simulation and experiment demonstrated that the system can connect grid to generate electric and enhance reliability. The control system demonstrates a high performance speed regulation and effectiveness. The results are great significant to design a new type hydraulic wind turbine system.

  20. Small Wind Turbine Technology Assessment

    International Nuclear Information System (INIS)

    Avia Aranda, F.; Cruz Cruz, I.

    1999-01-01

    The result of the study carried out under the scope of the ATYCA project Test Plant of Wind Systems for Isolated Applications, about the state of art of the small wind turbine technology (wind turbines with swept area smaller than 40 m 2 ) is presented. The study analyzes the collected information on 60 models of wind turbines from 23 manufacturers in the worldwide market. Data from Chinese manufacturers, that have a large participation in the total number of small wind turbines in operation, are not included, due to the unavailability of the technical information. (Author) 15 refs

  1. Regenerative superheated steam turbine cycles

    Science.gov (United States)

    Fuller, L. C.; Stovall, T. K.

    1980-01-01

    PRESTO computer program was developed to analyze performance of wide range of steam turbine cycles with special attention given to regenerative superheated steam turbine cycles. It can be used to model standard turbine cycles, including such features as process steam extraction, induction and feedwater heating by external sources, peaking, and high back pressure. Expansion line efficiencies, exhaust loss, leakages, mechanical losses, and generator losses are used to calculate cycle heat rate and generator output. Program provides power engineer with flexible aid for design and analysis of steam turbine systems.

  2. Advanced LP turbine blade design

    International Nuclear Information System (INIS)

    Jansen, M.; Pfeiffer, R.; Termuehlen, H.

    1990-01-01

    In the 1960's and early 1970's, the development of steam turbines for the utility industry was mainly influenced by the demand for increasing unit sizes. Nuclear plants in particular, required the design of LP turbines with large annulus areas for substantial mass and volumetric steam flows. Since then the development of more efficient LP turbines became an ongoing challenge. Extensive R and D work was performed in order to build efficient and reliable LP turbines often exposed to severe corrosion, erosion and dynamic excitation conditions. This task led to the introduction of an advanced disk-type rotor design for 1800 rpm LP turbines and the application of a more efficient, reaction-type blading for all steam turbine sections including the first stages of LP turbines. The most recent developments have resulted in an advanced design of large LP turbine blading, typically used in the last three stages of each LP turbine flow section. Development of such blading required detailed knowledge of the three dimensional, largely transonic, flow conditions of saturated steam. Also the precise assessment of blade stressing from dynamic conditions, such as speed and torsional resonance, as well as stochastic and aerodynamic excitation is of extreme importance

  3. Superalloy design - A Monte Carlo constrained optimization method

    CSIR Research Space (South Africa)

    Stander, CM

    1996-01-01

    Full Text Available of Ni,AI (f?). J. Phys. Sot. Jupun 1984, 53, 653-663 Morinaga, M., Yukawa, N. and Ezaki, H. Solid solubilities in transition-metal-based f.c.c. alloys. Phil. Mug. A 1985, 51 (2). 223-246. Yukawa, N., Morinaga, M., Murata.... 733-742, The Metallurgical Society, Warrendale, 1988 Yukawa, N., Morinaga, M., Ezaki, H. and Murata, Y. Proc. Conf on High Temperuture Alloys for Gus Turbines und Other Applications, pp. 935-944, 1986 Pessah, M., Caron...

  4. Structure and composition of higher-rhenium-content superalloy based on La-alloyed Ni-Al-Cr

    Energy Technology Data Exchange (ETDEWEB)

    Kozlov, Eduard V.; Koneva, Nina A. [Tomsk State University of Architecture and Building, Tomsk, 634003 (Russian Federation); Nikonenko, Elena L., E-mail: vilatomsk@mail.ru [Tomsk State University of Architecture and Building, Tomsk, 634003 (Russian Federation); National Research Tomsk Polytechnic University, Tomsk, 634050 (Russian Federation); Popova, Natalya A.; Fedorischeva, Marina V. [Tomsk State University of Architecture and Building, Tomsk, 634003 (Russian Federation); Institute of Strength Physics and Materials Science SB RAS, Tomsk, 634055 (Russian Federation)

    2015-10-27

    The paper presents the transmission and scanning electronic microscope investigations of Ni-Al-Cr superalloy alloyed with additional Re and La elements. This superalloy is obtained by a directional solidification method. It is shown that such additional elements as Re and La result in formation of new phases in Ni-Al-Cr accompanied by considerable modifications of quasi-cuboid structure in its γ’-phase.

  5. Structure and composition of higher-rhenium-content superalloy based on La-alloyed Ni-Al-Cr

    Science.gov (United States)

    Kozlov, Eduard V.; Nikonenko, Elena L.; Popova, Natalya A.; Koneva, Nina A.; Fedorischeva, Marina V.

    2015-10-01

    The paper presents the transmission and scanning electronic microscope investigations of Ni-Al-Cr superalloy alloyed with additional Re and La elements. This superalloy is obtained by a directional solidification method. It is shown that such additional elements as Re and La result in formation of new phases in Ni-Al-Cr accompanied by considerable modifications of quasi-cuboid structure in its γ'-phase.

  6. Axial pico turbine - construction and experimental research

    Science.gov (United States)

    Peczkis, G.; Goryca, Z.; Korczak, A.

    2017-08-01

    The paper concerns axial water turbine of power equal to 1 kW. The example of axial water turbine constructional calculations was provided, as well as turbine rotor construction with NACA profile blades. The laboratory test rig designed and built to perform measurements on pico turbine was described. The turbine drove three-phase electrical generator. On the basis of highest efficiency parameters, pico turbine basic characteristics were elaborated. The experimental research results indicated that pico turbine can achieve maximum efficiency close to the values of larger water turbines.

  7. Gas turbine heat transfer and cooling technology

    CERN Document Server

    Han, Je-Chin; Ekkad, Srinath

    2012-01-01

    FundamentalsNeed for Turbine Blade CoolingTurbine-Cooling TechnologyTurbine Heat Transfer and Cooling IssuesStructure of the BookReview Articles and Book Chapters on Turbine Cooling and Heat TransferNew Information from 2000 to 2010ReferencesTurbine Heat TransferIntroductionTurbine-Stage Heat TransferCascade Vane Heat-Transfer ExperimentsCascade Blade Heat TransferAirfoil Endwall Heat TransferTurbine Rotor Blade Tip Heat TransferLeading-Edge Region Heat TransferFlat-Surface Heat TransferNew Information from 2000 to 20102.10 ClosureReferencesTurbine Film CoolingIntroductionFilm Cooling on Rotat

  8. Turbine and Structural Seals Team Facilities

    Data.gov (United States)

    Federal Laboratory Consortium — Seals Team Facilities conceive, develop, and test advanced turbine seal concepts to increase efficiency and durability of turbine engines. Current projects include...

  9. Practical Implications of the Use of Aluminide Coatings for the Corrosion Protection of Superalloys in Gas Turbines

    Science.gov (United States)

    1984-04-01

    m’ i i i i i ni 3 _ NONCOATED { AIR • ALUMINIOE COATEDMHALFORD & NACHTIGALL)(49| NONCOATED ) VACUUM • ALUM.N.DE COATED^ iK0Rro^ZmKWm i...Ftg. 22 - Tharmsl fattgu* propartm of potycryilsHina and UOS iupar«lk>vt in tha •nd non-coatod cooditioo. 1 r O NONCOATED ALUMINIOE 600 800

  10. Beyond Ni-based superalloys: Development of CoRe-based alloys for gas turbine applications at very high temperatures

    Czech Academy of Sciences Publication Activity Database

    Mukherji, D.; Roesler, J.; Strunz, Pavel; Gilles, R.; Schumacher, G.; Piegert, S.

