WorldWideScience

Sample records for crystal structure phases

  1. The crystal structure and the phase transitions of pyridinium trifluoromethanesulfonate

    International Nuclear Information System (INIS)

    Jesariew, Dominik; Ilczyszyn, Maria M; Pietraszko, Adam

    2014-01-01

    The calorimetric and optical studies and the structural properties of pyridinium trifluoromethanesulfonate (abbreviated as PyHOTf) are reported. A sequence of four fully reversible solid–solid phase transitions, at 223.0, 309.0, 359.9 and 394.3 K, has been discovered. The phase transition sequence was confirmed by x-ray diffraction data. The crystal structures of three phases (V, IV and III) have been determined from the single crystal x-ray diffraction data. Structural properties of the high temperature phases are characterized using powder x-ray diffraction data measured in the 290–425 K temperature range. The structural changes triggered by the temperature change are discussed in relation to the phase transitions. Two low temperature phases (V and IV) belong to the P4 3 2 1 2 space group of the tetragonal system. The intermediate phases (III and II) are monoclinic and the prototype high temperature phase (I) is a pseudo-cubic (tetragonal) one. The low temperature phases (V and IV) are well ordered. The crystal structure of intermediate (III and II) and prototype (I) phases are characterized by high disorder of the pyridinium cations and triflate anions. (papers)

  2. Crystal structure of the Al2CuIr phase

    International Nuclear Information System (INIS)

    Meshi, L.; Ezersky, V.; Kapush, D.; Grushko, B.

    2010-01-01

    A new ternary Al 2 CuIr phase was revealed in the Al-Cu-Ir system. It is formed below 1063 o C from the β-phase (CsCl-type structure) extending at elevated temperatures from AlIr. The crystal structure of the Al 2 CuIr phase was determined using a combination of precession electron diffraction and X-ray powder diffraction techniques. The phase has an orthorhombic C-centered unit cell with lattice parameters a = 8.1196(7) A, b = 5.0646(2) A and c = 5.18513(3) A; its crystal symmetry can be described by the Cmme (no. 67) space group (Pearson symbol oC16). The unit cell of the new phase contains 8 Al, 4 Cu and 4 Ir atoms and exhibits a new structure type. The reliability factors characterizing the Rietveld refinement procedure are: R p = 4.45%, R wp = 6.45%, R B = 3.69% and R f = 2.41%.

  3. On the crystal structure of Z-phase Cr(V,Nb)N

    DEFF Research Database (Denmark)

    Danielsen, Hilmar Kjartansson; Hald, John; Grumsen, Flemming Bjerg

    2006-01-01

    The Z-phase Cr(YNb)N particles in various 9 to 12 pct Cr creep-resistant steels were investigated with electron diffraction, energy dispersive spectroscopy (EDS), and electron energy loss spectroscopy(EELS). In addition to the well-known tetragonal crystal structure for Z phase, a cubic crystal s...

  4. Structural and morphological characterization of fullerite crystals prepared from the vapor phase

    International Nuclear Information System (INIS)

    Haluska, M.; Fejdi, P.; Vybornov, M.; Kuzmany, H.

    1993-01-01

    Crystal structure, habits and surface structures of fullerite crystals prepared from vapor phase were characterized by X-ray analysis, interfacial angle measurements and optical and scanning electron microscopy (SEM). The study of selected C 60 crystals confirmed the fcc structure at room temperature. The crystal habit is determined by two types of morphological faces, namely {100} and {111}. SEM was used for the observation of thermal etched surfaces. (orig.)

  5. Unique Reversible Crystal-to-Crystal Phase Transition – Structural and Functional Properties of Fused Ladder Thienoarenes

    KAUST Repository

    Abe, Yuichiro

    2017-08-15

    Donor-acceptor type molecules based on fused ladder thienoarenes, indacenodithiophene (IDT) and dithienocyclopenta-thienothiophene (DTCTT), coupled with benzothiadiazole, are prepared and their solid-state structures are investigated. They display a rich variety of solid phases ranging from amorphous glass states to crystalline states, upon changes in the central aromatic core and side group structures. Most notably, the DTCTT-based derivatives showed reversible crystal-to-crystal phase transitions in heating and cooling cycles. Unlike what has been seen in π−conjugated molecules variable temperature XRD revealed that structural change occurs continuously during the transition. A columnar self-assembled structure with slip-stacked π−π interaction is proposed to be involved in the solid-state. This research provides the evidence of unique structural behavior of the DTCTT-based molecules through the detailed structural analysis. This unique structural transition paves the way for these materials to have self-healing of crystal defects, leading to improved optoelectronic properties.

  6. Unique Reversible Crystal-to-Crystal Phase Transition – Structural and Functional Properties of Fused Ladder Thienoarenes

    KAUST Repository

    Abe, Yuichiro; Savikhin, Victoria; Yin, Jun; Grimsdale, Andrew C.; Soci, Cesare; Toney, Michael F.; Lam, Yeng Ming

    2017-01-01

    Donor-acceptor type molecules based on fused ladder thienoarenes, indacenodithiophene (IDT) and dithienocyclopenta-thienothiophene (DTCTT), coupled with benzothiadiazole, are prepared and their solid-state structures are investigated. They display a rich variety of solid phases ranging from amorphous glass states to crystalline states, upon changes in the central aromatic core and side group structures. Most notably, the DTCTT-based derivatives showed reversible crystal-to-crystal phase transitions in heating and cooling cycles. Unlike what has been seen in π−conjugated molecules variable temperature XRD revealed that structural change occurs continuously during the transition. A columnar self-assembled structure with slip-stacked π−π interaction is proposed to be involved in the solid-state. This research provides the evidence of unique structural behavior of the DTCTT-based molecules through the detailed structural analysis. This unique structural transition paves the way for these materials to have self-healing of crystal defects, leading to improved optoelectronic properties.

  7. Ab initio molecular crystal structures, spectra, and phase diagrams.

    Science.gov (United States)

    Hirata, So; Gilliard, Kandis; He, Xiao; Li, Jinjin; Sode, Olaseni

    2014-09-16

    Conspectus Molecular crystals are chemists' solids in the sense that their structures and properties can be understood in terms of those of the constituent molecules merely perturbed by a crystalline environment. They form a large and important class of solids including ices of atmospheric species, drugs, explosives, and even some organic optoelectronic materials and supramolecular assemblies. Recently, surprisingly simple yet extremely efficient, versatile, easily implemented, and systematically accurate electronic structure methods for molecular crystals have been developed. The methods, collectively referred to as the embedded-fragment scheme, divide a crystal into monomers and overlapping dimers and apply modern molecular electronic structure methods and software to these fragments of the crystal that are embedded in a self-consistently determined crystalline electrostatic field. They enable facile applications of accurate but otherwise prohibitively expensive ab initio molecular orbital theories such as Møller-Plesset perturbation and coupled-cluster theories to a broad range of properties of solids such as internal energies, enthalpies, structures, equation of state, phonon dispersion curves and density of states, infrared and Raman spectra (including band intensities and sometimes anharmonic effects), inelastic neutron scattering spectra, heat capacities, Gibbs energies, and phase diagrams, while accounting for many-body electrostatic (namely, induction or polarization) effects as well as two-body exchange and dispersion interactions from first principles. They can fundamentally alter the role of computing in the studies of molecular crystals in the same way ab initio molecular orbital theories have transformed research practices in gas-phase physical chemistry and synthetic chemistry in the last half century. In this Account, after a brief summary of formalisms and algorithms, we discuss applications of these methods performed in our group as compelling

  8. Phase relations, crystal structures and physical properties of nuclear fuels

    International Nuclear Information System (INIS)

    Tagawa, Hiroaki; Fujino, Takeo; Tateno, Jun

    1975-07-01

    Phase relations, crystal structures and physical properties of the compounds for nuclear fuels are presented, including melting point, thermal expansion, diffusion and magnetic and electric properties. Emphasis is on oxides, carbides and nitrides of thorium, uranium and plutonium. (auth.)

  9. Crystallization and Characterization of Galdieria sulphuraria RUBISCO in Two Crystal Forms: Structural Phase Transition Observed in P21 Crystal Form

    Directory of Open Access Journals (Sweden)

    Boguslaw Stec

    2007-10-01

    Full Text Available We have isolated ribulose-1,5-bisphosphate-carboxylase/oxygenase (RUBISCOfrom the red algae Galdieria Sulphuraria. The protein crystallized in two different crystalforms, the I422 crystal form being obtained from high salt and the P21 crystal form beingobtained from lower concentration of salt and PEG. We report here the crystallization,preliminary stages of structure determination and the detection of the structural phasetransition in the P21 crystal form of G. sulphuraria RUBISCO. This red algae enzymebelongs to the hexadecameric class (L8S8 with an approximate molecular weight 0.6MDa.The phase transition in G. sulphuraria RUBISCO leads from two hexadecamers to a singlehexadecamer per asymmetric unit. The preservation of diffraction power in a phasetransition for such a large macromolecule is rare.

  10. Structural, vibrational and thermal characterization of phase transformation in L-histidinium bromide monohydrate single crystals

    Energy Technology Data Exchange (ETDEWEB)

    Moura, G.M. [Universidade Federal do Maranhão, CCSST, Imperatriz, MA, 65900-410 (Brazil); Universidade Federal do Sul e Sudeste do Pará, ICEN, Marabá, PA 68505-080 (Brazil); Carvalho, J.O. [Universidade Federal do Maranhão, CCSST, Imperatriz, MA, 65900-410 (Brazil); Instituto Federal do Tocantins, Araguaína, TO, 77.826-170 (Brazil); Silva, M.C.D.; Façanha Filho, P.F. [Universidade Federal do Maranhão, CCSST, Imperatriz, MA, 65900-410 (Brazil); Santos, A.O. dos, E-mail: adenilson1@gmail.com [Universidade Federal do Maranhão, CCSST, Imperatriz, MA, 65900-410 (Brazil)

    2015-09-01

    L-Histidinium bromide monohydrate (LHBr) single crystal is a nonlinear optical material. In this work the high temperature phase transformation and the thermal stability of single crystals of LHBr was investigated by X-ray diffraction, thermogravimetric analysis, differential thermal analysis, differential scanning calorimetry and Raman spectroscopy. The results showed the LHBr phase transformation of orthorhombic (P2{sub 1}2{sub 1}2{sub 1}) to monoclinic system (P 1 2 1) at 120 °C, with the lattice parameters a = 12.162(1) Å, b = 16.821(2) Å, c = 19.477(2) Å and β = 108.56(2)°. These techniques are complementary and confirm the structural phase transformation due to loss water of crystallization. - Highlights: • -histidinium bromide single crystal was grown by slow evaporation technique. • X-ray diffraction characterize the high-temperature phase transformation. • The structural phase transformation occur due to loss of water of crystallization. • The LHBr thermal expansion coefficients exhibit an anisotropic behavior.

  11. Crystal structure of the binder phase in a model HfC-TiC-Ni material

    International Nuclear Information System (INIS)

    Heiligers, Christiane; Neethling, Johannes H.

    2008-01-01

    The crystal structure of the binder phase in a model HfC-TiC-Ni sample produced by hot pressing is investigated. The nature of the binder depends on the amount of Hf and Ti that remains in solution with Ni after cooling. Four different crystal structures are identified by analysis of electron diffraction patterns obtained using transmission electron microscopy techniques and the composition of the phases determined by energy dispersive X-ray spectrometry. Three of the phases are cubic; Ni, Ni 3 (Ti,Hf) and Ni 23 (Ti,Hf) 6 with lattice parameters of 3.52 ± 0.05, 3.52 ± 0.03 and 10.70 ± 0.40 A, respectively. The hexagonal phase is an intermetallic Ni 3 Ti phase, with lattice parameters of a = b = 5.00 ± 0.20 A and c = 8.16 ± 0.20 A. The crystal structures are confirmed by simulations of the electron diffraction patterns using JEMS software

  12. Routine phasing of coiled-coil protein crystal structures with AMPLE

    Directory of Open Access Journals (Sweden)

    Jens M. H. Thomas

    2015-03-01

    Full Text Available Coiled-coil protein folds are among the most abundant in nature. These folds consist of long wound α-helices and are architecturally simple, but paradoxically their crystallographic structures are notoriously difficult to solve with molecular-replacement techniques. The program AMPLE can solve crystal structures by molecular replacement using ab initio search models in the absence of an existent homologous protein structure. AMPLE has been benchmarked on a large and diverse test set of coiled-coil crystal structures and has been found to solve 80% of all cases. Successes included structures with chain lengths of up to 253 residues and resolutions down to 2.9 Å, considerably extending the limits on size and resolution that are typically tractable by ab initio methodologies. The structures of two macromolecular complexes, one including DNA, were also successfully solved using their coiled-coil components. It is demonstrated that both the ab initio modelling and the use of ensemble search models contribute to the success of AMPLE by comparison with phasing attempts using single structures or ideal polyalanine helices. These successes suggest that molecular replacement with AMPLE should be the method of choice for the crystallographic elucidation of a coiled-coil structure. Furthermore, AMPLE may be able to exploit the presence of a coiled coil in a complex to provide a convenient route for phasing.

  13. Tunable photonic crystals with partial bandgaps from blue phase colloidal crystals and dielectric-doped blue phases.

    Science.gov (United States)

    Stimulak, Mitja; Ravnik, Miha

    2014-09-07

    Blue phase colloidal crystals and dielectric nanoparticle/polymer doped blue phases are demonstrated to combine multiple components with different symmetries in one photonic material, creating a photonic crystal with variable and micro-controllable photonic band structure. In this composite photonic material, one contribution to the band structure is determined by the 3D periodic birefringent orientational profile of the blue phases, whereas the second contribution emerges from the regular array of the colloidal particles or from the dielectric/nanoparticle-doped defect network. Using the planewave expansion method, optical photonic bands of the blue phase I and II colloidal crystals and related nanoparticle/polymer doped blue phases are calculated, and then compared to blue phases with no particles and to face-centred-cubic and body-centred-cubic colloidal crystals in isotropic background. We find opening of local band gaps at particular points of Brillouin zone for blue phase colloidal crystals, where there were none in blue phases without particles or dopants. Particle size and filling fraction of the blue phase defect network are demonstrated as parameters that can directly tune the optical bands and local band gaps. In the blue phase I colloidal crystal with an additionally doped defect network, interestingly, we find an indirect total band gap (with the exception of one point) at the entire edge of SC irreducible zone. Finally, this work demonstrates the role of combining multiple - by symmetry - differently organised components in one photonic crystal material, which offers a novel approach towards tunable soft matter photonic materials.

  14. Crystal structure and phase transitions in perovskite-like C(NH2)3SnCl3

    International Nuclear Information System (INIS)

    Szafranski, Marek; Stahl, Kenny

    2007-01-01

    X-ray single-crystal diffraction, high-temperature powder diffraction and differential thermal analysis at ambient and high pressure have been employed to study the crystal structure and phase transitions of guanidinium trichlorostannate, C(NH 2 ) 3 SnCl 3 . At 295 K the crystal structure is orthorhombic, space group Pbca, Z=8, a=7.7506(2) A, b=12.0958(4) A and c=17.8049(6) A, solved from single-crystal data. It is perovskite-like with distorted corner-linked SnCl 6 octahedra and with ordered guanidinium cations in the distorted cuboctahedral voids. At 400 K the structure shows a first-order order-disorder phase transition. The space group is changed to Pnma with Z=4, a=12.1552(2) A, b=8.8590(2) A and c=8.0175(1) A, solved from powder diffraction data and showing disordering of the guanidinium cations. At 419 K, the structure shows yet another first-order order-disorder transformation with disordering of the SnCl 3 - part. The space group symmetry is maintained as Pnma, with a=12.1786(2) A, b=8.8642(2) A and c=8.0821(2) A. The thermodynamic parameters of these transitions and the p-T phase diagram have been determined and described. - Graphical abstract: The perovskite-like crystals of C(NH 2 ) 3 SnCl 3 undergo two successive first-order phase transitions at 400 and 419 K, both accompanied by an essential order-disorder contribution. The p-T phase diagram exhibits a singular point at 219 MPa and 443 K

  15. Synthesis, crystal structure and electronic structure of the binary phase Rh{sub 2}Cd{sub 5}

    Energy Technology Data Exchange (ETDEWEB)

    Koley, Biplab [Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur 721302 (India); Chatterjee, S. [Department of Physics, Indian Institute of Technology Kharagpur, Kharagpur 721302 (India); Jana, Partha P., E-mail: ppj@chem.iitkgp.ernet.in [Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur 721302 (India)

    2017-02-15

    A new phase in the Rh-Cd binary system - Rh{sub 2}Cd{sub 5} has been identified and characterized by single crystal X-ray diffraction and Energy dispersive X-ray analysis. The stoichiometric compound Rh{sub 2}Cd{sub 5} crystallizes with a unit cell containing 14 atoms, in the orthorhombic space group Pbam (55). The crystal structure of Rh{sub 2}Cd{sub 5} can be described as a defect form of the In{sub 3}Pd{sub 5} structure with ordered vacancies, formed of two 2D atomic layers with the stacking sequence: ABAB. The A type layers consist of (3.6.3.6)-Kagomé nets of Cd atoms while the B type layers consist of (3{sup 5}) (3{sup 7})- nets of both Cd and Rh atoms. The stability of this line phase is investigated by first principle electronic structure calculations on the model of ordered Rh{sub 2}Cd{sub 5}. - Graphical abstract: (3.6.3.6)-Kagomé nets of cadmium atoms (top) and (3{sup 5}) (3{sup 7})- nets of both cadmium and rhodium atoms (bottom) in the structure of Rh{sub 2}Cd{sub 5}.

  16. Plastic crystal phases of simple water models

    International Nuclear Information System (INIS)

    Aragones, J. L.; Vega, C.

    2009-01-01

    We report the appearance of two plastic crystal phases of water at high pressure and temperature using computer simulations. In one of them the oxygen atoms form a body centered cubic structure (bcc) and in the other they form a face centered cubic structure (fcc). In both cases the water molecules were able to rotate almost freely. We have found that the bcc plastic crystal transformed into a fcc plastic crystal via a Martensitic phase transition when heated at constant pressure. We have performed the characterization and localization in the phase diagram of these plastic crystal phases for the SPC/E, TIP4P, and TIP4P/2005 water potential models. For TIP4P/2005 model free energy calculations were carried out for the bcc plastic crystal and fcc plastic crystal using a new method (which is a slight variation of the Einstein crystal method) proposed for these types of solid. The initial coexistence points for the SPC/E and TIP4P models were obtained using Hamiltonian Gibbs–Duhem integration. For all of these models these two plastic crystal phases appear in the high pressure and temperature region of the phase diagram. It would be of interest to study if such plastic crystal phases do indeed exist for real water. This would shed some light on the question of whether these models can describe satisfactorily the high pressure part of the phase diagram of water, and if not, where and why they fail.

  17. Formation, stability and crystal structure of the {sigma} phase in Mo-Re-Si alloys

    Energy Technology Data Exchange (ETDEWEB)

    Bei, H., E-mail: beih@ornl.gov [Oak Ridge National Laboratory, Materials Science and Technology Division, Oak Ridge, TN 37831 (United States); Yang, Y., E-mail: ying.yang@computherm.com [CompuTherm LLC, Madison, WI 53719 (United States); Viswanathan, G.B. [Air Force Research Laboratory, Wright-Patterson AFB, OH 45433 (United States); Rawn, C.J.; George, E.P. [Oak Ridge National Laboratory, Materials Science and Technology Division, Oak Ridge, TN 37831 (United States)] [University of Tennessee, Department of Materials Science and Engineering, Knoxville, TN 37996 (United States); Tiley, J. [Air Force Research Laboratory, Wright-Patterson AFB, OH 45433 (United States); Chang, Y.A. [CompuTherm LLC, Madison, WI 53719 (United States)] [University of Wisconsin-Madison, Madison, WI 53705 (United States)

    2010-10-15

    The formation, stability and crystal structure of the {sigma} phase in Mo-Re-Si alloys were investigated. Guided by thermodynamic calculations, six critically selected alloys were arc melted and annealed at 1600 deg. C for 150 h. Their as-cast and annealed microstructures, including phase fractions and distributions, the compositions of the constituent phases and the crystal structure of the {sigma} phase were analyzed by thermodynamic modeling coupled with experimental characterization by scanning electron microscopy, electron probe microanalysis, X-ray diffraction and transmission electron microscopy. Two key findings resulted from this work. One is the large homogeneity range of the {sigma} phase region, extending from binary Mo-Re to ternary Mo-Re-Si. The other is the formation of a {sigma} phase in Mo-rich alloys either through the peritectic reaction of liquid + Mo{sub ss} {yields} {sigma} or primary solidification. These findings are important in understanding the effects of Re on the microstructure and providing guidance on the design of Mo-Re-Si alloys.

  18. Anisotropic lattice softening near the structural phase transition in the thermosalient crystal 1,2,4,5-tetrabromobenzene.

    Science.gov (United States)

    Zakharov, Boris A; Michalchuk, Adam A L; Morrison, Carole A; Boldyreva, Elena V

    2018-03-28

    The thermosalient effect (crystal jumping on heating) attracts much attention as both an intriguing academic phenomenon and in relation to its potential for the development of molecular actuators but its mechanism remains unclear. 1,2,4,5-Tetrabromobenzene (TBB) is one of the most extensively studied thermosalient compounds that has been shown previously to undergo a phase transition on heating, accompanied by crystal jumping and cracking. The difference in the crystal structures and intermolecular interaction energies of the low- and high-temperature phases is, however, too small to account for the large stress that arises over the course of the transformation. The energy is released spontaneously, and crystals jump across distances that exceed the crystal size by orders of magnitude. In the present work, the anisotropy of lattice strain is followed across the phase transition by single-crystal X-ray diffraction, focusing on the structural evolution from 273 to 343 K. A pronounced lattice softening is observed close to the transition point, with the structure becoming more rigid immediately after the phase transition. The diffraction studies are further supported by theoretical analysis of pairwise intermolecular energies and zone-centre lattice vibrations. Only three modes are found to monotonically soften up to the phase transition, with complex behaviour exhibited by the remaining lattice modes. The thermosalient effect is delayed with respect to the structural transformation itself. This can originate from the martensitic mechanism of the transformation, and the accumulation of stress associated with vibrational switching across the phase transition. The finding of this study sheds more light on the nature of the thermosalient effect in 1,2,4,5-tetrabromobenzene and can be applicable also to other thermosalient compounds.

  19. Crystal growth and electronic structure of low-temperature phase SrMgF{sub 4}

    Energy Technology Data Exchange (ETDEWEB)

    Atuchin, Victor V. [Laboratory of Optical Materials and Structures, Institute of Semiconductor Physics, SB RAS, Novosibirsk 630090 (Russian Federation); Functional Electronics Laboratory, Tomsk State University, Tomsk 634050 (Russian Federation); Laboratory of Semiconductor and Dielectric Materials, Novosibirsk State University, Novosibirsk 630090 (Russian Federation); Goloshumova, Alina A. [Laboratory of Crystal Growth, Institute of Geology and Mineralogy, SB RAS, Novosibirsk 630090 (Russian Federation); Isaenko, Ludmila I. [Laboratory of Semiconductor and Dielectric Materials, Novosibirsk State University, Novosibirsk 630090 (Russian Federation); Laboratory of Crystal Growth, Institute of Geology and Mineralogy, SB RAS, Novosibirsk 630090 (Russian Federation); Jiang, Xingxing [BCCRD, Key Laboratory of Functional Crystals and Laser Technology, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190 (China); University of Chinese Academy of Sciences, Beijing 100049 (China); Lobanov, Sergey I. [Laboratory of Crystal Growth, Institute of Geology and Mineralogy, SB RAS, Novosibirsk 630090 (Russian Federation); Zhang, Zhaoming [Australian Nuclear Science & Technology Organisation, Lucas Heights, NSW 2234 (Australia); Lin, Zheshuai, E-mail: zslin@mail.ipc.ac.cn [BCCRD, Key Laboratory of Functional Crystals and Laser Technology, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190 (China)

    2016-04-15

    Using the vertical Bridgman method, the single crystal of low temperature phase SrMgF{sub 4} is obtained. The crystal is in a very good optical quality with the size of 10×7×5 mm{sup 3}. Detailed photoemission spectra of the element core levels are determined by a monochromatic AlKa (1486.6 eV) X-ray source. Moreover, the first-principles calculations are performed to investigate the electronic structure of SrMgF{sub 4}. A good agreement between experimental and calculated results is achieved. It is demonstrated that almost all the electronic orbitals are strongly localized and the hybridization with the others is very small, but the Mg–F bonds covalency is relatively stronger than that of Sr–F bonds. - Graphical abstract: Large size of low-temperature phase SrMgF{sub 4} crystal was obtained (right) and its electronic structure was investigated by X-ray photoelectron spectroscopy and first-principles calculation (left). - Highlights: • Large size single crystal of low-temperature phase SrMgF{sub 4} is obtained. • Electronic structure of SrMgF{sub 4} is measured by X-ray photoelectron spectroscopy. • Partial densities of states are determined by first-principles calculation. • Good agreement between experimental and calculated results is achieved. • Strong ionic characteristics of chemical bonds are exhibited in SrMgF{sub 4}.

  20. Modulated crystal structures of VII and V phases in (NH4)3H(SO4)2. I. Neutron Laue diffraction

    International Nuclear Information System (INIS)

    McIntyre, G.; Smirnov, L.S.; Baranov, A.I.; Dolbinina, V.V.; Frontas'eva, M.V.; Pavlov, S.S.; Pankratova, Yu.S.

    2010-01-01

    The study of crystal structures of VII and V phases of (NH 4 ) 3 H(SO 4 ) 2 by means of neutron Laue diffraction is carried out at temperatures from 5 to 300 K. It is found that crystal structures of VII and V phases have incommensurate modulation with different periods, and phase transition from phase VII to phase V is transition of the first type

  1. Optically induced structural phase transitions in ion Coulomb crystals

    DEFF Research Database (Denmark)

    Horak, Peter; Dantan, Aurelien Romain; Drewsen, Michael

    2012-01-01

    We investigate numerically the structural dynamics of ion Coulomb crystals confined in a three-dimensional harmonic trap when influenced by an additional one-dimensional optically induced periodical potential. We demonstrate that transitions between thermally excited crystal structures, such as b......We investigate numerically the structural dynamics of ion Coulomb crystals confined in a three-dimensional harmonic trap when influenced by an additional one-dimensional optically induced periodical potential. We demonstrate that transitions between thermally excited crystal structures...

  2. Crystal structure and elasticity of Al-bearing phase H under high pressure

    Directory of Open Access Journals (Sweden)

    Guiping Liu

    2018-05-01

    Full Text Available Al has significant effect on properties of minerals. We reported crystal structure and elasticity of phase H, an important potential water reservoir in the mantle, which contains different Al using first principles simulations for understanding the effect of Al on the phase H. The crystal and elastic properties of Al end-member phase H (Al2O4H2 are very different from Mg end-member (MgSiO4H2 phase H and two aluminous phase H (Mg0.875Si0.875Al0.25O4H2 (12.5at%Al and Mg0.75Si0.75Al0.5O4H2 (25at% Al. However differences between Mg end-member phase H and aluminous phase H are slight except for the O-H bond length and octahedron volume. Al located at different crystal positions (original Mg or Si position of aluminous phase H has different AlO6 octahedral volumes. For three Al-bearing phase H, bulk modulus (K, shear modulus (G, compressional wave velocity (Vp and shear wave velocity (Vs increase with increasing Al content. Under high pressure, density of phase H increases with increasing Al content. The Al content affects the symmetry of the phase H and then affects the density and elastic constants of phase H. The total ground energy of phase H also increases with increasing Al content. So an energy barrier for the formation of solid solution of phase H with δ-phase AlOOH is expected. However, if the phase H with δ-phase AlOOH solid solution does exit in the mantle, it may become an important component of the mantle or leads to a low velocity layer at the mantle.

  3. Ternary systems Sr-{Ni,Cu}-Si: Phase equilibria and crystal structure of ternary phases

    International Nuclear Information System (INIS)

    Nasir, Navida; Melnychenko-Koblyuk, Nataliya; Grytsiv, Andriy; Rogl, Peter; Giester, Gerald; Wosik, Jaroslaw; Nauer, Gerhard E.

    2010-01-01

    Phase relations were established in the Sr-poor part of the ternary systems Sr-Ni-Si (900 deg. C) and Sr-Cu-Si (800 deg. C) by light optical microscopy, electron probe microanalysis and X-ray diffraction on as cast and annealed alloys. Two new ternary compounds SrNiSi 3 (BaNiSn 3 -type) and SrNi 9-x Si 4+x (own-type) were found in the Sr-Ni-Si system along with previously reported Sr(Ni x Si 1-x ) 2 (AlB 2 -type). The crystal structure of SrNi 9-x Si 4+x (own-type, x=2.7, a=0.78998(3), c=1.1337(2) nm; space group P4/nbm) was determined from X-ray single crystal counter to be a low symmetry derivative of the cubic, parent NaZn 13 -type. At higher Si-content X-ray Rietveld refinements reveal the formation of a vacant site (□) corresponding to a formula SrNi 5.5 Si 6.5 □ 1.0 . Phase equilibria in the Sr-Cu-Si system are characterized by the compounds SrCu 2-x Si 2+x (ThCr 2 Si 2 -type), Sr(Cu x Si 1-x ) 2 (AlB 2 -type), SrCu 9-x Si 4+x (0≤x≤1.0; CeNi 8.5 Si 4.5 -type) and SrCu 13-x Si x (4≤x≤1.8; NaZn 13 -type). The latter two structure types appear within a continuous solid solution. Neither a type-I nor a type-IX clathrate compound was encountered in the Sr-{Cu,Ni}-Si systems. Structural details are furthermore given for about 14 new ternary compounds from related alloy systems with Ba. - Graphical abstract: The crystal structure of SrNi 9-x Si 4+x (own-type, x=2.7, a=0.78998(3), c=1.1337(2) nm; space group P4/nbm) was determined from X-ray single crystal counter to be a low symmetry derivative of the cubic, parent NaZn 13 -type and is related to CeNi 8.5 Si 4.5 -type.

  4. Get phases from arsenic anomalous scattering: de novo SAD phasing of two protein structures crystallized in cacodylate buffer.

    Directory of Open Access Journals (Sweden)

    Xiang Liu

    Full Text Available The crystal structures of two proteins, a putative pyrazinamidase/nicotinamidase from the dental pathogen Streptococcus mutans (SmPncA and the human caspase-6 (Casp6, were solved by de novo arsenic single-wavelength anomalous diffraction (As-SAD phasing method. Arsenic (As, an uncommonly used element in SAD phasing, was covalently introduced into proteins by cacodylic acid, the buffering agent in the crystallization reservoirs. In SmPncA, the only cysteine was bound to dimethylarsinoyl, which is a pentavalent arsenic group (As (V. This arsenic atom and a protein-bound zinc atom both generated anomalous signals. The predominant contribution, however, was from the As anomalous signals, which were sufficient to phase the SmPncA structure alone. In Casp6, four cysteines were found to bind cacodyl, a trivalent arsenic group (As (III, in the presence of the reducing agent, dithiothreitol (DTT, and arsenic atoms were the only anomalous scatterers for SAD phasing. Analyses and discussion of these two As-SAD phasing examples and comparison of As with other traditional heavy atoms that generate anomalous signals, together with a few arsenic-based de novo phasing cases reported previously strongly suggest that As is an ideal anomalous scatterer for SAD phasing in protein crystallography.

  5. Balance of optical, structural, and electrical properties of textured liquid phase crystallized Si solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Preidel, V., E-mail: veit.preidel@helmholtz-berlin.de; Amkreutz, D.; Haschke, J.; Wollgarten, M.; Rech, B.; Becker, C. [Helmholtz-Zentrum Berlin für Materialien und Energie GmbH, Division Renewable Energy, Kekuléstr. 5, 12489 Berlin (Germany)

    2015-06-14

    Liquid phase crystallized Si thin-film solar cells on nanoimprint textured glass substrates exhibiting two characteristic, but distinct different surface structures are presented. The impact of the substrate texture on light absorption, the structural Si material properties, and the resulting solar cell performance is analyzed. A pronounced periodic substrate texture with a vertical feature size of about 1 μm enables excellent light scattering and light trapping. However, it also gives rise to an enhanced Si crystal defect formation deteriorating the solar cell performance. In contrast, a random pattern with a low surface roughness of 45 nm allows for the growth of Si thin films being comparable to Si layers on planar reference substrates. Amorphous Si/crystalline Si heterojunction solar cells fabricated on the low-roughness texture exhibit a maximum open circuit voltage of 616 mV and internal quantum efficiency peak values exceeding 90%, resulting in an efficiency potential of 13.2%. This demonstrates that high quality crystalline Si thin films can be realized on nanoimprint patterned glass substrates by liquid phase crystallization inspiring the implementation of tailor-made nanophotonic light harvesting concepts into future liquid phase crystallized Si thin film solar cells on glass.

  6. Structural study of intermediate phase in layered perovskite SrBi sub 2 Ta sub 2 O sub 9 single crystal

    CERN Document Server

    Onodera, A; Yamashita, H

    2003-01-01

    The crystal structure of an intermediate phase of Bi-layered ferroelectric SrBi sub 2 Ta sub 2 O sub 9 single crystals was studied by means of X-ray diffraction. An analysis of the extinction rules and X-ray intensities demonstrated that the crystal structure is orthorhombic with space group A2 sub 1 am in the ferroelectric phase and Amam in the intermediate phase; this conclusion is in good agreement with the findings of previous powder neutron diffraction studies.

  7. Crystal structure and phase transitions of sodium potassium niobate perovskites

    Science.gov (United States)

    Tellier, J.; Malic, B.; Dkhil, B.; Jenko, D.; Cilensek, J.; Kosec, M.

    2009-02-01

    This paper presents the crystal structure and the phase transitions of K xNa 1- xNbO 3 (0.4 ≤ x ≤ 0.6). X-ray diffraction measurements were used to follow the change of the unit-cell parameters and the symmetry in the temperature range 100-800 K. At room temperature all the compositions exhibited a monoclinic metric of the unit cell with a small monoclinic distortion (90.32° ≤ β ≤ 90.34°). No major change of symmetry was evidenced in the investigated compositional range, which should be characteristic of the morphotropic phase-boundary region. With increasing temperature, the samples underwent first-order monoclinic-tetragonal and tetragonal-cubic transitions. Only the potassium-rich phases were rhombohedral at 100 K.

  8. Crystal phases of a glass-forming Lennard-Jones mixture

    International Nuclear Information System (INIS)

    Fernandez, Julian R.; Harrowell, Peter

    2003-01-01

    We compare the potential energy at zero temperature of a range of crystal structures for a glass-forming binary mixture of Lennard-Jones particles. The lowest-energy ordered state consists of coexisting phases of a single component face centered cubic structure and an equimolar cesium chloride structure. An infinite number of layered crystal structures are identified with energies close to this ground state. We demonstrate that the finite size increase of the energy of the coexisting crystal with incoherent interfaces is sufficient to destabilize this ordered phase in simulations of typical size. Two specific local coordination structures are identified as of possible structural significance in the amorphous state. We observe rapid crystal growth in the equimolar mixture

  9. Formamidinium iodide: crystal structure and phase transitions

    Directory of Open Access Journals (Sweden)

    Andrey A. Petrov

    2017-04-01

    Full Text Available At a temperature of 100 K, CH5N2+·I− (I, crystallizes in the monoclinic space group P21/c. The formamidinium cation adopts a planar symmetrical structure [the r.m.s. deviation is 0.002 Å, and the C—N bond lengths are 1.301 (7 and 1.309 (8 Å]. The iodide anion does not lie within the cation plane, but deviates from it by 0.643 (10 Å. The cation and anion of I form a tight ionic pair by a strong N—H...I hydrogen bond. In the crystal of I, the tight ionic pairs form hydrogen-bonded zigzag-like chains propagating toward [20-1] via strong N—H...I hydrogen bonds. The hydrogen-bonded chains are further packed in stacks along [100]. The thermal behaviour of I was studied by different physicochemical methods (thermogravimetry, differential scanning calorimetry and powder diffraction. Differential scanning calorimetry revealed three narrow endothermic peaks at 346, 387 and 525 K, and one broad endothermic peak at ∼605 K. The first and second peaks are related to solid–solid phase transitions, while the third and fourth peaks are attributed to the melting and decomposition of I. The enthalpies of the phase transitions at 346 and 387 K are estimated as 2.60 and 2.75 kJ mol−1, respectively. The X-ray powder diffraction data collected at different temperatures indicate the existence of I as the monoclinic (100–346 K, orthorhombic (346–387 K and cubic (387–525 K polymorphic modifications.

  10. Crystal structure across the β to α phase transition in thermoelectric Cu2−xSe

    Directory of Open Access Journals (Sweden)

    Espen Eikeland

    2017-07-01

    Full Text Available The crystal structure uniquely imparts the specific properties of a material, and thus provides the starting point for any quantitative understanding of thermoelectric properties. Cu2−xSe is an intensely studied high performing, non-toxic and cheap thermoelectric material, and here for the first time, the average structure of β-Cu2−xSe is reported based on analysis of multi-temperature single-crystal X-ray diffraction data. It consists of Se–Cu layers with additional copper between every alternate layer. The structural changes during the peculiar zT enhancing phase transition mainly consist of changes in the inter-layer distance coupled with subtle Cu migration. Just prior to the transition the structure exhibits strong negative thermal expansion due to the reordering of Cu atoms, when approached from low temperatures. The phase transition is fully reversible and group–subgroup symmetry relations are derived that relate the low-temperature β-phase to the high-temperature α-phase. Weak superstructure reflections are observed and a possible Cu ordering is proposed. The structural rearrangement may have a significant impact on the band structure and the Cu rearrangement may also be linked to an entropy increase. Both factors potentially contribute to the extraordinary zT enhancement across the phase transition.

  11. Alignment structures in ferroelectric liquid crystals

    Energy Technology Data Exchange (ETDEWEB)

    Islam, N.U

    1998-07-01

    Although for many years liquid crystals were of purely scientific interest, they have now become ubiquitous in everyday life. The use of the nematic liquid crystal phase in flat panel display applications has been the main factor in this popularity. However, with the advent of the SuperTwist Nematic (STN) device, the limits to which this phase could be exploited for display applications was perhaps reached. With the discovery by Clark et al. of the Surface Stabilised Ferroelectric Liquid Crystal (SSFLC) configuration, the possibility arose of using chiral smectic liquid crystals to create large area, passively addressed, fast switching, flat panel displays. Unfortunately, the structures that form within smectic liquid crystals, and the dynamics of the switching within these, are still not fully understood. In this thesis we address the former of these, making a detailed the study of the structures that form within tilted smectic liquid crystal devices. We present here the first complete theoretical and experimental study of various different ferroelectric liquid crystal materials, where we employed theoretical models based on a simple set of assumptions to understand the behaviour of a set of increasingly complex experimental systems. We started with the simplest of these, Freely Suspended Smectic Films (FSSFs) and then worked with progressively more realistic systems in the form of homeotropically, and later, homogeneously aligned liquid crystal cells. The equilibrium structures that form get particularly complex in the last case, taking the form of tilted and chevron layering structures. In each of these cases, the predictions of the modelling are compared with our experimental results. Further, we present here the first model of the chevron cusp that seeks to include the effects of biaxiality in the S{sub C} phase. We also present a model that seeks to analyse the stability of the chevron layering structure and its relationship with tilted layers. This includes

  12. Alignment structures in ferroelectric liquid crystals

    International Nuclear Information System (INIS)

    Islam, N.U.

    1998-01-01

    Although for many years liquid crystals were of purely scientific interest, they have now become ubiquitous in everyday life. The use of the nematic liquid crystal phase in flat panel display applications has been the main factor in this popularity. However, with the advent of the SuperTwist Nematic (STN) device, the limits to which this phase could be exploited for display applications was perhaps reached. With the discovery by Clark et al. of the Surface Stabilised Ferroelectric Liquid Crystal (SSFLC) configuration, the possibility arose of using chiral smectic liquid crystals to create large area, passively addressed, fast switching, flat panel displays. Unfortunately, the structures that form within smectic liquid crystals, and the dynamics of the switching within these, are still not fully understood. In this thesis we address the former of these, making a detailed the study of the structures that form within tilted smectic liquid crystal devices. We present here the first complete theoretical and experimental study of various different ferroelectric liquid crystal materials, where we employed theoretical models based on a simple set of assumptions to understand the behaviour of a set of increasingly complex experimental systems. We started with the simplest of these, Freely Suspended Smectic Films (FSSFs) and then worked with progressively more realistic systems in the form of homeotropically, and later, homogeneously aligned liquid crystal cells. The equilibrium structures that form get particularly complex in the last case, taking the form of tilted and chevron layering structures. In each of these cases, the predictions of the modelling are compared with our experimental results. Further, we present here the first model of the chevron cusp that seeks to include the effects of biaxiality in the S C phase. We also present a model that seeks to analyse the stability of the chevron layering structure and its relationship with tilted layers. This includes an

  13. Escherichia coli MltA : MAD phasing and refinement of a tetartohedrally twinned protein crystal structure (vol D61, pg 613, 2005)

    NARCIS (Netherlands)

    Barends, Thomas R.M.; Jong, René M. de; Straaten, Karin E. van; Thunnissen, Andy-Mark W.H.; Dijkstra, Bauke W.

    Crystals were grown of a mutant form of the bacterial cell-wall maintenance protein MltA that diffracted to 2.15 Å resolution. When phasing with molecular replacement using the native structure failed, selenium MAD was used to obtain initial phases. However, after MAD phasing the crystals were found

  14. Indirect phase transition of TiC, ZrC, and HfC crystal structures

    Energy Technology Data Exchange (ETDEWEB)

    Abavare, Eric K.K.; Dodoo, Samuel N.A. [Department of Physics, Kwame Nkrumah University of Science and Technology, Kumasi (Ghana); Uchida, Kazuyuki; Oshiyama, Atsushi [Department of Applied Physics, The University of Tokyo, Hongo, Tokyo (Japan); Nkurumah-Buandoh, George K.; Yaya, Abu [Department of Physics, University of Ghana, Legon (Ghana)

    2016-06-15

    We have performed first-principles calculations to analyze the electronic structures, static, and dynamical structural stabilities of the pressure-induced phase transformation of refractory compounds (transition-metal carbides) from NaCl-type (B1) to CsCl-type (B2) via zinc-blende phase using the plane-wave pseudopotential approach in the framework of the generalized gradient approximation (GGA) for the exchange and correlation functional. The ground-state properties, equilibrium lattice constant, bulk moduli, and band structures are determined for the stoichiometry of the compounds and compared with known experimental and theoretical values. We find that the phase-transition pressure for the indirect phase transition from B1→B2 via zinc-blende structure is about 17-fold for TiC, 12-fold for both ZrC and HfC, respectively, when compared with the direct phase transition. Calculated phonon instability exists for the CsCl-B2 phase, which can prevent the structures from forming and contrary to the zinc-blende and the NaCl-B1 phases. The band dispersion and electronic density of states for B1 and B2 crystal phases were explored and found to indicate metallic character in contrast with the zinc-blende phase, which has a pseudogap opening in the bandgap region suggesting a semiconducting property and also a frequency gap in the phonon spectrum. (copyright 2016 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  15. Structural phase transition and erasable optically memorized effect in layered γ-In2Se3 crystals

    International Nuclear Information System (INIS)

    Ho, Ching-Hwa; Chen, Ying-Cen; Pan, Chia-Chi

    2014-01-01

    We have grown In 2 Se 3 layered-type crystals using chemical vapor transport method with ICl 3 as the transport agent. The as-grown crystals show two different color groups of black shiny for α-phase In 2 Se 3 and red to yellow for γ-phase In 2 Se 3 . High-resolution transmission electron micro scopy verifies crystalline state and structural polytype of the as-grown In 2 Se 3 . The results indicate that the α-In 2 Se 3 crystals present more crystalline states than those of the other amorphous γ-In 2 Se 3 . The amorphous effect on the advancing of optoelectronic property of γ-In 2 Se 3 shows erasable optical-memorized effect in the disordered and polycrystalline γ-In 2 Se 3 layers. Laser-induced photodarkening and annealed-recovery test verified that a reversible structural-phase transition of γ↔α can occur inside the γ-In 2 Se 3 . Thermoreflectance and Raman scattering measurements are carried out to identify the inter-phase transformation of the γ-In 2 Se 3 polycrystals using different heat treatments. Direct band gaps and Raman vibration modes for the γ- and α-In 2 Se 3 crystalline phases are, respectively, characterized and identified. The character of γ↔α inter-phase transition promotes feasible optical and optoelectronic applications of the γ-In 2 Se 3 material in optical memory, optics, and solar-energy devices

  16. Structural phase transition and erasable optically memorized effect in layered γ-In2Se3 crystals

    Science.gov (United States)

    Ho, Ching-Hwa; Chen, Ying-Cen; Pan, Chia-Chi

    2014-01-01

    We have grown In2Se3 layered-type crystals using chemical vapor transport method with ICl3 as the transport agent. The as-grown crystals show two different color groups of black shiny for α-phase In2Se3 and red to yellow for γ-phase In2Se3. High-resolution transmission electron micro scopy verifies crystalline state and structural polytype of the as-grown In2Se3. The results indicate that the α-In2Se3 crystals present more crystalline states than those of the other amorphous γ-In2Se3. The amorphous effect on the advancing of optoelectronic property of γ-In2Se3 shows erasable optical-memorized effect in the disordered and polycrystalline γ-In2Se3 layers. Laser-induced photodarkening and annealed-recovery test verified that a reversible structural-phase transition of γ↔α can occur inside the γ-In2Se3. Thermoreflectance and Raman scattering measurements are carried out to identify the inter-phase transformation of the γ-In2Se3 polycrystals using different heat treatments. Direct band gaps and Raman vibration modes for the γ- and α-In2Se3 crystalline phases are, respectively, characterized and identified. The character of γ↔α inter-phase transition promotes feasible optical and optoelectronic applications of the γ-In2Se3 material in optical memory, optics, and solar-energy devices.

  17. Crystal Phase Quantum Well Emission with Digital Control

    DEFF Research Database (Denmark)

    Assali, S.; Laehnemann, J.; Vu, Thi Thu Trang

    2017-01-01

    One of the major challenges in the growth of quantum well and quantum dot heterostructures is the realization of atomically sharp interfaces. Nanowires provide a new opportunity to engineer the band structure as they facilitate the controlled switching of the crystal structure between the zinc......-blende (ZB) and wurtzite (WZ) phases. Such a crystal phase switching results in the formation of crystal phase quantum wells (CPQWs) and quantum dots (CPQDs). For GaP CPQWs, the inherent electric fields due to the discontinuity of the spontaneous polarization at the WZ/ZB junctions lead to the confinement...... of both types of charge carriers at the opposite interfaces of the WZ/ZB/WZ structure. This confinement leads to a novel type of transition across a ZB flat plate barrier. Here, we show digital tuning of the visible emission of WZ/ZB/WZ CPQWs in a GaP nanowire by changing the thickness of the ZB barrier...

  18. Structure, spectra and phase transition in p-nitroanilinium perchlorate crystal

    Energy Technology Data Exchange (ETDEWEB)

    Marchewka, M.K.; Drozd, M.; Pietraszko, A

    2003-07-25

    The first X-ray diffraction and vibrational spectroscopic analysis of a novel complex between p-nitroaniline and perchloric acid is reported. The structure was solved in 295 K. Room temperature powder infrared and Raman measurements for the p-nitroanilinium perchlorate (1:1) crystals were carried out. The vibrational spectra in the region of internal vibrations of ions corroborates the X-ray data which show that p-nitroaniline molecule is monoprotonated. DSC measurements on powder sample indicate the phase transition point at about 213 and 208 K for heating and cooling, respectively. No detectable signal was observed during powder test for second harmonic generation.

  19. Analysis of phase transitions and crystal structures of novel benzothiophene derivatives

    Science.gov (United States)

    Zhang, Shuo

    Although single crystal X-ray diffraction remains the most important technique for analyzing periodically ordered structures at atomic resolution, single crystal X-ray diffraction of organic macromolecules is challenged by difficulty in growing single crystals of desired size and quality. Electron crystallography of organic macromolecules, on the other hand, is limited by image resolution due to radiation damage and highly dependent on high-resolution instrumentation. Novel alkylated benzothiophene derivatives synthesized previously can be readily fabricated into semiconductor devices for various applications (photodetectors, explosive sensors, field-effect transistors, light-emitting diodes, etc.) via solution process. The object of this research is to identify phase transitions of organic macromolecules of this kind via differential scanning calorimetry and temperature-resolved wide angle X-ray diffraction, and to determine their lattice parameters and space groups by reconstruction of their reciprocal space via transmission electron microscopy/selected area electron diffraction followed by refinement with X-ray diffraction, supplemented by polarized light microscopy. Computer simulation was performed to rationalize the molecular packing schemes, so as to understand the origin of their electronic performance from crystallographic perspective.

  20. Shear induced structures in crystallizing cocoa butter

    Science.gov (United States)

    Mazzanti, Gianfranco; Guthrie, Sarah E.; Sirota, Eric B.; Marangoni, Alejandro G.; Idziak, Stefan H. J.

    2004-03-01

    Cocoa butter is the main structural component of chocolate and many cosmetics. It crystallizes in several polymorphs, called phases I to VI. We used Synchrotron X-ray diffraction to study the effect of shear on its crystallization. A previously unreported phase (phase X) was found and a crystallization path through phase IV under shear was observed. Samples were crystallized under shear from the melt in temperature controlled Couette cells, at final crystallization temperatures of 17.5^oC, 20^oC and 22.5^oC in Beamline X10A of NSLS. The formation of phase X was observed at low shear rates (90 s-1) and low crystallization temperature (17.5^oC), but was absent at high shear (720 s-1) and high temperature (20^oC). The d-spacing and melting point suggest that this new phase is a mixture rich on two of the three major components of cocoa butter. We also found that, contrary to previous reports, the transition from phase II to phase V can happen through the intermediate phase IV, at high shear rates and temperature.

  1. Detailed Investigation of the Structural, Thermal, and Electronic Properties of Gold Isocyanide Complexes with Mechano-Triggered Single-Crystal-to-Single-Crystal Phase Transitions.

    Science.gov (United States)

    Seki, Tomohiro; Sakurada, Kenta; Muromoto, Mai; Seki, Shu; Ito, Hajime

    2016-02-01

    Mechano-induced phase transitions in organic crystalline materials, which can alter their properties, have received much attention. However, most mechano-responsive molecular crystals exhibit crystal-to-amorphous phase transitions, and the intermolecular interaction patterns in the daughter phase are difficult to characterize. We have investigated phenyl(phenylisocyanide)gold(I) (1) and phenyl(3,5-dimethylphenylisocyanide)gold(I) (2) complexes, which exhibit a mechano-triggered single-crystal-to-single-crystal phase transition. Previous reports of complexes 1 and 2 have focused on the relationships between the crystalline structures and photoluminescence properties; in this work we have focused on other aspects. The face index measurements of complexes 1 and 2 before and after the mechano-induced phase transitions have indicated that they undergo non-epitaxial phase transitions without a rigorous orientational relationship between the mother and daughter phases. Differential scanning calorimetry analyses revealed the phase transition of complex 1 to be enthalpically driven by the formation of new aurophilic interactions. In contrast, the phase transition of complex 2 was found to be entropically driven, with the closure of an empty void in the mother phase. Scanning electron microscopy observation showed that the degree of the charging effect of both complexes 1 and 2 was changed by the phase transitions, which suggests that the formation of the aurophilic interactions affords more effective conductive pathways. Moreover, flash-photolysis time-resolved microwave conductivity measurements revealed that complex 1 increased in conductivity after the phase change, whereas the conductivity of complex 2 decreased. These contrasting results were explained by the different patterns in the aurophilic interactions. Finally, an intriguing disappearing polymorphism of complex 2 has been reported, in which a polymorph form could not be obtained again after some period of time

  2. Crystal structures and phase transformation of deuterated lithium imide, Li2ND

    International Nuclear Information System (INIS)

    Balogh, Michael P.; Jones, Camille Y.; Herbst, J.F.; Hector, Louis G.; Kundrat, Matthew

    2006-01-01

    We have investigated the crystal structure of deuterated lithium imide, Li 2 ND, by means of neutron and X-ray diffraction. An order-disorder transition occurs near 360K. Below that temperature Li 2 ND can be described to the same level of accuracy as a disordered cubic (Fd3-bar m) structure with partially occupied Li 32e sites or as a fully occupied orthorhombic (Ima2 or Imm2) structure. The high temperature phase is best characterized as disordered cubic (Fm3-bar m) with D atoms randomized over the 192l sites. Density functional theory calculations complement and support the diffraction analyses. We compare our findings in detail with previous studies

  3. Study of crystallization kinetics and structural relaxation behavior in phase separated Ag{sub 33}Ge{sub 17}Se{sub 50} glassy alloys

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, Praveen, E-mail: prafiziks@gmail.com [Semiconductors Laboratory, Department of Physics, GND University, Amritsar 143005 (India); Nanotechnology Research Centre, DAV Institute of Engineering and Technology, Kabir Nagar, Jalandhar 144008 (India); Yannopoulos, S.N. [Foundation for Research and Technology Hellas, Institute of Chemical Engineering and High Temperature Chemical Processes (FORTH/ICE-HT), P.O. Box 1414, GR-26 504, Rio-Patras (Greece); Sathiaraj, T.S. [Department of Physics, University of Botswana, Gaborone (Botswana); Thangaraj, R., E-mail: rthangaraj@rediffmail.com [Semiconductors Laboratory, Department of Physics, GND University, Amritsar 143005 (India)

    2012-07-16

    We report on the crystallization processes and structure (crystal phases) of Ag{sub 33}Ge{sub 17}Se{sub 50} glassy alloy using differential scanning calorimetry and x-ray diffraction techniques, respectively. The devitrification that gives rise to the first exothermic peak results in the crystallization of Ag{sub 2}Se and Ag{sub 8}GeSe{sub 6} phases, while the growth of GeSe{sub 2} accompanied by the transformation of Ag{sub 8}GeSe{sub 6} to Ag{sub 2}Se phase occurs during the second crystallization process. Different theoretical models are used to elucidate various kinetic parameters for the crystallization transformation process in this phase separated system. With annealing below the glass transition temperature, an inverse behavior between the variation of the optical gap and the band tailing parameter is observed for the thermally evaporated films. These results are explained as the mixing of different clusters/species in the amorphous state and/or changes caused by structural relaxation of the glassy network for the thermally evaporated films. - Highlights: Black-Right-Pointing-Pointer Phase separation in Ag{sub 33}Ge{sub 17}Se{sub 50} glassy alloy bordering two glass forming regions. Black-Right-Pointing-Pointer Transformation of Ag{sub 8}GeSe{sub 6} {yields} Ag{sub 2}Se along with crystallization GeSe{sub 2} phase. Black-Right-Pointing-Pointer Elucidation of various kinetic parameters for the crystalline transformation. Black-Right-Pointing-Pointer Structural relaxation in thermally evaporated films by optical spectroscopy.

  4. Radiation heredity: unusual structural-phase states and metallic crystals properties

    International Nuclear Information System (INIS)

    Melikhov, V.D.; Skakov, M.K.

    1998-01-01

    Some experimental results allowing to judge about possibilities of unusual structural phase states formation during use irradiation and high temperature treatment of metallic crystals are considered. During study of pure (99.99 %) and especially pure (99.999 %) aluminium it was established, that after heating of preliminary irradiated samples in reactor, and non-irradiated ones up to temperatures above melting point (660 deg C), but not higher than 820 deg C, and cooling an microstructure and substructure of both irradiated and non-irradiated metals have been essentially distinguished with each other. If first of them had typically polycrystal construction, that second one was monocrystal with good developed initial substructure. Radiation effects have been preserved even in liquid metal if it was not overheated higher critical point, which is determined by phase transition from quasi-liquid state to true liquid one. During study of irradiation and postradiation treatment of structure and properties of intermetallides Fe 3 Al it was revealed, that in initially irradiated regulated alloys the radiation effect is preserving at heating of above 0.85 T melt (that essentially exceed order-disorder transition temperature) (550 deg C) in non-irradiated alloys of prolonged exposure and hardening. At that, irradiated-hardened alloy distinguishing from not hardened one by lattice parameter (on 0.1 %), by configuration of nearest surrounding of iron atoms in elementary cell, by regulating extent of different kind of atoms in lattice knocks. It was revealed, that at fluence (5·10 24 n·m 2 ) an appearance of new phases, distinguishing from matrix by component content. It was shown, that irradiation and post-radiation treatment are methods for creation unusual structural-phase states and attach to metals and alloys new properties

  5. Local structure, composition, and crystallization mechanism of a model two-phase “composite nanoglass”

    Energy Technology Data Exchange (ETDEWEB)

    Chattopadhyay, Soma; Shibata, Tomohiro [CSRRI-IIT, MRCAT, Sector 10, Advanced Photon Source, Argonne National Laboratory, Argonne, Illinois 60439 (United States); Kelly, S. D. [EXAFS Analysis, Bolingbrook, Illinois 60440 (United States); Balasubramanian, M. [Sector 20 XOR, Advanced Photon Source, Argonne National Laboratory, Argonne, Illinois 60439 (United States); Srinivasan, S. G.; Du, Jincheng; Banerjee, Rajarshi [Department of Materials Science and Engineering, University of North Texas, Denton, Texas 76203-5017 (United States); Ayyub, Pushan, E-mail: pushan@tifr.res.in [Department of Condensed Matter Physics and Materials Science, Tata Institute of Fundamental Research, Mumbai 400005 (India)

    2016-02-14

    We report a detailed study of the local composition and structure of a model, bi-phasic nanoglass with nominal stoichiometry Cu{sub 55}Nb{sub 45}. Three dimensional atom probe data suggest a nanoscale-phase-separated glassy structure having well defined Cu-rich and Nb-rich regions with a characteristic length scale of ≈3 nm. However, extended x-ray absorption fine structure analysis indicates subtle differences in the local environments of Cu and Nb. While the Cu atoms displayed a strong tendency to cluster and negligible structural order beyond the first coordination shell, the Nb atoms had a larger fraction of unlike neighbors (higher chemical order) and a distinctly better-ordered structural environment (higher topological order). This provides the first experimental indication that metallic glass formation may occur due to frustration arising from the competition between chemical ordering and clustering. These observations are complemented by classical as well as ab initio molecular dynamics simulations. Our study indicates that these nanoscale phase-separated glasses are quite distinct from the single phase nanoglasses (studied by Gleiter and others) in the following three respects: (i) they contain at least two structurally and compositionally distinct, nanodispersed, glassy phases, (ii) these phases are separated by comparatively sharp inter-phase boundaries, and (iii) thermally induced crystallization occurs via a complex, multi-step mechanism. Such materials, therefore, appear to constitute a new class of disordered systems that may be called a composite nanoglass.

  6. Controlled in meso phase crystallization--a method for the structural investigation of membrane proteins.

    Directory of Open Access Journals (Sweden)

    Jan Kubicek

    Full Text Available We investigated in meso crystallization of membrane proteins to develop a fast screening technology which combines features of the well established classical vapor diffusion experiment with the batch meso phase crystallization, but without premixing of protein and monoolein. It inherits the advantages of both methods, namely (i the stabilization of membrane proteins in the meso phase, (ii the control of hydration level and additive concentration by vapor diffusion. The new technology (iii significantly simplifies in meso crystallization experiments and allows the use of standard liquid handling robots suitable for 96 well formats. CIMP crystallization furthermore allows (iv direct monitoring of phase transformation and crystallization events. Bacteriorhodopsin (BR crystals of high quality and diffraction up to 1.3 Å resolution have been obtained in this approach. CIMP and the developed consumables and protocols have been successfully applied to obtain crystals of sensory rhodopsin II (SRII from Halobacterium salinarum for the first time.

  7. X-ray and neutron single crystal diffraction on (NH4)3H(SO4)2. II. Refinement of crystal structure of phase II at room temperature

    International Nuclear Information System (INIS)

    Reehuis, M.; Wozniak, K.; Dominiak, P.; Smirnov, L.S.; Natkaniec, I.; Baranov, A.I.; Dolbinina, V.V.

    2006-01-01

    The (NH 4 ) 3 H(SO 4 ) 2 is of special interest due to the possible influence of ammonium ions on a series of phase transitions: I => II => III => IV => V => VII. Earlier, the X-ray single crystal diffraction study of phase II of (NH 4 ) 3 H(SO 4 ) 2 showed that the crystal structure of this compound has two crystallographically independent groups of ammonium ions NH 4 (1) and NH 4 (2), but orientational positions of these ammonium ions were not determined exactly. The refinement of NH 4 (1) and NH 4 (2) orientational positions in phase II is carried out with the help of the X-ray and neutron single crystal diffraction study. The analyses of differential Fourier maps of electron charge density and nuclear density point out the possibility of disordering of NH 4 (2) ammonium ions

  8. Phase field modeling of rapid crystallization in the phase-change material AIST

    Science.gov (United States)

    Tabatabaei, Fatemeh; Boussinot, Guillaume; Spatschek, Robert; Brener, Efim A.; Apel, Markus

    2017-07-01

    We carry out phase field modeling as a continuum simulation technique in order to study rapid crystallization processes in the phase-change material AIST (Ag4In3Sb67Te26). In particular, we simulate the spatio-temporal evolution of the crystallization of a molten area of the phase-change material embedded in a layer stack. The simulation model is adapted to the experimental conditions used for recent measurements of crystallization rates by a laser pulse technique. Simulations are performed for substrate temperatures close to the melting temperature of AIST down to low temperatures when an amorphous state is involved. The design of the phase field model using the thin interface limit allows us to retrieve the two limiting regimes of interface controlled (low temperatures) and thermal transport controlled (high temperatures) dynamics. Our simulations show that, generically, the crystallization velocity presents a maximum in the intermediate regime where both the interface mobility and the thermal transport, through the molten area as well as through the layer stack, are important. Simulations reveal the complex interplay of all different contributions. This suggests that the maximum switching velocity depends not only on material properties but also on the precise design of the thin film structure into which the phase-change material is embedded.

  9. Synthesizing lattice structures in phase space

    International Nuclear Information System (INIS)

    Guo, Lingzhen; Marthaler, Michael

    2016-01-01

    In one dimensional systems, it is possible to create periodic structures in phase space through driving, which is called phase space crystals (Guo et al 2013 Phys. Rev. Lett. 111 205303). This is possible even if for particles trapped in a potential without periodicity. In this paper we discuss ultracold atoms in a driven optical lattice, which is a realization of such a phase space crystals. The corresponding lattice structure in phase space is complex and contains rich physics. A phase space lattice differs fundamentally from a lattice in real space, because its coordinate system, i.e., phase space, has a noncommutative geometry, which naturally provides an artificial gauge (magnetic) field. We study the behavior of the quasienergy band structure and investigate the dissipative dynamics. Synthesizing lattice structures in phase space provides a new platform to simulate the condensed matter phenomena and study the intriguing phenomena of driven systems far away from equilibrium. (paper)

  10. Crystal Phase Quantum Well Emission with Digital Control.

    Science.gov (United States)

    Assali, S; Lähnemann, J; Vu, T T T; Jöns, K D; Gagliano, L; Verheijen, M A; Akopian, N; Bakkers, E P A M; Haverkort, J E M

    2017-10-11

    One of the major challenges in the growth of quantum well and quantum dot heterostructures is the realization of atomically sharp interfaces. Nanowires provide a new opportunity to engineer the band structure as they facilitate the controlled switching of the crystal structure between the zinc-blende (ZB) and wurtzite (WZ) phases. Such a crystal phase switching results in the formation of crystal phase quantum wells (CPQWs) and quantum dots (CPQDs). For GaP CPQWs, the inherent electric fields due to the discontinuity of the spontaneous polarization at the WZ/ZB junctions lead to the confinement of both types of charge carriers at the opposite interfaces of the WZ/ZB/WZ structure. This confinement leads to a novel type of transition across a ZB flat plate barrier. Here, we show digital tuning of the visible emission of WZ/ZB/WZ CPQWs in a GaP nanowire by changing the thickness of the ZB barrier. The energy spacing between the sharp emission lines is uniform and is defined by the addition of single ZB monolayers. The controlled growth of identical quantum wells with atomically flat interfaces at predefined positions featuring digitally tunable discrete emission energies may provide a new route to further advance entangled photons in solid state quantum systems.

  11. Ferroelectric InMnO{sub 3}: Growth of single crystals, structure and high-temperature phase transitions

    Energy Technology Data Exchange (ETDEWEB)

    Bekheet, Maged F., E-mail: maged.bekheet@ceramics.tu-berlin.de [Fachbereich Material‐ und Geowissenschaften, Technische Universität Darmstadt, Alarich-Weiss-Straße 2, 64287 Darmstadt (Germany); Fachgebiet Keramische Werkstoffe / Chair of Advanced Ceramic Materials, Institut für Werkstoffwissenschaften und -technologien, Technische Universität Berlin, Hardenbergstraße 40, 10623 Berlin (Germany); Svoboda, Ingrid; Liu, Na [Fachbereich Material‐ und Geowissenschaften, Technische Universität Darmstadt, Alarich-Weiss-Straße 2, 64287 Darmstadt (Germany); Bayarjargal, Lkhamsuren [Institut für Geowissenschaften, Goethe-Universität, Altenhöferallee 1, d-60438 Frankfurt a.M. (Germany); Irran, Elisabeth [Institut für Chemie, Technische Universität Berlin, Straße des 17, Juni 135, 10623 Berlin (Germany); Dietz, Christian; Stark, Robert W.; Riedel, Ralf [Fachbereich Material‐ und Geowissenschaften, Technische Universität Darmstadt, Alarich-Weiss-Straße 2, 64287 Darmstadt (Germany); Gurlo, Aleksander [Fachgebiet Keramische Werkstoffe / Chair of Advanced Ceramic Materials, Institut für Werkstoffwissenschaften und -technologien, Technische Universität Berlin, Hardenbergstraße 40, 10623 Berlin (Germany)

    2016-09-15

    To understand the origin of the ferroelectricity in InMnO{sub 3}, single crystals with average size of 1 mm were grown in PbF{sub 2} flux at 950 °C. The results of single crystal X-ray diffraction, second harmonic generation and piezoresponse force microscopy studies of high-quality InMnO{sub 3} single crystals reveal that the room-temperature state in this material is ferroelectric with P6{sub 3}cm symmetry. The polar InMnO{sub 3} specimen undergoes a reversible phase transition from non-centrosymmetric P6{sub 3}cm structure to a centrosymmetric P6{sub 3}/mmc structure at 700 °C as confirmed by the in situ high-temperature Raman spectroscopic and synchrotron X-ray diffraction experiments. - Graphical abstract: Piezoresponse fore microscopy (PFM) studies of high quality InMnO{sub 3} single crystal revealed that the room-temperature state of this material is ferroelectric with a clear cloverleaf pattern corresponding to six antiphase ferroelectric domains with alternating polarization ±P{sub z}. Display Omitted - Highlights: • InMnO{sub 3} single crystals with average size of 1 mm were grown in PbF{sub 2} flux at 950 °C. • The room-temperature state of InMnO{sub 3} is ferroelectric with polar P6{sub 3}cm structure. • PolarInMnO{sub 3} reversibly transforms to a centrosymmetric P6{sub 3}/mmc structure above 700 °C.

  12. Crystal structure of 200 K-superconducting phase in sulfur hydride system

    Energy Technology Data Exchange (ETDEWEB)

    Einaga, Mari; Sakata, Masafumi; Ishikawa, Takahiro; Shimizu, Katsuya [KYOKUGEN, Graduate School of Engineering Science, Osaka Univ. (Japan); Eremets, Mikhail; Drozdov, Alexander; Troyan, Ivan [Max Planck Institut fuer Chemie, Mainz (Germany); Hirao, Naohisa; Ohishi, Yasuo [JASRI/SPring-8, Hyogo (Japan)

    2016-07-01

    Superconductivity with the critical temperature T{sub c} above 200 K has been recently discovered by compression of H{sub 2}S (or D{sub 2}S) under extreme pressure. It was proposed that these materials decompose under high pressure to elemental sulfur and hydride with higher content of hydrogen which is responsible for the high temperature superconductivity. In this study, we have investigated that the crystal structure of the superconducting compressed H{sub 2}S and D{sub 2}S by synchrotron x-ray diffraction measurements combined with electrical resistance measurements at room and low temperatures. We found that the superconducting phase is in good agreement with theoretically predicted body-centered cubic structure, and coexists with elemental sulfur, which claims that the formation of 3H{sub 2}S → 2H{sub 3}S + S is occured under high pressure.

  13. Synthesis and crystal structure of the first Sc-Nb-O-N phases

    Energy Technology Data Exchange (ETDEWEB)

    Orthmann, Steven; Lerch, Martin [Institut fuer Chemie, Technische Universitaet Berlin (Germany)

    2017-11-17

    Synthesis of phase-pure materials in the system Sc-Nb-O-N is challenging. In this contribution we report on the preparation of the first scandium niobium oxide nitrides via reaction of water-saturated gaseous ammonia or an ammonia-oxygen mixture with amorphous scandium niobium oxides. Two new phases were obtained: rutile-type ScNb{sub 4}O{sub 7}N{sub 3}, which crystallizes in space group P4{sub 2}/mnm, and an anion-deficient fluorite-type Sc{sub 2}Nb(O,N,⬜){sub 6} phase crystallizing in space group Fm anti 3m. (copyright 2017 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  14. The effect of crystallization pressure on macromolecular structure, phase evolution, and fracture resistance of nano-calcium carbonate-reinforced high density polyethylene

    International Nuclear Information System (INIS)

    Yuan, Q.; Yang, Y.; Chen, J.; Ramuni, V.; Misra, R.D.K.; Bertrand, K.J.

    2010-01-01

    We describe here phase evolution and structural changes that are induced when high density polyethylene (HDPE) containing dispersion of nano-calcium carbonate is isothermally crystallized in the pressure range of 0.1-100 MPa. To delineate and separate the effects of applied crystallization pressure from nanoparticle effects, a relative comparison is made between neat HDPE and HDPE containing nano-calcium carbonate under similar experimental conditions. X-ray diffraction studies point toward the evolution of monoclinic phase at high crystallization pressure together with the commonly observed orthorhombic phase of HDPE. Furthermore, the nucleation of monoclinic phase is promoted by nanoparticles even at low crystallization pressure. The equilibrium melting point is insignificantly influenced on the addition of nanoparticle, such that the crystallization pressure has no obvious effect. The strong thermodynamic interaction between nano-calcium carbonate and HDPE is supported by the shift in glass transition temperature and changes in the modification of absorption bands of HDPE in Fourier transform infrared (FTIR) spectrum. Furthermore, the reinforcement of HDPE with nano-calcium carbonate increases impact strength and alters the micromechanism from crazing-tearing in polyethylene to fibrillated fracture in polymer nanocomposite, such that the fibrillation increases with crystallization pressure.

  15. Vitrification and Crystallization of Phase-Separated Metallic Liquid

    Directory of Open Access Journals (Sweden)

    Yun Cheng

    2017-02-01

    Full Text Available The liquid–liquid phase separation (LLPS behavior of Fe50Cu50 melt from 3500 K to 300 K with different rapid quenching is investigated by molecular dynamics (MD simulation based on the embedded atom method (EAM. The liquid undergoes metastable phase separation by spinodal decomposition in the undercooled regime and subsequently solidifies into three different Fe-rich microstructures: the interconnected-type structure is kept in the glass and crystal at a higher cooling rate, while the Fe-rich droplets are found to crystalize at a lower cooling rate. During the crystallization process, only Fe-rich clusters can act as the solid nuclei. The twinning planes can be observed in the crystal and only the homogeneous atomic stacking shows mirror symmetry along the twinning boundary. Our present work provides atomic-scale understanding of LLPS melt during the cooling process.

  16. Crystal structure and phase composition of aluminium thin films with holmium additions

    International Nuclear Information System (INIS)

    Koleshko, V.M.; Belitskij, V.F.; Obukhov, V.E.; Rumak, N.V.; Urban, T.P.

    1984-01-01

    The effect of holmium additions on the crystal structure and phase composition of thin aluminium films has been studied. A regularity in grain size changes in aluminium thin films versus the holmium content in them is established. The holmium introduction is shown to result in the appearance of axial texture in the aluminium films, the texture axis being determined by the quantity of the addition. During heat treatment of the aluminium films, containing holmium additions, in the range of low ( approximately 100-200 deg C) annealing temperatures holmium monohydroxide is formed, and at annealing temperatures 300 deg C 0 3 is formed

  17. Crystal structure of Cs3H(SeO4)2 (T=295 K) and its changes in phase transformations

    International Nuclear Information System (INIS)

    Merinov, B.V.; Bolotina, N.B.; Baranov, A.I.; Shuvalov, L.A.

    1988-01-01

    Crystal structure of Cs 3 H(SeO 4 ) 2 3 phase at T=295 K is decoded by X-ray diffraction data. Monoclinic cell parameters are improved: a=10.903(3), b=6.390(8), c=8.452(2)A, β=112.46(1) deg, V=544 A 3 , Z=2, sp. gr. C2/m. Structural peculiarities of 3↔2↔1 phase transitions in Cs 3 H(SeO 4 ) 2 and proton conductivity mechanism in superionic phase are considered

  18. Effects of spin orbital coupling on atomic and electronic structures in Al2Cu and Al2Au crystal and liquid phases via ab initio molecular dynamics simulations

    International Nuclear Information System (INIS)

    Wang, Y.; Lu, Y.H.; Wang, X.D.; Cao, Q.P.; Zhang, D.X.; Jiang, J.Z.

