WorldWideScience

Sample records for crystal structure chemical

  1. Hierarchically structured photonic crystals for integrated chemical separation and colorimetric detection.

    Science.gov (United States)

    Fu, Qianqian; Zhu, Biting; Ge, Jianping

    2017-02-16

    A SiO 2 colloidal photonic crystal film with a hierarchical porous structure is fabricated to demonstrate an integrated separation and colorimetric detection of chemical species for the first time. This new photonic crystal based thin layer chromatography process requires no dyeing, developing and UV irradiation compared to the traditional TLC. The assembling of mesoporous SiO 2 particles via a supersaturation-induced-precipitation process forms uniform and hierarchical photonic crystals with micron-scale cracks and mesopores, which accelerate the diffusion of developers and intensify the adsorption/desorption between the analytes and silica for efficient separation. Meanwhile, the chemical substances infiltrated to the voids of photonic crystals cause an increase of the refractive index and a large contrast of structural colors towards the unloaded part, so that the sample spots can be directly recognized with the naked eye before and after separation.

  2. Impact of crystallization on the structure and chemical durability of borosilicate glass

    International Nuclear Information System (INIS)

    Nicoleau, Elodie

    2016-01-01

    This work describes a new approach to help understand the chemical durability of partially crystallized nuclear waste conditioning matrices. Among the studies carried out on nuclear waste deep geological disposal, long term behavior studies have so far been conducted on homogeneous glassy matrices. However, as the crystalline phases may generate modifications in the chemical composition and properties of such matrices, the description and a better understanding of their effects on the chemical durability of waste packages are of primary importance. A protocol to study the durability of heterogeneous model matrices of nuclear interest containing different types of crystalline phases was developed. It is based on a detailed description of the morphology, microstructure and structure of the glassy matrix and crystalline phases, and on the study of various alteration regimes. Three crystal phases that may form when higher concentrations of waste are immobilized in Uranium Oxide type conditioning glasses were studied: alkali and alkaline earth molybdates, rare earth silicates and ruthenium oxide. The results highlight the roles of the composition and the structure of the surrounding glassy matrix as the parameters piloting the alteration kinetics of the partially crystallized glassy matrices. This behavior is identical whatever the nature of the crystalline phases, as long as these phases do not lead to a composition gradient and do not percolate within the glassy matrix. Given these results, a methodology to study partially crystallized matrices with no composition gradient is then suggested. Its key development lies firstly in the evaluation of the behavior of partially crystallized matrices through the experimental study of the residual glassy matrix in various alteration regimes. This methodology may be adapted to the case of new glass formulations with more complex compositions (e.g. highly waste-loaded glass), which may contain crystals formed during cooling

  3. Chemical composition, crystal size and lattice structural changes after incorporation of strontium into biomimetic apatite.

    Science.gov (United States)

    Li, Z Y; Lam, W M; Yang, C; Xu, B; Ni, G X; Abbah, S A; Cheung, K M C; Luk, K D K; Lu, W W

    2007-03-01

    Recently, strontium (Sr) as ranelate compound has become increasingly popular in the treatment of osteoporosis. However, the lattice structure of bone crystal after Sr incorporation is yet to be extensively reported. In this study, we synthesized strontium-substituted hydroxyapatite (Sr-HA) with different Sr content (0.3%, 1.5% and 15% Sr-HA in mole ratio) to simulate bone crystals incorporated with Sr. The changes in chemical composition and lattice structure of apetite after synthetic incorporation of Sr were evaluated to gain insight into bone crystal changes after incorporation of Sr. X-ray diffraction (XRD) patterns revealed that 0.3% and 1.5% Sr-HA exhibited single phase spectrum, which was similar to that of HA. However, 15% Sr-HA induced the incorporation of HPO4(2-) and more CO3(2-), the crystallinity reduced dramatically. Transmission electron microscopy (TEM) images showed that the crystal length and width of 0.3% and 1.5% Sr-HA increased slightly. Meanwhile, the length and width distribution were broadened and the aspect ratio decreased from 10.68+/-4.00 to 7.28+/-2.80. The crystal size and crystallinity of 15% Sr-HA dropped rapidly, which may suggest that the fundamental crystal structure is changed. The findings from this work indicate that current clinical dosage which usually results in Sr incorporation of below 1.5% may not change chemical composition and lattice structure of bone, while it will broaden the bone crystal size distribution and strengthen the bone.

  4. Synthesis, Crystal Structure, and Chemical-Bonding Analysis of BaZn(NCN2

    Directory of Open Access Journals (Sweden)

    Alex J. Corkett

    2017-12-01

    Full Text Available The ternary carbodiimide BaZn(NCN2 was prepared by a solid-state metathesis reaction between BaF2, ZnF2, and Li2NCN in a 1:1:2 molar ratio, and its crystal structure was determined from Rietveld refinement of X-ray data. BaZn(NCN2 represents the aristotype of the LiBa2Al(NCN4 structure which is unique to carbodiimide/cyanamide chemistry and is well regarded as being constructed from ZnN4 tetrahedra, sharing edges and vertices through NCN2− units to form corrugated layers with Ba2+ in the interlayer voids. Structural anomalies in the shape of the cyanamide units are addressed via IR spectrometry and DFT calculations, which suggest the presence of slightly bent N=C=N2− carbodiimide units with C2v symmetry. Moreover, chemical-bonding analysis within the framework of crystal orbital Hamilton population (COHP reveals striking similarities between the bonding interactions in BaZn(NCN2 and SrZn(NCN2 despite their contrasting crystal structures. BaZn(NCN2 is only the second example of a ternary post-transition metal carbodiimide, and its realization paves the way for the preparation of analogues featuring divalent transition metals at the tetrahedral Zn2+ site.

  5. Computerized crystal-chemical classification of silicates and related materials with CRYSTANA and formula notation for classified structures

    International Nuclear Information System (INIS)

    Klein, Hans-Joachim; Liebau, Friedrich

    2008-01-01

    The computer program CRYSTANA is described which implements a method for the crystal-chemical classification of silicates and related materials. This method is mainly based upon the topological structure of the connected units of a compound and can be applied when the units are built from tetrahedra as coordination polyhedra. The classification parameters and the rules which have to be applied for their determination are summarized and a formalization of the method is provided based upon a finite graph representation of the units. A description of how CRYSTANA can be used and which kind of output it produces is included. From this output crystal-chemical formulas can be derived, which differ slightly from an existing notation in order to meet recommendations of the International Union of Crystallography. - The computer program CRYSTANA is described which implements a method for the crystal-chemical classification of silicates and related materials. The implementation is based upon a graph-theoretical formalization of the classification method. An extended notation of crystal-chemical formulas is introduced. The formulas can be derived from the output of the program

  6. Structural studies of crystals of organic and organoelement compounds using modern quantum chemical calculations within the framework of the density functional theory

    International Nuclear Information System (INIS)

    Korlyukov, Alexander A; Antipin, Mikhail Yu

    2012-01-01

    The review generalizes the results of structural studies of crystals of organic and organometallic compounds by modern quantum chemical calculations within the framework of the density functional theory reported in the last decade. Features of the software for such calculations are discussed. Examples of the use of quantum chemical calculations for the studies of the electronic structure, spectroscopic and other physicochemical properties of molecular crystals are presented. The bibliography includes 223 references.

  7. Crystal chemical analysis of formation of solid solutions on the basis of compounds with garnet structure

    International Nuclear Information System (INIS)

    Kuz'micheva, G.M.; Kozlikin, S.N.

    1989-01-01

    Crystal chemical formulas permitting to evaluate the character of changes in interatomic distances during isomorphous substitution and, hence, the probability of formation of internal solid solutions and successive isomorphous substitution, are presented. The possibility of formation of introduction solid solutions is considered, using as an example Sc, Y oxides, rare earths with garnet structure

  8. The 5S rRNA loop E: chemical probing and phylogenetic data versus crystal structure.

    Science.gov (United States)

    Leontis, N B; Westhof, E

    1998-09-01

    A significant fraction of the bases in a folded, structured RNA molecule participate in noncanonical base pairing interactions, often in the context of internal loops or multi-helix junction loops. The appearance of each new high-resolution RNA structure provides welcome data to guide efforts to understand and predict RNA 3D structure, especially when the RNA in question is a functionally conserved molecule. The recent publication of the crystal structure of the "Loop E" region of bacterial 5S ribosomal RNA is such an event [Correll CC, Freeborn B, Moore PB, Steitz TA, 1997, Cell 91:705-712]. In addition to providing more examples of already established noncanonical base pairs, such as purine-purine sheared pairings, trans-Hoogsteen UA, and GU wobble pairs, the structure provides the first high-resolution views of two new purine-purine pairings and a new GU pairing. The goal of the present analysis is to expand the capabilities of both chemical probing and phylogenetic analysis to predict with greater accuracy the structures of RNA molecules. First, in light of existing chemical probing data, we investigate what lessons could be learned regarding the interpretation of this widely used method of RNA structure probing. Then we analyze the 3D structure with reference to molecular phylogeny data (assuming conservation of function) to discover what alternative base pairings are geometrically compatible with the structure. The comparisons between previous modeling efforts and crystal structures show that the intricate involvements of ions and water molecules in the maintenance of non-Watson-Crick pairs render the process of correctly identifying the interacting sites in such pairs treacherous, except in cases of trans-Hoogsteen A/U or sheared A/G pairs for the adenine N1 site. The phylogenetic analysis identifies A/A, A/C, A/U and C/A, C/C, and C/U pairings isosteric with sheared A/G, as well as A/A and A/C pairings isosteric with both G/U and G/G bifurcated pairings

  9. Influence of encapsulated functional lipids on crystal structure and chemical stability in solid lipid nanoparticles: Towards bioactive-based design of delivery systems.

    Science.gov (United States)

    Salminen, Hanna; Gömmel, Christina; Leuenberger, Bruno H; Weiss, Jochen

    2016-01-01

    We investigated the influence of physicochemical properties of encapsulated functional lipids--vitamin A, β-carotene and ω-3 fish oil--on the structural arrangement of solid lipid nanoparticles (SLN). The relationship between the crystal structure and chemical stability of the incorporated bioactive lipids was evaluated with different emulsifier compositions of a saponin-rich, food-grade Quillaja extract alone or combined with high-melting or low-melting lecithins. The major factors influencing the structural arrangement and chemical stability of functional lipids in solid lipid dispersions were their solubility in the aqueous phase and their crystallization temperature in relation to that of the carrier lipid. The results showed that the stabilization of the α-subcell crystals in the lattice of the carrier lipid is a key parameter for forming stable solid lipid dispersions. This study contributes to a better understanding of SLN as a function of the bioactive lipid. Copyright © 2015 Elsevier Ltd. All rights reserved.

  10. Structure and Chemical Durability of Lead Crystal Glass.

    Science.gov (United States)

    Angeli, Frédéric; Jollivet, Patrick; Charpentier, Thibault; Fournier, Maxime; Gin, Stéphane

    2016-11-01

    Silicate glasses containing lead, also called lead crystal glasses, are commonly used as food product containers, in particular for alcoholic beverages. Lead's health hazards require major attention, which can first be investigated through the understanding of Pb release mechanisms in solution. The behavior of a commercial crystal glass containing 10.6 mol % of PbO (28.3 wt %) was studied in a reference solution of 4% acetic acid at 22, 40, and 70 °C at early and advanced stages of reaction. High-resolution solid-state 17 O and 29 Si NMR was used to probe the local structure of the pristine and, for the first time, of the altered lead crystal glass. Inserted into the vitreous structure between the network formers as Si-O-Pb bonds, Pb does not form Pb-O-Pb clusters which are expected to be more easily leached. A part of K is located near Pb, forming mixed Si-O-(Pb,K) near the nonbridging oxygens. Pb is always released into the solution following a diffusion-controlled dissolution over various periods of time, at a rate between 1 and 2 orders of magnitude lower than the alkalis (K and Na). The preferential release of alkalis is followed by an in situ repolymerization of the silicate network. Pb is only depleted in the outermost part of the alteration layer. In the remaining part, it stays mainly surrounded by Si in a stable structural configuration similar to that of the pristine glass. A simple model is proposed to estimate the Pb concentration as a function of glass surface, solution volume, temperature, and contact time.

  11. Comparison of the solution and crystal structures of staphylococcal nuclease with 13C and 15N chemical shifts used as structural fingerprints

    International Nuclear Information System (INIS)

    Cole, H.B.R.; Sparks, S.W.; Torchia, D.A.

    1988-01-01

    The authors report high-resolution 13 C and 15 N NMR spectra of crystalline staphylococcal nuclease (Nase) complexed to thymidine 3',5'-diphosphate and Ca 2+ . High sensitivity and resolution are obtained by applying solid-state NMR techniques-high power proton decoupling and cross-polarization magic angle sample spinning (CPMASS)-to protein samples that have been efficiently synthesized and labeled by an overproducing strain of Escherichia coli. A comparison of CPMASS and solution spectra of Nase labeled with either [methyl- 13 C]methionine or [ 15 ]valine shows that the chemical shifts in the crystalline and solution states are virtually identical. This result is strong evidence that the protein conformations in the solution and crystalline states are nearly the same. Because of the close correspondence of the crystal and solution chemical shifts, sequential assignments obtained in solution apply to the crystal spectra. It should therefore be possible to study the molecular structure and dynamics of many sequentially assigned atomic sites in Nase crystals. Similar experiments are applicable to the growing number of proteins that can be obtained from efficient expression systems

  12. Crystal chemistry of nephelines from ijolites and nepheline-rich pegmatites: influence of composition and genesis on the crystal structure investigated by X-ray diffraction

    DEFF Research Database (Denmark)

    Vulić, Predrag; Balić-Žunić, Tonči; Belmonte, Louise Josefine

    2011-01-01

    Ten nepheline single crystals from five different localities representing rocks from nepheline-syenite pegmatites to urtite, ijolite and cancrinite-ijolite were investigated chemically and structurally. The chemical compositions were determined by electron microprobe, whereas the crystal structur...

  13. Precession technique and electron diffractometry as new tools for crystal structure analysis and chemical bonding determination

    International Nuclear Information System (INIS)

    Avilov, A.; Kuligin, K.; Nicolopoulos, S.; Nickolskiy, M.; Boulahya, K.; Portillo, J.; Lepeshov, G.; Sobolev, B.; Collette, J.P.; Martin, N.; Robins, A.C.; Fischione, P.

    2007-01-01

    We have developed a new fast electron diffractometer working with high dynamic range and linearity for crystal structure determinations. Electron diffraction (ED) patterns can be scanned serially in front of a Faraday cage detector; the total measurement time for several hundred ED reflections can be tens of seconds having high statistical accuracy for all measured intensities (1-2%). This new tool can be installed to any type of TEM without any column modification and is linked to a specially developed electron beam precession 'Spinning Star' system. Precession of the electron beam (Vincent-Midgley technique) reduces dynamical effects allowing also use of accurate intensities for crystal structure analysis. We describe the technical characteristics of this new tool together with the first experimental results. Accurate measurement of electron diffraction intensities by electron diffractometer opens new possibilities not only for revealing unknown structures, but also for electrostatic potential determination and chemical bonding investigation. As an example, we present detailed atomic bonding information of CaF 2 as revealed for the first time by precise electron diffractometry

  14. New crystal-chemical data for marécottite

    Czech Academy of Sciences Publication Activity Database

    Plášil, Jakub; Škoda, R.

    2015-01-01

    Roč. 79, č. 3 (2015), s. 649-660 ISSN 0026-461X R&D Projects: GA ČR GP13-31276P Institutional support: RVO:68378271 Keywords : marécottite * uranyl sulfate * zippeite group * crystal structure * chemical composition * hydrogen bonds. Subject RIV: DB - Geology ; Mineralogy Impact factor: 2.212, year: 2015

  15. The importance of proper crystal-chemical and geometrical reasoning demonstrated using layered single and double hydroxides

    International Nuclear Information System (INIS)

    Richardson, Ian G.

    2013-01-01

    The importance and utility of proper crystal-chemical and geometrical reasoning in structural studies is demonstrated through the consideration of layered single and double hydroxides. New yet fundamental information is provided and it is evident that the crystal chemistry of the double hydroxide phases is much more straightforward than is apparent from the literature. Atomistic modelling techniques and Rietveld refinement of X-ray powder diffraction data are widely used but often result in crystal structures that are not realistic, presumably because the authors neglect to check the crystal-chemical plausibility of their structure. The purpose of this paper is to reinforce the importance and utility of proper crystal-chemical and geometrical reasoning in structural studies. It is achieved by using such reasoning to generate new yet fundamental information about layered double hydroxides (LDH), a large, much-studied family of compounds. LDH phases are derived from layered single hydroxides by the substitution of a fraction (x) of the divalent cations by trivalent. Equations are derived that enable calculation of x from the a parameter of the unit cell and vice versa, which can be expected to be of widespread utility as a sanity test for extant and future structure determinations and computer simulation studies. The phase at x = 0 is shown to be an α form of divalent metal hydroxide rather than the β polymorph. Crystal-chemically sensible model structures are provided for β-Zn(OH) 2 and Ni- and Mg-based carbonate LDH phases that have any trivalent cation and any value of x, including x = 0 [i.e. for α-M(OH) 2 ·mH 2 O phases

  16. Atom interaction propensities of oxygenated chemical functions in crystal packings

    Directory of Open Access Journals (Sweden)

    Christian Jelsch

    2017-03-01

    Full Text Available The crystal contacts of several families of hydrocarbon compounds substituted with one or several types of oxygenated chemical groups were analyzed statistically using the Hirshfeld surface methodology. The propensity of contacts to occur between two chemical types is described with the contact enrichment descriptor. The systematic large enrichment ratios of some interactions like the O—H...O hydrogen bonds suggests that these contacts are a driving force in the crystal packing formation. The same statement holds for the weaker C—H...O hydrogen bonds in ethers, esters and ketones, in the absence of polar H atoms. The over-represented contacts in crystals of oxygenated hydrocarbons are generally of two types: electrostatic attractions (hydrogen bonds and hydrophobic interactions. While Cl...O interactions are generally avoided, in a minority of chloro-oxygenated hydrocarbons, significant halogen bonding does occur. General tendencies can often be derived for many contact types, but outlier compounds are instructive as they display peculiar or rare features. The methodology also allows the detection of outliers which can be structures with errors. For instance, a significant number of hydroxylated molecules displaying over-represented non-favorable oxygen–oxygen contacts turned out to have wrongly oriented hydroxyl groups. Beyond crystal packings with a single molecule in the asymmetric unit, the behavior of water in monohydrate compounds and of crystals with Z′ = 2 (dimers are also investigated. It was found in several cases that, in the presence of several oxygenated chemical groups, cross-interactions between different chemical groups (e.g. water/alcohols; alcohols/phenols are often favored in the crystal packings. While some trends in accordance with common chemical principles are retrieved, some unexpected results can however appear. For example, in crystals of alcohol–phenol compounds, the strong O—H...O hydrogen bonds between

  17. Topological Characterization of Carbon Graphite and Crystal Cubic Carbon Structures.

    Science.gov (United States)

    Siddiqui, Wei Gao Muhammad Kamran; Naeem, Muhammad; Rehman, Najma Abdul

    2017-09-07

    Graph theory is used for modeling, designing, analysis and understanding chemical structures or chemical networks and their properties. The molecular graph is a graph consisting of atoms called vertices and the chemical bond between atoms called edges. In this article, we study the chemical graphs of carbon graphite and crystal structure of cubic carbon. Moreover, we compute and give closed formulas of degree based additive topological indices, namely hyper-Zagreb index, first multiple and second multiple Zagreb indices, and first and second Zagreb polynomials.

  18. A framework for analysing relationships between chemical composition and crystal structure in metal oxides

    International Nuclear Information System (INIS)

    Thomas, N.W.

    1991-01-01

    A computer program has been written to characterize the coordination polyhedra of metal cations in terms of their volumes and polyhedral elements, i.e. corners, edges and faces. The sharing of these corners, edges and faces between polyhedra is also quantitatively monitored. In order to develop the methodology, attention is focused on ternary oxides containing the Al 3+ ion, whose structures were retrieved from the Inorganic Crystal Structure Database (ICSD). This also permits an objective assessment of the applicability of Pauling's rules. The influence of ionic valence on the structures of these compounds is examined, by calculating electrostatic bond strengths. Although Pauling's second rule is not supported in detail, the calculation of oxygen-ion valence reveals a basic structural requirement, that the average calculated oxygen-ion valence in any ionic oxide structure is equal to 2. The analysis is further developed to define a general method for the prediction of novel chemical compositions likely to adopt a given desired structure. The polyhedral volumes of this structure are calculated, and use is made of standard ionic radii for cations in sixfold coordination. The electroneutrality principle is invoked to take valence considerations into account. This method can be used to guide the development of new compositions of ceramic materials with certain desirable physical properties. (orig.)

  19. Crystal structure and crystal growth of the polar ferrimagnet CaBaFe4O7

    Science.gov (United States)

    Perry, R. S.; Kurebayashi, H.; Gibbs, A.; Gutmann, M. J.

    2018-05-01

    Magnetic materials are a cornerstone for developing spintronic devices for the transport of information via magnetic excitations. To date, relatively few materials have been investigated for the purpose of spin transport, mostly due to the paucity of suitable candidates as these materials are often chemically complex and difficult to synthesize. We present the crystal growth and a structure solution on the high-temperature crystal structure of the layered, polar ferrimagnet CaBaFe4O7 , which is a possible new contender for spintronics research. The space group is identified as P 3 by refinement of single crystal and powder neutron diffraction data. At 400 K, the trigonal lattice parameters are a =11.0114 (11 )Å and c =10.330 (3 )Å . The structure is similar to the low-temperature phase with alternating layers of triangular and Kagome-arranged Fe-O tetrahedra. We also present details of the crystal growth by traveling solvent method.

  20. The importance of proper crystal-chemical and geometrical reasoning demonstrated using layered single and double hydroxides

    Science.gov (United States)

    Richardson, Ian G.

    2013-01-01

    Atomistic modelling techniques and Rietveld refinement of X-ray powder diffraction data are widely used but often result in crystal structures that are not realistic, presumably because the authors neglect to check the crystal-chemical plausibility of their structure. The purpose of this paper is to reinforce the importance and utility of proper crystal-chemical and geometrical reasoning in structural studies. It is achieved by using such reasoning to generate new yet fundamental information about layered double hydroxides (LDH), a large, much-studied family of compounds. LDH phases are derived from layered single hydroxides by the substitution of a fraction (x) of the divalent cations by trivalent. Equations are derived that enable calculation of x from the a parameter of the unit cell and vice versa, which can be expected to be of widespread utility as a sanity test for extant and future structure determinations and computer simulation studies. The phase at x = 0 is shown to be an α form of divalent metal hydroxide rather than the β polymorph. Crystal-chemically sensible model structures are provided for β-Zn(OH)2 and Ni- and Mg-based carbonate LDH phases that have any trivalent cation and any value of x, including x = 0 [i.e. for α-M(OH)2·mH2O phases]. PMID:23719702

  1. Crystal structure investigations of ZrAsxSey (x>y, x+y≤2) by single crystal neutron diffraction at 300 K, 25 K and 2.3 K

    International Nuclear Information System (INIS)

    Niewa, Rainer; Czulucki, Andreas; Schmidt, Marcus; Auffermann, Gudrun; Cichorek, Tomasz; Meven, Martin; Pedersen, Bjoern; Steglich, Frank; Kniep, Ruediger

    2010-01-01

    Large single crystals of ZrAs x Se y (x>y, x+y≤2, PbFCl type of structure, space group P4/nmm) were grown by Chemical Transport. Structural details were studied by single crystal neutron diffraction techniques at various temperatures. One single crystal specimen with chemical composition ZrAs 1.595(3) Se 0.393(1) was studied at ambient temperature (R1=5.10 %, wR2=13.18 %), and a second crystal with composition ZrAs 1.420(3) Se 0.560(1) was investigated at 25 K (R1=2.70%, wR2=5.70 %) and 2.3 K (R1=2.30 %, wR2=4.70 %), respectively. The chemical compositions of the crystals under investigation were determined by wavelength dispersive X-ray spectroscopy. The quantification of trace elements was carried out by Laser Ablation-Inductively Coupled Plasma-Mass Spectrometry. According to the crystal structure refinements the crystallographic 2a site is occupied by As, together with a significant amount of vacancies. One of the 2c sites is fully occupied by As and Se (random distribution). With respect to the fractional coordinates of the atoms, the crystal structure determinations based on the data obtained at 25.0 K and 2.3 K did not show significant deviations from ambient temperature results. The temperature dependence of the displacement parameters indicates a static displacement of As on the 2a sites (located on the (0 0 1) planes) for all temperatures. No indications for any occupation of interstitial sites or the presence of vacancies on the Zr (2a) site were found. - Graphical abstract: Large single crystals of ZrAs x Se y grown by Chemical Transport to study structural details as the As-Se order scheme by single crystal neutron diffraction.