    2011-01-01

    Roč. 102, č. 9 (2011), s. 1125-1132 ISSN 1862-5282 R&D Projects: GA ČR(CZ) GAP204/11/1453 Institutional research plan: CEZ:AV0Z10480505 Keywords : Co-base alloy * Rhenium * Electron microscopy Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 0.830, year: 2011

  11. Gas fired advanced turbine system

    Science.gov (United States)

    Lecren, R. T.; White, D. J.

    The basic concept thus derived from the Ericsson cycle is an intercooled, recuperated, and reheated gas turbine. Theoretical performance analyses, however, showed that reheat at high turbine rotor inlet temperatures (TRIT) did not provide significant efficiency gains and that the 50 percent efficiency goal could be met without reheat. Based upon these findings, the engine concept adopted as a starting point for the gas-fired advanced turbine system is an intercooled, recuperated (ICR) gas turbine. It was found that, at inlet temperatures greater than 2450 F, the thermal efficiency could be maintained above 50%, provided that the turbine cooling flows could be reduced to 7% of the main air flow or lower. This dual and conflicting requirement of increased temperatures and reduced cooling will probably force the abandonment of traditional air cooled turbine parts. Thus, the use of either ceramic materials or non-air cooling fluids has to be considered for the turbine nozzle guide vanes and turbine blades. The use of ceramic components for the proposed engine system is generally preferred because of the potential growth to higher temperatures that is available with such materials.

  12. Technical diagnostics of steam turbines

    International Nuclear Information System (INIS)

    Vlckova, B.; Drahy, J.

    1987-01-01

    This paper deals with practical experience in application of technical diagnostics methods to steam turbines, in particular using pedestal and shaft vibration measurements as well as estimation of bearing metal temperature and ultrasound emission signals. An estimation of effectiveness of the diagnostics methods used is given on the basis of experimental investigations made on a 30-MW turbine. (author)

  13. Reliability Modeling of Wind Turbines

    DEFF Research Database (Denmark)

    Kostandyan, Erik

    the actions should be made and the type of actions requires knowledge on the accumulated damage or degradation state of the wind turbine components. For offshore wind turbines, the action times could be extended due to weather restrictions and result in damage or degradation increase of the remaining...

  14. NEXT GENERATION TURBINE PROGRAM

    Energy Technology Data Exchange (ETDEWEB)

    William H. Day

    2002-05-03

    The Next Generation Turbine (NGT) Program's technological development focused on a study of the feasibility of turbine systems greater than 30 MW that offer improvement over the 1999 state-of-the-art systems. This program targeted goals of 50 percent turndown ratios, 15 percent reduction in generation cost/kW hour, improved service life, reduced emissions, 400 starts/year with 10 minutes to full load, and multiple fuel usage. Improvement in reliability, availability, and maintainability (RAM), while reducing operations, maintenance, and capital costs by 15 percent, was pursued. This program builds on the extensive low emissions stationary gas turbine work being carried out by Pratt & Whitney (P&W) for P&W Power Systems (PWPS), which is a company under the auspices of the United Technologies Corporation (UTC). This study was part of the overall Department of Energy (DOE) NGT Program that extends out to the year 2008. A follow-on plan for further full-scale component hardware testing is conceptualized for years 2002 through 2008 to insure a smooth and efficient transition to the marketplace for advanced turbine design and cycle technology. This program teamed the National Energy Technology Laboratory (NETL), P&W, United Technologies Research Center (UTRC), kraftWork Systems Inc., a subcontractor on-site at UTRC, and Multiphase Power and Processing Technologies (MPPT), an off-site subcontractor. Under the auspices of the NGT Program, a series of analyses were performed to identify the NGT engine system's ability to serve multiple uses. The majority were in conjunction with a coal-fired plant, or used coal as the system fuel. Identified also was the ability of the NGT system to serve as the basis of an advanced performance cycle: the humid air turbine (HAT) cycle. The HAT cycle is also used with coal gasification in an integrated cycle HAT (IGHAT). The NGT systems identified were: (1) Feedwater heating retrofit to an existing coal-fired steam plant, which

  15. Megawatt wind turbines gaining momentum

    International Nuclear Information System (INIS)

    Oehlenschlaeger, K.; Madsen, B.T.

    1996-01-01

    Through the short history of the modern wind turbine, electric utilities have made it amply clear that they have held a preference for large scale wind turbines over smaller ones, which is why wind turbine builders through the years have made numerous attempts develop such machines - machines that would meet the technical, aesthetic and economic demands that a customer would require. Considerable effort was put into developing such wind turbines in the early 1980s. There was the U.S. Department of Energy's MOD 1-5 program, which ranged up to 3.2 MW, Denmark's Nibe A and B, 630 kW turbine and the 2 MW Tjaereborg machine, Sweden's Naesudden, 3 MW, and Germany's Growian, 3 MW. Most of these were dismal failures, though some did show the potential of MW technology. (au)

  16. Reliability Modeling of Wind Turbines

    DEFF Research Database (Denmark)

    Kostandyan, Erik

    Cost reductions for offshore wind turbines are a substantial requirement in order to make offshore wind energy more competitive compared to other energy supply methods. During the 20 – 25 years of wind turbines useful life, Operation & Maintenance costs are typically estimated to be a quarter...... the actions should be made and the type of actions requires knowledge on the accumulated damage or degradation state of the wind turbine components. For offshore wind turbines, the action times could be extended due to weather restrictions and result in damage or degradation increase of the remaining...... for Operation & Maintenance planning. Concentrating efforts on development of such models, this research is focused on reliability modeling of Wind Turbine critical subsystems (especially the power converter system). For reliability assessment of these components, structural reliability methods are applied...

  17. Reliability assessment of Wind turbines

    DEFF Research Database (Denmark)

    Sørensen, John Dalsgaard

    2015-01-01

    Wind turbines can be considered as structures that are in between civil engineering structures and machines since they consist of structural components and many electrical and machine components together with a control system. Further, a wind turbine is not a one-of-a-kind structure...... but manufactured in series production based on many component tests, some prototype tests and zeroseries wind turbines. These characteristics influence the reliability assessment where focus in this paper is on the structural components. Levelized Cost Of Energy is very important for wind energy, especially when...... comparing to other energy sources. Therefore much focus is on cost reductions and improved reliability both for offshore and onshore wind turbines. The wind turbine components should be designed to have sufficient reliability level with respect to both extreme and fatigue loads but also not be too costly...

