WorldWideScience

Sample records for crystal structures thermal

  1. imide, crystal structure, thermal and dielectric studies

    Indian Academy of Sciences (India)

    methyl imidazolium methylidene bis(trifluoromethanesulfonyl)imide, crystal structure, thermal and dielectric studies. BOUMEDIENE HADDAD1,2,3,∗, TAQIYEDDINE MOUMENE2, DIDIER VILLEMIN1,. JEAN-FRANÇOIS LOHIER1 and EL-HABIB ...

  2. Crystal structure and thermal property of polyethylene glycol octadecyl ether

    International Nuclear Information System (INIS)

    Meng, Jie-yun; Tang, Xiao-fen; Li, Wei; Shi, Hai-feng; Zhang, Xing-xiang

    2013-01-01

    Highlights: ► The crystal structure of C18En for n ≥ 20 is a monoclinic system. ► Polyethylene glycol octadecyl ether crystallizes perfectly. ► The number of repeat units has significant effect on the melting, crystallizing temperature and enthalpy. ► The thermal stable temperature increases rapidly with increasing the number of repeat unit. - Abstract: The crystal structure, phase change property and thermal stable temperature (T d ) of polyethylene glycol octadecyl ether [HO(CH 2 CH 2 O) n C 18 H 37 , C18En] with various numbers of repeat units (n = 2, 10, 20 and 100) as phase change materials (PCMs) were investigated using temperature variable Fourier transformed infrared spectroscopy (FTIR), wide-angle X-ray diffraction (XRD), differential scanning calorimetry (DSC), and thermogravimetric analysis (TG). C18En crystallizes perfectly at 0 °C; and the crystal structure for n ≥ 20 is a monoclinic system. The number of repeat units has great effect on the phase change properties of C18En. The thermal stable temperature increases rapidly with increasing the number of repeat units. They approach to that of PEG-2000 as the number of repeat units is more than 10. T d increases rapidly with increasing the number of repeat units. C18En are a series of promising polymeric PCMs

  3. ORTEP-III: Oak Ridge Thermal Ellipsoid Plot Program for crystal structure illustrations

    Energy Technology Data Exchange (ETDEWEB)

    Burnett, M.N.; Johnson, C.K.

    1996-07-01

    This report describes a computer program for drawing crystal structure illustrations. Ball-and-stick type illustrations of a quality suitable for publication are produced with either spheres or thermal-motion probability ellipsoids on the atomic sites. The program can also produce stereoscopic pairs of illustrations which aid in the visualization of complex packing arrangements of atoms and thermal motion patterns. Interatomic distances, bond angles, and principal axes of thermal motion are also calculated to aid the structural study.

  4. Crystallization, structural relaxation and thermal degradation in Poly(L-lactide)/cellulose nanocrystal renewable nanocomposites.

    Science.gov (United States)

    Lizundia, E; Vilas, J L; León, L M

    2015-06-05

    In this work, crystallization, structural relaxation and thermal degradation kinetics of neat Poly(L-lactide) (PLLA) and its nanocomposites with cellulose nanocrystals (CNC) and CNC-grafted-PLLA (CNC-g-PLLA) have been studied. Although crystallinity degree of nanocomposites remains similar to that of neat homopolymer, results reveal an increase on the crystallization rate by 1.7-5 times boosted by CNC, which act as nucleating agents during the crystallization process. In addition, structural relaxation kinetics of PLLA chains has been drastically reduced by 53% and 27% with the addition of neat and grafted CNC, respectively. The thermal degradation activation energy (E) has been determined from thermogravimetric analysis in the light of Kissinger's and Ozawa-Flynn-Wall theoretical models. Results reveal a reduction on the thermal stability when in presence of CNC-g-PLLA, while raw CNC slightly increases the thermal stability of PLLA. Fourier transform infrared spectroscopy and energy dispersive X-ray spectroscopy results confirm that the presence of residual catalyst in CNC-g-PLLA plays a pivotal role in the thermal degradation behavior of nanocomposites. Copyright © 2015 Elsevier Ltd. All rights reserved.

  5. Structural, vibrational and thermal characterization of phase transformation in L-histidinium bromide monohydrate single crystals

    Energy Technology Data Exchange (ETDEWEB)

    Moura, G.M. [Universidade Federal do Maranhão, CCSST, Imperatriz, MA, 65900-410 (Brazil); Universidade Federal do Sul e Sudeste do Pará, ICEN, Marabá, PA 68505-080 (Brazil); Carvalho, J.O. [Universidade Federal do Maranhão, CCSST, Imperatriz, MA, 65900-410 (Brazil); Instituto Federal do Tocantins, Araguaína, TO, 77.826-170 (Brazil); Silva, M.C.D.; Façanha Filho, P.F. [Universidade Federal do Maranhão, CCSST, Imperatriz, MA, 65900-410 (Brazil); Santos, A.O. dos, E-mail: adenilson1@gmail.com [Universidade Federal do Maranhão, CCSST, Imperatriz, MA, 65900-410 (Brazil)

    2015-09-01

    L-Histidinium bromide monohydrate (LHBr) single crystal is a nonlinear optical material. In this work the high temperature phase transformation and the thermal stability of single crystals of LHBr was investigated by X-ray diffraction, thermogravimetric analysis, differential thermal analysis, differential scanning calorimetry and Raman spectroscopy. The results showed the LHBr phase transformation of orthorhombic (P2{sub 1}2{sub 1}2{sub 1}) to monoclinic system (P 1 2 1) at 120 °C, with the lattice parameters a = 12.162(1) Å, b = 16.821(2) Å, c = 19.477(2) Å and β = 108.56(2)°. These techniques are complementary and confirm the structural phase transformation due to loss water of crystallization. - Highlights: • -histidinium bromide single crystal was grown by slow evaporation technique. • X-ray diffraction characterize the high-temperature phase transformation. • The structural phase transformation occur due to loss of water of crystallization. • The LHBr thermal expansion coefficients exhibit an anisotropic behavior.

  6. Crystal structure and thermal behavior of KB3O6

    International Nuclear Information System (INIS)

    Bubnova, R.S.; Fundamenskij, V.S.; Filatov, S.K.; Polyakova, I.G.

    2004-01-01

    The structure of potassium triborate prepared in metastable state by crystallization from melt at ∼ 800 deg C was studied by the method of X-ray diffraction analysis. It was ascertained that KB 3 O 6 belongs to monoclinic crystal system, space group P2 1 /c, a = 9.319(1), b = 6.648(1), c = 21.094(2) A, β = 94.38(1) deg, Z = 12. The compound is referred to a new structural type. Anion of the structure is a single boron-oxygen frame formed by three independent rigid triborate rings of [B 3 O 5 ] - , each of them consisting of two BO 3 triangles and BO 4 tetrahedron. Phase transformations during KB 3 O 6 heating up to 800 deg C, as well as thermal expansion in the range of 20-650 deg C, were studied [ru

  7. Crystal structure and thermal expansion of Mn(1-x)Fe(x)Ge.

    Science.gov (United States)

    Dyadkin, Vadim; Grigoriev, Sergey; Ovsyannikov, Sergey V; Bykova, Elena; Dubrovinsky, Leonid; Tsvyashchenko, Anatoly; Fomicheva, L N; Chernyshov, Dmitry

    2014-08-01

    A series of temperature-dependent single-crystal and powder diffraction experiments has been carried out using synchrotron radiation in order to characterize the monogermanides of Mn, Fe and their solid solutions. The MnGe single crystal is found to be enantiopure and we report the absolute structure determination. The thermal expansion, parametrized with the Debye model, is discussed from the temperature-dependent powder diffraction measurements for Mn(1-x)Fe(x)Ge (x = 0, 0.1, 0.2, 0.25, 0.3, 0.4, 0.5, 0.6, 0.7, 0.75, 0.8, 0.9). Whereas the unit-cell dimension and the Debye temperature follow a linear trend as a function of composition, the thermal expansion coefficient deviates from linear dependence with increasing Mn content. No structural phase transformations have been observed for any composition in the temperature range 80-500 K for both single-crystal and powder diffraction, indicating that the phase transition previously observed with neutron powder diffraction most probably has a magnetic origin.

  8. Crystal structure and thermal expansion of a CsCe{sub 2}Cl{sub 7} scintillator

    Energy Technology Data Exchange (ETDEWEB)

    Zhuravleva, M., E-mail: mzhuravl@utk.edu [Scintillation Materials Research Center, University of Tennessee, Knoxville, TN (United States); Department of Materials Science and Engineering, University of Tennessee, Knoxville, TN (United States); Lindsey, A. [Scintillation Materials Research Center, University of Tennessee, Knoxville, TN (United States); Department of Materials Science and Engineering, University of Tennessee, Knoxville, TN (United States); Chakoumakos, B.C. [Quantum Condensed Matter Division, Oak Ridge National Laboratory, Oak Ridge, TN 37996 (United States); Custelcean, R. [Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, TN (United States); Meilleur, F. [Biology and Soft Matter Division, Oak Ridge National Laboratory, Oak Ridge, TN (United States); Hughes, R.W.; Kriven, W.M. [Department of Materials Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, IL (United States); Melcher, C.L. [Scintillation Materials Research Center, University of Tennessee, Knoxville, TN (United States); Department of Materials Science and Engineering, University of Tennessee, Knoxville, TN (United States)

    2015-07-15

    We used single-crystal X-ray diffraction data to determine crystal structure of CsCe{sub 2}Cl{sub 7}. It crystallizes in a P112{sub 1}/b space group with a=19.352(1) Å, b=19.352(1) Å, c=14.838(1) Å, γ=119.87(2)°, and V=4818.6(5) Å{sup 3}. Differential scanning calorimetry measurements combined with the structural evolution of CsCe{sub 2}Cl{sub 7} via X-ray diffractometry over a temperature range from room temperature to the melting point indicates no obvious intermediate solid–solid phase transitions. The anisotropy in the average linear coefficient of thermal expansion of the a axis (21.3×10{sup –6}/°C) with respect to the b and c axes (27.0×10{sup –6}/°C) was determined through lattice parameter refinement of the temperature dependent diffraction patterns. These findings suggest that the reported cracking behavior during melt growth of CsCe{sub 2}Cl{sub 7} bulk crystals using conventional Bridgman and Czochralski techniques may be largely attributed to the anisotropy in thermal expansion. - Graphical abstract: Three-dimensional quadric surface of thermal expansion coefficient of CsCe{sub 2}Cl{sub 7} at room temperature (sphere – isotropic) and near melting point (ellipsoid – anisotropic). - Highlights: • Crystal structure of CsCe{sub 2}Cl{sub 7} was solved through X-ray diffraction. • Linear coefficients of thermal expansion were determined from in-situ XRD in 25–650 °C. • Anisotropy of the a axis with respect to b and c axes (21.3 vs 27.0×10{sup –6}/°C) was found. • No solid–solid phase transitions were observed via XRD and thermal analysis.

  9. Structural, spectroscopic and Thermal Studies of Potassium Di-hydrogen Citrate Crystal

    Directory of Open Access Journals (Sweden)

    N.D. Pandya

    2017-04-01

    Full Text Available Potassium dihydrogen citrate (KDC finds wide applications in food products. Pure potassium dihydrogen citrate crystal was grown by slow solvent evaporation technique at room temperature. Grown crystal exhibited needle like morphology. The powder XRD shows triclinic structure symmetry with lattice parameters a=11.820 Å, b=14.970 Å, c=9.442 Å with angles α = 91.60°, β = 93.35°, γ = 110°. The presence of various functional groups of grown crystal was confirmed by using FT-IR spectroscopy. The thermogram indicates the thermal stability of the sample up to 100oC and then decomposes slowly into oxide stage through two stages. The results are discussed here.

  10. Synthesis, growth, structural, optical, thermal, dielectric and mechanical studies of an organic guanidinium p-nitrophenolate crystal

    Science.gov (United States)

    Dhavamurthy, M.; Peramaiyan, G.; Mohan, R.

    2014-08-01

    Guanidinium p-nitrophenolate (GUNP), a novel organic compound, was synthesized and crystals were grown from methanol solution by a slow evaporation solution growth technique. A single crystal X-ray diffraction study elucidated the crystal structure of GUNP belonging to the orthorhombic crystal system with space group Pnma. Thermal studies revealed that the GUNP crystal is thermally stable up to 192 °C. The lower cut-off wavelength of GUNP was found to be 505 nm by UV-vis-NIR spectral studies. The luminescence properties of the GUNP crystal were investigated. The three independent tensor coefficients ε11, ε22 and ε33 of the dielectric permittivity were calculated. The mechanical properties of the grown crystal were studied by Vickers' microhardness hardness technique.

  11. Synthesis, growth, structural, optical and thermal properties of a new organic salt crystal: 3-nitroanilinium trichloroacetate

    Science.gov (United States)

    Selvakumar, E.; Chandramohan, A.; Anandha Babu, G.; Ramasamy, P.

    2014-09-01

    A new organic non-linear optical salt 3-nitroanilinium trichloroacetate has been synthesized and single crystals grown by slow solvent evaporation solution growth technique at room temperature using methanol as the solvent. The 1H and 13C Nuclear magnetic resonance spectra were recorded to establish the molecular structure of the title salt. The crystal structure of the title crystal has been determined by single crystal X-ray diffraction analysis and it belongs to monoclinic crystal system with non-centrosymmetric space group P21. Fourier transform infrared spectral study has been carried out to confirm the presence of various functional groups. The optical transmittance spectrum was recorded in the range 200-2500 nm, to find the optical transmittance window and lower cut off wavelength. The thermo gravimetric and differential thermal analyses were carried out to establish the thermal stability of the title crystal. The second harmonic generation in the title crystal was confirmed by the modified Kurtz-Perry powder test employing the Nd: YAG laser as the source for infrared radiation.

  12. Thermal radiative properties of a photonic crystal structure sandwiched by SiC gratings

    International Nuclear Information System (INIS)

    Wang, Weijie; Fu, Ceji; Tan, Wenchang

    2014-01-01

    Spectral and directional control of thermal emission holds substantial importance in applications where heat transfer is predominantly by thermal radiation. In this work, we investigate the spectral and directional properties of thermal emission from a novel structure, which is constituted with a photonic crystal (PC) sandwiched by SiC gratings. Numerical results based on the RCWA algorithm reveal that greatly enhanced emissivity can be achieved in a broad frequency band and in a wide range of angle of emission. This promising emission feature is found to be caused by excitation of surface phonon polaritons (SPhPs), PC mode, magnetic polaritons (MPs) and Fabry–Pérot resonance from high order diffracted waves, as well as the coupling between different resonant modes. We show that the broad enhanced emissivity band can be manipulated by adjusting the dimensional parameters of the structure properly. -- Highlights: ► We propose a novel structure made of a photonic crystal sandwiched by SiC gratings. ► High emissivity can be achieved in a broad spectral band and angle range. ► We explain the result by excitation of multiple excited modes and their coupling

  13. OR TEP-II: a FORTRAN Thermal-Ellipsoid Plot Program for crystal structure illustrations

    International Nuclear Information System (INIS)

    Johnson, C.K.

    1976-03-01

    A computer program is described for drawing crystal structure illustrations using a mechanical plotter. Ball-and-stick type illustrations of a quality suitable for publication are produced with either spheres or thermal-motion probability ellipsoids on the atomic sites. The program can produce stereoscopic pairs of illustrations which aid in the visualization of complex packing arrangements of atoms and thermal motion patterns. Interatomic distances, bond angles, and principal axes of thermal motion are also calculated to aid the structural study. The most recent version of the program, OR TEP-II, has a hidden-line-elimination feature to omit those portions of atoms or bonds behind other atoms or bonds

  14. OR TEP-II: a FORTRAN Thermal-Ellipsoid Plot Program for crystal structure illustrations

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, C.K.

    1976-03-01

    A computer program is described for drawing crystal structure illustrations using a mechanical plotter. Ball-and-stick type illustrations of a quality suitable for publication are produced with either spheres or thermal-motion probability ellipsoids on the atomic sites. The program can produce stereoscopic pairs of illustrations which aid in the visualization of complex packing arrangements of atoms and thermal motion patterns. Interatomic distances, bond angles, and principal axes of thermal motion are also calculated to aid the structural study. The most recent version of the program, OR TEP-II, has a hidden-line-elimination feature to omit those portions of atoms or bonds behind other atoms or bonds.

  15. Modification of Thermal Emission via Metallic Photonic Crystals

    International Nuclear Information System (INIS)

    Norris, David J.; Stein, Andreas; George, Steven M.

    2012-01-01

    Photonic crystals are materials that are periodically structured on an optical length scale. It was previously demonstrated that the glow, or thermal emission, of tungsten photonic crystals that have a specific structure - known as the 'woodpile structure' - could be modified to reduce the amount of infrared radiation from the material. This ability has implications for improving the efficiency of thermal emission sources and for thermophotovoltaic devices. The study of this effect had been limited because the fabrication of metallic woodpile structures had previously required a complex fabrication process. In this project we pursued several approaches to simplify the fabrication of metallic photonic crystals that are useful for modification of thermal emission. First, we used the self-assembly of micrometer-scale spheres into colloidal crystals known as synthetic opals. These opals can then be infiltrated with a metal and the spheres removed to obtain a structure, known as an inverse opal, in which a three-dimensional array of bubbles is embedded in a film. Second, we used direct laser writing, in which the focus of an infrared laser is moved through a thin film of photoresist to form lines by multiphoton polymerization. Proper layering of such lines can lead to a scaffold with the woodpile structure, which can be coated with a refractory metal. Third, we explored a completely new approach to modified thermal emission - thin metal foils that contain a simple periodic surface pattern, as shown in Fig. 1. When such a foil is heated, surface plasmons are excited that propagate along the metal interface. If these waves strike the pattern, they can be converted into thermal emission with specific properties.

  16. Thermal diode made by nematic liquid crystal

    Energy Technology Data Exchange (ETDEWEB)

    Melo, Djair, E-mail: djfmelo@gmail.com [Instituto de Física, Universidade Federal de Alagoas, Av. Lourival Melo Mota, s/n, 57072-900 Maceió, AL (Brazil); Fernandes, Ivna [Instituto de Física, Universidade Federal de Alagoas, Av. Lourival Melo Mota, s/n, 57072-900 Maceió, AL (Brazil); Moraes, Fernando [Departamento de Física, CCEN, Universidade Federal da Paraíba, Caixa Postal 5008, 58051-900, João Pessoa, PB (Brazil); Departamento de Física, Universidade Federal Rural de Pernambuco, 52171-900 Recife, PE (Brazil); Fumeron, Sébastien [Institut Jean Lamour, Université de Lorraine, BP 239, Boulevard des Aiguillettes, 54506 Vandoeuvre les Nancy (France); Pereira, Erms [Escola Politécnica de Pernambuco, Universidade de Pernambuco, Rua Benfíca, 455, Madalena, 50720-001 Recife, PE (Brazil)

    2016-09-07

    This work investigates how a thermal diode can be designed from a nematic liquid crystal confined inside a cylindrical capillary. In the case of homeotropic anchoring, a defect structure called escaped radial disclination arises. The asymmetry of such structure causes thermal rectification rates up to 3.5% at room temperature, comparable to thermal diodes made from carbon nanotubes. Sensitivity of the system with respect to the heat power supply, the geometry of the capillary tube and the molecular anchoring angle is also discussed. - Highlights: • An escaped radial disclination as a thermal diode made by a nematic liquid crystal. • Rectifying effects comparable to those caused by carbon and boron nitride nanotubes. • Thermal rectification increasing with radius and decreasing with height of the tube. • Asymmetric BCs cause rectification from the spatial asymmetry produced by the escape. • Symmetric BCs provide rectifications smaller than those yields by asymmetric BCs.

  17. Optically induced structural phase transitions in ion Coulomb crystals

    DEFF Research Database (Denmark)

    Horak, Peter; Dantan, Aurelien Romain; Drewsen, Michael

    2012-01-01

    We investigate numerically the structural dynamics of ion Coulomb crystals confined in a three-dimensional harmonic trap when influenced by an additional one-dimensional optically induced periodical potential. We demonstrate that transitions between thermally excited crystal structures, such as b......We investigate numerically the structural dynamics of ion Coulomb crystals confined in a three-dimensional harmonic trap when influenced by an additional one-dimensional optically induced periodical potential. We demonstrate that transitions between thermally excited crystal structures...

  18. Remarkable reduction of thermal conductivity in phosphorene phononic crystal

    International Nuclear Information System (INIS)

    Xu, Wen; Zhang, Gang

    2016-01-01

    Phosphorene has received much attention due to its interesting physical and chemical properties, and its potential applications such as thermoelectricity. In thermoelectric applications, low thermal conductivity is essential for achieving a high figure of merit. In this work, we propose to reduce the thermal conductivity of phosphorene by adopting the phononic crystal structure, phosphorene nanomesh. With equilibrium molecular dynamics simulations, we find that the thermal conductivity is remarkably reduced in the phononic crystal. Our analysis shows that the reduction is due to the depressed phonon group velocities induced by Brillouin zone folding, and the reduced phonon lifetimes in the phononic crystal. Interestingly, it is found that the anisotropy ratio of thermal conductivity could be tuned by the ‘non-square’ pores in the phononic crystal, as the phonon group velocities in the direction with larger projection of pores is more severely suppressed, leading to greater reduction of thermal conductivity in this direction. Our work provides deep insight into thermal transport in phononic crystals and proposes a new strategy to reduce the thermal conductivity of monolayer phosphorene. (paper)

  19. Thermal evolution of the crystal structure of the orthorhombic perovskite LaFeO3

    International Nuclear Information System (INIS)

    Dixon, Charlotte A.L.; Kavanagh, Christopher M.; Knight, Kevin S.; Kockelmann, Winfried; Morrison, Finlay D.; Lightfoot, Philip

    2015-01-01

    The thermal evolution of the crystal structure of the prototypical orthorhombic perovskite LaFeO 3 has been studied in detail by powder neutron diffraction in the temperature range 25thermal behavior to be understood. In particular, the largest-amplitude symmetry modes (viz. in-phase and out-of-phase octahedral tilts, and A-site cation displacements) are shown to display relatively ‘normal’ behavior, increasing with decreasing temperature, which contrasts with the anomalous behavior previously shown by the derivative Bi 0.5 La 0.5 FeO 3 . However, an unexpected behavior is seen in the nature of the intra-octahedral distortion, which is used to rationalize the unique occurrence of a temperature dependent crossover of the a and c unit cell metrics in this compound. - Graphical abstract: The unusual thermal evolution of lattice metrics in the perovskite LaFeO 3 is rationalized from a detailed powder neutron diffraction study. - Highlights: • Crystal structure of the perovskite LaFeO 3 studied in detail by powder neutron diffraction. • Unusual thermal evolution of lattice metrics rationalized. • Contrasting behavior to Bi-doped LaFeO 3 . • Octahedral distortion/tilt parameters explain unusual a and c lattice parameter behavior

  20. Synthesis, growth, structural, optical, thermal, electrical and mechanical properties of hydrogen bonded organic salt crystal: Triethylammonium-3, 5-dinitrosalicylate

    Science.gov (United States)

    Rajkumar, Madhu; Chandramohan, Angannan

    2017-04-01

    Triethylammonium-3, 5-dinitrosalicylate, an organic salt was synthesized and single crystals grown by slow solvent evaporation solution growth technique using methanol as a solvent. The presence of various functional groups and mode of vibrations has been confirmed by FT-IR spectroscopic technique. The UV-vis-NIR Spectrum was recorded in the range 200-1200 nm to find optical transmittance window and lower cut off wavelength of the title crystal. The formation of the salt and the molecular structure was confirmed by NMR spectroscopic technique. Crystal system, crystalline nature, cell parameters and hydrogen bonding interactions of the grown crystal were determined by single crystal x-ray diffraction analysis. The thermal characteristics of grown crystal were analyzed by thermo gravimetric and differential thermal analyses. Dielectric studies were carried out to study the distribution of charges within the crystal. The mechanical properties of the title crystal were studied by Vicker's microhardness technique.

  1. Growth, structural, optical, thermal and laser damage threshold studies of an organic single crystal: 1,3,5 – triphenylbenzene (TPB)

    International Nuclear Information System (INIS)

    Raja, R. Subramaniyan; Babu, G. Anandha; Ramasamy, P.

    2016-01-01

    Good quality single crystals of pure hydrocarbon 1,3,5-Triphenylbenzene (TPB) have been successfully grown using toluene as a solvent using controlled slow cooling solution growth technique. TPB crystallizes in orthorhombic structure with the space group Pna2 1 . The structural perfection of the grown crystal has been analysed by high resolution X-ray diffraction measurements. The range and percentage of the optical transmission are ascertained by recording the UV-vis spectrum. Thermo gravimetric analysis (TGA) and differential thermal analysis (DTA) were used to study its thermal properties. Powder second harmonic generation studies were carried out to explore its NLO properties. Laser damage threshold value has been determined using Nd:YAG laser operating at 1064 nm.

  2. Thermal expansion accompanying the glass-liquid transition and crystallization

    Directory of Open Access Journals (Sweden)

    M. Q. Jiang

    2015-12-01

    Full Text Available We report the linear thermal expansion behaviors of a Zr-based (Vitreloy 1 bulk metallic glass in its as-cast, annealed and crystallized states. Accompanying the glass-liquid transition, the as-cast Vitreloy 1 shows a continuous decrease in the thermal expansivity, whereas the annealed glass shows a sudden increase. The crystallized Vitreloy 1 exhibits an almost unchanged thermal expansivity prior to its melting. Furthermore, it is demonstrated that the nucleation of crystalline phases can induce a significant thermal shrinkage of the supercooled liquid, but with the growth of these nuclei, the thermal expansion again dominates. These results are explained in the framework of the potential energy landscape, advocating that the configurational and vibrational contributions to the thermal expansion of the glass depend on both, structure and temperature.

  3. Synthesis, growth, structural, optical and thermal properties of a new organic nonlinear optical crystal: 2-amino 5-chloropyridinium-L-tartarate

    Science.gov (United States)

    Jayanalina, T.; Rajarajan, G.; Boopathi, K.; Sreevani, K.

    2015-09-01

    A new organic nonlinear optical crystal 2-amino-5-chloropyridinium-L-tartarate [2A5CPLTA] has been synthesized and the crystals were grown by slow evaporation solution technique at room temperature using methanol as solvent. The crystal structure of the title compound has been determined by the single crystal X-ray diffraction study and it belongs to the monoclinic system with noncentrosymmetric space group P21. The presence of functional groups was ascertained by Fourier transform infrared analysis. The transmittance and lower cut off of the grown crystal was ascertained by the UV-vis-NIR spectroscopy. Thermal studies reveled that 2A5CPLTA crystal is thermally stable up to 144 °C. The dielectric measurements of the grown crystal were carried out with different frequencies and temperatures. Vickers micro hardness measurement was carried out to study the mechanical behavior of the grown crystal. The second harmonic generation of the title crystal was confirmed by the Kurtz-Perry powder test employing the Nd: YAG laser as the source.

  4. Thermal expansion behavior of empressite, AgTe: A structural study by means of in situ high-temperature single-crystal X-ray diffraction

    International Nuclear Information System (INIS)

    Bindi, Luca

    2009-01-01

    The crystal structure of empressite, AgTe, a rare silver telluride, has been investigated by in situ X-ray single-crystal diffraction methods within the temperature range 298-463 K. AgTe remains orthorhombic, space group Pmnb (Pnma as standard), and shows only normal thermal expansion over the entire temperature range. The unit-cell parameters show a gradual increase with the increase of temperature. Slight adjustments in the geometry of Ag-tetrahedra and in the crystal-chemical environment of tellurium atoms occur in a continuous way without abrupt structural changes. The coefficients of thermal expansion along various axes are: α a = 1.5 x 10 -5 K -1 , α b = 3.0 x 10 -5 K -1 , α c = 2.2 x 10 -5 K -1 , and the bulk thermal expansion coefficient α V is 5.4 x 10 -5 K -1 for the temperature range 298-463 K

  5. Synthesis, growth, morphology of the semiorganic nonlinear optical crystal L-glutamic acid hydrochloride and its structural, thermal and SHG characterizations

    Energy Technology Data Exchange (ETDEWEB)

    Dhanasekaran, P.; Srinivasan, K. [Crystal Growth Laboratory, Department of Physics, School of Physical Sciences, Bharathiar University, Coimbatore-641 046, Tamil Nadu (India)

    2012-12-15

    One of the halide derivatives of L-glutamic acid which was identified as a semiorganic nonlinear optical material, L-glutamic acid hydrochloride [HOOC(CH{sub 2}){sub 2}CH(NH{sub 2})COOH.HCl], was grown as bulk single crystal and its significant properties were characterized. The stoichiometric title compound was synthesized and the solubility of its recrystallized form in DD water was determined in the temperature range 30-80 C by gravimetric method. Structural confirmation was carried out by powder X-ray diffraction study through lattice parameter verification. Optical quality smaller dimension single crystals were grown from aqueous solution by self nucleation through slow evaporation of solvent method and a large dimension single crystal was grown by slow cooling method with reversible seed rotation technique. Morphological importances of different growth facets of the as grown crystals were studied through optical goniometry. Unit cell structure of the grown crystal was refined by single crystal X-ray diffraction analysis, functional groups present in the crystal responsible for various modes of vibrations were confirmed by FTIR spectroscopy analysis, thermal stability of the grown crystal was analysed by TG/DTA and DSC and second harmonic generation (SHG) of a fundamental Nd:YAG laser beam by Kurtz technique. Results indicate that the grown crystal is in stoichiometric composition and has significant improvement in its thermal and SHG properties when compared to pure L-glutamic acid polymorphs. (Copyright copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  6. Thermal expansion behavior of empressite, AgTe: A structural study by means of in situ high-temperature single-crystal X-ray diffraction

    Energy Technology Data Exchange (ETDEWEB)

    Bindi, Luca [Museo di Storia Naturale, sez. di Mineralogia, Universita di Firenze, Via La Pira 4, I-50121 Firenze (Italy)], E-mail: luca.bindi@unifi.it

    2009-04-03

    The crystal structure of empressite, AgTe, a rare silver telluride, has been investigated by in situ X-ray single-crystal diffraction methods within the temperature range 298-463 K. AgTe remains orthorhombic, space group Pmnb (Pnma as standard), and shows only normal thermal expansion over the entire temperature range. The unit-cell parameters show a gradual increase with the increase of temperature. Slight adjustments in the geometry of Ag-tetrahedra and in the crystal-chemical environment of tellurium atoms occur in a continuous way without abrupt structural changes. The coefficients of thermal expansion along various axes are: {alpha}{sub a} = 1.5 x 10{sup -5} K{sup -1}, {alpha}{sub b} = 3.0 x 10{sup -5} K{sup -1}, {alpha}{sub c} = 2.2 x 10{sup -5} K{sup -1}, and the bulk thermal expansion coefficient {alpha}{sub V} is 5.4 x 10{sup -5} K{sup -1} for the temperature range 298-463 K.

  7. Studies on growth, crystal structure and characterization of novel organic nicotinium trifluoroacetate single crystals

    Energy Technology Data Exchange (ETDEWEB)

    Dhanaraj, P.V. [Centre for Crystal Growth, SSN College of Engineering, Kalavakkam 603 110 (India); Rajesh, N.P., E-mail: rajeshnp@hotmail.com [Centre for Crystal Growth, SSN College of Engineering, Kalavakkam 603 110 (India); Sundar, J. Kalyana; Natarajan, S. [Department of Physics, Madurai Kamaraj University, Madurai 625 021 (India); Vinitha, G. [Department of Physics, Crescent Engineering College, Chennai 600 048 (India)

    2011-09-15

    Highlights: {yields} Good quality crystals of nicotinium trifluoroacetate in monoclinic system were grown for first time. {yields} Nicotinium trifluoroacetate crystal exhibits third order nonlinear optical properties. {yields} The optical spectrum of nicotinium trifluoroacetate crystal reveals the wide transmission in the entire range with cutoff wavelength at 286 nm. {yields} Nicotinium trifluoroacetate is a low dielectric constant material. - Abstract: An organic material, nicotinium trifluoroacetate (NTF) was synthesized and single crystals in monoclinic system were grown from aqueous solution for the first time. Its solubility and metastable zone width were estimated. The crystal structure of NTF was analyzed to reveal the molecular arrangements and the formation of hydrogen bonds in the crystal. High-resolution X-ray diffraction rocking curve measurements were performed to analyze the structural perfection of the grown crystals. Functional groups in NTF were identified by Fourier transform infrared spectral analysis. Thermal behaviour and stability of NTF were studied by thermogravimetric and differential thermal analysis and differential scanning calorimetry. Mechanical and dielectric properties of NTF crystals were analyzed. Optical studies reveal that NTF crystals are transparent in the wavelength range 286-1100 nm. The third order nonlinear optical parameters of NTF were derived by the Z-scan technique.

  8. Synthesis, crystal structures, spectral, thermal and antimicrobial properties of new Zn(II) 5-iodo- and 5-bromosalicylates

    Science.gov (United States)

    Košická, Petra; Győryová, Katarína; Smolko, Lukáš; Gyepes, Róbert; Hudecová, Daniela

    2018-03-01

    Two new analogous zinc(II) complexes containing 5-iodo- and 5-bromosalicylate ligands, respectively, were prepared in single-crystal form and characterized by IR spectroscopy, thermal analysis and elemental analysis. The solid-state structures of prepared complexes were determined by single crystal X-ray crystallography. Both complexes are isostructural and their crystal structures composed of neutral molecules [Zn(5-Xsal)2(H2O)2] (where X = Br, I, sal = salicylato). Central Zn(II) atom is in both complexes coordinated by six oxygen atoms, four of which are from two chelate bonded 5-halosalicylates and remaining two from coordinated water molecules. The found chelate binding mode is in line with the Δ values calculated from IR spectral data. Antimicrobial activity of prepared complexes was studied against selected bacteria, yeast and filamentous fungi. Obtained results indicate that 5-iodosalicylate complex is more antimicrobially active than its 5-bromo substituted analogue.

  9. New organic single crystal of (benzylthio)acetic acid: Synthesis, crystal structure, spectroscopic (ATR-FTIR, 1H and 13C NMR) and thermal characterization

    Science.gov (United States)

    Sienkiewicz-Gromiuk, Justyna; Tarasiuk, Bogdan; Mazur, Liliana

    2016-04-01

    (Benzylthio)acetic acid (Hbta) was synthesized with 78% yield from benzyl chloride and thiourea as substrates. Well-shaped crystals of Hbta were grown by slow solvent evaporation technique from pure methanol. The compound was investigated by single-crystal X-ray and powder diffraction techniques and was also characterized by other analytical methods, like ATR-FTIR, 1H and 13C NMR and TG/DSC. The acid molecule adopts bent conformation in the solid state. The crystal structure of Hbta is stabilized by numerous intermolecular interactions, including O-H···O, C-H···O, C-H···S and C-H···π contacts. Thermal decomposition of the obtained material takes place above 150 °C.

  10. Non-linear thermal evolution of the crystal structure and phase transitions of LaFeO3 investigated by high temperature X-ray diffraction

    International Nuclear Information System (INIS)

    Selbach, Sverre M.; Tolchard, Julian R.; Fossdal, Anita; Grande, Tor

    2012-01-01

    The crystal structure, anisotropic thermal expansion and structural phase transition of the perovskite LaFeO 3 has been studied by high-temperature X-ray diffraction from room temperature to 1533 K. The structural evolution of the orthorhombic phase with space group Pbnm and the rhombohedral phase with R3 ¯ c structure of LaFeO 3 is reported in terms of lattice parameters, thermal expansion coefficients, atomic positions, octahedral rotations and polyhedral volumes. Non-linear lattice expansion across the antiferromagnetic to paramagnetic transition of LaFeO 3 at T N =735 K was compared to the corresponding behavior of the ferroelectric antiferromagnet BiFeO 3 to gain insight to the magnetoelectric coupling in BiFeO 3 , which is also multiferroic. The first order phase transition of LaFeO 3 from Pbnm to R3 ¯ c was observed at 1228±9 K, and a subsequent transition to Pm3 ¯ m was extrapolated to occur at 2140±30 K. The stability of the Pbnm and R3 ¯ c polymorphs of LaFeO 3 is discussed in terms of the competing enthalpy and entropy of the two crystal polymorphs and the thermal evolution of the polyhedral volume ratio V A /V B . - Graphical abstract: Aniostropic thermal evolution of the lattice parameters and phase transition of LaFeO 3 . Highlights: ► The crystal structure of LaFeO 3 is studied by HTXRD from RT to 1533 K. ► A non-linear expansion across the Néel temperature is observed for LaFeO 3 . ► The ratio V A /V B is used to rationalize the thermal evolution of the structure.

  11. Crystal structure and thermal behaviour of boro-pollucite CsBSi2O6

    International Nuclear Information System (INIS)

    Bubnova, R.S.; Stepanov, N.K.; Filatov, S.K.; Levin, A.A.; Paufler, P.; Meyer, D.C.

    2004-01-01

    The crystal structure of Cs 0.82 B 1.09 Si 1.98 O 6 boro-pollucite at room temperature was determined by direct methods and refined in the l a 3-bar d space group using an anisotropic approximation of atomic thermal displacements (a = 13.009 (1) angstrom, Z = 16, R w = 0.027, R F = 0.037 for 141 independent observed (IFI ≥4σ F ) reflections). The occupancy factors have been refined for Cs and tetrahedral positions assuming the oxygen sites being fully occupied. The compound is isostructural to leucite pollucite high-temperature modification. Thermal behaviour of CsBSi 2 O 6 was investigated by DTA and TG, annealing at different temperatures with following wet chemical analysis and high-temperature X-ray powder diffraction methods. The CsBSi 2 O 6 cubic phase loses mass before melting and decomposes to form a new crystalline phase with close to CsBSi 3 O 8 stoichiometry in the temperature range of 1303 353 K. Thermal expansion of two boro-pollucite samples, which differed in the number of Cs + and/or B 3+ ions of a nominal composition CsBSi 2 O 6 was investigated in air as well as in vacuum. Temperature ranges of negative thermal expansion were found. (authors)

  12. Synthesis, crystal structure, thermal analysis and dielectric ...

    Indian Academy of Sciences (India)

    [13] Perry C H and Lowdes R P 1969 J. Chem. Phys. 51 3648. [14] Sheldrick G M 1997 SHELXS9, Program for the Refinement of Crystal Structures (Germany: University of Gottingen). [15] Loukil M, Kabadou A, Salles Ph and Ben Salah A 2004 Chem. Phys. 300 247. [16] Rolies M M and De Ranter C J 1978 Acta Crystallogr.

  13. Synthesis, characterization and crystal structure of a ...

    African Journals Online (AJOL)

    The Mo atom in the complex is in octahedral coordination. Thermal stability of the complex has also been studied. KEY WORDS: Molybdenum complex, Hydrazone ligand, Crystal structure, X-ray diffraction, Thermal property. Bull. Chem. Soc. Ethiop. 2014, 28(3), 409-414. DOI: http://dx.doi.org/10.4314/bcse.v28i3.10 ...

  14. Structural and morphological characterization of fullerite crystals prepared from the vapor phase

    International Nuclear Information System (INIS)

    Haluska, M.; Fejdi, P.; Vybornov, M.; Kuzmany, H.

    1993-01-01

    Crystal structure, habits and surface structures of fullerite crystals prepared from vapor phase were characterized by X-ray analysis, interfacial angle measurements and optical and scanning electron microscopy (SEM). The study of selected C 60 crystals confirmed the fcc structure at room temperature. The crystal habit is determined by two types of morphological faces, namely {100} and {111}. SEM was used for the observation of thermal etched surfaces. (orig.)

  15. Crystal Structures, Thermal Analysis, and Dissolution Behavior of New Solid Forms of the Antiviral Drug Arbidol with Dicarboxylic Acids

    Directory of Open Access Journals (Sweden)

    Alex N. Manin

    2015-12-01

    Full Text Available Salts of the antiviral drug arbidol (umifenovir (Arb with maleate (Mlc and fumarate (Fum anions have been obtained, and their crystal structures have been described. The crystal structure of arbidol maleate has been redetermined by single crystal X-ray diffraction at 180K. A new arbidol cocrystal in zwitterion form with succinic acid (Suc has also been found and characterized. The arbidol zwitterion was not previously seen in any of the drug crystal forms, and the [Arb + Suc] cocrystal seems to be the first found instance. Analysis of the conformational preferences of the arbidol molecule in the crystal structures has shown that it adopts two types of conformations, namely “open” and “closed” ones. Thermal stability of the arbidol salts and cocrystal have been analyzed by means of differential scanning calorimetry, thermogravimetric, and mass-spectrometry analysis. The dissolution study of the arbidol salts and cocrystal performed in aqueous buffer solutions with pH 1.2 and 6.8 has shown that both the salts and the cocrystal dissolve incongruently to form an arbidol hydrochloride monohydrate at pH 1.2 and an arbidol base at pH 6.8, respectively. The cocrystal reaches the highest solubility level in both pH 1.2 and pH 6.8 solutions.

  16. Growth, structural, thermal, dielectric and nonlinear optical properties of potassium hexachloro cadmate (IV) a novel single crystal

    Science.gov (United States)

    Umarani, P.; Jagannathan, K.

    2018-02-01

    The Potassium hexachloro cadmate (IV) (PHC) single crystal was grown from the aqueous of the solution by a controlled evaporation method. Single crystal XRD solved the structure. FTIR is used to identify the functional groups of grown crystal. The UV-Vis-NIR spectrometer was used to find out the UV cut off region and to calculate the optical band gap of the Potassium hexachloro cadmate (IV) single crystal. The EDAX spectrum has been used to identify the compounds present in title compound. The TG-DTA profile shows the thermal stability of the grown crystal of Potassium hexachloro cadmate (IV). The Vicker's hardness measurement was used to calculate the material hardness of the title compound. The dielectric loss and constant varied with frequencies and activation energy is also calculated. The solid state parameters like plasma energy, Penn gap, Fermi energy, electronic polarizability using Penn analysis and Clausius-Mossotti equation were also calculated for the title compound. The Z-scan technique is used to calculate the third order nonlinear susceptibility of a real and imaginary part.

  17. Growth, thermal and laser properties of Yb:YxLu1−xVO4 mixed crystal

    International Nuclear Information System (INIS)

    Zhong, Degao; Teng, Bing; Kong, Weijin; Li, Jianhong; Zhang, Shiming; Li, Yuyi; Cao, Lifeng; Yang, Liting; He, Linxiang; Huang, Wanxia

    2015-01-01

    New mixed crystal of Yb: Y 0.78 Lu 0.22 VO 4 with Yb ion concentration of 0.3 at% was grown by Czochralski method. Transmission synchrotron X-ray topography implies that this mixed crystal follows a rotational growth pattern. Crystal structure of this crystal was determined by X-ray diffraction. It showed that this crystal possesses a tetragonal zircon structure (ZrSiO 4 , space group I41/amd), as YVO 4 and LuVO 4 do. Thermal properties of this crystal were characterized by measuring its specific heat, thermal expansion coefficients and thermal conductivities. The specific heat was determined to be 0.500 J g −1 K −1 at 293 K. The average linear thermal expansion coefficients were calculated to be α 11 = 1.73 × 10 −6 K −1 and α 33 = 9.43 × 10 −6 K −1 , over the temperature range of 300–777 K. The thermal conductivities were calculated to be κ 11 = 5.47 W m −1 K −1 and κ 33 = 6.64 W m −1 K −1 at 303 K. Continuous-wave (cw) laser test on Yb: Y 0.78 Lu 0.22 VO 4 was conducted at room temperature in the wavelength range of 1035.7–1048.3 nm, and a 13.5% optical-to-optical efficiency was achieved. The good thermal properties of Yb:Y 0.78 Lu 0.22 VO 4 mixed crystal and its attractive cw laser performance make it very suitable for practical applications. - Highlights: • New Yb:Y 0.78 Lu 0.22 VO 4 mixed laser crystals were grown. • The thermal expansion, thermal diffusivity and specific heat were measured. • Cw laser operation was realized at room temperature in the range of 1035.7–1048.3 nm

  18. Effect of thermal fatigue on the structure and properties of Ni3Al-based alloy single crystals

    Science.gov (United States)

    Povarova, K. B.; Drozdov, A. A.; Bazyleva, O. A.; Bulakhtina, M. A.; Alad'ev, N. A.; Antonova, A. V.; Arginbaeva, E. G.; Morozov, A. E.

    2014-05-01

    The effect of thermal fatigue during tests of and single crystals according to the schedules 100 ai 850°C, 100 ai 1050°C, 100 ai 1100°C at a peak-to-peak stress Δσtc = 700-1000 MPa (sum of the maximum tensile and compressive stresses in a thermal cycle) on the structure, the fracture, and the fatigue life of an Ni3Al-based VKNA-1V alloy is studied. It is found that, at 103 thermal cycles, the single crystals have the maximum thermal fatigue resistance at the maximum cycle temperature of 850 and 1050°C, and the properties of the and samples are almost the same at the maximum thermal cycle temperature of 1100°C. After thermal cycling at the maximum temperature of 850°C, the γ layers in the two-phase γ' + γ region in dendrites remain a single-phase structure, as in the as-cast material, and the layer thickness is 100-150 nm. When the maximum thermal cycle temperature increases to 1050 or 1100°C, the discontinuous γ-phase layers in the γ'(Ni3Al) matrix change their morphology and become shorter and wider (their thickness is 300-700 nm). The nickel-based supersaturated solid solution in these layers decomposes with the formation of secondary γ'(Ni3Al)-phase (γ'sec) precipitates in the form of cuboids 50 and 100 nm in size at the maximum cycle temperature of 1050 and 1100°C, respectively. The alternating stresses that appear during thermal cycling cause plastic deformation. As in nickel superalloys, this deformation at the first stage proceeds via the slip of screw dislocations along octahedral {111} planes. Networks of 60° dislocation segments form at γ'/γ interfaces in this case. Fracture begins at the lines of intersection of the slip planes of the {111} octahedron with the sample surface. During fractional, a crack passes from one octahedral plane to another and forms terraces and steps (crystallographic fracture); as a result, the fracture surface bends and becomes curved. In all cases, the fracture surfaces have a mixed brittle-ductile character

  19. Structure and thermal expansion of Ca9Gd(VO4)7: A combined powder-diffraction and dilatometric study of a Czochralski-grown crystal

    Science.gov (United States)

    Paszkowicz, Wojciech; Shekhovtsov, Alexei; Kosmyna, Miron; Loiko, Pavel; Vilejshikova, Elena; Minikayev, Roman; Romanowski, Przemysław; Wierzchowski, Wojciech; Wieteska, Krzysztof; Paulmann, Carsten; Bryleva, Ekaterina; Belikov, Konstantin; Fitch, Andrew

    2017-11-01

    Materials of the Ca9RE(VO4)7 (CRVO) formula (RE = rare earth) and whitlockite-related structures are considered for applications in optoelectronics, e.g., in white-light emitting diodes and lasers. In the CRVO structure, the RE atoms are known to share the site occupation with Ca atoms at two or three among four Ca sites, with partial occupancy values depending on the choice of the RE atom. In this work, the structure and quality of a Czochralski-grown crystal of this family, Ca9Gd(VO4)7 (CGVO), are studied using X-ray diffraction methods. The room-temperature structure is refined using the powder diffraction data collected at a high-resolution synchrotron beamline ID22 (ESRF, Grenoble); for comparison purposes, a laboratory diffraction pattern was collected and analyzed, as well. The site occupancies are discussed on the basis of comparison with literature data of isostructural synthetic crystals of the CRVO series. The results confirm the previously reported site-occupation scheme and indicate a tendency of the CGVO compound to adopt a Gd-deficient composition. Moreover, the thermal expansion coefficient is determined for CGVO as a function of temperature in the 302-1023 K range using laboratory diffraction data. Additionally, for CGVO and six other single crystals of the same family, thermal expansion is studied in the 298-473 K range, using the dilatometric data. The magnitude and anisotropy of thermal expansion, being of importance for laser applications, are discussed for these materials.

  20. Effects of thermo-order-mechanical coupling on band structures in liquid crystal nematic elastomer porous phononic crystals.

    Science.gov (United States)

    Yang, Shuai; Liu, Ying

    2018-08-01

    Liquid crystal nematic elastomers are one kind of smart anisotropic and viscoelastic solids simultaneously combing the properties of rubber and liquid crystals, which is thermal sensitivity. In this paper, the wave dispersion in a liquid crystal nematic elastomer porous phononic crystal subjected to an external thermal stimulus is theoretically investigated. Firstly, an energy function is proposed to determine thermo-induced deformation in NE periodic structures. Based on this function, thermo-induced band variation in liquid crystal nematic elastomer porous phononic crystals is investigated in detail. The results show that when liquid crystal elastomer changes from nematic state to isotropic state due to the variation of the temperature, the absolute band gaps at different bands are opened or closed. There exists a threshold temperature above which the absolute band gaps are opened or closed. Larger porosity benefits the opening of the absolute band gaps. The deviation of director from the structural symmetry axis is advantageous for the absolute band gap opening in nematic state whist constrains the absolute band gap opening in isotropic state. The combination effect of temperature and director orientation provides an added degree of freedom in the intelligent tuning of the absolute band gaps in phononic crystals. Copyright © 2018 Elsevier B.V. All rights reserved.

  1. Solid-state dynamics and single-crystal to single-crystal structural transformations in octakis(3-chloropropyl)octasilsesquioxane and octavinyloctasilsesquioxane.

    Science.gov (United States)

    Kowalewska, A; Nowacka, M; Włodarska, M; Zgardzińska, B; Zaleski, R; Oszajca, M; Krajenta, J; Kaźmierski, S

    2017-10-18

    Reactive octahedral silsesquioxanes of rod-like [octakis(3-chloropropyl)octasilsesquioxane - T 8 (CH 2 CH 2 CH 2 Cl) 8 ] and spherical [octavinyloctasilsesquioxane - T 8 (CH[double bond, length as m-dash]CH 2 ) 8 ] structure can undergo reversible thermally induced phase transitions in the solid state. The phase behaviour has been studied with differential scanning calorimetry (DSC, including temperature modulated DSC), X-ray diffraction, dielectric relaxation spectroscopy (DRS), and nuclear magnetic resonance spectroscopy in the solid state (SS NMR), as well as positron annihilation lifetime spectroscopy (PALS) and polarized optical microscopy (POM). The mechanisms involving fitting the molecules into most symmetrical crystal lattices vary for species of different structure. Thermal energy can be used to expand the crystal lattice leading to thermochromism in the case of T 8 (CH[double bond, length as m-dash]CH 2 ) 8 or conversely to an unusual negative thermal expansion of crystals of T 8 (CH 2 CH 2 CH 2 Cl) 8 that results in their self-actuation. The complex behaviour is reflected in unusual changes in the capacitance and fractional free volume of the material. These phenomena can be used for molecular design of advanced well-defined hybrid materials capable of reversible thermally induced structural transformations. The findings present a new perspective for POSS-based flexible metal-organic frameworks (MOF) of cooperative structural transformability via entropy-based translational sub-net sliding.

  2. Crystal growth, morphology, thermal and spectral studies of an organosulfur nonlinear optical bis(guanidinium) 5-sulfosalicylate (BG5SS) single crystals

    Science.gov (United States)

    Dhavamurthy, M.; Peramaiyan, G.; Babu, K. Syed Suresh; Mohan, R.

    2015-04-01

    Organosulfur nonlinear optical single crystals of orthorhombic bis(guanidinium) 5-sulfosalicylate (2CH6N3 +·C7H4O6S2-·H2O) with dimension 14 mm × 4 mm × 5 mm have been grown from methanol and water solvents in 1:1 ratio by the slow evaporation growth technique. The crystal structure and morphology of the crystals have been studied by single-crystal X-ray diffraction. FTIR spectroscopic studies were carried out to identify the functional groups and vibrational modes present in the grown crystals. The UV-Vis spectrum was studied to analyze the linear optical properties of the grown crystals. The thermal gravimetric analysis was conducted on the grown crystals, and the result revealed that the grown crystal is thermally stable up to 65 °C. The dielectric tensor components ɛ 11, ɛ 22 and ɛ 33 of BG5SS crystal were evaluated as a function of frequency at 40 °C. The surface laser damage threshold for the grown crystal was measured using Nd:YAG laser. Further, Vickers micro-hardness study was carried out to analyze the mechanical strength of the grown crystals for various loads.

  3. The effect of linear imperfection in [001] direction on the thermal properties of silver crystal

    Directory of Open Access Journals (Sweden)

    J Davoodi

    2013-09-01

    Full Text Available  The aim of this investigation was to calculate the thermal properties of silver crystal in the presence of linear imperfection. The simulations were performed by molecular dynamics simulation technique in NPT as well as NVT ensemble based on quantum Sutton-Chen many body potential. The thermal properties including cohesive energy, melting temperature, isobaric heat capacity and thermal expansion of imperfect silver crystal were calculated and compared to those of the perfect crystal. Moreover, the quantities such as radial distribution function, order parameter and lindemann index were calculated in order to obtain information on crystal structure and disorder in atoms. All calculations were done both with liner imperfection in [001] direction and without imperfection at different temperature. The simulation results show that cohesive energy, linear thermal expansion coefficient increase and melting temperature, latent heat of fusion decrease with increasing linear imperfection. Also, the results show that linear imperfection has no effect on the heat capacity.

  4. Effects of Amino-Functionalized Carbon Nanotubes on the Crystal Structure and Thermal Properties of Polyacrylonitrile Homopolymer Microspheres

    Directory of Open Access Journals (Sweden)

    Hailong Zhang

    2017-08-01

    Full Text Available Amino-functionalized multi-walled carbon nanotube (amino-CNT/polyacrylonitrile (PAN microspheres with diameter of about 300–400 nm were prepared by in situ polymerization under aqueous solution. The morphology, crystal structure, and thermal properties of amino-CNTs on a PAN homopolymer were investigated by scanning electron microscopy, transmission electron microscopy, Fourier transform infrared spectra, X-ray diffraction, and differential scanning calorimetry. The results showed that the amino-CNTs had a significant influence on the morphology of microspheres, and the PAN matrix were grafted onto the surface of amino-CNTs with interfacial bonding between them. The XRD studies showed that the crystal size of amino-CNT/PAN microspheres with lower crystallinity was bigger than in the control PAN homopolymer. The analysis of thermal properties indicated that the amino-CNT/PAN microspheres with lower glass transition temperature had a lower initial temperature and velocity of evolving heat during the exothermic processing as compared with the PAN homopolymer. These results suggested that the incorporation of amino-CNTs into the PAN homopolymer matrix was beneficial for controlling the heat released during the stabilization processing.

  5. Growth, structural, optical, thermal and mechanical studies on 4-Aminopyridinium monophthalate: A novel nonlinear optical crystal

    Science.gov (United States)

    Marudhu, G.; Krishnan, S.; Palanichamy, M.

    2016-03-01

    A novel nonlinear optical crystal of 4-Aminopyridinium monophthalate (4-APMP) was grown by slow evaporation technique using methanol as solvent. Single crystal X-ray diffraction analysis confirms that the grown crystal belongs to orthorhombic system. The presence of functional groups was qualitatively determined by FTIR analysis. The optical absorption studies reveal very low absorption in the entire visible region. The fluorescence emission spectrum shows the emission is in blue region. The thermal stability of the grown crystal is found to be around 197.2 °C. The SHG efficiency of the grown crystal is found to be 1.1 times than that of KDP crystals.

  6. Growth, morphology, spectral and thermal studies of gel grown diclofenac acid crystals

    Science.gov (United States)

    Ramachandran, E.; Ramukutty, S.

    2014-03-01

    The crystal growth of diclofenac acid in silica gel is the first to be reported in literature. The growth parameters were varied to optimize the suitable growth condition. Single crystal X-ray diffraction method was used for the conformation of the crystal structure. Morphology studies showed that the growth is prominent along the b-axis and the prominent face is {002}. Fourier transform infrared spectral study was performed to identify the functional groups present in the crystal. Thermal stability and decomposition of the material were analyzed using thermo calorimetry in the temperature range 30-500 °C.

  7. Studies on synthesis, structural, luminescent and thermal properties of a new non-linear optical crystal: 4-amino-4H-1,2,4-triazol-1-ium-3-hydroxy-2,4,6-trinitrophenolate

    Energy Technology Data Exchange (ETDEWEB)

    Dhamodharan, P.; Sathya, K.; Dhandapani, M., E-mail: chemistrydhandapani@gmail.com

    2017-03-01

    A new organic proton transfer complex having NLO activity, 4-amino-4H-1,2,4-triazol-1-ium-3-hydroxy-2,4,6-trinitrophenolate (ATHTP), was crystallized to investigate the factors which stabilize the structure of the crystal. The compound crystallizes in triclinic system with space group P-1. Elemental analysis, thermal analysis, UV–Vis–NIR, FT-IR and NMR spectral analyses were carried out to characterize the crystal. Optical, spectral and thermal properties of the title crystal were analyzed to recommend the material for optical applications. Z-scan was used to measure the effective third-order nonlinear optical susceptibility and nonlinear refractive index. The crystal structure was determined using single crystal XRD method and the structure was optimized using Gaussian 09 program at B3LYP/6-311++G(d,p) level of basis set. This hydrogen bond interactions led to the increase in first-order hyperpolarizability of ATHTP and was 30 times greater than that of urea. Hirshfeld analyses surface analysis was carried out to explore intermolecular interactions in the crystalline state. - Highlights: • Single crystals were grown by slow evaporation solution growth technique. • N-H…O, O-H…O and C-H…O type of interactions lead to stable network. • The thermal stability of the compound was investigated by TG/DTA analyses. • The third-order nonlinear optical susceptibility is found to be 2.1×10{sup −7} esu. • Hirshfeld analyses explore covalent and non covalent interactions.

  8. Ultrafast crystallization and thermal stability of In-Ge doped eutectic Sb70Te30 phase change material

    International Nuclear Information System (INIS)

    Lee Meiling; Miao Xiangshui; Ting Leehou; Shi Luping

    2008-01-01

    Effect of In and Ge doping in the form of In 2 Ge 8 Sb 85 Te 5 on optical and thermal properties of eutectic Sb 70 Te 30 alloys was investigated. Crystalline structure of In 2 Ge 8 Sb 85 Te 5 phase change material consists of a mixture of phases. Thermal analysis shows higher crystallization temperature and activation energy for crystallization. Isothermal reflectivity-time measurement shows a growth-dominated crystallization mechanism. Ultrafast crystallization speed of 30 ns is realized upon irradiation by blue laser beam. The use of ultrafast and thermally stable In 2 Ge 8 Sb 85 Te 5 phase change material as mask layer in aperture-type super-resolution near-field phase change disk is realized to increase the carrier-to-noise ratio and thermal stability

  9. Phenylacetic acid co-crystals with acridine, caffeine, isonicotinamide and nicotinamide: Crystal structures, thermal analysis, FTIR spectroscopy and Hirshfeld surface analysis

    Science.gov (United States)

    Amombo Noa, Francoise M.; Jacobs, Ayesha

    2017-07-01

    Co-crystals of phenylacetic acid (PAA) with acridine (ACR), caffeine (CAF), isonicotinamide (INM) and nicotinamide (NAM) have been successfully prepared and characterised by single crystal X-ray diffraction, FTIR spectroscopy, thermal analysis and Hirshfeld surface analysis. The ACR, INM and NAM co-crystals with PAA exhibit the carboxylic acid-pyridine heterosynthon. Furthermore the amide-amide supramolecular homosynthon is observed in the PAA co-crystals with INM and NAM as well as Nsbnd H⋯O interactions between the acid and the respective base. The CAF co-crystal exhibits hydrogen bonding between the imidazole nitrogen and the COOH group of the PAA. The compounds demonstrate different stoichiometries; for PAA·ACR and PAA·INM a 1:1 ratio is displayed, a 2:1 in 2PAA·CAF and a 2:2 in the case of 2PAA·2NAM.

  10. High Thermal Rectifications Using Liquid Crystals Confined into a Conical Frustum

    Science.gov (United States)

    Silva, José Guilherme; Fumeron, Sébastien; Moraes, Fernando; Pereira, Erms

    2018-05-01

    In recent years, phononics, that studies thermal analogs of electronic devices, has become an important subject due to the need for better use of energy resources influenced by growing demand. On developing of these analogs, for example, thermal diodes, a successful route is the design of nanostructured materials (e.g., carbon nanotubes). However, these materials entail increased costs due to the use of complex techniques/equipments, while alternative cheaper materials present nearly comparable efficiency. In this work, we investigate how a thermal diode made by an alternative material (nematic liquid crystal), confined in a conical frustum capillary, can be optimized to achieve high rectifications. In such capillary tube, the thermotropic nematic liquid crystal 5CB produces an axially anisotropic defect called escaped radial disclination. With the molecular director field of such structure, we obtain the thermal conductivity tensor of the diode and solve the steady-state regime of Laplace and Fourier equations using the finite element method. We observed the anisotropy of the system with the non-linear temperature dependences of the molecular thermal conductivities that rectify the heat flux at rates up to 1266% at room temperature. Studying the sensitivity of the system with respect to shape and molecular and thermal aspects, we found that the improved thermal diode is suitable to be miniaturized and applied on well-determined areas, and it is robust against variations of the inward pumped heat flux. This work contributes to the usage of liquid crystals in non-display devices, having potential applications on controlling the heat flux through surfaces.

  11. Effects of Thermal Exposure on Structures of DD6 Single Crystal Superalloy with Thermal Barrier Coatings

    Directory of Open Access Journals (Sweden)

    DONG Jianmin

    2016-10-01

    Full Text Available In order to investigate the effect of water grit-blasting and high temperature thermal exposure on the microstructures of DD6 alloy with TBCs, DD6 single crystal superalloy specimens were water grit-blasted with 0.3 MPa pressure, then the specimens were coated with thermal barrier coatings by electron beam physical vapor deposition (EB-PVD. Specimens with TBCs were exposed at 1100℃ for 50 and 100 hours in the air respectively, and then these specimens were subjected to stress-rupture tests under the condition of 1100℃/130 MPa. The results show that grit-blasting doesn't lead into the recrystallization, thermal exposure can induce element interdiffusion between the bond coat and alloy substrate, the residual stress and element diffusion lead into the changes of γ' phase coarsing direction. After stress rupture tests, the secondary reaction zone emerges into a local area.

  12. Thermal neutron detectors based on complex oxide crystals

    CERN Document Server

    Ryzhikov, V; Volkov, V; Chernikov, V; Zelenskaya, O

    2002-01-01

    The ways of improvement of spectrometric quality of CWO and GSO crystals have been investigated with the aim of their application in thermal neutron detectors based on radiation capture reactions. The efficiency of the neutron detection by these crystals was measured, and the obtained data were compared with the results for sup 6 LiI(Tl) crystals. It is shown that the use of complex oxide crystals and neutron-absorption filters for spectrometry of thermal and resonance neutrons could be a promising method in combination with computer data processing. Numerical calculations are reported for spectra of gamma-quanta due to radiation capture of the neutrons. To compensate for the gamma-background lines, we used a crystal pair of heavy complex oxides with different sensitivity to neutrons.

  13. Thermal expansion of LATGS crystals

    International Nuclear Information System (INIS)

    Kassem, M.E.; Kandil, S.H.; Hamed, A.E.; Stankowska, J.

    1989-04-01

    The thermal expansion of triglycine sulphate crystals doped with L-α alanine (LATGS) has been studied around the phase transition temperature (30-60 deg. C) using thermomechanical analysis TMA. With increasing the content of admixture, the transition temperature (T c ) was shifted towards higher values, while the relative changes in the dimension of the crystals (ΔL/L 0 ) of the studied directions varied both in the para- and ferroelectric phases. The transition width in the case of doped crystals was found to be broad, and this broadening increases with increasing the content of L-α alanine. (author). 12 refs, 3 figs

  14. Effects of Manganese (Ii Sulphate on Structural, Spectral, Optical, Thermal and Mechanical Properties of L-Alanine Sodium Sulphate Single Crystals

    Directory of Open Access Journals (Sweden)

    F. Praveena

    2017-04-01

    Full Text Available New Non-linear Optical materials have been attracting in the research world for their potential applications in emerging opto-electronic technology. The dipolar nature of amino acid leads to peculiar physical and chemical properties, thus making a good candidate for NLO applications. Single crystals of manganese(II sulphate doped L-Alanine sodium sulphate(LASS has been synthesized by slow evaporation technique. Structural property of the grown crystals are characterized by X-ray powder diffraction,FT-IR spectral analysis conforms all the functional groups. Thermogravity (TG and differential themogravimetric (DTA analysis have been performed to study the thermal stability of the crystals. The second harmonic generation efficiency was measured by Kurtz-Perry powder technique. The transmission and absorption of electromagnetic radiation is analysed through UV-VIS spectrum. Microhardness was measured at different applied load to understand the mechanical stability of the crystal.

  15. Quantitative analysis of thermal diffuse X-ray scattering on single crystals. Communication 2. FCC metals

    International Nuclear Information System (INIS)

    Najsh, V.E.; Novoselova, T.V.; Sagaradze, I.V.; Kvyatkovskij, B.E.; Fedorov, V.I.; Chernenkov, Yu.P.

    1994-01-01

    With the use of X-ray diffractometer a study was made into the intensity of diffuse scattering in Ni crystals with FCC lattice. Earlier accomplished quantitative analysis for BCC crystals was extended to FCC lattices. Comparative evaluation was made for cooperative thermal oscillation patterns and corresponding diffuse scattering in crystals of various structures. Measurements on FCC crystals were carried out at room temperature using AgK a lpha-radiation in 96 points of Ni crystal. 8 refs., 4 figs

  16. Effect of crystal structure on optical properties of sol–gel derived zirconia thin films

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Xiaodong, E-mail: xiaodong_wang@tongji.edu.cn [Pohl Institute of Solid State Physics, Shanghai Key Laboratory of Special Artificial Microstructure Materials and Technology, Tongji University, Shanghai 200092 (China); Wu, Guangming; Zhou, Bin [Pohl Institute of Solid State Physics, Shanghai Key Laboratory of Special Artificial Microstructure Materials and Technology, Tongji University, Shanghai 200092 (China); Shen, Jun, E-mail: shenjun67@tongji.edu.cn [Pohl Institute of Solid State Physics, Shanghai Key Laboratory of Special Artificial Microstructure Materials and Technology, Tongji University, Shanghai 200092 (China)

    2013-04-15

    Highlights: ► ZrO{sub 2} films were deposited by sol–gel method. ► Crystal structures of the films were tuned by different thermal annealing methods. ► The refractive indices vary with the crystal structures of the films. ► Lattice-mismatch was found to reduce the refractive index of ZrO{sub 2} films. -- Abstract: The optical properties of sol–gel derived zirconia thin films and their relation to the crystal structure are studied in this paper. ZrO{sub 2} films were deposited on quartz glass and silicon wafer substrates by sol–gel method with conventional furnace annealing (CFA) and rapid thermal annealing (RTA). Crystal structures of the films were analyzed by X-ray diffraction (XRD) and Raman spectroscopy, while refractive indices of the films were determined from the reflectance and transmittance spectra. The refractive indices vary with the function of crystal structure and density of the films, which depends on annealing temperature and annealing technique. Lattice-mismatch between monoclinic phase and tetragonal phase was found to reduce the refractive index of ZrO{sub 2} films.

  17. Lattice dynamics and thermal diffuse scattering for molecular crystals

    International Nuclear Information System (INIS)

    Kroon, P.A.

    1977-01-01

    Thermal diffuse scattering (TDS) corrections on the observed reflection intensities in the accurate determination of crystal structures by X-ray diffraction are emphasized. A lattice-dynamical model and procedure for lattice-dynamical calculations are set up. Expression for first- and second-order TDS intensity distributions are derived. A comparison with other models is made. First-order TDS corrections for naphtalene at 100 K are presented

  18. Crystal structure, growth and nonlinear optical studies of isonicotinamide p-nitrophenol: A new organic crystal for optical limiting applications

    Science.gov (United States)

    Vijayalakshmi, A.; Vidyavathy, B.; Vinitha, G.

    2016-08-01

    Isonicotinamide p-nitrophenol (ICPNP), a new organic material, was synthesized using methanol solvent. Single crystals of ICPNP were grown using a slow evaporation solution growth technique. Crystal structure of ICPNP is elucidated by single crystal X-ray diffraction analysis. It belongs to monoclinic crystal system with space group of P21/c. It forms two dimensional networks by O-H…O, N-H…O and C-H…O hydrogen bonds. The molecular structure of ICPNP was further confirmed by Fourier transform infrared (FTIR) spectral analysis. The optical transmittance range and the lower cut-off wavelength (421 nm) with the optical band gap (2.90 eV) of the ICPNP crystal were determined by UV-vis-NIR spectral study. Thermal behavior of ICPNP was studied by thermo gravimetric and differential thermal analyses (TG/DTA). The relative dielectric permittivity was calculated for various temperature ranges. Laser damage threshold of ICPNP crystal was found to be 1.9 GW/cm2 using an Nd:YAG laser. A Z-scan technique was employed to measure the nonlinear absorption coefficient, nonlinear refractive index and nonlinear optical susceptibility. Optical limiting behavior of ICPNP was observed at 35 mW input power.

  19. Molybdenum peroxo complex. Structure and thermal behavior

    Energy Technology Data Exchange (ETDEWEB)

    Segawa, Koichi; Ooga, Katsumi; Kurusu, Yasuhiko

    1984-10-01

    The molybdenum peroxide (Mo-y) prepared by oxidation of molybdenum metal with hydrogen peroxide has been studied to determine its structure and thermal behavior. Temperature programmed decomposition has been used to study the thermal stability of Mo-y. Two distinct peaks, I and II, of decomposition processes are discernible in Mo-y. Peak I corresponds to the elimination of water of crystallization and peak II to the decomposition of a peroxide ion of Mo-y. IR and UV examinations support the results of the thermal analysis. The IR band at 931 cm/sup -1/ and the UV band at 381 nm show the same thermal behavior. Both bands are attributable to the peroxide ion of Mo-y. Spectroscopic studies show that Mo-y has the tetrahedral coordination derived from the single molybdenum complex, which has double bond oxygens attached to Mo atom and has a symmetric type of peroxide ion with one water of crystallization.

  20. Thermal shock cracking of GSO single crystal

    International Nuclear Information System (INIS)

    Miyazaki, Noriyuki; Yamamoto, Kazunari; Tamura, Takaharu; Kurashige, Kazuhisa; Ishibashi, Hiroyuki; Susa, Kenzo

    1998-01-01

    The quantitative estimation of the failure stress of a gadolinium orthosilicate (Gd 2 SiO 5 , hereafter abbreviated as GSO) single crystal due to thermal shock was investigated. A cylindrical test specimen was heated in a silicone oil bath, then subjected to thermal shock by pouring room temperature silicone oil. Cracking occurred during cooling. The heat conduction analysis was performed to obtain temperature distribution in a GSO single crystal at cracking, using the surface temperatures measured in the thermal shock cracking test. Then the thermal stress was calculated using temperature profile of the test specimen obtained from the heat conduction analysis. It is found from the results of the thermal stress analysis and the observation of the cracking in test specimens that the thermal shock cracking occurs in a cleavage plane due to the stress normal to the plane. Three-point bending tests were also performed to examine the relationship between the critical stress for thermal shock cracking and the three-point bending strength obtained from small-sized test specimens. (author)

  1. Effect of defects induced by doping and fast neutron irradiation on the thermal properties of lithium ammonium sulphate crystals

    International Nuclear Information System (INIS)

    Kandil, S.H.; Ramadan, T.A.; Darwish, M.M.; Kassem, M.E.; El-Khatib, A.M.

    1994-01-01

    Structural defects were introduced in lithium ammonium sulphate crystals (LAS) either in the process of crystal growth (in the form of foreign ions) or by neutron irradiation. The effect of such defects on the thermal properties of LAS crystals was studied in the temperature range 300-500 K. It was assumed that the doped LAS crystals are composed of a two-phase system having different thermal parameters in each phase. The specific heat at constant pressure, C p , of irradiated samples was found to decrease with increasing irradiation doses. The thermal expansion of LAS crystals was found to be dependent on neutron irradiation, and was attributed to two processes: the release of new species and the trapping process. (author)

  2. Thermal behaviour of strontium tartrate single crystals grown in gel

    Indian Academy of Sciences (India)

    Thermal behaviour of strontium tartrate crystals grown with the aid of sodium metasilicate gel is investigated using thermogravimetry (TG) and differential thermal analysis (DTA). Effect of magnetic field and dopant (Pb)2+ on the crystal stability is also studied using thermal analysis. This study reveals that water molecules are ...

  3. XRD- and infrared-probed anisotropic thermal expansion properties of an organic semiconducting single crystal.

    Science.gov (United States)

    Mohanraj, J; Capria, E; Benevoli, L; Perucchi, A; Demitri, N; Fraleoni-Morgera, A

    2018-01-17

    The anisotropic thermal expansion properties of an organic semiconducting single crystal constituted by 4-hydroxycyanobenzene (4HCB) have been probed by XRD in the range 120-300 K. The anisotropic thermal expansion coefficients for the three crystallographic axes and for the crystal volume have been determined. A careful analysis of the crystal structure revealed that the two different H-bonds stemming from the two independent, differently oriented 4HCB molecules composing the unit cell have different rearrangement patterns upon temperature variations, in terms of both bond length and bond angle. Linearly Polarized Mid InfraRed (LP-MIR) measurements carried out in the same temperature range, focused on the O-H bond spectral region, confirm this finding. The same LP-MIR measurements, on the basis of a semi-empirical relation and of geometrical considerations and assumptions, allowed calculation of the -CNH-O- hydrogen bond length along the a and b axes of the crystal. In turn, the so-calculated -CNH-O- bond lengths were used to derive the thermal expansion coefficients along the corresponding crystal axes, as well as the volumetric one, using just the LP-MIR data. Reasonable to good agreement with the same values obtained from XRD measurements was obtained. This proof-of-principle opens interesting perspectives about the possible development of a rapid, low cost and industry-friendly assessment of the thermal expansion properties of organic semiconducting single crystals (OSSCs) involving hydrogen bonds.

  4. Effect of defects induced by doping and fast neutron irradiation on the thermal properties of lithium ammonium sulphate crystals

    Energy Technology Data Exchange (ETDEWEB)

    Kandil, S.H.; Ramadan, T.A.; Darwish, M.M. (Alexandria Univ. (Egypt). Dept. of Materials Science); Kassem, M.E.; El-Khatib, A.M. (Alexandria Univ. (Egypt). Dept. of Physics)

    1994-05-01

    Structural defects were introduced in lithium ammonium sulphate crystals (LAS) either in the process of crystal growth (in the form of foreign ions) or by neutron irradiation. The effect of such defects on the thermal properties of LAS crystals was studied in the temperature range 300-500 K. It was assumed that the doped LAS crystals are composed of a two-phase system having different thermal parameters in each phase. The specific heat at constant pressure, C[sub p], of irradiated samples was found to decrease with increasing irradiation doses. The thermal expansion of LAS crystals was found to be dependent on neutron irradiation, and was attributed to two processes: the release of new species and the trapping process. (author).

  5. Seeded growth of boron arsenide single crystals with high thermal conductivity

    Science.gov (United States)

    Tian, Fei; Song, Bai; Lv, Bing; Sun, Jingying; Huyan, Shuyuan; Wu, Qi; Mao, Jun; Ni, Yizhou; Ding, Zhiwei; Huberman, Samuel; Liu, Te-Huan; Chen, Gang; Chen, Shuo; Chu, Ching-Wu; Ren, Zhifeng

    2018-01-01

    Materials with high thermal conductivities are crucial to effectively cooling high-power-density electronic and optoelectronic devices. Recently, zinc-blende boron arsenide (BAs) has been predicted to have a very high thermal conductivity of over 2000 W m-1 K-1 at room temperature by first-principles calculations, rendering it a close competitor for diamond which holds the highest thermal conductivity among bulk materials. Experimental demonstration, however, has proved extremely challenging, especially in the preparation of large high quality single crystals. Although BAs crystals have been previously grown by chemical vapor transport (CVT), the growth process relies on spontaneous nucleation and results in small crystals with multiple grains and various defects. Here, we report a controllable CVT synthesis of large single BAs crystals (400-600 μm) by using carefully selected tiny BAs single crystals as seeds. We have obtained BAs single crystals with a thermal conductivity of 351 ± 21 W m-1 K-1 at room temperature, which is almost twice as conductive as previously reported BAs crystals. Further improvement along this direction is very likely.