  2. Layered Growth and Crystallization in Calcareous Biominerals: Impact of Structural and Chemical Evidence on Two Major Concepts in Invertebrate Biomineralization Studies

    Directory of Open Access Journals (Sweden)

    Jean-Pierre Cuif

    2012-02-01

    Full Text Available In several recent models of invertebrate skeletogenesis, Ca-carbonate crystallization occurs within a liquid-filled chamber. No explanation is given neither for the simultaneous occurrence of distinct polymorphs of Ca-carbonate within these liquid volumes, nor for the spatial arrangement of the mineral units which are always organized in species-specific structural sequences. Results of a series of physical characterizations applied to reference skeletal materials reveal the inadequacy of this liquid-filled chamber model to account for structural and chemical properties of the shell building units. Simultaneously, these data provide convergent pieces of evidence for a specific mode of crystallization developed throughout various invertebrate phyla, supporting the hypothesized “common strategy” based on a multi-scaled control exerted on formation of their calcareous hard parts.

  3. Microscopy and Chemical Inversing Techniques to Determine the Photonic Crystal Structure of Iridescent Beetle Scales in the Cerambycidae Family

    Science.gov (United States)

    Richey, Lauren; Gardner, John; Standing, Michael; Jorgensen, Matthew; Bartl, Michael

    2010-10-01

    Photonic crystals (PCs) are periodic structures that manipulate electromagnetic waves by defining allowed and forbidden frequency bands known as photonic band gaps. Despite production of PC structures operating at infrared wavelengths, visible counterparts are difficult to fabricate because periodicities must satisfy the diffraction criteria. As part of an ongoing search for naturally occurring PCs [1], a three-dimensional array of nanoscopic spheres in the iridescent scales of the Cerambycidae insects A. elegans and G. celestis has been found. Such arrays are similar to opal gemstones and self-assembled colloidal spheres which can be chemically inverted to create a lattice-like PC. Through a chemical replication process [2], scanning electron microscopy analysis, sequential focused ion beam slicing and three-dimensional modeling, we analyzed the structural arrangement of the nanoscopic spheres. The study of naturally occurring structures and their inversing techniques into PCs allows for diversity in optical PC fabrication. [1] J.W. Galusha et al., Phys. Rev. E 77 (2008) 050904. [2] J.W. Galusha et al., J. Mater. Chem. 20 (2010) 1277.

  4. Crystal-Size-Dependent Structural Transitions in Nanoporous Crystals: Adsorption-Induced Transitions in ZIF-8

    KAUST Repository

    Zhang, Chen

    2014-09-04

    © 2014 American Chemical Society. Understanding the crystal-size dependence of both guest adsorption and structural transitions of nanoporous solids is crucial to the development of these materials. We find that nano-sized metal-organic framework (MOF) crystals have significantly different guest adsorption properties compared to the bulk material. A new methodology is developed to simulate the adsorption and transition behavior of entire MOF nanoparticles. Our simulations predict that the transition pressure significantly increases with decreasing particle size, in agreement with crystal-size-dependent experimental measurements of the N2-ZIF-8 system. We also propose a simple core-shell model to examine this effect on length scales that are inaccessible to simulations and again find good agreement with experiments. This study is the first to examine particle size effects on structural transitions in ZIFs and provides a thermodynamic framework for understanding the underlying mechanism.

  5. Solving crystal structures with the symmetry minimum function

    International Nuclear Information System (INIS)

    Estermann, M.A.

    1995-01-01

    Unravelling the Patterson function (the auto-correlation function of the crystal structure) (A.L. Patterson, Phys. Rev. 46 (1934) 372) can be the only way of solving crystal structures from neutron and incomplete diffraction data (e.g. powder data) when direct methods for phase determination fail. The negative scattering lengths of certain isotopes and the systematic loss of information caused by incomplete diffraction data invalidate the underlying statistical assumptions made in direct methods. In contrast, the Patterson function depends solely on the quality of the available diffraction data. Simpson et al. (P.G. Simpson et al., Acta Crystallogr. 18 (1965) 169) showed that solving a crystal structure with a particular superposition of origin-shifted Patterson functions, the symmetry minimum function, is advantageous over using the Patterson function alone, for single-crystal X-ray data.This paper describes the extension of the Patterson superposition approach to neutron data and powder data by (a) actively using the negative regions in the Patterson map caused by negative scattering lengths and (b) using maximum entropy Patterson maps (W.I.F. David, Nature 346 (1990) 731). Furthermore, prior chemical knowledge such as bond lengths and angles from known fragments have been included. Two successful structure solutions of a known and a previously unknown structure (M. Hofmann, J. Solid State Chem., in press) illustrate the potential of this new development. ((orig.))

  6. Crystal-chemical characteristics of nontronites from bottom sediments of Pacific ocean

    International Nuclear Information System (INIS)

    Palchik, N. A.; Moroz, T. N.; Grigorieva, T. N.; Nikandrova, N. K.; Miroshnichenko, L. V.

    2017-01-01

    A crystal-chemical analysis of the nontronite samples formed in deep-water sediments of the underwater Juan-de-Fuca ridge in the Pacific ocean has been performed using powder X-ray diffraction, IR spectroscopy, and Mössbauer spectroscopy. A comparison with the previously investigated nontronites from different regions of the Sea of Okhotsk showed that the structural features of these formations are due to the difference in the physicochemical parameters of their crystallization. The values of the basal interplanar spacing d_0_0_1 (within 11–13 Å) in the samples analyzed are determined by the degree of hydration and cation filling of the interlayer space, while the differences in the IR spectra are due to isomorphic substitutions in the structure. The character of cation distribution and the nature and concentration of stacking faults in nontronite structures are determined. The differences in the composition, structure, and properties of nontronites of different origin are confirmed by theoretical calculations of their structural parameters.

  7. Crystal-chemical characteristics of nontronites from bottom sediments of Pacific ocean

    Energy Technology Data Exchange (ETDEWEB)

    Palchik, N. A., E-mail: nadezhda@igm.nsc.ru; Moroz, T. N.; Grigorieva, T. N. [Russian Academy of Sciences, Sobolev Institute of Geology and Mineralogy, Siberian Branch (Russian Federation); Nikandrova, N. K. [Russian Academy of Sciences, Institute of Mineralogy, Ural Branch (Russian Federation); Miroshnichenko, L. V. [Russian Academy of Sciences, Sobolev Institute of Geology and Mineralogy, Siberian Branch (Russian Federation)

    2017-01-15

    A crystal-chemical analysis of the nontronite samples formed in deep-water sediments of the underwater Juan-de-Fuca ridge in the Pacific ocean has been performed using powder X-ray diffraction, IR spectroscopy, and Mössbauer spectroscopy. A comparison with the previously investigated nontronites from different regions of the Sea of Okhotsk showed that the structural features of these formations are due to the difference in the physicochemical parameters of their crystallization. The values of the basal interplanar spacing d{sub 001} (within 11–13 Å) in the samples analyzed are determined by the degree of hydration and cation filling of the interlayer space, while the differences in the IR spectra are due to isomorphic substitutions in the structure. The character of cation distribution and the nature and concentration of stacking faults in nontronite structures are determined. The differences in the composition, structure, and properties of nontronites of different origin are confirmed by theoretical calculations of their structural parameters.

  8. The method of intersecting spheres for determination of coordination numbers of atoms in crystal structures

    International Nuclear Information System (INIS)

    Serezhkin, V.N.; Buslaev, Yu.A.; Mikhajlov, Yu.N.

    1997-01-01

    New method for determination of coordination numbers (CN) of atoms in crystal structures, based on the model of interatomic interaction, within the frames whereof each atom is approximated by two spheres with the common center in the atom nuclei, is proposed. One of the spheres specifies conditionally isolated (chemically unbound) atom and its radius is a constant, which for atoms of the given chemical sort in the structure of any compound is equal to quasi-orbital Sleiter radius. The sphere of the other radius specifies chemically bound atom and coincides with the sphere, the volume whereof is equal to the volume of the Voronoj-Dirichlet polyhedron of the corresponding atom in the structure of the concrete crystal. Using a series of examples, workability of the given method for CN determination of atoms in structures of both simple substances and chemical compounds (alkali, transition metals, U, Th). Good agreement of the obtained results with the generally accepted CN s of atoms for the considered crystals is noted and a number of principal advantages of the new method, as compared to classical one of the CNs evaluation, is demonstrated

  9. Crystal structure and chemical bonding analysis of BaPtCd{sub 2}

    Energy Technology Data Exchange (ETDEWEB)

    Gulo, Fakhili [Department of Chemical Education, Sriwijaya University, Inderalaya 30662, South Sumatra (Indonesia); Koehler, Juergen [Max Planck Institut fuer Festkoerperforschung, Heisenbergstrasse 1, 70569 Stuttgart (Germany)

    2015-03-15

    The new ternary intermetallic phase, BaPtCd{sub 2}, was synthesized by solid-state reaction from direct combination of the elements in a stoichiometric mixture. The reaction was done at 850 C for 15 h, followed by an equilibration at 600 C for 4 d. The crystal structure was determined by X-ray diffraction method on a single crystal. BaPtCd{sub 2} is isotypic to MgCuAl{sub 2} and crystallizes in the orthorhombic space group Cmcm [a = 4.467(2), b = 11.143(4), c = 8.240(3) Aa, V = 410.2(3) Aa{sup 3}, and Z = 4]. Barium atoms are linked together forming zigzag chains. Cadmium atoms are bonded to each other forming six-membered rings of platinum centered boat and anti-boat conformations. BaPtCd{sub 2} contains 16 electrons per formula unit and belongs to the electron poorest compounds with MgCuAl{sub 2} type structure. Calculations based on the linear muffin-tin orbitals method in the atomic spheres approximation show that significant bonding states in BaPtCd{sub 2} are unoccupied. (Copyright copyright 2015 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  10. Crystal structure mediates mode of cell death in TiO2 nanotoxicity

    International Nuclear Information System (INIS)

    Braydich-Stolle, Laura K.; Schaeublin, Nicole M.; Murdock, Richard C.; Jiang, Jingkun; Biswas, Pratim; Schlager, John J.; Hussain, Saber M.

    2009-01-01

    Certain properties that nanoparticles possess differentiate them from their bulk counterparts, and these characteristics must be evaluated prior to nanoparticle studies and include: size, shape, dispersion, physical and chemical properties, surface area, and surface chemistry. Early nanotoxicity studies evaluating TiO 2 have yielded conflicting data which identify either size or crystal structure as the mediating property for nano-TiO 2 toxicity. However, it is important to note that none of these studies examined size with the crystal structure composition controlled for or examined crystal structure while controlling the nanoparticle size. The goal of this study was to evaluate the role of size and crystal structure in TiO 2 nanotoxicity while controlling for as many other nanoproperties as possible using the HEL-30 mouse keratinocyte cell line as a model for dermal exposure. In the size-dependent studies, all the nanoparticles are 100% anatase, and aggregate sizes were determined in order to take into account the effect of agglomeration on size-dependent toxicity. In addition, varying crystal structures were assessed while the size of the nanoparticles was controlled. We were able to identify that both size and crystal structure contribute to cytotoxicity and that the mechanism of cell death varies based on crystal structure. The 100% anatase TiO 2 nanoparticles, regardless of size, induced cell necrosis, while the rutile TiO 2 nanoparticles initiated apoptosis through formation of reactive oxygen species (ROS).

  11. Visualization of Hyperconjugation and Subsequent Structural Distortions through 3D Printing of Crystal Structures.

    Science.gov (United States)

    Mithila, Farha J; Oyola-Reynoso, Stephanie; Thuo, Martin M; Atkinson, Manza Bj

    2016-01-01

    Structural distortions due to hyperconjugation in organic molecules, like norbornenes, are well captured through X-ray crystallographic data, but are sometimes difficult to visualize especially for those applying chemical knowledge and are not chemists. Crystal structure from the Cambridge database were downloaded and converted to .stl format. The structures were then printed at the desired scale using a 3D printer. Replicas of the crystal structures were accurately reproduced in scale and any resulting distortions were clearly visible from the macroscale models. Through space interactions or effect of through space hyperconjugation was illustrated through loss of symmetry or distortions thereof. The norbornene structures exhibits distortion that cannot be observed through conventional ball and stick modelling kits. We show that 3D printed models derived from crystallographic data capture even subtle distortions in molecules. We translate such crystallographic data into scaled-up models through 3D printing.

  12. Crystal structure and magnetic susceptibility of UOSe single crystals

    International Nuclear Information System (INIS)

    Kaczorowski, D.; Muenster Univ.; Poettgen, R.; Jeitschko, W.; Gajek, Z.; Zygmunt, A.

    1993-01-01

    The crystal structure and magnetic susceptibility behaviour of UOSe single crystals have been studied. UOSe crystalizes in the tetragonal PbFC1-type structure (space group P4/nmm) with the lattice parameters: a = 390.38(5) pm and c = 698.05(9) pm. It orders antiferromagnetically at T N =100±2 K and exhibits a very strong anisotropy in the susceptibility vs temperature variation. The magnetic and thermodynamic properties of UOSe are successfully interpreted in the framework of a perturbative ab initio crystal field approach. (Author)

  13. Crystal structure and magnetic susceptibility of UOSe single crystals

    Energy Technology Data Exchange (ETDEWEB)

    Kaczorowski, D. (Polish Academy of Sciences, Wroclaw (Poland). Inst. for Low Temperature and Structure Research Muenster Univ. (Germany). Anorganisch-Chemisches Inst.); Poettgen, R.; Jeitschko, W. (Muenster Univ. (Germany). Anorganisch-Chemisches Inst.); Gajek, Z.; Zygmunt, A. (Polish Academy of Sciences, Wroclaw (Poland). Inst. for Low Temperature and Structure Research)

    1993-01-01

    The crystal structure and magnetic susceptibility behaviour of UOSe single crystals have been studied. UOSe crystalizes in the tetragonal PbFC1-type structure (space group P4/nmm) with the lattice parameters: a = 390.38(5) pm and c = 698.05(9) pm. It orders antiferromagnetically at T[sub N]=100[+-]2 K and exhibits a very strong anisotropy in the susceptibility vs temperature variation. The magnetic and thermodynamic properties of UOSe are successfully interpreted in the framework of a perturbative ab initio crystal field approach. (Author).

  14. Crystal Structural Effect of AuCu Alloy Nanoparticles on Catalytic CO Oxidation

    International Nuclear Information System (INIS)

    Zhan, Wangcheng; Wang, Jinglin; Wang, Haifeng; Zhang, Jinshui; Liu, Xiaofei

    2017-01-01

    Controlling the physical and chemical properties of alloy nanoparticles (NPs) is an important approach to optimize NP catalysis. Unlike other tuning knobs, such as size, shape, and composition, crystal structure has received limited attention and not been well understood for its role in catalysis. This deficiency is mainly due to the difficulty in synthesis and fine-tuning of the NPs’ crystal structure. Here, Exemplifying by AuCu alloy NPs with face centered cubic (fcc) and face centered tetragonal (fct) structure, we demonstrate a remarkable difference in phase segregation and catalytic performance depending on the crystal structure. During the thermal treatment in air, the Cu component in fcc-AuCu alloy NPs segregates more easily onto the alloy surface as compared to that in fct-AuCu alloy NPs. As a result, after annealing at 250 °C in air for 1 h, the fcc- and fct-AuCu alloy NPs are phase transferred into Au/CuO and AuCu/CuO core/shell structures, respectively. More importantly, this variation in heterostructures introduces a significant difference in CO adsorption on two catalysts, leading to a largely enhanced catalytic activity of AuCu/CuO NP catalyst for CO oxidation. Furthermore, the same concept can be extended to other alloy NPs, making it possible to fine-tune NP catalysis for many different chemical reactions.

  15. Crystal Structural Effect of AuCu Alloy Nanoparticles on Catalytic CO Oxidation

    Energy Technology Data Exchange (ETDEWEB)

    Zhan, Wangcheng [East China Univ. of Science and Technology, Shanghai (China); Wang, Jinglin [East China Univ. of Science and Technology, Shanghai (China); Wang, Haifeng [East China Univ. of Science and Technology, Shanghai (China); Zhang, Jinshui [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Liu, Xiaofei [East China Univ. of Science and Technology, Shanghai (China); Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Zhang, Pengfei [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Chi, Miaofang [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Guo, Yanglong [East China Univ. of Science and Technology, Shanghai (China); Guo, Yun [East China Univ. of Science and Technology, Shanghai (China); Lu, Guanzhong [East China Univ. of Science and Technology, Shanghai (China); Sun, Shouheng [Brown Univ., Providence, RI (United States); Dai, Sheng [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Univ. of Tennessee, Knoxville, TN (United States); Zhu, Huiyuan [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2017-06-07

    Controlling the physical and chemical properties of alloy nanoparticles (NPs) is an important approach to optimize NP catalysis. Unlike other tuning knobs, such as size, shape, and composition, crystal structure has received limited attention and not been well understood for its role in catalysis. This deficiency is mainly due to the difficulty in synthesis and fine-tuning of the NPs’ crystal structure. Here, Exemplifying by AuCu alloy NPs with face centered cubic (fcc) and face centered tetragonal (fct) structure, we demonstrate a remarkable difference in phase segregation and catalytic performance depending on the crystal structure. During the thermal treatment in air, the Cu component in fcc-AuCu alloy NPs segregates more easily onto the alloy surface as compared to that in fct-AuCu alloy NPs. As a result, after annealing at 250 °C in air for 1 h, the fcc- and fct-AuCu alloy NPs are phase transferred into Au/CuO and AuCu/CuO core/shell structures, respectively. More importantly, this variation in heterostructures introduces a significant difference in CO adsorption on two catalysts, leading to a largely enhanced catalytic activity of AuCu/CuO NP catalyst for CO oxidation. Furthermore, the same concept can be extended to other alloy NPs, making it possible to fine-tune NP catalysis for many different chemical reactions.

  16. Prediction of molecular crystal structures

    International Nuclear Information System (INIS)

    Beyer, Theresa

    2001-01-01

    The ab initio prediction of molecular crystal structures is a scientific challenge. Reliability of first-principle prediction calculations would show a fundamental understanding of crystallisation. Crystal structure prediction is also of considerable practical importance as different crystalline arrangements of the same molecule in the solid state (polymorphs)are likely to have different physical properties. A method of crystal structure prediction based on lattice energy minimisation has been developed in this work. The choice of the intermolecular potential and of the molecular model is crucial for the results of such studies and both of these criteria have been investigated. An empirical atom-atom repulsion-dispersion potential for carboxylic acids has been derived and applied in a crystal structure prediction study of formic, benzoic and the polymorphic system of tetrolic acid. As many experimental crystal structure determinations at different temperatures are available for the polymorphic system of paracetamol (acetaminophen), the influence of the variations of the molecular model on the crystal structure lattice energy minima, has also been studied. The general problem of prediction methods based on the assumption that the experimental thermodynamically stable polymorph corresponds to the global lattice energy minimum, is that more hypothetical low lattice energy structures are found within a few kJ mol -1 of the global minimum than are likely to be experimentally observed polymorphs. This is illustrated by the results for molecule I, 3-oxabicyclo(3.2.0)hepta-1,4-diene, studied for the first international blindtest for small organic crystal structures organised by the Cambridge Crystallographic Data Centre (CCDC) in May 1999. To reduce the number of predicted polymorphs, additional factors to thermodynamic criteria have to be considered. Therefore the elastic constants and vapour growth morphologies have been calculated for the lowest lattice energy

  17. Prediction of molecular crystal structures

    Energy Technology Data Exchange (ETDEWEB)

    Beyer, Theresa

    2001-07-01

    The ab initio prediction of molecular crystal structures is a scientific challenge. Reliability of first-principle prediction calculations would show a fundamental understanding of crystallisation. Crystal structure prediction is also of considerable practical importance as different crystalline arrangements of the same molecule in the solid state (polymorphs)are likely to have different physical properties. A method of crystal structure prediction based on lattice energy minimisation has been developed in this work. The choice of the intermolecular potential and of the molecular model is crucial for the results of such studies and both of these criteria have been investigated. An empirical atom-atom repulsion-dispersion potential for carboxylic acids has been derived and applied in a crystal structure prediction study of formic, benzoic and the polymorphic system of tetrolic acid. As many experimental crystal structure determinations at different temperatures are available for the polymorphic system of paracetamol (acetaminophen), the influence of the variations of the molecular model on the crystal structure lattice energy minima, has also been studied. The general problem of prediction methods based on the assumption that the experimental thermodynamically stable polymorph corresponds to the global lattice energy minimum, is that more hypothetical low lattice energy structures are found within a few kJ mol{sup -1} of the global minimum than are likely to be experimentally observed polymorphs. This is illustrated by the results for molecule I, 3-oxabicyclo(3.2.0)hepta-1,4-diene, studied for the first international blindtest for small organic crystal structures organised by the Cambridge Crystallographic Data Centre (CCDC) in May 1999. To reduce the number of predicted polymorphs, additional factors to thermodynamic criteria have to be considered. Therefore the elastic constants and vapour growth morphologies have been calculated for the lowest lattice energy

  18. NMR structure of the protein NP-247299.1: comparison with the crystal structure

    International Nuclear Information System (INIS)

    Jaudzems, Kristaps; Geralt, Michael; Serrano, Pedro; Mohanty, Biswaranjan; Horst, Reto; Pedrini, Bill; Elsliger, Marc-André; Wilson, Ian A.; Wüthrich, Kurt

    2010-01-01

    Comparison of the NMR and crystal structures of a protein determined using largely automated methods has enabled the interpretation of local differences in the highly similar structures. These differences are found in segments of higher B values in the crystal and correlate with dynamic processes on the NMR chemical shift timescale observed in solution. The NMR structure of the protein NP-247299.1 in solution at 313 K has been determined and is compared with the X-ray crystal structure, which was also solved in the Joint Center for Structural Genomics (JCSG) at 100 K and at 1.7 Å resolution. Both structures were obtained using the current largely automated crystallographic and solution NMR methods used by the JCSG. This paper assesses the accuracy and precision of the results from these recently established automated approaches, aiming for quantitative statements about the location of structure variations that may arise from either one of the methods used or from the different environments in solution and in the crystal. To evaluate the possible impact of the different software used for the crystallographic and the NMR structure determinations and analysis, the concept is introduced of reference structures, which are computed using the NMR software with input of upper-limit distance constraints derived from the molecular models representing the results of the two structure determinations. The use of this new approach is explored to quantify global differences that arise from the different methods of structure determination and analysis versus those that represent interesting local variations or dynamics. The near-identity of the protein core in the NMR and crystal structures thus provided a basis for the identification of complementary information from the two different methods. It was thus observed that locally increased crystallographic B values correlate with dynamic structural polymorphisms in solution, including that the solution state of the protein involves

  19. Crystal structure mediates mode of cell death in TiO{sub 2} nanotoxicity

    Energy Technology Data Exchange (ETDEWEB)

    Braydich-Stolle, Laura K.; Schaeublin, Nicole M.; Murdock, Richard C. [Wright-Patterson AFB, Applied Biotechnology Branch, Human Effectiveness Directorate, Air Force Research Laboratory (United States); Jiang, Jingkun; Biswas, Pratim [Washington University in St. Louis, Department of Energy, Environmental, and Chemical Engineering (United States); Schlager, John J.; Hussain, Saber M., E-mail: Saber.Hussain@wpafb.af.mi [Wright-Patterson AFB, Applied Biotechnology Branch, Human Effectiveness Directorate, Air Force Research Laboratory (United States)

    2009-08-15

    Certain properties that nanoparticles possess differentiate them from their bulk counterparts, and these characteristics must be evaluated prior to nanoparticle studies and include: size, shape, dispersion, physical and chemical properties, surface area, and surface chemistry. Early nanotoxicity studies evaluating TiO{sub 2} have yielded conflicting data which identify either size or crystal structure as the mediating property for nano-TiO{sub 2} toxicity. However, it is important to note that none of these studies examined size with the crystal structure composition controlled for or examined crystal structure while controlling the nanoparticle size. The goal of this study was to evaluate the role of size and crystal structure in TiO{sub 2} nanotoxicity while controlling for as many other nanoproperties as possible using the HEL-30 mouse keratinocyte cell line as a model for dermal exposure. In the size-dependent studies, all the nanoparticles are 100% anatase, and aggregate sizes were determined in order to take into account the effect of agglomeration on size-dependent toxicity. In addition, varying crystal structures were assessed while the size of the nanoparticles was controlled. We were able to identify that both size and crystal structure contribute to cytotoxicity and that the mechanism of cell death varies based on crystal structure. The 100% anatase TiO{sub 2} nanoparticles, regardless of size, induced cell necrosis, while the rutile TiO{sub 2} nanoparticles initiated apoptosis through formation of reactive oxygen species (ROS).