  18. A Review of Materials for Gas Turbines Firing Syngas Fuels

    Energy Technology Data Exchange (ETDEWEB)

    Gibbons, Thomas [ORNL; Wright, Ian G [ORNL

    2009-05-01

    Following the extensive development work carried out in the 1990's, gas turbine combined-cycle (GTCC) systems burning natural gas represent a reliable and efficient power generation technology widely used in many parts of the world. A critical factor was that, in order to operate at the high turbine entry temperatures required for high efficiency operation, aero-engine technology, i.e., single-crystal blades, thermal barrier coatings, and sophisticated cooling techniques had to be rapidly scaled up and introduced into these large gas turbines. The problems with reliability that resulted have been largely overcome, so that the high-efficiency GTCC power generation system is now a mature technology, capable of achieving high levels of availability. The high price of natural gas and concern about emission of greenhouse gases has focused attention on the desirability of replacing natural gas with gas derived from coal (syngas) in these gas turbine systems, since typical systems analyses indicate that IGCC plants have some potential to fulfil the requirement for a zero-emissions power generation system. In this review, the current status of materials for the critical hot gas path parts in large gas turbines is briefly considered in the context of the need to burn syngas. A critical factor is that the syngas is a low-Btu fuel, and the higher mass flow compared to natural gas will tend to increase the power output of the engine. However, modifications to the turbine and to the combustion system also will be necessary. It will be shown that many of the materials used in current engines will also be applicable to units burning syngas but, since the combustion environment will contain a greater level of impurities (especially sulfur, water vapor, and particulates), the durability of some components may be prejudiced. Consequently, some effort will be needed to develop improved coatings to resist attack by sulfur-containing compounds, and also erosion.

  19. Wind turbine airfoil catalogue

    DEFF Research Database (Denmark)

    Bertagnolio, F.; Sørensen, Niels N.; Johansen, Jeppe

    2001-01-01

    The aim of this work is two-sided. Firstly, experimental results obtained for numerous sets of airfoil measurements (mainly intended for wind turbine applications) are collected and compared with computational results from the 2D Navier-Stokes solverEllipSys2D, as well as results from the panel...... data. A study correlating the available data and this classification is performed. It is found that transition modelling is to a large extent responsible forthe poor quality of the computational results for most of the considered airfoils. The transition model mechanism that leads...

  20. Wind turbine airfoil catalogue

    OpenAIRE

    Bertagnolio, F.; Sørensen, Niels N.; Johansen, Jeppe; Fuglsang, P.

    2001-01-01

    The aim of this work is two-sided. Firstly, experimental results obtained for numerous sets of airfoil measurements (mainly intended for wind turbine applications) are collected and compared with computational results from the 2D Navier-Stokes solverEllipSys2D, as well as results from the panel method code XFOIL. Secondly, we are interested in validating the code EllipSys2D and finding out for which airfoils it does not perform well compared to the experiments, as well as why, when it does so...

  1. Aeroservoelasticity of wind turbines

    Energy Technology Data Exchange (ETDEWEB)

    Skovmose Kallesoee, B.

    2007-12-14

    This thesis deals with the fundamental aeroelastic interaction between structural motion, Pitch action and control for a wind turbine blade. As wind turbines become larger, the interaction between pitch action, blade motion, aerodynamic forces, and control become even more important to understand and address. The main contribution of this thesis is the development of an aeroelastic blade model which on the one hand includes the important effects of steady state blade deformation, gravity and pitch action, and on the other it is transparent, suitable for analytical analysis and parameter studies, and furthermore linear and therefore suitable for control design. The development of the primary aeroelastic blade model is divided into four steps: 1) Nonlinear partial differential equations (PDEs) of structural blade motion are derived together with equations of pitch action and rotor speed; the individual terms in these equations are discussed and given physical interpretations; 2) Steady state blade deformation and induced velocities are computed by combining the PDEs with a steady state aerodynamic model; 3) Aeroelastic modes of motion are computed by combining the linearized PDEs with a linear unsteady aerodynamic model; this model is used to analyze how blade deformation effects the modes of motion; and 4) the linear aeroelastic blade model is derived by a modal expansion of the linearized PDEs combined with a linear unsteady aerodynamic model. The aeroelastic blade model has many similarities to a 2D blade section model, and it can be used instead of this in many applications, giving a transparent connection to a real wind turbine blade. In this work the aeroelastic blade model is used to analyze interaction between pitch action, blade motion and wind speed variations. Furthermore the model is used to develop a state estimator for estimating the wind speed and wind shear, and to suggest a load reducing controller. The state estimator estimates the wind shear very

  2. Advanced Hydrogen Turbine Development

    Energy Technology Data Exchange (ETDEWEB)

    Joesph Fadok

    2008-01-01

    Siemens has developed a roadmap to achieve the DOE goals for efficiency, cost reduction, and emissions through innovative approaches and novel technologies which build upon worldwide IGCC operational experience, platform technology, and extensive experience in G-class operating conditions. In Phase 1, the technologies and concepts necessary to achieve the program goals were identified for the gas turbine components and supporting technology areas and testing plans were developed to mitigate identified risks. Multiple studies were conducted to evaluate the impact in plant performance of different gas turbine and plant technologies. 2015 gas turbine technologies showed a significant improvement in IGCC plant efficiency, however, a severe performance penalty was calculated for high carbon capture cases. Thermodynamic calculations showed that the DOE 2010 and 2015 efficiency targets can be met with a two step approach. A risk management process was instituted in Phase 1 to identify risk and develop mitigation plans. For the risks identified, testing and development programs are in place and the risks will be revisited periodically to determine if changes to the plan are necessary. A compressor performance prediction has shown that the design of the compressor for the engine can be achieved with additional stages added to the rear of the compressor. Tip clearance effects were studied as well as a range of flow and pressure ratios to evaluate the impacts to both performance and stability. Considerable data was obtained on the four candidate combustion systems: diffusion, catalytic, premix, and distributed combustion. Based on the results of Phase 1, the premixed combustion system and the distributed combustion system were chosen as having the most potential and will be the focus of Phase 2 of the program. Significant progress was also made in obtaining combustion kinetics data for high hydrogen fuels. The Phase 1 turbine studies indicate initial feasibility of the

  3. Cogeneration steam turbines from Siemens: New solutions

    Science.gov (United States)

    Kasilov, V. F.; Kholodkov, S. V.

    2017-03-01

    The Enhanced Platform system intended for the design and manufacture of Siemens AG turbines is presented. It combines organizational and production measures allowing the production of various types of steam-turbine units with a power of up to 250 MWel from standard components. The Enhanced Platform designs feature higher efficiency, improved reliability, better flexibility, longer overhaul intervals, and lower production costs. The design features of SST-700 and SST-900 steam turbines are outlined. The SST-700 turbine is used in backpressure steam-turbine units (STU) or as a high-pressure cylinder in a two-cylinder condensing turbine with steam reheat. The design of an SST-700 single-cylinder turbine with a casing without horizontal split featuring better flexibility of the turbine unit is presented. An SST-900 turbine can be used as a combined IP and LP cylinder (IPLPC) in steam-turbine or combined-cycle power units with steam reheat. The arrangements of a turbine unit based on a combination of SST-700 and SST-900 turbines or SST-500 and SST-800 turbines are presented. Examples of this combination include, respectively, PGU-410 combinedcycle units (CCU) with a condensing turbine and PGU-420 CCUs with a cogeneration turbine. The main equipment items of a PGU-410 CCU comprise an SGT5-4000F gas-turbine unit (GTU) and STU consisting of SST-700 and SST-900RH steam turbines. The steam-turbine section of a PGU-420 cogeneration power unit has a single-shaft turbine unit with two SST-800 turbines and one SST-500 turbine giving a power output of N el. STU = 150 MW under condensing conditions.

  4. Aerodynamics of wind turbines emerging topics

    CERN Document Server

    Amano, R S

    2014-01-01

    Focusing on Aerodynamics of Wind Turbines with topics ranging from Fundamental to Application of horizontal axis wind turbines, this book presents advanced topics including: Basic Theory for Wind turbine Blade Aerodynamics, Computational Methods, and Special Structural Reinforcement Technique for Wind Turbine Blades.