    2014-01-01

    Highlights: • The SOC effect affects the cohesion energy of crystal phase. • The effect of SOC was reduced due to random local atomic structures in liquids. • The local geometrical structures also affect the melting points. • Both SOC effect and local atomic structures are important for melting point difference. - Abstract: The origin of different melting points between Al 2 Cu and Al 2 Au has been studied using ab initio molecular dynamics simulations. Cohesive energy, electronic structures and structure information of both crystal and liquid phases have been analyzed. It is found that spin orbital coupling (SOC) plays an important role on the cohesive energy of crystal phase, consistent with the different melting points of these two alloys. Whereas, it seems that SOC has no effect on the formation energy and structure of liquid phase. Possible mechanism of reduced SOC effect at liquid phase is proposed. Our results are helpful to understand the glass formation ability difference between Al 2 Cu and Al 2 Au

  19. Phase modulation due to crystal diffraction by ptychographic imaging

    Science.gov (United States)

    Civita, M.; Diaz, A.; Bean, R. J.; Shabalin, A. G.; Gorobtsov, O. Yu.; Vartanyants, I. A.; Robinson, I. K.

    2018-03-01

    Solving the phase problem in x-ray crystallography has occupied a considerable scientific effort in the 20th century and led to great advances in structural science. Here we use x-ray ptychography to demonstrate an interference method which measures the phase of the beam transmitted through a crystal, relative to the incoming beam, when diffraction takes place. The observed phase change of the direct beam through a small gold crystal is found to agree with both a quasikinematical model and full dynamical theories of diffraction. Our discovery of a diffraction contrast mechanism will enhance the interpretation of data obtained from crystalline samples using the ptychography method, which provides some of the most accurate x-ray phase-contrast images.

  20. Hierarchical structures and phase nucleation and growth during pressure-induced crystallization of polypropylene containing dispersion of nanoclay: The impact on physical and mechanical properties

    International Nuclear Information System (INIS)

    Misra, R.D.K.; Yuan, Q.; Chen, J.; Yang, Y.

    2010-01-01

    The objective of this study is to describe the evolution of structure and phases during pressure-induced crystallization of polymers containing dispersion of nanoparticles, in the pressure range of 0.1-200 MPa. The model material for nanoparticles is nanoclay and the model polymer is polypropylene, which can potentially form several crystalline phases. While the phase selection in polypropylene is dictated by pressure and temperature, however, the introduction of nanoparticles alters the nucleation and growth of phases via nanoparticle interface driven evolution. To delineate and separate the effects of applied crystallization pressure from nanoparticle effects, a relative comparison is made between neat polypropylene and polypropylene containing dispersion of nanoclay under similar experimental conditions. The significant finding is that nanoclay interacts with the host polypropylene in a manner such that it alters the structural morphology of α- and γ-crystals of polypropylene. Furthermore, nanoclay promotes the formation of γ-phase at ambient pressure suggesting its role as structure and morphology director in the stabilization of the less accessible γ-phase, and with the possibility of epitaxial growth that enhances toughness. The equilibrium melting point measurements point to thermodynamic interaction between nanoclay and polypropylene, which is supported by the change in glass transition temperature. Thus, the two components, nanoclay and pressure, together provide a unique opportunity to tune hierarchical structures and phase evolution, which has significant implication on physico-chemical and mechanical properties.

  1. First principles study of structural, electronic and optical properties of KCl crystal

    International Nuclear Information System (INIS)

    Chen, Z.J.; Xiao, H.Y.; Zu, X.T.

    2006-01-01

    The structural, electronic and optical properties of KCl crystal in B1, B2, B3 and T1 structures have been systematically studied using first-principle pseudopotential calculations. In addition, pressure-induced phase transition has also been investigated. It was found that when the pressure is below 2.8 GPa, the B1 structure is the most stable. Above 2.8 GPa KCl crystal will undergo a structural phase transition from the relatively open NaCl structure into the more dense CsCl atomic arrangement. Our results also suggested that at about 1.2 GPa structural phase transition from B3 to T1 will occur. When the pressure arrives at 39.9 GPa, the phase transition will occur from B2 to T1. In addition, we found KCl Crystal has indirect band gap in B2 structure and direct band gap in B1, B3 and T1 structures. The band gap value is the smallest in the T1 structure and is the largest in the B1 and B3 structures. Our calculations are found to be in good agreement with available experimental and theoretical results. The dielectric function and energy loss function of KCl crystal in four structures (B1, B2, B3 and T1) have been calculated as well as the anisotropy of the optical properties of KCl crystal in T1 structure

  2. Investigation of structural phase transition in strontium titanate single crystal by methods of generation of coherent and incoherent second optical harmonics

    International Nuclear Information System (INIS)

    Mishina, E.D.; Morozov, A.I.; Sigov, A.S.; Sherstyuk, N.Eh.; Aktsipetrov, O.A.; Lemanov, V.V.; Rasing, Th.

    2002-01-01

    The surface phase transition in the SrTiO 3 crystal is studied through the method of the second optical harmonic generation. The peculiarities in the nonlinear-optical response are identified at the temperature of T* = 145 K, which by 40 K exceeds the T c temperature of the structural phase transition in the crystal volume. The phenomenon of the nonlinear critical opalescence, caused by availability of the point defects, is studied. The second harmonic field and critical opalescence intensity are calculated on the basis of the phenomenological model of the nonlinear-optical processes with application of the Landau phase transition theory [ru

  3. Gas-phase Crystallization of Titanium Dioxide Nanoparticles

    International Nuclear Information System (INIS)

    Ahonen, P.P.; Moisala, A.; Tapper, U.; Brown, D.P.; Jokiniemi, J.K.; Kauppinen, E.I.

    2002-01-01

    We have investigated the development of crystal morphology and phase in ultrafine titanium dioxide particles. The particles were produced by a droplet-to-particle method starting from propanolic titanium tetraisopropoxide solution, and calcined in a vertical aerosol reactor in air. Mobility size classified 40-nm diameter particles were conveyed to the aerosol reactor to investigate particle size changes at 20-1200 deg. C with 5-1-s residence time. In addition, polydisperse particles were used to study morphology and phase formation by electron microscopy. According to differential mobility analysis, the particle diameter was reduced to 21-23-nm at 600 deg. C and above. Precursor decomposition occurred between 20 deg. C and 500 deg. C. The increased mobility particle size at 700 deg. C and above was observed to coincide with irregular particles at 700 deg. C and 800 deg. C and faceted particles between 900 deg. C and 1200 deg. C, according to transmission electron microscopy. The faceted anatase particles were observed to approach a minimized surface energy by forming {101} and {001} crystallographic surfaces. Anatase phase was observed at 500-1200 deg. C and above 600 deg. C the particles were single crystals. Indications of minor rutile formation were observed at 1200 deg. C. The relatively stable anatase phase vs. temperature is attributed to the defect free structure of the observed particles and a lack of crystal-crystal attachment points

  4. Liquid crystal blue phases: stability, field effects and alignment

    OpenAIRE

    Gleeson, HF; Miller, RJ; Tian, L; Görtz, V; Goodby, JW

    2015-01-01

    The blue phases are fascinating structures in liquid crystals, fluids that exhibit cubic structures that have true crystalline order. The blue phases were discovered in the 1970s and were the subject of extensive research in the 1980s, when a deep understanding of many of their properties was established. The discovery that the blue phases could be stabilised to exist over wide temperature ranges meant that they became more than scientific curiosities and led to a recent resurgence in researc...

  5. Phase-field crystal simulation facet and branch crystal growth

    Science.gov (United States)

    Chen, Zhi; Wang, Zhaoyang; Gu, Xinrui; Chen, Yufei; Hao, Limei; de Wit, Jos; Jin, Kexin

    2018-05-01

    Phase-field crystal model with one mode is introduced to describe morphological transition. The relationship between growth morphology and smooth density distribution was investigated. The results indicate that the pattern selection of dendrite growth is caused by the competition between interface energy anisotropy and interface kinetic anisotropy based on the 2D phase diagram. When the calculation time increases, the crystal grows to secondary dendrite at the dimensionless undercooling equal to - 0.4. Moreover, when noise is introduced in the growth progress, the symmetry is broken in the growth mode, and there becomes irregular fractal-like growth morphology. Furthermore, the single crystal shape develops into polycrystalline when the noise amplitude is large enough. When the dimensionless undercooling is less than - 0.3, the noise has a significant effect on the growth shape. In addition, the growth velocity of crystal near to liquid phase line is slow, while the shape far away from the liquid adapts to fast growth. Based on the simulation results, the method was proved to be effective, and it can easily obtain different crystal shapes by choosing the different points in 2D phase diagram.

  6. Crystal structure study of new lanthanide silicates with silico-carnotite structure

    International Nuclear Information System (INIS)

    Piccinelli, F.; Lausi, A.; Speghini, A.; Bettinelli, M.

    2012-01-01

    The crystal structures of new rare earth-based silicate compounds (Ca 3 Eu 2 Si 3 O 12 , Ca 3 Gd 2 Si 3 O 12 , Ca 3 Dy 2 Si 3 O 12 , Ca 3 Er 2 Si 3 O 12 and Ca 3 Lu 2 Si 3 O 12 ) have been determined using powder X-ray diffraction. From Rietveld refinement calculations on the collected powder patterns we observe a different distribution of the rare earth ions on the three available crystal sites characterized by different coordination numbers, depending on the ionic radius of the rare earth ion. The reasons of the instability of the silico-carnotite structure for lanthanide ions larger than Eu 3+ have been deduced. In addition, in order to detect crystal phase transitions, the powder patterns of Ca 3 Eu 2 Si 3 O 12 and Ca 3 Sm 2 Si 3 O 12 samples have been collected as a function of the temperature (RT-1000 °C range), but no phase transitions have been observed. - Graphical abstract: Synchrotron X-ray diffraction allows us the accurate determination of the RE 3+ ions distribution on the three available crystal sites of the silico-carnotite structure. Highlights: ► The structure of the Ca 3 M 2 Si 3 O 12 (M=Eu, Gd, Dy, Er and Lu) was determined. ► Different distribution of RE 3+ ions on the three available crystal sites was observed. ► The instability of the silico-carnotite structure for RE=La→Sm was discussed.

  7. The phase transition of the incommensurate phases β-Ln(PO3)3(Ln=Y,Tb...Yb), crystal structures of α-Ln(PO3)3(Ln=Y,Tb...Yb) and Sc(PO3)3

    International Nuclear Information System (INIS)

    Hoeppe, Hennig A.

    2009-01-01

    The incommensurately modulated room-temperature phases β-Ln(PO 3 ) 3 (Ln=Y,Tb...Yb) undergo a topotactic phase transition monitored by vibrational spectroscopy below 180 K leading to α-Ln(PO 3 ) 3 (Ln=Y,Dy...Yb), above 200 K the incommensurate phases are reobtained. The low-temperature phases exhibit a new structure type (α-Dy(PO 3 ) 3 ,P2 1 /c,Z=12,a=14.1422(6),b=20.0793(9),c=10.1018(4)A, β=127.532(3) 0 ). α-Tb(PO 3 ) 3 is isotypic with Gd(PO 3 ) 3 (α-Tb(PO 3 ) 3 ,I2/a,Z=16,a=25.875(6),b=13.460(3),c=10.044(2)A, β=119.13(3) 0 ). The symmetry relations between the involved phases of the phase transition are discussed. The crystal structure of Sc(PO 3 ) 3 is isotypic with that of Lu(PO 3 ) 3 and C-type phosphates. The polyphosphates consist of infinite zig-zag chains of corner-sharing PO 4 tetrahedra, the cations are coordinated sixfold in an almost octahedral arrangement. To confirm the quality of the determined crystal structures the deviation of the phosphate tetrahedra from ideal symmetry was determined and discussed. - Abstract: Basic structure from which all crystal structures of the late lanthanoids' polyphosphates at room temperature and below can be derived.

  8. The crystal structure of the mixed-layer Aurivillius phase Bi 5Ti 1.5W 1.5O 15

    Science.gov (United States)

    Tellier, J.; Boullay, Ph.; Créon, N.; Mercurio, D.

    2005-09-01

    The crystal structure of the 1+2 mixed-layer Aurivillius phase Bi 5Ti 1.5W 1.5O 15 (SG I2cm n o 46: -cba, Z=4, a=5.4092(3) Å, b=5.3843(3) Å and c=41.529(3) Å) consisting of the ordered intergrowth of one and two octahedra thick perovskite-type blocks separated by [Bi 2O 2] 2+ slabs is reported. Supported by an electron diffraction investigation and, using the Rietveld analysis, it is shown that this compound should be described using a I-centering lattice in agreement with the generalised structural model of the Aurivillius type compounds recently presented by the authors. The structure of this Bi 5Ti 1.5W 1.5O 15 phase is analyzed in comparison with the related simple members (Bi 2WO 6 and Bi 3Ti 1.5W 0.5O 9). The crystal structure of Bi 3Ti 1.5W 0.5O 9 is also reported.

  9. Crystal Structure of the 30S Ribosomal Subunit from Thermus Thermophilus: Purification, Crystallization and Structure Determination

    International Nuclear Information System (INIS)

    Clemons, William M. Jr.; Brodersen, Ditlev E.; McCutcheonn, John P.; May, Joanna L.C.; Carter, Andrew P.; Morgan-Warren, Robert J.; Wimberly, Brian T.; Ramakrishnan, Venki

    2001-01-01

    We describe the crystallization and structure determination of the 30 S ribosomal subunit from Thermus thermophilus. Previous reports of crystals that diffracted to 10 (angstrom) resolution were used as a starting point to improve the quality of the diffraction. Eventually, ideas such as the addition of substrates or factors to eliminate conformational heterogeneity proved less important than attention to detail in yielding crystals that diffracted beyond 3 (angstrom) resolution. Despite improvements in technology and methodology in the last decade, the structure determination of the 30 S subunit presented some very challenging technical problems because of the size of the asymmetric unit, crystal variability and sensitivity to radiation damage. Some steps that were useful for determination of the atomic structure were: the use of anomalous scattering from the LIII edges of osmium and lutetium to obtain the necessary phasing signal; the use of tunable, third-generation synchrotron sources to obtain data of reasonable quality at high resolution; collection of derivative data precisely about a mirror plane to preserve small anomalous differences between Bijvoet mates despite extensive radiation damage and multi-crystal scaling; the pre-screening of crystals to ensure quality, isomorphism and the efficient use of scarce third-generation synchrotron time; pre-incubation of crystals in cobalt hexaammine to ensure isomorphism with other derivatives; and finally, the placement of proteins whose structures had been previously solved in isolation, in conjunction with biochemical data on protein-RNA interactions, to map out the architecture of the 30 S subunit prior to the construction of a detailed atomic-resolution model.

  10. Coefficient of crystal lattice matching as a parameter of substrate - crystal structure compatibility in silumins

    Directory of Open Access Journals (Sweden)

    J. Piątkowski

    2009-07-01

    Full Text Available Adding high-melting point elements (Mo, Nb, Ni, Ti, W to complex silumins results in hardening of the latter ones, owing to the formation of new intermetallic phases of the AlxMey type, with refinement of dendrites in α solution and crystals in β phase. The hardening is also due to the effect of various inoculants. An addition of the inoculant is expected to form substrates, the crystal lattice of which, or some (privileged lattice planes and interatomic spaces should bear a strong resemblance to the crystal nucleus. To verify this statement, using binary phase equilibria systems, the coefficient of crystal lattice matching, being one of the measures of the crystallographic similarity, was calculated. A compatibility of this parameter (up to 20% may decide about the structure compatibility between the substrate and crystal which, in turn, is responsible for the effectiveness of alloy modification. Investigations have proved that, given the temperature range of their formation, the density, the lattice type, and the lattice parameter, some intermetallic phases of the AlxMey type can act as substrates for the crystallisation of aluminium and silicon, and some of the silumin hardening phases.

  11. X-ray and neutron single-crystal diffraction on [Rbx(NH4)1-x]3H(SO4)2. I. Refinement of crystal structure of phase II with x=0.11 at 300 K

    International Nuclear Information System (INIS)

    Loose, A.; Wozniak, K.; Dominiak, P.; Smirnov, L.S.; Natkaniec, I.; Frontas'eva, M.V.; Pomyakushina, E.V.; Baranov, A.I.; Dolbinina, V.V

    2006-01-01

    The study of [Rb x (NH 4 ) 1-x ] 3 H(SO 4 ) 2 mixed crystals by X-ray single-crystal diffraction is known up to now only for x=0.57 at the temperatures 293 and 180 K. The crystal structures at these temperatures as was determined [1] belong to monoclinic phase II (C2/c sp. gr., Z=4). In accordance with this work, ammonium ions should be considered as deformed tetrahedra. Monoclinic phase II on the x-T phase diagram of [Rb x (NH 4 ) 1-x ] 3 H(SO 4 ) 2 mixed crystals, which has earlier been determined by the dielectric spectroscopy, is stabilized below room temperature if Rb concentration exceeds 9%. The presented results of X-ray and neutron single-crystal diffraction of the [Rb 0.11 (NH 4 ) 0.89 ] 3 H(SO 4 ) 2 mixed crystal at T= 300 K show that ammonium ions could be considered as regular tetrahedra

  12. Report of the specialists' workshop on phase transition studies on hydrogen-bonded crystals by neutron and X-ray diffractometries

    International Nuclear Information System (INIS)

    Tokunaga, M.; Shibuya, I.

    1989-01-01

    The report carries a total of 15 studies on hydrogen-bonded crystals made by means of neutron/X-ray diffraction which were presented at a technical study meeting held on December 12 and 13, 1988, at the Research Reactor Institute of Kyoto University. The report covers 'introduction', 'linear relation between transition temperature and hydrogen-bond length in KDP type crystals', 'X-ray study of crystal structure under high pressure in DKDP', 'crystal structure of ADP in the paraelectric phase', 'crystal structure of Rochelle salt in the paraelectric phase', 'distortion of AsO 4 in KDA', 'study of phase transition in KDP family by dielectric dispersion', 'dielectric relaxation and phase transition in ice Ih', 'Raman scattering study of KDP', 'mechanism of phase transition in KDP by Raman scattering study under high pressure-reinvestigation of the Peercy's conclusion', 'localized modes of proton in KDP', 'hyper-Raman scattering study of hydrogen-bonded crystals', 'phase transition of CDP', 'the 180deg law in phase diagram', and 'comments'. (N.K.)

  13. Introducing site-specific cysteines into nanobodies for mercury labelling allows de novo phasing of their crystal structures

    DEFF Research Database (Denmark)

    Hansen, Simon Boje; Laursen, Nick Stub; Andersen, Gregers Rom

    2017-01-01

    of the presence of free cysteines in the target protein could considerably facilitate the process of obtaining unbiased experimental phases. Nanobodies (single-domain antibodies) have recently been shown to promote the crystallization and structure determination of flexible proteins and complexes. To extend...... phased using single-wavelength anomalous dispersion (SAD) and single isomorphous replacement with anomalous signal (SIRAS), taking advantage of radiation-induced changes in Cys-Hg bonding. Importantly, Hg labelling influenced neither the interaction of Nb36 with its antigen complement C5 nor its...

  14. Crystal structure and thermal property of polyethylene glycol octadecyl ether

    International Nuclear Information System (INIS)

    Meng, Jie-yun; Tang, Xiao-fen; Li, Wei; Shi, Hai-feng; Zhang, Xing-xiang

    2013-01-01

    Highlights: ► The crystal structure of C18En for n ≥ 20 is a monoclinic system. ► Polyethylene glycol octadecyl ether crystallizes perfectly. ► The number of repeat units has significant effect on the melting, crystallizing temperature and enthalpy. ► The thermal stable temperature increases rapidly with increasing the number of repeat unit. - Abstract: The crystal structure, phase change property and thermal stable temperature (T d ) of polyethylene glycol octadecyl ether [HO(CH 2 CH 2 O) n C 18 H 37 , C18En] with various numbers of repeat units (n = 2, 10, 20 and 100) as phase change materials (PCMs) were investigated using temperature variable Fourier transformed infrared spectroscopy (FTIR), wide-angle X-ray diffraction (XRD), differential scanning calorimetry (DSC), and thermogravimetric analysis (TG). C18En crystallizes perfectly at 0 °C; and the crystal structure for n ≥ 20 is a monoclinic system. The number of repeat units has great effect on the phase change properties of C18En. The thermal stable temperature increases rapidly with increasing the number of repeat units. They approach to that of PEG-2000 as the number of repeat units is more than 10. T d increases rapidly with increasing the number of repeat units. C18En are a series of promising polymeric PCMs

  15. The crystal structure and phase transitions of the magnetic shape memory compound Ni2MnGa

    International Nuclear Information System (INIS)

    Brown, P J; Crangle, J; Kanomata, T; Matsumoto, M; Neumann, K-U; Ouladdiaf, B; Ziebeck, K R A

    2002-01-01

    High resolution neutron powder diffraction and single crystal measurements on the ferromagnetic shape memory compound Ni 2 MnGa have been carried out. They enabled the sequence of transformations which take place when the unstressed, stoichiometric compound is cooled from 400 to 20 K to be established. For the first time the crystallographic structure of each of the phases which occur has been determined. At 400 K the compound has the cubic L2 1 structure, and orders ferromagnetically at T C ∼ 365 K. On cooling below ∼ 260 K a super-structure, characterized by tripling of the repeat in one of the (110) cubic directions, forms. This phase, known as the pre-martensitic phase, persists down to the structural phase transition at T M ∼ 200 K and can be described by an orthorhombic unit cell with lattice parameters a ortho = 1/√2a cubic , b ortho = 3/√2a cubic , c ortho = a cubic and space group Pnnm. Below T M the compound has a related orthorhombic super-cell with b ortho ∼ 7/√2a cubic , which can be described within the same space group. The new modulation appears abruptly at T M and remains stable down to at least 20 K

  16. The influence of nanoparticles on the phase and structural ordering for nematic liquid crystals

    Energy Technology Data Exchange (ETDEWEB)

    Kralj, S; Bradac, Z [Faculty of Natural Sciences and Mathematics, University of Maribor, Koroska 160, 2000 Maribor (Slovenia); Popa-Nita, V [Faculty of Physics, University of Bucharest, PO Box MG-11, Bucharest 077125 (Romania)], E-mail: samo.kralj@uni-mb.si

    2008-06-18

    We study the influence of nanoparticles (NPs) on liquid crystal (LC) ordering. As regards the structural ordering we consider NPs as a source of a quenched random field. Roughly such a situation is encountered in mixtures of LCs and aerosil NPs (aerosil NPs are spherular ones). Using the semi-microscopic lattice model and Brownian molecular simulation we show that after a quench from the isotropic phase a quasi-stable domain pattern forms. The characteristic size of an average domain is inversely proportional to the concentration of NPs, and domain patterns exhibit memory effects. In the study of the phase behaviour we limit consideration to NPs resembling LC molecules. A Landau-type free energy expression is derived for the mixture, originating from the Maier-Saupe molecular approach. We show that the resulting phase behaviour exhibits the slave-master behaviour as the temperature or pressure is varied.

  17. Neutron diffraction study of crystal structures of deuterated glycinium phosphite in paraelectric and ferroelectric phases

    International Nuclear Information System (INIS)

    Machida, Mitsuo; Uchida, Hiroyuki; Ishibashi, Toku; Taniguchi, Hiroki; Komukae, Masaru; Osaka, Toshio; Koyano, Nobumitsu

    2004-01-01

    Crystal structure of deuterated glycinium phosphite was studied in the paraelectric (P) phase at 348 K and in the ferroelectric (F) phase at 223 K by means of the single crystal neutron diffraction. Deuteration rate is estimated to be 0.939 by the least-squares refinement. In the P phase, quasi-one-dimensional hydrogen bond chains are built by mutually linking the DPO 3 2- anions through two different types of hydrogen bonds with the bond angles of 179.2 and 171.6deg. Two independent deuterons within the hydrogen bonds forming the chains are disordered over two sites separated by 0.545 and 0.539A. In the F phase, they order at a position nearly equal to one of two sites related by the disorder in the P phase. With the ordering of the deuterons, the P-O bonds with covalently bonded deuteron elongate, and those without covalently bonded deuteron reduce their lengths to some extend from the values determined in the P phase. Two oxygens involved in the hydrogen bond with the bond angle 179.2deg exhibits especially large displacements in the F phase. This suggests strongly an importance of this hydrogen bond in the polarization appearance and in the ferroelectric transition. Comparison with results of non-deuterated salt indicates that only the hydrogen bonds forming the chains show significant isotope shift. In particular, the hydrogen bond with the bond angle 179.2deg exhibits the most pronounced shift on the angle parameter defined by the angle between the line connecting two sites of disordered proton or deuteron and the line connecting two oxygens involved in the hydrogen bond. (author)

  18. Correlation of Bulk Dielectric and Piezoelectric Properties to the Local Scale Phase Transformations, Domain Morphology, and Crystal Structure Modified

    Energy Technology Data Exchange (ETDEWEB)

    Priya, Shashank [Virginia Polytechnic Inst. and State Univ. (Virginia Tech), Blacksburg, VA (United States); Viehland, Dwight [Virginia Polytechnic Inst. and State Univ. (Virginia Tech), Blacksburg, VA (United States)

    2014-12-14

    Three year program entitled “Correlation of bulk dielectric and piezoelectric properties to the local scale phase transformations, domain morphology, and crystal structure in modified lead-free grain-textured ceramics and single crystals” was supported by the Department of Energy. This was a joint research program between D. Viehland and S. Priya at Virginia Tech. Single crystal and textured ceramics have been synthesized and characterized. Our goals have been (i) to conduct investigations of lead-free piezoelectric systems to establish the local structural and domain morphologies that result in enhanced properties, and (ii) to synthesize polycrystalline and grain oriented ceramics for understanding the role of composition, microstructure, and anisotropy

  19. Raman scattering study of the structural phase transition in single crystal KDy(MoO4)2

    Science.gov (United States)

    Peschanskii, A. V.

    2017-11-01

    Raman scattering of light in single-crystal KDy(MoO4)2 is studied at frequencies of 3-1000 cm-1 for temperatures ranging from 2 to 300 K, including that of a structural phase transition of the cooperative Jahn-Teller type (TC ˜ 14.5 K). During the transition to the low-temperature phase, a series of additional phonon lines corresponding to the Ag, B1g, B2g, and B3g modes is observed which indicates a doubling of the unit cell during the phase transition. An analysis of the symmetry of the phonon modes shows that the low-temperature phase has a predominantly monoclinic symmetry with conservation of a second order axis along the crystallographic b direction, i.e., perpendicular to the layers. Excitations are discovered which correspond to low-energy electronic transitions between levels of the ground-state 6H15/2 multiplet of the Dy3+ ion, which is split in the crystal field with a C2 symmetry. In the vicinity of the first excited Kramers doublet of the Dy3+ ion in crystalline KDy(MoO4)2, the scattered spectrum contains four lines [16.5, 21.0, 24.9, and 29.1 cm-1 (2 K)] at low temperatures, instead of a single line [18.3 cm-1 (25 K)] above the phase transition temperature (14.5 K). This indicates the existence of four nonequivalent dysprosium ions in the low-temperature phase.

  20. Lyotropic Liquid Crystal Phases from Anisotropic Nanomaterials

    Directory of Open Access Journals (Sweden)

    Ingo Dierking

    2017-10-01

    Full Text Available Liquid crystals are an integral part of a mature display technology, also establishing themselves in other applications, such as spatial light modulators, telecommunication technology, photonics, or sensors, just to name a few of the non-display applications. In recent years, there has been an increasing trend to add various nanomaterials to liquid crystals, which is motivated by several aspects of materials development. (i addition of nanomaterials can change and thus tune the properties of the liquid crystal; (ii novel functionalities can be added to the liquid crystal; and (iii the self-organization of the liquid crystalline state can be exploited to template ordered structures or to transfer order onto dispersed nanomaterials. Much of the research effort has been concentrated on thermotropic systems, which change order as a function of temperature. Here we review the other side of the medal, the formation and properties of ordered, anisotropic fluid phases, liquid crystals, by addition of shape-anisotropic nanomaterials to isotropic liquids. Several classes of materials will be discussed, inorganic and mineral liquid crystals, viruses, nanotubes and nanorods, as well as graphene oxide.

  1. Effects of spin orbital coupling on atomic and electronic structures in Al{sub 2}Cu and Al{sub 2}Au crystal and liquid phases via ab initio molecular dynamics simulations

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Y. [International Center for New-Structured Materials (ICNSM), Laboratory of New-Structured Materials, State Key Laboratory of Silicon Materials, and Department of Materials Science and Engineering, Zhejiang University, Hangzhou 310027 (China); Lu, Y.H., E-mail: luyh@zju.edu.cn [International Center for New-Structured Materials (ICNSM), Laboratory of New-Structured Materials, State Key Laboratory of Silicon Materials, and Department of Materials Science and Engineering, Zhejiang University, Hangzhou 310027 (China); Wang, X.D.; Cao, Q.P. [International Center for New-Structured Materials (ICNSM), Laboratory of New-Structured Materials, State Key Laboratory of Silicon Materials, and Department of Materials Science and Engineering, Zhejiang University, Hangzhou 310027 (China); Zhang, D.X. [State Key Laboratory of Modern Optical Instrumentation, Zhejiang University, Hangzhou 310027 (China); Jiang, J.Z., E-mail: jiangjz@zju.edu.cn [International Center for New-Structured Materials (ICNSM), Laboratory of New-Structured Materials, State Key Laboratory of Silicon Materials, and Department of Materials Science and Engineering, Zhejiang University, Hangzhou 310027 (China)

    2014-11-15

    Highlights: • The SOC effect affects the cohesion energy of crystal phase. • The effect of SOC was reduced due to random local atomic structures in liquids. • The local geometrical structures also affect the melting points. • Both SOC effect and local atomic structures are important for melting point difference. - Abstract: The origin of different melting points between Al{sub 2}Cu and Al{sub 2}Au has been studied using ab initio molecular dynamics simulations. Cohesive energy, electronic structures and structure information of both crystal and liquid phases have been analyzed. It is found that spin orbital coupling (SOC) plays an important role on the cohesive energy of crystal phase, consistent with the different melting points of these two alloys. Whereas, it seems that SOC has no effect on the formation energy and structure of liquid phase. Possible mechanism of reduced SOC effect at liquid phase is proposed. Our results are helpful to understand the glass formation ability difference between Al{sub 2}Cu and Al{sub 2}Au.

  2. Non-linear thermal evolution of the crystal structure and phase transitions of LaFeO3 investigated by high temperature X-ray diffraction

    International Nuclear Information System (INIS)

    Selbach, Sverre M.; Tolchard, Julian R.; Fossdal, Anita; Grande, Tor

    2012-01-01

    The crystal structure, anisotropic thermal expansion and structural phase transition of the perovskite LaFeO 3 has been studied by high-temperature X-ray diffraction from room temperature to 1533 K. The structural evolution of the orthorhombic phase with space group Pbnm and the rhombohedral phase with R3 ¯ c structure of LaFeO 3 is reported in terms of lattice parameters, thermal expansion coefficients, atomic positions, octahedral rotations and polyhedral volumes. Non-linear lattice expansion across the antiferromagnetic to paramagnetic transition of LaFeO 3 at T N =735 K was compared to the corresponding behavior of the ferroelectric antiferromagnet BiFeO 3 to gain insight to the magnetoelectric coupling in BiFeO 3 , which is also multiferroic. The first order phase transition of LaFeO 3 from Pbnm to R3 ¯ c was observed at 1228±9 K, and a subsequent transition to Pm3 ¯ m was extrapolated to occur at 2140±30 K. The stability of the Pbnm and R3 ¯ c polymorphs of LaFeO 3 is discussed in terms of the competing enthalpy and entropy of the two crystal polymorphs and the thermal evolution of the polyhedral volume ratio V A /V B . - Graphical abstract: Aniostropic thermal evolution of the lattice parameters and phase transition of LaFeO 3 . Highlights: ► The crystal structure of LaFeO 3 is studied by HTXRD from RT to 1533 K. ► A non-linear expansion across the Néel temperature is observed for LaFeO 3 . ► The ratio V A /V B is used to rationalize the thermal evolution of the structure.

  3. Defect-induced local variation of crystal phase transition temperature in metal-halide perovskites.

    Science.gov (United States)

    Dobrovolsky, Alexander; Merdasa, Aboma; Unger, Eva L; Yartsev, Arkady; Scheblykin, Ivan G

    2017-06-26

    Solution-processed organometal halide perovskites are hybrid crystalline semiconductors highly interesting for low-cost and efficient optoelectronics. Their properties are dependent on the crystal structure. Literature shows a variety of crystal phase transition temperatures and often a spread of the transition over tens of degrees Kelvin. We explain this inconsistency by demonstrating that the temperature of the tetragonal-to-orthorhombic phase transition in methylammonium lead triiodide depends on the concentration and nature of local defects. Phase transition in individual nanowires was studied by photoluminescence microspectroscopy and super-resolution imaging. We propose that upon cooling from 160 to 140 K, domains of the crystal containing fewer defects stay in the tetragonal phase longer than highly defected domains that readily transform to the high bandgap orthorhombic phase at higher temperatures. The existence of relatively pure tetragonal domains during the phase transition leads to drastic photoluminescence enhancement, which is inhomogeneously distributed across perovskite microcrystals.Understanding crystal phase transition in materials is of fundamental importance. Using luminescence spectroscopy and super-resolution imaging, Dobrovolsky et al. study the transition from the tetragonal to orthorhombic crystal phase in methylammonium lead triiodide nanowires at low temperature.

  4. Low-Temperature Crystal Structures of the Hard Core Square Shoulder Model

    Directory of Open Access Journals (Sweden)

    Alexander Gabriëlse

    2017-11-01

    Full Text Available In many cases, the stability of complex structures in colloidal systems is enhanced by a competition between different length scales. Inspired by recent experiments on nanoparticles coated with polymers, we use Monte Carlo simulations to explore the types of crystal structures that can form in a simple hard-core square shoulder model that explicitly incorporates two favored distances between the particles. To this end, we combine Monte Carlo-based crystal structure finding algorithms with free energies obtained using a mean-field cell theory approach, and draw phase diagrams for two different values of the square shoulder width as a function of the density and temperature. Moreover, we map out the zero-temperature phase diagram for a broad range of shoulder widths. Our results show the stability of a rich variety of crystal phases, such as body-centered orthogonal (BCO lattices not previously considered for the square shoulder model.

  5. Formation of the molecular crystal structure during the vacuum sublimation of paracetamol

    Science.gov (United States)

    Belyaev, A. P.; Rubets, V. P.; Antipov, V. V.; Bordei, N. S.

    2015-04-01

    The results from structural and thermal studies on the formation of molecular crystals during the vacuum sublimation of paracetamol from its vapor phase are given. It is established that the vapor-crystal phase transition proceeds in a complicated way as the superposition of two phase transitions: a first-order phase transition with a change in density, and a second-order phase transition with a change in ordering. It is shown that the latter is a smeared phase transition that proceeds with the formation of a pretransitional phase that is irreversibly dissipated during phase transformation, leading to the formation of crystals of the rhombic syngony. Data from differential scanning calorimetry and X-ray diffraction analysis are presented along with microphotographs.

  6. The Physics of Structural Phase Transitions

    CERN Document Server

    Fujimoto, Minoru

    2005-01-01

    Phase transitions in which crystalline solids undergo structural changes present an interesting problem in the interplay between the crystal structure and the ordering process that is typically nonlinear. Intended for readers with prior knowledge of basic condensed-matter physics, this book emphasizes the physics behind spontaneous structural changes in crystals. Starting with the relevant thermodynamic principles, the text discusses the nature of order variables in collective motion in structural phase transitions, where a singularity in such a collective mode is responsible for lattice instability as revealed by soft phonons. In this book, critical anomalies at second-order structural transitions are first analyzed with the condensate model. Discussions on the nonlinear ordering mechanism are followed with the soliton theory, thereby interpreting the role of long-range order. Relevant details for nonlinear mathematics are therefore given for minimum necessity. The text also discusses experimental methods fo...

  7. Synthesis and crystal structure analysis of uranyl triple acetates

    Energy Technology Data Exchange (ETDEWEB)

    Klepov, Vladislav V., E-mail: vladislavklepov@gmail.com [Institute for Energy and Climate Research (IEK-6), Forschungszentrum Jülich GmbH, 52428 Jülich (Germany); Department of Chemistry, Samara National Research University, 443086 Samara (Russian Federation); Serezhkina, Larisa B.; Serezhkin, Victor N. [Department of Chemistry, Samara National Research University, 443086 Samara (Russian Federation); Alekseev, Evgeny V., E-mail: e.alekseev@fz-juelich.de [Institute for Energy and Climate Research (IEK-6), Forschungszentrum Jülich GmbH, 52428 Jülich (Germany); Institut für Kristallographie, RWTH Aachen University, 52066 Aachen (Germany)

    2016-12-15

    Single crystals of triple acetates NaR[UO{sub 2}(CH{sub 3}COO){sub 3}]{sub 3}·6H{sub 2}O (R=Mg, Co, Ni, Zn), well-known for their use as reagents for sodium determination, were grown from aqueous solutions and their structural and spectroscopic properties were studied. Crystal structures of the mentioned phases are based upon (Na[UO{sub 2}(CH{sub 3}COO){sub 3}]{sub 3}){sup 2–} clusters and [R(H{sub 2}O){sub 6}]{sup 2+} aqua-complexes. The cooling of a single crystal of NaMg[UO{sub 2}(CH{sub 3}COO){sub 3}]{sub 3}·6H{sub 2}O from 300 to 100 K leads to a phase transition from trigonal to monoclinic crystal system. Intermolecular interactions between the structural units and their mutual packing were studied and compared from the point of view of the stereoatomic model of crystal structures based on Voronoi-Dirichlet tessellation. Using this method we compared the crystal structures of the triple acetates with Na[UO{sub 2}(CH{sub 3}COO){sub 3}] and [R(H{sub 2}O){sub 6}][UO{sub 2}(CH{sub 3}COO){sub 3}]{sub 2} and proposed reasons of triple acetates stability. Infrared and Raman spectra were collected and their bands were assigned. - Graphical abstract: Single crystals of uranium based triple acetates, analytical reagents for sodium determination, were synthesized and structurally, spectroscopically and topologically characterized. The structures were compared with the structures of compounds from preceding families [M(H{sub 2}O){sub 6})][UO{sub 2}(CH{sub 3}COO){sub 3}]{sub 2} (M = Mg, Co, Ni, Zn) and Na[UO{sub 2}(CH{sub 3}COO){sub 3}]. Analysis was performed with the method of molecular Voronoi-Dirichlet polyhedra to reveal a large contribution of the hydrogen bonds into intermolecular interactions which can be a reason of low solubility of studied complexes.

  8. Lead(ii) soaps: crystal structures, polymorphism, and solid and liquid mesophases.

    Science.gov (United States)

    Martínez-Casado, F J; Ramos-Riesco, M; Rodríguez-Cheda, J A; Redondo-Yélamos, M I; Garrido, L; Fernández-Martínez, A; García-Barriocanal, J; da Silva, I; Durán-Olivencia, M; Poulain, A

    2017-07-05

    The long-chain members of the lead(ii) alkanoate series or soaps, from octanoate to octadecanoate, have been thoroughly characterized by means of XRD, PDF analysis, DSC, FTIR, ssNMR and other techniques, in all their phases and mesophases. The crystal structures at room temperature of all of the members of the series are now solved, showing the existence of two polymorphic forms in the room temperature crystal phase, different to short and long-chain members. Only nonanoate and decanoate present both forms, and this polymorphism is proven to be monotropic. At higher temperature, these compounds present a solid mesophase, defined as rotator, a liquid crystal phase and a liquid phase, all of which have a similar local arrangement. Since some lead(ii) soaps appear as degradation compounds in oil paintings, the solved crystal structures of lead(ii) soaps can now be used as fingerprints for their detection using X-ray diffraction. Pair distribution function analysis on these compounds is very similar in the same phases and mesophases for the different members, showing the same short range order. This observation suggests that this technique could also be used in the detection of these compounds in disordered phases or in the initial stages of formation in paintings.

  9. Crystal structure and defects of Zr4Co4Si7( V-phase) investigated by high resolution transmission electron microscope

    International Nuclear Information System (INIS)

    Mao, J.F.; Ye, H.Q.; Ning, X.G.; He, L.L.; Yang, D.Z.

    1997-01-01

    The results of high resolution transmission electron microscope (HRTEM) observation and image simulation show that Zr 4 Co 4 Si 7 possesses the same structure type of Zr 4 Co 4 Ge 7 . Adding of Fe or Ni into the Zr 4 Co 4 Si 7 compound, except that the dimensions changed slightly, does not change the lattice type and coordination in the crystal structure, maintaining the V-phase structure. Also, twins with coherent boundaries and with partially coherent at interfaces are observed. The image conditions of Zr 4 Co 4 Si 7 and the structure differences between Zr 4 Co 4 Si 7 and tetrahedral close-packed phases are also discussed. copyright 1997 Materials Research Society

  10. Crystal structure of new AsS2 compound

    International Nuclear Information System (INIS)

    Bolotina, N. B.; Brazhkin, V. V.; Dyuzheva, T. I.; Lityagina, L. M.; Kulikova, L. F.; Nikolaev, N. A.; Verin, I. A.

    2013-01-01

    AsS 2 single crystals have been obtained for the first time from an As 2 S 3 melt at pressures above 6 GPa and temperatures above 800 K in the As 2 S 3 → AsS + AsS 2 reaction. The monoclinic structure of the new high-pressure phase is solved by X-ray diffraction analysis and compared to the structure of high-pressure AsS phase, which was studied previously.

  11. Structural phase transition in monolayer MoTe2 driven by electrostatic doping

    Science.gov (United States)

    Wang, Ying; Xiao, Jun; Zhu, Hanyu; Li, Yao; Alsaid, Yousif; Fong, King Yan; Zhou, Yao; Wang, Siqi; Shi, Wu; Wang, Yuan; Zettl, Alex; Reed, Evan J.; Zhang, Xiang

    2017-10-01

    Monolayers of transition-metal dichalcogenides (TMDs) exhibit numerous crystal phases with distinct structures, symmetries and physical properties. Exploring the physics of transitions between these different structural phases in two dimensions may provide a means of switching material properties, with implications for potential applications. Structural phase transitions in TMDs have so far been induced by thermal or chemical means; purely electrostatic control over crystal phases through electrostatic doping was recently proposed as a theoretical possibility, but has not yet been realized. Here we report the experimental demonstration of an electrostatic-doping-driven phase transition between the hexagonal and monoclinic phases of monolayer molybdenum ditelluride (MoTe2). We find that the phase transition shows a hysteretic loop in Raman spectra, and can be reversed by increasing or decreasing the gate voltage. We also combine second-harmonic generation spectroscopy with polarization-resolved Raman spectroscopy to show that the induced monoclinic phase preserves the crystal orientation of the original hexagonal phase. Moreover, this structural phase transition occurs simultaneously across the whole sample. This electrostatic-doping control of structural phase transition opens up new possibilities for developing phase-change devices based on atomically thin membranes.

  12. New halides of neodymium and their crystal structures

    International Nuclear Information System (INIS)

    Loechner, U.

    1980-01-01

    The crystal structures of the peritectic phases NdClsub(2.27) (t-phase) and NdClsub(2.37) (rh-phase) were determined. The structure of the rh-phase was solved, from the t-phase only the elementary cell could be determined because no single crystals of sufficient quality were obtained. Jutting out feature of the rh-phase which has to be formulated as Nd 14 Cl 32 O is a polyeder cluster of 6 quadratic antiprisms the inner cubo octahedric cavity of which is occupied by an oxygen atom. The linkage of these polyeder cluster ensues only under each other along the triple axis of the rhomboedric system over 3 upper and 3 lower common borders each. Therewith for the first time a superlattice of the fluorite-type was found in which this unit exclusively occurs. The type of linkage of polyeder clusters causes the occurrence of an exceptional polyeder around the twovalent Nd ions which can be looked at as a zwitter polyeder of icosahedron and cube and therefore coordinates tenfold the twovalent neodymium. The strict order of chemically and crystallografically clearly differentiated cations is expressed by a hexagonal-rhomboedric superstructure of the fluorite-aristotyp with a doubled c-axis. The phase diagram of the system Nd-NdBr 3 was determined and a structure proposition was worked out for the first Vernier phase in there with n=4 of the series Lnsub(n)Xsub(2n+1). (SPI)

  13. Monoolein lipid phases as incorporation and enrichment materials for membrane protein crystallization.

    Directory of Open Access Journals (Sweden)

    Ellen Wallace

    Full Text Available The crystallization of membrane proteins in amphiphile-rich materials such as lipidic cubic phases is an established methodology in many structural biology laboratories. The standard procedure employed with this methodology requires the generation of a highly viscous lipidic material by mixing lipid, for instance monoolein, with a solution of the detergent solubilized membrane protein. This preparation is often carried out with specialized mixing tools that allow handling of the highly viscous materials while minimizing dead volume to save precious membrane protein sample. The processes that occur during the initial mixing of the lipid with the membrane protein are not well understood. Here we show that the formation of the lipidic phases and the incorporation of the membrane protein into such materials can be separated experimentally. Specifically, we have investigated the effect of different initial monoolein-based lipid phase states on the crystallization behavior of the colored photosynthetic reaction center from Rhodobacter sphaeroides. We find that the detergent solubilized photosynthetic reaction center spontaneously inserts into and concentrates in the lipid matrix without any mixing, and that the initial lipid material phase state is irrelevant for productive crystallization. A substantial in-situ enrichment of the membrane protein to concentration levels that are otherwise unobtainable occurs in a thin layer on the surface of the lipidic material. These results have important practical applications and hence we suggest a simplified protocol for membrane protein crystallization within amphiphile rich materials, eliminating any specialized mixing tools to prepare crystallization experiments within lipidic cubic phases. Furthermore, by virtue of sampling a membrane protein concentration gradient within a single crystallization experiment, this crystallization technique is more robust and increases the efficiency of identifying productive

  14. Large three-dimensional photonic crystals based on monocrystalline liquid crystal blue phases.

    Science.gov (United States)

    Chen, Chun-Wei; Hou, Chien-Tsung; Li, Cheng-Chang; Jau, Hung-Chang; Wang, Chun-Ta; Hong, Ching-Lang; Guo, Duan-Yi; Wang, Cheng-Yu; Chiang, Sheng-Ping; Bunning, Timothy J; Khoo, Iam-Choon; Lin, Tsung-Hsien

    2017-09-28

    Although there have been intense efforts to fabricate large three-dimensional photonic crystals in order to realize their full potential, the technologies developed so far are still beset with various material processing and cost issues. Conventional top-down fabrications are costly and time-consuming, whereas natural self-assembly and bottom-up fabrications often result in high defect density and limited dimensions. Here we report the fabrication of extraordinarily large monocrystalline photonic crystals by controlling the self-assembly processes which occur in unique phases of liquid crystals that exhibit three-dimensional photonic-crystalline properties called liquid-crystal blue phases. In particular, we have developed a gradient-temperature technique that enables three-dimensional photonic crystals to grow to lateral dimensions of ~1 cm (~30,000 of unit cells) and thickness of ~100 μm (~ 300 unit cells). These giant single crystals exhibit extraordinarily sharp photonic bandgaps with high reflectivity, long-range periodicity in all dimensions and well-defined lattice orientation.Conventional fabrication approaches for large-size three-dimensional photonic crystals are problematic. By properly controlling the self-assembly processes, the authors report the fabrication of monocrystalline blue phase liquid crystals that exhibit three-dimensional photonic-crystalline properties.

  15. Amelogenin Affects Brushite Crystal Morphology and Promotes Its Phase Transformation to Monetite

    Energy Technology Data Exchange (ETDEWEB)

    Ren, Dongni; Ruan, Qichao; Tao, Jinhui; Lo, Jonathan; Nutt, Steven; Moradian-Oldak, Janet

    2016-09-07

    Amelogenin protein is involved in organized apatite crystallization during enamel formation. Brushite (CaHPO4·2H2O), which is one of the precursors for hydroxyapatite in in vitro mineralization, has been used for fabrication of biomaterials for hard tissue repair. In order to explore its potential application in biomimetic material synthesis, we studied the influence of amelogenin on brushite morphology and phase transformation to monetite. Our results show that amelogenin can adsorb onto surface of brushite, leading to the formation of layered structures on the (010) face. Amelogenin promoted the phase transformation of brushite into monetite (CaHPO4) in the dry state, presumably by interacting with crystalline water layers in brushite unit cell. Changes to the crystal morphology by amelogenin continued even after the phase transformation to monetite forming an organized nanotextured structure of nano-sticks resembling the bundle structure in enamel.

  16. Phase transformation of Ca4[Al6O12]SO4 and its disordered crystal structure at 1073 K

    International Nuclear Information System (INIS)

    Kurokawa, Daisuke; Takeda, Seiya; Colas, Maggy; Asaka, Toru; Thomas, Philippe; Fukuda, Koichiro

    2014-01-01

    The phase transformation of Ca 4 [Al 6 O 12 ]SO 4 and the crystal structure of its high-temperature phase were investigated by differential thermal analysis, temperature-dependent Raman spectroscopy and high-temperature X-ray powder diffraction (CuKα 1 ). We determined the starting temperature of the orthorhombic-to-cubic transformation during heating (=711 K) and that of the reverse transformation during cooling (=742 K). The thermal hysteresis was negative (=−31 K), suggesting the thermoelasticity of the transformation. The space group of the high temperature phase is I4 ¯ 3m with the unit-cell dimensions of a=0.92426(2) nm and V=0.78955(2) nm 3 (Z=2) at 1073 K. The initial structural model was derived by the direct methods and further refined by the Rietveld method. The final structural model showed the orientational disordering of SO 4 tetrahedra. The maximum-entropy method-based pattern fitting method was used to confirm the validity of the split-atom model, in which conventional structure bias caused by assuming intensity partitioning was minimized. At around the transformation temperature during heating, the vibrational spectra, corresponding to the Raman-active SO 4 internal stretching mode, showed the continuous and gradual change in the slope of full width at half maximum versus temperature curve. This strongly suggests that the orthorhombic-to-cubic phase transformation would be principally accompanied by the statistical disordering in orientation of the SO 4 tetrahedra, without distinct dynamical reorientation. - Graphical abstract: (Left) Three-dimensional electron-density distributions of the SO 4 tetrahedron with the split-atom model, and (right) a bird's eye view of electron densities on the plane parallel to (111). - Highlights: • Crystal structure of Ca 4 [Al 6 O 12 ]SO 4 at 1073 K is determined by powder XRD. • The atom arrangements are represented by the split-atom model. • The MPF method is used to confirm the validity of the model.

  17. High-Pressure Phase Relations and Crystal Structures of Postspinel Phases in MgV2O4, FeV2O4, and MnCr2O4: Crystal Chemistry of AB2O4 Postspinel Compounds.

    Science.gov (United States)

    Ishii, Takayuki; Sakai, Tsubasa; Kojitani, Hiroshi; Mori, Daisuke; Inaguma, Yoshiyuki; Matsushita, Yoshitaka; Yamaura, Kazunari; Akaogi, Masaki

    2018-06-04

    We have investigated high-pressure, high-temperature phase transitions of spinel (Sp)-type MgV 2 O 4 , FeV 2 O 4 , and MnCr 2 O 4 . At 1200-1800 °C, MgV 2 O 4 Sp decomposes at 4-7 GPa into a phase assemblage of MgO periclase + corundum (Cor)-type V 2 O 3 , and they react at 10-15 GPa to form a phase with a calcium titanite (CT)-type structure. FeV 2 O 4 Sp transforms to CT-type FeV 2 O 4 at 12 GPa via decomposition phases of FeO wüstite + Cor-type V 2 O 3 . MnCr 2 O 4 Sp directly transforms to the calcium ferrite (CF)-structured phase at 10 GPa and 1000-1400 °C. Rietveld refinements of CT-type MgV 2 O 4 and FeV 2 O 4 and CF-type MnCr 2 O 4 confirm that both the CT- and CF-type structures have frameworks formed by double chains of edge-shared B 3+ O 6 octahedra (B 3+ = V 3+ and Cr 3+ ) running parallel to one of orthorhombic cell axes. A relatively large A 2+ cation (A 2+ = Mg 2+ , Fe 2+ , and Mn 2+ ) occupies a tunnel-shaped space formed by corner-sharing of four double chains. Effective coordination numbers calculated from eight neighboring oxygen-A 2+ cation distances of CT-type MgV 2 O 4 and FeV 2 O 4 and CF-type MnCr 2 O 4 are 5.50, 5.16, and 7.52, respectively. This implies that the CT- and CF-type structures practically have trigonal prism (six-coordinated) and bicapped trigonal prism (eight-coordinated) sites for the A 2+ cations, respectively. A relationship between cation sizes of VIII A 2+ and VI B 3+ and crystal structures (CF- and CT-types) of A 2+ B 2 3+ O 4 is discussed using the above new data and available previous data of the postspinel phases. We found that CF-type A 2+ B 2 3+ O 4 crystallize in wide ionic radius ranges of 0.9-1.4 Å for VIII A 2+ and 0.55-1.1 Å for VI B 3+ , whereas CT-type phases crystallize in very narrow ionic radius ranges of ∼0.9 Å for VIII A 2+ and 0.6-0.65 Å for VI B 3+ . This would be attributed to the fact that the tunnel space of CT-type structure is geometrically less flexible due to the smaller coordination

  18. Ultrafast characterization of phase-change material crystallization properties in the melt-quenched amorphous phase.

    Science.gov (United States)

    Jeyasingh, Rakesh; Fong, Scott W; Lee, Jaeho; Li, Zijian; Chang, Kuo-Wei; Mantegazza, Davide; Asheghi, Mehdi; Goodson, Kenneth E; Wong, H-S Philip

    2014-06-11

    Phase change materials are widely considered for application in nonvolatile memories because of their ability to achieve phase transformation in the nanosecond time scale. However, the knowledge of fast crystallization dynamics in these materials is limited because of the lack of fast and accurate temperature control methods. In this work, we have developed an experimental methodology that enables ultrafast characterization of phase-change dynamics on a more technologically relevant melt-quenched amorphous phase using practical device structures. We have extracted the crystallization growth velocity (U) in a functional capped phase change memory (PCM) device over 8 orders of magnitude (10(-10) 10(8) K/s), which reveals the extreme fragility of Ge2Sb2Te5 in its supercooled liquid phase. Furthermore, these crystallization properties were studied as a function of device programming cycles, and the results show degradation in the cell retention properties due to elemental segregation. The above experiments are enabled by the use of an on-chip fast heater and thermometer called as microthermal stage (MTS) integrated with a vertical phase change memory (PCM) cell. The temperature at the PCM layer can be controlled up to 600 K using MTS and with a thermal time constant of 800 ns, leading to heating rates ∼10(8) K/s that are close to the typical device operating conditions during PCM programming. The MTS allows us to independently control the electrical and thermal aspects of phase transformation (inseparable in a conventional PCM cell) and extract the temperature dependence of key material properties in real PCM devices.

  19. PDF analysis on re-crystallized structure from amorphous BiT

    Energy Technology Data Exchange (ETDEWEB)

    Yoneda, Yasuhiro [Japan Atomic Energy Research Institute, Synchrotron Radiation Research Center, Kouto 1-1-1, Mikazuki-cho, Sayo-gun, Hyogo 679-5148 (Japan)]. E-mail: yoneda@spring8.or.jp; Kohara, Shinji [Synchrotron Radiation Research Laboratory, Japan Synchrotron Radiation, Research Institute, Kouto 1-1-1, Mikazuki-cho, Sayo-gun, Hyogo 679-5198 (Japan); Hamazaki, Shin' ichi [Department of Electronics, Iwaki Meisei University, Iino 5-5-1, Chuohdai, Fukushima 970-8551 (Japan); Takashige, Masaaki [Department of Electronics, Iwaki Meisei University, Iino 5-5-1, Chuohdai, Fukushima 970-8551 (Japan); Mizuki, Jun' ichiro [Japan Atomic Energy Research Institute, Synchrotron Radiation Research Center, Kouto 1-1-1, Mikazuki-cho, Sayo-gun, Hyogo 679-5148 (Japan)

    2005-08-15

    A glass sample of composition Bi{sub 4}Ti{sub 3}O{sub 12} was prepared by rapid quenching. The as-quenched sample was confirmed to be amorphous by synchrotron X-ray measurements. The crystallization process of the amorphous sample was also investigated by high-energy X-ray diffraction and by atomic pair distribution function analysis. The perovskite layer in the crystal Bi{sub 4}Ti{sub 3}O{sub 12} is transformed to a pyrochlore structure in the amorphous sample. The amorphous sample first crystallized to a metastable phase by acquiring long-range ordering of the pyrochlore structure at T {sub cryst1}, and then secondary crystallized into a reverted Bi{sub 4}Ti{sub 3}O{sub 12} structure at T {sub cryst2}.

  20. Incommensurate composite crystal structure of scandium-II

    International Nuclear Information System (INIS)

    Fujihisa, Hiroshi; Gotoh, Yoshito; Yamawaki, Hiroshi; Sakashita, Mami; Takeya, Satoshi; Honda, Kazumasa; Akahama, Yuichi; Kawamura, Haruki

    2005-01-01

    The long-unknown crystal structure of the high pressure phase scandium-II was solved by powder x-ray diffraction and was found to have tetragonal host channels along the c axis and guest chains that are incommensurate with the host, as well as the high pressure phases of Ba, Sr, Bi, and Sb. The pressure dependences of the lattice constants, the incommensurability, the atomic distances, and the atomic volume were investigated

  1. Synthesis, crystal structure, and photocatalytic activity of a new two-layer Ruddlesden-Popper phase, Li2CaTa2O7

    International Nuclear Information System (INIS)

    Liang Zhenhua; Tang Kaibin; Shao Qian; Li Guocan; Zeng Suyuan; Zheng Huagui

    2008-01-01

    A new two-layer Ruddlesden-Popper phase Li 2 CaTa 2 O 7 has been synthesized for the first time. The detailed structure determination of Li 2 CaTa 2 O 7 performed by powder X-ray diffraction (XRD) and electron microscopy (ED) shows that it crystallizes in the space group Fmmm [a∼5.5153(1), b∼5.4646(1), c∼18.2375(3)A]. UV-visible diffuse reflection spectrum of the prepared Li 2 CaTa 2 O 7 indicates that it had absorption in the UV region. The photocatalytic activity of the Li 2 CaTa 2 O 7 powders was evaluated by degradation of RhB molecules in water under ultra visible light irradiation. The results showed that Li 2 CaTa 2 O 7 has high photocatalytic activity at room temperature. Therefore, the preparation and properties studies of Li 2 CaTa 2 O 7 with a two-layer Ruddlesden-Popper structure suggest potential future applications in photocatalysis. - Graphical abstract: Crystal structure of a two-layer Ruddlesden-Popper phase Li 2 CaTa 2 O 7 A new two-layer Ruddlesden-Popper phase Li 2 CaTa 2 O 7 has been synthesized for the first time. Li 2 CaTa 2 O 7 crystallizes in the space group Fmmm determined by powder X-ray and electron diffraction. UV-visible diffuse reflection spectra and the photocatalytic degradation of RhB molecules in water under ultra visible light irradiation show that Li 2 CaTa 2 O 7 is a potential material in photocatalysis

  2. Orientational Phase Transition Around 274 K in C60 Single Crystal

    Institute of Scientific and Technical Information of China (English)

    徐亚伯; 何丕模; 杨宏顺; 郑萍; 余朝文; 陈兆甲; 张宣嘉; 李文铸

    1994-01-01

    The electrical conductivity of a C60 single crystal around 274 K and the specific heat of C60 crystals from 150 to 340 K have been measured.The delta-like specific heat peak at about 251 K related to the first-order phase transition has been reported.The activation energy change around 274 K and the lambda-like specific heat peak beginning at 270 K and ending at 310 K show that there is an orientational phase transition in fcc C60 crystals above 251 K.By taking the symmetry into consideration and further analyzing lambda-like specific heat peak and the activation energy change around 274 K,the conclusion has been reached that this new phase transition is an orientational structure transition from the merohedral twinning fcc to the orientationally disordered fcc.The temperature of free rotation of C60 molecules is about 281 K.

  3. Amorphous Phase Mediated Crystallization: Fundamentals of Biomineralization

    Directory of Open Access Journals (Sweden)

    Wenjing Jin

    2018-01-01

    Full Text Available Many biomineralization systems start from transient amorphous precursor phases, but the exact crystallization pathways and mechanisms remain largely unknown. The study of a well-defined biomimetic crystallization system is key for elucidating the possible mechanisms of biomineralization and monitoring the detailed crystallization pathways. In this review, we focus on amorphous phase mediated crystallization (APMC pathways and their crystallization mechanisms in bio- and biomimetic-mineralization systems. The fundamental questions of biomineralization as well as the advantages and limitations of biomimetic model systems are discussed. This review could provide a full landscape of APMC systems for biomineralization and inspire new experiments aimed at some unresolved issues for understanding biomineralization.

  4. Crystal structure and crystal growth of the polar ferrimagnet CaBaFe4O7

    Science.gov (United States)

    Perry, R. S.; Kurebayashi, H.; Gibbs, A.; Gutmann, M. J.

    2018-05-01

    Magnetic materials are a cornerstone for developing spintronic devices for the transport of information via magnetic excitations. To date, relatively few materials have been investigated for the purpose of spin transport, mostly due to the paucity of suitable candidates as these materials are often chemically complex and difficult to synthesize. We present the crystal growth and a structure solution on the high-temperature crystal structure of the layered, polar ferrimagnet CaBaFe4O7 , which is a possible new contender for spintronics research. The space group is identified as P 3 by refinement of single crystal and powder neutron diffraction data. At 400 K, the trigonal lattice parameters are a =11.0114 (11 )Å and c =10.330 (3 )Å . The structure is similar to the low-temperature phase with alternating layers of triangular and Kagome-arranged Fe-O tetrahedra. We also present details of the crystal growth by traveling solvent method.

  5. CRYSTAL CHEMISTRY OF THREE-COMPONENT WHITE DWARFS AND NEUTRON STAR CRUSTS: PHASE STABILITY, PHASE STRATIFICATION, AND PHYSICAL PROPERTIES

    Energy Technology Data Exchange (ETDEWEB)

    Engstrom, T. A.; Yoder, N. C.; Crespi, V. H., E-mail: tae146@psu.edu, E-mail: ncy5007@psu.edu, E-mail: vhc2@psu.edu [Department of Physics, The Pennsylvania State University, University Park, PA 16802 (United States)

    2016-02-20

    A systematic search for multicomponent crystal structures is carried out for five different ternary systems of nuclei in a polarizable background of electrons, representative of accreted neutron star crusts and some white dwarfs. Candidate structures are “bred” by a genetic algorithm and optimized at constant pressure under the assumption of linear response (Thomas–Fermi) charge screening. Subsequent phase equilibria calculations reveal eight distinct crystal structures in the T = 0 bulk phase diagrams, five of which are complicated multinary structures not previously predicted in the context of compact object astrophysics. Frequent instances of geometrically similar but compositionally distinct phases give insight into structural preferences of systems with pairwise Yukawa interactions, including and extending to the regime of low-density colloidal suspensions made in a laboratory. As an application of these main results, we self-consistently couple the phase stability problem to the equations for a self-gravitating, hydrostatically stable white dwarf, with fixed overall composition. To our knowledge, this is the first attempt to incorporate complex multinary phases into the equilibrium phase-layering diagram and mass–radius-composition dependence, both of which are reported for He–C–O and C–O–Ne white dwarfs. Finite thickness interfacial phases (“interphases”) show up at the boundaries between single-component body-centered cubic (bcc) crystalline regions, some of which have lower lattice symmetry than cubic. A second application—quasi-static settling of heavy nuclei in white dwarfs—builds on our equilibrium phase-layering method. Tests of this nonequilibrium method reveal extra phases that play the role of transient host phases for the settling species.

  6. Structure of initial crystals formed during human amelogenesis

    Science.gov (United States)

    Cuisinier, F. J. G.; Voegel, J. C.; Yacaman, J.; Frank, R. M.

    1992-02-01

    X-ray diffraction analysis revealed only the existence of carbonated hydroxyapatite (c.HA) during amelogenesis, whereas conventional transmission electron microscopy investigations showed that developing enamel crystals have a ribbon-like habit. The described compositional changes could be an indication for the presence of minerals different from c.HA. However, the absence of identification of such a mineral shows the need of studies by high resolution electron microscopy (HREM) of initial formed human enamel crystals. We demonstrate the existence of two crystal families involved in the early stages of biomineralization: (a) nanometer-size particles which appeared as a precursor phase; (b) ribbon-like crystals, with a structure closely related to c.HA, which by a progressive thickening process tend to attain the mature enamel crystal habit.

  7. Crystal structure and characterization of the novel NH+⋯N hydrogen bonded polar crystal [NH2(CH2)4NH][BF4

    International Nuclear Information System (INIS)

    Wojtaś, M.; Gagor, A.; Czupiński, O.; Medycki, W.; Jakubas, R.

    2012-01-01

    Dielectric properties and phase transitions of the piperazinium tetrafluoroborate ([NH 2 (CH 2 ) 4 NH][BF 4 ], abbreviated as PFB) crystal are related to the one-dimensional arrangement of the cations linked by the bistable NH + ⋯N hydrogen bonds and molecular motions of the [BF 4 ] − units. The crystal structure of [NH 2 (CH 2 ) 4 NH][BF 4 ] is monoclinic at room temperature with the polar space group Pn. The polar/acentric properties of the room temperature phase IV have been confirmed by the piezoelectric and pyroelectric measurements. DSC measurements show that the compound undergoes three first-order structural phase transitions: at 421/411 K (heating/cooling), at 386/372 K and at 364/349 K. 1 H and 19 F NMR measurements indicate the reorientational motions of [BF 4 ] − anions and piperazinium(+) cations as well as the proton motion in the hydrogen-bonded chains of piperazine along the [001] direction. Over the phase I the isotropic reorientational motions or even self-diffusion of the cations and anions are expected. The conductivity measurements in the vicinity of the II–I PT indicate a superionic phase over the phase I. - Graphical abstract: It must be emphasized that the titled compound represents the first organic–inorganic simple salt containing the single-protonated piperazinium cation which was studied by means of the wide variety of experimental techniques. A survey of Cambridge Structural Database (CSD version 5.32 (November 2010) and updates (May 2011)) for structure containing the piperazinium cations yields 248 compounds with the doubly protonated piperazinium(2+) cations and only eight compounds with the singly protonated piperazinium(+) cations. Among these structures only one is the hybrid organic–inorganic material. This is piperazinium nitrate characterized structurally. The crystal packing of [NH 2 (CH 2 ) 4 NH][BF 4 ], phase IV. The dashed lines stand for the hydrogen bonds. The hydrogen bonds to BF4 groups are not included for

  8. The crystal chemistry and structural analysis of uranium oxide hydrates. Final report, May 15, 1995--December 31, 1997

    International Nuclear Information System (INIS)

    Miller, M.L.; Ewing, R.C.

    1998-01-01

    The purpose of this research program was to develop a thorough understanding of the crystal-chemical and crystal-structural systematics of uranyl oxide hydrates which are the initial corrosion products of the UO 2 in spent nuclear fuel and the principal phases in which actinides occur in the near surface environment. The scope of this program has been expanded to include all inorganic phases in which U 6+ plays a significant structural role; currently 183 phases with known crystal structures

  9. New structural studies of liquid crystal by reflectivity and resonant X-ray diffraction

    International Nuclear Information System (INIS)

    Fernandes, P.

    2007-04-01

    This memory presents three structural studies of smectic Liquid Crystals by reflectivity and resonant diffraction of X-rays. It is divided in five chapters. In the first a short introduction to Liquid Crystals is given. In particular, the smectic phases that are the object of this study are presented. The second chapter is consecrated to the X-ray experimental techniques that were used in this work. The three last chapters present the works on which this thesis can be divided. Chapter three demonstrates on free-standing films of MHPOBC (historic liquid crystal that possesses the antiferroelectric sub-phases) the possibility to extend the technique of resonant X-ray diffraction to liquid crystals without resonant element. In the fourth chapter the structure of the B 2 liquid crystal phase of bent-core molecules (or banana molecules) is elucidated by using resonant X-ray diffraction combined with polarization analysis of the diffracted beam. A model of the polarization of the resonant beam diffracted by four different structures proposed for the B 2 phase is developed in this chapter. In the fifth chapter a smectic binary mixture presenting a very original critical point of phase separation is studied by X-ray reflectivity and optical microscopy. A concentration gradient in the direction perpendicular to the plane of the film seems to be induced by the free-standing film geometry. The results of a simplified model of the system are compatible with this interpretation

  10. Phase transitions of antibiotic clarithromycin forms I, IV and new form VII crystals.

    Science.gov (United States)

    Ito, Masataka; Shiba, Rika; Watanabe, Miteki; Iwao, Yasunori; Itai, Shigeru; Noguchi, Shuji

    2018-06-01

    Metastable crystal form I of the antibiotic clarithromycin has a pharmaceutically valuable characteristic that its crystalline phase transition can be applied for its sustained release from tablets. The phase transition of form I was investigated in detail by single crystal and powder X-ray analyses, dynamic vapor sorption analysis and thermal analysis. The single crystal structure of form I revealed that form I was not an anhydrate crystal but contained a partially occupied water molecule in the channel-like void space. Dynamic vapor sorption (DVS) analysis demonstrated that form I crystals reversibly sorbed water molecules in two steps when the relative humidity (RH) increased and finally transited to hydrate form IV at 95% RH. DVS analysis also showed that when the RH decreased form IV crystals lost water molecules at 40% RH and transited to the newly identified anhydrate crystal form VII. Form VII reversibly transited to form IV at lower RH than form I, suggesting that form I is more suitable for manufacturing a sustained-release tablet of CAM utilizing the crystalline phase transition. Copyright © 2018 Elsevier B.V. All rights reserved.

  11. Multiple topological phases in phononic crystals

    KAUST Repository

    Chen, Zeguo; Wu, Ying

    2017-01-01

    We report a new topological phononic crystal in a ring-waveguide acoustic system. In the previous reports on topological phononic crystals, there are two types of topological phases: quantum Hall phase and quantum spin Hall phase. A key point in achieving quantum Hall insulator is to break the time-reversal (TR) symmetry, and for quantum spin Hall insulator, the construction of pseudo-spin is necessary. We build such pseudo-spin states under particular crystalline symmetry (C-6v) and then break the degeneracy of the pseudo-spin states by introducing airflow to the ring. We study the topology evolution by changing both the geometric parameters of the unit cell and the strength of the applied airflow. We find that the system exhibits three phases: quantum spin Hall phase, conventional insulator phase and a new quantum anomalous Hall phase.

  12. Multiple topological phases in phononic crystals

    KAUST Repository

    Chen, Zeguo

    2017-11-20

    We report a new topological phononic crystal in a ring-waveguide acoustic system. In the previous reports on topological phononic crystals, there are two types of topological phases: quantum Hall phase and quantum spin Hall phase. A key point in achieving quantum Hall insulator is to break the time-reversal (TR) symmetry, and for quantum spin Hall insulator, the construction of pseudo-spin is necessary. We build such pseudo-spin states under particular crystalline symmetry (C-6v) and then break the degeneracy of the pseudo-spin states by introducing airflow to the ring. We study the topology evolution by changing both the geometric parameters of the unit cell and the strength of the applied airflow. We find that the system exhibits three phases: quantum spin Hall phase, conventional insulator phase and a new quantum anomalous Hall phase.

  13. The phase transition of the incommensurate phases β-Ln(PO3)3(Ln=Y,Tb…Yb), crystal structures of α-Ln(PO3)3(Ln=Y,Tb…Yb) and Sc(PO3)3

    Science.gov (United States)

    Höppe, Hennig A.

    2009-07-01

    The incommensurately modulated room-temperature phases β-Ln(PO3)3(Ln=Y,Tb…Yb) undergo a topotactic phase transition monitored by vibrational spectroscopy below 180 K leading to α-Ln(PO3)3(Ln=Y,Dy…Yb), above 200 K the incommensurate phases are reobtained. The low-temperature phases exhibit a new structure type (α-Dy(PO3)3, P21/c, Z=12,a=14.1422(6), b=20.0793(9),c=10.1018(4) A˚, β=127.532(3)∘). α-Tb(PO3)3 is isotypic with Gd(PO3)3(α-Tb(PO3)3, I2/a,Z=16,a=25.875(6), b=13.460(3), c=10.044(2) A˚, β=119.13(3)∘). The symmetry relations between the involved phases of the phase transition are discussed. The crystal structure of Sc(PO3)3 is isotypic with that of Lu(PO3)3 and C-type phosphates. The polyphosphates consist of infinite zig-zag chains of corner-sharing PO4 tetrahedra, the cations are coordinated sixfold in an almost octahedral arrangement. To confirm the quality of the determined crystal structures the deviation of the phosphate tetrahedra from ideal symmetry was determined and discussed.

  14. Distortion of Local Atomic Structures in Amorphous Ge-Sb-Te Phase Change Materials

    Science.gov (United States)

    Hirata, A.; Ichitsubo, T.; Guan, P. F.; Fujita, T.; Chen, M. W.

    2018-05-01

    The local atomic structures of amorphous Ge-Sb-Te phase-change materials have yet to be clarified and the rapid crystal-amorphous phase change resulting in distinct optical contrast is not well understood. We report the direct observation of local atomic structures in amorphous Ge2Sb2Te5 using "local" reverse Monte Carlo modeling dedicated to an angstrom-beam electron diffraction analysis. The results corroborated the existence of local structures with rocksalt crystal-like topology that were greatly distorted compared to the crystal symmetry. This distortion resulted in the breaking of ideal octahedral atomic environments, thereby forming local disordered structures that basically satisfied the overall amorphous structure factor. The crystal-like distorted octahedral structures could be the main building blocks in the formation of the overall amorphous structure of Ge-Sb-Te.