  20. On the akaganeite crystal structure, phase transformations and possible role in post-excavational corrosion of iron artefacts

    DEFF Research Database (Denmark)

    Ståhl, Kenny; Nielsen, Kurt; Jiang, Jianzhong

    2003-01-01

    The crystal structure of akaganeite and the akaganeite to hematite transition has been studied by means of conventional and synchrotron X-ray and neutron powder diffraction. The chemical formula of akaganeite can be written as FeO0.833(OH)(1.167)Cl-0.167. The crystal structure does not contain fr...

  1. Crystal structure analysis, overexpression and refolding behaviour of a DING protein with single mutation

    International Nuclear Information System (INIS)

    Gai, Zuoqi; Nakamura, Akiyoshi; Tanaka, Yoshikazu; Hirano, Nagisa; Tanaka, Isao; Yao, Min

    2013-01-01

    Crystals of a member of the DING protein family (HPBP) were obtained accidentally, and the structure was determined at 1.35 Å resolution. For further analysis, a system for preparation of HPBP was constructed and the structure of a prepared sample was confirmed by X-ray crystal structure analysis at 1.03 Å resolution. After crystallization of a certain protein–RNA complex, well diffracting crystals were obtained. However, the asymmetric unit of the crystal was too small to locate any components. Mass spectrometry and X-ray crystal structure analysis showed that it was a member of the DING protein family (HPBP). Surprisingly, the structure of HPBP reported previously was also determined accidentally as a contaminant, suggesting that HPBP has a strong tendency to crystallize. Furthermore, DING proteins were reported to relate in disease. These observations suggest that DING has potential for application in a wide range of research fields. To enable further analyses, a system for preparation of HPBP was constructed. As HPBP was expressed in insoluble form in Escherichia coli, it was unfolded chemically and refolded. Finally, a very high yield preparation method was constructed, in which 43 mg of HPBP was obtained from 1 L of culture. Furthermore, to evaluate the validity of refolding, its crystal structure was determined at 1.03 Å resolution. The determined structure was identical to the native structure, in which two disulfide bonds were recovered correctly and a phosphate ion was captured. Based on these results, it was concluded that the refolded HPBP recovers its structure correctly

  2. Crystal structure analysis, overexpression and refolding behaviour of a DING protein with single mutation

    Energy Technology Data Exchange (ETDEWEB)

    Gai, Zuoqi; Nakamura, Akiyoshi [Hokkaido University, Sapporo 060-0810 (Japan); Tanaka, Yoshikazu, E-mail: tanaka@sci.hokudai.ac.jp [Hokkaido University, Sapporo 060-0810 (Japan); Hokkaido University, Sapporo 060-0810 (Japan); Hirano, Nagisa [Hokkaido University, Sapporo 060-0810 (Japan); Tanaka, Isao; Yao, Min [Hokkaido University, Sapporo 060-0810 (Japan); Hokkaido University, Sapporo 060-0810 (Japan)

    2013-11-01

    Crystals of a member of the DING protein family (HPBP) were obtained accidentally, and the structure was determined at 1.35 Å resolution. For further analysis, a system for preparation of HPBP was constructed and the structure of a prepared sample was confirmed by X-ray crystal structure analysis at 1.03 Å resolution. After crystallization of a certain protein–RNA complex, well diffracting crystals were obtained. However, the asymmetric unit of the crystal was too small to locate any components. Mass spectrometry and X-ray crystal structure analysis showed that it was a member of the DING protein family (HPBP). Surprisingly, the structure of HPBP reported previously was also determined accidentally as a contaminant, suggesting that HPBP has a strong tendency to crystallize. Furthermore, DING proteins were reported to relate in disease. These observations suggest that DING has potential for application in a wide range of research fields. To enable further analyses, a system for preparation of HPBP was constructed. As HPBP was expressed in insoluble form in Escherichia coli, it was unfolded chemically and refolded. Finally, a very high yield preparation method was constructed, in which 43 mg of HPBP was obtained from 1 L of culture. Furthermore, to evaluate the validity of refolding, its crystal structure was determined at 1.03 Å resolution. The determined structure was identical to the native structure, in which two disulfide bonds were recovered correctly and a phosphate ion was captured. Based on these results, it was concluded that the refolded HPBP recovers its structure correctly.

  3. NATO Advanced Study Institute on Electronic Structure of Polymers and Molecular Crystals

    CERN Document Server

    Ladik, János

    1975-01-01

    The NATO Advanced Study Institute on "Electronic Structure of Polymers and Molecular Crystals" was held at the Facultes Universi­ taires de Namur (F.U.N.) from September 1st till September 14th, 1974. We wish to express our appreciation to the NATO Scientific Affairs Division whose generous support made this Institute possible and to the Facultes Universitaires de Namur and the Societe Chimique de Belgique which provided fellowships and travel grants to a number of students. This volume contains the main lectures about the basic principles of the field and about different recent developments of the theory of the electronic structure of polymers and molecular crystals. The school started with the presentation of the basic SCF-LCAO theory of the electronic structure of periodic polymers and molecular crystals (contributions by Ladik, Andre & Delhalle) showing how a combination of quantum chemical and solid state physical methods can provide band structures for these systems. The numerical aspects of these ...

  4. The crystal chemistry and structural analysis of uranium oxide hydrates. Final report, May 15, 1995--December 31, 1997

    International Nuclear Information System (INIS)

    Miller, M.L.; Ewing, R.C.

    1998-01-01

    The purpose of this research program was to develop a thorough understanding of the crystal-chemical and crystal-structural systematics of uranyl oxide hydrates which are the initial corrosion products of the UO 2 in spent nuclear fuel and the principal phases in which actinides occur in the near surface environment. The scope of this program has been expanded to include all inorganic phases in which U 6+ plays a significant structural role; currently 183 phases with known crystal structures

  5. Structural and electrical properties of organic stilbazolium single crystal of DSCHS

    Science.gov (United States)

    Sundaram, S. John; Raj, A. Antony; Ramaclus, Jerald V.; Sagayaraj, P.

    2016-05-01

    Organic nonlinear optical crystal 4-N, N-Dimethyl Amino-4'N'-Methyl-Stilbazolium 3-Carboxy-4-Hydroxy benzenesulfonate (DSCHS) has been successfully grown from aqueous methanol solution by adopting slow solvent evaporation technique. Chemical composition of the sample was confirmed by CHN analysis. Powder X-ray diffraction analysis was carried out and it shows that DSCHS crystal belongs to triclinic structure with Pl space group. It is found that this material exhibits positive photoconductivity. Dielectric studies were also carried out for different temperature by varying the frequency.

  6. Crystal structure, vibrational and DFT simulation studies of melaminium dihydrogen phosphite monohydrate

    Science.gov (United States)

    Arjunan, V.; Kalaivani, M.; Marchewka, M. K.; Mohan, S.

    2013-08-01

    The crystal structure investigations of melamine with phosphorous acid, namely melaminium dihydrogenphosphite monohydrate (C3N6H7·H2PO3·H2O) have been investigated by means of single crystal X-ray diffraction method. The title compound crystallizes in monoclinic crystal system, and the space group is P21/c with a = 10.069 Å, b = 21.592 Å, c = 12.409 Å and Z = 12. The vibrational assignments and analysis of melaminium dihydrogen phosphite monohydrate have also been performed by FTIR, FT-Raman and far-infrared spectral studies. The quantum chemical simulations were performed with DFT (B3LYP) method using 6-31G**, cc-pVTZ, and 6-311++G** basis sets to determine the energy, structural, thermodynamic parameters and vibrational frequencies of melaminium dihydrogen phosphite monohydrate. The hydrogen atom from phosphorous acid was transferred to the melamine molecule giving the singly protonated melaminium cation. The ability of ions to form spontaneous three-dimensional structure through weak Osbnd H···O and Nsbnd H···O hydrogen bonds shows notable vibrational effects.

  7. Ba3NbAs3O: synthesis, crystal structure, Raman spectroscopy and bonding analysis

    International Nuclear Information System (INIS)

    Monconduit, L.; Tillard, M.; Favier, F.; Belin, C.

    1999-01-01

    The crystal structure of Ba 3 NbAs 3 O has been solved by crystal X-ray analysis (CAD-4 automatic diffractometer, Mo Kα radiation). The compound crystallizes in space group Pnma, a=6.724(2), b=11.100(2), c=13.462(3) A, V=1004.7(4) A 3 , Z=4. The structure has been refined to R1=0.0343 for 964 independent reflections, it can be described as packing of nearly tetrahedral NbAs 3 O 6- anions, their coordination by Ba 2+ cations forming interconnected trigonal prisms. The chemical bonding has been analyzed by MO calculations and Raman spectroscopy. (orig.)

  8. Amine free crystal structure: The crystal structure of d(CGCGCG)2 and methylamine complex crystal

    International Nuclear Information System (INIS)

    Ohishi, Hirofumi; Tsukamoto, Koji; Hiyama, Yoichi; Maezaki, Naoyoshi; Tanaka, Tetsuaki; Ishida, Toshimasa

    2006-01-01

    We succeeded in the crystallization of d(CGCGCG) 2 and methylamine Complex. The crystal was clear and of sufficient size to collect the X-ray crystallographic data up to 1.0 A resolution using synchrotron radiation. As a result of X-ray crystallographic analysis of 2F o - F c map was much clear and easily traced. It is First time monoamine co-crystallizes with d(CGCGCG) 2 . However, methylamine was not found from the complex crystal of d(CGCGCG) 2 and methylamine. Five Mg ions were found around d(CGCGCG) 2 molecules. These Mg ions neutralized the anion of 10 values of the phosphate group of DNA with five Mg 2+ . DNA stabilized only by a metallic ion and there is no example of analyzing the X-ray crystal structure like this. Mg ion stabilizes the conformation of Z-DNA. To use monoamine for crystallization of DNA, we found that we can get only d(CGCGCG) 2 and Mg cation crystal. Only Mg cation can stabilize the conformation of Z-DNA. The method of using the monoamine for the crystallization of DNA can be applied to the crystallization of DNA of long chain of length in the future like this

  9. Advances in chemical physics advances in liquid crystals

    CERN Document Server

    Prigogine, Ilya; Vij, Jagdish K

    2009-01-01

    Prigogine and Rice's highly acclaimed series, Advances in Chemical Physics, provides a forum for critical, authoritative reviews of current topics in every area of chemical physics. Edited by J.K. Vij, this volume focuses on recent advances in liquid crystals with significant, up-to-date chapters authored by internationally recognized researchers in the field.

  10. Photonic crystal fiber based chloride chemical sensors for corrosion monitoring

    Science.gov (United States)

    Wei, Heming; Tao, Chuanyi; Krishnaswamy, Sridhar

    2016-04-01

    Corrosion of steel is one of the most important durability issues in reinforced concrete (RC) structures because aggressive ions such as chloride ions permeate concrete and corrode steel, consequently accelerating the destruction of structures, especially in marine environments. There are many practical methods for corrosion monitoring in RC structures, mostly focusing on electrochemical-based sensors for monitoring the chloride ion which is thought as one of the most important factors resulting in steel corrosion. In this work, we report a fiber-optic chloride chemical sensor based on long period gratings inscribed in a photonic crystal fiber (PCF) with a chloride sensitive thin film. Numerical simulation is performed to determine the characteristics and resonance spectral response versus the refractive indices of the analyte solution flowing through into the holes in the PCF. The effective refractive index of the cladding mode of the LPGs changes with variations of the analyte solution concentration, resulting in a shift of the resonance wavelength, hence providing the sensor signal. This fiber-optic chemical sensor has a fast response, is easy to prepare and is not susceptible to electromagnetic environment, and can therefore be of use for structural health monitoring of RC structures subjected to such aggressive environments.

  11. Chemical etching of a GaSb crystal incorporated with Mn grown by the Bridgman method under microgravity conditions

    International Nuclear Information System (INIS)

    Chen Xiaofeng; Chen Nuofu; Wu Jinliang; Zhang Xiulan; Chai Chunlin; Yu Yude

    2009-01-01

    A GaSb crystal incorporated with Mn has been grown by the Bridgman method on the Polizon facility onboard the FOTON-M3 spacecraft. Structural defects and growth striations have been successfully revealed by the chemical etching method. By calculating various parameters of the convection, the striation patterns can be explained, and the critical value of the Taylor number, which characterizes the convective condition of the rotating magnetic field induced azimuthal flow, was shown. The stresses generated during crystal growth can be reflected by the observations of etch pit distribution and other structural defects. Suggestions for improving the space experiment to improve the quality of the crystal are given. (semiconductor materials)

  12. Chemical etching of a GaSb crystal incorporated with Mn grown by the Bridgman method under microgravity conditions

    Energy Technology Data Exchange (ETDEWEB)

    Chen Xiaofeng; Chen Nuofu; Wu Jinliang; Zhang Xiulan; Chai Chunlin; Yu Yude, E-mail: xfchen@semi.ac.c, E-mail: nfchen@semi.ac.c [Key Laboratory of Semiconductor Materials and Devices, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083 (China)

    2009-08-15

    A GaSb crystal incorporated with Mn has been grown by the Bridgman method on the Polizon facility onboard the FOTON-M3 spacecraft. Structural defects and growth striations have been successfully revealed by the chemical etching method. By calculating various parameters of the convection, the striation patterns can be explained, and the critical value of the Taylor number, which characterizes the convective condition of the rotating magnetic field induced azimuthal flow, was shown. The stresses generated during crystal growth can be reflected by the observations of etch pit distribution and other structural defects. Suggestions for improving the space experiment to improve the quality of the crystal are given. (semiconductor materials)

  13. Theoretical Exploration of Various Lithium Peroxide Crystal Structures in a Li-Air Battery

    Directory of Open Access Journals (Sweden)

    Kah Chun Lau

    2015-01-01

    Full Text Available We describe a series of metastable Li2O2 crystal structures involving different orientations and displacements of the O22− peroxy ions based on the known Li2O2 crystal structure. Within the vicinity of the chemical potential ΔG ~ 0.20 eV/Li from the thermodynamic ground state of the Li2O2 crystal structure (i.e., Föppl structure, all of these newly found metastable Li2O2 crystal structures are found to be insulating and high-k materials, and they have a common unique signature of an O22− O-O vibration mode (ω ~ 799–865 cm−1, which is in the range of that commonly observed in Li-air battery experiments, regardless of the random O22− orientations and the symmetry in the crystal lattice. From XRD patterns analysis, the commercially available Li2O2 powder is confirmed to be the thermodynamic ground state Föppl-like structure. However, for Li2O2 compounds that are grown electrochemically under the environment of Li-O2 cells, we found that the XRD patterns alone are not sufficient for structural identification of these metastable Li2O2 crystalline phases due to the poor crystallinity of the sample. In addition, the commonly known Raman signal of O22− vibration mode is also found to be insufficient to validate the possible existence of these newly predicted Li2O2 crystal structures, as all of them similarly share the similar O22− vibration mode. However considering that the discharge voltage in most Li-O2 cells are typically several tenths of an eV below the thermodynamic equilibrium for the formation of ground state Föppl structure, the formation of these metastable Li2O2 crystal structures appears to be thermodynamically feasible.

  14. Structural and electrical properties of organic stilbazolium single crystal of DSCHS

    International Nuclear Information System (INIS)

    Sundaram, S. John; Ramaclus, Jerald V.; Sagayaraj, P.; Raj, A. Antony

    2016-01-01

    Organic nonlinear optical crystal 4-N, N-Dimethyl Amino-4’N’-Methyl-Stilbazolium 3-Carboxy-4-Hydroxy benzenesulfonate (DSCHS) has been successfully grown from aqueous methanol solution by adopting slow solvent evaporation technique. Chemical composition of the sample was confirmed by CHN analysis. Powder X-ray diffraction analysis was carried out and it shows that DSCHS crystal belongs to triclinic structure with Pl space group. It is found that this material exhibits positive photoconductivity. Dielectric studies were also carried out for different temperature by varying the frequency.

  15. Photonic Crystal Laser-Driven Accelerator Structures

    International Nuclear Information System (INIS)

    Cowan, B

    2004-01-01

    The authors discuss simulated photonic crystal structure designs for laser-driven particle acceleration. They focus on three-dimensional planar structures based on the so-called ''woodpile'' lattice, demonstrating guiding of a speed-of-light accelerating mode by a defect in the photonic crystal lattice. They introduce a candidate geometry and discuss the properties of the accelerating mode. They also discuss the linear beam dynamics in the structure present a novelmethod for focusing the beam. In addition they describe ongoing investigations of photonic crystal fiber-based structures

  16. Selectivity on-target of bromodomain chemical probes by structure-guided medicinal chemistry and chemical biology.

    Science.gov (United States)

    Galdeano, Carles; Ciulli, Alessio

    2016-09-01

    Targeting epigenetic proteins is a rapidly growing area for medicinal chemistry and drug discovery. Recent years have seen an explosion of interest in developing small molecules binding to bromodomains, the readers of acetyl-lysine modifications. A plethora of co-crystal structures has motivated focused fragment-based design and optimization programs within both industry and academia. These efforts have yielded several compounds entering the clinic, and many more are increasingly being used as chemical probes to interrogate bromodomain biology. High selectivity of chemical probes is necessary to ensure biological activity is due to an on-target effect. Here, we review the state-of-the-art of bromodomain-targeting compounds, focusing on the structural basis for their on-target selectivity or lack thereof. We also highlight chemical biology approaches to enhance on-target selectivity.

  17. Crystal structure determination of Efavirenz

    International Nuclear Information System (INIS)

    Popeneciu, Horea; Dumitru, Ristoiu; Tripon, Carmen; Borodi, Gheorghe; Pop, Mihaela Maria

    2015-01-01

    Needle-shaped single crystals of the title compound, C 14 H 9 ClF 3 NO 2 , were obtained from a co-crystallization experiment of Efavirenz with maleic acid in a (1:1) ratio, using methanol as solvent. Crystal structure determination at room temperature revealed a significant anisotropy of the lattice expansion compared to the previously reported low-temperature structure. In both low- and room temperature structures the cyclopropylethynyl fragment in one of the asymmetric unit molecules is disordered. While at low-temperature only one C atom exhibits positional disorder, at room temperature the disorder is present for two C atoms of the cyclopropane ring

  18. Crystal structure of pure ZrO2 nanopowders

    International Nuclear Information System (INIS)

    Lamas, D.G.; Rosso, A.M.; Anzorena, M. Suarez; Fernandez, A.; Bellino, M.G.; Cabezas, M.D.; Walsoee de Reca, N.E.; Craievich, A.F.

    2006-01-01

    The crystal structure of pure (undoped) zirconia nanopowders synthesized by different wet-chemical routes has been investigated by synchrotron X-ray diffraction. Whereas some previous authors reported the retention of the cubic phase in similar materials, we demonstrate here that pure zirconia nanopowders with average crystallite sizes ranging from 5 to 10 nm exhibit the tetragonal phase. In addition, our results suggest that a tetragonal-to-cubic transition for decreasing crystallite size could eventually occur at a very small critical crystallite size

  19. Single crystal growth and surface chemical stability of KPb2Br5

    Science.gov (United States)

    Atuchin, V. V.; Isaenko, L. I.; Kesler, V. G.; Tarasova, A. Yu.

    2011-03-01

    Single crystal of KPb2Br5 has been grown using the Bridgman technique. Initially the synthesis of stoichiometric KPb2Br5 compound was performed from high purity bromide salts. Electronic structure of KPb2Br5 has been determined with X-ray photoelectron spectroscopy for powdered sample fabricated by grinding in air. Drastic chemical interaction of KPb2Br5 with atmosphere has not been detected. Chemical bonding in potassium- and lead-containing bromides is considered using binding energy differences ΔK=(BE K 2p3/2-BE Br 3d) and ΔPb=(BE Pb 4f7/2-BE Br 3d), respectively, as representative parameters.

  20. Natural SnGeS3 from Radvanice near Trutnov (Czech Republic): its description, crystal structure refinement and solid solution with PbGeS3

    DEFF Research Database (Denmark)

    Sejkora, Jiri; Berlepsch, Peter; Makovicky, Emil

    2001-01-01

    geologi, SnGeS3-PbGeS3, Radvanice, Czech Republic, chemical analysis, XRD data, crystal structure......geologi, SnGeS3-PbGeS3, Radvanice, Czech Republic, chemical analysis, XRD data, crystal structure...

  1. Some experiences with absorption, phonon Raman, and luminescence spectroscopic probes of crystal structure of f-element compounds

    International Nuclear Information System (INIS)

    Peterson, J.R.

    1992-01-01

    Structural information is crucial to the study and understanding of the basic chemical properties of the f elements. X-ray diffraction (XRD) techniques are usually used to obtain crystal structure information. However, the transuranium (5f) elements, because of their radioactivity and limited availability, present problems for standard XRD analysis. For some time now we have been developing and using various spectroscopic probes of crystal structure; an overview of our research in this area is presented here

  2. Synthesis and crystal structure of chromium-bearing anhydrous wadsleyite

    Science.gov (United States)

    Sirotkina, E. A.; Bindi, L.; Bobrov, A. V.; Aksenov, S. M.; Irifune, T.