  6. Crystal structure and thermal stability of AgIn(MoO4)2

    International Nuclear Information System (INIS)

    Klevtsov, P.V.; Solodovnikov, S.F.; Perepelitsa, A.P.; Klevtsova, R.F.

    1984-01-01

    Tetragonal crystals of double molybdate AgIn(MoO 4 ) 2 are prepared bi crystallization from solution in Ag 2 Mo 2 O 7 melt (a=4.998, c=36.725 A, space group I4 1 , Z=6). Its crystal structure is determined (autodaffractometer ''Syntex P2 1 '', MoKsub(α)-radiation, 876 reflections, R=0.054) in which along with Mo-tetrahedrons Mo-octahedrons are present. By mutual edges latter are united into bands forming fragments of wolframite structure alonside with (In, Ag) octahedrons. In the direction of c axis wolframite fragments alternate with scheelite fragments consisting of Mo-tetrahedrons and Ag-octavertices. The crystallochemical formula of the compound is Ag(Insub(0.75)Agsub(0.25))sub(2)Mosub(2)Osub(8) [MoO 4 ]. At a temperature of about 600 deq C AgIn-molybdate transforms into modification with NaIn(MoO 4 ) 2 structure NaIn(MoO 4 ) 2 and melts at 650 deg C decomposing into In 2 (MoO 4 ) 3 solid phase and Ag 2 MoO 4 melt

  7. On improvement of scintillation characteristics of Gd2SiO5:Ce crystals by thermal treatment

    International Nuclear Information System (INIS)

    Bondar, Valery G.; Grinyov, Boris V.; Katrunov, Konstantin A.; Lisetski, Longin N.; Nagornaya, Lyudmila L.; Ryzhikov, Vladimir D.; Spasov, Vladimir G.; Starzhinskiy, Nikolai; Tamulaitis, Gintautas

    2005-01-01

    Effects of thermal treatment of Gd 2 SiO 5 :Ce crystals at T∼0.7T m under low pressure on their optical and scintillation properties were studied. It is shown that thermal treatment in the atmosphere with the chemical potential of ∼40 J mol -1 decreases the absorption in the UV region and substantially improves the crystal transparency in the region of intrinsic emission peaked at 427 nm.Narrowing of the emission band due to suppression of the long-wave component in the range of 520-560 nm, light output increase by 7-10%, decrease of the emission decay time, and improvement of thermal stability of the luminescence yield were also observed. Transformations of the ensemble of structural defects in cerium-activated gadolinium oxyorthosilicate crystals are under discussion

  8. Effects of growth conditions on thermal profiles during Czochralski silicon crystal growth

    Science.gov (United States)

    Choe, Kwang Su; Stefani, Jerry A.; Dettling, Theodore B.; Tien, John K.; Wallace, John P.

    1991-01-01

    An eddy current testing method was used to continuously monitor crystal growth process and investigate the effects of growth conditions on thermal profiles during Czochralski silicon crystal growth. The experimental concept was to monitor the intrinsic electrical conductivities of the growing crystal and deduce temperature values from them. In terms of the experiments, the effects of changes in growth parameters, which include the crystal and crucible rotation rates, crucible position, and pull rate, and hot-zone geometries were investigated. The results show that the crystal thermal profile could shift significantly as a function of crystal length if the closed-loop control fails to maintain a constant thermal condition. As a direct evidence to the effects of the melt flow on heat transfer processes, a thermal gradient minimum was observed when the crystal/crucible rotation combination was 20/-10 rpm cw. The thermal gradients in the crystal near the growth interface were reduced most by decreasing the pull rate or by reducing the radiant heat loss to the environment; a nearly constant axial thermal gradient was achieved when either the pull rate was decreased by half, the height of the exposed crucible wall was doubled, or a radiation shield was placed around the crystal. Under these conditions, the average axial thermal gradient along the surface of the crystal was about 4-5°C/mm. When compared to theoretical results found in literature, the axial profiles correlated well with the results of the models which included radiant interactions. However, the radial gradients estimated from three-frequency data were much higher than what were predicted by known theoretical models. This discrepancy seems to indicate that optical phenomenon within the crystal is significant and should be included in theoretical modeling.

  9. Thermal expansion of crystals of the N2 type

    International Nuclear Information System (INIS)

    Tolkachev, A.M.; Manzhelii, V.G.; Azarenkov, V.P.; Jezowski, A.; Kosobutskaya, E.A.

    1981-01-01

    Linear expansion coefficients of low temperature crystals with linear molecules and Pa3 lattice N 2 (2-21 K), CO(2-28 K), CO 2 (2-25 K), N 2 O(2-90 K) were measured. A version of the law of corresponding states to describe the translational component of the thermal expansion of the substances studied and other low temperature crystals with close-packed lattices is proposed. In the thermal properties of crystals consisting of molecules without inversion centre, we have found anomalies interpreted as the evidence of a partial dipole ordering. (orig.)

  10. Application of liquid crystals in thermal nondestructive evaluation

    International Nuclear Information System (INIS)

    Panakal, J.P.; Mukherjee, S.; Ghosh, J.K.

    1983-01-01

    In recent years, thermal nondestructive evaluation using Cholestric liquid crystals have found wide applications in industry. Thermography using Cholesteric liquid crystals can be used for detection of nonbonds in metallic composites, hot spots in electronic circuits and preliminary examination of welded pressure vessels. This paper presents the results of experiments on thermography of components using encapsulated liquid crystals. (author)

  11. Thermally stimulated luminescence in ZnMoO{sub 4} crystals

    Energy Technology Data Exchange (ETDEWEB)

    Degoda, V.Ya.; Kogut, Ya.P.; Moroz, I.M. [Kyiv National Taras Shevchenko University, MSP 03680 Kyiv (Ukraine); Danevich, F.A. [Institute for Nuclear Research, MSP 03680 Kyiv (Ukraine)

    2017-03-15

    Thermally stimulated luminescence in ZnMoO{sub 4} crystals after X-ray irradiation at temperatures 8 K, 85 K and 295 K was studied. A theoretical model of crystal phosphor with three types of traps (shallow, phosphorescent and deep) is proposed. Simple analytic solutions of the kinetic equations system describing localized electrons on the traps and holes on recombination centres were obtained by using approximations accepted in the classic theories of crystal phosphors. Analytical curves describing thermally stimulated luminescence were obtained. A substantial effect of the different traps concentrations ratios on the thermally stimulated luminescence and conductivity peaks shapes is shown. A good agreement of the theoretical curves with the experimental data for the thermally stimulated luminescence peak at 114 K is obtained.

  12. Computational analysis of heat transfer, thermal stress and dislocation density during resistively Czochralski growth of germanium single crystal

    Science.gov (United States)

    Tavakoli, Mohammad Hossein; Renani, Elahe Kabiri; Honarmandnia, Mohtaram; Ezheiyan, Mahdi

    2018-02-01

    In this paper, a set of numerical simulations of fluid flow, temperature gradient, thermal stress and dislocation density for a Czochralski setup used to grow IR optical-grade Ge single crystal have been done for different stages of the growth process. A two-dimensional steady state finite element method has been applied for all calculations. The obtained numerical results reveal that the thermal field, thermal stress and dislocation structure are mainly dependent on the crystal height, heat radiation and gas flow in the growth system.

  13. Crystal structure determination and thermal behavior upon melting of p-synephrine

    Energy Technology Data Exchange (ETDEWEB)

    Rosa, Frédéric [Unité de Technologies Chimiques et Biologiques pour la Santé, U1022 INSERM, UMR8258 CNRS, Faculté des Sciences Pharmaceutiques et Biologiques, Université Paris Descartes, Sorbonne Paris Cité, 4 Avenue de l' Observatoire, 75006 Paris (France); Négrier, Philippe [Laboratoire Ondes et Matière d' Aquitaine, Université de Bordeaux, UMR CNRS 5798, 351 cours de la Libération, 33 405 Talence Cedex (France); Corvis, Yohann [Unité de Technologies Chimiques et Biologiques pour la Santé, U1022 INSERM, UMR8258 CNRS, Faculté des Sciences Pharmaceutiques et Biologiques, Université Paris Descartes, Sorbonne Paris Cité, 4 Avenue de l' Observatoire, 75006 Paris (France); Espeau, Philippe, E-mail: philippe.espeau@parisdescartes.fr [Unité de Technologies Chimiques et Biologiques pour la Santé, U1022 INSERM, UMR8258 CNRS, Faculté des Sciences Pharmaceutiques et Biologiques, Université Paris Descartes, Sorbonne Paris Cité, 4 Avenue de l' Observatoire, 75006 Paris (France)

    2016-05-20

    Highlights: • The refinement of the crystal structure is achieved from X-ray powder diffraction. • P-Synephrine is revealed to be a racemic compound. • Degradation during melting can be bypassed using high DSC scan rates. • The temperature and enthalpy of melting are then proposed for this compound. - Abstract: The crystal structure of p-synephrine was solved from a high-resolution X-ray powder diffraction pattern optimized by energy-minimization calculations using the Dreiding force field. The title compound crystallizes in a monoclinic system (space group P2{sub 1}/c, Z = 4, with a = 8.8504(11) Å, b = 12.1166(15) Å, c = 9.7820(11) Å, β = 122.551(2)°, V = 884.21(19) Å{sup 3} and d = 1.256 g cm{sup −3}). Since p-synephrine degrades upon melting, its melting data were determined from DSC experiments carried out as a function of the heating rate. This method allowed determining a melting temperature and enthalpy equal to 199.8 ± 1.3 °C and 57 ± 3 kJ mol{sup −1}, respectively.

  14. Phase relations, crystal structures and physical properties of nuclear fuels

    International Nuclear Information System (INIS)

    Tagawa, Hiroaki; Fujino, Takeo; Tateno, Jun

    1975-07-01

    Phase relations, crystal structures and physical properties of the compounds for nuclear fuels are presented, including melting point, thermal expansion, diffusion and magnetic and electric properties. Emphasis is on oxides, carbides and nitrides of thorium, uranium and plutonium. (auth.)

  15. Three-dimensional modelling of thermal stress in floating zone silicon crystal growth

    Science.gov (United States)

    Plate, Matiss; Krauze, Armands; Virbulis, Jānis

    2018-05-01

    During the growth of large diameter silicon single crystals with the industrial floating zone method, undesirable level of thermal stress in the crystal is easily reached due to the inhomogeneous expansion as the crystal cools down. Shapes of the phase boundaries, temperature field and elastic material properties determine the thermal stress distribution in the solid mono crystalline silicon during cylindrical growth. Excessive stress can lead to fracture, generation of dislocations and altered distribution of intrinsic point defects. Although appearance of ridges on the crystal surface is the decisive factor of a dislocation-free growth, the influence of these ridges on the stress field is not completely clear. Here we present the results of thermal stress analysis for 4” and 5” diameter crystals using a quasi-stationary three dimensional mathematical model including the material anisotropy and the presence of experimentally observed ridges which cannot be addressed with axis-symmetric models. The ridge has a local but relatively strong influence on thermal stress therefore its relation to the origin of fracture is hypothesized. In addition, thermal stresses at the crystal rim are found to increase for a particular position of the crystal radiation reflector.

  16. The Lamb wave bandgap variation of a locally resonant phononic crystal subjected to thermal deformation

    Science.gov (United States)

    Zhu, Yun; Li, Zhen; Li, Yue-ming

    2018-05-01

    A study on dynamical characteristics of a ternary locally resonant phononic crystal (PC) plate (i.e., hard scatterer with soft coating periodically disperse in stiff host matrix) is carried out in this paper. The effect of thermal deformation on the structure stiffness, which plays an important role in the PC's dynamical characteristics, is considered. Results show that both the start and the stop frequency of bandgap shift to higher range with the thermal deformation. In particular, the characteristics of band structure change suddenly at critical buckling temperature. The effect of thermal deformation could be utilized for tuning of phononic band structures, which can promote their design and further applications.

  17. Lanthanide complexes with 2,3-dimethoxybenzoic acid and terpyridine. Crystal structures, thermal properties, and antibacterial activities

    Energy Technology Data Exchange (ETDEWEB)

    Shen, Pan-Pan; Wu, Xiao-Hui; Zhang, Jian-Jun [Testing and Analysis Center, Hebei Normal University, Shijiazhuang (China); College of Chemistry and Material Science, Hebei Normal University, Shijiazhuang (China); Ren, Ning [College of Chemical Engineering and Material, Handane College (China); Wang, Shu-Ping [College of Chemistry and Material Science, Hebei Normal University, Shijiazhuang (China)

    2017-08-03

    The lanthanide coordination complexes Er(2,3-DMOBA){sub 3}(terpy)(H{sub 2}O) (1) and [Nd(2,3-DMOBA){sub 3}(terpy)(H{sub 2}O)]{sub 2} (2) (2,3-DMOBA = 2,3-dimethoxybenzoate; terpy = 2,2':6',2{sup ''}-terpyridine) were synthesized and characterized by IR spectroscopy, powder X-ray diffraction (XRD), single-crystal X-ray diffraction, and thermogravimetric analysis. Complex 1 crystallizes in the triclinic system, space group P1, and the mononuclear subunits form a 1D chain structure along the a axis by hydrogen bonds. Complex 2 crystallizes in the monoclinic system, space group P2{sub 1}/c, and the dinuclear subunits are further linked via the offset face-to-face π..π weak stacking interactions to form a supramolecular 2D layered structure. Thermal analysis showed that the complexes have three decomposition steps. The first step is the loss of coordination water molecules. The neutral terpy ligands and partial 2,3-DMOBA ligands are lost in the second step. The remaining 2,3-DMOBA ligands are lost in the third step. The 3D stacked plots for the FT-IR spectra of the evolved gases are recorded and the gaseous products are identified by the typical IR spectra obtained at different temperatures from the 3D stacked plots. Meanwhile, the results of the antibacterial action tests show that 1 and 2 have better antibacterial activities to Candida albicans than to Escherichia coli or Staphylococcus aureus. In addition, complex 2 has better antibacterial action to Candida albicans than complex 1. (copyright 2017 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  18. Gallium arsenide single crystal solar cell structure and method of making

    Science.gov (United States)

    Stirn, Richard J. (Inventor)

    1983-01-01

    A production method and structure for a thin-film GaAs crystal for a solar cell on a single-crystal silicon substrate (10) comprising the steps of growing a single-crystal interlayer (12) of material having a closer match in lattice and thermal expansion with single-crystal GaAs than the single-crystal silicon of the substrate, and epitaxially growing a single-crystal film (14) on the interlayer. The material of the interlayer may be germanium or graded germanium-silicon alloy, with low germanium content at the silicon substrate interface, and high germanium content at the upper surface. The surface of the interface layer (12) is annealed for recrystallization by a pulsed beam of energy (laser or electron) prior to growing the interlayer. The solar cell structure may be grown as a single-crystal n.sup.+ /p shallow homojunction film or as a p/n or n/p junction film. A Ga(Al)AS heteroface film may be grown over the GaAs film.

  19. Non-isothermal crystallization kinetics and thermal behaviour of ...

    Indian Academy of Sciences (India)

    Administrator

    The thermal behaviour and crystallization kinetics of PA12/SEBS-g-MA blends .... was determined using Perkin Elmer Pyris 1 TGA. ..... such as difference in the thermal conductivity of the .... glasses (Columbus: American Ceramics Society) p 166.

  20. Cross-section of single-crystal materials used as thermal neutron filters

    International Nuclear Information System (INIS)

    Adib, M.

    2005-01-01

    Transmission properties of several single crystal materials important for neutron scattering instrumentation are presented. A computer codes are developed which permit the calculation of thermal diffuse and Bragg-scattering cross-sections of silicon., and sapphire as a function of material's constants, temperature and neutron energy, E, in the range 0.1 MeV .A discussion of the use of their single-crystal as a thermal neutron filter in terms of the optimum crystal thickness, mosaic spread, temperature, cutting plane and tuning for efficient transmission of thermal-reactor neutrons is given

  1. Rare Earth Borohydrides—Crystal Structures and Thermal Properties

    Directory of Open Access Journals (Sweden)

    Christoph Frommen

    2017-12-01

    Full Text Available Rare earth (RE borohydrides have received considerable attention during the past ten years as possible hydrogen storage materials due to their relatively high gravimetric hydrogen density. This review illustrates the rich chemistry, structural diversity and thermal properties of borohydrides containing RE elements. In addition, it highlights the decomposition and rehydrogenation properties of composites containing RE-borohydrides, light-weight metal borohydrides such as LiBH4 and additives such as LiH.

  2. Crystallization and structure of chromium cast iron with addition of Mo and Ni

    International Nuclear Information System (INIS)

    Pietrowski, S.

    1998-01-01

    The aim of the presented paper is to show the results of examination of the crystallization process using the method of thermal-derivative analysis (ATD) and the structure examination of chromium cast iron, chromium molybdenum c. i. and chromium molybdenum nickel c.i. It was found that molybdenum in amount over 2 wt % causes the crystallization of eutectic carbides M 23 C 6 and M 6 C. The M 23 C 6 carbide crystallizes upon the crystallization of eutectic carbides M 3 C and M 7 C 3 . It is shown that ATD method facilitates both interpretation and control of the crystallization as well as formation of the cast iron structure at the solid state. (author)

  3. Mechanical design of thin-film diamond crystal mounting apparatus with optimized thermal contact and crystal strain for coherence preservation x-ray optics

    Science.gov (United States)

    Shu, Deming; Shvydko, Yury; Stoupin, Stanislav; Kim, Kwang-Je

    2018-05-08

    A method and mechanical design for a thin-film diamond crystal mounting apparatus for coherence preservation x-ray optics with optimized thermal contact and minimized crystal strain are provided. The novel thin-film diamond crystal mounting apparatus mounts a thin-film diamond crystal supported by a thick chemical vapor deposition (CVD) diamond film spacer with a thickness slightly thicker than the thin-film diamond crystal, and two groups of thin film thermal conductors, such as thin CVD diamond film thermal conductor groups separated by the thick CVD diamond spacer. The two groups of thin CVD film thermal conductors provide thermal conducting interface media with the thin-film diamond crystal. A piezoelectric actuator is integrated into a flexural clamping mechanism generating clamping force from zero to an optimal level.

  4. Meshed doped silicon photonic crystals for manipulating near-field thermal radiation

    Science.gov (United States)

    Elzouka, Mahmoud; Ndao, Sidy

    2018-01-01

    The ability to control and manipulate heat flow is of great interest to thermal management and thermal logic and memory devices. Particularly, near-field thermal radiation presents a unique opportunity to enhance heat transfer while being able to tailor its characteristics (e.g., spectral selectivity). However, achieving nanometric gaps, necessary for near-field, has been and remains a formidable challenge. Here, we demonstrate significant enhancement of the near-field heat transfer through meshed photonic crystals with separation gaps above 0.5 μm. Using a first-principle method, we investigate the meshed photonic structures numerically via finite-difference time-domain technique (FDTD) along with the Langevin approach. Results for doped-silicon meshed structures show significant enhancement in heat transfer; 26 times over the non-meshed corrugated structures. This is especially important for thermal management and thermal rectification applications. The results also support the premise that thermal radiation at micro scale is a bulk (rather than a surface) phenomenon; the increase in heat transfer between two meshed-corrugated surfaces compared to the flat surface (8.2) wasn't proportional to the increase in the surface area due to the corrugations (9). Results were further validated through good agreements between the resonant modes predicted from the dispersion relation (calculated using a finite-element method), and transmission factors (calculated from FDTD).

  5. A thermally tunable inverse opal photonic crystal for monitoring glass transition.

    Science.gov (United States)

    Sun, Liguo; Xie, Zhuoying; Xu, Hua; Xu, Ming; Han, Guozhi; Wang, Cheng; Bai, Xuduo; Gu, ZhongZe

    2012-03-01

    An optical method was developed to monitor the glass transition of the polymer by taking advantage of reflection spectrum change of the thermally tunable inverse opal photonic crystal. The thermally tunable photonic bands of the polymer inverse opal photonic crystal were traceable to the segmental motion of macromolecules, and the segmental motion was temperature dependent. By observing the reflection spectrum change of the polystyrene inverse opal photonic crystal during thermal treatment, the glass transition temperature of polystyrene was gotten. Both changes of the position and intensity of the reflection peak were observed during the glass transition process of the polystyrene inverse opal photonic crystal. The optical change of inverse opal photonic crystal was so large that the glass transition temperature could even be estimated by naked eyes. The glass transition temperature derived from this method was consistent with the values measured by differential scanning calorimeter.

  6. Crystal growth, structural, spectral, thermal, dielectric, linear and nonlinear optical characteristics of a new organic acentric material: L-Methionine-Succinic acid (2/1)

    Science.gov (United States)

    Nageshwari, M.; Kumari, C. Rathika Thaya; Vinitha, G.; Mohamed, M. Peer; Sudha, S.; Caroline, M. Lydia

    2018-03-01

    L-Methionine-Succinic acid (2/1) (LMSA), 2C5H11NO2S·C4H6O4, a novel nonlinear optical material which belongs to the class of organic category was grown-up for the first time by the technique of slow evaporation. Purity of LMSA was improved using repetitive recrystallization. LMSA was analyzed by single crystal and powder X-ray diffraction investigation to affirm the crystal structure and crystalline character. The single crystal XRD revealed that LMSA corresponds to the crystal system of triclinic with P1 as space group showing the asymmetric unit consists of a neutral succinic acid molecule and two methionine residues which are crystallographically independent existing in zwitterionic form. The functional groups existing in LMSA was accomplished using Fourier transform infrared spectroscopy. The optical transparency and the band gap energy were identified utilizing UV-Visible spectrum. The optical constants specifically reflectance and extinction coefficient clearly indicate the elevated transparency of LMSA. The thermal analyses affirmed its thermal stability. The luminescence behavior of LMSA has been analyzed by Photoluminescence (PL) spectral study. The mechanical, laser damage threshold and dielectric investigation of LMSA was done to suggest the material for practical applications. The second and third harmonic generation efficacy was confirmed by means of Kurtz-Perry and Z-scan procedure which attest its potentiality in the domain of nonlinear optics.

  7. Achieving dynamic behaviour and thermal expansion in the organic solid state via co-crystallization.

    Science.gov (United States)

    Hutchins, Kristin M; Groeneman, Ryan H; Reinheimer, Eric W; Swenson, Dale C; MacGillivray, Leonard R

    2015-08-01

    Thermal expansion involves a response of a material to an external stimulus that typically involves an increase in a crystallographic axis (positive thermal expansion (PTE)), although shrinking with applied heat (negative thermal expansion (NTE)) is known in rarer cases. Here, we demonstrate a means to achieve dynamic molecular motion and thermal expansions in organic solids via co-crystallizations. One co-crystal component is known to exhibit dynamic behaviour in the solid state while the second, when varied systematically, affords co-crystals with linear thermal expansion coefficients that range from colossal to nearly zero. Two co-crystals exhibit rare NTE. We expect the approach to guide the design of molecular solids that enable predesigned motion related to thermal expansion processes.

  8. Growth and dielectric, mechanical, thermal and etching studies of an organic nonlinear optical L-arginine trifluoroacetate (LATF) single crystal

    International Nuclear Information System (INIS)

    Arjunan, S.; Mohan Kumar, R.; Mohan, R.; Jayavel, R.

    2008-01-01

    L-arginine trifluoroacetate, an organic nonlinear optical material, has been synthesized from aqueous solution. Bulk single crystal of dimension 57 mm x 5 mm x 3 mm has been grown by temperature lowering technique. Powder X-ray diffraction studies confirmed the monoclinic structure of the grown L-arginine trifluoroacetate crystal. Linear optical property of the grown crystal has been studied by UV-vis spectrum. Dielectric response of the L-arginine trifluoroacetate crystal was analysed for different frequencies and temperatures in detail. Microhardness study on the sample reveals that the crystal possesses relatively higher hardness compared to many organic crystals. Thermal analyses confirmed that the L-arginine trifluoroacetate material is thermally stable upto 212 deg. C. The etching studies have been performed to assess the perfection of the L-arginine trifluoroacetate crystal. Kurtz powder second harmonic generation test confirms the nonlinear optical properties of the as-grown L-arginine trifluoroacetate crystal

  9. Synthesis, crystal structure, physicochemical properties of hydrogen bonded supramolecular assembly of N,N-diethylanilinium-3, 5-dinitrosalicylate crystal

    Science.gov (United States)

    Rajkumar, M.; Chandramohan, A.

    2017-12-01

    An organic salt, N,N-diethylanilinium 3,5-dinitrosalicylate was synthesized and single crystals grown by employing the slow solvent evaporation solution growth technique in methanol-acetone (1:1) mixture. The electronic transitions of the salt crystal were studied by UV-Visible spectrum. The optical transmittance window and lower wavelength cut-off of grown crystal have been identified by UV-Vis-NIR studies. The FT-IR spectrum was recorded to confirm the presence of various functional groups in the grown crystal. 1H and 13C NMR spectrum were recorded to establish the molecular structure of the title crystal. Single crystal X-ray diffraction data indicated that the crystal belongs to monoclinic crystal system with P21/n space group. The thermal stability of the crystal was established by TG/DTA studies. The mechanical properties of the grown crystal were studied by Vickers' microhardness technique. The dielectric studies indicated that the dielectric constant and dielectric loss decrease exponentially with frequency at different temperatures.

  10. Orientation dependence of the thermal fatigue of nickel alloy single crystals

    Energy Technology Data Exchange (ETDEWEB)

    Dul' nev, R A; Svetlov, I L; Bychkov, N G; Rybina, T V; Sukhanov, N N

    1988-11-01

    The orientation dependence of the thermal stability and the thermal fatigue fracture characteristics of single crystals of MAR-M200 nickel alloy are investigated experimentally using X-ray diffraction analysis and optical and scanning electron microscopy. It is found that specimens with the 111-line orientation have the highest thermal stability and fatigue strength. Under similar test conditions, the thermal fatigue life of single crystals is shown to be a factor of 1.5-2 higher than that of the directionally solidified and equiaxed alloys. 6 references.

  11. The structural, microhardness and thermal properties of a semiorganic NLO crystal: Lithium paranitrophenolate trihydrate (NO2-C6H4-OLi.3H2O)

    International Nuclear Information System (INIS)

    Boaz, B. Milton; Raman, P. Santhana; Raja, S. Xavier Jesu; Das, S. Jerome

    2005-01-01

    The crystallographic parameters, morphology, microhardness anisotropy and thermal properties including differential thermal analysis (DTA), thermo gravimetric analysis (TGA) of a new nonlinear optical material lithium paranitrophenolate trihydrate (NPLi.3H 2 O) are reported. The single crystals of NPLi.3H 2 O show effective phase matchable second harmonic generation properties for frequency conversion. Optically clear single crystals having dimensions up to 12 mm x 8 mm x 4 mm have been grown successfully within a period of 60 days by isothermal solvent evaporation technique. The title compound crystallizes in monoclinic system with space group Pa. Microhardness measurement on different planes verifies the hardness anisotropy and thermal studies reveal good thermal stability of the material. The NLO property of the crystal is verified by employing Kurtz powder test. The crystal has a wide range of optical transparency from 400 nm to 1500 nm

  12. An optical, electro-optic and thermal characterisation of various organic crystals

    International Nuclear Information System (INIS)

    Lochran, Stephen

    1997-01-01

    The organic materials S - 3 - methyl - 5 - nitro - N - (1 - phenylethyl) - 2 - pyridinamine [3- methyl-MBANP] and S - N - methyl - 5 - nitro - N -(1 - phenylethyl) - 2 - pyridinamine [N- methyl-MBANP] belong to a family of compounds based on the 2-(α-methylbenzylamino)-5- nitropyridine molecule and were identified as promising nonlinear optical materials by the powder disk test. Large single crystals were grown from solution for N-methyl-MBANP, which crystallises in a monoclinic space group, and from the melt and solution for 3-methyl-MBANP which crystallises in an orthorhombic space group. Orthoscopic examination of N-methyl-MBANP revealed no dispersion of the dielectric axes unlike the parent molecule and the position of the dielectric axes was correlated with the molecular structure. Preparation of prisms from single crystals of both materials facilitated the measurement of refractive indices in the visible and the near infra-red. The values obtained were correlated with the crystal structure and a Sellmeier equation fitted to each of the dispersion curves. The nonlinear optical properties of both materials were evaluated by use of the Maker fringe technique and phase matched intensities. By means of these two methods, the full nonlinear d ij tensor was obtained for both materials at a fundamental wavelength of 1064nm. The linear electro-optic properties of N-methyl-MBANP were evaluated using a conoscopic experiment and correlated with the crystal structure together with the magnitude of all non-zero elements in the d ij tensor. Separately, the thermal properties of N-methylurea (NMU), 4-nitro-4'-methylbenzylidene aniline (NMBA) and Zinc TrisThiourea Sulfate (ZTS) were evaluated and all correlated with the crystal structure and bonding. (author)

  13. Crystal structures and thermal decomposition of permanganates AE[MnO_4]_2 . n H_2O with the heavy alkaline earth elements (AE=Ca, Sr and Ba)

    International Nuclear Information System (INIS)

    Henning, Harald; Bauchert, Joerg M.; Conrad, Maurice; Schleid, Thomas

    2017-01-01

    Reexamination of the syntheses and crystal structures as well as studies of the thermal decomposition of the heavy alkaline earth metal permanganates Ca[MnO_4]_2 . 4 H_2O, Sr[MnO_4]_2 . 3 H_2O and Ba[MnO_4]_2 are the focus of this work. As an alternative to the very inelegant Muthmann method, established for the synthesis of Ba[MnO_4]_2 a long time ago, we employed a cation-exchange column loaded with Ba"2"+ cations and passed through an aqueous potassium-permanganate solution. We later used this alternative also with strontium- and calcium-loaded columns and all the compounds synthesized this way were indistinguishable from the products of the established methods. Ca[MnO_4]_2 . 4 H_2O exhibiting [CaO_8] polyhedra crystallizes in the orthorhombic space group Pccn with the lattice parameters a=1397.15(9), b=554.06(4) and c=1338.97(9) pm with Z=4, whereas Sr[MnO_4]_2 . 3 H_2O with [SrO_1_0] polyhedra adopts the cubic space group P2_13 with a=964.19(7) pm and Z=4. So the harder the AE"2"+ cation, the higher its demand for hydration in aqueous solution. Consequently, the crystal structure of Ba[MnO_4]_2 in the orthorhombic space group Fddd with a=742.36(5), b=1191.23(7) and c=1477.14(9) pm with Z=8 lacks any crystal water, but contains [BaO_1_2] polyhedra. During the thermal decomposition of Ca[MnO_4]_2 . 4 H_2O, the compound expels up to two water molecules of hydration, before the crystal structure collapses after the loss of the third H_2O molecule at 157 C. The crystal structure of Sr[MnO_4]_2 . 3 H_2O breaks down after the expulsion of the third water molecule as well, but this already occurs at 148 C. For both the calcium and the strontium permanganate samples, orthobixbyite-type α-Mn_2O_3 and the oxomanganates(III,IV) AEMn_3O_6 (AE=Ca and Sr) remain as final decomposition products at 800 C next to amorphous phases. On the other hand, the already anhydrous Ba[MnO_4]_2 thermally decomposes to hollandite-type BaMn_8O_1_6 and BaMnO_3 at 800 C.

  14. Crystal growth and comparison of vibrational and thermal properties ...

    Indian Academy of Sciences (India)

    The TGA–DTA studies showed the thermal properties of the crystals. ... impact on laser technology, optical communication and optical storage technology. [1,2]. .... UTHC and UTHS crystals in the temperature range of 25–1100◦C with a heat-.

  15. Ball-milling-induced crystallization and ball-milling effect on thermal crystallization kinetics in an amorphous FeMoSiB alloy

    International Nuclear Information System (INIS)

    Guo, F.Q.; Lu, K.

    1997-01-01

    Microstructure evolution in a melt-spun amorphous Fe 77.2 Mo 0.8 Si 9 B 13 alloy subjected to high-energy ball milling was investigated by means of X-ray diffraction (XRD), a transmission electron microscope (TEM), and a differential scanning calorimeter (DSC). It was found that during ball milling, crystallization occurs in the amorphous ribbon sample with precipitation of an α-Fe solid solution, and the amorphous sample crystallizes completely into a single α-Fe nanostructure (rather than α-Fe and borides as in the usual thermal crystallization products) when the milling time exceeds 135 hours. The volume fraction of material crystallized was found to be approximately proportional to the milling time. The fully crystallized sample with a single α-Fe nanophase exhibits an intrinsic thermal stability against phase separation upon annealing at high temperatures. The ball-milling effect on the subsequent thermal crystallization of the amorphous phase in an as-milled sample was studied by comparison of the crystallization products and kinetic parameters between the as-quenched amorphous sample and the as-milled sample was studied by comparison of the crystallization products and kinetic parameters between the as-quenched amorphous sample and the as-milled partially crystallized samples. The crystallization temperatures and activation energies for the crystallization processes of the residual amorphous phase were considerably decreased due to ball milling, indicating that ball milling has a significant effect on the depression of thermal stability of the residual amorphous phase

  16. Cerium(III) pivalate [Ce(Piv)3(HPiv)3]2: synthesis, crystal structure, and thermal stability

    International Nuclear Information System (INIS)

    Khudyakov, M.Yu.; Kuz'mina, N.P.; Pisarevskij, A.P.; Martynenko, L.I.

    2002-01-01

    Complex [Ce(Piv) 3 (HPiv) 3 ] 2 was prepared by precipitation of cerium(III) nitrate aqueous solution with salt NH 4 (Piv) (HPiv = pivalic acid) and subsequent recrystallization from 5% HPiv solution in hexane. According to data of X-ray diffraction analysis and IR spectroscopy crystal structure of the complex is built of centrally symmetric dimers, in which cerium atoms are bound by four bridge pivalate ligands. Thermal analysis suggests that heating of the complex in nitrogen atmosphere results first in splitting off six HPiv molecules in the range of 90-190 deg C and then in thermolysis of Ce(Piv) 3 formed at 290-450 deg C. Sublimation of Ce(Piv) 3 occurs in the range of 290-350 deg C along with thermolysis during heating in vacuum (0.01 mm Hg), which permits preparing CeO 2 films by the method of chemical precipitation from gaseous phase [ru

  17. Beryllium, zinc and lead single crystals as a thermal neutron monochromators

    Energy Technology Data Exchange (ETDEWEB)

    Adib, M.; Habib, N. [Reactor Physics Department, NRC, Atomic Energy Authority, Cairo (Egypt); Bashter, I.I. [Physics Department, Faculty of Science, Zagazig University (Egypt); Morcos, H.N.; El-Mesiry, M.S. [Reactor Physics Department, NRC, Atomic Energy Authority, Cairo (Egypt); Mansy, M.S., E-mail: drmohamedmansy88@hotmail.com [Physics Department, Faculty of Science, Zagazig University (Egypt)

    2015-03-15

    Highlights: •Monochromatic features of Be, Zn and Pb single crystals. •Calculations of neutron reflectivity using a computer program MONO. •Optimum mosaic spread, thickness and cutting plane of single crystals. -- Abstract: The monochromatic features of Be, Zn and Pb single crystals are discussed in terms of orientation, mosaic spread, and thickness within the wavelength band from 0.04 up to 0.5 nm. A computer program MONO written in “FORTRAN-77”, has been adapted to carry out the required calculations. Calculations show that a 5 mm thick of beryllium (HCP structure) single crystal cut along its (0 0 2) plane having 0.6° FWHM are the optimum parameters when it is used as a monochromator with high reflected neutron intensity from a thermal neutron flux. Furthermore, at wavelengths shorter than 0.16 nm it is free from the accompanying higher order ones. Zinc (HCP structure) has the same parameters, with intensity much less than the latter. The same features are seen with lead (FCC structure) cut along its (3 1 1) plane with less reflectivity than the former. However, Pb (3 1 1) is more preferable than others at neutron wavelengths ⩽ 0.1 nm, since the glancing angle (θ ∼ 20°) is more suitable to carry out diffraction experiments. For a cold neutron flux, the first-order neutrons reflected from beryllium is free from the higher orders up to 0.36 nm. While for Zn single crystal is up to 0.5 nm.

  18. Thermally Driven Photonic Actuator Based on Silica Opal Photonic Crystal with Liquid Crystal Elastomer.

    Science.gov (United States)

    Xing, Huihui; Li, Jun; Shi, Yang; Guo, Jinbao; Wei, Jie

    2016-04-13

    We have developed a novel thermoresponsive photonic actuator based on three-dimensional SiO2 opal photonic crystals (PCs) together with liquid crystal elastomers (LCEs). In the process of fabrication of such a photonic actuator, the LCE precursor is infiltrated into the SiO2 opal PC followed by UV light-induced photopolymerization, thereby forming the SiO2 opal PC/LCE composite film with a bilayer structure. We find that this bilayer composite film simultaneously exhibits actuation behavior as well as the photonic band gap (PBG) response to external temperature variation. When the SiO2 opal PC/LCE composite film is heated, it exhibits a considerable bending deformation, and its PBG shifts to a shorter wavelength at the same time. In addition, this actuation is quite fast, reversible, and highly repeatable. The thermoresponsive behavior of the SiO2 opal PC/LCE composite films mainly derives from the thermal-driven change of nematic order of the LCE layer which leads to the asymmetric shrinkage/expansion of the bilayer structure. These results will be of interest in designing optical actuator systems for environment-temperature detection.

  19. Thermal conductivity of niobium single crystals in a magnetic field

    International Nuclear Information System (INIS)

    Gladun, C.; Vinzelberg, H.

    1980-01-01

    The thermal conductivity in longitudinal magnetic fields up to 5 T and in the temperature range 3.5 to 15 K is measured in two high purity niobium single crystals having residual resistivity ratios of 22700 and 19200 and orientations of the rod axis [110] and [100]. The investigations show that by means of the longitudinal magnetic field the thermal conductivity may decrease only to a limiting value. In the crystal directions [110] and [100] for the ratio of the thermal conductivity in zero field and the thermal conductivity in the saturation field the temperature-independent factors 1.92 and 1.27, respectively, are determined. With the aid of these factors the thermal conductivity in the normal state is evaluated from the measured values of thermal conductivity below Tsub(c) in the magnetic field. The different conduction and scattering mechanisms are discussed. (author)

  20. Crystal structure of calcioburbankite and the characteristic features of the burbankite structure type

    International Nuclear Information System (INIS)

    Belovitskaya, Yu.V.; Pekov, I.V.; Gobechiya, E.R.; Kabalov, Yu.K.; Subbotin, V.V.

    2001-01-01

    The crystal structure of calcioburbankite (Na,Ca) 3 (Ca,RE,Sr,Ba) 3 (CO 3 ) 5 found in carbonatites from Vuoriyarvi (North Kareliya) was solved by the Rietveld method. The experimental data were collected on an ADP-2 diffractometer (λCuK α radiation; Ni filter; 16.00 deg. 1 + α 2 ) reflections was 455). All the calculations were performed within the sp. gr. P6 3 mc; a = 10.4974(1) A, c = 6.4309(1) A, V = 613.72(1) A 3 ; R wp = 2.49%. The structure was refined with the use of the anisotropic thermal parameters for the (Na,Ca) and (Sr,Ba,Ce) cations. The comparison of the crystal structures of all of the known hexagonal representatives of the burbankite family demonstrates that the burbankite structure type (sp. gr. P6 3 mc) is stable, irrespectively of the occupancy of the ten-vertex polyhedra predominantly with Ca, Sr, or Ba cations and the occupancies of the positions in the eight-vertex polyhedra

  1. Highly reproducible alkali metal doping system for organic crystals through enhanced diffusion of alkali metal by secondary thermal activation.

    Science.gov (United States)

    Lee, Jinho; Park, Chibeom; Song, Intek; Koo, Jin Young; Yoon, Taekyung; Kim, Jun Sung; Choi, Hee Cheul

    2018-05-16

    In this paper, we report an efficient alkali metal doping system for organic single crystals. Our system employs an enhanced diffusion method for the introduction of alkali metal into organic single crystals by controlling the sample temperature to induce secondary thermal activation. Using this system, we achieved intercalation of potassium into picene single crystals with closed packed crystal structures. Using optical microscopy and Raman spectroscopy, we confirmed that the resulting samples were uniformly doped and became K 2 picene single crystal, while only parts of the crystal are doped and transformed into K 2 picene without secondary thermal activation. Moreover, using a customized electrical measurement system, the insulator-to-semiconductor transition of picene single crystals upon doping was confirmed by in situ electrical conductivity and ex situ temperature-dependent resistivity measurements. X-ray diffraction studies showed that potassium atoms were intercalated between molecular layers of picene, and doped samples did not show any KH- nor KOH-related peaks, indicating that picene molecules are retained without structural decomposition. During recent decades, tremendous efforts have been exerted to develop high-performance organic semiconductors and superconductors, whereas as little attention has been devoted to doped organic crystals. Our method will enable efficient alkali metal doping of organic crystals and will be a resource for future systematic studies on the electrical property changes of these organic crystals upon doping.

  2. Thermoelectric properties and thermal stability of Bi-doped PbTe single crystal

    Science.gov (United States)

    Chen, Zhong; Li, Decong; Deng, Shuping; Tang, Yu; Sun, Luqi; Liu, Wenting; Shen, Lanxian; Yang, Peizhi; Deng, Shukang

    2018-06-01

    In this study, n-type Bi-doped single-crystal PbTe thermoelectric materials were prepared by melting and slow cooling method according to the stoichiometric ratio of Pb:Bi:Te = 1-x:x:1 (x = 0, 0.1, 0.15, 0.2, 0.25). The X-ray diffraction patterns of Pb1-xBixTe samples show that all main diffraction peaks are well matched with the PbTe matrix, which has a face-centered cubic structure with the space group Fm 3 bar m . Electron probe microanalysis reveals that Pb content decreases gradually, and Te content remains invariant basically with the increase of Bi content, indicating that Bi atoms are more likely to replace Pb atoms. Thermal analysis shows that the prepared samples possess relatively high thermal stability. Simultaneously, transmission electron microscopy and selected area electron diffraction pattern indicate that the prepared samples have typical single-crystal structures with good mechanical properties. Moreover, the electrical conductivity of the prepared samples improved significantly compared with that of the pure sample, and the maximum ZT value of 0.84 was obtained at 600 K by the sample with x = 0.2.

  3. Synthesis, crystal structure, and magnetic properties of two-dimensional divalent metal glutarate/dipyridylamine coordination polymers, with a single crystal-to-single crystal transformation in the copper derivative

    International Nuclear Information System (INIS)

    Montney, Matthew R.; Supkowski, Ronald M.; Staples, Richard J.; LaDuca, Robert L.

    2009-01-01

    Hydrothermal reaction of divalent metal chlorides with glutaric acid and 4,4'-dipyridylamine (dpa) has afforded an isostructural family of coordination polymers with formulation [M(glu)(dpa)] n (M=Co (1), Ni (2), Cu (3); glu=glutarate). Square pyramidal coordination is seen in 1-3, with semi-ligation of a sixth donor to produce a '5+1' extended coordination sphere. Neighboring metal atoms are linked into 1D [M(glu)] n neutral chains through chelating/monodentate bridging glutarate moieties with a syn-anti binding mode, and semi-chelation of the pendant carboxylate oxygen. These chains further connect into 2D layers through dipodal dpa ligands. Neighboring layers stack into the pseudo 3D crystal structure of 1-3 through supramolecular hydrogen bonding between dpa amine units and the semi-chelated glutarate oxygen atoms. The variable temperature magnetic behavior of 1-3 was explored and modeled as infinite 1D Heisenberg chains. Notably, complex 3 undergoes a thermally induced single crystal-to-single crystal transformation between centric and acentric space groups, with a conformationally disordered unilayer structure at 293 K and an ordered bilayer structure at 173 K. All materials were further characterized via infrared spectroscopy and elemental and thermogravimetric analyses. - Graphical abstract: The coordination polymers [M(glu)(dpa)] n (M=Co (1), Ni (2), Cu (3); glu=glutarate, dpa=4,4'-dipyridylamine) exhibit 2D layer structures based on 1D [M(glu)] n chains linked through dpa tethers. Antiferromagnetic coupling is observed for 2 and 3, while ferromagnetism is predominant in 1. Compound 3 undergoes a thermally induced single crystal-to-single crystal transformation from an acentric to a centrosymmetric space group

  4. Ambazone-lipoic acid salt: Structural and thermal characterization

    Energy Technology Data Exchange (ETDEWEB)

    Kacso, Irina [National Institute for Research and Development of Isotopic and Molecular Technologies, 65-103 Donath street, 400293 Cluj-Napoca (Romania); Racz, Csaba-Pal; Santa, Szabolcs [Babes-Bolyai' University, Faculty of Chemistry, 11 Arany Janos street, Cluj-Napoca (Romania); Rus, Lucia [' Iuliu Hatieganu' University of Medicine and Pharmacy, Faculty of Pharmacy, 6 Louis Pasteur street, 400349 Cluj-Napoca (Romania); Dadarlat, Dorin; Borodi, Gheorghe [National Institute for Research and Development of Isotopic and Molecular Technologies, 65-103 Donath street, 400293 Cluj-Napoca (Romania); Bratu, Ioan, E-mail: ibratu@gmail.com [National Institute for Research and Development of Isotopic and Molecular Technologies, 65-103 Donath street, 400293 Cluj-Napoca (Romania)

    2012-12-20

    Highlights: Black-Right-Pointing-Pointer Salt of Ambazone with lipoic acid obtained by solvent-drop grinding. Black-Right-Pointing-Pointer Ambazone lipoate salt crystallizes in monoclinic system. Black-Right-Pointing-Pointer FTIR data suggest the deprotonation of the lipoic acid. Black-Right-Pointing-Pointer Thermal behaviour different of ambazone salt as compared to the starting compounds. - Abstract: A suitable method for increasing the solubility, dissolution rate and consequently the bioavailability of poor soluble acidic or basic drugs is their salt formation. The aim of this study is to investigate the structural and thermal properties of the compound obtained by solvent drop grinding (SDG) method at room temperature, starting from the 1:1 molar ratios of ambazone (AMB) and {alpha}-lipoic acid (LA). The structural characterization was performed with X-ray powder diffraction (XRPD) and infrared spectroscopy (FTIR). The thermal behaviour of the obtained compound (AMB{center_dot}LA) was investigated by differential scanning calorimetry (DSC) and thermogravimetry (TG). The photopyroelectric calorimetry, in front detection configuration (FPPE), was applied to measure and compare the room temperature values of one dynamic thermal parameter (thermal effusivity) for starting and resulting compounds. Both structural and supporting calorimetric techniques pointed out a salt structure for AMB{center_dot}LA compound as compared to those of the starting materials.

  5. Beryllium, zinc and lead single crystals as a thermal neutron monochromators

    Science.gov (United States)

    Adib, M.; Habib, N.; Bashter, I. I.; Morcos, H. N.; El-Mesiry, M. S.; Mansy, M. S.

    2015-03-01

    The monochromatic features of Be, Zn and Pb single crystals are discussed in terms of orientation, mosaic spread, and thickness within the wavelength band from 0.04 up to 0.5 nm. A computer program MONO written in "FORTRAN-77", has been adapted to carry out the required calculations. Calculations show that a 5 mm thick of beryllium (HCP structure) single crystal cut along its (0 0 2) plane having 0.6° FWHM are the optimum parameters when it is used as a monochromator with high reflected neutron intensity from a thermal neutron flux. Furthermore, at wavelengths shorter than 0.16 nm it is free from the accompanying higher order ones. Zinc (HCP structure) has the same parameters, with intensity much less than the latter. The same features are seen with lead (FCC structure) cut along its (3 1 1) plane with less reflectivity than the former. However, Pb (3 1 1) is more preferable than others at neutron wavelengths ⩽ 0.1 nm, since the glancing angle (θ ∼ 20°) is more suitable to carry out diffraction experiments. For a cold neutron flux, the first-order neutrons reflected from beryllium is free from the higher orders up to 0.36 nm. While for Zn single crystal is up to 0.5 nm.

  6. A new zinc(II supramolecular square: Synthesis, crystal structure, thermal behavior and luminescence

    Directory of Open Access Journals (Sweden)

    Wang Xiu-Yan

    2015-01-01

    Full Text Available A new square-shaped Zn(II complex, namely, [Zn4(L4(phen4]•6H2O (1 (L = 2-hydroxynicotinate and phen = 1,10- phenanthroline, has been synthesized under hydrothermal condition. The crystal of 1 belongs to triclinic, space group P -1 with a = 10.773(2 Å, b = 12.641(3 Å, c = 13.573(3 Å, α = 107.44(3º, β = 102.66(3º, γ = 93.89(3°, C72H56N12O18Zn4, Mr = 1638.77, V = 1702.8(6 Å3 , Z = 1, Dc = 1.598 g/cm3 , S = 1.045, μ(MoKα = 1.475 mm-1 , F(000 = 836, R = 0.0472 and wR = 0.0919. In 1, four L ligands bridge four Zn(II atoms to form a square-shaped structure, where four phen ligands are respectively located on four corners of the square. The π-π stacking interactions extend the adjacent squares into a 1D supramolecular chain. The thermal behavior of 1 has been characterized. Moreover, its solid state luminescence property has been studied at room temperature.

  7. THERMAL LENSING MEASUREMENTS IN THE ANISOTROPIC LASER CRYSTALS UNDER DIODE PUMPING

    Directory of Open Access Journals (Sweden)

    P. A. Loiko

    2012-01-01

    Full Text Available An experimental setup was developed for thermal lensing measurements in the anisotropic diode-pumped laser crystals. The studied crystal is placed into the stable two-mirror laser cavity operating at the fundamental transversal mode. The output beam radius is measured with respect to the pump intensity for different meridional planes (all these planes contain the light propagation direction. These dependencies are fitted using the ABCD matrix method in order to obtain the sensitivity factors showing the change of the optical power of thermal lens due to variation of the pump intensity. The difference of the sensitivity factors for two mutually orthogonal principal meridional planes describes the thermal lens astigmatism degree. By means of this approach, thermal lensing was characterized in the diode-pumped monoclinic Np-cut Nd:KGd(WO42 laser crystal at the wavelength of 1.067 μm for light polarization E || Nm.

  8. Extreme low thermal conductivity in nanoscale 3D Si phononic crystal with spherical pores.

    Science.gov (United States)

    Yang, Lina; Yang, Nuo; Li, Baowen

    2014-01-01

    In this work, we propose a nanoscale three-dimensional (3D) Si phononic crystal (PnC) with spherical pores, which can reduce the thermal conductivity of bulk Si by a factor up to 10,000 times at room temperature. Thermal conductivity of Si PnCs depends on the porosity, for example, the thermal conductivity of Si PnCs with porosity 50% is 300 times smaller than that of bulk Si. The phonon participation ratio spectra demonstrate that more phonons are localized as the porosity increases. The thermal conductivity is insensitive to the temperature changes from room temperature to 1100 K. The extreme-low thermal conductivity could lead to a larger value of ZT than unity as the periodic structure affects very little the electric conductivity.

  9. Thermal profiles, crystallization behaviors and microstructure of diacylglycerol-enriched palm oil blends with diacylglycerol-enriched palm olein.

    Science.gov (United States)

    Xu, Yayuan; Zhao, Xiaoqing; Wang, Qiang; Peng, Zhen; Dong, Cao

    2016-07-01

    To elucidate the possible interaction mechanisms between DAG-enriched oils, this study investigated how mixtures of DAG-enriched palm-based oils influenced the phase behavior, thermal properties, crystallization behaviors and the microstructure in binary fat blends. DAG-enriched palm oil (PO-DAGE) was blended with DAG-enriched palm olein (POL-DAGE) in various percentages (0%, 10%, 30%, 50%, 70%, 90%, 100%). Based on the observation of iso-solid diagram and phase diagram, the binary mixture of PO-DAGE/POL-DAGE showed a better compatibility in comparison with their corresponding original blends. DSC thermal profiles exhibited that the melting and crystallization properties of PO-DAGE/POL-DAGE were distinctively different from corresponding original blends. Crystallization kinetics revealed that PO-DAGE/POL-DAGE blends displayed a rather high crystallization rate and exhibited no spherulitic crystal growth. From the results of polarized light micrographs, PO-DAGE/POL-DAGE blends showed more dense structure with very small needle-like crystals than PO/POL. X-ray diffraction evaluation revealed when POL-DAGE was added in high contents to PO-DAGE, above 30%, β-polymorph dominated, and the mount of β' forms crystals was decreasing. Copyright © 2016 Elsevier Ltd. All rights reserved.

  10. Synthesis, growth, crystal structure, optical and third order nonlinear optical properties of quinolinium derivative single crystal: PNQI

    Science.gov (United States)

    Karthigha, S.; Krishnamoorthi, C.

    2018-03-01

    An organic quinolinium derivative nonlinear optical (NLO) crystal, 1-ethyl-2-[2-(4-nitro-phenyl)-vinyl]-quinolinium iodide (PNQI) was synthesized and successfully grown by slow evaporation solution growth technique. Formation of a crystalline compound was confirmed by single crystal X-ray diffraction. The quinolinium compound PNQI crystallizes in the triclinic crystal system with a centrosymmetric space group of P-1 symmetry. The molecular structure of PNQI was confirmed by 1H NMR and 13C NMR spectral studies. The thermal properties of the crystal have been investigated by thermogravimetric (TG) and differential scanning calorimetry (DSC) studies. The optical characteristics obtained from UV-Vis-NIR spectral data were described and the cut-off wavelength observed at 506 nm. The etching study was performed to analyse the growth features of PNQI single crystal. The third order NLO properties such as nonlinear refractive index (n2), nonlinear absorption coefficient (β) and nonlinear susceptibility (χ (3)) of the crystal were investigated using Z-scan technique at 632.8 nm of Hesbnd Ne laser.

  11. Peculiarities of linear thermal expansion of CuInS2 single crystal

    International Nuclear Information System (INIS)

    Akira, Nagaoka; Kenji, Yoshino; Hideto, Miyake

    2010-01-01

    Full text : I-III-VI 2 chalcopyrire semiconductors have made rapid progress in recent years. In addition chalcopyrite semiconductors show unique thermal properties. Usually, liner thermal expansion in semiconductors increases with increasing temperature. However, liner thermal expansion of most chalcopyrite semiconductors decreases at low temperature. For example, AgGaSe 2 shows decreasing the liner thermal expansion below 100 K 1 , 2). It is well known that high-quality single crystals of the I-III-VI 2 compounds are difficult to grow because most of the compounds grow through a peritectic reaction or a solid state transition during the cooling process. CuInS 2 single crystal can be grown by traveling heater method (THM), which is one of the solution growth techniques. Advantages of the THM growth are following that growth temperature is low compared with that of the other melt growth and larger crystals can be grown compared with a conventional solution growth. In a previous study, CuGaS 2 , CuGaSe 2 , CuGaTe 2 , CuInSe 2 ternary compounds have been obtained by the THM technique. In this work, it is investigated a liner thermal expansion of single crystal CuInS 2 by using X-ray diffraction. Measurement temperature was changed from 10 K to 300 K. From results of XRD measurement, it is calculated lattice constants of a and c axes and the liner thermal expansion. As a result, lattice constants of a axis increase with increasing temperature, that of c axis decreases with increasing temperature. The liner thermal expansion decreases for T 2 single crystal at low temperature

  12. Characterization of physicochemical and thermal properties and crystallization behavior of krabok (Irvingia Malayana ) and rambutan seed fats.

    Science.gov (United States)

    Sonwai, Sopark; Ponprachanuvut, Punnee

    2012-01-01

    Fatty acid composition, physicochemical and thermal properties and crystallization behavior of fats extracted from the seeds of krabok (Irvingia Malayana) and rambutan (Nephelium lappaceum L.) trees grown in Thailand were studied and compared with cocoa butter (CB). The krabok seed fat, KSF, consisted of 46.9% lauric and 40.3% myristic acids. It exhibited the highest saponification value and slip melting point but the lowest iodine values. The three fats displayed different crystallization behavior at 25°C. KSF crystallized into a mixture of β' and pseudo-β' structures with a one-step crystallization curve and high solid fat content (SFC). The fat showed simple DSC crystallization and melting thermograms with one distinct peak. The rambutan seed fat, RSF, consisted of 42.5% arachidic and 33.1% oleic acids. Its crystallization behavior was more similar to CB than KSF, displaying a two-step crystallization curve with SFC lower than that of KSF. RSF solidified into a mixture of β' and pseudo-β' before transforming to β after 24 h. The large spherulitic microstructures were observed in both KSF and RSF. According to these results, the Thai KSF and RSF exhibited physicochemical, thermal characteristics and crystallization behavior that could be suitable for specific applications in several areas of the food, cosmetic and pharmaceutical industries.

  13. Effect of Sn additive on the structure and crystallization kinetics in Ge–Se alloy

    Energy Technology Data Exchange (ETDEWEB)

    Abd-Elrahman, M.I., E-mail: mostafaia11@yahoo.com; Hafiz, M.M.; Abdelraheem, A.M.; Abu-Sehly, A.A.

    2016-08-05

    The structure of Ge{sub 20}Se{sub 80−x}Snx glassy alloys and crystallization phases are identified using the X-ray diffraction (XRD) and Scanning Electron Microscope (SEM). The glass transition kinetics and the crystallization mechanism of the system are studied using Differential Scanning Calorimeter (DSC) under non-isothermal condition. The results reveal that glass transition temperature (Tg) increases with increasing Sn content which is attributed to the increase in the coordination number. The increase of the glass transition activation energy (Eg) with increasing Sn content is attributed to the decrease in the internal energy of the system as Sn increases. The compositional dependence of both glass forming ability and thermal stability are studied. From the experimental data, the thermal stability parameter (S) is found to be maximum for Ge{sub 20}Se{sub 78}Sn{sub 2} alloy, which indicates that this alloy is thermally more stable in the composition range under investigation. The effect of composition on the crystallization mechanism is discussed using different kinetic models. The crystallization activation energy (Ec) decreases with increasing Sn. This is attributed to the addition of Sn increases the tendency of crystallization. The calculated values of Avrami exponent (n) indicates the crystallization process occurs in one-and two dimensions for Sn is less than or equals 12 at%, respectively. - Highlights: • Glass and crystallization transitions in Ge{sub 20}Se{sub 80−x}Sn{sub x} candidate for devices. • The addition of Sn increases the tendency of Ge-Se alloy to crystallization. • The glass forming ability and thermal stability increase as Sn decreases. • The dimension of the crystals growth is one or two depending on the Sn content.

  14. Luminescent and structural properties of Zn_xMg_1_-_xWO_4 mixed crystals

    International Nuclear Information System (INIS)

    Krutyak, N.; Nagirnyi, V.; Spassky, D.; Tupitsyna, I.; Dubovik, A.; Belsky, A.

    2016-01-01

    The structural and luminescent properties of perspective scintillating Zn_xMg_1_-_xWO_4 mixed crystals were studied. The following characteristics were found to depend linearly on x value: the energy of several vibrational modes detected by Raman spectroscopy, the bandgap width deduced from the shift of the excitation spectrum onset of a self-trapped exciton (STE) emission, the position of thermally stimulated luminescence peaks. It is also shown that the thermal stability of the STE luminescence decreases gradually when x decreases. These data indicate that each Zn_xMg_1_-_xWO_4 mixed crystal is not a mixture of two constituents, but possesses its original crystalline structure, as well as optical and luminescent properties. - Highlights: • The structural and luminescent properties of Zn_xMg_1_-_xWO_4 were studied. • The energy of Raman modes, the bandgap width, TSL peak position linearly depend on x. • Each Zn_xMg_1_-_xWO_4 possesses its original crystalline structure.

  15. Thermal transport in phononic crystals: The role of zone folding effect

    Science.gov (United States)

    Dechaumphai, Edward; Chen, Renkun

    2012-04-01

    Recent experiments [Yu et al., Nature Nanotech 5, 718 (2010); Tang et al., Nano Lett. 10, 4279 (2010); Hopkins etal., Nano Lett. 11, 107(2011)] on silicon based nanoscale phononic crystals demonstrated substantially reduced thermal conductivity compared to bulk Si, which cannot be explained by incoherent phonon boundary scattering within the Boltzmann Transport Equation (BTE). In this paper, partial coherent treatment of phonons, where phonons are regarded as either wave or particles depending on their frequencies, was considered. Phonons with mean free path smaller than the characteristic size of phononic crystals are treated as particles and the transport in this regime is modeled by BTE with phonon boundary scattering taken into account. On the other hand, phonons with mean free path longer than the characteristic size are treated as waves. In this regime, phonon dispersion relations are computed using the Finite Difference Time Domain (FDTD) method and are found to be modified due to the zone folding effect. The new phonon spectra are then used to compute phonon group velocity and density of states for thermal conductivity modeling. Our partial coherent model agrees well with the recent experimental results on in-plane thermal conductivity of phononic crystals. Our study highlights the importance of zone folding effect on thermal transport in phononic crystals.

  16. Thermal tunability of photonic bandgaps in liquid crystal infiltrated microstructured polymer optical fibers

    DEFF Research Database (Denmark)

    Yuan, Scott Wu; Wei, Lei; Alkeskjold, Thomas Tanggaard

    2009-01-01

    We demonstrate the photonic bandgap effect and the thermal tunability of bandgaps in microstructured polymer optical fibers infiltrated with liquid crystal. Two liquid crystals with opposite sign of the temperature gradient of the ordinary refractive index (E7 and MDA-00- 1444) are used to demons......We demonstrate the photonic bandgap effect and the thermal tunability of bandgaps in microstructured polymer optical fibers infiltrated with liquid crystal. Two liquid crystals with opposite sign of the temperature gradient of the ordinary refractive index (E7 and MDA-00- 1444) are used...... to demonstrate that both signs of the thermal tunability of the bandgaps are possible. The useful bandgaps are ultimately bounded to the visible range by the transparency window of the polymer....

  17. A study on effective thermal conductivity of crystalline layers in layer melt crystallization

    International Nuclear Information System (INIS)

    Kim, Kwang-Joo; Ulrich, Joachim

    2002-01-01

    An effective thermal conductivity in layer melt crystallization was explored based on a model considering inclusions inside a crystalline layer during crystal growth, molecular diffusion of inclusions migration due to temperature gradient and heat generation due to recrystallization of inclusions in the crystalline layer. The effective thermal conductivity increases with time, in general, as a result of compactness of the layer. Lower cooling temperature, i.e. greater supercooling, results in a more porous layer with lower effective thermal conductivity. A similar result is seen for the parameter of melt temperature, but less pronounced. A high concentration of the melt results in a high effective thermal conductivity while low concentration yields low effective thermal conductivity. At higher impurity levels in the melt phase, constitutional supercooling becomes more pronounced and unstable growth morphologies occur more easily. Cooling rate and Reynolds number also affect the effective thermal conductivity. The predictions of an effective thermal conductivity agree with the experimental data. The model was applied to estimate the thermal conductivities of the crystalline layer during layer melt crystallization. (author)

  18. 1. The determination of crystal and magnetic structures

    International Nuclear Information System (INIS)

    Elemans, J.B.A.A.

    1975-01-01

    A theoretical foundation of the technique of thermal neutron scattering by powders is outlined. A description of the experimental set-up is given. A beam of themalized neutrons emerges from the reactor (HFR at Petten) through a slit system. It is diffracted by a manochromator crystal with a finite mosaic structure, a Cu (111) crystal being used. After passing through 10 cm pyrolytic graphite with a ''window'' from 0.23 to 0.29 nm as a lambda/2 filter, resulting in a wave length of 0.257 nm, the neutrons are taken off at a predetermined angle defined by a second slit system, resulting in a beam in which the sample is bathed. The neutrons scattered by the sample are detected by a counter moving in an arc with the position of the sample as center. The standard measurement time for a 10 cm 3 sample was two days. A discussion of the mathematical procedures for deriving the magnetic structure from the observed counts is given

  19. Structure, thermodynamics, and crystallization of amorphous hafnia

    International Nuclear Information System (INIS)

    Luo, Xuhui; Demkov, Alexander A.

    2015-01-01

    We investigate theoretically amorphous hafnia using the first principles melt and quench method. We identify two types of amorphous structures of hafnia. Type I and type II are related to tetragonal and monoclinic hafnia, respectively. We find type II structure to show stronger disorder than type I. Using the phonon density of states, we calculate the specific heat capacity for type II amorphous hafnia. Using the nudged elastic band method, we show that the averaged transition barrier between the type II amorphous hafnia and monoclinic phase is approximately 0.09 eV/HfO 2 . The crystallization temperature is estimated to be 421 K. The calculations suggest an explanation for the low thermal stability of amorphous hafnia

  20. SYNTHESIS, THERMAL STUDIES AND CRYSTAL STRUCTURE OF 4-AMINOPYRIDINIUM SEMI-OXALATE HEMIHYDRATE

    Directory of Open Access Journals (Sweden)

    CECILIA CHACÓN

    2017-06-01

    Full Text Available The title compound has been synthesized by grinding in an agate mortar. Its structure was characterized by TGA-DSC studies and single-crystal X-ray diffraction. This compound crystallize in the monoclinic system with space group C2/c, Z = 4, and unit cell parameters a = 16.109(2 Å, b = 5.748(7 Å, c = 20.580(3 Å, β = 107.36(1°. The salt, C2HO4-.C5H7N+.0.5 H2O, is an ionic ensemble assisted by hydrogen bonds established between 4-aminopyridinium cations, oxalate anions and water molecules. The three components thus construct a supramolecular assembly with a three-dimensional hydrogen bonded framework.

  1. Growth, spectral and thermal studies of ibuprofen crystals

    Energy Technology Data Exchange (ETDEWEB)

    Ramukutty, S.; Ramachandran, E. [Department of Physics, Thiruvalluvar College, Papanasam (India)

    2012-01-15

    RS -Ibuprofen was crystallized for the first time in silica gel under suitable pH conditions by reduction of solubility method. The grown crystals were characterized by single crystal X-ray diffraction and density measurement. The functional groups present in the crystal were identified using Fourier transform infrared spectroscopy. Optical bandgap energy of ibuprofen was estimated as 3.19(3) eV from UV-Vis spectrum. Thermogravimetric analysis revealed that ibuprofen is thermally stable upto 102.9 C and the initial loss of mass was due to evaporation only. Morphological study showed that the growth is prominent along b-axis and the prominent face is {l_brace}100{r_brace}. (copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  2. Thermal, spectroscopic and laser properties of Nd3+ in gadolinium scandium gallium garnet crystal produced by optical floating zone method

    Science.gov (United States)

    Tian, Li; Wang, Shuxian; Wu, Kui; Wang, Baolin; Yu, Haohai; Zhang, Huaijin; Cai, Huaqiang; Huang, Hui

    2013-12-01

    A neodymium-doped gadolinium scandium gallium garnet (Nd:GSGG) single crystal with dimensions of Φ 5 × 20 mm2 has been grown by means of optical floating zone (OFZ). X-ray powder diffraction (XRPD) result shows that the as-grown Nd:GSGG crystal possesses a cubic structure with space group Ia3d and a cell parameter of a = 1.2561 nm. Effective elemental segregation coefficients of the Nd:GSGG as-grown crystal were calculated by using X-ray fluorescence (XRF). The thermal properties of the Nd:GSGG crystal were systematically studied by measuring the specific heat, thermal expansion and thermal diffusion coefficient, and the thermal conductivity of this crystal was calculated. The absorption and luminescence spectra of Nd:GSGG were measured at room temperature (RT). By using the Judd-Ofelt (J-O) theory, the theoretical radiative lifetime was calculated and compared with the experimental result. Continuous wave (CW) laser performance was achieved with the Nd:GSGG at the wavelength of 1062 nm when it was pumped by a laser diode (LD). A maximum output power of 0.792 W at 1062 nm was obtained with a slope efficiency of 11.89% under a pump power of 7.36 W, and an optical-optical conversion efficiency of 11.72%.

  3. Laser irradiation and thermal treatment inducing selective crystallization in Sb2O3-Sb2S3 glassy films

    Science.gov (United States)

    Avila, L. F.; Pradel, A.; Ribeiro, S. J. L.; Messaddeq, Y.; Nalin, M.

    2015-02-01

    The influence of both thermal treatment and laser irradiation on the structural and optical properties of films in the Sb2O3-Sb2S3 system was investigated. The films were prepared by RF-sputtering using glass compositions as raw materials. Irreversible photodarkening effect was observed after exposure the films to a 458 nm solid state laser. It is shown, for the first time, the use of holographic technique to measure "in situ", simultaneously and independently, the phase and amplitude modulations in glassy films. The films were also photo-crystallized and analysed "in situ" using a laser coupled to a micro-Raman equipment. Results showed that Sb2S3 crystalline phase was obtained after irradiation. The effect of thermal annealing on the structure of the films was carried out. Different from the result obtained by irradiation, thermal annealing induces the crystallization of the Sb2O3 phase. Photo and thermal induced effects on films were studied using UV-Vis and Raman spectroscopy, atomic force microscopy (AFM), thermal analysis (DSC), X-ray diffraction, scanning electron microscopy (MEV) and energy-dispersive X-ray spectroscopy (EDX).

  4. Crystal structure and magnetic susceptibility of UOSe single crystals

    International Nuclear Information System (INIS)

    Kaczorowski, D.; Muenster Univ.; Poettgen, R.; Jeitschko, W.; Gajek, Z.; Zygmunt, A.

    1993-01-01

    The crystal structure and magnetic susceptibility behaviour of UOSe single crystals have been studied. UOSe crystalizes in the tetragonal PbFC1-type structure (space group P4/nmm) with the lattice parameters: a = 390.38(5) pm and c = 698.05(9) pm. It orders antiferromagnetically at T N =100±2 K and exhibits a very strong anisotropy in the susceptibility vs temperature variation. The magnetic and thermodynamic properties of UOSe are successfully interpreted in the framework of a perturbative ab initio crystal field approach. (Author)

  5. Crystal structure and magnetic susceptibility of UOSe single crystals

    Energy Technology Data Exchange (ETDEWEB)

    Kaczorowski, D. (Polish Academy of Sciences, Wroclaw (Poland). Inst. for Low Temperature and Structure Research Muenster Univ. (Germany). Anorganisch-Chemisches Inst.); Poettgen, R.; Jeitschko, W. (Muenster Univ. (Germany). Anorganisch-Chemisches Inst.); Gajek, Z.; Zygmunt, A. (Polish Academy of Sciences, Wroclaw (Poland). Inst. for Low Temperature and Structure Research)

    1993-01-01

    The crystal structure and magnetic susceptibility behaviour of UOSe single crystals have been studied. UOSe crystalizes in the tetragonal PbFC1-type structure (space group P4/nmm) with the lattice parameters: a = 390.38(5) pm and c = 698.05(9) pm. It orders antiferromagnetically at T[sub N]=100[+-]2 K and exhibits a very strong anisotropy in the susceptibility vs temperature variation. The magnetic and thermodynamic properties of UOSe are successfully interpreted in the framework of a perturbative ab initio crystal field approach. (Author).

  6. Unique Crystal Orientation of Poly(ethylene oxide) Thin Films by Crystallization Using a Thermal Gradient

    DEFF Research Database (Denmark)

    Gbabode, Gabin; Delvaux, Maxime; Schweicher, Guillaume

    2017-01-01

    Poly(ethylene oxide), (PEO), thin films of different thicknesses (220, 450, and 1500 nm) and molecular masses (4000, 8000, and 20000 g/mol) have been fabricated by spin-coating of methanol solutions onto glass substrates. All these samples have been recrystallized from the melt using a directional......, to significantly decrease the distribution of crystal orientation obtained after crystallization using the thermal gradient technique....

  7. One dimensional coordination polymers: Synthesis, crystal structures and spectroscopic properties

    Science.gov (United States)

    Karaağaç, Dursun; Kürkçüoğlu, Güneş Süheyla; Şenyel, Mustafa; Şahin, Onur

    2016-11-01

    Two new one dimensional (1D) cyanide complexes, namely [M(4-aepy)2(H2O)2][Pt(CN)4], (4-aepy = 4-(2-aminoethyl)pyridine M = Cu(II) (1) or Zn(II) (2)), have been synthesized and characterized by vibrational (FT-IR and Raman) spectroscopy, single crystal X-ray diffraction, thermal and elemental analyses techniques. The crystallographic analyses reveal that 1 and 2 are isomorphous and isostructural, and crystallize in the monoclinic system and C2 space group. The Pt(II) ions are coordinated by four cyanide-carbon atoms in the square-planar geometry and the [Pt(CN)4]2- ions act as a counter ion. The M(II) ions display an N4O2 coordination sphere with a distorted octahedral geometry, the nitrogen donors belonging to four molecules of the organic 4-aepy that act as unidentate ligands and two oxygen atoms from aqua ligands. The crystal structures of 1 and 2 are similar each other and linked via intermolecular hydrogen bonding, Pt⋯π interactions to form 3D supramolecular network. Vibration assignments of all the observed bands are given and the spectral features also supported to the crystal structures of the complexes.

  8. Contributions of different degrees of freedom to thermal transport in the C60 molecular crystal

    Science.gov (United States)

    Kumar, Sushant; Shao, Cheng; Lu, Simon; McGaughey, Alan J. H.

    2018-03-01

    Three models of the C60 molecular crystal are studied using molecular dynamics simulations to resolve the roles played by intermolecular and intramolecular degrees of freedom (DOF) in its structural, mechanical, and thermal properties at temperatures between 35 and 400 K. In the full DOF model, all DOF are active. In the rigid body model, the intramolecular DOF are frozen, such that only center of mass (COM) translations and molecular rotations/librations are active. In the point mass model, the molecule is replaced by a point mass, such that only COM translations are active. The zero-pressure lattice constants and bulk moduli predicted from the three models fall within ranges of 0.15 and 20%. The thermal conductivity of the point mass model is the largest across the temperature range, showing a crystal-like temperature dependence (i.e., it decreases with increasing temperature) due to the presence of phonon modes associated with the COM translations. The rigid body model thermal conductivity is the smallest and follows two distinct regimes. It is crystal-like at low temperatures and becomes temperature invariant at high temperatures. The latter is typical of the behavior of an amorphous material. By calculating the rotational diffusion coefficient, the transition between the two regimes is found to occur at the temperature where the molecules begin to rotate freely. Above this temperature, phonons related to COM translations are scattered by the rotational DOF. The full DOF model thermal conductivity is larger than that of the rigid body model, indicating that intramolecular DOF contribute to thermal transport.

  9. Crystal structure, thermal behavior, vibrational spectroscopy and ...

    Indian Academy of Sciences (India)

    64

    A single crystal was carefully selected under polarizing microscope and .... properties of our compound using infrared absorption and Raman scattering. ... pics in Raman at 1762 and 1782 cm-1 are assigned to the δ(HOH) mode of the water ...