  15. Effect of crystal structure on optical properties of sol–gel derived zirconia thin films

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Xiaodong, E-mail: xiaodong_wang@tongji.edu.cn [Pohl Institute of Solid State Physics, Shanghai Key Laboratory of Special Artificial Microstructure Materials and Technology, Tongji University, Shanghai 200092 (China); Wu, Guangming; Zhou, Bin [Pohl Institute of Solid State Physics, Shanghai Key Laboratory of Special Artificial Microstructure Materials and Technology, Tongji University, Shanghai 200092 (China); Shen, Jun, E-mail: shenjun67@tongji.edu.cn [Pohl Institute of Solid State Physics, Shanghai Key Laboratory of Special Artificial Microstructure Materials and Technology, Tongji University, Shanghai 200092 (China)

    2013-04-15

    Highlights: ► ZrO{sub 2} films were deposited by sol–gel method. ► Crystal structures of the films were tuned by different thermal annealing methods. ► The refractive indices vary with the crystal structures of the films. ► Lattice-mismatch was found to reduce the refractive index of ZrO{sub 2} films. -- Abstract: The optical properties of sol–gel derived zirconia thin films and their relation to the crystal structure are studied in this paper. ZrO{sub 2} films were deposited on quartz glass and silicon wafer substrates by sol–gel method with conventional furnace annealing (CFA) and rapid thermal annealing (RTA). Crystal structures of the films were analyzed by X-ray diffraction (XRD) and Raman spectroscopy, while refractive indices of the films were determined from the reflectance and transmittance spectra. The refractive indices vary with the function of crystal structure and density of the films, which depends on annealing temperature and annealing technique. Lattice-mismatch between monoclinic phase and tetragonal phase was found to reduce the refractive index of ZrO{sub 2} films.

  16. Predicted crystal structures of molybdenum under high pressure

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Bing; Zhang, Guang Biao [Institute for Computational Materials Science, School of Physics and Electronics, Henan University, Kaifeng 475004 (China); Wang, Yuan Xu, E-mail: wangyx@henu.edu.cn [Institute for Computational Materials Science, School of Physics and Electronics, Henan University, Kaifeng 475004 (China); Guizhou Provincial Key Laboratory of Computational Nano-Material Science, Institute of Applied Physics, Guizhou Normal College, Guiyang 550018 (China)

    2013-04-15

    Highlights: ► A double-hexagonal close-packed (dhcp) structure of molybdenum is predicted. ► Calculated acoustic velocity confirms the bcc–dhcp phase transition at 660 GPa. ► The valence electrons of dhcp Mo are mostly localized in the interstitial sites. -- Abstract: The high-pressure structures of molybdenum (Mo) at zero temperature have been extensively explored through the newly developed particle swarm optimization (PSO) algorithm on crystal structural prediction. All the experimental and earlier theoretical structures were successfully reproduced in certain pressure ranges, validating our methodology in application to Mo. A double-hexagonal close-packed (dhcp) structure found by Mikhaylushkin et al. (2008) [12] is confirmed by the present PSO calculations. The lattice parameters and physical properties of the dhcp phase were investigated based on first principles calculations. The phase transition occurs only from bcc phase to dhcp phase at 660 GPa and at zero temperature. The calculated acoustic velocities also indicate a transition from the bcc to dhcp phases for Mo. More intriguingly, the calculated density of states (DOS) shows that the dhcp structure remains metallic. The calculated electron density difference (EDD) reveals that its valence electrons are localized in the interstitial regions.

  17. Second-order phase transition at high-pressure in GeS crystal

    Energy Technology Data Exchange (ETDEWEB)

    Hashimzade, F.M.; Huseinova, D.A.; Jahangirli, Z.A.; Mehdiyev, B.H., E-mail: bachschi@yahoo.de

    2014-12-01

    In this paper we give a theoretical proof of the existence of a second-order structural phase transition in the GeS at a pressure of 35.4 GPa. We use the plane-wave pseudopotential approach to the density functional theory in the local density approximation. The evidence of the phase transition is the abrupt change in the bulk modulus as the volume of the unit cell of the crystal changes continuously. We show that the phase transition is caused by the softening of the low-frequency fully symmetric interlayer mode with increasing pressure. As a result, phase transition of a displacement type takes place with the change of translational symmetry of the crystal from the simple orthorhombic to the base-centered orthorhombic (P{sub bnm}(D{sub 2h}{sup 16})→C{sub mcm}(D{sub 2h}{sup 17}))

  18. Effects of precursors on the crystal structure and photoluminescence of CdS nanocrystalline

    International Nuclear Information System (INIS)

    Fu Zuoling; Zhou Shihong; Shi Jinsheng; Zhang Siyuan

    2005-01-01

    A series of cadmium sulfide (CdS) nanocrystalline were synthesized by precipitation from a mixture of aqueous solutions of cadmium salts and sulfur salts without adding any surface-termination agent. Their crystal structures and particle sizes were determined by X-ray diffraction (XRD). The CdS nanocrystalline precipitated from different precursors exhibited three cases: cubic phase, hexagonal phase and a hybrid of cubic and hexagonal phases. The photoluminescence (PL) of cadmium salt precursors and CdS nanocrystalline is also analyzed. Similar spectral band structure of cadmium salt precursors and CdS nanocrystalline is found. The PL of 3.4, 2.4 and 2.0 nm sized CdS nanocrystalline with the same crystal structure indicated quantum confinement effect

  19. Crystal structure and magnetism of UOsAl

    Energy Technology Data Exchange (ETDEWEB)

    Andreev, A.V., E-mail: andreev@fzu.cz [Institute of Physics, Academy of Sciences, Na Slovance 2, 182 21 Prague (Czech Republic); Daniš, S. [Department of Condensed Matter Physics, Charles University, Ke Karlovu 5, 121 16 Prague (Czech Republic); Šebek, J.; Henriques, M.S.; Vejpravová, J. [Institute of Physics, Academy of Sciences, Na Slovance 2, 182 21 Prague (Czech Republic); Gorbunov, D.I. [Institute of Physics, Academy of Sciences, Na Slovance 2, 182 21 Prague (Czech Republic); Dresden High Magnetic Field Laboratory (HLD-EMFL), Helmholtz-Zentrum, Dresden-Rossendorf, D-01314 Dresden (Germany); Havela, L. [Department of Condensed Matter Physics, Charles University, Ke Karlovu 5, 121 16 Prague (Czech Republic)

    2017-04-15

    Crystal structure, magnetization, and specific heat were studied on single crystal of uranium intermetallic compound UOsAl. It is a hexagonal Laves phase of MgZn{sub 2} type, space group P6{sub 3}/mmc, with lattice parameters a=536.4 pm, c=845.3 pm. Shortest inter-uranium distance 313 pm (along the c-axis) is considerably smaller than the Hill limit (340 pm). The compound is a weakly temperature-dependent paramagnet with magnetic susceptibility of ≈1.5*10{sup −8} m{sup 3} mol{sup −1} (at T=2 K), which is slightly higher with magnetic field along the a-axis compared to the c-axis. The Sommerfeld coefficient of electronic specific heat has moderate value of γ=36 mJ mol{sup −1} K{sup −2}. - Highlights: • Crystal structure and magnetic properties were studied on single crystal of UOsAl with hexagonal structure of MgZn{sub 2} type. • Shortest inter-uranium distance 313 pm (along the c-axis) is considerably smaller than the Hill limit (340 pm). • UOsAl has paramagnetic ground state as the compounds with T=Fe and Ru, i.e. 3d and 4d analogues of Os.

  20. 2D director calculation for liquid crystal optical phased array

    International Nuclear Information System (INIS)

    Xu, L; Zhang, J; Wu, L Y

    2005-01-01

    A practical numerical model for a liquid crystal cell is set up based on the geometrical structure of liquid crystal optical phased arrays. Model parameters include width and space of electrodes, thickness of liquid crystal layer, alignment layers and glass substrates, pre-tilted angles, dielectric constants, elastic constants and so on. According to electrostatic field theory and Frank-Oseen elastic continuum theory, 2D electric potential distribution and 2D director distribution are calculated by means of the finite difference method on non-uniform grids. The influence of cell sizes on director distribution is analyzed. The fringe field effect between electrodes is also discussed

  1. The Ag2Se-HgSe-GeSe2 system and crystal structures of the compounds

    International Nuclear Information System (INIS)

    Parasyuk, O.V.; Gulay, L.D.; Romanyuk, Ya.E.; Olekseyuk, I.D.; Piskach, L.V.

    2003-01-01

    The phase diagram of the quasi-ternary Ag 2 Se-HgSe-GeSe 2 system at 298 K was investigated using X-ray phase analysis and metallography. The formation of five intermediate quaternary phases β (Ag ∼7.12-∼6.32 Hg ∼0.44-∼0.82 GeSe 6 ), γ (Ag ∼6.08-∼4.00 Hg ∼0.96-∼2.00 GeSe 6 ), δ (Ag 3.4 Hg 2.3 GeSe 6 ), ε (Ag ∼2.24-∼2.00 Hg ∼2.88-∼3.00 GeSe 6 ) and ∼Ag 1.4 Hg 1.3 GeSe 6 was established. The crystal structure of the β-phase (for the Ag 6.504 Hg 0.912 GeSe 6 composition) was determined using X-ray single crystal diffraction. It crystallizes in a cubic structure (space group F4-bar 3m) with the lattice parameter a=1.09026(4) nm. The crystal structure of the δ-phase (Ag 3.4 Hg 2.3 GeSe 6 ) was determined using X-ray powder diffraction (space group F4-bar 3m, a=1.07767(8) nm). The crystal structure determination of the γ-phase (space group Pmn2 1 ) was performed for the compositions Ag 5.6 Hg 1.2 GeSe 6 , Ag 4.8 Hg 1.6 GeSe 6 and Ag 4 Hg 2 GeSe 6 using X-ray powder diffraction. The crystal structure of the LT-Hg 2 GeSe 4 compound (space group I4-bar , a=0.56786(2), c=1.12579(5) nm) was confirmed by powder diffraction also.

  2. Transient phases during crystallization of solution-processed organic thin films

    Science.gov (United States)

    Wan, Jing; Li, Yang; Ulbrandt, Jeffery; Smilgies, Detlef-M.; Hollin, Jonathan; Whalley, Adam; Headrick, Randall

    We report an in-situ study of 2,7-dioctyl[1]benzothieno[3,2-b][1]benzothiophene (C8-BTBT) organic semiconductor thin film deposition from solution via hollow pen writing, which exhibits multiple transient phases during crystallization. Under high writing speed (25 mm/s) the films have an isotropic morphology, although the mobilities range up to 3.0 cm2/V.s. To understand the crystallization in this highly non-equilibrium regime, we employ in-situ microbeam grazing incidence wide-angle X-ray scattering combined with optical video microscopy at different deposition temperatures. A sequence of crystallization was observed in which a layered liquid-crystalline (LC) phase of C8-BTBT precedes inter-layer ordering. For films deposited above 80ºC, a transition from LC phase to a transient crystalline state that we denote as Cr1 occurs after a temperature-dependent incubation time, which is consistent with classical nucleation theory. After an additional ~ 0.5s, Cr1 transforms to the final stable structure Cr2. Based on these results, we demonstrate a method to produce large crystalline grain size and high carrier mobility during high-speed processing by controlling the nucleation rate during the transformation from the LC phase. Nsf DMR-1307017, NSF DMR-1332208.

  3. Study of crystal structure and of dynamic behaviour in the various phases of TlD2PO4

    International Nuclear Information System (INIS)

    Rios, S.

    1997-01-01

    TlH2PO4 (TDP) and its deuterated form TlD2PO4 (DTDP) belong to the family of ferroelectric materials of KH2PO4 (KDP). The compounds of this family, on deuteration, show a large isotopic effect in their ferroelectric transition temperatures. This work begins with a review of theoretical models which allowed a better understanding of the antiferroelectric transition. The crystal structures of TDP and DTDP have been studied at different temperatures, using single-crystal neutron diffraction and the results show that the phase diagrams for both compounds have very different characteristics. The dynamics of antiferroelectric transition of DTDP has been investigated by means of neutron inelastic scattering. Supported by these experimental results we propose a mechanism to explain the different phase sequences in these compounds. In the last part of this work a more qualitative study suggests that the effect of deuteration could be seen as a pressure effect. This result has to be confirmed by using a more appropriate means of investigation than neutron scattering. (A.C.)

  4. Sliding three-phase contact line of printed droplets for single-crystal arrays

    International Nuclear Information System (INIS)

    Kuang, Minxuan; Wu, Lei; Li, Yifan; Gao, Meng; Zhang, Xingye; Jiang, Lei; Song, Yanlin

    2016-01-01

    Controlling the behaviours of printed droplets is an essential requirement for inkjet printing of delicate three-dimensional (3D) structures or high-resolution patterns. In this work, molecular deposition and crystallization are regulated by manipulating the three-phase contact line (TCL) behaviour of the printed droplets. The results show that oriented single-crystal arrays are fabricated based on the continuously sliding TCL. Owing to the sliding of the TCL on the substrate, the outward capillary flow within the evaporating droplet is suppressed and the molecules are brought to the centre of the droplet, resulting in the formation of a single crystal. This work provides a facile strategy for controlling the structures of printed units by manipulating the TCL of printed droplets, which is significant for realizing high-resolution patterns and delicate 3D structures. (paper)

  5. Impact of crystallization on the structure and chemical durability of borosilicate glass

    International Nuclear Information System (INIS)

    Nicoleau, Elodie

    2016-01-01

    This work describes a new approach to help understand the chemical durability of partially crystallized nuclear waste conditioning matrices. Among the studies carried out on nuclear waste deep geological disposal, long term behavior studies have so far been conducted on homogeneous glassy matrices. However, as the crystalline phases may generate modifications in the chemical composition and properties of such matrices, the description and a better understanding of their effects on the chemical durability of waste packages are of primary importance. A protocol to study the durability of heterogeneous model matrices of nuclear interest containing different types of crystalline phases was developed. It is based on a detailed description of the morphology, microstructure and structure of the glassy matrix and crystalline phases, and on the study of various alteration regimes. Three crystal phases that may form when higher concentrations of waste are immobilized in Uranium Oxide type conditioning glasses were studied: alkali and alkaline earth molybdates, rare earth silicates and ruthenium oxide. The results highlight the roles of the composition and the structure of the surrounding glassy matrix as the parameters piloting the alteration kinetics of the partially crystallized glassy matrices. This behavior is identical whatever the nature of the crystalline phases, as long as these phases do not lead to a composition gradient and do not percolate within the glassy matrix. Given these results, a methodology to study partially crystallized matrices with no composition gradient is then suggested. Its key development lies firstly in the evaluation of the behavior of partially crystallized matrices through the experimental study of the residual glassy matrix in various alteration regimes. This methodology may be adapted to the case of new glass formulations with more complex compositions (e.g. highly waste-loaded glass), which may contain crystals formed during cooling

  6. Co-crystallization phase transformations in all π-conjugated block copolymers with different main-chain moieties.

    Science.gov (United States)

    Lee, Yi-Huan; Chen, Wei-Chih; Yang, Yi-Lung; Chiang, Chi-Ju; Yokozawa, Tsutomu; Dai, Chi-An

    2014-05-21

    Driven by molecular affinity and balance in the crystallization kinetics, the ability to co-crystallize dissimilar yet self-crystallizable blocks of a block copolymer (BCP) into a uniform domain may strongly affect its phase diagram. In this study, we synthesize a new series of crystalline and monodisperse all-π-conjugated poly(2,5-dihexyloxy-p-phenylene)-b-poly(3-(2-ethylhexyl)thiophene) (PPP-P3EHT) BCPs and investigate this multi-crystallization effect. Despite vastly different side-chain and main-chain structures, PPP and P3EHT blocks are able to co-crystallize into a single uniform domain comprising PPP and P3EHT main-chains with mutually interdigitated side-chains spaced in-between. With increasing P3EHT fraction, PPP-P3EHTs undergo sequential phase transitions and form hierarchical superstructures including predominately PPP nanofibrils, co-crystalline nanofibrils, a bilayer co-crystalline/pure P3EHT lamellar structure, a microphase-separated bilayer PPP-P3EHT lamellar structure, and finally P3EHT nanofibrils. In particular, the presence of the new co-crystalline lamellar structure is the manifestation of the interaction balance between self-crystallization and co-crystallization of the dissimilar polymers on the resulting nanostructure of the BCP. The current study demonstrates the co-crystallization nature of all-conjugated BCPs with different main-chain moieties and may provide new guidelines for the organization of π-conjugated BCPs for future optoelectronic applications.

  7. Solving crystal structures with the symmetry minimum function

    International Nuclear Information System (INIS)

    Estermann, M.A.

    1995-01-01

    Unravelling the Patterson function (the auto-correlation function of the crystal structure) (A.L. Patterson, Phys. Rev. 46 (1934) 372) can be the only way of solving crystal structures from neutron and incomplete diffraction data (e.g. powder data) when direct methods for phase determination fail. The negative scattering lengths of certain isotopes and the systematic loss of information caused by incomplete diffraction data invalidate the underlying statistical assumptions made in direct methods. In contrast, the Patterson function depends solely on the quality of the available diffraction data. Simpson et al. (P.G. Simpson et al., Acta Crystallogr. 18 (1965) 169) showed that solving a crystal structure with a particular superposition of origin-shifted Patterson functions, the symmetry minimum function, is advantageous over using the Patterson function alone, for single-crystal X-ray data.This paper describes the extension of the Patterson superposition approach to neutron data and powder data by (a) actively using the negative regions in the Patterson map caused by negative scattering lengths and (b) using maximum entropy Patterson maps (W.I.F. David, Nature 346 (1990) 731). Furthermore, prior chemical knowledge such as bond lengths and angles from known fragments have been included. Two successful structure solutions of a known and a previously unknown structure (M. Hofmann, J. Solid State Chem., in press) illustrate the potential of this new development. ((orig.))

  8. Synthesis and crystal structure of nanocrystalline phase: Ca1-xMxZr4P6O24 (M = Sr, Ba and x = 0.0-1.0)

    International Nuclear Information System (INIS)

    Rashmi, Ch.; Shrivastava, O.P.

    2011-01-01

    The structure of strontium and barium substituted nano crystalline calcium zirconium phosphate (CZP) was determined on the basis of crystal data of solid solutions. It was found that up to 2.42 mol % of strontium and 1.62 mol % of barium could be loaded into CZP formulations without significant changes of the three-dimensional framework structure. The crystal chemistry of Ca 1-x M x Zr 4 P 6 O 24 (M = Sr, Ba and x = 0.0-1.0) phases has been investigated using General Structure Analysis System (GSAS) programming. The Sr and Ba substituted CZP phases crystallize in the space group R-3 and Z = 6. Powder diffraction data have been subjected to Rietveld refinement to arrive at a satisfactory structural convergence of R-factors. The unit cell volume and polyhedral (ZrO 6 and PO 4 ) distortion increases with rise in the size and mole % of loaded cation in the CZP matrix. The PO 4 stretching and bending vibrations in the Infra red (IR) region have been assigned. SEM, TEM and EDAX analysis provide evidence of Sr and Ba in the matrix. (authors)

  9. Crystal structure and magnetic properties of the solid-solution phase Ca3Co2-v Sc v O6

    International Nuclear Information System (INIS)

    Hervoches, Charles H.; Fredenborg, Vivian Miksch; Kjekshus, Arne; Fjellvag, Helmer; Hauback, Bjorn C.

    2007-01-01

    The two crystallographically non-equivalent Co atoms of the quasi-one-dimensional crystal structure of Ca 3 Co 2 O 6 form chains with alternating, face-sharing polyhedra of Co2O 6 trigonal prisms and Co1O 6 octahedra. This compound forms a substitutional solid-solution phase with Sc, in which the Sc atoms enter the Co2 sublattice exclusively. The homogeneity range of Ca 3 Co 2- v Sc v O 6 (more specifically Ca 3 Co1Co2 1- v Sc v O 6 ) extends up to v∼0.55. The crystal structure belongs to space group R3-barc with lattice parameters (in hexagonal setting): 9.0846(3)≤a≤9.1300(2) A and 10.3885(4)≤c≤10.4677(4) A. The magnetic moment decreases rapidly with increasing amount of the non-magnetic Sc solute in the lattice. - Graphical abstract: The quasi-one-dimensional Ca 3 Co 2 O 6 phase forms a substitutional solid-solution system with Sc, in which the Sc atoms enter the Co2 sublattice exclusively. The homogeneity range of Ca 3 Co 2- v Sc v O 6 extends up to v∼0.55. The magnetic moment decreases rapidly with increasing amount of the non-magnetic Sc solute in the lattice

  10. Single-crystal neutron diffraction study of ammonium nitrate phase III

    International Nuclear Information System (INIS)

    Choi, C.S.; Prask, H.J.

    1982-01-01

    The crystal structure of ammonium nitrate phase III has been studied at room temperature by neutron diffraction using a single crystal containing 5% KNO 3 in solid-solution form. The space group is Pnma, with a = 7.6772 (4), b = 5.8208 (4), c = 7.1396 (5) A, Z = 4. The final residual after full-matrix least-squares refinement was R = 0.042 for 348 observed reflections. The ammonium ions are thermally disordered into two orientations, displaced by an angle of approximately 42 0 about an axis parallel to the c axis. (Auth.)

  11. Photonic Crystal Laser-Driven Accelerator Structures

    International Nuclear Information System (INIS)

    Cowan, Benjamin M.

    2007-01-01

    Laser-driven acceleration holds great promise for significantly improving accelerating gradient. However, scaling the conventional process of structure-based acceleration in vacuum down to optical wavelengths requires a substantially different kind of structure. We require an optical waveguide that (1) is constructed out of dielectric materials, (2) has transverse size on the order of a wavelength, and (3) supports a mode with speed-of-light phase velocity in vacuum. Photonic crystals---structures whose electromagnetic properties are spatially periodic---can meet these requirements. We discuss simulated photonic crystal accelerator structures and describe their properties. We begin with a class of two-dimensional structures which serves to illustrate the design considerations and trade-offs involved. We then present a three-dimensional structure, and describe its performance in terms of accelerating gradient and efficiency. We discuss particle beam dynamics in this structure, demonstrating a method for keeping a beam confined to the waveguide. We also discuss material and fabrication considerations. Since accelerating gradient is limited by optical damage to the structure, the damage threshold of the dielectric is a critical parameter. We experimentally measure the damage threshold of silicon for picosecond pulses in the infrared, and determine that our structure is capable of sustaining an accelerating gradient of 300 MV/m at 1550 nm. Finally, we discuss possibilities for manufacturing these structures using common microfabrication techniques

  12. Synthesis and crystal structure of lithium beryllium deuteride Li2BeD4.

    Science.gov (United States)

    Bulychev, Boris M; Shpanchenko, Roman V; Antipov, Evgeny V; Sheptyakov, Denis V; Bushmeleva, Svetlana N; Balagurov, Anatoly M

    2004-10-04

    Single-phase ternary deuteride Li(2)BeD(4) was synthesized by a high-pressure high-temperature technique from LiD and BeD(2). The crystal structure of Li(2)BeD(4) was solved from X-ray and neutron powder diffraction data. The compound crystallizes in the monoclinic space group P2(1)/c with lattice parameters a = 7.06228(9) A, b = 8.3378(1) A, c = 8.3465(1) A, beta =93.577(1) degrees, and Z = 8. Its structure contains isolated BeD(4) tetrahedra and Li atoms that are located in the structure interstices. Li(2)BeD(4) does not undergo any structural phase transitions at temperatures down to 8 K.

  13. Direct Observation of Bloch Harmonics and Negative Phase Velocity in Photonic Crystal Waveguides

    NARCIS (Netherlands)

    Gersen, H.; Karle, T.J.; Engelen, R.J.P.; Engelen, R.J.P.; Bogaerts, W.; Korterik, Jeroen P.; van Hulst, N.F.; Krauss, T.F.; Kuipers, L.

    2005-01-01

    The eigenfield distribution and the band structure of a photonic crystal waveguide have been measured with a phase-sensitive near-field scanning optical microscope. Bloch modes, which consist of more than one spatial frequency, are visualized in the waveguide. In the band structure, multiple

  14. Phase relations, crystal structure, and phase transformation of In_1_−_xNb_1_−_xTi_2_xO_4 (0 ≤ x < 0.45) in In_2O_3–Nb_2O_5–TiO_2 system

    International Nuclear Information System (INIS)

    Su, Liumei; Fan, Xing; Cai, Gemei; Liu, Huashan; Jin, Zhanpeng

    2015-01-01

    Phase relations, crystal structures, and phase transformation of In_1_−_xNb_1_−_xTi_2_xO_4 (0 ≤ x < 0.45) in In_2O_3–Nb_2O_5–TiO_2 ternary system were investigated for the first time. A number of samples with different compositions were prepared by a solid-state reaction method, and phase assembles were analyzed by powder X-ray diffraction (XRD), scanning electron microscopy (SEM), and electron probe micro-analysis (EPMA). Five three-phase regions, ten two-phase regions, and six single-phase solid solutions were determined in this system. The solid solution of In_1_−_xNb_1_−_xTi_2_xO_4 (0 ≤ x < 0.45) is composed of both ordered monoclinic wolframite-type structure (0 ≤ x < 0.35) and disordered orthorhombic α-PbO_2 type structure (0.35 < x < 0.45). Driving force for composition-driven phase transformation in In_1_−_xNb_1_−_xTi_2_xO_4 (0 ≤ x < 0.45) stems from the ordering of cations. The ever reported compound InNbTiO_6 with an orthorhombic α-PbO_2 type structure was amended to be a monoclinic wolframite-type structure. Present investigations will be useful for the whole ceramic community working with In_2O_3–Nb_2O_5–TiO_2 ternary system as well as for the development of functional materials. - Highlights: • Phase relations of In_2O_3–Nb_2O_5–TiO_2 ternary system were constructed. • Crystal structures of a novel solid solution In_1_−_xNb_1_−_xTi_2_xO_4 were determined. • Crystal structure of InNbTiO_6 was amended to be a wolframite-type structure. • Composition-driven phase transformation of In_1_−_xNb_1_−_xTi_2_xO_4 was investigated.

  15. Ultrafast crystallization and thermal stability of In-Ge doped eutectic Sb70Te30 phase change material

    International Nuclear Information System (INIS)

    Lee Meiling; Miao Xiangshui; Ting Leehou; Shi Luping

    2008-01-01

    Effect of In and Ge doping in the form of In 2 Ge 8 Sb 85 Te 5 on optical and thermal properties of eutectic Sb 70 Te 30 alloys was investigated. Crystalline structure of In 2 Ge 8 Sb 85 Te 5 phase change material consists of a mixture of phases. Thermal analysis shows higher crystallization temperature and activation energy for crystallization. Isothermal reflectivity-time measurement shows a growth-dominated crystallization mechanism. Ultrafast crystallization speed of 30 ns is realized upon irradiation by blue laser beam. The use of ultrafast and thermally stable In 2 Ge 8 Sb 85 Te 5 phase change material as mask layer in aperture-type super-resolution near-field phase change disk is realized to increase the carrier-to-noise ratio and thermal stability

  16. Microscopic Mechanism of Doping-Induced Kinetically Constrained Crystallization in Phase-Change Materials.

    Science.gov (United States)

    Lee, Tae Hoon; Loke, Desmond; Elliott, Stephen R

    2015-10-07

    A comprehensive microscopic mechanism of doping-induced kinetically constrained crystallization in phase-change materials is provided by investigating structural and dynamical dopant characteristics via ab initio molecular dynamics simulations. The information gained from this study may provide a basis for a fast screening of dopant species for electronic memory devices, or for understanding the general physics involved in the crystallization of doped glasses. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Crystallization of amorphous phase in niobium alloys with oxygen

    International Nuclear Information System (INIS)

    Dekanenko, V.M.; Samojlenko, Z.A.; Revyakin, A.V.

    1982-01-01

    Crystallization and subsequent phase transformations of amorphous phase during annealings in the system Nb-O are studied. It is shown that quenching from liquid state of niobium alloys with oxygen with a rate of 10 5 -10 6 K/s results in partial crystallization of the melt. Phase transition from amorphous to crystal state at 670 K in all probability takes place without the change of chemical composition. After crystallization the decomposition of oversaturated solid solution on the basis of NbO takes place with the separation of low- temperature modification, γ-Nb 2 O 5 . Niobium pentoxide of both modifications during prolong annealings at 770 K and short- time annealings higher 1070 K disappears completely [ru

  18. Crystal structure of pure ZrO2 nanopowders

    International Nuclear Information System (INIS)

    Lamas, D.G.; Rosso, A.M.; Anzorena, M. Suarez; Fernandez, A.; Bellino, M.G.; Cabezas, M.D.; Walsoee de Reca, N.E.; Craievich, A.F.

    2006-01-01

    The crystal structure of pure (undoped) zirconia nanopowders synthesized by different wet-chemical routes has been investigated by synchrotron X-ray diffraction. Whereas some previous authors reported the retention of the cubic phase in similar materials, we demonstrate here that pure zirconia nanopowders with average crystallite sizes ranging from 5 to 10 nm exhibit the tetragonal phase. In addition, our results suggest that a tetragonal-to-cubic transition for decreasing crystallite size could eventually occur at a very small critical crystallite size

  19. Crystal structure and phase transition in (NH4)3WO2F5: from dynamic to static orientational disorder.

    Science.gov (United States)

    Udovenko, Anatoly; Laptash, Natalia

    2015-08-01

    Single crystals of tungsten double salt (NH4)3WO2F5 = (NH4)3[WO2F4]F have been synthesized by solid-state reaction or from fluoride solution and its crystal structures at 296 and 193 K were determined by X-ray diffraction. At room temperature, the crystal structure of the compound is dynamically disordered with the ligand atoms statistically distributed on two positions (6e and 24m) of the Pm3m unit cell [a = 6.0298 (1) Å], and the tungsten atom dynamically disordered on 12 orientations forming a spatial cuboctahedron [W12] that enables the real geometry of cis-WO2F4 octahedron to be determined with two short W-O distances. On cooling, the compound undergoes a first-order phase transition with the symmetry change Pm3m → Pa3 and a doubling of the unit-cell parameter [a = 11.9635 (7) Å]. The ligand F(O) atoms statistically occupy two general 24d sites and form W1X6 and W2X6 octahedra, in which the O and F atoms are not crystallographically different that means a static orientational disorder of (NH4)3WO2F5.

  20. Investigation of melt structure and crystallization processes by high-temperature Raman spectroscopy method

    International Nuclear Information System (INIS)

    Voron'ko, Yu.K.; Kudryavtsev, A.B.; Osiko, V.V.; Sobol', A.A.

    1988-01-01

    A review of studies dealing with the melts of alkali, rare earth and other element phosphates, gallates, germanates, niobates and tungstates, which are carried out by the method of high-temperature Raman spectroscopy, is given. The effect of the melt structure on the mechanism of the substance cystallization is considered. It is shown that vitrification and supercooling of the melt, as well as its crystallization in the from of metastable structures, are related to the effect of nonconformity between the melt and crystal strucure. The effect of nonconformity between anion motives in the melt and crystal creates obstacles for equilibrium structure nucleation, which results in the formation mainly of metastable forms with lattice structure for from the structure of the melt, though cases of equilibrium phase crystallization are also possible. 37 refs.; 13 figs.; 2 tabs

  1. Crystallization Mechanism and Phase Transition Properties of W-doped VO2 Synthesized by Hydrothermal Method

    Directory of Open Access Journals (Sweden)

    LI Yao

    2017-11-01

    Full Text Available VO2 sol was firstly prepared using vanadyl sulfate as a vanadium source by precipitation-peptization method. Then tungsten(W doping vanadium dioxide(W-VO2 was prepared by hydrothermal crystallization of prepared sol with the presence of ammonium metatungstate. The morphologies, crystal structure of the as-prepared samples and phase transition properties were studied by X-ray diffraction(XRD, field emission scanning electron microscope(FESEMand differential scanning calorimetry(DSC analysis. The results indicate that rod-like W-VO2(B crystal with length of 1-2μm and radius of 100-200nm is firstly formed during hydrothermal treatment for 4-48h at 280℃, then the rod-like crystal dissolves gradually and sheet-like or snowflake-like crystal is formed with the phase transition from W-VO2(B to W-VO2(M and eventually, the W-VO2(M crystals can further grow up while the W-VO2(B gradually dissolves; the phase transition temperature of VO2 decreases with the increase in W doping content, and the phase transition temperature of W-VO2(M reduces to about 28℃ when the nominal dopant concentration is 6.0%(atom fraction.The "nucleation-growth-transformation-ripening" mechanism is proposed as the formation mechanism based on the hydrothermal crystallization and morphological evolution process of W-VO2(M.

  2. Crystallization kinetics of phase change materials

    Energy Technology Data Exchange (ETDEWEB)

    Klein, Michael; Sontheimer, Tobias; Wuttig, Matthias [I. Physikalisches Institut (1A), RWTH Aachen (Germany)

    2008-07-01

    Phase change materials are fascinating materials. They can be rapidly switched between two metastable states, the amorphous and crystalline phase, which show pronounced contrast in their optical and electrical properties. They are already widely used as the active layer in rewritable optical media and are expected to be used in the upcoming phase change random access memory (PRAM). Here we show measurements of the crystallization kinetics of chalcogenide materials that lead to a deeper understanding of these processes. This work focuses mainly on the Ge-Sb-Te system but also includes Ag-In-Te materials. The crystallization behaviour of these materials was investigated with an ex-situ annealing method employing the precise oven of a differential scanning calorimeter and imaging techniques employing atomic force microscopy and optical microscopy.

  3. Unifying the crystallization behavior of hexagonal and square crystals with the phase-field-crystal model

    International Nuclear Information System (INIS)

    Yang Tao; Chen Zheng; Zhang Jing; Wang Yongxin; Lu Yanli

    2016-01-01

    By employing the phase-field-crystal models, the atomic crystallization process of hexagonal and square crystals is investigated with the emphasis on the growth mechanism and morphological change. A unified regime describing the crystallization behavior of both crystals is obtained with the thermodynamic driving force varying. By increasing the driving force, both crystals (in the steady-state) transform from a faceted polygon to an apex-bulged polygon, and then into a symmetric dendrite. For the faceted polygon, the interface advances by a layer-by-layer (LL) mode while for the apex-bulged polygonal and the dendritic crystals, it first adopts the LL mode and then transits into the multi-layer (ML) mode in the later stage. In particular, a shift of the nucleation sites from the face center to the area around the crystal tips is detected in the early growth stage of both crystals and is rationalized in terms of the relation between the crystal size and the driving force distribution. Finally, a parameter characterizing the complex shape change of square crystal is introduced. (paper)

  4. Synthesis and structural characterization of bulk Sb2Te3 single crystal

    Science.gov (United States)

    Sultana, Rabia; Gahtori, Bhasker; Meena, R. S.; Awana, V. P. S.

    2018-05-01

    We report the growth and characterization of bulk Sb2Te3 single crystal synthesized by the self flux method via solid state reaction route from high temperature melt (850˚C) and slow cooling (2˚C/hour) of constituent elements. The single crystal X-ray diffraction pattern showed the 00l alignment and the high crystalline nature of the resultant sample. The rietveld fitted room temperature powder XRD revealed the phase purity and rhombohedral structure of the synthesized crystal. The formation and analysis of unit cell structure further verified the rhombohedral structure composed of three quintuple layers stacked one over the other. The SEM image showed the layered directional growth of the synthesized crystal carried out using the ZEISS-EVOMA-10 scanning electron microscope The electrical resistivity measurement was carried out using the conventional four-probe method on a quantum design Physical Property Measurement System (PPMS). The temperature dependent electrical resistivity plot for studied Sb2Te3 single crystal depicts metallic behaviour in the absence of any applied magnetic field. The synthesis as well as the structural characterization of as grown Sb2Te3 single crystal is reported and discussed in the present letter.

  5. Crystal structure and magnetic susceptibility of UOSe single crystals

    International Nuclear Information System (INIS)

    Kaczorowski, D.; Muenster Univ.; Poettgen, R.; Jeitschko, W.; Gajek, Z.; Zygmunt, A.

    1993-01-01

    The crystal structure and magnetic susceptibility behaviour of UOSe single crystals have been studied. UOSe crystalizes in the tetragonal PbFC1-type structure (space group P4/nmm) with the lattice parameters: a = 390.38(5) pm and c = 698.05(9) pm. It orders antiferromagnetically at T N =100±2 K and exhibits a very strong anisotropy in the susceptibility vs temperature variation. The magnetic and thermodynamic properties of UOSe are successfully interpreted in the framework of a perturbative ab initio crystal field approach. (Author)

  6. Crystal structure and magnetic susceptibility of UOSe single crystals

    Energy Technology Data Exchange (ETDEWEB)

    Kaczorowski, D. (Polish Academy of Sciences, Wroclaw (Poland). Inst. for Low Temperature and Structure Research Muenster Univ. (Germany). Anorganisch-Chemisches Inst.); Poettgen, R.; Jeitschko, W. (Muenster Univ. (Germany). Anorganisch-Chemisches Inst.); Gajek, Z.; Zygmunt, A. (Polish Academy of Sciences, Wroclaw (Poland). Inst. for Low Temperature and Structure Research)

    1993-01-01

    The crystal structure and magnetic susceptibility behaviour of UOSe single crystals have been studied. UOSe crystalizes in the tetragonal PbFC1-type structure (space group P4/nmm) with the lattice parameters: a = 390.38(5) pm and c = 698.05(9) pm. It orders antiferromagnetically at T[sub N]=100[+-]2 K and exhibits a very strong anisotropy in the susceptibility vs temperature variation. The magnetic and thermodynamic properties of UOSe are successfully interpreted in the framework of a perturbative ab initio crystal field approach. (Author).

  7. Isomorph invariance of the structure and dynamics of classical crystals

    DEFF Research Database (Denmark)

    Albrechtsen, Dan; Olsen, Andreas Elmerdahl; Pedersen, Ulf Rørbæk

    2014-01-01

    This paper shows by computer simulations that some crystalline systems have curves in their thermodynamic phase diagrams, so-called isomorphs, along which structure and dynamics in reduced units are invariant to a good approximation. The crystals are studied in a classical-mechanical framework...

  8. Crystal Structure of Tetragonal Form of La2NiO4+x

    Science.gov (United States)

    Kajitani, Tsuyoshi; Hosoya, Syoichi; Hirabayashi, Makoto; Fukuda, Tsuguo; Onozuka, Takashi

    1989-10-01

    The crystal structure of the title oxide was studied by means of the X-ray and neutron single crystal diffraction measurements. At room temperature, the tetragonal crystal structure is P42/ncm-type (No. 138), which is one of the subgroup of the space group I4/mmm. The lattice parameters of a sample annealed and slowly cooled in oxygen atmosphere from 673 K are a{=}b{=}5.4640(1) Å and c{=}12.6719(2) Å, while the oxygen content, x{=}0.10(4), was determined from obtained neutron data. The title oxide undergoes a tetragonal (P42/ncm)/tetragonal (I4/mmm) phase transition at about 560 K. The transition temperature is almost identical both in the annealed and as-grown crystals.

  9. Crystal growth within a phase change memory cell.

    Science.gov (United States)

    Sebastian, Abu; Le Gallo, Manuel; Krebs, Daniel

    2014-07-07

    In spite of the prominent role played by phase change materials in information technology, a detailed understanding of the central property of such materials, namely the phase change mechanism, is still lacking mostly because of difficulties associated with experimental measurements. Here, we measure the crystal growth velocity of a phase change material at both the nanometre length and the nanosecond timescale using phase-change memory cells. The material is studied in the technologically relevant melt-quenched phase and directly in the environment in which the phase change material is going to be used in the application. We present a consistent description of the temperature dependence of the crystal growth velocity in the glass and the super-cooled liquid up to the melting temperature.

  10. Crystal structures of orthorhombic, hexagonal, and cubic compounds of the Sm(x)Yb(2−x)TiO5 series

    International Nuclear Information System (INIS)

    Aughterson, Robert D.; Lumpkin, Gregory R.; Reyes, Massey de los; Sharma, Neeraj; Ling, Christopher D.; Gault, Baptiste; Smith, Katherine L.; Avdeev, Maxim; Cairney, Julie M.

    2014-01-01

    A series of single phase compounds with nominal stoichiometry Sm (x) Yb (2−x) TiO 5 (x=2, 1.4, 1, 0.6, and 0) have been successfully fabricated to generate a range of crystal structures covering the most common polymorphs previously discovered in the Ln 2 TiO 5 series (Ln=lanthanides and yttrium). Four of the five samples have not been previously fabricated in bulk, single phase form so their crystal structures are refined and detailed using powder synchrotron and single crystal x-ray diffraction, neutron diffraction and transmission electron microscopy. Based on the phase information from diffraction data, there are four crystal structure types in this series; orthorhombic Pnma, hexagonal P6 3 /mmc, cubic (pyrochlore-like) Fd-3m and cubic (fluorite-like) Fm-3m. The cubic materials show modulated structures with variation between long and short range ordering and the variety of diffraction techniques were used to describe these complex crystal structure types. - Graphical abstract: A high resolution image of the compound Sm 0.6 Yb 1.4 TiO 5 showing contrast from lattice fringes and the corresponding fast Fourier transform (FFT) of the HREM image with pyrochlore related diffraction spots marked “P” and fluorite marked “F”. The crystal is oriented down the [1 1 0] zone axis based on the Fd-3m structure. The ideal crystal structure (no vacancies) of the cubic, pyrochlore-like (Sm 0.6 Yb 1.4 TiO 5 ). - Highlights: • First fabrication of bulk single-phase material with stoichiometry Sm 2 TiO 5 . • Systematic study of crystal structure types within Ln 2 TiO 5 series (Ln=lanthanides). • A novel technique using IFFT of HREM images to study cubic structures

  11. Tunable Crystal-to-Crystal Phase Transition in a Cadmium Halide Chain Polymer

    Directory of Open Access Journals (Sweden)

    Ulli Englert

    2011-07-01

    Full Text Available The chain polymer [{Cd(μ-X2py2}1∞] (X = Cl, Br; py = pyridine undergoes a fully reversible phase transition between a monoclinic low-temperature and an orthorhombic high-temperature phase. The transformation can be directly monitored in single crystals and can be confirmed for the bulk by powder diffraction. The transition temperature can be adjusted by tuning the composition of the mixed-halide phase: Transition temperatures between 175 K up to the decomposition of the material at ca. 350 K are accessible. Elemental analysis, ion chromatography and site occupancy refinements from single-crystal X-ray diffraction agree with respect to the stoichiometric composition of the samples.

  12. Solid-state dynamics and single-crystal to single-crystal structural transformations in octakis(3-chloropropyl)octasilsesquioxane and octavinyloctasilsesquioxane.

    Science.gov (United States)

    Kowalewska, A; Nowacka, M; Włodarska, M; Zgardzińska, B; Zaleski, R; Oszajca, M; Krajenta, J; Kaźmierski, S

    2017-10-18

    Reactive octahedral silsesquioxanes of rod-like [octakis(3-chloropropyl)octasilsesquioxane - T 8 (CH 2 CH 2 CH 2 Cl) 8 ] and spherical [octavinyloctasilsesquioxane - T 8 (CH[double bond, length as m-dash]CH 2 ) 8 ] structure can undergo reversible thermally induced phase transitions in the solid state. The phase behaviour has been studied with differential scanning calorimetry (DSC, including temperature modulated DSC), X-ray diffraction, dielectric relaxation spectroscopy (DRS), and nuclear magnetic resonance spectroscopy in the solid state (SS NMR), as well as positron annihilation lifetime spectroscopy (PALS) and polarized optical microscopy (POM). The mechanisms involving fitting the molecules into most symmetrical crystal lattices vary for species of different structure. Thermal energy can be used to expand the crystal lattice leading to thermochromism in the case of T 8 (CH[double bond, length as m-dash]CH 2 ) 8 or conversely to an unusual negative thermal expansion of crystals of T 8 (CH 2 CH 2 CH 2 Cl) 8 that results in their self-actuation. The complex behaviour is reflected in unusual changes in the capacitance and fractional free volume of the material. These phenomena can be used for molecular design of advanced well-defined hybrid materials capable of reversible thermally induced structural transformations. The findings present a new perspective for POSS-based flexible metal-organic frameworks (MOF) of cooperative structural transformability via entropy-based translational sub-net sliding.

  13. Magnetic phase transitions in Er7Rh3 studied on single crystals

    International Nuclear Information System (INIS)

    Tsutaoka, Takanori; Obata, Keisuke; Cheyvuth, Seng; Koyama, Keiichi

    2014-01-01

    Highlights: • Magnetic and electrical properties of Er 7 Rh 3 were studied on single crystals. • The magnetic phase diagram along the c-axis was constructed. • The field-induced magnetic transitions in Er 7 Rh 3 can be explained by the magnetic structure with two magnetic propagation vectors. • The anomalies of electrical resistivity can also be described by the magnetic structure in Er 7 Rh 3 . - Abstract: Magnetic phase transitions in Er 7 Rh 3 with the Th 7 Fe 3 type hexagonal structure have been studied on single crystals by measuring magnetization, magnetic susceptibility and electrical resistivity. Er 7 Rh 3 possesses antiferromagnetic state below T N = 13 K. In the ordered state, the two successive magnetic transitions at T t1 = 6.2 K and T t2 = 4.5 K were observed. Several field-induced magnetic transitions were also observed along the a- and c-axes below T N ; magnetic field H – temperature T phase diagram along the c-axis was constructed. The field-induced magnetic transitions in Er 7 Rh 3 can be explained by the magnetic structure with two magnetic propagation vectors which were derived by the previous neutron diffraction studies. Electrical resistivity shows humps just below the magnetic transition temperatures, T N and T t1 due to the super-zone gap formation at the Fermi level; these anomalies can also be described by the magnetic structure changes in Er 7 Rh 3

  14. Orbital hybridization, crystal structure and anomalous resistivity of ultrathin CrZrx alloy films on polymeric substrates

    International Nuclear Information System (INIS)

    Evans, Drew; Zuber, Kamil; Merkens, Kerstin; Murphy, Peter

    2012-01-01

    The orbital hybridization and crystal structure are experimentally explored for ultrathin chrome zirconium (CrZr x ) alloy films co-sputtered on precoated polymeric substrates. We determine the level of orbital hybridization and crystal structure using X-ray photoelectron spectroscopy and electron diffraction. Body-centred cubic and Ω-hexagonally close-packed phases are observed to coexist in the sputtered Cr-based films. Experiments reveal the orbital hybridization and crystal structure combine to produce anomalous resistivity for these ultrathin films.

  15. The liquid protein phase in crystallization: a case study—intact immunoglobulins

    Science.gov (United States)

    Kuznetsov, Yurii G.; Malkin, Alexander J.; McPherson, Alexander

    2001-11-01

    A common observation by protein chemists has been the appearance, for many proteins in aqueous solutions, of oil like droplets, or in more extreme cases the formation of a second oil like phase. These may accompany the formation of precipitate in "salting out" or "salting in' procedures, but more commonly appear in place of any precipitate. Such phase separations also occur, with even greater frequency, in the presence of polymeric precipitants such as polyethyleneglycol (PEG). In general the appearance of a second liquid phase has been taken as indicative of protein aggregation, though an aggregate state distinctly different from that characteristic of amorphous precipitate. While the latter is thought to be composed of linear and branched assemblies, polymers of a sort, the oil phase suggests a more compact, three-dimensional, but fluid state. An important property of an alternate, fluid phase is that it can mediate transitions between other states, for example, between protein molecules free in solution and protein molecules immobilized in amorphous precipitate or crystals. The "liquid protein" phase can be readily observed in many crystallization experiments either prior to the appearance of visible crystals, or directly participating in the crystal growth process. In some cases the relationship between the liquid phase and developing crystals is intimate. Crystals grow directly from the liquid phase, or appear only after the visible formation of the liquid phase. We describe here our experience with a class of macromolecules, immunoglobulins, and particularly IDEC-151, an IgG specific for CD4 on human lymphocytes. This protein has been crystallized from a Jeffamine-LiSO 4 mother liquor and, its crystallization illustrates many of the features associated with the liquid protein, or protein rich phase.

  16. Prediction of molecular crystal structures

    International Nuclear Information System (INIS)

    Beyer, Theresa

    2001-01-01

    The ab initio prediction of molecular crystal structures is a scientific challenge. Reliability of first-principle prediction calculations would show a fundamental understanding of crystallisation. Crystal structure prediction is also of considerable practical importance as different crystalline arrangements of the same molecule in the solid state (polymorphs)are likely to have different physical properties. A method of crystal structure prediction based on lattice energy minimisation has been developed in this work. The choice of the intermolecular potential and of the molecular model is crucial for the results of such studies and both of these criteria have been investigated. An empirical atom-atom repulsion-dispersion potential for carboxylic acids has been derived and applied in a crystal structure prediction study of formic, benzoic and the polymorphic system of tetrolic acid. As many experimental crystal structure determinations at different temperatures are available for the polymorphic system of paracetamol (acetaminophen), the influence of the variations of the molecular model on the crystal structure lattice energy minima, has also been studied. The general problem of prediction methods based on the assumption that the experimental thermodynamically stable polymorph corresponds to the global lattice energy minimum, is that more hypothetical low lattice energy structures are found within a few kJ mol -1 of the global minimum than are likely to be experimentally observed polymorphs. This is illustrated by the results for molecule I, 3-oxabicyclo(3.2.0)hepta-1,4-diene, studied for the first international blindtest for small organic crystal structures organised by the Cambridge Crystallographic Data Centre (CCDC) in May 1999. To reduce the number of predicted polymorphs, additional factors to thermodynamic criteria have to be considered. Therefore the elastic constants and vapour growth morphologies have been calculated for the lowest lattice energy

  17. Prediction of molecular crystal structures

    Energy Technology Data Exchange (ETDEWEB)

    Beyer, Theresa

    2001-07-01

    The ab initio prediction of molecular crystal structures is a scientific challenge. Reliability of first-principle prediction calculations would show a fundamental understanding of crystallisation. Crystal structure prediction is also of considerable practical importance as different crystalline arrangements of the same molecule in the solid state (polymorphs)are likely to have different physical properties. A method of crystal structure prediction based on lattice energy minimisation has been developed in this work. The choice of the intermolecular potential and of the molecular model is crucial for the results of such studies and both of these criteria have been investigated. An empirical atom-atom repulsion-dispersion potential for carboxylic acids has been derived and applied in a crystal structure prediction study of formic, benzoic and the polymorphic system of tetrolic acid. As many experimental crystal structure determinations at different temperatures are available for the polymorphic system of paracetamol (acetaminophen), the influence of the variations of the molecular model on the crystal structure lattice energy minima, has also been studied. The general problem of prediction methods based on the assumption that the experimental thermodynamically stable polymorph corresponds to the global lattice energy minimum, is that more hypothetical low lattice energy structures are found within a few kJ mol{sup -1} of the global minimum than are likely to be experimentally observed polymorphs. This is illustrated by the results for molecule I, 3-oxabicyclo(3.2.0)hepta-1,4-diene, studied for the first international blindtest for small organic crystal structures organised by the Cambridge Crystallographic Data Centre (CCDC) in May 1999. To reduce the number of predicted polymorphs, additional factors to thermodynamic criteria have to be considered. Therefore the elastic constants and vapour growth morphologies have been calculated for the lowest lattice energy

  18. Structural Changes of PVDF Membranes by Phase Separation Control

    International Nuclear Information System (INIS)

    Lee, Semin; Kim, Sung Soo

    2016-01-01

    Thermally induced phase separation (TIPS) and nonsolvent induced phase separation (NIPS) were simultaneously induced for the preparation of flat PVDF membranes. N-methyl-2-pyrrolidone (NMP) was used as a solvent and dibutyl-phthlate (DBP) was used as a diluent for PVDF. When PVDF was melt blended with NMP and DBP, crystallization temperature was lowered for TIPS and unstable region was expanded for NIPS. Ratio of solvent to diluent changed the phase separation mechanism to obtain the various membrane structures. Contact mode of dope solution with nonsolvent determined the dominant phase separation behavior. Since heat transfer rate was greater than mass transfer rate, surface structure was formed by NIPS and inner structure was by TIPS. Quenching temperature of dope solution also affected the phase separation mechanism and phase separation rate to result in the variation of structure

  19. Growth and structural, optical, and electrical properties of zincite crystals

    Science.gov (United States)

    Kaurova, I. A.; Kuz'micheva, G. M.; Rybakov, V. B.

    2013-03-01

    An X-ray diffraction study of ZnO crystals grown by the hydrothermal method has revealed reflections that give grounds to assign them to the sp. gr. P3 rather than to P63 mc. The distribution of Zn1, Zn2, O1, and O2 over structural positions, along with vacancies and incorporated zinc atoms, explains the dissymmetrization observed in terms of the kinetic (growth) phase transition of the order-disorder type, which is caused by ordering Zn and O atoms over structural positions. The color of crystals of refined compositions (Zn0.975□0.025)Zn i(0.015)(O0.990□0.010) (green) and (Zn0.965□0.035)Zn i(0.035)O (bright green) is related to different oxygen contents, which is confirmed by the results of electron probe X-ray microanalysis and absorption spectroscopy. The degree of the structural quality of crystals, their resistivity, and activation energy are also related to oxygen vacancies.

  20. Microstructure and structural phase transitions in iron-based superconductors

    International Nuclear Information System (INIS)

    Wang Zhen; Cai Yao; Yang Huai-Xin; Tian Huan-Fang; Wang Zhi-Wei; Ma Chao; Chen Zhen; Li Jian-Qi

    2013-01-01

    Crystal structures and microstructural features, such as structural phase transitions, defect structures, and chemical and structural inhomogeneities, are known to have profound effects on the physical properties of superconducting materials. Recently, many studies on the structural properties of Fe-based high-T c superconductors have been published. This review article will mainly focus on the typical microstructural features in samples that have been well characterized by physical measurements. (i) Certain common structural features are discussed, in particular, the crystal structural features for different superconducting families, the local structural distortions in the Fe 2 Pn 2 (Pn = P As, Sb) or Fe 2 Ch 2 (Ch = S, Se, Te) blocks, and the structural transformations in the 122 system. (ii) In FeTe(Se) (11 family), the superconductivity, chemical and structural inhomogeneities are investigated and discussed in correlation with superconductivity. (iii) In the K 0.8 Fe 1.6+x Se 2 system, we focus on the typical compounds with emphasis on the Fe-vacancy order and phase separations. The microstructural features in other superconducting materials are also briefly discussed. (topical review - iron-based high temperature superconductors)

  1. Crystals structure of Na3Li(TiF6)2

    International Nuclear Information System (INIS)

    Popov, D.Yu.; Antokhina, T.F.; Gerasimenko, A.V.; Kajdalova, T.A.; Sergienko, V.I.

    2004-01-01

    Crystals of Na 3 Li(TiF 6 ) 2 (1) were synthesized in aqueous solution and characterized by the elementary and X-ray phase analysis methods. According to X-ray diffraction analysis data compound 1 is crystallized in a tetragonal crystal system with the following parameters: a=5.130(1), c=18.046(4) A, Z=2, space group P4-bar2 1 c. Alternating layers on the basis of dimers made up by octahedrons of TiF 6 and Na(1)F 6 constitute the frame of compound 1 crystal structure. The dimer layers are joined in a continuous frame by Na(2) and Li cations. Coordination polyhedron of Li atom is tetrahedron (Li-F 1.898(3) A) [ru

  2. Crystal structures of sol-gel deposited zirconia thin films

    International Nuclear Information System (INIS)

    Bell, J.M.; Cheary, R.W.; Rice, M.; Ben-Nissan, B.; Cocking, J.L.; Johnstone, G.R.

    1992-01-01

    The authors reports on the crystal structure of zirconia thin films by high temperature x-ray diffraction. The films were deposited by sol-gel processing onto polished stainless steel substrates, and dried at 200 deg C. X-ray diffraction at temperatures between 400 deg C and 800 deg C was carried out using an APEX diffractometer with a position sensitive detector. Previous results indicated that there was a transformation between the tetragonal phase and the monoclinic phase at approximately 770 deg C. Two experiments have been carried out: temperature runs, where the structure evolution is studied as a function of temperature; and time evolution of the structure at fixed temperatures. The results for both experiments, including structural analysis of the different phases found in the thin zirconia films and an analysis of the kinetics of the phase transformation(s) from the time evolution work are presented. This will include a comparison with theories of nucleation and crystallisation in single element films. Impurity phases introduced by interaction of the zirconia with the substrate have been observed, and the effect of increasing annealing time on the substrate-film interaction will also be discussed. 17 refs., 1 tab., 3 figs

  3. Single-crystal FCC and DHCP phases in Ce/Pr superlattices

    International Nuclear Information System (INIS)

    Lee, S.; Goff, J.P.; Ward, R.C.C.; Wells, M.R.; McIntyre, G.J.

    2002-01-01

    Cerium usually comprises a mixture of polycrystalline FCC and DHCP allotropes. Single-crystal Ce has been stabilised in Ce/Pr superlattices grown using molecular beam epitaxy. It is found that FCC or DHCP phases can be obtained depending on superlattice composition and growth conditions. Low-temperature neutron scattering was performed on Ce/Pr samples using the triple-axis spectrometer D10 at the ILL. Such measurements revealed one sample, [Ce 20 Pr 20 ] 60 , to be a single crystal with a DHCP unit cell; while another, [Ce 30 Pr 10 ] 56 , was a mixture of FCC and DHCP phases. Antiferromagnetic ordering of magnetic moments was observed in the DHCP sample (T N =11.1 K) with a magnetic structure similar to that found in bulk β-Ce. Surprisingly, the magnetic ordering was found to be confined to single Ce blocks. Furthermore, it was found that, at low temperatures, the lattice contraction observed for bulk FCC Ce was suppressed in Ce/Pr superlattices. (orig.)

  4. Effects of tellurium concentration on the structure of melt-grown ZnSe crystals

    International Nuclear Information System (INIS)

    Atroshchenko, Lyubov V.; Galkin, Sergey N.; Rybalka, Irina A.; Voronkin, Evgeniy F.; Lalayants, Alexandr I.; Ryzhikov, Vladimir D.; Fedorov, Alexandr G.

    2005-01-01

    It has been shown that isovalent doping by tellurium positively affects the structural perfection of ZnSe crystals related to the completeness of the wurtzite-sphalerite phase transition. The optimum concentration range of tellurium in ZnSe crystals is 0.3-0.6 mass %. X-ray diffraction studies have shown that in ZnSe 1-x Te x crystals at tellurium concentrations below 0.3 mass % twinning and packing defects occur, while tellurium concentrations above 0.6 mass % lead to formation of tetragonal crystal lattice

  5. Temperature effect on phase states of quartz nano-crystals in silicon single crystal

    International Nuclear Information System (INIS)

    Kalanov, M.U.; Ibragimova, E.M.; Khamraeva, R.N.; Rustamova, V.M.; Ummatov, Kh.D.

    2006-01-01

    Full text: Oxygen penetrates into the silicon lattice up to the concentration of 2·10 18 cm -3 in the course of growing [1]. By the author's opinion at a low oxygen content the formation of solid solution is possible in the local defect places of the silicon single crystal lattice due to the difference in effective ion radius of oxygen and silicon (r O 0.176 and r Si = 0.065 nm). Upon reaching some critical content (∼ 10 17 cm -3 ), it becomes favorable energetically for oxygen ions to form precipitates (SiO x ) and finally a dielectric layer (stoichiometric inclusions of SiO 2 ). It was shown later that depending on the growth conditions, indeed the quartz crystal inclusions are formed in the silicon single crystals at an amount of 0.3 /0.5 wt. % [2]. However the authors did not study a phase state of the quartz inclusions. Therefore the aim of this work was to study a phase state of the quartz inclusions in silicon crystal at various temperatures. We examined the silicon single crystals grown by Czochralski technique, which were cut in (111) plane in the form of disk of 20 mm diameter and 1.5 thickness and had hole conductivity with the specific resistance ρ o ≅ 1/10 Ohm cm. The dislocation density was N D ≅ 10 1 /10 3 cm -2 , the concentrations of oxygen and boron were N 0 ≅ 2/ 4·10 17 cm -3 and N B ≅ 3*10 15 cm -3 . Structure was analyzed at the set-up DRON-UM1 with high temperature supply UVD-2000 ( CuK = 0.1542 nm) at the temperatures of 300, 1173 and 1573 K measured with platinum-platinum-rhodium thermocouple. The high temperature diffraction spectrum measured at 1573 K in the angle range (2Θ≅10/70 d egree ) there is only one main structure reflection (111) with a high intensity and d/n ≅ 0.3136 nm (2 Θ≅ 28.5 d egree ) from the matrix lattice of silicon single crystal. The weak line at 2 Θ≅ 25.5 d egree ( d/n≅0.3136 nm) is β component of the main reflection (111), and the weak structure peak at 2Θ≅59 d egree ( d/n≅ 0.1568 nm

  6. Facile synthesis of gold nanomaterials with unusual crystal structures.

    Science.gov (United States)

    Fan, Zhanxi; Huang, Xiao; Chen, Ye; Huang, Wei; Zhang, Hua

    2017-11-01

    Gold (Au) nanomaterials have attracted wide research attention, owing to their high chemical stability, promising catalytic properties, excellent biocompatibility, unique electronic structure and outstanding localized surface plasmon resonance (LSPR) absorption properties; all of which are closely related to their size and shape. Recently, crystal-phase-controlled synthesis of noble metal nanomaterials has emerged as a promising strategy to tune their physicochemical properties. This protocol describes the detailed experimental procedures for the crystal-phase-controlled syntheses of Au nanomaterials with unusual crystal structures under mild conditions. Briefly, pure hexagonal close-packed (hcp) Au square sheets (AuSSs) with a thickness of ∼2.4 nm are synthesized using a graphene-oxide-assisted method in which HAuCl 4 is reduced by oleylamine in a mixture of hexane and ethanol. By using pure hexane as the solvent, well-dispersed ultrathin hcp/face-centered cubic (fcc) Au nanowires with a diameter of ∼1.6 nm on graphene oxide can be obtained. Meanwhile, hcp/fcc Au square-like plates with a side length of 200-400 nm are prepared via the secondary growth of Au on the hcp AuSSs. Remarkably, hexagonal (4H) Au nanoribbons with a thickness of 2.0-6.0 nm can be synthesized with a one-pot colloidal method in which HAuCl 4 is reduced by oleylamine in a mixed solvent of hexane and 1,2-dichloropropane. It takes 17-37 h for the synthesis of these Au nanomaterials with unusual crystal structures. Transmission electron microscopy (TEM) and atomic force microscopy (AFM) are used to characterize the resultant Au nanomaterials, which could have many promising applications, such as biosensing, near-IR photothermal therapy, catalysis and surface-enhanced Raman scattering (SERS).

  7. High pressure structural phase transitions of TiO2 nanomaterials

    International Nuclear Information System (INIS)

    Li Quan-Jun; Liu Bing-Bing

    2016-01-01

    Recently, the high pressure study on the TiO 2 nanomaterials has attracted considerable attention due to the typical crystal structure and the fascinating properties of TiO 2 with nanoscale sizes. In this paper, we briefly review the recent progress in the high pressure phase transitions of TiO 2 nanomaterials. We discuss the size effects and morphology effects on the high pressure phase transitions of TiO 2 nanomaterials with different particle sizes, morphologies, and microstructures. Several typical pressure-induced structural phase transitions in TiO 2 nanomaterials are presented, including size-dependent phase transition selectivity in nanoparticles, morphology-tuned phase transition in nanowires, nanosheets, and nanoporous materials, and pressure-induced amorphization (PIA) and polyamorphism in ultrafine nanoparticles and TiO 2 -B nanoribbons. Various TiO 2 nanostructural materials with high pressure structures are prepared successfully by high pressure treatment of the corresponding crystal nanomaterials, such as amorphous TiO 2 nanoribbons, α -PbO 2 -type TiO 2 nanowires, nanosheets, and nanoporous materials. These studies suggest that the high pressure phase transitions of TiO 2 nanomaterials depend on the nanosize, morphology, interface energy, and microstructure. The diversity of high pressure behaviors of TiO 2 nanomaterials provides a new insight into the properties of nanomaterials, and paves a way for preparing new nanomaterials with novel high pressure structures and properties for various applications. (topical review)

  8. Ultrafast photoinduced structure phase transition in antimony single crystals

    NARCIS (Netherlands)

    Fausti, Daniele; Misochko, Oleg V.; van Loosdrecht, Paul H. M.

    2009-01-01

    Picosecond Raman scattering is used to study the photoinduced ultrafast dynamics in Peierls distorted antimony. We find evidence for an ultrafast nonthermal reversible structural phase transition. Most surprisingly, we find evidence that this transition evolves toward a lower symmetry in contrast to

  9. Nano-phase separation and structural ordering in silica-rich mixed network former glasses.

    Science.gov (United States)

    Liu, Hao; Youngman, Randall E; Kapoor, Saurabh; Jensen, Lars R; Smedskjaer, Morten M; Yue, Yuanzheng

    2018-06-13

    We investigate the structure, phase separation, glass transition, and crystallization in a mixed network former glass series, i.e., B2O3-Al2O3-SiO2-P2O5 glasses with varying SiO2/B2O3 molar ratio. All the studied glasses exhibit two separate glassy phases: droplet phase (G1) with the size of 50-100 nm and matrix phase (G2), corresponding to a lower calorimetric glass transition temperature (Tg1) and a higher one (Tg2), respectively. Both Tg values decrease linearly with the substitution of B2O3 for SiO2, but the magnitude of the decrease is larger for Tg1. Based on nuclear magnetic resonance and Raman spectroscopy results, we infer that the G1 phase is rich in boroxol rings, while the G2 phase mainly involves the B-O-Si network. Both phases contain BPO4- and AlPO4-like units. Ordered domains occur in G2 upon isothermal and dynamic heating, driven by the structural heterogeneity in the as-prepared glasses. The structural ordering lowers the activation energy of crystal growth, thus promoting partial crystallization of G2. These findings are useful for understanding glass formation and phase separation in mixed network former oxide systems, and for tailoring their properties.

  10. Phase relations and crystal structures in the systems (Bi,Ln)2WO6 and (Bi,Ln)2MoO6 (Ln=lanthanide)

    International Nuclear Information System (INIS)

    Berdonosov, Peter S.; Charkin, Dmitri O.; Knight, Kevin S.; Johnston, Karen E.; Goff, Richard J.; Dolgikh, Valeriy A.; Lightfoot, Philip

    2006-01-01

    Several outstanding aspects of phase behaviour in the systems (Bi,Ln) 2 WO 6 and (Bi,Ln) 2 MoO 6 (Ln=lanthanide) have been clarified. Detailed crystal structures, from Rietveld refinement of powder neutron diffraction data, are provided for Bi 1.8 La 0.2 WO 6 (L-Bi 2 WO 6 type) and BiLaWO 6 , BiNdWO 6 , Bi 0.7 Yb 1.3 WO 6 and Bi 0.7 Yb 1.3 WO 6 (all H-Bi 2 WO 6 type). Phase evolution within the solid solution Bi 2- x La x MoO 6 has been re-examined, and a crossover from γ(H)-Bi 2 MoO 6 type to γ-R 2 MoO 6 type is observed at x∼1.2. A preliminary X-ray Rietveld refinement of the line phase BiNdMoO 6 has confirmed the α-R 2 MoO 6 type structure, with a possible partial ordering of Bi/Nd over the three crystallographically distinct R sites. - Graphical abstract: A summary of phase relations in the lanthanide-doped bismuth tungstate and bismuth molybdate systems is presented, together with some additional structural data on several of these phases

  11. On the akaganeite crystal structure, phase transformations and possible role in post-excavational corrosion of iron artefacts

    DEFF Research Database (Denmark)

    Ståhl, Kenny; Nielsen, Kurt; Jiang, Jianzhong

    2003-01-01

    The crystal structure of akaganeite and the akaganeite to hematite transition has been studied by means of conventional and synchrotron X-ray and neutron powder diffraction. The chemical formula of akaganeite can be written as FeO0.833(OH)(1.167)Cl-0.167. The crystal structure does not contain fr...

  12. Crystal Structural Effect of AuCu Alloy Nanoparticles on Catalytic CO Oxidation

    International Nuclear Information System (INIS)

    Zhan, Wangcheng; Wang, Jinglin; Wang, Haifeng; Zhang, Jinshui; Liu, Xiaofei

    2017-01-01

    Controlling the physical and chemical properties of alloy nanoparticles (NPs) is an important approach to optimize NP catalysis. Unlike other tuning knobs, such as size, shape, and composition, crystal structure has received limited attention and not been well understood for its role in catalysis. This deficiency is mainly due to the difficulty in synthesis and fine-tuning of the NPs’ crystal structure. Here, Exemplifying by AuCu alloy NPs with face centered cubic (fcc) and face centered tetragonal (fct) structure, we demonstrate a remarkable difference in phase segregation and catalytic performance depending on the crystal structure. During the thermal treatment in air, the Cu component in fcc-AuCu alloy NPs segregates more easily onto the alloy surface as compared to that in fct-AuCu alloy NPs. As a result, after annealing at 250 °C in air for 1 h, the fcc- and fct-AuCu alloy NPs are phase transferred into Au/CuO and AuCu/CuO core/shell structures, respectively. More importantly, this variation in heterostructures introduces a significant difference in CO adsorption on two catalysts, leading to a largely enhanced catalytic activity of AuCu/CuO NP catalyst for CO oxidation. Furthermore, the same concept can be extended to other alloy NPs, making it possible to fine-tune NP catalysis for many different chemical reactions.

  13. Crystal Structural Effect of AuCu Alloy Nanoparticles on Catalytic CO Oxidation

    Energy Technology Data Exchange (ETDEWEB)

    Zhan, Wangcheng [East China Univ. of Science and Technology, Shanghai (China); Wang, Jinglin [East China Univ. of Science and Technology, Shanghai (China); Wang, Haifeng [East China Univ. of Science and Technology, Shanghai (China); Zhang, Jinshui [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Liu, Xiaofei [East China Univ. of Science and Technology, Shanghai (China); Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Zhang, Pengfei [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Chi, Miaofang [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Guo, Yanglong [East China Univ. of Science and Technology, Shanghai (China); Guo, Yun [East China Univ. of Science and Technology, Shanghai (China); Lu, Guanzhong [East China Univ. of Science and Technology, Shanghai (China); Sun, Shouheng [Brown Univ., Providence, RI (United States); Dai, Sheng [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Univ. of Tennessee, Knoxville, TN (United States); Zhu, Huiyuan [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2017-06-07

    Controlling the physical and chemical properties of alloy nanoparticles (NPs) is an important approach to optimize NP catalysis. Unlike other tuning knobs, such as size, shape, and composition, crystal structure has received limited attention and not been well understood for its role in catalysis. This deficiency is mainly due to the difficulty in synthesis and fine-tuning of the NPs’ crystal structure. Here, Exemplifying by AuCu alloy NPs with face centered cubic (fcc) and face centered tetragonal (fct) structure, we demonstrate a remarkable difference in phase segregation and catalytic performance depending on the crystal structure. During the thermal treatment in air, the Cu component in fcc-AuCu alloy NPs segregates more easily onto the alloy surface as compared to that in fct-AuCu alloy NPs. As a result, after annealing at 250 °C in air for 1 h, the fcc- and fct-AuCu alloy NPs are phase transferred into Au/CuO and AuCu/CuO core/shell structures, respectively. More importantly, this variation in heterostructures introduces a significant difference in CO adsorption on two catalysts, leading to a largely enhanced catalytic activity of AuCu/CuO NP catalyst for CO oxidation. Furthermore, the same concept can be extended to other alloy NPs, making it possible to fine-tune NP catalysis for many different chemical reactions.

  14. Ice crystallization in ultrafine water-salt aerosols: nucleation, ice-solution equilibrium, and internal structure.

    Science.gov (United States)

    Hudait, Arpa; Molinero, Valeria

    2014-06-04

    Atmospheric aerosols have a strong influence on Earth's climate. Elucidating the physical state and internal structure of atmospheric aqueous aerosols is essential to predict their gas and water uptake, and the locus and rate of atmospherically important heterogeneous reactions. Ultrafine aerosols with sizes between 3 and 15 nm have been detected in large numbers in the troposphere and tropopause. Nanoscopic aerosols arising from bubble bursting of natural and artificial seawater have been identified in laboratory and field experiments. The internal structure and phase state of these aerosols, however, cannot yet be determined in experiments. Here we use molecular simulations to investigate the phase behavior and internal structure of liquid, vitrified, and crystallized water-salt ultrafine aerosols with radii from 2.5 to 9.5 nm and with up to 10% moles of ions. We find that both ice crystallization and vitrification of the nanodroplets lead to demixing of pure water from the solutions. Vitrification of aqueous nanodroplets yields nanodomains of pure low-density amorphous ice in coexistence with vitrified solute rich aqueous glass. The melting temperature of ice in the aerosols decreases monotonically with an increase of solute fraction and decrease of radius. The simulations reveal that nucleation of ice occurs homogeneously at the subsurface of the water-salt nanoparticles. Subsequent ice growth yields phase-segregated, internally mixed, aerosols with two phases in equilibrium: a concentrated water-salt amorphous mixture and a spherical cap-like ice nanophase. The surface of the crystallized aerosols is heterogeneous, with ice and solution exposed to the vapor. Free energy calculations indicate that as the concentration of salt in the particles, the advance of the crystallization, or the size of the particles increase, the stability of the spherical cap structure increases with respect to the alternative structure in which a core of ice is fully surrounded by

  15. Pressure-induced structural phase transformation and superconducting properties of titanium mononitride

    Science.gov (United States)

    Li, Qian; Guo, Yanan; Zhang, Miao; Ge, Xinlei

    2018-03-01

    In this work, we have systematically performed the first-principles structure search on titanium mononitride (TiN) within Crystal Structure AnaLYsis by Particle Swarm Optimization (CALYPSO) methodology at high pressures. Here, we have confirmed a phase transition from cubic rock-salt (fcc) phase to CsCl (bcc) phase of TiN at ∼348 GPa. Further simulations reveal that the bcc phase is dynamically stable, and could be synthesized experimentally in principle. The calculated elastic anisotropy decreases with the phase transformation from fcc to bcc structure under high pressures, and the material changes from ductile to brittle simultaneously. Moreover, we found that both structures are superconductive with the superconducting critical temperature of 2-12 K.