    2018-04-01

    A chromium-bearing wadsleyite (Cr- Wad) was synthesized in the model system Mg2SiO4-MgCr2O4 at 14 GPa and 1600 °C and studied from the chemical and structural point of views. Microprobe data gave the formula Mg1.930Cr0.120Si0.945O4, on the basis of 4 oxygen atoms. The crystal structure has been studied by single-crystal X-ray diffraction. The orthorhombic unit-cell parameters are: a = 5.6909(5) Å, b = 11.4640(10) Å, c = 8.2406(9) Å, V = 537.62(9) Å3, Z = 8. The structure, space group Imma, was refined to R 1 = 5.99% in anisotropic approximation using 1135 reflections with F o > 4σ( F o) and 43 parameters. Chromium was found to substitute for both Mg at the octahedral sites and Si at the tetrahedral site, according to the reaction VIMg2+ + IVSi4+ = VICr3+ + IVCr3+. On the whole, the structural topology is nearly identical to that of pure wadsleyite. The successful synthesis of Cr- Wad may be important for the thermobarometry of mantle phase associations.

  3. Method of fabricating patterned crystal structures

    KAUST Repository

    Yu, Liyang

    2016-12-15

    A method of manufacturing a patterned crystal structure for includes depositing an amorphous material. The amorphous material is modified such that a first portion of the amorphous thin-film layer has a first height/volume and a second portion of the amorphous thin-film layer has a second height/volume greater than the first portion. The amorphous material is annealed to induce crystallization, wherein crystallization is induced in the second portion first due to the greater height/volume of the second portion relative to the first portion to form patterned crystal structures.

  4. Role of crystal orientation on chemical mechanical polishing of single crystal copper

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, Aibin, E-mail: abzhu@mail.xjtu.edu.cn; He, Dayong; Luo, Wencheng; Liu, Yangyang

    2016-11-15

    Highlights: • The role of crystal orientation in cooper CMP by quasi-continuum was studied. • The atom displacement diagrams were obtained and analyzed. • The stress distribution diagrams and load-displacement curves were analyzed. • This research is helpful to revealing the material removal mechanism of CMP. - Abstract: The material removal mechanism of single crystal copper in chemical mechanical polishing (CMP) has not been intensively investigated. And the role of crystal orientation in CMP of single crystal cooper is not quite clear yet. Quasi-continuum method was adopted in this paper to simulate the process of nano-particles grinding on single crystal copper in CMP process. Three different crystal orientations, i.e. x[100]y[001], x[001]y[110] and x[–211]y[111], were chosen for analysis. The atom displacement diagrams, stress distribution diagrams and load-displacement curves were obtained. After analyzing the deformation mechanism, residual stress of the work piece material and cutting force, results showed that, the crystal orientation of work piece has great influence on the deformation characteristics and surface quality of work piece during polishing. In the A(001)[100] orientation, the residual stress distribution after polishing is deeper, and the stress is larger than that in the B(110)[001] and C(111)[–211] orientations. And the average tangential cutting force in the A(001)[100] orientation is much larger than those in the other two crystal orientation. This research is helpful to revealing the material removal mechanism of CMP process.

  5. Accuracy of crystal structure error estimates

    International Nuclear Information System (INIS)

    Taylor, R.; Kennard, O.

    1986-01-01

    A statistical analysis of 100 crystal structures retrieved from the Cambridge Structural Database is reported. Each structure has been determined independently by two different research groups. Comparison of the independent results leads to the following conclusions: (a) The e.s.d.'s of non-hydrogen-atom positional parameters are almost invariably too small. Typically, they are underestimated by a factor of 1.4-1.45. (b) The extent to which e.s.d.'s are underestimated varies significantly from structure to structure and from atom to atom within a structure. (c) Errors in the positional parameters of atoms belonging to the same chemical residue tend to be positively correlated. (d) The e.s.d.'s of heavy-atom positions are less reliable than those of light-atom positions. (e) Experimental errors in atomic positional parameters are normally, or approximately normally, distributed. (f) The e.s.d.'s of cell parameters are grossly underestimated, by an average factor of about 5 for cell lengths and 2.5 for cell angles. There is marginal evidence that the accuracy of atomic-coordinate e.s.d.'s also depends on diffractometer geometry, refinement procedure, whether or not the structure has a centre of symmetry, and the degree of precision attained in the structure determination. (orig.)

  6. Crystal Structure of the 30S Ribosomal Subunit from Thermus Thermophilus: Purification, Crystallization and Structure Determination

    International Nuclear Information System (INIS)

    Clemons, William M. Jr.; Brodersen, Ditlev E.; McCutcheonn, John P.; May, Joanna L.C.; Carter, Andrew P.; Morgan-Warren, Robert J.; Wimberly, Brian T.; Ramakrishnan, Venki

    2001-01-01

    We describe the crystallization and structure determination of the 30 S ribosomal subunit from Thermus thermophilus. Previous reports of crystals that diffracted to 10 (angstrom) resolution were used as a starting point to improve the quality of the diffraction. Eventually, ideas such as the addition of substrates or factors to eliminate conformational heterogeneity proved less important than attention to detail in yielding crystals that diffracted beyond 3 (angstrom) resolution. Despite improvements in technology and methodology in the last decade, the structure determination of the 30 S subunit presented some very challenging technical problems because of the size of the asymmetric unit, crystal variability and sensitivity to radiation damage. Some steps that were useful for determination of the atomic structure were: the use of anomalous scattering from the LIII edges of osmium and lutetium to obtain the necessary phasing signal; the use of tunable, third-generation synchrotron sources to obtain data of reasonable quality at high resolution; collection of derivative data precisely about a mirror plane to preserve small anomalous differences between Bijvoet mates despite extensive radiation damage and multi-crystal scaling; the pre-screening of crystals to ensure quality, isomorphism and the efficient use of scarce third-generation synchrotron time; pre-incubation of crystals in cobalt hexaammine to ensure isomorphism with other derivatives; and finally, the placement of proteins whose structures had been previously solved in isolation, in conjunction with biochemical data on protein-RNA interactions, to map out the architecture of the 30 S subunit prior to the construction of a detailed atomic-resolution model.

  7. Synthesis, crystal structure refinement, and nonlinear-optical properties of CaB3O5(OH): Comparative crystal chemistry of calcium triborates

    International Nuclear Information System (INIS)

    Yamnova, N. A.; Aksenov, S. M.; Stefanovich, S. Yu.; Volkov, A. S.; Dimitrova, O. V.

    2015-01-01

    Calcium triborate CaB 3 O5(OH) obtained by hydrothermal synthesis in the Ca(OH) 2 –H 3 BO 3 –Na 2 CO 3 –KCl system is studied by single-crystal X-ray diffraction. The parameters of the orthorhombic unit cell are as follows: a = 13.490(1), b = 6.9576(3), and c = 4.3930(2) Å; V = 412.32(3) Å 3 and space group Pna2 1 . The structure is refined in the anisotropic approximation of the atomic displacement parameters to R = 4.28% using 972 vertical bar F vertical bar > 4σ(F). It is confirmed that the crystal structure of Ca triborate CaB 3 O 5 (OH) is identical to that described earlier. The hydrogen atom is localized. An SHG signal stronger than that of the quartz standard is registered. The phase transition of calcium triborate into calciborite is found on heating. The comparative crystal-chemical analysis of a series of borates with the general chemical formula 2CaO · 3B 2 O 3 · nH 2 O (n = 0–13) with the constant CaO: B 2 O 3 = 2: 3 ratio and variable content of water is performed

  8. The crystal structure and twinning of neodymium gallium perovskite single crystals

    International Nuclear Information System (INIS)

    Ubizskii, S.B.; Vasylechko, L.O.; Savytskii, D.I.; Matkovskii, A.O.; Syvorotka, I.M.

    1994-01-01

    By means of X-ray structure analysis, the crystal structure of neodymium gallium perovskite (NGP) single crystals (NdGaO 3 ) being used as a substrate for HTSC film epitaxy has been refined and the position of atoms has been determined. The possibility of YBa 2 Cu 3 O 7-x film epitaxy on the plane (110) of NGP crystal as well as its advantages and pitfalls are analysed from structural data. The twinning types in the NGP crystal were established. The twinning structure of NGP substrates is found to be stable up to a temperature of 1173 K, as differentiated from the LaGaO 3 and LaAlO 3 substrates. It is intimated that the twinning in the NGP substrates oriented as (001) can result in creation of 90 degrees twin bonds in a film, and in the case of (110)-oriented plates it is possible to ignore the twinning presence in substrate completely. (author)

  9. Free-standing nanomechanical and nanophotonic structures in single-crystal diamond

    Science.gov (United States)

    Burek, Michael John

    Realizing complex three-dimensional structures in a range of material systems is critical to a variety of emerging nanotechnologies. This is particularly true of nanomechanical and nanophotonic systems, both relying on free-standing small-scale components. In the case of nanomechanics, necessary mechanical degrees of freedom require physically isolated structures, such as suspended beams, cantilevers, and membranes. For nanophotonics, elements like waveguides and photonic crystal cavities rely on light confinement provided by total internal reflection or distributed Bragg reflection, both of which require refractive index contrast between the device and surrounding medium (often air). Such suspended nanostructures are typically fabricated in a heterolayer structure, comprising of device (top) and sacrificial (middle) layers supported by a substrate (bottom), using standard surface nanomachining techniques. A selective, isotropic etch is then used to remove the sacrificial layer, resulting in free-standing devices. While high-quality, crystalline, thin film heterolayer structures are readily available for silicon (as silicon-on-insulator (SOI)) or III-V semiconductors (i.e. GaAs/AlGaAs), there remains an extensive list of materials with attractive electro-optic, piezoelectric, quantum optical, and other properties for which high quality single-crystal thin film heterolayer structures are not available. These include complex metal oxides like lithium niobate (LiNbO3), silicon-based compounds such as silicon carbide (SiC), III-V nitrides including gallium nitride (GaN), and inert single-crystals such as diamond. Diamond is especially attractive for a variety of nanoscale technologies due to its exceptional physical and chemical properties, including high mechanical hardness, stiffness, and thermal conductivity. Optically, it is transparent over a wide wavelength range (from 220 nm to the far infrared), has a high refractive index (n ~ 2.4), and is host to a vast

  10. Alignment structures in ferroelectric liquid crystals

    Energy Technology Data Exchange (ETDEWEB)

    Islam, N.U

    1998-07-01

    Although for many years liquid crystals were of purely scientific interest, they have now become ubiquitous in everyday life. The use of the nematic liquid crystal phase in flat panel display applications has been the main factor in this popularity. However, with the advent of the SuperTwist Nematic (STN) device, the limits to which this phase could be exploited for display applications was perhaps reached. With the discovery by Clark et al. of the Surface Stabilised Ferroelectric Liquid Crystal (SSFLC) configuration, the possibility arose of using chiral smectic liquid crystals to create large area, passively addressed, fast switching, flat panel displays. Unfortunately, the structures that form within smectic liquid crystals, and the dynamics of the switching within these, are still not fully understood. In this thesis we address the former of these, making a detailed the study of the structures that form within tilted smectic liquid crystal devices. We present here the first complete theoretical and experimental study of various different ferroelectric liquid crystal materials, where we employed theoretical models based on a simple set of assumptions to understand the behaviour of a set of increasingly complex experimental systems. We started with the simplest of these, Freely Suspended Smectic Films (FSSFs) and then worked with progressively more realistic systems in the form of homeotropically, and later, homogeneously aligned liquid crystal cells. The equilibrium structures that form get particularly complex in the last case, taking the form of tilted and chevron layering structures. In each of these cases, the predictions of the modelling are compared with our experimental results. Further, we present here the first model of the chevron cusp that seeks to include the effects of biaxiality in the S{sub C} phase. We also present a model that seeks to analyse the stability of the chevron layering structure and its relationship with tilted layers. This includes

  11. Alignment structures in ferroelectric liquid crystals

    International Nuclear Information System (INIS)

    Islam, N.U.

    1998-01-01

    Although for many years liquid crystals were of purely scientific interest, they have now become ubiquitous in everyday life. The use of the nematic liquid crystal phase in flat panel display applications has been the main factor in this popularity. However, with the advent of the SuperTwist Nematic (STN) device, the limits to which this phase could be exploited for display applications was perhaps reached. With the discovery by Clark et al. of the Surface Stabilised Ferroelectric Liquid Crystal (SSFLC) configuration, the possibility arose of using chiral smectic liquid crystals to create large area, passively addressed, fast switching, flat panel displays. Unfortunately, the structures that form within smectic liquid crystals, and the dynamics of the switching within these, are still not fully understood. In this thesis we address the former of these, making a detailed the study of the structures that form within tilted smectic liquid crystal devices. We present here the first complete theoretical and experimental study of various different ferroelectric liquid crystal materials, where we employed theoretical models based on a simple set of assumptions to understand the behaviour of a set of increasingly complex experimental systems. We started with the simplest of these, Freely Suspended Smectic Films (FSSFs) and then worked with progressively more realistic systems in the form of homeotropically, and later, homogeneously aligned liquid crystal cells. The equilibrium structures that form get particularly complex in the last case, taking the form of tilted and chevron layering structures. In each of these cases, the predictions of the modelling are compared with our experimental results. Further, we present here the first model of the chevron cusp that seeks to include the effects of biaxiality in the S C phase. We also present a model that seeks to analyse the stability of the chevron layering structure and its relationship with tilted layers. This includes an

  12. Controlling single and few-layer graphene crystals growth in a solid carbon source based chemical vapor deposition

    International Nuclear Information System (INIS)

    Papon, Remi; Sharma, Subash; Shinde, Sachin M.; Vishwakarma, Riteshkumar; Tanemura, Masaki; Kalita, Golap

    2014-01-01

    Here, we reveal the growth process of single and few-layer graphene crystals in the solid carbon source based chemical vapor deposition (CVD) technique. Nucleation and growth of graphene crystals on a polycrystalline Cu foil are significantly affected by the injection of carbon atoms with pyrolysis rate of the carbon source. We observe micron length ribbons like growth front as well as saturated growth edges of graphene crystals depending on growth conditions. Controlling the pyrolysis rate of carbon source, monolayer and few-layer crystals and corresponding continuous films are obtained. In a controlled process, we observed growth of large monolayer graphene crystals, which interconnect and merge together to form a continuous film. On the other hand, adlayer growth is observed with an increased pyrolysis rate, resulting few-layer graphene crystal structure and merged continuous film. The understanding of monolayer and few-layer crystals growth in the developed CVD process can be significant to grow graphene with controlled layer numbers.

  13. X-radiographic study of rare-earth compounds with special regardment of modulated structures. The response of the crystal structure to stoichiometry deviations

    International Nuclear Information System (INIS)

    Leisegang, Tilmann

    2010-01-01

    Even shortly after World War II, as large amounts of ultrapure rare earths (RE) became available for scientific research, a large reservoir of peculiar phenomena was uncovered. These had not been investigated before or were completely unknown. Examples of these phenomena are, magnetic ordering, the KONDO effect, quantum critical points, heavy fermion behaviour, as well as superconductivity. A strong influence of small variations of the chemical composition on the physical properties had been observed. The main focus of the present thesis is the detailed elucidation of the crystal structure of fundamental representatives of this class of substances, as well as the influence of dedicated variations of the chemical composition on their structure and properties. In particular, the characterisation of modulated crystals is an important facet. A large spectrum of physical methods, especially X-ray diffraction, is employed in the investigations. Results on oriented intergrowth in the Y-Ni-B-C system, incommensurately ordered vacancies in the Ce-Si system, incorporation of stacking faults as well as commensurately ordered transition metal atoms (TM) in the RE-TM-Si system and site specific occupancy in the Y-Mn-Fe-O system are presented. Their elucidation is reported for the first time. It is shown which consequences the structural peculiarities will have on the physical properties. An objective of this thesis is to give an overview of the possible ''answers'' that can be obtained with regard to the influence of the crystal structure of rare earth transition metal compounds on deviations of the chemical composition. (orig.)

  14. Structural coloration of chitosan-cationized cotton fabric using photonic crystals

    Science.gov (United States)

    Yavuz, G.; Zille, A.; Seventekin, N.; Souto, A. P.

    2017-10-01

    In this work, poly (styrene-methyl methacrylate-acrylic acid) P(St-MMA-AA) composite nanospheres were deposited onto chitosan-cationized woven cotton fabrics followed by a second layer of chitosan. The deposited photonic crystals (PCs) on the fabrics were evaluated for coating efficiency and resistance, chemical analysis and color variation by optical and SEM microscopy, ATR-FTIR, diffuse reflectance spectroscopy and washing fastness. Chitosan deposition on cotton fabric provided cationic groups on the fiber surface promoting electrostatic interaction with photonic crystals. SEM images of the washed samples indicate that the PCs are firmly coated on the cotton surface only in the chitosan treated sample. The photonic nanospheres show an average diameter of 280 nm and display a face-centered cubic closepacking structure with an average thickness of 10 μm. A further chitosan post-treatment enhances color yield of the samples due to the chitosan transparent covering layer that induce bright reflections where the angles of incidence and reflection are the same. After washing, no photonic crystal can be detected on control fabric surface. However, the sample that received a chitosan post-treatment showed a good washing fastness maintaining a reasonable degree of iridescence. Chitosan fills the spaces between the polymer spheres in the matrix stabilizing the photonic structure. Sizeable variations in lattice spacing will allow color variations using more flexible non-close-packed photonic crystal arrays in chitosan hydrogels matrices.

  15. Two-Dimensional Photonic Crystals for Sensitive Microscale Chemical and Biochemical Sensing

    Science.gov (United States)

    Miller, Benjamin L.

    2015-01-01

    Photonic crystals – optical devices able to respond to changes in the refractive index of a small volume of space – are an emerging class of label-free chemical-and bio-sensors. This review focuses on one class of photonic crystal, in which light is confined to a patterned planar material layer of sub-wavelength thickness. These devices are small (on the order of tens to 100s of microns square), suitable for incorporation into lab-on-a-chip systems, and in theory can provide exceptional sensitivity. We introduce the defining characteristics and basic operation of two-dimensional photonic crystal sensors, describe variations of their basic design geometry, and summarize reported detection results from chemical and biological sensing experiments. PMID:25563402

  16. Dataset on photonic crystal fiber based chemical sensor.

    Science.gov (United States)

    Ahmed, Kawsar; Paul, Bikash Kumar; Chowdhury, Sawrab; Islam, Md Shadidul; Sen, Shuvo; Islam, Md Ibadul; Asaduzzaman, Sayed; Bahar, Ali Newaz; Miah, Mohammad Badrul Alam

    2017-06-01

    This article represents the data set of micro porous core photonic crystal fiber based chemical sensor. The suggested structure is folded cladding porous shaped with circular air hole. Here is investigated four distinctive parameters including relative sensitivity, confinement loss, numerical aperture (NA), and effective area ( A eff). The numerical outcomes are computed over the E+S+C+L+U communication band. The useable sensed chemicals are methanol, ethanol, propanol, butanol, and pentanol whose are lies in the alcohol series (Paul et al., 2017) [1]. Furthermore, V -parameter ( V ), Marcuse spot size (MSS), and beam divergence (BD) are also investigated rigorously. All examined results have been obtained using finite element method based simulation software COMSOL Multiphysics 4.2 versions with anisotropic circular perfectly matched layer (A-CPML). The proposed PCF shows the high NA from 0.35 to 0.36; the low CL from ~10 -11 to ~10 -7  dB/m; the high A eff from 5.50 to 5.66 µm 2 ; the MSS from 1.0 to 1.08 µm; the BD from 0.43 to 0.46 rad at the controlling wavelength λ = 1.55 µm for employing alcohol series respectively.

  17. Crystal structure study of a cobaltoan dolomite from Kolwezi, Democratic Republic of Congo

    Directory of Open Access Journals (Sweden)

    Natale Perchiazzi

    2015-03-01

    Full Text Available A structural study has been undertaken on a cobaltoan dolomite, with chemical formula CaMg0.83Co0.17(CO32 (calcium magnesium cobalt dicarbonate, from Kolwezi, Democratic Republic of Congo. Pale-pink euhedral cobaltoan dolomite was associated with kolwezite [(Cu1.33Co0.67(CO3(OH2] and cobaltoan malachite [(Cu,Co2(CO3(OH2]. A crystal with a Co:Mg ratio of 1:5.6 (SEM/EDAX measurement, twinned on (11 -2 0 was used for crystal structural refinement. The refinement of the structural model of Reeder & Wenk [Am. Mineral. (1983, 68, 769–776; Ca at site 3a with site symmetry -3; Mg site at site 3b with site symmetry -3; C at site 6c with site symmetry 3; O at site 18f with site symmetry 1] showed that Co is totally incorporated in the Mg site, with refined occupancy Mg0.83Co0.17, which compares with Mg0.85Co0.15 from chemical data. The Co substitution reflects in the expansion of the cell volume, with a pronounced increasing of the c cell parameter.

  18. Physical and chemical properties of a Ga-doped ZnO crystal

    International Nuclear Information System (INIS)

    Stashans, Arvids; Olivos, Katia; Rivera, Richard

    2011-01-01

    First-principles calculations based on density functional theory and strengthened by Hartree-Fock computations have been performed to study a Ga-doped wurtzite-type ZnO crystal. The large 108-atom supercell used throughout this work allows one to model a single point defect within the periodic supercell model. Thus, the Ga impurity produced purely local effects on the properties of the material. The electronic band structure was obtained for both pure and impurity-doped materials. The occurrence of free electrons in the conduction band was observed after the incorporation of Ga, implying the Ga dopant's contribution to n-type electrical conductivity in the ZnO crystal, in agreement with known experimental data. An analysis of the charges on atoms and obtained atomic displacements in the region surrounding the defect showed that there is some alteration in the chemical bonding because of the presence of Ga atoms. In particular, the ionic bonding is strengthened in the defect's neighbourhood.

  19. Physical and chemical properties of a Ga-doped ZnO crystal

    Energy Technology Data Exchange (ETDEWEB)

    Stashans, Arvids; Olivos, Katia; Rivera, Richard, E-mail: arvids@utpl.edu.e [Grupo de FisicoquImica de Materiales, Universidad Tecnica Particular de Loja, Apartado 11-01-608, Loja (Ecuador)

    2011-06-01

    First-principles calculations based on density functional theory and strengthened by Hartree-Fock computations have been performed to study a Ga-doped wurtzite-type ZnO crystal. The large 108-atom supercell used throughout this work allows one to model a single point defect within the periodic supercell model. Thus, the Ga impurity produced purely local effects on the properties of the material. The electronic band structure was obtained for both pure and impurity-doped materials. The occurrence of free electrons in the conduction band was observed after the incorporation of Ga, implying the Ga dopant's contribution to n-type electrical conductivity in the ZnO crystal, in agreement with known experimental data. An analysis of the charges on atoms and obtained atomic displacements in the region surrounding the defect showed that there is some alteration in the chemical bonding because of the presence of Ga atoms. In particular, the ionic bonding is strengthened in the defect's neighbourhood.