  10. Prediction of molecular crystal structures

    International Nuclear Information System (INIS)

    Beyer, Theresa

    2001-01-01

    The ab initio prediction of molecular crystal structures is a scientific challenge. Reliability of first-principle prediction calculations would show a fundamental understanding of crystallisation. Crystal structure prediction is also of considerable practical importance as different crystalline arrangements of the same molecule in the solid state (polymorphs)are likely to have different physical properties. A method of crystal structure prediction based on lattice energy minimisation has been developed in this work. The choice of the intermolecular potential and of the molecular model is crucial for the results of such studies and both of these criteria have been investigated. An empirical atom-atom repulsion-dispersion potential for carboxylic acids has been derived and applied in a crystal structure prediction study of formic, benzoic and the polymorphic system of tetrolic acid. As many experimental crystal structure determinations at different temperatures are available for the polymorphic system of paracetamol (acetaminophen), the influence of the variations of the molecular model on the crystal structure lattice energy minima, has also been studied. The general problem of prediction methods based on the assumption that the experimental thermodynamically stable polymorph corresponds to the global lattice energy minimum, is that more hypothetical low lattice energy structures are found within a few kJ mol -1 of the global minimum than are likely to be experimentally observed polymorphs. This is illustrated by the results for molecule I, 3-oxabicyclo(3.2.0)hepta-1,4-diene, studied for the first international blindtest for small organic crystal structures organised by the Cambridge Crystallographic Data Centre (CCDC) in May 1999. To reduce the number of predicted polymorphs, additional factors to thermodynamic criteria have to be considered. Therefore the elastic constants and vapour growth morphologies have been calculated for the lowest lattice energy

  11. Prediction of molecular crystal structures

    Energy Technology Data Exchange (ETDEWEB)

    Beyer, Theresa

    2001-07-01

    The ab initio prediction of molecular crystal structures is a scientific challenge. Reliability of first-principle prediction calculations would show a fundamental understanding of crystallisation. Crystal structure prediction is also of considerable practical importance as different crystalline arrangements of the same molecule in the solid state (polymorphs)are likely to have different physical properties. A method of crystal structure prediction based on lattice energy minimisation has been developed in this work. The choice of the intermolecular potential and of the molecular model is crucial for the results of such studies and both of these criteria have been investigated. An empirical atom-atom repulsion-dispersion potential for carboxylic acids has been derived and applied in a crystal structure prediction study of formic, benzoic and the polymorphic system of tetrolic acid. As many experimental crystal structure determinations at different temperatures are available for the polymorphic system of paracetamol (acetaminophen), the influence of the variations of the molecular model on the crystal structure lattice energy minima, has also been studied. The general problem of prediction methods based on the assumption that the experimental thermodynamically stable polymorph corresponds to the global lattice energy minimum, is that more hypothetical low lattice energy structures are found within a few kJ mol{sup -1} of the global minimum than are likely to be experimentally observed polymorphs. This is illustrated by the results for molecule I, 3-oxabicyclo(3.2.0)hepta-1,4-diene, studied for the first international blindtest for small organic crystal structures organised by the Cambridge Crystallographic Data Centre (CCDC) in May 1999. To reduce the number of predicted polymorphs, additional factors to thermodynamic criteria have to be considered. Therefore the elastic constants and vapour growth morphologies have been calculated for the lowest lattice energy

  12. Crystal growth, structural, optical, thermal, mechanical, laser damage threshold and electrical properties of triphenylphosphine oxide 4-nitrophenol (TP4N) single crystals for nonlinear optical applications

    Science.gov (United States)

    Karuppasamy, P.; Senthil Pandian, Muthu; Ramasamy, P.; Verma, Sunil

    2018-05-01

    The optically good quality single crystals of triphenylphosphine oxide 4-nitrophenol (TP4N) with maximum dimension of 15 × 10 × 5 mm3 were grown by slow evaporation solution technique (SEST) at room temperature. The cell dimensions of the grown TP4N crystal were confirmed by single crystal X-ray diffraction (SXRD) and the crystalline purity was confirmed and planes were indexed by powder X-ray diffraction (PXRD) analysis. Functional groups of TP4N crystal were confirmed by Fourier transform infrared (FTIR) spectral analysis. The optical transmittance of the grown crystal was determined by the UV-Vis NIR spectral analysis and it has good optical transparency in the entire visible region. The band tail (Urbach) energy of the grown crystal was analyzed and it appears to be minimum, which indicates that the TP4N has good crystallinity. The position of valence band (Ev) and conduction band (Ec) of the TP4N have been determined from the electron affinity energy (EA) and the ionization energy (EI) of its elements and using the optical band gap. The thermal behaviour of the grown crystal was investigated by thermogravimetric and differential thermal analysis (TG-DTA). Vickers microhardness analysis was carried out to identify the mechanical stability of the grown crystal and their indentation size effect (ISE) was explained by the Meyer's law (ML), Hays-Kendall's (HK) approach, proportional specimen resistance (PSR) model, modified PSR model (MPSR), elastic/plastic deformation (EPD) model and indentation induced cracking (IIC) model. Chemical etching study was carried out to find the etch pit density (EPD) of the grown crystal. Laser damage threshold (LDT) value was measured by using Nd:YAG laser (1064 nm). The dielectric permittivity (ε՛) and dielectric loss (tan δ) as a function of frequency was measured. The electronic polarizability (α) of the TP4N crystal was calculated. It is well matched to the value which was calculated from Clausius-Mossotti relation

  13. Effect of Nickel sulphate on Growth, Structural, Optical, Mechanical and thermal properties of L-alanine Single Crystals (LANS)

    Science.gov (United States)

    Jothimani, R.; Selvarajan, P.

    2017-08-01

    The nonlinear optical materials find excellent place in frequency conversion, optical telecommunication, image processing, optical computing, and data storage. Due to possessing chiral symmetry and nature of crystallize in noncentro-symmetric space groups, the amino acids are applicable in NLO applications. A transparent nickel sulphate admixtured L-alanine crystal has been developed by solution method. X ray diffraction analysis depicts the orthorhombic crystal system of the sample. NLO efficiency of the sample was found to be highly pronounced compare to KDP. An enhanced linear optical property of the sample shows its suitability for NLO applications. Thermal behaviour of the sample was found by TGA/DTA analysis. Hardness parameters were also found for the sample by microhardness measurements. Laser damage threshold were also measured using Nd: YAG laser.

  14. The effect of temperature and pressure on the crystal structure of piperidine.

    Science.gov (United States)

    Budd, Laura E; Ibberson, Richard M; Marshall, William G; Parsons, Simon

    2015-01-01

    The response of molecular crystal structures to changes in externally applied conditions such as temperature and pressure are the result of a complex balance between strong intramolecular bonding, medium strength intermolecular interactions such as hydrogen bonds, and weaker intermolecular van der Waals contacts. At high pressure the additional thermodynamic requirement to fill space efficiently becomes increasingly important. The crystal structure of piperidine-d11 has been determined at 2 K and at room temperature at pressures between 0.22 and 1.09 GPa. Unit cell dimensions have been determined between 2 and 255 K, and at pressures up to 2.77 GPa at room temperature. All measurements were made using neutron powder diffraction. The crystal structure features chains of molecules formed by NH…N H-bonds with van der Waals interactions between the chains. Although the H-bonds are the strongest intermolecular contacts, the majority of the sublimation enthalpy may be ascribed to weaker but more numerous van der Waals interactions. Analysis of the thermal expansion data in the light of phonon frequencies determined in periodic DFT calculations indicates that the expansion at very low temperature is governed by external lattice modes, but above 100 K the influence of intramolecular ring-flexing modes also becomes significant. The principal directions of thermal expansion are determined by the sensitivity of different van der Waals interactions to changes in distance. The principal values of the strain developed on application of pressure are similarly oriented to those determined in the variable-temperature study, but more isotropic because of the need to minimise volume by filling interstitial voids at elevated pressure. Graphical AbstractThough H-bonds are important interactions in the crystal structure of piperidine, the response to externally-applied conditions are determined by van der Waals interactions.

  15. The growth, spectral and thermal properties of the coordination compound crystal-strontium malate

    International Nuclear Information System (INIS)

    Jini, T.; Saban, K.V.; Varghese, G.

    2006-01-01

    Growth of single crystals of the title compound Sr(C 4 H 4 O 5 ).3H 2 O is achieved using the gel diffusion technique. Multifaceted single crystals of size up to 4x3x3 mm 3 are obtained. X-Ray Diffraction (XRD) pattern of the grown crystal and the Fourier Transform Infra-Red (FTIR) spectrum in the range 400-4000 cm -1 are recorded. The vibrational bands corresponding to different functional groups are assigned. Thermal behavior of the material is investigated using Thermo Gravimetry (TG) and Differential Thermal Analysis (DTA). Thermal studies are indicative of a five-stage decomposition scheme. copyright 2006 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim. (orig.)

  16. Refinement of the crystal structure of malachite, Cu2(OH)2CO3, by neutron diffraction

    International Nuclear Information System (INIS)

    Zigan, F.; Joswig, W.; Schuster, H.D.; Mason, S.A.

    1977-01-01

    The crystal structure of malachite is refined (R = 0,021) with the intensity values of 635 independent neutron reflexions from a single crystal, rather free from absorption and extinction. Concerning the structural geometry, no essential deviations occur from the known results of x-ray diffraction. The thermal elongations are generally largest about the normal to the (201) layers, between which the bonding is relatively weak. In both of the (medium, bent) OH...O hydrogen bonds, the anisotropic thermal parameters, converted according to the riding model, are - with certain restrictions - in agreement with the measured infrared spectrum as well as with frequencies and directions of the proton vibration calculated from the bonding geometry on the basis of a theoretical model. (orig.) [de

  17. Synthesis, spectral analysis, optical and thermal properties of new organic NLO crystal: N,N";-Diphenylguanidinium Nitrate (DPGN)

    Science.gov (United States)

    Saravana Kumar, G.; Murugakoothan, P.

    2014-10-01

    A new organic NLO material N,N";-Diphenylguanidinium Nitrate (DPGN) single crystal was grown by slow evaporation technique using methanol as solvent. Single crystal X-ray diffraction and powder X-ray diffraction experiments were carried out in order to confirm the structure and crystalline nature of DPGN crystal. Wide band gap of 3.9 eV with transmittance of 57% up to 800 nm is observed for the grown crystal using UV-vis spectral analysis. The chemical bonding and presence of various functional groups were confirmed by the FT-IR and FT-Raman spectral studies. The thermal behavior of DPGN crystal was analyzed by simultaneous TG-DTA studies. The second harmonic generation (SHG) nonlinearity of the grown crystal was measured by Kurtz and Perry powder technique and was found to be comparable with that of the standard reference material potassium dihydrogen phosphate (KDP) crystal.

  18. Growth of large aluminum nitride single crystals with thermal-gradient control

    Science.gov (United States)

    Bondokov, Robert T; Rao, Shailaja P; Gibb, Shawn Robert; Schowalter, Leo J

    2015-05-12

    In various embodiments, non-zero thermal gradients are formed within a growth chamber both substantially parallel and substantially perpendicular to the growth direction during formation of semiconductor crystals, where the ratio of the two thermal gradients (parallel to perpendicular) is less than 10, by, e.g., arrangement of thermal shields outside of the growth chamber.

  19. Formation of the molecular crystal structure during the vacuum sublimation of paracetamol

    Science.gov (United States)

    Belyaev, A. P.; Rubets, V. P.; Antipov, V. V.; Bordei, N. S.

    2015-04-01

    The results from structural and thermal studies on the formation of molecular crystals during the vacuum sublimation of paracetamol from its vapor phase are given. It is established that the vapor-crystal phase transition proceeds in a complicated way as the superposition of two phase transitions: a first-order phase transition with a change in density, and a second-order phase transition with a change in ordering. It is shown that the latter is a smeared phase transition that proceeds with the formation of a pretransitional phase that is irreversibly dissipated during phase transformation, leading to the formation of crystals of the rhombic syngony. Data from differential scanning calorimetry and X-ray diffraction analysis are presented along with microphotographs.

  20. Protein nanocrystallography: growth mechanism and atomic structure of crystals induced by nanotemplates.

    Science.gov (United States)

    Pechkova, E; Vasile, F; Spera, R; Fiordoro, S; Nicolini, C

    2005-11-01

    Protein nanocrystallography, a new technology for crystal growth based on protein nanotemplates, has recently been shown to produce diffracting, stable and radiation-resistant lysozyme crystals. This article, by computing these lysozyme crystals' atomic structures, obtained by the diffraction patterns of microfocused synchrotron radiation, provides a possible mechanism for this increased stability, namely a significant decrease in water content accompanied by a minor but significant alpha-helix increase. These data are shown to be compatible with the circular dichroism and two-dimensional Fourier transform spectra of high-resolution H NMR of proteins dissolved from the same nanotemplate-based crystal versus those from a classical crystal. Finally, evidence for protein direct transfer from the nanotemplate to the drop and the participation of the template proteins in crystal nucleation and growth is provided by high-resolution NMR spectrometry and mass spectrometry. Furthermore, the lysozyme nanotemplate appears stable up to 523 K, as confirmed by a thermal denaturation study using spectropolarimetry. The overall data suggest that heat-proof lysozyme presence in the crystal provides a possible explanation of the crystal's resistance to synchrotron radiation.

  1. Phase-change materials: vibrational softening upon crystallization and its impact on thermal properties

    Energy Technology Data Exchange (ETDEWEB)

    Matsunaga, Toshiyuki [Materials Science and Analysis Technology Centre, Panasonic Corporation, Osaka (Japan); Japan Synchrotron Radiation Research Institute Hyogo (Japan); Yamada, Noboru [Digital and Network Technology Development Centre, Panasonic Corporation, Osaka (Japan); Japan Synchrotron Radiation Research Institute Hyogo (Japan); Kojima, Rie [Digital and Network Technology Development Centre, Panasonic Corporation, Osaka (Japan); Shamoto, Shinichi [Neutron Science Research Centre, Japan Atomic Energy Research Institute, Ibaraki (Japan); Sato, Masugu; Tanida, Hajime; Uruga, Tomoya; Kohara, Shinji [Japan Synchrotron Radiation Research Institute, Hyogo (Japan); Takata, Masaki [SPring-8/RIKEN, Hyogo, Japan, Department of Advanced Materials Science, School of Frontier Sciences, The University of Tokyo, Chiba (Japan); Zalden, Peter; Bruns, Gunnar; Wuttig, Matthias [I. Physikalisches Institut und JARA-FIT, RWTH Aachen Univ. (Germany); Sergueev, Ilya [European Synchrotron Radiation Facility, Grenoble (France); Wille, Hans Christian [Deutsches Elektronen-Synchrotron, Hamburg (Germany); Hermann, Raphael Pierre [Juelich Centre for Neutron Science JCNS and Peter Gruenberg, Institut PGI, JARA-FIT, Forschungszentrum Juelich GmbH (Germany); Faculte des Sciences, Universite de Liege (Belgium)

    2011-06-21

    Crystallization of an amorphous solid is usually accompanied by a significant change of transport properties, such as an increase in thermal and electrical conductivity. This fact underlines the importance of crystalline order for the transport of charge and heat. Phase-change materials, however, reveal a remarkably low thermal conductivity in the crystalline state. The small change in this conductivity upon crystallization points to unique lattice properties. The present investigation reveals that the thermal properties of the amorphous and crystalline state of phase-change materials show remarkable differences such as higher thermal displacements and a more pronounced anharmonic behavior in the crystalline phase. These findings are related to the change of bonding upon crystallization, which leads to an increase of the sound velocity and a softening of the optical phonon modes at the same time. (Copyright copyright 2011 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  2. Solvothermal syntheses, crystal structures, optical and thermal ...

    Indian Academy of Sciences (India)

    compounds 1–3 exhibit optical band gaps between 2.06 and 2.35 eV. Keywords. .... under a nitrogen stream of 100 mL min. −1 . 2.3 X-ray diffraction. Single-crystal ..... Liu G N, Guo G C, Wang M S, Cai L Z and Huang J S. 2010 Five dimeric ...

  3. Crystal structure and thermal expansion of the low- and high-temperature forms of Ba MIV(PO 4) 2 compounds ( M=Ti, Zr, Hf and Sn)

    Science.gov (United States)

    Bregiroux, D.; Popa, K.; Jardin, R.; Raison, P. E.; Wallez, G.; Quarton, M.; Brunelli, M.; Ferrero, C.; Caciuffo, R.

    2009-05-01

    The crystal structure of β-BaZr(PO 4) 2, archetype of the high-temperature forms of Ba M(PO 4) 2 phosphates (with M=Ti, Zr, Hf and Sn), has been solved ab initio by Rietveld analysis from synchrotron X-ray powder diffraction data. The phase transition appears as a topotactic modification of the monoclinic (S.G. C2/m) lamellar α-structure into a trigonal one (S.G. P3¯m1) through a simple mechanism involving the unfolding of the [Zr)]n2- layers. The thermal expansion is very anisotropic (e.g., -4.1< α i<34.0×10 -6 K -1 in the case of α-BaZr(PO 4) 2) and quite different in the two forms, as a consequence of symmetry. It stems from a complex combination of several mechanisms, involving bridging oxygen rocking in M-O-P linkages, and "bond thermal expansion".

  4. Polymorphism in phenobarbital: discovery of a new polymorph and crystal structure of elusive form V.

    Science.gov (United States)

    Roy, Saikat; Goud, N Rajesh; Matzger, Adam J

    2016-03-21

    This report highlights the discovery of a new polymorph of the anticonvulsant drug phenobarbital (PB) using polymer-induced heteronucleation (PIHn) and unravelling the crystal structure of the elusive form V. Both forms are characterized by structural, thermal and VT-Raman spectroscopy methods to elucidate phase transformation behavior and shed light on stability relationships.

  5. Coatings influencing thermal stress in photonic crystal fiber laser

    Science.gov (United States)

    Pang, Dongqing; Li, Yan; Li, Yao; Hu, Minglie

    2018-06-01

    We studied how coating materials influence the thermal stress in the fiber core for three holding methods by simulating the temperature distribution and the thermal stress distribution in the photonic-crystal fiber laser. The results show that coating materials strongly influence both the thermal stress in the fiber core and the stress differences caused by holding methods. On the basis of the results, a two-coating PCF was designed. This design reduces the stress differences caused by variant holding conditions to zero, then the stability of laser operations can be improved.

  6. Amine free crystal structure: The crystal structure of d(CGCGCG)2 and methylamine complex crystal

    International Nuclear Information System (INIS)

    Ohishi, Hirofumi; Tsukamoto, Koji; Hiyama, Yoichi; Maezaki, Naoyoshi; Tanaka, Tetsuaki; Ishida, Toshimasa

    2006-01-01

    We succeeded in the crystallization of d(CGCGCG) 2 and methylamine Complex. The crystal was clear and of sufficient size to collect the X-ray crystallographic data up to 1.0 A resolution using synchrotron radiation. As a result of X-ray crystallographic analysis of 2F o - F c map was much clear and easily traced. It is First time monoamine co-crystallizes with d(CGCGCG) 2 . However, methylamine was not found from the complex crystal of d(CGCGCG) 2 and methylamine. Five Mg ions were found around d(CGCGCG) 2 molecules. These Mg ions neutralized the anion of 10 values of the phosphate group of DNA with five Mg 2+ . DNA stabilized only by a metallic ion and there is no example of analyzing the X-ray crystal structure like this. Mg ion stabilizes the conformation of Z-DNA. To use monoamine for crystallization of DNA, we found that we can get only d(CGCGCG) 2 and Mg cation crystal. Only Mg cation can stabilize the conformation of Z-DNA. The method of using the monoamine for the crystallization of DNA can be applied to the crystallization of DNA of long chain of length in the future like this

  7. In Situ Determination of Thermal Profiles during Czochralski Silicon Crystal Growth by an Eddy Current Technique.

    Science.gov (United States)

    Choe, Kwang Su.

    An eddy current testing method was developed to continuously monitor crystal growth process and determine thermal profiles in situ during Czochralski silicon crystal growth. The work was motivated by the need to improve the quality of the crystal by controlling thermal gradients and annealing history over the growth cycle. The experimental concept is to monitor intrinsic electrical conductivities of the growing crystal and deduce temperature values from them. The experiments were performed in a resistance-heated Czochralski puller with a 203 mm (8 inch) diameter crucible containing 6.5 kg melt. The silicon crystals being grown were about 80 mm in diameter and monitored by an encircling sensor operating at three different test frequencies (86, 53 and 19 kHz). A one-dimensional analytical solution was employed to translate the detected signals into electrical conductivities. In terms of experiments, the effects of changes in growth condition, which is defined by crystal and crucible rotation rates, crucible position, pull rate, and hot-zone configuration, were investigated. Under a given steady-state condition, the thermal profile was usually stable over the entire length of crystal growth. The profile shifted significantly, however, when the crucible rotation rate was kept too high. As a direct evidence to the effects of melt flow on heat transfer process, a thermal gradient minimum was observed about the crystal/crucible rotation combination of 20/-10 rpm cw. The thermal gradient reduction was still most pronounced when the pull rate or the radiant heat loss to the environment was decreased: a nearly flat axial thermal gradient was achieved when either the pull rate was halved or the height of the exposed crucible wall was effectively doubled. Under these conditions, the average axial thermal gradient along the surface of the crystal was about 4-5 ^{rm o}C/mm. Regardless of growth condition, the three-frequency data revealed radial thermal gradients much larger

  8. Attenuation of thermal neutrons by an imperfect single crystal

    Energy Technology Data Exchange (ETDEWEB)

    Naguib, K.; Adib, M. [National Research Centre, Cairo (Egypt). Reactor and Neutron Physics Dept.

    1996-06-14

    A semi-empirical formula is given which allows one to calculate the total thermal cross section of an imperfect single crystal as a function of crystal constants, temperature and neutron energy E, in the energy range between 3 meV and 10 eV. The formula also includes the contribution of the parasitic Bragg scattering to the total cross section that takes into account the crystal mosaic spread value and its orientation with respect to the neutron beam direction. A computer program (ISCANF) was developed to calculate the total attenuation of neutrons using the proposed formula. The ISCANF program was applied to investigate the neutron attenuation through a copper single crystal. The calculated values of the neutron transmission through the imperfect copper single crystal were fitted to the measured ones in the energy range 3-40 meV at different crystal orientations. The result of fitting shows that use of the computer program ISCANF allows one to predict the behaviour of the total cross section of an imperfect copper single crystal for the whole energy range. (author).

  9. Attenuation of thermal neutrons by an imperfect single crystal

    Science.gov (United States)

    Naguib, K.; Adib, M.

    1996-06-01

    A semi-empirical formula is given which allows one to calculate the total thermal cross section of an imperfect single crystal as a function of crystal constants, temperature and neutron energy E, in the energy range between 3 meV and 10 eV. The formula also includes the contribution of the parasitic Bragg scattering to the total cross section that takes into account the crystal mosaic spread value and its orientation with respect to the neutron beam direction. A computer program (ISCANF) was developed to calculate the total attenuation of neutrons using the proposed formula. The ISCANF program was applied to investigate the neutron attenuation through a copper single crystal. The calculated values of the neutron transmission through the imperfect copper single crystal were fitted to the measured ones in the energy range 3 - 40 meV at different crystal orientations. The result of fitting shows that use of the computer program ISCANF allows one to predict the behaviour of the total cross section of an imperfect copper single crystal for the whole energy range.

  10. Studies on the growth aspects, structural, thermal, dielectric and third order nonlinear optical properties of solution grown 4-methylpyridinium p-nitrophenolate single crystal

    Science.gov (United States)

    Devi, S. Reena; Kalaiyarasi, S.; Zahid, I. MD.; Kumar, R. Mohan

    2016-11-01

    An ionic organic optical crystal of 4-methylpyridinium p-nitrophenolate was grown from methanol by slow evaporation method at ambient temperature. Powder and single crystal X-ray diffraction studies revealed the crystal system and its crystalline perfection. The rocking curve recorded from HRXRD study confirmed the crystal quality. FTIR spectral analysis confirmed the functional groups present in the title compound. UV-visible spectral study revealed the optical window and band gap of grown crystal. The thermal, electrical and surface laser damage threshold properties of harvested crystal were examined by using TGA/DTA, LCR/Impedance Analyzer and Nd:YAG laser system respectively. The third order nonlinear optical property of grown crystal was elucidated by Z-scan technique.

  11. Modelling of thermal field and point defect dynamics during silicon single crystal growth using CZ technique

    Science.gov (United States)

    Sabanskis, A.; Virbulis, J.

    2018-05-01

    Mathematical modelling is employed to numerically analyse the dynamics of the Czochralski (CZ) silicon single crystal growth. The model is axisymmetric, its thermal part describes heat transfer by conduction and thermal radiation, and allows to predict the time-dependent shape of the crystal-melt interface. Besides the thermal field, the point defect dynamics is modelled using the finite element method. The considered process consists of cone growth and cylindrical phases, including a short period of a reduced crystal pull rate, and a power jump to avoid large diameter changes. The influence of the thermal stresses on the point defects is also investigated.

  12. Non-isothermal Crystallization, Thermal Stability, and Mechanical Performance of Poly(L-lactic acid/Barium Phenylphosphonate Systems

    Directory of Open Access Journals (Sweden)

    Cai Yan-Hua

    2017-11-01

    Full Text Available The introduction of a nucleating agent in semi-crystalline polymers is a frequently utilized way to improve the crystallization performance, and the use of a nucleating agent has a very great effect on the performance of the polymer in other areas including thermal stability and mechanical properties. In this investigation, barium phenylphosphonate (BaP was prepared as a crystallization accelerator for Poly(L-lactic acid (PLLA, and the non-isothermal crystallization behavior, thermal stability, and mechanical properties of PLLA modified by BaP were investigated using differential scanning calorimetry (DSC, X-ray diffraction (XRD, thermogravimetric analysis (TGA, and electronic tensile testing. Non-isothermal crystallization analysis showed that the BaP could significantly accelerate the crystallization of PLLA, and the non-isothermal crystallization peak shifted to a higher temperature with increasing concentration of BaP, however, the corresponding crystallization peak became wider. XRD results after non-isothermal crystallization confirmed the non-isothermal crystallization DSC results. Additionally, the addition of BaP did not change the crystal form of PLLA. A comparative study on thermal stability indicated that BaP decreased the onset decomposition temperature of PLLA, resulting from the formation of more tiny and imperfect crystals. Whereas the influence of BaP on the thermal decomposition profile of PLLA was negligible. In terms of mechanical properties, the tensile strength and elastic modulus of PLLA/BaP increased compared to the virgin PLLA, unfortunately, the elongation at break decreased.

  13. Multiscale Modeling of Grain Boundaries in ZrB2: Structure, Energetics, and Thermal Resistance

    Science.gov (United States)

    Lawson, John W.; Daw, Murray S.; Squire, Thomas H.; Bauschlicher, Charles W., Jr.

    2012-01-01

    A combination of ab initio, atomistic and finite element methods (FEM) were used to investigate the structures, energetics and lattice thermal conductance of grain boundaries for the ultra high temperature ceramic ZrB2. Atomic models of idealized boundaries were relaxed using density functional theory. Information about bonding across the interfaces was determined from the electron localization function. The Kapitza conductance of larger scale versions of the boundary models were computed using non-equilibrium molecular dynamics. The interfacial thermal parameters together with single crystal thermal conductivities were used as parameters in microstructural computations. FEM meshes were constructed on top of microstructural images. From these computations, the effective thermal conductivity of the polycrystalline structure was determined.

  14. Photonic Crystal Laser-Driven Accelerator Structures

    International Nuclear Information System (INIS)

    Cowan, B

    2004-01-01

    The authors discuss simulated photonic crystal structure designs for laser-driven particle acceleration. They focus on three-dimensional planar structures based on the so-called ''woodpile'' lattice, demonstrating guiding of a speed-of-light accelerating mode by a defect in the photonic crystal lattice. They introduce a candidate geometry and discuss the properties of the accelerating mode. They also discuss the linear beam dynamics in the structure present a novelmethod for focusing the beam. In addition they describe ongoing investigations of photonic crystal fiber-based structures

  15. Smart window using a thermally and optically switchable liquid crystal cell

    Science.gov (United States)

    Oh, Seung-Won; Kim, Sang-Hyeok; Baek, Jong-Min; Yoon, Tae-Hoon

    2018-02-01

    Light shutter technologies that can control optical transparency have been studied extensively for developing curtain-free smart windows. We introduce thermally and optically switchable light shutters using LCs doped with push-pull azobenzene, which is known to speed up thermal relaxation. The liquid crystal light shutter can be switched between translucent and transparent states or transparent and opaque states by phase transition through changing temperature or photo-isomerization of doped azobenzene. The liquid crystal light shutter can be used for privacy windows with an initial translucent state or energy-saving windows with an initial transparent state.

  16. Linear, non-linear and thermal properties of single crystal of LHMHCl

    Science.gov (United States)

    Kulshrestha, Shobha; Shrivastava, A. K.

    2018-05-01

    The single crystal of amino acid of L-histidine monohydrochloride was grown by slow evaporation technique at room temperature. High optical quality and appropriate size of crystals were grown under optimized growth conditions. The grown crystals were transparent. Crystals are characterized with different characterizations such as Solubility test, UV-Visible, optical band gap (Eg). With the help of optical data to be calculate absorption coefficient (α), extinction coefficient (k), refractive index (n), dielectric constant (ɛ). These optical constants are shows favorable conditions for photonics devices. Second harmonic generation (NLO) test show the green light emission which is confirm that crystal have properties for laser application. Thermal stability of grown crystal is confirmed by TG/DTA.

  17. Crystal structure determination of Efavirenz

    International Nuclear Information System (INIS)

    Popeneciu, Horea; Dumitru, Ristoiu; Tripon, Carmen; Borodi, Gheorghe; Pop, Mihaela Maria

    2015-01-01

    Needle-shaped single crystals of the title compound, C 14 H 9 ClF 3 NO 2 , were obtained from a co-crystallization experiment of Efavirenz with maleic acid in a (1:1) ratio, using methanol as solvent. Crystal structure determination at room temperature revealed a significant anisotropy of the lattice expansion compared to the previously reported low-temperature structure. In both low- and room temperature structures the cyclopropylethynyl fragment in one of the asymmetric unit molecules is disordered. While at low-temperature only one C atom exhibits positional disorder, at room temperature the disorder is present for two C atoms of the cyclopropane ring

  18. Neutron transmission of single-crystal sapphire filters

    International Nuclear Information System (INIS)

    Adib, M.; Kilany, M.; Habib, N.; Fathallah, M.

    2005-01-01

    An additive formula is given that permits the calculation of the nuclear capture, thermal diffuse and Bragg scattering cross-sections as a function of sapphire temperature and crystal parameters. We have developed a computer program that allows calculations of the thermal neutron transmission for the sapphire rhombohedral structure and its equivalent trigonal structure. The calculated total cross-section values and effective attenuation coefficient for single-crystalline sapphire at different temperatures are compared with measured values. Overall agreement is indicated between the formula fits and experimental data. We discuss the use of sapphire single crystal as a thermal neutron filter in terms of the optimum crystal thickness, mosaic spread, temperature, cutting plane and tuning for efficient transmission of thermal-reactor neutrons. (author)

  19. Neutron transmission of single-crystal sapphire filters

    International Nuclear Information System (INIS)

    Adib, M.; Kilany, M.; Habib, N.; Fathallah, M.

    2004-01-01

    A simple additive formula is given that permits the calculation of the nuclear capture, thermal diffuse and Bragg scattering cross-sections as a function of sapphire temperature and crystal parameters. We have developed a computer program that allows calculations of the thermal neutron transmission for the sapphire rhombohedral structure and its equivalent trigonal structure. The calculated total cross-section values and effective attenuation coefficient for mono-crystalline sapphire at different temperatures are compared with measured values. Overall agreement is indicated between the formula fits and experimental data. We discuss the use of sapphire single-crystal as a thermal neutron filter in terms of the optimum crystal thickness, mosaic spread, temperature, cutting plane and tuning for efficient transmission of thermal-reactor neutrons

  20. Thermal conductivity of Glycerol's liquid, glass, and crystal states, glass-liquid-glass transition, and crystallization at high pressures.

    Science.gov (United States)

    Andersson, Ove; Johari, G P

    2016-02-14

    To investigate the effects of local density fluctuations on phonon propagation in a hydrogen bonded structure, we studied the thermal conductivity κ of the crystal, liquid, and glassy states of pure glycerol as a function of the temperature, T, and the pressure, p. We find that the following: (i) κcrystal is 3.6-times the κliquid value at 140 K at 0.1 MPa and 2.2-times at 290 K, and it varies with T according to 138 × T(-0.95); (ii) the ratio κliquid (p)/κliquid (0.1 MPa) is 1.45 GPa(-1) at 280 K, which, unexpectedly, is about the same as κcrystal (p)/κcrystal (0.1 MPa) of 1.42 GPa(-1) at 298 K; (iii) κglass is relatively insensitive to T but sensitive to the applied p (1.38 GPa(-1) at 150 K); (iv) κglass-T plots show an enhanced, pressure-dependent peak-like feature, which is due to the glass to liquid transition on heating; (v) continuous heating cold-crystallizes ultraviscous glycerol under pressure, at a higher T when p is high; and (vi) glycerol formed by cooling at a high p and then measured at a low p has a significantly higher κ than the glass formed by cooling at a low p. On heating at a fixed low p, its κ decreases before its glass-liquid transition range at that p is reached. We attribute this effect to thermally assisted loss of the configurational and vibrational instabilities of a glass formed at high p and recovered at low p, which is different from the usual glass-aging effect. While the heat capacity, entropy, and volume of glycerol crystal are less than those for its glass and liquid, κcrystal of glycerol, like its elastic modulus and refractive index, is higher. We discuss these findings in terms of the role of fluctuations in local density and structure, and the relations between κ and the thermodynamic quantities.

  1. Crystal structure and thermal expansion of the low- and high-temperature forms of BaMIV(PO4)2 compounds (M=Ti, Zr, Hf and Sn)

    International Nuclear Information System (INIS)

    Bregiroux, D.; Popa, K.; Jardin, R.; Raison, P.E.; Wallez, G.; Quarton, M.; Brunelli, M.; Ferrero, C.; Caciuffo, R.

    2009-01-01

    The crystal structure of β-BaZr(PO 4 ) 2 , archetype of the high-temperature forms of BaM(PO 4 ) 2 phosphates (with M=Ti, Zr, Hf and Sn), has been solved ab initio by Rietveld analysis from synchrotron X-ray powder diffraction data. The phase transition appears as a topotactic modification of the monoclinic (S.G. C2/m) lamellar α-structure into a trigonal one (S.G. P3-barm1) through a simple mechanism involving the unfolding of the [Zr(PO 4 ) 2 ] n 2- layers. The thermal expansion is very anisotropic (e.g., -4.1 i -6 K -1 in the case of α-BaZr(PO 4 ) 2 ) and quite different in the two forms, as a consequence of symmetry. It stems from a complex combination of several mechanisms, involving bridging oxygen rocking in M-O-P linkages, and 'bond thermal expansion'. - Graphical abstract: The layered high-temperature form of BaM(PO 4 ) 2 , only expands along the c-axis.

  2. Optical properties and thermal stability of germanium oxide (GeO2) nanocrystals with α-quartz structure

    International Nuclear Information System (INIS)

    Ramana, C.V.; Carbajal-Franco, G.; Vemuri, R.S.; Troitskaia, I.B.; Gromilov, S.A.; Atuchin, V.V.

    2010-01-01

    Germanium dioxide (GeO 2 ) crystals were prepared by a chemical precipitation method at a relatively low-temperature (100 o C). The grown crystals were characterized by studying their microstructure, optical properties and thermal stability. The results indicate that the grown GeO 2 crystals exhibit α-quartz type crystal structure. The lattice parameters obtained from XRD were a = 4.987(4) A and c = 5.652(5) A. Electron microscopy analysis indicates a high structural quality of GeO 2 crystals grown using the present approach. Optical absorption measurements indicate a direct bandgap of 5.72 eV without any additional bands arising from localized or defect states. Thermogravimetric measurements indicate the temperature stability of the grown GeO 2 nanocrystals. Microscopic analysis coupled with energy dispersive X-ray spectroscopy of the GeO 2 crystals with α-quartz type crystal structure indicates their stability in chemical composition up to a temperature of 400 deg. C. The surface morphology of GeO 2 crystals, however, found to be changing with the increase in temperature.

  3. Thermal, spectral and laser characteristics of Nd doped La0.05Lu0.95VO4 crystal

    Science.gov (United States)

    Xu, Honghao; Han, Shuo; Yu, Haohai; Wang, Zhengping; Wang, Jiyang; Zhang, Huaijin; Tang, Dingyuan

    2014-02-01

    A 0.25 at% Nd doped La0.05Lu0.95VO4 mixed crystal was grown by the Czochralski method. The thermal properties including thermal expansion, specific heat, thermal diffusion, and thermal conductivity were systematically studied. Meanwhile the reasons for cracking of this mixed crystal were also discussed. The refractive index at wavelengths of 633 nm and 1539 nm were obtained with the prism coupling method. The polarized absorption and fluorescence spectra of the crystal were also measured at room temperature. It was found that the fluorescence lifetime of 4F3/2 manifold for Nd3+ in Nd:La0.05Lu0.95VO4 is about 90 μs. Diode-pumped continuous-wave (CW) laser operations at 1.06 μm with a- and c-cut crystals were demonstrated. For the a-cut crystal a maximum output power of 5.41 W was obtained at an incident pump power of 12.9 W. Different from the a-cut crystal, the laser spectrum of the c-cut crystal was found to be dual-wavelength.

  4. Thermal formation of mesoporous single-crystal Co3O4 nano-needles and their lithium storage properties

    KAUST Repository

    Lou, Xiong Wen; Deng, Da; Lee, Jim Yang; Archer, Lynden A.

    2008-01-01

    In this work, we report the simple solid-state formation of mesoporous Co3O4 nano-needles with a 3D single-crystalline framework. The synthesis is based on controlled thermal oxidative decomposition and re-crystallization of precursor β-Co(OH)2 nano-needles. Importantly, after thermal treatment, the needle-like morphology can be completely preserved, despite the fact that there is a large volume contraction accompanying the process: β-Co(OH)2 → Co3O 4. Because of the intrinsic crystal contraction, a highly mesoporous structure with high specific surface area has been simultaneously created. The textual properties can be easily tailored by varying the annealing temperature between 200-400 °C. Interestingly, thermal re-crystallization at higher temperatures leads to the formation of a perfect 3D single-crystalline framework. Thus derived mesoporous Co3O4 nano-needles serve as a good model system for the study of lithium storage properties. The optimized sample manifests very low initial irreversible loss (21%), ultrahigh capacity, and excellent cycling performance. For example, a reversible capacity of 1079 mA h g-1 can be maintained after 50 cycles. The superior electrochemical performance and ease of synthesis may suggest their practical use in lithium-ion batteries. © The Royal Society of Chemistry 2008.

  5. Crystal structure and thermal expansion of CsCaI3:Eu and CsSrBr3:Eu scintillators

    Science.gov (United States)

    Loyd, Matthew; Lindsey, Adam; Patel, Maulik; Koschan, Merry; Melcher, Charles L.; Zhuravleva, Mariya

    2018-01-01

    The distorted-perovskite scintillator materials CsCaI3:Eu and CsSrBr3:Eu prepared as single crystals have shown promising potential for use in radiation detection applications requiring a high light yield and excellent energy resolution. We present a study using high temperature powder X-ray diffraction experiments to examine a deleterious high temperature phase transition. High temperature phases were identified through sequential diffraction pattern Rietveld refinement in GSAS II. We report the linear coefficients of thermal expansion for both high and low temperature phases of each compound. Thermal expansion for both compositions is greatest in the [0 0 1] direction. As a result, Bridgman growth utilizing a seed oriented with the [0 0 1] along the growth direction should be used to mitigate thermal stress.

  6. High-temperature Raman study of L-alanine, L-threonine and taurine crystals related to thermal decomposition

    Energy Technology Data Exchange (ETDEWEB)

    Cavaignac, A.L.O. [Centro de Ciências Sociais, Saúde e Tecnologia, Universidade Federal do Maranhão, Imperatriz, MA 65900-410 (Brazil); Lima, R.J.C., E-mail: ricardo.lima.ufma@gmail.com [Centro de Ciências Sociais, Saúde e Tecnologia, Universidade Federal do Maranhão, Imperatriz, MA 65900-410 (Brazil); Façanha Filho, P.F. [Centro de Ciências Sociais, Saúde e Tecnologia, Universidade Federal do Maranhão, Imperatriz, MA 65900-410 (Brazil); Moreno, A.J.D. [Coordenação de Ciências Naturais, Universidade Federal do Maranhão, Bacabal, MA 65700-000 (Brazil); Freire, P.T.C. [Departamento de Física, Universidade Federal do Ceará, Fortaleza, CE 60455-760 (Brazil)

    2016-03-01

    In this work high-temperature Raman spectra are used to compare temperature dependence of the lattice mode wavenumber of L-alanine, L-threonine and taurine crystals. Anharmonic effects observed are associated with intermolecular N-H· · ·O hydrogen bond that plays an important role in thermal decomposition process of these materials. Short and strong hydrogen bonds in L-alanine crystal were associated with anharmonic effects in lattice modes leading to low thermal stability compared to taurine crystals. Connection between thermal decomposition process and anharmonic effects is furnished for the first time.

  7. High-temperature Raman study of L-alanine, L-threonine and taurine crystals related to thermal decomposition

    International Nuclear Information System (INIS)

    Cavaignac, A.L.O.; Lima, R.J.C.; Façanha Filho, P.F.; Moreno, A.J.D.; Freire, P.T.C.

    2016-01-01

    In this work high-temperature Raman spectra are used to compare temperature dependence of the lattice mode wavenumber of L-alanine, L-threonine and taurine crystals. Anharmonic effects observed are associated with intermolecular N-H· · ·O hydrogen bond that plays an important role in thermal decomposition process of these materials. Short and strong hydrogen bonds in L-alanine crystal were associated with anharmonic effects in lattice modes leading to low thermal stability compared to taurine crystals. Connection between thermal decomposition process and anharmonic effects is furnished for the first time.

  8. Crystal structures and thermal decomposition of permanganates AE[MnO{sub 4}]{sub 2} . n H{sub 2}O with the heavy alkaline earth elements (AE=Ca, Sr and Ba)

    Energy Technology Data Exchange (ETDEWEB)

    Henning, Harald; Bauchert, Joerg M.; Conrad, Maurice; Schleid, Thomas [Stuttgart Univ. (Germany). Inst. fuer Anorganische Chemie

    2017-10-01

    Reexamination of the syntheses and crystal structures as well as studies of the thermal decomposition of the heavy alkaline earth metal permanganates Ca[MnO{sub 4}]{sub 2} . 4 H{sub 2}O, Sr[MnO{sub 4}]{sub 2} . 3 H{sub 2}O and Ba[MnO{sub 4}]{sub 2} are the focus of this work. As an alternative to the very inelegant Muthmann method, established for the synthesis of Ba[MnO{sub 4}]{sub 2} a long time ago, we employed a cation-exchange column loaded with Ba{sup 2+} cations and passed through an aqueous potassium-permanganate solution. We later used this alternative also with strontium- and calcium-loaded columns and all the compounds synthesized this way were indistinguishable from the products of the established methods. Ca[MnO{sub 4}]{sub 2} . 4 H{sub 2}O exhibiting [CaO{sub 8}] polyhedra crystallizes in the orthorhombic space group Pccn with the lattice parameters a=1397.15(9), b=554.06(4) and c=1338.97(9) pm with Z=4, whereas Sr[MnO{sub 4}]{sub 2} . 3 H{sub 2}O with [SrO{sub 10}] polyhedra adopts the cubic space group P2{sub 1}3 with a=964.19(7) pm and Z=4. So the harder the AE{sup 2+} cation, the higher its demand for hydration in aqueous solution. Consequently, the crystal structure of Ba[MnO{sub 4}]{sub 2} in the orthorhombic space group Fddd with a=742.36(5), b=1191.23(7) and c=1477.14(9) pm with Z=8 lacks any crystal water, but contains [BaO{sub 12}] polyhedra. During the thermal decomposition of Ca[MnO{sub 4}]{sub 2} . 4 H{sub 2}O, the compound expels up to two water molecules of hydration, before the crystal structure collapses after the loss of the third H{sub 2}O molecule at 157 C. The crystal structure of Sr[MnO{sub 4}]{sub 2} . 3 H{sub 2}O breaks down after the expulsion of the third water molecule as well, but this already occurs at 148 C. For both the calcium and the strontium permanganate samples, orthobixbyite-type α-Mn{sub 2}O{sub 3} and the oxomanganates(III,IV) AEMn{sub 3}O{sub 6} (AE=Ca and Sr) remain as final decomposition products at 800 C

  9. Effect of power history on the shape and the thermal stress of a large sapphire crystal during the Kyropoulos process

    Science.gov (United States)

    Nguyen, Tran Phu; Chuang, Hsiao-Tsun; Chen, Jyh-Chen; Hu, Chieh

    2018-02-01

    In this study, the effect of the power history on the shape of a sapphire crystal and the thermal stress during the Kyropoulos process are numerically investigated. The simulation results show that the thermal stress is strongly dependent on the power history. The thermal stress distributions in the crystal for all growth stages produced with different power histories are also studied. The results show that high von Mises stress regions are found close to the seed of the crystal, the highly curved crystal surface and the crystal-melt interface. The maximum thermal stress, which occurs at the crystal-melt interface, increases significantly in value as the crystal expands at the crown. After this, there is reduction in the maximum thermal stress as the crystal lengthens. There is a remarkable enhancement in the maximum von Mises stress when the crystal-melt interface is close to the bottom of the crucible. There are two obvious peaks in the maximum Von Mises stress, at the end of the crown stage and in the final stage, when cracking defects can form. To alleviate this problem, different power histories are considered in order to optimize the process to produce the lowest thermal stress in the crystal. The optimal power history is found to produce a significant reduction in the thermal stress in the crown stage.

  10. Thermal, defects, mechanical and spectral properties of Nd-doped GdNbO{sub 4} laser crystal

    Energy Technology Data Exchange (ETDEWEB)

    Ding, Shoujun [Chinese Academy of Sciences, Anhui Institute of Optics and Fine Mechanics, Hefei, Anhui Province (China); University of Science and Technology of China, Hefei (China); Zhang, Qingli; Luo, Jianqiao; Liu, Wenpeng; Wang, Xiaofei; Sun, Guihua; Li, Xiuli; Sun, Dunlu [Chinese Academy of Sciences, Anhui Institute of Optics and Fine Mechanics, Hefei, Anhui Province (China)

    2017-05-15

    A Nd-doped GdNbO{sub 4} crystal was grown successfully by Czochralski method. Its monoclinic structure was determined by X-ray diffraction; the unit-cell parameters are a = 5.38 Aa, b = 11.09 Aa, c = 5.11 Aa, and β = 94.56 . The morphological defects of Nd:GdNbO{sub 4} crystal were investigated using the chemical etching with the phosphoric acid etchant. For a new crystal, the physical properties are of great importance. The hardness and density of Nd:GdNbO{sub 4} were investigated first. Thermal properties of Nd:GdNbO{sub 4}, including thermal expansion coefficient and specific heat, were measured along a-, b-, and c-crystalline axes. Thermal properties indicate that the Nd:GdNbO{sub 4} pumped along c-axis can reduce the thermal lensing effect effectively. The specific heat is 0.53 J g{sup -1} K{sup -1} at 300 K, indicating a relatively high damage threshold of Nd:GdNbO{sub 4}. The transmission and emission spectrum of Nd:GdNbO{sub 4} were measured, and the absorption peaks were assigned. The strongest emission peak of Nd:GdNbO{sub 4} is located at 1065.3 nm in the spectral range of 850-1420 nm excited by 808 nm laser. The refractive index of Nd:GdNbO{sub 4} was calculated with the transmission spectrum and fitted with Sellmeier equation. All these obtained results is of great significance for the further research of Nd:GdNbO{sub 4}. (orig.)

  11. Influence of Crucible Thermal Conductivity on Crystal Growth in an Industrial Directional Solidification Process for Silicon Ingots

    Directory of Open Access Journals (Sweden)

    Zaoyang Li

    2016-01-01

    Full Text Available We carried out transient global simulations of heating, melting, growing, annealing, and cooling stages for an industrial directional solidification (DS process for silicon ingots. The crucible thermal conductivity is varied in a reasonable range to investigate its influence on the global heat transfer and silicon crystal growth. It is found that the crucible plays an important role in heat transfer, and therefore its thermal conductivity can influence the crystal growth significantly in the entire DS process. Increasing the crucible thermal conductivity can shorten the time for melting of silicon feedstock and growing of silicon crystal significantly, and therefore large thermal conductivity is helpful in saving both production time and power energy. However, the high temperature gradient in the silicon ingots and the locally concave melt-crystal interface shape for large crucible thermal conductivity indicate that high thermal stress and dislocation propagation are likely to occur during both growing and annealing stages. Based on the numerical simulations, some discussions on designing and choosing the crucible thermal conductivity are presented.

  12. Refinement of the crystal structure of malachite, Cu/sub 2/(OH)/sub 2/CO/sub 3/, by neutron diffraction

    Energy Technology Data Exchange (ETDEWEB)

    Zigan, F; Joswig, W; Schuster, H D [Frankfurt Univ. (Germany, F.R.); Mason, S A [Institut Max von Laue - Paul Langevin, 38 - Grenoble (France)

    1977-01-01

    The crystal structure of malachite is refined (R = 0,021) with the intensity values of 635 independent neutron reflexions from a single crystal, rather free from absorption and extinction. Concerning the structural geometry, no essential deviations occur from the known results of x-ray diffraction. The thermal elongations are generally largest about the normal to the (201) layers, between which the bonding is relatively weak. In both of the (medium, bent) OH...O hydrogen bonds, the anisotropic thermal parameters, converted according to the riding model, are - with certain restrictions - in agreement with the measured infrared spectrum as well as with frequencies and directions of the proton vibration calculated from the bonding geometry on the basis of a theoretical model.

  13. Method of fabricating patterned crystal structures

    KAUST Repository

    Yu, Liyang

    2016-12-15

    A method of manufacturing a patterned crystal structure for includes depositing an amorphous material. The amorphous material is modified such that a first portion of the amorphous thin-film layer has a first height/volume and a second portion of the amorphous thin-film layer has a second height/volume greater than the first portion. The amorphous material is annealed to induce crystallization, wherein crystallization is induced in the second portion first due to the greater height/volume of the second portion relative to the first portion to form patterned crystal structures.

  14. Thermal analysis of line-defect photonic crystal lasers

    DEFF Research Database (Denmark)

    Xue, Weiqi; Ottaviano, Luisa; Chen, Yaohui

    2015-01-01

    under CW optical pumping, whereas InGaAsP membranes only lase under pulsed conditions. By varying the duty cycle of the pump beam, we quantify the heating induced by optical pumping in the two material platforms and compare their thermal properties. Full 3D finite element simulations show the spatial......We report a systematic study of thermal effects in photonic crystal membrane lasers based on line-defect cavities. Two material platforms, InGaAsP and InP, are investigated experimentally and numerically. Lasers with quantum dot layers embedded in an InP membrane exhibit lasing at room temperature...

  15. Synthesis and characterization of JBW structure and its thermal transformation

    International Nuclear Information System (INIS)

    Hegazy, Eman Z.; Kosa, Samia A.; Abd El Maksod, Islam Hamdy

    2012-01-01

    In this paper, JBW zeolite prepared from Egyptian kaolin was investigated by means of XRD, IR, SEM, EDX and ion exchange of some heavy metals. Adsorption isotherms were used to investigate the structure and properties of the prepared zeolite. XRD analysis showed that the JBW was a pure crystalline phase with orthorhombic crystal symmetry. Thermal treatment showed that the JBW transformed into the It-Carn phase at 1000 °C through an intermediate crystalline alumino silicate phase. SEM images showed that the JBW crystallised in a cylindrical shape. However, spherical agglomerates were observed at lower magnifications. The ion exchange isotherms with Cu 2+ , Ni 2+ and Co 2+ were found to follow a Freundlich isotherm. In addition, it shows higher affinity towards Cu 2+ than other ions. - Graphical abstract: JBW zeolite structure was prepared from Egyptian kaolin and characterised. XRD analysis showed that the JBW was a pure crystalline phase with orthorhombic crystal symmetry. Thermal treatment showed that the JBW transformed into the It-Carn phase at 1000 °C through an intermediate crystalline alumino silicate phase. Highlights: ► Egyptian kaolin was successfully used to prepare pure phase of JBW Structure. ► JBW is stable till 2+ , Ni 2+ , and Co 2+ followed up Freundlich isotherm. ► Selectivity towards Cu 2+ is much higher than Co 2+ or Ni 2+ .

  16. Effects of Covalent Functionalization of MWCNTs on the Thermal Properties and Non-Isothermal Crystallization Behaviors of PPS Composites

    Directory of Open Access Journals (Sweden)

    Myounguk Kim

    2017-09-01

    Full Text Available In this study, a PPS/MWCNTs composite was prepared with poly(phenylene sulfide (PPS, as well as pristine and covalent functionalized multi-walled carbon nanotubes (MWCNTs via melt-blending techniques. Moreover, the dispersion of the MWCNTs on the PPS matrix was improved by covalent functionalization as can be seen from a Field-Emission Scanning Electron Microscope (FE-SEM images. The thermal properties of the PPS/MWCNTs composites were characterized using a thermal conductivity analyzer, and a differential scanning calorimeter (DSC. To analyze the crystallization behavior of polymers under conditions similar with those in industry, the non-isothermal crystallization behaviors of the PPS/MWCNTs composites were confirmed using various kinetic equations, such as the modified Avrami equation and Avrami-Ozawa combined equation. The crystallization rate of PPS/1 wt % pristine MWCNTs composite (PPSP1 was faster because of the intrinsic nucleation effect of the MWCNTs. However, the crystallization rates of the composites containing covalently-functionalized MWCNTs were slower than PPSP1 because of the destruction of the MWCNTs graphitic structure via covalent functionalization. Furthermore, the activation energies calculated by Kissinger’s method were consistently decreased by covalent functionalization.

  17. Thermalization calorimetry: A simple method for investigating glass transition and crystallization of supercooled liquids

    DEFF Research Database (Denmark)

    Jakobsen, Bo; Sanz, Alejandro; Niss, Kristine

    2016-01-01

    and their crystallization, e.g., for locating the glass transition and melting point(s), as well as for investigating the stability against crystallization and estimating the relative change in specific heat between the solid and liquid phases at the glass transition......We present a simple method for fast and cheap thermal analysis on supercooled glass-forming liquids. This “Thermalization Calorimetry” technique is based on monitoring the temperature and its rate of change during heating or cooling of a sample for which the thermal power input comes from heat...

  18. Thermal properties of borate crystals for high power optical parametric chirped-pulse amplification.

    Science.gov (United States)

    Riedel, R; Rothhardt, J; Beil, K; Gronloh, B; Klenke, A; Höppner, H; Schulz, M; Teubner, U; Kränkel, C; Limpert, J; Tünnermann, A; Prandolini, M J; Tavella, F

    2014-07-28

    The potential of borate crystals, BBO, LBO and BiBO, for high average power scaling of optical parametric chirped-pulse amplifiers is investigated. Up-to-date measurements of the absorption coefficients at 515 nm and the thermal conductivities are presented. The measured absorption coefficients are a factor of 10-100 lower than reported by the literature for BBO and LBO. For BBO, a large variation of the absorption coefficients was found between crystals from different manufacturers. The linear and nonlinear absorption coefficients at 515 nm as well as thermal conductivities were determined for the first time for BiBO. Further, different crystal cooling methods are presented. In addition, the limits to power scaling of OPCPAs are discussed.

  19. Surface induces different crystal structures in a room temperature switchable spin crossover compound.

    Science.gov (United States)

    Gentili, Denis; Liscio, Fabiola; Demitri, Nicola; Schäfer, Bernhard; Borgatti, Francesco; Torelli, Piero; Gobaut, Benoit; Panaccione, Giancarlo; Rossi, Giorgio; Degli Esposti, Alessandra; Gazzano, Massimo; Milita, Silvia; Bergenti, Ilaria; Ruani, Giampiero; Šalitroš, Ivan; Ruben, Mario; Cavallini, Massimiliano

    2016-01-07

    We investigated the influence of surfaces in the formation of different crystal structures of a spin crossover compound, namely [Fe(L)2] (LH: (2-(pyrazol-1-yl)-6-(1H-tetrazol-5-yl)pyridine), which is a neutral compound thermally switchable around room temperature. We observed that the surface induces the formation of two different crystal structures, which exhibit opposite spin transitions, i.e. on heating them up to the transition temperature, one polymorph switches from high spin to low spin and the second polymorph switches irreversibly from low spin to high spin. We attributed this inversion to the presence of water molecules H-bonded to the complex tetrazolyl moieties in the crystals. Thin deposits were investigated by means of polarized optical microscopy, atomic force microscopy, X-ray diffraction, X-ray absorption spectroscopy and micro Raman spectroscopy; moreover the analysis of the Raman spectra and the interpretation of spin inversion were supported by DFT calculations.

  20. Steady distribution structure of point defects near crystal-melt interface under pulling stop of CZ Si crystal

    Science.gov (United States)

    Abe, T.; Takahashi, T.; Shirai, K.

    2017-02-01

    In order to reveal a steady distribution structure of point defects of no growing Si on the solid-liquid interface, the crystals were grown at a high pulling rate, which Vs becomes predominant, and the pulling was suddenly stopped. After restoring the variations of the crystal by the pulling-stop, the crystals were then left in prolonged contact with the melt. Finally, the crystals were detached and rapidly cooled to freeze point defects and then a distribution of the point defects of the as-grown crystals was observed. As a result, a dislocation loop (DL) region, which is formed by the aggregation of interstitials (Is), was formed over the solid-liquid interface and was surrounded with a Vs-and-Is-free recombination region (Rc-region), although the entire crystals had been Vs rich in the beginning. It was also revealed that the crystal on the solid-liquid interface after the prolonged contact with the melt can partially have a Rc-region to be directly in contact with the melt, unlike a defect distribution of a solid-liquid interface that has been growing. This experimental result contradicts a hypothesis of Voronkov's diffusion model, which always assumes the equilibrium concentrations of Vs and Is as the boundary condition for distribution of point defects on the growth interface. The results were disscussed from a qualitative point of view of temperature distribution and thermal stress by the pulling-stop.

  1. Thermal tuning of a silicon photonic crystal cavity infilled with an elastomer

    NARCIS (Netherlands)

    Erdamar, A.K.; Van Leest, M.M.; Picken, S.J.; Caro, J.

    2011-01-01

    Thermal tuning of the transmission of an elastomer infilled photonic crystal cavity is studied. An elastomer has a thermal expansion-induced negative thermo-optic coefficient that leads to a strong decrease of the refractive index upon heating. This property makes elastomer highly suitable for

  2. Crystal Structure of the 30S Ribosomal Subunit from Thermus Thermophilus: Purification, Crystallization and Structure Determination

    International Nuclear Information System (INIS)

    Clemons, William M. Jr.; Brodersen, Ditlev E.; McCutcheonn, John P.; May, Joanna L.C.; Carter, Andrew P.; Morgan-Warren, Robert J.; Wimberly, Brian T.; Ramakrishnan, Venki

    2001-01-01

    We describe the crystallization and structure determination of the 30 S ribosomal subunit from Thermus thermophilus. Previous reports of crystals that diffracted to 10 (angstrom) resolution were used as a starting point to improve the quality of the diffraction. Eventually, ideas such as the addition of substrates or factors to eliminate conformational heterogeneity proved less important than attention to detail in yielding crystals that diffracted beyond 3 (angstrom) resolution. Despite improvements in technology and methodology in the last decade, the structure determination of the 30 S subunit presented some very challenging technical problems because of the size of the asymmetric unit, crystal variability and sensitivity to radiation damage. Some steps that were useful for determination of the atomic structure were: the use of anomalous scattering from the LIII edges of osmium and lutetium to obtain the necessary phasing signal; the use of tunable, third-generation synchrotron sources to obtain data of reasonable quality at high resolution; collection of derivative data precisely about a mirror plane to preserve small anomalous differences between Bijvoet mates despite extensive radiation damage and multi-crystal scaling; the pre-screening of crystals to ensure quality, isomorphism and the efficient use of scarce third-generation synchrotron time; pre-incubation of crystals in cobalt hexaammine to ensure isomorphism with other derivatives; and finally, the placement of proteins whose structures had been previously solved in isolation, in conjunction with biochemical data on protein-RNA interactions, to map out the architecture of the 30 S subunit prior to the construction of a detailed atomic-resolution model.

  3. Thermal conductance of a surface phonon-polariton crystal made up of polar nanorods

    Energy Technology Data Exchange (ETDEWEB)

    Ordonez-Miranda, Jose; Joulain, Karl; Ezzahri, Younes [Univ. de Poitiers, Futuroscope Chasseneuil (France). Inst. Pprime, CNRS

    2017-05-01

    We demonstrate that the energy transport of surface phonon-polaritons can be large enough to be observable in a crystal made up of a three-dimensional assembly of nanorods of silicon carbide. The ultralow phonon thermal conductivity of this nanostructure along with its high surface area-to-volume ratio allows the predominance of the polariton energy over that generated by phonons. The dispersion relation, propagation length, and thermal conductance of polaritons are numerically determined as functions of the radius and temperature of the nanorods. It is shown that the thermal conductance of a crystal with nanorods at 500 K and diameter (length) of 200 nm (20 μm) is 0.55 nW.K{sup -1}, which is comparable to the quantum of thermal conductance of polar nanowires.

  4. Synthesis, characterization, crystal structure, and thermal analysis of 2-chloro-N-(1,5-dimethyl-3-oxo-2-phenyl-2,3-dihydro-1H-pyrazol-4-yl) acetamide

    Energy Technology Data Exchange (ETDEWEB)

    Sharma, R. [University of Jammu, X-ray Crystallography Laboratory, Post-Graduate Department of Physics & Electronics (India); Nayak, P. S.; Narayana, B. [Mangalore University, Mangalagangotri, Department of Studies in Chemistry (India); Kant, R., E-mail: rkvk.paper11@gmail.com [University of Jammu, X-ray Crystallography Laboratory, Post-Graduate Department of Physics & Electronics (India)

    2015-12-15

    The title compound, C{sub 13}H{sub 14}O{sub 2}N{sub 3}Cl, has been synthesized by the reaction of chloroacetyl chloride with 4-aminoantipyrine in basic media and characterized by FT-IR, CHN elemental analysis, UV-Vis, TGA, DTA, DSC and single crystal X-ray diffraction. crystals are monoclinic, sp. gr. P2{sub 1}/c, a = 6.9994(6), b = 12.4035(13), c = 15.836(2) Å, β = 100.367(9)°, Z = 4. The crystal structure is stabilized by N–H···O and C–H···O interactions, the former interactions result in the formation of dimers corresponding to R{sub 2}{sup 2} (10) graphset motif and the dimers are further connected by C–H···O hydrogen bonding forming chains. In addition, the thermal stability of the compound was determined by TGA, DTA, DSC analysis, and absorption at λ{sub max} = 298 nm was determined by UV-Vis spectrophotometer.

  5. The crystal structure and twinning of neodymium gallium perovskite single crystals

    International Nuclear Information System (INIS)

    Ubizskii, S.B.; Vasylechko, L.O.; Savytskii, D.I.; Matkovskii, A.O.; Syvorotka, I.M.

    1994-01-01

    By means of X-ray structure analysis, the crystal structure of neodymium gallium perovskite (NGP) single crystals (NdGaO 3 ) being used as a substrate for HTSC film epitaxy has been refined and the position of atoms has been determined. The possibility of YBa 2 Cu 3 O 7-x film epitaxy on the plane (110) of NGP crystal as well as its advantages and pitfalls are analysed from structural data. The twinning types in the NGP crystal were established. The twinning structure of NGP substrates is found to be stable up to a temperature of 1173 K, as differentiated from the LaGaO 3 and LaAlO 3 substrates. It is intimated that the twinning in the NGP substrates oriented as (001) can result in creation of 90 degrees twin bonds in a film, and in the case of (110)-oriented plates it is possible to ignore the twinning presence in substrate completely. (author)

  6. Reversible thermochromic response based on photonic crystal structure in butterfly wing

    Science.gov (United States)

    Wang, Wanlin; Wang, Guo Ping; Zhang, Wang; Zhang, Di

    2018-01-01

    Subtle responsive properties can be achieved by the photonic crystal (PC) nanostructures of butterfly based on thermal expansion effect. The studies focused on making the sample visually distinct. However, the response is restricted by limited thermal expansion coefficients. We herein report a new class of reversible thermochromic response achieved by controlling the ambient refractive index in butterfly PC structure. The photonic ethanol-filled nanoarchitecture sample is simply assembled by sealing liquid ethanol filling Papilio ulysses butterfly wing. Volatile ethanol is used to modulate the ambient refractive index. The sample is sealed with glasses to ensure reversibility. Liquid ethanol filling butterfly wing demonstrated significant allochroic response to ambient refractive index, which can be controlled by the liquefaction and vaporization of ethanol. This design is capable of converting thermal energy into visual color signals. The mechanism of this distinct response is simulated and proven by band theory. The response properties are performed with different filled chemicals and different structure parameters. Thus, the reversible thermochromic response design might have potential use in the fields such as detection, photonic switch, displays, and so forth.

  7. Crystal Structural Effect of AuCu Alloy Nanoparticles on Catalytic CO Oxidation

    International Nuclear Information System (INIS)

    Zhan, Wangcheng; Wang, Jinglin; Wang, Haifeng; Zhang, Jinshui; Liu, Xiaofei

    2017-01-01

    Controlling the physical and chemical properties of alloy nanoparticles (NPs) is an important approach to optimize NP catalysis. Unlike other tuning knobs, such as size, shape, and composition, crystal structure has received limited attention and not been well understood for its role in catalysis. This deficiency is mainly due to the difficulty in synthesis and fine-tuning of the NPs’ crystal structure. Here, Exemplifying by AuCu alloy NPs with face centered cubic (fcc) and face centered tetragonal (fct) structure, we demonstrate a remarkable difference in phase segregation and catalytic performance depending on the crystal structure. During the thermal treatment in air, the Cu component in fcc-AuCu alloy NPs segregates more easily onto the alloy surface as compared to that in fct-AuCu alloy NPs. As a result, after annealing at 250 °C in air for 1 h, the fcc- and fct-AuCu alloy NPs are phase transferred into Au/CuO and AuCu/CuO core/shell structures, respectively. More importantly, this variation in heterostructures introduces a significant difference in CO adsorption on two catalysts, leading to a largely enhanced catalytic activity of AuCu/CuO NP catalyst for CO oxidation. Furthermore, the same concept can be extended to other alloy NPs, making it possible to fine-tune NP catalysis for many different chemical reactions.

  8. Crystal Structural Effect of AuCu Alloy Nanoparticles on Catalytic CO Oxidation

    Energy Technology Data Exchange (ETDEWEB)

    Zhan, Wangcheng [East China Univ. of Science and Technology, Shanghai (China); Wang, Jinglin [East China Univ. of Science and Technology, Shanghai (China); Wang, Haifeng [East China Univ. of Science and Technology, Shanghai (China); Zhang, Jinshui [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Liu, Xiaofei [East China Univ. of Science and Technology, Shanghai (China); Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Zhang, Pengfei [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Chi, Miaofang [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Guo, Yanglong [East China Univ. of Science and Technology, Shanghai (China); Guo, Yun [East China Univ. of Science and Technology, Shanghai (China); Lu, Guanzhong [East China Univ. of Science and Technology, Shanghai (China); Sun, Shouheng [Brown Univ., Providence, RI (United States); Dai, Sheng [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Univ. of Tennessee, Knoxville, TN (United States); Zhu, Huiyuan [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2017-06-07

    Controlling the physical and chemical properties of alloy nanoparticles (NPs) is an important approach to optimize NP catalysis. Unlike other tuning knobs, such as size, shape, and composition, crystal structure has received limited attention and not been well understood for its role in catalysis. This deficiency is mainly due to the difficulty in synthesis and fine-tuning of the NPs’ crystal structure. Here, Exemplifying by AuCu alloy NPs with face centered cubic (fcc) and face centered tetragonal (fct) structure, we demonstrate a remarkable difference in phase segregation and catalytic performance depending on the crystal structure. During the thermal treatment in air, the Cu component in fcc-AuCu alloy NPs segregates more easily onto the alloy surface as compared to that in fct-AuCu alloy NPs. As a result, after annealing at 250 °C in air for 1 h, the fcc- and fct-AuCu alloy NPs are phase transferred into Au/CuO and AuCu/CuO core/shell structures, respectively. More importantly, this variation in heterostructures introduces a significant difference in CO adsorption on two catalysts, leading to a largely enhanced catalytic activity of AuCu/CuO NP catalyst for CO oxidation. Furthermore, the same concept can be extended to other alloy NPs, making it possible to fine-tune NP catalysis for many different chemical reactions.

  9. A simple analytical thermo-mechanical model for liquid crystal elastomer bilayer structures

    Directory of Open Access Journals (Sweden)

    Yun Cui

    2018-02-01

    Full Text Available The bilayer structure consisting of thermal-responsive liquid crystal elastomers (LCEs and other polymer materials with stretchable heaters has attracted much attention in applications of soft actuators and soft robots due to its ability to generate large deformations when subjected to heat stimuli. A simple analytical thermo-mechanical model, accounting for the non-uniform feature of the temperature/strain distribution along the thickness direction, is established for this type of bilayer structure. The analytical predictions of the temperature and bending curvature radius agree well with finite element analysis and experiments. The influences of the LCE thickness and the heat generation power on the bending deformation of the bilayer structure are fully investigated. It is shown that a thinner LCE layer and a higher heat generation power could yield more bending deformation. These results may help the design of soft actuators and soft robots involving thermal responsive LCEs.

  10. Effects of β-sheet crystals and a glycine-rich matrix on the thermal conductivity of spider dragline silk.

    Science.gov (United States)

    Park, Jinju; Kim, Duckjong; Lee, Seung-Mo; Choi, Ji-Ung; You, Myungil; So, Hye-Mi; Han, Junkyu; Nah, Junghyo; Seol, Jae Hun

    2017-03-01

    We measured the thermal conductivity of Araneus ventricosus' spider dragline silk using a suspended microdevice. The thermal conductivity of the silk fiber was approximately 0.4Wm -1 K -1 at room temperature and gradually increased with an increasing temperature in a manner similar to that of other disordered crystals or proteins. In order to elucidate the effect of β-sheet crystals in the silk, thermal denaturation was used to reduce the quantity of the β-sheet crystals. A calculation with an effective medium approximation supported this measurement result showing that the thermal conductivity of β-sheet crystals had an insignificant effect on the thermal conductivity of SDS. Additionally, the enhancement of bonding strength in a glycine-rich matrix by atomic layer deposition did not increase the thermal conductivity. Thus, this study suggests that the disordered part of the glycine-rich matrix prevented the peptide chains from being coaxially extended via the cross-linking covalent bonds. Copyright © 2016 Elsevier B.V. All rights reserved.

  11. Thermal neutron spectra measurements in IEAR-1 Reactor, by using a crystal spectrometer

    International Nuclear Information System (INIS)

    Fulfaro, R.; Figueiredo Neto, A.M.; Stasiulevicius, E.; Vinhas, L.A.

    1975-01-01

    The thermal neutron spectrum of the IEN Argonauta reactor has been measured in the wavelength from 0.7 to 1.9A, using a neutron crystal spectrometer. An aluminium single crystal, in transmission, was used as monochromator. The aluminium crystal reflectivity employed in the analysis of the data was calculated for the first five permitted orders. An effective absorption coefficient of the crystal was used to perform the calculations instead of the macroscopic cross section of the element

  12. Thermal green protein, an extremely stable, nonaggregating fluorescent protein created by structure-guided surface engineering.

    Science.gov (United States)

    Close, Devin W; Paul, Craig Don; Langan, Patricia S; Wilce, Matthew C J; Traore, Daouda A K; Halfmann, Randal; Rocha, Reginaldo C; Waldo, Geoffery S; Payne, Riley J; Rucker, Joseph B; Prescott, Mark; Bradbury, Andrew R M

    2015-07-01

    In this article, we describe the engineering and X-ray crystal structure of Thermal Green Protein (TGP), an extremely stable, highly soluble, non-aggregating green fluorescent protein. TGP is a soluble variant of the fluorescent protein eCGP123, which despite being highly stable, has proven to be aggregation-prone. The X-ray crystal structure of eCGP123, also determined within the context of this paper, was used to carry out rational surface engineering to improve its solubility, leading to TGP. The approach involved simultaneously eliminating crystal lattice contacts while increasing the overall negative charge of the protein. Despite intentional disruption of lattice contacts and introduction of high entropy glutamate side chains, TGP crystallized readily in a number of different conditions and the X-ray crystal structure of TGP was determined to 1.9 Å resolution. The structural reasons for the enhanced stability of TGP and eCGP123 are discussed. We demonstrate the utility of using TGP as a fusion partner in various assays and significantly, in amyloid assays in which the standard fluorescent protein, EGFP, is undesirable because of aberrant oligomerization. © 2014 Wiley Periodicals, Inc.

  13. An unsymmetrical porphyrin and its metal complexes: synthesis, spectroscopy, thermal analysis and liquid crystal properties

    Directory of Open Access Journals (Sweden)

    CHANGFU ZHUANG

    2009-09-01

    Full Text Available The synthesis and characterization of a new unsymmetrical porphyrin liquid crystal, 5-(4-stearoyloxyphenylphenyl-10,15,20-triphenylporphyrin (SPTPPH2 and its transition metal complexes (SPTPPM, M(II = Zn, Fe, Co, Ni, Cu or Mn are reported. Their structure and properties were studied by elemental analysis, and UV–Vis, IR, mass and 1H-HMR spectroscopy. Their luminescent properties were studied by excitation and emission spectroscopy. The quantum yields of the S1 ® S0 fluorescence were measured at room temperature. According to thermal studies, the complexes have a higher thermal stability (no decomposition until 200 °C. Differential scanning calorimetry (DSC data and an optical textural photograph, obtained using a polarizing microscope (POM, indicate that the porphyrin ligand had liquid crystalline character and that it exhibited more than one mesophase and a low-lying phase transition temperature, with transition temperatures of 19.3 and 79.4 °C; the temperature range of the liquid crystal (LC phase of the ligand was 70.1 °C.

  14. Study of crystallization kinetics and structural relaxation behavior in phase separated Ag{sub 33}Ge{sub 17}Se{sub 50} glassy alloys

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, Praveen, E-mail: prafiziks@gmail.com [Semiconductors Laboratory, Department of Physics, GND University, Amritsar 143005 (India); Nanotechnology Research Centre, DAV Institute of Engineering and Technology, Kabir Nagar, Jalandhar 144008 (India); Yannopoulos, S.N. [Foundation for Research and Technology Hellas, Institute of Chemical Engineering and High Temperature Chemical Processes (FORTH/ICE-HT), P.O. Box 1414, GR-26 504, Rio-Patras (Greece); Sathiaraj, T.S. [Department of Physics, University of Botswana, Gaborone (Botswana); Thangaraj, R., E-mail: rthangaraj@rediffmail.com [Semiconductors Laboratory, Department of Physics, GND University, Amritsar 143005 (India)

    2012-07-16

    We report on the crystallization processes and structure (crystal phases) of Ag{sub 33}Ge{sub 17}Se{sub 50} glassy alloy using differential scanning calorimetry and x-ray diffraction techniques, respectively. The devitrification that gives rise to the first exothermic peak results in the crystallization of Ag{sub 2}Se and Ag{sub 8}GeSe{sub 6} phases, while the growth of GeSe{sub 2} accompanied by the transformation of Ag{sub 8}GeSe{sub 6} to Ag{sub 2}Se phase occurs during the second crystallization process. Different theoretical models are used to elucidate various kinetic parameters for the crystallization transformation process in this phase separated system. With annealing below the glass transition temperature, an inverse behavior between the variation of the optical gap and the band tailing parameter is observed for the thermally evaporated films. These results are explained as the mixing of different clusters/species in the amorphous state and/or changes caused by structural relaxation of the glassy network for the thermally evaporated films. - Highlights: Black-Right-Pointing-Pointer Phase separation in Ag{sub 33}Ge{sub 17}Se{sub 50} glassy alloy bordering two glass forming regions. Black-Right-Pointing-Pointer Transformation of Ag{sub 8}GeSe{sub 6} {yields} Ag{sub 2}Se along with crystallization GeSe{sub 2} phase. Black-Right-Pointing-Pointer Elucidation of various kinetic parameters for the crystalline transformation. Black-Right-Pointing-Pointer Structural relaxation in thermally evaporated films by optical spectroscopy.