  5. Aircraft propulsion and gas turbine engines

    National Research Council Canada - National Science Library

    El-Sayed, Ahmed F

    2008-01-01

    ... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xvii xxxi xxxiii xxxv Part I Aero Engines and Gas Turbines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . C...

  6. Cyclic Oxidation and Hot Corrosion of NiCrY-Coated Disk Superalloys

    Science.gov (United States)

    Gabb, Timothy P.; Miller, Robert A.; Sudbrack, Chantal K.; Draper, Susan L.; Nesbitt, James A.; Rogers, Richard B.; Telesman, Ignacy; Ngo, Vanda; Healy, Jonathan

    2016-01-01

    Powder metallurgy disk superalloys have been designed for higher engine operating temperatures through improvement of their strength and creep resistance. Yet, increasing disk application temperatures to 704 degrees Centigrade and higher could enhance oxidation and activate hot corrosion in harmful environments. Protective coatings could be necessary to mitigate such attack. Cylindrical coated specimens of disk superalloys LSHR and ME3 were subjected to thermal cycling to produce cyclic oxidation in air at a maximum temperature of 760 degrees Centigrade. The effects of substrate roughness and coating thickness on coating integrity after cyclic oxidation were considered. Selected coated samples that had cyclic oxidation were then subjected to accelerated hot corrosion tests. This cyclic oxidation did not impair the coating's resistance to subsequent hot corrosion pitting attack.

  7. Cyclic Oxidation and Hot Corrosion of NiCrY-Coated Disk Superalloy

    Science.gov (United States)

    Gabb, Tim; Miller, R. A.; Sudbrack, C. K.; Draper, S. L.; Nesbitt, J.; Telesman, J.; Ngo, V.; Healy, J.

    2015-01-01

    Powder metallurgy disk superalloys have been designed for higher engine operating temperatures through improvement of their strength and creep resistance. Yet, increasing disk application temperatures to 704 C and higher could enhance oxidation and activate hot corrosion in harmful environments. Protective coatings could be necessary to mitigate such attack. Cylindrical coated specimens of disk superalloys LSHR and ME3 were subjected to thermal cycling to produce cyclic oxidation in air at a maximum temperature of 760 C. The effects of substrate roughness and coating thickness on coating integrity after cyclic oxidation were considered. Selected coated samples that had cyclic oxidation were then subjected to accelerated hot corrosion tests. The effects of this cyclic oxidation on resistance to subsequent hot corrosion attack were examined.

  8. Tertiary dendritic instability in late stage solidification of Ni-based superalloys

    Science.gov (United States)

    Franke, M. M.; Singer, R. F.; Steinbach, I.

    2014-03-01

    Derivatives of the commercial alloy CMSX-4 were directionally solidified and characterized with respect to their final dendrite microstructure. The results indicate that Ni-based superalloys with high segregation levels show significant instability in secondary dendrite arms and an increased tendency for tertiary arm formation, respectively. Phase-field simulations were used to explore the impact of chemical composition on morphological instability and tertiary arm formation during the directional solidification of Ni-based superalloys. It is found that an increase in specific alloying elements in the overall alloy composition leads to pronounced segregation at the end of solidification. This causes strong growth restriction of the secondary arms and triggers tertiary arm formation. The proposed mechanism explains experimental microstructures found in modifications of the base alloy CMSX-4.

  9. Tribological Behavior of IN718 Superalloy Coating Fabricated by Laser Additive Manufacturing

    Science.gov (United States)

    Zhang, Yaocheng; Pan, Qiyong; Yang, Li; Li, Ruifeng; Dai, Jun

    2017-12-01

    The tribological behavior of laser manufactured IN718 superalloy coating are investigated with different applied loads, sliding speeds and lubricating mediums. The wear resistance of laser manufactured IN718 coating is increased by heat treatment due to higher microhardness and homogeneous brittle phase distribution. The principal factors for the wear rate are applied load and lubricating medium. The worn surface of laser manufactured IN718 coating consists of the grooves, crack, wear debris and material delamination generated by the fatigue wear associated with adhesive wear and abrasive wear. The friction coefficients are influenced by the tribological noise decrescence by the tribo-oxidant and the liquid lubricant. The real contact temperature between coating sample and frictional counterpart is higher than the solid-solution temperature of IN718 superalloy, and the effect of surface contact temperature on the orientational microstructure and wear resistance for dry friction and wet friction process is indistinct.

  10. Heat affected zone liquation cracking in electron beam welded third generation nickel base superalloys

    International Nuclear Information System (INIS)

    Ojo, O.A.; Wang, Y.L.; Chaturvedi, M.C.

    2008-01-01

    The weldability of directionally solidified nickel base superalloy TMS-75 and TMS-75+C was investigated by autogenous bead-on-plate electron beam welding. The analysis of microsegregation that occurred during solidification of the as-cast alloys indicated that while W and Re segregated into the γ dendrites of both the alloys, Ta, Hf and C were rejected into the interdendritic liquid in the TMS-75+C. Heat affected zone intergranular liquation cracking was observed in both the materials and was observed to be closely associated with liquated γ-γ' eutectic microconstituent. The TMS-75+C alloy, however, exhibited a reduced extent of HAZ cracking compared to TMS-75. Suppression of terminal solidification reaction involving non-invariant γ-γ' eutectic transformation due to modification of primary solidification path by carbon addition is suggested to be an important factor contributing to reduced susceptibility of TMS-75+C alloy to HAZ liquation cracking relative to the TMS-75 superalloy

  11. Intermediate Co/Ni-base model superalloys — Thermophysical properties, creep and oxidation

    International Nuclear Information System (INIS)

    Zenk, Christopher H.; Neumeier, Steffen; Engl, Nicole M.; Fries, Suzana G.; Dolotko, Oleksandr; Weiser, Martin; Virtanen, Sannakaisa; Göken, Mathias

    2016-01-01

    The mechanical properties of γ′-strengthened Co–Ni–Al–W–Cr model superalloys extending from pure Ni-base to pure Co-base superalloys have been assessed. Differential scanning calorimetry measurements and thermodynamic calculations match well and show that the γ′ solvus temperature decreases with increasing Co-content. The γ/γ′ lattice misfit is negative on the Ni- and positive on the Co-rich side. High Ni-contents decelerate the oxidation kinetics up to a factor of 15. The creep strength of the Ni-base alloy increases by an order of magnitude with additions of Co before it deteriorates strongly upon higher additions despite an increasing γ′ volume fraction.

  12. Grain Boundary Engineering the Mechanical Properties of Allvac 718Plus(Trademark) Superalloy

    Science.gov (United States)

    Gabb, Timothy P.; Telesman, Jack; Garg, Anita; Lin, Peter; Provenzano, virgil; Heard, Robert; Miller, Herbert M.

    2010-01-01

    Grain Boundary Engineering can enhance the population of structurally-ordered "low S" Coincidence Site Lattice (CSL) grain boundaries in the microstructure. In some alloys, these "special" grain boundaries have been reported to improve overall resistance to corrosion, oxidation, and creep resistance. Such improvements could be quite beneficial for superalloys, especially in conditions which encourage damage and cracking at grain boundaries. Therefore, the effects of GBE processing on high-temperature mechanical properties of the cast and wrought superalloy Allvac 718Plus (Allvac ATI) were screened. Bar sections were subjected to varied GBE processing, and then consistently heat treated, machined, and tested at 650 C. Creep, tensile stress relaxation, and dwell fatigue crack growth tests were performed. The influences of GBE processing on microstructure, mechanical properties, and associated failure modes are discussed.