  16. A microporous potassium vanadyl phosphate analogue of mahnertite. Hydrothermal synthesis and crystal structure

    International Nuclear Information System (INIS)

    Yakubovich, Olga V.; Russian Academy of Science, Moscow; Steele, Ian M.; Kiriukhina, Galina V.; Dimitrova, Olga V.

    2015-01-01

    The novel phase K 2.5 Cu 5 Cl(PO 4 ) 4 (OH) 0.5 (VO 2 ).H 2 O was prepared by hydrothermal synthesis at 553 K. Its crystal structure was determined using low-temperature (100 K) single-crystal synchrotron diffraction data and refined against F 2 to R = 0.035. The compound crystallizes in the tetragonal space group I4/mmm, with unit-cell parameters a =9.8120(8), c = 19.954(1) Aa, V = 1921.1(2) Aa 3 , and Z = 4. Both symmetrically independent Cu 2+ sites show elongated square-pyramidal coordination. The V 5+ ions reside in strongly distorted five-vertex VO 5 polyhedra with 50% occupancy. The structure is based on a 3D anionic framework built from Cu- and V-centered five-vertex polyhedra and PO 4 tetrahedra. Channels in the [100] and [010] directions accommodate large K atoms and H 2 O molecules. The compound is a new structural representative of the topology shown by the lavendulan group of copper arsenate and phosphate minerals. Their tetragonal or pseudotetragonal crystal structures are characterized by two types of 2D slabs alternating along one axis of their unit cells. One slab, described by the formula [Cu 4 X(TO 4 ) 4 ] 8 (where X = Cl, O and T = As, P), is common to all phases, whereas the slab content of the other set differs among the group members. We suggest interpreting this family of compounds in terms of the modular concept and also consider the synthetic phase Ba(VO)Cu 4 (PO 4 ) 4 as a simplest member of this polysomatic series.

  17. Amine free crystal structure: The crystal structure of d(CGCGCG)2 and methylamine complex crystal

    International Nuclear Information System (INIS)

    Ohishi, Hirofumi; Tsukamoto, Koji; Hiyama, Yoichi; Maezaki, Naoyoshi; Tanaka, Tetsuaki; Ishida, Toshimasa

    2006-01-01

    We succeeded in the crystallization of d(CGCGCG) 2 and methylamine Complex. The crystal was clear and of sufficient size to collect the X-ray crystallographic data up to 1.0 A resolution using synchrotron radiation. As a result of X-ray crystallographic analysis of 2F o - F c map was much clear and easily traced. It is First time monoamine co-crystallizes with d(CGCGCG) 2 . However, methylamine was not found from the complex crystal of d(CGCGCG) 2 and methylamine. Five Mg ions were found around d(CGCGCG) 2 molecules. These Mg ions neutralized the anion of 10 values of the phosphate group of DNA with five Mg 2+ . DNA stabilized only by a metallic ion and there is no example of analyzing the X-ray crystal structure like this. Mg ion stabilizes the conformation of Z-DNA. To use monoamine for crystallization of DNA, we found that we can get only d(CGCGCG) 2 and Mg cation crystal. Only Mg cation can stabilize the conformation of Z-DNA. The method of using the monoamine for the crystallization of DNA can be applied to the crystallization of DNA of long chain of length in the future like this

  18. Strong dielectric liquid crystal polymer (Part 3)

    Energy Technology Data Exchange (ETDEWEB)

    Kurata, Hideaki; Shibasaki, Akira

    1988-11-01

    Influence of change of molecular parameters on liquid crystal condition is studied to get the correlation between molecular structure of liquid crystal and phase structure or visco-elastic properties. Eight kinds of biphenyl type liquid crystals with polyacrilate main chain and triphenyl type liquid crystals were used as samples. Followings were found by a ploarizing microscope and X-ray diffraction: Phases are transferred from isotropic phase S/sub A/ phase S/sup *//sub C/ phase S/sub 1/ phase to solid on temperature desending sequence. Degree of polymerization changes only these transfer point but spacer length affects not only transfer points and layer distance but also liquid crystal structure itself. Visco-elasticity of isotropic phase shows Newtonian viscosity and is affected by the main chain length. Macroscopic and microscopic structures influence on viscoelasticity in S/sub A/ phase and S/sup *//sub C/ phase. Two rapid rises of viscoelasticity are found in low molecular weight liquid crystal when S/sub A/ transfer and S/sub A/ to S/sup *//sub C/ transfer occur by temperature desending from the isotropic phase. Viscoelastic behavior is contributed by the properties of domain itself and interaction between domains, and the interaction is changed by polymerization. 6 references, 13 figures, 1 table.

  19. Crystal structure and thermal expansion of Mn(1-x)Fe(x)Ge.

    Science.gov (United States)

    Dyadkin, Vadim; Grigoriev, Sergey; Ovsyannikov, Sergey V; Bykova, Elena; Dubrovinsky, Leonid; Tsvyashchenko, Anatoly; Fomicheva, L N; Chernyshov, Dmitry

    2014-08-01

    A series of temperature-dependent single-crystal and powder diffraction experiments has been carried out using synchrotron radiation in order to characterize the monogermanides of Mn, Fe and their solid solutions. The MnGe single crystal is found to be enantiopure and we report the absolute structure determination. The thermal expansion, parametrized with the Debye model, is discussed from the temperature-dependent powder diffraction measurements for Mn(1-x)Fe(x)Ge (x = 0, 0.1, 0.2, 0.25, 0.3, 0.4, 0.5, 0.6, 0.7, 0.75, 0.8, 0.9). Whereas the unit-cell dimension and the Debye temperature follow a linear trend as a function of composition, the thermal expansion coefficient deviates from linear dependence with increasing Mn content. No structural phase transformations have been observed for any composition in the temperature range 80-500 K for both single-crystal and powder diffraction, indicating that the phase transition previously observed with neutron powder diffraction most probably has a magnetic origin.

  20. Electrical properties and features of the crystallization behaviour and the phase morphology of polyethylene blends

    International Nuclear Information System (INIS)

    Kolesov, I.S.; Radusch, H.-J.; Kolesov, S.N.

    1999-01-01

    It was discovered that polyethylene blends show a typical concentration dependence of the specific electrical resistance and the electrical strength measured by the surge voltage method. The concentration dependencies show two local maxima at definite blend compositions (ω LDPE = 0,2 to 0,4 and 0,7 to 0,8). The results of investigation of the melt and crystallization behavior as well as of the supermolecular structure of these blends point out that the changes caused by mixing in topology and packaging density of the inter-phases between the phases and crystallites have an influence on the electrical properties of the polyethylene blends in correspondence to the composition. The changed structure-property relationships are caused essentially by a possible co-crystallization of the components and by the interactions at separate seeds formation. (orig.)

  1. Kinetic and thermodynamic aspects of crystallization in the phase-change material Ge{sub 15}Sb{sub 85}

    Energy Technology Data Exchange (ETDEWEB)

    Zalden, Peter; Klein, Michael; Wuttig, Matthias [I. Physikalisches Institut, RWTH Aachen University (Germany); Coulet, Vanessa [IM2NP - UMR CNRS 6242, Aix-Marseille Universite, Marseille (France); Bichara, Christophe [CINaM - UPR CNRS 3118, Marseille (France)

    2009-07-01

    Phase-change materials exhibit a very rare combination of properties as they do not only show crystallization on the nanosecond time scale but also show a pronounced change of the optical reflectivity and the electronic resistivity upon crystallization. This property combination is already exploited in rewritable optical data storage and is explored in phase-change memories (PCM), which are considered to be the most promising candidate for future non-volatile electronic data storage. In this study, structural modifications in sputtered thin films during the transition from the as-deposited amorphous to the crystalline phase are analysed, employing a combination of differential scanning calorimetry and X-ray diffraction. This survey includes a systematic study of heat capacities and transition temperatures for different annealing conditions in the amorphous and partially crystallized state. In addition, diffractograms have been recorded ex-situ during different stages of the thermal treatment. These results indicate a segregation of a Ge-rich phase. A comparison to conventional tellurium based phase-change materials is presented.

  2. Synthesis and crystal structure of the quaternary compound AgFe{sub 2}GaTe{sub 4}

    Energy Technology Data Exchange (ETDEWEB)

    Delgado, Gerzon E., E-mail: gerzon@ula.ve [Laboratorio de Cristalografía, Departamento de Química, Facultad de Ciencias, Universidad de Los Andes, Mérida 5101 (Venezuela, Bolivarian Republic of); Quintero, Eugenio; Tovar, Rafael; Grima-Gallardo, Pedro; Quintero, Miguel [Centro de Estudio de Semiconductores, Departamento de Física, Facultad de Ciencias, Universidad de Los Andes, Mérida 5101 (Venezuela, Bolivarian Republic of)

    2014-11-15

    Highlights: • New quaternary compound. • Synthesis from solid state reaction. • Crystal structure. • Rietveld refinement. - Abstract: The crystal structure of the quaternary compound AgFe{sub 2}GaTe{sub 4}, belonging to the system I–II{sub 2}–III–VI{sub 4}, was characterized by Rietveld refinement using X-ray powder diffraction data. The powder pattern was composed by 84.5% of the principal phase AgFe{sub 2}GaTe{sub 4} and 15.5% of the secondary phase FeTe. This material crystallizes with stannite structure in the tetragonal space group I-42m (N° 121), Z = 2, unit cell parameters a = 6.3409(2) Å, c = 12.0233(4) Å, V = 483.42(3) Å{sup 3}, and is isostructural with CuFe{sub 2}InSe{sub 4}.

  3. Crystal Structure of the Yeast Nicotinamidase Pnc1p

    OpenAIRE

    Hu, Gang; Taylor, Alexander B.; McAlister-Henn, Lee; Hart, P. John

    2007-01-01

    The yeast nicotinamidase Pnc1p acts in transcriptional silencing by reducing levels of nicotinamide, an inhibitor of the histone deacetylase Sir2p. The Pnc1p structure was determined at 2.9 Å resolution using MAD and MIRAS phasing methods after inadvertent crystallization during the pursuit of the structure of histidine-tagged yeast isocitrate dehydrogenase (IDH). Pnc1p displays a cluster of surface histidine residues likely responsible for its co-fractionation with IDH from Ni2+-coupled chro...

  4. Correlation between hierarchical structure of crystal networks and macroscopic performance of mesoscopic soft materials and engineering principles.

    Science.gov (United States)

    Lin, Naibo; Liu, Xiang Yang

    2015-11-07

    This review examines how the concepts and ideas of crystallization can be extended further and applied to the field of mesoscopic soft materials. It concerns the structural characteristics vs. the macroscopic performance, and the formation mechanism of crystal networks. Although this subject can be discussed in a broad sense across the area of mesoscopic soft materials, our main focus is on supramolecular materials, spider and silkworm silks, and biominerals. First, the occurrence of a hierarchical structure, i.e. crystal network and domain network structures, will facilitate the formation kinetics of mesoscopic phases and boost up the macroscopic performance of materials in some cases (i.e. spider silk fibres). Second, the structure and performance of materials can be correlated in some way by the four factors: topology, correlation length, symmetry/ordering, and strength of association of crystal networks. Moreover, four different kinetic paths of crystal network formation are identified, namely, one-step process of assembly, two-step process of assembly, mixed mode of assembly and foreign molecule mediated assembly. Based on the basic mechanisms of crystal nucleation and growth, the formation of crystal networks, such as crystallographic mismatch (or noncrystallographic) branching (tip branching and fibre side branching) and fibre/polymeric side merging, are reviewed. This facilitates the rational design and construction of crystal networks in supramolecular materials. In this context, the (re-)construction of a hierarchical crystal network structure can be implemented by thermal, precipitate, chemical, and sonication stimuli. As another important class of soft materials, the unusual mechanical performance of spider and silkworm silk fibres are reviewed in comparison with the regenerated silk protein derivatives. It follows that the considerably larger breaking stress and unusual breaking strain of spider silk fibres vs. silkworm silk fibres can be interpreted

  5. Zak phase induced multiband waveguide by two-dimensional photonic crystals.

    Science.gov (United States)

    Yang, Yuting; Xu, Tao; Xu, Yun Fei; Hang, Zhi Hong

    2017-08-15

    Interface states in photonic crystals provide efficient approaches to control the flow of light. Photonic Zak phase determines the bulk band properties of photonic crystals, and, by assembling two photonic crystals with different bulk band properties together, deterministic interface states can be realized. By translating each unit cell of a photonic crystal by half the lattice constant, another photonic crystal with identical common gaps but a different Zak phase at each photonic band can be created. By assembling these two photonic crystals together, multiband waveguide can thus be easily created and then experimentally characterized. Our experimental results have good agreement with numerical simulations, and the propagation properties of these measured interface states indicate that this new type of interface state will be a good candidate for future applications of optical communications.

  6. Phase transformation of Ca{sub 4}[Al{sub 6}O{sub 12}]SO{sub 4} and its disordered crystal structure at 1073 K

    Energy Technology Data Exchange (ETDEWEB)

    Kurokawa, Daisuke [Department of Materials Science and Engineering, Nagoya Institute of Technology, Nagoya 466-8555 (Japan); R and D Center, Taiheiyo Cement Corporation, Chiba 285-8655 (Japan); Takeda, Seiya [Department of Materials Science and Engineering, Nagoya Institute of Technology, Nagoya 466-8555 (Japan); Colas, Maggy [Science des Proce' de' s Ce' ramiques et de Traitements de Surface (SPCTS), UMR 7315 CNRS, Universite' de Limoges, Centre Europe' en de la Ce' ramique, 12 Rue Atlantis, 87068 Limoges Cedex (France); Asaka, Toru [Department of Materials Science and Engineering, Nagoya Institute of Technology, Nagoya 466-8555 (Japan); Thomas, Philippe [Science des Proce' de' s Ce' ramiques et de Traitements de Surface (SPCTS), UMR 7315 CNRS, Universite' de Limoges, Centre Europe' en de la Ce' ramique, 12 Rue Atlantis, 87068 Limoges Cedex (France); Fukuda, Koichiro, E-mail: fukuda.koichiro@nitech.ac.jp [Department of Materials Science and Engineering, Nagoya Institute of Technology, Nagoya 466-8555 (Japan)

    2014-07-01

    The phase transformation of Ca{sub 4}[Al{sub 6}O{sub 12}]SO{sub 4} and the crystal structure of its high-temperature phase were investigated by differential thermal analysis, temperature-dependent Raman spectroscopy and high-temperature X-ray powder diffraction (CuKα{sub 1}). We determined the starting temperature of the orthorhombic-to-cubic transformation during heating (=711 K) and that of the reverse transformation during cooling (=742 K). The thermal hysteresis was negative (=−31 K), suggesting the thermoelasticity of the transformation. The space group of the high temperature phase is I4{sup ¯}3m with the unit-cell dimensions of a=0.92426(2) nm and V=0.78955(2) nm{sup 3} (Z=2) at 1073 K. The initial structural model was derived by the direct methods and further refined by the Rietveld method. The final structural model showed the orientational disordering of SO{sub 4} tetrahedra. The maximum-entropy method-based pattern fitting method was used to confirm the validity of the split-atom model, in which conventional structure bias caused by assuming intensity partitioning was minimized. At around the transformation temperature during heating, the vibrational spectra, corresponding to the Raman-active SO{sub 4} internal stretching mode, showed the continuous and gradual change in the slope of full width at half maximum versus temperature curve. This strongly suggests that the orthorhombic-to-cubic phase transformation would be principally accompanied by the statistical disordering in orientation of the SO{sub 4} tetrahedra, without distinct dynamical reorientation. - Graphical abstract: (Left) Three-dimensional electron-density distributions of the SO{sub 4} tetrahedron with the split-atom model, and (right) a bird's eye view of electron densities on the plane parallel to (111). - Highlights: • Crystal structure of Ca{sub 4}[Al{sub 6}O{sub 12}]SO{sub 4} at 1073 K is determined by powder XRD. • The atom arrangements are represented by the split

  7. Protein NMR Structures Refined with Rosetta Have Higher Accuracy Relative to Corresponding X-ray Crystal Structures

    Science.gov (United States)

    2014-01-01

    We have found that refinement of protein NMR structures using Rosetta with experimental NMR restraints yields more accurate protein NMR structures than those that have been deposited in the PDB using standard refinement protocols. Using 40 pairs of NMR and X-ray crystal structures determined by the Northeast Structural Genomics Consortium, for proteins ranging in size from 5–22 kDa, restrained Rosetta refined structures fit better to the raw experimental data, are in better agreement with their X-ray counterparts, and have better phasing power compared to conventionally determined NMR structures. For 37 proteins for which NMR ensembles were available and which had similar structures in solution and in the crystal, all of the restrained Rosetta refined NMR structures were sufficiently accurate to be used for solving the corresponding X-ray crystal structures by molecular replacement. The protocol for restrained refinement of protein NMR structures was also compared with restrained CS-Rosetta calculations. For proteins smaller than 10 kDa, restrained CS-Rosetta, starting from extended conformations, provides slightly more accurate structures, while for proteins in the size range of 10–25 kDa the less CPU intensive restrained Rosetta refinement protocols provided equally or more accurate structures. The restrained Rosetta protocols described here can improve the accuracy of protein NMR structures and should find broad and general for studies of protein structure and function. PMID:24392845

  8. Crystal structure and characterization of the novel NH+⋯N hydrogen bonded polar crystal [NH2(CH2)4NH][BF4

    Science.gov (United States)

    Wojtaś, M.; Gaģor, A.; Czupiński, O.; Medycki, W.; Jakubas, R.

    2012-03-01

    Dielectric properties and phase transitions of the piperazinium tetrafluoroborate ([NH2(CH2)4NH][BF4], abbreviated as PFB) crystal are related to the one-dimensional arrangement of the cations linked by the bistable NH+⋯N hydrogen bonds and molecular motions of the [BF4]- units. The crystal structure of [NH2(CH2)4NH][BF4] is monoclinic at room temperature with the polar space group Pn. The polar/acentric properties of the room temperature phase IV have been confirmed by the piezoelectric and pyroelectric measurements. DSC measurements show that the compound undergoes three first-order structural phase transitions: at 421/411 K (heating/cooling), at 386/372 K and at 364/349 K. 1H and 19F NMR measurements indicate the reorientational motions of [BF4]- anions and piperazinium(+) cations as well as the proton motion in the hydrogen-bonded chains of piperazine along the [001] direction. Over the phase I the isotropic reorientational motions or even self-diffusion of the cations and anions are expected. The conductivity measurements in the vicinity of the II-I PT indicate a superionic phase over the phase I.

  9. Ordered distribution of I and Cl in the low-temperature crystal structure of mutnovskite, Pb4As2S6ICl: An X-ray single-crystal study

    International Nuclear Information System (INIS)

    Bindi, Luca; Garavelli, Anna; Pinto, Daniela; Pratesi, Giovanni; Vurro, Filippo

    2008-01-01

    To study the temperature-dependent structural changes and to analyze the crystal chemical behavior of the halogens as a function of temperature, a crystal of the recently discovered mineral mutnovskite, ideally Pb 2 AsS 3 (I,Cl,Br), has been investigated by X-ray single-crystal diffraction methods at 300 and 110 K. At room temperature (RT) mutnovskite was confirmed to possess a centrosymmetric structure-type, space group Pnma, while at low temperature (110 K) it adopts a non-centrosymmetric orthorhombic structure-type, space group Pnm2 1 , with a=11.5394(9) A, b=6.6732(5) A, c=9.3454(7) A, V=719.64(9) A 3 and Z=2. Mutnovskite reconverts to the centrosymmetric-type upon returning to RT thus indicating that the phase transition is completely reversible in character. The refinement of the LT-structure leads to a residual factor R=0.0336 for 1827 independent observed reflections [F o >4σ(F o )] and 80 variables. The crystal structure of cooled mutnovskite is topologically identical to that observed at RT and the slight structural changes occurring during the phase transition Pnma→Pnm2 1 are mainly restricted to the coordination polyhedra around Pb. The structure solution revealed that I and Cl are ordered into two specific sites. Indeed, the unique mixed (I,Cl) position in the RT-structure (Wyckoff position 4c) transforms into two 2a Wyckoff positions in the LT-structure hosting I and Cl, respectively. - Graphical abstract: In the crystal structure of mutnovskite at 110 K the two halogens I and Cl are ordered into two specific sites and only slight changes in the coordination environment around Pb atoms occur during the phase transition Pnma→Pnm2 1 from the RT-structure to the LT-structure. Two kinds of layers alternating along a are present in the LT-structure: Layer I contains Cl atoms and [001] columns of Pb1 and Pb4 prisms, layer II contains I atoms and [001] columns of Pb2 and Pb3 prisms

  10. Corundum-to-spinel structural phase transformation in alumina

    Energy Technology Data Exchange (ETDEWEB)

    Adachi, Shogo [Department of Materials Science and Engineering, Kyushu Institute of Technology, Fukuoka 804-8550 (Japan); Ishimaru, Manabu, E-mail: ishimaru@post.matsc.kyutech.ac.jp [Department of Materials Science and Engineering, Kyushu Institute of Technology, Fukuoka 804-8550 (Japan); Sina, Younes; McHargue, Carl J.; Sickafus, Kurt E. [Materials Science and Engineering Department, University of Tennessee, Knoxville, TN 37996-2200 (United States); Alves, Eduardo [Unit of Physics and Accelerators, Ion Beam Laboratory, Instituto Superior Técnico/Instituto Tecnológico e Nuclear, EN. 10 2686-953 Sacavém (Portugal)

    2015-09-01

    Several polymorphs exist in alumina (Al{sub 2}O{sub 3}), and they transform to a stable α-phase with a hexagonal corundum structure on thermal annealing. This structural change is irreversible as a function of temperature, and transformation of corundum to another metastable crystalline phase has never been observed by heat treatments. In this study, we irradiated single crystals of Al{sub 2}O{sub 3} with Zr ions and obtained an irradiated microstructure consisting of a buried α-Al{sub 2}O{sub 3} layer surrounded on top and bottom by layers of a defect cubic spinel Al{sub 2}O{sub 3} phase. We examined the thermal stability of this microstructure using transmission electron microscopy and X-ray diffraction. We found that the corundum phase completely transforms to the spinel phase following annealing at 1173 K for 1 h: the thermodynamically stable phase transforms to the metastable phase by heat treatments. We discuss this unusual structural change within the context of our results as well as previous observations.

  11. Photonic Crystal Laser-Driven Accelerator Structures

    International Nuclear Information System (INIS)

    Cowan, B

    2004-01-01

    The authors discuss simulated photonic crystal structure designs for laser-driven particle acceleration. They focus on three-dimensional planar structures based on the so-called ''woodpile'' lattice, demonstrating guiding of a speed-of-light accelerating mode by a defect in the photonic crystal lattice. They introduce a candidate geometry and discuss the properties of the accelerating mode. They also discuss the linear beam dynamics in the structure present a novelmethod for focusing the beam. In addition they describe ongoing investigations of photonic crystal fiber-based structures

  12. Atomistic simulation of fcc—bcc phase transition in single crystal Al under uniform compression

    International Nuclear Information System (INIS)

    Li Li; Liang Jiu-Qing; Shao Jian-Li; Duan Su-Qing; Li Yan-Fang

    2012-01-01

    By molecular dynamics simulations employing an embedded atom model potential, we investigate the fcc-to-bcc phase transition in single crystal Al, caused by uniform compression. Results show that the fcc structure is unstable when the pressure is over 250 GPa, in reasonable agreement with the calculated value through the density functional theory. The morphology evolution of the structural transition and the corresponding transition mechanism are analysed in detail. The bcc (011) planes are transited from the fcc (111-bar) plane and the (11-bar1) plane. We suggest that the transition mechanism consists mainly of compression, shear, slid and rotation of the lattice. In addition, our radial distribution function analysis explicitly indicates the phase transition of Al from fcc phase to bcc structure. (condensed matter: structural, mechanical, and thermal properties)

  13. Phase stability, crystal structure and magnetism in (U1-xNbx)2 Ni21B6 and (UyNb1-y)3Ni20B6

    Science.gov (United States)

    Provino, Alessia; Bhattacharya, Amitava; Dhar, Sudesh K.; Pani, Marcella; Gatti, Flavio; Paudyal, Durga; Manfrinetti, Pietro

    Ternary phases with composition T2M21X6 and T3M20X6 (T = transition metal; M = 3 d metal; X = B, C, P) are reported to crystallize with the W2Cr21C6-type and Mg3Ni20B6-type, respectively (ternary ordered derivatives of the cubic Cr23C6-type, cF116). They attract interest due to their refractory, mechanical, and peculiar magnetic properties. Literature data on these compounds only concern apparently stoichiometric 2:21:6 and 3:20:6 phases. Often only nominal composition has been reported, with few structural refinements and no measurements of physical properties. Lack of detailed stoichiometry and crystallographic data does not allow sufficient understanding of the crystal chemistry and properties of these compounds. We studied stability, crystal structure and magnetism of (U1-xNbx)2 Ni21B6 and (UyNb1-y)3Ni20B6; stable phases are U2Ni21B6 and Nb3Ni20B6, as also confirmed by theoretical calculations. The two pristine compounds solubilize Nb and U, respectively, up to a given extent. The substitution of U by Nb leads to a structural change from the W2Cr21C6- to the Mg3Ni20B6-type. While U2Ni21B6 is a Pauli paramagnet (itinerant non-magnetic state of U-5 f electrons), in agreement with literature, magnetization data for (UyNb1-y)3 Ni20B6 show itinerant ferromagnetism with TC >300 K.

  14. Valley Topological Phases in Bilayer Sonic Crystals

    Science.gov (United States)

    Lu, Jiuyang; Qiu, Chunyin; Deng, Weiyin; Huang, Xueqin; Li, Feng; Zhang, Fan; Chen, Shuqi; Liu, Zhengyou

    2018-03-01

    Recently, the topological physics in artificial crystals for classical waves has become an emerging research area. In this Letter, we propose a unique bilayer design of sonic crystals that are constructed by two layers of coupled hexagonal array of triangular scatterers. Assisted by the additional layer degree of freedom, a rich topological phase diagram is achieved by simply rotating scatterers in both layers. Under a unified theoretical framework, two kinds of valley-projected topological acoustic insulators are distinguished analytically, i.e., the layer-mixed and layer-polarized topological valley Hall phases, respectively. The theory is evidently confirmed by our numerical and experimental observations of the nontrivial edge states that propagate along the interfaces separating different topological phases. Various applications such as sound communications in integrated devices can be anticipated by the intriguing acoustic edge states enriched by the layer information.

  15. Crystal structure determination of Efavirenz

    International Nuclear Information System (INIS)

    Popeneciu, Horea; Dumitru, Ristoiu; Tripon, Carmen; Borodi, Gheorghe; Pop, Mihaela Maria

    2015-01-01

    Needle-shaped single crystals of the title compound, C 14 H 9 ClF 3 NO 2 , were obtained from a co-crystallization experiment of Efavirenz with maleic acid in a (1:1) ratio, using methanol as solvent. Crystal structure determination at room temperature revealed a significant anisotropy of the lattice expansion compared to the previously reported low-temperature structure. In both low- and room temperature structures the cyclopropylethynyl fragment in one of the asymmetric unit molecules is disordered. While at low-temperature only one C atom exhibits positional disorder, at room temperature the disorder is present for two C atoms of the cyclopropane ring

  16. Growth of NH4Cl Single Crystal from Vapor Phase in Vertical Furnace

    Science.gov (United States)

    Nigara, Yutaka; Yoshizawa, Masahito; Fujimura, Tadao

    1983-02-01

    A pure and internally stress-free single crystal of NH4Cl was grown successfully from the vapor phase. The crystal measured 1.6 cmφ× 2 cm and had the disordered CsCl structure, which was stable below 184°C. The crystal was grown in an ampoule in a vertical furnace, in which the vapor was efficiently transported both by diffusion and convection. In line with the growth mechanism of a single crystal, the temperature fluctuation (°C/min) on the growth interface was kept smaller than the product of the temperature gradient (°C/cm) and the growth rate (cm/min). The specific heat of the crystal was measured around -31°C (242 K) during cooling and heating cycles by AC calorimetry. The thermal hysteresis (0.4 K) obtained here was smaller than that (0.89 K) of an NH4Cl crystal grown from its aqueous solution with urea added as a habit modifier.

  17. Crystallization, X-ray diffraction analysis and SIRAS/molecular-replacenent phasing of three crystal forms of Anabaena sensory rhodopsin transducer

    International Nuclear Information System (INIS)

    Vogeley, Lutz; Luecke, Hartmut

    2006-01-01

    Crystals of Anabaena sensory rhodopsin transducer, the transducer for the cyanobacterial photosensor Anabaena sensory rhodopsin, obtained in the space groups P4, C2 and P2 1 2 1 2 1 diffract to 1.8, 2.1 and 2.0 Å, respectively. Phases for these crystal forms were obtained by SIRAS phasing using an iodide quick-soak derivative (P4) and molecular replacement (C2 and P2 1 2 1 2 1 ). Anabaena sensory rhodopsin transducer (ASRT) is a 14.7 kDa soluble signaling protein associated with the membrane-embedded light receptor Anabaena sensory rhodopsin (ASR) from Anabaena sp., a freshwater cyanobacterium. Crystals of ASRT were obtained in three different space groups, P4, C2 and P2 1 2 1 2 1 , which diffract to 1.8, 2.1 and 2.0 Å, respectively. Phases for one of these crystal forms (P4) were obtained by SIRAS phasing using an iodide quick-soak derivative and a partial model was built. Phases for the remaining crystal forms were obtained by molecular replacement using the partial model from the P4 crystal form

  18. Crystal structure and thermal behavior of KB3O6

    International Nuclear Information System (INIS)

    Bubnova, R.S.; Fundamenskij, V.S.; Filatov, S.K.; Polyakova, I.G.

    2004-01-01

    The structure of potassium triborate prepared in metastable state by crystallization from melt at ∼ 800 deg C was studied by the method of X-ray diffraction analysis. It was ascertained that KB 3 O 6 belongs to monoclinic crystal system, space group P2 1 /c, a = 9.319(1), b = 6.648(1), c = 21.094(2) A, β = 94.38(1) deg, Z = 12. The compound is referred to a new structural type. Anion of the structure is a single boron-oxygen frame formed by three independent rigid triborate rings of [B 3 O 5 ] - , each of them consisting of two BO 3 triangles and BO 4 tetrahedron. Phase transformations during KB 3 O 6 heating up to 800 deg C, as well as thermal expansion in the range of 20-650 deg C, were studied [ru

  19. Crystal structures and conformers of CyMe4-BTBP

    Directory of Open Access Journals (Sweden)

    Lyczko Krzysztof

    2015-12-01

    Full Text Available The crystal structure of new conformation of the CyMe4-BTBP ligand (ttc has been presented. The ttt conformer of this compound in a form of THF solvate has been also crystallized. The geometries of six possible conformations (ttt, ttc, tct, tcc, ctc and ccc of the CyMe4-BTBP ligand have been modeled in the gas phase and in solutions (MeOH and H2O by DFT calculations using B3LYP/6-31G(d,p method. According to the calculations, in the three different media the conformers with trans orientation of the N atoms in the bipyridyl moiety are the most stable.

  20. Photoluminescence Polarization Anisotropy in a Single Heterostructured III-V Nanowire with Mixed Crystal Phases

    International Nuclear Information System (INIS)

    Moses, A. F.; Hoang, T. B.; Ahtapodov, L.; Dheeraj, D. L.; Fimland, B. O.; Weman, H.; Helvoort, A. T. J. van

    2011-01-01

    Low temperature (10 K) micro-photoluminescence (μ-PL) of single GaAs/AlGaAs core-shell nanowires with single GaAsSb inserts were measured. The PL emission from the zinc blende GaAsSb insert is strongly polarized along the nanowire axis while the PL emission from the wurtzite GaAs nanowire is perpendiculary polarized to the nanowire axis. The result indicates that the crystal phase, through the optical selection rules, has significant effect on the polarization of the PL from NWs besides the dielectric mismatch. The analysis of the PL results based on the electronic structure of these nanowires supports the correlation between the crystal phase and the PL emission.

  1. Single-Cycle Terahertz Pulse Generation from OH1 Crystal via Cherenkov Phase Matching

    Science.gov (United States)

    Uchida, Hirohisa; Oota, Kengo; Okimura, Koutarou; Kawase, Kodo; Takeya, Kei

    2018-06-01

    OH1 crystal is an organic nonlinear optical crystal with a large nonlinear optical constant. However, it has dispersion of refractive indices in the terahertz (THz) frequency. This limits the frequencies that satisfy the phase matching conditions for THz wave generation. In this study, we addressed the phase matching conditions for THz wave generation by combining an OH1 crystal with prism-coupled Cherenkov phase matching. We observed the generation of single-cycle THz pulses with a spectrum covering a frequency range of 3 THz. These results prove that combining prism-coupled Cherenkov phase matching with nonlinear optical crystals yields a THz wave generation method that is insusceptible to crystal dispersion.

  2. Crystal structure of ferroelectric Bi{sub 2}VO{sub 5.5}

    Energy Technology Data Exchange (ETDEWEB)

    Sooryanarayana, K.; Guru Row, T.N.; Varma, K.B.R. [Indian Inst. of Science, Bangalore (India)

    1997-12-01

    The structure of the {alpha}-phase of bismuth vanadate Bi{sub 2}VO{sub 5.5} has been determined using single crystal X-ray diffraction data in the space group Aba2. The refinement involves a well defined disorder at the vanadium site, which incorporates the features of the superlattice structure with vanadium tetrahedra and oxygen-deficient octahedra that is displaced about the twofold axis.

  3. Crystal structure and characterization of the novel NH{sup +} Midline-Horizontal-Ellipsis N hydrogen bonded polar crystal [NH{sub 2}(CH{sub 2}){sub 4}NH][BF{sub 4}

    Energy Technology Data Exchange (ETDEWEB)

    Wojtas, M., E-mail: maciej.wojtas@chem.uni.wroc.pl [Faculty of Chemistry, University of Wroclaw, Joliot-Curie 14, 50-383 Wroclaw (Poland); Gagor, A. [W. Trzebiatowski Institute of Low Temperature and Structure Research, Polish Academy of Science, PO Box 1410, 50-950 Wroclaw (Poland); Czupinski, O. [Faculty of Chemistry, University of Wroclaw, Joliot-Curie 14, 50-383 Wroclaw (Poland); Medycki, W. [Institute of Molecular Physics, Polish Academy of Science, Smoluchowskiego 17, 60-179 Poznan (Poland); Jakubas, R. [Faculty of Chemistry, University of Wroclaw, Joliot-Curie 14, 50-383 Wroclaw (Poland)

    2012-03-15

    Dielectric properties and phase transitions of the piperazinium tetrafluoroborate ([NH{sub 2}(CH{sub 2}){sub 4}NH][BF{sub 4}], abbreviated as PFB) crystal are related to the one-dimensional arrangement of the cations linked by the bistable NH{sup +} Midline-Horizontal-Ellipsis N hydrogen bonds and molecular motions of the [BF{sub 4}]{sup -} units. The crystal structure of [NH{sub 2}(CH{sub 2}){sub 4}NH][BF{sub 4}] is monoclinic at room temperature with the polar space group Pn. The polar/acentric properties of the room temperature phase IV have been confirmed by the piezoelectric and pyroelectric measurements. DSC measurements show that the compound undergoes three first-order structural phase transitions: at 421/411 K (heating/cooling), at 386/372 K and at 364/349 K. {sup 1}H and {sup 19}F NMR measurements indicate the reorientational motions of [BF{sub 4}]{sup -} anions and piperazinium(+) cations as well as the proton motion in the hydrogen-bonded chains of piperazine along the [001] direction. Over the phase I the isotropic reorientational motions or even self-diffusion of the cations and anions are expected. The conductivity measurements in the vicinity of the II-I PT indicate a superionic phase over the phase I. - Graphical abstract: It must be emphasized that the titled compound represents the first organic-inorganic simple salt containing the single-protonated piperazinium cation which was studied by means of the wide variety of experimental techniques. A survey of Cambridge Structural Database (CSD version 5.32 (November 2010) and updates (May 2011)) for structure containing the piperazinium cations yields 248 compounds with the doubly protonated piperazinium(2+) cations and only eight compounds with the singly protonated piperazinium(+) cations. Among these structures only one is the hybrid organic-inorganic material. This is piperazinium nitrate characterized structurally. The crystal packing of [NH{sub 2}(CH{sub 2}){sub 4}NH][BF{sub 4}], phase IV. The

  4. Phase-field-crystal model for magnetocrystalline interactions in isotropic ferromagnetic solids

    Science.gov (United States)

    Faghihi, Niloufar; Provatas, Nikolas; Elder, K. R.; Grant, Martin; Karttunen, Mikko

    2013-09-01

    An isotropic magnetoelastic phase-field-crystal model to study the relation between morphological structure and magnetic properties of pure ferromagnetic solids is introduced. Analytic calculations in two dimensions were used to determine the phase diagram and obtain the relationship between elastic strains and magnetization. Time-dependent numerical simulations in two dimensions were used to demonstrate the effect of grain boundaries on the formation of magnetic domains. It was shown that the grain boundaries act as nucleating sites for domains of reverse magnetization. Finally, we derive a relation for coercivity versus grain misorientation in the isotropic limit.

  5. A microporous potassium vanadyl phosphate analogue of mahnertite. Hydrothermal synthesis and crystal structure

    Energy Technology Data Exchange (ETDEWEB)

    Yakubovich, Olga V. [M.V. Lomonosov Moscow State Univ. (Russian Federation). Dept. of Crystallography; Russian Academy of Science, Moscow (Russian Federation). Inst. of Geology of Deposits, Petrography, Mineralogy and Geochemistry; Steele, Ian M. [Notre Dame Univ., IN (United States). Notre Dame Integrated Imaging Facility; Kiriukhina, Galina V.; Dimitrova, Olga V. [M.V. Lomonosov Moscow State Univ. (Russian Federation). Dept. of Crystallography

    2015-09-01

    The novel phase K{sub 2.5}Cu{sub 5}Cl(PO{sub 4}){sub 4}(OH){sub 0.5}(VO{sub 2}).H{sub 2}O was prepared by hydrothermal synthesis at 553 K. Its crystal structure was determined using low-temperature (100 K) single-crystal synchrotron diffraction data and refined against F{sup 2} to R = 0.035. The compound crystallizes in the tetragonal space group I4/mmm, with unit-cell parameters a =9.8120(8), c = 19.954(1) Aa, V = 1921.1(2) Aa{sup 3}, and Z = 4. Both symmetrically independent Cu{sup 2+} sites show elongated square-pyramidal coordination. The V{sup 5+} ions reside in strongly distorted five-vertex VO{sub 5} polyhedra with 50% occupancy. The structure is based on a 3D anionic framework built from Cu- and V-centered five-vertex polyhedra and PO{sub 4} tetrahedra. Channels in the [100] and [010] directions accommodate large K atoms and H{sub 2}O molecules. The compound is a new structural representative of the topology shown by the lavendulan group of copper arsenate and phosphate minerals. Their tetragonal or pseudotetragonal crystal structures are characterized by two types of 2D slabs alternating along one axis of their unit cells. One slab, described by the formula [Cu{sub 4}X(TO{sub 4}){sub 4}]{sub 8} (where X = Cl, O and T = As, P), is common to all phases, whereas the slab content of the other set differs among the group members. We suggest interpreting this family of compounds in terms of the modular concept and also consider the synthetic phase Ba(VO)Cu{sub 4}(PO{sub 4}){sub 4} as a simplest member of this polysomatic series.

  6. Structural and phase transformations in the low-temperature annealed amorphous “finemet”-type microwires

    Energy Technology Data Exchange (ETDEWEB)

    Tcherdyntsev, V.V., E-mail: vvch08@yandex.ru [National University of Science and Technology “MISIS”, Moscow 119049 (Russian Federation); Aleev, A.A. [SSC RF Institute for Theoretical and Experimental Physics, Moscow 117218 (Russian Federation); Churyukanova, M.N.; Kaloshkin, S.D. [National University of Science and Technology “MISIS”, Moscow 119049 (Russian Federation); Medvedeva, E.V. [Institute of Electrophysics, Ural Branch, Russian Academy of Sciences, Yekaterinburg 620016 (Russian Federation); Korchuganova, O.A. [SSC RF Institute for Theoretical and Experimental Physics, Moscow 117218 (Russian Federation); Zhukova, V. [Dpto. de Fns. Mater., UPV/EHU, San Sebastian 20018 (Spain); Zhukov, A.P. [Dpto. de Fns. Mater., UPV/EHU, San Sebastian 20018 (Spain); IKERBASQUE, Basque Foundation for Science, 48011 Bilbao (Spain)

    2014-02-15

    Highlights: • Structure and magnetic properties evolution at heating of amorphous microwires was studied. • Relaxation processes in the amorphous phase correlate with an increase in Curie temperature. • Curie temperature change can not be stabilized by a prolonged exposure at pre-crystallization temperatures. • Tomographic atom probe microscopy supports the formation of α-Fe phase precipitations enriched in Si. -- Abstract: Finemet-type glass-coated microwires with amorphous and nanocrystalline structure have been investigated. The relaxation and crystallization processes at heating of amorphous alloy have been studied by DSC method. We observed that the relaxation processes in the amorphous phase correlate with an increasing of the Curie temperature. Additionally a prolonged exposure of the samples below the crystallization temperatures does not stabilize the Curie temperature change. An investigation by the tomographic atom probe microscopy supports the formation of precipitations, probably α-Fe phase, as a result of low-temperature annealing (400 °C, 5 min). We found that the observed nano-sized areas were enriched in silicon.

  7. Structural and phase transformations in the low-temperature annealed amorphous “finemet”-type microwires

    International Nuclear Information System (INIS)

    Tcherdyntsev, V.V.; Aleev, A.A.; Churyukanova, M.N.; Kaloshkin, S.D.; Medvedeva, E.V.; Korchuganova, O.A.; Zhukova, V.; Zhukov, A.P.

    2014-01-01

    Highlights: • Structure and magnetic properties evolution at heating of amorphous microwires was studied. • Relaxation processes in the amorphous phase correlate with an increase in Curie temperature. • Curie temperature change can not be stabilized by a prolonged exposure at pre-crystallization temperatures. • Tomographic atom probe microscopy supports the formation of α-Fe phase precipitations enriched in Si. -- Abstract: Finemet-type glass-coated microwires with amorphous and nanocrystalline structure have been investigated. The relaxation and crystallization processes at heating of amorphous alloy have been studied by DSC method. We observed that the relaxation processes in the amorphous phase correlate with an increasing of the Curie temperature. Additionally a prolonged exposure of the samples below the crystallization temperatures does not stabilize the Curie temperature change. An investigation by the tomographic atom probe microscopy supports the formation of precipitations, probably α-Fe phase, as a result of low-temperature annealing (400 °C, 5 min). We found that the observed nano-sized areas were enriched in silicon

  8. Shock and Microstructural Characterization of the α-ω Phase Transition in Titanium Crystals

    Science.gov (United States)

    Morrow, Benjamin M.; Rigg, Paulo A.; Jones, David R.; Addessio, Francis L.; Trujillo, Carl P.; Saavedra, Ramon A.; Martinez, Daniel T.; Cerreta, Ellen K.

    2017-12-01

    A multicrystal comprised of a small number of large crystals of high-purity titanium and a [0001] oriented high-purity single crystal titanium sample were shock loaded using gas gun plate impact experiments. Tests were performed at stresses above the α {-}ω phase transition stress (for high-purity polycrystalline specimens) to observe the behavior of oriented crystals under similar conditions. Post-mortem characterization of the shocked microstructure was conducted on the single crystal sample to measure textures, and quantify phases and twinning. The apparent activation of plastic and transformation mechanisms was dependent upon crystal orientation. Specifically, the [0001] crystal showed a higher Hugoniot elastic limit than the [10\\bar{1}0] or [3\\bar{1}\\bar{4}4] orientations. The slope of velocity as a function of time was lower in the [0001] orientation than the other orientations during plastic deformation, indicating sluggish transformation kinetics for the α to ω phase transition for the [0001] oriented crystal. Microtexture measurements of a recovered [0001] oriented single crystal revealed the presence of retained ω phase after unloading, with orientations of the constituent phase fractions indicative of the forward α → ω transition, rather than the reverse ω → α transition, suggesting that the material never achieved a state of 100% ω phase.

  9. Crystal structure of the new ternary thorium indide Th{sub 4}Pd{sub 10}In{sub 21}

    Energy Technology Data Exchange (ETDEWEB)

    Hlukhyy, V.; Zaremba, V.; Stepien-Damm, J.; Troc, R

    2003-03-24

    The structure of Th{sub 4}Pd{sub 10}In{sub 21} was refined from single crystal X-ray diffraction data. The compound crystallizes in the monoclinic system, space group C2/m, mC70; with lattice parameters a=23.024(5) A, b=4.512(1) A, c=17.224(3) A, {beta}=124.57(3) deg. The crystal structure was refined using the SHELXL-97 program (R{sub 1}=0.0477, 2561 F{sup 2} values for 108 variables). This compound adopts the Ho{sub 4}Ni{sub 10}Ga{sub 21}-type structure. The crystal chemistry and relationships of this phase to other ones are briefly discussed.

  10. Phase modulation and structural effects in a D-shaped all-solid photonic crystal fiber surface plasmon resonance sensor.

    Science.gov (United States)

    Tan, Zhixin; Hao, Xin; Shao, Yonghong; Chen, Yuzhi; Li, Xuejin; Fan, Ping

    2014-06-16

    We numerically investigate a D-shaped fiber surface plasmon resonance sensor based on all-solid photonic crystal fiber (PCF) with finite element method. In the side-polished PCF sensor, field leakage is guided to penetrate through the gap between the rods, causing a pronounced phase modulation in the deep polishing case. Taking advantage of these amplified phase shifts, a high-performance fiber sensor design is proposed. The significant enhancements arising from this new sensor design should lift the performance of the fiber SPR sensor into the range capable of detecting a wide range of biochemical interactions, which makes it especially attractive for many in vivo and in situ bioanalysis applications. Several parameters which influence the field leakage, such as the polishing position, the pitch of the PCF, and the rod diameter, are inspected to evaluate their impacts. Furthermore, we develop a mathematical model to describe the effects of varying the structural parameters of a D-shaped PCF sensor on the evanescent field and the sensor performance.

  11. Investigation of phase transformation for ferrite–austenite structure in stainless steel thin films

    Energy Technology Data Exchange (ETDEWEB)

    Merakeb, Noureddine [Laboratory of Physical Metallurgy and Property of Materials (LM2PM), Metallurgy and Materials Engineering Department, Badji Mokhtar University, P.O. Box 12, Annaba 23000 (Algeria); Messai, Amel [Laboratoire d' Ingénierie et Sciences des Matériaux Avancés (ISMA), Institut des Sciences et Technologie, Abbès Laghrour University, Khenchela 40000 (Algeria); Ayesh, Ahmad I., E-mail: ayesh@qu.edu.qa [Department of Mathematics, Statistics and Physics, Qatar University, Doha (Qatar)

    2016-05-01

    In this work we report on phase transformation of 304 stainless steel thin films due to heat treatment. Ex-situ annealing was applied for evaporated 304 stainless steel thin films inside an ultra-high vacuum chamber with a pressure of 3 × 10{sup −7} Pa at temperatures of 500 °C and 600 °C. The structure of thin films was studied by X-ray diffraction (XRD) and conversion electron Mössbauer spectroscopy (CEMS) techniques. The results revealed a transformation from α-phase that exhibits a body-centered cubic structure (BCC) to γ-phase that exhibits a face-centered cubic (FCC) due to annealing. In addition, the percentage of γ-phase structure increased with the increase of annealing temperature. Annealing thin films increased the crystal size of both phases (α and γ), however, the increase was nonlinear. The results also showed that phase transformation was produced by recrystallization of α and γ crystals with a temporal evolution at each annealing temperature. The texture degree of thin films was investigated by XRD rocking curve method, while residual stress was evaluated using curvature method. - Highlights: • Stainless steel thin films were fabricated by thermal evaporation on quartz. • Alpha to gamma phase transformation of thin films was investigated. • Annealing of thin films reduces disruption in crystal lattice. • The stress of as-grown thin films was independent on the thin film thickness. • The stress of the thin films was reduced due to annealing.

  12. Regio-Regular Oligo and Poly(3-hexyl thiophene): Precise Structural Markers from the Vibrational Spectra of Oligomer Single Crystals.

    KAUST Repository

    Brambilla, Luigi

    2014-10-14

    © 2014 American Chemical Society. In this work, we report a comparative analysis of the infrared and Raman spectra of octa(3-hexylthiophene) (3HT)8, trideca(3-hexylthiophene) (3HT)13, and poly(3-hexylthiophene) P3HT recorded in various phases, namely, amorphous, semicrystalline, polycrystalline and single crystal. We have based our analysis on the spectra of the (3HT)8 single crystal (whose structure has been determined by selected area electron diffraction) taken as reference and on the results of DFT calculations and molecular vibrational dynamics. New and precise spectroscopic markers of the molecular structures show the existence of three phases, namely: hairy (phase 1), ordered (phase 2), and disordered/amorphous (phase 3). Conceptually, the identified markers can be used for the molecular structure analysis of other similar systems.

  13. (Li1−xFexOHFeSe Superconductors: Crystal Growth, Structure, and Electromagnetic Properties

    Directory of Open Access Journals (Sweden)

    Guo-Yong Zhang

    2017-06-01

    Full Text Available This review focuses on the growth of high-quality (Li1−xFexOHFeSe single crystals by a hydrothermal method using floating-zone-grown AxFe2−ySe2 (A = K, Rb, and Cs as precursors. The structure, superconductivity, and magnetic behavior of the obtained crystals are highly influenced by the growth conditions, such as time, temperature, and composition. A phase diagram with temperature against the c-lattice constant is summarized including the antiferromagnetic spin density wave, superconducting, and paramagnetic phases.

  14. Theoretical Exploration of Various Lithium Peroxide Crystal Structures in a Li-Air Battery

    Directory of Open Access Journals (Sweden)

    Kah Chun Lau

    2015-01-01

    Full Text Available We describe a series of metastable Li2O2 crystal structures involving different orientations and displacements of the O22− peroxy ions based on the known Li2O2 crystal structure. Within the vicinity of the chemical potential ΔG ~ 0.20 eV/Li from the thermodynamic ground state of the Li2O2 crystal structure (i.e., Föppl structure, all of these newly found metastable Li2O2 crystal structures are found to be insulating and high-k materials, and they have a common unique signature of an O22− O-O vibration mode (ω ~ 799–865 cm−1, which is in the range of that commonly observed in Li-air battery experiments, regardless of the random O22− orientations and the symmetry in the crystal lattice. From XRD patterns analysis, the commercially available Li2O2 powder is confirmed to be the thermodynamic ground state Föppl-like structure. However, for Li2O2 compounds that are grown electrochemically under the environment of Li-O2 cells, we found that the XRD patterns alone are not sufficient for structural identification of these metastable Li2O2 crystalline phases due to the poor crystallinity of the sample. In addition, the commonly known Raman signal of O22− vibration mode is also found to be insufficient to validate the possible existence of these newly predicted Li2O2 crystal structures, as all of them similarly share the similar O22− vibration mode. However considering that the discharge voltage in most Li-O2 cells are typically several tenths of an eV below the thermodynamic equilibrium for the formation of ground state Föppl structure, the formation of these metastable Li2O2 crystal structures appears to be thermodynamically feasible.

  15. Band structure and optical properties of diglycine nitrate crystal

    International Nuclear Information System (INIS)

    Andriyevsky, Bohdan; Ciepluch-Trojanek, Wioleta; Romanyuk, Mykola; Patryn, Aleksy; Jaskolski, Marcin

    2005-01-01

    Experimental and theoretical investigations of the electron energy characteristics and optical spectra for diglycine nitrate crystal (DGN) (NH 2 CH 2 COOH) 2 .HNO 3 , in the paraelectric phase (T=295K) are presented. Spectral dispersion of light reflection R(E) have been measured in the range of 3-22eV and the optical functions n(E) and k(E) have been calculated using Kramers-Kronig relations. First principal calculations of the electron energy characteristic and optical spectra of DGN crystal have been performed in the frame of density functional theory using CASTEP code (CAmbridge Serial Total Energy Package). Optical transitions forming the low-energy edge of fundamental absorption are associated with the nitrate groups NO 3 . Peculiarities of the band structure and DOS projected onto glycine and NO 3 groups confirm the molecular character of DGN crystal

  16. Plasticity induced phase transformation in molecular crystals

    OpenAIRE

    Koslowski, Marisol

    2014-01-01

    Solid state amorphization (SSA) can be achieved in crystalline materials including metal alloys, intermetallics, semiconductors, minerals and molecular crystals. Even though the mechanisms may differ in different materials, the crystalline to amorphous transformation occurs when the crystal reaches a metastable state in which its free energy is higher than that of the amorphous phase. SSA is observed in metal alloys because of interdiffusion of the crystalline elements during mechanical milli...

  17. On a phase field approach for martensitic transformations in a crystal plastic material at a loaded surface

    Science.gov (United States)

    Schmitt, Regina; Kuhn, Charlotte; Müller, Ralf

    2017-07-01

    A continuum phase field model for martensitic transformations is introduced, including crystal plasticity with different slip systems for the different phases. In a 2D setting, the transformation-induced eigenstrain is taken into account for two martensitic orientation variants. With aid of the model, the phase transition and its dependence on the volume change, crystal plastic material behavior, and the inheritance of plastic deformations from austenite to martensite are studied in detail. The numerical setup is motivated by the process of cryogenic turning. The resulting microstructure qualitatively coincides with an experimentally obtained martensite structure. For the numerical calculations, finite elements together with global and local implicit time integration scheme are employed.

  18. Local structural ordering in surface-confined liquid crystals

    Science.gov (United States)

    Śliwa, I.; Jeżewski, W.; Zakharov, A. V.

    2017-06-01

    The effect of the interplay between attractive nonlocal surface interactions and attractive pair long-range intermolecular couplings on molecular structures of liquid crystals confined in thin cells with flat solid surfaces has been studied. Extending the McMillan mean field theory to include finite systems, it has been shown that confining surfaces can induce complex orientational and translational ordering of molecules. Typically, local smectic A, nematic, and isotropic phases have been shown to coexist in certain temperature ranges, provided that confining cells are sufficiently thick, albeit finite. Due to the nonlocality of surface interactions, the spatial arrangement of these local phases can display, in general, an unexpected complexity along the surface normal direction. In particular, molecules located in the vicinity of surfaces can still be organized in smectic layers, even though nematic and/or isotropic order can simultaneously appear in the interior of cells. The resulting surface freezing of smectic layers has been confirmed to occur even for rather weak surface interactions. The surface interactions cannot, however, prevent smectic layers from melting relatively close to system boundaries, even when molecules are still arranged in layers within the central region of the system. The internal interfaces, separating individual liquid-crystal phases, are demonstrated here to form fronts of local finite-size transitions that move across cells under temperature changes. Although the complex molecular ordering in surface confined liquid-crystal systems can essentially be controlled by temperature variations, specific thermal properties of these systems, especially the nature of the local transitions, are argued to be strongly conditioned to the degree of molecular packing.

  19. Structure, thermodynamics, and crystallization of amorphous hafnia

    International Nuclear Information System (INIS)

    Luo, Xuhui; Demkov, Alexander A.

    2015-01-01

    We investigate theoretically amorphous hafnia using the first principles melt and quench method. We identify two types of amorphous structures of hafnia. Type I and type II are related to tetragonal and monoclinic hafnia, respectively. We find type II structure to show stronger disorder than type I. Using the phonon density of states, we calculate the specific heat capacity for type II amorphous hafnia. Using the nudged elastic band method, we show that the averaged transition barrier between the type II amorphous hafnia and monoclinic phase is approximately 0.09 eV/HfO 2 . The crystallization temperature is estimated to be 421 K. The calculations suggest an explanation for the low thermal stability of amorphous hafnia

  20. Crystal structure, hydrogen bonding, and sup 8 sup 1 Br NQR of low-temperature phase of 4-aminopyridinium tetrabromoantimonate (3)

    CERN Document Server

    Hashimoto, M; Fuess, H; Svoboda, I; Ehrenberg, H

    2003-01-01

    The crystal structure of the low-temperature phase (LTP) of the title compound was determined at 220 K (monoclinic, P2 sub 1 sub / sub c). The 4-aminopyridinium cations (4-NH sub 2 C sub 5 H sub 4 NH sup +) were found to be ordered in LTP, while being severely disordered in the room-temperature phase (monoclinic, C2/c). The tetrabromoantimonate anions (SbBr sub 4 sup -) were incorporated into the infinite polyanion chains of irregular SbBr sub 6 octahedra with two-edges sharing. The trans-Br-Sb-Br moiety in the SbBr sub 4 sup - anion was approximately symmetric differing from the asymmetric Br-Sb centre dot centre dot centre dot Br moiety found in LTP of pyridinium tetrabromoantimonate (3). The N-H moieties in both of the pyridine ring and the amino (-NH sub 2) group participate in the formation of N-H centre dot centre dot centre dot Br hydrogen bonds. It was shown that the sup 8 sup 1 Br NQR spectrum of LTP is closely related to the anion structure and the hydrogen bonds. The distinctive anion structures, a...

  1. Refractive indices of K2ZnCl4 crystals in an incommensurate phase under uniaxial stresses

    International Nuclear Information System (INIS)

    Gaba, V.M.; Kogut, Z.O.; Brezvin, R.S.; Stadnik, V.I.

    2010-01-01

    The influence of uniaxial mechanical stresses directed along the principal crystallophysical axes on refractiveindex temperature dependences in K 2 ZnCl 4 crystals was studied. It is established that the refractive indices ni are quite sensitive to uniaxial stresses. Significant baric shifts of the paraphase-incommensurate-commensurate phase transition points to different temperature regions were observed, which is due to the effect of the uniaxial stress on the K 2 ZnCl 4 crystal structure. It is found that applying uniaxial pressure increases the value of the temperature hysteresis of the commensurate-incommensurate phase transition. (authors)

  2. Phase-resolved pulse propagation through metallic photonic crystal slabs: plasmonic slow light

    Science.gov (United States)

    Schönhardt, Anja; Nau, Dietmar; Bauer, Christina; Christ, André; Gräbeldinger, Hedi; Giessen, Harald

    2017-03-01

    We characterized the electromagnetic field of ultra-short laser pulses after propagation through metallic photonic crystal structures featuring photonic and plasmonic resonances. The complete pulse information, i.e. the envelope and phase of the electromagnetic field, was measured using the technique of cross-correlation frequency resolved optical gating. In good agreement, measurements and scattering matrix simulations show a dispersive behaviour of the spectral phase at the position of the resonances. Asymmetric Fano-type resonances go along with asymmetric phase characteristics. Furthermore, the spectral phase is used to calculate the dispersion of the sample and possible applications in dispersion compensation are investigated. Group refractive indices of 700 and 70 and group delay dispersion values of 90 000 fs2 and 5000 fs2 are achieved in transverse electric and transverse magnetic polarization, respectively. The behaviour of extinction and spectral phase can be understood from an intuitive model using the complex transmission amplitude. An associated depiction in the complex plane is a useful approach in this context. This method promises to be valuable also in photonic crystal and filter design, for example, with regards to the symmetrization of the resonances. This article is part of the themed issue 'New horizons for nanophotonics'.

  3. Effect of antimony incorporation on structural properties of CuInS2 crystals

    International Nuclear Information System (INIS)

    Ben Rabeh, M.; Chaglabou, N.; Kanzari, M.

    2010-01-01

    CuInS 2 (CIS) single crystals doped with 1, 2, 3 and 4 atomic percent (at.%) of antimony (Sb) were grown by the horizontal Bridgman method. The effect of Sb doping on the structural properties of CIS crystal was studied by means of X-ray diffraction (XRD), energy dispersive X-ray analysis (EDAX), scanning electron microscopy (SEM) and PL measurements. X-ray diffraction data suggests that the doping of Sb in the CIS single crystals does not affect the tetragonal (chalcopyrite) crystal structure and exhibited a (1 1 2) preferred orientation. In addition, with increasing Sb concentration, the X-ray diffraction analysis show that Sb doped CIS crystals are more crystallized and the diffraction peaks of the CuInS 2 phase were more pronounced in particular the (1 1 2) plane. EDAX study revealed that Sb atoms can occupy the indium site and/or occupying the sulfur site to make an acceptor. PL spectra of undoped and Sb doped CIS crystals show two emission peaks at 1.52 and 1.62 eV, respectively which decreased with increasing atomic percent antimony. Sb doped CIS crystals show p-type conductivity.

  4. Highly resistive C-doped hydride vapor phase epitaxy-GaN grown on ammonothermally crystallized GaN seeds

    Science.gov (United States)

    Iwinska, Malgorzata; Piotrzkowski, Ryszard; Litwin-Staszewska, Elzbieta; Sochacki, Tomasz; Amilusik, Mikolaj; Fijalkowski, Michal; Lucznik, Boleslaw; Bockowski, Michal

    2017-01-01

    GaN crystals were grown by hydride vapor phase epitaxy (HVPE) and doped with C. The seeds were high-structural-quality ammonothermally crystallized GaN. The grown crystals were highly resistive at 296 K and of high structural quality. High-temperature Hall effect measurements revealed p-type conductivity and a deep acceptor level in the material with an activation energy of 1 eV. This is in good agreement with density functional theory calculations based on hybrid functionals as presented by the Van de Walle group. They obtained an ionization energy of 0.9 eV when C was substituted for N in GaN and acted as a deep acceptor.

  5. Stress and stability of sputter deposited A-15 and bcc crystal structure tungsten thin films

    Energy Technology Data Exchange (ETDEWEB)

    O' Keefe, M.J.; Stutz, C.E.

    1997-07-01

    Magnetron sputter deposition was used to fabricate body centered cubic (bcc) and A-15 crystal structure W thin films. Previous work demonstrated that the as-deposited crystal structure of the films was dependent on the deposition parameters and that the formation of a metastable A-15 structure was favored over the thermodynamically stable bcc phase when the films contained a few atomic percent oxygen. However, the A-15 phase was shown to irreversibly transform into the bcc phase between 500 C and 650 C and that a significant decrease in the resistivity of the metallic films was measured after the transformation. The current investigation of 150 nm thick, sputter deposited A-15 and bcc tungsten thin films on silicon wafers consisted of a series of experiments in which the stress, resistivity and crystal structure of the films was measured as a function of temperatures cycles in a Flexus 2900 thin film stress measurement system. The as-deposited film stress was found to be a function of the sputtering pressure and presputter time; under conditions in which the as-deposited stress of the film was {approximately}1.5 GPa compressive delamination of the W film from the substrate was observed. Data from the thermal studies indicated that bcc film stress was not affected by annealing but transformation of the A-15 structure resulted in a large tensile increase in the stress of the film, regardless of the as-deposited stress of the film. In several instances, complete transformation of the A-15 structure into the bcc phase resulted in {ge}1 GPa tensile increase in film stress.

  6. Stress and stability of sputter deposited A-15 and bcc crystal structure tungsten thin films

    International Nuclear Information System (INIS)

    O'Keefe, M.J.; Stutz, C.E.

    1997-01-01

    Magnetron sputter deposition was used to fabricate body centered cubic (bcc) and A-15 crystal structure W thin films. Previous work demonstrated that the as-deposited crystal structure of the films was dependent on the deposition parameters and that the formation of a metastable A-15 structure was favored over the thermodynamically stable bcc phase when the films contained a few atomic percent oxygen. However, the A-15 phase was shown to irreversibly transform into the bcc phase between 500 C and 650 C and that a significant decrease in the resistivity of the metallic films was measured after the transformation. The current investigation of 150 nm thick, sputter deposited A-15 and bcc tungsten thin films on silicon wafers consisted of a series of experiments in which the stress, resistivity and crystal structure of the films was measured as a function of temperatures cycles in a Flexus 2900 thin film stress measurement system. The as-deposited film stress was found to be a function of the sputtering pressure and presputter time; under conditions in which the as-deposited stress of the film was approximately1.5 GPa compressive delamination of the W film from the substrate was observed. Data from the thermal studies indicated that bcc film stress was not affected by annealing but transformation of the A-15 structure resulted in a large tensile increase in the stress of the film, regardless of the as-deposited stress of the film. In several instances, complete transformation of the A-15 structure into the bcc phase resulted in ge1 GPa tensile increase in film stress

  7. Metal-loaded pollucite-like aluminophosphates: dissymmetrisation of crystal structures and physical properties

    Science.gov (United States)

    Shvanskaya, L. V.; Yakubovich, O. V.; Koshelev, A. V.; Vasiliev, A. N.

    2018-02-01

    Two aluminophosphate analogues of the mineral pollucite with the general formula Cs2(M,Al)3P3O12 (where M = Cu or Mn) have been synthesized by high-temperature flux and structurally characterized using the single-crystal X-ray diffraction. Both samples crystallize in cubic I4132 space group, Z = 8, with a = 13.5911(5) and a = 13.8544(7) for Cu- and Mn-loaded phases, respectively. Their framework structures are based on the ANA-type topology and exhibit the partial ordering of the metal (M/Al) and phosphorus (P) cations over the tetrahedral sites. The regular changes in cell dimensions and volumes in the row Cs2(Cu,Al)3P3O12→Cs2(Mn,Al)3P3O12 obviously correspond to increasing radii of the transition metal. The crystal chemical analysis of both pollucite-like phases show correlations between the difference in the radii size of tetrahedral cations and the degree of distortion of flexible ANA-type framework due to decreasing of the intertetrahedral angles (T-O-T). Magnetic susceptibility measurements indicate that both compounds are paramagnets in the temperature range of 2-300 K.

  8. Method of fabricating patterned crystal structures

    KAUST Repository

    Yu, Liyang

    2016-12-15

    A method of manufacturing a patterned crystal structure for includes depositing an amorphous material. The amorphous material is modified such that a first portion of the amorphous thin-film layer has a first height/volume and a second portion of the amorphous thin-film layer has a second height/volume greater than the first portion. The amorphous material is annealed to induce crystallization, wherein crystallization is induced in the second portion first due to the greater height/volume of the second portion relative to the first portion to form patterned crystal structures.

  9. Crystal structure of HgGa{sub 2}Se{sub 4} under compression

    Energy Technology Data Exchange (ETDEWEB)

    Gomis, Oscar, E-mail: osgohi@fis.upv.es [Centro de Tecnologías Físicas: Acústica, Materiales y Astrofísica, MALTA Consolider Team, Universitat Politècnica de València, 46022 València (Spain); Vilaplana, Rosario [Centro de Tecnologías Físicas: Acústica, Materiales y Astrofísica, MALTA Consolider Team, Universitat Politècnica de València, 46022 València (Spain); Manjón, Francisco Javier [Instituto de Diseño para la Fabricación y Producción Automatizada, MALTA Consolider Team, Universitat Politècnica de València, 46022 València (Spain); Santamaría-Pérez, David [Departamento de Química Física I, Universidad Complutense de Madrid, MALTA Consolider Team, Avenida Complutense s/n, 28040 Madrid (Spain); Departamento de Física Aplicada-ICMUV, MALTA Consolider Team, Universidad de Valencia, Edificio de Investigación, C/Dr. Moliner 50, Burjassot, 46100 Valencia (Spain); Errandonea, Daniel [Departamento de Física Aplicada-ICMUV, MALTA Consolider Team, Universidad de Valencia, Edificio de Investigación, C/Dr. Moliner 50, Burjassot, 46100 Valencia (Spain); and others

    2013-06-01

    Highlights: ► Single crystals of HgGa{sub 2}Se{sub 4} with defect-chalcopyrite structure were synthesized. ► HgGa{sub 2}Se{sub 4} exhibits a phase transition to a disordered rock salt structure at 17 GPa. ► HgGa{sub 2}Se{sub 4} undergoes a phase transition below 2.1 GPa to a disordered zinc blende. - Abstract: We report on high-pressure x-ray diffraction measurements up to 17.2 GPa in mercury digallium selenide (HgGa{sub 2}Se{sub 4}). The equation of state and the axial compressibilities for the low-pressure tetragonal phase have been determined and compared to related compounds. HgGa{sub 2}Se{sub 4} exhibits a phase transition on upstroke toward a disordered rock-salt structure beyond 17 GPa, while on downstroke it undergoes a phase transition below 2.1 GPa to a phase that could be assigned to a metastable zinc-blende structure with a total cation-vacancy disorder. Thermal annealing at low- and high-pressure shows that kinetics plays an important role on pressure-driven transitions.

  10. On the texture and crystal structure of the B19' martensite in single-crystal titanium nickelide

    International Nuclear Information System (INIS)

    Gundyrev, V.M.; Zel'dovich, V.I.

    2003-01-01

    The texture of the B19' martensite formed by cooling the Ti-51 at. % Ni alloy in the B2-phase monocrystal is studied. The positions of the (002), (111-bar), (020) and (111) planes of B19' martensite proceeding from the plane (110) of B2-phase relative to this plane are determined for this purpose. It is established that the obtained results may be described on the basis of the accepted monoclinic structure of the B19' martensite and earlier determined orientation ratios. However small deviation from the parallelism of the (020) B19' and (110)B2 planes is observed. Not less that 12 crystallographically equivalent orientations of the martensite crystals are realized by transforming the B2 phase monocrystal into the B19' martensite in the process of cooling in the irradiated volume of 1.5 x 0.01 mm. Realization of various martensite orientations is practically equally probable. Large self-accommodation crystal groups having limited number of orientations do not appear. It is shown that the martensite phases R and B19' are formed by the martensite transformations in the process of cooling. The B19' martensite has the set of the monoclinic angles from 90 p to 96.8 deg [ru

  11. Intermittent dislocation density fluctuations in crystal plasticity from a phase-field crystal model

    DEFF Research Database (Denmark)

    Tarp, Jens M.; Angheluta, Luiza; Mathiesen, Joachim

    2014-01-01

    Plastic deformation mediated by collective dislocation dynamics is investigated in the two-dimensional phase-field crystal model of sheared single crystals. We find that intermittent fluctuations in the dislocation population number accompany bursts in the plastic strain-rate fluctuations...... propose a simple stochastic model of dislocation reaction kinetics that is able to capture these statistical properties of the dislocation density fluctuations as a function of shear rate....

  12. Solid-Phase and Oscillating Solution Crystallization Behavior of (+)- and (-)-N-Methylephedrine.

    Science.gov (United States)

    Tulashie, Samuel Kofi; Polenske, Daniel; Seidel-Morgenstern, Andreas; Lorenz, Heike

    2016-11-01

    This work involves the study of the solid-phase and solution crystallization behavior of the N-methylephedrine enantiomers. A systematic investigation of the melt phase diagram of the enantiomeric N-methylephedrine system was performed considering polymorphism. Two monotropically related modifications of the enantiomer were found. Solubilities and the ternary solubility phase diagrams of N-methylephedrine enantiomers in 2 solvents [isopropanol:water, 1:3 (Vol) and (2R, 3R)-diethyl tartrate] were determined in the temperature ranges between 15°C and 25°C, and 25°C and 40°C, respectively. Preferential nucleation and crystallization experiments at higher supersaturation leading to an unusual oscillatory crystallization behavior as well as a successful preferential crystallization experiment at lower supersaturation are presented and discussed. Copyright © 2016. Published by Elsevier Inc.

  13. Unconventional phase transitions in liquid crystals

    Science.gov (United States)

    Kats, E. I.

    2017-12-01

    According to classical textbooks on thermodynamics or statistical physics, there are only two types of phase transitions: continuous, or second-order, in which the latent heat L is zero, and first-order, in which L ≠ 0. Present-day textbooks and monographs also mention another, stand-alone type—the Berezinskii-Kosterlitz-Thouless transition, which exists only in two dimensions and shares some features with first- and second-order phase transitions. We discuss examples of non-conventional thermodynamic behavior (i.e., which is inconsistent with the theoretical phase transition paradigm now universally accepted). For phase transitions in smectic liquid crystals, mechanisms for nonconventional behavior are proposed and the predictions they imply are examined.

  14. Multiple topological phase transitions in a gyromagnetic photonic crystal

    KAUST Repository

    Chen, Zeguo

    2017-04-19

    We present the design of a tunable two-dimensional photonic crystal that exhibits multiple topological phases, including a conventional insulator phase, a quantum spin Hall phase, and a quantum anomalous Hall phase under different combinations of geometric parameters and external magnetic fields. Our photonic crystal enables a platform to study the topology evolution attributed to the interplay between crystalline symmetry and time-reversal symmetry. A four-band tight-binding model unambiguously reveals that the topological property is associated with the pseudospin orientations and that it is characterized by the spin Chern number. The emerging quantum anomalous Hall phase features a single helical edge state that is locked by a specific pseudospin. Simulation results demonstrate that the propagation of such a single helical edge state is robust against magnetic impurities. Potential applications, such as spin splitters, are described.