  15. Alignment structures in ferroelectric liquid crystals

    Energy Technology Data Exchange (ETDEWEB)

    Islam, N.U

    1998-07-01

    Although for many years liquid crystals were of purely scientific interest, they have now become ubiquitous in everyday life. The use of the nematic liquid crystal phase in flat panel display applications has been the main factor in this popularity. However, with the advent of the SuperTwist Nematic (STN) device, the limits to which this phase could be exploited for display applications was perhaps reached. With the discovery by Clark et al. of the Surface Stabilised Ferroelectric Liquid Crystal (SSFLC) configuration, the possibility arose of using chiral smectic liquid crystals to create large area, passively addressed, fast switching, flat panel displays. Unfortunately, the structures that form within smectic liquid crystals, and the dynamics of the switching within these, are still not fully understood. In this thesis we address the former of these, making a detailed the study of the structures that form within tilted smectic liquid crystal devices. We present here the first complete theoretical and experimental study of various different ferroelectric liquid crystal materials, where we employed theoretical models based on a simple set of assumptions to understand the behaviour of a set of increasingly complex experimental systems. We started with the simplest of these, Freely Suspended Smectic Films (FSSFs) and then worked with progressively more realistic systems in the form of homeotropically, and later, homogeneously aligned liquid crystal cells. The equilibrium structures that form get particularly complex in the last case, taking the form of tilted and chevron layering structures. In each of these cases, the predictions of the modelling are compared with our experimental results. Further, we present here the first model of the chevron cusp that seeks to include the effects of biaxiality in the S{sub C} phase. We also present a model that seeks to analyse the stability of the chevron layering structure and its relationship with tilted layers. This includes

  16. Alignment structures in ferroelectric liquid crystals

    International Nuclear Information System (INIS)

    Islam, N.U.

    1998-01-01

    Although for many years liquid crystals were of purely scientific interest, they have now become ubiquitous in everyday life. The use of the nematic liquid crystal phase in flat panel display applications has been the main factor in this popularity. However, with the advent of the SuperTwist Nematic (STN) device, the limits to which this phase could be exploited for display applications was perhaps reached. With the discovery by Clark et al. of the Surface Stabilised Ferroelectric Liquid Crystal (SSFLC) configuration, the possibility arose of using chiral smectic liquid crystals to create large area, passively addressed, fast switching, flat panel displays. Unfortunately, the structures that form within smectic liquid crystals, and the dynamics of the switching within these, are still not fully understood. In this thesis we address the former of these, making a detailed the study of the structures that form within tilted smectic liquid crystal devices. We present here the first complete theoretical and experimental study of various different ferroelectric liquid crystal materials, where we employed theoretical models based on a simple set of assumptions to understand the behaviour of a set of increasingly complex experimental systems. We started with the simplest of these, Freely Suspended Smectic Films (FSSFs) and then worked with progressively more realistic systems in the form of homeotropically, and later, homogeneously aligned liquid crystal cells. The equilibrium structures that form get particularly complex in the last case, taking the form of tilted and chevron layering structures. In each of these cases, the predictions of the modelling are compared with our experimental results. Further, we present here the first model of the chevron cusp that seeks to include the effects of biaxiality in the S C phase. We also present a model that seeks to analyse the stability of the chevron layering structure and its relationship with tilted layers. This includes an

  17. A thermal model for czochralski silicon crystal growth with an axial magnetic field

    Science.gov (United States)

    Hjellming, L. N.

    1990-07-01

    This paper presents a thermal model for molten silicon in a Czochralski crystal puller system with an applied uniform axial magnetic field. The melt depth is treated as continually decreasing, which affects the thermal environment of the melt and crystal. The radiative heat loss and the input heat flux are treated as functions of time, with a constraint placed on the heat lost to the crystal from the melt. As the melt motion reaches a steady state rapidly, the temperature and flow fields are treated as instantaneously steady at each melt depth. The heat transport is a mixture of conduction and convection, and by considering the crystal and crucible to be rotating with the same angular velocity, the flows driven by buoyancy and thermocapillarity are isolated and provide the convective heat transport in the melt for the range of magnetic field strengths 0.2 ≤ B ≤ 1.0T.

  18. Preparation of shape-stabilized co-crystallized poly (ethylene glycol) composites as thermal energy storage materials

    International Nuclear Information System (INIS)

    Qian, Yong; Wei, Ping; Jiang, Pingkai; Li, Zhi; Yan, Yonggang; Ji, Kejian; Deng, Weihua

    2013-01-01

    Highlights: • Shape-stabilized PEG composites were prepared by sol–gel process. • The increased energy storage ability of composite was from cocrystallization effect. • Diammonium phosphate improved flame retardancy properties of PEG composite. • PEG composites had potential to be used as thermal energy storage materials. - Abstract: Shape-stabilized co-crystallized poly (ethylene glycol) (PEG) composites were prepared by sol–gel process. Tetraethoxysilane was utilized as supporting matrix precursor. The crystallization property as well as thermal energy storage properties of PEG was influenced by silica network. The combination of PEG 2k and PEG 10k with suitable ratio (3:1 by weight) led to synergistically increased fusion enthalpy attributed to cocrystallization effect. Furthermore, halogen-free flame retarded PEG composites were obtained using diammonium phosphate as flame retardant. With suitable composition, the latent heat value of flame retarded PEG composite was 96.7 kJ/kg accompanied with good thermal stability and improved flame retardancy properties. Fourier transform infrared spectrum (FT-IR), X-ray diffraction (XRD), polarized optical microscope (POM) and scanning electron microscope (SEM) were used to characterize the structure of PEG composites. Thermal stability properties of PEG composites were investigated by thermogravimetric analyzer (TGA). Char residue obtained from muffle furnace of PEG composites was analyzed by SEM and FT-IR. Flame retardancy properties of PEG composites were estimated by pyrolysis combustion flow calorimeter. Results showed that it was potential for shape-stabilized halogen-free flame retarded PEG composite to be applied in thermal energy storage field

  19. Normal processes of phonon-phonon scattering and thermal conductivity of germanium crystals with isotopic disorder

    CERN Document Server

    Kuleev, I G

    2001-01-01

    The effect of normal processes of the phonon-phonon scattering on the thermal conductivity of the germanium crystals with various isotopic disorder degrees is considered. The phonon pulse redistribution in the normal scattering processes both inside each oscillatory branch (the Simons mechanism) and between various phonon oscillatory branches (the Herring mechanism) is accounted for. The contributions of the longitudinal and cross-sectional phonons drift motion into the thermal conductivity are analyzed. It is shown that the pulse redistribution in the Herring relaxation mechanism leads to essential suppression of the longitudinal phonons drift motion in the isotopically pure germanium crystals. The calculations results of thermal conductivity for the Herring relaxation mechanism agree well with experimental data on the germanium crystals with various isotopic disorder degrees

  20. Study of thermal degradation of organic light emitting device structures by X-ray scattering

    International Nuclear Information System (INIS)

    Lee, Young-Joo; Lee, Heeju; Byun, Youngsuk; Song, Sanghoon; Kim, Je-Eun; Eom, Daeyong; Cha, Wonsuk; Park, Seong-Sik; Kim, Jinwoo; Kim, Hyunjung

    2007-01-01

    We report the process of thermal degradation of organic light emitting devices (OLEDs) having multilayered structure of [LiF/tris-(8-hydroxyquinoline) aluminum(Alq 3 )/N,N'-Bis(naphthalen-1-yl)-N,N'-bis(phenyl)benzidine (NPB)/copper phthalocyanine (CuPc)/indium tin oxide (ITO)/SiO 2 on a glass] by synchrotron X-ray scattering. The results show that the thermally induced degradation process of OLED multilayers has undergone several evolutions due to thermal expansion of NPB, intermixing between NPB, Alq 3 , and LiF layers, dewetting of NPB on CuPc, and crystallization of NPB and Alq 3 depending on the annealing temperature. The crystallization of NPB appears at 180 deg. C, much higher temperature than the glass transition temperature (T g = 96 deg. C) of NPB. The results are also compared with the findings from the atomic force microscope (AFM) images

  1. Evaluation of liquid fragility and thermal stability of Al-based metallic glasses by equivalent structure parameter

    International Nuclear Information System (INIS)

    Li Xuelian; Bian Xiufang; Hu Lina

    2010-01-01

    Based on extended Ideal-Atomic-Packing model, we propose an equivalent structure parameter '6x+11y' to evaluate fragility and thermal stability of Al-TM-RE metallic glasses, where x and y are composition concentrations of transition metal (TM) and rare earth (RE), respectively. Experimental results show that glass forming compositions with '6x+11y' near 100 have the smallest fragility parameter and best structure stability. In addition, '6x+11y' parameter has a positive relationship with onset-crystallization temperature, T x . Al-TM-RE glassy alloys with (6x+11y)≤100 undergo primary crystallization of fcc-Al nanocrystals, while alloys with (6x+11y)>100 exhibit nanoglassy or glassy crystallization behavior.

  2. Transitional grain boundary structures and the influence on thermal, mechanical and energy properties from molecular dynamics simulations

    International Nuclear Information System (INIS)

    Burbery, N.J.; Das, R.; Ferguson, W.G.

    2016-01-01

    The thermo-kinetic characteristics that dictate the activation of atomistic crystal defects significantly influence the mechanical properties of crystalline materials. Grain boundaries (GBs) primarily influence the plastic deformation of FCC metals through their interaction with mobile dislocation defects. The activation thresholds and atomic mechanisms that dictate the thermo-kinetic properties of grain boundaries have been difficult to study due to complex and highly variable GB structure. This paper presents a new approach for modelling GBs which is based on a systematic structural analysis of metastable and stable GBs. GB structural transformation accommodates defect interactions at the interface. The activation energy for such structural transformations was evaluated with nudged elastic band analysis of bi-crystals with several metastable 0 K grain boundary structures in pure FCC Aluminium (Al). The resultant activation energy was used to evaluate the thermal stability of the metastable grain boundary structures, with predictions of transition time based on transition state theory. The predictions are in very good agreement with the minimum time for irreversible structure transformation at 300 K obtained with molecular dynamics simulations. Analytical methods were used to evaluate the activation volume, which in turn was used to predict and explain the influence of stress and strain rate on the thermal and mechanical properties. Results of molecular dynamics simulations show that the GB structure is more closely related to the elastic strength at 0 K than the GB energy. Furthermore, the thermal instability of the GB structure directly influences the relationship between bi-crystal strength, temperature and strain rate. Hence, theoretically consistent models are established on the basis of activation criteria, and used to make predictions of temperature-dependent yield stress at a low strain rate, in agreement with experimental results.

  3. Correlation between hierarchical structure of crystal networks and macroscopic performance of mesoscopic soft materials and engineering principles.

    Science.gov (United States)

    Lin, Naibo; Liu, Xiang Yang

    2015-11-07

    This review examines how the concepts and ideas of crystallization can be extended further and applied to the field of mesoscopic soft materials. It concerns the structural characteristics vs. the macroscopic performance, and the formation mechanism of crystal networks. Although this subject can be discussed in a broad sense across the area of mesoscopic soft materials, our main focus is on supramolecular materials, spider and silkworm silks, and biominerals. First, the occurrence of a hierarchical structure, i.e. crystal network and domain network structures, will facilitate the formation kinetics of mesoscopic phases and boost up the macroscopic performance of materials in some cases (i.e. spider silk fibres). Second, the structure and performance of materials can be correlated in some way by the four factors: topology, correlation length, symmetry/ordering, and strength of association of crystal networks. Moreover, four different kinetic paths of crystal network formation are identified, namely, one-step process of assembly, two-step process of assembly, mixed mode of assembly and foreign molecule mediated assembly. Based on the basic mechanisms of crystal nucleation and growth, the formation of crystal networks, such as crystallographic mismatch (or noncrystallographic) branching (tip branching and fibre side branching) and fibre/polymeric side merging, are reviewed. This facilitates the rational design and construction of crystal networks in supramolecular materials. In this context, the (re-)construction of a hierarchical crystal network structure can be implemented by thermal, precipitate, chemical, and sonication stimuli. As another important class of soft materials, the unusual mechanical performance of spider and silkworm silk fibres are reviewed in comparison with the regenerated silk protein derivatives. It follows that the considerably larger breaking stress and unusual breaking strain of spider silk fibres vs. silkworm silk fibres can be interpreted

  4. Crystal structure and transport properties of gamma-Na sub x CoO sub 2 (x=0.67 approx 0.75)

    CERN Document Server

    Ono, Y; Miyazaki, Y; Kajitani, T; Ishii, Y

    2003-01-01

    Crystal structure and transport properties of gamma-Na sub x CoO sub 2 have been studied in the range of x=0.67-0.75. Single-phase samples were prepared by sintering mixture of raw materials, Na sub 2 CO sub 3 (99.5%) and Co sub 3 O sub 4 (99.9%). Na/Co composition ratio (x) was determined by inductively coupled plasma (ICP) analysis. The crystal structure parameters were refined by Rietveld analysis of powder neutron diffraction intensities, assuming P6 sub 3 /mmc type space symmetry. Little changes in the crystal structure are noticed, except for Na contents. Electric resistivity rho and Seebeck coefficient S were measured at temperatures between 380 K and 1000 K by the standard four-probe method and temperature gradient method, respectively. The rho-T curves exhibit the thermal hysteresis in the initial measurement. But, in the following measurement, the thermal hysteresis is significantly suppressed. The S was slightly higher in the sample with x = 0.75 than in the others at any temperatures. Power factor...

  5. Neutron Transmission of Single-crystal Sapphire Filters

    Science.gov (United States)

    Adib, M.; Kilany, M.; Habib, N.; Fathallah, M.

    2005-05-01

    An additive formula is given that permits the calculation of the nuclear capture, thermal diffuse and Bragg scattering cross-sections as a function of sapphire temperature and crystal parameters. We have developed a computer program that allows calculations of the thermal neutron transmission for the sapphire rhombohedral structure and its equivalent trigonal structure. The calculated total cross-section values and effective attenuation coefficient for single-crystalline sapphire at different temperatures are compared with measured values. Overall agreement is indicated between the formula and experimental data. We discuss the use of sapphire single crystal as a thermal neutron filter in terms of the optimum cystal thickness, mosaic spread, temperature, cutting plane and tuning for efficient transmission of thermal-reactor neutrons.

  6. Control of crystallization kinetics and study of the thermal, structural and morphological properties of an Li{sub 2}O-B{sub 2}O{sub 3}-Al{sub 2}O{sub 3} vitreous system

    Energy Technology Data Exchange (ETDEWEB)

    Dantas, Noelio O.; Silva, Valdeir A., E-mail: noelio@ufu.br [Universidade Federal de Uberlandia (LNMIS/UFU), MG (Brazil). Instituto de Fisica. Laboratorio de Novos Materials Isolantes a Semicondutores; Neto, O.O.D. [Universidade Federal de Uberlandia (GOIQ/UFU), MG (Brazil). Instituto de Fisica. Grupo de Optica e Informacao Quantica; Nascimento, Marcio L.F. [Vitreous Materials Laboratory, Institute of Humanities, Arts and Sciences, Federal University of Bahia, Salvador, BA (Brazil); PROTEC/PEI-Postgraduate Program in Industrial Engineering, Department of Chemical Engineering. Polytechnic School, Federal University of Bahia, Salvador (Brazil)

    2012-07-01

    A glass matrix with nominal composition 50Li{sub 2}O.45B{sub 2}O{sub 3}.5Al{sub 2}O{sub 3} (mol%) was synthesized, and its physical properties were investigated by differential thermal analysis (DTA), X-ray diffraction (XRD), and atomic force microscopy (AFM). The glass transition temperature T{sub g}, the crystallization-onset temperature T{sub x}, the crystallization peak temperatures T{sub c1} and T{sub c2}. and the fusion peak temperatures T{sub m1} and T{sub m2} were determined from at least two glass matrix phases to be approximately 382, 457, 486, 574, 761, and 787 °C, respectively, at 5 °C/min heating rate. Heat treatments at 450 °C for an increasing sequence of time intervals allowed control over the amount of crystallization. Additional information on the crystallization kinetics for the LBA glass matrix was gathered from AFM images, DTA thermograms, and XRD diffractograms. The latter technique showed that LiBO{sub 2} (ICDD-16568) and Li{sub 3}AIB{sub 2}O{sub 6} (ICDD- 51754) phases are formed in the glass-ceramic system. Debye-Schemer analysis of the XRD peaks revealed a competition between the evolutions of crystal phases during heat treatment. Activation energies for crystallization, obtained from theoretical models applied to the DTA data showed that the crystallization is heterogeneous. The AFM images demonstrated that this heterogeneous crystallization starts at the surface of the LBA glass matrix and identified crystal sizes in agreement with the results of the Debye-Schemer analysis. Our study shows that thermal and structural characterization techniques can be combined with theoretical results drawn from well-tested models to offer a unified view of crystallization in a glass-ceramics system. (author)

  7. Structural evolution of tunneling oxide passivating contact upon thermal annealing.

    Science.gov (United States)

    Choi, Sungjin; Min, Kwan Hong; Jeong, Myeong Sang; Lee, Jeong In; Kang, Min Gu; Song, Hee-Eun; Kang, Yoonmook; Lee, Hae-Seok; Kim, Donghwan; Kim, Ka-Hyun

    2017-10-16

    We report on the structural evolution of tunneling oxide passivating contact (TOPCon) for high efficient solar cells upon thermal annealing. The evolution of doped hydrogenated amorphous silicon (a-Si:H) into polycrystalline-silicon (poly-Si) by thermal annealing was accompanied with significant structural changes. Annealing at 600 °C for one minute introduced an increase in the implied open circuit voltage (V oc ) due to the hydrogen motion, but the implied V oc decreased again at 600 °C for five minutes. At annealing temperature above 800 °C, a-Si:H crystallized and formed poly-Si and thickness of tunneling oxide slightly decreased. The thickness of the interface tunneling oxide gradually decreased and the pinholes are formed through the tunneling oxide at a higher annealing temperature up to 1000 °C, which introduced the deteriorated carrier selectivity of the TOPCon structure. Our results indicate a correlation between the structural evolution of the TOPCon passivating contact and its passivation property at different stages of structural transition from the a-Si:H to the poly-Si as well as changes in the thickness profile of the tunneling oxide upon thermal annealing. Our result suggests that there is an optimum thickness of the tunneling oxide for passivating electron contact, in a range between 1.2 to 1.5 nm.

  8. Extra phase noise from thermal fluctuations in nonlinear optical crystals

    DEFF Research Database (Denmark)

    César, J. E. S.; Coelho, A.S.; Cassemiro, K.N.

    2009-01-01

    We show theoretically and experimentally that scattered light by thermal phonons inside a second-order nonlinear crystal is the source of additional phase noise observed in optical parametric oscillators. This additional phase noise reduces the quantum correlations and has hitherto hindered the d...

  9. Conversion of broadband thermal radiation in lithium niobate crystals of various compositions

    Science.gov (United States)

    Syuy, A. V.; Litvinova, M. N.; Goncharova, P. S.; Sidorov, N. V.; Palatnikov, M. N.; Krishtop, V. V.; Likhtin, V. V.

    2013-05-01

    The conversion of the broadband thermal radiation in stoichiometric ( R = 1) lithium niobate single crystals that are grown from melt with 58.6 mol % of LiO2, congruent ( R = Li/Nb = 0.946) melt with the K2O flux admixture (4.5 and 6.0 wt %), and congruent melt and in congruent single crystals doped with the Zn2+, Gd3+, and Er3+ cations is studied. It is demonstrated that the conversion efficiency of the stoichiometric crystal that is grown from the melt with 58.6 mol % of LiO2 is less than the conversion efficiency of congruent crystal. In addition, the stoichiometric and almost stoichiometric crystals and the doped congruent crystals exhibit the blue shift of the peak conversion intensity in comparison with a nominally pure congruent crystal. For the congruent crystals, the conversion intensities peak at 520 and 495 nm, respectively.

  10. Synthesis, growth, spectral, electrical, mechanical and thermal characterization of a potential optical material: γ-glycine single crystal

    Science.gov (United States)

    Sivakumar, N.; Jayavel, R.; Anbalagan, G.; Yadav, R. R.

    2018-06-01

    Gamma glycine, an organic material was grown by slow solvent evaporation method. Conventional polythermal method was employed in the temperature range, 30-50 °C to obtain the solubility and the metastable zonewidth. The crystal and molecular structures were analyzed by X-ray powder diffraction, FT-IR and FT-Raman spectral studies. Optical refractive index was determined by prism coupling technique and was found to be 1.4488. Electrical properties such as ac conductivity and activation energy were studied for different temperatures in the frequency range from 40 Hz to 6 MHz. The dc electrical conductivity was estimated from the Cole-Cole plot and the values were found to be 2.19 × 10-6 Sm-1 at 353K and 1.46 × 10-6 Sm-1 at 373K respectively. Mechanical studies on the grown crystal revealed that the material belongs to soft materials category. Thermal conductivity and specific heat capacities were estimated by Hot Disk Thermal Constants Analyzer.

  11. CRYSTALLIZATION AND THERMAL EXPANSION CHARACTERISTICS OF In2O3-CONTAINING LITHIUM IRON SILICATE-DIOPSIDE GLASSES

    Directory of Open Access Journals (Sweden)

    S.M. SALMAN

    2011-06-01

    Full Text Available The crystallization characteristics of glasses based on lithium iron silicate (LiFeSi2O6-diopside (CaMgSi2O6 composition with addition of Al2O3 at the expense of Fe2O3 were described. The effect of LiInSi2O6/CaMgSi2O6 replacements was also investigated. The thermal treatment, the crystal phases, and the micro-structural properties of (LiFeSi2O6–CaMgSi2O6 glasses, replacing partial Fe2O3 with Al2O3 and partial CaMgSi2O6 with LiInSi2O6, have been studied by a differential thermal analysis, an X-ray diffraction, and a scanning electron microscopy. The glasses show the intense uniform bulkcrystallization with the fine grained microstructure by increasing the replacement of Al2O3/Fe2O3 and LiInSi2O6/CaMgSi2O6. The crystallizing phases of Ca(Fe,Mg(SiO32, a-LiFe5O8, Li2SiO3, a-SiO2 and CaMgSi2O6 are mostly formed together, in most case, with Li0.6Al0.6Si2.4O6, β-eucryptite solid solution, LiInSi2O6, In2Si2O7, and LiFeSi2O6. The Al2O3 partial replacement increases the transformation temperature (Tg and softening one (Ts for the glasses and the glass-ceramics, and decreases the thermal expansion coefficient (a-value for the glasses. The LiInSi2O6 partial replacement decreases Tg and Ts and increases the a-value for the glasses, while the Al2O3 and LiInSi2O6 partial replacements decrease the a-value for the glassceramics. The crystallization characters of the glasses are correlated to the internal structure, as well as role played by the glass-forming cations. However, the one of the glass-ceramics are mainly attributed to the crystalline phases formed in the material.

  12. Crystallization behaviour and thermal stability of two aluminium-based metallic glass powder materials

    Energy Technology Data Exchange (ETDEWEB)

    Li, X.P.; Yan, M. [University of Queensland, School of Mechanical and Mining Engineering, ARC Centre of Excellence for Design in Light Metals, Brisbane, QLD 4072 (Australia); Yang, B.J. [Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016 (China); Wang, J.Q., E-mail: jqwang@imr.ac.cn [Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016 (China); Schaffer, G.B. [University of Queensland, School of Mechanical and Mining Engineering, ARC Centre of Excellence for Design in Light Metals, Brisbane, QLD 4072 (Australia); Qian, M., E-mail: ma.qian@uq.edu.au [University of Queensland, School of Mechanical and Mining Engineering, ARC Centre of Excellence for Design in Light Metals, Brisbane, QLD 4072 (Australia)

    2011-12-15

    Highlights: Black-Right-Pointing-Pointer The crystallization paths and products of Al{sub 86}Ni{sub 7}Y{sub 4.5}Co{sub 1}La{sub 1.5} powder have been identified. Black-Right-Pointing-Pointer The thermal stability of Al{sub 86}Ni{sub 7}Y{sub 4.5}Co{sub 1}La{sub 1.5} powder has been assessed. Black-Right-Pointing-Pointer The Al{sub 86}Ni{sub 7}Y{sub 4.5}Co{sub 1}La{sub 1.5} powder shows a wide processing window of 75 K. Black-Right-Pointing-Pointer The powder has the potential to be consolidated into thick BMG components based on the findings. Black-Right-Pointing-Pointer The Al{sub 85}Ni{sub 5}Y{sub 6}Co{sub 2}Fe{sub 2} powder shows similar characteristics but inferior thermal stability. - Abstract: The crystallization behaviour and thermal stability of two Al-based metallic glass powder materials, Al{sub 85}Ni{sub 5}Y{sub 6}Co{sub 2}Fe{sub 2} and Al{sub 86}Ni{sub 6}Y{sub 4.5}Co{sub 2}La{sub 1.5}, have been investigated using differential scanning calorimetry (DSC), X-ray diffraction (XRD) and electron microscopy. Both alloy powders show a distinct three-stage crystallization process with a similar gap of {approx}75 K between the onset crystallization temperature (T{sub x}) and the second crystallization temperature. Crystallization occurs by the precipitation and growth of fcc-Al, without intermetallic formation. The apparent activation energy for each stage of crystallization was determined from DSC analyses and the phases resulting from each crystallization stage were identified by XRD and electron microscopy. The critical cooling rate for each alloy powder was calculated from the DSC data. These results are necessary to inform the consolidation of amorphous powder particles of Al{sub 85}Ni{sub 5}Y{sub 6}Co{sub 2}Fe{sub 2} or Al{sub 86}Ni{sub 6}Y{sub 4.5}Co{sub 2}La{sub 1.5} into thick (>1 mm) metallic glass components.

  13. Thermal, mechanical, optical and dielectric properties of piperazinium hydrogen phosphite monohydrate NLO single crystal

    Science.gov (United States)

    Rajkumar, R.; Praveen Kumar, P.

    2018-05-01

    Optical transparent crystal of piperazinium hydrogen phosphite monohydrate (PHPM) was grown by slow evaporation method. The grown crystal was characterized by single crystal X-ray diffraction analysis and the crystal belongs to monoclinic system. The functional groups present in PHPM crystal were confirmed by FTIR analysis. UV-Visible spectrum shows that the PHPM crystal is transparent in the visible region. The mechanical behavior of PHPM crystal was characterized by Vickers hardness test. Thermal stability of PHPM crystal was analyzed by thermogravimetric analysis. Dielectric studies were also carried out for the grown crystal. The third-order nonlinear parameters such as nonlinear refractive index and nonlinear absorption coefficient have been calculated using Z scan technique.

  14. Layered Crystal Structure, Color-Tunable Photoluminescence, and Excellent Thermal Stability of MgIn2P4O14 Phosphate-Based Phosphors.

    Science.gov (United States)

    Zhang, Jing; Cai, Ge-Mei; Yang, Lv-Wei; Ma, Zhi-Yuan; Jin, Zhan-Peng

    2017-11-06

    Single-component white phosphors stand a good chance to serve in the next-generation high-power white light-emitting diodes. Because of low thermal stability and containing lanthanide ions with reduced valence state, most of reported phosphors usually suffer unstable color of lighting for practical packaging and comparably complex synthetic processes. In this work, we present a type of novel color-tunable blue-white-yellow-emitting MgIn 2 P 4 O 14 :Tm 3+ /Dy 3+ phosphor with high thermal stability, which can be easily fabricated in air. Under UV excitation, the MgIn 2 P 4 O 14 :Tm 0.02 Dy 0.03 white phosphor exhibits negligible thermal-quenching behavior, with a 99.5% intensity retention at 150 °C, relative to its initial value at room temperature. The phosphor host MgIn 2 P 4 O 14 was synthesized and reported for the first time. MgIn 2 P 4 O 14 crystallizes in the space group of C2/c (No. 15) with a novel layered structure built of alternate anionic and cationic layers. Its disordering structure, with Mg and In atoms co-occupying the same site, is believed to facilitate the energy transfer between rare-earth ions and benefit by sustaining the luminescence with increasing temperature. The measured absolute quantum yields of MgIn 2 P 4 O 14 :Dy 0.04 , MgIn 2 P 4 O 14 :Tm 0.01 Dy 0.04 , and MgIn 2 P 4 O 14 :Tm 0.02 Dy 0.03 phosphors under the excitation of 351 nm ultraviolet radiation are 70.50%, 53.24%, and 52.31%, respectively. Present work indicates that the novel layered MgIn 2 P 4 O 14 is a promising candidate as a single-component white phosphor host with an excellent thermal stability for near-UV-excited white-light-emitting diodes (wLEDs).

  15. Fluorination of Metal Phthalocyanines: Single-Crystal Growth, Efficient N-Channel Organic Field-Effect Transistors, and Structure-Property Relationships

    Science.gov (United States)

    Jiang, Hui; Ye, Jun; Hu, Peng; Wei, Fengxia; Du, Kezhao; Wang, Ning; Ba, Te; Feng, Shuanglong; Kloc, Christian

    2014-01-01

    The fluorination of p-type metal phthalocyanines produces n-type semiconductors, allowing the design of organic electronic circuits that contain inexpensive heterojunctions made from chemically and thermally stable p- and n-type organic semiconductors. For the evaluation of close to intrinsic transport properties, high-quality centimeter-sized single crystals of F16CuPc, F16CoPc and F16ZnPc have been grown. New crystal structures of F16CuPc, F16CoPc and F16ZnPc have been determined. Organic single-crystal field-effect transistors have been fabricated to study the effects of the central metal atom on their charge transport properties. The F16ZnPc has the highest electron mobility (~1.1 cm2 V−1 s−1). Theoretical calculations indicate that the crystal structure and electronic structure of the central metal atom determine the transport properties of fluorinated metal phthalocyanines. PMID:25524460

  16. Role of the Structural and Thermal Peclet Numbers in the Brass Continuous Casting

    Directory of Open Access Journals (Sweden)

    Kwapisiński P.

    2017-06-01

    Full Text Available The Structural Peclet Number has been estimated experimentally by analyzing the morphology of the continuously cast brass ingots. It allowed to adapt a proper development of the Ivantsov’s series in order to formulate the Growth Law for the columnar structure formation in the brass ingots solidified in stationary condition. Simultaneously, the Thermal Peclet Number together with the Biot, Stefan, and Fourier Numbers is used in the model describing the heat transfer connected with the so-called contact layer (air gap between an ingot and crystallizer. It lead to define the shape and position of the s/l interface in the brass ingot subjected to the vertical continuous displacement within the crystallizer (in gravity. Particularly, a comparison of the shape of the simulated s/l interface at the axis of the continuously cast brass ingot with the real shape revealed at the ingot axis is delivered. Structural zones in the continuously cast brass ingot are revealed: FC - fine columnar grains, C - columnar grains, E - equiaxed grains, SC - single crystal situated axially.

  17. ANSYS program and re-validation of the thermal analysis of the Cornell silicon crystal

    International Nuclear Information System (INIS)

    Khounsary, A.; Kuzay, T.

    1992-01-01

    Thermal analysis of the Cornell three-channel silicon crystal is carried out using the ANSYS finite element program. Results are in general agreement with those previously obtained using the Transient Heat Transfer, version B (THTB) program. The main thrust of the present study has been to (a) explore the thermal analysis potentials of the ANSYS program in solving thermal hydraulic problems in the APS beamline design, (b) compare the ANSYS results with those obtained by THTB for a specific test crystal, and (c) obtain some cost benchmarks for the ANSYS program. On the basis of a limited number of test runs for the silicon crystal problem, conclusions can be drawn that (a) except for conduction problems with simple boundary conditions the utility of ANSYS for solving a variety of three-dimensional thermal hydraulic problems is at best limited, (b) in comparison with THTB program, ANSYS requires a more detailed modeling (with increasing computation time) for comparably accurate results, and (c) no firm statement regarding the cost factor can be made at this time although the ANSYS program appears to be more expensive than any other code we have used so far

  18. Synthesis, crystal structure, spectral and thermal studies of (E)-4-dimethamino[(1-phenylethyl)iminomethyl]benzyne

    Czech Academy of Sciences Publication Activity Database

    Khalaji, A.D.; Rad, S.M.; Grivani, G.; Fejfarová, Karla; Dušek, Michal; Das, D.

    2011-01-01

    Roč. 41, č. 8 (2011), s. 1145-1149 ISSN 1074-1542 R&D Projects: GA ČR(CZ) GAP204/11/0809 Institutional research plan: CEZ:AV0Z10100521 Keywords : Shiff bases * crystal structure * X-ray diffraction Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 0.566, year: 2011

  19. Thermal bump removal of a crystal monochromator by designing an optimal shape

    Energy Technology Data Exchange (ETDEWEB)

    Micha, Jean-Sébastien, E-mail: micha@esrf.fr [CRG-IF BM32 Beamline, ESRF, 6 rue J. Horowitz, BP 220, 38043 Grenoble (France); UMR SPrAM 5819, CEA-Grenoble/INAC/SPrAM, 17 avenue des Martyrs, 38054 Grenoble Cedex 9 (France); Geaymond, Olivier [CRG-IF BM32 Beamline, ESRF, 6 rue J. Horowitz, BP 220, 38043 Grenoble (France); Institut Néel, CNRS, 25 avenue des Martyrs, 38054 Grenoble Cedex 9 (France); Rieutord, Francois [CRG-IF BM32 Beamline, ESRF, 6 rue J. Horowitz, BP 220, 38043 Grenoble (France); CEA-Grenoble/INAC/NRS, 17 avenue des Martyrs, 38054 Grenoble Cedex 9 (France)

    2013-05-11

    Thermal bump arising at illuminated area of a water cooled monochromator crystal can be considerably reduced by designing an appropriate shape. Temperature and deformation have been simulated by finite element analysis (FEA) computations as a function of few geometrical parameters describing the shape of the crystal. As a result, a new crystal shape has been found which optimizes the throughput of a double crystals monochromator (DCM). Performances of the initial rectangular crystal and the new designed crystal predicted by FEA-based calculations and measured during experimental tests on a synchrotron beamline are reported. General design principles to overcome heat load issues and the objective function using the slope errors derived from FEA results are detailed. Current and foreseen performances at higher load are presented. Finally, advantages and limits of this simple-to-design and cheap solution are discussed.

  20. Ion beam modification of thermal stress resistance of MgO single crystals with different crystallographic faces

    International Nuclear Information System (INIS)

    Gurarie, V.N.; Otsuka, P.H.; Williams, J.S.; Conway, M.J.

    2000-01-01

    Ion beam modification of thermal shock stress resistance of MgO single crystals with various crystallographic faces is investigated. The most stable crystal faces in terms of stress and damage resistance are established. Ion implantation is shown to reduce the temperature threshold of fracture for all crystal faces tested. The (111) face is demonstrated to be of highest stability compared to (110) and (100) faces in both implanted and unimplanted crystals. At the same time ion implantation substantially increases the microcrack density for all the faces tested and reduces the degree of fracture damage following thermal shock. The theoretical resistance parameters for various crystal faces are calculated using the continuum mechanics approach. The results are discussed on the basis of fracture mechanics principles and the effect of the implantation-induced lattice damage on crack nucleation

  1. Single crystal growth, magnetic and thermal properties of perovskite YFe{sub 0.6}Mn{sub 0.4}O{sub 3} single crystal

    Energy Technology Data Exchange (ETDEWEB)

    Xie, Tao [School of Materials Science and Engineering, Shanghai Institute of Technology, Shanghai 201418 (China); Synthetio Single Crystal Research Center, Shanghai Institute of Ceramic, Chinese Academy of Sciences, Shanghai 200050 (China); Key Laboratory of Transparent and Opto-functional Inorganic Materials, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050 (China); Shen, Hui, E-mail: hshen@sit.edu.cn [School of Materials Science and Engineering, Shanghai Institute of Technology, Shanghai 201418 (China); Zhao, Xiangyang; Man, Peiwen [Synthetio Single Crystal Research Center, Shanghai Institute of Ceramic, Chinese Academy of Sciences, Shanghai 200050 (China); Key Laboratory of Transparent and Opto-functional Inorganic Materials, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050 (China); Wu, Anhua, E-mail: wuanhua@mail.sic.ac.cn [Synthetio Single Crystal Research Center, Shanghai Institute of Ceramic, Chinese Academy of Sciences, Shanghai 200050 (China); Key Laboratory of Transparent and Opto-functional Inorganic Materials, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050 (China); Su, Liangbi [Synthetio Single Crystal Research Center, Shanghai Institute of Ceramic, Chinese Academy of Sciences, Shanghai 200050 (China); Key Laboratory of Transparent and Opto-functional Inorganic Materials, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050 (China); Xu, Jiayue, E-mail: xujiayue@sit.edu.cn [School of Materials Science and Engineering, Shanghai Institute of Technology, Shanghai 201418 (China)

    2016-11-01

    High quality YFe{sub 0.6}Mn{sub 0.4}O{sub 3} single crystal was grown by floating zone technique using a four-mirror-image-furnace under flowing air. Powder X-ray diffraction gives well evidence that the specimen has an orthorhombic structure, with space group Pbnm. Temperature dependence of the magnetizations of YFe{sub 0.6}Mn{sub 0.4}O{sub 3} single crystal were studied under ZFC and FC modes in the temperature range from 5 K to 400 K. A clear spin reorientation transition behavior (Γ{sub 4}→Γ{sub 1}) is observed in the temperature range of 322–316 K, due to the substitution of Mn at the Fe site of YFeO{sub 3}. Its Néel temperature is around 385 K. Moreover, the spin reorientation is verified by the change of magnetic hysteresis loops of the sample along [001] axis in the temperature range of 50–385 K. The thermal properties of the sample were measured by the differential scanning calorimeter (DSC) from 300 K to 500 K, which also clearly appear anomaly in the spin reorientation region. - Highlights: • High quality YFe{sub 0.6}Mn{sub 0.4}O{sub 3} single crystal was grown by floating zone technique. • The thermal properties appear anomaly in the spin reorientation region. • A clear spin reorientation transition behavior (Γ{sub 4}→Γ{sub 1}) is observed in the temperature range of 322–316 K, due to the substitution of Mn at the Fe site of YFeO{sub 3}.

  2. Thermal stress resistance of ion implanted sapphire crystals

    International Nuclear Information System (INIS)

    Gurarie, V.N.; Jamieson, D.N.; Szymanski, R.; Orlov, A.V.; Williams, J.S.; Conway, M.

    1999-01-01

    Monocrystals of sapphire have been subjected to ion implantation with 86 keV Si - and 80 keV Cr - ions to doses in the range of 5x10 14 -5x10 16 cm -2 prior to thermal stress testing in a pulsed plasma. Above a certain critical dose ion implantation is shown to modify the near-surface structure of samples by introducing damage, which makes crack nucleation easier under the applied stress. The effect of ion dose on the stress resistance is investigated and the critical doses which produce a noticeable change in the stress resistance are determined. The critical dose for Si ions is shown to be much lower than that for Cr - ions. However, for doses exceeding 2x10 16 cm -2 the stress resistance parameter decreases to approximately the same value for both implants. The size of the implantation-induced crack nucleating centers and the density of the implantation-induced defects are considered to be the major factors determining the stress resistance of sapphire crystals irradiated with Si - and Cr - ions

  3. What makes a crystal structure report valid?

    NARCIS (Netherlands)

    Spek, Anthony L.|info:eu-repo/dai/nl/156517566

    2018-01-01

    Single crystal X-ray crystallography has developed into a unique, highly automated and accessible tool to obtain detailed information on molecular structures. Proper archival makes that referees, readers and users of the results of reported crystal structures no longer need to depend solely on the

  4. Modeling of Thermal Phase Noise in a Solid Core Photonic Crystal Fiber-Optic Gyroscope.

    Science.gov (United States)

    Song, Ningfang; Ma, Kun; Jin, Jing; Teng, Fei; Cai, Wei

    2017-10-26

    A theoretical model of the thermal phase noise in a square-wave modulated solid core photonic crystal fiber-optic gyroscope has been established, and then verified by measurements. The results demonstrate a good agreement between theory and experiment. The contribution of the thermal phase noise to the random walk coefficient of the gyroscope is derived. A fiber coil with 2.8 km length is used in the experimental solid core photonic crystal fiber-optic gyroscope, showing a random walk coefficient of 9.25 × 10 -5 deg/√h.

  5. Effect of sintering on crystallization and structural properties of soda lime silica glass

    Directory of Open Access Journals (Sweden)

    Zaid Mohd Hafiz Mohd

    2017-01-01

    Full Text Available The effect of sintering temperatures on crystallization and structural of the soda lime silica (SLS glass was reported. Elemental weight composition of the SLS glass powder was identified through Energy dispersive X-ray fluorescence (EDXRF analysis while the thermal behavior of the glass was determined using Differential thermal analysis (DTA technique. Archimedes’ method and direct geometric measurement were respectively used to determine bulk density and linear shrinkage of the glass samples. Crystallisation behavior of the samples was investigated by X-ray diffraction (XRD analysis and chemical bonds present in the samples were measured using Fourier Transform Infrared (FTIR spectroscopy. Results showed an increase in the density and linear shrinkage of the samples as a function of the sintering temperature. The XRD analysis revealed the formation of α-quartz (SiO2 and a minor amount of devitrite phases in the samples and these were further verified through the detection of chemical bonds by FTIR after sintering at 800ºC. The properties of the glass-ceramics can be explained on the basis of crystal chemistry which indicated that the alkali ions formed as carriers in the random network structure and can be recommended for the manufacture of glass fiber or toughened glass-ceramic insulators.

  6. SYNTHESIS, CHARACTERIZATION AND CRYSTAL STRUCTURES ...

    African Journals Online (AJOL)

    B. S. Chandravanshi

    ABSTRACT. Reaction of [VO(acac)2] (acac = acetylacetonate) with ... Single crystal X-ray structural studies indicate that the hydrazone ligands coordinate to ..... Molecular structure of complex (1) at 30% probability displacement. Figure 4.

  7. Synthesis, crystal growth, optical, thermal, and mechanical properties of a nonlinear optical single crystal: ammonium sulfate hydrogen sulphamate (ASHS)

    Science.gov (United States)

    Sudhakar, K.; Nandhini, S.; Muniyappan, S.; Arumanayagam, T.; Vivek, P.; Murugakoothan, P.

    2018-04-01

    Ammonium sulfate hydrogen sulphamate (ASHS), an inorganic nonlinear optical crystal, was grown from the aqueous solution by slow evaporation solution growth technique. The single-crystal XRD confirms that the grown single crystal belongs to the orthorhombic system with the space group of Pna21. Powder XRD confirms the crystalline nature and the diffraction planes were indexed. Crystalline perfection of grown crystal was analysed by high-resolution X-ray diffraction rocking curve technique. UV-Vis-NIR studies revealed that ASHS crystal has optical transparency 65% and lower cut-off wavelength at 218 nm. The violet light emission of the crystal was identified by photoluminescence studies. The particle size-dependent second-harmonic generation efficiency for ASHS crystal was evaluated by Kurtz-Perry powder technique using Nd:YAG laser which established the existence of phase matching. Surface laser damage threshold value was evaluated using Nd:YAG laser. Optical homogeneity of the crystal was evaluated using modified channel spectrum method through birefringence study. Thermal analysis reveals that ASHS crystal is stable up to 213 °C. The mechanical behaviour of the ASHS crystal was analysed using Vickers microhardness study.

  8. Effects of thermal history in the ring opening polymerization of CBT and its mixtures with montmorillonite on the crystallization of the resulting poly(butylene terephthalate)

    Energy Technology Data Exchange (ETDEWEB)

    Lanciano, Giuseppina [Department of Innovation Engineering, University of Salento, Via per Arnesano, 73100 Lecce (Italy); Greco, Antonio, E-mail: antonio.greco@unile.it [Department of Innovation Engineering, University of Salento, Via per Arnesano, 73100 Lecce (Italy); Maffezzoli, Alfonso [Department of Innovation Engineering, University of Salento, Via per Arnesano, 73100 Lecce (Italy); Mascia, Leno [Department of Materials, Loughborough University, Loughborough, LE 11 3TU (United Kingdom)

    2009-09-10

    Differential scanning calorimetry was used to study the thermal characteristics and morphological structure of species produced during the ring opening polymerization of cyclic butylene terephthalate (CBT). Thermal programs consisting of a first ramp heating scan and an isothermal step, followed by cooling and a second ramp heating step, were used to study the effects of thermal history, catalyst (butyl chlorotin dihydroxide) at concentrations between 0.1 and 1.3% (w/w), and the presence of a layered silicate nanofiller (montmorillonite at 4.0%, w/w) on the structure of the resulting polymer (poly(butylene terephthalate), pCBT). Wide angle X-ray diffraction was used to monitor the degree of exfoliation of the nanocomposites. It was found that pCBT is formed in the amorphous state, and crystallizes during the heating step or during the isothermal step at temperatures lower than the equilibrium melting temperature of the polymer (T{sub m}{sup 0}). When premixed with the nanofiller, irrespective of whether this was previously intercalated with a tallow surfactant or used in its pristine form, polymerization took place at higher temperatures and most of the crystallization was found to occur during the cooling stage. In those cases where crystallization took place during either the first heating scan, or during a prolonged isothermal step below the T{sub m}{sup 0} of the polymer, the resulting crystals were found to have a higher lamellar thickness, as compared with the same polymer crystallized from the melt during the cooling step from temperatures above the polymer T{sub m}{sup 0}.

  9. Effects of thermal history in the ring opening polymerization of CBT and its mixtures with montmorillonite on the crystallization of the resulting poly(butylene terephthalate)

    International Nuclear Information System (INIS)

    Lanciano, Giuseppina; Greco, Antonio; Maffezzoli, Alfonso; Mascia, Leno

    2009-01-01

    Differential scanning calorimetry was used to study the thermal characteristics and morphological structure of species produced during the ring opening polymerization of cyclic butylene terephthalate (CBT). Thermal programs consisting of a first ramp heating scan and an isothermal step, followed by cooling and a second ramp heating step, were used to study the effects of thermal history, catalyst (butyl chlorotin dihydroxide) at concentrations between 0.1 and 1.3% (w/w), and the presence of a layered silicate nanofiller (montmorillonite at 4.0%, w/w) on the structure of the resulting polymer (poly(butylene terephthalate), pCBT). Wide angle X-ray diffraction was used to monitor the degree of exfoliation of the nanocomposites. It was found that pCBT is formed in the amorphous state, and crystallizes during the heating step or during the isothermal step at temperatures lower than the equilibrium melting temperature of the polymer (T m 0 ). When premixed with the nanofiller, irrespective of whether this was previously intercalated with a tallow surfactant or used in its pristine form, polymerization took place at higher temperatures and most of the crystallization was found to occur during the cooling stage. In those cases where crystallization took place during either the first heating scan, or during a prolonged isothermal step below the T m 0 of the polymer, the resulting crystals were found to have a higher lamellar thickness, as compared with the same polymer crystallized from the melt during the cooling step from temperatures above the polymer T m 0 .

  10. Alkyltributylphosphonium chloride ionic liquids: synthesis, physicochemical properties and crystal structure.

    Science.gov (United States)

    Adamová, Gabriela; Gardas, Ramesh L; Nieuwenhuyzen, Mark; Puga, Alberto V; Rebelo, Luís Paulo N; Robertson, Allan J; Seddon, Kenneth R

    2012-07-21

    A series of alkyltributylphosphonium chloride ionic liquids, prepared from tributylphosphine and the respective 1-chloroalkane, C(n)H(2n+1)Cl (where n = 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 12 or 14), is reported. This work is a continuation of an extended series of tetraalkylphosphonium ionic liquids, where the focus is on the variability of n and its impact on the physical properties, such as melting points/glass transitions, thermal stability, density and viscosity. Experimental density and viscosity data were interpreted using QPSR and group contribution methods and the crystal structure of propyl(tributyl)phosphonium chloride is detailed.

  11. Effect of copper valence on the glass structure and crystallization behavior of Bi-Pb-Cu-O glasses

    International Nuclear Information System (INIS)

    Hu, Yi; Lin, U.-L.; Liu, N.-H.

    1997-01-01

    Bi 0.43 Pb 0.35 Cu 0.22 O y glasses with different Cu + contents were prepared by melting at different temperatures. The glass structure consists of [BiO 3 [ and [BiO 6 [ units and the ratio of [BiO 3 [/[BiO 6 [ increases with increasing Cu + content. The glass transition temperature, the first crystallization temperature peak, and the thermal stability of the glasses decreases with increasing Cu + content. The value of the activation energy, E a , varies as a function of the Cu + content. The crystallization mechanism in the glasses is closely related to the glass structure, which is mainly affected by the Cu + content. (orig.)

  12. Crystal structures, Hirshfeld surface analysis, thermal behavior and dielectric properties of a new organic-inorganic hybrid [C6H10(NH3)2]Cu2Cl8

    Science.gov (United States)

    Salah, Najet; Hamdi, Besma; Bouzidia, Nabaa; Salah, Abdelhamid Ben

    2017-12-01

    A novel organic-inorganic hybrid sample [C6H10(NH3)2]Cu2Cl8 has been prepared under mild hydrothermal conditions and characterized by single crystal X-ray diffraction, Hirshfeld surface analysis, FT-IR,NMR and UV-Vis spectroscopies, differential scanning calorimetric and dielectric measurement. It is crystallized in the monoclinic system with P21/c space group. The cohesion and stabilization of the structure are provided by the hydrogen bond interactions, (Nsbnd H⋯Cl and Csbnd H⋯Cl), between [C6H10(NH3)2]2+ cation and [Cu2Cl8]2- anion. The Hirschfeld surface analysis has been performed to explore the behavior of these weak interactions. The presence of different functional groups and the nature of their vibrations were identified by FT-IR and Solid state NMR. The thermal study revealed that this compound undergoes two structural phase transitions around 353 and 376 K. Electrical measurements of our compounds have been investigated using complex impedance spectroscopy (CIS) in the frequency and temperature range 331-399 K and 200 Hz-5 MHz, respectively. The AC conductivity is explained using the correlated barrier hopping model (CBH) conduction mechanism. The nature of DC conductivity variation suggests Arrhenius type of electrical conductivity. A relationship between crystal structure and ionic conductivity was established and discussed. Finally, the real and imaginary parts of the permittivity constant are analyzed with the Cole-Cole formalism and the optical spectra indicate that the compound has a direct band gap (3.14 eV) due to direct transition. The wide band gap is due to low defect concentration in the grown crystal, which is more useful for the laser/optical applications.

  13. Acid indium strontium phosphate SrIn2[PO3(OH)]4: synthesis and crystal structure

    International Nuclear Information System (INIS)

    Rusakov, D.A.; Bobylev, A.P.; Komissarova, L.N.; Filaretov, A.A.; Danilov, V.P.

    2007-01-01

    Acid indium-strontium phosphate SrIn 2 [PO 3 (OH)] 4 is synthesized and characterized. Crystal structure and lattice parameters ate determined. In atoms in SrIn 2 [PO 3 (OH)] 4 structure are in distorted InO 6 octahedrons and form with PO 3 (OH) tetrahedrons mixed paraskeleton {In 2 [PO 3 (OH)] 4 } 3∞ 2- with emptinesses occupied by big Sr 2+ cations. The compound is thermally stable up to 400 Deg C [ru

  14. Crystal structure from one-electron theory

    DEFF Research Database (Denmark)

    Skriver, H. L.

    1985-01-01

    The authors have studied the crystal structure of all the 3d, 4d, and 5d transition metals at zero pressure and temperature by means of the linear muffin-tin orbital method and Andersen's force theorem. They find that, although the structural energy differences seem to be overestimated by the the......The authors have studied the crystal structure of all the 3d, 4d, and 5d transition metals at zero pressure and temperature by means of the linear muffin-tin orbital method and Andersen's force theorem. They find that, although the structural energy differences seem to be overestimated...

  15. Growth, crystal structure, spectral properties and laser performance of Yb3+:NaLu(MoO4)2 crystal

    International Nuclear Information System (INIS)

    Yu, Yi; Zhang, Lizhen; Huang, Yisheng; Lin, Zhoubin; Wang, Guofu

    2013-01-01

    A double molybdate Yb 3+ :NaLu(MoO 4 ) 2 crystal was successfully grown from a flux of Na 2 Mo 2 O 7 by the top-seeded solution growth method, for the first time to our knowledge. The crystal belongs to the tetragonal system with space group I4 1 /a, and the unit-cell parameters are a = b = 5.159 Å, c = 11.246 Å. Na and Lu atoms co-occupy the same lattice site, which leads to the disordered structure of NaLu(MoO 4 ) 2 crystal. The thermal expansion coefficients of the crystal are 1.35 × 10 −5 K −1 along the c-axis, and 1.01 × 10 −5 K −1 along the a-axis. The full-width at half-maximum of the emission bands are 67 nm for the σ-polarization and 50 nm for the π-polarization at about 1020 nm. The maximum emission cross-sections for the σ- and π-polarizations are 2.79 × 10 −20 cm 2 and 2.94 × 10 −20 cm 2 , respectively. 0.3 W output power at 1025 nm was obtained at an absorbed pump power of 1.7 W, with a slope efficiency of 24%. (paper)

  16. Growth, crystal structure, spectral properties and laser performance of Yb3+:NaLu(MoO4)2 crystal

    Science.gov (United States)

    Yu, Yi; Zhang, Lizhen; Huang, Yisheng; Lin, Zhoubin; Wang, Guofu

    2013-10-01

    A double molybdate Yb3+:NaLu(MoO4)2 crystal was successfully grown from a flux of Na2Mo2O7 by the top-seeded solution growth method, for the first time to our knowledge. The crystal belongs to the tetragonal system with space group I41/a, and the unit-cell parameters are a = b = 5.159 Å, c = 11.246 Å. Na and Lu atoms co-occupy the same lattice site, which leads to the disordered structure of NaLu(MoO4)2 crystal. The thermal expansion coefficients of the crystal are 1.35 × 10-5 K-1 along the c-axis, and 1.01 × 10-5 K-1 along the a-axis. The full-width at half-maximum of the emission bands are 67 nm for the σ-polarization and 50 nm for the π-polarization at about 1020 nm. The maximum emission cross-sections for the σ- and π-polarizations are 2.79 × 10-20 cm2 and 2.94 × 10-20 cm2, respectively. 0.3 W output power at 1025 nm was obtained at an absorbed pump power of 1.7 W, with a slope efficiency of 24%.

  17. Crystal growth, electronic structure and optical properties of Sr2Mg(BO3)2

    Science.gov (United States)

    Lv, Xianshun; Wei, Lei; Wang, Xuping; Xu, Jianhua; Yu, Huajian; Hu, Yanyan; Zhang, Huadi; Zhang, Cong; Wang, Jiyang; Li, Qinggang

    2018-02-01

    Single crystals of Sr2Mg(BO3)2 (SMBO) were grown by Kyropoulos method. X-ray powder diffraction (XRD) analysis, transmission spectrum, thermal properties, band structure, density of states and charge distribution as well as Raman spectra of SMBO were described. The as-grown SMBO crystals show wide transparency range with UV cut-off below 180 nm. A direct band gap of 4.66 eV was obtained from the calculated electronic structure results. The calculated band structure and density of states results indicated the top valence band is determined by O 2p states whereas the low conduction band mainly consists of Sr 5s states. Twelve Raman peaks were observed in the experimental spectrum, fewer than the number predicted by the site group analysis. Raman peaks of SMBO were assigned combining first-principle calculation and site group analysis results. The strongest peak at 917 cm-1 in the experimental spectrum is assigned to symmetric stretching mode A1‧(ν1) of free BO3 units. SMBO is a potential Raman crystal which can be used in deep UV laser frequency conversion.

  18. Thermal analyses to assess diffusion kinetics in the nano-sized interspaces between the growing crystals of a glass ceramics

    Energy Technology Data Exchange (ETDEWEB)

    Fotheringham, Ulrich, E-mail: ulrich.fotheringham@schott.com [SCHOTT AG, 55014 Mainz (Germany); Wurth, Roman; Ruessel, Christian [Otto-Schott-Institut, Jena University, Jena (Germany)

    2011-08-10

    Highlights: {yields} Macroscopic, routine laboratory methods of the 'Thermal Analysis' type (DSC, DMA) allow a rough description of the kinetics in the nano-sized interstitial spaces of glass ceramics. {yields} These macroscopic measurements support the idea of a rigid zone around the crystals which builds up during ceramization and is part of a negative feedback loop which finally stops crystal growth and Ostwald ripening within the time window of observation. {yields} Ostwald ripening may be provoked by thermally softening said rigid zone. Under certain conditions, this gives rise to a characteristic peak in the DSC. - Abstract: According to a hypothesis by Ruessel and coworkers, the absence of Ostwald ripening during isothermal crystallization of lithium aluminosilicate (LAS) and other glass ceramics indicates the existence of a kinetic hindrance of atomic reorganization in the interstitial spaces between the crystals. Methods of Thermal Analysis (Differential Scanning Calorimetry (DSC), Dynamic Mechanical Analysis (DMA)) which are sensitive to the local atomic rearrangements in the interstitial spaces (including viscous flow) are applied to find support for the idea of kinetic hindrance and the formation of a core shell structure acting as diffusion barrier. Both the DSC-measured calorimetric glass transition and the DMA-measured viscoelastic properties indicate an increase in the time constants of atomic rearrangements and diffusion by at least two orders of magnitude during ceramization. This fits to the above idea. Based on these findings, thermo analytic studies have been performed in order to find out how Ostwald ripening may be provoked.

  19. Structure and crystallization kinetics of Bi{sub 2}O{sub 3}-B{sub 2}O{sub 3} glasses

    Energy Technology Data Exchange (ETDEWEB)

    Cheng Yin [College of Materials Science and Engineering, Hunan University, Changsha, Hunan 410082 (China); Xiao Hanning [College of Materials Science and Engineering, Hunan University, Changsha, Hunan 410082 (China)]. E-mail: zjbcy@126.com; Guo Wenming [College of Materials Science and Engineering, Hunan University, Changsha, Hunan 410082 (China); Guo Weiming [College of Materials Science and Engineering, Hunan University, Changsha, Hunan 410082 (China)

    2006-05-15

    The experimental IR (infrared spectra) and differential scanning calorimetry (DSC) curves of Bi{sub 2}O{sub 3}-B{sub 2}O{sub 3} glasses, containing 30-60 mol% Bi{sub 2}O{sub 3}, have been investigated in the article. The composition dependence of IR absorption suggests that addition of Bi{sub 2}O{sub 3} results in a change in the short-range order structure of the borate matrix. The increase of Bi{sub 2}O{sub 3} content causes a progressive conversion of [BO{sub 3}] to [BO{sub 4}] units. Bi{sub 2}O{sub 3}, in the form of [BiO{sub 6}] octahedral units, plays the role of glass former. The crystallization kinetics of Bi{sub 2}O{sub 3}-B{sub 2}O{sub 3} glasses were described by thermal stability indexes (k {sub gl}, {delta}T), activation energy (E) for crystallization and numerical factors(n, m) depending on the nucleation process and growth morphology, which were calculated by Satava method and the modified Ozawa-Chen method. When Bi{sub 2}O{sub 3} {<=} 45 mol%, the increase of Bi{sub 2}O{sub 3} tends to improve the thermal stabilities of the glasses. In this case, k {sub gl} may be more suitable for estimating the glass thermal stability in above composition range than {delta}T. A further increase of Bi{sub 2}O{sub 3} content will increase the crystallization trends of investigated glasses. Two possible kinds of growth mechanisms were involved in Bi{sub 2}O{sub 3}-B{sub 2}O{sub 3} glasses: one-dimensional growth and two-dimensional growth. Moreover, structures of crystallized glasses were observed by X-ray diffraction (XRD). BiBO{sub 3} crystal with special non-linear optical properties can be obtained when Bi{sub 2}O{sub 3} {>=} 50 mol%.

  20. Structuring of material parameters in lithium niobate crystals with low-mass, high-energy ion radiation

    Science.gov (United States)

    Peithmann, K.; Eversheim, P.-D.; Goetze, J.; Haaks, M.; Hattermann, H.; Haubrich, S.; Hinterberger, F.; Jentjens, L.; Mader, W.; Raeth, N. L.; Schmid, H.; Zamani-Meymian, M.-R.; Maier, K.

    2011-10-01

    Ferroelectric lithium niobate crystals offer a great potential for applications in modern optics. To provide powerful optical components, tailoring of key material parameters, especially of the refractive index n and the ferroelectric domain landscape, is required. Irradiation of lithium niobate crystals with accelerated ions causes strong structured modifications in the material. The effects induced by low-mass, high-energy ions (such as 3He with 41 MeV, which are not implanted, but transmit through the entire crystal volume) are reviewed. Irradiation yields large changes of the refractive index Δn, improved domain engineering capability within the material along the ion track, and waveguiding structures. The periodic modification of Δn as well as the formation of periodically poled lithium niobate (PPLN) (supported by radiation damage) is described. Two-step knock-on displacement processes, 3He→Nb and 3He→O causing thermal spikes, are identified as origin for the material modifications.

  1. Thermally-induced crystallization behaviour of 80GeSe2–20Ga2Se3 glass as probed by combined X-ray diffraction and PAL spectroscopy

    International Nuclear Information System (INIS)

    Shpotyuk, O.; Calvez, L.; Petracovschi, E.; Klym, H.; Ingram, A.; Demchenko, P.

    2014-01-01

    Highlights: • Chalcogenide Ge–Ga–Se glasses were annealed at 380 °C for 10, 25 and 50 h. • Crystallization of glasses during annealing indicates formation of crystals. • Structural changes are described by two-state positron trapping model. • Modification leading to nucleation and fragmentation of free volume of glasses. • The Ge–Ga–Se systems cannot be classified as typical pseudo-binary system. -- Abstract: Crystallization behaviour of 80GeSe 2 –20Ga 2 Se 3 glass caused by thermal annealing at 380 °C for 10, 25 and 50 h are studied using X-ray diffraction and positron annihilation lifetime spectroscopy. It is shown that the structural changes caused by crystallization can be adequately described by positron trapping modes determined within two-state model. The observed changes in defect-related component in the fit of experimental positron lifetime spectra for annealed glasses testifies in a favour of structural fragmentation of larger free volume entities into smaller ones with preceding nucleation in the initial stage of thermal annealing. Because of strong deviation in defect-free bulk positron lifetime from corresponding additive values proper to boundary constituents, the studied glasses cannot be considered as typical representatives of pseudo-binary cut-section

  2. Influence of iron on crystallization behavior and thermal stability of the insulating materials - porous calcium silicates

    DEFF Research Database (Denmark)

    Haastrup, Sonja; Yu, Donghong; Yue, Yuanzheng

    2017-01-01

    The properties of porous calcium silicate for high temperature insulation are strongly influenced by impurities. In this work we determine the influence of Fe3+ on the crystallization behavior and thermal stability of hydrothermally derived calcium silicate. We synthesize porous calcium silicate...... with Ca/Si molar ratio of 1, to which Fe2O3 is added with Fe/Si molar ratios of 0.1, 0.5, 0.7, 1.0, and 1.3%. Structure and morphology of the porous calcium silicate, with different iron concentrations, are investigated using Fourier transform infrared spectroscopy (FTIR) and X-ray diffraction (XRD). FTIR...... measurements reveal a pronounced decrease in the number of Q3 sites in the calcium silicate with an increase of Fe3+, and thereby lower the crystal fraction of xonotlite (Ca6Si6O17(OH)2) phase, and increase the crystal fractions of tobermorite(Ca5Si6O16(OH)2·4H2O) and calcite (CaCO3) phases, as confirmed...

  3. The crystal structure of γ-AlD3

    International Nuclear Information System (INIS)

    Brinks, H.W.; Brown, C.; Jensen, C.M.; Graetz, J.; Reilly, J.J.; Hauback, B.C.

    2007-01-01

    γ-AlD 3 was synthesized from LiAlD 4 and AlCl 3 via thermal decomposition of aluminum hydride etherate in presence of excess LiAlD 4 . γ-AlD 3 was determined by powder neutron diffraction and synchrotron X-ray diffraction to crystallize in the space group Pnnm. The orthorhombic structure has unit-cell dimensions a = 7.3360(3) A, b = 5.3672(2) A and c = 5.7562(1) A, and it consists of both corner- and edge-sharing AlD 6 octahedra where each hydrogen is shared between two octahedra. The average Al-D distances in octahedra with edge-sharing is 1.706 A and in the octahedra with only corner-sharing 1.719 A

  4. Investigations on the optical, thermal and surface modifications of electron irradiated L-threonine single crystals

    Energy Technology Data Exchange (ETDEWEB)

    Ramesh Kumar, G.; Gokul Raj, S. [Department of Physics, Presidency College, Chepauk, Chennai 600005 (India); Bogle, K.A.; Dhole, S.D.; Bhoraskar, V.N. [Department of Physics, University of Pune, Pune 411007 (India); Mohan, R. [Department of Physics, Presidency College, Chepauk, Chennai 600005 (India)], E-mail: professormohan@yahoo.co.in

    2008-06-15

    L-Threonine single crystals have been irradiated by 6 MeV electrons. Irradiated crystals at various electron fluences were subjected to various techniques such as UV-vis-NIR, atomic force microscopy (AFM) and thermomechanical analyses. Thermal strength of the irradiated crystals has also been studied through differential scanning calorimetry (DSC) measurements. The results have been discussed in detail.

  5. Ion beam modification of thermal stress resistance of MgO single crystals with different crystallographic faces

    International Nuclear Information System (INIS)

    Gurarie, V.N.; Otsuka, P.H.; Jamieson, D.N.; Williams, J.S.; Conway, M.

    1999-01-01

    Ion beam modification of thermal shock stress and damage resistance of MgO single crystals with various crystallographic faces is investigated. The most stable crystal faces in terms of stress and damage resistance are established. Ion implantation is shown to reduce the temperature threshold of fracture for all crystal faces tested. The (111) face is demonstrated to be of highest stability compared to (110) and (100) faces in both implanted and unimplanted crystals. At the same time ion implantation substantially increases the microcrack density for the faces tested and reduces the degree of fracture damage following thermal shock. The microcrack density is found to be highest in the crystals with (110) face in comparison with the (001) and (111) faces. The effect is analysed using fracture mechanics principles and discussed in terms of the implantation-induced lattice damage

  6. The opto-thermal effect on encapsulated cholesteric liquid crystals

    Science.gov (United States)

    Liu, Yu-Sung; Lin, Hui-Chi; Yang, Kin-Min

    2017-12-01

    In this study, we implemented a micro-encapsulated CLC electronic paper that is optically addressed and electrically erasable. The mechanism that forms spot diameters on the CLC films is discussed and verified through various experimental parameters, including the thickness of CLCs and Poly(2,3-dihydrothieno-1,4-dioxin)-poly(styrenesulfonate) (PEDOT:PSS), pump intensity, and pumping time. The opto-thermal effect, brought on by the PEDOT:PSS absorbing layer, causes the spot diameters on the cholesteric liquid crystal thin films to vary. According to our results, the spot diameter is larger for a sample with a thinner cholesteric liquid crystal layer with the same excitation conditions and same thickness of the PEDOT layer. The spot diameter is also larger for a sample with a thicker PEDOT under the same excitation conditions and same thickness of the cholesteric liquid crystal layer. We proposed a simple heat-conducting model to explain the experimental results, which qualitatively agree with this theoretical model.

  7. Synthesis, spectroscopic, thermal and structural properties of 4-(2-aminoethyl)pyridinium tetracyanometallate(II) complexes

    Science.gov (United States)

    Karaağaç, Dursun; Kürkçüoğlu, Güneş Süheyla; Şenyel, Mustafa; Şahin, Onur

    2017-05-01

    In this study, three new complexes (4aepyH)2[Ni(CN)4] (1), (4aepyH)2[Pd(CN)4] (2) and (4aepyH)2[Pt(CN)4] (3) [4aepy = 4-(2-aminoethyl)pyridine] have been synthesized and characterized by elemental, thermal, vibrational (FT-IR and Raman) and single-crystal X-ray diffraction techniques. The crystallographic analyses reveal that the complexes crystallize in the monoclinic system, space group C2/c. The asymmetric units of the complexes contain one M(II) ion, two cyanide ligands and one non-coordinated the 4aepy ligand. Each M(II) ion is four coordinated with four cyanide-carbon atoms in a square planar geometry and the [M(CN)4]2- anions act as a counter ion. The 4aepyH cations in the complexes compose of the protonation of the 4aepy. The vibrational spectral data also supported to the crystal structures of the complexes. Thermal stabilities and decomposition products of the complexes were investigated in the temperature range 40-700 °C in the static air atmosphere.

  8. Design of glass-ceramic complex microstructure with using onset point of crystallization in differential thermal analysis

    International Nuclear Information System (INIS)

    Hwang, Seongjin; Kim, Jinho; Shin, Hyo-Soon; Kim, Jong-Hee; Kim, Hyungsun

    2008-01-01

    Two types of frits with different compositions were used to develop a high strength substrate in electronic packaging using a low temperature co-fired ceramic process. In order to reveal the crystallization stage during heating to approximately 900 deg. C, a glass-ceramic consisting of the two types of frits, which had been crystallized to diopside and anorthite after firing, was tested at different mixing ratios of the frits. The exothermal peaks deconvoluted by a Gauss function in the differential thermal analysis curves were used to determine the onset point of crystallization of diopside or anorthite. The onset points of crystallization were affected by the mixing ratio of the frits, and the microstructure of the glass-ceramic depended on the onset point of crystallization. It was found that when multicrystalline phases appear in the microstructure, the resulting complex microstructure could be predicted from the onset point of crystallization obtained by differential thermal analysis

  9. Synthesis, crystal structure and thermal decomposition mechanism of the complex [Sm(p-BrBA)3bipy.H2O]2.H2O

    International Nuclear Information System (INIS)

    Zhang Haiyan; Zhang Jianjun; Ren Ning; Xu Suling; Tian Liang; Bai Jihai

    2008-01-01

    A new binuclear samarium (III) complex [Sm(p-BrBA) 3 bipy.H 2 O] 2 .H 2 O (p-BrBA = p-bromobenzoic acid; bipy = 2,2'-bipyridine) has been synthesized and characterized by elemental analysis, UV, IR, molar conductance and TG-DTG techniques. The structure of the complex was established by single crystal X-ray diffraction. It crystallizes in triclinic, space group P1-bar with a = 8.2476(7) A, b = 13.3483(10) A, c = 15.9035(13) A, α 73.9160(10) o , β = 78.9630(10) o , γ = 74.4770(10) o , Z = 1, D c 1.947 g cm -3 , F(000) = 910. The carboxylic groups are bonded to the samarium ion in two modes: bidentate bridging, monodentate. Each center Sm 3+ ion is eight-coordinated by one 2,2'-bipyridine molecular, four bidentate bridging and a monodentate carboxylic group, as well as one water molecular. The coordination polyhedron around each Sm 3+ ion can be described as bi-capped triangular prism geometry. The thermal decomposition behavior of the title complex in a static air atmosphere was investigated by TG-DTG and IR techniques

  10. SYNTHESIS, CHARACTERIZATION AND CRYSTAL STRUCTURE ...

    African Journals Online (AJOL)

    Preferred Customer

    Reaction of [MoO2(acac)2] (where acac = acetylacetonate) with N'-(2-hydroxy-4- ... Single crystal X-ray structural studies indicate that the hydrazone ligand coordinates .... Molecular structure of the complex at 30% probability displacement.

  11. Crystal structure refinement with SHELXL

    Energy Technology Data Exchange (ETDEWEB)

    Sheldrick, George M., E-mail: gsheldr@shelx.uni-ac.gwdg.de [Department of Structural Chemistry, Georg-August Universität Göttingen, Tammannstraße 4, Göttingen 37077 (Germany)

    2015-01-01

    New features added to the refinement program SHELXL since 2008 are described and explained. The improvements in the crystal structure refinement program SHELXL have been closely coupled with the development and increasing importance of the CIF (Crystallographic Information Framework) format for validating and archiving crystal structures. An important simplification is that now only one file in CIF format (for convenience, referred to simply as ‘a CIF’) containing embedded reflection data and SHELXL instructions is needed for a complete structure archive; the program SHREDCIF can be used to extract the .hkl and .ins files required for further refinement with SHELXL. Recent developments in SHELXL facilitate refinement against neutron diffraction data, the treatment of H atoms, the determination of absolute structure, the input of partial structure factors and the refinement of twinned and disordered structures. SHELXL is available free to academics for the Windows, Linux and Mac OS X operating systems, and is particularly suitable for multiple-core processors.

  12. Growth, thermal and spectral characteristics of Yb{sup 3+}:Sr{sub 6}YSc(BO{sub 3}){sub 6} crystal

    Energy Technology Data Exchange (ETDEWEB)

    Yuan, Feifei [Key Laboratory of Optoelectronic Materials Chemistry and Physics, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002 (China); University of Chinese Academy of Sciences, Beijing 100049 (China); Zhang, Lizhen; Huang, Yisheng; Sun, Shijia [Key Laboratory of Optoelectronic Materials Chemistry and Physics, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002 (China); Lin, Zhoubin, E-mail: lzb@fjirsm.ac.cn [Key Laboratory of Optoelectronic Materials Chemistry and Physics, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002 (China); Wang, Guofu [Key Laboratory of Optoelectronic Materials Chemistry and Physics, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002 (China)

    2014-09-15

    Highlights: • A new crystal of Yb{sup 3+}:Sr{sub 6}YSc(BO{sub 3}){sub 6} was grown successfully from a Li{sub 6}B{sub 4}O{sub 9} flux. • Yb{sup 3+}:Sr{sub 6}YSc(BO{sub 3}){sub 6} crystal has good thermal, mechanical and spectral properties. • Yb{sup 3+}:Sr{sub 6}YSc(BO{sub 3}){sub 6} has long fluorescence lifetime, broad absorption and emission bands. - Abstract: A crystal of Yb{sup 3+}:Sr{sub 6}YSc(BO{sub 3}){sub 6} was grown successfully from Li{sub 6}B{sub 4}O{sub 9} flux by the top-seeded solution growth method. The crystal's thermal, mechanical and spectral characteristics were investigated in detail. It possesses small thermal expansion coefficients, moderate thermal conductivities, and large hardness. The crystal has a strong absorption band at 967 nm with a full width at half-maximum of about 3.4 nm. The crystal has a broad emission band at 1016 nm with the full width at half-maximum of about 64 nm. The emission cross sections were calculated by reciprocity method and Füchtbauer-Ladenburg formula. The fluorescence lifetime is 5.98 ms. The results reveal that Yb{sup 3+}:Sr{sub 6}YSc(BO{sub 3}){sub 6} crystal is a new promising tunable and ultrashort pulse laser crystal.

  13. Two-dimensional photonic crystal accelerator structures

    Directory of Open Access Journals (Sweden)

    Benjamin M. Cowan

    2003-10-01

    Full Text Available Photonic crystals provide a method of confining a synchronous speed-of-light mode in an all-dielectric structure, likely a necessary feature in any optical accelerator. We explore computationally a class of photonic crystal structures with translational symmetry in a direction transverse to the electron beam. We demonstrate synchronous waveguide modes and discuss relevant parameters of such modes. We then explore how accelerator parameters vary as the geometry of the structure is changed and consider trade-offs inherent in the design of an accelerator of this type.