  13. The effect of different surface treatments on the molten salt hot corrosion of IN-657 superalloy

    International Nuclear Information System (INIS)

    Otero, E.; Utrilla, M.V.

    1996-01-01

    The influence of different surface treatments (laser surface treatment, silicon nitride, and 25 wt.% Al 2 (OH) 4 Si 2 O 5 -75 wt.% Na 2 SiO 3 ), on the hot corrosion behaviour of IN-657 superalloy has been studied. The corrosion tests were performed in an oxidizing atmosphere in contact with a molten mixture of 82% K 2 S 2 O 7 -18% V 2 O 5 . The effects of operation temperature and carbon residues as component of the molten mixture were also analyzed. The best results were obtained for the kaolin and methasilicate mixture coating. Laser surface treatment and the CVD-silicon nitride are not recommended for surface modification of the IN-657 superalloy. Taking into account the results obtained, the authors suggest the average temperature and molten salt compositions where the above coating can work satisfactorily. (orig.)

  14. Effect of solidification parameters on the microstructures of superalloy CMSX-6 formed during the downward directional solidification process

    Science.gov (United States)

    Wang, F.; Ma, D.; Zhang, J.; Liu, L.; Hong, J.; Bogner, S.; Bührig-Polaczek, A.

    2014-03-01

    The single crystal Ni-base superalloy CMSX-6 was cast by using the downward directional solidification process (DWDS) using withdrawal rates of between 0.0013 and 0.0217 cm/s. The evolutions of as-cast microstructures were characterized as functions of the withdrawal rate. The primary and secondary dendrite arm spacings, λ1 and λ2, decreased with increasing withdrawal rate, which is similar to the experimental results obtained in the conventional Bridgman process. However, the value of λ1 and λ2 measured in the present work is much smaller than that in the Bridgman process. In addition to this, the value of λ1 cannot be reasonably described by the theoretical models for the primary dendrite arm spacing in which the convection effect was not taken into account. In comparison, the theoretical model of Bouchard and Kirkaldy which considers the convection factor can predict the λ1 value well in the present work if the dendrite-calibrating factor (a1) is assumed to be 13.5. The sizes of the γ‧ phase in the dendrite and interdendritic regions were also reduced with an increased withdrawal rate. The shape of the γ‧ phase was cuboidal in the dendritic regions at all experimental withdrawal rates. This contrasts with the γ‧ phase in the dendrite cores which became more rounded at the highest withdrawal rates employed in the present work, due to the low supersaturation and insufficient growth time. With an increased withdrawal rate, significant reduction in the size of the γ/γ‧ eutectic island was observed in the samples. Meanwhile, the microsegregation of the alloying elements was reduced and the volume fraction of the γ/γ‧ eutectic initially decreased and then increased. The difference in the shape of the γ/γ‧ eutectic was also found in those samples processed at low withdrawal rates as well as at high withdrawal rates.

  15. Looking for New Polycrystalline MC-Reinforced Cobalt-Based Superalloys Candidate to Applications at 1200°C

    Directory of Open Access Journals (Sweden)

    Patrice Berthod

    2017-01-01

    Full Text Available For applications for which temperatures higher than 1150°C can be encountered the currently best superalloys, the γ/γ′ single crystals, cannot be used under stress because of the disappearance of their reinforcing γ′ precipitates at such temperatures which are higher than their solvus. Cobalt-based alloys strengthened by refractory and highly stable carbides may represent an alternative solution. In this work the interest was focused on MC carbides of several types. Alloys were elaborated with atomically equivalent quantities in M element (among Ti, Ta, Nb, Hf, or Zr and in C. Script-like eutectic TiC, TaC, NbC, HfC, and ZrC carbides were successfully obtained in the interdendritic spaces. Unfortunately, only one type, HfC, demonstrated high morphological stability during about 50 hours at 1200°C. The concerned alloy, of the Co-25Cr-0.5C-7.4Hf type (in wt.%, was further characterized in flexural creep resistance and air-oxidation resistance at the same temperature. The creep behaviour was very good, notably by comparison with a more classical Co-25Cr-0.5C-7.5Ta alloy, proving that the interest of HfC is higher than the TaC one. In contrast the oxidation by air was faster and its behaviour not really chromia-forming. Significant improvements of this chemical resistance are expected before taking benefit from the mechanical superiority of this alloy.

  16. Potential health impact of wind turbines

    International Nuclear Information System (INIS)

    2010-05-01

    In response to public health concerns about wind turbines, a study was conducted to review the scientific evidence on the potential health effects of wind turbines. Several research questions were examined, including scientific evidence on the potential health impacts of wind turbines; the relationship between wind turbine noise and health; the relationship between low frequency sound, infrasound and health; assessment of exposure to wind turbines; wind turbine health and safety hazards and Ontario wind turbine setbacks; community consultation prior to wind farm construction and data gaps and research needs. The study showed that although some people living near wind turbines reported symptoms such as dizziness, headaches, and sleep disturbance, the scientific evidence available to date does not demonstrate a direct causal link between wind turbine noise and adverse health effects. The sound level from wind turbines at common residential setbacks is not sufficient to cause hearing impairment or other direct health effects, although some people may find it annoying. 41 refs., 1 appendix.

  17. Potential health impact of wind turbines

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2010-05-15

    In response to public health concerns about wind turbines, a study was conducted to review the scientific evidence on the potential health effects of wind turbines. Several research questions were examined, including scientific evidence on the potential health impacts of wind turbines; the relationship between wind turbine noise and health; the relationship between low frequency sound, infrasound and health; assessment of exposure to wind turbines; wind turbine health and safety hazards and Ontario wind turbine setbacks; community consultation prior to wind farm construction and data gaps and research needs. The study showed that although some people living near wind turbines reported symptoms such as dizziness, headaches, and sleep disturbance, the scientific evidence available to date does not demonstrate a direct causal link between wind turbine noise and adverse health effects. The sound level from wind turbines at common residential setbacks is not sufficient to cause hearing impairment or other direct health effects, although some people may find it annoying. 41 refs., 1 appendix.

  18. On γ and γ' phases composition in IN-100 superalloy after high-temperature exposure

    International Nuclear Information System (INIS)

    Matteazzi, P.; Principi, G.; Ramous, E.

    1981-01-01

    The chemistry and volume fraction of UPSILON' phase in IN-100 superalloy after high-temperature exposure in furnace and in service have been examined. Increasing the time of exposure aluminium plus titanium content remains nearly constant and very close to 25 at.%; the little decrease of nickel together with the increase of iron and molybdenum suggest that the last two elements are preferentially occupying Ni-type sites, according to the pair potential model of UPSILON'. (orig.)