  15. Crystallization characteristics of Mg-doped Ge2Sb2Te5 films for phase change memory applications

    International Nuclear Information System (INIS)

    Fu Jing; Shen Xiang; Nie Qiuhua; Wang Guoxiang; Wu Liangcai; Dai Shixun; Xu Tiefeng; Wang, R.P.

    2013-01-01

    Highlights: ► Mg-doped Ge 2 Sb 2 Te 5 (GST) phase change films with higher resistance and better thermal stability have been proposed. ► The increase of Mg content result in an enhancement in crystallization temperature, activation energy and electrical resistance. ► The proper Mg addition in GST can lead to a one-step crystallization process from amorphous to faced-centered cubic (fcc) phase. ► The formation of covalent Mg-Sb and Mg-Te bonds contribute to the enhancement thermal stability in Mg-doped GST films. - Abstract: Mg-doped Ge 2 Sb 2 Te 5 (GST) films with different Mg doping concentrations have been prepared, and their crystallization behavior, structure and electrical properties have been systematically investigated for phase-change memory applications. The results show that the addition of Mg into GST films could result in an enhancement in crystallization temperature, activation energy and electrical resistance compared with the conventional GST films, indicating that a good amorphous thermal stability. On the other hand, the proper Mg concentration ranging from 13.6 to 31.1 at.% can lead to a one-step crystallization process from amorphous to faced-centered cubic (fcc) phase and suppress the formation of the hexagonal close-packed (hcp) crystalline phase. X-ray photoelectron spectra (XPS) further confirm that the formation of covalent Mg-Sb and Mg-Te bonds contribute to the enhanced thermal stability in Mg-doped GST films.

  16. Unusual crystallization behavior in Ga-Sb phase change alloys

    Directory of Open Access Journals (Sweden)

    Magali Putero

    2013-12-01

    Full Text Available Combined in situ X-ray scattering techniques using synchrotron radiation were applied to investigate the crystallization behavior of Sb-rich Ga-Sb alloys. Measurements of the sheet resistance during heating indicated a reduced crystallization temperature with increased Sb content, which was confirmed by in situ X-ray diffraction. The electrical contrast increased with increasing Sb content and the resistivities in both the amorphous and crystalline phases decreased. It was found that by tuning the composition between Ga:Sb = 9:91 (in at.% and Ga:Sb = 45:55, the change in mass density upon crystallization changes from an increase in mass density which is typical for most phase change materials to a decrease in mass density. At the composition of Ga:Sb = 30:70, no mass density change is observed which should be very beneficial for phase change random access memory (PCRAM applications where a change in mass density during cycling is assumed to cause void formation and PCRAM device failure.

  17. The crystal structure and twinning of neodymium gallium perovskite single crystals

    International Nuclear Information System (INIS)

    Ubizskii, S.B.; Vasylechko, L.O.; Savytskii, D.I.; Matkovskii, A.O.; Syvorotka, I.M.

    1994-01-01

    By means of X-ray structure analysis, the crystal structure of neodymium gallium perovskite (NGP) single crystals (NdGaO 3 ) being used as a substrate for HTSC film epitaxy has been refined and the position of atoms has been determined. The possibility of YBa 2 Cu 3 O 7-x film epitaxy on the plane (110) of NGP crystal as well as its advantages and pitfalls are analysed from structural data. The twinning types in the NGP crystal were established. The twinning structure of NGP substrates is found to be stable up to a temperature of 1173 K, as differentiated from the LaGaO 3 and LaAlO 3 substrates. It is intimated that the twinning in the NGP substrates oriented as (001) can result in creation of 90 degrees twin bonds in a film, and in the case of (110)-oriented plates it is possible to ignore the twinning presence in substrate completely. (author)

  18. Crystal structure of non-stoichiometric copper selenides studied by neutron scattering and X-ray diffraction

    International Nuclear Information System (INIS)

    Bikkulova, N.N.; Yagafarova, Z.A.; Asylguzhina, G.N.; Danilkin, S.A.; Fuess, H.; Skomorokhov, A.N.; Yadrovskii, E.L.; Beskrovnyi, A.I.

    2003-01-01

    Structural characteristics of non-stoichiometric copper selenides were studied by the elastic neutron and X-ray scattering techniques. Rietveld analysis was used to refine the structure of the high-temperature β-phase of the Cu 1.75 Se, Cu 1.78 Se, and Cu 1.83 Se samples. The homogeneity ranges of the cubic phase were determined. The modification of the crystal structure accompanying the β-α phase transition was studied for Cu 1.75 Se and Cu 1.98 Se compounds within the 443-10 K temperature range. It was shown that the phase transition is accompanied by distortions of the fcc lattice and the ordering of copper ions

  19. General crystal in prebiotic context

    International Nuclear Information System (INIS)

    Simon, I.

    1993-09-01

    General crystal is an extension of the crystal concept to any form of matter which exhibit neighbour structure determination. This extension makes many results of solid state physics applicable to heterogeneous matter. Among other it includes the description of phase transition from random to unique structure. The advantage of the general crystal approach is demonstrated on globular protein, on of the most important macromolecules of life, which are capable to adopt unique 3D structure spontaneously, regardless of the heterogeneous character of their chemical structure and conformation. It is suggested that the use of general crystal concept may help to find candidates among heterogeneous matters capable to spontaneous self-organization in the same way as crystallization results in unique structure of homogeneous matter, and to apply some of the results of solid state physics to describe the phase transition and other behaviour of this matter. (author). 10 refs

  20. A Scanning Hologram Recorded by Phase Conjugate Property of Nonlinear Crystals

    DEFF Research Database (Denmark)

    Zi-Liang, Ping; Dalsgaard, Erik

    1996-01-01

    A methode of recording a scanning hologram with phase conjugate property of nonlinear crystal is provided. The principle of recording, setup and experiments are given.......A methode of recording a scanning hologram with phase conjugate property of nonlinear crystal is provided. The principle of recording, setup and experiments are given....

  1. Crystallization of Trehalose in Frozen Solutions and its Phase Behavior during Drying

    Energy Technology Data Exchange (ETDEWEB)

    Sundaramurthi, Prakash; Patapoff, Thomas W.; Suryanarayanan, Raj (Genentech); (UMM)

    2015-02-19

    To study the crystallization of trehalose in frozen solutions and to understand the phase transitions during the entire freeze-drying cycle. Aqueous trehalose solution was cooled to -40 C in a custom-designed sample holder. The frozen solution was warmed to -18 C and annealed, and then dried in the sample chamber of the diffractometer. XRD patterns were continuously collected during cooling, annealing and drying. After cooling, hexagonal ice was the only crystalline phase observed. However, upon annealing, crystallization of trehalose dihydrate was evident. Seeding the frozen solution accelerated the solute crystallization. Thus, phase separation of the lyoprotectant was observed in frozen solutions. During drying, dehydration of trehalose dihydrate yielded a substantially amorphous anhydrous trehalose. Crystallization of trehalose, as trehalose dihydrate, was observed in frozen solutions. The dehydration of the crystalline trehalose dihydrate to substantially amorphous anhydrate occurred during drying. Therefore, analyzing the final lyophile will not reveal crystallization of the lyoprotectant during freeze-drying. The lyoprotectant crystallization can only become evident by continuous monitoring of the system during the entire freeze-drying cycle. In light of the phase separation of trehalose in frozen solutions, its ability to serve as a lyoprotectant warrants further investigation.

  2. Structures, phase stabilities, and electrical potentials of Li-Si battery anode materials

    KAUST Repository

    Tipton, William W.

    2013-05-28

    The Li-Si materials system holds promise for use as an anode in Li-ion battery applications. For this system, we determine the charge capacity, voltage profiles, and energy storage density solely by ab initio methods without any experimental input. We determine the energetics of the stable and metastable Li-Si phases likely to form during the charging and discharging of a battery. Ab initio molecular dynamics simulations are used to model the structure of amorphous Li-Si as a function of composition, and a genetic algorithm coupled to density-functional theory searches the Li-Si binary phase diagram for small-cell, metastable crystal structures. Calculations of the phonon densities of states using density-functional perturbation theory for selected structures determine the importance of vibrational, including zero-point, contributions to the free energies. The energetics and local structural motifs of these metastable Li-Si phases closely resemble those of the amorphous phases, making these small unit cell crystal phases good approximants of the amorphous phase for use in further studies. The charge capacity is estimated, and the electrical potential profiles and the energy density of Li-Si anodes are predicted. We find, in good agreement with experimental measurements, that the formation of amorphous Li-Si only slightly increases the anode potential. Additionally, the genetic algorithm identifies a previously unreported member of the Li-Si binary phase diagram with composition Li5Si2 which is stable at 0 K with respect to previously known phases. We discuss its relationship to the partially occupied Li7Si3 phase. © 2013 American Physical Society.

  3. Stress-Induced Crystallization of Ge-Doped Sb Phase-Change Thin Films

    NARCIS (Netherlands)

    Eising, Gert; Pauza, Andrew; Kooi, Bart J.

    The large effects of moderate stresses on the crystal growth rate in Ge-doped Sb phase-change thin films are demonstrated using direct optical imaging. For Ge6Sb94 and Ge7Sb93 phase-change films, a large increase in crystallization temperature is found when using a polycarbonate substrate instead of

  4. Atomically Phase-Matched Second-Harmonic Generation in a 2D Crystal

    Science.gov (United States)

    2016-08-26

    OPEN ORIGINAL ARTICLE Atomically phase-matched second-harmonic generation in a 2D crystal Mervin Zhao1,2,*, Ziliang Ye1,2,*, Ryuji Suzuki3,4,*, Yu...photoluminescence mapping, Raman spectroscopy and atomic -force microscopy. (b) Image produced via scanning and gathering the SH light produced by the 3R-MoS2...arising from a single atomic layer, where the SH light elucidated important information such as the grain boundaries and electronic structure in these ultra

  5. Synthesis and crystal structure of chromium-bearing anhydrous wadsleyite

    Science.gov (United States)

    Sirotkina, E. A.; Bindi, L.; Bobrov, A. V.; Aksenov, S. M.; Irifune, T.

    2018-04-01

    A chromium-bearing wadsleyite (Cr- Wad) was synthesized in the model system Mg2SiO4-MgCr2O4 at 14 GPa and 1600 °C and studied from the chemical and structural point of views. Microprobe data gave the formula Mg1.930Cr0.120Si0.945O4, on the basis of 4 oxygen atoms. The crystal structure has been studied by single-crystal X-ray diffraction. The orthorhombic unit-cell parameters are: a = 5.6909(5) Å, b = 11.4640(10) Å, c = 8.2406(9) Å, V = 537.62(9) Å3, Z = 8. The structure, space group Imma, was refined to R 1 = 5.99% in anisotropic approximation using 1135 reflections with F o > 4σ( F o) and 43 parameters. Chromium was found to substitute for both Mg at the octahedral sites and Si at the tetrahedral site, according to the reaction VIMg2+ + IVSi4+ = VICr3+ + IVCr3+. On the whole, the structural topology is nearly identical to that of pure wadsleyite. The successful synthesis of Cr- Wad may be important for the thermobarometry of mantle phase associations.

  6. Thermodynamically controlled crystallization of glucose pentaacetates from amorphous phase

    Energy Technology Data Exchange (ETDEWEB)

    Wlodarczyk, P., E-mail: patrykw@imn.gliwice.pl; Hawelek, L.; Hudecki, A.; Kolano-Burian, A. [Institute of Non-Ferrous Metals, ul. Sowinskiego 5, 44-100 Gliwice (Poland); Wlodarczyk, A. [Department of Animal Histology and Embryology, University of Silesia, ul. Bankowa 9, 40-007 Katowice (Poland)

    2016-08-15

    The α and β glucose pentaacetates are known sugar derivatives, which can be potentially used as stabilizers of amorphous phase of active ingredients of drugs (API). In the present work, crystallization behavior of equimolar mixture of α and β form in comparison to both pure anomers is revealed. It was shown that despite the same molecular interactions and similar molecular dynamics, crystallization from amorphous phase is significantly suppressed in equimolar mixture. Time dependent X-ray diffraction studies confirmed higher stability of the quenched amorphous equimolar mixture. Its tendency to crystallization is about 10 times lower than for pure anomers. Calorimetric studies revealed that the α and β anomers don’t form solid solutions and have eutectic point for x{sub α} = 0.625. Suppressed crystallization tendency in the mixture is probably caused by the altered thermodynamics of the system. The factors such as difference of free energy between crystalline and amorphous state or altered configurational entropy are probably responsible for the inhibitory effect.

  7. Phase-Field Modeling of Polycrystalline Solidification: From Needle Crystals to Spherulites—A Review

    Science.gov (United States)

    Gránásy, László; Rátkai, László; Szállás, Attila; Korbuly, Bálint; Tóth, Gyula I.; Környei, László; Pusztai, Tamás

    2014-04-01

    Advances in the orientation-field-based phase-field (PF) models made in the past are reviewed. The models applied incorporate homogeneous and heterogeneous nucleation of growth centers and several mechanisms to form new grains at the perimeter of growing crystals, a phenomenon termed growth front nucleation. Examples for PF modeling of such complex polycrystalline structures are shown as impinging symmetric dendrites, polycrystalline growth forms (ranging from disordered dendrites to spherulitic patterns), and various eutectic structures, including spiraling two-phase dendrites. Simulations exploring possible control of solidification patterns in thin films via external fields, confined geometry, particle additives, scratching/piercing the films, etc. are also displayed. Advantages, problems, and possible solutions associated with quantitative PF simulations are discussed briefly.

  8. Classical nucleation theory in the phase-field crystal model.

    Science.gov (United States)

    Jreidini, Paul; Kocher, Gabriel; Provatas, Nikolas

    2018-04-01

    A full understanding of polycrystalline materials requires studying the process of nucleation, a thermally activated phase transition that typically occurs at atomistic scales. The numerical modeling of this process is problematic for traditional numerical techniques: commonly used phase-field methods' resolution does not extend to the atomic scales at which nucleation takes places, while atomistic methods such as molecular dynamics are incapable of scaling to the mesoscale regime where late-stage growth and structure formation takes place following earlier nucleation. Consequently, it is of interest to examine nucleation in the more recently proposed phase-field crystal (PFC) model, which attempts to bridge the atomic and mesoscale regimes in microstructure simulations. In this work, we numerically calculate homogeneous liquid-to-solid nucleation rates and incubation times in the simplest version of the PFC model, for various parameter choices. We show that the model naturally exhibits qualitative agreement with the predictions of classical nucleation theory (CNT) despite a lack of some explicit atomistic features presumed in CNT. We also examine the early appearance of lattice structure in nucleating grains, finding disagreement with some basic assumptions of CNT. We then argue that a quantitatively correct nucleation theory for the PFC model would require extending CNT to a multivariable theory.

  9. Classical nucleation theory in the phase-field crystal model

    Science.gov (United States)

    Jreidini, Paul; Kocher, Gabriel; Provatas, Nikolas

    2018-04-01

    A full understanding of polycrystalline materials requires studying the process of nucleation, a thermally activated phase transition that typically occurs at atomistic scales. The numerical modeling of this process is problematic for traditional numerical techniques: commonly used phase-field methods' resolution does not extend to the atomic scales at which nucleation takes places, while atomistic methods such as molecular dynamics are incapable of scaling to the mesoscale regime where late-stage growth and structure formation takes place following earlier nucleation. Consequently, it is of interest to examine nucleation in the more recently proposed phase-field crystal (PFC) model, which attempts to bridge the atomic and mesoscale regimes in microstructure simulations. In this work, we numerically calculate homogeneous liquid-to-solid nucleation rates and incubation times in the simplest version of the PFC model, for various parameter choices. We show that the model naturally exhibits qualitative agreement with the predictions of classical nucleation theory (CNT) despite a lack of some explicit atomistic features presumed in CNT. We also examine the early appearance of lattice structure in nucleating grains, finding disagreement with some basic assumptions of CNT. We then argue that a quantitatively correct nucleation theory for the PFC model would require extending CNT to a multivariable theory.

  10. Vanadium doped Sb2Te3 material with modified crystallization mechanism for phase-change memory application

    International Nuclear Information System (INIS)

    Ji, Xinglong; Zheng, Yonghui; Zhou, Wangyang; Wu, Liangcai; Cao, Liangliang; Zhu, Min; Rao, Feng; Song, Zhitang; Feng, Songlin

    2015-01-01

    In this paper, V 0.21 Sb 2 Te 3 (VST) has been proposed for phase-change memory applications. With vanadium incorporating, VST has better thermal stability than Sb 2 Te 3 and can maintain in amorphous phase at room temperature. Two resistance steps were observed in temperature dependent resistance measurements. By real-time observing the temperature dependent lattice structure evolution, VST presents as a homogenous phase throughout the whole thermal process. Combining Hall measurement and transmission electron microscopy results, we can ascribe the two resistance steps to the unique crystallization mechanism of VST material. Then, the amorphous thermal stability enhancement can also be rooted in the suppression of the fast growth crystallization mechanism. Furthermore, the applicability of VST is demonstrated by resistance-voltage measurement, and the phase transition of VST can be triggered by a 15 ns electric pulse. In addition, endurance up to 2.7×10 4 cycles makes VST a promising candidate for phase-change memory applications

  11. Tetragonal-to-Tetragonal Phase Transition in Lead-Free (KxNa1−xNbO3 (x = 0.11 and 0.17 Crystals

    Directory of Open Access Journals (Sweden)

    Dabin Lin

    2014-06-01

    Full Text Available Lead free piezoelectric crystals of (KxNa1−xNbO3 (x = 0.11 and 0.17 have been grown by the modified Bridgman method. The structure and chemical composition of the obtained crystals were determined by X-ray diffraction (XRD and electron probe microanalysis (EPMA. The domain structure evolution with increasing temperature for (KxNa1−xNbO3 (x = 0.11 and 0.17 crystals was observed using polarized light microscopy (PLM, where distinguished changes of the domain structures were found to occur at 400 °C and 412 °C respectively, corresponding to the tetragonal to tetragonal phase transition temperatures. Dielectric measurements performed on (K0.11Na0.89NbO3 crystals exhibited tetragonal to tetragonal and tetragonal to cubic phase transitions temperatures at 405 °C and 496 °C, respectively.

  12. Effect of antimony incorporation on structural properties of CuInS{sub 2} crystals

    Energy Technology Data Exchange (ETDEWEB)

    Ben Rabeh, M., E-mail: mohamedbenrabeh@yahoo.f [Laboratoire de Photovoltaique et Materiaux Semi-Conducteurs - ENIT BP 37, Le belvedere, 1002 Tunis (Tunisia); Chaglabou, N., E-mail: nadia_chaglabou@yahoo.f [Laboratoire de Photovoltaique et Materiaux Semi-Conducteurs - ENIT BP 37, Le belvedere, 1002 Tunis (Tunisia); Kanzari, M., E-mail: Mounir.Kanzari@ipeit.rnu.t [Laboratoire de Photovoltaique et Materiaux Semi-Conducteurs - ENIT BP 37, Le belvedere, 1002 Tunis (Tunisia)

    2010-02-15

    CuInS{sub 2} (CIS) single crystals doped with 1, 2, 3 and 4 atomic percent (at.%) of antimony (Sb) were grown by the horizontal Bridgman method. The effect of Sb doping on the structural properties of CIS crystal was studied by means of X-ray diffraction (XRD), energy dispersive X-ray analysis (EDAX), scanning electron microscopy (SEM) and PL measurements. X-ray diffraction data suggests that the doping of Sb in the CIS single crystals does not affect the tetragonal (chalcopyrite) crystal structure and exhibited a (1 1 2) preferred orientation. In addition, with increasing Sb concentration, the X-ray diffraction analysis show that Sb doped CIS crystals are more crystallized and the diffraction peaks of the CuInS{sub 2} phase were more pronounced in particular the (1 1 2) plane. EDAX study revealed that Sb atoms can occupy the indium site and/or occupying the sulfur site to make an acceptor. PL spectra of undoped and Sb doped CIS crystals show two emission peaks at 1.52 and 1.62 eV, respectively which decreased with increasing atomic percent antimony. Sb doped CIS crystals show p-type conductivity.

  13. Low temperature phase transition and crystal structure of CsMgPO{sub 4}

    Energy Technology Data Exchange (ETDEWEB)

    Orlova, Maria, E-mail: maria.p.orlova@gmail.com [Institute of Mineralogy and Petrography, University of Innsbruck, Innrain 52, Innsbruck 6020 (Austria); Khainakov, Sergey [Departamento de Química Física y Analítica, Universidad de Oviedo—CINN, 33006 Oviedo (Spain); Servicios Científico Técnicos, Universidad de Oviedo, 33006 Oviedo (Spain); Michailov, Dmitriy [Department of Chemistry, University of Nizhny Novgorod, 23 Gagarin av., Nizhny Novgorod 603950 (Russian Federation); Perfler, Lukas [Institute of Mineralogy and Petrography, University of Innsbruck, Innrain 52, Innsbruck 6020 (Austria); Langes, Christoph [Institute of Pharmacy, University of Innsbruck, Innrain 52, Innsbruck 6020 (Austria); Kahlenberg, Volker [Institute of Mineralogy and Petrography, University of Innsbruck, Innrain 52, Innsbruck 6020 (Austria); Orlova, Albina [Department of Chemistry, University of Nizhny Novgorod, 23 Gagarin av., Nizhny Novgorod 603950 (Russian Federation)

    2015-01-15

    CsMgPO{sub 4} doped with radioisotopes is a promising compound for usage as a radioactive medical source. However, a low temperature phase transition at temperatures close to ambient conditions (∼−40 °C) was observed. Information about such kind of structural changes is important in order to understand whether it can cause any problem for medical use of this compound. The phase transition has been investigated in detail using synchrotron powder diffraction, Raman spectroscopy and DFT calculations. The structure undergoes a transformation from an orthorhombic modification, space group Pnma (RT phase) to a monoclinic polymorph, space group P2{sub 1}/n (LT phase). New LT modification adopts similar to RT but slightly distorted unit cell: a=9.58199(2) Å, b=8.95501(1) Å, c=5.50344(2) Å, β=90.68583(1)°, V=472.198(3) Å{sup 3}. CsMgPO{sub 4} belongs to the group of framework compounds and is made up of strictly alternating MgO{sub 4}- and PO{sub 4}-tetrahedra sharing vertices. The cesium counter cations are located in the resulting channel-like cavities. Upon the transformation a combined tilting of the tetrahedra is observed. A comparison with other phase transitions in ABW-type framework compounds is given. - Graphical abstract: Structural behavior of β-tridymite-type phosphate CsMgPO{sub 4}, considered as potential chemical form for radioactive Cs-source has been studied at near ambient temperatures. A phase transition at (∼−40 °C) has been found and investigated. It has been established that the known orthorhombic RT modification, space group Pnma, adopts a monoclinic cell with space group P2{sub 1}/n at low temperatures. In this paper, we present results of structural analysis of changes accompanying this phase transition and discuss its possible impact on the application properties. - Highlights: • β-Tridymite type phosphate CsMgPO{sub 4} undergoes so called translationengleiche phase transition of index 2 at −40 °C. • The structure

  14. Structural properties of the metastable state of phase change materials investigated by synchrotron radiation

    Energy Technology Data Exchange (ETDEWEB)

    Merkelbach, Philipp; Eijk, Julia van; Wuttig, Matthias [I. Phys. Institut (IA), RWTH Aachen, 52056 Aachen (Germany); Braun, Carolin [Institut fuer Anorg. Chemie, CAU Kiel, 24098 Kiel (Germany)

    2008-07-01

    Phase change alloys are among the most promising materials for novel data storage devices. Since several years Phase Change Materials based on Ge-Sb-Te- alloys have been used in optical data storage solutions like rewriteable CDs and DVDs. Recently these alloys have been explored as potential candidates for fast nonvolatile electrical data storage devices in Phase Change Random Access Memory (PCRAM). Besides attracting considerable interest from the commercial point of view phase change materials are very interesting also due to their remarkable physical properties. They have the ability to be reversibly switched within a few nanoseconds between the amorphous and the crystalline phase, while changing their physical properties such as optical reflectivity and electrical resistivity significantly. Even though the electronic properties show a drastical contrast such fast transitions can only be caused by small atomic rearrangements. This behavior calls for a deeper understanding of the structural properties of the alloys. We have performed powder diffraction measurements of the crystal phase of various GeSbTe alloys, to determine the structural similarities and differences of several alloys. Understanding the crystal structure of phase change materials is a key to a deeper insight into the properties of these promising materials.

  15. Crystal structure of a Zn-doped derivative of the Li17Ge4 compound

    International Nuclear Information System (INIS)

    Lacroix-Orio, L.; Tillard, M.; Belin, C.

    2008-01-01

    The compound Li 17-ε Zn ε Ge 4 has been obtained as a side product during the preparation of the intermetallic compound Li 8 Zn 2 Ge 3 from the elements. Its structure has been determined from single crystal X-ray diffraction intensities measured at 173 K. It crystallizes in the cubic system, F4-bar3m space group, a = 18.842(1) A, Z = 20. Its crystal structure is slightly different from those so far reported in the literature for the Zn-free phase Li 17 Ge 4 , particularly concerned are the positions and the site occupations of Li atoms. Most likely, these structural variations result from the presence of a small Zn concentration in the compound. The Zn doping atom has been found only at the specific Li 4d site (about 3 at.% Zn)

  16. Crystal and electronic structures of pentacene thin films from grazing-incidence x-ray diffraction and first-principles calculations

    International Nuclear Information System (INIS)

    Nabok, Dmitrii; Puschnig, Peter; Ambrosch-Draxl, Claudia; Werzer, Oliver; Resel, Roland; Smilgies, Detlef-M.

    2007-01-01

    Combined experimental and theoretical investigations on thin films of pentacene are performed in order to determine the structure of the pentacene thin film phase. Grazing incidence x-ray diffraction is used for studying a pentacene thin film with a nominal thickness of 180 nm. The crystal structure is found to exhibit the lattice parameters a=0.592 nm, b=0.754 nm, c=1.563 nm, α=81.5 deg. , β=87.2 deg. , and γ=89.9 deg. . These crystallographic unit cell dimensions are used as the only input parameters for ab initio total-energy calculations within the framework of density functional theory revealing the molecular packing within the crystal structure. Moreover, we calculate the electronic band structure of the thin film phase and compare it to that of the bulk phase. We find the intermolecular bandwidths of the thin film phase to be significantly larger compared to the bulk structure, e.g., the valence bandwidth is twice as large. This remarkable effect is traced back to an enhanced intermolecular π-π overlap due to the upright standing molecules in the thin film phase

  17. Directed self-assembly of liquid crystalline blue-phases into ideal single-crystals

    Science.gov (United States)

    Martínez-González, Jose A.; Li, Xiao; Sadati, Monirosadat; Zhou, Ye; Zhang, Rui; Nealey, Paul F.; de Pablo, Juan J.

    2017-06-01

    Chiral nematic liquid crystals are known to form blue phases--liquid states of matter that exhibit ordered cubic arrangements of topological defects. Blue-phase specimens, however, are generally polycrystalline, consisting of randomly oriented domains that limit their performance in applications. A strategy that relies on nano-patterned substrates is presented here for preparation of stable, macroscopic single-crystal blue-phase materials. Different template designs are conceived to exert control over different planes of the blue-phase lattice orientation with respect to the underlying substrate. Experiments are then used to demonstrate that it is indeed possible to create stable single-crystal blue-phase domains with the desired orientation over large regions. These results provide a potential avenue to fully exploit the electro-optical properties of blue phases, which have been hindered by the existence of grain boundaries.

  18. Phase distortions in sum- and difference-frequency mixing in crystals

    International Nuclear Information System (INIS)

    Smith, A.V.; Bowers, M.S.

    1995-01-01

    We show that if two waves are incident on a quadratically nonlinear crystal, with the third wave generated entirely within the crystal, a phase-velocity mismatch (Δk ≠ 0) leads to intensity-dependent phase shifts of the generated wave only if there is walk-off, linear absorption, or significant diffraction of at least one of the waves as well as significant energy exchange among the waves. The result is frequency broadening and wave-front distortion of the generated wave. Although the induced phase distortions are usually quite small, they may be significant in applications that require high spectral resolution or pointing accuracy

  19. Fabrication of Phase-Change Polymer Colloidal Photonic Crystals

    Directory of Open Access Journals (Sweden)

    Tianyi Zhao

    2014-01-01

    Full Text Available This paper presents the preparation of phase-change polymer colloidal photonic crystals (PCs by assembling hollow latex spheres encapsulated with dodecanol for the first time. The monodispersed hollow latex spheres were obtained by phase reversion of monodispersed core-shell latex spheres in the n-hexane, which dissolves the PS core and retains the PMMA/PAA shell. The as-prepared phase-change colloidal PCs show stable phase-change behavior. This fabrication of phase-change colloidal PCs would be significant for PC’s applications in functional coatings and various optic devices.

  20. Optical properties of Pb-based aggregated phases in CsBr crystal

    Energy Technology Data Exchange (ETDEWEB)

    Voloshinovskii, A. [Ivan Franko National University of Lviv, 8 Kyryla i Mefodiya Str., 79005 Lviv (Ukraine); Myagkota, S. [Ivan Franko National University of Lviv, 8 Kyryla i Mefodiya Str., 79005 Lviv (Ukraine); Garapyn, I. [Ivan Franko National University of Lviv, 8 Kyryla i Mefodiya Str., 79005 Lviv (Ukraine); Stryganyuk, G. [Ivan Franko National University of Lviv, 8 Kyryla i Mefodiya Str., 79005 Lviv (Ukraine); Rodnyi, P. [St. Petersburg State Polytechnical University, 29 Polyteknicheskaya Str., 195251 St. Petersburg (Russian Federation); Eijk, C.W.E. van [Interfaculty Reactor Institute, Delft University of Technology, Mekelweg 15, 2629 JB Delft (Netherlands)]. E-mail: vaneijk@iri.tudelft.nl

    2005-01-01

    The emission and excitation spectra as well as luminescence decay kinetics of a CsBr:Pb (1.0mol%) crystal have been measured under pulsed synchrotron radiation excitation. The heat-treated ({approx}200 deg. C) crystal shows evidence of single lead centres and aggregated phases such as CsPbBr3 nanocrystals. The latter have been identified from comparison of the spectral-kinetic characteristics of the CsPbBr3 aggregated phases and single crystals. The process of energy transfer from the host to the aggregates is considered.

  1. Optical properties of Pb-based aggregated phases in CsBr crystal

    International Nuclear Information System (INIS)

    Voloshinovskii, A.; Myagkota, S.; Garapyn, I.; Stryganyuk, G.; Rodnyi, P.; Eijk, C.W.E. van

    2005-01-01

    The emission and excitation spectra as well as luminescence decay kinetics of a CsBr:Pb (1.0mol%) crystal have been measured under pulsed synchrotron radiation excitation. The heat-treated (∼200 deg. C) crystal shows evidence of single lead centres and aggregated phases such as CsPbBr3 nanocrystals. The latter have been identified from comparison of the spectral-kinetic characteristics of the CsPbBr3 aggregated phases and single crystals. The process of energy transfer from the host to the aggregates is considered

  2. High-temperature phase transitions and domain structures of KLiSO{sub 4}. Studied by polarisation-optics, X-ray topography and liquid-crystal surface decoration

    Energy Technology Data Exchange (ETDEWEB)

    Scherf, Christian; Chung, Su Jin; Hahn, Theo; Klapper, Helmut [RWTH Aachen Univ. (Germany). Inst. fuer Kristallographie; Ivanov, Nicolay R. [Russian Academy of Sciences, Moscow (Russian Federation). Shubnikov Inst. of Crystallography

    2017-07-01

    The transitions between the room temperature phase III (space group P6{sub 3}) and the two high-temperature phases II (Pcmn) and I (P6{sub 3}/mmc) of KLiSO{sub 4} and the domain structures generated by them were investigated by high-temperature polarisation optics (birefringence) and room-temperature X-ray topography, optical activity and nematic-liquid-crystal (NLC) surface decoration. The transition from the polar hexagonal phase III into the centrosymmetric orthorhombic phase II at 708 K leads, due to the loss of the trigonal axis and the radial temperature gradient of the optical heating chamber used, to a roughly hexagonal arrangement of three sets of thin orthorhombic {110} lamelleae with angles of 60 (120 ) between them. The associated twin law ''reflection m{110}{sub orth}'' corresponds to the frequent growth twin m{10 anti 10}{sub hex} of phase III. The domains are easily ferroelastically switched. Upon further heating above 949 K into phase I (P6{sub 3}/mmc) all domains vanish. Upon cooling back into phase II the three domain states related by 60 (120 ) reflections m{110}{sub orth} re-appear, however (due to the higher thermal agitation at 949 K) with a completely different domain structure consisting of many small, irregularly arranged {110}{sub orth} domains. Particular attention is paid to the domain structure of the hexagonal room temperature phase III generated during the re-transition from the orthorhombic phase II. Curiously, from the expected three twin laws inversion anti 1, rotation 2 perpendicular to [001]{sub hex} and reflection m{10 anti 10}{sub hex} only the latter, which corresponds to the frequent growth twinning, has been found. Finally a short treatise of the structural relations of the KLiSO{sub 4} high-temperature polymorphs is given.

  3. Crystal structure and thermal stability of AgIn(MoO4)2

    International Nuclear Information System (INIS)

    Klevtsov, P.V.; Solodovnikov, S.F.; Perepelitsa, A.P.; Klevtsova, R.F.

    1984-01-01

    Tetragonal crystals of double molybdate AgIn(MoO 4 ) 2 are prepared bi crystallization from solution in Ag 2 Mo 2 O 7 melt (a=4.998, c=36.725 A, space group I4 1 , Z=6). Its crystal structure is determined (autodaffractometer ''Syntex P2 1 '', MoKsub(α)-radiation, 876 reflections, R=0.054) in which along with Mo-tetrahedrons Mo-octahedrons are present. By mutual edges latter are united into bands forming fragments of wolframite structure alonside with (In, Ag) octahedrons. In the direction of c axis wolframite fragments alternate with scheelite fragments consisting of Mo-tetrahedrons and Ag-octavertices. The crystallochemical formula of the compound is Ag(Insub(0.75)Agsub(0.25))sub(2)Mosub(2)Osub(8) [MoO 4 ]. At a temperature of about 600 deq C AgIn-molybdate transforms into modification with NaIn(MoO 4 ) 2 structure NaIn(MoO 4 ) 2 and melts at 650 deg C decomposing into In 2 (MoO 4 ) 3 solid phase and Ag 2 MoO 4 melt

  4. Phase equilibria, crystal structure and properties of complex oxides in the Nd{sub 2}O{sub 3}–SrO–CoO system

    Energy Technology Data Exchange (ETDEWEB)

    Aksenova, T.V.; Efimova, T.G. [Department of Physical and Inorganic Chemistry, Institute of Natural Science and Mathematics, Ural Federal University, Lenin av., 51, Yekaterinburg 620000 (Russian Federation); Lebedev, O.I. [Laboratoire CRISMAT, ENSICAEN UMR6508, 6 Bd Maréchal Juin, Cedex 4, Caen 14050 (France); Elkalashy, Sh.I.; Urusova, A.S. [Department of Physical and Inorganic Chemistry, Institute of Natural Science and Mathematics, Ural Federal University, Lenin av., 51, Yekaterinburg 620000 (Russian Federation); Cherepanov, V.A., E-mail: v.a.cherepanov@urfu.ru [Department of Physical and Inorganic Chemistry, Institute of Natural Science and Mathematics, Ural Federal University, Lenin av., 51, Yekaterinburg 620000 (Russian Federation)

    2017-04-15

    The phase equilibria in the ½Nd{sub 2}O{sub 3}–SrO–CoO system were systematically studied at 1373 K in air. The intermediate phases formed in the ½Nd{sub 2}O{sub 3}–SrO–CoO system at 1373 K in air are: Nd{sub 1-x}Sr{sub x}CoO{sub 3-δ} (0.0≤x≤0.5 with orthorhombic structure, sp. gr. Pbnm and 0.6≤x≤0.95 whose structure was detected as cubic according to XRD sp. gr. Pm3m, but shown to be tetragonal by TEM due to the oxygen vacancy ordering), Nd{sub 2-y}Sr{sub y}CoO{sub 4-δ} (0.6≤y≤1.1 with tetragonal K{sub 2}NiF{sub 4}-type structure, sp. gr. I4/mmm) and Nd{sub 2-z}Sr{sub z}O{sub 3} (0.0≤z≤0.15 with hexagonal structure, sp. gr. P-3m1). The unit cell parameters for the single phase samples were refined by the Rietveld analysis. The changes of oxygen content in Nd{sub 1-x}Sr{sub x}CoO{sub 3-δ} (0.6≤x≤0.95) and Ruddlesden-Popper oxide Nd{sub 2-y}Sr{sub y}CoO{sub 4-δ} were examined by TGA. All were found to be oxygen deficient phases. High-temperature dilatometry allows calculating the thermal expansion coefficient and evaluating the chemical expansion coefficient at high temperature. The projection of isothermal-isobaric phase diagram for the Nd–Sr–Co–O system at 1373 K in air to the compositional triangle of metallic components has been constructed. The phase equilibria in the studied Nd–Sr–Co–O system were compared to La–Sr–Co–O and Nd–M–Co–O (M=Ca and Ba). - Graphical abstract: Crystal structure of vacancy ordered supercell for Nd{sub 0.2}Sr{sub 0.8}CoO{sub 3-δ} and projection of phase diagram for the Nd–Sr–Co–O system onto the triangle edge of metallic components at 1373 K in air. - Highlights: • The diagram for the Nd–Sr–Co–O system at 1373 K in air has been constructed. • The crystal structure of Nd{sub 1-x}Sr{sub x}CoO{sub 3-δ} and Nd{sub 2-y}Sr{sub y}CoO{sub 4±δ} was refined. • The formation of superstructure due to the oxygen vacancy ordering was proved. • The changes of oxygen

  5. Structure and magnetic properties of flux grown single crystals of Co3-xFexSn2S2 shandites

    Science.gov (United States)

    Kassem, Mohamed A.; Tabata, Yoshikazu; Waki, Takeshi; Nakamura, Hiroyuki

    2016-01-01

    We report a successful single crystal growth of the shandite-type half-metallic ferromagnet Co3Sn2S2, and its Fe-substituted compounds, Co3-xFexSn2S2, by employing the flux method. Although Fe3Sn2S2 is unstable phase, we found that using the self Sn flux enables us to obtain single phase crystals up to x=0.53. The chemical composition of the grown plate-shaped single crystals was examined using wavelength-dispersive X-ray spectroscopy. The shandite structure with R 3 ̅m symmetry was confirmed by powder X-ray diffraction and the crystal structure parameters were refined using the Rietveld method. Magnetization measurements show suppression of the ferromagnetic order upon Fe-substitution , as well as in other substituted systems such as In- and Ni-substituted Co3Sn2S2. The almost identical magnetic phase diagrams of the Fe- and In-substituted compounds indicate that the electron number is dominantly significant to the magnetism in the Co-based shandite.

  6. Liquid Crystal Phases of Colloidal Platelets and their Use as Nanocomposite Templates

    NARCIS (Netherlands)

    Mourad, M.C.D.|info:eu-repo/dai/nl/304837563

    2009-01-01

    This thesis explores the gelation and liquid crystal phase behavior of colloidal dispersions of platelike particles as well as the use of such dispersions for the generation of nanocomposites. We report on the sol-gel, sol-glass and liquid crystal phase transitions of positively charged colloidal

  7. Relationship of electro-physical properties, thermal phase transition and microstructure of organic semiconducting crystals

    International Nuclear Information System (INIS)

    Gul, R.M.; Tahir, M.M.; Karomov, Kh.S.; Akhmedov, Kh.M.

    1999-01-01

    Organic crystals of Ph/sub 3/MeP(TCNQ) (Triphenyl-methyl-phosphonium tetracyano quino dimethane) and Et/sub 3/A (TCNQ) (Triethyl ammonium tetracyano quino dimethane) exhibit high tensity resistive effect which make them useful for applications like strain gauges, temperature sensitive resistors, etc. previous investigations of the effect of temperature on the electrical conductivity, thermoelectric power and acoustic emission in the range of 300-360 deg. K show the Ph/sub 3/MeP(TCNQ) crystals dispaly reversible phase transitions at 313 and 317 deg. K during heating the cooling, respectively. Contrary to this the crystals of Et/sub 3/A(TCNQ) and the press tablets of Ph/sub 3/MeP(TCNQ) do not display any such transition. Using Differential Scanning Calorimetry (DSC) in this study, we have confirmed that a reversible thermal transition also takes place at the similar temperature in Ph/sub 3/MeP(TCNQ); the transition is absent in Et/sub 3/A(TCNQ) and in press tablets of Ph/sub 3/MeP(TCNQ). Scanning electron Microscopy (SEM) shows number of structural voids in the single crystals of Ph/sub 3/Mep(TCNQ) which indicates that the phase transition is a volumetric phenomenon; the voids in the crystal may allow the volumetric changes. However, absence of surface defects as observed by SEM in Et/sub 3/A(TCNQ) and in pressed Ph/sub 3/MeP(TCNQ) may hinder the change in the volume of the material due to close packing of molecules. This result in the absence of the phase transitions as ascertained by DSC and other previous electro physical studies. (author)

  8. Study of crystal structure and of dynamic behaviour in the various phases of TlD{sub 2}PO{sub 4}; Etude de la structure cristalline et du comportement dynamique dans les differentes phases de TlD{sub 2}PO{sub 4}

    Energy Technology Data Exchange (ETDEWEB)

    Rios, S

    1997-04-29

    TlH2PO4 (TDP) and its deuterated form TlD2PO4 (DTDP) belong to the family of ferroelectric materials of KH2PO4 (KDP). The compounds of this family, on deuteration, show a large isotopic effect in their ferroelectric transition temperatures. This work begins with a review of theoretical models which allowed a better understanding of the antiferroelectric transition. The crystal structures of TDP and DTDP have been studied at different temperatures, using single-crystal neutron diffraction and the results show that the phase diagrams for both compounds have very different characteristics. The dynamics of antiferroelectric transition of DTDP has been investigated by means of neutron inelastic scattering. Supported by these experimental results we propose a mechanism to explain the different phase sequences in these compounds. In the last part of this work a more qualitative study suggests that the effect of deuteration could be seen as a pressure effect. This result has to be confirmed by using a more appropriate means of investigation than neutron scattering. (A.C.) 61 refs.

  9. Raman spectroscopy study of the crystal - melt phase transition of lanthanum, cerium and neodymium trichlorides

    International Nuclear Information System (INIS)

    Zakir'yanova, I.D.; Salyulev, A.B.

    2007-01-01

    Systematic structural studies of crystalline (over a wide temperature range) and molten LaCl 3 , CeCl 3 , and NdCl 3 salts (near the crystal-melt phase transition temperature) are conducted employing Raman spectroscopy. A change in the trend of temperature dependences of characteristic frequencies is revealed in the pre-melting region of the compounds. This is attributed to an increase in the number of crystal defects due to weakening of a part of Ln-Cl bonds and decreasing of coordination number of chloride anions in the vicinity of rare earth cation [ru

  10. Electrically Tunable Reflective Terahertz Phase Shifter Based on Liquid Crystal

    Science.gov (United States)

    Yang, Jun; Xia, Tianyu; Jing, Shuaicheng; Deng, Guangsheng; Lu, Hongbo; Fang, Yong; Yin, Zhiping

    2018-02-01

    We present a reflective spatial phase shifter which operates at terahertz regime above 325 GHz. The controllable permittivity of the nematic liquid crystals was utilized to realize a tunable terahertz (THz) reflective phase shifter. The reflective characteristics of the terahertz electromagnetic waves and the liquid crystal parameters were calculated and analyzed. We provide the simulation results for the effect of the incident angle of the plane wave on the reflection. The experiment was carried out considering an array consisting of 30 × 30 patch elements, printed on a 20 × 20 mm quartz substrate with 1-mm thickness. The phase shifter provides a tunable phase range of 300° over the frequency range of 325 to 337.6 GHz. The maximum phase shift of 331° is achieved at 330 GHz. The proposed phase shifter is a potential candidate for THz applications, particularly for reconfigurable reflectarrays.

  11. A 4-D dataset for validation of crystal growth in a complex three-phase material, ice cream

    Science.gov (United States)

    Rockett, P.; Karagadde, S.; Guo, E.; Bent, J.; Hazekamp, J.; Kingsley, M.; Vila-Comamala, J.; Lee, P. D.

    2015-06-01

    Four dimensional (4D, or 3D plus time) X-ray tomographic imaging of phase changes in materials is quickly becoming an accepted tool for quantifying the development of microstructures to both inform and validate models. However, most of the systems studied have been relatively simple binary compositions with only two phases. In this study we present a quantitative dataset of the phase evolution in a complex three-phase material, ice cream. The microstructure of ice cream is an important parameter in terms of sensorial perception, and therefore quantification and modelling of the evolution of the microstructure with time and temperature is key to understanding its fabrication and storage. The microstructure consists of three phases, air cells, ice crystals, and unfrozen matrix. We perform in situ synchrotron X-ray imaging of ice cream samples using in-line phase contrast tomography, housed within a purpose built cold-stage (-40 to +20oC) with finely controlled variation in specimen temperature. The size and distribution of ice crystals and air cells during programmed temperature cycling are determined using 3D quantification. The microstructural evolution of three-phase materials has many other important applications ranging from biological to structural and functional material, hence this dataset can act as a validation case for numerical investigations on faceted and non-faceted crystal growth in a range of materials.

  12. A 4-D dataset for validation of crystal growth in a complex three-phase material, ice cream

    International Nuclear Information System (INIS)

    Rockett, P; Karagadde, S; Guo, E; Kingsley, M; Lee, P D; Bent, J; Hazekamp, J; Vila-Comamala, J

    2015-01-01

    Four dimensional (4D, or 3D plus time) X-ray tomographic imaging of phase changes in materials is quickly becoming an accepted tool for quantifying the development of microstructures to both inform and validate models. However, most of the systems studied have been relatively simple binary compositions with only two phases. In this study we present a quantitative dataset of the phase evolution in a complex three-phase material, ice cream. The microstructure of ice cream is an important parameter in terms of sensorial perception, and therefore quantification and modelling of the evolution of the microstructure with time and temperature is key to understanding its fabrication and storage. The microstructure consists of three phases, air cells, ice crystals, and unfrozen matrix. We perform in situ synchrotron X-ray imaging of ice cream samples using in-line phase contrast tomography, housed within a purpose built cold-stage (-40 to +20 o C) with finely controlled variation in specimen temperature. The size and distribution of ice crystals and air cells during programmed temperature cycling are determined using 3D quantification. The microstructural evolution of three-phase materials has many other important applications ranging from biological to structural and functional material, hence this dataset can act as a validation case for numerical investigations on faceted and non-faceted crystal growth in a range of materials. (paper)

  13. Commensurate and incommensurate '5M' modulated crystal structures in Ni-Mn-Ga martensitic phases

    International Nuclear Information System (INIS)

    Righi, L.; Albertini, F.; Pareti, L.; Paoluzi, A.; Calestani, G.

    2007-01-01

    It is well known that the composition of ferromagnetic shape memory Ni-Mn-Ga Heusler alloys determines both temperature of martensitic transformations and the structure type of the product phase. In the present work we focused our attention on the structural study of the so-called '5M' modulated structure. In particular, the structure of Ni 1.95 Mn 1.19 Ga 0.86 martensitic phase is analysed by powder X-ray diffraction (PXRD) and compared with that of the stoichiometric Ni 2 MnGa martensite. The study of the diffraction data reveals the occurrence of commensurate (C) structural modulation in Ni 1.95 Mn 1.19 Ga 0.86 ; this contrasts with Ni 2 MnGa, where an incommensurate (IC) structural modulation was evident. The two phases also differ in the symmetry of the fundamental martensitic lattice. In fact, the incommensurate modulation is related to an orthorhombic basic structure, while the commensurate variant presents a monoclinic symmetry. The commensurate modulated structure has been investigated by using the superspace approach already adopted to solve the structure of Ni 2 MnGa martensite. The structure has been determined by Rietveld refinement of PXRD data

  14. Picosecond laser pulse-driven crystallization behavior of SiSb phase change memory thin films

    International Nuclear Information System (INIS)

    Huang Huan; Li Simian; Zhai Fengxiao; Wang Yang; Lai Tianshu; Wu Yiqun; Gan Fuxi

    2011-01-01

    Highlights: → We reported crystallization dynamics of a novel SiSb phase change material. → We measured optical constants of as-deposited and irradiated SiSb areas. → Optical properties of as-deposited and irradiated SiSb thin film were compared. → Crystallization of irradiated SiSb was confirmed by using AFM and micro-Raman spectra. → The heat conduction effect of lower metal layer of multi-layer films was studied. - Abstract: Transient phase change crystallization process of SiSb phase change thin films under the irradiation of picosecond (ps) laser pulse was studied using time-resolved reflectivity measurements. The ps laser pulse-crystallized domains were characterized by atomic force microscope, Raman spectra and ellipsometrical spectra measurements. A reflectivity contrast of about 15% can be achieved by ps laser pulse-induced crystallization. A minimum crystallization time of 11 ns was achieved by a low-fluence single ps laser pulse after pre-irradiation. SiSb was shown to be very promising for fast phase change memory applications.

  15. Crystal structures of superconducting sodium intercalates of hafnium nitride chloride

    International Nuclear Information System (INIS)

    Oro-Sole, J.; Frontera, C.; Beltran-Porter, D.; Lebedev, O.I.; Van Tendeloo, G.; Fuertes, A.

    2006-01-01

    Sodium intercalation compounds of HfNCl have been prepared at room temperature in naphtyl sodium solutions in tetrahydrofuran and their crystal structure has been investigated by Rietveld refinement using X-ray powder diffraction data and high-resolution electron microscopy. The structure of two intercalates with space group R3-bar m and lattice parameters a=3.58131(6)A, c=57.752(6)A, and a=3.58791(8)A, c=29.6785(17)A is reported, corresponding to the stages 2 and 1, respectively, of Na x HfNCl. For the stage 2 phase an ordered model is presented, showing two crystallographically independent [HfNCl] units with an alternation of the Hf-Hf interlayer distance along the c-axis, according with the occupation by sodium atoms of one out of two van der Waals gaps. Both stages 1 and 2 phases are superconducting with critical temperatures between 20 and 24K, they coexist in different samples with proportions depending on the synthesis conditions, and show a variation in c spacing that can be correlated with the sodium stoichiometry. High-resolution electron microscopy images of the host and intercalated samples show bending of the HfNCl bilayers as well as stacking faults in some regions, which coexist in the same crystal with ordered domains

  16. Structural phase transitions of NaV6O11 and SrV6O11

    International Nuclear Information System (INIS)

    Kanke, Yasushi; Izumi, Fujio; Kato, Katsuo; Morii, Yukio; Funahashi, Satoru; Akiba, Etsuo.

    1993-01-01

    Crystal structures of NaV 6 O 11 at several temperatures were studied by either Rietveld analyses of both neutron and X-ray powder diffraction data, or an analysis of X-ray single crystal diffraction data. At 200 K, NaV 6 O 11 loses the center of symmetry, and its space group changes from P6 3 /mmc to P6 3 mc. Consequently, V(2) splits into two sites. At 30 K, NaV 6 O 11 was transformed from the hexagonal form to the orthorhombic one (Cmc2 1 ), and V(1) splits into two sites. These results indicate that magnetic phase transitions of NaV 6 O 11 at 245 K and 64.2 K are accompanied by structural phase transitions. On the other hand, no structural phase transition was detected in SrV 6 O 11 . (author)

  17. Introduction to crystal growth and characterization

    CERN Document Server

    Benz, Klaus-Werner

    2014-01-01

    This new textbook provides for the first time a comprehensive treatment of the basics of contemporary crystallography and crystal growth in a single volume. The reader will be familiarized with the concepts for the description of morphological and structural symmetry of crystals. The architecture of crystal structures of selected inorganic and molecular crystals is illustrated. The main crystallographic databases as data sources of crystal structures are described. Nucleation processes, their kinetics and main growth mechanism will be introduced in fundamentals of crystal growth. Some phase d

  18. One-pot synthesis of CuInS2 nanocrystals using different anions to engineer their morphology and crystal phase.

    Science.gov (United States)

    Tang, Aiwei; Hu, Zunlan; Yin, Zhe; Ye, Haihang; Yang, Chunhe; Teng, Feng

    2015-05-21

    A simple one-pot colloidal method has been described to engineer ternary CuInS2 nanocrystals with different crystal phases and morphologies, in which dodecanethiol is chosen as the sulfur source and the capping ligands. By a careful choice of the anions in the metal precursors and manipulation of the reaction conditions including the reactant molar ratios and the reaction temperature, CuInS2 nanocrystals with chalcopyrite, zincblende and wurtzite phases have been successfully synthesized. The type of anion in the metal precursors has been found to be essential for determining the crystal phase and morphology of the as-obtained CuInS2 nanocrystals. In particular, the presence of Cl(-) ions plays an important role in the formation of CuInS2 nanoplates with a wurtzite-zincblende polytypism structure. In addition, the molar ratios of Cu to In precursors have a significant effect on the crystal phase and morphology, and the intermediate Cu2S-CuInS2 heteronanostructures are formed which are critical for the anisotropic growth of CuInS2 nanocrystals. Furthermore, the optical absorption results of the as-obtained CuInS2 nanocrystals exhibit a strong dependence on the crystal phase and size.

  19. Crystal structure of Earth's inner core: A first-principles study

    Science.gov (United States)

    Moustafa, S. G.; Schultz, A. J.; Zurek, E.; Kofke, D. A.

    2017-12-01

    Since the detection of the Earth's solid inner core (IC) by Lehmann in 1936, its composition and crystal structure (which are essential to understand Earth's evolution) have been controversial. While seismological measurements (e.g. PREM) can give a robust estimation of the density, pressure, and elasticity of the IC, they cannot be directly used to determine its composition and/or crystal structure. Experimentally, reaching the extreme IC conditions ( 330 GPa and 6000 K) and getting reliable measurements is very challenging. First-principles calculations provide a viable alternative that can work as a powerful investigative tool. Although several attempts have been made to assess phase stability at IC conditions computationally, they often use a low level of theory for electronic structure (e.g., classical force-field), adopt approximate methods (e.g., quasiharmonic approximation, fixed hcp-c/a), or do not consider finite-size effects. The study of phase stability using accurate first-principles methods is hampered in part by the difficulty of computing the free energy (FE), the central thermodynamic quantity that determines stability, while including anharmonic and finite-size effects. Additional difficulty related to the IC in particular is introduced by the dynamical instability of one of the IC candidate structures (bcc) at low temperature. Recently [1-3], we introduced a novel method (denoted as "harmonically mapped averaging", or HMA) to efficiently measure anharmonic properties (e.g. FE, pressure, elastic modulus) by molecular simulation, yielding orders of magnitude CPU speedup compared to conventional methods. We have applied this method to the hcp candidate phase of iron at the IC conditions, obtaining first-principles anharmonic FE values with unprecedented accuracy and precision [4]. We have now completed and report HMA calculations to assess the phase stability of all IC candidate phases (fcc/hcp/bcc). This knowledge is the prerequisite for

  20. Unraveling Crystalline Structure of High-Pressure Phase of Silicon Carbonate

    Directory of Open Access Journals (Sweden)

    Rulong Zhou

    2014-03-01

    Full Text Available Although CO_{2} and SiO_{2} both belong to group-IV oxides, they exhibit remarkably different bonding characteristics and phase behavior at ambient conditions. At room temperature, CO_{2} is a gas, whereas SiO_{2} is a covalent solid with rich polymorphs. A recent successful synthesis of the silicon-carbonate solid from the reaction between CO_{2} and SiO_{2} under high pressure [M. Santoro et al., Proc. Natl. Acad. Sci. U.S.A. 108, 7689 (2011] has resolved a long-standing puzzle regarding whether a Si_{x}C_{1−x}O_{2} compound between CO_{2} and SiO_{2} exists in nature. Nevertheless, the detailed atomic structure of the Si_{x}C_{1−x}O_{2} crystal is still unknown. Here, we report an extensive search for the high-pressure crystalline structures of the Si_{x}C_{1−x}O_{2} compound with various stoichiometric ratios (SiO_{2}:CO_{2} using an evolutionary algorithm. Based on the low-enthalpy structures obtained for each given stoichiometric ratio, several generic structural features and bonding characteristics of Si and C in the high-pressure phases are identified. The computed formation enthalpies show that the SiC_{2}O_{6} compound with a multislab three-dimensional (3D structure is energetically the most favorable at 20 GPa. Hence, a stable crystalline structure of the elusive Si_{x}C_{1−x}O_{2} compound under high pressure is predicted and awaiting future experimental confirmation. The SiC_{2}O_{6} crystal is an insulator with elastic constants comparable to typical hard solids, and it possesses nearly isotropic tensile strength as well as extremely low shear strength in the 2D plane, suggesting that the multislab 3D crystal is a promising solid lubricant. These valuable mechanical and electronic properties endow the SiC_{2}O_{6} crystal for potential applications in tribology and nanoelectronic devices, or as a stable solid-state form for CO_{2} sequestration.

  1. Crystal Structures of GaN Nanodots by Nitrogen Plasma Treatment on Ga Metal Droplets

    Directory of Open Access Journals (Sweden)

    Yang-Zhe Su

    2018-06-01

    Full Text Available Gallium nitride (GaN is one of important functional materials for optoelectronics and electronics. GaN exists both in equilibrium wurtzite and metastable zinc-blende structural phases. The zinc-blende GaN has superior electronic and optical properties over wurtzite one. In this report, GaN nanodots can be fabricated by Ga metal droplets in ultra-high vacuum and then nitridation by nitrogen plasma. The size, shape, density, and crystal structure of GaN nanodots can be characterized by transmission electron microscopy. The growth parameters, such as pre-nitridation treatment on Si surface, substrate temperature, and plasma nitridation time, affect the crystal structure of GaN nanodots. Higher thermal energy could provide the driving force for the phase transformation of GaN nanodots from zinc-blende to wurtzite structures. Metastable zinc-blende GaN nanodots can be synthesized by the surface modification of Si (111 by nitrogen plasma, i.e., the pre-nitridation treatment is done at a lower growth temperature. This is because the pre-nitridation process can provide a nitrogen-terminal surface for the following Ga droplet formation and a nitrogen-rich condition for the formation of GaN nanodots during droplet epitaxy. The pre-nitridation of Si substrates, the formation of a thin SiNx layer, could inhibit the phase transformation of GaN nanodots from zinc-blende to wurtzite phases. The pre-nitridation treatment also affects the dot size, density, and surface roughness of samples.

  2. Prism-coupled Cherenkov phase-matched terahertz wave generation using a DAST crystal.

    Science.gov (United States)

    Suizu, Koji; Shibuya, Takayuki; Uchida, Hirohisa; Kawase, Kodo

    2010-02-15

    Terahertz (THz) wave generation based on nonlinear frequency conversion is a promising method for realizing a tunable monochromatic high-power THz-wave source. Unfortunately, many nonlinear crystals have strong absorption in the THz frequency region. This limits efficient and widely tunable THz-wave generation. The Cherenkov phase-matching method is one of the most promising techniques for overcoming these problems. Here, we propose a prism-coupled Cherenkov phase-matching (PCC-PM) method, in which a prism with a suitable refractive index at THz frequencies is coupled to a nonlinear crystal. This has the following advantages. Many crystals can be used as THz-wave emitters; the phase-matching condition inside the crystal does not have to be observed; the absorption of the crystal does not prevent efficient generation of radiation; and pump sources with arbitrary wavelengths can be employed. Here we demonstrate PCC-PM THz-wave generation using the organic crystal 4-dimethylamino-N-metyl-4-stilbazolium tosylate (DAST) and a Si prism coupler. We obtain THz-wave radiation with tunability of approximately 0.1 to 10 THz and with no deep absorption features resulting from the absorption spectrum of the crystal. The obtained spectra did not depend on the pump wavelength in the range 1300 to 1450 nm. This simple technique shows promise for generating THz radiation using a wide variety of nonlinear crystals.

  3. Crystal-liquid-gas phase transitions and thermodynamic similarity

    CERN Document Server

    Skripov, Vladimir P; Schmelzer, Jurn W P

    2006-01-01

    Professor Skripov obtained worldwide recognition with his monograph ""Metastable liquids"", published in English by Wiley & Sons. Based upon this work and another monograph published only in Russia, this book investigates the behavior of melting line and the properties of the coexisting crystal and liquid phase of simple substances across a wide range of pressures, including metastable states of the coexisting phases. The authors derive new relations for the thermodynamic similarity for liquid-vapour phase transition, as well as describing solid-liquid, liquid-vapor and liquid-liquid phase tra

  4. Effect of crystal orientation on the phase diagrams, dielectric and piezoelectric properties of epitaxial BaTiO3 thin films

    Directory of Open Access Journals (Sweden)

    Huaping Wu

    2016-01-01

    Full Text Available The influence of crystal orientations on the phase diagrams, dielectric and piezoelectric properties of epitaxial BaTiO3 thin films has been investigated using an expanded nonlinear thermodynamic theory. The calculations reveal that crystal orientation has significant influence on the phase stability and phase transitions in the misfit strain-temperature phase diagrams. In particular, the (110 orientation leads to a lower symmetry and more complicated phase transition than the (111 orientation in BaTiO3 films. The increase of compressive strain will dramatically enhance the Curie temperature TC of (110-oriented BaTiO3 films, which matches well with previous experimental data. The polarization components experience a great change across the boundaries of different phases at room temperature in both (110- and (111-oriented films, which leads to the huge dielectric and piezoelectric responses. A good agreement is found between the present thermodynamics calculation and previous first-principles calculations. Our work provides an insight into how to use crystal orientation, epitaxial strain and temperature to tune the structure and properties of ferroelectrics.

  5. High-Pressure High-Temperature Phase Diagram of the Organic Crystal Paracetamol

    Science.gov (United States)

    Smith, Spencer; Montgomery, Jeffrey; Vohra, Yogesh

    High-pressure high-temperature (HPHT) Raman spectroscopy studies have been performed on the organic crystal paracetamol in a diamond anvil cell utilizing boron-doped diamond as heating anvil. The HPHT data obtained from boron-doped diamond heater is cross-checked with data obtained using a standard block heater diamond anvil cell. Isobaric measurements were conducted at pressures up to 8.5 GPa and temperature up to 520 K in a number of different experiments. Solid state phase transitions from monoclinic Form I --> orthorhombic Form II were observed at various pressures and temperatures as well as transitions from Form II --> unknown Form IV. The melting temperature for paracetamol was observed to increase with increasing pressures to 8.5 GPa. Our previous angle dispersive x-ray diffraction studies at the Advanced Photon Source has confirmed the existence of two unknown crystal structures Form IV and Form V of paracetamol at high pressure and ambient temperature. The phase transformation from Form II to Form IV occurs at ~8.5 GPa and from Form IV to Form V occurs at ~11 GPa at ambient temperature. Our new data is combined with the previous ambient temperature high-pressure Raman and X- ray diffraction data to create the first HPHT phase diagram of paracetamol. Doe-NNSA Carnegie DOE Alliance Center (CDAC) under Grant Number DE-NA0002006.

  6. Polymorphism in phenobarbital: discovery of a new polymorph and crystal structure of elusive form V.

    Science.gov (United States)

    Roy, Saikat; Goud, N Rajesh; Matzger, Adam J

    2016-03-21

    This report highlights the discovery of a new polymorph of the anticonvulsant drug phenobarbital (PB) using polymer-induced heteronucleation (PIHn) and unravelling the crystal structure of the elusive form V. Both forms are characterized by structural, thermal and VT-Raman spectroscopy methods to elucidate phase transformation behavior and shed light on stability relationships.

  7. Structural evolution of amino acid crystals under stress from a non-empirical density functional

    International Nuclear Information System (INIS)

    Sabatini, Riccardo; Küçükbenli, Emine; De Gironcoli, Stefano; Kolb, Brian; Thonhauser, T

    2012-01-01

    Use of the non-local correlation functional vdW-DF (from ‘van der Waals density functional’; Dion M et al 2004 Phys. Rev. Lett. 92 246401) has become a popular approach for including van der Waals interactions within density functional theory. In this work, we extend the vdW-DF theory and derive the corresponding stress tensor in a fashion similar to the LDA and GGA approach, which allows for a straightforward implementation in any electronic structure code. We then apply our methodology to investigate the structural evolution of amino acid crystals of glycine and l-alanine under pressure up to 10 GPa - with and without van der Waals interactions - and find that for an accurate description of intermolecular interactions and phase transitions in these systems, the inclusion of van der Waals interactions is crucial. For glycine, calculations including the vdW-DF (vdW-DF-c09x) functional are found to systematically overestimate (underestimate) the crystal lattice parameters, yet the stability ordering of the different polymorphs is determined accurately, at variance with the GGA case. In the case of l-alanine, our vdW-DF results agree with recent experiments that question the phase transition reported for this crystal at 2.3 GPa, as the a and c cell parameters happen to become equal but no phase transition is observed.

  8. Structures, phase stabilities, and electrical potentials of Li-Si battery anode materials

    KAUST Repository

    Tipton, William W.; Bealing, Clive R.; Mathew, Kiran; Hennig, Richard G.

    2013-01-01

    of composition, and a genetic algorithm coupled to density-functional theory searches the Li-Si binary phase diagram for small-cell, metastable crystal structures. Calculations of the phonon densities of states using density-functional perturbation theory

  9. Soft modes and structural phase transitions

    Energy Technology Data Exchange (ETDEWEB)

    Venkataraman, G [Reactor Research Centre, Kalpakkam (India)

    1979-12-01

    A survey of soft modes and their relationship to structural phase transitions is presented. After introducing the concept of a soft mode, the origin of softening is considered from a lattice-dynamical point. The Landau theory approach to structural transitions is then discussed, followed by a generalisation of the soft-mode concept through the use of the dynamic order-parameter susceptibility. The relationship of soft modes to broken symmetry is also examined. Experimental results for several classes of crystals are next presented, bringing out various features such as the co-operative Jahn-Teller effect. The survey concludes with a discussion of the central peak, touching upon both the experimental results and the theoretical speculations.

  10. Temperature Dependent Surface Structures and Electronic Properties of Organic-Inorganic Hybrid Perovskite Single Crystals

    Science.gov (United States)

    Jao, M.-H.; Teague, M. L.; Huang, J.-S.; Tseng, W.-S.; Yeh, N.-C.

    Organic-inorganic hybrid perovskites, arising from research of low-cost high performance photovoltaics, have become promising materials not only for solar cells but also for various optoelectronic and spintronic applications. An interesting aspect of the hybrid perovskites is that their material properties, such as the band gap, can be easily tuned by varying the composition, temperature, and the crystalline phases. Additionally, the surface structure is critically important for their optoelectronic applications. It is speculated that different crystalline facets could show different trap densities, thus resulting in microscopically inhomogeneous performance. Here we report direct studies of the surface structures and electronic properties of hybrid perovskite CH3NH3PbI3 single crystals by scanning tunneling microscopy and spectroscopy (STM/STS). We found long-range spatially homogeneous tunneling conductance spectra with a well-defined energy gap of (1.55 +/- 0.1) eV at 300 K in the tetragonal phase, suggesting high quality of the single crystals. The energy gap increased to (1.81 +/- 0.1) eV in the orthorhombic phase, below the tetragonal-to-orthorhombic phase transition temperature at 150 K. Detailed studies of the temperature evolution in the spatially resolved surface structures and local density of states will be discussed to elucidate how these properties may influence the optoelectronic performance of the hybrid perovskites. We thank the support from NTU in Taiwan and from NSF in the US.

  11. Structural defect generation in indium antimonide single crystals during electro-erosion cutting

    International Nuclear Information System (INIS)

    Kravetskij, M.Yu.; Matsas, E.P.; Skorokhod, M.Ya.; Fomin, A.V.; Khromyak, K.Ya.

    1990-01-01

    Using X-ray topography structural defects generating during electro-erosion cutting of InSb single crystals are studied. It is shown that dislocations, are introduced into so cut dislocation-free ingot plates, nucleation centers being located on their surfaces. It is detected that foreign phase inclusions in InSb are efficient sources of dislocations during cutting

  12. Zirconium oxide crystal phase: The role of the pH and time to attain the final pH for precipitation of the hydrous oxide

    International Nuclear Information System (INIS)

    Srinivasan, R.; Harris, M.B.; Simpson, S.F.; De Angelis, R.J.; Davis, B.H.

    1988-01-01

    Precipitated hydrous zirconium oxide can be calcined to produce either a monoclinic or tetragonal product. It has been observed that the time taken to attain the final pH of the solution in contact with the precipitate plays a dominant role in determining the crystal structure of the zirconium oxide after calcination at 500 0 C. The dependence of crystal structure on the rate of precipitation is observed only in the pH range 7--11. Rapid precipitation in this pH range yields predominately monoclinic zirconia, whereas slow (8 h) precipitation produces the tetragonal phase. At pH of approximately 13.0, only the tetragonal phase is formed from both slowly and rapidly precipitated hydrous oxide. The present results, together with earlier results, show that both the pH of the supernatant liquid and the time taken to attain this pH play dominant roles in determining the crystal structure of zirconia that is formed after calcination of the hydrous oxide. The factors that determine the crystal phase are therefore imparted in a mechanism of precipitation that depends upon the pH, and it is inferred that it is the hydroxyl concentration that is the dominant factor

  13. Orientation selection process during the early stage of cubic dendrite growth: A phase-field crystal study

    International Nuclear Information System (INIS)

    Tang Sai; Wang Zhijun; Guo Yaolin; Wang Jincheng; Yu Yanmei; Zhou Yaohe

    2012-01-01

    Using the phase-field crystal model, we investigate the orientation selection of the cubic dendrite growth at the atomic scale. Our simulation results reproduce how a face-centered cubic (fcc) octahedral nucleus and a body-centered cubic (bcc) truncated-rhombic dodecahedral nucleus choose the preferred growth direction and then evolve into the dendrite pattern. The interface energy anisotropy inherent in the fcc crystal structure leads to the fastest growth velocity in the 〈1 0 0〉 directions. New { 1 1 1} atomic layers prefer to nucleate at positions near the tips of the fcc octahedron, which leads to the directed growth of the fcc dendrite tips in the 〈1 0 0〉 directions. A similar orientation selection process is also found during the early stage of bcc dendrite growth. The orientation selection regime obtained by phase-field crystal simulation is helpful for understanding the orientation selection processes of real dendrite growth.

  14. Phase diagram of power law and Lennard-Jones systems: Crystal phases

    International Nuclear Information System (INIS)

    Travesset, Alex

    2014-01-01

    An extensive characterization of the low temperature phase diagram of particles interacting with power law or Lennard-Jones potentials is provided from Lattice Dynamical Theory. For power law systems, only two lattice structures are stable for certain values of the exponent (or softness) (A15, body centered cube (bcc)) and two more (face centered cubic (fcc), hexagonal close packed (hcp)) are always stable. Among them, only the fcc and bcc are equilibrium states. For Lennard-Jones systems, the equilibrium states are either hcp or fcc, with a coexistence curve in pressure and temperature that shows reentrant behavior. The hcp solid never coexists with the liquid. In all cases analyzed, for both power law and Lennard-Jones potentials, the fcc crystal has higher entropy than the hcp. The role of anharmonic terms is thoroughly analyzed and a general thermodynamic integration to account for them is proposed

  15. What makes a crystal structure report valid?

    NARCIS (Netherlands)

    Spek, Anthony L.|info:eu-repo/dai/nl/156517566

    2018-01-01

    Single crystal X-ray crystallography has developed into a unique, highly automated and accessible tool to obtain detailed information on molecular structures. Proper archival makes that referees, readers and users of the results of reported crystal structures no longer need to depend solely on the

  16. Study of phase separation and crystallization phenomena in soda-lime borosilicate glass enriched in MoO3

    International Nuclear Information System (INIS)

    Magnin, M.

    2009-09-01

    Molybdenum oxide immobilization (MoO 3 , as fission product) is one of the major challenges in the nuclear glass formulation issues for high level waste solutions conditioning since many years, these solutions arising from spent nuclear fuel reprocessing. Phase separation and crystallisation processes may arise in molten glass when the MoO 3 content is higher than its solubility limit that may depend on glass composition. Molybdenum combined with other elements such as alkali and alkaline-earth may form crystalline molybdates, known as 'yellow phases' in nuclear glasses which may decrease the glass durability. In order to confine high level wastes (HLW) such as the fission product solutions arising from the reprocessing of high burn-up UOX-type nuclear spent fuels, a new glass composition (HLW glass) is being optimized. This work is devoted to the study of the origin and the mechanism of phase separation and crystallization phenomena induced by molybdenum oxide incorporation in the HLW glass. From microstructural and structural point of view, the molybdenum oxide behavior was studied in glass compositions belonging to the SiO 2 -B 2 O 3 - Na 2 O-CaO simplified system which constituted basis for the HLW glass formulation. The structural role of molybdenum oxide in borosilicate network explaining the phase separation and crystallization tendency was studied through the coupling of structural ( 95 Mo, 29 Si, 11 B, 23 Na MAS NMR, XRD) and microstructural (SEM, HRTEM) analysis techniques. The determination of phase separation (critical temperature) and crystallization (liquidus temperature) appearance temperatures by in situ viscosimetry and Raman spectroscopy experiments allowed us to propose a transformation scenario during melt cooling. These processes and the nature of the crystalline phases formed (CaMoO 4 , Na 2 MoO 4 ) that depend on the evolution of MoO 3 , CaO and B 2 O 3 contents were correlated with changes of sodium and calcium cations proportions in the

  17. SYNTHESIS, CHARACTERIZATION AND CRYSTAL STRUCTURES ...

    African Journals Online (AJOL)

    B. S. Chandravanshi

    ABSTRACT. Reaction of [VO(acac)2] (acac = acetylacetonate) with ... Single crystal X-ray structural studies indicate that the hydrazone ligands coordinate to ..... Molecular structure of complex (1) at 30% probability displacement. Figure 4.