  14. Crystal structures and theoretical studies of polyphosphate LiZnP3O9 for nonlinear optical applications

    Science.gov (United States)

    Xie, Zhiqing; Su, Xin; Ding, Hanqin; Li, Hongyi

    2018-06-01

    Nonlinear optical materials have attracted worldwide attention owing to their wide range of applications, specially in the laser field. Phosphates with noncentrosymmetric structures are potential candidates for novel ultraviolet (UV)-NLO materials, because they usually display short UV cut-off edges. In this work, a polyphosphate, the LiZnP3O9 polyphosphate crystals were grown through spontaneous crystallization from high-temperature melts. It crystallizes in the orthorhombic space group P212121 with unit cell parameters a = 8.330(3) Å, b = 8.520(3) Å, c = 8.635(3) Å, and Z = 4. In the structure, all the P atoms are coordinated by four oxygen atoms forming the [PO4] tetrahedra and further connected to generate a zig-zag [PO3]∞ anionic framework. Thermal analysis, IR spectroscopy, UV-vis-NIR diffuse reflectance spectrum and powder second harmonic generation measurements are performed. In addition, the first-principles calculation was employed for better understanding the structure-property relationships of LiZnP3O9.

  15. IR-to-visible image upconverter under nonlinear crystal thermal gradient operation.

    Science.gov (United States)

    Maestre, H; Torregrosa, A J; Fernández-Pousa, C R; Capmany, J

    2018-01-22

    In this work we study the enhancement of the field-of-view of an infrared image up-converter by means of a thermal gradient in a PPLN crystal. Our work focuses on compact upconverters, in which both a short PPLN crystal length and high numerical aperture lenses are employed. We found a qualitative increase in both wavelength and angular tolerances, compared to a constant temperature upconverter, which makes it necessary a correct IR wavelength allocation in order to effectively increase the up-converted area.

  16. Control of the structural parameters in the (Zn – Zn16Ti single crystal growth

    Directory of Open Access Journals (Sweden)

    W. Wołczyński

    2011-10-01

    Full Text Available The (Zn - single crystal was obtained by means of the Bridgman system. Several growth rates were applied during the experiment. The graphite crucible was used in order to perform the solidification process. The unidirectional solidification occurred with the presence of the moving temperature field. The thermal gradient was positive so that the constrained growth of the single crystal was ensured. The (Zn single crystal was doped with small addition of titanium and copper. The titanium formed an intermetallic compound Zn16-Ti. The copper was solved in the solid solution (Zn. The precipitates of (Zn and Zn16-Ti formed a stripes localized cyclically along the single crystal length. The intermetallic compound Zn16-Ti strengthened the (Zn single crystal. The structural transitions were observed in the stripes with the increasing solidification rate. Within the first range of the solidification rates ( the irregular L-shape rod-like intermetalliccompoundwas revealed. At the- threshold growth rate branches disappear continuously till the growth rate equal to. At the same range of growth rates the regular lamellar eutectic structure (Zn – Zn16-Ti appeared continuously and it existed exclusively till the second threshold growth rate equal to. Above the second threshold growth rate the regular rod-like eutectic structure was formed, only. Thegeneral theory for the stationary eutectic solidification was developed. According to this theory the eutectic structure localized within the stripes is formed under stationary state. Therefore, the criterion of the minimum entropy production defines well the stationary solidification. The entropy production was calculated for the regular rod-like eutectic structure formation and for the regular lamellar eutectic structure formation. It was postulated that the observed structure are subjected to the competition. That is why the structural transitionwere observed at therevealedthreshold growth rates.Moreover, it was

  17. Equivalent thermal history reconstruction from a partially crystallized glass-ceramic sensor array

    Science.gov (United States)

    Heeg, Bauke

    2015-11-01

    The basic concept of a thermal history sensor is that it records the accumulated exposure to some unknown, typically varying temperature profile for a certain amount of time. Such a sensor is considered to be capable of measuring the duration of several (N) temperature intervals. For this purpose, the sensor deploys multiple (M) sensing elements, each with different temperature sensitivity. At the end of some thermal exposure for a known period of time, the sensor array is read-out and an estimate is made of the set of N durations of the different temperature ranges. A potential implementation of such a sensor was pioneered by Fair et al. [Sens. Actuators, A 141, 245 (2008)], based on glass-ceramic materials with different temperature-dependent crystallization dynamics. In their work, it was demonstrated that an array of sensor elements can be made sensitive to slight differences in temperature history. Further, a forward crystallization model was used to simulate the variations in sensor array response to differences in the temperature history. The current paper focusses on the inverse aspect of temperature history reconstruction from a hypothetical sensor array output. The goal of such a reconstruction is to find an equivalent thermal history that is the closest representation of the true thermal history, i.e., the durations of a set of temperature intervals that result in a set of fractional crystallization values which is closest to the one resulting from the true thermal history. One particular useful simplification in both the sensor model as well as in its practical implementation is the omission of nucleation effects. In that case, least squares models can be used to approximate the sensor response and make reconstruction estimates. Even with this simplification, sensor noise can have a destabilizing effect on possible reconstruction solutions, which is evaluated using simulations. Both regularization and non-negativity constrained least squares

  18. Synthesis, Structure, and Rigid Unit Mode-like Anisotropic Thermal Expansion of BaIr2In9.

    Science.gov (United States)

    Calta, Nicholas P; Han, Fei; Kanatzidis, Mercouri G

    2015-09-08

    This Article reports the synthesis of large single crystals of BaIr2In9 using In flux and their characterization by variable-temperature single-crystal and synchrotron powder X-ray diffraction, resistivity, and magnetization measurements. The title compound adopts the BaFe2Al9-type structure in the space group P6/mmm with room temperature unit cell parameters a = 8.8548(6) Å and c = 4.2696(4) Å. BaIr2In9 exhibits anisotropic thermal expansion behavior with linear expansion along the c axis more than 3 times larger than expansion in the ab plane between 90 and 400 K. This anisotropic expansion originates from a rigid unit mode-like mechanism similar to the mechanism of zero and negative thermal expansion observed in many anomalous thermal expansion materials such as ZrW2O8 and ScF3.

  19. Thermal morphing anisogrid smart space structures: thermal isolation design and linearity evaluation

    Science.gov (United States)

    Phoenix, Austin A.

    2017-04-01

    To meet the requirements for the next generation of space missions, a paradigm shift is required from current structures that are static, heavy and stiff, toward innovative structures that are adaptive, lightweight, versatile, and intelligent. A novel morphing structure, the thermally actuated anisogrid morphing boom, can be used to meet the design requirements by making the primary structure actively adapt to the on-orbit environment. The anisogrid structure is able to achieve high precision morphing control through the intelligent application of thermal gradients. This active primary structure improves structural and thermal stability performance, reduces mass, and enables new mission architectures. This effort attempts to address limits to the author's previous work by incorporating the impact of thermal coupling that was initially neglected. This paper introduces a thermally isolated version of the thermal morphing anisogrid structure in order to address the thermal losses between active members. To evaluate the isolation design the stiffness and thermal conductivity of these isolating interfaces need to be addressed. This paper investigates the performance of the thermal morphing system under a variety of structural and thermal isolation interface properties.

  20. Superior thermal conductivity of transparent polymer nanocomposites with a crystallized alumina membrane

    OpenAIRE

    Md. Poostforush; H. Azizi

    2014-01-01

    The properties of novel thermoconductive and optically transparent nanocomposites have been reported. The composites were prepared by the impregnation of thermoset resin into crystallized anodic aluminum oxide (AAO). Crystallized AAO synthesized by annealing amorphous AAO membrane at 1200°C. Although through-plane thermal conductivity of nanocomposites improved up to 1.13 W•m–1•K–1 (39 vol% alumina) but their transparency was preserved (Tλ550 nm ~ 72%). Integrated annealed alumina phase, low ...

  1. Photonics of liquid-crystal structures: A review

    Energy Technology Data Exchange (ETDEWEB)

    Palto, S. P., E-mail: palto@online.ru; Blinov, L M; Barnik, M I; Lazarev, V V; Umanskii, B A; Shtykov, N M [Russian Academy of Sciences, Shubnikov Institute of Crystallography (Russian Federation)

    2011-07-15

    The original results of studies of the electro-optical and laser effects which have been performed at the Laboratory of Liquid Crystals of the Institute of Crystallography, Russian Academy of Sciences, over the last few years are reviewed. Cholesteric liquid crystals as vivid representatives of photonic structures and their behavior in an electric field are considered in detail. The formation of higher harmonics in the periodic distribution of the director field in a helical liquid crystal structure and, correspondingly, the new (anharmonic) mode of electro-optical effects are discussed. Another group of studies is devoted to bistable light switching by an electric field in chiral nematics. Polarization diffraction gratings controlled by an electric field are also considered. The results of studies devoted to microlasers on various photonic structures with cholesteric and nematic liquid crystals are considered in detail. Particular attention is given to the new regime: leaky-mode lasing. Designs of liquid crystal light amplifiers and their polarization, field, and spectral characteristics are considered in the last section.

  2. Optical characterisation of photonic wire and photonic crystal waveguides fabricated using nanoimprint lithography

    DEFF Research Database (Denmark)

    Borel, Peter Ingo; Frandsen, Lars Hagedorn; Lavrinenko, Andrei

    2006-01-01

    We have characterised photonic-crystal and photonic-wire waveguides fabricated by thermal nanoimprint lithography. The structures, with feature sizes down below 20 nm, are benchmarked against similar structures defined by direct electron beam lithography.......We have characterised photonic-crystal and photonic-wire waveguides fabricated by thermal nanoimprint lithography. The structures, with feature sizes down below 20 nm, are benchmarked against similar structures defined by direct electron beam lithography....

  3. Electrical, thermal and magnetic behaviour of the metallic glass Fe80B20 in the crystallization process

    International Nuclear Information System (INIS)

    Isalgue, A.; Cusido, J.A.

    1986-01-01

    The thermal, electrical DC conductivity and magnetic properties have been studied in the crystallization process of the metallic glass Fe 80 B 20 (Metglass 2605) induced by heat treatment. The electrical and thermal conductivity, the coercive force and the remanence are strongly affected with the crystallization of the glass. Two steps can be dicerned from the magnetic measurements; the differences between the two steps are interpreted in the basis of the ''spherulite-type'', grown of Fe 3 B in the first crystallization step and the aparition of Fe 2 B in the second step. (author)

  4. Thermal, magnetic, and structural properties of soft magnetic FeCrNbCuSiB alloy ribbons

    International Nuclear Information System (INIS)

    Rosales-Rivera, A.; Valencia, V.H.; Quintero, D.L.; Pineda-Gomez, P.; Gomez, M.

    2006-01-01

    The thermal, magnetic and structural properties of amorphous magnetic Fe 73.5-x Cr x Nb 3 Cu 1 Si 13.5 B 9 alloy ribbons, with x=0, 2, 4, 6, 8, and 10, were studied by using differential scanning calorimetry (DSC), thermogravimetric analysis (TGA), magneto-impedance measurements and X-ray diffraction (XRD). The ribbons exhibit ultrasoft magnetic behavior, especially giant magneto-impedance effect, GMI. A three-peak behavior was observed in GMI curves. Particular attention has been given to observation of crystallization kinetics via DSC and TGA. The primary crystallization T pcr , and Curie T c , temperatures were determined from DSC and TGA data, respectively. The effect of partial substitution of iron by Cr on the thermal and magnetic properties is discussed

  5. Crystal structure and phase transitions in perovskite-like C(NH2)3SnCl3

    International Nuclear Information System (INIS)

    Szafranski, Marek; Stahl, Kenny

    2007-01-01

    X-ray single-crystal diffraction, high-temperature powder diffraction and differential thermal analysis at ambient and high pressure have been employed to study the crystal structure and phase transitions of guanidinium trichlorostannate, C(NH 2 ) 3 SnCl 3 . At 295 K the crystal structure is orthorhombic, space group Pbca, Z=8, a=7.7506(2) A, b=12.0958(4) A and c=17.8049(6) A, solved from single-crystal data. It is perovskite-like with distorted corner-linked SnCl 6 octahedra and with ordered guanidinium cations in the distorted cuboctahedral voids. At 400 K the structure shows a first-order order-disorder phase transition. The space group is changed to Pnma with Z=4, a=12.1552(2) A, b=8.8590(2) A and c=8.0175(1) A, solved from powder diffraction data and showing disordering of the guanidinium cations. At 419 K, the structure shows yet another first-order order-disorder transformation with disordering of the SnCl 3 - part. The space group symmetry is maintained as Pnma, with a=12.1786(2) A, b=8.8642(2) A and c=8.0821(2) A. The thermodynamic parameters of these transitions and the p-T phase diagram have been determined and described. - Graphical abstract: The perovskite-like crystals of C(NH 2 ) 3 SnCl 3 undergo two successive first-order phase transitions at 400 and 419 K, both accompanied by an essential order-disorder contribution. The p-T phase diagram exhibits a singular point at 219 MPa and 443 K

  6. The Effect of Thermal Cycling on Crystal-Liquid Separation During Lunar Magma Ocean Differentiation

    Science.gov (United States)

    Mills, Ryan D.

    2013-01-01

    Differentiation of magma oceans likely involves a mixture of fractional and equilibrium crystallization [1]. The existence of: 1) large volumes of anorthosite in the lunar highlands and 2) the incompatible- rich (KREEP) reservoir suggests that fractional crystallization may have dominated during differentiation of the Moon. For this to have occurred, crystal fractionation must have been remarkably efficient. Several authors [e.g. 2, 3] have hypothesized that equilibrium crystallization would have dominated early in differentiation of magma oceans because of crystal entrainment during turbulent convection. However, recent numerical modeling [4] suggests that crystal settling could have occurred throughout the entire solidification history of the lunar magma ocean if crystals were large and crystal fraction was low. These results indicate that the crystal size distribution could have played an important role in differentiation of the lunar magma ocean. Here, I suggest that thermal cycling from tidal heating during lunar magma ocean crystallization caused crystals to coarsen, leading to efficient crystal-liquid separation.

  7. Synthesis, crystal structures and properties of new quinolinium derivatives

    Science.gov (United States)

    Zhang, Xinyuan; Jiang, Xingxing; Li, Yin; Lin, Zheshuai; Zhang, Guochun; Wu, Yicheng

    2015-11-01

    Four phenyl-substituted quinolinium salts with different counter anions, C27H27NO4S, C26H25NO5S, C25H22NO5SCl, and C25H22NO5SBr, were synthesized and their single crystals were successfully grown from methanol solution by slow evaporation. Single crystal X-ray diffraction analyses showed that C27H27NO4S crystal belongs to the noncentrosymmetric orthorhombic space group Pna21, and the other three crystals belong to centrosymmetric monoclinic space group P21/n. Their first order hyperpolarization and macroscopic nonlinearity were analyzed and physical properties were characterized by UV-vis absorption spectroscopy, and differential scanning calorimetric and thermal gravimetric analysis.

  8. Structure and thermal performance of poly(ethylene glycol) alkyl ether (Brij)/porous silica (MCM-41) composites as shape-stabilized phase change materials

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Lingjian; Shi, Haifeng, E-mail: haifeng.shi@gmail.com; Li, Weiwei; Han, Xu; Zhang, Xingxiang, E-mail: zhangpolyu@gmail.com

    2013-10-20

    Graphical abstract: The maximum 50 wt% Brij58 is loaded into the porous MCM-41 networks, and a new peak at 18.8° in XRD patterns confirmed the changes of crystallization behavior of Brij58 against the bulk one. - Highlights: • Poly(ethylene glycol) hexadecyl ether and poly(ethylene glycol) octadecyl ether have the good thermal storage ability. • New peak at 18.8° proved the coexisted confined crystallization and nucleation-induced crystallization. • Poly(ethylene glycol) alkyl ether/MCM-41 PCMs exhibits the good thermal stability. - Abstract: A series of shape-stabilized phase change materials (PCMs), composed of poly(ethylene glycol) hexadecyl ether (Brij58) or poly(ethylene glycol) octadecyl ether (Brij76) and porous silica (MCM-41), were prepared by the physical mixing method. The structure, thermal stability, energy storage ability and crystallization behavior of these composites are deeply investigated and characterized by Fourier transform infrared spectroscopy (FTIR), differential scanning calorimetry (DSC), scanning electron microscopy (SEM), wide-angle X-ray diffraction (WAXD) and thermogravimetric analysis (TGA). Obvious phase transition behavior and energy storage capability are observed for these Brij/MCM-41 composites, and the heat storage efficiency increased with the weight of Brij component. New peak at 18.8° demonstrated that the pore size and the surface adsorption ability of MCM-41 affect the crystallization behavior of Brij molecule. The crystalline structure and energy storage ability of these Brij/MCM-41 composites are discussed based on the crystallization process.

  9. Thermalization calorimetry: A simple method for investigating glass transition and crystallization of supercooled liquids

    Directory of Open Access Journals (Sweden)

    Bo Jakobsen

    2016-05-01

    Full Text Available We present a simple method for fast and cheap thermal analysis on supercooled glass-forming liquids. This “Thermalization Calorimetry” technique is based on monitoring the temperature and its rate of change during heating or cooling of a sample for which the thermal power input comes from heat conduction through an insulating material, i.e., is proportional to the temperature difference between sample and surroundings. The monitored signal reflects the sample’s specific heat and is sensitive to exo- and endothermic processes. The technique is useful for studying supercooled liquids and their crystallization, e.g., for locating the glass transition and melting point(s, as well as for investigating the stability against crystallization and estimating the relative change in specific heat between the solid and liquid phases at the glass transition.

  10. Effect of amaranth on dielectric, thermal and optical properties of KDP single crystal

    Energy Technology Data Exchange (ETDEWEB)

    Chandran, Senthilkumar; Paulraj, Rajesh, E-mail: rajeshp@ssn.edu.in; Ramasamy, P.

    2017-01-15

    Bulk single crystals of pure and amaranth doped KDP were grown using point seed technique. Effect of amaranth doping on KDP crystals was analyzed using powder XRD, thermal analysis (TG/DTA), dielectric, photoconductivity and etching studies. The phase purity and crystallinity of pure and dye doped crystals were confirmed by powder X-ray diffraction analysis. It is observed from TG-DTA analysis that the decomposition point decreased while doping with amaranth. Dielectric constant and loss increases with increasing temperatures. The photoconductivity decreases with the increase of amaranth concentration. - Highlights: • Pure and amaranth doped KDP crystals grown from point seed technique. • The addition of amaranth changes the decomposition points of dye doped KDP crystals. • Dielectric constant is increased. • It shows positive photoconductivity.

  11. Synthesis, structure, growth and characterization of a novel organic NLO single crystal: Morpholin-4-ium p-aminobenzoate

    International Nuclear Information System (INIS)

    Shanmugam, G.; Ravi Kumar, K.; Sridhar, B.; Brahadeeswaran, S.

    2012-01-01

    Highlights: ► A new organic NLO crystal morpholin-4-ium p-aminobenzoate has been grown for the first time. ► The structure is reported for the first time in the literature. ► Thermal, optical and SHG studies suggest its suitability for various NLO applications. -- Abstract: The title compound, morpholin-4-ium p-aminobenzoate (MPABA)(C 4 H 10 NO + ,C 7 H 6 NO 2 − ), has been synthesized for the first time by the addition of morpholine with 4-aminobenzoic acid in equi-molar ratio and good quality single crystals have been grown by solution growth technique using methanol as a solvent. The molecular structure of the compound was solved and refined by Direct Methods using SHELXS97 and full-matrix least-squares technique using SHELXL97, respectively. MPABA crystallizes in a monoclinic system with unit cell parameters, a = 5.948(5) Å, b = 18.033(4) Å, c = 10.577(5) Å, β = 90.40(1)° and non-centrosymmetric space group Cc. The experimentally measured density and chemical compositions were found to be in good agreement with the theoretical values. The phases and functional groups of MPABA have been identified and confirmed through powder X-ray diffraction and Fourier transform infrared (FTIR) studies, respectively. The thermal stability and decomposition details were studied through TG/DTA thermograms. The UV–visible transmission spectra were recorded for the grown crystal and its NLO characteristic was explored by powder second harmonic generation (SHG) studies.

  12. Features of the structural states of KNbO{sub 3} single crystals before and after fast-neutron irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Stash, A. I., E-mail: astas@yandex.ru; Ivanov, S. A.; Stefanovich, S. Yu.; Mosunov, A. V.; Boyko, V. M.; Ermakov, V. S.; Korulin, A. V.; Kalyukanov, A. I. [State Scientific Center of the Russian Federation Karpov Institute of Physical Chemistry (Russian Federation)

    2017-01-15

    Neutron irradiation is a unique tool for forming new structural states of ferroelectrics, which cannot be obtained by conventional methods. The inf luence of the irradiation by two doses of fast neutrons (F = 1 × 10{sup 17} and 3 × 10{sup 17} cm{sup –2}) on the structure and properties of KNbO{sub 3} single crystals has been considered for the first time. The developed method for taking into account the experimental correction to the diffuse scattering has been used to analyze the structural changes occurring in KNbO{sub 3} samples at T = 295 K and their correlations with the behavior of dielectric and nonlinear optical characteristics. The irradiation to the aforementioned doses retains the KNbO{sub 3} polar structure, shifting Т{sub Ð}¡ to lower temperatures and significantly affecting only the thermal parameters and microstructure of single crystals. Neutron irradiation with small atomic displacements provides a structure similar to the high-temperature modification of an unirradiated KNbO{sub 3} crystal.

  13. Temperature-mediated polymorphism in molecular crystals: The impact on crystal packing and charge transport

    KAUST Repository

    Stevens, Loah A.; Goetz, Katelyn P.; Fonari, Alexandr; Shu, Ying; Williamson, Rachel M.; Bredas, Jean-Luc; Coropceanu, Veaceslav P.; Jurchescu, Oana D.; Collis, Gavin E.

    2015-01-01

    We report a novel synthesis to ultra high purity 7,14-bis((trimethylsilyl)ethynyl)dibenzo[b,def]-chrysene (TMS-DBC) and the use of this material in the growth of single crystals by solution and vapor deposition techniques. We observe that the substrate temperature has a dramatic impact on the crystal growth, producing two distinct polymorphs of TMS-DBC; low temperature (LT) fine red needles and high temperature (HT) large yellow platelets. Single crystal X-ray crystallography confirms packing structures where the LT crystals form a 1D slipped-stack structure, while the HT crystals adopt a 2D brickwork motif. These polymorphs also represent a rare example where both are extremely stable and do not interconvert to the other crystal structure upon solvent or thermal annealing. Single crystal organic field-effect transistors of the LT and HT crystals show that the HT 2D brickwork motif produces hole mobilities as high as 2.1 cm2 V-1 s-1, while the mobility of the 1D structure is significantly lower, at 0.028 cm2 V-1 s-1. Electronic-structure calculations indicate that the superior charge transport in the brickwork polymorph in comparison to the slipped-stack polymorph is due to the presence of an increased dimensionality of the charge migration pathways.

  14. Temperature-mediated polymorphism in molecular crystals: The impact on crystal packing and charge transport

    KAUST Repository

    Stevens, Loah A.

    2015-01-13

    We report a novel synthesis to ultra high purity 7,14-bis((trimethylsilyl)ethynyl)dibenzo[b,def]-chrysene (TMS-DBC) and the use of this material in the growth of single crystals by solution and vapor deposition techniques. We observe that the substrate temperature has a dramatic impact on the crystal growth, producing two distinct polymorphs of TMS-DBC; low temperature (LT) fine red needles and high temperature (HT) large yellow platelets. Single crystal X-ray crystallography confirms packing structures where the LT crystals form a 1D slipped-stack structure, while the HT crystals adopt a 2D brickwork motif. These polymorphs also represent a rare example where both are extremely stable and do not interconvert to the other crystal structure upon solvent or thermal annealing. Single crystal organic field-effect transistors of the LT and HT crystals show that the HT 2D brickwork motif produces hole mobilities as high as 2.1 cm2 V-1 s-1, while the mobility of the 1D structure is significantly lower, at 0.028 cm2 V-1 s-1. Electronic-structure calculations indicate that the superior charge transport in the brickwork polymorph in comparison to the slipped-stack polymorph is due to the presence of an increased dimensionality of the charge migration pathways.

  15. Low-dimensional compounds containing cyano groups. XIV. Crystal structure, spectroscopic, thermal and magnetic properties of [CuL 2][Pt(China)4] complexes (L=ethylenediamine or N,N-dimethylethylenediamine)

    International Nuclear Information System (INIS)

    Potocnak, Ivan; Vavra, Martin; Cizmar, Erik; Tibenska, Katarina; Orendacova, Alzbeta; Steinborn, Dirk; Wagner, Christoph; Dusek, Michal; Fejfarova, Karla; Schmidt, Harry; Muller, Thomas; Orendac, Martin; Feher, Alexander

    2006-01-01

    Violet crystals of [Cu(en) 2 ][Pt(China) 4 ] and blue crystals of [Cu(dmen) 2 ][Pt(China) 4 ] were crystallized from the water-methanol solution containing CuCl 2 .2H 2 O, ethylenediamine (en) or N,N-dimethylethylenediamine (dmen) and K 2 [Pt(China) 4 ].3H 2 O. Both compounds were characterized using elemental analysis, infrared and UV-VIS spectroscopy, magnetic measurements, specific heat measurements and thermal analysis. X-ray structure analysis revealed chain-like structure in both compounds. The covalent chains are built of Cu(II) ions linked by [Pt(China) 4 ] 2- anions in the [111] and [101] direction, respectively. The Cu(II) atoms are hexacoordinated by four nitrogen atoms in the equatorial plane from two molecules of bidentate ligands L with average Cu-N distance of 2.022(2) and 2.049(4) A, respectively. Axial positions are occupied by two nitrogen atoms from bridging [Pt(China) 4 ] 2- anions at longer Cu-N distance of 2.537(2) and 2.600(5) A, respectively. Both materials are characterized by the presence of weak antiferromagnetic exchange coupling. Despite the one-dimensional (1D) character of the structure, the analysis of magnetic properties and specific heat at very low temperatures shows that [Cu(en) 2 ][Pt(China) 4 ] behaves as two-dimensional (2D) spatially anisotropic square lattice Heisenberg magnet, while more pronounced influence of interlayer coupling is observed in [Cu(dmen) 2 ][Pt(China) 4 ]. - Graphical abstract: Chain-like structure in [Cu(en) 2 ][Pt(China) 4 ] (R=H) and [Cu(dmen) 2 ][Pt(China) 4 ] (R=CH 3 ) compounds

  16. Comparison of multiple crystal structures with NMR data for engrailed homeodomain

    Energy Technology Data Exchange (ETDEWEB)

    Religa, Tomasz L. [MRC Centre for Protein Engineering (United Kingdom)], E-mail: tlr25@mrc-lmb.cam.ac.uk

    2008-03-15

    Two methods are currently available to solve high resolution protein structures-X-ray crystallography and nuclear magnetic resonance (NMR). Both methods usually produce highly similar structures, but small differences between both solutions are always observed. Here the raw NMR data as well as the solved NMR structure were compared to the multiple crystal structures solved for the WT 60 residue three helix bundle engrailed homeodomain (EnHD) and single point mutants. There was excellent agreement between TALOS-predicted and crystal structure-observed dihedral angles and a good agreement for the {sup 3}J(H{sup N}H{sup {alpha}}) couplings for the multiple crystal structures. Around 1% of NOEs were violated for any crystal structure, but no NOE was inconsistent with all of the crystal structures. Violations usually occurred for surface residues or for residues for which multiple discreet conformations were observed between the crystal structures. Comparison of the disorder shown in the multiple crystal structures shows little correlation with dynamics under native conditions for this protein.

  17. Synthesis, crystal structure, characterizations and magnetic study of a novel two-dimensional iron fluoride

    Science.gov (United States)

    Bouketaya, Sabrine; Smida, Mouna; Abdelbaky, Mohammed S. M.; Dammak, Mohamed; García-Granda, Santiago

    2018-06-01

    A new hybrid compound formulated as [Fe3F8(H2O)2](Am2TAZ)2 (Am2TAZ= 3,5-diamino-1,2,4-triazole) was prepared under hydrothermal conditions. The crystal structure was solved by single-crystal X-ray diffraction and the bulk was characterized by thermal analyses (TG-MS), vibrational spectroscopy (FTIR, Raman), Ultraviolet-visible spectroscopy (UV-Vis), and scanning electron microscopy (SEM-EDX). It crystallizes in the triclinic system space group P 1 ̅ with unit cell parameters a= 7.100(2) Å, b= 7.658(2) Å, c= 8.321(2) Å, α = 107.330(20)°, β = 111.842(18)°, γ = 93.049(17)°, Z = 1 and V= 394.01(17) Å3. The studied X-ray crystal structure shows the two oxidation states for iron atoms (Fe2+, Fe3+) and generates a 2D inorganic network, built up of inorganic layers constructed from infinite inorganic chains running along a axis. In fact, these chains are connected via (Fe3+(3)F6) octahedral. OW-H…F and N-H…F hydrogen bonds, making up the whole 3D network, are strongly linked in the layers. Magnetization measurements were performed, exhibiting the paramagnetic feature of the studied compound above 150 K.

  18. Thermo-kinetic mechanisms for grain boundary structure multiplicity, thermal instability and defect interactions

    International Nuclear Information System (INIS)

    Burbery, N.J.; Das, R.; Ferguson, W.G.

    2016-01-01

    Grain boundaries (GBs) provide a source and/or a sink for crystal defects and store elastic energy due to the non-uniform atomic bonding structure of the GB core. GB structures are thermodynamically driven to transition to the lowest energy configuration possible; however to date there has been little evidence to explain why specific GB structures have a low energy state. Furthermore, there is little quantitative demonstration of the significance of physical and GB structure characteristics on the GB energy, thermal stability, and the effect of temporary local GB structure transformations on defect interactions. This paper evaluates the defect interactions and structure stability of multiple Σ5(310) GB structures in bi-crystals of pure aluminium, and systematically investigates the features at 0 K to characterise multiple metastable structures. Structure stability is evaluated by utilising unstable vacancy defects to initiate GB transformations, and using nudged elastic band simulations to quantify this with the activation energy. The emission of stable vacancy defects from the ‘stable’ and metastable grain boundaries is also evaluated in the same manner. A detailed analysis of dislocation nucleation at the atomistic scale demonstrates that local transformations of GB structure between stable and metastable intermediates can provide a mechanism to accommodate the generation of crystal defects. Kinetic (time-dependent) effects that compete with energetic driving forces for structural transformations of GBs are shown to cause a significant effect on the activation properties that may exceed the influence of GB potential energy. The results demonstrate that GB structural multiplicity can be associated with the generation and absorption of dislocations and vacancies. This paper demonstrates the suitability of atomistic simulations coupled with nudged elastic band simulations to evaluate fundamental thermodynamic properties of pure FCC metals. Overall, this paper

  19. Thermo-kinetic mechanisms for grain boundary structure multiplicity, thermal instability and defect interactions

    Energy Technology Data Exchange (ETDEWEB)

    Burbery, N.J. [Department of Mechanical Engineering, University of Auckland, Auckland 1010 (New Zealand); Das, R., E-mail: r.das@auckland.ac.nz [Department of Mechanical Engineering, University of Auckland, Auckland 1010 (New Zealand); Ferguson, W.G. [Department of Chemical and Materials Engineering, University of Auckland, Auckland 1010 (New Zealand)

    2016-08-15

    Grain boundaries (GBs) provide a source and/or a sink for crystal defects and store elastic energy due to the non-uniform atomic bonding structure of the GB core. GB structures are thermodynamically driven to transition to the lowest energy configuration possible; however to date there has been little evidence to explain why specific GB structures have a low energy state. Furthermore, there is little quantitative demonstration of the significance of physical and GB structure characteristics on the GB energy, thermal stability, and the effect of temporary local GB structure transformations on defect interactions. This paper evaluates the defect interactions and structure stability of multiple Σ5(310) GB structures in bi-crystals of pure aluminium, and systematically investigates the features at 0 K to characterise multiple metastable structures. Structure stability is evaluated by utilising unstable vacancy defects to initiate GB transformations, and using nudged elastic band simulations to quantify this with the activation energy. The emission of stable vacancy defects from the ‘stable’ and metastable grain boundaries is also evaluated in the same manner. A detailed analysis of dislocation nucleation at the atomistic scale demonstrates that local transformations of GB structure between stable and metastable intermediates can provide a mechanism to accommodate the generation of crystal defects. Kinetic (time-dependent) effects that compete with energetic driving forces for structural transformations of GBs are shown to cause a significant effect on the activation properties that may exceed the influence of GB potential energy. The results demonstrate that GB structural multiplicity can be associated with the generation and absorption of dislocations and vacancies. This paper demonstrates the suitability of atomistic simulations coupled with nudged elastic band simulations to evaluate fundamental thermodynamic properties of pure FCC metals. Overall, this paper

  20. Solid dispersions of Myricetin with enhanced solubility: Formulation, characterization and crystal structure of stability-impeding Myricetin monohydrate crystals

    Science.gov (United States)

    Mureşan-Pop, M.; Pop, M. M.; Borodi, G.; Todea, M.; Nagy-Simon, T.; Simon, S.

    2017-08-01

    Three solid dispersion forms of Myricetin combined with the Polyvinylpyrrolidone were successfully prepared by spray drying method, and characterized by X-ray powder diffraction, thermal analysis, infrared spectroscopy and optical microscopy. Zeta potential measurements provided indications on solid dispersions stability in aqueous suspension related to their storage at elevated temperature and relative humidity, which depends on the Myricetin load. By increase of Myricetin load, the stability of the solid dispersion is impeded due to growth of Myricetin monohydrate crystals. The amorphous dispersions with 10% and 50% Myricetin load are stable and, compared to pure Myricetin, their aqueous solubility is enhanced by a factor of 47 and 13, respectively. The dispersion with 80% Myricetin load is unstable on storage, and this behavior acts in conjunction with the development of Myricetin monohydrate crystals. Single-crystal X-ray diffraction results obtained for Myricetin monohydrate reveal a structure of an infinite 2D network of hydrogen-bonded molecules involving all six hydroxyl groups of Myricetin. The water molecules are positioned in between the infinite chains, and contribute via H-bonds to robust crystal packing. The calculated needle-like morphology of monohydrate form is in agreement with the optical microscopy results. The study shows that the solid amorphous dispersions with up to 50% Myricetin load are a viable option for achieving substantial solubility improvement of Myricetin, and supports their potential use in pharmaceutical applications.

  1. Structure analysis on synthetic emerald crystals

    Science.gov (United States)

    Lee, Pei-Lun; Lee, Jiann-Shing; Huang, Eugene; Liao, Ju-Hsiou

    2013-05-01

    Single crystals of emerald synthesized by means of the flux method were adopted for crystallographic analyses. Emerald crystals with a wide range of Cr3+-doping content up to 3.16 wt% Cr2O3 were examined by X-ray single crystal diffraction refinement method. The crystal structures of the emerald crystals were refined to R 1 (all data) of 0.019-0.024 and w R 2 (all data) of 0.061-0.073. When Cr3+ substitutes for Al3+, the main adjustment takes place in the Al-octahedron and Be-tetrahedron. The effect of substitution of Cr3+ for Al3+ in the beryl structure results in progressively lengthening of the Al-O distance, while the length of the other bonds remains nearly unchanged. The substitution of Cr3+ for Al3+ may have caused the expansion of a axis, while keeping the c axis unchanged in the emerald lattice. As a consequence, the Al-O-Si and Al-O-Be bonding angles are found to decrease, while the angle of Si-O-Be increases as the Al-O distance increases during the Cr replacement.

  2. Study of light-absorbing crystal birefringence and electrical modulation mechanisms for coupled thermal-optical effects.

    Science.gov (United States)

    Zhou, Ji; He, Zhihong; Ma, Yu; Dong, Shikui

    2014-09-20

    This paper discusses Gaussian laser transmission in double-refraction crystal whose incident light wavelength is within its absorption wave band. Two scenarios for coupled radiation and heat conduction are considered: one is provided with an applied external electric field, the other is not. A circular heat source with a Gaussian energy distribution is introduced to present the crystal's light-absorption process. The electromagnetic field frequency domain analysis equation and energy equation are solved to simulate the phenomenon by using the finite element method. It focuses on the influence of different values such as wavelength, incident light intensity, heat transfer coefficient, ambient temperature, crystal thickness, and applied electric field strength. The results show that the refraction index of polarized light increases with the increase of crystal temperature. It decreases as the strength of the applied electric field increases if it is positive. The mechanism of electrical modulation for the thermo-optical effect is used to keep the polarized light's index of refraction constant in our simulation. The quantitative relation between thermal boundary condition and strength of applied electric field during electrical modulation is determined. Numerical results indicate a possible approach to removing adverse thermal effects such as depolarization and wavefront distortion, which are caused by thermal deposition during linear laser absorption.

  3. Crystal Structures of Two Isozymes of Citrate Synthase from Sulfolobus tokodaii Strain 7

    Directory of Open Access Journals (Sweden)

    Midori Murakami

    2016-01-01

    Full Text Available Thermoacidophilic archaeon Sulfolobus tokodaii strain 7 has two citrate synthase genes (ST1805-CS and ST0587-CS in the genome with 45% sequence identity. Because they exhibit similar optimal temperatures of catalytic activity and thermal inactivation profiles, we performed structural comparisons between these isozymes to elucidate adaptation mechanisms to high temperatures in thermophilic CSs. The crystal structures of ST1805-CS and ST0587-CS were determined at 2.0 Å and 2.7 Å resolutions, respectively. Structural comparison reveals that both of them are dimeric enzymes composed of two identical subunits, and these dimeric structures are quite similar to those of citrate synthases from archaea and eubacteria. ST0587-CS has, however, 55 ion pairs within whole dimer structure, while having only 36 in ST1805-CS. Although the number and distributions of ion pairs are distinct from each other, intersubunit ion pairs between two domains of each isozyme are identical especially in interterminal region. Because the location and number of ion pairs are in a trend with other CSs from thermophilic microorganisms, the factors responsible for thermal adaptation of ST-CS isozymes are characterized by ion pairs in interterminal region.

  4. Thermal properties and continuous-wave laser performance of Yb:LuVO4 crystal

    Science.gov (United States)

    Cheng, Y.; Zhang, H. J.; Yu, Y. G.; Wang, J. Y.; Tao, X. T.; Liu, J. H.; Petrov, V.; Ling, Z. C.; Xia, H. R.; Jiang, M. H.

    2007-03-01

    A laser crystal of Yb:LuVO4 with high optical quality was grown by the Czochralski technique. Its thermal properties including specific heat, thermal expansion coefficients, and thermal conductivities along the a- and c-axis have been measured for the first time. Continuous-wave laser output up to 3.5 W at 1031 nm was obtained at room temperature through end-pumping by a high-power diode laser. The corresponding optical conversion efficiency was 43% and the slope efficiency was 72%.

  5. Amorphous Silicon-Germanium Films with Embedded Nano crystals for Thermal Detectors with Very High Sensitivity

    International Nuclear Information System (INIS)

    Calleja, C.; Torres, A.; Rosales-Quintero, P.; Moreno, M.

    2016-01-01

    We have optimized the deposition conditions of amorphous silicon-germanium films with embedded nano crystals in a plasma enhanced chemical vapor deposition (PECVD) reactor, working at a standard frequency of 13.56 MHz. The objective was to produce films with very large Temperature Coefficient of Resistance (TCR), which is a signature of the sensitivity in thermal detectors (micro bolometers). Morphological, electrical, and optical characterization were performed in the films, and we found optimal conditions for obtaining films with very high values of thermal coefficient of resistance (TCR = 7.9%K -1 ). Our results show that amorphous silicon-germanium films with embedded nano crystals can be used as thermo sensitive films in high performance infrared focal plane arrays (IRFPAs) used in commercial thermal cameras.

  6. Review of aragonite and calcite crystal morphogenesis in thermal spring systems

    Science.gov (United States)

    Jones, Brian

    2017-06-01

    Aragonite and calcite crystals are the fundamental building blocks of calcareous thermal spring deposits. The diverse array of crystal morphologies found in these deposits, which includes monocrystals, mesocrystals, skeletal crystals, dendrites, and spherulites, are commonly precipitated under far-from-equilibrium conditions. Such crystals form through both abiotic and biotic processes. Many crystals develop through non-classical crystal growth models that involve the arrangement of nanocrystals in a precisely controlled crystallographic register. Calcite crystal morphogenesis has commonly been linked to a ;driving force;, which is a conceptual measure of the distance of the growth conditions from equilibrium conditions. Essentially, this scheme indicates that increasing levels of supersaturation and various other parameters that produce a progressive change from monocrystals and mesocrystals to skeletal crystals to crystallographic and non-crystallographic dendrites, to dumbbells, to spherulites. Despite the vast amount of information available from laboratory experiments and natural spring systems, the precise factors that control the driving force are open to debate. The fact that calcite crystal morphogenesis is still poorly understood is largely a reflection of the complexity of the factors that influence aragonite and calcite precipitation. Available information indicates that variations in calcite crystal morphogenesis can be attributed to physical and chemical parameters of the parent water, the presence of impurities, the addition of organic or inorganic additives to the water, the rate of crystal growth, and/or the presence of microbes and their associated biofilms. The problems in trying to relate crystal morphogenesis to specific environmental parameters arise because it is generally impossible to disentangle the controlling factor(s) from the vast array of potential parameters that may act alone or in unison with each other.

  7. Free-standing nanomechanical and nanophotonic structures in single-crystal diamond

    Science.gov (United States)

    Burek, Michael John

    Realizing complex three-dimensional structures in a range of material systems is critical to a variety of emerging nanotechnologies. This is particularly true of nanomechanical and nanophotonic systems, both relying on free-standing small-scale components. In the case of nanomechanics, necessary mechanical degrees of freedom require physically isolated structures, such as suspended beams, cantilevers, and membranes. For nanophotonics, elements like waveguides and photonic crystal cavities rely on light confinement provided by total internal reflection or distributed Bragg reflection, both of which require refractive index contrast between the device and surrounding medium (often air). Such suspended nanostructures are typically fabricated in a heterolayer structure, comprising of device (top) and sacrificial (middle) layers supported by a substrate (bottom), using standard surface nanomachining techniques. A selective, isotropic etch is then used to remove the sacrificial layer, resulting in free-standing devices. While high-quality, crystalline, thin film heterolayer structures are readily available for silicon (as silicon-on-insulator (SOI)) or III-V semiconductors (i.e. GaAs/AlGaAs), there remains an extensive list of materials with attractive electro-optic, piezoelectric, quantum optical, and other properties for which high quality single-crystal thin film heterolayer structures are not available. These include complex metal oxides like lithium niobate (LiNbO3), silicon-based compounds such as silicon carbide (SiC), III-V nitrides including gallium nitride (GaN), and inert single-crystals such as diamond. Diamond is especially attractive for a variety of nanoscale technologies due to its exceptional physical and chemical properties, including high mechanical hardness, stiffness, and thermal conductivity. Optically, it is transparent over a wide wavelength range (from 220 nm to the far infrared), has a high refractive index (n ~ 2.4), and is host to a vast

  8. Analysis of thermal treatment effects upon optico-luminescent and scintillation characteristics of oxide and chalcogenide crystals

    International Nuclear Information System (INIS)

    Ryzhikov, Vladimir D.; Grinyov, Boris V.; Pirogov, Evgeniy N.; Galkin, Sergey N.; Nagornaya, Lyudmila L.; Bondar, Vladimir G.; Babiychuk, Inna P.; Krivoshein, Vadim I.; Silin, Vitaliy I.; Lalayants, Alexandr I.; Voronkin, Evgeniy F.; Katrunov, Konstantin A.; Onishchenko, Gennadiy M.; Vostretsov, Yuriy Ya.; Malyi, Pavel Yu.; Lisetskaya, Elena K.; Lisetskii, Longin N.

    2005-01-01

    This work has been aimed at analyzing the effects of various thermal treatment factors upon optical-luminescent, scintillation and other functional characteristics of complex oxide and chalcogenide crystals. The crystals considered in this work are scintillators with intrinsic (PWO, CWO, BGO), activator (GSO:Ce) or complex-defect ZnSe(Te) type of luminescence. Important factors of thermal treatment are not only the temperature and its variation with time, but also the chemical composition of the annealing medium, its oxidation-reduction properties

  9. Zinc(II) halide complexes with 2-methoxyaniline ligand: Synthesis, characterization, thermal analyses, crystal structure determination and luminescent properties

    Science.gov (United States)

    Amani, Vahid

    2018-03-01

    Three new mononuclear zinc(II) complexes, [Zn(2-MeO-C6H4NH2)2X2] (X is Cl in 1, Br in 2 and I in 3), were prepared from the reactions of ZnX2 with 2-methoxyaniline (2-MeO-C6H4NH2) ligand in methanol. Suitable crystals of these complexes were obtained for X-ray diffraction measurements by slow evaporation of methanol solution at room temperature. The three complexes were thoroughly characterized by thermogravimetric analysis, elemental analysis (CHNO), spectral methods (IR, UV-Vis, 13C{1H}NMR, 1H NMR and luminescence), and single crystal X-ray diffraction. The X-ray structural analysis indicated that in the structures of these complexes, the zinc(II) cation is four-coordinated in a distorted tetrahedral configuration by two N atoms from two 2-methoxyanyline ligands and two halide anions. Also, in these complexes intermolecular interactions, for example Nsbnd H⋯X hydrogen bonds (in 1-3), Csbnd H⋯X hydrogen bonds (in 3), Csbnd H⋯π interactions (in 1 and 2) and π⋯π interactions (in 3), are effective in the stabilization of the crystal structures. In addition, the luminescence spectra of all complexes in methanolic solution show that the intensity of their emission bands is stronger than that for free 2-methoxyaniline ligand.

  10. Effect of lattice disorder on the thermal conductivity of ZnBeSe, ZnMgSe and ZnBeMgSe crystals

    International Nuclear Information System (INIS)

    Strzałkowski, K.

    2015-01-01

    Zn 1−x−y Be x Mg y Se mixed crystals investigated in this work were grown from the melt by the high pressure high temperature modified Bridgman method in the range of composition 0 < x,y < 0.33. Photopyroelectric (PPE) calorimetry in the back (BPPE) and front (FPPE) configuration was applied for thermal investigation of solid samples. The thermal diffusivity and effusivity of investigated crystals were derived from the experimental data. Since dynamic thermal parameters are connected with each other, thermal conductivity of the specimens was calculated from theoretical dependencies between them. The influence of the beryllium (x) and magnesium (y) content on thermal properties of these crystals have been presented and discussed. Order-disorder effects observed for these materials previously have been also taken into account. Finally, thermal diagrams, i.e. thermal conductivity versus composition were presented and discussed applying model given by Sadao Adachi. - Highlights: • Investigated II–VI crystals were obtained by a high pressure modified Bridgman method. • A complete thermal characterization of Zn 1−x−y Be x Mg y Se semiconductors was carried out. • The effect of lattice disorder on thermal properties was presented and discussed. • Obtained data were analyzed applying lattice thermal conductivity model. • Contribution to thermal resistivity arising from lattice disorder was calculated

  11. Crystallization and structure of chromium cast iron with addition of Mo and Ni; Krystalizacja i struktura zeliwa chromowego z dodatkami Mo i Ni

    Energy Technology Data Exchange (ETDEWEB)

    Pietrowski, S. [Instytut Inzynierii Materialowej i Technik Bezwiorowych, Politechnika Lodzka, Lodz (Poland)

    1998-12-31

    The aim of the presented paper is to show the results of examination of the crystallization process using the method of thermal-derivative analysis (ATD) and the structure examination of chromium cast iron, chromium molybdenum c. i. and chromium molybdenum nickel c.i. It was found that molybdenum in amount over 2 wt % causes the crystallization of eutectic carbides M{sub 23}C{sub 6} and M{sub 6}C. The M{sub 23}C{sub 6} carbide crystallizes upon the crystallization of eutectic carbides M{sub 3}C and M{sub 7}C{sub 3}. It is shown that ATD method facilitates both interpretation and control of the crystallization as well as formation of the cast iron structure at the solid state. (author) 14 refs, 16 figs, 5 tabs

  12. Structural and thermal behaviour of carious and sound powders of human tooth enamel and dentine

    International Nuclear Information System (INIS)

    Tiznado-Orozco, Gaby E; Garcia-Garcia, R; Reyes-Gasga, J

    2009-01-01

    Powder from carious human tooth enamel and dentine were structurally, chemically and thermally analysed and compared against those from sound (healthy) teeth. Structural and chemical analyses were performed using x-ray diffraction, energy-dispersive x-ray spectroscopy and transmission electron microscopy. Thermal analysis was carried out by thermogravimetric analysis, Fourier transform infrared spectroscopy and x-ray diffraction. Results demonstrate partially dissolved crystals of hydroxyapatite (HAP) with substitutions of Na, Mg, Cl and C, and a greater weight loss in carious dentine as compared with carious enamel. A greater amount of thermal decomposition is observed in carious dentine as compared with sound dentine, with major variations in the a-axis of the HAP unit cell than in the c-axis. Variations in shape and intensity of the OH - , CO 3 2- and PO 4 3- FTIR bands were also found.

  13. The Crystal Structures of Two Novel Cadmium-Picolinic Acid ...

    African Journals Online (AJOL)

    The crystal structures of two novel cadmium-picolinic acid complexes grown in aqueous solutions at selected pH values are reported. The structures are compared to expected solution species under the same conditions. The crystal structure of complex 1 exhibits a seven coordinate structure which contains a protonated ...

  14. Band structures in fractal grading porous phononic crystals

    Science.gov (United States)

    Wang, Kai; Liu, Ying; Liang, Tianshu; Wang, Bin

    2018-05-01

    In this paper, a new grading porous structure is introduced based on a Sierpinski triangle routine, and wave propagation in this fractal grading porous phononic crystal is investigated. The influences of fractal hierarchy and porosity on the band structures in fractal graidng porous phononic crystals are clarified. Vibration modes of unit cell at absolute band gap edges are given to manifest formation mechanism of absolute band gaps. The results show that absolute band gaps are easy to form in fractal structures comparatively to the normal ones with the same porosity. Structures with higher fractal hierarchies benefit multiple wider absolute band gaps. This work provides useful guidance in design of fractal porous phononic crystals.

  15. Construction of crystal structure prototype database: methods and applications.

    Science.gov (United States)

    Su, Chuanxun; Lv, Jian; Li, Quan; Wang, Hui; Zhang, Lijun; Wang, Yanchao; Ma, Yanming

    2017-04-26

    Crystal structure prototype data have become a useful source of information for materials discovery in the fields of crystallography, chemistry, physics, and materials science. This work reports the development of a robust and efficient method for assessing the similarity of structures on the basis of their interatomic distances. Using this method, we proposed a simple and unambiguous definition of crystal structure prototype based on hierarchical clustering theory, and constructed the crystal structure prototype database (CSPD) by filtering the known crystallographic structures in a database. With similar method, a program structure prototype analysis package (SPAP) was developed to remove similar structures in CALYPSO prediction results and extract predicted low energy structures for a separate theoretical structure database. A series of statistics describing the distribution of crystal structure prototypes in the CSPD was compiled to provide an important insight for structure prediction and high-throughput calculations. Illustrative examples of the application of the proposed database are given, including the generation of initial structures for structure prediction and determination of the prototype structure in databases. These examples demonstrate the CSPD to be a generally applicable and useful tool for materials discovery.

  16. Construction of crystal structure prototype database: methods and applications

    International Nuclear Information System (INIS)

    Su, Chuanxun; Lv, Jian; Wang, Hui; Wang, Yanchao; Ma, Yanming; Li, Quan; Zhang, Lijun

    2017-01-01

    Crystal structure prototype data have become a useful source of information for materials discovery in the fields of crystallography, chemistry, physics, and materials science. This work reports the development of a robust and efficient method for assessing the similarity of structures on the basis of their interatomic distances. Using this method, we proposed a simple and unambiguous definition of crystal structure prototype based on hierarchical clustering theory, and constructed the crystal structure prototype database (CSPD) by filtering the known crystallographic structures in a database. With similar method, a program structure prototype analysis package (SPAP) was developed to remove similar structures in CALYPSO prediction results and extract predicted low energy structures for a separate theoretical structure database. A series of statistics describing the distribution of crystal structure prototypes in the CSPD was compiled to provide an important insight for structure prediction and high-throughput calculations. Illustrative examples of the application of the proposed database are given, including the generation of initial structures for structure prediction and determination of the prototype structure in databases. These examples demonstrate the CSPD to be a generally applicable and useful tool for materials discovery. (paper)

  17. Crystal engineering of ibuprofen compounds: From molecule to crystal structure to morphology prediction by computational simulation and experimental study

    Science.gov (United States)

    Zhang, Min; Liang, Zuozhong; Wu, Fei; Chen, Jian-Feng; Xue, Chunyu; Zhao, Hong

    2017-06-01

    We selected the crystal structures of ibuprofen with seven common space groups (Cc, P21/c, P212121, P21, Pbca, Pna21, and Pbcn), which was generated from ibuprofen molecule by molecular simulation. The predicted crystal structures of ibuprofen with space group P21/c has the lowest total energy and the largest density, which is nearly indistinguishable with experimental result. In addition, the XRD patterns for predicted crystal structure are highly consistent with recrystallization from solvent of ibuprofen. That indicates that the simulation can accurately predict the crystal structure of ibuprofen from the molecule. Furthermore, based on this crystal structure, we predicted the crystal habit in vacuum using the attachment energy (AE) method and considered solvent effects in a systematic way using the modified attachment energy (MAE) model. The simulation can accurately construct a complete process from molecule to crystal structure to morphology prediction. Experimentally, we observed crystal morphologies in four different polarity solvents compounds (ethanol, acetonitrile, ethyl acetate, and toluene). We found that the aspect ratio decreases of crystal habits in this ibuprofen system were found to vary with increasing solvent relative polarity. Besides, the modified crystal morphologies are in good agreement with the observed experimental morphologies. Finally, this work may guide computer-aided design of the desirable crystal morphology.

  18. Thermal, spectroscopic, and ab initio structural characterization of carprofen polymorphs.

    Science.gov (United States)

    Bruni, Giovanna; Gozzo, Fabia; Capsoni, Doretta; Bini, Marcella; Macchi, Piero; Simoncic, Petra; Berbenni, Vittorio; Milanese, Chiara; Girella, Alessandro; Ferrari, Stefania; Marini, Amedeo

    2011-06-01

    Commercial and recrystallized polycrystalline samples of carprofen, a nonsteroidal anti-inflammatory drug, were studied by thermal, spectroscopic, and structural techniques. Our investigations demonstrated that recrystallized sample, stable at room temperature (RT), is a single polymorphic form of carprofen (polymorph I) that undergoes an isostructural polymorphic transformation by heating (polymorph II). Polymorph II remains then metastable at ambient conditions. Commercial sample is instead a mixture of polymorphs I and II. The thermodynamic relationships between the two polymorphs were determined through the construction of an energy/temperature diagram. The ab initio structural determination performed on synchrotron X-Ray powder diffraction patterns recorded at RT on both polymorphs allowed us to elucidate, for the first time, their crystal structure. Both crystallize in the monoclinic space group type P2(1) /c, and the unit cell similarity index and the volumetric isostructurality index indicate that the temperature-induced polymorphic transformation I → II is isostructural. Polymorphs I and II are conformational polymorphs, sharing a very similar hydrogen bond network, but with different conformation of the propanoic skeleton, which produces two different packing. The small conformational change agrees with the low value of transition enthalpy obtained by differential scanning calorimetry measurements and the small internal energy computed with density functional methods. Copyright © 2011 Wiley-Liss, Inc.

  19. Crystallization of nuclear glass under a thermal gradient: application to the self-crucible produced in the skull melting process

    International Nuclear Information System (INIS)

    Delattre, O.

    2013-01-01

    In the context of the vitrification of high level nuclear waste, a new industrial process has been launched in 2010 at the La Hague factory: The skull melting process. This setup applies thermal gradients to the melt, which leads to the formation of a solid layer of glass: the 'self-crucible'. The question would be to know whether these thermal gradients have an impact or not on the crystallization behaviour of the considered glasses in the self crucible. In order to answer that question, the crystallization of two glass compositions of nuclear interest has been investigated with an image analysis based method in isothermal and thermal gradient heat treatments conditions. The isothermal experiments allow for the quantification (growth speed, nucleation, crystallized fraction) of the crystallization of apatites (660 C-900 C) and powellites (630 C-900 C). The comparison of the results obtained through these two types of experimentations allows us to conclude that there is no impact of the thermal gradient on the crystallization of the studied glass compositions. In order to complete the image analysis study (based on surfaces), in and ex situ microtomography experiments have been performed at ESRF (Grenoble) on the ID19 beamline. This study allowed us to follow the crystallization of apatites in a simplified glass and to confirm the reliability of the image analysis method based on the analysis of surfaces. (author) [fr

  20. Spin dynamics, electronic, and thermal transport properties of two-dimensional CrPS4 single crystal

    Science.gov (United States)

    Pei, Q. L.; Luo, X.; Lin, G. T.; Song, J. Y.; Hu, L.; Zou, Y. M.; Yu, L.; Tong, W.; Song, W. H.; Lu, W. J.; Sun, Y. P.

    2016-01-01

    2-Dimensional (2D) CrPS4 single crystals have been grown by the chemical vapor transport method. The crystallographic, magnetic, electronic, and thermal transport properties of the single crystals were investigated by the room-temperature X-ray diffraction, electrical resistivity ρ(T), specific heat CP(T), and the electronic spin response (ESR) measurements. CrPS4 crystals crystallize into a monoclinic structure. The electrical resistivity ρ(T) shows a semiconducting behavior with an energy gap Ea = 0.166 eV. The antiferromagnetic transition temperature is about TN = 36 K. The spin flipping induced by the applied magnetic field is observed along the c axis. The magnetic phase diagram of CrPS4 single crystal has been discussed. The extracted magnetic entropy at TN is about 10.8 J/mol K, which is consistent with the theoretical value R ln(2S + 1) for S = 3/2 of the Cr3+ ion. Based on the mean-field theory, the magnetic exchange constants J1 and Jc corresponding to the interactions of the intralayer and between layers are about 0.143 meV and -0.955 meV are obtained based on the fitting of the susceptibility above TN, which agree with the results obtained from the ESR measurements. With the help of the strain for tuning the magnetic properties, monolayer CrPS4 may be a promising candidate to explore 2D magnetic semiconductors.

  1. Isolation, crystallization and crystal structure determination of bovine kidney Na(+),K(+)-ATPase.

    Science.gov (United States)

    Gregersen, Jonas Lindholt; Mattle, Daniel; Fedosova, Natalya U; Nissen, Poul; Reinhard, Linda

    2016-04-01

    Na(+),K(+)-ATPase is responsible for the transport of Na(+) and K(+) across the plasma membrane in animal cells, thereby sustaining vital electrochemical gradients that energize channels and secondary transporters. The crystal structure of Na(+),K(+)-ATPase has previously been elucidated using the enzyme from native sources such as porcine kidney and shark rectal gland. Here, the isolation, crystallization and first structure determination of bovine kidney Na(+),K(+)-ATPase in a high-affinity E2-BeF3(-)-ouabain complex with bound magnesium are described. Crystals belonging to the orthorhombic space group C2221 with one molecule in the asymmetric unit exhibited anisotropic diffraction to a resolution of 3.7 Å with full completeness to a resolution of 4.2 Å. The structure was determined by molecular replacement, revealing unbiased electron-density features for bound BeF3(-), ouabain and Mg(2+) ions.

  2. Synthesis, Crystal Structure, and Luminescence Properties of a New Calcium(II Coordination Polymer Based on L-Malic Acid

    Directory of Open Access Journals (Sweden)

    Duraisamy Senthil Raja

    2013-01-01

    Full Text Available A new calcium coordination polymer [Ca(HL-MA]n (H3L-MA = L-malic acid has been solvothermally synthesized. The structure of the newly synthesized complex has been determined by single-crystal X-ray diffraction analysis and further characterized by elemental analysis, reflectance UV-Vis & IR spectra, powder X-ray diffraction (PXRD, and thermogravimetric analysis (TGA. The single crystal structure analysis showed that the complex forms three-dimensional framework. The new Ca(II complex has displayed very high thermal stability which was inferred from TGA and PXRD results. As far as the optical property of the new complex is concerned, the complex emitted its own characteristic sensitized luminescence.

  3. Crystal structure study of new lanthanide silicates with silico-carnotite structure

    International Nuclear Information System (INIS)

    Piccinelli, F.; Lausi, A.; Speghini, A.; Bettinelli, M.

    2012-01-01

    The crystal structures of new rare earth-based silicate compounds (Ca 3 Eu 2 Si 3 O 12 , Ca 3 Gd 2 Si 3 O 12 , Ca 3 Dy 2 Si 3 O 12 , Ca 3 Er 2 Si 3 O 12 and Ca 3 Lu 2 Si 3 O 12 ) have been determined using powder X-ray diffraction. From Rietveld refinement calculations on the collected powder patterns we observe a different distribution of the rare earth ions on the three available crystal sites characterized by different coordination numbers, depending on the ionic radius of the rare earth ion. The reasons of the instability of the silico-carnotite structure for lanthanide ions larger than Eu 3+ have been deduced. In addition, in order to detect crystal phase transitions, the powder patterns of Ca 3 Eu 2 Si 3 O 12 and Ca 3 Sm 2 Si 3 O 12 samples have been collected as a function of the temperature (RT-1000 °C range), but no phase transitions have been observed. - Graphical abstract: Synchrotron X-ray diffraction allows us the accurate determination of the RE 3+ ions distribution on the three available crystal sites of the silico-carnotite structure. Highlights: ► The structure of the Ca 3 M 2 Si 3 O 12 (M=Eu, Gd, Dy, Er and Lu) was determined. ► Different distribution of RE 3+ ions on the three available crystal sites was observed. ► The instability of the silico-carnotite structure for RE=La→Sm was discussed.

  4. Synthesis, structure, growth and characterization of a novel organic NLO single crystal: Morpholin-4-ium p-aminobenzoate

    Energy Technology Data Exchange (ETDEWEB)

    Shanmugam, G. [Department of Physics, Anna University of Technology Tiruchirappalli, Tiruchirappalli 620024 (India); Ravi Kumar, K.; Sridhar, B. [X-ray Crystallography Division, Indian Institute of Chemical Technology, CSIR, Hyderabad 500007 (India); Brahadeeswaran, S., E-mail: sbrag67@yahoo.com [Department of Physics, Anna University of Technology Tiruchirappalli, Tiruchirappalli 620024 (India)

    2012-09-15

    Highlights: ► A new organic NLO crystal morpholin-4-ium p-aminobenzoate has been grown for the first time. ► The structure is reported for the first time in the literature. ► Thermal, optical and SHG studies suggest its suitability for various NLO applications. -- Abstract: The title compound, morpholin-4-ium p-aminobenzoate (MPABA)(C{sub 4}H{sub 10}NO{sup +},C{sub 7}H{sub 6}NO{sub 2}{sup −}), has been synthesized for the first time by the addition of morpholine with 4-aminobenzoic acid in equi-molar ratio and good quality single crystals have been grown by solution growth technique using methanol as a solvent. The molecular structure of the compound was solved and refined by Direct Methods using SHELXS97 and full-matrix least-squares technique using SHELXL97, respectively. MPABA crystallizes in a monoclinic system with unit cell parameters, a = 5.948(5) Å, b = 18.033(4) Å, c = 10.577(5) Å, β = 90.40(1)° and non-centrosymmetric space group Cc. The experimentally measured density and chemical compositions were found to be in good agreement with the theoretical values. The phases and functional groups of MPABA have been identified and confirmed through powder X-ray diffraction and Fourier transform infrared (FTIR) studies, respectively. The thermal stability and decomposition details were studied through TG/DTA thermograms. The UV–visible transmission spectra were recorded for the grown crystal and its NLO characteristic was explored by powder second harmonic generation (SHG) studies.

  5. Lightweight, Thermally Insulating Structural Panels

    Science.gov (United States)

    Eisen, Howard J.; Hickey, Gregory; Wen, Liang-Chi; Layman, William E.; Rainen, Richard A.; Birur, Gajanana C.

    1996-01-01

    Lightweight, thermally insulating panels that also serve as structural members developed. Honeycomb-core panel filled with low-thermal-conductivity, opacified silica aerogel preventing convection and minimizes internal radiation. Copper coating on face sheets reduces radiation. Overall thermal conductivities of panels smaller than state-of-art commercial non-structurally-supporting foam and fibrous insulations. On Earth, panels suitable for use in low-air-pressure environments in which lightweight, compact, structurally supporting insulation needed; for example, aboard high-altitude aircraft or in partially evacuated panels in refrigerators.

  6. Thermally-induced crystallization behaviour of 80GeSe{sub 2}–20Ga{sub 2}Se{sub 3} glass as probed by combined X-ray diffraction and PAL spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Shpotyuk, O., E-mail: shpotyuk@novas.lviv.ua [Scientific Research Company “Carat”, 202, Stryjska str., Lviv 79031 (Ukraine); Institute of Physics of Jan Dlugosz University, 13/15, al. Armii Krajowej, Czestochowa 42201 (Poland); Calvez, L.; Petracovschi, E. [Equipe Verres et Céramiques, UMR-CNRS 6226, Institute des Sciences chimiques de Rennes, Université de Rennes 1, 35042 Rennes Cedex (France); Klym, H. [Lviv polytechnic National University, 12 Bandera str., Lviv 79013 (Ukraine); Ingram, A. [Physics Faculty of Opole University of Technology, 75, Ozimska str., Opole 45370 (Poland); Demchenko, P. [Ivan Franko National University of Lviv, 6, Kyryla and Mefodiya Str., Lviv 79005 (Ukraine)

    2014-01-05

    Highlights: • Chalcogenide Ge–Ga–Se glasses were annealed at 380 °C for 10, 25 and 50 h. • Crystallization of glasses during annealing indicates formation of crystals. • Structural changes are described by two-state positron trapping model. • Modification leading to nucleation and fragmentation of free volume of glasses. • The Ge–Ga–Se systems cannot be classified as typical pseudo-binary system. -- Abstract: Crystallization behaviour of 80GeSe{sub 2}–20Ga{sub 2}Se{sub 3} glass caused by thermal annealing at 380 °C for 10, 25 and 50 h are studied using X-ray diffraction and positron annihilation lifetime spectroscopy. It is shown that the structural changes caused by crystallization can be adequately described by positron trapping modes determined within two-state model. The observed changes in defect-related component in the fit of experimental positron lifetime spectra for annealed glasses testifies in a favour of structural fragmentation of larger free volume entities into smaller ones with preceding nucleation in the initial stage of thermal annealing. Because of strong deviation in defect-free bulk positron lifetime from corresponding additive values proper to boundary constituents, the studied glasses cannot be considered as typical representatives of pseudo-binary cut-section.

  7. Structural, mechanical and light yield characterisation of heat treated LYSO:Ce single crystals for medical imaging applications

    CERN Document Server

    Mengucci, P; Auffray, E; Barucca, G; Cecchi, C; Chipaux, R; Cousson, A; Davì, F; Di Vara, N; Rinaldi, D; Santecchia, E

    2015-01-01

    Five single crystals of cerium-doped lutetium yttrium oxyorthosilicate (LYSO:Ce) grown by the Czochralski method were submitted to structural characterisation by X-ray (XRD) and neutron (ND) diffraction, scanning (SEM) and transmission (TEM) electron microscopy and energy dispersive microanalysis (EDS). The Ultimate Tensile Strength (UTS), the Young Modulus (YM) and the Light Yield (LY) of the samples were also measured in order to correlate the mechanical and the optical behaviour of the crystals with the characteristics of their microstructure. Two of the samples analysed were also heat treated at 300 °C for 10 h to evidence possible variations induced by the temperature in the optical and mechanical response of the crystals. Results showed that the mean compositional variations evidenced by the structural analyses do not affect the mechanical and optical behaviour of the samples. On the contrary, the thermal treatment could induce the formation of coherent spherical particles (size 10 to 15 nm), not unifo...

  8. Local structural ordering in surface-confined liquid crystals

    Science.gov (United States)

    Śliwa, I.; Jeżewski, W.; Zakharov, A. V.

    2017-06-01

    The effect of the interplay between attractive nonlocal surface interactions and attractive pair long-range intermolecular couplings on molecular structures of liquid crystals confined in thin cells with flat solid surfaces has been studied. Extending the McMillan mean field theory to include finite systems, it has been shown that confining surfaces can induce complex orientational and translational ordering of molecules. Typically, local smectic A, nematic, and isotropic phases have been shown to coexist in certain temperature ranges, provided that confining cells are sufficiently thick, albeit finite. Due to the nonlocality of surface interactions, the spatial arrangement of these local phases can display, in general, an unexpected complexity along the surface normal direction. In particular, molecules located in the vicinity of surfaces can still be organized in smectic layers, even though nematic and/or isotropic order can simultaneously appear in the interior of cells. The resulting surface freezing of smectic layers has been confirmed to occur even for rather weak surface interactions. The surface interactions cannot, however, prevent smectic layers from melting relatively close to system boundaries, even when molecules are still arranged in layers within the central region of the system. The internal interfaces, separating individual liquid-crystal phases, are demonstrated here to form fronts of local finite-size transitions that move across cells under temperature changes. Although the complex molecular ordering in surface confined liquid-crystal systems can essentially be controlled by temperature variations, specific thermal properties of these systems, especially the nature of the local transitions, are argued to be strongly conditioned to the degree of molecular packing.

  9. Synthesis and crystal structure of the new vanadate AgCaVO{sub 4}. Comparison with the arcanite structure

    Energy Technology Data Exchange (ETDEWEB)

    Nenert, Gwilherm [PANalytical B.V., Almelo (Netherlands)

    2017-07-01

    We report the synthesis and the crystal structure of the new vanadate AgCaVO{sub 4} from laboratory powder X-ray data. Contrary to the previously reported AgBVO{sub 4} (B=Mg, Cd), AgCaVO{sub 4} exhibits the arcanite structure (β-K{sub 2}SO{sub 4}). Although it exhibits the same structure than arcanite, significant differences are observed. These differences are explained by deriving the atomic displacement field. The change of connectivity within the structure between β-K{sub 2}SO{sub 4} and AgCaVO{sub 4} results from a rotation of the VO{sub 4} tetrahedra giving rise to a change from a face sharing to an edge sharing octahedral chains. Additionally, the thermal expansion of AgCaVO{sub 4} has been investigated up to 800 C.

  10. ESTIMATION OF THERMAL PARAMETERS OF POWER BIPOLAR TRANSISTORS BY THE METHOD OF THERMAL RELAXATION DIFFERENTIAL SPECTROMETRY

    Directory of Open Access Journals (Sweden)

    V. S. Niss

    2015-01-01

    Full Text Available Thermal performance of electronic devices determines the stability and reliability of the equipment. This leads to the need for a detailed thermal analysis of semiconductor devices. The goal of the work is evaluation of thermal parameters of high-power bipolar transistors in plastic packages TO-252 and TO-126 by a method of thermal relaxation differential spectrometry. Thermal constants of device elements and distribution structure of thermal resistance defined as discrete and continuous spectra using previously developed relaxation impedance spectrometer. Continuous spectrum, based on higher-order derivatives of the dynamic thermal impedance, follows the model of Foster, and discrete to model of Cauer. The structure of sample thermal resistance is presented in the form of siх-chain electro-thermal RC model. Analysis of the heat flow spreading in the studied structures is carried out on the basis of the concept of thermal diffusivity. For transistor structures the area and distribution of the heat flow cross-section are determined. On the basis of the measurements the thermal parameters of high-power bipolar transistors is evaluated, in particular, the structure of their thermal resistance. For all of the measured samples is obtained that the thermal resistance of the layer planting crystal makes a defining contribution to the internal thermal resistance of transistors. In the transition layer at the border of semiconductor-solder the thermal resistance increases due to changes in the mechanism of heat transfer. Defects in this area in the form of delamination of solder, voids and cracks lead to additional growth of thermal resistance caused by the reduction of the active square of the transition layer. Method of thermal relaxation differential spectrometry allows effectively control the distribution of heat flow in high-power semiconductor devices, which is important for improving the design, improve the quality of landing crystals of power

  11. Enhanced Thermal Properties of Novel Latent Heat Thermal Storage Material Through Confinement of Stearic Acid in Meso-Structured Onion-Like Silica

    Science.gov (United States)

    Gao, Junkai; Lv, Mengjiao; Lu, Jinshu; Chen, Yan; Zhang, Zijun; Zhang, Xiongjie; Zhu, Yingying

    2017-12-01

    Meso-structured onion-like silica (MOS), which had a highly ordered, onion-like multilayer; large surface area and pore volume; and highly curved mesopores, were synthesized as a support for stearic acid (SA) to develop a novel shape-stabilized phase change material (SA/MOS). The characterizations of SA/MOS were studied by the analysis technique of scanning electron microscope, infrared spectroscopy, x-ray diffraction, differential scanning calorimeter (DSC), and thermal gravimetry analysis (TGA). The results showed that the interaction between the SA and the MOS was physical adsorption and that the MOS had no effect on the crystal structure of the SA. The DSC results suggested that the melting and solidifying temperature of the SA/MOS were 72.7°C and 63.9°C with a melting latent heat of 108.0 J/g and a solidifying latent heat of 126.0 J/g, respectively, and the TGA results indicated that the SA/MOS had a good thermal stability. All of the results demonstrated that the SA/MOS was a promising thermal energy storage material candidate for practical applications.

  12. Crystal structure of aspartame anhydrate from powder diffraction data. Structural aspects of the dehydration process of aspartame

    NARCIS (Netherlands)

    Guguta, C.; Meekes, H.L.M.; Gelder, R. de

    2006-01-01

    Aspartame has three pseudo-polymorphic forms, two hydrates and a hemi-hydrate, for which crystal structures were determined from single-crystal diffraction data. This paper presents the crystal structure of the anhydrate, which was obtained by dehydrating the hemi-hydrate. The crystal structure of

  13. Thermal Analysis, Structural Studies and Morphology of Spider Silk-like Block Copolymers

    Science.gov (United States)

    Huang, Wenwen

    both the bound water removal induced conformational change and the hydrophobicity of the protein sequences, while the high temperature glass transition, Tg( 2), above 130 °C is the now dry protein glass transition. Real-time Fourier transform infrared spectroscopy (FTIR) confirmed that conformational change occurred during the two glass transition, with a random coils to beta turns transition during Tg(1) and alpha helices to beta turns transition during Tg( 2). Due to the hydrophobic and hydrophilic nature of the blocks, the spider silk block copolymers tend to self-assemble into various microstructures. To study the morphological features, the spider silk-like block copolymers were treated with hexafluoroisopropanol or methanol, or subjected to thermal treatment. Using scanning electron microscopies, micelles were observed in thermally treated films. Fibrillar networks and hollow vesicles were observed in methanol-cast samples, while no micro-structures were formed in HFIP-cast films, indicating that morphology and crystallinity can be tuned by thermal treatments. Results indicate when we increase the number of repeating unit of A-block in the protein, sample films crystallize more easily and are more thermally stable. Moreover, when samples crystallize, the secondary structure of A-block and B-block become different, thus it will be easier to form bilayer structures which could fold into vesicles or tube structures during drying.

  14. Crystal structure of actinide metals at high compression

    International Nuclear Information System (INIS)

    Fast, L.; Soederlind, P.

    1995-08-01

    The crystal structures of some light actinide metals are studied theoretically as a function of applied pressure. The first principles electronic structure theory is formulated in the framework of density functional theory, with the gradient corrected local density approximation of the exchange-correlation functional. The light actinide metals are shown to be well described as itinerant (metallic) f-electron metals and generally, they display a crystal structure which have, in agreement with previous theoretical suggestions, increasing degree of symmetry and closed-packing upon compression. The theoretical calculations agree well with available experimental data. At very high compression, the theory predicts closed-packed structures such as the fcc or the hcp structures or the nearly closed-packed bcc structure for the light actinide metals. A simple canonical band picture is presented to explain in which particular closed-packed form these metals will crystallize at ultra-high pressure

  15. Effect of reactor neutron radiation and temperature on the structure of InP single crystals

    International Nuclear Information System (INIS)

    Bojko, V.M.; Kolin, N.G.; Merkurisov, D.I.; Bublik, V.T.; Voronova, M.I.; Shcherbachev, K.D.