  20. Facile synthesis of gold nanomaterials with unusual crystal structures.

    Science.gov (United States)

    Fan, Zhanxi; Huang, Xiao; Chen, Ye; Huang, Wei; Zhang, Hua

    2017-11-01

    Gold (Au) nanomaterials have attracted wide research attention, owing to their high chemical stability, promising catalytic properties, excellent biocompatibility, unique electronic structure and outstanding localized surface plasmon resonance (LSPR) absorption properties; all of which are closely related to their size and shape. Recently, crystal-phase-controlled synthesis of noble metal nanomaterials has emerged as a promising strategy to tune their physicochemical properties. This protocol describes the detailed experimental procedures for the crystal-phase-controlled syntheses of Au nanomaterials with unusual crystal structures under mild conditions. Briefly, pure hexagonal close-packed (hcp) Au square sheets (AuSSs) with a thickness of ∼2.4 nm are synthesized using a graphene-oxide-assisted method in which HAuCl 4 is reduced by oleylamine in a mixture of hexane and ethanol. By using pure hexane as the solvent, well-dispersed ultrathin hcp/face-centered cubic (fcc) Au nanowires with a diameter of ∼1.6 nm on graphene oxide can be obtained. Meanwhile, hcp/fcc Au square-like plates with a side length of 200-400 nm are prepared via the secondary growth of Au on the hcp AuSSs. Remarkably, hexagonal (4H) Au nanoribbons with a thickness of 2.0-6.0 nm can be synthesized with a one-pot colloidal method in which HAuCl 4 is reduced by oleylamine in a mixed solvent of hexane and 1,2-dichloropropane. It takes 17-37 h for the synthesis of these Au nanomaterials with unusual crystal structures. Transmission electron microscopy (TEM) and atomic force microscopy (AFM) are used to characterize the resultant Au nanomaterials, which could have many promising applications, such as biosensing, near-IR photothermal therapy, catalysis and surface-enhanced Raman scattering (SERS).

  1. The synthesis, characterization, crystal structure and theoretical calculations of a new meso-BOBIPY substituted phthalonitrile

    International Nuclear Information System (INIS)

    Sen, Pinar; Yildiz, S. Zeki; Atalay, Yusuf; Dege, Necmi; Demirtas, Günes

    2014-01-01

    A novel 4-(2-meso-BOBIPY-phenoxy)phthalonitrile (6) derivative has been synthesized starting from BF 3 –OEt 2 complex and 4-(2-meso-dipyrromethene-phenoxy)phthalonitrile (5) which was prepared by the oxidation of 4-(2-meso-dipyrromethane-phenoxy)phthalonitrile (4). The final product exhibit noticeable spectroscopic properties which were examined by its absorption and fluorescence emission spectra. The original compounds prepared in the reaction pathway were characterized by the combination of FT-IR, 1 H and 13 C NMR, UV–vis, MS and HRMS spectral data. The final product (6) was obtained as single crystal which crystallized in the triclinic space group P-1 with a=7.9411 (6) Å, b=9.0150 (6) Å, c=14.419 (1) Å, α=74.917 (5)°, β=86.824 (6)°, γ=84.109 (5)° and Z=2. The crystal structure has intermolecular C–H···F–B and C–H···N interactions. These interactions construct bifurcated hydrogen bonds in the crystal structure. In this study, It has been calculated; molecular structure, vibrational frequencies, 1 H and 13 C NMR chemical shifts and HOMO and LUMO energies of the title compound by using B3LYP method with 6–311++G(dp) basis set, and the electronic spectral characterization was investigated for the target product, as well. - Highlights: • A novel 4-(2-meso-BOBIPY-phenoxy)phthalonitrile derivative has been synthesized. • The title product exhibit noticeable spectroscopic properties which were examined by its absorption and fluorescence emission spectra. • The final product (6) was obtained as single crystal which crystallized in the triclinic space group. • Molecular structure, vibrational frequencies, 1 H and 13 C NMR chemical shifts and HOMO and LUMO energies of the title compound were calculated theoretically. • The electronic spectral characterization was investigated, as well. • The title compound is also open to prepare further BODIPY substituted oligomeric molecules via on it

  2. Chemical forms of 35S in KCl crystals doped with elementary 35S. Pt. 1

    International Nuclear Information System (INIS)

    Maddock, A.G.; Todorovsky, D.S.

    1983-01-01

    KCl crystals have been doped with 35 S at low chemical concentrations. Upon solution of the doped crystals in cyanide solution and analysis by the method of Kasrai and Maddock, the 35 S appears in the same chemical forms as are found for the 35 S produced in similar crystals by the (n, p) reaction. Reactions are suggested whereby these products may be produced. (orig.)

  3. Optically induced structural phase transitions in ion Coulomb crystals

    DEFF Research Database (Denmark)

    Horak, Peter; Dantan, Aurelien Romain; Drewsen, Michael

    2012-01-01

    We investigate numerically the structural dynamics of ion Coulomb crystals confined in a three-dimensional harmonic trap when influenced by an additional one-dimensional optically induced periodical potential. We demonstrate that transitions between thermally excited crystal structures, such as b......We investigate numerically the structural dynamics of ion Coulomb crystals confined in a three-dimensional harmonic trap when influenced by an additional one-dimensional optically induced periodical potential. We demonstrate that transitions between thermally excited crystal structures...

  4. The crystal structure of scandium dyhydrate triglycolate

    International Nuclear Information System (INIS)

    Dukareva, L.M.; Antishkina, A.S.; Porai-Koshits, M.A.; Ostrikova, V.N.; Arkhangel'skij, I.V.; Amanov, A.Z.

    1978-01-01

    The structure of colorless crystals of scandium glycolate dehydrate Sc(CH 2 OHCOO) 3 x2H 2 O, synthesized at the chemical department of MSU has been investigated. Parameters of the monoclinic lattice are determined according to roentgenograms of swing and Kforograms and are specified using the DRON-1 diffractor: a=14.624-+0.005 A; b=13.052-+0.003 A; c=5.730+-0.003 A; γ=96.26 deg+-0.01 deg; rhosub(exper.)=1.09 g/cm 3 ; Z=4; Sp.=P 2/b. Experimental photographic data are obtained using the KFOR chamber. Scannings of the layer lines h anti Ko-h anti K4, containing 742 independent reflexes are taken. Deciphering of the structure is carried out by means of analysis of the Paterson functions distribution and conventional and differential electron densities. Description of the system is presented

  5. What makes a crystal structure report valid?

    NARCIS (Netherlands)

    Spek, Anthony L.|info:eu-repo/dai/nl/156517566

    2018-01-01

    Single crystal X-ray crystallography has developed into a unique, highly automated and accessible tool to obtain detailed information on molecular structures. Proper archival makes that referees, readers and users of the results of reported crystal structures no longer need to depend solely on the

  6. SYNTHESIS, CHARACTERIZATION AND CRYSTAL STRUCTURES ...

    African Journals Online (AJOL)

    B. S. Chandravanshi

    ABSTRACT. Reaction of [VO(acac)2] (acac = acetylacetonate) with ... Single crystal X-ray structural studies indicate that the hydrazone ligands coordinate to ..... Molecular structure of complex (1) at 30% probability displacement. Figure 4.

  7. Crystal structure from one-electron theory

    DEFF Research Database (Denmark)

    Skriver, H. L.

    1985-01-01

    The authors have studied the crystal structure of all the 3d, 4d, and 5d transition metals at zero pressure and temperature by means of the linear muffin-tin orbital method and Andersen's force theorem. They find that, although the structural energy differences seem to be overestimated by the the......The authors have studied the crystal structure of all the 3d, 4d, and 5d transition metals at zero pressure and temperature by means of the linear muffin-tin orbital method and Andersen's force theorem. They find that, although the structural energy differences seem to be overestimated...

  8. PREPUBLICATION: From structure topology to chemical composition. XXIII. Revision of the crystal structure and chemical formula of zvyaginite, a seidozerite-supergroup mineral from the Lovozero alkaline massif, Kola peninsula, Russia

    KAUST Repository

    Sokolova, E.

    2017-04-02

    The crystal structure and chemical formula of zvyaginite, ideally Na2ZnTiNb2(Si2O7)2O2(OH)2 (H2O)4, a lamprophyllite-group mineral of the seidozerite supergroup from the type locality, Mt. Malyi Punkaruaiv, Lovozero alkaline massif, Kola Peninsula, Russia have been revised. The crystal structure was refined with a new origin in space group C⎯1, a = 10.769(2), b = 14.276(3), c = 12.101(2) Å, α = 105.45(3), β = 95.17(3), γ = 90.04(3)°, V = 1785.3(3.2) Å3, R1 = 9.23%. The electron-microprobe analysis gave the following empirical formula [calculated on 22 (O + F)]:(Na0.75Ca0.09K0.04��1.12)Σ2 (Na1.12Zn0.88Mn0.17Fe2+0.04��0.79)Σ3(Nb1.68Ti1.25Al0.07)Σ3 (Si4.03O14)O2 [(OH)1.11F0.89]Σ2(H2O)4, Z = 4. Electron-diffraction patterns have prominent streaking along c* and HRTEM images show an intergrowth of crystalline zvyaginite with two distinct phases, both of which are partially amorphous. The crystal structure of zvyaginite is an array of TS (Titanium Silicate) blocks connected via hydrogen bonds between H2O groups. The TS block consists of HOH sheets (H = heteropolyhedral, O = octahedral) parallel to (001). In the O sheet, the [6]MO(1,4,5) sites are occupied mainly by Ti, Zn and Na and the [6]MO(2,3) sites are occupied by Na at less than 50%. In the H sheet, the [6]MH(1,2) sites are occupied mainly by Nb and the [8]AP(1) and [8]AP(2) sites are occupied mainly by Na and ��. The MH and AP polyhedra and Si2O7 groups constitute the H sheet. The ideal structural formula is Na��Nb2NaZn��Ti(Si2O7)2O2(OH)2(H2O)4. Zvyaginite is a Zn-bearing and Na-poor analogue of epistolite, ideally (Na��)Nb2Na3Ti(Si2O7)2O2(OH)2(H2O)4. Epistolite and zvyaginite are related by the following substitution in the O sheet of the TS-block: (Na+2)epi ↔ Zn2+ zvy + ��zvy. The doubling of the t1 and t2 translations of zvyaginite relative to those of epistolite is due to the order of Zn and Na along a (t1) and b (t2) in the O sheet of zvyaginite.

  9. Dataset on photonic crystal fiber based chemical sensor

    Directory of Open Access Journals (Sweden)

    Kawsar Ahmed

    2017-06-01

    Full Text Available This article represents the data set of micro porous core photonic crystal fiber based chemical sensor. The suggested structure is folded cladding porous shaped with circular air hole. Here is investigated four distinctive parameters including relative sensitivity, confinement loss, numerical aperture (NA, and effective area (Aeff. The numerical outcomes are computed over the E+S+C+L+U communication band. The useable sensed chemicals are methanol, ethanol, propanol, butanol, and pentanol whose are lies in the alcohol series (Paul et al., 2017 [1]. Furthermore, V-parameter (V, Marcuse spot size (MSS, and beam divergence (BD are also investigated rigorously. All examined results have been obtained using finite element method based simulation software COMSOL Multiphysics 4.2 versions with anisotropic circular perfectly matched layer (A-CPML. The proposed PCF shows the high NA from 0.35 to 0.36; the low CL from ~10–11 to ~10−7 dB/m; the high Aeff from 5.50 to 5.66 µm2; the MSS from 1.0 to 1.08 µm; the BD from 0.43 to 0.46 rad at the controlling wavelength λ = 1.55 µm for employing alcohol series respectively.

  10. Method for solid state crystal growth

    Science.gov (United States)

    Nolas, George S.; Beekman, Matthew K.

    2013-04-09

    A novel method for high quality crystal growth of intermetallic clathrates is presented. The synthesis of high quality pure phase crystals has been complicated by the simultaneous formation of both clathrate type-I and clathrate type-II structures. It was found that selective, phase pure, single-crystal growth of type-I and type-II clathrates can be achieved by maintaining sufficient partial pressure of a chemical constituent during slow, controlled deprivation of the chemical constituent from the primary reactant. The chemical constituent is slowly removed from the primary reactant by the reaction of the chemical constituent vapor with a secondary reactant, spatially separated from the primary reactant, in a closed volume under uniaxial pressure and heat to form the single phase pure crystals.

  11. Correlation between hierarchical structure of crystal networks and macroscopic performance of mesoscopic soft materials and engineering principles.

    Science.gov (United States)

    Lin, Naibo; Liu, Xiang Yang

    2015-11-07

    This review examines how the concepts and ideas of crystallization can be extended further and applied to the field of mesoscopic soft materials. It concerns the structural characteristics vs. the macroscopic performance, and the formation mechanism of crystal networks. Although this subject can be discussed in a broad sense across the area of mesoscopic soft materials, our main focus is on supramolecular materials, spider and silkworm silks, and biominerals. First, the occurrence of a hierarchical structure, i.e. crystal network and domain network structures, will facilitate the formation kinetics of mesoscopic phases and boost up the macroscopic performance of materials in some cases (i.e. spider silk fibres). Second, the structure and performance of materials can be correlated in some way by the four factors: topology, correlation length, symmetry/ordering, and strength of association of crystal networks. Moreover, four different kinetic paths of crystal network formation are identified, namely, one-step process of assembly, two-step process of assembly, mixed mode of assembly and foreign molecule mediated assembly. Based on the basic mechanisms of crystal nucleation and growth, the formation of crystal networks, such as crystallographic mismatch (or noncrystallographic) branching (tip branching and fibre side branching) and fibre/polymeric side merging, are reviewed. This facilitates the rational design and construction of crystal networks in supramolecular materials. In this context, the (re-)construction of a hierarchical crystal network structure can be implemented by thermal, precipitate, chemical, and sonication stimuli. As another important class of soft materials, the unusual mechanical performance of spider and silkworm silk fibres are reviewed in comparison with the regenerated silk protein derivatives. It follows that the considerably larger breaking stress and unusual breaking strain of spider silk fibres vs. silkworm silk fibres can be interpreted

  12. SYNTHESIS, CHARACTERIZATION AND CRYSTAL STRUCTURE ...

    African Journals Online (AJOL)

    Preferred Customer

    Reaction of [MoO2(acac)2] (where acac = acetylacetonate) with N'-(2-hydroxy-4- ... Single crystal X-ray structural studies indicate that the hydrazone ligand coordinates .... Molecular structure of the complex at 30% probability displacement.

  13. Crystal structure refinement with SHELXL

    Energy Technology Data Exchange (ETDEWEB)

    Sheldrick, George M., E-mail: gsheldr@shelx.uni-ac.gwdg.de [Department of Structural Chemistry, Georg-August Universität Göttingen, Tammannstraße 4, Göttingen 37077 (Germany)

    2015-01-01

    New features added to the refinement program SHELXL since 2008 are described and explained. The improvements in the crystal structure refinement program SHELXL have been closely coupled with the development and increasing importance of the CIF (Crystallographic Information Framework) format for validating and archiving crystal structures. An important simplification is that now only one file in CIF format (for convenience, referred to simply as ‘a CIF’) containing embedded reflection data and SHELXL instructions is needed for a complete structure archive; the program SHREDCIF can be used to extract the .hkl and .ins files required for further refinement with SHELXL. Recent developments in SHELXL facilitate refinement against neutron diffraction data, the treatment of H atoms, the determination of absolute structure, the input of partial structure factors and the refinement of twinned and disordered structures. SHELXL is available free to academics for the Windows, Linux and Mac OS X operating systems, and is particularly suitable for multiple-core processors.

  14. Two-dimensional photonic crystal accelerator structures

    Directory of Open Access Journals (Sweden)

    Benjamin M. Cowan

    2003-10-01

    Full Text Available Photonic crystals provide a method of confining a synchronous speed-of-light mode in an all-dielectric structure, likely a necessary feature in any optical accelerator. We explore computationally a class of photonic crystal structures with translational symmetry in a direction transverse to the electron beam. We demonstrate synchronous waveguide modes and discuss relevant parameters of such modes. We then explore how accelerator parameters vary as the geometry of the structure is changed and consider trade-offs inherent in the design of an accelerator of this type.

  15. Photonics of liquid-crystal structures: A review

    Energy Technology Data Exchange (ETDEWEB)

    Palto, S. P., E-mail: palto@online.ru; Blinov, L M; Barnik, M I; Lazarev, V V; Umanskii, B A; Shtykov, N M [Russian Academy of Sciences, Shubnikov Institute of Crystallography (Russian Federation)

    2011-07-15

    The original results of studies of the electro-optical and laser effects which have been performed at the Laboratory of Liquid Crystals of the Institute of Crystallography, Russian Academy of Sciences, over the last few years are reviewed. Cholesteric liquid crystals as vivid representatives of photonic structures and their behavior in an electric field are considered in detail. The formation of higher harmonics in the periodic distribution of the director field in a helical liquid crystal structure and, correspondingly, the new (anharmonic) mode of electro-optical effects are discussed. Another group of studies is devoted to bistable light switching by an electric field in chiral nematics. Polarization diffraction gratings controlled by an electric field are also considered. The results of studies devoted to microlasers on various photonic structures with cholesteric and nematic liquid crystals are considered in detail. Particular attention is given to the new regime: leaky-mode lasing. Designs of liquid crystal light amplifiers and their polarization, field, and spectral characteristics are considered in the last section.

  16. Crystal structure of bassetite and saleeite. New insight into autunite-group minerals

    Energy Technology Data Exchange (ETDEWEB)

    Dal Bo, Fabrice; Hatert, Frederic [Liege Univ. (Belgium). Lab. de Mineralogie; Mees, Florias [Royal Museum for Central Africa, Tervuren (Belgium); Philippo, Simon [Musee National d' Histoire Naturelle, Luxembourg (Luxembourg). Section Mineralogie; Baijot, Maxime; Fontaine, Francois [Liege Univ. (Belgium). Dept. de Geologie

    2016-06-15

    The crystal structures of two autunite-group minerals have been solved recently. The crystal structure of bassetite, Fe{sup 2+}[(UO{sub 2})(PO{sub 4})]{sub 2}(H{sub 2}O){sub 10}, from the type locality in Cornwall, United Kingdom (Basset Mines) was solved for the first time. Bassetite is monoclinic, space group P2{sub 1}/n, a = 6.961(1), b = 20.039(2), c = 6.974(1) Aa and β = 90.46(1) . The crystal structure of saleeite, Mg[(UO{sub 2})(PO{sub 4})]{sub 2}(H{sub 2}O){sub 10}, from Shinkolobwe, Democratic Republic of Congo, was also solved. Saleeite is monoclinic, space group P2{sub 1}/n, a = 6.951(1), b = 19.942(1), c = 6.967(1) Aa and β = 90.58(1) . The crystal structure investigation of bassetite (R{sub 1} = 0.0658 for 1879 observed reflections with vertical stroke F{sub o} vertical stroke ≥ 4σ{sub F}) and saleeite (R{sub 1} = 0.0307 for 1990 observed reflections with vertical stroke F{sub o} vertical stroke ≥ 4σ{sub F}) confirms that both minerals are topologically identical and that bassetite contains ten water molecules per formula unit. Their structure contains autunite-type sheets, [(UO{sub 2})(PO{sub 4})]{sup -}, consisting of corner-sharing UO{sub 6} square bipyramids and PO{sub 4} tetrahedra. Iron and magnesium are surrounded by water molecules to form Fe(H{sub 2}O){sub 6} or Mg(H{sub 2}O){sub 6} octahedra located in interlayer, between the autunite-type sheets. Two isolated independent water molecules are also located in interlayer. Energy-dispersive X-ray spectroscopy analysis confirmed the chemical composition obtained from structure refinement. These new data prompt a re-assessment of minerals of the autunite and meta-autunite groups.

  17. New halides of neodymium and their crystal structures

    International Nuclear Information System (INIS)

    Loechner, U.

    1980-01-01

    The crystal structures of the peritectic phases NdClsub(2.27) (t-phase) and NdClsub(2.37) (rh-phase) were determined. The structure of the rh-phase was solved, from the t-phase only the elementary cell could be determined because no single crystals of sufficient quality were obtained. Jutting out feature of the rh-phase which has to be formulated as Nd 14 Cl 32 O is a polyeder cluster of 6 quadratic antiprisms the inner cubo octahedric cavity of which is occupied by an oxygen atom. The linkage of these polyeder cluster ensues only under each other along the triple axis of the rhomboedric system over 3 upper and 3 lower common borders each. Therewith for the first time a superlattice of the fluorite-type was found in which this unit exclusively occurs. The type of linkage of polyeder clusters causes the occurrence of an exceptional polyeder around the twovalent Nd ions which can be looked at as a zwitter polyeder of icosahedron and cube and therefore coordinates tenfold the twovalent neodymium. The strict order of chemically and crystallografically clearly differentiated cations is expressed by a hexagonal-rhomboedric superstructure of the fluorite-aristotyp with a doubled c-axis. The phase diagram of the system Nd-NdBr 3 was determined and a structure proposition was worked out for the first Vernier phase in there with n=4 of the series Lnsub(n)Xsub(2n+1). (SPI)

  18. Improving the chemical compatibility of sealing glass for solid oxide fuel cells: Blocking the reactive species by controlled crystallization

    Science.gov (United States)

    Zhang, Teng; Zou, Qi; Zeng, Fanrong; Wang, Shaorong; Tang, Dian; Yang, Hiswen

    2012-10-01

    The chemical compatibility of sealing glass is of great importance for Solid oxide fuel cell (SOFC). In this work, the interfacial reaction between sealing glass and Cr-containing interconnect alloy is characterized by reacting Cr2O3 powders with a representative SrO-containing glass crystallized by different heat-treatment schedules. The crystalline structure and crystalline content of sealing glass are determined by X-ray diffraction. The results show that the fraction of Cr6+ decreases from 39.8 ± 1.9% for quenched glass to 8.2 ± 0.4% for glass crystallized at 900 °C for 2 h. In addition, the interfacial reaction can be further reduced with increasing crystallization temperature and time as well as the addition of nucleation agent (TiO2). The formation of some Sr-containing crystalline phases, Sr2SiO4 and Sr(TiO3), contributes to the improvement of chemical compatibility of sealing glass, in agreement with the results of thermodynamic calculations.

  19. RNA Crystallization

    Science.gov (United States)

    Golden, Barbara L.; Kundrot, Craig E.

    2003-01-01

    RNA molecules may be crystallized using variations of the methods developed for protein crystallography. As the technology has become available to syntheisize and purify RNA molecules in the quantities and with the quality that is required for crystallography, the field of RNA structure has exploded. The first consideration when crystallizing an RNA is the sequence, which may be varied in a rational way to enhance crystallizability or prevent formation of alternate structures. Once a sequence has been designed, the RNA may be synthesized chemically by solid-state synthesis, or it may be produced enzymatically using RNA polymerase and an appropriate DNA template. Purification of milligram quantities of RNA can be accomplished by HPLC or gel electrophoresis. As with proteins, crystallization of RNA is usually accomplished by vapor diffusion techniques. There are several considerations that are either unique to RNA crystallization or more important for RNA crystallization. Techniques for design, synthesis, purification, and crystallization of RNAs will be reviewed here.