  18. Phase transformation during silica cluster impact on crystal silicon substrate studied by molecular dynamics simulation

    International Nuclear Information System (INIS)

    Chen Ruling; Luo Jianbin; Guo Dan; Lu Xinchun

    2008-01-01

    The process of a silica cluster impact on a crystal silicon substrate is studied by molecular dynamics simulation. At the impact loading stage, crystal silicon of the impact zone transforms to a locally ordered molten with increasing the local temperature and pressure of the impact zone. And then the transient molten forms amorphous silicon directly as the local temperature and pressure decrease at the impact unloading stage. Moreover, the phase behavior between the locally ordered molten and amorphous silicon exhibits the reversible structural transition. The transient molten contains not only lots of four-fold atom but also many three- and five-fold atoms. And the five-fold atom is similar to the mixture structure of semi-Si-II and semi-bct5-Si. The structure transformation between five- and four-fold atoms is affected by both pressure and temperature. The structure transformation between three- and four-fold atoms is affected mostly by temperature. The direct structure transformation between five- and three-fold atoms is not observed. Finally, these five- and three-fold atoms are also different from the usual five- and three-fold deficient atoms of amorphous silicon. In addition, according to the change of coordination number of atoms the impact process is divided into six stages: elastic, plastic, hysteresis, phase regressive, adhesion and cooling stages

  19. Chemical composition, crystal size and lattice structural changes after incorporation of strontium into biomimetic apatite.

    Science.gov (United States)

    Li, Z Y; Lam, W M; Yang, C; Xu, B; Ni, G X; Abbah, S A; Cheung, K M C; Luk, K D K; Lu, W W

    2007-03-01

    Recently, strontium (Sr) as ranelate compound has become increasingly popular in the treatment of osteoporosis. However, the lattice structure of bone crystal after Sr incorporation is yet to be extensively reported. In this study, we synthesized strontium-substituted hydroxyapatite (Sr-HA) with different Sr content (0.3%, 1.5% and 15% Sr-HA in mole ratio) to simulate bone crystals incorporated with Sr. The changes in chemical composition and lattice structure of apetite after synthetic incorporation of Sr were evaluated to gain insight into bone crystal changes after incorporation of Sr. X-ray diffraction (XRD) patterns revealed that 0.3% and 1.5% Sr-HA exhibited single phase spectrum, which was similar to that of HA. However, 15% Sr-HA induced the incorporation of HPO4(2-) and more CO3(2-), the crystallinity reduced dramatically. Transmission electron microscopy (TEM) images showed that the crystal length and width of 0.3% and 1.5% Sr-HA increased slightly. Meanwhile, the length and width distribution were broadened and the aspect ratio decreased from 10.68+/-4.00 to 7.28+/-2.80. The crystal size and crystallinity of 15% Sr-HA dropped rapidly, which may suggest that the fundamental crystal structure is changed. The findings from this work indicate that current clinical dosage which usually results in Sr incorporation of below 1.5% may not change chemical composition and lattice structure of bone, while it will broaden the bone crystal size distribution and strengthen the bone.

  20. Crystal structure from one-electron theory

    DEFF Research Database (Denmark)

    Skriver, H. L.

    1985-01-01

    The authors have studied the crystal structure of all the 3d, 4d, and 5d transition metals at zero pressure and temperature by means of the linear muffin-tin orbital method and Andersen's force theorem. They find that, although the structural energy differences seem to be overestimated by the the......The authors have studied the crystal structure of all the 3d, 4d, and 5d transition metals at zero pressure and temperature by means of the linear muffin-tin orbital method and Andersen's force theorem. They find that, although the structural energy differences seem to be overestimated...

  1. Dependence of optical phase modulation on anchoring strength of dielectric shield wall surfaces in small liquid crystal pixels

    Science.gov (United States)

    Isomae, Yoshitomo; Shibata, Yosei; Ishinabe, Takahiro; Fujikake, Hideo

    2018-03-01

    We demonstrated that the uniform phase modulation in a pixel can be realized by optimizing the anchoring strength on the walls and the wall width in the dielectric shield wall structure, which is the needed pixel structure for realizing a 1-µm-pitch optical phase modulator. The anchoring force degrades the uniformity of the phase modulation in ON-state pixels, but it also keeps liquid crystals from rotating against the leakage of an electric field. We clarified that the optimal wall width and anchoring strength are 250 nm and less than 10-4 J/m2, respectively.

  2. Novel complex MAD phasing and RNase H structural insights using selenium oligonucleotides

    Energy Technology Data Exchange (ETDEWEB)

    Abdur, Rob; Gerlits, Oksana O.; Gan, Jianhua; Jiang, Jiansheng; Salon, Jozef; Kovalevsky, Andrey Y.; Chumanevich, Alexander A.; Weber, Irene T.; Huang, Zhen, E-mail: huang@gsu.edu [Georgia State University, Atlanta, GA 30303 (United States)

    2014-02-01

    Selenium-derivatized oligonucleotides may facilitate phase determination and high-resolution structure determination for protein–nucleic acid crystallography. The Se atom-specific mutagenesis (SAM) strategy may also enhance the study of nuclease catalysis. The crystal structures of protein–nucleic acid complexes are commonly determined using selenium-derivatized proteins via MAD or SAD phasing. Here, the first protein–nucleic acid complex structure determined using selenium-derivatized nucleic acids is reported. The RNase H–RNA/DNA complex is used as an example to demonstrate the proof of principle. The high-resolution crystal structure indicates that this selenium replacement results in a local subtle unwinding of the RNA/DNA substrate duplex, thereby shifting the RNA scissile phosphate closer to the transition state of the enzyme-catalyzed reaction. It was also observed that the scissile phosphate forms a hydrogen bond to the water nucleophile and helps to position the water molecule in the structure. Consistently, it was discovered that the substitution of a single O atom by a Se atom in a guide DNA sequence can largely accelerate RNase H catalysis. These structural and catalytic studies shed new light on the guide-dependent RNA cleavage.

  3. Raman scattering study of the a-GeTe structure and possible mechanism for the amorphous to crystal transition

    International Nuclear Information System (INIS)

    Andrikopoulos, K S; Yannopoulos, S N; Voyiatzis, G A; Kolobov, A V; Ribes, M; Tominaga, J

    2006-01-01

    We report on an inelastic (Raman) light scattering study of the local structure of amorphous GeTe (a-GeTe) films. A detailed analysis of the temperature-reduced Raman spectra has shown that appreciable structural changes occur as a function of temperature. These changes involve modifications of atomic arrangements such as to facilitate the rapid amorphous to crystal transformation, which is the major advantage of phase-change materials used in optical data storage media. A particular structural model, supported by polarization analysis, is proposed which is compatible with the experimental data as regards both the structure of a-GeTe and the crystallization transition. The remarkable difference between the Raman spectrum of the crystal and the glass can thus naturally be accounted for

  4. Control of the structural parameters in the (Zn – Zn16Ti single crystal growth

    Directory of Open Access Journals (Sweden)

    W. Wołczyński

    2011-10-01

    Full Text Available The (Zn - single crystal was obtained by means of the Bridgman system. Several growth rates were applied during the experiment. The graphite crucible was used in order to perform the solidification process. The unidirectional solidification occurred with the presence of the moving temperature field. The thermal gradient was positive so that the constrained growth of the single crystal was ensured. The (Zn single crystal was doped with small addition of titanium and copper. The titanium formed an intermetallic compound Zn16-Ti. The copper was solved in the solid solution (Zn. The precipitates of (Zn and Zn16-Ti formed a stripes localized cyclically along the single crystal length. The intermetallic compound Zn16-Ti strengthened the (Zn single crystal. The structural transitions were observed in the stripes with the increasing solidification rate. Within the first range of the solidification rates ( the irregular L-shape rod-like intermetalliccompoundwas revealed. At the- threshold growth rate branches disappear continuously till the growth rate equal to. At the same range of growth rates the regular lamellar eutectic structure (Zn – Zn16-Ti appeared continuously and it existed exclusively till the second threshold growth rate equal to. Above the second threshold growth rate the regular rod-like eutectic structure was formed, only. Thegeneral theory for the stationary eutectic solidification was developed. According to this theory the eutectic structure localized within the stripes is formed under stationary state. Therefore, the criterion of the minimum entropy production defines well the stationary solidification. The entropy production was calculated for the regular rod-like eutectic structure formation and for the regular lamellar eutectic structure formation. It was postulated that the observed structure are subjected to the competition. That is why the structural transitionwere observed at therevealedthreshold growth rates.Moreover, it was

  5. Investigation of the La2O3-Nb2O5-WO3 ternary phase diagram: Isolation and crystal structure determination of the original La3NbWO10 material

    KAUST Repository

    Vu, T.D.; Vu, T.D.; Barre, M.; Adil, Karim; Jouanneaux, A.; Suard, E.; Goutenoire, F.

    2015-01-01

    In the course of the exploration of the La2O3-WO3-Nb2O5 ternary phase diagram, a new compound with the formula La3NbWO10 was discovered. Its structure was determined from a combination of powder X-ray and neutron diffraction data. It crystallizes

  6. Laser diffraction analysis of colloidal crystals

    Energy Technology Data Exchange (ETDEWEB)

    Sogami, Ikuo S.; Shinohara, Tadatomi; Yoshiyama, Tsuyoshi [Kyoto Sangyo Univ., Department of Physics, Kyoto (Japan)

    2001-10-01

    Laser diffraction analysis is made on crystallization in salt-free aqueous suspensions of highly-charged colloidal particles for semi-dilute specimens of concentration 0.1-10.0 vol%. Kossel diffraction patterns which represent faithfully accurate information on lattice symmetries in the suspensions enable us to investigate the time evolution of colloidal crystals. The results show that the crystallization proceeds by way of the following intermediate phase transitions: two-dimensional hcp structure {yields} random layer structure {yields} layer structure with one sliding degree of freedom {yields} stacking disorder structure {yields} stacking structure with multivariant periodicity {yields} fcc twin structure with twin plane (111) {yields} normal fcc structure {yields} bcc twin structure with twin plane (11-bar2) or (1-bar12) {yields} normal bcc structure. For concentrated suspensions (>2 vol %), the phase transition ceases to proceed at the normal fcc structure. (author)

  7. Laser diffraction analysis of colloidal crystals

    International Nuclear Information System (INIS)

    Sogami, Ikuo S.; Shinohara, Tadatomi; Yoshiyama, Tsuyoshi

    2001-01-01

    Laser diffraction analysis is made on crystallization in salt-free aqueous suspensions of highly-charged colloidal particles for semi-dilute specimens of concentration 0.1-10.0 vol%. Kossel diffraction patterns which represent faithfully accurate information on lattice symmetries in the suspensions enable us to investigate the time evolution of colloidal crystals. The results show that the crystallization proceeds by way of the following intermediate phase transitions: two-dimensional hcp structure → random layer structure → layer structure with one sliding degree of freedom → stacking disorder structure → stacking structure with multivariant periodicity → fcc twin structure with twin plane (111) → normal fcc structure → bcc twin structure with twin plane (11-bar2) or (1-bar12) → normal bcc structure. For concentrated suspensions (>2 vol %), the phase transition ceases to proceed at the normal fcc structure. (author)

  8. Structural study of quasi-one-dimensional vanadium pyroxene LiVSi{sub 2}O{sub 6} single crystals

    Energy Technology Data Exchange (ETDEWEB)

    Ishii, Yuto [Department of Physics, Hokkaido University, Sapporo 060-0810 (Japan); Matsushita, Yoshitaka [National Institute for Materials Science, 1-1 Namiki, Tsukuba, Ibaraki 305-0044 (Japan); Oda, Migaku; Yoshida, Hiroyuki [Department of Physics, Hokkaido University, Sapporo 060-0810 (Japan)

    2017-02-15

    Single crystals of quasi-one-dimensional vanadium pyroxene LiVSi{sub 2}O{sub 6} were synthesized and the crystal structures at 293 K and 113 K were studied using X-ray diffraction experiments. We found a structural phase transition from the room-temperature crystal structure with space group C2/c to a low-temperature structure with space group P2{sub 1}/c, resulting from a rotational displacement of SiO{sub 4} tetrahedra. The temperature dependence of magnetic susceptibility shows a broad maximum around 116 K, suggesting an opening of the Haldane gap expected for one-dimensional antiferromagnets with S=1. However, an antiferromagnetic long-range order was developed below 24 K, probably caused by a weak inter-chain magnetic coupling in the compound. - Graphical abstract: Low temperature crystal structure of LiVSi{sub 2}O{sub 6} and an orbital arrangement within the V-O zig-zag chain along the c-axis. - Highlights: • A low temperature structure of LiVSi{sub 2}O{sub 6} was determined by single crystal X-ray diffraction measurements. • The origin of the structural transition is a rotational displacement of SiO{sub 4} tetrahedra. • The uniform orbital overlap in the V-O zigzag chain makes the system a quasi one-dimensional antiferromagnet.

  9. SYNTHESIS, CHARACTERIZATION AND CRYSTAL STRUCTURE ...

    African Journals Online (AJOL)

    Preferred Customer

    Reaction of [MoO2(acac)2] (where acac = acetylacetonate) with N'-(2-hydroxy-4- ... Single crystal X-ray structural studies indicate that the hydrazone ligand coordinates .... Molecular structure of the complex at 30% probability displacement.

  10. Crystal structure refinement with SHELXL

    Energy Technology Data Exchange (ETDEWEB)

    Sheldrick, George M., E-mail: gsheldr@shelx.uni-ac.gwdg.de [Department of Structural Chemistry, Georg-August Universität Göttingen, Tammannstraße 4, Göttingen 37077 (Germany)

    2015-01-01

    New features added to the refinement program SHELXL since 2008 are described and explained. The improvements in the crystal structure refinement program SHELXL have been closely coupled with the development and increasing importance of the CIF (Crystallographic Information Framework) format for validating and archiving crystal structures. An important simplification is that now only one file in CIF format (for convenience, referred to simply as ‘a CIF’) containing embedded reflection data and SHELXL instructions is needed for a complete structure archive; the program SHREDCIF can be used to extract the .hkl and .ins files required for further refinement with SHELXL. Recent developments in SHELXL facilitate refinement against neutron diffraction data, the treatment of H atoms, the determination of absolute structure, the input of partial structure factors and the refinement of twinned and disordered structures. SHELXL is available free to academics for the Windows, Linux and Mac OS X operating systems, and is particularly suitable for multiple-core processors.

  11. Two-dimensional photonic crystal accelerator structures

    Directory of Open Access Journals (Sweden)

    Benjamin M. Cowan

    2003-10-01

    Full Text Available Photonic crystals provide a method of confining a synchronous speed-of-light mode in an all-dielectric structure, likely a necessary feature in any optical accelerator. We explore computationally a class of photonic crystal structures with translational symmetry in a direction transverse to the electron beam. We demonstrate synchronous waveguide modes and discuss relevant parameters of such modes. We then explore how accelerator parameters vary as the geometry of the structure is changed and consider trade-offs inherent in the design of an accelerator of this type.

  12. Structural phase transitions in Iron - based superconductors BaFe2-xCrxAs2 under high pressure

    International Nuclear Information System (INIS)

    Uhoya, W.O.; Montgomery, J.M.; Samudrala, G.K.; Tsoi, G.M.; Vohra, Y.K.; Sefar, A.S.

    2011-01-01

    Pure BaFe 2 As 2 with the ThCr 2 Si 2 -type crystal structure under ambient conditions is known to superconduct under high pressure and undergo an isostructural phase transition from tetragonal to collapsed tetragonal phase which is accompanied by anomalous compressibility effects. Presently, there is no reported work on the crystal structure on any of the chemically doped 122- iron based superconductors under high pressure. We have carried out the electrical resistance measurements and high pressure X-ray diffraction studies on Chromium doped samples of BaFe 2-x Cr x As 2 (x = 0, 0.05, 0.15, 0.4, 0.61) to a pressure of 75 GPa and a temperature of 10K using a synchrotron source and designer diamond anvils, so as to investigate the influence of chemical doping and high pressure on crystal structure and superconductivity

  13. Polymer Stabilization of Liquid-Crystal Blue Phase II toward Photonic Crystals.

    Science.gov (United States)

    Jo, Seong-Yong; Jeon, Sung-Wook; Kim, Byeong-Cheon; Bae, Jae-Hyun; Araoka, Fumito; Choi, Suk-Won

    2017-03-15

    The temperature ranges where a pure simple-cubic blue phase (BPII) emerges are quite narrow compared to the body-centered-cubic BP (BPI) such that the polymer stabilization of BPII is much more difficult. Hence, a polymer-stabilized BPII possessing a wide temperature range has been scarcely reported. Here, we fabricate a polymer-stabilized BPII over a temperature range of 50 °C including room temperature. The fabricated polymer-stabilized BPII is confirmed via polarized optical microscopy, Bragg reflection, and Kossel diagram observations. Furthermore, we demonstrate reflective BP liquid-crystal devices utilizing the reflectance-voltage performance as a potential application of the polymer-stabilized BPII. Our work demonstrates the possibility of practical application of the polymer-stabilized BPII to photonic crystals.

  14. Synthesis, crystal structure and electrochemical properties of the manganese-doped LiNaFe[PO{sub 4}]F materials

    Energy Technology Data Exchange (ETDEWEB)

    Ben Yahia, Hamdi, E-mail: benyahia.hamdi@aist.go.jp; Shikano, Masahiro, E-mail: shikano.masahiro@aist.go.jp; Sakaebe, Hikari; Kobayashi, Hironori

    2013-08-15

    The new compounds LiNaFe{sub 1−x}Mn{sub x}[PO{sub 4}]F (x ≤ 1/4) were synthesized by a solid state reaction route. The crystal structure of LiNaFe{sub 3/4}Mn{sub 1/4}[PO{sub 4}]F was determined from single crystal X-ray diffraction data. LiNaFe{sub 3/4}Mn{sub 1/4}[PO{sub 4}]F crystallizes with the Li{sub 2}Ni[PO{sub 4}]F-type structure, space group Pnma, a = 10.9719(13), b = 6.3528(7), c = 11.4532(13) Å, V = 798.31(16) Å{sup 3}, and Z = 8. The structure consists of edge-sharing (Fe{sub 3/4}Mn{sub 1/4})O{sub 4}F{sub 2} octahedra forming (Fe{sub 3/4}Mn{sub 1/4})FO{sub 3} chains running along the b-axis. These chains are interlinked by PO{sub 4} tetrahedra forming a three-dimensional framework with the tunnels and the cavities filled by the well-ordered sodium and lithium atoms, respectively. The manganese-doped phases show poor electrochemical behavior comparing to the iron pure phase LiNaFe[PO{sub 4}]F. - Highlights: • We investigated the synthesis of LiNaFe{sub 1−x}Mn{sub x}[PO{sub 4}]F by solid state reaction. • We demonstrated that a solid solution exist only for x ≤ 1/4. • We solved the crystal structure of LiNaFe{sub 3/4}Mn{sub 1/4}[PO{sub 4}]F using single crystal data. • We studied the electrochemical performances of LiNaFe{sub 1−x}Mn{sub x}[PO{sub 4}]F. • The Mn-doped phases have poor electrochemical performances comparing to LiNaFe[PO{sub 4}]F.

  15. Phase transitions and structures of methylammonium compounds

    International Nuclear Information System (INIS)

    Yamamuro, Osamu; Onoda-Yamamuro, Noriko; Matsuo, Takasuke; Suga, Hiroshi; Kamiyama, Takashi; Asano, Hajime; Ibberson, R.M.; David, W.I.F.

    1993-01-01

    The structures of CD 3 ND 3 Cl, CD 3 ND 3 I, CD 3 ND 3 BF 4 , (CD 3 ND 3 ) 2 SnCl 6 , and CD 3 ND 3 SnBr 3 crystals were studied with time-of-flight type high-resolution powder diffractometers using spallation pulsed neutron sources. The orientations of the CD 3 ND 3 cations, including the positions of the D atoms, were determined at all the room temperature phases and at the low temperature phases of CD 3 ND 3 I and (CD 3N D 3 ) 2 SnCl 6 . The heat capacity experiments were also performed for both protonated and deuterated analogs of these compounds. From both structural and thermodynamic points of view, it was found that the transitions are mainly associated with the order-disorder change of the orientations of the CD 3 ND 3 cations. (author)

  16. Effect of crystal orientation on the phase diagrams, dielectric and piezoelectric properties of epitaxial BaTiO{sub 3} thin films

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Huaping, E-mail: wuhuaping@gmail.com, E-mail: hpwu@zjut.edu.cn [Key Laboratory of E& M (Zhejiang University of Technology), Ministry of Education & Zhejiang Province, Hangzhou 310014 (China); State Key Laboratory of Structural Analysis for Industrial Equipment, Dalian University of Technology, Dalian 116024 (China); Ma, Xuefu; Zhang, Zheng; Zeng, Jun; Chai, Guozhong [Key Laboratory of E& M (Zhejiang University of Technology), Ministry of Education & Zhejiang Province, Hangzhou 310014 (China); Wang, Jie [Department of Engineering Mechanics, School of Aeronautics and Astronautics, Zhejiang University, Hangzhou 310027 (China)

    2016-01-15

    The influence of crystal orientations on the phase diagrams, dielectric and piezoelectric properties of epitaxial BaTiO{sub 3} thin films has been investigated using an expanded nonlinear thermodynamic theory. The calculations reveal that crystal orientation has significant influence on the phase stability and phase transitions in the misfit strain-temperature phase diagrams. In particular, the (110) orientation leads to a lower symmetry and more complicated phase transition than the (111) orientation in BaTiO{sub 3} films. The increase of compressive strain will dramatically enhance the Curie temperature T{sub C} of (110)-oriented BaTiO{sub 3} films, which matches well with previous experimental data. The polarization components experience a great change across the boundaries of different phases at room temperature in both (110)- and (111)-oriented films, which leads to the huge dielectric and piezoelectric responses. A good agreement is found between the present thermodynamics calculation and previous first-principles calculations. Our work provides an insight into how to use crystal orientation, epitaxial strain and temperature to tune the structure and properties of ferroelectrics.

  17. B1 to B2 structural phase transition in LiF under pressure

    Science.gov (United States)

    Jain, Aayushi; Dixit, R. C.

    2018-05-01

    In the last few decades the alkali halides emerged as crystals with useful applications and their high-pressure behaviour is the most intensively studied subject in high-pressure physics/chemistry, material science, and geosciences. Most alkali halides follow the B1 (NaCl-type)→B2 (CsCl-type) phase-transition route under pressure. In the present paper, we have investigated the characteristics of structural phase transition that occurred in Lithium Florid compound under high pressure. The transition pressure of B1-B2 was calculated using an effective interionic interaction potential (EIOP). The changes of the characteristics of crystals like, Gibbs free energy, cohesive energy, volume collapse, and lattice constant are calculated for the B1 and B2 structures. These data were compared with the available experimental and theoretical data.

  18. Photonics of liquid-crystal structures: A review

    Energy Technology Data Exchange (ETDEWEB)

    Palto, S. P., E-mail: palto@online.ru; Blinov, L M; Barnik, M I; Lazarev, V V; Umanskii, B A; Shtykov, N M [Russian Academy of Sciences, Shubnikov Institute of Crystallography (Russian Federation)

    2011-07-15

    The original results of studies of the electro-optical and laser effects which have been performed at the Laboratory of Liquid Crystals of the Institute of Crystallography, Russian Academy of Sciences, over the last few years are reviewed. Cholesteric liquid crystals as vivid representatives of photonic structures and their behavior in an electric field are considered in detail. The formation of higher harmonics in the periodic distribution of the director field in a helical liquid crystal structure and, correspondingly, the new (anharmonic) mode of electro-optical effects are discussed. Another group of studies is devoted to bistable light switching by an electric field in chiral nematics. Polarization diffraction gratings controlled by an electric field are also considered. The results of studies devoted to microlasers on various photonic structures with cholesteric and nematic liquid crystals are considered in detail. Particular attention is given to the new regime: leaky-mode lasing. Designs of liquid crystal light amplifiers and their polarization, field, and spectral characteristics are considered in the last section.

  19. Structural matching of ferroelectric domains and associated distortion in potassium titanyl phosphate crystals

    CERN Document Server

    Pernot-Rejmankova, P; Cloetens, P; Lyford, T; Baruchel, J

    2003-01-01

    The surface deformation and atomic-level distortions associated with crystal structural matching at ferroelectric inversion domain walls are investigated in periodically poled potassium titanyl phosphate (KTP) crystals. A deformation, of the order of 10 sup - sup 8 m in scale and having the periodicity of the domains, is observed at the surfaces by optical interferometry. It is discussed in terms of the piezoelectric effect. The matching of the crystal structures at the domain walls is studied by combining the hard x-ray Fresnel phase-imaging technique with Bragg diffraction imaging methods ('Bragg-Fresnel imaging') and using synchrotron radiation. Quantitative analysis of the contrast of the Bragg-Fresnel images recorded as a function of the propagation distance is demonstrated to allow the determination of how the domains are matched at the atomic (unit cell) level, even though the spatial resolution of the images is on the scale of micrometres. The atom P(1) is determined as the linking atom for connecting...

  20. Tunable topological phases in photonic and phononic crystals

    KAUST Repository

    Chen, Zeguo

    2018-02-18

    Topological photonics/phononics, inspired by the discovery of topological insulators, is a prosperous field of research, in which remarkable one-way propagation edge states are robust against impurities or defect without backscattering. This dissertation discusses the implementation of multiple topological phases in specific designed photonic and phononic crystals. First, it reports a tunable quantum Hall phase in acoustic ring-waveguide system. A new three-band model focused on the topological transitions at the Γ point is studied, which gives the functionality that nontrivial topology can be tuned by changing the strengths of the couplings and/or the broken time-reversal symmetry. The resulted tunable topological edge states are also numerically verified. Second, based on our previous studied acoustic ring-waveguide system, we introduce anisotropy by tuning the couplings along different directions. We find that the bandgap topology is related to the frequency and directions. We report our proposal on a frequency filter designed from such an anisotropic topological phononic crystal. Third, motivated by the recent progress on quantum spin Hall phases, we propose a design of time-reversal symmetry broken quantum spin Hall insulators in photonics, in which a new quantum anomalous Hall phase emerges. It supports a chiral edge state with certain spin orientations, which is robust against the magnetic impurities. We also report the realization of the quantum anomalous Hall phase in phononics.

  1. The Effect of Chain Structures on the Crystallization Behavior and Membrane Formation of Poly(Vinylidene Fluoride Copolymers

    Directory of Open Access Journals (Sweden)

    Wenzhong Ma

    2014-05-01

    Full Text Available The crystallization behaviors of two copolymers of PVDF were studied, and the effect of copolymerized chains on the crystallization behavior was investigated. The results indicated that both copolymers had a lowered crystallization temperature and crystallinity. The crystallization rate was improved by the copolymer with symmetrical units in PVDF chains, but hindered by asymmetrical units, compared with the neat PVDF. The symmetrical units in PVDF chains favored the β-crystals with fiber-like structures. According to the solubility parameter rule, methyl salicylate (MS can be chosen as a diluent for PVDF copolymers. Both diluted systems had liquid-liquid (L-L regions in the phase diagrams, which was due to the lowered crystallization temperature.

  2. Crystal Growth of Ca3Nb(Ga1−xAlx3Si2O14 Piezoelectric Single Crystals with Various Al Concentrations

    Directory of Open Access Journals (Sweden)

    Yuui Yokota

    2015-08-01

    Full Text Available Ca3Nb(Ga1−xAlx3Si2O14 (CNGAS single crystals with various Al concentrations were grown by a micro-pulling-down (µ-PD method and their crystal structures, chemical compositions, crystallinities were investigated. CNGAS crystals with x = 0.2, 0.4 and 0.6 indicated a single phase of langasite-type structure without any secondary phases. In contrast, the crystals with x = 0.8 and 1 included some secondary phases in addition to the langasite-type phase. Lattice parameters, a- and c-axes lengths, of the langasite-type phase systematically decreased with an increase of Al concentration. The results of chemical composition analysis revealed that the actual Al concentrations in as-grown crystals were almost consistent with the nominal compositions. In addition, there was no large segregation of each cation along the growth direction.

  3. Crystal structure of the yeast nicotinamidase Pnc1p.

    Science.gov (United States)

    Hu, Gang; Taylor, Alexander B; McAlister-Henn, Lee; Hart, P John

    2007-05-01

    The yeast nicotinamidase Pnc1p acts in transcriptional silencing by reducing levels of nicotinamide, an inhibitor of the histone deacetylase Sir2p. The Pnc1p structure was determined at 2.9A resolution using MAD and MIRAS phasing methods after inadvertent crystallization during the pursuit of the structure of histidine-tagged yeast isocitrate dehydrogenase (IDH). Pnc1p displays a cluster of surface histidine residues likely responsible for its co-fractionation with IDH from Ni(2+)-coupled chromatography resins. Researchers expressing histidine-tagged proteins in yeast should be aware of the propensity of Pnc1p to crystallize, even when overwhelmed in concentration by the protein of interest. The protein assembles into extended helical arrays interwoven to form an unusually robust, yet porous superstructure. Comparison of the Pnc1p structure with those of three homologous bacterial proteins reveals a common core fold punctuated by amino acid insertions unique to each protein. These insertions mediate the self-interactions that define the distinct higher order oligomeric states attained by these molecules. Pnc1p also acts on pyrazinamide, a substrate analog converted by the nicotinamidase from Mycobacterium tuberculosis into a product toxic to that organism. However, we find no evidence for detrimental effects of the drug on yeast cell growth.

  4. Crystal structure of molybdenyl tetrapolyphosphate (MoO)2P4O13

    International Nuclear Information System (INIS)

    Minacheva, L.Kh.; Antsishkina, A.S.; Lavrov, A.V.; Sakharova, V.G.; Nikolaev, V.P.; Poraj-Koshits, M.A.

    1979-01-01

    The structure of crystals of molybdenyl tetrapolyphosphate [MoO] 2 P 4 O 13 has been determined. The substance is crystallized in the monoclinic syngony with the following parameters of the elementary cell: a=8.288 (2); b=10.690 (3); c=19.529 (5) A; γ=106.7 (3) deg. The structural units are molybdenyl groups MoO(3 + ) and polyphosphate anions P 4 O 13 (6 - ) that are composed of four PO 4 tetrahedrons whose apexes are connected in series. Three atoms of phasphate anion form the ''internal'' P-O-P bridges, while the remaining oxygen atoms, the ''external'' P-O-Mo bridges. The optimum temperature of crystals synthesis is 450 - 460 deg C. A mixture of phase of MoO 2 P 4 O 13 and Mo(PO 3 ) 3 is obtained as temperature is raised up to 600 deg C. Consequently, the stepwise dissociation of molybdenyl ions with the splitting off of oxygen and gradual reduction in the degree of molybdenum oxidation (MoO 2 ) 2+ → (MoO) 3+ → Mo 3+ occurs in the solution

  5. Phase retrieval of diffraction from highly strained crystals

    International Nuclear Information System (INIS)

    Newton, Marcus C.; Harder, Ross; Huang Xiaojing; Xiong Gang; Robinson, Ian K.

    2010-01-01

    An important application of phase retrieval methods is to invert coherent x-ray diffraction measurements to obtain real-space images of nanoscale crystals. The phase information is currently recovered from reciprocal-space amplitude measurements by the application of iterative projective algorithms that solve the nonlinear and nonconvex optimization problem. Various algorithms have been developed each of which apply constraints in real and reciprocal space on the reconstructed object. In general, these methods rely on experimental data that is oversampled above the Nyquist frequency. To date, support-based methods have worked well, but are less successful for highly strained structures, defined as those which contain (real-space) phase information outside the range of ±π/2. As a direct result the acquired experimental data is, in general, inadvertently subsampled below the Nyquist frequency. In recent years, a new theory of 'compressive sensing' has emerged, which dictates that an appropriately subsampled (or compressed) signal can be recovered exactly through iterative reconstruction and various routes to minimizing the l 1 norm or total variation in that signal. This has proven effective in solving several classes of convex optimization problems. Here we report on a 'density-modification' phase reconstruction algorithm that applies the principles of compressive sensing to solve the nonconvex phase retrieval problem for highly strained crystalline materials. The application of a nonlinear operator in real-space minimizes the l 1 norm of the amplitude by a promotion-penalization (or 'propenal') operation that confines the density bandwidth. This was found to significantly aid in the reconstruction of highly strained nanocrystals. We show how this method is able to successfully reconstruct phase information that otherwise could not be recovered.

  6. Extra phase noise from thermal fluctuations in nonlinear optical crystals

    DEFF Research Database (Denmark)

    César, J. E. S.; Coelho, A.S.; Cassemiro, K.N.

    2009-01-01

    We show theoretically and experimentally that scattered light by thermal phonons inside a second-order nonlinear crystal is the source of additional phase noise observed in optical parametric oscillators. This additional phase noise reduces the quantum correlations and has hitherto hindered the d...

  7. Crystal Structure of AgBi2I7 Thin Films.

    Science.gov (United States)

    Xiao, Zewen; Meng, Weiwei; Mitzi, David B; Yan, Yanfa

    2016-10-06

    Synthesis of cubic-phase AgBi 2 I 7 iodobismuthate thin films and fabrication of air-stable Pb-free solar cells using the AgBi 2 I 7 absorber have recently been reported. On the basis of X-ray diffraction (XRD) analysis and nominal composition, it was suggested that the synthesized films have a cubic ThZr 2 H 7 crystal structure with AgBi 2 I 7 stoichiometry. Through careful examination of the proposed structure and computational evaluation of the phase stability and bandgap, we find that the reported "AgBi 2 I 7 " films cannot be forming with the ThZr 2 H 7 -type structure, but rather more likely adopt an Ag-deficient AgBiI 4 type. Both the experimental X-ray diffraction pattern and bandgap can be better explained by the AgBiI 4 structure. Additionally, the proposed AgBiI 4 structure, with octahedral bismuth coordination, removes unphysically short Bi-I bonding within the [BiI 8 ] hexahedra of the ThZr 2 I 7 model. Our results provide critical insights for assessing the photovoltaic properties of AgBi 2 I 7 iodobismuthate materials.

  8. Topotactic decomposition and crystal structure of white molybdenum trioxide--monohydrate: prediction of structure by topotaxy

    International Nuclear Information System (INIS)

    Oswald, H.R.; Guenter, J.R.; Dubler, E.

    1975-01-01

    Single crystals of the white MoO 3 . H 2 O modification (''α-molybdic acid'') were transformed by heating to 160 0 C into perfect pseudomorphs built up from oriented MoO 3 crystallites of known structure. From the mutual orientation relationship of the unit cells of both phases involved in this topotactic reaction, as determined by X-ray photographs, a model for the so far unknown crystal structure of white MoO 3 . H 2 O could be deduced. Independently, this structure was determined by X-ray diffractometer data then: space group P anti 1, a = 7.388, b = 3.700, c = 6.673 A, α = 107.8, β = 113.6, γ = 91.2 0 , Z = 2. The structure was solved from the Patterson function and refined until R = 0.088. It is built up from isolated double chains of strongly distorted [MoO 5 (H 2 O)]-octahedra sharing two common edges with each other. This result agrees well with the model derived from topotaxy, and it becomes evident how the MoO 3 lattice is formed through corner linking of the isolated double chains after the water molecules are removed. The study of topotactic phenomena seems rather generally applicable to deduce the main features of structures involved and for better understanding of structural relationships. (U.S.)

  9. Electron-beam-irradiation-induced crystallization of amorphous solid phase change materials

    Science.gov (United States)

    Zhou, Dong; Wu, Liangcai; Wen, Lin; Ma, Liya; Zhang, Xingyao; Li, Yudong; Guo, Qi; Song, Zhitang

    2018-04-01

    The electron-beam-irradiation-induced crystallization of phase change materials in a nano sized area was studied by in situ transmission electron microscopy and selected area electron diffraction. Amorphous phase change materials changed to a polycrystalline state after being irradiated with a 200 kV electron beam for a long time. The results indicate that the crystallization temperature strongly depends on the difference in the heteronuclear bond enthalpy of the phase change materials. The selected area electron diffraction patterns reveal that Ge2Sb2Te5 is a nucleation-dominated material, when Si2Sb2Te3 and Ti0.5Sb2Te3 are growth-dominated materials.

  10. Comparison of multiple crystal structures with NMR data for engrailed homeodomain

    Energy Technology Data Exchange (ETDEWEB)

    Religa, Tomasz L. [MRC Centre for Protein Engineering (United Kingdom)], E-mail: tlr25@mrc-lmb.cam.ac.uk

    2008-03-15

    Two methods are currently available to solve high resolution protein structures-X-ray crystallography and nuclear magnetic resonance (NMR). Both methods usually produce highly similar structures, but small differences between both solutions are always observed. Here the raw NMR data as well as the solved NMR structure were compared to the multiple crystal structures solved for the WT 60 residue three helix bundle engrailed homeodomain (EnHD) and single point mutants. There was excellent agreement between TALOS-predicted and crystal structure-observed dihedral angles and a good agreement for the {sup 3}J(H{sup N}H{sup {alpha}}) couplings for the multiple crystal structures. Around 1% of NOEs were violated for any crystal structure, but no NOE was inconsistent with all of the crystal structures. Violations usually occurred for surface residues or for residues for which multiple discreet conformations were observed between the crystal structures. Comparison of the disorder shown in the multiple crystal structures shows little correlation with dynamics under native conditions for this protein.

  11. Crystal nucleation and dendrite growth of metastable phases in undercooled melts

    International Nuclear Information System (INIS)

    Herlach, Dieter

    2011-01-01

    Research highlights: → Homogenous nucleation. → Effects of convection on dendrite growth kinetics. → Description of disorder trapping validated by experiment. - Abstract: An undercooled melt possesses an enhanced free enthalpy that opens up the possibility to crystallize metastable crystalline solids in competition with their stable counterparts. Crystal nucleation selects the crystallographic phase whereas the growth dynamics controls microstructure evolution. We apply containerless processing techniques such as electromagnetic and electrostatic levitation to containerlesss undercool and solidify metallic melts. Owing to the complete avoidance of heterogeneous nucleation on container-walls a large undercooling range becomes accessible with the extra benefit that the freely suspended drop is direct accessible for in situ observation of crystallization far away from equilibrium. Results of investigations of maximum undercoolability on pure zirconium are presented showing the limit of maximum undercoolability set by the onset of homogeneous nucleation. Rapid dendrite growth is measured as a function of undercooling by a high-speed camera and analysed within extended theories of non-equilibrium solidification. In such both supersaturated solid solutions and disordered superlattice structure of intermetallics are formed at high growth velocities. A sharp interface theory of dendrite growth is capable to describe the non-equilibrium solidification phenomena during rapid crystallization of deeply undercooled melts. Eventually, anomalous growth behaviour of Al-rich Al-Ni alloys is presented, which may be caused by forced convection.

  12. Mitigating crystallization of saturated FAMEs in biodiesel 6: The binary phase behavior of 1, 2-dioleoyl-3-stearoyl sn-glycerol – Methyl stearate

    International Nuclear Information System (INIS)

    Mohanan, Athira; Bouzidi, Laziz; Narine, Suresh S.

    2016-01-01

    The derivatives of vegetable oils with specific chemical structures, such as TAG (triacylglycerols) having mixed straight and kinked moieties, have proven very effective in lowering the crystallization of biodiesel. SOO (1, 2-dioleoyl-3-stearoyl sn-glycerol)/MeS (methyl stearate) is part of a series of studies of TAG/FAME (fatty acid methyl ester) binary model systems conducted to establish structure–function relationships of lipid-based cold flow improvers in biodiesel with a particular attention to the effect of molecular symmetry in contrast with a previously published study of the OSO (1, 3-dioleoyl-2-stearoyl sn-glycerol)/MeS binary system. The phase behavior of several SOO/MeS mixtures were investigated at different length scales with XRD (X-ray diffraction), DSC (differential scanning calorimetry) and PLM (polarized light microscope). A complete phase diagram including the transformation lines, crystal structure and microstructure was constructed. The solubility behavior was discussed using a simple thermodynamic model based on the Hildebrand equation and pair interactions. The asymmetric position of the oleic moieties of SOO was shown to be crucial in modifying the thermal transformation behavior of MeS. The findings may be used to design effective crystallization modifiers of biodiesel based on particular structural determinants, and underscores the importance of symmetry in such designs. - Highlights: • Effect of symmetry of triglyceride on biodiesel crystallization established. • Complete phase diagram of model triacylglycerol/biodiesel binary system achieved. • Correlation between thermal transitions, crystal structure and microstructure revealed. • Transformation points useful for improving the cold flow of biodiesel identified. • Necessary knowledge gathered to design effective biodiesel cold flow improvers.

  13. Synthesis, Crystal Structure, and Topology-Symmetry Analysis of a New Modification of NaIn[IO3]4

    Science.gov (United States)

    Belokoneva, E. L.; Karamysheva, A. S.; Dimitrova, O. V.; Volkov, A. S.

    2018-01-01

    Crystals of new iodate NaIn[IO3]4 were prepared by the hydrothermal synthesis. The unit cell parameters are a = 7.2672(2) Å, b = 15.2572(6) Å, c = 15.0208(6) Å, β = 101.517(3)°, sp. gr. P21/ c. The formula was determined during the structure determination and refinement of a twinned crystal based on a set of reflections from the atomic planes of the major individual. The refinement with anisotropic displacement parameters was performed for both twin components to the final R factor of 0.050. The In and Na atoms are in octahedral coordination formed by oxygen atoms. The oxygen octahedra are arranged into columns by sharing edges, and the columns are connected by isolated umbrella-like [IO3]- groups to form layers. The new structure is most similar to the isoformular iodate NaIn[IO3]4, which crystallizes in the same sp. gr. P21/ c and is structurally similar, but has a twice smaller unit cell and is characterized by another direction of the monoclinic axis. The structural similarity and difference between the two phases were studied by topologysymmetry analysis. The formation of these phases is related to different combinations of identical one-dimensional infinite chains of octahedra.

  14. Effects of Shear on the Smectic A Phase of Thermotropic Liquid Crystals

    Science.gov (United States)

    Panizza, Pascal; Archambault, Pascal; Roux, Didier

    1995-02-01

    The rheological behaviour of the smectic A phase of the thermotropic liquid crystal 4-cyano-4'-octylbiphenyl (8CB) is examined. X-ray scattering studies under shear flow were performed to probe changes of structures. We found that in a certain range of temperatures two states of orientation of lamellae exist. These two steady states of orientation are separated by a first order dynamic transition that becomes continuous at T_c (a temperature different from that of the smectic/nematic transition). At low shear rates, the smectic A phase is non-Newtonian: its viscosity η varies as (T_c-T)^{1/2}.dot{γ}^{-1/2} (where dot{γ} is the shear rate and T the temperature). In this regime, the structure of the system is compatible with multilamellar cylinders oriented along the flow direction. At high shear rates, the system becomes Newtonian, its layers are then oriented perpendicular to the shearing plates (as already noticed by Safinya et al. [1]).

  15. Conversion of broadband IR radiation and structural disorder in lithium niobate single crystals with low photorefractive effect

    Science.gov (United States)

    Litvinova, Man Nen; Syuy, Alexander V.; Krishtop, Victor V.; Pogodina, Veronika A.; Ponomarchuk, Yulia V.; Sidorov, Nikolay V.; Gabain, Aleksei A.; Palatnikov, Mikhail N.; Litvinov, Vladimir A.

    2016-11-01

    The conversion of broadband IR radiation when the noncritical phase matching condition is fulfilled in lithium niobate (LiNbO3) single crystals with stoichiometric (R = Li/Nb = 1) and congruent (R = 0.946) compositions, as well as in congruent single crystals doped with zinc has been investigated. It is shown that the spectrum parameters of converted radiation, such as the conversion efficiency, spectral width and position of maximum, depend on the ordering degree of structural units of the cation sublattice along the polar axis of crystal.

  16. Investigation of crystal structure, dielectric and magnetic properties in La and Nd co-doped BiFeO{sub 3} multiferroics

    Energy Technology Data Exchange (ETDEWEB)

    Singh, Ompal [Department of Physics, Guru Jambheshwar University of Science & Technology, Hisar 125001, Haryana (India); Agarwal, Ashish, E-mail: aagju@yahoo.com [Department of Physics, Guru Jambheshwar University of Science & Technology, Hisar 125001, Haryana (India); Sanghi, Sujata [Department of Physics, Guru Jambheshwar University of Science & Technology, Hisar 125001, Haryana (India); Das, Amitabh [Solid State Physics Division, Bhabha Atomic Research Centre, Mumbai 400 085 (India); Anju [Department of Physics, Chaudhary Devi Lal University, Sirsa 125025, Haryana (India)

    2017-03-15

    For the investigation of the crystal structure, dielectric properties and magnetic properties of La and Nd co-doped BiFeO{sub 3} multiferroics; Bi{sub 0.8}La{sub 0.2−x}Nd{sub x}FeO{sub 3} (x=0.075, 0.1, 0.125) samples were prepared through solid state reaction method. Rietveld refinement of the obtained XRD patterns shows that there is change in crystal structure in these samples. At higher concentration of La (at x=0.075), the crystal structure was found to have mixed symmetry with rhombohedral and triclinic phases, while with equal concentration of both the dopants (at x=0.1), the structure changes to mixed symmetry having rhombohedral and orthorhombic phases. At higher concentration of Nd (at x=0.125), again mixed symmetry was established having both phases of the previous composition but approximately in reverse fraction. In dielectric analysis, x=0.1 sample showed the highest values of dielectric constant (ε′) and dielectric loss (tan δ). For x=0.125 sample, it was observed that the dielectric constant and dielectric loss response are improved. The magnetic characterization (M–H loops) indicates the significant enhancement in magnetisation with increasing concentration of Nd. Nd doping leads to the destruction of spiral modulation, forming the antiferromagnets, and visualisation of improved magnetisation via canting of spins. - Highlights: • La and Nd co-doped BiFeO{sub 3} were synthesized. • Change in crystal structure is observed. • Significant enhancement in magnetisation is observed.

  17. Structure analysis on synthetic emerald crystals

    Science.gov (United States)

    Lee, Pei-Lun; Lee, Jiann-Shing; Huang, Eugene; Liao, Ju-Hsiou

    2013-05-01

    Single crystals of emerald synthesized by means of the flux method were adopted for crystallographic analyses. Emerald crystals with a wide range of Cr3+-doping content up to 3.16 wt% Cr2O3 were examined by X-ray single crystal diffraction refinement method. The crystal structures of the emerald crystals were refined to R 1 (all data) of 0.019-0.024 and w R 2 (all data) of 0.061-0.073. When Cr3+ substitutes for Al3+, the main adjustment takes place in the Al-octahedron and Be-tetrahedron. The effect of substitution of Cr3+ for Al3+ in the beryl structure results in progressively lengthening of the Al-O distance, while the length of the other bonds remains nearly unchanged. The substitution of Cr3+ for Al3+ may have caused the expansion of a axis, while keeping the c axis unchanged in the emerald lattice. As a consequence, the Al-O-Si and Al-O-Be bonding angles are found to decrease, while the angle of Si-O-Be increases as the Al-O distance increases during the Cr replacement.

  18. Application Of Empirical Phase Diagrams For Multidimensional Data Visualization Of High Throughput Microbatch Crystallization Experiments.

    Science.gov (United States)

    Klijn, Marieke E; Hubbuch, Jürgen

    2018-04-27

    Protein phase diagrams are a tool to investigate cause and consequence of solution conditions on protein phase behavior. The effects are scored according to aggregation morphologies such as crystals or amorphous precipitates. Solution conditions affect morphological features, such as crystal size, as well as kinetic features, such as crystal growth time. Common used data visualization techniques include individual line graphs or symbols-based phase diagrams. These techniques have limitations in terms of handling large datasets, comprehensiveness or completeness. To eliminate these limitations, morphological and kinetic features obtained from crystallization images generated with high throughput microbatch experiments have been visualized with radar charts in combination with the empirical phase diagram (EPD) method. Morphological features (crystal size, shape, and number, as well as precipitate size) and kinetic features (crystal and precipitate onset and growth time) are extracted for 768 solutions with varying chicken egg white lysozyme concentration, salt type, ionic strength and pH. Image-based aggregation morphology and kinetic features were compiled into a single and easily interpretable figure, thereby showing that the EPD method can support high throughput crystallization experiments in its data amount as well as its data complexity. Copyright © 2018. Published by Elsevier Inc.

  19. AACSD: An atomistic analyzer for crystal structure and defects

    Science.gov (United States)

    Liu, Z. R.; Zhang, R. F.

    2018-01-01

    We have developed an efficient command-line program named AACSD (Atomistic Analyzer for Crystal Structure and Defects) for the post-analysis of atomic configurations generated by various atomistic simulation codes. The program has implemented not only the traditional filter methods like the excess potential energy (EPE), the centrosymmetry parameter (CSP), the common neighbor analysis (CNA), the common neighborhood parameter (CNP), the bond angle analysis (BAA), and the neighbor distance analysis (NDA), but also the newly developed ones including the modified centrosymmetry parameter (m-CSP), the orientation imaging map (OIM) and the local crystallographic orientation (LCO). The newly proposed OIM and LCO methods have been extended for all three crystal structures including face centered cubic, body centered cubic and hexagonal close packed. More specially, AACSD can be easily used for the atomistic analysis of metallic nanocomposite with each phase to be analyzed independently, which provides a unique pathway to capture their dynamic evolution of various defects on the fly. In this paper, we provide not only a throughout overview on various theoretical methods and their implementation into AACSD program, but some critical evaluations, specific testing and applications, demonstrating the capability of the program on each functionality.

  20. Prediction of new ground-state crystal structure of T a2O5

    Science.gov (United States)

    Yang, Yong; Kawazoe, Yoshiyuki

    2018-03-01

    Tantalum pentoxide (T a2O5 ) is a wide-gap semiconductor which has important technological applications. Despite the enormous efforts from both experimental and theoretical studies, the ground-state crystal structure of T a2O5 is not yet uniquely determined. Based on first-principles calculations in combination with evolutionary algorithm, we identify a triclinic phase of T a2O5 , which is energetically much more stable than any phases or structural models reported previously. Characterization of the static and dynamical properties of the phase reveals the common features shared with previous metastable phases of T a2O5 . In particular, we show that the d spacing of ˜3.8 Å found in the x-ray diffraction patterns of many previous experimental works is actually the radius of the second Ta-Ta coordination shell as defined by radial distribution functions.

  1. Shear-induced structural transitions in Newtonian non-Newtonian two-phase flow

    Science.gov (United States)

    Cristobal, G.; Rouch, J.; Colin, A.; Panizza, P.

    2000-09-01

    We show the existence under shear flow of steady states in a two-phase region of a brine-surfactant system in which lyotropic dilute lamellar (non-Newtonian) and sponge (Newtonian) phases are coexisting. At high shear rates and low sponge phase-volume fractions, we report on the existence of a dynamic transition corresponding to the formation of a colloidal crystal of multilamellar vesicles (or ``onions'') immersed in the sponge matrix. As the sponge phase-volume fraction increases, this transition exhibits a hysteresis loop leading to a structural bistability of the two-phase flow. Contrary to single phase lamellar systems where it is always 100%, the onion volume fraction can be monitored continuously from 0 to 100 %.

  2. Advanced Si solid phase crystallization for vertical channel in vertical NANDs

    Directory of Open Access Journals (Sweden)

    Sangsoo Lee

    2014-07-01

    Full Text Available The advanced solid phase crystallization (SPC method using the SiGe/Si bi-layer structure is proposed to obtain high-mobility poly-Si thin-film transistors in next generation vertical NAND (VNAND devices. During the SPC process, the top SiGe thin film acts as a selective nucleation layer to induce surface nucleation and equiaxial microstructure. Subsequently, this SiGe thin film microstructure is propagated to the underlying Si thin film by epitaxy-like growth. The initial nucleation at the SiGe surface was clearly observed by in situ transmission electron microscopy (TEM when heating up to 600 °C. The equiaxial microstructures of both SiGe nucleation and Si channel layers were shown in the crystallized bi-layer plan-view TEM measurements. Based on these experimental results, the large-grained and less-defective Si microstructure is expected to form near the channel region of each VNAND cell transistor, which may improve the electrical characteristics.

  3. Crystal structure and thermal expansion of a CsCe{sub 2}Cl{sub 7} scintillator

    Energy Technology Data Exchange (ETDEWEB)

    Zhuravleva, M., E-mail: mzhuravl@utk.edu [Scintillation Materials Research Center, University of Tennessee, Knoxville, TN (United States); Department of Materials Science and Engineering, University of Tennessee, Knoxville, TN (United States); Lindsey, A. [Scintillation Materials Research Center, University of Tennessee, Knoxville, TN (United States); Department of Materials Science and Engineering, University of Tennessee, Knoxville, TN (United States); Chakoumakos, B.C. [Quantum Condensed Matter Division, Oak Ridge National Laboratory, Oak Ridge, TN 37996 (United States); Custelcean, R. [Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, TN (United States); Meilleur, F. [Biology and Soft Matter Division, Oak Ridge National Laboratory, Oak Ridge, TN (United States); Hughes, R.W.; Kriven, W.M. [Department of Materials Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, IL (United States); Melcher, C.L. [Scintillation Materials Research Center, University of Tennessee, Knoxville, TN (United States); Department of Materials Science and Engineering, University of Tennessee, Knoxville, TN (United States)

    2015-07-15

    We used single-crystal X-ray diffraction data to determine crystal structure of CsCe{sub 2}Cl{sub 7}. It crystallizes in a P112{sub 1}/b space group with a=19.352(1) Å, b=19.352(1) Å, c=14.838(1) Å, γ=119.87(2)°, and V=4818.6(5) Å{sup 3}. Differential scanning calorimetry measurements combined with the structural evolution of CsCe{sub 2}Cl{sub 7} via X-ray diffractometry over a temperature range from room temperature to the melting point indicates no obvious intermediate solid–solid phase transitions. The anisotropy in the average linear coefficient of thermal expansion of the a axis (21.3×10{sup –6}/°C) with respect to the b and c axes (27.0×10{sup –6}/°C) was determined through lattice parameter refinement of the temperature dependent diffraction patterns. These findings suggest that the reported cracking behavior during melt growth of CsCe{sub 2}Cl{sub 7} bulk crystals using conventional Bridgman and Czochralski techniques may be largely attributed to the anisotropy in thermal expansion. - Graphical abstract: Three-dimensional quadric surface of thermal expansion coefficient of CsCe{sub 2}Cl{sub 7} at room temperature (sphere – isotropic) and near melting point (ellipsoid – anisotropic). - Highlights: • Crystal structure of CsCe{sub 2}Cl{sub 7} was solved through X-ray diffraction. • Linear coefficients of thermal expansion were determined from in-situ XRD in 25–650 °C. • Anisotropy of the a axis with respect to b and c axes (21.3 vs 27.0×10{sup –6}/°C) was found. • No solid–solid phase transitions were observed via XRD and thermal analysis.

  4. Crystal structure of the adenosine A 2A receptor bound to an antagonist reveals a potential allosteric pocket

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Bingfa; Bachhawat, Priti; Chu, Matthew Ling-Hon; Wood, Martyn; Ceska, Tom; Sands, Zara A.; Mercier, Joel; Lebon, Florence; Kobilka, Tong Sun; Kobilka, Brian K. (Stanford-MED); (ConfometRx); (UCB Pharma)

    2017-02-06

    The adenosine A2A receptor (A2AR) has long been implicated in cardiovascular disorders. As more selective A2AR ligands are being identified, its roles in other disorders, such as Parkinson’s disease, are starting to emerge, and A2AR antagonists are important drug candidates for nondopaminergic anti-Parkinson treatment. Here we report the crystal structure of A2A receptor bound to compound 1 (Cmpd-1), a novel A2AR/N-methyl D-aspartate receptor subtype 2B (NR2B) dual antagonist and potential anti-Parkinson candidate compound, at 3.5 Å resolution. The A2A receptor with a cytochrome b562-RIL (BRIL) fusion (A2AR–BRIL) in the intracellular loop 3 (ICL3) was crystallized in detergent micelles using vapor-phase diffusion. Whereas A2AR–BRIL bound to the antagonist ZM241385 has previously been crystallized in lipidic cubic phase (LCP), structural differences in the Cmpd-1–bound A2AR–BRIL prevented formation of the lattice observed with the ZM241385–bound receptor. The crystals grew with a type II crystal lattice in contrast to the typical type I packing seen from membrane protein structures crystallized in LCP. Cmpd-1 binds in a position that overlaps with the native ligand adenosine, but its methoxyphenyl group extends to an exosite not previously observed in other A2AR structures. Structural analysis revealed that Cmpd-1 binding results in the unique conformations of two tyrosine residues, Tyr91.35 and Tyr2717.36, which are critical for the formation of the exosite. The structure reveals insights into antagonist binding that are not observed in other A2AR structures, highlighting flexibility in the binding pocket that may facilitate the development of A2AR-selective compounds for the treatment of Parkinson’s disease.

  5. Measuring of nonlinearity of dye doped liquid crystals using of self phase modulation effect

    International Nuclear Information System (INIS)

    Abedi, M.; Jafari, A.; Tajalli, H.

    2007-01-01

    Self phase modulation in dye doped liquid crystals has investigated and the nonlinearity of dye doped liquid crystals is measured by this effect. The Self phase modulation effect can be used for producing optical micro rings that have many applications in photonics and laser industries.

  6. Novel phases of lithium-aluminum binaries from first-principles structural search

    Energy Technology Data Exchange (ETDEWEB)

    Sarmiento-Pérez, Rafael; Cerqueira, Tiago F. T.; Botti, Silvana; Marques, Miguel A. L., E-mail: marques@tddft.org [Institut Lumière Matière (UMR5306) and ETSF, Université Lyon 1-CNRS, Université de Lyon, F-69622 Villeurbanne Cedex (France); Valencia-Jaime, Irais [Institut Lumière Matière (UMR5306) and ETSF, Université Lyon 1-CNRS, Université de Lyon, F-69622 Villeurbanne Cedex (France); Centro de Investigación y Estudios Avanzados del IPN, MX-76230 Querétaro (Mexico); Amsler, Maximilian; Goedecker, Stefan [Department of Physics, Universität Basel, Klingelbergstr. 82, 4056 Basel (Switzerland); Romero, Aldo H. [Physics Department, West Virginia University, Morgantown, West Virginia 26506-6315 (United States)

    2015-01-14

    Intermetallic Li–Al compounds are on the one hand key materials for light-weight engineering, and on the other hand, they have been proposed for high-capacity electrodes for Li batteries. We determine from first-principles the phase diagram of Li–Al binary crystals using the minima hopping structural prediction method. Beside reproducing the experimentally reported phases (LiAl, Li{sub 3}Al{sub 2}, Li{sub 9}Al{sub 4}, LiAl{sub 3}, and Li{sub 2}Al), we unveil a structural variety larger than expected by discovering six unreported binary phases likely to be thermodynamically stable. Finally, we discuss the behavior of the elastic constants and of the electric potential profile of all Li–Al stable compounds as a function of their stoichiometry.

  7. Crystal structure stability and electronic properties of the layered nickelate La4Ni3O10

    Science.gov (United States)

    Puggioni, Danilo; Rondinelli, James M.

    2018-03-01

    We investigate the crystal structure and the electronic properties of the trilayer nickelate La4Ni3O10 by means of quantum-mechanical calculations in the framework of the density-functional theory. We find that, at low temperature, La4Ni3O10 undergoes a hitherto unreported structural phase transition and transforms to a new monoclinic P 21/a phase. This phase exhibits electronic properties in agreement with recent angle-resolved photoemission spectroscopy data reported in H. Li et al., [Nat. Commun. 8, 704 (2017), 10.1038/s41467-017-00777-0] and should be considered in models focused on explaining the observed ˜140 K metal-to-metal phase transition.

  8. Praseodymium valency from crystal structure in Pr-Ba-Cu-O and (Y-Pr)-Ba-Cu-O single crystals

    International Nuclear Information System (INIS)

    Collin, G.; Albouy, P.A.; Monod, P.; Ribault, M.

    1990-01-01

    The substitution of Pr to Y leads to materials with a general formula (Y 1-v Pr v ) (Ba 2-x Pr x ) (Cu 3-y vac y ) O 6+x/2-y+z and with a structural transition around v + x' ∼ 0.5. For v + x 0.5 the crystals are tetragonal, La 1.5 Ba 1.5 Cu 3 O 7±z type, with the characteristic tri-twinning of this phase. The Pr valency, in the range 3-3.2 + depending on preparation conditions, is determined from interatomic distances. Orthorhombic crystals of Pr Ba Cu O prepared at high temperatures exhibit a high amount of defects, y ∼ 0.25 on the Cu(1) site and are semiconductors with a T -1/4 activation law attributed to the praseodymium valence fluctuation

  9. Mitigating crystallization of saturated FAMES (fatty acid methyl esters) in biodiesel: 4. The phase behavior of 1,3-dioleoyl-2-palmitoyl glycerol – Methyl stearate binary system

    International Nuclear Information System (INIS)

    Mohanan, Athira; Bouzidi, Laziz; Narine, Suresh S.

    2016-01-01

    The present study examines the phase behavior of a model binary system made of OPO (1,3-dioleoyl-2-palmitoyl glycerol); a TAG (triacylglycerol) highly effective in depressing onset of crystallization of biodiesel, and MeS (methyl stearate); a prevalent saturated FAMEs (fatty acid methyl esters) in biodiesel. The thermal behavior, crystal structure and microstructure of the OPO/MeS mixtures were investigated with DSC (differential scanning calorimetry), XRD (X-ray diffraction) and PLM (polarized light microscope). The OPO/MeS system presented a phase diagram with peritectic and eutectic transitions. A simple thermodynamic modeling of the liquidus line indicated a relatively complex mixing behavior, and highlighted the prevailing effect of the peritectic compound on solubility. Different types of microstructures that were more or less influenced by MeS, OPO or/and compound microstructures were observed in the mixtures. They are associated with the crystal phases and the thermal transitions. Furthermore, MeS, OPO and compound crystal structures (monoclinic, orthorhombic and triclinic, respectively) served as templates for the crystal forms of the coexisting phases. The singularities in the liquidus line are attributed to chain length mismatch between the palmitic acid and the FAME (fatty acid methyl ester). The phase diagram achieved for OPO/MeS system is complete and can help in designing additive formulations to improve the cold flow behavior of biodiesel. - Highlights: • 1,3-dioleoyl-2-palmitoyl glycerol/methyl stearate (OPO/MeS) studied in detail. • Phase diagram with thermal transitions, polymorphism, microstructure achieved. • Phase trajectory singularities attributed to length mismatch of linear chains. • Mechanism for disruption of crystallization of biodiesel evidenced and explained.

  10. A comprehensive review of the lipid cubic phase or in meso method for crystallizing membrane and soluble proteins and complexes

    International Nuclear Information System (INIS)

    Caffrey, Martin

    2015-01-01

    A comprehensive and up-to-date review of the lipid cubic phase or in meso method for crystallizing membrane and soluble proteins and complexes is reported. Recent applications of the method for in situ serial crystallography at X-ray free-electron lasers and synchrotrons are described. The lipid cubic phase or in meso method is a robust approach for crystallizing membrane proteins for structure determination. The uptake of the method is such that it is experiencing what can only be described as explosive growth. This timely, comprehensive and up-to-date review introduces the reader to the practice of in meso crystallogenesis, to the associated challenges and to their solutions. A model of how crystallization comes about mechanistically is presented for a more rational approach to crystallization. The possible involvement of the lamellar and inverted hexagonal phases in crystallogenesis and the application of the method to water-soluble, monotopic and lipid-anchored proteins are addressed. How to set up trials manually and automatically with a robot is introduced with reference to open-access online videos that provide a practical guide to all aspects of the method. These range from protein reconstitution to crystal harvesting from the hosting mesophase, which is noted for its viscosity and stickiness. The sponge phase, as an alternative medium in which to perform crystallization, is described. The compatibility of the method with additive lipids, detergents, precipitant-screen components and materials carried along with the protein such as denaturants and reducing agents is considered. The powerful host and additive lipid-screening strategies are described along with how samples that have low protein concentration and cell-free expressed protein can be used. Assaying the protein reconstituted in the bilayer of the cubic phase for function is an important element of quality control and is detailed. Host lipid design for crystallization at low temperatures and for

  11. A comprehensive review of the lipid cubic phase or in meso method for crystallizing membrane and soluble proteins and complexes

    Energy Technology Data Exchange (ETDEWEB)

    Caffrey, Martin, E-mail: martin.caffrey@tcd.ie [Trinity College Dublin, Dublin (Ireland)

    2015-01-01

    A comprehensive and up-to-date review of the lipid cubic phase or in meso method for crystallizing membrane and soluble proteins and complexes is reported. Recent applications of the method for in situ serial crystallography at X-ray free-electron lasers and synchrotrons are described. The lipid cubic phase or in meso method is a robust approach for crystallizing membrane proteins for structure determination. The uptake of the method is such that it is experiencing what can only be described as explosive growth. This timely, comprehensive and up-to-date review introduces the reader to the practice of in meso crystallogenesis, to the associated challenges and to their solutions. A model of how crystallization comes about mechanistically is presented for a more rational approach to crystallization. The possible involvement of the lamellar and inverted hexagonal phases in crystallogenesis and the application of the method to water-soluble, monotopic and lipid-anchored proteins are addressed. How to set up trials manually and automatically with a robot is introduced with reference to open-access online videos that provide a practical guide to all aspects of the method. These range from protein reconstitution to crystal harvesting from the hosting mesophase, which is noted for its viscosity and stickiness. The sponge phase, as an alternative medium in which to perform crystallization, is described. The compatibility of the method with additive lipids, detergents, precipitant-screen components and materials carried along with the protein such as denaturants and reducing agents is considered. The powerful host and additive lipid-screening strategies are described along with how samples that have low protein concentration and cell-free expressed protein can be used. Assaying the protein reconstituted in the bilayer of the cubic phase for function is an important element of quality control and is detailed. Host lipid design for crystallization at low temperatures and for

  12. Studies on growth, crystal structure and characterization of novel organic nicotinium trifluoroacetate single crystals

    Energy Technology Data Exchange (ETDEWEB)

    Dhanaraj, P.V. [Centre for Crystal Growth, SSN College of Engineering, Kalavakkam 603 110 (India); Rajesh, N.P., E-mail: rajeshnp@hotmail.com [Centre for Crystal Growth, SSN College of Engineering, Kalavakkam 603 110 (India); Sundar, J. Kalyana; Natarajan, S. [Department of Physics, Madurai Kamaraj University, Madurai 625 021 (India); Vinitha, G. [Department of Physics, Crescent Engineering College, Chennai 600 048 (India)

    2011-09-15

    Highlights: {yields} Good quality crystals of nicotinium trifluoroacetate in monoclinic system were grown for first time. {yields} Nicotinium trifluoroacetate crystal exhibits third order nonlinear optical properties. {yields} The optical spectrum of nicotinium trifluoroacetate crystal reveals the wide transmission in the entire range with cutoff wavelength at 286 nm. {yields} Nicotinium trifluoroacetate is a low dielectric constant material. - Abstract: An organic material, nicotinium trifluoroacetate (NTF) was synthesized and single crystals in monoclinic system were grown from aqueous solution for the first time. Its solubility and metastable zone width were estimated. The crystal structure of NTF was analyzed to reveal the molecular arrangements and the formation of hydrogen bonds in the crystal. High-resolution X-ray diffraction rocking curve measurements were performed to analyze the structural perfection of the grown crystals. Functional groups in NTF were identified by Fourier transform infrared spectral analysis. Thermal behaviour and stability of NTF were studied by thermogravimetric and differential thermal analysis and differential scanning calorimetry. Mechanical and dielectric properties of NTF crystals were analyzed. Optical studies reveal that NTF crystals are transparent in the wavelength range 286-1100 nm. The third order nonlinear optical parameters of NTF were derived by the Z-scan technique.

  13. Order-disorder phase transitions and their influence on the structure and vibrational properties of new hybrid material: 2-Amino-4-methyl-3-nitropyridinium trifluoroacetate

    International Nuclear Information System (INIS)

    Lorenc, J.; Bryndal, I.; Syska, W.; Wandas, M.; Marchewka, M.; Pietraszko, A.; Lis, T.; Maczka, M.; Hermanowicz, K.; Hanuza, J.

    2010-01-01

    Graphical abstract: New organic-organic salt, 2-amino-4-methyl-3-nitropyridinium trifluoroacetate, has been synthesised and characterised by FT-IR, FT-Raman, DSC and single crystal X-ray crystallography. The 2-amino-4-methyl-3-nitropyridinium trifluoroacetate undergoes a reversible phase transition at ∼162 K. The X-ray structures, vibrational spectra and quantum chemical DFT calculations (B3LYP/6-31G(d,p) approach) have been analysed for high-temperature and low-temperature modifications of the compound, which both crystallize in orthorhombic space group Pbca with two non-equivalent cations and two anions in the asymmetric unit. Their crystal and molecular structures have been compared and the role of the intermolecular interactions in these crystals has been analysed. The mechanisms of the phase transition have been proposed. - Abstract: New organic-organic salt, 2-amino-4-methyl-3-nitropyridinium trifluoroacetate, has been synthesised and characterised by FT-IR, FT-Raman, DSC and single crystal X-ray crystallography. The 2-amino-4-methyl-3-nitropyridinium trifluoroacetate undergoes a reversible phase transition at ∼162 K. The X-ray structures, vibrational spectra and quantum chemical DFT calculations (B3LYP/6-31G(d,p) approach) have been analysed for high-temperature and low-temperature modifications of the compound, which both crystallize in orthorhombic space group Pbca with two non-equivalent cations and two anions in the asymmetric unit. Their crystal and molecular structures have been compared and the role of the intermolecular interactions in these crystals has been analysed. The mechanisms of the phase transition have been proposed.

  14. Order-disorder phase transitions and their influence on the structure and vibrational properties of new hybrid material: 2-Amino-4-methyl-3-nitropyridinium trifluoroacetate

    Energy Technology Data Exchange (ETDEWEB)

    Lorenc, J., E-mail: jadwiga.lorenc@ue.wroc.pl [Department of Bioorganic Chemistry, Institute of Chemistry and Food Technology, Faculty of Engineering and Economy, University of Economic, Wroclaw (Poland); Bryndal, I. [Department of Bioorganic Chemistry, Institute of Chemistry and Food Technology, Faculty of Engineering and Economy, University of Economic, Wroclaw (Poland); Faculty of Chemistry, University of Wroclaw (Poland); Syska, W.; Wandas, M. [Department of Bioorganic Chemistry, Institute of Chemistry and Food Technology, Faculty of Engineering and Economy, University of Economic, Wroclaw (Poland); Marchewka, M.; Pietraszko, A. [Institute of Low Temperature and Structure Research, Polish Academy of Sciences, Wroclaw (Poland); Lis, T. [Faculty of Chemistry, University of Wroclaw (Poland); Maczka, M.; Hermanowicz, K. [Institute of Low Temperature and Structure Research, Polish Academy of Sciences, Wroclaw (Poland); Hanuza, J. [Department of Bioorganic Chemistry, Institute of Chemistry and Food Technology, Faculty of Engineering and Economy, University of Economic, Wroclaw (Poland); Institute of Low Temperature and Structure Research, Polish Academy of Sciences, Wroclaw (Poland)

    2010-08-23

    Graphical abstract: New organic-organic salt, 2-amino-4-methyl-3-nitropyridinium trifluoroacetate, has been synthesised and characterised by FT-IR, FT-Raman, DSC and single crystal X-ray crystallography. The 2-amino-4-methyl-3-nitropyridinium trifluoroacetate undergoes a reversible phase transition at {approx}162 K. The X-ray structures, vibrational spectra and quantum chemical DFT calculations (B3LYP/6-31G(d,p) approach) have been analysed for high-temperature and low-temperature modifications of the compound, which both crystallize in orthorhombic space group Pbca with two non-equivalent cations and two anions in the asymmetric unit. Their crystal and molecular structures have been compared and the role of the intermolecular interactions in these crystals has been analysed. The mechanisms of the phase transition have been proposed. - Abstract: New organic-organic salt, 2-amino-4-methyl-3-nitropyridinium trifluoroacetate, has been synthesised and characterised by FT-IR, FT-Raman, DSC and single crystal X-ray crystallography. The 2-amino-4-methyl-3-nitropyridinium trifluoroacetate undergoes a reversible phase transition at {approx}162 K. The X-ray structures, vibrational spectra and quantum chemical DFT calculations (B3LYP/6-31G(d,p) approach) have been analysed for high-temperature and low-temperature modifications of the compound, which both crystallize in orthorhombic space group Pbca with two non-equivalent cations and two anions in the asymmetric unit. Their crystal and molecular structures have been compared and the role of the intermolecular interactions in these crystals has been analysed. The mechanisms of the phase transition have been proposed.