  19. CYCLIC STRAIN LOCALIZATION IN CAST NICKEL BASED SUPERALLOY INCONEL 792-5A AT ROOM TEMPERATURE

    Czech Academy of Sciences Publication Activity Database

    Petrenec, Martin; Man, Jiří; Obrtlík, Karel; Polák, Jaroslav

    308/2005, č. 86 (2005), s. 269-274 ISSN 1429-6055. [Metody oceny struktury oraz wlasności materialów i wyrobów. Ustroń-Jaszowiec, 07.12.2005-09.12.2005] Institutional research plan: CEZ:AV0Z20410507 Keywords : low cycle fatigue * superalloy * cyclic strain localization Subject RIV: JL - Materials Fatigue, Friction Mechanics

  20. Microstructural Investigations and Modelling of Interdiffusion between MCrAlY Coating and IN738 Superalloy

    DEFF Research Database (Denmark)

    Dahl, Kristian Vinter; Hald, John

    2006-01-01

    Interdiffusion at the interface between a Co-36.5Ni-17.5Cr-8Al-0.5Y, MCrAlY coating and the underlying IN738 superalloy was studied in a large matrix of specimens isothermally heat treated for up to 12,000 hours at temperatures 875°C, 925°C or 950°C. Microstructural investigations and calculated ...

  1. Discussion of "Investigation of Oxide Bifilms in Investment Cast Superalloy IN100 Parts I and II"*

    Science.gov (United States)

    Campbell, John

    2017-10-01

    Fuchs and Kaplan carried out experiments in an attempt to ascertain whether oxide bifilms were present in a vacuum-cast Ni-base superalloy but concluded negatively. Although this author challenged their interpretation of their findings, both parties had overlooked the presence in the alloy of boron which is now known to inhibit bifilm formation. However, even though boron can help significantly, improved filling system designs remain important if other damaging entrainment defects are to be avoided.

  2. Interdiffusion between Ni-based superalloy and MCrAlY coating

    DEFF Research Database (Denmark)

    Dahl, Kristian Vinter; Hald, John; Horsewell, Andy

    2006-01-01

    Interdiffusion at the interface between a Co-36.5Ni-17.5Cr-8Al-0.5Y, MCrAlY coating and the underlying IN738 superalloy was studied in a large matrix of specimens isothermally heat treated for up to 12,000 hours at temperatures 875oC, 925oC or 950oC. Modelled results using the finite difference...

  3. The influence of high temperature on the microstructure properties of Ni-based superalloy

    Czech Academy of Sciences Publication Activity Database

    Luptáková, Natália; Král, Petr; Dymáček, Petr

    2014-01-01

    Roč. 14, č. 4 (2014), s. 190-198 ISSN 1335-8987. [Deformation and Fracture in PM Materials. Stará Lesná, 26.10.2014-29.10.2014] R&D Projects: GA MPO FR-TI4/406; GA MŠk(CZ) ED1.1.00/02.0068 Institutional support: RVO:68081723 Keywords : powder materials * Ni-based PM superalloy * grip of creep machine * oxidation Subject RIV: JG - Metallurgy

  4. Computational and Experimental Design of Fe-Based Superalloys for Elevated-Temperature Applications

    Energy Technology Data Exchange (ETDEWEB)

    Liaw, Peter K. [Univ. of Tennessee, Knoxville, TN (United States); Fine, Morris E. [Northwestern Univ., Evanston, IL (United States); Ghosh, Gautam [Northwestern Univ., Evanston, IL (United States); Asta, Mark D. [Univ. of California, Berkeley, CA (United States); Liu, Chain T. [Auburn Univ., AL (United States); Sun, Zhiqian [Univ. of Tennessee, Knoxville, TN (United States); Huang, Shenyan [Univ. of Tennessee, Knoxville, TN (United States); Teng, Zhenke [Univ. of Tennessee, Knoxville, TN (United States); Wang, Gongyao [Univ. of Tennessee, Knoxville, TN (United States)

    2012-04-13

    Analogous to nickel-based superalloys, Fe-based superalloys, which are strengthened by coherent B2- type precipitates are proposed for elevated-temperature applications. During the period of this project, a series of ferritic superalloys have been designed and fabricated by methods of vacuum-arc melting and vacuum-induction melting. Nano-scale precipitates were characterized by atom-probe tomography, ultrasmall- angle X-ray scattering, and transmission-electron microscopy. A duplex distribution of precipitates was found. It seems that ferritic superalloys are susceptible to brittle fracture. Systematic endeavors have been devoted to understanding and resolving the problem. Factors, such as hot rolling, precipitate volume fractions, alloy compositions, precipitate sizes and inter-particle spacings, and hyperfine cooling precipitates, have been investigated. In order to understand the underlying relationship between the microstructure and creep behavior of ferric alloys at elevated temperatures, in-situ neutron studies have been carried out. Based on the current result, it seems that the major role of β' with a 16%-volume fraction in strengthening ferritic alloys is not load sharing but interactions with dislocations. The oxidation behavior of one ferritic alloy, FBB8 (Fe-6.5Al-10Ni-10Cr-3.4Mo-0.25Zr-0.005B, weight percent), was studied in dry air. It is found that it possesses superior oxidation resistance at 1,023 and 1,123 K, compared with other creep-resistant ferritic steels [T91 (modified 9Cr-1Mo, weight percent) and P92 (9Cr-1.8W-0.5Mo, weight percent)]. At the same time, the calculation of the interfacial energies between the -iron and B2-type intermetallics (CoAl, FeAl, and NiAl) has been conducted.

  5. Two stage turbine for rockets

    Science.gov (United States)

    Veres, Joseph P.

    1993-01-01

    The aerodynamic design and rig test evaluation of a small counter-rotating turbine system is described. The advanced turbine airfoils were designed and tested by Pratt & Whitney. The technology represented by this turbine is being developed for a turbopump to be used in an advanced upper stage rocket engine. The advanced engine will use a hydrogen expander cycle and achieve high performance through efficient combustion of hydrogen/oxygen propellants, high combustion pressure, and high area ratio exhaust nozzle expansion. Engine performance goals require that the turbopump drive turbines achieve high efficiency at low gas flow rates. The low mass flow rates and high operating pressures result in very small airfoil heights and diameters. The high efficiency and small size requirements present a challenging turbine design problem. The shrouded axial turbine blades are 50 percent reaction with a maximum thickness to chord ratio near 1. At 6 deg from the tangential direction, the nozzle and blade exit flow angles are well below the traditional design minimum limits. The blade turning angle of 160 deg also exceeds the maximum limits used in traditional turbine designs.

  6. Steam turbines for nuclear power plants

    International Nuclear Information System (INIS)

    Kosyak, Yu.F.

    1978-01-01

    Considered are the peculiarities of the design and operation of steam turbines, condensers and supplementary equipment of steam turbines for nuclear power plants; described are the processes of steam flow in humid-steam turbines, calculation and selection principles of main parameters of heat lines. Designs of the turbines installed at the Charkov turbine plant are described in detail as well as of those developed by leading foreign turbobuilding firms

  7. Phase-transformation and subgrain-deformation characteristics in a cobalt-based superalloy

    Energy Technology Data Exchange (ETDEWEB)

    Benson, M.L. [Department of Materials Science and Engineering, The University of Tennessee, Knoxville, TN 37996 (United States); Reetz, B. [Institute for Materials Science and Technology, Technical University Berlin, Berlin D-10587 (Germany); Liaw, P.K., E-mail: pliaw@utk.edu [Department of Materials Science and Engineering, The University of Tennessee, Knoxville, TN 37996 (United States); Reimers, W. [Institute for Materials Science and Technology, Technical University Berlin, Berlin D-10587 (Germany); Choo, H. [Department of Materials Science and Engineering, The University of Tennessee, Knoxville, TN 37996 (United States); Materials Science and Technology Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831 (United States); Brown, D.W.; Saleh, T.A. [Materials Science and Technology Division, Los Alamos National Laboratory, Los Alamos, NM 87545 (United States); Klarstrom, D.L. [Haynes International, Inc., Kokomo, IN 46904 (United States)