    2006-01-01

    The structural characteristics of InP single crystals have been investigated depending on the radiation effects produced by fast and full spectrum neutrons and subsequent heat treatment. A lattice period in InP single crystals decreases under neutron irradiation. Fast neutrons make the main contribution into the change of the lattice period. Availability of the thermal neutrons initiates the formation of Sn atoms, but does not make a significant influence on the change of the lattice period. Heat treatment of the irradiated samples up to 600 deg C causes the annealing of radiation defects and recovery of the lattice period. With increasing neutron fluences a lattice period becomes even higher than before irradiation [ru

  16. Structure and thermal behavior of a nickel complex based on a V-shaped bis(4-(1H-imidazol-1-yl)phenyl)amine ligand

    Energy Technology Data Exchange (ETDEWEB)

    Jiao, Yan, E-mail: felixjiao@163.com; Wang, Zhe; Qiu, Yu; He, Jing-Man; Chen, Min-dong [Nanjing University of Information Science & Technology, Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, Innovative Research Laboratory of Energy & Environmental Catalysis, School of Environmental Science and Engineering (China)

    2015-12-15

    A new coordination polymer ([Ni(BIPA)(bpdc)(H{sub 2}O){sub 2}]){sub n} has been prepared based on a new V-shaped bis(4-(1H-imidazol-1-yl)phenyl)amine (BIPA) ligand. Complex was characterized by elemental analysis, IR spectra, X-ray powder diffraction, thermal analysis and single crystal X-ray analysis. Complex exhibits a 1D → 3D structure. Hydrogen bonds play an important role in the formation of supramolecular network structure. Thermal analysis indicates that complex exhibits a high thermal stability.

  17. The part of acoustic phonons in the negative thermal expansion of the layered structures and nanotubes based on them

    International Nuclear Information System (INIS)

    Eremenko, V.V.; Sirenko, V.A.; Dolbin, A.V.; Gospodarev, I.A.; Syrkin, E.S.; Feodos'ev, S.B.; Bondar', I.S.; Sirenko, A.F.; Minakova, K.A.

    2016-01-01

    A negative linear thermal expansion observed experimentally in a number of crystalline compounds with a complicated lattice and anisotropic interaction between atoms. The nature of negative linear thermal expansion along a number of directions is explained on the basis of calculations which were carried out at a microscopic level. We analyze anomalies in the temperature dependence of the coefficients of linear thermal expansion (the LTEC) along different directions: in layered crystals, formed as a monoatomic layers (graphite and carbon nanofilms) and multilayer ''sand-wiches'' (dichalcogenides of transition metals); in multilayer crystal structures such as high-temperature superconductors in which the anisotropy of the interatomic interaction is not saved in the long-range order; in carbon nanotubes. The results of theoretical calculations are compared with the data of x-ray, neutron diffraction and dilatometric measurements.

  18. Thermally Optimized Polarization-Maintaining Photonic Crystal Fiber and Its FOG Application.

    Science.gov (United States)

    Zhang, Chunxi; Zhang, Zhihao; Xu, Xiaobin; Cai, Wei

    2018-02-13

    In this paper, we propose a small-diameter polarization-maintaining solid-core photonic crystal fiber. The coating diameter, cladding diameter and other key parameters relating to the thermal properties were studied. Based on the optimized parameters, a fiber with a Shupe constant 15% lower than commercial photonic crystal fibers (PCFs) was fabricated, and the transmission loss was lower than 2 dB/km. The superior thermal stability of our fiber design was proven through both simulation and measurement. Using the small-diameter fiber, a split high precision fiber optic gyro (FOG) prototype was fabricated. The bias stability of the FOG was 0.0023 °/h, the random walk was 0.0003 °/ h , and the scale factor error was less than 1 ppm. Throughout a temperature variation ranging from -40 to 60 °C, the bias stability was less than 0.02 °/h without temperature compensation which is notably better than FOG with panda fiber. As a result, the PCF FOG is a promising choice for high precision FOG applications.

  19. CCDC 1416891: Experimental Crystal Structure Determination : Methyl-triphenyl-germanium

    KAUST Repository

    Bernatowicz, Piotr; Shkurenko, Aleksander; Osior, Agnieszka; Kamieński, Bohdan; Szymański, Sławomir

    2015-01-01

    An entry from the Cambridge Structural Database, the world’s repository for small molecule crystal structures. The entry contains experimental data from a crystal diffraction study. The deposited dataset for this entry is freely available from

  20. Exchange-Hole Dipole Dispersion Model for Accurate Energy Ranking in Molecular Crystal Structure Prediction II: Nonplanar Molecules.

    Science.gov (United States)

    Whittleton, Sarah R; Otero-de-la-Roza, A; Johnson, Erin R

    2017-11-14

    The crystal structure prediction (CSP) of a given compound from its molecular diagram is a fundamental challenge in computational chemistry with implications in relevant technological fields. A key component of CSP is the method to calculate the lattice energy of a crystal, which allows the ranking of candidate structures. This work is the second part of our investigation to assess the potential of the exchange-hole dipole moment (XDM) dispersion model for crystal structure prediction. In this article, we study the relatively large, nonplanar, mostly flexible molecules in the first five blind tests held by the Cambridge Crystallographic Data Centre. Four of the seven experimental structures are predicted as the energy minimum, and thermal effects are demonstrated to have a large impact on the ranking of at least another compound. As in the first part of this series, delocalization error affects the results for a single crystal (compound X), in this case by detrimentally overstabilizing the π-conjugated conformation of the monomer. Overall, B86bPBE-XDM correctly predicts 16 of the 21 compounds in the five blind tests, a result similar to the one obtained using the best CSP method available to date (dispersion-corrected PW91 by Neumann et al.). Perhaps more importantly, the systems for which B86bPBE-XDM fails to predict the experimental structure as the energy minimum are mostly the same as with Neumann's method, which suggests that similar difficulties (absence of vibrational free energy corrections, delocalization error,...) are not limited to B86bPBE-XDM but affect GGA-based DFT-methods in general. Our work confirms B86bPBE-XDM as an excellent option for crystal energy ranking in CSP and offers a guide to identify crystals (organic salts, conjugated flexible systems) where difficulties may appear.

  1. Synthesis, crystal structure and growth of a new inorganic- organic hybrid compound for nonlinear optical applications: Aquadiiodo (3-aminopropanoic acid) cadmium (II)

    Science.gov (United States)

    Boopathi, K.; Babu, S. Moorthy; Jagan, R.; Ramasamy, P.

    2017-12-01

    The new inorganic-organic hybrid material aquadiiodo (3-aminopropanoic acid) cadmium (II) [ADI (3-AP) Cd] has been successfully synthesized and good quality crystals have been grown by slow evaporation solution technique. The structure was determined by single crystal X-ray diffraction at room temperature. The compound crystallizes in monoclinic crystal system with centro symmetric space group P21/c and four molecules in the unit cell. The structure of the title compound was further confirmed by 1H and 13C nuclear magnetic resonance spectral analysis. FT-IR spectroscopy was used to confirm the presence of various functional groups in the compound. The transmittance and optical parameters of the crystal were studied by UV- Visible-NIR spectroscopy. The thermal stability of the grown crystal was evaluated using thermogravimetric and differential thermal analyses. Mechanical hardness has been identified by Vickers micro hardness study and work hardening coefficient was calculated. Dielectric measurement was carried out as a function of frequency and results are discussed. The growth mechanism of the crystal was assessed by chemical etching studies. The third-order nonlinear optical susceptibility of [ADI (3-AP) Cd] was derived using the Z-scan technique, and it was 3.24955 × 10-8 esu. The positive nonlinear refractive index 2.48505 × 10-11 m2/W, is an indication of self-defocusing optical nonlinearity of the sample. It is believed that the [ADI (3-AP) Cd] is a promising new candidate for developing efficient nonlinear optical and optical power limiting devices.

  2. Structural Color Patterns by Electrohydrodynamic Jet Printed Photonic Crystals.

    Science.gov (United States)

    Ding, Haibo; Zhu, Cun; Tian, Lei; Liu, Cihui; Fu, Guangbin; Shang, Luoran; Gu, Zhongze

    2017-04-05

    In this work, we demonstrate the fabrication of photonic crystal patterns with controllable morphologies and structural colors utilizing electrohydrodynamic jet (E-jet) printing with colloidal crystal inks. The final shape of photonic crystal units is controlled by the applied voltage signal and wettability of the substrate. Optical properties of the structural color patterns are tuned by the self-assembly of the silica nanoparticle building blocks. Using this direct printing technique, it is feasible to print customized functional patterns composed of photonic crystal dots or photonic crystal lines according to relevant printing mode and predesigned tracks. This is the first report for E-jet printing with colloidal crystal inks. Our results exhibit promising applications in displays, biosensors, and other functional devices.

  3. Synthesis, crystal structure and catalytic effect on thermal decomposition of RDX and AP: An energetic coordination polymer [Pb{sub 2}(C{sub 5}H{sub 3}N{sub 5}O{sub 5}){sub 2}(NMP)·NMP]{sub n}

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Jin-jian [School of Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094 (China); Yancheng Teachers College, Yancheng 224002 (China); Liu, Zu-Liang, E-mail: liuzl@mail.njust.edu.cn [School of Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094 (China); Cheng, Jian [School of Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094 (China); Yancheng Teachers College, Yancheng 224002 (China); Fang, Dong, E-mail: fangdong106@163.com [Yancheng Teachers College, Yancheng 224002 (China)

    2013-04-15

    An energetic lead(II) coordination polymer based on the ligand ANPyO has been synthesized and its crystal structure has been got. The polymer was characterized by FT-IR spectroscopy, elemental analysis, DSC and TG-DTG technologies. Thermal analysis shows that there are one endothermic process and two exothermic decomposition stages in the temperature range of 50–600 °C with final residues 57.09%. The non-isothermal kinetic has also been studied on the main exothermic decomposition using the Kissinger's and Ozawa–Doyle's methods, the apparent activation energy is calculated as 195.2 KJ/mol. Furthermore, DSC measurements show that the polymer has significant catalytic effect on the thermal decomposition of ammonium perchlorate. - Graphical abstract: An energetic lead(II) coordination polymer of ANPyO has been synthesized, structurally characterized and properties tested. Highlights: ► We have synthesized and characterized an energetic lead(II) coordination polymer. ► We have measured its molecular structure and thermal decomposition. ► It has significant catalytic effect on thermal decomposition of AP.

  4. Thermal and Optical Modulation of the Carrier Mobility in OTFTs Based on an Azo-anthracene Liquid Crystal Organic Semiconductor.

    Science.gov (United States)

    Chen, Yantong; Li, Chao; Xu, Xiuru; Liu, Ming; He, Yaowu; Murtaza, Imran; Zhang, Dongwei; Yao, Chao; Wang, Yongfeng; Meng, Hong

    2017-03-01

    One of the most striking features of organic semiconductors compared with their corresponding inorganic counterparts is their molecular diversity. The major challenge in organic semiconductor material technology is creating molecular structural motifs to develop multifunctional materials in order to achieve the desired functionalities yet to optimize the specific device performance. Azo-compounds, because of their special photoresponsive property, have attracted extensive interest in photonic and optoelectronic applications; if incorporated wisely in the organic semiconductor groups, they can be innovatively utilized in advanced smart electronic applications, where thermal and photo modulation is applied to tune the electronic properties. On the basis of this aspiration, a novel azo-functionalized liquid crystal semiconductor material, (E)-1-(4-(anthracen-2-yl)phenyl)-2-(4-(decyloxy)phenyl)diazene (APDPD), is designed and synthesized for application in organic thin-film transistors (OTFTs). The UV-vis spectra of APDPD exhibit reversible photoisomerizaton upon photoexcitation, and the thin films of APDPD show a long-range orientational order based on its liquid crystal phase. The performance of OTFTs based on this material as well as the effects of thermal treatment and UV-irradiation on mobility are investigated. The molecular structure, stability of the material, and morphology of the thin films are characterized by thermal gravimetric analysis (TGA), polarizing optical microscopy (POM), (differential scanning calorimetry (DSC), UV-vis spectroscopy, atomic force microscopy (AFM), and scanning tunneling microscopy (STM). This study reveals that our new material has the potential to be applied in optical sensors, memories, logic circuits, and functional switches.

  5. SYNTHESIS, CHARACTERIZATION, AND CRYSTAL STRUCTURE ...

    African Journals Online (AJOL)

    a

    KEY WORDS: Barium, Crystal structure, 2,6-Pyridinedicarboxylic acid .... The rational design of novel metal-organic frameworks has attracted great ..... Bond, A.D.; Jones, W. Supramolecular Organization and Materials Design, Jones, W.; Rao,.

  6. Synthesis, growth, structure, mechanical and optical properties of a new semi-organic 2-methyl imidazolium dihydrogen phosphate single crystal

    Energy Technology Data Exchange (ETDEWEB)

    Nagapandiselvi, P., E-mail: nagapandiselvip@ssn.edu.in [Department of Physics, SSN College of Engineering, Kalavakkam (India); Baby, C. [Sophisticated Analytical Instrument Facility, Indian Institute of Technology Madras, Chennai (India); Gopalakrishnan, R. [Crystal Research Lab, Department of Physics, Anna University, Chennai (India)

    2016-09-15

    Highlights: • 2MIDP crystals were grown by slow evaporation solution growth technique. • Single crystal XRD revealed self-assembled supramolecular framework. • Z scan technique is employed for third order nonlinear optical susceptibility. • Structure-property correlation is established. - Abstract: A new semi-organic compound, 2-methyl imidazolium dihydrogen phosphate (2MIDP), was prepared and good quality single crystals of 2MIDP were grown by slow evaporation solution growth technique. Crystal structure elucidated using Single crystal XRD showed that 2MIDP crystallizes in monoclinic system with P2{sub 1}/c space group. FT-IR, UV-Vis-NIR, Fluorescence and FT-NMR spectra confirm the molecular structure of 2MIDP. The UV-Vis-NIR spectra established the suitability of the compound for NLO applications. TG-DSC showed that 2MIDP is thermally stable up to 200 °C. Mechanical characteristics like hardness number (H{sub v}), stiffness constant (C{sub 11}), yield strength (σ{sub v}), fracture toughness (K{sub c}) and brittleness index (B{sub i}) were assessed using Vicker’s microhardness tester. Third order nonlinear optical properties determined from Z-scan measurement using femto and picosecond lasers showed two photon reverse saturable absorption. The enhancement of nonlinear optical properties in femto second laser, revealed the suitability of 2MIDP for optical limiting applications.

  7. Thermal neutron scattering kernels for sapphire and silicon single crystals

    International Nuclear Information System (INIS)

    Cantargi, F.; Granada, J.R.; Mayer, R.E.

    2015-01-01

    Highlights: • Thermal cross section libraries for sapphire and silicon single crystals were generated. • Debye model was used to represent the vibrational frequency spectra to feed the NJOY code. • Sapphire total cross section was measured at Centro Atómico Bariloche. • Cross section libraries were validated with experimental data available. - Abstract: Sapphire and silicon are materials usually employed as filters in facilities with thermal neutron beams. Due to the lack of the corresponding thermal cross section libraries for those materials, necessary in calculations performed in order to optimize beams for specific applications, here we present the generation of new thermal neutron scattering kernels for those materials. The Debye model was used in both cases to represent the vibrational frequency spectra required to feed the NJOY nuclear data processing system in order to produce the corresponding libraries in ENDF and ACE format. These libraries were validated with available experimental data, some from the literature and others obtained at the pulsed neutron source at Centro Atómico Bariloche

  8. The band gap variation of a two dimensional binary locally resonant structure in thermal environment

    Directory of Open Access Journals (Sweden)

    Zhen Li

    2017-01-01

    Full Text Available In this study, the numerical investigation of thermal effect on band gap dynamical characteristic for a two-dimensional binary structure composed of aluminum plate periodically filled with nitrile rubber cylinder is presented. Initially, the band gap of the binary structure variation trend with increasing temperature is studied by taking the softening effect of thermal stress into account. A breakthrough is made which found the band gap being narrower and shifting to lower frequency in thermal environment. The complete band gap which in higher frequency is more sensitive to temperature that it disappears with temperature increasing. Then some new transformed models are created by changing the height of nitrile rubber cylinder from 1mm to 7mm. Simulations show that transformed model can produce a wider band gap (either flexure or complete band gap. A proper forbidden gap of elastic wave can be utilized in thermal environment although both flexure and complete band gaps become narrower with temperature. Besides that, there is a zero-frequency flat band appearing in the first flexure band, and it becomes broader with temperature increasing. The band gap width decreases trend in thermal environment, as well as the wider band gap induced by the transformed model with higher nitrile rubber cylinder is useful for the design and application of phononic crystal structures in thermal environment.

  9. Relationship of electro-physical properties, thermal phase transition and microstructure of organic semiconducting crystals

    International Nuclear Information System (INIS)

    Gul, R.M.; Tahir, M.M.; Karomov, Kh.S.; Akhmedov, Kh.M.

    1999-01-01

    Organic crystals of Ph/sub 3/MeP(TCNQ) (Triphenyl-methyl-phosphonium tetracyano quino dimethane) and Et/sub 3/A (TCNQ) (Triethyl ammonium tetracyano quino dimethane) exhibit high tensity resistive effect which make them useful for applications like strain gauges, temperature sensitive resistors, etc. previous investigations of the effect of temperature on the electrical conductivity, thermoelectric power and acoustic emission in the range of 300-360 deg. K show the Ph/sub 3/MeP(TCNQ) crystals dispaly reversible phase transitions at 313 and 317 deg. K during heating the cooling, respectively. Contrary to this the crystals of Et/sub 3/A(TCNQ) and the press tablets of Ph/sub 3/MeP(TCNQ) do not display any such transition. Using Differential Scanning Calorimetry (DSC) in this study, we have confirmed that a reversible thermal transition also takes place at the similar temperature in Ph/sub 3/MeP(TCNQ); the transition is absent in Et/sub 3/A(TCNQ) and in press tablets of Ph/sub 3/MeP(TCNQ). Scanning electron Microscopy (SEM) shows number of structural voids in the single crystals of Ph/sub 3/Mep(TCNQ) which indicates that the phase transition is a volumetric phenomenon; the voids in the crystal may allow the volumetric changes. However, absence of surface defects as observed by SEM in Et/sub 3/A(TCNQ) and in pressed Ph/sub 3/MeP(TCNQ) may hinder the change in the volume of the material due to close packing of molecules. This result in the absence of the phase transitions as ascertained by DSC and other previous electro physical studies. (author)

  10. Crystal structure of enolase from Drosophila melanogaster.

    Science.gov (United States)

    Sun, Congcong; Xu, Baokui; Liu, Xueyan; Zhang, Zhen; Su, Zhongliang

    2017-04-01

    Enolase is an important enzyme in glycolysis and various biological processes. Its dysfunction is closely associated with diseases. Here, the enolase from Drosophila melanogaster (DmENO) was purified and crystallized. A crystal of DmENO diffracted to 2.0 Å resolution and belonged to space group R32. The structure was solved by molecular replacement. Like most enolases, DmENO forms a homodimer with conserved residues in the dimer interface. DmENO possesses an open conformation in this structure and contains conserved elements for catalytic activity. This work provides a structural basis for further functional and evolutionary studies of enolase.

  11. Crystallization and Characterization of Galdieria sulphuraria RUBISCO in Two Crystal Forms: Structural Phase Transition Observed in P21 Crystal Form

    Directory of Open Access Journals (Sweden)

    Boguslaw Stec

    2007-10-01

    Full Text Available We have isolated ribulose-1,5-bisphosphate-carboxylase/oxygenase (RUBISCOfrom the red algae Galdieria Sulphuraria. The protein crystallized in two different crystalforms, the I422 crystal form being obtained from high salt and the P21 crystal form beingobtained from lower concentration of salt and PEG. We report here the crystallization,preliminary stages of structure determination and the detection of the structural phasetransition in the P21 crystal form of G. sulphuraria RUBISCO. This red algae enzymebelongs to the hexadecameric class (L8S8 with an approximate molecular weight 0.6MDa.The phase transition in G. sulphuraria RUBISCO leads from two hexadecamers to a singlehexadecamer per asymmetric unit. The preservation of diffraction power in a phasetransition for such a large macromolecule is rare.

  12. Synthetical bone-like and biological hydroxyapatites: a comparative study of crystal structure and morphology

    Energy Technology Data Exchange (ETDEWEB)

    Markovic, Smilja; Veselinovic, Ljiljana; Lukic, Miodrag J; Ignjatovic, Nenad; Uskokovic, Dragan [Institute of Technical Sciences of the Serbian Academy of Sciences and Arts, Knez Mihailova 35/IV, 11001 Belgrade (Serbia); Karanovic, Ljiljana [Laboratory for Crystallography, Faculty of Mining and Geology, University of Belgrade, Dusina 7, 11000 Belgrade (Serbia); Bracko, Ines, E-mail: dragan.uskokovic@itn.sanu.ac.rs [Jozef Stefan Institute, Jamova 39, 1000 Ljubljana (Slovenia)

    2011-08-15

    Phase composition, crystal structure and morphology of biological hydroxyapatite (BHAp) extracted from human mandible bone, and carbonated hydroxyapatite (CHAp), synthesized by the chemical precipitation method, were studied by x-ray powder diffraction (XRD), Fourier transform infrared (FTIR) and Raman (R) spectroscopy techniques, combined with transmission electron microscopy (TEM). Structural and microstructural parameters were determined through Rietveld refinement of recorded XRD data, performed using the FullProf computing program, and TEM. Microstructural analysis shows anisotropic extension along the [0 0 l] crystallographic direction (i.e. elongated crystallites shape) of both investigated samples. The average crystallite sizes of 10 and 8 nm were estimated for BHAp and CHAp, respectively. The FTIR and R spectroscopy studies show that carbonate ions substitute both phosphate and hydroxyl ions in the crystal structure of BHAp as well as in CHAp, indicating that both of them are mixed AB-type of CHAp. The thermal behaviour and carbonate content were analysed using thermogravimetric and differential thermal analysis. The carbonate content of about 1 wt.% and phase transition, at near 790 {sup 0}C, from HAp to {beta}-tricalcium phosphate were determined in both samples. The quality of synthesized CHAp powder, particularly, the particle size distribution and uniformity of morphology, was analysed by a particle size analyser based on laser diffraction and field emission scanning electron microscopy, respectively. These data were used to discuss similarity between natural and synthetic CHAp. Good correlation between the unit cell parameters, average crystallite size, morphology, carbonate content and crystallographic positions of carbonate ions in natural and synthetic HAp samples was found.

  13. Synthetical bone-like and biological hydroxyapatites: a comparative study of crystal structure and morphology

    International Nuclear Information System (INIS)

    Markovic, Smilja; Veselinovic, Ljiljana; Lukic, Miodrag J; Ignjatovic, Nenad; Uskokovic, Dragan; Karanovic, Ljiljana; Bracko, Ines

    2011-01-01

    Phase composition, crystal structure and morphology of biological hydroxyapatite (BHAp) extracted from human mandible bone, and carbonated hydroxyapatite (CHAp), synthesized by the chemical precipitation method, were studied by x-ray powder diffraction (XRD), Fourier transform infrared (FTIR) and Raman (R) spectroscopy techniques, combined with transmission electron microscopy (TEM). Structural and microstructural parameters were determined through Rietveld refinement of recorded XRD data, performed using the FullProf computing program, and TEM. Microstructural analysis shows anisotropic extension along the [0 0 l] crystallographic direction (i.e. elongated crystallites shape) of both investigated samples. The average crystallite sizes of 10 and 8 nm were estimated for BHAp and CHAp, respectively. The FTIR and R spectroscopy studies show that carbonate ions substitute both phosphate and hydroxyl ions in the crystal structure of BHAp as well as in CHAp, indicating that both of them are mixed AB-type of CHAp. The thermal behaviour and carbonate content were analysed using thermogravimetric and differential thermal analysis. The carbonate content of about 1 wt.% and phase transition, at near 790 0 C, from HAp to β-tricalcium phosphate were determined in both samples. The quality of synthesized CHAp powder, particularly, the particle size distribution and uniformity of morphology, was analysed by a particle size analyser based on laser diffraction and field emission scanning electron microscopy, respectively. These data were used to discuss similarity between natural and synthetic CHAp. Good correlation between the unit cell parameters, average crystallite size, morphology, carbonate content and crystallographic positions of carbonate ions in natural and synthetic HAp samples was found.

  14. Order-disorder-reorder process in thermally treated dolomite samples: a combined powder and single-crystal X-ray diffraction study

    Science.gov (United States)

    Zucchini, A.; Comodi, P.; Katerinopoulou, A.; Balic-Zunic, T.; McCammon, C.; Frondini, F.

    2012-04-01

    A combined powder and single-crystal X-ray diffraction analysis of dolomite [CaMg(CO3)2] heated to 1,200°C at 3 GPa was made to study the order-disorder-reorder process. The order/disorder transition is inferred to start below 1,100°C, and complete disorder is attained at approximately 1,200°C. Twinned crystals characterized by high internal order were found in samples annealed over 1,100°C, and their fraction was found to increase with temperature. Evidences of twinning domains combined with probable remaining disordered portions of the structure imply that reordering processes occur during the quench. Twin domains are hereby proposed as a witness to thermally induced intra-layer-type cation disordering.

  15. Thermal-capillary analysis of Czochralski and liquid encapsulated Czochralski crystal growth. II - Processing strategies

    Science.gov (United States)

    Derby, J. J.; Brown, R. A.

    1986-01-01

    The pseudosteady-state heat transfer model developed in a previous paper is augmented with constraints for constant crystal radius and melt/solid interface deflection. Combinations of growth rate, and crucible and bottom-heater temperatures are tested as processing parameters for satisfying the constrained thermal-capillary problem over a range of melt volumes corresponding to the sequence occuring during the batchwise Czochralski growth of a small-diameter silicon crystal. The applicability of each processing strategy is judged by the range of existence of the solution, in terms of melt volume and the values of the axial and radial temperature gradients in the crystal.

  16. Growth, optical, ICP and thermal studies of nonlinear optical single crystal: Sodium acid phthalate (NaAP)

    Science.gov (United States)

    Mahadevan, M.; Arivanandhan, M.; Elangovan, K.; Anandan, P.; Ramachandran, K.

    2017-07-01

    Good quality single crystals of sodium acid phthalate (NaAP) were grown by slow evaporation technique. Single crystal X-ray diffraction study of the grown crystal reveals that the crystal belongs to orthorhombic system with space group B2ab. Fourier transform infrared spectrum confirms the presence of the functional groups of the grown material. Inductively coupled plasma emission spectroscopy analysis is used to confirm the presence of Na element in the sample. Thermal analysis of the NaAP crystal shows that the crystal is stable up to 140°C. Optical transmittance of the grown crystal was recorded in the wavelength range from 200 and 800 nm using UV-Vis-NIR spectrophotometer. The second harmonic generation of NaAP was analysed using Kurtz powder technique.

  17. Synthesis and crystal structure analysis of uranyl triple acetates

    Energy Technology Data Exchange (ETDEWEB)

    Klepov, Vladislav V., E-mail: vladislavklepov@gmail.com [Institute for Energy and Climate Research (IEK-6), Forschungszentrum Jülich GmbH, 52428 Jülich (Germany); Department of Chemistry, Samara National Research University, 443086 Samara (Russian Federation); Serezhkina, Larisa B.; Serezhkin, Victor N. [Department of Chemistry, Samara National Research University, 443086 Samara (Russian Federation); Alekseev, Evgeny V., E-mail: e.alekseev@fz-juelich.de [Institute for Energy and Climate Research (IEK-6), Forschungszentrum Jülich GmbH, 52428 Jülich (Germany); Institut für Kristallographie, RWTH Aachen University, 52066 Aachen (Germany)

    2016-12-15

    Single crystals of triple acetates NaR[UO{sub 2}(CH{sub 3}COO){sub 3}]{sub 3}·6H{sub 2}O (R=Mg, Co, Ni, Zn), well-known for their use as reagents for sodium determination, were grown from aqueous solutions and their structural and spectroscopic properties were studied. Crystal structures of the mentioned phases are based upon (Na[UO{sub 2}(CH{sub 3}COO){sub 3}]{sub 3}){sup 2–} clusters and [R(H{sub 2}O){sub 6}]{sup 2+} aqua-complexes. The cooling of a single crystal of NaMg[UO{sub 2}(CH{sub 3}COO){sub 3}]{sub 3}·6H{sub 2}O from 300 to 100 K leads to a phase transition from trigonal to monoclinic crystal system. Intermolecular interactions between the structural units and their mutual packing were studied and compared from the point of view of the stereoatomic model of crystal structures based on Voronoi-Dirichlet tessellation. Using this method we compared the crystal structures of the triple acetates with Na[UO{sub 2}(CH{sub 3}COO){sub 3}] and [R(H{sub 2}O){sub 6}][UO{sub 2}(CH{sub 3}COO){sub 3}]{sub 2} and proposed reasons of triple acetates stability. Infrared and Raman spectra were collected and their bands were assigned. - Graphical abstract: Single crystals of uranium based triple acetates, analytical reagents for sodium determination, were synthesized and structurally, spectroscopically and topologically characterized. The structures were compared with the structures of compounds from preceding families [M(H{sub 2}O){sub 6})][UO{sub 2}(CH{sub 3}COO){sub 3}]{sub 2} (M = Mg, Co, Ni, Zn) and Na[UO{sub 2}(CH{sub 3}COO){sub 3}]. Analysis was performed with the method of molecular Voronoi-Dirichlet polyhedra to reveal a large contribution of the hydrogen bonds into intermolecular interactions which can be a reason of low solubility of studied complexes.

  18. Crystal structure of tris(hydroxylammonium orthophosphate

    Directory of Open Access Journals (Sweden)

    Malte Leinemann

    2015-11-01

    Full Text Available The crystal structure of the title salt, ([H3NOH]+3·[PO4]3−, consists of discrete hydroxylammonium cations and orthophosphate anions. The atoms of the cation occupy general positions, whereas the anion is located on a threefold rotation axis that runs through the phosphorus atom and one of the phosphate O atoms. In the crystal structure, cations and anions are linked by intermolecular O—H...O and N—H...O hydrogen bonds into a three-dimensional network. Altogether, one very strong O—H...O, two N—H...O hydrogen bonds of medium strength and two weaker bifurcated N—H...O interactions are observed.

  19. Effect of oxalic acid on the optical, thermal, dielectric and mechanical behaviour of ADP crystals

    International Nuclear Information System (INIS)

    Rajesh, P.; Ramasamy, P.

    2009-01-01

    The effect of the addition, over a concentration range from 1 to 5 mol%, of oxalic acid on the growth rate, optical transparency, hardness, dielectric behaviour, and SHG efficiency of ammonium dihydrogen phosphate single crystals grown by slow evaporation method has been investigated. UV-Vis studies show that the transparency of the oxalic acid added crystals decreased gradually. Thermal studies indicate that the decomposition temperatures of the crystal are decreased in oxalic acid added ADP crystals. It is observed from the dielectric measurements that the dielectric constant and dielectric loss increase with increase in temperature for all the crystals. Vicker's microhardness study reveals that the addition of higher concentration of oxalic acid decreases the hardness of the crystal. SHG efficiency of 1 mol% of oxalic acid is higher than the pure ADP.

  20. Effect of L-aspartic acid on the growth, structure and spectral studies of Zinc (tris) Thiourea Sulphate (ZTS) single crystals

    Science.gov (United States)

    Samuel, Bincy Susan; Krishnamurthy, R.; Rajasekaran, R.

    2014-11-01

    Single crystals of pure and L-aspartic acid doped Zinc (Tris) Thiourea Sulphate (ZTS) were grown from aqueous solution by solution growth method. The cell parameters and structure of the grown crystals were determined by X-ray diffraction studies. The presence of functional group in the compound has been confirmed by FTIR and FT-Raman analysis. The optical transparency range has been studied through UV-Vis spectroscopy. TGA/DTA studies show thermal stability of the grown crystals. Microhardness study reveals that the hardness number (Hv) increases with load for pure and doped ZTS crystals. Dielectric studies have been carried out and the results are discussed. The second harmonic generation was confirmed for L-aspartic acid doped ZTS which is greater than pure ZTS.

  1. Cyanide bridged hetero-metallic polymeric complexes: Syntheses, vibrational spectra, thermal analyses and crystal structures of complexes [M(1,2-dmi)2Ni(μ-CN)4]n (M = Zn(II) and Cd(II))

    Science.gov (United States)

    Kürkçüoğlu, Güneş Süheyla; Sayın, Elvan; Şahin, Onur

    2015-12-01

    Two cyanide bridged hetero-metallic complexes of general formula, [M(1,2-dmi)2Ni(μ-CN)4]n (1,2-dmi = 1,2-dimethylimidazole and M = Zn(II) or Cd(II)) have been synthesized and characterized by vibrational (FT-IR and Raman) spectroscopy, single crystal X-ray diffraction, thermal analyses and elemental analyses. The crystallographic analyses reveal that the complexes, [Zn(1,2-dmi)2Ni(μ-CN)4] (1) and [Cd(1,2-dmi)2Ni(μ-CN)4] (2), have polymeric 2D networks. In the complexes, four cyanide groups of [Ni(CN)4]2- coordinated to the adjacent M(II) ions and distorted octahedral geometries of complexes are completed by two nitrogen atoms of trans 1,2-dmi ligands. The structures of 1 and 2 are similar and linked via intermolecular hydrogen bonding, C-H⋯Ni interactions to give rise to 3D networks. Vibration assignments are given for all the observed bands and the spectral features also supported to the crystal structures of heteronuclear complexes. The FT-IR and Raman spectra of the complexes are very much consistent with the structural data presented.

  2. Effect of irradiation on differential thermal properties and crystallization behavior of some lithium borate glasses

    International Nuclear Information System (INIS)

    El-Alaily, N.A.; Mohamed, R.M.

    2001-01-01

    Differential thermal properties and the crystallization behavior of binary system Li 2 O-B 2 O 3 glasses were investigated. The effects of the presence of oxides of aluminum, lead or one of the transition metals TiO 2 or V 2 O 5 or Fe 2 O 3 in the parent glass were also studied. The effects of three different heat treatments on the crystalline structure of all the studied glasses were also investigated. The results showed that all glass samples were amorphous before the heat treatment, with the most common formed phase being tetraborate Li 2 B 8 O 13 (Li 2 O-4B 2 O 3 ). The exposure of the glass samples to either gamma rays or fast neutrons resulted in considerable changes in their thermal behavior. The results also showed that T g increases for all studied glasses when subjected to irradiation either by fast neutron or gamma rays, while T c decreased only at higher doses

  3. Thermal and pseudoelastic cycling in Cu-14.1Al-4.2Ni (wt%) single crystals

    International Nuclear Information System (INIS)

    Gastien, R.; Corbellani, C.E.; Sade, M.; Lovey, F.C.

    2005-01-01

    Thermally and stress induced martensitic transformations between β and a mixture of martensitic structures, β' and γ', were studied in Cu-14.1Al-4.2Ni (wt%) single crystals. In this way information on the relative stability between β' and γ' martensites, compared to the β phase, was obtained. The measurement of electrical resistance as a function of temperature was used to follow the evolution of thermally induced transitions. The stress induced transformations were analyzed in the small temperature range at which the pseudoelastic behavior between β and a mixture of both martensites plays the main role. A clear inhibition of the γ' martensite is detected as the number of cycles increases, no matter which thermodynamic coordinate is varied to induce the phase transition, i.e., temperature or stress. An evaluation of the magnitude of the relative stabilization of the β' martensite compared with γ' was obtained by a suitably designed experiment

  4. Thermal annealing behaviour of sulphur-35 produced in pile-irradiated mixed crystals AlCl/sub 3/-FeCl/sub 3/

    Energy Technology Data Exchange (ETDEWEB)

    Dyakovich, V; Todorovski, D S; Kostadinova, Z D [Sofia Univ. (Bulgaria). Khimicheski Fakultet

    1983-12-19

    The regression analysis of the experimental results on the thermal annealing behaviour of /sup 35/S produced in pile-irradiated mixed crystals AlCl/sub 3/-FeCl/sub 3/ confirms some suppositions made in a previous paper. The chemical state of /sup 35/S is defined by the target prehistory and the iron concentration. The influence of Fe/sup 3 +/ can be observed indirectly through its influence on the defect structure formed.

  5. Raman scattering by hot and thermal polaritons in crystal quartz

    Energy Technology Data Exchange (ETDEWEB)

    Bogani, F.; Colocci, M.; Neri, M.; Querzoli, R.

    1984-11-01

    Nonlinear mixing of IR and visible radiation, i.e. coherent Raman scattering by polaritons driven by a CO/sub 2/ laser, has been used to obtain the dispersion curve and its width in q-space of the polariton associated to the E-phonon at 1065 cm/sup -1/ in crystal quartz. It is shown in this paper that a direct method to determine independently, with high precision, the refractive index and absorbance of a crystal can be obtained in this way. The results are compared with accurate data obtained from Raman scattering by polaritions in thermal equilibrium and very good agreement is found between the two measurements. It is finally shown that nonlinear-mixing techniques turn out to be completely consistent with the simple picture of scattering of light by hot polaritons.

  6. Ultrasmall-angle X-ray scattering analysis of photonic crystal structure

    International Nuclear Information System (INIS)

    Abramova, V. V.; Sinitskii, A. S.; Grigor'eva, N. A.; Grigor'ev, S. V.; Belov, D. V.; Petukhov, A. V.; Mistonov, A. A.; Vasil'eva, A. V.; Tret'yakov, Yu. D.

    2009-01-01

    The results of an ultrasmall-angle X-ray scattering study of iron(III) oxide inverse opal thin films are presented. The photonic crystals examined are shown to have fcc structure with amount of stacking faults varying among the samples. The method used in this study makes it possible to easily distinguish between samples with predominantly twinned fcc structure and nearly perfect fcc stacking. The difference observed between samples fabricated under identical conditions is attributed to random layer stacking in the self-assembled colloidal crystals used as templates for fabricating the inverse opals. The present method provides a versatile tool for analyzing photonic crystal structure in studies of inverse opals made of various materials, colloidal crystals, and three-dimensional photonic crystals of other types.

  7. Influence of Nd dopants on lattice parameters and thermal and elastic properties in YVO4 single crystals

    International Nuclear Information System (INIS)

    Kucytowski, J.; Wokulska, K.; Kazmierczak-Balata, A.; Bodzenta, J.; Lukasiewicz, T.; Hofman, B.; Pyka, M.

    2008-01-01

    The influence of neodymium doping on YVO 4 single crystals has been studied. The crystals were grown by the Czochralski method. One of them was pure YVO 4 and the others were doped with neodymium (YVO 4 :Nd) at various concentrations of Nd = 0.3-3.0 at.%. The changes of the lattice parameters were determined by the Bond's method [W.L. Bond, Acta Cryst. 13 (1960) 814]. The thermal diffusivity and the velocity of ultrasound using the photothermal method with mirage effect and the pulse echo method [J. Bodzenta, M. Pyka, J. Phys. IV France 137 (2006) 259] were measured. In the examined crystals, it was found that the lattice parameters increase while the thermal diffusivity decreases with increasing concentration of Nd atoms

  8. Mechanochemical synthesis of N-salicylideneaniline: thermosalient effect of polymorphic crystals

    Directory of Open Access Journals (Sweden)

    Sudhir Mittapalli

    2017-05-01

    Full Text Available Polymorphs of the dichloro derivative of N-salicylideneaniline exhibit mechanical responses such as jumping (Forms I and III and exploding (Form II in its three polymorphs. The molecules are connected via the amide N—H...O dimer synthon and C—Cl...O halogen bond in the three crystal structures. A fourth high-temperature Form IV was confirmed by variable-temperature single-crystal X-ray diffraction at 180°C. The behaviour of jumping exhibited by the polymorphic crystals of Forms I and III is due to the layered sheet morphology and the transmission of thermal stress in a single direction, compared with the corrugated sheet structure of Form II such that heat dissipation is more isotropic causing blasting. The role of weak C—Cl...O interactions in the thermal response of molecular crystals is discussed.

  9. Structural and thermal properties of vanadium tellurite glasses

    Science.gov (United States)

    Kaur, Rajinder; Kaur, Ramandeep; Khanna, Atul; González, Fernando

    2018-04-01

    V2O5-TeO2 glasses containing 10 to 50 mol% V2O5 were prepared by melt quenching and characterized by X-ray diffraction (XRD), density, Differential Scanning Calorimetry (DSC) and Raman studies.XRD confirmed the amorphous nature of vanadium tellurite samples. The density of the glasses decreases and the molar volume increases on increasing the concentration of V2O5. The thermal properties, such as glass transition temperature Tg, crystallization temperature Tc, and the melting temperature Tm were measured. Tg decreases from a value of 288°C to 232°C. The changes in Tg were correlated with the number of bonds per unit volume, and the average stretching force constant. Raman spectra were used to elucidate the short-range structure of vanadium tellurite glasses.

  10. Crystal structure and solid-state properties of discrete hexa cationic ...

    Indian Academy of Sciences (India)

    Subsequently, weight loss of 33% in two stages from 242 to 691◦C can be assigned to the decomposition of triazole ligands. 3.3 Description of the crystal structure. The solid-state structure of ZnT was unambiguously determined by the single crystal X-ray diffraction tech- nique (figures 2 and 3). Compound ZnT crystallizes in.

  11. Crystal structure and magnetism of UOsAl

    Energy Technology Data Exchange (ETDEWEB)

    Andreev, A.V., E-mail: andreev@fzu.cz [Institute of Physics, Academy of Sciences, Na Slovance 2, 182 21 Prague (Czech Republic); Daniš, S. [Department of Condensed Matter Physics, Charles University, Ke Karlovu 5, 121 16 Prague (Czech Republic); Šebek, J.; Henriques, M.S.; Vejpravová, J. [Institute of Physics, Academy of Sciences, Na Slovance 2, 182 21 Prague (Czech Republic); Gorbunov, D.I. [Institute of Physics, Academy of Sciences, Na Slovance 2, 182 21 Prague (Czech Republic); Dresden High Magnetic Field Laboratory (HLD-EMFL), Helmholtz-Zentrum, Dresden-Rossendorf, D-01314 Dresden (Germany); Havela, L. [Department of Condensed Matter Physics, Charles University, Ke Karlovu 5, 121 16 Prague (Czech Republic)

    2017-04-15

    Crystal structure, magnetization, and specific heat were studied on single crystal of uranium intermetallic compound UOsAl. It is a hexagonal Laves phase of MgZn{sub 2} type, space group P6{sub 3}/mmc, with lattice parameters a=536.4 pm, c=845.3 pm. Shortest inter-uranium distance 313 pm (along the c-axis) is considerably smaller than the Hill limit (340 pm). The compound is a weakly temperature-dependent paramagnet with magnetic susceptibility of ≈1.5*10{sup −8} m{sup 3} mol{sup −1} (at T=2 K), which is slightly higher with magnetic field along the a-axis compared to the c-axis. The Sommerfeld coefficient of electronic specific heat has moderate value of γ=36 mJ mol{sup −1} K{sup −2}. - Highlights: • Crystal structure and magnetic properties were studied on single crystal of UOsAl with hexagonal structure of MgZn{sub 2} type. • Shortest inter-uranium distance 313 pm (along the c-axis) is considerably smaller than the Hill limit (340 pm). • UOsAl has paramagnetic ground state as the compounds with T=Fe and Ru, i.e. 3d and 4d analogues of Os.

  12. The influence of value of intensity of constant electric field on structure, thermal physic and conductivity nanocomposites epoxy resin-oxide metal

    International Nuclear Information System (INIS)

    Vilensky, V.O.; Demchenko, V.I.

    2009-01-01

    Influence of constant electric field on structure, specific thermal capacity, thermomechanical properties and electrical conduction nanocomposites on a basis epoxy resin and fillers Fe 2 O 3 , Al 2 O 3 is investigated. The received results show, that application of constant electric field gives the chance to influence level of perfection of crystal structure filler (Fe 2 O 3 ) in structure to a composite, thus the size of crystals decreases from 18.0 nm (for initial samples of composites) to 7.7 nm (for the composites generated under the influence of CEF). Nanocomposites generated in CEF characterization the higher values of a electrical conduction

  13. Direct observation of the crystal structure changes in the Mg{sub x}Zn{sub 1−x}O alloy system

    Energy Technology Data Exchange (ETDEWEB)

    Yoo, Seung Jo; Lee, Ji-Hyun; Kim, Chang-Yeon [Nano-Bio Electron Microscopy Research Group, Korea Basic Science Institute (KBSI), 169-148 Gwahak-ro, Yuseong-gu, Daejeon 305-806 (Korea, Republic of); Kim, Chang Hoi [Department of Nano Semiconductor Engineering, Korea Maritime and Ocean University, 727 Taejong-ro, Yeongdo-Gu, Busan 606-791 (Korea, Republic of); Shin, Jae Won [Nano-Bio Electron Microscopy Research Group, Korea Basic Science Institute (KBSI), 169-148 Gwahak-ro, Yuseong-gu, Daejeon 305-806 (Korea, Republic of); Center for Nanomaterials and Chemical Reactions, Institute for Basic Science (IBS), Daejeon 305-701 (Korea, Republic of); Kim, Hong Seung, E-mail: hongseung@hhu.ac.kr [Department of Nano Semiconductor Engineering, Korea Maritime and Ocean University, 727 Taejong-ro, Yeongdo-Gu, Busan 606-791 (Korea, Republic of); Kim, Jin-Gyu, E-mail: jjintta@kbsi.re.kr [Nano-Bio Electron Microscopy Research Group, Korea Basic Science Institute (KBSI), 169-148 Gwahak-ro, Yuseong-gu, Daejeon 305-806 (Korea, Republic of)

    2015-08-03

    We directly observed the crystal structure changes of the Mg{sub x}Zn{sub 1−x}O alloy thin film deposited on Si (111) substrates. Through the in situ heating transmission electron microscopy study, it was determined that the crystal structure changes did not occur up to at 400 °C, whereas the disappearance of the hexagonal structure was observed at 500 °C in the layer of nanosized grains. Additionally, the decreased intensity of the Zn L-edge was analyzed in the comparison of the core loss electron energy loss spectroscopy spectra of the Zn L-edge and the Mg K-edge obtained at room temperature and 500 °C. Based on these experimental results, the process of crystal structure changes could be explained by the evaporation of Zn atoms in the Mg{sub x}Zn{sub 1−x}O alloy system. This phenomenon is prominent in the improvement of the microstructure of the Mg{sub x}Zn{sub 1−x}O alloy thin film by controlling the thermal annealing temperature. - Highlights: • Mg{sub x}Zn{sub 1−x}O thin films coexisting with cubic and hexagonal structures were deposited. • Crystal structure changes of the thin films were directly observed at 500 °C. • The process of microstructure changes could be caused by the evaporation of Zn atoms.

  14. Chirality-controlled spontaneous twisting of crystals due to thermal topochemical reaction.

    Science.gov (United States)

    Rai, Rishika; Krishnan, Baiju P; Sureshan, Kana M

    2018-03-20

    Crystals that show mechanical response against various stimuli are of great interest. These stimuli induce polymorphic transitions, isomerizations, or chemical reactions in the crystal and the strain generated between the daughter and parent domains is transcribed into mechanical response. We observed that the crystals of modified dipeptide LL (N 3 -l-Ala-l-Val-NHCH 2 C≡CH) undergo spontaneous twisting to form right-handed twisted crystals not only at room temperature but also at 0 °C over time. Using various spectroscopic techniques, we have established that the twisting is due to the spontaneous topochemical azide-alkyne cycloaddition (TAAC) reaction at room temperature or lower temperatures. The rate of twisting can be increased by heating, exploiting the faster kinetics of the TAAC reaction at higher temperatures. To address the role of molecular chirality in the direction of twisting the enantiomer of dipeptide LL, N 3 -d-Ala-d-Val-NHCH 2 C≡CH (DD), was synthesized and topochemical reactivity and mechanoresponse of its crystals were studied. We have found that dipeptide DD not only underwent TAAC reaction, giving 1,4-triazole-linked pseudopolypeptides of d-amino acids, but also underwent twisting with opposite handedness (left-handed twisting), establishing the role of molecular chirality in controlling the direction of mechanoresponse. This paper reports ( i ) a mechanical response due to a thermal reaction and ( ii ) a spontaneous mechanical response in crystals and ( iii ) explains the role of molecular chirality in the handedness of the macroscopic mechanical response.

  15. Thermal and structural characterization of the vitreous samples in the SiO2 - PbO - Na2O system

    Directory of Open Access Journals (Sweden)

    Mocioiu Catalina Oana

    2006-01-01

    Full Text Available Lead-containing glasses have been used from the ancient time. Recently, due to the possible application in optics, electronics, nuclear techniques, wastes inactivation. the interest in these types of glasses has been renewed. For lead waste inactivation, glasses with high amount of PbO in the composition are required, those exhibiting at the same time a high chemical and thermal stability. Thermal behavior of lead-silicate glasses was examined by differential thermal analysis (DTA. Infrared spectroscopy was used to investigate the structure of the glasses. The spectra were interpreted in terms of the structures of silicate group by comparison with the spectra of other silicate crystals. The DTA and infrared data were correlated with the chemical stability tests.

  16. Programmatic conversion of crystal structures into 3D printable files using Jmol

    OpenAIRE

    Scalfani, Vincent F.; Williams, Antony J.; Tkachenko, Valery; Karapetyan, Karen; Pshenichnov, Alexey; Hanson, Robert M.; Liddie, Jahred M.; Bara, Jason E.

    2016-01-01

    Background Three-dimensional (3D) printed crystal structures are useful for chemistry teaching and research. Current manual methods of converting crystal structures into 3D printable files are time-consuming and tedious. To overcome this limitation, we developed a programmatic method that allows for facile conversion of thousands of crystal structures directly into 3D printable files. Results A collection of over 30,000 crystal structures in crystallographic information file (CIF) format from...

  17. Crystal structure and crystal growth of the polar ferrimagnet CaBaFe4O7

    Science.gov (United States)

    Perry, R. S.; Kurebayashi, H.; Gibbs, A.; Gutmann, M. J.

    2018-05-01

    Magnetic materials are a cornerstone for developing spintronic devices for the transport of information via magnetic excitations. To date, relatively few materials have been investigated for the purpose of spin transport, mostly due to the paucity of suitable candidates as these materials are often chemically complex and difficult to synthesize. We present the crystal growth and a structure solution on the high-temperature crystal structure of the layered, polar ferrimagnet CaBaFe4O7 , which is a possible new contender for spintronics research. The space group is identified as P 3 by refinement of single crystal and powder neutron diffraction data. At 400 K, the trigonal lattice parameters are a =11.0114 (11 )Å and c =10.330 (3 )Å . The structure is similar to the low-temperature phase with alternating layers of triangular and Kagome-arranged Fe-O tetrahedra. We also present details of the crystal growth by traveling solvent method.

  18. Frequency and Thermal Behavior of Acoustic Absorption in ɛ-GaSe Crystals

    Science.gov (United States)

    Dzhafarova, S. Z.

    2018-04-01

    The paper presents results of measuring acoustic absorption in ɛ-GaSe crystals. The absorption of a longitudinal wave which propagates normal to the crystal layers, quadratically depends on frequency. However, it does not depend on temperature, i.e. it displays an Akhiezer behavior although its absolute value considerably exceeds the expected. The analysis of the frequency and thermal behavior of absorption of piezoelectric waves propagating along the layers, includes the deduction of contribution made by the interaction between waves and charge carriers. This analysis shows the linear dependence between the lattice absorption of these waves and the frequency. The linear frequency and weak temperature dependences of the acoustic absorption characterize the additional ultra-Akhiezer absorption in glasses. In our case, it can be caused by various polytypes forming in GaSe crystals which differ merely in a mutual arrangement of layers.

  19. The low thermal gradient CZ technique as a way of growing of dislocation-free germanium crystals

    Science.gov (United States)

    Moskovskih, V. A.; Kasimkin, P. V.; Shlegel, V. N.; Vasiliev, Y. V.; Gridchin, V. A.; Podkopaev, O. I.

    2014-09-01

    This paper considers the possibility of growth of dislocation-free germanium single crystals. This is achieved by reducing the temperature gradients at the level of 1 K/cm and lower. Single germanium crystals 45-48 mm in diameter with a dislocation density of 102 cm-2 were grown by a Low Thermal Gradient Czochralski technique (LTG CZ).

  20. Growth and structure of thermally evaporated Bi{sub 2}Te{sub 3} thin films

    Energy Technology Data Exchange (ETDEWEB)

    Rogacheva, E.I., E-mail: rogacheva@kpi.kharkov.ua [National Technical University “Kharkov Polytechnic Institute”, 21 Frunze St., Kharkov 61002 (Ukraine); Budnik, A.V. [National Technical University “Kharkov Polytechnic Institute”, 21 Frunze St., Kharkov 61002 (Ukraine); Dobrotvorskaya, M.V.; Fedorov, A.G.; Krivonogov, S.I.; Mateychenko, P.V. [Institute for Single Crystals of NAS of Ukraine, 60 Lenin Prospect, Kharkov 61001 (Ukraine); Nashchekina, O.N.; Sipatov, A.Yu. [National Technical University “Kharkov Polytechnic Institute”, 21 Frunze St., Kharkov 61002 (Ukraine)

    2016-08-01

    The growth mechanism, microstructure, and crystal structure of the polycrystalline n-Bi{sub 2}Te{sub 3} thin films with thicknesses d = 15–350 nm, prepared by thermal evaporation in vacuum onto glass substrates, were studied. Bismuth telluride with Te excess was used as the initial material for the thin film preparation. The thin film characterization was performed using X-ray diffraction, X-ray photoelectron spectroscopy, energy-dispersive X-ray spectroscopy, scan electron microscopy, and electron force microscopy. It was established that the chemical composition of the prepared films corresponded rather well to the starting material composition and the films did not contain any phases apart from Bi{sub 2}Te{sub 3}. It was shown that the grain size and the film roughness increased with increasing film thickness. The preferential growth direction changed from [00l] to [015] under increasing d. The X-ray photoelectron spectroscopy studies showed that the thickness of the oxidized surface layer did not exceed 1.5–2.0 nm and practically did not change in the process of aging at room temperature, which is in agreement with the results reported earlier for single crystals. The obtained data show that using simple and inexpensive method of thermal evaporation in vacuum and appropriate technological parameters, one can grow n-Bi{sub 2}Te{sub 3} thin films of a sufficiently high quality. - Highlights: • The polycrystalline n-Bi{sub 2}Te{sub 3} thin films were grown thermal evaporation onto glass. • The growth mechanism and film structure were studied by different structure methods. • The grain size and film roughness increased with increasing film thickness. • The growth direction changes from [00l] to [015] under film thickness increasing. • The oxidized layer thickness (1–2 nm) did not change under aging at room temperature.

  1. Structural, mechanical and light yield characterisation of heat treated LYSO:Ce single crystals for medical imaging applications

    Energy Technology Data Exchange (ETDEWEB)

    Mengucci, P., E-mail: p.mengucci@univpm.it [Università Politecnica delle Marche, Via Brecce Bianche, 60131 Ancona (Italy); André, G. [Laboratoire Léon Brillouin, CEA-CNRS, CE-Saclay, 91191 Gif sur Yvette cedex (France); Auffray, E. [Department PH-CMX CERN, Route de Meyrin, 1211 Geneva 23 (Switzerland); Barucca, G. [Università Politecnica delle Marche, Via Brecce Bianche, 60131 Ancona (Italy); Cecchi, C. [Dipartimento di Fisica e Geologia, Università di Perugia, Via A. Pascoli, 06123 Perugia (Italy); Chipaux, R. [CEA DSM/IRFU/SEDI, CE-Saclay, 91191 Gif sur Yvette cedex (France); Cousson, A. [Laboratoire Léon Brillouin, CEA-CNRS, CE-Saclay, 91191 Gif sur Yvette cedex (France); Davì, F. [Università Politecnica delle Marche, Via Brecce Bianche, 60131 Ancona (Italy); Di Vara, N. [Department PH-CMX CERN, Route de Meyrin, 1211 Geneva 23 (Switzerland); Rinaldi, D.; Santecchia, E. [Università Politecnica delle Marche, Via Brecce Bianche, 60131 Ancona (Italy)

    2015-06-11

    Five single crystals of cerium-doped lutetium yttrium oxyorthosilicate (LYSO:Ce) grown by the Czochralski method were submitted to structural characterisation by X-ray (XRD) and neutron (ND) diffraction, scanning (SEM) and transmission (TEM) electron microscopy and energy dispersive microanalysis (EDS). The Ultimate Tensile Strength (UTS), the Young Modulus (YM) and the Light Yield (LY) of the samples were also measured in order to correlate the mechanical and the optical behaviour of the crystals with the characteristics of their microstructure. Two of the samples analysed were also heat treated at 300 °C for 10 h to evidence possible variations induced by the temperature in the optical and mechanical response of the crystals. Results showed that the mean compositional variations evidenced by the structural analyses do not affect the mechanical and optical behaviour of the samples. On the contrary, the thermal treatment could induce the formation of coherent spherical particles (size 10 to 15 nm), not uniformly distributed inside the sample, that strongly reduce the UTS and YM values, but it does not affect the optical response of the crystal. This latter result was attributed to the low value of the heating temperature (300 °C) that is not sufficiently high to induce annealing of the oxygen vacancies traps that are responsible of the deterioration of the scintillation properties of the LYSO:Ce crystals. This study was carried out in the framework of the Crystal Clear Collaboration (CCC)

  2. Solving crystal structures with the symmetry minimum function

    International Nuclear Information System (INIS)

    Estermann, M.A.

    1995-01-01

    Unravelling the Patterson function (the auto-correlation function of the crystal structure) (A.L. Patterson, Phys. Rev. 46 (1934) 372) can be the only way of solving crystal structures from neutron and incomplete diffraction data (e.g. powder data) when direct methods for phase determination fail. The negative scattering lengths of certain isotopes and the systematic loss of information caused by incomplete diffraction data invalidate the underlying statistical assumptions made in direct methods. In contrast, the Patterson function depends solely on the quality of the available diffraction data. Simpson et al. (P.G. Simpson et al., Acta Crystallogr. 18 (1965) 169) showed that solving a crystal structure with a particular superposition of origin-shifted Patterson functions, the symmetry minimum function, is advantageous over using the Patterson function alone, for single-crystal X-ray data.This paper describes the extension of the Patterson superposition approach to neutron data and powder data by (a) actively using the negative regions in the Patterson map caused by negative scattering lengths and (b) using maximum entropy Patterson maps (W.I.F. David, Nature 346 (1990) 731). Furthermore, prior chemical knowledge such as bond lengths and angles from known fragments have been included. Two successful structure solutions of a known and a previously unknown structure (M. Hofmann, J. Solid State Chem., in press) illustrate the potential of this new development. ((orig.))

  3. Thermal diffusion boron doping of single-crystal natural diamond

    Energy Technology Data Exchange (ETDEWEB)

    Seo, Jung-Hun; Mikael, Solomon; Mi, Hongyi; Venkataramanan, Giri; Ma, Zhenqiang, E-mail: mazq@engr.wisc.edu [Department of Electrical and Computer Engineering, University of Wisconsin-Madison, Madison, Wisconsin 53706 (United States); Wu, Henry; Morgan, Dane [Department of Materials Science and Engineering, University of Wisconsin-Madison, Madison, Wisconsin 53706 (United States); Blanchard, James P. [Department of Nuclear Engineering and Engineering Physics, University of Wisconsin-Madison, Madison, Wisconsin 53706 (United States); Zhou, Weidong [Department of Electrical Engineering, NanoFAB Center, University of Texas at Arlington, Arlington, Texas 76019 (United States); Gong, Shaoqin [Department of Biomedical Engineering and Wisconsin Institute for Discovery, University of Wisconsin-Madison, Madison, Wisconsin 53706 (United States)

    2016-05-28

    With the best overall electronic and thermal properties, single crystal diamond (SCD) is the extreme wide bandgap material that is expected to revolutionize power electronics and radio-frequency electronics in the future. However, turning SCD into useful semiconductors requires overcoming doping challenges, as conventional substitutional doping techniques, such as thermal diffusion and ion implantation, are not easily applicable to SCD. Here we report a simple and easily accessible doping strategy demonstrating that electrically activated, substitutional doping in SCD without inducing graphitization transition or lattice damage can be readily realized with thermal diffusion at relatively low temperatures by using heavily doped Si nanomembranes as a unique dopant carrying medium. Atomistic simulations elucidate a vacancy exchange boron doping mechanism that occurs at the bonded interface between Si and diamond. We further demonstrate selectively doped high voltage diodes and half-wave rectifier circuits using such doped SCD. Our new doping strategy has established a reachable path toward using SCDs for future high voltage power conversion systems and for other novel diamond based electronic devices. The novel doping mechanism may find its critical use in other wide bandgap semiconductors.

  4. Thermal diffusion boron doping of single-crystal natural diamond

    International Nuclear Information System (INIS)

    Seo, Jung-Hun; Mikael, Solomon; Mi, Hongyi; Venkataramanan, Giri; Ma, Zhenqiang; Wu, Henry; Morgan, Dane; Blanchard, James P.; Zhou, Weidong; Gong, Shaoqin

    2016-01-01

    With the best overall electronic and thermal properties, single crystal diamond (SCD) is the extreme wide bandgap material that is expected to revolutionize power electronics and radio-frequency electronics in the future. However, turning SCD into useful semiconductors requires overcoming doping challenges, as conventional substitutional doping techniques, such as thermal diffusion and ion implantation, are not easily applicable to SCD. Here we report a simple and easily accessible doping strategy demonstrating that electrically activated, substitutional doping in SCD without inducing graphitization transition or lattice damage can be readily realized with thermal diffusion at relatively low temperatures by using heavily doped Si nanomembranes as a unique dopant carrying medium. Atomistic simulations elucidate a vacancy exchange boron doping mechanism that occurs at the bonded interface between Si and diamond. We further demonstrate selectively doped high voltage diodes and half-wave rectifier circuits using such doped SCD. Our new doping strategy has established a reachable path toward using SCDs for future high voltage power conversion systems and for other novel diamond based electronic devices. The novel doping mechanism may find its critical use in other wide bandgap semiconductors.

  5. Preparation, structure and thermal stability of Cu/LDPE nanocomposites

    International Nuclear Information System (INIS)

    Xia Xianping; Cai Shuizhou; Xie Changsheng

    2006-01-01

    Copper/low-density-polyethylene (Cu/LDPE) nanocomposites have been prepared using a melt-blending technique in a single-screw extruder. Their structure and thermal characteristics are characterized by using X-ray diffraction (XRD), scanning electron microscopy (SEM), X-ray energy dispersive spectroscopy (EDS), differential scanning calorimetry (DSC) and thermogravimetric analysis (TGA). The results of XRD, SEM and SEM-EDS Cu-mapping show that the nanocomposites are a hybrid of the polymer and the copper nanoparticles, and the copper nanoparticles aggregates were distributed uniformly in general. The results also show that the nanocomposites and the base resin, the pure LDPE, have a different crystalline structure and the same oriented characteristics owing to the presence of copper nanoparticles and the same cooling condition. The results of DSC show that the incorporation of copper nanoparticles can decrease the melting temperatures but increase the crystallization temperatures, and can lower the crystallinity degree of the matrix of the composites. The results of TGA show that the presence of copper nanoparticles can improve the thermal stability of the nanocomposites, a maximum increment of 18 deg. C is obtained comparing with the pure LDPE in this experiment. The results of TGA also show that the influence of the incorporation of the copper nanoparticles on the thermal stability of the Cu/LDPE nanocomposites is different from that of the non-metal nanoparticles on the polymer/non-metal nanocomposites and the copper microparticles on the Cu/LDPE microcomposites. The increase of the thermal stability of the Cu/LDPE nanocomposites will decrease when the content of the copper nanoparticles is more than 2 wt.%. The difference might be caused by the fact that the activity of the metal nanoparticles is much more higher than that of the non-metal nanoparticles, and the different size effect the different copper particles has

  6. Solvent-free preparation of co-crystals of phenazine and acridine with vanillin

    Energy Technology Data Exchange (ETDEWEB)

    Braga, Dario, E-mail: dario.braga@unibo.it [Dipartimento di Chimica ' G.Ciamician' , Universita degli studi di Bologna, Via Selmi 2, 40126 Bologna (Italy); Grepioni, Fabrizia; Maini, Lucia; Mazzeo, Paolo P.; Rubini, Katia [Dipartimento di Chimica ' G.Ciamician' , Universita degli studi di Bologna, Via Selmi 2, 40126 Bologna (Italy)

    2010-08-10

    Co-crystals of phenazine and acridine with vanillin have been obtained by solvent-free reaction or thermal treatment of the solid reactants: their structures, thermal behaviour and eutectic formation have been investigated via single crystal X-ray diffraction, differential scanning calorimetry (DSC), variable temperature X-ray powder diffraction and hot-stage microscopy (HSM). Polymorph screening of the reagents has also been carried out.

  7. Solvent-free preparation of co-crystals of phenazine and acridine with vanillin

    International Nuclear Information System (INIS)

    Braga, Dario; Grepioni, Fabrizia; Maini, Lucia; Mazzeo, Paolo P.; Rubini, Katia

    2010-01-01

    Co-crystals of phenazine and acridine with vanillin have been obtained by solvent-free reaction or thermal treatment of the solid reactants: their structures, thermal behaviour and eutectic formation have been investigated via single crystal X-ray diffraction, differential scanning calorimetry (DSC), variable temperature X-ray powder diffraction and hot-stage microscopy (HSM). Polymorph screening of the reagents has also been carried out.

  8. CCDC 1416891: Experimental Crystal Structure Determination : Methyl-triphenyl-germanium

    KAUST Repository

    Bernatowicz, Piotr

    2015-01-01

    An entry from the Cambridge Structural Database, the world’s repository for small molecule crystal structures. The entry contains experimental data from a crystal diffraction study. The deposited dataset for this entry is freely available from the CCDC and typically includes 3D coordinates, cell parameters, space group, experimental conditions and quality measures.

  9. CCDC 1408042: Experimental Crystal Structure Determination : 6,13-dimesitylpentacene

    KAUST Repository

    Shi, Xueliang

    2015-01-01

    An entry from the Cambridge Structural Database, the world’s repository for small molecule crystal structures. The entry contains experimental data from a crystal diffraction study. The deposited dataset for this entry is freely available from the CCDC and typically includes 3D coordinates, cell parameters, space group, experimental conditions and quality measures.

  10. CCDC 1475929: Experimental Crystal Structure Determination : trimethylammonium tribromo-tin(iv)

    KAUST Repository

    Dang, Yangyang; Zhong, Cheng; Zhang, Guodong; Ju, Dianxing; Wang, Lei; Xia, Shengqing; Xia, Haibing; Tao, Xutang

    2016-01-01

    An entry from the Cambridge Structural Database, the world’s repository for small molecule crystal structures. The entry contains experimental data from a crystal diffraction study. The deposited dataset for this entry is freely available from

  11. CCDC 1475930: Experimental Crystal Structure Determination : trimethylammonium trichloro-tin(iv)

    KAUST Repository

    Dang, Yangyang; Zhong, Cheng; Zhang, Guodong; Ju, Dianxing; Wang, Lei; Xia, Shengqing; Xia, Haibing; Tao, Xutang

    2016-01-01

    An entry from the Cambridge Structural Database, the world’s repository for small molecule crystal structures. The entry contains experimental data from a crystal diffraction study. The deposited dataset for this entry is freely available from

  12. CCDC 1475931: Experimental Crystal Structure Determination : trimethylammonium trichloro-tin(iv)

    KAUST Repository

    Dang, Yangyang; Zhong, Cheng; Zhang, Guodong; Ju, Dianxing; Wang, Lei; Xia, Shengqing; Xia, Haibing; Tao, Xutang

    2016-01-01

    An entry from the Cambridge Structural Database, the world’s repository for small molecule crystal structures. The entry contains experimental data from a crystal diffraction study. The deposited dataset for this entry is freely available from

  13. CCDC 1482638: Experimental Crystal Structure Determination : trimethylammonium trichloro-tin(iv)

    KAUST Repository

    Dang, Yangyang; Zhong, Cheng; Zhang, Guodong; Ju, Dianxing; Wang, Lei; Xia, Shengqing; Xia, Haibing; Tao, Xutang

    2016-01-01

    An entry from the Cambridge Structural Database, the world’s repository for small molecule crystal structures. The entry contains experimental data from a crystal diffraction study. The deposited dataset for this entry is freely available from

  14. Nonlinear coherent structures in granular crystals

    Science.gov (United States)

    Chong, C.; Porter, Mason A.; Kevrekidis, P. G.; Daraio, C.

    2017-10-01

    The study of granular crystals, which are nonlinear metamaterials that consist of closely packed arrays of particles that interact elastically, is a vibrant area of research that combines ideas from disciplines such as materials science, nonlinear dynamics, and condensed-matter physics. Granular crystals exploit geometrical nonlinearities in their constitutive microstructure to produce properties (such as tunability and energy localization) that are not conventional to engineering materials and linear devices. In this topical review, we focus on recent experimental, computational, and theoretical results on nonlinear coherent structures in granular crystals. Such structures—which include traveling solitary waves, dispersive shock waves, and discrete breathers—have fascinating dynamics, including a diversity of both transient features and robust, long-lived patterns that emerge from broad classes of initial data. In our review, we primarily discuss phenomena in one-dimensional crystals, as most research to date has focused on such scenarios, but we also present some extensions to two-dimensional settings. Throughout the review, we highlight open problems and discuss a variety of potential engineering applications that arise from the rich dynamic response of granular crystals.

  15. Unique Reversible Crystal-to-Crystal Phase Transition – Structural and Functional Properties of Fused Ladder Thienoarenes

    KAUST Repository

    Abe, Yuichiro

    2017-08-15

    Donor-acceptor type molecules based on fused ladder thienoarenes, indacenodithiophene (IDT) and dithienocyclopenta-thienothiophene (DTCTT), coupled with benzothiadiazole, are prepared and their solid-state structures are investigated. They display a rich variety of solid phases ranging from amorphous glass states to crystalline states, upon changes in the central aromatic core and side group structures. Most notably, the DTCTT-based derivatives showed reversible crystal-to-crystal phase transitions in heating and cooling cycles. Unlike what has been seen in π−conjugated molecules variable temperature XRD revealed that structural change occurs continuously during the transition. A columnar self-assembled structure with slip-stacked π−π interaction is proposed to be involved in the solid-state. This research provides the evidence of unique structural behavior of the DTCTT-based molecules through the detailed structural analysis. This unique structural transition paves the way for these materials to have self-healing of crystal defects, leading to improved optoelectronic properties.

  16. Unique Reversible Crystal-to-Crystal Phase Transition – Structural and Functional Properties of Fused Ladder Thienoarenes

    KAUST Repository

    Abe, Yuichiro; Savikhin, Victoria; Yin, Jun; Grimsdale, Andrew C.; Soci, Cesare; Toney, Michael F.; Lam, Yeng Ming

    2017-01-01

    Donor-acceptor type molecules based on fused ladder thienoarenes, indacenodithiophene (IDT) and dithienocyclopenta-thienothiophene (DTCTT), coupled with benzothiadiazole, are prepared and their solid-state structures are investigated. They display a rich variety of solid phases ranging from amorphous glass states to crystalline states, upon changes in the central aromatic core and side group structures. Most notably, the DTCTT-based derivatives showed reversible crystal-to-crystal phase transitions in heating and cooling cycles. Unlike what has been seen in π−conjugated molecules variable temperature XRD revealed that structural change occurs continuously during the transition. A columnar self-assembled structure with slip-stacked π−π interaction is proposed to be involved in the solid-state. This research provides the evidence of unique structural behavior of the DTCTT-based molecules through the detailed structural analysis. This unique structural transition paves the way for these materials to have self-healing of crystal defects, leading to improved optoelectronic properties.

  17. Photonic Crystal Laser-Driven Accelerator Structures

    International Nuclear Information System (INIS)

    Cowan, Benjamin M.

    2007-01-01

    Laser-driven acceleration holds great promise for significantly improving accelerating gradient. However, scaling the conventional process of structure-based acceleration in vacuum down to optical wavelengths requires a substantially different kind of structure. We require an optical waveguide that (1) is constructed out of dielectric materials, (2) has transverse size on the order of a wavelength, and (3) supports a mode with speed-of-light phase velocity in vacuum. Photonic crystals---structures whose electromagnetic properties are spatially periodic---can meet these requirements. We discuss simulated photonic crystal accelerator structures and describe their properties. We begin with a class of two-dimensional structures which serves to illustrate the design considerations and trade-offs involved. We then present a three-dimensional structure, and describe its performance in terms of accelerating gradient and efficiency. We discuss particle beam dynamics in this structure, demonstrating a method for keeping a beam confined to the waveguide. We also discuss material and fabrication considerations. Since accelerating gradient is limited by optical damage to the structure, the damage threshold of the dielectric is a critical parameter. We experimentally measure the damage threshold of silicon for picosecond pulses in the infrared, and determine that our structure is capable of sustaining an accelerating gradient of 300 MV/m at 1550 nm. Finally, we discuss possibilities for manufacturing these structures using common microfabrication techniques

  18. Determination of temperature-dependent thermal conductivity of a BaSnO{sub 3−δ} single crystal by using the 3ω method

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Hyung Joon; Kim, Tai Hoon; Lee, Woong-Jhae; Chai, Yisheng; Kim, Jae Wook; Jwa, Yeon Jae; Chung, Sukhwan; Kim, Seon Joong; Sohn, Egon [Center for Novel States of Complex Materials Research, Department of Physics and Astronomy, Seoul National University, Seoul 151-747 (Korea, Republic of); Institute of Applied Physics, Department of Physics and Astronomy, Seoul National University, Seoul 151-747 (Korea, Republic of); Lee, Seung Min [Hanbeam Corporation Ltd, Iui-dong 906-5, Yeongtong-gu, Suwon-si, Gyeonggi-do (Korea, Republic of); Choi, Ki-Young [Center for Novel States of Complex Materials Research, Department of Physics and Astronomy, Seoul National University, Seoul 151-747 (Korea, Republic of); Institute of Applied Physics, Department of Physics and Astronomy, Seoul National University, Seoul 151-747 (Korea, Republic of); Kim, Kee Hoon, E-mail: khkim@phya.snu.ac.kr [Center for Novel States of Complex Materials Research, Department of Physics and Astronomy, Seoul National University, Seoul 151-747 (Korea, Republic of); Institute of Applied Physics, Department of Physics and Astronomy, Seoul National University, Seoul 151-747 (Korea, Republic of)

    2014-06-01

    Highlights: • This is the first report about thermal conductivity of BaSnO{sub 3−δ} single crystals. • We report the successful κ measurement of the crystals by employing the 3ω method. • The BaSnO{sub 3−δ} single crystal can be a good perovskite substrate with high κ. • We found that phonons mainly contribute to the heat transport in BaSnO{sub 3−δ}. - Abstract: The single crystal of the electron doped BaSnO{sub 3−δ} system has been recently found to have high electrical mobility (up to 320 cm{sup 2} V{sup −1} s{sup −1}) at room temperature and excellent oxygen stability. Although thermal conductivity (κ) of the BaSnO{sub 3−δ} single crystal is an important physical quantity, the κ measurement by the conventional DC method has been difficult due to the limited crystal size. Herein, we report the first measurement of κ by using the 3ω method from ∼20 to 300 K in the oxygen deficient BaSnO{sub 3−δ} single crystal with carrier concentration of ∼10{sup 18} cm{sup −3}. We found that κ is proportional to T{sup −1} above 50 K, indicating that phonons mainly contribute to the heat transport. Moreover, the electronic contribution is determined as ∼4% of the measured κ from the Wiedemann–Franz law. The κ value is 0.132 W cm{sup −1} K{sup −1} at room temperature and is increased progressively at lower temperatures, becoming overall larger than that of the SrTiO{sub 3} single crystal. Our results thus point out that BaSnO{sub 3−δ} can be a good substrate for growing transparent electronic thin films with the perovskite structure.