  15. Synthesis, crystal structure, and properties of a perovskite-related bismuth phase, (NH43Bi2I9

    Directory of Open Access Journals (Sweden)

    Shijing Sun

    2016-03-01

    Full Text Available Organic-inorganic halide perovskites, especially methylammonium lead halide, have recently led to remarkable advances in photovoltaic devices. However, due to environmental and stability concerns around the use of lead, research into lead-free perovskite structures has been attracting increasing attention. In this study, a layered perovskite-like architecture, (NH43Bi2I9, is prepared from solution and the structure solved by single crystal X-ray diffraction. The band gap, which is estimated to be 2.04 eV using UV-visible spectroscopy, is lower than that of CH3NH3PbBr3. The energy-minimized structure obtained from first principles calculations is in excellent agreement with the X-ray results and establishes the locations of the hydrogen atoms. The calculations also point to a significant lone pair effect on the bismuth ion. Single crystal and powder conductivity measurements are performed to examine the potential application of (NH43Bi2I9 as an alternative to the lead containing perovskites.

  16. The Crystal Structures of Two Novel Cadmium-Picolinic Acid ...

    African Journals Online (AJOL)

    The crystal structures of two novel cadmium-picolinic acid complexes grown in aqueous solutions at selected pH values are reported. The structures are compared to expected solution species under the same conditions. The crystal structure of complex 1 exhibits a seven coordinate structure which contains a protonated ...

  17. Band structures in fractal grading porous phononic crystals

    Science.gov (United States)

    Wang, Kai; Liu, Ying; Liang, Tianshu; Wang, Bin

    2018-05-01

    In this paper, a new grading porous structure is introduced based on a Sierpinski triangle routine, and wave propagation in this fractal grading porous phononic crystal is investigated. The influences of fractal hierarchy and porosity on the band structures in fractal graidng porous phononic crystals are clarified. Vibration modes of unit cell at absolute band gap edges are given to manifest formation mechanism of absolute band gaps. The results show that absolute band gaps are easy to form in fractal structures comparatively to the normal ones with the same porosity. Structures with higher fractal hierarchies benefit multiple wider absolute band gaps. This work provides useful guidance in design of fractal porous phononic crystals.

  18. Construction of crystal structure prototype database: methods and applications.

    Science.gov (United States)

    Su, Chuanxun; Lv, Jian; Li, Quan; Wang, Hui; Zhang, Lijun; Wang, Yanchao; Ma, Yanming

    2017-04-26

    Crystal structure prototype data have become a useful source of information for materials discovery in the fields of crystallography, chemistry, physics, and materials science. This work reports the development of a robust and efficient method for assessing the similarity of structures on the basis of their interatomic distances. Using this method, we proposed a simple and unambiguous definition of crystal structure prototype based on hierarchical clustering theory, and constructed the crystal structure prototype database (CSPD) by filtering the known crystallographic structures in a database. With similar method, a program structure prototype analysis package (SPAP) was developed to remove similar structures in CALYPSO prediction results and extract predicted low energy structures for a separate theoretical structure database. A series of statistics describing the distribution of crystal structure prototypes in the CSPD was compiled to provide an important insight for structure prediction and high-throughput calculations. Illustrative examples of the application of the proposed database are given, including the generation of initial structures for structure prediction and determination of the prototype structure in databases. These examples demonstrate the CSPD to be a generally applicable and useful tool for materials discovery.

  19. Construction of crystal structure prototype database: methods and applications

    International Nuclear Information System (INIS)

    Su, Chuanxun; Lv, Jian; Wang, Hui; Wang, Yanchao; Ma, Yanming; Li, Quan; Zhang, Lijun

    2017-01-01

    Crystal structure prototype data have become a useful source of information for materials discovery in the fields of crystallography, chemistry, physics, and materials science. This work reports the development of a robust and efficient method for assessing the similarity of structures on the basis of their interatomic distances. Using this method, we proposed a simple and unambiguous definition of crystal structure prototype based on hierarchical clustering theory, and constructed the crystal structure prototype database (CSPD) by filtering the known crystallographic structures in a database. With similar method, a program structure prototype analysis package (SPAP) was developed to remove similar structures in CALYPSO prediction results and extract predicted low energy structures for a separate theoretical structure database. A series of statistics describing the distribution of crystal structure prototypes in the CSPD was compiled to provide an important insight for structure prediction and high-throughput calculations. Illustrative examples of the application of the proposed database are given, including the generation of initial structures for structure prediction and determination of the prototype structure in databases. These examples demonstrate the CSPD to be a generally applicable and useful tool for materials discovery. (paper)

  20. Dielectric behavior and phase transition in [111]-oriented PIN–PMN–PT single crystals under dc bias

    Directory of Open Access Journals (Sweden)

    Yuhui Wan

    2014-01-01

    Full Text Available Temperature and electric field dependences of the dielectric behavior and phase transition for [111]-oriented 0.23PIN–0.52PMN–0.25PT (PIN-PMN–0.25PT and 0.24PIN–0.43PMN–0.33PT (PIN–PMN–0.33PT single crystals were investigated over a temperature range from -100°C to 250°C using field-heating (FH dielectric measurements. The transition phenomenon from ferroelectric microdomain to macrodomain was found in rhombohedra (R phase region in the single crystals under dc bias. This transition temperature Tf of micro-to-macrodomain is sensitive to dc bias and move quickly to lower temperature with increasing dc bias. The phase transition temperatures in the two single crystals shift toward high temperature and the dielectric permittivities at the phase transition temperature decrease with increasing dc bias. Especially, the phase transition peaks are gradually broad in PIN–PMN–0.33PT single crystal with the increasing dc bias. Effects of dc bias on the dielectric behavior and phase transition in PIN–PMN–PT single crystals are discussed.

  1. Ligand mediated synthesis of AgInSe2 nanoparticles with tetragonal/orthorhombic crystal phases

    International Nuclear Information System (INIS)

    Abazović, Nadica D.; Čomor, Mirjana I.; Mitrić, Miodrag N.; Piscopiello, Emanuela; Radetić, Tamara; Janković, Ivana A.; Nedeljković, Jovan M.

    2012-01-01

    Nanosized AgInSe 2 particles (d ∼ 7–25 nm) were synthesized using colloidal chemistry method at 270 °C. As solvents/surface ligands 1-octadecene, trioctylphosphine, and oleylamine were used. It was shown that choice of ligand has crucial impact not only on final crystal phase of nanoparticles, but also at mechanism of crystal growth. X-ray diffraction and TEM/HRTEM techniques were used to identify obtained crystal phases and to measure average size and shape of nanoparticles. UV/Vis data were used to estimate band-gap energies of obtained samples. It was shown that presented routes can provide synthesis of nanoparticles with desired crystal phase (tetragonal and/or orthorhombic), with band-gap energies in the range from 1.25 to 1.53 eV.

  2. Crystal engineering of ibuprofen compounds: From molecule to crystal structure to morphology prediction by computational simulation and experimental study

    Science.gov (United States)

    Zhang, Min; Liang, Zuozhong; Wu, Fei; Chen, Jian-Feng; Xue, Chunyu; Zhao, Hong

    2017-06-01

    We selected the crystal structures of ibuprofen with seven common space groups (Cc, P21/c, P212121, P21, Pbca, Pna21, and Pbcn), which was generated from ibuprofen molecule by molecular simulation. The predicted crystal structures of ibuprofen with space group P21/c has the lowest total energy and the largest density, which is nearly indistinguishable with experimental result. In addition, the XRD patterns for predicted crystal structure are highly consistent with recrystallization from solvent of ibuprofen. That indicates that the simulation can accurately predict the crystal structure of ibuprofen from the molecule. Furthermore, based on this crystal structure, we predicted the crystal habit in vacuum using the attachment energy (AE) method and considered solvent effects in a systematic way using the modified attachment energy (MAE) model. The simulation can accurately construct a complete process from molecule to crystal structure to morphology prediction. Experimentally, we observed crystal morphologies in four different polarity solvents compounds (ethanol, acetonitrile, ethyl acetate, and toluene). We found that the aspect ratio decreases of crystal habits in this ibuprofen system were found to vary with increasing solvent relative polarity. Besides, the modified crystal morphologies are in good agreement with the observed experimental morphologies. Finally, this work may guide computer-aided design of the desirable crystal morphology.

  3. Isolation, crystallization and crystal structure determination of bovine kidney Na(+),K(+)-ATPase.

    Science.gov (United States)

    Gregersen, Jonas Lindholt; Mattle, Daniel; Fedosova, Natalya U; Nissen, Poul; Reinhard, Linda

    2016-04-01

    Na(+),K(+)-ATPase is responsible for the transport of Na(+) and K(+) across the plasma membrane in animal cells, thereby sustaining vital electrochemical gradients that energize channels and secondary transporters. The crystal structure of Na(+),K(+)-ATPase has previously been elucidated using the enzyme from native sources such as porcine kidney and shark rectal gland. Here, the isolation, crystallization and first structure determination of bovine kidney Na(+),K(+)-ATPase in a high-affinity E2-BeF3(-)-ouabain complex with bound magnesium are described. Crystals belonging to the orthorhombic space group C2221 with one molecule in the asymmetric unit exhibited anisotropic diffraction to a resolution of 3.7 Å with full completeness to a resolution of 4.2 Å. The structure was determined by molecular replacement, revealing unbiased electron-density features for bound BeF3(-), ouabain and Mg(2+) ions.

  4. Calcium Sulfoaluminate Sodalite (Ca 4 Al 6 O 12 SO 4 ) Crystal Structure Evaluation and Bulk Modulus Determination

    KAUST Repository

    Hargis, Craig W.

    2013-12-12

    The predominant phase of calcium sulfoaluminate cement, Ca 4(Al6O12)SO4, was investigated using high-pressure synchrotron X-ray diffraction from ambient pressure to 4.75 GPa. A critical review of the crystal structure of Ca4(Al 6O12)SO4 is presented. Rietveld refinements showed the orthorhombic crystal structure to best match the observed peak intensities and positions for pure Ca4(Al6O 12)SO4. The compressibility of Ca4(Al 6O12)SO4 was studied using cubic, orthorhombic, and tetragonal crystal structures due to the lack of consensus on the actual space group, and all three models provided similar results of 69(6) GPa. With its divalent cage ions, the bulk modulus of Ca4(Al6O 12)SO4 is higher than other sodalites with monovalent cage ions, such as Na8(AlSiO4)6Cl2 or Na8(AlSiO4)6(OH)2·H 2O. Likewise, comparing this study to previous ones shows the lattice compressibility of aluminate sodalites decreases with increasing size of the caged ions. Ca4(Al6O12)SO4 is more compressible than other cement clinker phases such as tricalcium aluminate and less compressible than hydrated cement phases such as ettringite and hemicarboaluminate. © 2013 The American Ceramic Society.

  5. Synthesis of Li-Mn-O mesocrystals with controlled crystal phases through topotactic transformation of MnCO3

    Science.gov (United States)

    Dang, Feng; Hoshino, Tatsuhiko; Oaki, Yuya; Hosono, Eiji; Zhou, Haoshen; Imai, Hiroaki

    2013-02-01

    Mesocrystals of Li-Mn-O compounds, such as LiMn2O4, Li2MnO3, and LiMnO2-Li2MnO3, consisting of oriented nanoscale units were selectively produced under hydrothermal conditions from biomimetically prepared MnCO3 mesocrystals. Topotactic transformation through the intermediate phase of Mn5O8 inheriting a hierarchical structure of the MnCO3 precursor was essential for the formation of the mesocrystal compounds. The crystal phases were successfully controlled by varying the conditions for the hydrothermal reactions. The Li-Mn-O mesocrystals have considerable potential as cathodes of Li-ion batteries.Mesocrystals of Li-Mn-O compounds, such as LiMn2O4, Li2MnO3, and LiMnO2-Li2MnO3, consisting of oriented nanoscale units were selectively produced under hydrothermal conditions from biomimetically prepared MnCO3 mesocrystals. Topotactic transformation through the intermediate phase of Mn5O8 inheriting a hierarchical structure of the MnCO3 precursor was essential for the formation of the mesocrystal compounds. The crystal phases were successfully controlled by varying the conditions for the hydrothermal reactions. The Li-Mn-O mesocrystals have considerable potential as cathodes of Li-ion batteries. Electronic supplementary information (ESI) available. See DOI: 10.1039/c3nr33767g

  6. Polarizability of acetanilide and RDX in the crystal: effect of molecular geometry

    Science.gov (United States)

    Tsiaousis, D.; Munn, R. W.; Smith, P. J.; Popelier, P. L. A.

    2004-10-01

    Density-functional theory with the B3LYP functional at the 6-311++G** level is used to calculate the dipole moment and the static polarizability for acetanilide and 1,3,5-trinitro-1,3,5-triazacyclohexane (RDX) in their in-crystal structures. For acetanilide the dipole moment is 2{1}/{2}% larger than for the gas-phase structure and for RDX (where there is a gross geometry change) it is 15% larger. The polarizability for the in-crystal structure is smaller than for the gas-phase structure by 3% for both species, whereas the in-crystal effective optical polarizability is larger than the gas-phase static polarizability for both crystals. Hence, effects in addition to the molecular geometry change in the crystal must be considered in order to interpret the effective polarizability completely.

  7. Crystallization processes in Ni-Ti-B glassy alloys of near-ternary-eutectic composition

    International Nuclear Information System (INIS)

    Merk, N.; Morris, D.G.; Stadelmann, P.

    1987-01-01

    The crystallization kinetics and mechanisms of three Ni-Ti-B glasses have been examined with a view to elucidating the roles of chemical composition and quenched structure on behaviour. Alloys of composition near a ternary-eutectic point have been chosen because they represent a real and complex situation where several crystalline phases may form simultaneously. Crystallization processes are analysed in terms of nucleation and growth stages. Different nucleation mechanisms seem to be best explained in terms of the short range ordered structure of the quenched glass. Analysis of crystal glass interface energies indicates that it is not this energy term which controls the nucleation of crystals on annealing. Crystal growth may involve a eutectic mechanism or a single-phase mechanism controlled by interface or matrix-diffusion kinetics. Crystallization is fastest when eutectic nucleation and growth occurs. Formation of the eutectic colony requires the initial formation of the phase of complex structure followed by the phase of simpler structure

  8. Crystal structure determination of solar cell materials: Cu2ZnSnS4 thin films using X-ray anomalous dispersion

    International Nuclear Information System (INIS)

    Nozaki, Hiroshi; Fukano, Tatsuo; Ohta, Shingo; Seno, Yoshiki; Katagiri, Hironori; Jimbo, Kazuo

    2012-01-01

    Highlights: ► Cu 2 ZnSnS 4 thin films as a solar cell material were synthesized. ► The wavelength dependences of the diffraction intensity were measured. ► The crystal structures were clearly identified as kesterite structure for all samples. ► Crystal structure analysis revealed that the atomic compositions were Cu/(Zn + Sn) = 0.97 and Zn/Sn = 1.42 for the sample synthesized using stoichiometric amount of starting materials. - Abstract: The crystal structure of Cu 2 ZnSnS 4 (CZTS) thin films fabricated by vapor-phase sulfurization was determined using X-ray anomalous dispersion. High statistic synchrotron radiation X-ray diffraction data were collected from very small amounts of powder. By analyzing the wavelength dependencies of the diffraction peak intensities, the crystal structure was clearly identified as kesterite. Rietveld analysis revealed that the atomic composition deviated from stoichiometric composition, and the compositions were Cu/(Zn + Sn) = 0.97, and Zn/Sn = 1.42.

  9. Crystal structure and chemical bonding analysis of BaPtCd{sub 2}

    Energy Technology Data Exchange (ETDEWEB)

    Gulo, Fakhili [Department of Chemical Education, Sriwijaya University, Inderalaya 30662, South Sumatra (Indonesia); Koehler, Juergen [Max Planck Institut fuer Festkoerperforschung, Heisenbergstrasse 1, 70569 Stuttgart (Germany)

    2015-03-15

    The new ternary intermetallic phase, BaPtCd{sub 2}, was synthesized by solid-state reaction from direct combination of the elements in a stoichiometric mixture. The reaction was done at 850 C for 15 h, followed by an equilibration at 600 C for 4 d. The crystal structure was determined by X-ray diffraction method on a single crystal. BaPtCd{sub 2} is isotypic to MgCuAl{sub 2} and crystallizes in the orthorhombic space group Cmcm [a = 4.467(2), b = 11.143(4), c = 8.240(3) Aa, V = 410.2(3) Aa{sup 3}, and Z = 4]. Barium atoms are linked together forming zigzag chains. Cadmium atoms are bonded to each other forming six-membered rings of platinum centered boat and anti-boat conformations. BaPtCd{sub 2} contains 16 electrons per formula unit and belongs to the electron poorest compounds with MgCuAl{sub 2} type structure. Calculations based on the linear muffin-tin orbitals method in the atomic spheres approximation show that significant bonding states in BaPtCd{sub 2} are unoccupied. (Copyright copyright 2015 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  10. Thermoelectric properties, crystal and electronic structure of semiconducting RECuSe2 (RE = Pr, Sm, Gd, Dy and Er)

    International Nuclear Information System (INIS)

    Esmaeili, Mehdi; Tseng, Yu-Chih; Mozharivskyj, Yurij

    2014-01-01

    Highlights: • Crystal and electronic structure of monoclinic and trigonal RECuSe 2 phases. • Thermoelectric properties of the RECuSe 2 phases. • Temperature stability of the RECuSe 2 phases. - Abstract: The ternary RECuSe 2 phases have been prepared and structurally characterized. They adopt either a monoclinic structure (P2 1 /c, z = 4) for lighter rare earths (RE = Pr, Sm and Gd) or Cu-disordered trigonal structure for heavier rare-earths (P3 ¯ m1, z = 1, RE = Dy and Er). The resistivity and Seebeck coefficient measurements on GdCuSe 2 , DyCuSe 2 and ErCuSe 2 indicate that the studied phases are p-type semiconductors with relatively small activation energies (0.045–0.11 eV). However, their electrical resistivities are too high (0.45–220 Ω cm at room temperature) to make them competitive thermoelectric materials. Electronic structure calculations indicate presence of a band gap in the RECuSe 2 phases

  11. Structure of Profiled Crystals Based on Solid Solutions of Bi2Te3 and Their X-Ray Diagnostics

    Science.gov (United States)

    Voronin, A. I.; Bublik, V. T.; Tabachkova, N. Yu.; Belov, Yu. M.

    2011-05-01

    In this work, we used x-ray structural diagnostic data to reveal the formation of structural regularities in profiled polycrystalline ingots based on Bi and Sb chalcogenide solid solutions. In Bi2Te3 lattice crystals, the solid phase grows such that the cleavage surfaces are perpendicular to the crystallization front. The crystallization singularity determines the nature of the growth texture. Because texture is an important factor determining the anisotropy of properties, which in turn determines the suitability of an ingot for production of modules and the possibility of figure of merit improvement, its diagnostics is an important issue for technology testing. Examples of texture analysis using the method of straight pole figure (SPF) construction for profiled crystals are provided. The structure of the surface layers in the profiled ingots was studied after electroerosion cutting. In addition, the method of estimation of the disturbed layer depth based on the nature of texture changes was used.

  12. Aging-driven decomposition in zolpidem hemitartrate hemihydrate and the single-crystal structure of its decomposition products.

    Science.gov (United States)

    Vega, Daniel R; Baggio, Ricardo; Roca, Mariana; Tombari, Dora

    2011-04-01

    The "aging-driven" decomposition of zolpidem hemitartrate hemihydrate (form A) has been followed by X-ray powder diffraction (XRPD), and the crystal and molecular structures of the decomposition products studied by single-crystal methods. The process is very similar to the "thermally driven" one, recently described in the literature for form E (Halasz and Dinnebier. 2010. J Pharm Sci 99(2): 871-874), resulting in a two-phase system: the neutral free base (common to both decomposition processes) and, in the present case, a novel zolpidem tartrate monohydrate, unique to the "aging-driven" decomposition. Our room-temperature single-crystal analysis gives for the free base comparable results as the high-temperature XRPD ones already reported by Halasz and Dinnebier: orthorhombic, Pcba, a = 9.6360(10) Å, b = 18.2690(5) Å, c = 18.4980(11) Å, and V = 3256.4(4) Å(3) . The unreported zolpidem tartrate monohydrate instead crystallizes in monoclinic P21 , which, for comparison purposes, we treated in the nonstandard setting P1121 with a = 20.7582(9) Å, b = 15.2331(5) Å, c = 7.2420(2) Å, γ = 90.826(2)°, and V = 2289.73(14) Å(3) . The structure presents two complete moieties in the asymmetric unit (z = 4, z' = 2). The different phases obtained in both decompositions are readily explained, considering the diverse genesis of both processes. Copyright © 2010 Wiley-Liss, Inc.

  13. Crystal structure of aspartame anhydrate from powder diffraction data. Structural aspects of the dehydration process of aspartame

    NARCIS (Netherlands)

    Guguta, C.; Meekes, H.L.M.; Gelder, R. de

    2006-01-01

    Aspartame has three pseudo-polymorphic forms, two hydrates and a hemi-hydrate, for which crystal structures were determined from single-crystal diffraction data. This paper presents the crystal structure of the anhydrate, which was obtained by dehydrating the hemi-hydrate. The crystal structure of

  14. Co-crystal of (R,R)-1,2-cyclohexanediol with (R,R)-tartaric acid, a key structure in resolution of the ({+-})-trans-diol by supercritical extraction, and the related ternary phase system

    Energy Technology Data Exchange (ETDEWEB)

    Thorey, Paul [Department of Chemical and Environmental Process Engineering, Budapest University of Technology and Economics, H-1521 Budapest (Hungary); Bombicz, Petra [Institute of Structural Chemistry, Chemical Research Center, Hungarian Academy of Science, H-1525 Budapest (Hungary); Szilagyi, Imre Miklos [Material Structure and Modeling Research Group, Hungarian Academy of Sciences, H-1111 Budapest (Hungary); Department of Inorganic and Analytical Chemistry, Budapest University of Technology and Economics, H-1521 Budapest (Hungary); Molnar, Peter; Bansaghi, Gyoergy; Szekely, Edit; Simandi, Bela [Department of Chemical and Environmental Process Engineering, Budapest University of Technology and Economics, H-1521 Budapest (Hungary); Parkanyi, Laszlo [Institute of Structural Chemistry, Chemical Research Center, Hungarian Academy of Science, H-1525 Budapest (Hungary); Pokol, Gyoergy [Department of Inorganic and Analytical Chemistry, Budapest University of Technology and Economics, H-1521 Budapest (Hungary); Madarasz, Janos, E-mail: madarasz@mail.bme.hu [Department of Inorganic and Analytical Chemistry, Budapest University of Technology and Economics, H-1521 Budapest (Hungary)

    2010-01-10

    A novel co-crystal of trans-(R,R)-1,2-cyclohexanediol and (R,R)-tartaric acid (with 1:1 molar ratio, 1) has been found to be a key crystalline compound in the improved resolution of ({+-})-trans-1,2-cyclohexanediol by supercritical fluid extraction. The molecular and crystal structure of this co-crystal, which crystallizes in orthorhombic crystal system (space group P2{sub 1}2{sub 1}2{sub 1}, a = 6.7033(13) A, b = 7.2643(16), c = 24.863(5), Z = 4), has been solved by single crystal X-ray diffraction (R = 0.064). The packing arrangement consists of two dimensional layers of sandwich-like sheets, where the inner part is constructed by double layers of tartaric acids which hydrophilicity is 'covered' on both upper and bottom side by cyclohexanediols with the hydrophobic cyclohexane rings pointing outward. Thus, a rather complex hydrogen bonding pattern is constructed. The relatively high melting point (133 {sup o}C) observed by both simultaneous TG/DTA and DSC, and the main features of FTIR-spectrum of 1 are explained by the increased stability of this crystal structure. DSC studies on binary mixtures of co-crystal 1 with (R,R)-1,2-cyclohexanediol or (R,R)-tartaric acid, revealed eutectic temperatures of T{sub eu} = 100 or 131 {sup o}C, respectively. Between (S,S)-1,2-cyclohexanediol and (R,R)-tartaric acid a eutectic temperature of T{sub eu} = 85 {sup o}C have also been observed. The phase relations have been confirmed by powder X-ray diffraction, as well.

  15. Crystal structure of actinide metals at high compression

    International Nuclear Information System (INIS)

    Fast, L.; Soederlind, P.

    1995-08-01

    The crystal structures of some light actinide metals are studied theoretically as a function of applied pressure. The first principles electronic structure theory is formulated in the framework of density functional theory, with the gradient corrected local density approximation of the exchange-correlation functional. The light actinide metals are shown to be well described as itinerant (metallic) f-electron metals and generally, they display a crystal structure which have, in agreement with previous theoretical suggestions, increasing degree of symmetry and closed-packing upon compression. The theoretical calculations agree well with available experimental data. At very high compression, the theory predicts closed-packed structures such as the fcc or the hcp structures or the nearly closed-packed bcc structure for the light actinide metals. A simple canonical band picture is presented to explain in which particular closed-packed form these metals will crystallize at ultra-high pressure

  16. Surface phase separation, dewetting feature size, and crystal morphology in thin films of polystyrene/poly(ε-caprolactone) blend.

    Science.gov (United States)

    Ma, Meng; He, Zhoukun; Li, Yuhan; Chen, Feng; Wang, Ke; Zhang, Qing; Deng, Hua; Fu, Qiang

    2012-12-01

    Thin films of polystyrene (PS)/poly(ε-caprolactone) (PCL) blends were prepared by spin-coating and characterized by tapping mode force microscopy (AFM). Effects of the relative concentration of PS in polymer solution on the surface phase separation and dewetting feature size of the blend films were systematically studied. Due to the coupling of phase separation, dewetting, and crystallization of the blend films with the evaporation of solvent during spin-coating, different size of PS islands decorated with various PCL crystal structures including spherulite-like, flat-on individual lamellae, and flat-on dendritic crystal were obtained in the blend films by changing the film composition. The average distance of PS islands was shown to increase with the relative concentration of PS in casting solution. For a given ratio of PS/PCL, the feature size of PS appeared to increase linearly with the square of PS concentration while the PCL concentration only determined the crystal morphology of the blend films with no influence on the upper PS domain features. This is explained in terms of vertical phase separation and spinodal dewetting of the PS rich layer from the underlying PCL rich layer, leading to the upper PS dewetting process and the underlying PCL crystalline process to be mutually independent. Copyright © 2012 Elsevier Inc. All rights reserved.

  17. A Navier-Stokes phase-field crystal model for colloidal suspensions.

    Science.gov (United States)

    Praetorius, Simon; Voigt, Axel

    2015-04-21

    We develop a fully continuous model for colloidal suspensions with hydrodynamic interactions. The Navier-Stokes Phase-Field Crystal model combines ideas of dynamic density functional theory with particulate flow approaches and is derived in detail and related to other dynamic density functional theory approaches with hydrodynamic interactions. The derived system is numerically solved using adaptive finite elements and is used to analyze colloidal crystallization in flowing environments demonstrating a strong coupling in both directions between the crystal shape and the flow field. We further validate the model against other computational approaches for particulate flow systems for various colloidal sedimentation problems.

  18. Pulsed Traveling-wave Quadrature Squeezing Using Quasi-phase Matched Lithium Niobate Crystals

    Science.gov (United States)

    Chen, Chao-Hsiang

    Interests in generating higher quantum noise squeezing in order to develop methods to enhance optical measurement below the shot-noise limit in various applications has grown in recent years. The noise suppression from squeezing can improve the SNR in coherent optical systems when the returning signal power is weak, such as optical coherence tomography, LADAR, confocal microscopy and low-light coherent imaging. Unlike the generation of squeezing with a continuous wave, which is currently developed mainly for gravitational wave detection in LIGO project, the study of pulsed-traveling waves is focused on industrial, medical and other commercial interests. This dissertation presents the experimental results of pulsed traveling wave squeezing. The intention of the study is to explore the possibility of using quasi-phase matched crystals to generate the highest possible degree of quadrature squeezing. In order to achieve this goal, efforts to test the various effects from spatial Gaussian modes and relative beam waist placement for the second-harmonic pump were carried out in order to further the understanding of limiting factors to pulsed traveling wave squeezing. 20mm and 30mm-long periodically poled lithium noibate (PPLN) crystals were used in the experiment to generate a squeezed vacuum state. A maximum of 4.2+/-0.2dB quadrature squeezing has been observed, and the measured anti-squeezing exceeds 20dB.The phase sensitive amplification (PSA) gain and de-gain performance were also measured to compare the results of measured squeezing. The PPLN crystals can produce high conversion efficiency of second-harmonic generation (SHG) without a cavity. When a long PPLN crystal is used in a squeezer, the beam propagation in the nonlinear medium does not follow the characteristics in thin crystals. Instead, it is operated under the long-crystal criteria, which the crystal length is multiple times longer than the Rayleigh range of the injected beam i n the crystals. Quasi-phase

  19. Membrane protein structure determination by SAD, SIR, or SIRAS phasing in serial femtosecond crystallography using an iododetergent

    Science.gov (United States)

    Nakane, Takanori; Hanashima, Shinya; Suzuki, Mamoru; Saiki, Haruka; Hayashi, Taichi; Kakinouchi, Keisuke; Sugiyama, Shigeru; Kawatake, Satoshi; Matsuoka, Shigeru; Matsumori, Nobuaki; Nango, Eriko; Kobayashi, Jun; Shimamura, Tatsuro; Kimura, Kanako; Mori, Chihiro; Kunishima, Naoki; Sugahara, Michihiro; Takakyu, Yoko; Inoue, Shigeyuki; Masuda, Tetsuya; Hosaka, Toshiaki; Tono, Kensuke; Joti, Yasumasa; Kameshima, Takashi; Hatsui, Takaki; Inoue, Tsuyoshi; Nureki, Osamu; Iwata, So; Murata, Michio; Mizohata, Eiichi

    2016-01-01

    The 3D structure determination of biological macromolecules by X-ray crystallography suffers from a phase problem: to perform Fourier transformation to calculate real space density maps, both intensities and phases of structure factors are necessary; however, measured diffraction patterns give only intensities. Although serial femtosecond crystallography (SFX) using X-ray free electron lasers (XFELs) has been steadily developed since 2009, experimental phasing still remains challenging. Here, using 7.0-keV (1.771 Å) X-ray pulses from the SPring-8 Angstrom Compact Free Electron Laser (SACLA), iodine single-wavelength anomalous diffraction (SAD), single isomorphous replacement (SIR), and single isomorphous replacement with anomalous scattering (SIRAS) phasing were performed in an SFX regime for a model membrane protein bacteriorhodopsin (bR). The crystals grown in bicelles were derivatized with an iodine-labeled detergent heavy-atom additive 13a (HAD13a), which contains the magic triangle, I3C head group with three iodine atoms. The alkyl tail was essential for binding of the detergent to the surface of bR. Strong anomalous and isomorphous difference signals from HAD13a enabled successful phasing using reflections up to 2.1-Å resolution from only 3,000 and 4,000 indexed images from native and derivative crystals, respectively. When more images were merged, structure solution was possible with data truncated at 3.3-Å resolution, which is the lowest resolution among the reported cases of SFX phasing. Moreover, preliminary SFX experiment showed that HAD13a successfully derivatized the G protein-coupled A2a adenosine receptor crystallized in lipidic cubic phases. These results pave the way for de novo structure determination of membrane proteins, which often diffract poorly, even with the brightest XFEL beams. PMID:27799539

  20. Structural contributions to the third-law entropy of uranyl phases

    International Nuclear Information System (INIS)

    Chen, F.; Ewing, R.C.

    1999-01-01

    Entropies that are used in geochemical calculations are usually based on calorimetric measurements. However, because of the contributions of neglected residual entropies which cannot be determined by calorimetric measurements, the true third-law entropies for many phases may be quite different from those derived from thermal data. The residual entropies are caused by site-mixing, structural disorder and magnetic spin disorder and may result in a considerable contribution to the third-law entropy of solid phases. Magnetic spin-configurational entropy is not expected to be significant in uranyl phases. However, because most uranyl phases are based on sheet or chain structures and usually contain several molecular water groups, site-mixing, vacancies, as well as disorder in the orientation of hydrogen bonds and the polar H 2 O molecules may occur. Calculations of the ideal site-mixing configurational entropy for some uranyl phases indicate that the residual contributions that arise from substitution and vacancies to the third-law entropies of uranyl phases may be large. A brief examination of the crystal chemistry of water molecules in uranyl phases suggests that considerable residual entropy may be caused by the disorder of hydrogen bonds associated with interstitial H 2 O groups

  1. A novel high-temperature commensurate superstructure in a natural bariopyrochlore: A structural study by means of a multiphase crystal structure refinement

    International Nuclear Information System (INIS)

    Bindi, L.; Petricek, V.; Withers, R.L.; Zoppi, M.; Bonazzi, P.

    2006-01-01

    Additional X-ray diffraction effects yielding an eightfold commensurate superstructure [a=20.974(5)A] of the ideal pyrochlore structure were observed after annealing at 873K of a thallium-doped bariopyrochlore single crystal. Electron diffraction indicated the coexistence of two cubic phases, the pyrochlore structure and a new F-centred, cubic phase. The superstructure was solved and refined in the space group F4-bar 3m. The two phases were combined together and refined as independently diffracting to R=0.0628. The resulting unit-cell content is (A,-bar ) 20 Nb 16 Ti 2 O 53 (Z=8), with A=Ba, Tl, Ce, Th. For some atomic positions of the superstructure, third- and fourth-order anharmonic ADP's were used to account for the specific density shape having a continuous character as typical for ionic conductors. There are three distinct clusters in the superstructure, leading to a new structure type no longer strictly of pyrochlore-structure type

  2. Structure and crystallization behavior of La{sub 2}O{sub 3}⋅3B{sub 2}O{sub 3} metaborate glasses doped with Nd{sup 3+} or Eu{sup 3+} ions

    Energy Technology Data Exchange (ETDEWEB)

    Pytalev, D.S., E-mail: pytalev@isan.troitsk.ru [Institute of Spectroscopy, Russian Academy of Sciences, 5 Fizicheskaya St., 142190 Troitsk, Moscow (Russian Federation); Caurant, D.; Majérus, O.; Trégouët, H. [Institut de Recherche de Chimie Paris, CNRS – Chimie ParisTech, 11 Rue Pierre et Marie Curie, 75005 Paris (France); Charpentier, T. [CEA, IRAMIS, NIMBE, CEA-CNRS UMR 3299, Laboratoire de Structure et Dynamique par Résonance Magnétique, 91191 Gif-sur-Yvette (France); Mavrin, B.N. [Institute of Spectroscopy, Russian Academy of Sciences, 5 Fizicheskaya St., 142190 Troitsk, Moscow (Russian Federation)

    2015-08-25

    Highlights: • The structure and crystallization behavior of the La{sub 2}O{sub 3}⋅3B{sub 2}O{sub 3} glass are studied. • LaB{sub 3}O{sub 6} crystallizes congruently without intermediate but only from glass surface. • The structure of the amorphous and the crystalline phases differ significantly. • The activation energy of LaB{sub 3}O{sub 6} crystal growth is determined. - Abstract: The local structure and crystallization behavior of the stoichiometric La{sub 2}O{sub 3}⋅3B{sub 2}O{sub 3} (LaMB) metaborate glass doped with Nd{sup 3+} or Eu{sup 3+} ions are studied using differential thermal analysis (DTA), X-ray diffraction (XRD), Raman scattering and {sup 11}B magic-angle spinning nuclear magnetic resonance (MAS NMR), optical absorbance and luminescence techniques. In the crystallized samples, XRD, NMR and Raman spectroscopy have detected the formation of only one crystalline phase (congruent crystallization of LaB{sub 3}O{sub 6}). No intermediate metastable crystalline phase has been detected before LaB{sub 3}O{sub 6} crystals formation (single stage crystallization process). The observation of heat treated glass samples by scanning electron microscopy (SEM) and optical microscopy coupled with the study of the effect of varying the glass particle size on the DTA curves have both revealed that LaB{sub 3}O{sub 6} crystallization only occurs by a heterogeneous nucleation mechanism (needle-shape crystals) from glass surface. The activation energy E{sub c} of crystal growth has been determined by performing DTA experiments at different heating rates with the Kissinger (784 kJ/mol) and Ozawa (801 kJ/mol) equations than can be used for surface crystallization processes. The heterogeneous crystallization behavior and the spectroscopic results obtained in this work by comparing the LaMB glass with the LaB{sub 3}O{sub 6} crystalline phase suggest the existence of significant structural differences between the amorphous and the crystalline phases contrary to what

  3. Shrink, twist, ripple and melt: Studies of frustrated liquid crystals

    Science.gov (United States)

    Fernsler, Jonathan G.

    Complex structures can arise out of a simple system with more than one competing influence on its behavior. The protypical example of this is the two-dimensional triangular lattice Ising model. The ferromagnetic model has two simple degenerate ground states of all spins up or down, but the antiferromagnetic model is a frustrated system. Its geometry does not allow satisfaction of the antiferro condition everywhere, which produces complex ordered structures with dimerization of the spins [1]. Without frustration, the complex structures and phase behavior are lost. All of the topics discussed in this thesis concern smectic liquid crystals. Liquid crystals are perhaps uniquely adept at manifesting frustrated phases. Their combination of periodicity in one or more dimensions allows ordered structures, yet their fluid nature in remaining dimensions allows creation of defects and extraordinarily complex structures in ways that a normal crystal could not tolerate. Liquid crystals contain a huge menagerie of frustrated phases and effects including the polarization modulated [2], vortex lattice [3], twist grain boundary [4], and blue [5] phases, as well as frustrated structures such as cholesteric or SmC* helix unwinding [6], defect lattices in thin films [7], and bend melted grain boundary defects [8], arising from boundary conditions and field effects. In this thesis, we study four liquid crystal systems that show unusual phase behavior or complex structures, deriving from the effects of frustration. Frustration, despite some human prejudices against the word, leaves nature all the more interesting and beautiful.

  4. Magnetic field effect on Gd2(MoO4)3 domain structure formation in the phase transformation range

    International Nuclear Information System (INIS)

    Flerova, S.A.; Tsinman, I.L.

    1987-01-01

    The behaviour of ferroelastic-ferroelectric domain structure of gadolinium molybdate crystal (GMO)during its formation in the magnetic field in the vicinity of phase transformation is studied.It is shown that the formation of domain structure in the presence of a temperature gradient occurs in the field of mechanical stresses whose mainly stretching effect is concentrated near phase boundaries.The magnetic field intensifies summary mechanical stresses where a domain structure in a ferroelectric phase is formed due to interaction with the elements of inhomogeneous and differently oriented currents near phase boundaries

  5. Phase transition detection by surface photo charge effect in liquid crystals

    Science.gov (United States)

    Ivanov, O.; Petrov, M.; Naradikian, H.; Perez-Diaz, J. L.

    2018-05-01

    The surface photo charge effect (SPCE) was applied for the first time at structure and phase transitions study of hydrogen bonded in dimer liquid crystals (HBDLCs). Due to the high sensitivity of this method, besides first-order phase transitions, characteristic for the p,n-octyloxibenzoic acids (8OBA), an order transition was definitely detected within the nematic range. We state that the SPCE, arising at the solid-HBDLCs interface due to the double electrical layer, is invariably concomitant with solid surface-liquid interfaces, and indicates that the changes of the characteristics of this layer, under incident optical irradiation, induce surface charge rearrangement and alternating potential difference. A mechanism of induction of the SPCE at the interface of solid surface-anisotropic liquids is proposed. We also indicate that this mechanism can be adapted for solid surface-isotropic liquid interface, including colloids (milk) and fog (aerosols)-condensed medium.

  6. Crystal growth of pure substances: Phase-field simulations in comparison with analytical and experimental results

    Science.gov (United States)

    Nestler, B.; Danilov, D.; Galenko, P.

    2005-07-01

    A phase-field model for non-isothermal solidification in multicomponent systems [SIAM J. Appl. Math. 64 (3) (2004) 775-799] consistent with the formalism of classic irreversible thermodynamics is used for numerical simulations of crystal growth in a pure material. The relation of this approach to the phase-field model by Bragard et al. [Interface Science 10 (2-3) (2002) 121-136] is discussed. 2D and 3D simulations of dendritic structures are compared with the analytical predictions of the Brener theory [Journal of Crystal Growth 99 (1990) 165-170] and with recent experimental measurements of solidification in pure nickel [Proceedings of the TMS Annual Meeting, March 14-18, 2004, pp. 277-288; European Physical Journal B, submitted for publication]. 3D morphology transitions are obtained for variations in surface energy and kinetic anisotropies at different undercoolings. In computations, we investigate the convergence behaviour of a standard phase-field model and of its thin interface extension at different undercoolings and at different ratios between the diffuse interface thickness and the atomistic capillary length. The influence of the grid anisotropy is accurately analyzed for a finite difference method and for an adaptive finite element method in comparison.

  7. Crystal structure and phase stability of AlSc in the near-equiatomic Al–Sc alloy

    Energy Technology Data Exchange (ETDEWEB)

    Li, Juan; Huang, Li; Liang, Yongfeng [State Key Laboratory for Advanced Metals and Materials, University of Science and Technology Beijing, 30 Xueyuan Road, Beijing 100083 (China); Ye, Feng, E-mail: yefeng@skl.ustb.edu.cn [State Key Laboratory for Advanced Metals and Materials, University of Science and Technology Beijing, 30 Xueyuan Road, Beijing 100083 (China); Lin, Junpin [State Key Laboratory for Advanced Metals and Materials, University of Science and Technology Beijing, 30 Xueyuan Road, Beijing 100083 (China); Shang, Shunli; Liu, Zikui [Department of Materials Science and Engineering, The Pennsylvania State University, University Park, PA 16802 (United States)

    2015-01-05

    Highlights: • Two lattice structures of equiatomic Al–Sc compounds are confirmed. • Al–Sc phase at Sc 50 at.% has a space group of Pbam. • Al–Sc phase at Sc 55 at.% has a space group of B2. • B2 AlSc is a metastable phase with Sc 50 at.%. • Lattice transition between two compounds is proposed under local thermal stress. - Abstract: Intermetallic compound AlSc is found in the equiatomic Al–Sc binary alloy. The present work indicates that the orthorhombic AlSc with the Au{sub 2}CuZn-type structure can be formed at 50 at.% Sc, while the CsCl-type (B2) AlSc will be formed at 55 at.% Sc. After annealing at 1100 °C, some orthorhombic AlSc grains transit to the B2 structure, and the annealing at lower temperatures leads to the disappearance of B2 phase, indicating that the B2 AlSc is also a metastable phase in the alloy at lower Sc content (<50 at.%). First-principle calculations at 0 K reveal that the orthorhombic AlSc is more stable than the B2 AlSc with the energy difference between them being 5.4 meV/atom. The fast transition between these two phases, which cannot be interpreted by the mechanism of atomic diffusion, was tentatively analyzed by the volume change based on the calculated atomic positions of these two phases.

  8. CCDC 1416891: Experimental Crystal Structure Determination : Methyl-triphenyl-germanium

    KAUST Repository

    Bernatowicz, Piotr; Shkurenko, Aleksander; Osior, Agnieszka; Kamieński, Bohdan; Szymański, Sławomir

    2015-01-01

    An entry from the Cambridge Structural Database, the world’s repository for small molecule crystal structures. The entry contains experimental data from a crystal diffraction study. The deposited dataset for this entry is freely available from

  9. A Conceptual Model for Shear-Induced Phase Behavior in Crystallizing Cocoa Butter

    International Nuclear Information System (INIS)

    Mazzanti, G.; Guthrie, S.; Marangoni, A.; Idziak, S.

    2007-01-01

    We propose a conceptual model to explain the quantitative data from synchrotron X-ray diffraction experiments on the shear-induced phase behavior of cocoa butter, the main structural component of chocolate. We captured two-dimensional diffraction patterns from cocoa butter at crystallization temperatures of 17.5, 20.0, and 22.5 o C under shear rates from 45 to 1440 s -1 and under static conditions. From the simultaneous analysis of the integrated intensity, correlation length, lamellar thickness, and crystalline orientation, we postulate a conceptual model to provide an explanation for the distribution of phases II, IV, V, and X and the kinetics of the process. As previously proposed in the literature, we assume that the crystallites grow layer upon layer of slightly different composition. The shear rate and temperature applied define these compositions. Simultaneously, the shear and temperature define the crystalline interface area available for secondary nucleation by promoting segregation and affecting the size distribution of the crystallites. The combination of these factors (composition, area, and size distribution) favors dramatically the early onset of phase V under shear and determines the proportions of phases II, IV, V, and X after the transition. The experimental observations, the methodology used, and the proposed explanation are of fundamental and industrial interest, since the structural properties of crystalline networks are determined by their microstructure and polymorphic crystalline state. Different proportions of the phases will thus result in different characteristics of the final material

  10. Structural Color Patterns by Electrohydrodynamic Jet Printed Photonic Crystals.

    Science.gov (United States)

    Ding, Haibo; Zhu, Cun; Tian, Lei; Liu, Cihui; Fu, Guangbin; Shang, Luoran; Gu, Zhongze

    2017-04-05

    In this work, we demonstrate the fabrication of photonic crystal patterns with controllable morphologies and structural colors utilizing electrohydrodynamic jet (E-jet) printing with colloidal crystal inks. The final shape of photonic crystal units is controlled by the applied voltage signal and wettability of the substrate. Optical properties of the structural color patterns are tuned by the self-assembly of the silica nanoparticle building blocks. Using this direct printing technique, it is feasible to print customized functional patterns composed of photonic crystal dots or photonic crystal lines according to relevant printing mode and predesigned tracks. This is the first report for E-jet printing with colloidal crystal inks. Our results exhibit promising applications in displays, biosensors, and other functional devices.

  11. Composition and crystal structure of N doped TiO2 film deposited at different O2 flow rate by direct current sputtering.

    Science.gov (United States)

    Ding, Wanyu; Ju, Dongying; Chai, Weiping

    2011-06-01

    N doped Ti02 films were deposited by direct current pulse magnetron sputtering system at room temperature. The influence of 02 flow rate on the crystal structure of deposited films was studied by Stylus profilometer, X-ray photoelectron spectroscopy, and X-ray diffractometer. The results indicate that the 02 flow rate strongly controls the growth behavior and crystal structure of N doped Ti02 film. It is found that N element mainly exists as substitutional doped state and the chemical stiochiometry is near to TiO1.68±0.06N0.11±0.01 for all film samples. N doped Ti02 film deposited with 2 sccm (standard-state cubic centimeter per minute) 02 flow rate is amorphous structure with high growth rate, which contains both anatase phase and rutile phase crystal nucleuses. In this case, the film displays the mix-phase of anatase and rutile after annealing treatment. While N doped Ti02 film deposited with 12 cm(3)/min 02 flow rate displays anatase phase before and after annealing treatment. And it should be noticed that no TiN phase appears for all samples before and after annealing treatment. Copyright © 2011 The Research Centre for Eco-Environmental Sciences, Chinese Academy of Sciences. Published by Elsevier B.V. All rights reserved.

  12. Zr 2Ir 6B with an eightfold superstructure of the cubic perovskite-like boride ZrIr 3B 0.5: Synthesis, crystal structure and bonding analysis

    Science.gov (United States)

    Hermus, Martin; Fokwa, Boniface P. T.

    2010-04-01

    Single phase powder samples and single crystals of Zr 2Ir 6B were successfully synthesized by arc-melting the elements in a water-cooled copper crucible under an argon atmosphere. Superstructure reflections were observed both on powder and on single crystal diffraction data, leading to an eightfold superstructure of ZrIr 3B x phase. The new phase, which has a metallic luster, crystallizes in space group Fm3¯m (no. 225) with the lattice parameters a=7.9903(4) Å, V=510.14(4) Å 3. Its crystal structure was refined on the basis of powder as well as single crystal data. The single crystal refinement converged to R1=0.0239 and w R2=0.0624 for all 88 unique reflections and 6 parameters. Zr 2Ir 6B is isotypic to Ti 2Rh 6B and its structure can be described as a defect double perovskite, A2BB' O6, where the A site is occupied by zirconium, the B site by boron, the O site by iridium but the B' site is vacant, leading to the formation of empty and boron-filled octahedral Ir 6 clusters. According to the result of tight-binding electronic structure calculations, Ir-B and Ir-Zr interactions are mainly responsible for the structural stability of the phase. According to COHP bonding analysis, the strongest bonding occurs for the Ir-B contacts, and the Ir-Ir bonding within the empty clusters is two times stronger than that in the BIr 6 octahedra.

  13. SYNTHESIS, CHARACTERIZATION, AND CRYSTAL STRUCTURE ...

    African Journals Online (AJOL)

    a

    KEY WORDS: Barium, Crystal structure, 2,6-Pyridinedicarboxylic acid .... The rational design of novel metal-organic frameworks has attracted great ..... Bond, A.D.; Jones, W. Supramolecular Organization and Materials Design, Jones, W.; Rao,.

  14. Crystal structure of the starch-binding domain of glucoamylase from Aspergillus niger.

    Science.gov (United States)

    Suyama, Yousuke; Muraki, Norifumi; Kusunoki, Masami; Miyake, Hideo

    2017-10-01

    Glucoamylases are widely used commercially to produce glucose syrup from starch. The starch-binding domain (SBD) of glucoamylase from Aspergillus niger is a small globular protein containing a disulfide bond. The structure of A. niger SBD has been determined by NMR, but the conformation surrounding the disulfide bond was unclear. Therefore, X-ray crystal structural analysis was used to attempt to clarify the conformation of this region. The SBD was purified from an Escherichia coli-based expression system and crystallized at 293 K. The initial phase was determined by the molecular-replacement method, and the asymmetric unit of the crystal contained four protomers, two of which were related by a noncrystallographic twofold axis. Finally, the structure was solved at 2.0 Å resolution. The SBD consisted of seven β-strands and eight loops, and the conformation surrounding the disulfide bond was determined from a clear electron-density map. Comparison of X-ray- and NMR-determined structures of the free SBD showed no significant difference in the conformation of each β-strand, but the conformations of the loops containing the disulfide bond and the L5 loop were different. In particular, the difference in the position of the C α atom of Cys509 between the X-ray- and NMR-determined structures was 13.3 Å. In addition, the B factors of the amino-acid residues surrounding the disulfide bond are higher than those of other residues. Therefore, the conformation surrounding the disulfide bond is suggested to be highly flexible.

  15. Neutron Diffraction Study of the Irreversible R-MA-MC Phase Transition in Single Crystal Pb[(Zn1/3Nb2/3)1-xTix]O3

    NARCIS (Netherlands)

    Ohwada, Kenji; Hirota, Kazuma; Rehrig, Paul W.; Gehring, Peter M.; Noheda, Beatriz; Fujii, Yasuhiko; Park, Seung-Eek Eagle; Shirane, Gen

    2001-01-01

    Single crystals of the relaxor PZN-xPT display an enormously strong piezoelectric character. Recent x-ray scattering studies have revealed novel electric-field induced phase transitions in PZN-8%PT. As-grown crystals exhibit a rhombohedral structure that, under application of an electric field

  16. Size-dependent and tunable crystallization of GeSbTe phase-change nanoparticles

    Science.gov (United States)

    Chen, Bin; Ten Brink, Gert H.; Palasantzas, George; Kooi, Bart J.

    2016-12-01

    Chalcogenide-based nanostructured phase-change materials (PCMs) are considered promising building blocks for non-volatile memory due to their high write and read speeds, high data-storage density, and low power consumption. Top-down fabrication of PCM nanoparticles (NPs), however, often results in damage and deterioration of their useful properties. Gas-phase condensation based on magnetron sputtering offers an attractive and straightforward solution to continuously down-scale the PCMs into sub-lithographic sizes. Here we unprecedentedly present the size dependence of crystallization for Ge2Sb2Te5 (GST) NPs, whose production is currently highly challenging for chemical synthesis or top-down fabrication. Both amorphous and crystalline NPs have been produced with excellent size and composition control with average diameters varying between 8 and 17 nm. The size-dependent crystallization of these NPs was carefully analyzed through in-situ heating in a transmission electron microscope, where the crystallization temperatures (Tc) decrease when the NPs become smaller. Moreover, methane incorporation has been observed as an effective method to enhance the amorphous phase stability of the NPs. This work therefore elucidates that GST NPs synthesized by gas-phase condensation with tailored properties are promising alternatives in designing phase-change memories constrained by optical lithography limitations.

  17. Scattering phase functions of horizontally oriented hexagonal ice crystals

    International Nuclear Information System (INIS)

    Chen Guang; Yang Ping; Kattawar, George W.; Mishchenko, Michael I.

    2006-01-01

    Finite-difference time domain (FDTD) solutions are first compared with the corresponding T-matrix results for light scattering by circular cylinders with specific orientations. The FDTD method is then utilized to study the scattering properties of horizontally oriented hexagonal ice plates at two wavelengths, 0.55 and 12 μm. The phase functions of horizontally oriented ice plates deviate substantially from their counterparts obtained for randomly oriented particles. Furthermore, we compute the phase functions of horizontally oriented ice crystal columns by using the FDTD method along with two schemes for averaging over the particle orientations. It is shown that the phase functions of hexagonal ice columns with horizontal orientations are not sensitive to the rotation about the principal axes of the particles. Moreover, hexagonal ice crystals and circular cylindrical ice particles have similar optical properties, particularly, at a strongly absorbing wavelength, if the two particle geometries have the same length and aspect ratio defined as the ratio of the radius or semi-width of the cross section of a particle to its length. The phase functions for the two particle geometries are slightly different in the case of weakly absorbing plates with large aspect ratios. However, the solutions for circular cylinders agree well with their counterparts for hexagonal columns

  18. Salts and Co-crystals of Theobromine and their phase ...

    Indian Academy of Sciences (India)

    Co-crystal; dissolution; phase transformation; salts; solubility; stability; synthon. ... Salts of theobromine with hydrochloric acid, phosphoric acid, methanesulfonic acid, benzenesulfonic acid and -toluenesulfonic acid were prepared using ... C. R. Rao Road, Gachibowli, Central University P.O., Hyderabad 500 046, India ...

  19. Crystal structure and properties of tetragonal EuAg4In8 grown by metal flux technique

    International Nuclear Information System (INIS)

    Subbarao, Udumula; Sarkar, Sumanta; Peter, Sebastian C.

    2015-01-01

    The compound EuAg 4 In 8 has been obtained as single crystals in high yield from reactions run in liquid indium. X-ray diffraction on single crystals suggests that EuAg 4 In 8 crystallizes in the CeMn 4 Al 8 structure type, tetragonal space group I4/mmm with lattice constants a=b=9.7937(2) Å and c=5.7492(2) Å. Crystal structure of EuAg 4 In 8 is composed of pseudo Frank–Kasper cages occupied by one europium atom in each ring, which are shared through the corner along the ab plane resulting in a three dimensional network. The magnetic susceptibility of EuAg 4 In 8 was measured in the temperature range 2–300 K, which obeyed Curie–Weiss law above 50 K. Magnetic moment value calculated from the fitting indicates the presence of divalent europium, which was confirmed by X-ray absorption near edge spectroscopy. Electrical resistivity measurements suggest that EuAg 4 In 8 is metallic in nature with a probable Fermi liquid behavior at low temperature. - Graphical abstract: The tetragonal EuAg 4 In 8 has been grown as single crystals from reactions run in liquid indium. Magnetic and XANES measurements suggest divalent nature of Eu and resistivity measurements suggest metallic nature. - Highlights: • EuAg 4 In 8 phase having tetragonal phase is grown by metal flux technique. • Magnetic and XANES measurements exhibit divalent nature of Eu in EuAg 4 In 8 . • Resistivity measurement suggests metallic nature and probable Fermi liquid behavior

  20. Crystal structure and vibrational spectra of melaminium arsenate

    Science.gov (United States)

    Anbalagan, G.; Marchewka, M. K.; Pawlus, K.; Kanagathara, N.

    2015-01-01

    The crystals of the new melaminium arsenate (MAS) [C3H7N6+ṡH2AsO4-] were obtained by the slow evaporation of an aqueous solution at room temperature. Single crystal X-ray diffraction analysis reveals that the crystal belongs to triclinic system with centro symmetric space group P-1. The crystals are built up from single protonated melaminium residues and single dissociated arsenate H2AsO4- anions. The protonated melaminium ring is almost planar. A combination of ionic and donor-acceptor hydrogen-bond interactions linking together the melaminium and arsenate residues forms a three-dimensional network. Vibrational spectroscopic analysis is reported on the basis of FT-IR and FT-Raman spectra recorded at room temperature. Hydrogen bonded network present in the crystal gives notable vibrational effect. DSC has also been performed for the crystal shows no phase transition in the studied temperature range (113-293 K).

  1. Transition to collapsed tetragonal phase in CaFe2As2 single crystals as seen by 57Fe Mössbauer spectroscopy

    Science.gov (United States)

    Bud'ko, Sergey L.; Ma, Xiaoming; Tomić, Milan; Ran, Sheng; Valentí, Roser; Canfield, Paul C.

    2016-01-01

    Temperature dependent measurements of 57Fe Mössbauer spectra on CaFe2As2 single crystals in the tetragonal and collapsed tetragonal phases are reported. Clear features in the temperature dependencies of the isomer shift, relative spectra area, and quadrupole splitting are observed at the transition from the tetragonal to the collapsed tetragonal phase. From the temperature dependent isomer shift and spectral area data, an average stiffening of the phonon modes in the collapsed tetragonal phase is inferred. The quadrupole splitting increases by ˜25 % on cooling from room temperature to ˜100 K in the tetragonal phase and is only weakly temperature dependent at low temperatures in the collapsed tetragonal phase, in agreement with the anisotropic thermal expansion in this material. In order to gain microscopic insight about these measurements, we perform ab initio density functional theory calculations of the electric field gradient and the electron density of CaFe2As2 in both phases. By comparing the experimental data with the calculations we are able to fully characterize the crystal structure of the samples in the collapsed-tetragonal phase through determination of the As z coordinate. Based on the obtained temperature dependent structural data we are able to propose charge saturation of the Fe-As bond region as the mechanism behind the stabilization of the collapsed-tetragonal phase at ambient pressure.

  2. Liquid structure as a guide for phase stability in the solid state: Discovery of a stable compound in the Au-Si alloy system

    International Nuclear Information System (INIS)

    Tasci, Emre S.; Sluiter, Marcel H.F.; Pasturel, Alain; Villars, Pierre

    2010-01-01

    A new crystalline ground state was discovered in the Au-Si system through first-principles electronic structure calculations. The new structure was found using the experimentally and theoretically determined local atomic structure in the liquid as a guide for the solid state. Local atomic structure in the liquid was matched with that for all known crystal structures as compiled in the Pauling File structural database. The best matching crystalline structures were then explicitly calculated using first-principles methods. Most candidate crystal structures were found to be close, but above the enthalpy of a composition weighted average of the face-centered cubic Au and diamond structure Si terminal phases, but one crystal structure was more stable than the terminal phases by about 10 meV atom -1 at T = 0 K. As first-principles simulations of local structure are feasible for most liquid alloys, the present methodology is applicable to other alloys lying near a eutectic composition.

  3. Structure and crystallization of SiO2 and B2O3 doped lithium disilicate glasses from theory and experiment.

    Science.gov (United States)

    Erlebach, Andreas; Thieme, Katrin; Sierka, Marek; Rüssel, Christian

    2017-09-27

    Solid solutions of SiO 2 and B 2 O 3 in Li 2 O·2SiO 2 are synthesized and characterized for the first time. Their structure and crystallization mechanisms are investigated employing a combination of simulations at the density functional theory level and experiments on the crystallization of SiO 2 and B 2 O 3 doped lithium disilicate glasses. The remarkable agreement of calculated and experimentally determined cell parameters reveals the preferential, kinetically controlled incorporation of [SiO 4 ] and [BO 4 ] at the Li + lattice sites of the Li 2 O·2SiO 2 crystal structure. While the addition of SiO 2 increases the glass viscosity resulting in lower crystal growth velocities, glasses containing B 2 O 3 show a reduction of both viscosities and crystal growth velocities. These observations could be rationalized by a change of the chemical composition of the glass matrix surrounding the precipitated crystal phase during the course of crystallization, which leads to a deceleration of the attachment of building units required for further crystal growth at the liquid-crystal interface.

  4. Crystal structure of enolase from Drosophila melanogaster.

    Science.gov (United States)

    Sun, Congcong; Xu, Baokui; Liu, Xueyan; Zhang, Zhen; Su, Zhongliang

    2017-04-01

    Enolase is an important enzyme in glycolysis and various biological processes. Its dysfunction is closely associated with diseases. Here, the enolase from Drosophila melanogaster (DmENO) was purified and crystallized. A crystal of DmENO diffracted to 2.0 Å resolution and belonged to space group R32. The structure was solved by molecular replacement. Like most enolases, DmENO forms a homodimer with conserved residues in the dimer interface. DmENO possesses an open conformation in this structure and contains conserved elements for catalytic activity. This work provides a structural basis for further functional and evolutionary studies of enolase.

  5. Synthesis, crystal growth, structural and physicochemical studies of novel binary organic complex: 4-chloroaniline–3-hydroxy-4-methoxybenzaldehyde

    International Nuclear Information System (INIS)

    Sharma, K.P.; Reddi, R.S.B.; Bhattacharya, S.; Rai, R.N.

    2012-01-01

    The solid-state reaction, which is solvent free and green synthesis, has been adopted to explore the novel compound. The phase diagram of 4-chloroaniline (CA) and 3-hydroxy-4-methoxybenzaldehyde (HMB) system shows the formation of a novel 1:1 molecular complex, and two eutectics on either sides of complex. Thermochemical studies of complex and eutectics have been carried out for various properties such as heat of fusion, entropy of fusion, Jackson's parameters, interfacial energy and excess thermodynamic functions. The formation of molecular complex was also studied by IR, NMR, elemental analysis and UV–Vis absorption spectra. The single crystal of molecular complex was grown and its XRD study confirms the formation of complex and identifies the crystal structure and atomic packing of crystal of complex. Transmission spectra of grown crystal of the complex show 70% transmittance efficiency with cut off wavelength 412 nm. The band gap and refractive index of the crystal of complex have also been studied. - Graphical abstarct: Exploiting phase diagram study and solvent free synthesis a novel compound was synthesized and its single crystal growth, atomic packing, energy band gap and refractive index were studied. Highlights: ► Novel organic complex was synthesized using Green or solvent free synthesis. ► Phase diagram study provided the information to identify the worthy composition of novel complex. ► The single crystal of the sufficient size was grown from the ethanol solution. ► Crystal analysis suggested that the covalent bond is formed between the two parent compounds. ► The transmittance of the crystal was found to be 70% and it was transparent from 412 to 850 nm.

  6. Phase-Shifting Liquid Crystal Interferometers for Microgravity Fluid Physics

    Science.gov (United States)

    Griffin, DeVon W.; Marshall, Keneth L.

    2002-01-01

    The initial focus of this project was to eliminate both of these problems in the Liquid Crystal Point-Diffraction Interferometer (LCPDI). Progress toward that goal will be described, along with the demonstration of a phase shifting Liquid Crystal Shearing Interferometer (LCSI) that was developed as part of this work. The latest LCPDI, other than a lens to focus the light from a test section onto a diffracting microsphere within the interferometer and a collimated laser for illumination, the pink region contained within the glass plates on the rod-mounted platform is the complete interferometer. The total width is approximately 1.5 inches with 0.25 inches on each side for bonding the electrical leads. It is 1 inch high and there are only four diffracting microspheres within the interferometer. As a result, it is very easy to align, achieving the first goal. The liquid crystal electro-optical response time is a function of layer thickness, with thinner devices switching faster due to a reduction in long-range viscoelastic forces between the LC molecules. The LCPDI has a liquid crystal layer thickness of 10 microns, which is controlled by plastic or glass microspheres embedded in epoxy 'pads' at the corners of the device. The diffracting spheres are composed of polystyrene/divinyl benzene polymer with an initial diameter of 15 microns. The spheres deform slightly when the interferometer is assembled to conform to the spacing produced by the microsphere-filled epoxy spacer pads. While the speed of this interferometer has not yet been tested, previous LCPDIs fabricated at the Laboratory for Laser Energetics switched at a rate of approximately 3.3 Hz, a factor of 10 slower than desired. We anticipate better performance when the speed of these interferometers is tested since they are approximately three times thinner. Phase shifting in these devices is a function of the AC voltage level applied to the liquid crystal. As the voltage increases, the dye in the liquid crystal

  7. New structural studies of liquid crystal by reflectivity and resonant X-ray diffraction; Nouvelles etudes structurales de cristaux liquides par reflectivite et diffraction resonante des rayons X

    Energy Technology Data Exchange (ETDEWEB)

    Fernandes, P

    2007-04-15

    This memory presents three structural studies of smectic Liquid Crystals by reflectivity and resonant diffraction of X-rays. It is divided in five chapters. In the first a short introduction to Liquid Crystals is given. In particular, the smectic phases that are the object of this study are presented. The second chapter is consecrated to the X-ray experimental techniques that were used in this work. The three last chapters present the works on which this thesis can be divided. Chapter three demonstrates on free-standing films of MHPOBC (historic liquid crystal that possesses the antiferroelectric sub-phases) the possibility to extend the technique of resonant X-ray diffraction to liquid crystals without resonant element. In the fourth chapter the structure of the B{sub 2} liquid crystal phase of bent-core molecules (or banana molecules) is elucidated by using resonant X-ray diffraction combined with polarization analysis of the diffracted beam. A model of the polarization of the resonant beam diffracted by four different structures proposed for the B{sub 2} phase is developed in this chapter. In the fifth chapter a smectic binary mixture presenting a very original critical point of phase separation is studied by X-ray reflectivity and optical microscopy. A concentration gradient in the direction perpendicular to the plane of the film seems to be induced by the free-standing film geometry. The results of a simplified model of the system are compatible with this interpretation.

  8. Pressure-induced phase transitions in organic molecular crystals: a combination of x-ray single-crystal and powder diffraction, raman and IR-spectroscopy

    International Nuclear Information System (INIS)

    Boldyreva, E V; Goryainov, S V; Seryotkin, Y V; Kolesnik, E N; Shakhtshneider, T P; Ivashevskaya, S N; Drebushchak, T N; Sowa, H; Ahsbahs, H; Chernyshev, V V; Dmitriev, V P

    2008-01-01

    The contribution summarizes the results of recent studies of phase transitions induced by high pressure in a number of molecular organic crystals, such as polymorphs of paracetamol, chlorpropamide, polymorphs of glycine, L- and DL-serine, β-alanine. The main attention is paid to the following topics: (1) Reversible / irreversible transformations; (2) Different behavior of single crystals / powders; (3) The role of pressure-transmitting liquid; (4) The role of the kinetic factors: phase transitions on decompression, or after a long storage at a selected pressure; (5) Isosymmetric phase transitions; (6) The role of the changes in the hydrogen bond networks / intramolecular conformational changes in the phase transitions; (7) Superstructures / nanostructures formed as a result of pressure-induced phase transitions

  9. Pressure-induced phase transitions in organic molecular crystals: a combination of x-ray single-crystal and powder diffraction, raman and IR-spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Boldyreva, E V; Goryainov, S V; Seryotkin, Y V; Kolesnik, E N; Shakhtshneider, T P; Ivashevskaya, S N; Drebushchak, T N [Research and Education Center ' Molecular Design and Ecologically Safe Technologies' , REC-008, Novosibirsk State University (Russian Federation); Sowa, H [Goettingen University (Germany); Ahsbahs, H; Chernyshev, V V [Marburg University (Germany); Dmitriev, V P [Swiss-Norwegian Beamline ESRF, Grenoble (France)], E-mail: boldyrev@nsu.ru

    2008-07-15

    The contribution summarizes the results of recent studies of phase transitions induced by high pressure in a number of molecular organic crystals, such as polymorphs of paracetamol, chlorpropamide, polymorphs of glycine, L- and DL-serine, {beta}-alanine. The main attention is paid to the following topics: (1) Reversible / irreversible transformations; (2) Different behavior of single crystals / powders; (3) The role of pressure-transmitting liquid; (4) The role of the kinetic factors: phase transitions on decompression, or after a long storage at a selected pressure; (5) Isosymmetric phase transitions; (6) The role of the changes in the hydrogen bond networks / intramolecular conformational changes in the phase transitions; (7) Superstructures / nanostructures formed as a result of pressure-induced phase transitions.

  10. Comparison of measured and computed phase functions of individual tropospheric ice crystals

    International Nuclear Information System (INIS)

    Stegmann, Patrick G.; Tropea, Cameron; Järvinen, Emma; Schnaiter, Martin

    2016-01-01

    Airplanes passing the incuda (lat. anvils) regions of tropical cumulonimbi-clouds are at risk of suffering an engine power-loss event and engine damage due to ice ingestion (Mason et al., 2006 [1]). Research in this field relies on optical measurement methods to characterize ice crystals; however the design and implementation of such methods presently suffer from the lack of reliable and efficient means of predicting the light scattering from ice crystals. The nascent discipline of direct measurement of phase functions of ice crystals in conjunction with particle imaging and forward modelling through geometrical optics derivative- and Transition matrix-codes for the first time allow us to obtain a deeper understanding of the optical properties of real tropospheric ice crystals. In this manuscript, a sample phase function obtained via the Particle Habit Imaging and Polar Scattering (PHIPS) probe during a measurement campaign in flight over Brazil will be compared to three different light scattering codes. This includes a newly developed first order geometrical optics code taking into account the influence of the Gaussian beam illumination used in the PHIPS device, as well as the reference ray tracing code of Macke and the T-matrix code of Kahnert. - Highlights: • A GO code for shaped beams and non-spherical particles has been developed. • The code has been validated against exact Mie results. • Measured and computed phase functions for a single ice crystal have been compared. • The comparison highlights differences in the backscattering region.

  11. Scalable solution-phase epitaxial growth of symmetry-mismatched heterostructures on two-dimensional crystal soft template.

    Science.gov (United States)

    Lin, Zhaoyang; Yin, Anxiang; Mao, Jun; Xia, Yi; Kempf, Nicholas; He, Qiyuan; Wang, Yiliu; Chen, Chih-Yen; Zhang, Yanliang; Ozolins, Vidvuds; Ren, Zhifeng; Huang, Yu; Duan, Xiangfeng

    2016-10-01

    Epitaxial heterostructures with precisely controlled composition and electronic modulation are of central importance for electronics, optoelectronics, thermoelectrics, and catalysis. In general, epitaxial material growth requires identical or nearly identical crystal structures with small misfit in lattice symmetry and parameters and is typically achieved by vapor-phase depositions in vacuum. We report a scalable solution-phase growth of symmetry-mismatched PbSe/Bi 2 Se 3 epitaxial heterostructures by using two-dimensional (2D) Bi 2 Se 3 nanoplates as soft templates. The dangling bond-free surface of 2D Bi 2 Se 3 nanoplates guides the growth of PbSe crystal without requiring a one-to-one match in the atomic structure, which exerts minimal restriction on the epitaxial layer. With a layered structure and weak van der Waals interlayer interaction, the interface layer in the 2D Bi 2 Se 3 nanoplates can deform to accommodate incoming layer, thus functioning as a soft template for symmetry-mismatched epitaxial growth of cubic PbSe crystal on rhombohedral Bi 2 Se 3 nanoplates. We show that a solution chemistry approach can be readily used for the synthesis of gram-scale PbSe/Bi 2 Se 3 epitaxial heterostructures, in which the square PbSe (001) layer forms on the trigonal/hexagonal (0001) plane of Bi 2 Se 3 nanoplates. We further show that the resulted PbSe/Bi 2 Se 3 heterostructures can be readily processed into bulk pellet with considerably suppressed thermal conductivity (0.30 W/m·K at room temperature) while retaining respectable electrical conductivity, together delivering a thermoelectric figure of merit ZT three times higher than that of the pristine Bi 2 Se 3 nanoplates at 575 K. Our study demonstrates a unique epitaxy mode enabled by the 2D nanocrystal soft template via an affordable and scalable solution chemistry approach. It opens up new opportunities for the creation of diverse epitaxial heterostructures with highly disparate structures and functions.

  12. Crystal structure of tris(hydroxylammonium orthophosphate

    Directory of Open Access Journals (Sweden)

    Malte Leinemann

    2015-11-01

    Full Text Available The crystal structure of the title salt, ([H3NOH]+3·[PO4]3−, consists of discrete hydroxylammonium cations and orthophosphate anions. The atoms of the cation occupy general positions, whereas the anion is located on a threefold rotation axis that runs through the phosphorus atom and one of the phosphate O atoms. In the crystal structure, cations and anions are linked by intermolecular O—H...O and N—H...O hydrogen bonds into a three-dimensional network. Altogether, one very strong O—H...O, two N—H...O hydrogen bonds of medium strength and two weaker bifurcated N—H...O interactions are observed.

  13. Selenium Derivatization of Nucleic Acids for Phase and Structure Determination in Nucleic Acid X-ray Crystallography

    Directory of Open Access Journals (Sweden)

    Zhen Huang

    2008-03-01

    Full Text Available Selenium derivatization (via selenomethionine of proteins for crystal structure determination via MAD phasing has revolutionized protein X-ray crystallography. It is estimated that over two thirds of all new crystal structures of proteins have been determined via Se-Met derivatization. Similarly, selenium functionalities have also been successfully incorporated into nucleic acids to facilitate their structure studies and it has been proved that this Se-derivatization has advantages over halogen strategy, which was usually used as a traditional method in this field. This review reports the development of site-specific selenium derivatization of nucleic acids for phase determination since the year of 2001 (mainly focus on the 2’-position of the ribose. All the synthesis of 2’-SeMe modified phosphoramidite building blocks (U, C, T, A, G and the according oligonucleotides are included. In addition, several structures of selenium contained nucleic acid are also described in this paper.