  20. Synthesis, crystal structure refinement, and nonlinear-optical properties of CaB{sub 3}O{sub 5}(OH): Comparative crystal chemistry of calcium triborates

    Energy Technology Data Exchange (ETDEWEB)

    Yamnova, N. A., E-mail: aks.crys@gmail.com; Aksenov, S. M. [Moscow State University, Faculty of Geology (Russian Federation); Stefanovich, S. Yu. [Moscow State University, Faculty of Chemistry (Russian Federation); Volkov, A. S.; Dimitrova, O. V. [Moscow State University, Faculty of Geology (Russian Federation)

    2015-09-15

    Calcium triborate CaB{sub 3}O5(OH) obtained by hydrothermal synthesis in the Ca(OH){sub 2}–H{sub 3}BO{sub 3}–Na{sub 2}CO{sub 3}–KCl system is studied by single-crystal X-ray diffraction. The parameters of the orthorhombic unit cell are as follows: a = 13.490(1), b = 6.9576(3), and c = 4.3930(2) Å; V = 412.32(3) Å{sup 3} and space group Pna2{sub 1}. The structure is refined in the anisotropic approximation of the atomic displacement parameters to R = 4.28% using 972 vertical bar F vertical bar > 4σ(F). It is confirmed that the crystal structure of Ca triborate CaB{sub 3}O{sub 5}(OH) is identical to that described earlier. The hydrogen atom is localized. An SHG signal stronger than that of the quartz standard is registered. The phase transition of calcium triborate into calciborite is found on heating. The comparative crystal-chemical analysis of a series of borates with the general chemical formula 2CaO · 3B{sub 2}O{sub 3} · nH{sub 2}O (n = 0–13) with the constant CaO: B{sub 2}O{sub 3}= 2: 3 ratio and variable content of water is performed.

  1. Comparison of NMR and crystal structures for the proteins TM1112 and TM1367

    International Nuclear Information System (INIS)

    Mohanty, Biswaranjan; Serrano, Pedro; Pedrini, Bill; Jaudzems, Kristaps; Geralt, Michael; Horst, Reto; Herrmann, Torsten; Elsliger, Marc-André; Wilson, Ian A.; Wüthrich, Kurt

    2010-01-01

    NMR structures of the proteins TM1112 and TM1367 solved by the JCSG in solution at 298 K could be superimposed with the corresponding crystal structures at 100 K with r.m.s.d. values of <1.0 Å for the backbone heavy atoms. For both proteins the structural differences between multiple molecules in the asymmetric unit of the crystals correlated with structural variations within the bundles of conformers used to represent the NMR solution structures. A recently introduced JCSG NMR structure-determination protocol, which makes use of the software package UNIO for extensive automation, was further evaluated by comparison of the TM1112 structure obtained using these automated methods with another NMR structure that was independently solved in another PSI center, where a largely interactive approach was applied. The NMR structures of the TM1112 and TM1367 proteins from Thermotoga maritima in solution at 298 K were determined following a new protocol which uses the software package UNIO for extensive automation. The results obtained with this novel procedure were evaluated by comparison with the crystal structures solved by the JCSG at 100 K to 1.83 and 1.90 Å resolution, respectively. In addition, the TM1112 solution structure was compared with an NMR structure solved by the NESG using a conventional largely interactive methodology. For both proteins, the newly determined NMR structure could be superimposed with the crystal structure with r.m.s.d. values of <1.0 Å for the backbone heavy atoms, which provided a starting platform to investigate local structure variations, which may arise from either the methods used or from the different chemical environments in solution and in the crystal. Thereby, these comparative studies were further explored with the use of reference NMR and crystal structures, which were computed using the NMR software with input of upper-limit distance constraints derived from the molecular models that represent the results of structure

  2. Comparison of multiple crystal structures with NMR data for engrailed homeodomain

    Energy Technology Data Exchange (ETDEWEB)

    Religa, Tomasz L. [MRC Centre for Protein Engineering (United Kingdom)], E-mail: tlr25@mrc-lmb.cam.ac.uk

    2008-03-15

    Two methods are currently available to solve high resolution protein structures-X-ray crystallography and nuclear magnetic resonance (NMR). Both methods usually produce highly similar structures, but small differences between both solutions are always observed. Here the raw NMR data as well as the solved NMR structure were compared to the multiple crystal structures solved for the WT 60 residue three helix bundle engrailed homeodomain (EnHD) and single point mutants. There was excellent agreement between TALOS-predicted and crystal structure-observed dihedral angles and a good agreement for the {sup 3}J(H{sup N}H{sup {alpha}}) couplings for the multiple crystal structures. Around 1% of NOEs were violated for any crystal structure, but no NOE was inconsistent with all of the crystal structures. Violations usually occurred for surface residues or for residues for which multiple discreet conformations were observed between the crystal structures. Comparison of the disorder shown in the multiple crystal structures shows little correlation with dynamics under native conditions for this protein.

  3. Fluorination of Metal Phthalocyanines: Single-Crystal Growth, Efficient N-Channel Organic Field-Effect Transistors, and Structure-Property Relationships

    Science.gov (United States)

    Jiang, Hui; Ye, Jun; Hu, Peng; Wei, Fengxia; Du, Kezhao; Wang, Ning; Ba, Te; Feng, Shuanglong; Kloc, Christian

    2014-01-01

    The fluorination of p-type metal phthalocyanines produces n-type semiconductors, allowing the design of organic electronic circuits that contain inexpensive heterojunctions made from chemically and thermally stable p- and n-type organic semiconductors. For the evaluation of close to intrinsic transport properties, high-quality centimeter-sized single crystals of F16CuPc, F16CoPc and F16ZnPc have been grown. New crystal structures of F16CuPc, F16CoPc and F16ZnPc have been determined. Organic single-crystal field-effect transistors have been fabricated to study the effects of the central metal atom on their charge transport properties. The F16ZnPc has the highest electron mobility (~1.1 cm2 V−1 s−1). Theoretical calculations indicate that the crystal structure and electronic structure of the central metal atom determine the transport properties of fluorinated metal phthalocyanines. PMID:25524460

  4. Crystal chemical characterization of mullite-type aluminum borate compounds

    Energy Technology Data Exchange (ETDEWEB)

    Hoffmann, K., E-mail: Kristin.Hoffmann@uni-bremen.de [Kristallographie, FB05, Klagenfurter Straße / GEO, Universität Bremen, D-28359 Bremen (Germany); Institut für Anorganische Chemie und Kristallographie, FB02, Leobener Straße / NW2, Universität Bremen, D-28359 Bremen (Germany); Hooper, T.J.N. [Department of Physics, University of Warwick, Coventry CV4 7AL (United Kingdom); Zhao, H.; Kolb, U. [Institut für Anorganische Chemie und Analytische Chemie, Jakob-Welder-WegJakob-Welder-Weg 11, Johannes Gutenberg-University Mainz, D-55128 Mainz (Germany); Murshed, M.M. [Institut für Anorganische Chemie und Kristallographie, FB02, Leobener Straße / NW2, Universität Bremen, D-28359 Bremen (Germany); MAPEX Center for Materials and Processes, Bibliothekstraße 1, Universität Bremen, D-28359 Bremen (Germany); Fischer, M.; Lührs, H. [Kristallographie, FB05, Klagenfurter Straße / GEO, Universität Bremen, D-28359 Bremen (Germany); MAPEX Center for Materials and Processes, Bibliothekstraße 1, Universität Bremen, D-28359 Bremen (Germany); Nénert, G. [Institut Laue-Langevin, 6 Rue Jules Horowitz, 38042 Grenoble Cedex 9 (France); Kudějová, P.; Senyshyn, A. [Heinz Maier-Leibnitz Zentrum (MLZ), Technische Universität München, Lichtenbergstr. 1, D-85748 Garching (Germany); and others

    2017-03-15

    Al-rich aluminum borates were prepared by different synthesis routes using various Al/B ratios, characterized by diffraction methods, spectroscopy and prompt gamma activation analysis. The {sup 11}B NMR data show a small amount of BO{sub 4} species in all samples. The chemical analysis indicates a trend in the Al/B ratio instead of a fixed composition. Both methods indicate a solid solution Al{sub 5−x}B{sub 1+x}O{sub 9} where Al is substituted by B in the range of 1–3%. The structure of B-rich Al{sub 4}B{sub 2}O{sub 9} (C2/m, a=1488 pm, b=553 pm, c=1502 pm, ß=90.6°), was re-investigated by electron diffraction methods, showing that structural details vary within a crystallite. In most of the domains the atoms are orderly distributed, showing no signal for the postulated channel oxygen atom O5. The absence of O5 is supported by density functional theory calculations. Other domains show a probable disordered configuration of O5 and O10, indicated by diffuse scattering along the b direction. - Graphical abstract: Projections of three-dimensional electron diffraction space of Al{sub 4}B{sub 2}O{sub 9} along the main directions. - Highlights: • The crystal structure of Al{sub 4}B{sub 2}O{sub 9} was re-evaluated. • Structural details vary among different crystals and inside Al{sub 4}B{sub 2}O{sub 9} crystallites. • Diffuse scattering indicate a probable disordered configuration of O5 and O10. • A solid solution series for Al{sub 5−x}B{sub x}O{sub 9} is indicated by PGAA and NMR spectroscopy. • The presence of BO{sub 4} groups is confirmed by {sup 11}B MAS NMR spectroscopy for Al{sub 5−x}B{sub 1+x}O{sub 9}.

  5. Metal-loaded pollucite-like aluminophosphates: dissymmetrisation of crystal structures and physical properties

    Science.gov (United States)

    Shvanskaya, L. V.; Yakubovich, O. V.; Koshelev, A. V.; Vasiliev, A. N.

    2018-02-01

    Two aluminophosphate analogues of the mineral pollucite with the general formula Cs2(M,Al)3P3O12 (where M = Cu or Mn) have been synthesized by high-temperature flux and structurally characterized using the single-crystal X-ray diffraction. Both samples crystallize in cubic I4132 space group, Z = 8, with a = 13.5911(5) and a = 13.8544(7) for Cu- and Mn-loaded phases, respectively. Their framework structures are based on the ANA-type topology and exhibit the partial ordering of the metal (M/Al) and phosphorus (P) cations over the tetrahedral sites. The regular changes in cell dimensions and volumes in the row Cs2(Cu,Al)3P3O12→Cs2(Mn,Al)3P3O12 obviously correspond to increasing radii of the transition metal. The crystal chemical analysis of both pollucite-like phases show correlations between the difference in the radii size of tetrahedral cations and the degree of distortion of flexible ANA-type framework due to decreasing of the intertetrahedral angles (T-O-T). Magnetic susceptibility measurements indicate that both compounds are paramagnets in the temperature range of 2-300 K.

  6. Structure analysis on synthetic emerald crystals

    Science.gov (United States)

    Lee, Pei-Lun; Lee, Jiann-Shing; Huang, Eugene; Liao, Ju-Hsiou

    2013-05-01

    Single crystals of emerald synthesized by means of the flux method were adopted for crystallographic analyses. Emerald crystals with a wide range of Cr3+-doping content up to 3.16 wt% Cr2O3 were examined by X-ray single crystal diffraction refinement method. The crystal structures of the emerald crystals were refined to R 1 (all data) of 0.019-0.024 and w R 2 (all data) of 0.061-0.073. When Cr3+ substitutes for Al3+, the main adjustment takes place in the Al-octahedron and Be-tetrahedron. The effect of substitution of Cr3+ for Al3+ in the beryl structure results in progressively lengthening of the Al-O distance, while the length of the other bonds remains nearly unchanged. The substitution of Cr3+ for Al3+ may have caused the expansion of a axis, while keeping the c axis unchanged in the emerald lattice. As a consequence, the Al-O-Si and Al-O-Be bonding angles are found to decrease, while the angle of Si-O-Be increases as the Al-O distance increases during the Cr replacement.

  7. Molecular-crystal approach to accounting of correlation corrections in the chemical bond theory in crystals: electronic structure of Ti2O3 crystal

    International Nuclear Information System (INIS)

    Ehvarestov, R.A.; Panin, A.I.

    2000-01-01

    The problem on the possibility of partial accounting for the electron correlation effects within the frames of the Hartree-Fock unlimited method (HF). The local characteristic of the electron structure of the molecular systems for the case of the multi-determinant wave functions, configurational interaction methods and multiconfigurational self-consistent field (MCSCF) are determined. The molecular-crystalline approach is applied to studies on the electron correlation effects in the Ti 2 O 3 crystal. It is shown on the basis of the [Ti 2 O 9 ] 12- cluster electron structure calculation, that the Hartree-Fock unlimited method accounts in a number of cases for an essential part of statistical correlation effects. The energy values and local characteristics of the [Ti 2 O 9 ] 12- cluster, calculated through the HF and MCSCF methods, are presented [ru

  8. Characterization of a defective PbWO4 crystal cut along the a-c crystallographic plane: structural assessment and a novel photoelastic stress analysis

    Science.gov (United States)

    Montalto, L.; Natali, P. P.; Daví, F.; Mengucci., P.; Paone, N.; Rinaldi, D.

    2017-12-01

    Among scintillators, the PWO is one of the most widely used, for instance in CMS calorimeter at CERN and PANDA project. Crystallographic structure and chemical composition as well as residual stress condition, are indicators of homogeneity and good quality of the crystal. In this paper, structural characterization of a defective PbWO4 (PWO) crystal has been performed by X-ray Diffraction (XRD), Energy Dispersive Spectroscopy (EDS) and Photoelasticity in the unusual (a, c) crystallographic plane. XRD and EDS analysis have been used to investigate crystallographic orientation and chemical composition, while stress distribution, which indicates macroscopic inhomogeneities and defects, has been obtained by photoelastic approaches, in Conoscopic and Sphenoscopic configuration. Since the sample is cut along the (a, c) crystallographic plane, a new method is proposed for the interpretation of the fringe pattern. The structural analysis has detected odds from the nominal lattice dimension, which can be attributed to the strong presence of Pb and W. A strong inhomogeneity over the crystal sample has been revealed by the photoelastic inspection. The results give reliability to the proposed procedure which is exploitable in crystals with other structures.

  9. General crystal in prebiotic context

    International Nuclear Information System (INIS)

    Simon, I.

    1993-09-01

    General crystal is an extension of the crystal concept to any form of matter which exhibit neighbour structure determination. This extension makes many results of solid state physics applicable to heterogeneous matter. Among other it includes the description of phase transition from random to unique structure. The advantage of the general crystal approach is demonstrated on globular protein, on of the most important macromolecules of life, which are capable to adopt unique 3D structure spontaneously, regardless of the heterogeneous character of their chemical structure and conformation. It is suggested that the use of general crystal concept may help to find candidates among heterogeneous matters capable to spontaneous self-organization in the same way as crystallization results in unique structure of homogeneous matter, and to apply some of the results of solid state physics to describe the phase transition and other behaviour of this matter. (author). 10 refs

  10. Studies on growth, crystal structure and characterization of novel organic nicotinium trifluoroacetate single crystals

    Energy Technology Data Exchange (ETDEWEB)

    Dhanaraj, P.V. [Centre for Crystal Growth, SSN College of Engineering, Kalavakkam 603 110 (India); Rajesh, N.P., E-mail: rajeshnp@hotmail.com [Centre for Crystal Growth, SSN College of Engineering, Kalavakkam 603 110 (India); Sundar, J. Kalyana; Natarajan, S. [Department of Physics, Madurai Kamaraj University, Madurai 625 021 (India); Vinitha, G. [Department of Physics, Crescent Engineering College, Chennai 600 048 (India)

    2011-09-15

    Highlights: {yields} Good quality crystals of nicotinium trifluoroacetate in monoclinic system were grown for first time. {yields} Nicotinium trifluoroacetate crystal exhibits third order nonlinear optical properties. {yields} The optical spectrum of nicotinium trifluoroacetate crystal reveals the wide transmission in the entire range with cutoff wavelength at 286 nm. {yields} Nicotinium trifluoroacetate is a low dielectric constant material. - Abstract: An organic material, nicotinium trifluoroacetate (NTF) was synthesized and single crystals in monoclinic system were grown from aqueous solution for the first time. Its solubility and metastable zone width were estimated. The crystal structure of NTF was analyzed to reveal the molecular arrangements and the formation of hydrogen bonds in the crystal. High-resolution X-ray diffraction rocking curve measurements were performed to analyze the structural perfection of the grown crystals. Functional groups in NTF were identified by Fourier transform infrared spectral analysis. Thermal behaviour and stability of NTF were studied by thermogravimetric and differential thermal analysis and differential scanning calorimetry. Mechanical and dielectric properties of NTF crystals were analyzed. Optical studies reveal that NTF crystals are transparent in the wavelength range 286-1100 nm. The third order nonlinear optical parameters of NTF were derived by the Z-scan technique.

  11. The Crystal Structures of Two Novel Cadmium-Picolinic Acid ...

    African Journals Online (AJOL)

    The crystal structures of two novel cadmium-picolinic acid complexes grown in aqueous solutions at selected pH values are reported. The structures are compared to expected solution species under the same conditions. The crystal structure of complex 1 exhibits a seven coordinate structure which contains a protonated ...

  12. Band structures in fractal grading porous phononic crystals

    Science.gov (United States)

    Wang, Kai; Liu, Ying; Liang, Tianshu; Wang, Bin

    2018-05-01

    In this paper, a new grading porous structure is introduced based on a Sierpinski triangle routine, and wave propagation in this fractal grading porous phononic crystal is investigated. The influences of fractal hierarchy and porosity on the band structures in fractal graidng porous phononic crystals are clarified. Vibration modes of unit cell at absolute band gap edges are given to manifest formation mechanism of absolute band gaps. The results show that absolute band gaps are easy to form in fractal structures comparatively to the normal ones with the same porosity. Structures with higher fractal hierarchies benefit multiple wider absolute band gaps. This work provides useful guidance in design of fractal porous phononic crystals.

  13. Construction of crystal structure prototype database: methods and applications.

    Science.gov (United States)

    Su, Chuanxun; Lv, Jian; Li, Quan; Wang, Hui; Zhang, Lijun; Wang, Yanchao; Ma, Yanming

    2017-04-26

    Crystal structure prototype data have become a useful source of information for materials discovery in the fields of crystallography, chemistry, physics, and materials science. This work reports the development of a robust and efficient method for assessing the similarity of structures on the basis of their interatomic distances. Using this method, we proposed a simple and unambiguous definition of crystal structure prototype based on hierarchical clustering theory, and constructed the crystal structure prototype database (CSPD) by filtering the known crystallographic structures in a database. With similar method, a program structure prototype analysis package (SPAP) was developed to remove similar structures in CALYPSO prediction results and extract predicted low energy structures for a separate theoretical structure database. A series of statistics describing the distribution of crystal structure prototypes in the CSPD was compiled to provide an important insight for structure prediction and high-throughput calculations. Illustrative examples of the application of the proposed database are given, including the generation of initial structures for structure prediction and determination of the prototype structure in databases. These examples demonstrate the CSPD to be a generally applicable and useful tool for materials discovery.

  14. Construction of crystal structure prototype database: methods and applications

    International Nuclear Information System (INIS)

    Su, Chuanxun; Lv, Jian; Wang, Hui; Wang, Yanchao; Ma, Yanming; Li, Quan; Zhang, Lijun

    2017-01-01

    Crystal structure prototype data have become a useful source of information for materials discovery in the fields of crystallography, chemistry, physics, and materials science. This work reports the development of a robust and efficient method for assessing the similarity of structures on the basis of their interatomic distances. Using this method, we proposed a simple and unambiguous definition of crystal structure prototype based on hierarchical clustering theory, and constructed the crystal structure prototype database (CSPD) by filtering the known crystallographic structures in a database. With similar method, a program structure prototype analysis package (SPAP) was developed to remove similar structures in CALYPSO prediction results and extract predicted low energy structures for a separate theoretical structure database. A series of statistics describing the distribution of crystal structure prototypes in the CSPD was compiled to provide an important insight for structure prediction and high-throughput calculations. Illustrative examples of the application of the proposed database are given, including the generation of initial structures for structure prediction and determination of the prototype structure in databases. These examples demonstrate the CSPD to be a generally applicable and useful tool for materials discovery. (paper)

  15. Structure and crystallization of SiO2 and B2O3 doped lithium disilicate glasses from theory and experiment.

    Science.gov (United States)

    Erlebach, Andreas; Thieme, Katrin; Sierka, Marek; Rüssel, Christian

    2017-09-27

    Solid solutions of SiO 2 and B 2 O 3 in Li 2 O·2SiO 2 are synthesized and characterized for the first time. Their structure and crystallization mechanisms are investigated employing a combination of simulations at the density functional theory level and experiments on the crystallization of SiO 2 and B 2 O 3 doped lithium disilicate glasses. The remarkable agreement of calculated and experimentally determined cell parameters reveals the preferential, kinetically controlled incorporation of [SiO 4 ] and [BO 4 ] at the Li + lattice sites of the Li 2 O·2SiO 2 crystal structure. While the addition of SiO 2 increases the glass viscosity resulting in lower crystal growth velocities, glasses containing B 2 O 3 show a reduction of both viscosities and crystal growth velocities. These observations could be rationalized by a change of the chemical composition of the glass matrix surrounding the precipitated crystal phase during the course of crystallization, which leads to a deceleration of the attachment of building units required for further crystal growth at the liquid-crystal interface.

  16. Physical characteristics of calcium oxalate crystals as determinants in structural defense against chewing insects in Medicago truncatula

    Science.gov (United States)

    In addition to the numerous chemical defenses that plants employ to fend off insect herbivores, simple structural components can also play important roles in effective protection. Our investigations have shown that plant crystals of calcium oxalate can function in insect defense. The isolation of ca...

  17. Crystal engineering of ibuprofen compounds: From molecule to crystal structure to morphology prediction by computational simulation and experimental study

    Science.gov (United States)

    Zhang, Min; Liang, Zuozhong; Wu, Fei; Chen, Jian-Feng; Xue, Chunyu; Zhao, Hong

    2017-06-01

    We selected the crystal structures of ibuprofen with seven common space groups (Cc, P21/c, P212121, P21, Pbca, Pna21, and Pbcn), which was generated from ibuprofen molecule by molecular simulation. The predicted crystal structures of ibuprofen with space group P21/c has the lowest total energy and the largest density, which is nearly indistinguishable with experimental result. In addition, the XRD patterns for predicted crystal structure are highly consistent with recrystallization from solvent of ibuprofen. That indicates that the simulation can accurately predict the crystal structure of ibuprofen from the molecule. Furthermore, based on this crystal structure, we predicted the crystal habit in vacuum using the attachment energy (AE) method and considered solvent effects in a systematic way using the modified attachment energy (MAE) model. The simulation can accurately construct a complete process from molecule to crystal structure to morphology prediction. Experimentally, we observed crystal morphologies in four different polarity solvents compounds (ethanol, acetonitrile, ethyl acetate, and toluene). We found that the aspect ratio decreases of crystal habits in this ibuprofen system were found to vary with increasing solvent relative polarity. Besides, the modified crystal morphologies are in good agreement with the observed experimental morphologies. Finally, this work may guide computer-aided design of the desirable crystal morphology.