  19. Feasibility of one-shot-per-crystal structure determination using Laue diffraction

    Energy Technology Data Exchange (ETDEWEB)

    Cornaby, Sterling [School of Applied and Engineering Physics, Cornell University, Ithaca, New York (United States); CHESS (Cornell High Energy Synchrotron Source), Cornell University, Ithaca, New York (United States); Szebenyi, Doletha M. E. [MacCHESS (Macromolecular Diffraction Facilities at CHESS), Cornell University, Ithaca, New York (United States); Smilgies, Detlef-M. [CHESS (Cornell High Energy Synchrotron Source), Cornell University, Ithaca, New York (United States); Schuller, David J.; Gillilan, Richard; Hao, Quan [MacCHESS (Macromolecular Diffraction Facilities at CHESS), Cornell University, Ithaca, New York (United States); Bilderback, Donald H., E-mail: dhb2@cornell.edu [School of Applied and Engineering Physics, Cornell University, Ithaca, New York (United States); CHESS (Cornell High Energy Synchrotron Source), Cornell University, Ithaca, New York (United States)

    2010-01-01

    Structure determination was successfully carried out using single Laue exposures from a group of lysozyme crystals. The Laue method may be a viable option for collection of one-shot-per-crystal data from microcrystals. Crystal size is an important factor in determining the number of diffraction patterns which may be obtained from a protein crystal before severe radiation damage sets in. As crystal dimensions decrease this number is reduced, eventually falling to one, at which point a complete data set must be assembled using data from multiple crystals. When only a single exposure is to be collected from each crystal, the polychromatic Laue technique may be preferable to monochromatic methods owing to its simultaneous recording of a large number of fully recorded reflections per image. To assess the feasibility of solving structures using single Laue images from multiple crystals, data were collected using a ‘pink’ beam at the CHESS D1 station from groups of lysozyme crystals with dimensions of the order of 20–30 µm mounted on MicroMesh grids. Single-shot Laue data were used for structure determination by molecular replacement and correct solutions were obtained even when as few as five crystals were used.

  20. Feasibility of one-shot-per-crystal structure determination using Laue diffraction

    International Nuclear Information System (INIS)

    Cornaby, Sterling; Szebenyi, Doletha M. E.; Smilgies, Detlef-M.; Schuller, David J.; Gillilan, Richard; Hao, Quan; Bilderback, Donald H.

    2010-01-01

    Structure determination was successfully carried out using single Laue exposures from a group of lysozyme crystals. The Laue method may be a viable option for collection of one-shot-per-crystal data from microcrystals. Crystal size is an important factor in determining the number of diffraction patterns which may be obtained from a protein crystal before severe radiation damage sets in. As crystal dimensions decrease this number is reduced, eventually falling to one, at which point a complete data set must be assembled using data from multiple crystals. When only a single exposure is to be collected from each crystal, the polychromatic Laue technique may be preferable to monochromatic methods owing to its simultaneous recording of a large number of fully recorded reflections per image. To assess the feasibility of solving structures using single Laue images from multiple crystals, data were collected using a ‘pink’ beam at the CHESS D1 station from groups of lysozyme crystals with dimensions of the order of 20–30 µm mounted on MicroMesh grids. Single-shot Laue data were used for structure determination by molecular replacement and correct solutions were obtained even when as few as five crystals were used

  1. Structural, crystallographic, Hirshfeld surface, thermal and antimicrobial evaluation of new sulfonyl hydrazones

    Science.gov (United States)

    Bhat, Mahima; Poojary, Boja; Kumar, S. Madan; Hussain, Mumtaz M.; Pai, Nikhila; Revanasiddappa, B. C.; Kullaiah, Byrappa

    2018-05-01

    This context explains the condensation of various arylsulfonohydrazides with two pyrazole aldehydes to get corresponding hydrazones (6a-f). The hydrazones synthesized were confirmed with the help of IR, NMR, Mass and single crystal X-ray diffraction techniques. From the X-ray analysis it was observed that, all the three compounds 6a, 6c and 6f crystallizes in monoclinic crystal system with P21/c, P21/n and P21/n space group respectively. The intermolecular hydrogen bond interactions of the type Nsbnd H⋯O, Csbnd H⋯O, Csbnd H….C, Osbnd H ⋯O, Osbnd H⋯N and Csbnd H⋯N plays a significant role in the stability of the molecules. The 3D Hirshfeld analyses and 2D fingerprint plots were helpful in decoding the behavior of the interactions and their quantitative contributions towards the packing structure of the crystals. In addition to this, TGA and DTA curves were helpful in explaining the thermal stability of the compounds. Additionally, the antibacterial effectiveness of the molecules synthesized (6a-f) was analyzed against Gram-negative and Gram-positive strains. Interestingly, the compounds with fluorinated pyrazoles (6a and 6c) emerged as good bacterial inhibitors, having scope to produce potent therapeutics in future.

  2. Influence of crystallization time on structural and morphological characteristics the precursor of zeolite MCM-22

    International Nuclear Information System (INIS)

    Barbosa, A.S.; Lima, L.A.; Sousa, B.V.; Santos, Everton R.F. dos; Rodrigues, M.G.F.

    2009-01-01

    The zeolite MCM-22 has been studied extensively as a promising catalyst because of the high thermal stability and high activity for acid catalysis and selectivity of molecular shape. The synthesis of MCM-22 is carried out by hydrothermal treatment and long times required for complete crystallization gradual growth of crystals of 10-14 days for the synthesis of static. This work aims to synthesize the precursor of zeolite MCM-22 using the method of hydrothermal synthesis with a reduction in crystallization time of 8 and 9 days. The precursor of zeolite MCM-22 was obtained using sources of silica, soda, deionized water and the director of structures hexametilenoimina (HMI). The samples were synthesized at 150° C for 8 to 9 days, with the following molar composition: 0.511 SiO 2 : 0.039 NaOH: 0.024 Al 2 O 3 : 23.06 H 2 O and subjected to characterizations by X-ray diffraction (XRD), scanning electron microscopy ( SEM) and energy dispersive (EDX). According to tests carried out showed that the hydrothermal treatment used to synthesize the precursor of zeolite MCM-22 was effective during times of crystallization of 8 and 9 days. The results for the micrographs showed that the samples consist of clusters and / or aggregates of small crystals. (author)

  3. Stress and stability of sputter deposited A-15 and bcc crystal structure tungsten thin films

    Energy Technology Data Exchange (ETDEWEB)

    O' Keefe, M.J.; Stutz, C.E.

    1997-07-01

    Magnetron sputter deposition was used to fabricate body centered cubic (bcc) and A-15 crystal structure W thin films. Previous work demonstrated that the as-deposited crystal structure of the films was dependent on the deposition parameters and that the formation of a metastable A-15 structure was favored over the thermodynamically stable bcc phase when the films contained a few atomic percent oxygen. However, the A-15 phase was shown to irreversibly transform into the bcc phase between 500 C and 650 C and that a significant decrease in the resistivity of the metallic films was measured after the transformation. The current investigation of 150 nm thick, sputter deposited A-15 and bcc tungsten thin films on silicon wafers consisted of a series of experiments in which the stress, resistivity and crystal structure of the films was measured as a function of temperatures cycles in a Flexus 2900 thin film stress measurement system. The as-deposited film stress was found to be a function of the sputtering pressure and presputter time; under conditions in which the as-deposited stress of the film was {approximately}1.5 GPa compressive delamination of the W film from the substrate was observed. Data from the thermal studies indicated that bcc film stress was not affected by annealing but transformation of the A-15 structure resulted in a large tensile increase in the stress of the film, regardless of the as-deposited stress of the film. In several instances, complete transformation of the A-15 structure into the bcc phase resulted in {ge}1 GPa tensile increase in film stress.

  4. Stress and stability of sputter deposited A-15 and bcc crystal structure tungsten thin films

    International Nuclear Information System (INIS)

    O'Keefe, M.J.; Stutz, C.E.

    1997-01-01

    Magnetron sputter deposition was used to fabricate body centered cubic (bcc) and A-15 crystal structure W thin films. Previous work demonstrated that the as-deposited crystal structure of the films was dependent on the deposition parameters and that the formation of a metastable A-15 structure was favored over the thermodynamically stable bcc phase when the films contained a few atomic percent oxygen. However, the A-15 phase was shown to irreversibly transform into the bcc phase between 500 C and 650 C and that a significant decrease in the resistivity of the metallic films was measured after the transformation. The current investigation of 150 nm thick, sputter deposited A-15 and bcc tungsten thin films on silicon wafers consisted of a series of experiments in which the stress, resistivity and crystal structure of the films was measured as a function of temperatures cycles in a Flexus 2900 thin film stress measurement system. The as-deposited film stress was found to be a function of the sputtering pressure and presputter time; under conditions in which the as-deposited stress of the film was approximately1.5 GPa compressive delamination of the W film from the substrate was observed. Data from the thermal studies indicated that bcc film stress was not affected by annealing but transformation of the A-15 structure resulted in a large tensile increase in the stress of the film, regardless of the as-deposited stress of the film. In several instances, complete transformation of the A-15 structure into the bcc phase resulted in ge1 GPa tensile increase in film stress

  5. 1D cyanide complexes with 2-pyridinemethanol: Synthesis, crystal structures and spectroscopic properties

    Science.gov (United States)

    Sayın, Elvan; Kürkçüoğlu, Güneş Süheyla; Yeşilel, Okan Zafer; Hökelek, Tuncer

    2015-12-01

    Two new one-dimensional coordination polymers, [Cu(hmpH)2Pd(μ-CN)2(CN)2]n (1) and [Cu(hmpH)2Pt(μ-CN)2(CN)2]n (2), (hmpH = 2-pyridinemethanol), have been synthesized and characterized by vibrational (FT-IR and Raman) spectroscopy, single crystal X-ray diffraction, thermal and elemental analyses techniques. Single crystal X-ray diffraction analysis indicates that complexes 1 and 2 are isomorphous and isostructural, and crystallize in the triclinic system and P-1 space group. The Pd(II) or Pt(II) ions are four coordinated with four cyanide-carbon atoms in a square planar geometry. Cu(II) ion displays a distorted octahedral coordination by two N-atoms and two O-atoms of hmpH ligands, two bridging cyanide groups. In one dimensional structure of the complexes, [M(CN)4]2- (M = Pd(II) or Pt(II)) anions and [Cu(hmpH)2]2+ cations are linked via bridging cyanide ligands. In the complexes, the presence of intramolecular C-H⋯M (M = Pd(II) or Pt(II)) interactions with distance values of 3.00-2.95 Å are established, respectively.

  6. Spray-Dried Cellulose Nanofibril-Reinforced Polypropylene Composites for Extrusion-Based Additive Manufacturing: Nonisothermal Crystallization Kinetics and Thermal Expansion

    Directory of Open Access Journals (Sweden)

    Lu Wang

    2018-02-01

    Full Text Available Isotactic polypropylene (iPP is a versatile polymer. It accounts for the second-largest polymer consumption worldwide. However, iPP is difficult to 3D print via extrusion-based processing. This is attributable to its rapid crystallization rate. In this study, spray-dried cellulose nanofibrils (SDCNF and maleic anhydride polypropylene (MAPP were investigated to reveal their effects on the nonisothermal crystallization kinetics and thermal expansion of iPP. SDCNF at 3 wt % and 30 wt % accelerated the crystallization rate of iPP, while SDCNF at 10 wt % retarded the crystallization rate by restricting crystal growth and moderately increasing the nucleation density of iPP. Additionally, adding MAPP into iPP/SDCNF composites accelerated the crystallization rate of iPP. The effective activation energy of iPP increased when more than 10 wt % SDCNF was added. Scanning electron microscopy and polarized light microscopy results indicated that high SDCNF content led to a reduced gap size among SDCNF, which hindered the iPP crystal growth. The coefficient of thermal expansion of iPP/SDCNF10% was 11.7% lower than the neat iPP. In summary, SDCNF, at 10 wt %, can be used to reduce the warping of iPP during extrusion-based additive manufacturing.

  7. Thermal oxidative degradation behaviours of flame-retardant thermotropic liquid crystal copolyester/PET blends

    International Nuclear Information System (INIS)

    Du Xiaohua; Zhao Chengshou; Wang Yuzhong; Zhou Qian; Deng Yi; Qu Minghai; Yang Bing

    2006-01-01

    The flame retardancy and the thermal oxidative degradation behaviors of the blend of poly(ethylene terephthalate) (PET) with a kind of phosphorus-containing thermotropic liquid crystal copolyester (TLCP) with high flame retardancy (limited oxygen index, 70%) have been investigated by oxygen index test (LOI), UL-94 rating and thermogravimetric analysis (TGA) in air. The results show that TLCP can dramatically improve the flame retardancy and the melt dripping behavior of PET. Moreover, the apparent activation energies of thermal oxidative degradation of the blends were evaluated using Kissinger and Flynn-Wall-Ozawa methods. It is found that addition of TLCP improve thermal stability and restrain thermal decomposition of PET in air, especially at the primary degradation stage. Py-GC/MS analysis shows that there are remarkable changes in the pyrolysis products when TLCP are blended into PET. The interaction between TLCP and PET has changed their thermal oxidative degradation mechanism

  8. NMR structure of the protein NP-247299.1: comparison with the crystal structure

    International Nuclear Information System (INIS)

    Jaudzems, Kristaps; Geralt, Michael; Serrano, Pedro; Mohanty, Biswaranjan; Horst, Reto; Pedrini, Bill; Elsliger, Marc-André; Wilson, Ian A.; Wüthrich, Kurt

    2010-01-01

    Comparison of the NMR and crystal structures of a protein determined using largely automated methods has enabled the interpretation of local differences in the highly similar structures. These differences are found in segments of higher B values in the crystal and correlate with dynamic processes on the NMR chemical shift timescale observed in solution. The NMR structure of the protein NP-247299.1 in solution at 313 K has been determined and is compared with the X-ray crystal structure, which was also solved in the Joint Center for Structural Genomics (JCSG) at 100 K and at 1.7 Å resolution. Both structures were obtained using the current largely automated crystallographic and solution NMR methods used by the JCSG. This paper assesses the accuracy and precision of the results from these recently established automated approaches, aiming for quantitative statements about the location of structure variations that may arise from either one of the methods used or from the different environments in solution and in the crystal. To evaluate the possible impact of the different software used for the crystallographic and the NMR structure determinations and analysis, the concept is introduced of reference structures, which are computed using the NMR software with input of upper-limit distance constraints derived from the molecular models representing the results of the two structure determinations. The use of this new approach is explored to quantify global differences that arise from the different methods of structure determination and analysis versus those that represent interesting local variations or dynamics. The near-identity of the protein core in the NMR and crystal structures thus provided a basis for the identification of complementary information from the two different methods. It was thus observed that locally increased crystallographic B values correlate with dynamic structural polymorphisms in solution, including that the solution state of the protein involves

  9. Aging-driven decomposition in zolpidem hemitartrate hemihydrate and the single-crystal structure of its decomposition products.

    Science.gov (United States)

    Vega, Daniel R; Baggio, Ricardo; Roca, Mariana; Tombari, Dora

    2011-04-01

    The "aging-driven" decomposition of zolpidem hemitartrate hemihydrate (form A) has been followed by X-ray powder diffraction (XRPD), and the crystal and molecular structures of the decomposition products studied by single-crystal methods. The process is very similar to the "thermally driven" one, recently described in the literature for form E (Halasz and Dinnebier. 2010. J Pharm Sci 99(2): 871-874), resulting in a two-phase system: the neutral free base (common to both decomposition processes) and, in the present case, a novel zolpidem tartrate monohydrate, unique to the "aging-driven" decomposition. Our room-temperature single-crystal analysis gives for the free base comparable results as the high-temperature XRPD ones already reported by Halasz and Dinnebier: orthorhombic, Pcba, a = 9.6360(10) Å, b = 18.2690(5) Å, c = 18.4980(11) Å, and V = 3256.4(4) Å(3) . The unreported zolpidem tartrate monohydrate instead crystallizes in monoclinic P21 , which, for comparison purposes, we treated in the nonstandard setting P1121 with a = 20.7582(9) Å, b = 15.2331(5) Å, c = 7.2420(2) Å, γ = 90.826(2)°, and V = 2289.73(14) Å(3) . The structure presents two complete moieties in the asymmetric unit (z = 4, z' = 2). The different phases obtained in both decompositions are readily explained, considering the diverse genesis of both processes. Copyright © 2010 Wiley-Liss, Inc.

  10. PDF analysis on re-crystallized structure from amorphous BiT

    Energy Technology Data Exchange (ETDEWEB)

    Yoneda, Yasuhiro [Japan Atomic Energy Research Institute, Synchrotron Radiation Research Center, Kouto 1-1-1, Mikazuki-cho, Sayo-gun, Hyogo 679-5148 (Japan)]. E-mail: yoneda@spring8.or.jp; Kohara, Shinji [Synchrotron Radiation Research Laboratory, Japan Synchrotron Radiation, Research Institute, Kouto 1-1-1, Mikazuki-cho, Sayo-gun, Hyogo 679-5198 (Japan); Hamazaki, Shin' ichi [Department of Electronics, Iwaki Meisei University, Iino 5-5-1, Chuohdai, Fukushima 970-8551 (Japan); Takashige, Masaaki [Department of Electronics, Iwaki Meisei University, Iino 5-5-1, Chuohdai, Fukushima 970-8551 (Japan); Mizuki, Jun' ichiro [Japan Atomic Energy Research Institute, Synchrotron Radiation Research Center, Kouto 1-1-1, Mikazuki-cho, Sayo-gun, Hyogo 679-5148 (Japan)

    2005-08-15

    A glass sample of composition Bi{sub 4}Ti{sub 3}O{sub 12} was prepared by rapid quenching. The as-quenched sample was confirmed to be amorphous by synchrotron X-ray measurements. The crystallization process of the amorphous sample was also investigated by high-energy X-ray diffraction and by atomic pair distribution function analysis. The perovskite layer in the crystal Bi{sub 4}Ti{sub 3}O{sub 12} is transformed to a pyrochlore structure in the amorphous sample. The amorphous sample first crystallized to a metastable phase by acquiring long-range ordering of the pyrochlore structure at T {sub cryst1}, and then secondary crystallized into a reverted Bi{sub 4}Ti{sub 3}O{sub 12} structure at T {sub cryst2}.

  11. Nucleation of colloidal crystals on configurable seed structures

    NARCIS (Netherlands)

    Hermes, M; Vermolen, E.C.M.; Leunissen, M.E.; Vossen, D.L.J.; van Oostrum, P.D.J.; Dijkstra, M.; van Blaaderen, A.

    2011-01-01

    Nucleation is an important stage in the growth of crystals. During this stage, the structure and orientation of a crystal are determined. However, short time- and length-scales make nucleation poorly understood. Micrometer-sized colloidal particles form an ideal model system to study nucleation due

  12. Crystal structure of MboIIA methyltransferase.

    Science.gov (United States)

    Osipiuk, Jerzy; Walsh, Martin A; Joachimiak, Andrzej

    2003-09-15

    DNA methyltransferases (MTases) are sequence-specific enzymes which transfer a methyl group from S-adenosyl-L-methionine (AdoMet) to the amino group of either cytosine or adenine within a recognized DNA sequence. Methylation of a base in a specific DNA sequence protects DNA from nucleolytic cleavage by restriction enzymes recognizing the same DNA sequence. We have determined at 1.74 A resolution the crystal structure of a beta-class DNA MTase MboIIA (M.MboIIA) from the bacterium Moraxella bovis, the smallest DNA MTase determined to date. M.MboIIA methylates the 3' adenine of the pentanucleotide sequence 5'-GAAGA-3'. The protein crystallizes with two molecules in the asymmetric unit which we propose to resemble the dimer when M.MboIIA is not bound to DNA. The overall structure of the enzyme closely resembles that of M.RsrI. However, the cofactor-binding pocket in M.MboIIA forms a closed structure which is in contrast to the open-form structures of other known MTases.

  13. Crystal structure across the β to α phase transition in thermoelectric Cu2−xSe

    Directory of Open Access Journals (Sweden)

    Espen Eikeland

    2017-07-01

    Full Text Available The crystal structure uniquely imparts the specific properties of a material, and thus provides the starting point for any quantitative understanding of thermoelectric properties. Cu2−xSe is an intensely studied high performing, non-toxic and cheap thermoelectric material, and here for the first time, the average structure of β-Cu2−xSe is reported based on analysis of multi-temperature single-crystal X-ray diffraction data. It consists of Se–Cu layers with additional copper between every alternate layer. The structural changes during the peculiar zT enhancing phase transition mainly consist of changes in the inter-layer distance coupled with subtle Cu migration. Just prior to the transition the structure exhibits strong negative thermal expansion due to the reordering of Cu atoms, when approached from low temperatures. The phase transition is fully reversible and group–subgroup symmetry relations are derived that relate the low-temperature β-phase to the high-temperature α-phase. Weak superstructure reflections are observed and a possible Cu ordering is proposed. The structural rearrangement may have a significant impact on the band structure and the Cu rearrangement may also be linked to an entropy increase. Both factors potentially contribute to the extraordinary zT enhancement across the phase transition.

  14. Detailed Investigation of the Structural, Thermal, and Electronic Properties of Gold Isocyanide Complexes with Mechano-Triggered Single-Crystal-to-Single-Crystal Phase Transitions.

    Science.gov (United States)

    Seki, Tomohiro; Sakurada, Kenta; Muromoto, Mai; Seki, Shu; Ito, Hajime

    2016-02-01

    Mechano-induced phase transitions in organic crystalline materials, which can alter their properties, have received much attention. However, most mechano-responsive molecular crystals exhibit crystal-to-amorphous phase transitions, and the intermolecular interaction patterns in the daughter phase are difficult to characterize. We have investigated phenyl(phenylisocyanide)gold(I) (1) and phenyl(3,5-dimethylphenylisocyanide)gold(I) (2) complexes, which exhibit a mechano-triggered single-crystal-to-single-crystal phase transition. Previous reports of complexes 1 and 2 have focused on the relationships between the crystalline structures and photoluminescence properties; in this work we have focused on other aspects. The face index measurements of complexes 1 and 2 before and after the mechano-induced phase transitions have indicated that they undergo non-epitaxial phase transitions without a rigorous orientational relationship between the mother and daughter phases. Differential scanning calorimetry analyses revealed the phase transition of complex 1 to be enthalpically driven by the formation of new aurophilic interactions. In contrast, the phase transition of complex 2 was found to be entropically driven, with the closure of an empty void in the mother phase. Scanning electron microscopy observation showed that the degree of the charging effect of both complexes 1 and 2 was changed by the phase transitions, which suggests that the formation of the aurophilic interactions affords more effective conductive pathways. Moreover, flash-photolysis time-resolved microwave conductivity measurements revealed that complex 1 increased in conductivity after the phase change, whereas the conductivity of complex 2 decreased. These contrasting results were explained by the different patterns in the aurophilic interactions. Finally, an intriguing disappearing polymorphism of complex 2 has been reported, in which a polymorph form could not be obtained again after some period of time

  15. Validation of experimental molecular crystal structures with dispersion-corrected density functional theory calculations.

    Science.gov (United States)

    van de Streek, Jacco; Neumann, Marcus A

    2010-10-01

    This paper describes the validation of a dispersion-corrected density functional theory (d-DFT) method for the purpose of assessing the correctness of experimental organic crystal structures and enhancing the information content of purely experimental data. 241 experimental organic crystal structures from the August 2008 issue of Acta Cryst. Section E were energy-minimized in full, including unit-cell parameters. The differences between the experimental and the minimized crystal structures were subjected to statistical analysis. The r.m.s. Cartesian displacement excluding H atoms upon energy minimization with flexible unit-cell parameters is selected as a pertinent indicator of the correctness of a crystal structure. All 241 experimental crystal structures are reproduced very well: the average r.m.s. Cartesian displacement for the 241 crystal structures, including 16 disordered structures, is only 0.095 Å (0.084 Å for the 225 ordered structures). R.m.s. Cartesian displacements above 0.25 A either indicate incorrect experimental crystal structures or reveal interesting structural features such as exceptionally large temperature effects, incorrectly modelled disorder or symmetry breaking H atoms. After validation, the method is applied to nine examples that are known to be ambiguous or subtly incorrect.

  16. Validation of experimental molecular crystal structures with dispersion-corrected density functional theory calculations

    International Nuclear Information System (INIS)

    Streek, Jacco van de; Neumann, Marcus A.

    2010-01-01

    The accuracy of a dispersion-corrected density functional theory method is validated against 241 experimental organic crystal structures from Acta Cryst. Section E. This paper describes the validation of a dispersion-corrected density functional theory (d-DFT) method for the purpose of assessing the correctness of experimental organic crystal structures and enhancing the information content of purely experimental data. 241 experimental organic crystal structures from the August 2008 issue of Acta Cryst. Section E were energy-minimized in full, including unit-cell parameters. The differences between the experimental and the minimized crystal structures were subjected to statistical analysis. The r.m.s. Cartesian displacement excluding H atoms upon energy minimization with flexible unit-cell parameters is selected as a pertinent indicator of the correctness of a crystal structure. All 241 experimental crystal structures are reproduced very well: the average r.m.s. Cartesian displacement for the 241 crystal structures, including 16 disordered structures, is only 0.095 Å (0.084 Å for the 225 ordered structures). R.m.s. Cartesian displacements above 0.25 Å either indicate incorrect experimental crystal structures or reveal interesting structural features such as exceptionally large temperature effects, incorrectly modelled disorder or symmetry breaking H atoms. After validation, the method is applied to nine examples that are known to be ambiguous or subtly incorrect

  17. A unified picture of the crystal structures of metals

    Science.gov (United States)

    Söderlind, Per; Eriksson, Olle; Johansson, Börje; Wills, J. M.; Boring, A. M.

    1995-04-01

    THE crystal structures of the light actinides have intrigued physicists and chemists for several decades1. Simple metals and transition metals have close-packed, high-symmetry structures, such as body-centred cubic, face-centred cubic and hexagonal close packing. In contrast, the structures of the light actinides are very loosely packed and of low symmetry-tetragonal, orthorhombic and monoclinic. To understand these differences, we have performed total-energy calculations, as a function of volume, for both high-and low-symmetry structures of a simple metal (aluminium), a non-magnetic transition metal (niobium), a ferromagnetic transition metal (iron) and a light actinide (uranium). We find that the crystal structure of all of these metals is determined by the balance between electrostatic (Madelung) interactions, which favour high symmetry, and a Peierls distortion of the crystal lattice, which favours low symmetry. We show that simple metals and transition metals can adopt low-symmetry structures on expansion of the lattice; and we predict that, conversely, the light actinides will undergo transitions to structures of higher symmetry on compression.

  18. A unified picture of the crystal structures of metals

    International Nuclear Information System (INIS)

    Soederlind, P.; Eriksson, O.; Johansson, B.; Wills, J.M.; Boring, A.M.

    1995-01-01

    The crystal structures of the light actinides have intrigued physicists and chemists for several decades. Simple metals and transition metals have close-packed, high-symmetry structures, such as body-centred cubic, face-centred cubic hexagonal close packing. In contrast, the structures of the light actinides are very loosely packed and of low symmetry -tetragonal, orthorhombic and monoclinic. To understand these differences, we have have performed total-energy calculations, as a function of volume, for both high- and low-symmetry structures of a simple metal (aluminium), a non-magnetic transition metal (niobium), a ferromagnetic transition metal (iron) and a light actinide (uranium). We find that the crystal structure of all these metals is determined by the balance between electrostatic (Madelung) interactions, which favour high symmetry, and a Peierls distortion of the crystal lattice, which favours low symmetry. We show that simple metals and transition metals can adopt low-symmetry structures on expansion of the lattice; and we predict that, conversely, the light actinides will undergo transitions to structures of higher symmetry on compression. (author)

  19. Structural, optical and thermal properties of PVA/CdS nanocomposites synthesized by radiolytic method

    International Nuclear Information System (INIS)

    Kharazmi, Alireza; Saion, Elias; Faraji, Nastaran; Hussin, Roslina Mat; Yunus, W. Mahmood Mat

    2014-01-01

    Monodispersed spherical CdS nanoparticles stabilized in PVA solution were synthesized by the gamma radiolytic method and found the average particle size increased from 12 to 13 nm with the increment of dose from 10 to 40 kGy. The XRD results show that it has crystalline planes of cubic structure with crystal lattice parameter of 5.832 Å. The optical reflectance revealed a band-edge of CdS nanoparticles at about 475 nm and the reflectance wavelength red shifted with increasing dose due to increasing particle size. The thermal conductivity of CdS/PVA nanocomposites measured by the transient hot wire method that revealed a decrement of the thermal conductivity with an increase of dose caused by effect of radiation on crystallinity of the polymer structure. - Highlights: • CdS/PVA nanocomposite was synthesized by radiolytic method from 10 to 40 kGy doses. • The structure of nanocomposite and the effect of dose on structure were investigated by X-ray powder diffraction. • The morphology of nanoparticles and the effect of dose on nanoparticles were observed by transmission electron microscope. • The optical properties of nanocomposite and the effect of radiation were studied by UV–visible spectroscopy and fluorescence spectroscopy. • The thermal properties of nanocomposite and the effect of dose were investigated by the transient hot wire method

  20. Hydrogen-bond coordination in organic crystal structures: statistics, predictions and applications.

    Science.gov (United States)

    Galek, Peter T A; Chisholm, James A; Pidcock, Elna; Wood, Peter A

    2014-02-01

    Statistical models to predict the number of hydrogen bonds that might be formed by any donor or acceptor atom in a crystal structure have been derived using organic structures in the Cambridge Structural Database. This hydrogen-bond coordination behaviour has been uniquely defined for more than 70 unique atom types, and has led to the development of a methodology to construct hypothetical hydrogen-bond arrangements. Comparing the constructed hydrogen-bond arrangements with known crystal structures shows promise in the assessment of structural stability, and some initial examples of industrially relevant polymorphs, co-crystals and hydrates are described.

  1. Synthesis, crystal structure, optical and thermal properties of lanthanide hydrogen-polyphosphates Ln[H(PO3)4] (Ln = Tb, Dy, Ho).

    Science.gov (United States)

    Förg, Katharina; Höppe, Henning A

    2015-11-28

    Lanthanide hydrogen-polyphosphates Ln[H(PO3)4] (Ln = Tb, Dy, Ho) were synthesised as colourless (Ln = Tb, Dy) and light pink (Ln = Ho) crystalline powders by reaction of Tb4O7/Dy2O3/Ho2O3 with H3PO3 at 380 °C. All compounds crystallise isotypically (P2(1)/c (no. 14), Z = 4, a(Tb) = 1368.24(4) pm, b(Tb) = 710.42(2) pm, c(Tb) = 965.79(3) pm, β(Tb) = 101.200(1)°, 3112 data, 160 parameters, wR2 = 0.062, a(Ho) = 1363.34(5) pm, b(Ho) = 709.24(3) pm, c(Ho) = 959.07(4) pm, β(Ho) = 101.055(1)°, 1607 data, 158 parameters, wR2 = 0.058). The crystal structure comprises two different infinite helical chains of corner-sharing phosphate tetrahedra. In-between these chains the lanthanide ions are located, coordinated by seven oxygen atoms belonging to four different polyphosphate chains. Vibrational, UV/Vis and fluorescence spectra of Ln[H(PO3)4] (Ln = Tb, Dy, Ho) as well as Dy[H(PO3)4]:Ln (Ln = Ce, Eu) and the magnetic and thermal behaviour of Tb[H(PO3)4] are reported.

  2. The study of thermal tunable coupling between a Superconducting photonic crystal waveguide and semi-circular photonic crystal

    Energy Technology Data Exchange (ETDEWEB)

    Oskooi, Somayeh; Barvestani, Jamal, E-mail: barvestani@tabrizu.ac.ir

    2016-08-15

    Highlights: • The light coupling between superconducting photonic crystal waveguide and a semi-circular photonic crystal has been studied. • We utilized the finite difference time domain and plane wave expansion methods in the calculations. • The effect of the size of the nearest neighbor rods of waveguide on the coupling efficiency has been investigated. • The coupling efficiencies are reported versus the temperature of the superconducting waveguide. - Abstract: Through the present study, we investigated the light coupling between superconducting photonic crystal waveguide and a semi-circular photonic crystal. By using the finite difference time domain method, we evaluated the coupling efficiency between the mentioned structures at the various temperatures for different waveguide sizes. Calculation demonstrated that the coupling efficiency strongly depended on the temperature of the superconductor. The peak value of the coupling efficiency was influenced by the size of the nearest neighbor rods of waveguide. The results have shown that it is possible to obtain high efficiency at the desired temperature with proper selection of physical parameters in far-infrared frequency region. This structure has great potential in the optical integration and other areas.

  3. Superior thermal conductivity of transparent polymer nanocomposites with a crystallized alumina membrane

    Directory of Open Access Journals (Sweden)

    Md. Poostforush

    2014-04-01

    Full Text Available The properties of novel thermoconductive and optically transparent nanocomposites have been reported. The composites were prepared by the impregnation of thermoset resin into crystallized anodic aluminum oxide (AAO. Crystallized AAO synthesized by annealing amorphous AAO membrane at 1200°C. Although through-plane thermal conductivity of nanocomposites improved up to 1.13 W•m–1•K–1 (39 vol% alumina but their transparency was preserved (Tλ550 nm ~ 72%. Integrated annealed alumina phase, low refractive index mismatch between resin and alumina and formation of nano-optical fibers through the membrane resulted in such marvel combination. This report shows a great potential of these types of nanocomposites in ‘heat management’ of lightening devices.

  4. Multi-structure docking analysis of BACE1 crystal structures and non-peptidic ligands.

    Science.gov (United States)

    Haghighijoo, Zahra; Hemmateenejad, Bahram; Edraki, Najmeh; Miri, Ramin; Emami, Saeed

    2017-09-01

    In order to design novel non-peptidic inhibitors of BACE1, many research groups have attempted using computational studies including docking analyses. Since there are too many 3D structures for BACE1 in the protein database, the selection of suitable crystal structures is a key prerequisite for the successful application of molecular docking. We employed a multi-structure docking protocol. In which 615 ligands' structures were docked into 150 BACE1 structures. The large number of the resultant docking scores were post-processed by different data analysis methods including exploratory data analysis, regression analysis and discriminant analysis. It was found that using one crystal structure for docking did not result in high accuracy for predicting activity of the BACE1 inhibitors. Instead, using of the multi-structural docking scores, post-processed by chemometrics methods arrived to highly accurate predictive models. In this regards, the PDB accession codes of 4B70, 4DVF and 2WEZ could discriminate between active and inactive compounds, with higher accuracy. Clustering of the BACE1 structures based on principal component analysis of the crystallographic structures the revealed that the discriminant structures are in the center of the clusters. Thus, these structures can be selected as predominant crystal structures for docking studies of non-peptidic BACE1 inhibitors. Copyright © 2017 Elsevier Inc. All rights reserved.

  5. Synthesis, crystal structure and characterization of a new organic-inorganic hybrid material 4-(ammonium methyl) pipyridinium hexachloro stanate (II) trihydrate

    Science.gov (United States)

    Lassoued, Mohamed Saber; Abdelbaky, Mohammed S. M.; Lassoued, Abdelmajid; Ammar, Salah; Gadri, Abdellatif; Ben Salah, Abdelhamid; García-Granda, Santiago

    2018-03-01

    The present paper undertakes the study of (C6H16N2) SnCl6·3H2O which is a new hybrid compound. It was prepared and characterized by single crystal X-ray diffraction, X-ray powder, Hirshfeld surface, Spectroscopy measurement, thermal study and photoluminescence properties. The single crystal X-ray diffraction studies revealed that the compound crystallizes in monoclinic Cc space group with cell parameters a = 8.3309(9) Å, b = 22.956(2) Å, c = 9.8381(9) Å, β = 101.334(9) ° and Z = 4. The atomic arrangement shows an alternation of organic and inorganic entities. The cohesion between these entities is performed via Nsbnd H⋯Cl, Nsbnd H⋯O, Osbnd H⋯Cl and Osbnd H⋯O hydrogen bonding to form a three-dimensional network. Hirshfeld surface analysis was used to investigate intermolecular interactions, as well 2D finger plots were conducted to reveal the contribution of these interactions in the crystal structure quantitatively. The X-ray powder is in agreement with the X-ray structure. Scanning electron microscope (SEM) was carried out. Furthermore, the room temperature infrared (IR) spectrum of the title compound was recorded and analyzed on the basis of data found in the literature. Solid state 13C NMR spectrum shows four signals, confirming the solid state structure determined by X-ray diffraction. Besides, the thermal analysis studies were performed, but no phase transition was found in the temperature range between 30 and 450 °C. The optical and PL properties of the compound were investigated in the solid state at room temperature and exhibited three bands at 348 and 401 cm-1 and a strong fluorescence at 480 nm.

  6. Synthesis, crystal structure, growth, optical and third order nonlinear optical studies of 8HQ2C5N single crystal - An efficient third-order nonlinear optical material

    Energy Technology Data Exchange (ETDEWEB)

    Divya Bharathi, M.; Ahila, G.; Mohana, J. [Department of Physics, Presidency College, Chennai 600005 (India); Chakkaravarthi, G. [Department of Physics, CPCL Polytechnic College, Chennai 600068 (India); Anbalagan, G., E-mail: anbu24663@yahoo.co.in [Department of Nuclear Physics, University of Madras, Chennai 600025 (India)

    2017-05-01

    A neoteric organic third order nonlinear optical material 8-hydroxyquinolinium 2-chloro-5-nitrobenzoate dihydrate (8HQ2C5N) was grown by slow cooling technique using ethanol: water (1:1) mixed solvent. The calculated low value of average etch pit solidity (4.12 × 10{sup 3} cm{sup −2}) indicated that the title crystal contain less defects. From the single crystal X-ray diffraction data, it was endowed that 8HQ2C5N crystal belongs to the monoclinic system with centrosymmetric space group P2{sub 1}/c and the cell parameters values, a = 9.6546 (4) Ǻ, b = 7.1637(3) Ǻ, c = 24.3606 (12) Ǻ, α = γ = 90°, β = 92.458(2)° and volume = 1683.29(13) Ǻ{sup 3}. The FT-IR and FT-Raman spectrum were used to affirm the functional group of the title compound. The chemical structure of 8HQ2C5N was scrutinized by {sup 13}C and {sup 1}H NMR spectral analysis and thermal stability through the differential scanning calorimetry study. Using optical studies the lower cut-off wavelength and optical band gap of 8HQ2C5N were found to be 364 nm and 3.17 eV respectively. Using the single oscillator model suggested by Wemple – Didomenico, the oscillator energy (E{sub o}), the dispersion energy (E{sub d}) and static dielectric constant (ε{sub o}) were estimated. The third-order susceptibility were determined as Im χ{sup (3)} = 2.51 × 10{sup −5} esu and Re χ{sup (3)} = 4.46 × 10{sup −7} esu. The theoretical third-order nonlinear optical susceptibility χ{sup (3)} was calculated and the results were compared with experimental value. Photoluminescence spectrum of 8HQ2C5N crystal showed the yellow emission. The crystal had the single shot laser damage threshold of 5.562 GW/cm{sup 2}. Microhardness measurement showed that 8HQ2C5N belongs to a soft material category. - Highlights: • A new organic single crystals were grown and the crystal structure was reported. • Crystal possess, good transmittance, thermal and mechanical stability. • Single shot LDT value is found to be

  7. Crystal structure of isomeric boron difluoride acetylnaphtholates

    International Nuclear Information System (INIS)

    Bukvetskij, B.V.; Fedorenko, E.V.; Mirochnik, A.G.; Karasev, V.E.

    2006-01-01

    Crystal structures of luminescent isomeric acetylnaphtholates of boron difluoride are investigated. Full X-ray structural analysis is done at 293 K. Coordinated of atoms, bond angles, bond lengths, interatomic distances are determined. Results of comparative evaluations of the isomers are represented [ru

  8. Coupled Chiral Structure in Graphene-Based Film for Ultrahigh Thermal Conductivity in Both In-Plane and Through-Plane Directions.

    Science.gov (United States)

    Meng, Xin; Pan, Hui; Zhu, Chengling; Chen, Zhixin; Lu, Tao; Xu, Da; Li, Yao; Zhu, Shenmin

    2018-06-21

    The development of high-performance thermal management materials to dissipate excessive heat both in plane and through plane is of special interest to maintain efficient operation and prolong the life of electronic devices. Herein, we designed and constructed a graphene-based composite film, which contains chiral liquid crystals (cellulose nanocrystals, CNCs) inside graphene oxide (GO). The composite film was prepared by annealing and compacting of self-assembled GO-CNC, which contains chiral smectic liquid crystal structures. The helical arranged nanorods of carbonized CNC act as in-plane connections, which bridge neighboring graphene sheets. More interestingly, the chiral structures also act as through-plane connections, which bridge the upper and lower graphene layers. As a result, the graphene-based composite film shows extraordinary thermal conductivity, in both in-plane (1820.4 W m -1 K -1 ) and through-plane (4.596 W m -1 K -1 ) directions. As a thermal management material, the heat dissipation and transportation behaviors of the composite film were investigated using a self-heating system and the results showed that the real-time temperature of the heater covered with the film was 44.5 °C lower than a naked heater. The prepared film shows a much higher efficiency of heat transportation than the commonly used thermal conductive Cu foil. Additionally, this graphene-based composite film exhibits excellent mechanical strength of 31.6 MPa and an electrical conductivity of 667.4 S cm -1 . The strategy reported here may open a new avenue to the development of high-performance thermal management films.

  9. Positron annihilation and thermoluminescence studies of thermally induced defects in α-Al2O3 single crystals

    International Nuclear Information System (INIS)

    Muthe, K P; Gupta, S K; Sudarshan, K; Pujari, P K; Kulkarni, M S; Rawat, N S; Bhatt, B C

    2009-01-01

    α-Al 2 O 3 crystals were subjected to different thermal treatments at a temperature of 1500 deg. C in a strongly reducing ambience of carbon and vacuum. Positron annihilation spectroscopy (PAS) and thermally stimulated luminescence (TL) studies were carried out to understand the nature of defects generated. Results show the presence of aluminium vacancies in crystals annealed in vacuum. On annealing in the presence of graphite, ingress of carbon in these vacancies is indicated by different PAS measurements. A simultaneous enhancement of dosimetry properties has been observed. The study provides evidence that association of carbon with aluminium vacancies helps in creation of effective dosimetry traps.

  10. Influence of thermal-decomposition temperatures on structures and properties of V2O5 as cathode materials for lithium ion battery

    Directory of Open Access Journals (Sweden)

    Yu Chen

    2015-02-01

    Full Text Available Submicron spherical V2O5 particles with a uniform size and a lower crystallinity were successfully synthesized by a chemical precipitation-thermal decomposition technique using the commercial V2O5 powders as starting material. The crystal structure and grain morphology of samples were characterized by X-ray diffraction (XRD and scanning electron microscopy (SEM, respectively. Electrochemical testing such as discharge–charge cycling (CD and cyclic voltammetry (CV were employed in evaluating their electrochemical properties as cathode materials for lithium ion battery. Results reveal that the crystallinity and crystalline size of V2O5 particles increased when the thermal-decomposition temperature increased from 400 °C to 500 °C, and their adhesiveness was also synchronously increased. This indicate that the thermal-decomposition temperature palyed a significant influence on electrochemical properties of V2O5 cathodes. The V2O5 sample obtained at 400 °C delivered not only a high initial discharge capacity of 330 mA h g−1 and also the good cycle stability during 50 cycles due to its higher values of α in crystal structure and better dispersity in grain morphology.

  11. Hydrothermal synthesis, structural and thermal characterizations of three open-framework gallium phosphites

    Science.gov (United States)

    Hamchaoui, Farida; Alonzo, Véronique; Marlart, Isabelle; Auguste, Sandy; Galven, Cyrille; Rebbah, Houria; Le Fur, Eric

    2017-11-01

    Three new gallium phosphites A[Ga(HPO3)2], where A = K (1), NH4 (2), Rb (3), have been synthesized by using mild hydrothermal conditions under autogeneous pressure. Their structures have been determined by single-crystal X-ray diffraction. These compounds crystallize in the hexagonal P63mc space group with a = 5.2567 (2) Å and c = 12.2582 (3) Å for 1, a = 5.2576 (2) Å and c = 12.9113 (4) Å for 2, a = 5.27020 (10) Å and c = 12.7619 (5) Å for 3, with Z = 2 in the three phases. The three compounds are isostructural and exhibit the same framework topology, consisting of a layered structure stacked along the c-axis with the A+ cations located in the interlayer spaces. The [Ga(HPO3)2]- sheets contain GaO6 octahedra interconnected by phosphite units through sharing vertices. Thermal analysis under air atmosphere shows a large range stability for alkali cations containing compounds with decomposition starting around 750 K leading to phosphate phases. Under nitrogen, a disproportionation of the phosphite into red phosphorus and phosphates is expected, accompanied by a release of H2.

  12. Crystal structure, thermochromic and magnetic properties of organic-inorganic hybrid compound: (C7H7N2S)2CuCl4

    Science.gov (United States)

    Vishwakarma, Ashok K.; Kumari, Reema; Ghalsasi, Prasanna S.; Arulsamy, Navamoney

    2017-08-01

    The synthesis, thermal analysis, crystal structure and magnetic properties of (2-aminobenzothiazolium)2CuCl4, organic-inorganic hybrid compound, have been described. The compound crystallizes in the monoclinic space group P21/c with two formula units in a unit cell of dimensions a = 6.9522(4) Å, b = 9.6979(4) Å, c = 13.9633(6) Å, β = 97.849(3)° and volume 930.83(8) Å3 at 150(2) K. The structure consists of isolated nearly square planer [CuC14]2- units, with somewhat longer than normal Cusbnd Cl bond lengths [Cusbnd Cl (average) = 2.2711 Å]. The magnetic measurements of (2-aminobenzothiazolium)2CuCl4 using SQUID magnetometer show paramagnetic nature of the compound. Thermal measurements (TG-DTA and DSC) on this compound showed reversible phase transition at 83 °C. This transition is accompanied by the reversible change in colour of the prismatic crystal from green to dark brown, thermochromic behaviour. Temperature dependent EPR measurements on powdered sample ascertain change in coordination sphere around Cu(II) with shift in g|| = 2.150 and g⊥ = 2.071 at room temperature, typical of square planar, to g|| = 2.201 and g⊥ = 2.182 at 170 °C, typical of distorted tetrahedral geometry.

  13. Optical and photoelectric properties of nanolamellar structures obtained by thermal annealing of InSe plates in Zn vapours

    Energy Technology Data Exchange (ETDEWEB)

    Untila, Dumitru; Evtodiev, Igor [Faculty of Physics and Engineering, Moldova State University, Chisinau (Moldova, Republic of); Ghitu Institute of Electronic Engineering and Nanotechnologies, Academy of Sciences of Moldova, Chisinau (Moldova, Republic of); Caraman, Iuliana [Engineering Department ' ' Vasile Alecsandri' ' , University of Bacau (Romania); Spalatu, Nicolae [Department of Materials Science, Tallinn University of Technology (Estonia); Dmitroglo, Liliana; Caraman, Mihail [Faculty of Physics and Engineering, Moldova State University, Chisinau (Moldova, Republic of)

    2018-02-15

    The structural, optical and photoelectric properties of InSe crystals grown by Bridgman-Stockbarger method and ZnSe/InSe structures obtained on InSe by thermal annealing in Zn vapours are studied in this paper. The study of structural properties confirms that ZnSe compound is formed. The analysis of photoelectric properties reveal that both the ZnSe-InSe composite layer and the composite/InSe heterojunction are photosensitive in the VIS-NIR spectral region. (copyright 2018 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  14. Crystal structure of HgGa{sub 2}Se{sub 4} under compression

    Energy Technology Data Exchange (ETDEWEB)

    Gomis, Oscar, E-mail: osgohi@fis.upv.es [Centro de Tecnologías Físicas: Acústica, Materiales y Astrofísica, MALTA Consolider Team, Universitat Politècnica de València, 46022 València (Spain); Vilaplana, Rosario [Centro de Tecnologías Físicas: Acústica, Materiales y Astrofísica, MALTA Consolider Team, Universitat Politècnica de València, 46022 València (Spain); Manjón, Francisco Javier [Instituto de Diseño para la Fabricación y Producción Automatizada, MALTA Consolider Team, Universitat Politècnica de València, 46022 València (Spain); Santamaría-Pérez, David [Departamento de Química Física I, Universidad Complutense de Madrid, MALTA Consolider Team, Avenida Complutense s/n, 28040 Madrid (Spain); Departamento de Física Aplicada-ICMUV, MALTA Consolider Team, Universidad de Valencia, Edificio de Investigación, C/Dr. Moliner 50, Burjassot, 46100 Valencia (Spain); Errandonea, Daniel [Departamento de Física Aplicada-ICMUV, MALTA Consolider Team, Universidad de Valencia, Edificio de Investigación, C/Dr. Moliner 50, Burjassot, 46100 Valencia (Spain); and others

    2013-06-01

    Highlights: ► Single crystals of HgGa{sub 2}Se{sub 4} with defect-chalcopyrite structure were synthesized. ► HgGa{sub 2}Se{sub 4} exhibits a phase transition to a disordered rock salt structure at 17 GPa. ► HgGa{sub 2}Se{sub 4} undergoes a phase transition below 2.1 GPa to a disordered zinc blende. - Abstract: We report on high-pressure x-ray diffraction measurements up to 17.2 GPa in mercury digallium selenide (HgGa{sub 2}Se{sub 4}). The equation of state and the axial compressibilities for the low-pressure tetragonal phase have been determined and compared to related compounds. HgGa{sub 2}Se{sub 4} exhibits a phase transition on upstroke toward a disordered rock-salt structure beyond 17 GPa, while on downstroke it undergoes a phase transition below 2.1 GPa to a phase that could be assigned to a metastable zinc-blende structure with a total cation-vacancy disorder. Thermal annealing at low- and high-pressure shows that kinetics plays an important role on pressure-driven transitions.

  15. Structure of a second crystal form of Bence-Jones protein Loc: Strikingly different domain associations in two crystal forms of a single protein

    International Nuclear Information System (INIS)

    Schiffer, M.; Ainsworth, C.; Xu, Z.B.; Carperos, W.; Olsen, K.; Solomon, A.; Stevens, F.J.; Chang, C.H.

    1989-01-01

    The authors have determined the structure of the immunoglobulin light-chain dimer Loc in a second crystal form that was grown from distilled water. The crystal structure was determined to 2.8-angstrom resolution; the R factor is 0.22. The two variable domains are related by local 2-fold axes and form an antigen binding pocket. The variable domain-variable domain interaction observed in this crystal form differs from the one exhibited by the protein when crystallized from ammonium sulfate in which the two variable domains formed a protrusion. The structure attained in the distilled water crystals is similar to, but not identical with, the one observed for the Mcg light-chain dimer in crystals grown from ammonium sulfate. Thus, two strikingly different structures were attained by this multisubunit protein in crystals grown under two different, commonly used, crystallization techniques. The quaternary interactions exhibited by the protein in the two crystal forms are sufficiently different to suggest fundamentally different interpretations of the structural basis for the function of this protein. This observation may have general implications regarding the use of single crystallographic determinations for detailed identification of structural and functional relationships. On the other hand, proteins whose structures can be altered by manipulation of crystallization conditions may provide useful systems for study of fundamental structural chemistry

  16. Spin dynamics, electronic, and thermal transport properties of two-dimensional CrPS{sub 4} single crystal

    Energy Technology Data Exchange (ETDEWEB)

    Pei, Q. L.; Luo, X., E-mail: xluo@issp.ac.cn, E-mail: ypsun@issp.ac.cn; Lin, G. T.; Song, J. Y.; Hu, L.; Song, W. H.; Lu, W. J. [Key Laboratory of Materials Physics, Institute of Solid State Physics, Chinese Academy of Sciences, Hefei 230031 (China); Zou, Y. M.; Yu, L.; Tong, W. [High Magnetic Field Laboratory, Chinese Academy of Sciences, Hefei 230031 (China); Sun, Y. P., E-mail: xluo@issp.ac.cn, E-mail: ypsun@issp.ac.cn [High Magnetic Field Laboratory, Chinese Academy of Sciences, Hefei 230031 (China); Key Laboratory of Materials Physics, Institute of Solid State Physics, Chinese Academy of Sciences, Hefei 230031 (China); Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093 (China)

    2016-01-28

    2-Dimensional (2D) CrPS{sub 4} single crystals have been grown by the chemical vapor transport method. The crystallographic, magnetic, electronic, and thermal transport properties of the single crystals were investigated by the room-temperature X-ray diffraction, electrical resistivity ρ(T), specific heat C{sub P}(T), and the electronic spin response (ESR) measurements. CrPS{sub 4} crystals crystallize into a monoclinic structure. The electrical resistivity ρ(T) shows a semiconducting behavior with an energy gap E{sub a} = 0.166 eV. The antiferromagnetic transition temperature is about T{sub N} = 36 K. The spin flipping induced by the applied magnetic field is observed along the c axis. The magnetic phase diagram of CrPS{sub 4} single crystal has been discussed. The extracted magnetic entropy at T{sub N} is about 10.8 J/mol K, which is consistent with the theoretical value R ln(2S + 1) for S = 3/2 of the Cr{sup 3+} ion. Based on the mean-field theory, the magnetic exchange constants J{sub 1} and J{sub c} corresponding to the interactions of the intralayer and between layers are about 0.143 meV and −0.955 meV are obtained based on the fitting of the susceptibility above T{sub N}, which agree with the results obtained from the ESR measurements. With the help of the strain for tuning the magnetic properties, monolayer CrPS{sub 4} may be a promising candidate to explore 2D magnetic semiconductors.

  17. Structure of initial crystals formed during human amelogenesis

    Science.gov (United States)

    Cuisinier, F. J. G.; Voegel, J. C.; Yacaman, J.; Frank, R. M.

    1992-02-01

    X-ray diffraction analysis revealed only the existence of carbonated hydroxyapatite (c.HA) during amelogenesis, whereas conventional transmission electron microscopy investigations showed that developing enamel crystals have a ribbon-like habit. The described compositional changes could be an indication for the presence of minerals different from c.HA. However, the absence of identification of such a mineral shows the need of studies by high resolution electron microscopy (HREM) of initial formed human enamel crystals. We demonstrate the existence of two crystal families involved in the early stages of biomineralization: (a) nanometer-size particles which appeared as a precursor phase; (b) ribbon-like crystals, with a structure closely related to c.HA, which by a progressive thickening process tend to attain the mature enamel crystal habit.

  18. Structures of the OmpF porin crystallized in the presence of foscholine-12.

    Science.gov (United States)

    Kefala, Georgia; Ahn, Chihoon; Krupa, Martin; Esquivies, Luis; Maslennikov, Innokentiy; Kwiatkowski, Witek; Choe, Senyon

    2010-05-01

    The endogenous Escherichia coli porin OmpF was crystallized as an accidental by-product of our efforts to express, purify, and crystallize the E. coli integral membrane protein KdpD in the presence of foscholine-12 (FC12). FC12 is widely used in membrane protein studies, but no crystal structure of a protein that was both purified and crystallized with this detergent has been reported in the Protein Data Bank. Crystallization screening for KdpD yielded two different crystals of contaminating protein OmpF. Here, we report two OmpF structures, the first membrane protein crystal structures for which extraction, purification, and crystallization were done exclusively with FC12. The first structure was refined in space group P21 with cell parameters a = 136.7 A, b = 210.5 A, c = 137 A, and beta = 100.5 degrees , and the resolution of 3.8 A. The second structure was solved at the resolution of 4.4 A and was refined in the P321 space group, with unit cell parameters a = 215.5 A, b = 215.5 A, c = 137.5 A, and gamma = 120 degrees . Both crystal forms show novel crystal packing, in which the building block is a tetrahedral arrangement of four trimers. Additionally, we discuss the use of FC12 for membrane protein crystallization and structure determination, as well as the problem of the OmpF contamination for membrane proteins overexpressed in E. coli.

  19. Crystallization behavior and the thermal properties of Zr63Al7.5Cu17.5Ni10B2 bulk amorphous alloy

    International Nuclear Information System (INIS)

    Jang, J.S.C.; Chang, L.J.; Jiang, Y.T.; Wong, P.W.

    2003-01-01

    The ribbons of amorphous Zr 63 Al 7.5 Cu 17.5 Ni 10 B 2 alloys with 0.1 mm thickness were prepared by melt spinning method. The thermal properties and micro structural development during the annealing of amorphous alloy have been investigated by a combination of differential thermal analysis, differential scanning calorimetry, high-temperature optical microscope, X-ray diffractometry and TEM. The glass transition temperature for the Zr 63 Al 7.5 Cu 17.5 Ni 10 B 2 alloys are measured about 645 K (372 C). This alloy also obtains a large temperature interval ΔT x about 63 K. Meanwhile, the calculated T rg for Zr 63 Al 7.5 Cu 17.5 Ni 10 B 2 alloy presents the value of 0.57. The activation energy of crystallization for the alloy Zr 63 Al 7.5 Cu 17.5 Ni 10 B 2 was about 370± 10 kJ/mole as determined by the Kissinger and Avrami plot, respectively. These values are about 20% higher than the activation energy of crystallization for the Zr 65 Al 7.5 Cu 17.5 Ni 10 alloy (314 kJ/mol.). This implies that the boron additions exhibit the effect of improving the thermal stability for the Zr-based alloy. The average value of the Avrami exponent n were calculated to be 1.75±0.15 for Zr 63 Al 7.5 Cu 17.5 Ni 10 B 2 alloy. This indicates that this alloy presents a crystallization process with decreasing nucleation rate. (orig.)

  20. Thermal detection of single e-h pairs in a biased silicon crystal detector

    Science.gov (United States)

    Romani, R. K.; Brink, P. L.; Cabrera, B.; Cherry, M.; Howarth, T.; Kurinsky, N.; Moffatt, R. A.; Partridge, R.; Ponce, F.; Pyle, M.; Tomada, A.; Yellin, S.; Yen, J. J.; Young, B. A.

    2018-01-01

    We demonstrate that individual electron-hole pairs are resolved in a 1 cm2 by 4 mm thick silicon crystal (0.93 g) operated at ˜35 mK. One side of the detector is patterned with two quasiparticle-trap-assisted electro-thermal-feedback transition edge sensor arrays held near ground potential. The other side contains a bias grid with 20% coverage. Bias potentials up to ±160 V were used in the work reported here. A fiber optic provides 650 nm (1.9 eV) photons that each produce an electron-hole (e- h+) pair in the crystal near the grid. The energy of the drifting charges is measured with a phonon sensor noise σ ˜0.09 e- h+ pair. The observed charge quantization is nearly identical for h+s or e-s transported across the crystal.

  1. Formamidinium iodide: crystal structure and phase transitions

    Directory of Open Access Journals (Sweden)

    Andrey A. Petrov

    2017-04-01

    Full Text Available At a temperature of 100 K, CH5N2+·I− (I, crystallizes in the monoclinic space group P21/c. The formamidinium cation adopts a planar symmetrical structure [the r.m.s. deviation is 0.002 Å, and the C—N bond lengths are 1.301 (7 and 1.309 (8 Å]. The iodide anion does not lie within the cation plane, but deviates from it by 0.643 (10 Å. The cation and anion of I form a tight ionic pair by a strong N—H...I hydrogen bond. In the crystal of I, the tight ionic pairs form hydrogen-bonded zigzag-like chains propagating toward [20-1] via strong N—H...I hydrogen bonds. The hydrogen-bonded chains are further packed in stacks along [100]. The thermal behaviour of I was studied by different physicochemical methods (thermogravimetry, differential scanning calorimetry and powder diffraction. Differential scanning calorimetry revealed three narrow endothermic peaks at 346, 387 and 525 K, and one broad endothermic peak at ∼605 K. The first and second peaks are related to solid–solid phase transitions, while the third and fourth peaks are attributed to the melting and decomposition of I. The enthalpies of the phase transitions at 346 and 387 K are estimated as 2.60 and 2.75 kJ mol−1, respectively. The X-ray powder diffraction data collected at different temperatures indicate the existence of I as the monoclinic (100–346 K, orthorhombic (346–387 K and cubic (387–525 K polymorphic modifications.

  2. First principles investigation of structural, electronic, elastic and thermal properties of rare-earth-doped titanate Ln2TiO5

    Directory of Open Access Journals (Sweden)

    Hui Niu

    2012-09-01

    Full Text Available Systematic first-principles calculations based on density functional theory were performed on a wide range of Ln2TiO5 compositions (Ln = La, Ce, Pr, Nd, Sm, Gd, Tb, Dy and Y in order to investigate their structural, elastic, electronic, and thermal properties. At low temperature, these compounds crystallize in orthorhombic structures with a Pnma symmetry, and the calculated equilibrium structural parameters agree well with experimental results. A complete set of elastic parameters including elastic constants, Hill's bulk moduli, Young's moduli, shear moduli and Poisson's ratio were calculated. All Ln2TiO5 are ductile in nature. Analysis of densities of states and charge densities and electron localization functions suggests that the oxide bonds are highly ionic with some degree of covalency in the Ti-O bonds. Thermal properties including the mean sound velocity, Debye temperature, and minimum thermal conductivity were obtained from the elastic constants.

  3. Optical and thermal bleaching of colour centres in gamma-irradiated sodium chloride crystals

    International Nuclear Information System (INIS)

    Czerwonko, A.

    1978-01-01

    Long lasting optical bleaching of natural NaCl crystals at room and elevated temperatures has been examined. This process has been found to result in the appearance of some new bands and Z 2 and Z 3 centre bands. The new bands referred to as Zsub(M), Zsub(N) and Zsub(R) are ascribed to the formation of electron-trapped colour centres related to alcaline earth impurities. The Zsub(M), Zsub(R) and Zsub(N) bands are dichroic after excitation with polarized light. The model of N 1 centres is discussed; the impurities of calcium group elements are also considered to be responsible for these centres. The thermal bleaching of coloured NaCl crystals of natural origin results in the destruction of ordinary F-aggregate centres as well as of Zsub(M), Zsub(R) and Zsub(N) ones and in the formation of colloidal centres. The thermal stability of the defects in the series Zsub(M), Zsub(N), Zsub(R) and M, N 1 , R is virtually the same. (author)

  4. Crystal structure of vanadite: Refinement of anisotropic displacement parameters

    Czech Academy of Sciences Publication Activity Database

    Laufek, F.; Skála, Roman; Haloda, J.; Císařová, I.

    2006-01-01

    Roč. 51, 3-4 (2006), s. 271-275 ISSN 1210-8197 Institutional research plan: CEZ:AV0Z30130516 Keywords : anisotropic displacement parameter * crystal structure * single-crystal X-ray refinement * vanadinite Subject RIV: DB - Geology ; Mineralogy

  5. Crystal structure of N-(quinolin-6-ylhydroxylamine

    Directory of Open Access Journals (Sweden)

    Anuruddha Rajapakse

    2014-11-01

    Full Text Available The title compound, C9H8N2O, crystallized with four independent molecules in the asymmetric unit. The four molecules are linked via one O—H...N and two N—H...N hydrogen bonds, forming a tetramer-like unit. In the crystal, molecules are further linked by O—H...N and N—H...O hydrogen bonds forming layers parallel to (001. These layers are linked via C—H...O hydrogen bonds and a number of weak C—H...π interactions, forming a three-dimensional structure. The crystal was refined as a non-merohedral twin with a minor twin component of 0.319.

  6. Synthesis, structural characterization, and thermal stability studies of heteroleptic cadmium(II) dithiocarbamate with different pyridyl groups

    Science.gov (United States)

    Onwudiwe, Damian C.; Hosten, Eric C.

    2018-01-01

    The synthesis, characterization and crystal structures of three chloroform solvated adducts of cadmium with mixed ligands of N-alkyl-N-phenyldithiocarbamate and pyridine, 2,2-bipyridine and 1, 10 phenanthroline represented as [CdL1L2 (py)2]·CHCl3(1), [CdL1L2bpy]•CHCl3(2), and [CdL1L2phen]•CHCl3(3) (LI = N-methyl-N-phenyldithiocarbamate, L2 = N-ethyl-N-phenyldithiocarbamate, py = pyridine, bpy = 2,2-bipyridine and phen = 1,10-phenanthroline) respectively are reported. Complex 1, which crystallized in the monoclinic space group P-1, is a centrosymmetric dimeric structure where each Cd center is bonded to two monodentate pyridine, a bidentate terminal dithiocarbamate, and another bidentate bridging dithiocarbamate to form a four-membered ring. Complex 2 crystallized in the monoclinic space group P21/c, with four discrete monomeric molecules in the asymmetric unit. The structure presents a cadmium atom coordinated by two sulphur atoms of a dithiocarbamate ligand and two nitrogen atoms of the 2,2‧-bipyridine to form a CdS4N2 fragment, thus giving the structure around the Cd atom a distorted trigonal prism geometry. Complex 3 contains two discrete monomeric molecules of (phenanthroline) (N, N-methyl phenyl-N, N-ethyl phenyl dithiocarbamato)cadmium (II) per unit cell, and the complex crystallized in the triclinic space group P-1. The structure showed that the Cd atom is bonded to two bidentate dithiocarbamate ligands and to one bidentate phenanthroline ligand in a distorted trigonal prism geometry. All the compounds resulted in CdS as residue upon thermal decomposition process conducted under inert atmosphere.

  7. Physicochemical and crystal structure analyses of the antidiabetic agent troglitazone.

    Science.gov (United States)

    Kobayashi, Katsuhiro; Fukuhara, Hiroshi; Hata, Tadashi; Sekine, Akiko; Uekusa, Hidehiro; Ohashi, Yuji

    2003-07-01

    The antidiabetic agent troglitazone has two asymmetric carbons located at the chroman ring and the thiazolidine ring and is produced as a mixture of equal amounts of four optical isomers, 2R-5S, 2S-5R, 2R-5R, and 2S-5S. The crystalline powdered drug substance consists of two diastereomer pairs, 2R-5R/2S-5S and 2R-5S/2S-5R. There are many types of crystals obtained from various crystallization conditions. The X-ray structure analysis and the physicochemical analyses of troglitazone were performed. The solvated crystals of the 2R-5R/2S-5S pair were crystallized from several solutions: methanol, ethanol, acetonitrile, and dichloromethane. The ratio of solvent and troglitazone was 1 : 2 (L1/2-form). The monohydrate crystals were obtained from aqueous acetone solution (L1-form). On the other hand, only an anhydrate crystal of the 2R-5S/2S-5R pair was crystallized from various solutions (H0-form). The dihydrous mixed crystal (MA2-form) was obtained from a mixture of the two diastereomer pairs of 2R-5R/2S-5S and 2R-5S/2S-5R in equal amounts by the slow evaporation of aqueous acetone solution. The crystal structure of the MA2-form is similar to the H0-form. When the MA2 crystal was kept under low humidity, it was converted into the dehydrated form (MA0-form) with retention of the single crystal form. The structure of the MA0-form is isomorphous to the H0-form. The MA2-form was converted into the MA0-form and vice versa with retention of the single crystal under low and high humidity, respectively. The crystallization and storage conditions of the drug substances were successfully analyzed.

  8. Two modifications of Y2Piv6(HPiv)6 crystals: synthesis and structures

    International Nuclear Information System (INIS)

    Kiseleva, E.A.; Troyanov, S.I.; Korenev, Yu.M.

    2006-01-01

    Crystal structure of solvate of yttrium pivalate YPiv 3 ·3HPiv is studied. Existing of two polymorphous modifications of the compound is detected. It is shown that α- and β-modifications of yttrium pivalate solvate have molecular crystal structures and are built of Y 2 Piv 6 (HPiv) 6 dimers. Difference of these two modifications is in package of dimer molecules and in center-symmetricity of dimers in α-modification structure. Molecular and crystal structure, crystal lattice parameters are determined [ru

  9. Thermal and fast neutron dosimetry using artificial single crystal diamond detectors

    International Nuclear Information System (INIS)

    Angelone, M.; Pillon, M.; Prestopino, G.; Marinelli, Marco; Milani, E.; Verona, C.; Verona-Rinati, G.; Aielli, G.; Cardarelli, R.; Santonico, R.; Bedogni, R.; Esposito, A.

    2011-01-01

    In this work we propose the artificial Single Crystal Diamond (SCD) detector covered with a thin layer (0.5 μm/4 μm) of 6 LiF as a simultaneous thermal and fast neutron fluence monitor. Some interesting properties of the diamond response versus the neutron energy are evidenced thanks to Monte Carlo simulation using the MCNPX code which allows to propose the diamond detector also as an ambient dose equivalent (H∗(10)) monitor (REM counter).

  10. Fast neutron irradiation and thermal properties of doped nonstoichiometric lithium potassium sulphate crystals

    International Nuclear Information System (INIS)

    Kassem, M.E.; Gomaa, N.G.; El-Khatib, A.M.

    1990-01-01

    The influence of point defects introduced by fast neutron irradiations with neutron fluences up to 1.08 x 10 10 n/cm 2 on the thermal properties of pure and doped Li 1.4 K 0.6 SO 4 single crystals are studied in the vicinity of high temperature phase transition at 705 K. The temperature dependence of specific heat is found to be shifted towards lower temperature with the increase of neutron fluence, and can be affected by the presence of Cu 2+ dopant. The change in the value of the specific heat can be attributed to the presence of internal strain generated inside the crystal. (author)

  11. Crystal structure of human protein kinase CK2

    DEFF Research Database (Denmark)

    Niefind, K; Guerra, B; Ermakowa, I

    2001-01-01

    The crystal structure of a fully active form of human protein kinase CK2 (casein kinase 2) consisting of two C-terminally truncated catalytic and two regulatory subunits has been determined at 3.1 A resolution. In the CK2 complex the regulatory subunits form a stable dimer linking the two catalyt...... as a docking partner for various protein kinases. Furthermore it shows an inter-domain mobility in the catalytic subunit known to be functionally important in protein kinases and detected here for the first time directly within one crystal structure.......The crystal structure of a fully active form of human protein kinase CK2 (casein kinase 2) consisting of two C-terminally truncated catalytic and two regulatory subunits has been determined at 3.1 A resolution. In the CK2 complex the regulatory subunits form a stable dimer linking the two catalytic...... subunits, which make no direct contact with one another. Each catalytic subunit interacts with both regulatory chains, predominantly via an extended C-terminal tail of the regulatory subunit. The CK2 structure is consistent with its constitutive activity and with a flexible role of the regulatory subunit...

  12. Structural Design Optimization On Thermally Induced Vibration

    International Nuclear Information System (INIS)

    Gu, Yuanxian; Chen, Biaosong; Zhang, Hongwu; Zhao, Guozhong

    2002-01-01

    The numerical method of design optimization for structural thermally induced vibration is originally studied in this paper and implemented in application software JIFEX. The direct and adjoint methods of sensitivity analysis for thermal induced vibration coupled with both linear and nonlinear transient heat conduction is firstly proposed. Based on the finite element method, the structural linear dynamics is treated simultaneously with coupled linear and nonlinear transient heat structural linear dynamics is treated simultaneously with coupled linear and nonlinear transient heat conduction. In the thermal analysis model, the nonlinear heat conduction considered is result from the radiation and temperature-dependent materials. The sensitivity analysis of transient linear and nonlinear heat conduction is performed with the precise time integration method. And then, the sensitivity analysis of structural transient dynamics is performed by the Newmark method. Both the direct method and the adjoint method are employed to derive the sensitivity equations of thermal vibration, and there are two adjoint vectors of structure and heat conduction respectively. The coupling effect of heat conduction on thermal vibration in the sensitivity analysis is particularly investigated. With coupling sensitivity analysis, the optimization model is constructed and solved by the sequential linear programming or sequential quadratic programming algorithm. The methods proposed have been implemented in the application software JIFEX of structural design optimization, and numerical examples are given to illustrate the methods and usage of structural design optimization on thermally induced vibration

  13. Crystal structure optimisation using an auxiliary equation of state

    Science.gov (United States)

    Jackson, Adam J.; Skelton, Jonathan M.; Hendon, Christopher H.; Butler, Keith T.; Walsh, Aron

    2015-11-01

    Standard procedures for local crystal-structure optimisation involve numerous energy and force calculations. It is common to calculate an energy-volume curve, fitting an equation of state around the equilibrium cell volume. This is a computationally intensive process, in particular, for low-symmetry crystal structures where each isochoric optimisation involves energy minimisation over many degrees of freedom. Such procedures can be prohibitive for non-local exchange-correlation functionals or other "beyond" density functional theory electronic structure techniques, particularly where analytical gradients are not available. We present a simple approach for efficient optimisation of crystal structures based on a known equation of state. The equilibrium volume can be predicted from one single-point calculation and refined with successive calculations if required. The approach is validated for PbS, PbTe, ZnS, and ZnTe using nine density functionals and applied to the quaternary semiconductor Cu2ZnSnS4 and the magnetic metal-organic framework HKUST-1.

  14. Crystal structure optimisation using an auxiliary equation of state

    International Nuclear Information System (INIS)

    Jackson, Adam J.; Skelton, Jonathan M.; Hendon, Christopher H.; Butler, Keith T.; 3 Institute and Department of Materials Science and Engineering, Yonsei University, Seoul 120-749 (Korea, Republic of))" data-affiliation=" (Centre for Sustainable Chemical Technologies and Department of Chemistry, University of Bath, Claverton Down, Bath BA2 7AY (United Kingdom); Global E3 Institute and Department of Materials Science and Engineering, Yonsei University, Seoul 120-749 (Korea, Republic of))" >Walsh, Aron

    2015-01-01

    Standard procedures for local crystal-structure optimisation involve numerous energy and force calculations. It is common to calculate an energy–volume curve, fitting an equation of state around the equilibrium cell volume. This is a computationally intensive process, in particular, for low-symmetry crystal structures where each isochoric optimisation involves energy minimisation over many degrees of freedom. Such procedures can be prohibitive for non-local exchange-correlation functionals or other “beyond” density functional theory electronic structure techniques, particularly where analytical gradients are not available. We present a simple approach for efficient optimisation of crystal structures based on a known equation of state. The equilibrium volume can be predicted from one single-point calculation and refined with successive calculations if required. The approach is validated for PbS, PbTe, ZnS, and ZnTe using nine density functionals and applied to the quaternary semiconductor Cu 2 ZnSnS 4 and the magnetic metal-organic framework HKUST-1

  15. Crystal structure optimisation using an auxiliary equation of state

    Energy Technology Data Exchange (ETDEWEB)

    Jackson, Adam J.; Skelton, Jonathan M.; Hendon, Christopher H.; Butler, Keith T. [Centre for Sustainable Chemical Technologies and Department of Chemistry, University of Bath, Claverton Down, Bath BA2 7AY (United Kingdom); Walsh, Aron, E-mail: a.walsh@bath.ac.uk [Centre for Sustainable Chemical Technologies and Department of Chemistry, University of Bath, Claverton Down, Bath BA2 7AY (United Kingdom); Global E" 3 Institute and Department of Materials Science and Engineering, Yonsei University, Seoul 120-749 (Korea, Republic of)

    2015-11-14

    Standard procedures for local crystal-structure optimisation involve numerous energy and force calculations. It is common to calculate an energy–volume curve, fitting an equation of state around the equilibrium cell volume. This is a computationally intensive process, in particular, for low-symmetry crystal structures where each isochoric optimisation involves energy minimisation over many degrees of freedom. Such procedures can be prohibitive for non-local exchange-correlation functionals or other “beyond” density functional theory electronic structure techniques, particularly where analytical gradients are not available. We present a simple approach for efficient optimisation of crystal structures based on a known equation of state. The equilibrium volume can be predicted from one single-point calculation and refined with successive calculations if required. The approach is validated for PbS, PbTe, ZnS, and ZnTe using nine density functionals and applied to the quaternary semiconductor Cu{sub 2}ZnSnS{sub 4} and the magnetic metal-organic framework HKUST-1.