    2011-02-25

    Research highlights: {yields} The mechanical behavior of a cobalt-based superalloy was investigated. {yields} Two diffraction techniques were used to study deformation mechanisms of materials. {yields} In-situ neutron diffraction provides the volume-averaged information. {yields} The peak-profile analysis reveals the information on a subgrain level. {yields} The material exhibited a transformation texture for the HCP phase under loading. - Abstract: A complimentary set of experiments, in situ neutron diffraction and ex situ synchrotron X-ray diffraction, were used to study the phase-transformation and subgrain-deformation characteristics of a cobalt-based superalloy. The neutron diffraction indicated a strain-induced phase transformation in the cobalt-based superalloy under uniaxial tension and compression. The synchrotron X-ray diffraction revealed stacking-fault accumulation and twinning under the same loading conditions. The extent of transformation was found to be greater under tension than under compression. Tensile plastic strains below 2% were accommodated by the stacking-fault creation, while those greater than 2% were accommodated by the phase transformation. Twinning was found to be more active under compressive loading than under tensile loading.

  8. A new method to predict the metadynamic recrystallization behavior in a typical nickel-based superalloy

    Energy Technology Data Exchange (ETDEWEB)

    Lin, Y.C. [Central South University, School of Mechanical and Electrical Engineering, Changsha (China); Central South University, Light Alloy Research Institute, Changsha (China); State Key Laboratory of High Performance Complex Manufacturing, Changsha (China); Chen, Xiao-Min; Chen, Ming-Song; Wen, Dong-Xu [Central South University, School of Mechanical and Electrical Engineering, Changsha (China); State Key Laboratory of High Performance Complex Manufacturing, Changsha (China); Zhou, Ying [Central South University, School of Mechanical and Electrical Engineering, Changsha (China); He, Dao-Guang [Central South University, School of Mechanical and Electrical Engineering, Changsha (China); Central South University, Light Alloy Research Institute, Changsha (China)

    2016-06-15

    The metadynamic recrystallization (MDRX) behaviors of a typical nickel-based superalloy are investigated by two-pass hot compression tests and four conventional stress-based conventional approaches (offset stress method, back-extrapolation stress method, peak stress method, and mean stress method). It is found that the conventional stress-based methods are not suitable to evaluate the MDRX softening fractions for the studied superalloy. Therefore, a new approach, 'maximum stress method', is proposed to evaluate the MDRX softening fraction. Based on the proposed method, the effects of deformation temperature, strain rate, initial average grain size, and interpass time on MDRX behaviors are discussed in detail. Results show that MDRX softening fraction is sensitive to deformation parameters. The MDRX softening fraction rapidly increases with the increase of deformation temperature, strain rate, and interpass time. The MDRX softening fraction in the coarse-grain material is lower than that in the fine-grain material. Moreover, the observed microstructures indicate that the initial coarse grains can be effectively refined by MDRX. Based on the experimental results, the kinetics equations are established and validated to describe the MDRX behaviors of the studied superalloy. (orig.)

  9. Phase-transformation and subgrain-deformation characteristics in a cobalt-based superalloy

    International Nuclear Information System (INIS)

    Benson, M.L.; Reetz, B.; Liaw, P.K.; Reimers, W.; Choo, H.; Brown, D.W.; Saleh, T.A.; Klarstrom, D.L.

    2011-01-01

    Research highlights: → The mechanical behavior of a cobalt-based superalloy was investigated. → Two diffraction techniques were used to study deformation mechanisms of materials. → In-situ neutron diffraction provides the volume-averaged information. → The peak-profile analysis reveals the information on a subgrain level. → The material exhibited a transformation texture for the HCP phase under loading. - Abstract: A complimentary set of experiments, in situ neutron diffraction and ex situ synchrotron X-ray diffraction, were used to study the phase-transformation and subgrain-deformation characteristics of a cobalt-based superalloy. The neutron diffraction indicated a strain-induced phase transformation in the cobalt-based superalloy under uniaxial tension and compression. The synchrotron X-ray diffraction revealed stacking-fault accumulation and twinning under the same loading conditions. The extent of transformation was found to be greater under tension than under compression. Tensile plastic strains below 2% were accommodated by the stacking-fault creation, while those greater than 2% were accommodated by the phase transformation. Twinning was found to be more active under compressive loading than under tensile loading.

  10. Microstructural response to heat affected zone cracking of prewelding heat-treated Inconel 939 superalloy

    International Nuclear Information System (INIS)

    González, M.A.; Martínez, D.I.; Pérez, A.; Guajardo, H.; Garza, A.

    2011-01-01

    The microstructural response to cracking in the heat-affected zone (HAZ) of a nickel-based IN 939 superalloy after prewelding heat treatments (PWHT) was investigated. The PWHT specimens showed two different microstructures: 1) spherical ordered γ′ precipitates (357–442 nm), with blocky MC and discreet M 23 C 6 carbides dispersed within the coarse dendrites and in the interdendritic regions; and 2) ordered γ′ precipitates in “ogdoadically” diced cube shapes and coarse MC carbides within the dendrites and in the interdendritic regions. After being tungsten inert gas welded (TIG) applying low heat input, welding speed and using a more ductile filler alloy, specimens with microstructures consisting of spherical γ′ precipitate particles and dispersed discreet MC carbides along the grain boundaries, displayed a considerably improved weldability due to a strong reduction of the intergranular HAZ cracking associated with the liquation microfissuring phenomena. - Highlights: ► Homogeneous microstructures of γ′ spheroids and discreet MC carbides of Ni base superalloys through preweld heat treatments. ► γ′ spheroids and discreet MC carbides reduce the intergranular HAZ liquation and microfissuring of Nickel base superalloys. ► Microstructure γ′ spheroids and discreet blocky type MC carbides, capable to relax the stress generated during weld cooling. ► Low welding heat input welding speeds and ductile filler alloys reduce the HAZ cracking susceptibility.

  11. Precipitate Evolution and Creep Behavior of a W-Free Co-based Superalloy

    Science.gov (United States)

    Liu, Qinyuan; Coakley, James; Seidman, David N.; Dunand, David C.

    2016-12-01

    The morphological and temporal evolution of γ ^' } (L1_2)-precipitates is studied in a polycrystalline Co-based superalloy (Co-30Ni-9.9Al-5.1Mo-1.9Nb at. pct) free of tungsten, aged at 1173 K (900 °C). Over a 1000 {{{hours}}} heat-treatment, the γ ^' } morphology evolves due to precipitate coalescence. The particles grow in size and the volume fraction decreases, while there is no significant change in the microhardness value. Compressional creep tests at 1123 K (850 °C) on a specimen aged at 1173 K (900 °C) demonstrate that the creep resistance is comparable to the original, W-containing, higher-density Co-based superalloy (Co-9Al-9.8W at. pct). This represents the first creep study of the Co-Al-Mo-Nb-based superalloy system. The W-free alloy exhibits directional coarsening of the γ ^' } precipitates in the direction perpendicular to the applied compressive stress, which indicates a positive misfit. This is consistent with neutron diffraction results.

  12. Ductility minimum and its reversal with aging in cobalt-base superalloys

    International Nuclear Information System (INIS)

    Hammond, J.P.