  14. Structure and Phase Transformation in the Giant Magnetostriction Laves-Phase SmFe2

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Xiaonan; Lin, Kun; Gao, Qilong; Zhu, He; Li, Qiang; Cao, Yili; Liu, Zhanning; You, Li; Chen, Jun; Ren, Yang [Argonne National Laboratory, X-Ray Science Division, Argonne, Illinois 60439, United States; Huang, Rongjin [Key Laboratory; Lapidus, Saul H. [Argonne National Laboratory, X-Ray Science Division, Argonne, Illinois 60439, United States; Xing, Xianran

    2017-10-13

    As one class of the most important intermetallic compounds, the binary Laves-phase is well-known for their abundant magnetic properties. Samarium-iron alloy system, SmFe2, is a prototypical Laves compound that shows strong negative magnetostriction but relatively weak magnetocrystalline anisotropy. SmFe2 has been identified as a cubic Fd$ \\overline{3}\\ $m structure at room temperature, however, the cubic symmetry does not match the spontaneous magnetization along the [111]cubic direction. Here we studied the crystal structure of SmFe2 by high-resolution synchrotron X-ray powder diffraction and X-ray total scattering methods. SmFe2 is found to adopt a centrosymmetric trigonal R$ \\overline{3}\\ $m structure at room temperature, which transforms to an orthorhombic Imma structure at 200 K. This transition is in agreement with the changes of easy magnetization direction from [111]cubic to [110]cubic direction, and is further evidenced by the inflexion of thermal expansion behavior, the sharp decline of the magnetic susceptibility in the FC-ZFC curve, and the anomaly in the specific heat capacity measurement. The revised structure and phase transformation of SmFe2 could be useful to understand the magnetostriction and related physical properties of other RM2-type pseudo-cubic Laves-phase intermetallic compounds.

  15. Low temperature phase of the trigonal RbIn(MoO4)2 crystal

    Science.gov (United States)

    Zapart, W.; Zapart, M. B.; Schranz, W.; Reinecker, M.

    2013-02-01

    The present article is devoted to a new low-temperature phase transition found at about T pt = 84 K in the layered RbIn(MoO4)2 crystal. This phase transition is well proved by dynamical mechanical analysis through anomalies in the temperature behaviour of both real and imaginary parts of the Young's modulus. From the polarizing microscope observations it was found that below T pt the ferroelastic phase disappears. This transition has also been seen through strong changes in the shape of the electron paramagnetic resonance lines. EPR studies, performed in the liquid nitrogen temperature, yield evidence of strong rebuilding of the crystal unit cell in comparison with that of the high temperature paraelastic phase.

  16. Slit and phase grating diffraction with a double crystal diffractometer

    International Nuclear Information System (INIS)

    Treimer, Wolfgang; Hilger, Andre; Strobl, Markus

    2006-01-01

    The lateral coherence properties of a neutron beam (λ=0.5248nm) in a double crystal diffractometer (DCD) were studied by means of single slit diffraction and by diffraction by different perfect Silicon phase gratings. Perfect agreements were found for the lateral coherence length measured with the slit and for the one determined by Silicon phase gratings, however, some peculiarities are still present

  17. Influence of fat crystals in the oil phase on stability of oil-in-water emulsions

    NARCIS (Netherlands)

    Boekel, van M.A.J.S.

    1980-01-01

    Coalescence at rest and during flow was studied in emulsions of paraffin oil in water with several surfactants and with crystals of solid paraffin or tristearate in the oil phase. Solid fat in the oil phase was estimated by pulsed nuclear magnetic resonance. Without crystals, oil-in-water emulsions

  18. Crystal phase-based epitaxial growth of hybrid noble metal nanostructures on 4H/fcc Au nanowires

    Science.gov (United States)

    Lu, Qipeng; Wang, An-Liang; Gong, Yue; Hao, Wei; Cheng, Hongfei; Chen, Junze; Li, Bing; Yang, Nailiang; Niu, Wenxin; Wang, Jie; Yu, Yifu; Zhang, Xiao; Chen, Ye; Fan, Zhanxi; Wu, Xue-Jun; Chen, Jinping; Luo, Jun; Li, Shuzhou; Gu, Lin; Zhang, Hua

    2018-03-01

    Crystal-phase engineering offers opportunities for the rational design and synthesis of noble metal nanomaterials with unusual crystal phases that normally do not exist in bulk materials. However, it remains a challenge to use these materials as seeds to construct heterometallic nanostructures with desired crystal phases and morphologies for promising applications such as catalysis. Here, we report a strategy for the synthesis of binary and ternary hybrid noble metal nanostructures. Our synthesized crystal-phase heterostructured 4H/fcc Au nanowires enable the epitaxial growth of Ru nanorods on the 4H phase and fcc-twin boundary in Au nanowires, resulting in hybrid Au-Ru nanowires. Moreover, the method can be extended to the epitaxial growth of Rh, Ru-Rh and Ru-Pt nanorods on the 4H/fcc Au nanowires to form unique hybrid nanowires. Importantly, the Au-Ru hybrid nanowires with tunable compositions exhibit excellent electrocatalytic performance towards the hydrogen evolution reaction in alkaline media.

  19. Method for solid state crystal growth

    Science.gov (United States)

    Nolas, George S.; Beekman, Matthew K.

    2013-04-09

    A novel method for high quality crystal growth of intermetallic clathrates is presented. The synthesis of high quality pure phase crystals has been complicated by the simultaneous formation of both clathrate type-I and clathrate type-II structures. It was found that selective, phase pure, single-crystal growth of type-I and type-II clathrates can be achieved by maintaining sufficient partial pressure of a chemical constituent during slow, controlled deprivation of the chemical constituent from the primary reactant. The chemical constituent is slowly removed from the primary reactant by the reaction of the chemical constituent vapor with a secondary reactant, spatially separated from the primary reactant, in a closed volume under uniaxial pressure and heat to form the single phase pure crystals.

  20. Active phase double crystal monochromator for JET (diagnostic system KS1)

    International Nuclear Information System (INIS)

    Andelfinger, C.; Fink, J.; Fussmann, G.; Krause, H.; Roehr, H.; Schilling, H.B.; Schumacher, U.; Becker, P.; Siegert, H.; Abel, P.; Keul, J.

    1984-03-01

    The determination of the impurity concentrations in JET plasmas by absolute radiation measurements in a wide spectral range can be done with a double crystal monochromator device in parallel mode, which is able to operate during all experimental phases of JET. The report describes the engineering design and tests for a double crystal monochromator that fulfills the conditions of parallel orientation of the two crystals during fast wavelength scan, of shielding against neutrons and gamma rays by its folded optical pathway and of sufficient spectral resolution for line profile measurements. (orig.)

  1. Structural Transitions in Cholesteric Liquid Crystal Droplets

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Ye; Bukusoglu, Emre; Martínez-González, José A.; Rahimi, Mohammad; Roberts, Tyler F.; Zhang, Rui; Wang, Xiaoguang; Abbott, Nicholas L.; de Pablo, Juan J.

    2016-07-26

    Confinement of cholesteric liquid crystals (ChLC) into droplets leads to a delicate interplay between elasticity, chirality, and surface energy. In this work, we rely on a combination of theory and experiments to understand the rich morphological behavior that arises from that balance. More specifically, a systematic study of micrometer-sized ChLC droplets is presented as a function of chirality and surface energy (or anchoring). With increasing chirality, a continuous transition is observed from a twisted bipolar structure to a radial spherical structure, all within a narrow range of chirality. During such a transition, a bent structure is predicted by simulations and confirmed by experimental observations. Simulations are also able to capture the dynamics of the quenching process observed in experiments. Consistent with published work, it is found that nanoparticles are attracted to defect regions on the surface of the droplets. For weak anchoring conditions at the nanoparticle surface, ChLC droplets adopt a morphology similar to that of the equilibrium helical phase observed for ChLCs in the bulk. As the anchoring strength increases, a planar bipolar structure arises, followed by a morphological transition to a bent structure. The influence of chirality and surface interactions are discussed in the context of the potential use of ChLC droplets as stimuli-responsive materials for reporting molecular adsorbates.

  2. Controlled synthesis and relationship between luminescent properties and shape/crystal structure of Zn2SiO4:MN2+ phosphor

    International Nuclear Information System (INIS)

    Wan Junxi; Wang Zhenghua; Chen Xiangying; Mu Li; Yu Weichao; Qian Yitai

    2006-01-01

    Mn-doped Zn 2 SiO 4 phosphors with different morphology and crystal structure, which show different luminescence and photoluminescence intensity, were synthesized via a low-temperature hydrothermal route without further calcining treatment. As-synthesized zinc silicate nanostructures show green or yellow luminescence depending on their different crystal structure obtained under different preparation conditions. The yellow peak occurring at 575 nm comes from the β-phase zinc silicate, while the green peak centering at 525 nm results from the usual α-phase zinc silicate. From photoluminescence spectra, it is found that Zn 2 SiO 4 nanorods have higher photoluminescence intensity than Zn 2 SiO 4 nanoparticles. It can be ascribed to reduced surface-damaged region and high crystallinity of nanorods

  3. Intracavity quasi-phase-matched self-frequency conversion in a periodically poled Nd:Mg:LiNbO3 crystal

    International Nuclear Information System (INIS)

    Laptev, G D; Novikov, Aleksei A

    2001-01-01

    The theory of intracavity quasi-phase-matched self-frequency conversion in an active nonlinear periodically poled structure is developed. The processes of quasi-phase-matched self-frequency doubling, self-halving and mixing using the pump wave in a periodically poled Nd:Mg:LiNbO 3 crystal are studied. The dependences of the efficiency of nonlinear optical conversion in these processes on the reflection coefficient of the output mirror and on linear losses in the medium are investigated. (nonlinear optical phenomena)

  4. Ultrasmall-angle X-ray scattering analysis of photonic crystal structure

    International Nuclear Information System (INIS)

    Abramova, V. V.; Sinitskii, A. S.; Grigor'eva, N. A.; Grigor'ev, S. V.; Belov, D. V.; Petukhov, A. V.; Mistonov, A. A.; Vasil'eva, A. V.; Tret'yakov, Yu. D.

    2009-01-01

    The results of an ultrasmall-angle X-ray scattering study of iron(III) oxide inverse opal thin films are presented. The photonic crystals examined are shown to have fcc structure with amount of stacking faults varying among the samples. The method used in this study makes it possible to easily distinguish between samples with predominantly twinned fcc structure and nearly perfect fcc stacking. The difference observed between samples fabricated under identical conditions is attributed to random layer stacking in the self-assembled colloidal crystals used as templates for fabricating the inverse opals. The present method provides a versatile tool for analyzing photonic crystal structure in studies of inverse opals made of various materials, colloidal crystals, and three-dimensional photonic crystals of other types.

  5. Phase equilibria, crystal structure and oxygen content of intermediate phases in the Y-Ba-Co-O system

    OpenAIRE

    Urusova, A. S.; Cherepanov, V. A.; Aksenova, T. V.; Gavrilova, L. Y.; Kiselev, E. A.

    2013-01-01

    The phase equilibria in the Y-Ba-Co-O system were systematically studied at 1373 K in air. The intermediate phases formed in the Y-Ba-Co-O system at 1373 K in air were: YBaCo2O5+δ, YBaCo4O 7 and BaCo1-yYyO3-δ (0.09≤y≤0.42). It was shown that YBaCo2O5+δ possesses tetragonal structure with the 3ap×3a p×2ap superstructure (sp. gr. P4/mmm). High-temperature X-ray diffraction analysis of the YBaCo2O 5+δ in the temperature range from 298 K up to 1073 K under Po2=0.21 atm has not shown any phase tra...

  6. The crystal structure and morphology of NiO-YSZ composite that prepared from local zircon concentrate of Bangka Island

    Energy Technology Data Exchange (ETDEWEB)

    Rahmawati, F., E-mail: fitria@mipa.uns.ac.id; Apriyani, K.; Heraldy, E. [Research Group of Solid State Chemistry & Catalysis, Department of Chemistry, Sebelas Maret University, Jl. Ir. Sutami 36A Kentingan Surakarta (Indonesia); Soepriyanto, S. [Department of Metallurgical Engineering, Faculty of Mining and Petroleum Engineering, Institut Teknologi Bandung, Jl. Ganesha 10 Bandung 40132 (Indonesia)

    2016-03-29

    In order to increase the economic value of local zircon concentrate from Bangka Island, NiO-YSZ was synthesized from Zirconia, ZrO{sub 2} that was prepared from local zircon concentrate. The NiO-YSZ composite was synthesized by solid state reaction method. XRD analysis equipped with Le Bail refinement was carried out to analyze the crystal structure and cell parameters of the prepared materials. The result showed that zirconia was crystallized in tetragonal structure with a space group of P42/NMC. Yttria-Stabilized-Zirconia (YSZ) was prepared by doping 8% mol yttrium oxide into zirconia and then sintered at 1250°C for 3 hours. Doping of 8% mol Yttria allowed phase transformation of zirconia from tetragonal into the cubic structure. Meanwhile, the composite of NiO-YSZ consists of two crystalline phases, i.e. the NiO with cubic structure and the YSZ with cubic structure. SEM analysis of the prepared materials shows that the addition of NiO into YSZ allows the morphology to become more roughness with larger grain size.

  7. Quasi-Phase Diagrams at Air/Oil Interfaces and Bulk Oil Phases for Crystallization of Small-Molecular Semiconductors by Adjusting Gibbs Adsorption.

    Science.gov (United States)

    Watanabe, Satoshi; Ohta, Takahisa; Urata, Ryota; Sato, Tetsuya; Takaishi, Kazuto; Uchiyama, Masanobu; Aoyama, Tetsuya; Kunitake, Masashi

    2017-09-12

    The temperature and concentration dependencies of the crystallization of two small-molecular semiconductors were clarified by constructing quasi-phase diagrams at air/oil interfaces and in bulk oil phases. A quinoidal quaterthiophene derivative with four alkyl chains (QQT(CN)4) in 1,1,2,2-tetrachroloethane (TCE) and a thienoacene derivative with two alkyl chains (C8-BTBT) in o-dichlorobenzene were used. The apparent crystal nucleation temperature (T n ) and dissolution temperature (T d ) of the molecules were determined based on optical microscopy examination in closed glass capillaries and open dishes during slow cooling and heating processes, respectively. T n and T d were considered estimates of the critical temperatures for nuclear formation and crystal growth, respectively. The T n values of QQT(CN)4 and C8-BTBT at the air/oil interfaces were higher than those in the bulk oil phases, whereas the T d values at the air/oil interfaces were almost the same as those in the bulk oil phases. These Gibbs adsorption phenomena were attributed to the solvophobic effect of the alkyl chain moieties. The temperature range between T n and T d corresponds to suitable supercooling conditions for ideal crystal growth based on the suppression of nucleation. The T n values at the water/oil and oil/glass interfaces did not shift compared with those of the bulk phases, indicating that adsorption did not occur at the hydrophilic interfaces. Promotion and inhibition of nuclear formation for crystal growth of the semiconductors were achieved at the air/oil and hydrophilic interfaces, respectively.

  8. Transmission electron microscope studies of phase transitions in single crystals and ceramics of ferroelectric Pb(Sc1/2Ta1/2)O3

    International Nuclear Information System (INIS)

    Baba-Kishi, K.Z.; Barber, D.J.

    1990-01-01

    An account is given of transmission electron microscope investigations of the phase transitions in single crystals and ceramics of the complex perovskite-structured ferroelectric 'relaxor' compound Pb(Sc 1/2 Ta 1/2 )O 3 . The crystal symmetries pertaining to both the non-polar paraelectric (PE) and polar ferroelectric (FE) states have been studied by the technique of convergent-beam electron diffraction. A new phase transition has been discovered in the temperature range for which the FE and PE states coexist. The new phase transition is interpreted as the creation of a modulated antiferroelectric state, and this is viewed as marking a departure from relaxor behaviour towards more 'normal' ferroelectric behaviour. (orig.)

  9. Phase-change materials: vibrational softening upon crystallization and its impact on thermal properties

    Energy Technology Data Exchange (ETDEWEB)

    Matsunaga, Toshiyuki [Materials Science and Analysis Technology Centre, Panasonic Corporation, Osaka (Japan); Japan Synchrotron Radiation Research Institute Hyogo (Japan); Yamada, Noboru [Digital and Network Technology Development Centre, Panasonic Corporation, Osaka (Japan); Japan Synchrotron Radiation Research Institute Hyogo (Japan); Kojima, Rie [Digital and Network Technology Development Centre, Panasonic Corporation, Osaka (Japan); Shamoto, Shinichi [Neutron Science Research Centre, Japan Atomic Energy Research Institute, Ibaraki (Japan); Sato, Masugu; Tanida, Hajime; Uruga, Tomoya; Kohara, Shinji [Japan Synchrotron Radiation Research Institute, Hyogo (Japan); Takata, Masaki [SPring-8/RIKEN, Hyogo, Japan, Department of Advanced Materials Science, School of Frontier Sciences, The University of Tokyo, Chiba (Japan); Zalden, Peter; Bruns, Gunnar; Wuttig, Matthias [I. Physikalisches Institut und JARA-FIT, RWTH Aachen Univ. (Germany); Sergueev, Ilya [European Synchrotron Radiation Facility, Grenoble (France); Wille, Hans Christian [Deutsches Elektronen-Synchrotron, Hamburg (Germany); Hermann, Raphael Pierre [Juelich Centre for Neutron Science JCNS and Peter Gruenberg, Institut PGI, JARA-FIT, Forschungszentrum Juelich GmbH (Germany); Faculte des Sciences, Universite de Liege (Belgium)

    2011-06-21

    Crystallization of an amorphous solid is usually accompanied by a significant change of transport properties, such as an increase in thermal and electrical conductivity. This fact underlines the importance of crystalline order for the transport of charge and heat. Phase-change materials, however, reveal a remarkably low thermal conductivity in the crystalline state. The small change in this conductivity upon crystallization points to unique lattice properties. The present investigation reveals that the thermal properties of the amorphous and crystalline state of phase-change materials show remarkable differences such as higher thermal displacements and a more pronounced anharmonic behavior in the crystalline phase. These findings are related to the change of bonding upon crystallization, which leads to an increase of the sound velocity and a softening of the optical phonon modes at the same time. (Copyright copyright 2011 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  10. The microscopic twins and their crystal phase in the high Tc Y-Ba-Cu-O and Dy-Ba-Cu-O superconductive ceramics

    International Nuclear Information System (INIS)

    Zu, Z.J.; Chen, Y.L.

    1988-01-01

    Most consider that the structure of Y-Ba- Cu-O and Dy-Ba-Cu-O stable superconductive crystals with high Tc is associated with the right-angled phase. The superconductivity is closely connected with the right-angled character of the crystalline texture; the better the right- angled character, the better the superconductivity. From statistical investigations of examples the authors have discovered that most of the Y-Ba-Cu-O and Dy-Ba-Cu-O superconductivity with high Tc ceramic crystals is in the monoclinic phase, which, consists of microscopic, lamellar, single twins. The long-columnar grains consisting of lamellar twin slabs show the optical characteristics of right-angled phase. The microscopic twinning and grain morphologies are summarized in this paper

  11. A quaternary lead based perovskite structured materials with diffuse phase transition behavior

    International Nuclear Information System (INIS)

    Puli, Venkata Sreenivas; Martínez, R.; Kumar, Ashok; Scott, J.F.; Katiyar, Ram S.

    2011-01-01

    Graphical abstract: (a) Curie–Weiss plot for the inverse of the relative dielectric permittivity and (b) log (1/ε − 1/ε m ) as function of log (T − T m ) for ceramics at 1 kHz. Highlights: ► Retaining phase pure structure with quaternary complex stoichiometric compositions. ► P–E loops with good saturation polarization (P s ∼ 30.7 μC/cm 2 ). ► Diffused relaxor phase transition behavior with γ estimated is ∼1.65. -- Abstract: A lead based quaternary compound composed of 0.25(PbZr 0.52 Ti 0.48 O 3 ) + 0.25(PbFe 0.5 Ta 0.5 O 3 ) + 0.25 (PbF 0.67 W 0.33 O 3 ) + 0.25(PbFe 0.5 Nb 0.5 O 3 ) – (PZT–PFT–PFW–PFN) was synthesized by conventional solid-state reaction techniques. It showed moderate high dielectric constant, low dielectric loss, and two diffuse phase transitions, one below the room temperature ∼261 K and other above ∼410 K. X-ray diffraction (XRD) patterns revealed a tetragonal crystal structure at room temperature where as scanning electron micrograph (SEM) indicates inhomogeneous surface with an average grain size of 500 nm–3 μm. Well saturated ferroelectric hysteresis loops with good saturation polarization (spontaneous polarization, P s ∼ 30.68 μC/cm 2 ) were observed. Temperature-dependent ac conductivity displayed low conductivity with kink in spectra near the phase transition. In continuing search for developing new ferroelectric materials, in the present study we report stoichiometric compositions of complex perovskite ceramic materials: (PZT–PFT–PFW–PFN) with diffuse phase transition behavior. The crystal structure, dielectric properties, and ferroelectric properties were characterized by XRD, SEM, dielectric spectroscopy, and polarization. 1/ε versus (T) plots revealed diffuse relaxor phase transition (DPT) behavior. The compositional variation on the phase transition temperature, dielectric constant, and ferroelectric to paraelectric phase transitions are discussed.

  12. A quaternary lead based perovskite structured materials with diffuse phase transition behavior

    Energy Technology Data Exchange (ETDEWEB)

    Puli, Venkata Sreenivas, E-mail: pvsri123@gmail.com [Department of Physics and Institute for Functional Nano Materials, University of Puerto Rico, San Juan, PR 00936 (United States); Martinez, R.; Kumar, Ashok [Department of Physics and Institute for Functional Nano Materials, University of Puerto Rico, San Juan, PR 00936 (United States); Scott, J.F. [Department of Physics and Institute for Functional Nano Materials, University of Puerto Rico, San Juan, PR 00936 (United States); Cavendish Laboratory, Dept. Physics, University of Cambridge, Cambridge CB0 3HE (United Kingdom); Katiyar, Ram S., E-mail: rkatiyar@uprrp.edu [Department of Physics and Institute for Functional Nano Materials, University of Puerto Rico, San Juan, PR 00936 (United States)

    2011-12-15

    Graphical abstract: (a) Curie-Weiss plot for the inverse of the relative dielectric permittivity and (b) log (1/{epsilon} - 1/{epsilon}{sub m}) as function of log (T - T{sub m}) for ceramics at 1 kHz. Highlights: Black-Right-Pointing-Pointer Retaining phase pure structure with quaternary complex stoichiometric compositions. Black-Right-Pointing-Pointer P-E loops with good saturation polarization (P{sub s} {approx} 30.7 {mu}C/cm{sup 2}). Black-Right-Pointing-Pointer Diffused relaxor phase transition behavior with {gamma} estimated is {approx}1.65. -- Abstract: A lead based quaternary compound composed of 0.25(PbZr{sub 0.52}Ti{sub 0.48}O{sub 3}) + 0.25(PbFe{sub 0.5}Ta{sub 0.5}O{sub 3}) + 0.25 (PbF{sub 0.67}W{sub 0.33}O{sub 3}) + 0.25(PbFe{sub 0.5}Nb{sub 0.5}O{sub 3}) - (PZT-PFT-PFW-PFN) was synthesized by conventional solid-state reaction techniques. It showed moderate high dielectric constant, low dielectric loss, and two diffuse phase transitions, one below the room temperature {approx}261 K and other above {approx}410 K. X-ray diffraction (XRD) patterns revealed a tetragonal crystal structure at room temperature where as scanning electron micrograph (SEM) indicates inhomogeneous surface with an average grain size of 500 nm-3 {mu}m. Well saturated ferroelectric hysteresis loops with good saturation polarization (spontaneous polarization, P{sub s} {approx} 30.68 {mu}C/cm{sup 2}) were observed. Temperature-dependent ac conductivity displayed low conductivity with kink in spectra near the phase transition. In continuing search for developing new ferroelectric materials, in the present study we report stoichiometric compositions of complex perovskite ceramic materials: (PZT-PFT-PFW-PFN) with diffuse phase transition behavior. The crystal structure, dielectric properties, and ferroelectric properties were characterized by XRD, SEM, dielectric spectroscopy, and polarization. 1/{epsilon} versus (T) plots revealed diffuse relaxor phase transition (DPT) behavior. The

  13. Crystal structure and solid-state properties of discrete hexa cationic ...

    Indian Academy of Sciences (India)

    Subsequently, weight loss of 33% in two stages from 242 to 691◦C can be assigned to the decomposition of triazole ligands. 3.3 Description of the crystal structure. The solid-state structure of ZnT was unambiguously determined by the single crystal X-ray diffraction tech- nique (figures 2 and 3). Compound ZnT crystallizes in.

  14. Crystallization kinetics in antimony and tellurium alloys used for phase change recording

    International Nuclear Information System (INIS)

    Kalb, J.A.

    2006-01-01

    This thesis makes a contribution to a fundamental understanding of the crystallization kinetics of amorphous and liquid phase change materials. In one project of this study, ex situ atomic force microscopy in combination with a high-precision furnace was identified as a powerful and accurate tool to determine isothermal crystallization parameters in thin films as a function of time and temperature. This method was employed for a systematic study of crystallization kinetics in sputtered amorphous Ag 0.055 In 0.065 Sb 0.59 Te 0.29 (hereafter: AgIn-SbTe), Ge 4 Sb 1 Te 5 , and Ge 1 Sb 2 Te 4 thin films used for phase change recording. The temperature dependence of the crystal nucleation rate and the crystal growth velocity were determined between 90 and 190 C by direct observation of crystals. The time dependence of the nucleation rate was also investigated. Ex situ transmission electron microscopy was used to study the crystal morphology in these alloys. In a second project, sputtered amorphous films in the compositions mentioned above were studied by differential scanning calorimetry. In a third project, droplets of molten alloys of composition Ge 12 Sb 88 , AgIn-Sb 2 Te, Ge 4 Sb 1 Te 5 and Ge 2 Sb 2 Te 5 , surrounded by a molten dehydrated B 2 O 3 flux, were undercooled to 40-80 K below their liquidus temperature in a differential thermal analyzer. The crystal-melt interfacial energy was determined from the nucleation temperature using the classical nucleation theory. (Orig.)

  15. Third harmonic frequency generation by type-I critically phase-matched LiB3O5 crystal by means of optically active quartz crystal.

    Science.gov (United States)

    Gapontsev, Valentin P; Tyrtyshnyy, Valentin A; Vershinin, Oleg I; Davydov, Boris L; Oulianov, Dmitri A

    2013-02-11

    We present a method of third harmonic generation at 355 nm by frequency mixing of fundamental and second harmonic radiation of an ytterbium nanosecond pulsed all-fiber laser in a type-I phase-matched LiB(3)O(5) (LBO) crystal where originally orthogonal polarization planes of the fundamental and second harmonic beams are aligned by an optically active quartz crystal. 8 W of ultraviolet light at 355 nm were achieved with 40% conversion efficiency from 1064 nm radiation. The conversion efficiency obtained in a type-I phase-matched LBO THG crystal was 1.6 times higher than the one achieved in a type-II LBO crystal at similar experimental conditions. In comparison to half-wave plates traditionally used for polarization alignment the optically active quartz crystal has much lower temperature dependence and requires simpler optical alignment.

  16. CRYSTAL-STRUCTURE OF DEOXYGENATED LIMULUS-POLYPHEMUS SUBUNIT-II HEMOCYANIN AT 2.18-ANGSTROM RESOLUTION - CLUES FOR A MECHANISM FOR ALLOSTERIC REGULATION

    NARCIS (Netherlands)

    HAZES, B; MAGNUS, KA; BONAVENTURA, C; BONAVENTURA, J; DAUTER, Z; KALK, KH; HOL, WGJ

    The crystal structure of Limulus polyphemus subunit type II hemocyanin in the deoxygenated state has been determined to a resolution of 2.18 angstrom. Phase information for this first structure of a cheliceratan hemocyanin was obtained by molecular replacement using the crustacean hemocyanin

  17. Pressure-induced crystallization and phase transformation of amorphous selenium: Raman spectroscopy and x-ray diffraction studies

    International Nuclear Information System (INIS)

    Yang Kaifeng; Cui Qiliang; Hou Yuanyuan; Liu Bingbing; Zhou Qiang; Hu Jingzhu; Mao, H-K; Zou Guangtian

    2007-01-01

    High-pressure Raman spectroscopy studies have been carried out on amorphous Se (a-Se) at room temperature in a diamond anvil cell with an 830 nm exciting line. Raman evidence for the pressure-induced crystallization of a-Se and the coexistence of the unknown high-pressure phase with the hexagonal phase is presented for the first time. Further experimental proof of high-pressure angle-dispersive x-ray diffraction studies for a-Se indicates that the unknown high-pressure phase is also a mixture phase of the tetragonal I4 1 /acd and Se IV structure. Our Raman and x-ray diffraction results suggest that hexagonal Se I undergoes a direct transition to triclinic Se III at about 19 GPa, which is in good agreement with the theoretical prediction

  18. Preparation and Optical Properties of Spherical Inverse Opals by Liquid Phase Deposition Using Spherical Colloidal Crystals

    International Nuclear Information System (INIS)

    Aoi, Y; Tominaga, T

    2013-01-01

    Titanium dioxide (TiO 2 ) inverse opals in spherical shape were prepared by liquid phase deposition (LPD) using spherical colloidal crystals as templates. Spherical colloidal crystals were produced by ink-jet drying technique. Aqueous emulsion droplets that contain polystyrene latex particles were ejected into air and dried. Closely packed colloidal crystals with spherical shape were obtained. The obtained spherical colloidal crystals were used as templates for the LPD. The templates were dispersed in the deposition solution of the LPD, i.e. a mixed solution of ammonium hexafluorotitanate and boric acid and reacted for 4 h at 30 °C. After the LPD process, the interstitial spaces of the spherical colloidal crystals were completely filled with titanium oxide. Subsequent heat treatment resulted in removal of templates and spherical titanium dioxide inverse opals. The spherical shape of the template was retained. SEM observations indicated that the periodic ordered voids were surrounded by titanium dioxide. The optical reflectance spectra indicated that the optical properties of the spherical titanium dioxide inverse opals were due to Bragg diffractions from the ordered structure. Filling in the voids of the inverse opals with different solvents caused remarkable changes in the reflectance peak.

  19. Synthesis, crystal growth, structural and physicochemical studies of novel binary organic complex: 4-chloroaniline-3-hydroxy-4-methoxybenzaldehyde

    Energy Technology Data Exchange (ETDEWEB)

    Sharma, K.P.; Reddi, R.S.B.; Bhattacharya, S. [Department of Chemistry, Centre of Advance Study, Banaras Hindu University, Varanasi-221005 (India); Rai, R.N., E-mail: rn_rai@yahoo.co.in [Department of Chemistry, Centre of Advance Study, Banaras Hindu University, Varanasi-221005 (India)

    2012-06-15

    The solid-state reaction, which is solvent free and green synthesis, has been adopted to explore the novel compound. The phase diagram of 4-chloroaniline (CA) and 3-hydroxy-4-methoxybenzaldehyde (HMB) system shows the formation of a novel 1:1 molecular complex, and two eutectics on either sides of complex. Thermochemical studies of complex and eutectics have been carried out for various properties such as heat of fusion, entropy of fusion, Jackson's parameters, interfacial energy and excess thermodynamic functions. The formation of molecular complex was also studied by IR, NMR, elemental analysis and UV-Vis absorption spectra. The single crystal of molecular complex was grown and its XRD study confirms the formation of complex and identifies the crystal structure and atomic packing of crystal of complex. Transmission spectra of grown crystal of the complex show 70% transmittance efficiency with cut off wavelength 412 nm. The band gap and refractive index of the crystal of complex have also been studied. - Graphical abstarct: Exploiting phase diagram study and solvent free synthesis a novel compound was synthesized and its single crystal growth, atomic packing, energy band gap and refractive index were studied. Highlights: Black-Right-Pointing-Pointer Novel organic complex was synthesized using Green or solvent free synthesis. Black-Right-Pointing-Pointer Phase diagram study provided the information to identify the worthy composition of novel complex. Black-Right-Pointing-Pointer The single crystal of the sufficient size was grown from the ethanol solution. Black-Right-Pointing-Pointer Crystal analysis suggested that the covalent bond is formed between the two parent compounds. Black-Right-Pointing-Pointer The transmittance of the crystal was found to be 70% and it was transparent from 412 to 850 nm.

  20. Determination of phase transitions in a lyotropic liquid crystal by Positron Annihilation technique

    International Nuclear Information System (INIS)

    Castillo V, V.M.

    1994-01-01

    Positron annihilation technique was used to determine the phase transitions in a lyotropic liquid crystal, as a function of temperature. Seven different concentrations of the surfactant cetyldimethylethylammonium bromide, were studied. The liquid crystal studied consisted of a binary system, formed by the surfactant and water. Positron annihilation technique has a very high sensitivity toward changes in the microestructure, in condensed matter, this is useful in order to detect the temperatures at which phase transitions occur and the number of these, in a liquid crystalline system. Thus, phase transitions are related with changes occurred in the ortho-positronium parameters: lifetime (τ 3 ) and intensity of formation (I 3 ). Six different kinds of phases were detected in the system studied in a temperature range of 35 to 140 Centigrade degrees, those phases were: hexagonal, hexagonal-lamellae, lamellae, lamellae-cubic, nematic and anisotropic. Using optical microscopic the textures of these phases were assigned. (Author)

  1. Programmatic conversion of crystal structures into 3D printable files using Jmol

    OpenAIRE

    Scalfani, Vincent F.; Williams, Antony J.; Tkachenko, Valery; Karapetyan, Karen; Pshenichnov, Alexey; Hanson, Robert M.; Liddie, Jahred M.; Bara, Jason E.

    2016-01-01

    Background Three-dimensional (3D) printed crystal structures are useful for chemistry teaching and research. Current manual methods of converting crystal structures into 3D printable files are time-consuming and tedious. To overcome this limitation, we developed a programmatic method that allows for facile conversion of thousands of crystal structures directly into 3D printable files. Results A collection of over 30,000 crystal structures in crystallographic information file (CIF) format from...

  2. Stabilization of crystal and magnetic structure of Gd2Al1-xInx

    International Nuclear Information System (INIS)

    Niazi, M.; Yazdani, A.

    2006-01-01

    A random mixture of two compounds with different type of crystal structure and magnetic characteristic which can lead to a new phase, is studied to find out the critical point at which both of them stabilized. such an interesting random system can be found by; 1) Gd 2 Al with two different magnetic phase transition on which T c is unstable 2) Gd 2 In which is also shows two magnetic phase transition, but completely different with Gd 2 Al on which T N is unstable. The stabilized point which is consider experimentally by X-Ray diffraction and theoretically by WIEN2K is suggested to be at x=0.3 where it is a good agreement between these two methods.

  3. On the influence of crystal size and wavelength on native SAD phasing.

    Science.gov (United States)

    Liebschner, Dorothee; Yamada, Yusuke; Matsugaki, Naohiro; Senda, Miki; Senda, Toshiya

    2016-06-01

    Native SAD is an emerging phasing technique that uses the anomalous signal of native heavy atoms to obtain crystallographic phases. The method does not require specific sample preparation to add anomalous scatterers, as the light atoms contained in the native sample are used as marker atoms. The most abundant anomalous scatterer used for native SAD, which is present in almost all proteins, is sulfur. However, the absorption edge of sulfur is at low energy (2.472 keV = 5.016 Å), which makes it challenging to carry out native SAD phasing experiments as most synchrotron beamlines are optimized for shorter wavelength ranges where the anomalous signal of sulfur is weak; for longer wavelengths, which produce larger anomalous differences, the absorption of X-rays by the sample, solvent, loop and surrounding medium (e.g. air) increases tremendously. Therefore, a compromise has to be found between measuring strong anomalous signal and minimizing absorption. It was thus hypothesized that shorter wavelengths should be used for large crystals and longer wavelengths for small crystals, but no thorough experimental analyses have been reported to date. To study the influence of crystal size and wavelength, native SAD experiments were carried out at different wavelengths (1.9 and 2.7 Å with a helium cone; 3.0 and 3.3 Å with a helium chamber) using lysozyme and ferredoxin reductase crystals of various sizes. For the tested crystals, the results suggest that larger sample sizes do not have a detrimental effect on native SAD data and that long wavelengths give a clear advantage with small samples compared with short wavelengths. The resolution dependency of substructure determination was analyzed and showed that high-symmetry crystals with small unit cells require higher resolution for the successful placement of heavy atoms.

  4. On the laws of disordering of the Ln3+ -ion crystal field in insulating crystals

    International Nuclear Information System (INIS)

    Kaminskij, A.A.

    1988-01-01

    Results of the study of fundamental regularities, which cause crystal field (CF) disordering on Ln 3+ ions in dielectric crystals are summed up. Analysis and systematization of the investigation results of atomic structure of disordered laser crystals and conducted investigations on spectroscopic properties and induced radiation (IR) permitted to come to the conclusion that the nature of disordering on CF is related to two fundamental regularities. The first regularity- the structural-dynamic one- is pronounced in numerous nonstoichiometric phases; the second one - determines spectroscopic properties and IR character

  5. A High-Rate, Single-Crystal Model including Phase Transformations, Plastic Slip, and Twinning

    Energy Technology Data Exchange (ETDEWEB)

    Addessio, Francis L. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States). Theoretical Division; Bronkhorst, Curt Allan [Los Alamos National Lab. (LANL), Los Alamos, NM (United States). Theoretical Division; Bolme, Cynthia Anne [Los Alamos National Lab. (LANL), Los Alamos, NM (United States). Explosive Science and Shock Physics Division; Brown, Donald William [Los Alamos National Lab. (LANL), Los Alamos, NM (United States). Materials Science and Technology Division; Cerreta, Ellen Kathleen [Los Alamos National Lab. (LANL), Los Alamos, NM (United States). Materials Science and Technology Division; Lebensohn, Ricardo A. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States). Materials Science and Technology Division; Lookman, Turab [Los Alamos National Lab. (LANL), Los Alamos, NM (United States). Theoretical Division; Luscher, Darby Jon [Los Alamos National Lab. (LANL), Los Alamos, NM (United States). Theoretical Division; Mayeur, Jason Rhea [Los Alamos National Lab. (LANL), Los Alamos, NM (United States). Theoretical Division; Morrow, Benjamin M. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States). Materials Science and Technology Division; Rigg, Paulo A. [Washington State Univ., Pullman, WA (United States). Dept. of Physics. Inst. for Shock Physics

    2016-08-09

    An anisotropic, rate-­dependent, single-­crystal approach for modeling materials under the conditions of high strain rates and pressures is provided. The model includes the effects of large deformations, nonlinear elasticity, phase transformations, and plastic slip and twinning. It is envisioned that the model may be used to examine these coupled effects on the local deformation of materials that are subjected to ballistic impact or explosive loading. The model is formulated using a multiplicative decomposition of the deformation gradient. A plate impact experiment on a multi-­crystal sample of titanium was conducted. The particle velocities at the back surface of three crystal orientations relative to the direction of impact were measured. Molecular dynamics simulations were conducted to investigate the details of the high-­rate deformation and pursue issues related to the phase transformation for titanium. Simulations using the single crystal model were conducted and compared to the high-­rate experimental data for the impact loaded single crystals. The model was found to capture the features of the experiments.

  6. Correlation between modulation structure and electronic inhomogeneity on Pb-doped Bi-2212 single crystals

    International Nuclear Information System (INIS)

    Sugimoto, A.; Kashiwaya, S.; Eisaki, H.; Yamaguchi, H.; Oka, K.; Kashiwaya, H.; Tsuchiura, H.; Tanaka, Y.

    2005-01-01

    The correlation between nanometer-size electronic states and surface structure is investigated by scanning tunneling microscopy/spectroscopy (STM/S) on Pb-doped Bi 2-x Pb x Sr 2 CaCu2O 8+y (Pb-Bi-2212) single crystals. The advantage of the Pb-Bi-2212 samples is that the modulation structure can be totally or locally suppressed depending on the Pb contents and annealing conditions. The superconducting gap (Δ) distribution on modulated Pb-Bi-2212 samples showed the lack of correlation with modulation structure except a slight reduction of superconducting island size for the b-axis direction. On the other hand, the optimal doped Pb-Bi-2212 (x = 0.6) samples obtained by reduced-annealing showed totally non-modulated structure in topography, however, the spatial distribution of Δ still showed inhomogeneity of which features were quite similar to those of modulated samples. These results suggest that the modulation structure is not the dominant origin of inhomogeneity although it modifies the streaky Δ structure sub-dominantly. From the gap structure variation around the border of narrow gap and broad gap regions, a trend of the coexistence of two separated phases i.e., superconducting phase and pseudogap like phase, is detected

  7. THERMODYNAMIC PARAMETERS OF LEAD SULFIDE CRYSTALS IN THE CUBIC PHASE

    Directory of Open Access Journals (Sweden)

    T. O. Parashchuk

    2016-07-01

    Full Text Available Geometric and thermodynamic parameters of cubic PbS crystals were obtained using the computer calculations of the thermodynamic parameters within density functional theory method DFT. Cluster models for the calculation based on the analysis of the crystal and electronic structure. Temperature dependence of energy ΔE and enthalpy ΔH, Gibbs free energy ΔG, heat capacity at constant pressure CP and constant volume CV, entropy ΔS were determined on the basis of ab initio calculations of the crystal structure of molecular clusters. Analytical expressions of temperature dependences of thermodynamic parameters which were approximated with quantum-chemical calculation points have been presented. Experimental results compared with theoretically calculated data.

  8. Synthesis, crystal structure refinement, and nonlinear-optical properties of CaB3O5(OH): Comparative crystal chemistry of calcium triborates

    International Nuclear Information System (INIS)

    Yamnova, N. A.; Aksenov, S. M.; Stefanovich, S. Yu.; Volkov, A. S.; Dimitrova, O. V.

    2015-01-01

    Calcium triborate CaB 3 O5(OH) obtained by hydrothermal synthesis in the Ca(OH) 2 –H 3 BO 3 –Na 2 CO 3 –KCl system is studied by single-crystal X-ray diffraction. The parameters of the orthorhombic unit cell are as follows: a = 13.490(1), b = 6.9576(3), and c = 4.3930(2) Å; V = 412.32(3) Å 3 and space group Pna2 1 . The structure is refined in the anisotropic approximation of the atomic displacement parameters to R = 4.28% using 972 vertical bar F vertical bar > 4σ(F). It is confirmed that the crystal structure of Ca triborate CaB 3 O 5 (OH) is identical to that described earlier. The hydrogen atom is localized. An SHG signal stronger than that of the quartz standard is registered. The phase transition of calcium triborate into calciborite is found on heating. The comparative crystal-chemical analysis of a series of borates with the general chemical formula 2CaO · 3B 2 O 3 · nH 2 O (n = 0–13) with the constant CaO: B 2 O 3 = 2: 3 ratio and variable content of water is performed

  9. The digital structural analysis of cadmium selenide crystals by a method of ion beam thinning for high resolution electron microscopy

    International Nuclear Information System (INIS)

    Kanaya, Koichi; Baba, Norio; Naka, Michiaki; Kitagawa, Yukihisa; Suzuki, Kunio

    1986-01-01

    A digital processing method using a scanning densitometer system for structural analysis of electron micrographs was successfully applied to a study of cadmium selenide crystals, which were prepared by an argon-ion beam thinning method. Based on Fourier techniques for structural analysis from a computer-generated diffractogram, it was demonstrated that when cadmium selenide crystals were sufficiently thin to display the higher order diffraction spots at a high resolution approaching the atomic level, they constitute an alternative hexagonal lattice of imperfect wurtzite phase from a superposition of individual harmonic images by the enhanced scattering amplitude and corrected phase. From the structural analysis data, a Fourier synthetic lattice image was reconstructed, representing the precise location and three-dimensional arrangement of each of the atoms in the unit cell. Extensively enhanced lattice defect images of dislocations and stacking faults were also derived and shown graphically. (author)

  10. Crystal and electronic structure study of AgAu and AgCu bimetallic alloy thin films by X-ray techniques

    Energy Technology Data Exchange (ETDEWEB)

    Ozkendir, O. Murat, E-mail: ozkendir@gmail.com [Mersin University, Faculty of Technology, Energy Systems Engineering, Tarsus (Turkey); Mersin University, Institute of Natural Science, Department of Nanotechnology and Advanced Materials, Mersin (Turkey); Cengiz, E. [Karadeniz Technical University, Faculty of Science, Department of Physics, Trabzon (Turkey); Yalaz, E. [Mersin University, Institute of Natural Science, Department of Nanotechnology and Advanced Materials, Mersin (Turkey); Söğüt, Ö.; Ayas, D.H. [Kahramanmaraş Sütçü İmam Üniversitesi, Faculty of Science and Letters, Department of Physics, Kahramanmaraş (Turkey); Thammajak, B. Nirawat [Synchrotron Light Research Institute (Public Organisation), 111 University Avenue, T. Suranaree, A. Muang, Nakhon Ratchasima 30000 (Thailand)

    2016-05-15

    Highlights: • Crystal and electronic properties of bimetallic AgCu and AgAu alloy thin films were studied. • Both AgCu and AgAu bimetallic samples were determined to have cubic crystal geometry. • Strong influence of Cu and Au atoms on the electronic structure of the Ag atoms were determined. - Abstract: Crystal and electronic structure properties of bimetallic AgAu and AgCu alloy thin films were investigated by X-ray spectroscopic techniques. The aim of this study is to probe the influence of Au or Cu atoms on the electronic behaviors of Ag ions in bimetallic alloy materials that yields different crystal properties. To identify the mechanisms causing crystal phase transitions, study were supported by the collected EXAFS (Extended X-ray Absorption Fine Structure) data. Crystal structures of both Cu and Au doped bimetallic Ag samples were determined mainly in cubic geometry with “Fm3m” space group. Through the Ag–Au and Ag–Cu molecular interactions during bimetallic alloy formations, highly overlapped electronic levels that supports large molecular band formations were observed with different ionization states. Besides, traces of the d–d interactions in Au rich samples were determined as the main interplay in the broad molecular bond formations. The exact atomic locations and types in the samples were determined by EXAFS studies and supported by the performed calculations with FEFF scientific code.

  11. Topological phase transitions from Harper to Fibonacci crystals

    Science.gov (United States)

    Amit, Guy; Dana, Itzhack

    2018-02-01

    Topological properties of Harper and generalized Fibonacci chains are studied in crystalline cases, i.e., for rational values of the modulation frequency. The Harper and Fibonacci crystals at fixed frequency are connected by an interpolating one-parameter Hamiltonian. As the parameter is varied, one observes topological phase transitions, i.e., changes in the Chern integers of two bands due to the degeneracy of these bands at some parameter value. For small frequency, corresponding to a semiclassical regime, the degeneracies are shown to occur when the average energy of the two bands is approximately equal to the energy of the classical separatrix. Spectral and topological features of the Fibonacci crystal for small frequency leave a clear imprint on the corresponding Hofstadter butterfly for arbitrary frequency.

  12. Crystal structure, Raman scattering and magnetic properties of CuCr2-xZrxSe4 and CuCr2-xSnxSe4 selenospinels

    Science.gov (United States)

    Pinto, C.; Galdámez, A.; Barahona, P.; Moris, S.; Peña, O.

    2018-06-01

    Selenospinels, CuCr2-xMxSe4 (M = Zr and Sn), were synthesized via conventional solid-state reactions. The crystal structure of CuCr1.5Sn0.5Se4, CuCr1.7Sn0.3Se4, CuCr1.5Zr0.5Se4, and CuCr1.8Zr0.2Se4 were determined using single-crystal X-ray diffraction. All the phases crystallized in a cubic spinel-type structure. The chemical compositions of the single-crystals were examined using energy-dispersive X-ray analysis (EDS). Powder X-ray diffraction patterns of CuCr1.3Sn0.7Se4 and CuCr1.7Sn0.3Se4 were consistent with phases belonging to the Fd 3 bar m Space group. An analysis of the vibrational properties on the single-crystals was performed using Raman scattering measurements. The magnetic properties showed a spin glass behavior with increasing Sn content and ferromagnetic order for CuCr1.7Sn0.3Se4.

  13. Crystal structure of cobalt hydroxide carbonate Co2CO3(OH)2: density functional theory and X-ray diffraction investigation.

    Science.gov (United States)

    González-López, Jorge; Cockcroft, Jeremy K; Fernández-González, Ángeles; Jimenez, Amalia; Grau-Crespo, Ricardo

    2017-10-01

    The cobalt carbonate hydroxide Co 2 CO 3 (OH) 2 is a technologically important solid which is used as a precursor for the synthesis of cobalt oxides in a wide range of applications. It also has relevance as a potential immobilizer of the toxic element cobalt in the natural environment, but its detailed crystal structure is so far unknown. The structure of Co 2 CO 3 (OH) 2 has now been investigated using density functional theory (DFT) simulations and powder X-ray diffraction (PXRD) measurements on samples synthesized via deposition from aqueous solution. Two possible monoclinic phases are considered, with closely related but symmetrically different crystal structures, based on those of the minerals malachite [Cu 2 CO 3 (OH) 2 ] and rosasite [Cu 1.5 Zn 0.5 CO 3 (OH) 2 ], as well as an orthorhombic phase that can be seen as a common parent structure for the two monoclinic phases, and a triclinic phase with the structure of the mineral kolwezite [Cu 1.34 Co 0.66 CO 3 (OH) 2 ]. The DFT simulations predict that the rosasite-like and malachite-like phases are two different local minima of the potential energy landscape for Co 2 CO 3 (OH) 2 and are practically degenerate in energy, while the orthorhombic and triclinic structures are unstable and experience barrierless transformations to the malachite phase upon relaxation. The best fit to the PXRD data is obtained using a rosasite model [monoclinic with space group P112 1 /n and cell parameters a = 3.1408 (4) Å, b = 12.2914 (17) Å, c = 9.3311 (16) Å and γ = 82.299 (16)°]. However, some features of the PXRD pattern are still not well accounted for by this refinement and the residual parameters are relatively poor. The relationship between the rosasite and malachite phases of Co 2 CO 3 (OH) 2 is discussed and it is shown that they can be seen as polytypes. Based on the similar calculated stabilities of these two polytypes, it is speculated that some level of stacking disorder could account for the poor

  14. Phase transitions in (NH4)2MoO2F4 crystal

    Science.gov (United States)

    Krylov, Alexander; Laptash, Natalia; Vtyurin, Alexander; Krylova, Svetlana

    2016-11-01

    The mechanisms of temperature and high pressure phase transitions have been studied by Raman spectroscopy. Room temperature (295 K) experiments under high hydrostatic pressure up to 3.6 GPa for (NH4)2 MoO2 F4 have been carried out. Experimental data indicates a phase transition into a new high-pressure phase for (NH4)2 MoO2 F4 at 1.2 GPa. This phase transition is related to the ordering anion octahedron groups [MoO2 F4]2- and is not associated with ammonium group. Raman spectra of small non-oriented crystals ranging from 10 to 350 K have been observed. The experiment shows anion groups [MoO2 F4]2- and ammonium in high temperature phase are disordered. The phase transition at T1 = 269.8 K is of the first-order, close to the tricritical point. The first temperature phase transition is related to the ordering anion octahedron groups [MoO2 F4]2-. Second phase transitions T2 = 180 K are associated with the ordering of ammonium. The data presented within this study demonstrate that 2D correlation analysis combined with traditional Raman spectroscopy are powerful tool to study phase transitions in the crystals.

  15. Control of morphology and structure for β-Co nanoparticles from cobalt oxalate and research on its phase-change mechanism

    Energy Technology Data Exchange (ETDEWEB)

    Deng, Ying [State Key Laboratory of Powder Metallurgy, Central South University, Changsha 410083 (China); Chongqing University of Arts and Science, Chongqing 402160 (China); Xiong, Xiang, E-mail: xiangxiong88@qq.com [State Key Laboratory of Powder Metallurgy, Central South University, Changsha 410083 (China); Zou, J.P., E-mail: zoujp@csu.edu.cn [State Key Laboratory of Powder Metallurgy, Central South University, Changsha 410083 (China); Deng, Ling [Chengdu Chengliang Tool Group Co., Ltd., Chengdu 610056 (China); Tu, M.J. [Chongqing University of Arts and Science, Chongqing 402160 (China)

    2015-01-05

    Highlights: • Nanoscale precursor β-CoC{sub 2}O{sub 4}⋅2H{sub 2}O can be prepared by mechanical solid phase reaction. • Growth mechanism, morphology and crystal structure of β-CoC{sub 2}O{sub 4}⋅2H{sub 2}O have been studied. • Internal energy reserves of precursor making it directly generate β-Co in the thermal decomposition reaction. • Martensitic transformation of Co has been studied. • The Co powder will inherit the morphology of its precursor. - Abstract: The face-centered cubic crystal structure β-Co has excellent performance. As the main material to produce high toughness hard alloys and metal cermet, its morphology and structure will have an important impact on the performance of the alloy. This study, based on solid-phase reaction, starting from the crystal structure studied, discussed the effection of the mechanical solid-phase chemical reactions on the morphology of the cobalt precursor structure, researched the cobalt phase change mechanism, and presented a method to prepare nano β-Co. With H{sub 2}C{sub 2}O{sub 4}⋅2H{sub 2}O and Co(NO{sub 3}){sub 2}·6H{sub 2}O as raw materials, nano-crystalline cobalt oxalate powders with nearly spherical shape have been prepared by using solid-phase chemical reactions in high-speed ball milling, and then by decomposing at 400–450 °C, the target was prepared. The thermodynamical and IR analysis has been studied. The microstructure of the powders was characterized by XRD, SEM, TEM. It has been identified that a spherical, fcc structure, 100 nm β-Co powders was synthesized successfully, which confirmed the theoretical feasibility of this study.

  16. CCDC 1416891: Experimental Crystal Structure Determination : Methyl-triphenyl-germanium

    KAUST Repository

    Bernatowicz, Piotr

    2015-01-01

    An entry from the Cambridge Structural Database, the world’s repository for small molecule crystal structures. The entry contains experimental data from a crystal diffraction study. The deposited dataset for this entry is freely available from the CCDC and typically includes 3D coordinates, cell parameters, space group, experimental conditions and quality measures.

  17. CCDC 1408042: Experimental Crystal Structure Determination : 6,13-dimesitylpentacene

    KAUST Repository

    Shi, Xueliang

    2015-01-01

    An entry from the Cambridge Structural Database, the world’s repository for small molecule crystal structures. The entry contains experimental data from a crystal diffraction study. The deposited dataset for this entry is freely available from the CCDC and typically includes 3D coordinates, cell parameters, space group, experimental conditions and quality measures.

  18. CCDC 1475929: Experimental Crystal Structure Determination : trimethylammonium tribromo-tin(iv)

    KAUST Repository

    Dang, Yangyang; Zhong, Cheng; Zhang, Guodong; Ju, Dianxing; Wang, Lei; Xia, Shengqing; Xia, Haibing; Tao, Xutang

    2016-01-01

    An entry from the Cambridge Structural Database, the world’s repository for small molecule crystal structures. The entry contains experimental data from a crystal diffraction study. The deposited dataset for this entry is freely available from

  19. CCDC 1475930: Experimental Crystal Structure Determination : trimethylammonium trichloro-tin(iv)

    KAUST Repository

    Dang, Yangyang; Zhong, Cheng; Zhang, Guodong; Ju, Dianxing; Wang, Lei; Xia, Shengqing; Xia, Haibing; Tao, Xutang

    2016-01-01

    An entry from the Cambridge Structural Database, the world’s repository for small molecule crystal structures. The entry contains experimental data from a crystal diffraction study. The deposited dataset for this entry is freely available from

  20. CCDC 1475931: Experimental Crystal Structure Determination : trimethylammonium trichloro-tin(iv)

    KAUST Repository

    Dang, Yangyang; Zhong, Cheng; Zhang, Guodong; Ju, Dianxing; Wang, Lei; Xia, Shengqing; Xia, Haibing; Tao, Xutang

    2016-01-01

    An entry from the Cambridge Structural Database, the world’s repository for small molecule crystal structures. The entry contains experimental data from a crystal diffraction study. The deposited dataset for this entry is freely available from

  1. CCDC 1482638: Experimental Crystal Structure Determination : trimethylammonium trichloro-tin(iv)

    KAUST Repository

    Dang, Yangyang; Zhong, Cheng; Zhang, Guodong; Ju, Dianxing; Wang, Lei; Xia, Shengqing; Xia, Haibing; Tao, Xutang

    2016-01-01

    An entry from the Cambridge Structural Database, the world’s repository for small molecule crystal structures. The entry contains experimental data from a crystal diffraction study. The deposited dataset for this entry is freely available from

  2. Nonlinear coherent structures in granular crystals

    Science.gov (United States)

    Chong, C.; Porter, Mason A.; Kevrekidis, P. G.; Daraio, C.

    2017-10-01

    The study of granular crystals, which are nonlinear metamaterials that consist of closely packed arrays of particles that interact elastically, is a vibrant area of research that combines ideas from disciplines such as materials science, nonlinear dynamics, and condensed-matter physics. Granular crystals exploit geometrical nonlinearities in their constitutive microstructure to produce properties (such as tunability and energy localization) that are not conventional to engineering materials and linear devices. In this topical review, we focus on recent experimental, computational, and theoretical results on nonlinear coherent structures in granular crystals. Such structures—which include traveling solitary waves, dispersive shock waves, and discrete breathers—have fascinating dynamics, including a diversity of both transient features and robust, long-lived patterns that emerge from broad classes of initial data. In our review, we primarily discuss phenomena in one-dimensional crystals, as most research to date has focused on such scenarios, but we also present some extensions to two-dimensional settings. Throughout the review, we highlight open problems and discuss a variety of potential engineering applications that arise from the rich dynamic response of granular crystals.

  3. E-T phase diagram of an antiferroelectric liquid crystal with re-entrand smectic C* phase

    Czech Academy of Sciences Publication Activity Database

    Na, Y.-H.; Naruse, Y.; Fukuda, N.; Orihara, H.; Fajar, A.; Hamplová, Věra; Kašpar, Miroslav; Glogarová, Milada

    2008-01-01

    Roč. 364, č. 1 (2008), s. 13-19 ISSN 0015-0193 Institutional research plan: CEZ:AV0Z10100520 Keywords : phase diagram * liquid crystals * dielectric measurements * electric field Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 0.562, year: 2008

  4. Feasibility of one-shot-per-crystal structure determination using Laue diffraction

    Energy Technology Data Exchange (ETDEWEB)

    Cornaby, Sterling [School of Applied and Engineering Physics, Cornell University, Ithaca, New York (United States); CHESS (Cornell High Energy Synchrotron Source), Cornell University, Ithaca, New York (United States); Szebenyi, Doletha M. E. [MacCHESS (Macromolecular Diffraction Facilities at CHESS), Cornell University, Ithaca, New York (United States); Smilgies, Detlef-M. [CHESS (Cornell High Energy Synchrotron Source), Cornell University, Ithaca, New York (United States); Schuller, David J.; Gillilan, Richard; Hao, Quan [MacCHESS (Macromolecular Diffraction Facilities at CHESS), Cornell University, Ithaca, New York (United States); Bilderback, Donald H., E-mail: dhb2@cornell.edu [School of Applied and Engineering Physics, Cornell University, Ithaca, New York (United States); CHESS (Cornell High Energy Synchrotron Source), Cornell University, Ithaca, New York (United States)

    2010-01-01

    Structure determination was successfully carried out using single Laue exposures from a group of lysozyme crystals. The Laue method may be a viable option for collection of one-shot-per-crystal data from microcrystals. Crystal size is an important factor in determining the number of diffraction patterns which may be obtained from a protein crystal before severe radiation damage sets in. As crystal dimensions decrease this number is reduced, eventually falling to one, at which point a complete data set must be assembled using data from multiple crystals. When only a single exposure is to be collected from each crystal, the polychromatic Laue technique may be preferable to monochromatic methods owing to its simultaneous recording of a large number of fully recorded reflections per image. To assess the feasibility of solving structures using single Laue images from multiple crystals, data were collected using a ‘pink’ beam at the CHESS D1 station from groups of lysozyme crystals with dimensions of the order of 20–30 µm mounted on MicroMesh grids. Single-shot Laue data were used for structure determination by molecular replacement and correct solutions were obtained even when as few as five crystals were used.

  5. Feasibility of one-shot-per-crystal structure determination using Laue diffraction

    International Nuclear Information System (INIS)

    Cornaby, Sterling; Szebenyi, Doletha M. E.; Smilgies, Detlef-M.; Schuller, David J.; Gillilan, Richard; Hao, Quan; Bilderback, Donald H.

    2010-01-01

    Structure determination was successfully carried out using single Laue exposures from a group of lysozyme crystals. The Laue method may be a viable option for collection of one-shot-per-crystal data from microcrystals. Crystal size is an important factor in determining the number of diffraction patterns which may be obtained from a protein crystal before severe radiation damage sets in. As crystal dimensions decrease this number is reduced, eventually falling to one, at which point a complete data set must be assembled using data from multiple crystals. When only a single exposure is to be collected from each crystal, the polychromatic Laue technique may be preferable to monochromatic methods owing to its simultaneous recording of a large number of fully recorded reflections per image. To assess the feasibility of solving structures using single Laue images from multiple crystals, data were collected using a ‘pink’ beam at the CHESS D1 station from groups of lysozyme crystals with dimensions of the order of 20–30 µm mounted on MicroMesh grids. Single-shot Laue data were used for structure determination by molecular replacement and correct solutions were obtained even when as few as five crystals were used

  6. Local structural environments of Ge doped in eutectic Sb-Te film before and after crystallization

    Science.gov (United States)

    Shin, Sang Yeol; Cheong, Byung-ki; Choi, Yong Gyu

    2018-06-01

    Electrical phase change device using the Ge-doped eutectic Sb-Te (e.g., Ge1Sb8Te2) film is known to exhibit improved energy efficiency thanks to lowered threshold voltage as well as decreased power consumption for the reset operation, as compared with Ge2Sb2Te5 film. Ge K-edge EXAFS analysis is employed in this study in an effort to elucidate such merits of Ge1Sb8Te2 film in connection with its local atomic arrangements. It is then verified that a Ge atom is four-fold coordinated in its nearest-neighboring shell both in the as-deposited and in the annealed films. It needs to be highlighted that approximately two Sb atoms constitute the Ge tetrahedral units in its amorphous state; however, after being crystallized, heteropolar Ge-Sb bonds hardly exist in this Ge1Sb8Te2 film. It has been known that crystallization temperature and activation energy for crystallization of this Ge1Sb8Te2 composition are greater than those of Ge2Sb2Te5 composition. In addition, these two phase change materials exhibit distinctly different crystallization mechanisms, i.e., nucleation-dominant for Ge2Sb2Te5 film but growth-dominant for Ge1Sb8Te2 film. These discrepancies in the crystallization-related properties are delineated in terms of the local structural changes verified from the present EXAFS analysis.

  7. Na-Si binary phase diagram and solution growth of silicon crystals

    International Nuclear Information System (INIS)

    Morito, H.; Yamada, T.; Ikeda, T.; Yamane, H.

    2009-01-01

    In the present study, a Na-Si binary phase diagram was first presented from the results of differential thermal analysis and X-ray diffraction. Based on the phase diagram, we performed low-temperature formation of single crystals, film and porous bulk of Si by vaporizing Na from a Na-Si melt at 800 or 900 deg. C.

  8. Phase equilibria in the NaF-CdO-NaPO{sub 3} system at 873 K and crystal structure and physico-chemical characterizations of the new Na{sub 2}CdPO{sub 4}F fluorophosphate

    Energy Technology Data Exchange (ETDEWEB)

    Aboussatar, Mohamed [Université Clermont Auvergne, Université Blaise Pascal, Institut de Chimie de Clermont-Ferrand, UMR 6296 CNRS, BP 10448, F-63000 Clermont-Ferrand (France); Laboratoire de Physico-Chimie de l’État Solide, Faculté des Sciences de Sfax, Université de Sfax, BP 1171, 3000 Sfax (Tunisia); Mbarek, Aïcha [Laboratoire de Chimie Industrielle, Ecole Nationale d’Ingénieurs de Sfax, Université de Sfax, BP W3038, 3000 Sfax (Tunisia); Naili, Houcine [Laboratoire de Physico-Chimie de l’État Solide, Faculté des Sciences de Sfax, Université de Sfax, BP 1171, 3000 Sfax (Tunisia); El-Ghozzi, Malika [Université Clermont Auvergne, Université Blaise Pascal, Institut de Chimie de Clermont-Ferrand, UMR 6296 CNRS, BP 10448, F-63000 Clermont-Ferrand (France); Chadeyron, Geneviève [Université Clermont Auvergne, Institut de Chimie de Clermont-Ferrand, UMR 6296 CNRS/UBP/SIGMA, BP 10448, F-63000 Clermont-Ferrand (France); Avignant, Daniel [Université Clermont Auvergne, Université Blaise Pascal, Institut de Chimie de Clermont-Ferrand, UMR 6296 CNRS, BP 10448, F-63000 Clermont-Ferrand (France); Zambon, Daniel, E-mail: Daniel.Zambon@univ-bpclermont.fr [Université Clermont Auvergne, Université Blaise Pascal, Institut de Chimie de Clermont-Ferrand, UMR 6296 CNRS, BP 10448, F-63000 Clermont-Ferrand (France)

    2017-04-15

    Isothermal sections of the diagram representing phase relationships in the NaF-CdO-NaPO{sub 3} system have been investigated by solid state reactions and powder X-ray diffraction. This phase diagram investigation confirms the polymorphism of the NaCdPO{sub 4} side component and the structure of the ß high temperature polymorph (orthorhombic, space group Pnma and unit cell parameters a=9.3118(2), b=7.0459(1), c=5.1849(1) Å has been refined. A new fluorophosphate, Na{sub 2}CdPO{sub 4}F, has been discovered and its crystal structure determined and refined from powder X-ray diffraction data. It exhibits a new 3D structure with orthorhombic symmetry, space group Pnma and unit cell parameters a=5.3731(1), b=6.8530(1), c=12.2691(2) Å. The structure is closely related to those of the high temperature polymorph of the nacaphite Na{sub 2}CaPO{sub 4}F and the fluorosilicate Ca{sub 2}NaSiO{sub 4}F but differs essentially in the cationic repartition since the structure is fully ordered with one Na site (8d) and one Cd site (4c). Relationships with other Na{sub 2}M{sup II}PO{sub 4}F (M{sup II}=Mg, Ca, Mn, Fe, Co, Ni) have been examined and the crystal-chemical and topographical analysis of these fluorophosphates is briefly reviewed. IR, Raman, optical and {sup 19}F, {sup 23}Na, {sup 31}P MAS NMR characterizations of Na{sub 2}CdPO{sub 4}F have been investigated. - Graphical abstract: The structure of the compound Na{sub 2}CdPO{sub 4}F, discovered during the study of the phase relationships in the NaF-CdO-NaPO{sub 3} system, has been determined and compared with other Na{sub 2}M{sup II}PO{sub 4}F fluorophosphates. - Highlights: • XRD analysis of the isothermal section of the NaF-CdO-NaPO{sub 3} system at 923 K. • Rietveld refinement of the high temperature polymorph β-NaCdPO{sub 4}. • Crystal structure of the new Na{sub 2}CdPO{sub 4}F fluorophosphate determined from powder XRD. • Crystal structure - composition relationships of Na{sub 2}M{sup II}PO{sub 4}F compounds

  9. Crystallization characteristic and scaling behavior of germanium antimony thin films for phase change memory.

    Science.gov (United States)

    Wu, Weihua; Zhao, Zihan; Shen, Bo; Zhai, Jiwei; Song, Sannian; Song, Zhitang

    2018-04-19

    Amorphous Ge8Sb92 thin films with various thicknesses were deposited by magnetron sputtering. The crystallization kinetics and optical properties of the Ge8Sb92 thin films and related scaling effects were investigated by an in situ thermally induced method and an optical technique. With a decrease in film thickness, the crystallization temperature, crystallization activation energy and data retention ability increased significantly. The changed crystallization behavior may be ascribed to the smaller grain size and larger surface-to-volume ratio as the film thickness decreased. Regardless of whether the state was amorphous or crystalline, the film resistance increased remarkably as the film thickness decreased to 3 nm. The optical band gap calculated from the reflection spectra increases distinctly with a reduction in film thickness. X-ray diffraction patterns confirm that the scaling of the Ge8Sb92 thin film can inhibit the crystallization process and reduce the grain size. The values of exponent indices that were obtained indicate that the crystallization mechanism experiences a series of changes with scaling of the film thickness. The crystallization time was estimated to determine the scaling effect on the phase change speed. The scaling effect on the electrical switching performance of a phase change memory cell was also determined. The current-voltage and resistance-voltage characteristics indicate that phase change memory cells based on a thinner Ge8Sb92 film will exhibit a higher threshold voltage, lower RESET operational voltage and greater pulse width, which implies higher thermal stability, lower power consumption and relatively lower switching velocity.

  10. Thermoelectric properties, crystal and electronic structure of semiconducting RECuSe{sub 2} (RE = Pr, Sm, Gd, Dy and Er)

    Energy Technology Data Exchange (ETDEWEB)

    Esmaeili, Mehdi [Department of Chemistry and Chemical Biology, McMaster University, 1280 Main Street West, Hamilton, Ontario L8S 4M1 (Canada); Tseng, Yu-Chih [CANMET Materials, Natural Resources Canada, 183 Longwood Road South, Hamilton, Ontario L8P 0A5 (Canada); Mozharivskyj, Yurij, E-mail: mozhar@mcmaster.ca [Department of Chemistry and Chemical Biology, McMaster University, 1280 Main Street West, Hamilton, Ontario L8S 4M1 (Canada)

    2014-10-15

    Highlights: • Crystal and electronic structure of monoclinic and trigonal RECuSe{sub 2} phases. • Thermoelectric properties of the RECuSe{sub 2} phases. • Temperature stability of the RECuSe{sub 2} phases. - Abstract: The ternary RECuSe{sub 2} phases have been prepared and structurally characterized. They adopt either a monoclinic structure (P2{sub 1}/c, z = 4) for lighter rare earths (RE = Pr, Sm and Gd) or Cu-disordered trigonal structure for heavier rare-earths (P3{sup ¯}m1, z = 1, RE = Dy and Er). The resistivity and Seebeck coefficient measurements on GdCuSe{sub 2}, DyCuSe{sub 2} and ErCuSe{sub 2} indicate that the studied phases are p-type semiconductors with relatively small activation energies (0.045–0.11 eV). However, their electrical resistivities are too high (0.45–220 Ω cm at room temperature) to make them competitive thermoelectric materials. Electronic structure calculations indicate presence of a band gap in the RECuSe{sub 2} phases.

  11. Growth of Cd0.96Zn0.04Te single crystals by vapor phase gas transport method

    Directory of Open Access Journals (Sweden)

    S. H. Tabatabai Yazdi

    2006-03-01

    Full Text Available   Cd0.96Zn0.04Te crystals were grown using vapor phase gas transport method (VPGT. The results show that dendritic crystals with grain size up to 3.5 mm can be grown with this technique. X-ray diffraction and Laue back-reflection patterns show that dendritic crystals are single-phase, whose single crystal grains are randomly oriented with respect to the gas-transport axis. Electrical measurements, carried out using Van der Pauw method, show that the as-grown crystals have resistivity of about 104 Ω cm and n-type conductivity.

  12. Identification of the partitioning characteristics of refractory elements in σ and γ phases of Ni-based single crystal superalloys based on first principles

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Fei [Key Laboratory of Liquid Structure and Heredity of Materials, Ministry of Education, Shandong University, Jinan 250061 (China); Mao, Shengcheng [Institute of Microstructure and Property of Advanced Materials, Beijing University of Technology, Beijing 100124 (China); Zhang, Jianxin, E-mail: jianxin@sdu.edu.cn [Key Laboratory of Liquid Structure and Heredity of Materials, Ministry of Education, Shandong University, Jinan 250061 (China)

    2014-10-15

    The impurity formation energies of the σ and γ phases of Ni-based single crystal superalloys doped with W, Cr and Co in different sublattices have been investigated using first-principles based on the density functional theory. The bonding characteristics of the doped σ phase were analyzed with the valence charge densities and the density of the states. The results of the calculations indicated that the typical refractory element W, which has a large atomic size, preferentially partitions into the σ phase due to the nature of the bonding and the unique crystal structure with close-packed planes and large interstitial spaces. In addition, the site preference of refractory elements in γ phase was in the order of W, Cr and Co. - Highlights: • A reasonable σ phase model was adopted in our calculation. • The site preference of refractory elements in σ and γ phases was investigated. • The bonding characteristic was analyzed on the basis of electronic microstructures.

  13. Influence of ionic conductivity on in-phase and anti-phase motions of antiferroelectric liquid crystals

    International Nuclear Information System (INIS)

    Das, D.; Majumder, T.P.; Ghosh, N.K.

    2014-01-01

    The in-phase and anti-phase motions of antiferroelectric liquid crystals were changed due to the influence of charge density associated with the layer modulation modifying the elastic behaviour. The elastic constant was changed because of the coupling between charge density variation and variation of azimuthal angle (ϕ). We obtained theoretically a modified elastic constant depending on the variation of charge density in both in-phase and anti-phase motions. The theoretically elastic constant decreases with the increase of the coupling coefficient between charge density and in-phase azimuthal angle (ϕ a ). We theoretically accounted the dependence of dielectric strength for both relaxations depending on the effective elastic constant influenced by the presence of charge density and discussed the results with experimental observations

  14. Nonequilibrium phase formation in oxides prepared at low temperatu