  18. Synthesis of a mixed-valent tin nitride and considerations of its possible crystal structures

    International Nuclear Information System (INIS)

    Caskey, Christopher M.; Holder, Aaron; Christensen, Steven T.; Biagioni, David; Ginley, David S.; Tumas, William; Perkins, John D.; Lany, Stephan; Zakutayev, Andriy; Shulda, Sarah; Diercks, David; Pylypenko, Svitlana; Richards, Ryan M.; Schwartz, Craig P.; Nordlund, Dennis; Kukliansky, Alon; Natan, Amir; Prendergast, David; Sun, Wenhao; Orvananos, Bernardo

    2016-01-01

    Recent advances in theoretical structure prediction methods and high-throughput computational techniques are revolutionizing experimental discovery of the thermodynamically stable inorganic materials. Metastable materials represent a new frontier for these studies, since even simple binary non-ground state compounds of common elements may be awaiting discovery. However, there are significant research challenges related to non-equilibrium thin film synthesis and crystal structure predictions, such as small strained crystals in the experimental samples and energy minimization based theoretical algorithms. Here, we report on experimental synthesis and characterization, as well as theoretical first-principles calculations of a previously unreported mixed-valent binary tin nitride. Thin film experiments indicate that this novel material is N-deficient SnN with tin in the mixed II/IV valence state and a small low-symmetry unit cell. Theoretical calculations suggest that the most likely crystal structure has the space group 2 (SG2) related to the distorted delafossite (SG166), which is nearly 0.1 eV/atom above the ground state SnN polymorph. This observation is rationalized by the structural similarity of the SnN distorted delafossite to the chemically related Sn 3 N 4 spinel compound, which provides a fresh scientific insight into the reasons for growth of polymorphs of metastable materials. In addition to reporting on the discovery of the simple binary SnN compound, this paper illustrates a possible way of combining a wide range of advanced characterization techniques with the first-principle property calculation methods, to elucidate the most likely crystal structure of the previously unreported metastable materials.

  19. Synthesis of a mixed-valent tin nitride and considerations of its possible crystal structures

    Energy Technology Data Exchange (ETDEWEB)

    Caskey, Christopher M. [National Renewable Energy Laboratory, Golden, Colorado 80401 (United States); Colorado School of Mines, Golden, Colorado 80401 (United States); Larix Chemical Science, Golden, Colorado 80401 (United States); Holder, Aaron; Christensen, Steven T.; Biagioni, David; Ginley, David S.; Tumas, William; Perkins, John D.; Lany, Stephan; Zakutayev, Andriy, E-mail: andriy.zakutayev@nrel.gov [National Renewable Energy Laboratory, Golden, Colorado 80401 (United States); Shulda, Sarah; Diercks, David; Pylypenko, Svitlana; Richards, Ryan M. [Colorado School of Mines, Golden, Colorado 80401 (United States); Schwartz, Craig P.; Nordlund, Dennis [SLAC National Accelerator Laboratory, Menlo Park, California 94025 (United States); Kukliansky, Alon; Natan, Amir [Tel Aviv University, Tel Aviv-Yafo (Israel); Prendergast, David; Sun, Wenhao [Lawrence Berkeley National Laboratory, Berkley, California 94720 (United States); Orvananos, Bernardo [Massachusetts Institute of Technology, Cambridge, Massachusetts 02139 (United States); and others

    2016-04-14

    Recent advances in theoretical structure prediction methods and high-throughput computational techniques are revolutionizing experimental discovery of the thermodynamically stable inorganic materials. Metastable materials represent a new frontier for these studies, since even simple binary non-ground state compounds of common elements may be awaiting discovery. However, there are significant research challenges related to non-equilibrium thin film synthesis and crystal structure predictions, such as small strained crystals in the experimental samples and energy minimization based theoretical algorithms. Here, we report on experimental synthesis and characterization, as well as theoretical first-principles calculations of a previously unreported mixed-valent binary tin nitride. Thin film experiments indicate that this novel material is N-deficient SnN with tin in the mixed II/IV valence state and a small low-symmetry unit cell. Theoretical calculations suggest that the most likely crystal structure has the space group 2 (SG2) related to the distorted delafossite (SG166), which is nearly 0.1 eV/atom above the ground state SnN polymorph. This observation is rationalized by the structural similarity of the SnN distorted delafossite to the chemically related Sn{sub 3}N{sub 4} spinel compound, which provides a fresh scientific insight into the reasons for growth of polymorphs of metastable materials. In addition to reporting on the discovery of the simple binary SnN compound, this paper illustrates a possible way of combining a wide range of advanced characterization techniques with the first-principle property calculation methods, to elucidate the most likely crystal structure of the previously unreported metastable materials.

  20. Isolation, crystallization and crystal structure determination of bovine kidney Na(+),K(+)-ATPase.

    Science.gov (United States)

    Gregersen, Jonas Lindholt; Mattle, Daniel; Fedosova, Natalya U; Nissen, Poul; Reinhard, Linda

    2016-04-01

    Na(+),K(+)-ATPase is responsible for the transport of Na(+) and K(+) across the plasma membrane in animal cells, thereby sustaining vital electrochemical gradients that energize channels and secondary transporters. The crystal structure of Na(+),K(+)-ATPase has previously been elucidated using the enzyme from native sources such as porcine kidney and shark rectal gland. Here, the isolation, crystallization and first structure determination of bovine kidney Na(+),K(+)-ATPase in a high-affinity E2-BeF3(-)-ouabain complex with bound magnesium are described. Crystals belonging to the orthorhombic space group C2221 with one molecule in the asymmetric unit exhibited anisotropic diffraction to a resolution of 3.7 Å with full completeness to a resolution of 4.2 Å. The structure was determined by molecular replacement, revealing unbiased electron-density features for bound BeF3(-), ouabain and Mg(2+) ions.

  1. Crystal growth and electronic structure of low-temperature phase SrMgF{sub 4}

    Energy Technology Data Exchange (ETDEWEB)

    Atuchin, Victor V. [Laboratory of Optical Materials and Structures, Institute of Semiconductor Physics, SB RAS, Novosibirsk 630090 (Russian Federation); Functional Electronics Laboratory, Tomsk State University, Tomsk 634050 (Russian Federation); Laboratory of Semiconductor and Dielectric Materials, Novosibirsk State University, Novosibirsk 630090 (Russian Federation); Goloshumova, Alina A. [Laboratory of Crystal Growth, Institute of Geology and Mineralogy, SB RAS, Novosibirsk 630090 (Russian Federation); Isaenko, Ludmila I. [Laboratory of Semiconductor and Dielectric Materials, Novosibirsk State University, Novosibirsk 630090 (Russian Federation); Laboratory of Crystal Growth, Institute of Geology and Mineralogy, SB RAS, Novosibirsk 630090 (Russian Federation); Jiang, Xingxing [BCCRD, Key Laboratory of Functional Crystals and Laser Technology, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190 (China); University of Chinese Academy of Sciences, Beijing 100049 (China); Lobanov, Sergey I. [Laboratory of Crystal Growth, Institute of Geology and Mineralogy, SB RAS, Novosibirsk 630090 (Russian Federation); Zhang, Zhaoming [Australian Nuclear Science & Technology Organisation, Lucas Heights, NSW 2234 (Australia); Lin, Zheshuai, E-mail: zslin@mail.ipc.ac.cn [BCCRD, Key Laboratory of Functional Crystals and Laser Technology, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190 (China)

    2016-04-15

    Using the vertical Bridgman method, the single crystal of low temperature phase SrMgF{sub 4} is obtained. The crystal is in a very good optical quality with the size of 10×7×5 mm{sup 3}. Detailed photoemission spectra of the element core levels are determined by a monochromatic AlKa (1486.6 eV) X-ray source. Moreover, the first-principles calculations are performed to investigate the electronic structure of SrMgF{sub 4}. A good agreement between experimental and calculated results is achieved. It is demonstrated that almost all the electronic orbitals are strongly localized and the hybridization with the others is very small, but the Mg–F bonds covalency is relatively stronger than that of Sr–F bonds. - Graphical abstract: Large size of low-temperature phase SrMgF{sub 4} crystal was obtained (right) and its electronic structure was investigated by X-ray photoelectron spectroscopy and first-principles calculation (left). - Highlights: • Large size single crystal of low-temperature phase SrMgF{sub 4} is obtained. • Electronic structure of SrMgF{sub 4} is measured by X-ray photoelectron spectroscopy. • Partial densities of states are determined by first-principles calculation. • Good agreement between experimental and calculated results is achieved. • Strong ionic characteristics of chemical bonds are exhibited in SrMgF{sub 4}.

  2. Combined crystal structure prediction and high-pressure crystallization in rational pharmaceutical polymorph screening

    DEFF Research Database (Denmark)

    Neumann, M A; van de Streek, J; Fabbiani, F P A

    2015-01-01

    Organic molecules, such as pharmaceuticals, agro-chemicals and pigments, frequently form several crystal polymorphs with different physicochemical properties. Finding polymorphs has long been a purely experimental game of trial-and-error. Here we utilize in silico polymorph screening in combination...

  3. Crystal structure study of new lanthanide silicates with silico-carnotite structure

    International Nuclear Information System (INIS)

    Piccinelli, F.; Lausi, A.; Speghini, A.; Bettinelli, M.

    2012-01-01

    The crystal structures of new rare earth-based silicate compounds (Ca 3 Eu 2 Si 3 O 12 , Ca 3 Gd 2 Si 3 O 12 , Ca 3 Dy 2 Si 3 O 12 , Ca 3 Er 2 Si 3 O 12 and Ca 3 Lu 2 Si 3 O 12 ) have been determined using powder X-ray diffraction. From Rietveld refinement calculations on the collected powder patterns we observe a different distribution of the rare earth ions on the three available crystal sites characterized by different coordination numbers, depending on the ionic radius of the rare earth ion. The reasons of the instability of the silico-carnotite structure for lanthanide ions larger than Eu 3+ have been deduced. In addition, in order to detect crystal phase transitions, the powder patterns of Ca 3 Eu 2 Si 3 O 12 and Ca 3 Sm 2 Si 3 O 12 samples have been collected as a function of the temperature (RT-1000 °C range), but no phase transitions have been observed. - Graphical abstract: Synchrotron X-ray diffraction allows us the accurate determination of the RE 3+ ions distribution on the three available crystal sites of the silico-carnotite structure. Highlights: ► The structure of the Ca 3 M 2 Si 3 O 12 (M=Eu, Gd, Dy, Er and Lu) was determined. ► Different distribution of RE 3+ ions on the three available crystal sites was observed. ► The instability of the silico-carnotite structure for RE=La→Sm was discussed.

  4. Single particle measurements of the chemical composition of cirrus ice residue during CRYSTAL-FACE

    Science.gov (United States)

    Cziczo, D. J.; Murphy, D. M.; Hudson, P. K.; Thomson, D. S.

    2004-02-01

    The first real-time, in situ, investigation of the chemical composition of the residue of cirrus ice crystals was performed during July 2002. This study was undertaken on a NASA WB-57F high-altitude research aircraft as part of CRYSTAL-FACE, a field campaign which sought to further our understanding of the relation of clouds, water vapor, and climate by characterizing, among other parameters, anvil cirrus formed about the Florida peninsula. A counter flow virtual impactor (CVI) was used to separate cirrus ice from the unactivated interstitial aerosol particles and evaporate condensed-phase water. Residual material, on a crystal-by-crystal basis, was subsequently analyzed using the NOAA Aeronomy Laboratory's Particle Analysis by Laser Mass Spectrometry (PALMS) instrument. Sampling was performed from 5 to 15 km altitude and from 12° to 28° north latitude within cirrus originating over land and ocean. Chemical composition measurements provided several important results. Sea salt was often incorporated into cirrus, consistent with homogeneous ice formation by aerosol particles from the marine boundary layer. Size measurements showed that large particles preferentially froze over smaller ones. Meteoritic material was found within ice crystals, indicative of a relation between stratospheric aerosol particles and tropospheric clouds. Mineral dust was the dominant residue observed in clouds formed during a dust transport event from the Sahara, consistent with a heterogeneous freezing mechanism. These results show that chemical composition and size are important determinants of which aerosol particles form cirrus ice crystals.

  5. Synthesis, characterization, crystal structure and quantum chemical investigations of three novel coumarin-benzenesulfonohydrazide derivatives

    Science.gov (United States)

    Chethan Prathap, K. N.; Lokanath, N. K.

    2018-04-01

    Coumarin derivatives are an important class of heterocyclic compounds due to their physical and biological properties. Coumarin derivatives have been identified with many significant electro-optical properties and biological activities. Three novel coumarin derivatives containing benzene sulfonohydrazide group were synthesized by condensation reaction. The synthesized compounds were characterized by various spectroscopic techniques (Mass, 1H/13C NMR and FTIR). Thermal and optical properties were investigated by thermogravimetric analysis (TGA), differential scanning calorimetry (DSC) and UV-Vis spectroscopic studies. Finally their structures were confirmed by single crystal X-ray diffraction (XRD) studies. The three compounds exhibit diverse intermolecular interactions, as observed by the crystal packing and Hirshfeld surface analysis. Further, their structures were optimized by density functional theory (DFT) calculations using B3LYP hybrid functionals with 6-311G+(d,p) level basis set. The Mulliken charge, molecular electrostatic potential (MEP), frontier molecular orbitals (HOMO-LUMO) were investigated. The experimentally determined parameters were compared with those calculated theoretically and they complement each other with a very good correlation. The transitions among the molecular orbitals were investigated using time-dependent density functional theory (TD-DFT) and the electronic absorption spectra obtained showed very good agreement with the experimentally measured UV-Vis spectra. Furthermore, non-linear optical (NLO) properties were investigated by calculating polarizabilities and hyperpolarizabilities. All three compounds exhibit significantly high hyperpolarizabilities compared to the reference material urea, which makes them potential candidates for NLO applications.

  6. Co-Crystal Screening of Diclofenac

    Directory of Open Access Journals (Sweden)

    John Desper

    2011-08-01

    Full Text Available In the pharmaceutical industry, co-crystals are becoming increasingly valuable as crystalline solids that can offer altered/improved physical properties of an active pharmaceutical ingredient (API without changing its chemical identity or biological activity. In order to identify new solid forms of diclofenac—an analgesic with extremely poor aqueous solubility for which few co-crystal structures have been determined—a range of pyrazoles, pyridines, and pyrimidines were screened for co-crystal formation using solvent assisted grinding and infrared spectroscopy with an overall success rate of 50%. The crystal structures of three new diclofenac co-crystals are reported herein: (diclofenac∙(2-aminopyrimidine, (diclofenac∙(2-amino-4,6-dimethylpyrimidine, and (diclofenac∙(2-amino-4-chloro-6-methylpyrimidine.

  7. Co-crystal screening of diclofenac.

    Science.gov (United States)

    Aakeröy, Christer B; Grommet, Angela B; Desper, John

    2011-08-31

    In the pharmaceutical industry, co-crystals are becoming increasingly valuable as crystalline solids that can offer altered/improved physical properties of an active pharmaceutical ingredient (API) without changing its chemical identity or biological activity. In order to identify new solid forms of diclofenac-an analgesic with extremely poor aqueous solubility for which few co-crystal structures have been determined-a range of pyrazoles, pyridines, and pyrimidines were screened for co-crystal formation using solvent assisted grinding and infrared spectroscopy with an overall success rate of 50%. The crystal structures of three new diclofenac co-crystals are reported herein: (diclofenac)∙(2-aminopyrimidine), (diclofenac)∙(2-amino-4,6-dimethylpyrimidine), and (diclofenac)∙(2-amino-4-chloro-6-methylpyrimidine).

  8. Crystal structure of aspartame anhydrate from powder diffraction data. Structural aspects of the dehydration process of aspartame

    NARCIS (Netherlands)

    Guguta, C.; Meekes, H.L.M.; Gelder, R. de

    2006-01-01

    Aspartame has three pseudo-polymorphic forms, two hydrates and a hemi-hydrate, for which crystal structures were determined from single-crystal diffraction data. This paper presents the crystal structure of the anhydrate, which was obtained by dehydrating the hemi-hydrate. The crystal structure of

  9. Effect of sintering on crystallization and structural properties of soda lime silica glass

    Directory of Open Access Journals (Sweden)

    Zaid Mohd Hafiz Mohd

    2017-01-01

    Full Text Available The effect of sintering temperatures on crystallization and structural of the soda lime silica (SLS glass was reported. Elemental weight composition of the SLS glass powder was identified through Energy dispersive X-ray fluorescence (EDXRF analysis while the thermal behavior of the glass was determined using Differential thermal analysis (DTA technique. Archimedes’ method and direct geometric measurement were respectively used to determine bulk density and linear shrinkage of the glass samples. Crystallisation behavior of the samples was investigated by X-ray diffraction (XRD analysis and chemical bonds present in the samples were measured using Fourier Transform Infrared (FTIR spectroscopy. Results showed an increase in the density and linear shrinkage of the samples as a function of the sintering temperature. The XRD analysis revealed the formation of α-quartz (SiO2 and a minor amount of devitrite phases in the samples and these were further verified through the detection of chemical bonds by FTIR after sintering at 800ºC. The properties of the glass-ceramics can be explained on the basis of crystal chemistry which indicated that the alkali ions formed as carriers in the random network structure and can be recommended for the manufacture of glass fiber or toughened glass-ceramic insulators.

  10. Pb1–xMnxTe single crystals and their structural properties

    Directory of Open Access Journals (Sweden)

    NEBOJSA ROMCEVIC

    2004-12-01

    Full Text Available Pb1-xMnxTe crystals were grown by the vertical Bridgman method. Their structural properties were observed both by optical microscopy after chemical polishing and ething, and by X-ray powder diffraction analysis. A solution of 5 vol. % Br2 in HBr at room temperatur, for an exposure of 2 min was determined for chemical polishing. A solution of 20 g KOH in 1 ml H2O2, 2 ml glycerol (C3H8O3, and 20 ml H2O at room temperature for an exposure for 6 min was found to be a suitable etching solution. The obtained results are discussed and compared with published data.

  11. Crystal structure of actinide metals at high compression

    International Nuclear Information System (INIS)

    Fast, L.; Soederlind, P.

    1995-08-01

    The crystal structures of some light actinide metals are studied theoretically as a function of applied pressure. The first principles electronic structure theory is formulated in the framework of density functional theory, with the gradient corrected local density approximation of the exchange-correlation functional. The light actinide metals are shown to be well described as itinerant (metallic) f-electron metals and generally, they display a crystal structure which have, in agreement with previous theoretical suggestions, increasing degree of symmetry and closed-packing upon compression. The theoretical calculations agree well with available experimental data. At very high compression, the theory predicts closed-packed structures such as the fcc or the hcp structures or the nearly closed-packed bcc structure for the light actinide metals. A simple canonical band picture is presented to explain in which particular closed-packed form these metals will crystallize at ultra-high pressure

  12. Total chemical synthesis and X-ray structure of kaliotoxin by racemic protein crystallography.

    Science.gov (United States)

    Pentelute, Brad L; Mandal, Kalyaneswar; Gates, Zachary P; Sawaya, Michael R; Yeates, Todd O; Kent, Stephen B H

    2010-11-21

    Here we report the total synthesis of kaliotoxin by 'one pot' native chemical ligation of three synthetic peptides. A racemic mixture of D- and L-kaliotoxin synthetic protein molecules gave crystals in the centrosymmetric space group P1 that diffracted to atomic-resolution (0.95 Å), enabling the X-ray structure of kaliotoxin to be determined by direct methods.

  13. Single crystal structure analyses of scheelite-powellite CaW1-xMoxO4 solidsolutions and unique occurrence in Jisyakuyama skarn deposits

    Science.gov (United States)

    Yamashita, K.; Yoshiasa, A.; Miyazaki, H.; Tokuda, M.; Tobase, T.; Isobe, H.; Nishiyama, T.; Sugiyama, K.; Miyawaki, R.

    2017-12-01

    Jisyakuyama skarn deposit, Fukuchi, Fukuoka, Japan, shows a simple occurrenceformed by penetration of hot water into limestone cracks. A unique occurrence of scheelite-powellite CaW1-xMoxO4 minerals is observed in the skarn deposit. Many syntheticexperiments for scheelite-powellite solid solutions have been reported as research onfluorescent materials. In this system it is known that a complete continuous solid solution isformed even at room temperature. In this study, we have carried out the chemical analyses,crystal structural refinements and detail description of occurrence on scheelite-powelliteminerals. We have also attempted synthesis of single crystal of solid solution in a widecomposition range. The chemical compositions were determined by JEOL scanningelectron microscope and EDS, INCA system. We have performed the crystal structurerefinements of the scheelite-powellite CaW1-xMoxO4 solid solutions (x=0.0-1.0) byRIGAKU single-crystal structure analysis system RAPID. The R and S values are around0.0s and 1.03. As the result of structural refinements of natural products and many solidsolutions, we confirm that most large natural single crystals have compositions at bothendmembers, and large solid solution crystals are rare. The lattice constants, interatomicdistances and other crystallographic parameters for the solid solution change uniquely withcomposition and it was confirmed as a continuous solid solution. Single crystals of scheeliteendmember + powellite endmember + solid solution with various compositions form anaggregate in the deposit (Figure 1). Crystal shapes of powellite and scheelite arehypidiomorphic and allotriomorphic, respectively. Many solid solution crystals areaccompanied by scheelite endmember and a compositional gap is observed betweenpowellite and solid-solution crystals. The presence of several penetration solutions withsignificantly different W and Mo contents may be assumed. This research can be expectedto lead to giving restrictive

  14. CCDC 1416891: Experimental Crystal Structure Determination : Methyl-triphenyl-germanium

    KAUST Repository

    Bernatowicz, Piotr; Shkurenko, Aleksander; Osior, Agnieszka; Kamieński, Bohdan; Szymański, Sławomir

    2015-01-01

    An entry from the Cambridge Structural Database, the world’s repository for small molecule crystal structures. The entry contains experimental data from a crystal diffraction study. The deposited dataset for this entry is freely available from

  15. Structural Color Patterns by Electrohydrodynamic Jet Printed Photonic Crystals.

    Science.gov (United States)

    Ding, Haibo; Zhu, Cun; Tian, Lei; Liu, Cihui; Fu, Guangbin; Shang, Luoran; Gu, Zhongze

    2017-04-05

    In this work, we demonstrate the fabrication of photonic crystal patterns with controllable morphologies and structural colors utilizing electrohydrodynamic jet (E-jet) printing with colloidal crystal inks. The final shape of photonic crystal units is controlled by the applied voltage signal and wettability of the substrate. Optical properties of the structural color patterns are tuned by the self-assembly of the silica nanoparticle building blocks. Using this direct printing technique, it is feasible to print customized functional patterns composed of photonic crystal dots or photonic crystal lines according to relevant printing mode and predesigned tracks. This is the first report for E-jet printing with colloidal crystal inks. Our results exhibit promising applications in displays, biosensors, and other functional devices.

  16. SYNTHESIS, CHARACTERIZATION, AND CRYSTAL STRUCTURE ...

    African Journals Online (AJOL)

    a

    KEY WORDS: Barium, Crystal structure, 2,6-Pyridinedicarboxylic acid .... The rational design of novel metal-organic frameworks has attracted great ..... Bond, A.D.; Jones, W. Supramolecular Organization and Materials Design, Jones, W.; Rao,.