    1979-01-01

    Good mechanical properties in the face of long-term aging at high temperatures are required of superalloys for nuclear and solar power-conversion applications. Of special concern are losses in ductility and toughness resulting from microstructural instability. The report compares the tensile ductility responses in two cobalt-base superalloys for the solution annealed and aged conditions and endeavors to rationalize results with contemporary concepts. The cobalt-base superalloys Haynes alloy No. 25 and Haynes alloy No. 188 show a pronounced ductility minimum at 760 0 C for the solution annealed condition. However, after prolonged (11,000 h) aging at 816 0 C, copious precipitates form and completely reverse this behavior. These precipitates drastically reduce tensile ductility up to the temperature at which the ductility begins to dip for the solution annealed condition; then the brittle behavior from aging gives way to greatly enhanced ductility. This behavior in Haynes alloy No. 25 was examined in detail. Tensile properties in the solution annealed and 816 0 C-aged conditions are correlated with mode of fracture and the amounts, identity, and morphology of the precipitates. The latter were assessed by optical and scanning electron metallography, microhardness, electron microprobe, and x-ray diffraction. The minimum and its reversal are explained by thermally activated processes that began with the onset of recovery

  13. Mechanism for Formation of Surface Scale during Directional Solidification of Ni-Base Superalloys

    Science.gov (United States)

    Brewster, G.; D'Souza, N.; Ryder, K. S.; Simmonds, S.; Dong, H. B.

    2012-04-01

    Surface scale occurs on the external surface of directionally solidified, single-crystal turbine components. It is one of the most important casting defects because it affects the grain orientation assessment and causes incipient surface melting during heat treatment. The formation of surface scale comprises a three-stage process: (1) formation of a 0.5- to 1.5- μm Al2O3 layer around the external surface of liquid metal as a result of the mold/metal reaction between the liquid and the mold prime coat; (2) separation of the solidified metal from the mold wall during cooling, where the Al2O3 layer is stripped away from the metal surface but remains adhered to the mold; and (3) subsequent oxidation of the "bare" metal to form an oxide scale at the surface. The scale comprises a mixture of oxides. It is found that TiO2, Cr2O3, and Al2O3 form on components cast using the 1st generation alloy, SRR99; however, in the case of castings using the 3rd-generation alloy, CMSX10N it is a predominately nickel-rich oxide (likely to be NiO). On the unscaled surface, the mold and metal are in intimate contact during casting, and subsequent cooling and the Al2O3 layer around the external surface prevents subsequent oxidation of the casting surface.

  14. Crystal Systems.

    Science.gov (United States)

    Schomaker, Verner; Lingafelter, E. C.

    1985-01-01

    Discusses characteristics of crystal systems, comparing (in table format) crystal systems with lattice types, number of restrictions, nature of the restrictions, and other lattices that can accidently show the same metrical symmetry. (JN)

  15. Virtual Crystallizer

    Energy Technology Data Exchange (ETDEWEB)

    Land, T A; Dylla-Spears, R; Thorsness, C B

    2006-08-29

    Large dihydrogen phosphate (KDP) crystals are grown in large crystallizers to provide raw material for the manufacture of optical components for large laser systems. It is a challenge to grow crystal with sufficient mass and geometric properties to allow large optical plates to be cut from them. In addition, KDP has long been the canonical solution crystal for study of growth processes. To assist in the production of the crystals and the understanding of crystal growth phenomena, analysis of growth habits of large KDP crystals has been studied, small scale kinetic experiments have been performed, mass transfer rates in model systems have been measured, and computational-fluid-mechanics tools have been used to develop an engineering model of the crystal growth process. The model has been tested by looking at its ability to simulate the growth of nine KDP boules that all weighed more than 200 kg.

  16. Crystal Engineering

    Indian Academy of Sciences (India)

    Nangia (2002). “Today, research areas under the wide umbrella of crystal engineering include: supramolecular synthesis; nanotechnology; separation science and catalysis; supramolecular materials and devices; polymorphism; cocrystals, crystal structure prediction; drug design and ligand–protein binding.”

  17. Ceramics for Turbine Engine Applications.

    Science.gov (United States)

    1980-03-01

    DEVELOPMENT OF CERAMIC NOZZLE SECTION FOR SMIALL RADIAL GAS TURBINE by J.C.Napier and J.P. Arnold 12 DEVELOPMENT OF A CERAMIC TURBINE NOZZLE RING by H.Burfeindt...this way, for instance, a Daimler engine was in 1911 awarded the prize of the "Automobiltechnische Gesell - schaft". In 1912, a Benz engine won the...blade development Turtle U~nion RB 199 v)ln BENEFITS OF CERAMICS TO GAS TURBINES by Arnold Brooks and Albert I. Bellin Aircraft Engine Group General

  18. Gas turbine flame diagnostic monitor

    Energy Technology Data Exchange (ETDEWEB)

    Morey, W.W.

    1992-09-22

    This patent describes a method for detecting the malfunction of a gas turbine during ignition, start up and under torque load. It comprises: the steps of: optically viewing the entire flame in each combustor of the gas turbine, determining a flame pattern based on electromagnetic radiation from the flame as a function of position in the field of view in each combustor, and comparing the flame pattern of each combustor with predetermined flame patterns, and determining a diagnosis of malfunction associated with one or more combustors of the turbine by the individual and total combustor correlated with the predetermined flame patterns.

  19. Mechanical power efficiency of modified turbine blades

    Science.gov (United States)

    Mahmud, Syahir; Sampebatu, Limbran; Kwang, Suendy Ciayadi

    2017-01-01

    Abstract-The problem of energy crisis has become one of the unsolved issues until today. Indonesia has a lot of non-conventional energy sources that does not utilized effectively yet. For that the available resources must utilized efficiently due to the energy crisis and the growing energy needs. Among the abundant resources of energy, one potential source of energy is hydroelectric energy. This research compares the mechanical power efficiency generated by the Darrieus turbine, Savonius turbine and the Darrieus-Savonius turbine. The comparation of the mechanical power amongst the three turbine starts from the measurement of the water flow rate, water temperature, turbine rotation and force on the shaft on each type of turbine. The comparison will show the mechanical power efficiency of each turbine to find the most efficient turbine that can work optimally. The results show that with 0.637m/s flow velocity and 44.827 Watt of water flow power, the Darrieus-Savonius turbine can generate power equal to 29.927 Watt and shaft force around by 17 N. The Darrieus-Savonius turbine provides around 66.76% efficiency betwen the three turbines; Darrieus turbine, Savonius turbine and the Darrieus-Savonius turbine. Overall, the Darrieus Savonius turbine has the ability to work optimally at the research location.

  20. Multiple Turbine Wakes

    DEFF Research Database (Denmark)

    Machefaux, Ewan; Mann, Jakob

    and to obtain an estimate of the wake expansion in a fixed frame of reference. A comparison of selected datasets from the campaign showed good far wake agreements of mean wake expansion with Actuator Line CFD computations and simpler engineering models. An empirical relationship, relating maximum wake induction......, the Bulk-Richardson and the Froude number approach. Three test cases are subsequently defined covering various atmospheric conditions. Simulations based on the EllipSys3D ABL flow solver are carried out using Large Eddy Simulation and Actuator disc rotor modeling.The turbulence properties of the incoming...... characteristics was investigated.Later, wake interaction resulting from two stall regulated turbines aligned with the incoming wind were studied experimentally and numerically. The experimental work was based on a new dedicated full-scale measurement campaign involving 3 nacelle mounted Continuous Wave scanning...