  16. Thermal-gradient migration of brine inclusions in salt crystals

    International Nuclear Information System (INIS)

    Yagnik, S.K.

    1982-09-01

    It has been proposed that high-level nuclear waste be disposed in a geologic repository. Natural-salt deposits, which are being considered for this purpose, contain a small volume fraction of water in the form of brine inclusions distributed throughout the salt. Radioactive-decay heating of the nuclear wastes will impose a temperature gradient on the surrounding salt which mobilizes the brine inclusions. Inclusions filled completely with brine migrate up the temperature gradient and eventually accumulate brine near the buried waste forms. The brine may slowly corrode or degrade the waste forms which is undesirable. In this work, thermal gradient migration of both all-liquid and gas-liquid inclusions was experimentally studied in synthetic single crystals of NaCl and KCl using a hot-stage attachment to an optical microscope which was capable of imposing temperature gradients and axial compressive loads on the crystals. The migration velocities of the inclusions were found to be dependent on temperature, temperature gradient, and inclusion shape and size. The velocities were also dictated by the interfacial mass transfer resistance at brine/solid interface. This interfacial resistance depends on the dislocation density in the crystal, which in turn, depends on the axial compressive loading of the crystal. At low axial loads, the dependence between the velocity and temperature gradient is non-linear.At high axial loads, however, the interfacial resistance is reduced and the migration velocity depends linearly on the temperature gradient. All-liquid inclusions filled with mixed brines were also studied. For gas-liquid inclusions, three different gas phases (helium, air and argon) were compared. Migration studies were also conducted on single crystallites of natural salt as well as in polycrystalline natural salt samples. The behavior of the inclusions at large angle grain boundaries was observed. 35 figures, 3 tables

  17. Thermal gradient migration of brine inclusions in salt crystals

    International Nuclear Information System (INIS)

    Yagnik, S.K.

    1982-01-01

    Natural salt deposits, which are being considered for high-level nuclear wastes repositories, contain a small volume fraction of water in the form of brine inclusions distributed throughout the salt. Radioactive decay heating of the nuclear wastes will impose a temperature gradient on the surrounding salt which mobilizes the brine inclusions. Inclusions filled completely with brine (the all-liquid inclusions) migrate up the temperature gradient and eventually accumulate brine near the buried waste forms. The brine may slowly corrode or degrade the waste forms which is undesirable. In the present work, thermal gradient migration of both all-liquid and gas-liquid inclusions was experimentally studied in synthetic single crystals of NaCl and KCl using a hot-stage attachment to an optical microscope which was capable of imposing temperature gradients and axial compressive loads on the crystals. The migration velocities of the inclusions were found to be dependent on temperature, temperature gradient, and inclusion shape and size. The velocities were also dictated by the interfacial mass transfer resistance at brine/solid interface. This interfacial resistance depends on the dislocation density in the crystal, which in turn, depends on the axial compressive loading of the crystal. At low axial loads, the dependence between the velocity and temperature gradient is nonlinear. At high axial loads, however, the interfacial resistance is reduced and the migration velocity depends linearly on the temperature gradient. All-liquid inclusions filled with mixed brines were also studied. For gas-liquid inclusions, three different gas phases (helium, air and argon) were compared. Migration studies were also conducted on single crystallites of natural salt as well as in polycrystalline natural salt samples. The behavior of the inclusions at large angle grain boudaries was observed

  18. CCDC 870534: Experimental Crystal Structure Determination : Dichloro-trimethyl-tantalum(v)

    KAUST Repository

    Chen, Yin; Callens, E.; Abou-Hamad, E.; Merle, N.; White, A.J.P.; Taoufik, M.; Coperet, C.; Le Roux, E.; Basset, J.-M.

    2013-01-01

    An entry from the Cambridge Structural Database, the world’s repository for small molecule crystal structures. The entry contains experimental data from a crystal diffraction study. The deposited dataset for this entry is freely available from the CCDC and typically includes 3D coordinates, cell parameters, space group, experimental conditions and quality measures.

  19. CCDC 1475931: Experimental Crystal Structure Determination : trimethylammonium trichloro-tin(iv)

    KAUST Repository

    Dang, Yangyang

    2016-01-01

    An entry from the Cambridge Structural Database, the world’s repository for small molecule crystal structures. The entry contains experimental data from a crystal diffraction study. The deposited dataset for this entry is freely available from the CCDC and typically includes 3D coordinates, cell parameters, space group, experimental conditions and quality measures.

  20. CCDC 1475929: Experimental Crystal Structure Determination : trimethylammonium tribromo-tin(iv)

    KAUST Repository

    Dang, Yangyang

    2016-01-01

    An entry from the Cambridge Structural Database, the world’s repository for small molecule crystal structures. The entry contains experimental data from a crystal diffraction study. The deposited dataset for this entry is freely available from the CCDC and typically includes 3D coordinates, cell parameters, space group, experimental conditions and quality measures.

  1. CCDC 1482638: Experimental Crystal Structure Determination : trimethylammonium trichloro-tin(iv)

    KAUST Repository

    Dang, Yangyang

    2016-01-01

    An entry from the Cambridge Structural Database, the world’s repository for small molecule crystal structures. The entry contains experimental data from a crystal diffraction study. The deposited dataset for this entry is freely available from the CCDC and typically includes 3D coordinates, cell parameters, space group, experimental conditions and quality measures.

  2. CCDC 1475930: Experimental Crystal Structure Determination : trimethylammonium trichloro-tin(iv)

    KAUST Repository

    Dang, Yangyang

    2016-01-01

    An entry from the Cambridge Structural Database, the world’s repository for small molecule crystal structures. The entry contains experimental data from a crystal diffraction study. The deposited dataset for this entry is freely available from the CCDC and typically includes 3D coordinates, cell parameters, space group, experimental conditions and quality measures.

  3. In situ monitoring of thermal crystallization of ultrathin tris(8-hydroxyquinoline) aluminum films using surface-enhanced Raman scattering.

    Science.gov (United States)

    Muraki, Naoki

    2014-01-01

    Thermal crystallization of 3, 10, and 60 nm-thick tris(8-hydroxyquinoline)aluminum (Alq3) films is studied using surface-enhanced Raman scattering with a constant heating rate. An abrupt higher frequency shift of the quinoline-stretching mode is found to be an indication of a phase transition of Alq3 molecules from amorphous to crystalline. While the 60 nm-thick film shows the same crystallization temperature as a bulk sample, the thinner films were found to have a lower crystallization temperature and slower rate of crystallization. Non-isothermal kinetics analysis is performed to quantify kinetic properties such as the Avrami exponent constants and crystallization rates of ultrathin Alq3 films.

  4. Crystal structure of clathrates of Hofmann dma-type

    International Nuclear Information System (INIS)

    NIshikiori, Sh.; Ivamoto, T.

    1999-01-01

    Seven new clathrates Cd(DMA) 2 Ni(CN) 4 ·xG (x=1, G=aniline, 2,3-xylidine, 2,4-xylidine, 2,5-xylidine, 2,6-xylidine, 3,5-xylidine, and x=2, G=2,4,6-trimethylaniline) of Hofmann type are synthesized by amine substitution for dimethylamine (DMA). On the base of x-ray diffraction data it is shown that geometry of guest molecule in cage-like hollow determines the structure of the host and crystal structure of clathrates. Two-dimension metallocomplex of the host of studied clathrates is characterized by elastic folded structure appearing as a result of angular deformation of bond between Cd atoms and host cyanide bridge. Guest molecule orientation is fixed by hydrogen bond. Structural elasticity of the host complex directs to differences in crystal structure of clathrates formed and to considerable variety of incorporated guests [ru

  5. Crystal structure mediates mode of cell death in TiO2 nanotoxicity

    International Nuclear Information System (INIS)

    Braydich-Stolle, Laura K.; Schaeublin, Nicole M.; Murdock, Richard C.; Jiang, Jingkun; Biswas, Pratim; Schlager, John J.; Hussain, Saber M.

    2009-01-01

    Certain properties that nanoparticles possess differentiate them from their bulk counterparts, and these characteristics must be evaluated prior to nanoparticle studies and include: size, shape, dispersion, physical and chemical properties, surface area, and surface chemistry. Early nanotoxicity studies evaluating TiO 2 have yielded conflicting data which identify either size or crystal structure as the mediating property for nano-TiO 2 toxicity. However, it is important to note that none of these studies examined size with the crystal structure composition controlled for or examined crystal structure while controlling the nanoparticle size. The goal of this study was to evaluate the role of size and crystal structure in TiO 2 nanotoxicity while controlling for as many other nanoproperties as possible using the HEL-30 mouse keratinocyte cell line as a model for dermal exposure. In the size-dependent studies, all the nanoparticles are 100% anatase, and aggregate sizes were determined in order to take into account the effect of agglomeration on size-dependent toxicity. In addition, varying crystal structures were assessed while the size of the nanoparticles was controlled. We were able to identify that both size and crystal structure contribute to cytotoxicity and that the mechanism of cell death varies based on crystal structure. The 100% anatase TiO 2 nanoparticles, regardless of size, induced cell necrosis, while the rutile TiO 2 nanoparticles initiated apoptosis through formation of reactive oxygen species (ROS).

  6. Shear induced structures in crystallizing cocoa butter

    Science.gov (United States)

    Mazzanti, Gianfranco; Guthrie, Sarah E.; Sirota, Eric B.; Marangoni, Alejandro G.; Idziak, Stefan H. J.

    2004-03-01

    Cocoa butter is the main structural component of chocolate and many cosmetics. It crystallizes in several polymorphs, called phases I to VI. We used Synchrotron X-ray diffraction to study the effect of shear on its crystallization. A previously unreported phase (phase X) was found and a crystallization path through phase IV under shear was observed. Samples were crystallized under shear from the melt in temperature controlled Couette cells, at final crystallization temperatures of 17.5^oC, 20^oC and 22.5^oC in Beamline X10A of NSLS. The formation of phase X was observed at low shear rates (90 s-1) and low crystallization temperature (17.5^oC), but was absent at high shear (720 s-1) and high temperature (20^oC). The d-spacing and melting point suggest that this new phase is a mixture rich on two of the three major components of cocoa butter. We also found that, contrary to previous reports, the transition from phase II to phase V can happen through the intermediate phase IV, at high shear rates and temperature.

  7. Lanthanide-doped NaScF4 nanoprobes: crystal structure, optical spectroscopy and biodetection.

    Science.gov (United States)

    Ai, Yu; Tu, Datao; Zheng, Wei; Liu, Yongsheng; Kong, Jintao; Hu, Ping; Chen, Zhuo; Huang, Mingdong; Chen, Xueyuan

    2013-07-21

    Trivalent lanthanide ions (Ln(3+))-doped inorganic nanoparticles (NPs) as potential luminescent bioprobes have been attracting tremendous interest because of their unique upconversion (UC) and downconversion (DC) luminescence properties. NaScF4, as an important host material, has been rarely reported and its crystal structure remains unclear. Herein, based on the single crystal X-ray diffraction, the space group of NaScF4 crystals was determined to be P31 containing multiple sites of Sc(3+) with crystallographic site symmetry of C1, which was verified by high-resolution photoluminescence spectroscopy of Eu(3+) at low temperature (10 K). Furthermore, monodisperse and size-controllable NaScF4:Ln(3+) NPs were synthesized via a facile thermal decomposition method. The biotinylated NaScF4:Er(3+)/Yb(3+) NPs were demonstrated for their applications as a heterogeneous UC luminescence bioprobe to detect avidin with a detection limit of 180 pM. After bioconjugation with amino-terminal fragment (ATF) of urokinase plasminogen activator (uPA), NaScF4:Ln(3+) NPs also exhibited specific recognition of cancer cells overexpressed with uPA receptor (uPAR, an important marker of tumor biology and metastasis), showing great potentials in tumor-targeted bioimaging.

  8. Crystal structure and vibrational spectra of piperazinium bis(4-hydroxybenzenesulphonate) molecular-ionic crystal

    Science.gov (United States)

    Marchewka, M. K.; Pietraszko, A.

    2008-02-01

    The piperazinium bis(4-hydroxybenzenesulphonate) crystallizes from water solution at room temperature in P2 1/ c space group of monoclinic system. The crystals are built up of doubly protonated piperazinium cations and ionized 4-hydroxybenzenesulphonate anions that interact through weak hydrogen bonds of O-H⋯O and N-H⋯O type. Mutual orientation of anions is determined by non-conventional hydrogen bonds of C-H⋯π type. Room temperature powder FT IR and FT Raman measurements were carried out. The vibrational spectra are in full agreement with the structure obtained from X-ray crystallography. The big single crystals of the title salt can be grown.

  9. Local layer structure of smectic liquid crystals by X-ray micro-diffraction

    CERN Document Server

    Takanishi, Y

    2003-01-01

    The local layer structure of smectic liquid crystal has been measured using time-resolved synchrotron X-ray micro-diffraction. Typical layer disorders observed in surface stabilized (anti-) ferroelectric liquid crystals, i.e. a stripe texture, a needed-like defect and a zigzag defect, are directly analyzed. The detailed analysis slows that the surface anchoring force due to the interaction between the liquid crystal molecule and the alignment thin film plays an important role to realize both the static and dynamic local layer structures. The layer structure of the circular domain observed in the liquid crystal of bent-shaped molecules found to depend on the applied electric field though the optical micrograph shows little difference. The frustrated, double and single layer structures of the bent-shaped molecule liquid crystal are determined depending on the terminal alkyl chain length. (author)

  10. Prediction of inorganic superconductors with quasi-one-dimensional crystal structure

    International Nuclear Information System (INIS)

    Volkova, L M; Marinin, D V

    2013-01-01

    Models of superconductors having a quasi-one-dimensional crystal structure based on the convoluted into a tube Ginzburg sandwich, which comprises a layered dielectric–metal–dielectric structure, have been suggested. The critical crystal chemistry parameters of the Ginzburg sandwich determining the possibility of the emergence of superconductivity and the T c value in layered high-T c cuprates, which could have the same functions in quasi-one-dimensional fragments (sandwich-type tubes), have been examined. The crystal structures of known low-temperature superconductors, in which one can mark out similar quasi-one-dimensional fragments, have been analyzed. Five compounds with quasi-one-dimensional structures, which can be considered as potential parents of new superconductor families, possibly with high transition temperatures, have been suggested. The methods of doping and modification of these compounds are provided. (paper)

  11. Evaluation of uranium dioxide thermal conductivity using molecular dynamics simulations

    International Nuclear Information System (INIS)

    Kim, Woongkee; Kaviany, Massoud; Shim, J. H.

    2014-01-01

    It can be extended to larger space, time scale and even real reactor situation with fission product as multi-scale formalism. Uranium dioxide is a fluorite structure with Fm3m space group. Since it is insulator, dominant heat carrier is phonon, rather than electrons. So, using equilibrium molecular dynamics (MD) simulation, we present the appropriate calculation parameters in MD simulation by calculating thermal conductivity and application of it to the thermal conductivity of polycrystal. In this work, we investigate thermal conductivity of uranium dioxide and optimize the parameters related to its process. In this process, called Green Kubo formula, there are two parameters i.e correlation length and sampling interval, which effect on ensemble integration in order to obtain thermal conductivity. Through several comparisons, long correlation length and short sampling interval give better results. Using this strategy, thermal conductivity of poly crystal is obtained and comparison with that of pure crystal is made. Thermal conductivity of poly crystal show lower value that that of pure crystal. In further study, we broaden the study to transport coefficient of radiation damaged structures using molecular dynamics. Although molecular dynamics is tools for treating microscopic scale, most macroscopic issues related to nuclear materials such as voids in fuel materials and weakened mechanical properties by radiation are based on microscopic basis. Thus, research on microscopic scale would be expanded in this field and many hidden mechanism in atomic scales will be revealed via both atomic scale simulations and experiments

  12. Synthesis and crystal structures of three new benzotriazolylpropanamides

    Directory of Open Access Journals (Sweden)

    Donna S. Amenta

    2017-06-01

    Full Text Available The base-catalyzed Michael addition of 2-methylacrylamide to benzotriazole afforded 3-(1H-benzotriazol-1-yl-2-methylpropanamide, C10H12N4O (1, in 32% yield in addition to small amounts of isomeric 3-(2H-benzotriazol-2-yl-2-methylpropanamide, C10H12N4O (2. In a similar manner, 3-(1H-benzotriazol-1-yl-N,N-dimethylpropanamide, C11H14N4O (3, was prepared from benzotriazole and N,N-dimethylacrylamide. All three products have been structurally characterized by single-crystal X-ray diffraction. The crystal structures of 1 and 2 comprise infinite arrays formed by N—H...O and N—H...N bridges, as well as π–π interactions, while the molecules of 3 are aggregated to simple π-dimers in the crystal.

  13. Fabrication and Crystal Structure of Sol-Gel Deposited BST Thin Films with Compositional Gradient

    Directory of Open Access Journals (Sweden)

    Czekaj D.

    2017-06-01

    Full Text Available In the present research technology of compositionally graded barium strontium titanate Ba1-xSrxTiO3 thin films deposited on stainless steel substrates by sol-gel spin coating followed with thermal annealing at T = 650°C is reported. Results of thermal behavior of the sol-gel derived powders with compositions used for fabrication of graded structure (i.e. with Sr mole fraction x = 0.5, 0.4 and 0.3 are described. X-ray diffraction studies of the phase composition and crystal structure of such complex thin film configuration are given. It was found that gel powders exhibited a large total weight loss of about Δm ≈ 44-47%. Three stages of weight loss took place at temperature ranges: below T ≈ 300°C, at ΔT ≈ 300-500°C and between T = 600°C and T = 800°C. Phase analysis has shown that the dominating phase is Ba0.67Sr0.33TiO3 compound while the second phase is Ba0.7Sr0.3TiO3 or Ba0.5Sr0.5TiO3 for “up-graded” and “down-graded” structure, respectively.

  14. Structural, optoelectronic, luminescence and thermal properties of Ga-doped zinc oxide thin films

    International Nuclear Information System (INIS)

    Shinde, S.S.; Shinde, P.S.; Oh, Y.W.; Haranath, D.; Bhosale, C.H.; Rajpure, K.Y.

    2012-01-01

    Highlights: ► The ecofriendly deposition of Ga-doped zinc oxide. ► Influence of Ga doping onto physicochemical properties in aqueous media. ► Electron–phonon coupling by Raman. ► Chemical bonding structure and valence band analysis by XPS. - Abstract: Ga-doped ZnO thin films are synthesized by chemical spray pyrolysis onto corning glass substrates in aqueous media. The influence of gallium doping on to the photoelectrochemical, structural, Raman, XPS, morphological, optical, electrical, photoluminescence and thermal properties have been investigated in order to achieve good quality films. X-ray diffraction study depicts the films are polycrystalline and fit well with hexagonal (wurtzite) crystal structure with strong orientations along the (0 0 2) and (1 0 1) planes. Presence of E 2 high mode in Raman spectra indicates that the gallium doping does not change the wurtzite structure. The coupling strength between electron and LO phonon has experimentally estimated. In order to understand the chemical bonding structure and electronic states of the Ga-doped ZnO thin films XPS analysis have been studied. SEM images shows the films are adherent, compact, densely packed with hexagonal flakes and spherical grains. Optical transmittance and reflectance measurements have been carried out. Room temperature PL spectra depict violet, blue and green emission in deposited films. The specific heat and thermal conductivity study shows the phonon conduction behavior is dominant in these polycrystalline films.

  15. Polyethylene/synthetic boehmite alumina nanocomposites: Structure, thermal and rheological properties

    Directory of Open Access Journals (Sweden)

    2010-05-01

    Full Text Available Synthetic boehmite alumina (BA has been incorporated up to 8 wt% in low density polyethylene (LDPE and high density polyethylene (HDPE, respectively, by melt compounding. The primary nominal particle size of these two BA grades was 40 and 60 nm, respectively. The dispersion of the BA in polyethylene (PE matrices was investigated by scanning and transmission electron microscopy techniques (SEM and TEM. The thermal (melting and crystallization, thermooxidative (oxidation induction temperature and time, and rheological behaviors of the nanocomposites were determined. It was found that BA is nanoscale dispersed in both LDPE and HDPE without any surface treatment and additional polymeric compatibilizer. BA practically did not influence the thermal (melting and crystallization and rheological properties of the parent PEs. On the other hand, BA worked as a powerful thermooxidative stabilizer for LDPE, and especially for HDPE nanocomposites.

  16. Crystal structure and optical properties of silver nanorings

    Science.gov (United States)

    Zhou, Li; Fu, Xiao-Feng; Yu, Liao; Zhang, Xian; Yu, Xue-Feng; Hao, Zhong-Hua

    2009-04-01

    We report the polyol synthesis and crystal structure characterization of silver nanorings, which have perfect circular shape, smooth surface, and elliptical wire cross-section. The characterization results show that the silver nanorings have well-defined crystal of singly twinned along the whole ring. The spatial distribution of the scattering of a silver nanoring with slanted incidence reveals the unique focus effect of the nanoring, and the focus scattering varies with the incident wavelength. The silver nanorings with perfect geometry and well-defined crystal have potential applications in nanoscaled photonics, plasmonic devices, and optical manipulation.

  17. Crystal structure of PrRh4.8B2

    International Nuclear Information System (INIS)

    Higashi, Iwami; Shishido, Toetsu; Takei, Humihiko; Kobayashi, Takaaki

    1988-01-01

    The crystal structure of a new rare earth ternary boride PrRh 4.8 B 2 was investigated, by single-crystal X-ray diffractometry. PrRh 4.8 B 2 crystallizes in the orthorhombic space group Immm with a = 9.697(4), b = 5.577(2), c = 25.64(3) A, Z=12. The intensity data were collected on a four-circle diffractometer with graphite-monochromatized Mo Kα radiation. The structure was solved by the Patterson method and refined with a full-matrix least-squares program to an R value (equal to Σvertical strokeΔFvertical stroke/Σvertical strokeF 0 vertical stroke) of 0.055 for 1176 reflections. (orig.)

  18. PAK4 crystal structures suggest unusual kinase conformational movements.

    Science.gov (United States)

    Zhang, Eric Y; Ha, Byung Hak; Boggon, Titus J

    2018-02-01

    In order for protein kinases to exchange nucleotide they must open and close their catalytic cleft. These motions are associated with rotations of the N-lobe, predominantly around the 'hinge region'. We conducted an analysis of 28 crystal structures of the serine-threonine kinase, p21-activated kinase 4 (PAK4), including three newly determined structures in complex with staurosporine, FRAX486, and fasudil (HA-1077). We find an unusual motion between the N-lobe and C-lobe of PAK4 that manifests as a partial unwinding of helix αC. Principal component analysis of the crystal structures rationalizes these movements into three major states, and analysis of the kinase hydrophobic spines indicates concerted movements that create an accessible back pocket cavity. The conformational changes that we observe for PAK4 differ from previous descriptions of kinase motions, and although we observe these differences in crystal structures there is the possibility that the movements observed may suggest a diversity of kinase conformational changes associated with regulation. Protein kinases are key signaling proteins, and are important drug targets, therefore understanding their regulation is important for both basic research and clinical points of view. In this study, we observe unusual conformational 'hinging' for protein kinases. Hinging, the opening and closing of the kinase sub-domains to allow nucleotide binding and release, is critical for proper kinase regulation and for targeted drug discovery. We determine new crystal structures of PAK4, an important Rho-effector kinase, and conduct analyses of these and previously determined structures. We find that PAK4 crystal structures can be classified into specific conformational groups, and that these groups are associated with previously unobserved hinging motions and an unusual conformation for the kinase hydrophobic core. Our findings therefore indicate that there may be a diversity of kinase hinging motions, and that these may

  19. Thermal expansion behavior in fabricated cellular structures

    International Nuclear Information System (INIS)

    Oruganti, R.K.; Ghosh, A.K.; Mazumder, J.

    2004-01-01

    Thermal expansion behavior of cellular structures is of interest in applications where undesirable deformation and failure are caused by thermal expansion mismatch. This report describes the role of processing-induced effects and metallurgical aspects of melt-processed cellular structures, such as a bi-material structure designed to contract on heating, as well as uni-material structures of regular and stochastic topology. This bi-material structure utilized the principle of internal geometric constraints to alter the expansion behavior of the internal ligaments to create overall contraction of the structure. Homogenization design method was used to design the structure, and fabrication was by direct metal deposition by laser melting of powder in another part of a joint effort. The degree of porosity and grain size in the fabricated structure are characterized and related to the laser deposition parameters. The structure was found to contract upon heating over a short range of temperature subsequent to which normal expansion ensued. Also examined in this report are uni-material cellular structures, in which internal constraints arise from residual stress variations caused by the fabrication process, and thereby alter their expansion characteristics. A simple analysis of thermal strain of this material supports the observed thermal expansion behavior

  20. Thermal annealing and recoil reactions of 128I atoms in thermal neutron activated iodate-nitrate mixed crystals

    International Nuclear Information System (INIS)

    Mishra, S.P.; Sharma, R.B.

    1983-01-01

    Recoil reaction of 128 I atoms in neutron irradiated mixed crystals (iodate-nitrate) have been studied by thermal annealing methods. The retention of 128 I (i.e. radioactivity of 128 I retained in the parent chemi cal form) decreases sharply in the beginning and then attains saturation value with the increase in concentration of nitrate. The annealing followed the usual characteristic pattern, viz., a steep rise in retention within the first few minutes and then a saturation value thereafter but these saturation values in case of mixed crystals are lower in comparison to those of pure iodate targets. The process obeys simple first order kinetics and the activation energy obtained are of lower order than those obtained in case of pure targets. The results are discussed in the light of present ideas and the role of nitrate ion and its radiolytic products have also been invoked. (author)

  1. Crystal-Size-Dependent Structural Transitions in Nanoporous Crystals: Adsorption-Induced Transitions in ZIF-8

    KAUST Repository

    Zhang, Chen

    2014-09-04

    © 2014 American Chemical Society. Understanding the crystal-size dependence of both guest adsorption and structural transitions of nanoporous solids is crucial to the development of these materials. We find that nano-sized metal-organic framework (MOF) crystals have significantly different guest adsorption properties compared to the bulk material. A new methodology is developed to simulate the adsorption and transition behavior of entire MOF nanoparticles. Our simulations predict that the transition pressure significantly increases with decreasing particle size, in agreement with crystal-size-dependent experimental measurements of the N2-ZIF-8 system. We also propose a simple core-shell model to examine this effect on length scales that are inaccessible to simulations and again find good agreement with experiments. This study is the first to examine particle size effects on structural transitions in ZIFs and provides a thermodynamic framework for understanding the underlying mechanism.

  2. Growth and characterization of nonlinear optical single crystal: Nicotinic L-tartaric

    Energy Technology Data Exchange (ETDEWEB)

    Sheelarani, V.; Shanthi, J., E-mail: shanthinelson@gmail.com [Department of Physics, Avinashilingam Institute for Home Science and Higher Education for Women, Coimbatore-641043 (India)

    2015-06-24

    Nonlinear optical single crystals were grown from Nicotinic and L-Tartaric acid by slow evaporation technique at room temperature. Structure of the grown crystal was confirmed by single crystal X-ray diffraction studies, The crystallinity of the Nicotinic L-Tartaric (NLT) crystals was confirmed from the powder XRD pattern. The transparent range and cut off wavelength of the grown crystal was studied by the UV–Vis spectroscopic analysis.The thermal stability of the crystal was studied by TG-DTA. The second harmonic generation (SHG) efficiency of NLT was confirmed by Kurtz Perry technique.

  3. Structural and optical properties of WTe2 single crystals synthesized by DVT technique

    Science.gov (United States)

    Dixit, Vijay; Vyas, Chirag; Pathak, V. M.; Soalanki, G. K.; Patel, K. D.

    2018-05-01

    Layered transition metal di-chalcogenide (LTMDCs) crystals have attracted much attention due to their potential in optoelectronic device applications recently due to realization of their monolayer based structures. In the present investigation we report growth of WTe2 single crystals by direct vapor transport (DVT) technique. These crystals are then characterized by energy dispersive analysis of x-rays (EDAX) to study stoichiometric composition after growth. The structural properties are studied by x-ray diffraction (XRD) and selected area electron diffraction (SAED) is used to confirm orthorhombic structure of grown WTe2 crystal. Surface morphological properties of the crystals are also studied by scanning electron microscope (SEM). The optical properties of the grown crystals are studied by UV-Visible spectroscopy which gives direct band gap of 1.44 eV for grown WTe2 single crystals.

  4. Thermal fatigue. Fluid-structure interaction at thermal mixing events

    International Nuclear Information System (INIS)

    Schuler, X.; Herter, K.H.; Moogk, S.; Laurien, E.; Kloeren, D.; Kulenovic, R.; Kuschewski, M.

    2012-01-01

    In the framework of the network research project ''Thermal Fatigue - Basics of the system-, outflow- and material-characteristics of piping under thermal fatigue'' funded by the German Federal Ministry of Education and Research (BMBF) fundamental numerical and experimental investigations on the material behaviour under transient thermal-mechanical stress conditions (high cycle fatigue - HCF) are carried out. The project's background and its network of scientific working groups with their individual working tasks are briefly introduced. The main focus is especially on the joint research tasks within the sub-projects of MPA and IKE which are dealing with thermal mixing of flows in a T-junction configuration and the fluidstructure- interactions (FSI). Therefore, experiments were performed with the newly established FSI test facility at MPA which enables single-phase flow experiments of water in typical power plant piping diameters (DN40 and DN80) at high pressure (maximum 75 bar) and temperatures (maximum 280 C). The experimental results serve as validation data base for numerical modelling of thermal flow mixing by means of thermo-fluid dynamics simulations applying CFD techniques and carried out by IKE as well as for modelling of thermal and mechanical loads of the piping structure by structural mechanics simulations with FEM methods which are executed by MPA. The FSI test facility will be described inclusively the applied measurement techniques, e. g. in particular the novel near-wall LED-induced Fluorescence method for non-intrusive flow temperature measurements. First experimental data and numerical results from CFD and FEM simulations of the thermal mixing of flows in the T-junction are presented.

  5. A hybrid computational-experimental approach for automated crystal structure solution

    Science.gov (United States)

    Meredig, Bryce; Wolverton, C.

    2013-02-01

    Crystal structure solution from diffraction experiments is one of the most fundamental tasks in materials science, chemistry, physics and geology. Unfortunately, numerous factors render this process labour intensive and error prone. Experimental conditions, such as high pressure or structural metastability, often complicate characterization. Furthermore, many materials of great modern interest, such as batteries and hydrogen storage media, contain light elements such as Li and H that only weakly scatter X-rays. Finally, structural refinements generally require significant human input and intuition, as they rely on good initial guesses for the target structure. To address these many challenges, we demonstrate a new hybrid approach, first-principles-assisted structure solution (FPASS), which combines experimental diffraction data, statistical symmetry information and first-principles-based algorithmic optimization to automatically solve crystal structures. We demonstrate the broad utility of FPASS to clarify four important crystal structure debates: the hydrogen storage candidates MgNH and NH3BH3; Li2O2, relevant to Li-air batteries; and high-pressure silane, SiH4.

  6. Synthesis and characterization of L-tyrosine hydrochloride crystals submitted to high and low temperatures

    Energy Technology Data Exchange (ETDEWEB)

    Santos, C.A.A.S.; Facanha Filho, P.F.; Ribeiro, L.H.L.; Victor, F.M.S.; Abreu, D.C.; Santos, A.O. dos; Carvalho, J.O.; Soares, R.A.; Sousa, J.C.F.; Lima, R.C.; Cavaignac, A.O. [Universidade Federal do Maranhao (UFMA), MA (Brazil)

    2016-07-01

    Full text: New materials are emerging and generate advances in nonlinear optics that studies the phenomena related to changes in optical properties when occurs interaction of light with the matter. Semi organic crystals present such properties. The goal is this work is to produce semi organic single crystal of L-tyrosine hydrochloride (LTHCl) and verify their thermal stability when subjected to high and low temperatures. The single crystals of LTHCl were produced for solubilization of amino acid L-tyrosine in hydrochloric acid using slow solvent evaporation technique at a constant temperature of 25 deg C. The X-ray diffraction (XRD) and refining by the Rietveld method were used to confirm the structure of the material. The thermal stability was investigated using DSC, TGA-DTA. The LTHCl crystal belongs to the monoclinic system, with two molecules per unit cell. The refinement by the Rietveld method showed good results with Rwp= 8.49% and Rp= 6.29% with S=1.13. Thermal analysis shown an endothermic event at about 160°C, which can be associated with phase transition occurred in LTHCl crystal. It was also observed that the crystal melting point occurs at a temperature of 230°C. No water of crystallization was found in the crystal structure, which was confirmed by Raman spectroscopy and thermal analysis. From the Raman spectroscopy experiments in function of temperature, no significant changes was observe in the behavior of vibrational normal modes between temperatures of -253 and 170 deg C. Finally, a monoclinic crystal system LTHCl is stable up to 160°C at high temperatures and -253°C at low temperatures. Therefore, our investigation has proved that LTHCl crystals can be used in this range of temperature without the lost of their nonlinear optical properties. (author)

  7. Origami structures for tunable thermal expansion

    Science.gov (United States)

    Boatti, Elisa; Bertoldi, Katia

    Materials with engineered thermal expansion, capable of achieving targeted and extreme area/volume changes in response to variations in temperature, are important for a number of aerospace, optical, energy, and microelectronic applications. While most of the proposed structures with tunable coefficient of thermal expansion consist of bi-material 2D or 3D lattices, here we propose a periodic metastructure based on a bilayer Miura-Ori origami fold. We combine experiments and simulations to demonstrate that by tuning the geometrical and mechanical parameters an extremely broad range of thermal expansion coefficients can be obtained, spanning both negative and positive values. Additionally, the thermal properties along different directions can be adjusted independently. Differently from all previously reported systems, the proposed structure is non-porous.

  8. On dislocation inhomogeneity of electroerosion crater zone in molybdenum single crystals

    International Nuclear Information System (INIS)

    Larikov, L.N.; Dubovitskaya, N.V.; Zakharov, S.M.

    1979-01-01

    Methods of diffraction electron microscopy, X-ray analysis and microhardness measurements have been applied to study the inhomogeneity of dislocation structure of the electroerosion crater zone in molybdenum single crystals. Microhardness inhomogeneous distribution in this zone is established, conditioned by changes in dislocation structure as a result of the development of thermally activated processes of the plastic deformation and dynamic recovery. Dislocationless channels are detected in predeformed crystals

  9. Magnetic and thermal properties of amorphous TbFeCo alloy films

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Ke, E-mail: K.Wang@hqu.edu.cn; Dong, Shuo; Huang, Ya; Qiu, Yuzhen

    2017-07-15

    Highlights: • Significant increase in magnetization is observed in TbFeCo upon crystallization. • The crystallization temperature is determined in the range between 400 and 450 °C. • The activation barriers for structural changes are obtained successfully. • Better thermal stability against crystallization and oxidation is demonstrated in FeCo-rich sample than Tb-rich type. - Abstract: Amorphous TbFeCo material with perpendicular magnetic anisotropy is currently attracting more attention for potential applications in spintronic devices and logic memories. We systematically investigate magnetic, structural, thermal, optical and electrical properties of TbFeCo alloy films. It shows out-of-plane easy axis of the films turns into in-plane orientation after annealing. Significant increase in saturation magnetization in the temperature range between 400 and 450 °C is revealed by thermomagnetic measurements. The occurrence of crystallization and oxidation at high temperatures is confirmed by X-ray diffraction measurements. Pronounced changes in optical reflectance and sheet resistance are observed with temperature, in line with structural relaxation and change. The activation barriers for crystallization and oxidation are determined to be 1.01 eV and 0.83 eV, respectively, for FeCo-rich and Tb-rich samples. Better thermal stability against crystallization and oxidation is demonstrated in the FeCo-rich sample than the Tb-rich type. Our results provide some useful information for the alloy used in device fabrication.

  10. Radiative cooling of solar absorbers using a visibly transparent photonic crystal thermal blackbody

    Science.gov (United States)

    Zhu, Linxiao; Raman, Aaswath P.; Fan, Shanhui

    2015-01-01

    A solar absorber, under the sun, is heated up by sunlight. In many applications, including solar cells and outdoor structures, the absorption of sunlight is intrinsic for either operational or aesthetic considerations, but the resulting heating is undesirable. Because a solar absorber by necessity faces the sky, it also naturally has radiative access to the coldness of the universe. Therefore, in these applications it would be very attractive to directly use the sky as a heat sink while preserving solar absorption properties. Here we experimentally demonstrate a visibly transparent thermal blackbody, based on a silica photonic crystal. When placed on a silicon absorber under sunlight, such a blackbody preserves or even slightly enhances sunlight absorption, but reduces the temperature of the underlying silicon absorber by as much as 13 °C due to radiative cooling. Our work shows that the concept of radiative cooling can be used in combination with the utilization of sunlight, enabling new technological capabilities. PMID:26392542

  11. First-principles study of crystal and electronic structure of rare-earth cobaltites

    Energy Technology Data Exchange (ETDEWEB)

    Topsakal, M.; Leighton, C.; Wentzcovitch, R. M. [Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, Minnesota 55455 (United States)

    2016-06-28

    Using density functional theory plus self-consistent Hubbard U (DFT + U{sub sc}) calculations, we have investigated the structural and electronic properties of the rare-earth cobaltites RCoO{sub 3} (R = Pr – Lu). Our calculations show the evolution of crystal and electronic structure of the insulating low-spin RCoO{sub 3} with increasing rare-earth atomic number (decreasing ionic radius), including the invariance of the Co-O bond distance (d{sub Co–O}), the decrease of the Co-O-Co bond angle (Θ), and the increase of the crystal field splitting (Δ{sub CF}) and band gap energy (E{sub g}). Agreement with experiment for the latter improves considerably with the use of DFT + U{sub sc} and all trends are in good agreement with the experimental data. These trends enable a direct test of prior rationalizations of the trend in spin-gap associated with the spin crossover in this series, which is found to expose significant issues with simple band based arguments. We also examine the effect of placing the rare-earth f-electrons in the core region of the pseudopotential. The effect on lattice parameters and band structure is found to be small, but distinct for the special case of PrCoO{sub 3} where some f-states populate the middle of the gap, consistent with the recent reports of unique behavior in Pr-containing cobaltites. Overall, this study establishes a foundation for future predictive studies of thermally induced spin excitations in rare-earth cobaltites and similar systems.

  12. Crystal Structures of GaN Nanodots by Nitrogen Plasma Treatment on Ga Metal Droplets

    Directory of Open Access Journals (Sweden)

    Yang-Zhe Su

    2018-06-01

    Full Text Available Gallium nitride (GaN is one of important functional materials for optoelectronics and electronics. GaN exists both in equilibrium wurtzite and metastable zinc-blende structural phases. The zinc-blende GaN has superior electronic and optical properties over wurtzite one. In this report, GaN nanodots can be fabricated by Ga metal droplets in ultra-high vacuum and then nitridation by nitrogen plasma. The size, shape, density, and crystal structure of GaN nanodots can be characterized by transmission electron microscopy. The growth parameters, such as pre-nitridation treatment on Si surface, substrate temperature, and plasma nitridation time, affect the crystal structure of GaN nanodots. Higher thermal energy could provide the driving force for the phase transformation of GaN nanodots from zinc-blende to wurtzite structures. Metastable zinc-blende GaN nanodots can be synthesized by the surface modification of Si (111 by nitrogen plasma, i.e., the pre-nitridation treatment is done at a lower growth temperature. This is because the pre-nitridation process can provide a nitrogen-terminal surface for the following Ga droplet formation and a nitrogen-rich condition for the formation of GaN nanodots during droplet epitaxy. The pre-nitridation of Si substrates, the formation of a thin SiNx layer, could inhibit the phase transformation of GaN nanodots from zinc-blende to wurtzite phases. The pre-nitridation treatment also affects the dot size, density, and surface roughness of samples.

  13. Crystal structure of (NH4)2[Fe(II) 5(HPO3)6], a new open-framework phosphite.

    Science.gov (United States)

    Berrocal, Teresa; Mesa, Jose Luis; Larrea, Edurne; Arrieta, Juan Manuel

    2014-11-01

    Di-ammonium hexa-phosphito-penta-ferrate(II), (NH4)2[Fe5(HPO3)6], was synthesized under mild hydro-thermal conditions and autogeneous pressure, yielding twinned crystals. The crystal structure exhibits an [Fe(II) 5(HPO3)6](2-) open framework with NH4 (+) groups as counter-cations. The anionic skeleton is based on (001) sheets of [FeO6] octa-hedra (one with point-group symmetry 3.. and one with .2.) linked along [001] through [HPO3](2-) oxoanions. Each sheet is constructed from 12-membered rings of edge-sharing [FeO6] octa-hedra, giving rise to channels with a radius of ca 3.1 Å in which the disordered NH4 (+) cations are located. The IR spectrum shows vibrational bands typical for phosphite and ammonium groups.

  14. Synthesis, spectral characterization and X-ray crystal structure studies of 3-(benzo[d][1,3]dioxol-5-yl)-5-(3-methylthiophen-2-yl)-4,5-dihydro-1H-pyrazole-1-carboxamide: Hirshfeld surface, DFT and thermal analysis

    Science.gov (United States)

    Kumara, Karthik; Dileep Kumar, A.; Naveen, S.; Ajay Kumar, K.; Lokanath, N. K.

    2018-06-01

    A novel pyrazole derivative, 3-(benzo[d][1,3]dioxol-5-yl)-5-(3-methylthiophen-2-yl)-4,5-dihydro-1H-pyrazole-1-carboxamide was synthesized and characterized by elemental analysis, FT-IR, NMR (1H and 13C), MS, UV-visible spectra and finally the structure was confirmed by the single crystal X-ray diffraction studies. The title compound (C16H15N3O3S) crystallized in the triclinic crystal system, with the space group Pī. A dihedral angle of 65.84(1)° between the pyrazole and the thiophene rings confirms the twisted conformation between them. The X-ray structure revealed that the pyrazole ring adopts an E-form and an envelope conformation on C7 atom. The crystal and molecular structure of the title compound is stabilized by inter molecular hydrogen bonds. The compound possesses three dimensional supramolecular self-assembly, in which Csbnd H⋯O and Nsbnd H⋯O chains build up two dimensional arrays, which are extended to 3D network through Csbnd H···Cg and Csbnd O···Cg interactions. The structure also exhibits intramolecular hydrogen bonds of the type Nsbnd H⋯N and π···π stacking interactions, which contributes to the crystal packing. Further, Hirshfeld surface analysis was carried out for the graphical visualization of several short intermolecular interactions on the molecular surface while the 2D finger-print plot provides percentage contribution of each individual atom-to-atom interactions. The thermal decomposition of the compound has been studied by thermogravimetric analysis. The molecular geometries and electronic structures of the compounds were fully optimized, calculated with ab-initio methods by HF, DFT/B3LYP functional in combination of different basis set with different solvent environment and the structural parameters were compared with the experimental data. The Mulliken atomic charges and molecular electrostatic potential on molecular van der Waals (vdW) surface were calculated to know the electrophilic and nucleophilic regions

  15. First principles study of structural, electronic and optical properties of KCl crystal

    International Nuclear Information System (INIS)

    Chen, Z.J.; Xiao, H.Y.; Zu, X.T.

    2006-01-01

    The structural, electronic and optical properties of KCl crystal in B1, B2, B3 and T1 structures have been systematically studied using first-principle pseudopotential calculations. In addition, pressure-induced phase transition has also been investigated. It was found that when the pressure is below 2.8 GPa, the B1 structure is the most stable. Above 2.8 GPa KCl crystal will undergo a structural phase transition from the relatively open NaCl structure into the more dense CsCl atomic arrangement. Our results also suggested that at about 1.2 GPa structural phase transition from B3 to T1 will occur. When the pressure arrives at 39.9 GPa, the phase transition will occur from B2 to T1. In addition, we found KCl Crystal has indirect band gap in B2 structure and direct band gap in B1, B3 and T1 structures. The band gap value is the smallest in the T1 structure and is the largest in the B1 and B3 structures. Our calculations are found to be in good agreement with available experimental and theoretical results. The dielectric function and energy loss function of KCl crystal in four structures (B1, B2, B3 and T1) have been calculated as well as the anisotropy of the optical properties of KCl crystal in T1 structure

  16. Solvent effects on the crystal growth structure and morphology of the pharmaceutical dirithromycin

    Science.gov (United States)

    Wang, Yuan; Liang, Zuozhong

    2017-12-01

    Solvent effects on the crystal structure and morphology of pharmaceutical dirithromycin molecules were systematically investigated using both experimental crystallization and theoretical simulation. Dirithromycin is one of the new generation of macrolide antibiotics with two polymorphic forms (Form I and Form II) and many solvate forms. Herein, six solvates of the dirithromycin, including acetonitrile, acetonitrile/water, acetone, 1-propanol, N,N-dimethylformamide (DMF) and cyclohexane, were studied. Experimentally, we crystallized the dirithromycin molecules in different solvents by the solvent evaporating method and measured the crystal structures with the X-ray diffraction (XRD). We compared these crystal structures of dirithromycin solvates and analyzed the solvent property-determined structure evolution. The solvents have a strong interaction with the dirithromycin molecule due to the formation of inter-molecular interactions (such as the hydrogen bonding and close contacts (sum of vdW radii)). Theoretically, we calculated the ideal crystal habit based on the solvated structures with the attachment growth (AE) model. The predicted morphologies and aspect ratios of dirithromycin solvates agree well with the experimental results. This work could be helpful to better understand the structure and morphology evolution of solvates controlled by solvents and guide the crystallization of active pharmaceutical ingredients in the pharmaceutical industry.

  17. Cyclic saturation dislocation structures of multiple-slip-oriented copper single crystals

    International Nuclear Information System (INIS)

    Li, X.W.; Chinese Academy of Sciences, Shenyang; Umakoshi, Y.; Li, S.X.; Wang, Z.G.

    2001-01-01

    The dislocation structures of [011] and [ anti 111] multiple-slip-oriented Cu single crystals cyclically saturated at constant plastic strain amplitudes were investigated through transmission electron microscopy. The results obtained on [001] multiple-slip-oriented Cu single crystals were also included for summarization. Unlike the case for single-slip-oriented Cu single crystals, the crystallographic orientation has a strong effect on the saturation dislocation structure in these three multiple-slip-oriented crystals. For the [011] crystal, different dislocation patterns such as veins, PSB walls, labyrinths and PSB ladders were observed. The formation of PSB ladders is believed to be a major reason for the existence of a plateau region in the cyclic stress-strain (CSS) curve for the [011] crystal. The cyclic saturation dislocation structure of a [ anti 111] crystal cycled at a low applied strain amplitude γ pl of 2.0 x 10 -4 was found to consist of irregular cells, which would develop into a more regular arrangement (e. g. PSB ladder-like) and the scale of which tends to decrease with increasing γ pl . Finally, three kinds of representative micro-deformation mode were summarized and termed as labyrinth-mode (or [001]-mode), cell-mode (or [ anti 111]-mode) and PSB ladder-mode (or [011]-mode). (orig.)

  18. CRYSTAL STRUCTURE ANALYSIS OF A PUTATIVE OXIDOREDUCTASE FROM KLEBSIELLA PNEUMONIAE

    Energy Technology Data Exchange (ETDEWEB)

    Baig, M.; Brown, A.; Eswaramoorthy, S.; Swaminathan, S.

    2009-01-01

    Klebsiella pneumoniae, a gram-negative enteric bacterium, is found in nosocomial infections which are acquired during hospital stays for about 10% of hospital patients in the United States. The crystal structure of a putative oxidoreductase from K. pneumoniae has been determined. The structural information of this K. pneumoniae protein was used to understand its function. Crystals of the putative oxidoreductase enzyme were obtained by the sitting drop vapor diffusion method using Polyethylene glycol (PEG) 3350, Bis-Tris buffer, pH 5.5 as precipitant. These crystals were used to collect X-ray data at beam line X12C of the National Synchrotron Light Source (NSLS) at Brookhaven National Laboratory (BNL). The crystal structure was determined using the SHELX program and refi ned with CNS 1.1. This protein, which is involved in the catalysis of an oxidation-reduction (redox) reaction, has an alpha/beta structure. It utilizes nicotinamide adenine dinucleotide phosphate (NADP) or nicotine adenine dinucleotide (NAD) to perform its function. This structure could be used to determine the active and co-factor binding sites of the protein, information that could help pharmaceutical companies in drug design and in determining the protein’s relationship to disease treatment such as that for pneumonia and other related pathologies.

  19. Energy conservation through thermally insulated structures

    International Nuclear Information System (INIS)

    Abu-Dayyeh, Ayoub

    2006-01-01

    The propose of this paper is to explicate its title through investigating the different available thermal insulating materials and the various techniques of application, as practiced in Jordan, in particular, and as practiced in many parts of the world in general, which will satisfy Jordanian standards in terms of heat transmittance and thermal comfort. A brief comparison with international standards will shed some light on the stringent measures enforced in the developed world and on our striving aspirations to keep pace. The paper consists of four main parts, pseudoally divided. The first part will deal with the mechanism of heat loss and heat gain in structures during summer and winter. It will also explain the Time-lag phenomenon which is vital for providing thermal comfort inside the dwellings. The second part will evaluate the damages induced by the temperature gradients on the different elements of the structure, particularly next to exterior opening. The paper will also demonstrate the damages induced by water condensation and fungus growth on the internal surfaces of the structure and within its skeleton. A correlation between condensation and thermal insulation will be established. The third part of the paper will evaluate the different available thermal insulating materials and the application techniques which will satisfy the needs for thermal insulating and thermal comfort at the least cost possible. The criteria of an economical design shall be established. As a conclusion, the paper infers answers to the following different criteria discussed throughout the different parts of the paper. The main theme of questions can be summarized as follows: 1)How energy conservation is possible due to thermal insulation? 2)The feasibility of investing in thermal insulation? 3)Is thermal comfort and a healthy atmosphere possible inside the dwellings during all season! What are the conditions necessary to sustain them? 4)What environmental impacts can exist due to

  20. The crystal structure and luminescence quenching of poly- and single-crystalline KYW{sub 2}O{sub 8}:Tb{sup 3+}

    Energy Technology Data Exchange (ETDEWEB)

    Schwung, Sebastian [Fachbereich Chemieingenieurwesen, Fachhochschule Münster, Stegerwaldstraße 39, 48565 Steinfurt (Germany); Rytz, Daniel, E-mail: rytz@fee-io.de [Forschungsinstitut für mineralische und metallische Werkstoffe-Edelsteine/ Edelmetalle-GmbH (FEE), Struthstraße 2, 55743 Idar-Oberstein (Germany); Heying, Birgit; Rodewald, Ute Ch.; Niehaus, Oliver [Institut für Anorganische und Analytische Chemie, Universität Münster, Corrensstrasse 30 48149 Münster (Germany); Enseling, David [Fachbereich Chemieingenieurwesen, Fachhochschule Münster, Stegerwaldstraße 39, 48565 Steinfurt (Germany); Jüstel, Thomas, E-mail: tj@fh-muenster.de [Fachbereich Chemieingenieurwesen, Fachhochschule Münster, Stegerwaldstraße 39, 48565 Steinfurt (Germany); Pöttgen, Rainer, E-mail: pottgen@uni-muenster.de [Institut für Anorganische und Analytische Chemie, Universität Münster, Corrensstrasse 30 48149 Münster (Germany)

    2015-10-15

    Terbium-substituted KYW{sub 2}O{sub 8} single crystals of high optical quality were grown by the top seeded solution growth technique. The degree of yttrium–terbium mixed occupancy was determined for two samples through structure refinements on the basis of single crystal X-ray diffractometer data. Temperature dependent magnetic susceptibility data underline the paramagnetic nature of terbium doped crystals. No magnetic ordering is evident down to 2 K. Luminescence measurements yield the typical excitation and emission spectra as expected for Tb{sup 3+} activated materials. The decay time of Tb{sup 3+} decreases linearly with the Tb{sup 3+} concentration, while the excess of thermal quenching does not change significantly. At about 405 K the decay time is reduced by roughly 50% relative to the low-temperature value, both for the powders as for the single crystals. - Highlights: • Single crystalline and powder series of K(Y,Tb)W{sub 2}O{sub 8.} • Refined XRD data of high quality crystals. • Linear decrease of the decay time with Tb{sup 3+} content.

  1. Seismically constrained two-dimentional crustal thermal structure of ...

    Indian Academy of Sciences (India)

    Cambay basin; P-wave velocity; heat flow; heat generation; 2-D modelling; crustal thermal structure; Mohodepth; Curie isotherm. ... This work deals with the two-dimensional thermal modelling to delineate the crustal thermal structure along a 230 km long Deep Seismic Sounding (DSS) profile in the north Cambay basin.

  2. Magnetic assembly of nonmagnetic particles into photonic crystal structures.

    Science.gov (United States)

    He, Le; Hu, Yongxing; Kim, Hyoki; Ge, Jianping; Kwon, Sunghoon; Yin, Yadong

    2010-11-10

    We report the rapid formation of photonic crystal structures by assembly of uniform nonmagnetic colloidal particles in ferrofluids using external magnetic fields. Magnetic manipulation of nonmagnetic particles with size down to a few hundred nanometers, suitable building blocks for producing photonic crystals with band gaps located in the visible regime, has been difficult due to their weak magnetic dipole moment. Increasing the dipole moment of magnetic holes has been limited by the instability of ferrofluids toward aggregation at high concentration or under strong magnetic field. By taking advantage of the superior stability of highly surface-charged magnetite nanocrystal-based ferrofluids, in this paper we have been able to successfully assemble 185 nm nonmagnetic polymer beads into photonic crystal structures, from 1D chains to 3D assemblies as determined by the interplay of magnetic dipole force and packing force. In a strong magnetic field with large field gradient, 3D photonic crystals with high reflectance (83%) in the visible range can be rapidly produced within several minutes, making this general strategy promising for fast creation of large-area photonic crystals using nonmagnetic particles as building blocks.

  3. Crystal structure prediction of flexible molecules using parallel genetic algorithms with a standard force field.

    Science.gov (United States)

    Kim, Seonah; Orendt, Anita M; Ferraro, Marta B; Facelli, Julio C

    2009-10-01

    This article describes the application of our distributed computing framework for crystal structure prediction (CSP) the modified genetic algorithms for crystal and cluster prediction (MGAC), to predict the crystal structure of flexible molecules using the general Amber force field (GAFF) and the CHARMM program. The MGAC distributed computing framework includes a series of tightly integrated computer programs for generating the molecule's force field, sampling crystal structures using a distributed parallel genetic algorithm and local energy minimization of the structures followed by the classifying, sorting, and archiving of the most relevant structures. Our results indicate that the method can consistently find the experimentally known crystal structures of flexible molecules, but the number of missing structures and poor ranking observed in some crystals show the need for further improvement of the potential. Copyright 2009 Wiley Periodicals, Inc.

  4. Crystallization kinetics, glass transition kinetics, and thermal stability of Se70-xGa30Inx (x=5, 10, 15, and 20) semiconducting glasses

    International Nuclear Information System (INIS)

    Imran, Mousa M.A.

    2011-01-01

    Crystallization and glass transition kinetics of Se 70-x Ga 30 In x (x=5, 10, 15, and 20) semiconducting chalcogenide glasses were studied under non-isothermal condition using a Differential Scanning Calorimeter (DSC). DSC thermograms of the samples were recorded at four different heating rates 5, 10, 15, and 20 K/min. The variation of the glass transition temperature (T g ) with the heating rate (β) was used to calculate the glass transition activation energy (E t ) using two different models. Meanwhile, the variation of the peak temperature of crystallization (T p ) with β was utilized to deduce the crystallization activation energy (E c ) using Kissinger, Augis-Bennet, and Takhor models. Results reveal that E t decreases with increasing In content, while both T g and E c exhibit the opposite behavior, and the crystal growth occurs in one dimension. The variation of these thermal parameters with the average coordination number was also discussed, and the results were interpreted in terms of the type of bonding that In makes with Se. Assessment of thermal stability and glass forming ability (GFA) was carried out on the basis of some quantitative criteria and the results indicate that thermal stability is enhanced while the crystallization rate is reduced with the addition of In to Se-Ga glass. -- Research highlights: → Addition of In to Se-Ga glass decreases the glass transition activation energy. → The crystallization rate in Se-Ga-In glass is reduced as In content increases. → The crystal growth in Se-Ga-In glass occurs in one dimension. → Thermal properties of Se-Ga-In glass indicate a shift in Phillips-Thorpe threshold.

  5. Synthesis, Crystal Structure and Anti-ischaemic Activity of (E)-1-{4 ...

    African Journals Online (AJOL)

    chloro- phenyl)prop-2-en-1-one (C28H29ClN2O3, Mr = 476.98) (5) was synthesized and studied by the single crystal X-ray diffraction method. Its structure was confirmed by 1HNMR, 13CNMR,HRMSand X-ray single crystal structure ...

  6. Thermal fatigue. Fluid-structure interaction at thermal mixing events

    Energy Technology Data Exchange (ETDEWEB)

    Schuler, X.; Herter, K.H.; Moogk, S. [Stuttgart Univ. (Germany). MPA; Laurien, E.; Kloeren, D.; Kulenovic, R.; Kuschewski, M. [Stuttgart Univ. (Germany). Inst. of Nuclear Technology and Energy Systems

    2012-07-01

    In the framework of the network research project ''Thermal Fatigue - Basics of the system-, outflow- and material-characteristics of piping under thermal fatigue'' funded by the German Federal Ministry of Education and Research (BMBF) fundamental numerical and experimental investigations on the material behaviour under transient thermal-mechanical stress conditions (high cycle fatigue - HCF) are carried out. The project's background and its network of scientific working groups with their individual working tasks are briefly introduced. The main focus is especially on the joint research tasks within the sub-projects of MPA and IKE which are dealing with thermal mixing of flows in a T-junction configuration and the fluidstructure- interactions (FSI). Therefore, experiments were performed with the newly established FSI test facility at MPA which enables single-phase flow experiments of water in typical power plant piping diameters (DN40 and DN80) at high pressure (maximum 75 bar) and temperatures (maximum 280 C). The experimental results serve as validation data base for numerical modelling of thermal flow mixing by means of thermo-fluid dynamics simulations applying CFD techniques and carried out by IKE as well as for modelling of thermal and mechanical loads of the piping structure by structural mechanics simulations with FEM methods which are executed by MPA. The FSI test facility will be described inclusively the applied measurement techniques, e. g. in particular the novel near-wall LED-induced Fluorescence method for non-intrusive flow temperature measurements. First experimental data and numerical results from CFD and FEM simulations of the thermal mixing of flows in the T-junction are presented.

  7. Thermal conductivity of carbon nanotube cross-bar structures

    International Nuclear Information System (INIS)

    Evans, William J; Keblinski, Pawel

    2010-01-01

    We use non-equilibrium molecular dynamics (NEMD) to compute the thermal conductivity (κ) of orthogonally ordered cross-bar structures of single-walled carbon nanotubes. Such structures exhibit extremely low thermal conductivity in the range of 0.02-0.07 W m -1 K -1 . These values are five orders of magnitude smaller than the axial thermal conductivity of individual carbon nanotubes, and are comparable to the thermal conductivity of still air.

  8. Structural investigation of oxovanadium(IV) Schiff base complexes: X-ray crystallography, electrochemistry and kinetic of thermal decomposition.

    Science.gov (United States)

    Asadi, Mozaffar; Asadi, Zahra; Savaripoor, Nooshin; Dusek, Michal; Eigner, Vaclav; Shorkaei, Mohammad Ranjkesh; Sedaghat, Moslem

    2015-02-05

    A series of new VO(IV) complexes of tetradentate N2O2 Schiff base ligands (L(1)-L(4)), were synthesized and characterized by FT-IR, UV-vis and elemental analysis. The structure of the complex VOL(1)⋅DMF was also investigated by X-ray crystallography which revealed a vanadyl center with distorted octahedral coordination where the 2-aza and 2-oxo coordinating sites of the ligand were perpendicular to the "-yl" oxygen. The electrochemical properties of the vanadyl complexes were investigated by cyclic voltammetry. A good correlation was observed between the oxidation potentials and the electron withdrawing character of the substituents on the Schiff base ligands, showing the following trend: MeO5-H>5-Br>5-Cl. Furthermore, the kinetic parameters of thermal decomposition were calculated by using the Coats-Redfern equation. According to the Coats-Redfern plots the kinetics of thermal decomposition of studied complexes is of the first-order in all stages, the free energy of activation for each following stage is larger than the previous one and the complexes have good thermal stability. The preparation of VOL(1)⋅DMF yielded also another compound, one kind of vanadium oxide [VO]X, with different habitus of crystals, (platelet instead of prisma) and without L(1) ligand, consisting of a V10O28 cage, diaminium moiety and dimethylamonium as a counter ions. Because its crystal structure was also new, we reported it along with the targeted complex. Copyright © 2014 Elsevier B.V. All rights reserved.

  9. Supercritical hydrothermal synthesis of Cu2O(SeO3): Structural characterization, thermal, spectroscopic and magnetic studies

    International Nuclear Information System (INIS)

    Larranaga, Aitor; Mesa, Jose L.; Lezama, Luis; Pizarro, Jose L.; Arriortua, Maria I.; Rojo, Teofilo

    2009-01-01

    Cu 2 O(SeO 3 ) has been synthesized in supercritical hydrothermal conditions, using an externally heated steel reactor with coupled hydraulic pump for the application of high pressure. The compound crystallizes in the P2 1 3 cubic space group. The unit cell parameter is a = 9.930(1) A with Z = 12. The crystal structure has been refined by the Rietveld method. The limit of thermal stability is, approximately, 490 deg. C. Above this temperature the compound decomposes to SeO 2 (g) and CuO(s). The IR spectrum shows the characteristic bands of the (SeO 3 ) 2- oxoanion. In the diffuse reflectance spectrum two intense absorptions characteristic of the Cu(II) cations in five-coordination are observed. The ESR spectra are isotropic from room temperature to 5 K, with g = 2.11(2). The thermal evolution of the intensity and line width of the signals suggest a ferromagnetic transition in the 50-45 K range. Magnetic measurements, at low temperatures, confirm the existence of a ferromagnetic transition with a critical temperature of 55 K

  10. High-resolution crystal structure of a polyextreme GH43 glycosidase from Halothermothrix orenii with α-l-arabinofuranosidase activity

    International Nuclear Information System (INIS)

    Hassan, Noor; Kori, Lokesh D.; Gandini, Rosaria; Patel, Bharat K. C.; Divne, Christina; Tan, Tien Chye

    2015-01-01

    The crystal structure of the H. orenii glycosidase was determined by molecular replacement and refined at 1.10 Å resolution. A gene from the heterotrophic, halothermophilic marine bacterium Halothermothrix orenii has been cloned and overexpressed in Escherichia coli. This gene encodes the only glycoside hydrolase of family 43 (GH43) produced by H. orenii. The crystal structure of the H. orenii glycosidase was determined by molecular replacement and refined at 1.10 Å resolution. As for other GH43 members, the enzyme folds as a five-bladed β-propeller. The structure features a metal-binding site on the propeller axis, near the active site. Based on thermal denaturation data, the H. orenii glycosidase depends on divalent cations in combination with high salt for optimal thermal stability against unfolding. A maximum melting temperature of 76°C was observed in the presence of 4 M NaCl and Mn 2+ at pH 6.5. The gene encoding the H. orenii GH43 enzyme has previously been annotated as a putative α-l-arabinofuranosidase. Activity was detected with p-nitrophenyl-α-l-arabinofuranoside as a substrate, and therefore the name HoAraf43 was suggested for the enzyme. In agreement with the conditions for optimal thermal stability against unfolding, the highest arabinofuranosidase activity was obtained in the presence of 4 M NaCl and Mn 2+ at pH 6.5, giving a specific activity of 20–36 µmol min −1 mg −1 . The active site is structurally distinct from those of other GH43 members, including arabinanases, arabinofuranosidases and xylanases. This probably reflects the special requirements for degrading the unique biomass available in highly saline aqueous ecosystems, such as halophilic algae and halophytes. The amino-acid distribution of HoAraf43 has similarities to those of mesophiles, thermophiles and halophiles, but also has unique features, for example more hydrophobic amino acids on the surface and fewer buried charged residues

  11. High-resolution crystal structure of a polyextreme GH43 glycosidase from Halothermothrix orenii with α-l-arabinofuranosidase activity

    Energy Technology Data Exchange (ETDEWEB)

    Hassan, Noor [KTH Royal Institute of Technology, Stockholm (Sweden); Karolinska Institutet, Stockholm (Sweden); Kori, Lokesh D. [Griffith University, Brisbane, QLD 4111 (Australia); Baylor College of Medicine, Houston, TX 77030 (United States); Gandini, Rosaria [KTH Royal Institute of Technology, Stockholm (Sweden); Karolinska Institutet, Stockholm (Sweden); Patel, Bharat K. C. [Griffith University, Brisbane, QLD 4111 (Australia); Divne, Christina; Tan, Tien Chye, E-mail: tantc@kth.se [KTH Royal Institute of Technology, Stockholm (Sweden); Karolinska Institutet, Stockholm (Sweden)

    2015-02-19

    The crystal structure of the H. orenii glycosidase was determined by molecular replacement and refined at 1.10 Å resolution. A gene from the heterotrophic, halothermophilic marine bacterium Halothermothrix orenii has been cloned and overexpressed in Escherichia coli. This gene encodes the only glycoside hydrolase of family 43 (GH43) produced by H. orenii. The crystal structure of the H. orenii glycosidase was determined by molecular replacement and refined at 1.10 Å resolution. As for other GH43 members, the enzyme folds as a five-bladed β-propeller. The structure features a metal-binding site on the propeller axis, near the active site. Based on thermal denaturation data, the H. orenii glycosidase depends on divalent cations in combination with high salt for optimal thermal stability against unfolding. A maximum melting temperature of 76°C was observed in the presence of 4 M NaCl and Mn{sup 2+} at pH 6.5. The gene encoding the H. orenii GH43 enzyme has previously been annotated as a putative α-l-arabinofuranosidase. Activity was detected with p-nitrophenyl-α-l-arabinofuranoside as a substrate, and therefore the name HoAraf43 was suggested for the enzyme. In agreement with the conditions for optimal thermal stability against unfolding, the highest arabinofuranosidase activity was obtained in the presence of 4 M NaCl and Mn{sup 2+} at pH 6.5, giving a specific activity of 20–36 µmol min{sup −1} mg{sup −1}. The active site is structurally distinct from those of other GH43 members, including arabinanases, arabinofuranosidases and xylanases. This probably reflects the special requirements for degrading the unique biomass available in highly saline aqueous ecosystems, such as halophilic algae and halophytes. The amino-acid distribution of HoAraf43 has similarities to those of mesophiles, thermophiles and halophiles, but also has unique features, for example more hydrophobic amino acids on the surface and fewer buried charged residues.

  12. Synthesis and structural characterization of bulk Sb2Te3 single crystal

    Science.gov (United States)

    Sultana, Rabia; Gahtori, Bhasker; Meena, R. S.; Awana, V. P. S.

    2018-05-01

    We report the growth and characterization of bulk Sb2Te3 single crystal synthesized by the self flux method via solid state reaction route from high temperature melt (850˚C) and slow cooling (2˚C/hour) of constituent elements. The single crystal X-ray diffraction pattern showed the 00l alignment and the high crystalline nature of the resultant sample. The rietveld fitted room temperature powder XRD revealed the phase purity and rhombohedral structure of the synthesized crystal. The formation and analysis of unit cell structure further verified the rhombohedral structure composed of three quintuple layers stacked one over the other. The SEM image showed the layered directional growth of the synthesized crystal carried out using the ZEISS-EVOMA-10 scanning electron microscope The electrical resistivity measurement was carried out using the conventional four-probe method on a quantum design Physical Property Measurement System (PPMS). The temperature dependent electrical resistivity plot for studied Sb2Te3 single crystal depicts metallic behaviour in the absence of any applied magnetic field. The synthesis as well as the structural characterization of as grown Sb2Te3 single crystal is reported and discussed in the present letter.

  13. Crystal Structure of Human Enterovirus 71

    Energy Technology Data Exchange (ETDEWEB)

    Plevka, Pavel; Perera, Rushika; Cardosa, Jane; Kuhn, Richard J.; Rossmann, Michael G. (Purdue); (Sentinext)

    2013-04-08

    Enterovirus 71 is a picornavirus associated with fatal neurological illness in infants and young children. Here, we report the crystal structure of enterovirus 71 and show that, unlike in other enteroviruses, the 'pocket factor,' a small molecule that stabilizes the virus, is partly exposed on the floor of the 'canyon.' Thus, the structure of antiviral compounds may require a hydrophilic head group designed to interact with residues at the entrance of the pocket.

  14. Crystal-Structure-Guided Design of Self-Assembling RNA Nanotriangles.

    Science.gov (United States)

    Boerneke, Mark A; Dibrov, Sergey M; Hermann, Thomas

    2016-03-14

    RNA nanotechnology uses RNA structural motifs to build nanosized architectures that assemble through selective base-pair interactions. Herein, we report the crystal-structure-guided design of highly stable RNA nanotriangles that self-assemble cooperatively from short oligonucleotides. The crystal structure of an 81 nucleotide nanotriangle determined at 2.6 Å resolution reveals the so-far smallest circularly closed nanoobject made entirely of double-stranded RNA. The assembly of the nanotriangle architecture involved RNA corner motifs that were derived from ligand-responsive RNA switches, which offer the opportunity to control self-assembly and dissociation. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. CCDC 1515632: Experimental Crystal Structure Determination : hexakis(dimethyl sulfoxide)-manganese(ii) tetraiodide

    KAUST Repository

    Haque, M.A.; Davaasuren, Bambar; Rothenberger, Alexander; Wu, Tao

    2016-01-01

    An entry from the Cambridge Structural Database, the world’s repository for small molecule crystal structures. The entry contains experimental data from a crystal diffraction study. The deposited dataset for this entry is freely available from

  16. Hydrogen-bonded co-crystal structure of benzoic acid and zwitterionic l-proline

    Directory of Open Access Journals (Sweden)

    Aaron M. Chesna

    2017-03-01

    Full Text Available The title compound [systematic name: benzoic acid–pyrrolidin-1-ium-2-carboxylate (1/1], C7H6O2·C5H9NO2, is an example of the application of non-centrosymmetric co-crystallization for the growth of a crystal containing a typically centrosymmetric component in a chiral space group. It co-crystallizes in the space group P212121 and contains benzoic acid and l-proline in equal proportions. The crystal structure exhibits chains of l-proline zwitterions capped by benzoic acid molecules which form a C(5[R33(11] hydrogen-bonded network along [100]. The crystal structure is examined and compared to that of a similar co-crystal containing l-proline zwitterions and 4-aminobenzoic acid.

  17. Crystal structure of Sus scrofa quinolinate phosphoribosyltransferase in complex with nicotinate mononucleotide.

    Directory of Open Access Journals (Sweden)

    Hyung-Seop Youn

    Full Text Available We have determined the crystal structure of porcine quinolinate phosphoribosyltransferase (QAPRTase in complex with nicotinate mononucleotide (NAMN, which is the first crystal structure of a mammalian QAPRTase with its reaction product. The structure was determined from protein obtained from the porcine kidney. Because the full protein sequence of porcine QAPRTase was not available in either protein or nucleotide databases, cDNA was synthesized using reverse transcriptase-polymerase chain reaction to determine the porcine QAPRTase amino acid sequence. The crystal structure revealed that porcine QAPRTases have a hexameric structure that is similar to other eukaryotic QAPRTases, such as the human and yeast enzymes. However, the interaction between NAMN and porcine QAPRTase was different from the interaction found in prokaryotic enzymes, such as those of Helicobacter pylori and Mycobacterium tuberculosis. The crystal structure of porcine QAPRTase in complex with NAMN provides a structural framework for understanding the unique properties of the mammalian QAPRTase active site and designing new antibiotics that are selective for the QAPRTases of pathogenic bacteria, such as H. pylori and M. tuberculosis.

  18. Crystal structure mediates mode of cell death in TiO{sub 2} nanotoxicity

    Energy Technology Data Exchange (ETDEWEB)

    Braydich-Stolle, Laura K.; Schaeublin, Nicole M.; Murdock, Richard C. [Wright-Patterson AFB, Applied Biotechnology Branch, Human Effectiveness Directorate, Air Force Research Laboratory (United States); Jiang, Jingkun; Biswas, Pratim [Washington University in St. Louis, Department of Energy, Environmental, and Chemical Engineering (United States); Schlager, John J.; Hussain, Saber M., E-mail: Saber.Hussain@wpafb.af.mi [Wright-Patterson AFB, Applied Biotechnology Branch, Human Effectiveness Directorate, Air Force Research Laboratory (United States)

    2009-08-15

    Certain properties that nanoparticles possess differentiate them from their bulk counterparts, and these characteristics must be evaluated prior to nanoparticle studies and include: size, shape, dispersion, physical and chemical properties, surface area, and surface chemistry. Early nanotoxicity studies evaluating TiO{sub 2} have yielded conflicting data which identify either size or crystal structure as the mediating property for nano-TiO{sub 2} toxicity. However, it is important to note that none of these studies examined size with the crystal structure composition controlled for or examined crystal structure while controlling the nanoparticle size. The goal of this study was to evaluate the role of size and crystal structure in TiO{sub 2} nanotoxicity while controlling for as many other nanoproperties as possible using the HEL-30 mouse keratinocyte cell line as a model for dermal exposure. In the size-dependent studies, all the nanoparticles are 100% anatase, and aggregate sizes were determined in order to take into account the effect of agglomeration on size-dependent toxicity. In addition, varying crystal structures were assessed while the size of the nanoparticles was controlled. We were able to identify that both size and crystal structure contribute to cytotoxicity and that the mechanism of cell death varies based on crystal structure. The 100% anatase TiO{sub 2} nanoparticles, regardless of size, induced cell necrosis, while the rutile TiO{sub 2} nanoparticles initiated apoptosis through formation of reactive oxygen species (ROS).

  19. The integrity of cracked structures under thermal loading

    International Nuclear Information System (INIS)

    Townley, C.H.A.

    1976-01-01

    Previous work by Dowling and Townley on the load-carrying capacity of a cracked structure is extended so that quantitative predictions can be made about failure under thermal loading. Residual stresses can be dealt with in the same way as thermal stresses. It is shown that the tolerance of the structure to thermal stress can be quantified in terms of a parameter which defines the state of the structure. This state parameter can be deduced from the calculated performance of the structure when subjected to an external load. (author)

  20. A comparison between the Structural Results obtained by X-ray Single Crystal Data and by Neutron Powder Data for BaVs/sb3/

    International Nuclear Information System (INIS)

    Marezio, M.

    1986-01-01

    The structure of BaVs/sb3/, as refined from X-ray single-crystal data to an R factor of 0.011, is compared to the structure of the same compound obtained from neutron powder data (Rsb(ro) = 6.82, Rsb(psilon) = 4.09). As expected, the X-ray standard deviations of the positional and thermal parameters are smaller than the corresponding neutron standard deviations. However, the dynamical disorder deduced from the anomalously large thermal vibrations of the vanadium atoms obtained from the X-ray data is also evidenced by the neutron refinement. On the other hand, the neutron standard deviations of the lattice parameters are smaller than the X-ray counterparts