  17. A PMMA coated PMN–PT single crystal resonator for sensing chemical agents

    International Nuclear Information System (INIS)

    Frank, Michael; Kassegne, Sam; Moon, Kee S

    2010-01-01

    A highly sensitive lead magnesium niobate–lead titanate (PMN–PT) single crystal resonator coated with a thin film of polymethylmethacrylate (PMMA) useful for detecting chemical agents such as acetone, methanol, and isopropyl alcohol is presented. Swelling of the cured PMMA polymer layer in the presence of acetone, methanol, and isopropyl alcohol vapors is sensed as a mass change transduced to an electrical signal by the PMN–PT thickness shear mode sensor. Frequency change in the PMN–PT sensor is demonstrated to vary according to the concentration of the chemical vapor present within the sensing chamber. For acetone, the results indicate a frequency change more than 6000 times greater than that which would be expected from a quartz crystal microbalance coated with PMMA. This study is the first of its kind to demonstrate vapor loading of adsorbed chemical agents onto a polymer coated PMN–PT resonator

  18. Self-organized crystallization mechanism of non-equilibrium 2:1 type phyllosilicate systems

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    The crystallization mechanism of 2:1 type regular interstratified minerals is investigated in views of non-equilibrium thermodynamics. The structural chemistry of relative layers and their interstratified combinations is analyzed and six kinds of non-equilibrium chemical systems have been induced. The universal laws of chemical reactions which happened in the interface region of these non-equilibrium systems have been summarized. From these laws, two reaction systems crystallizing out Tosudite and Rectorite respectively have been recovered. The kinetic model of chemical reactions has been developed by means of the mass conservation law. The oscillatory solution showing regular interstratified features has also been obtained numerically. These results indicate that the difference in original chemical composition among systems can affect the chemical connotation of reactants, intermediate products and resultants, and the flow chart of chemical reaction, but cannot change their crystallization behavior of network-forming cations, bigger and smaller network-modifying cations during crystallization. Hence, their kinetic model reflecting the universal crystallization law of these cations is just the same. These systems will crystallize out regular interstratified minerals at suitable parameters, which always exist as domain with nanometer-sized in thickness and can be called the self-organized ordering structure.

  19. Clustered atom-replaced structure in single-crystal-like metal oxide

    Science.gov (United States)

    Araki, Takeshi; Hayashi, Mariko; Ishii, Hirotaka; Yokoe, Daisaku; Yoshida, Ryuji; Kato, Takeharu; Nishijima, Gen; Matsumoto, Akiyoshi

    2018-06-01

    By means of metal organic deposition using trifluoroacetates (TFA-MOD), we replaced and localized two or more atoms in a single-crystalline structure having almost perfect orientation. Thus, we created a new functional structure, namely, clustered atom-replaced structure (CARS), having single-crystal-like metal oxide. We replaced metals in the oxide with Sm and Lu and localized them. Energy dispersive x-ray spectroscopy results, where the Sm signal increases with the Lu signal in the single-crystalline structure, confirm evidence of CARS. We also form other CARS with three additional metals, including Pr. The valence number of Pr might change from 3+ to approximately 4+, thereby reducing the Pr–Ba distance. We directly observed the structure by a high-angle annular dark-field image, which provided further evidence of CARS. The key to establishing CARS is an equilibrium chemical reaction and a combination of additional larger and smaller unit cells to matrix cells. We made a new functional metal oxide with CARS and expect to realize CARS in other metal oxide structures in the future by using the above-mentioned process.

  20. Crystal structure of enolase from Drosophila melanogaster.

    Science.gov (United States)

    Sun, Congcong; Xu, Baokui; Liu, Xueyan; Zhang, Zhen; Su, Zhongliang

    2017-04-01

    Enolase is an important enzyme in glycolysis and various biological processes. Its dysfunction is closely associated with diseases. Here, the enolase from Drosophila melanogaster (DmENO) was purified and crystallized. A crystal of DmENO diffracted to 2.0 Å resolution and belonged to space group R32. The structure was solved by molecular replacement. Like most enolases, DmENO forms a homodimer with conserved residues in the dimer interface. DmENO possesses an open conformation in this structure and contains conserved elements for catalytic activity. This work provides a structural basis for further functional and evolutionary studies of enolase.

  1. Crystallization and Characterization of Galdieria sulphuraria RUBISCO in Two Crystal Forms: Structural Phase Transition Observed in P21 Crystal Form

    Directory of Open Access Journals (Sweden)

    Boguslaw Stec

    2007-10-01

    Full Text Available We have isolated ribulose-1,5-bisphosphate-carboxylase/oxygenase (RUBISCOfrom the red algae Galdieria Sulphuraria. The protein crystallized in two different crystalforms, the I422 crystal form being obtained from high salt and the P21 crystal form beingobtained from lower concentration of salt and PEG. We report here the crystallization,preliminary stages of structure determination and the detection of the structural phasetransition in the P21 crystal form of G. sulphuraria RUBISCO. This red algae enzymebelongs to the hexadecameric class (L8S8 with an approximate molecular weight 0.6MDa.The phase transition in G. sulphuraria RUBISCO leads from two hexadecamers to a singlehexadecamer per asymmetric unit. The preservation of diffraction power in a phasetransition for such a large macromolecule is rare.

  2. CheShift-2 resolves a local inconsistency between two X-ray crystal structures

    International Nuclear Information System (INIS)

    Vila, Jorge A.; Sue, Shih-Che; Fraser, James S.; Scheraga, Harold A.; Dyson, H. Jane

    2012-01-01

    Since chemical shifts provide important and relatively accessible information about protein structure in solution, a Web server, CheShift-2, was developed for structure interrogation, based on a quantum mechanics database of 13 C α chemical shifts. We report the application of CheShift-2 to a local inconsistency between two X-ray crystal structures (PDB IDs 1IKN and 1NFI) of the complex between the p65/p50 heterodimer of NFκB and its inhibitor IκBα. The availability of NMR resonance assignments that included the region of the inconsistency provided an opportunity for independent validation of the CheShift-2 server. Application of the server showed that the 13 C α chemical shifts measured for the Gly270-Pro281 sequence close to the C-terminus of IκBα were unequivocally consistent with the backbone structure modeled in the 1IKN structure, and were inconsistent with the 1NFI structure. Previous NOE measurements had demonstrated that the position of a tryptophan ring in the region immediately N-terminal in this region was not consistent with either structure. Subsequent recalculation of the local structure in this region, based on the electron density of the deposited structure factors for 1IKN, confirmed that the local backbone structure was best modeled by 1IKN, but that the rotamer of Trp258 is consistent with the 1NFI structure, including the presence of a hydrogen bond between the ring NεH of Trp258 and the backbone carbonyl group of Gln278. The consensus between all of these measures suggests that the CheShift-2 server operates well under circumstances in which backbone chemical shifts are available but where local plasticity may render X-ray structural data ambiguous.

  3. SYNTHESIS AND CRYSTAL STRUCTURE OF AN OXORHENIUM(V ...

    African Journals Online (AJOL)

    a

    2007 Chemical Society of Ethiopia. ______ ... 1Department of Chemistry, Nelson Mandela Metropolitan University, P.O. Box 77000, Port .... Details of the crystal data are given in Table 1, with selected bond lengths and angles in Table 2.

  4. Racemic & quasi-racemic protein crystallography enabled by chemical protein synthesis.

    Science.gov (United States)

    Kent, Stephen Bh

    2018-04-04

    A racemic protein mixture can be used to form centrosymmetric crystals for structure determination by X-ray diffraction. Both the unnatural d-protein and the corresponding natural l-protein are made by total chemical synthesis based on native chemical ligation-chemoselective condensation of unprotected synthetic peptide segments. Racemic protein crystallography is important for structure determination of the many natural protein molecules that are refractory to crystallization. Racemic mixtures facilitate the crystallization of recalcitrant proteins, and give diffraction-quality crystals. Quasi-racemic crystallization, using a single d-protein molecule, can facilitate the determination of the structures of a series of l-protein analog molecules. Copyright © 2018 Elsevier Ltd. All rights reserved.

  5. Ordered distribution of I and Cl in the low-temperature crystal structure of mutnovskite, Pb4As2S6ICl: An X-ray single-crystal study

    International Nuclear Information System (INIS)

    Bindi, Luca; Garavelli, Anna; Pinto, Daniela; Pratesi, Giovanni; Vurro, Filippo

    2008-01-01

    To study the temperature-dependent structural changes and to analyze the crystal chemical behavior of the halogens as a function of temperature, a crystal of the recently discovered mineral mutnovskite, ideally Pb 2 AsS 3 (I,Cl,Br), has been investigated by X-ray single-crystal diffraction methods at 300 and 110 K. At room temperature (RT) mutnovskite was confirmed to possess a centrosymmetric structure-type, space group Pnma, while at low temperature (110 K) it adopts a non-centrosymmetric orthorhombic structure-type, space group Pnm2 1 , with a=11.5394(9) A, b=6.6732(5) A, c=9.3454(7) A, V=719.64(9) A 3 and Z=2. Mutnovskite reconverts to the centrosymmetric-type upon returning to RT thus indicating that the phase transition is completely reversible in character. The refinement of the LT-structure leads to a residual factor R=0.0336 for 1827 independent observed reflections [F o >4σ(F o )] and 80 variables. The crystal structure of cooled mutnovskite is topologically identical to that observed at RT and the slight structural changes occurring during the phase transition Pnma→Pnm2 1 are mainly restricted to the coordination polyhedra around Pb. The structure solution revealed that I and Cl are ordered into two specific sites. Indeed, the unique mixed (I,Cl) position in the RT-structure (Wyckoff position 4c) transforms into two 2a Wyckoff positions in the LT-structure hosting I and Cl, respectively. - Graphical abstract: In the crystal structure of mutnovskite at 110 K the two halogens I and Cl are ordered into two specific sites and only slight changes in the coordination environment around Pb atoms occur during the phase transition Pnma→Pnm2 1 from the RT-structure to the LT-structure. Two kinds of layers alternating along a are present in the LT-structure: Layer I contains Cl atoms and [001] columns of Pb1 and Pb4 prisms, layer II contains I atoms and [001] columns of Pb2 and Pb3 prisms

  6. Imaging, structural, and chemical analysis of silicon nanowires

    International Nuclear Information System (INIS)

    Barsotti, R.J. Jr.; Fischer, J.E.; Lee, C.H.; Mahmood, J.; Adu, C.K.W.; Eklund, P.C.

    2002-01-01

    Laser ablation has been used to grow silicon nanowires with an average silicon crystal core diameter of 6.7 nm±2.9 nm surrounded by an amorphous SiO x sheath of 1-2 nm, the smallest silicon wires reported in the literature. Imaging, chemical, and structural analysis of these wires are reported. Due to the growth temperature and the presence of calcium impurities and trace oxygen, two distinct types of wires are found. They appear to grow by two different processes. One requires a metal catalyst, the other is catalyzed by oxygen. Suggestions for controlled synthesis based on these growth mechanisms are made

  7. Nano and micro reoriented domains and their relation with the crystal structure in the new ferroelectric boracite Zn3B7O13Br

    International Nuclear Information System (INIS)

    Campa-Molina, J; Ulloa-Godinez, S; Barrera, A; Bucio, L; Mata, J

    2006-01-01

    A new zinc brome boracite Zn 3 B 7 O 13 Br has been grown by a chemical transport reaction in closed quartz ampoules at 920 K. The crystal structure was characterized by Rietveld refinement. Ferroelectric nano and micro reorientable domains were found in this material using polarizing optical microscopy (PLM), scanning electron microscopy (SEM) and transmission electron microscopy (TEM). Chemical analysis was performed with x-ray energy dispersive spectroscopy (EDX). In the crystal, a new structure transition at 586 K from orthorhombic (Pca 2 1 ) to cubic cell (F4-bar3c) has been found. This transition was corroborated by differential scanning calorimetry (DSC)

  8. Nano and micro reoriented domains and their relation with the crystal structure in the new ferroelectric boracite Zn3B7O13Br

    Science.gov (United States)

    Campa-Molina, J.; Ulloa-Godínez, S.; Barrera, A.; Bucio, L.; Mata, J.

    2006-05-01

    A new zinc brome boracite Zn3B7O13Br has been grown by a chemical transport reaction in closed quartz ampoules at 920 K. The crystal structure was characterized by Rietveld refinement. Ferroelectric nano and micro reorientable domains were found in this material using polarizing optical microscopy (PLM), scanning electron microscopy (SEM) and transmission electron microscopy (TEM). Chemical analysis was performed with x-ray energy dispersive spectroscopy (EDX). In the crystal, a new structure transition at 586 K from orthorhombic (Pca 21) to cubic cell (F\\overline 4 3c ) has been found. This transition was corroborated by differential scanning calorimetry (DSC).

  9. Preparation and crystal structure of the phosphato-niobate Tl sub 3 NaNb sub 4 O sub 9 (PO sub 4 ) sub 2

    Energy Technology Data Exchange (ETDEWEB)

    Fakhfakh, M. (Tunis Univ. (Tunisia). Faculte des Sciences); Verbaere, A. (Nantes Univ., 44 (France)); Jouini, N. (Ecole Normale Superieure de l' Enseignement Technique, Tunis (TN))

    1992-01-01

    Chemical preparation and crystal structure are described. The symmetry is orthorhombic, space group C2cm. The crystal structure has been determined using. The structure is built up from NbO{sub 6} octahedra sharing corners and PO{sub 4} tetrahedra sharing three of their corners with octahedra to form chains running along c. These chains are connected together by isolted NbO{sub 6} octahedra leasing to a three-dimensional framework which delimits cavities and tunnels occupied by the Tl and Na ions.

  10. Studying Impact of Different Precipitating Agents on Crystal Structure, Morphology and Photocatalytic Activity of Bismuth Oxide

    Directory of Open Access Journals (Sweden)

    Yayuk Astuti

    2017-10-01

    How to Cite: Astuti, Y., Arnelli, Pardoyo, Fauziyah, A., Nurhayati, S., Wulansari, A.D., Andianingrum, R., Widiyandari, H., Bhaduri, G.A. (2017. Studying Impact of Different Precipitating Agents on Crystal Structure, Morphology and Photocatalytic Activity of Bismuth Oxide. Bulletin of Chemical Reaction Engineering & Catalysis, 12 (3: 478-484 (doi:10.9767/bcrec.12.3.1144.478-484

  11. Synthesis and crystal structure analysis of uranyl triple acetates

    Energy Technology Data Exchange (ETDEWEB)

    Klepov, Vladislav V., E-mail: vladislavklepov@gmail.com [Institute for Energy and Climate Research (IEK-6), Forschungszentrum Jülich GmbH, 52428 Jülich (Germany); Department of Chemistry, Samara National Research University, 443086 Samara (Russian Federation); Serezhkina, Larisa B.; Serezhkin, Victor N. [Department of Chemistry, Samara National Research University, 443086 Samara (Russian Federation); Alekseev, Evgeny V., E-mail: e.alekseev@fz-juelich.de [Institute for Energy and Climate Research (IEK-6), Forschungszentrum Jülich GmbH, 52428 Jülich (Germany); Institut für Kristallographie, RWTH Aachen University, 52066 Aachen (Germany)

    2016-12-15

    Single crystals of triple acetates NaR[UO{sub 2}(CH{sub 3}COO){sub 3}]{sub 3}·6H{sub 2}O (R=Mg, Co, Ni, Zn), well-known for their use as reagents for sodium determination, were grown from aqueous solutions and their structural and spectroscopic properties were studied. Crystal structures of the mentioned phases are based upon (Na[UO{sub 2}(CH{sub 3}COO){sub 3}]{sub 3}){sup 2–} clusters and [R(H{sub 2}O){sub 6}]{sup 2+} aqua-complexes. The cooling of a single crystal of NaMg[UO{sub 2}(CH{sub 3}COO){sub 3}]{sub 3}·6H{sub 2}O from 300 to 100 K leads to a phase transition from trigonal to monoclinic crystal system. Intermolecular interactions between the structural units and their mutual packing were studied and compared from the point of view of the stereoatomic model of crystal structures based on Voronoi-Dirichlet tessellation. Using this method we compared the crystal structures of the triple acetates with Na[UO{sub 2}(CH{sub 3}COO){sub 3}] and [R(H{sub 2}O){sub 6}][UO{sub 2}(CH{sub 3}COO){sub 3}]{sub 2} and proposed reasons of triple acetates stability. Infrared and Raman spectra were collected and their bands were assigned. - Graphical abstract: Single crystals of uranium based triple acetates, analytical reagents for sodium determination, were synthesized and structurally, spectroscopically and topologically characterized. The structures were compared with the structures of compounds from preceding families [M(H{sub 2}O){sub 6})][UO{sub 2}(CH{sub 3}COO){sub 3}]{sub 2} (M = Mg, Co, Ni, Zn) and Na[UO{sub 2}(CH{sub 3}COO){sub 3}]. Analysis was performed with the method of molecular Voronoi-Dirichlet polyhedra to reveal a large contribution of the hydrogen bonds into intermolecular interactions which can be a reason of low solubility of studied complexes.

  12. Crystal structure of tris(hydroxylammonium orthophosphate

    Directory of Open Access Journals (Sweden)

    Malte Leinemann

    2015-11-01

    Full Text Available The crystal structure of the title salt, ([H3NOH]+3·[PO4]3−, consists of discrete hydroxylammonium cations and orthophosphate anions. The atoms of the cation occupy general positions, whereas the anion is located on a threefold rotation axis that runs through the phosphorus atom and one of the phosphate O atoms. In the crystal structure, cations and anions are linked by intermolecular O—H...O and N—H...O hydrogen bonds into a three-dimensional network. Altogether, one very strong O—H...O, two N—H...O hydrogen bonds of medium strength and two weaker bifurcated N—H...O interactions are observed.

  13. Solid state structural investigations of the bis(chalcone) compound with single crystal X-ray crystallography, DFT, gamma-ray spectroscopy and chemical spectroscopy methods

    Science.gov (United States)

    Yakalı, Gül; Biçer, Abdullah; Eke, Canel; Cin, Günseli Turgut

    2018-04-01

    A bis(chalcone), (2E,6E)-2,6-bis((E)-3phenylallidene)cyclohexanone, was characterized by 1H NMR, 13C NMR, FTIR, UV-Vis spectroscopy, gamma-ray spectroscopy and single crystal X- ray structural analysis. The optimized molecular structure of the compound is calculated using DFT/B3LYP with 6-31G (d,p) level. The calculated geometrical parameters are in good agreement with the experimental data obtained from our reported X-ray structure. The powder and single crystal compounds were gama-irradiated using clinical electron linear accelerator and 60Co gamma-ray source, respectively. Spectral studies (1H NMR, 13C NMR, FTIR and UV-Vis) of powder chalcone compound were also investigated before and after irradiation. Depending on the irradiation notable changes were observed in spectral features powder sample. Single crystal X-ray diffraction investigation shows that both unirradiated and irradiated single crystal samples crystallizes in a orthorhombic crystal system in the centrosymmetric space group Pbcn and exhibits an C-H..O intramolecular and intermolecular hydrogen bonds. The crystal packing is stabilised by strong intermolecular bifurcate C-H..O hydrogen bonds and π…π stacking interactions. The asymmetric unit of the title compound contains one-half of a molecule. The other half of the molecule is generated with (1-x,y,-3/2-z) symmetry operator. The molecule is almost planar due to having π conjugated system of chalcones. However, irradiated single crystal compound showed significant changes lattice parameters, crystal volume and density. According to results of gamma-ray spectroscopy, radioactive elements of powder compound which are 123Sb(n,g),124Sb,57Fe(g,p),56Mn, 55Mn(g,n), and 54Mn were determined using photoactivation analysis. However, the most intensive gamma-ray energy signals are 124Sb.

  14. Ultrasmall-angle X-ray scattering analysis of photonic crystal structure

    International Nuclear Information System (INIS)

    Abramova, V. V.; Sinitskii, A. S.; Grigor'eva, N. A.; Grigor'ev, S. V.; Belov, D. V.; Petukhov, A. V.; Mistonov, A. A.; Vasil'eva, A. V.; Tret'yakov, Yu. D.

    2009-01-01

    The results of an ultrasmall-angle X-ray scattering study of iron(III) oxide inverse opal thin films are presented. The photonic crystals examined are shown to have fcc structure with amount of stacking faults varying among the samples. The method used in this study makes it possible to easily distinguish between samples with predominantly twinned fcc structure and nearly perfect fcc stacking. The difference observed between samples fabricated under identical conditions is attributed to random layer stacking in the self-assembled colloidal crystals used as templates for fabricating the inverse opals. The present method provides a versatile tool for analyzing photonic crystal structure in studies of inverse opals made of various materials, colloidal crystals, and three-dimensional photonic crystals of other types.

  15. Sequential structural and optical evolution of MoS2 by chemical synthesis and exfoliation

    Science.gov (United States)

    Kim, Ju Hwan; Kim, Jungkil; Oh, Si Duck; Kim, Sung; Choi, Suk-Ho

    2015-06-01

    Various types of MoS2 structures are successfully obtained by using economical and facile sequential synthesis and exfoliation methods. Spherically-shaped lumps of multilayer (ML) MoS2 are prepared by using a conventional hydrothermal method and were subsequently 1st-exfoliated in hydrazine while being kept in autoclave to be unrolled and separated into five-to-six-layer MoS2 pieces of several-hundred nm in size. The MoS2 MLs are 2nd-exfoliated in sodium naphthalenide under an Ar ambient to finally produce bilayer MoS2 crystals of ~100 nm. The sequential exfoliation processes downsize MoS2 laterally and reduce its number of layers. The three types of MoS2 allotropes exhibit particular optical properties corresponding to their structural differences. These results suggest that two-dimensional MoS2 crystals can be prepared by employing only chemical techniques without starting from high-pressure-synthesized bulk MoS2 crystals.

  16. Isostructurality and non-isostructurality in the series of halogenated organic crystal substances. The structure of Hal-aggregates

    International Nuclear Information System (INIS)

    Grineva, O.V.; Zorkij, P.M.

    2001-01-01

    Local characteristics and the type of intermolecular Hal-aggregates (ensembles of contacting halogen atoms of adjacent molecules) present in chemically similar halogenated crystal substances, differing only in the nature of Hal atoms, are compared. 23 series of halogenated hydrocarbons, including 57 crystal structures were considered. A clearly pronounced specificity of Hal-aggregates for compounds with a low and intermediate content of halogen was revealed. It was found that, as a rule, coordination number of Hal atom by Hal adjacent atoms increases in the series F-Cl-Br-I [ru

  17. Determination of structure and properties of molecular crystals from first principles.

    Science.gov (United States)

    Szalewicz, Krzysztof

    2014-11-18

    CONSPECTUS: Until recently, it had been impossible to predict structures of molecular crystals just from the knowledge of the chemical formula for the constituent molecule(s). A solution of this problem has been achieved using intermolecular force fields computed from first principles. These fields were developed by calculating interaction energies of molecular dimers and trimers using an ab initio method called symmetry-adapted perturbation theory (SAPT) based on density-functional theory (DFT) description of monomers [SAPT(DFT)]. For clusters containing up to a dozen or so atoms, interaction energies computed using SAPT(DFT) are comparable in accuracy to the results of the best wave function-based methods, whereas the former approach can be applied to systems an order of magnitude larger than the latter. In fact, for monomers with a couple dozen atoms, SAPT(DFT) is about equally time-consuming as the supermolecular DFT approach. To develop a force field, SAPT(DFT) calculations are performed for a large number of dimer and possibly also trimer configurations (grid points in intermolecular coordinates), and the interaction energies are then fitted by analytic functions. The resulting force fields can be used to determine crystal structures and properties by applying them in molecular packing, lattice energy minimization, and molecular dynamics calculations. In this way, some of the first successful determinations of crystal structures were achieved from first principles, with crystal densities and lattice parameters agreeing with experimental values to within about 1%. Crystal properties obtained using similar procedures but empirical force fields fitted to crystal data have typical errors of several percent due to low sensitivity of empirical fits to interactions beyond those of the nearest neighbors. The first-principles approach has additional advantages over the empirical approach for notional crystals and cocrystals since empirical force fields can only be

  18. Calculations of electronic structure of UF6 molecule and crystal UO2 with relativistic pseudopotential

    International Nuclear Information System (INIS)

    Ehvarestov, R.A.; Panin, A.I.; Bandura, A.V.

    2008-01-01

    Account of relativistic effects on the properties of uranium hexafluoride is testified. Detailed comparison of single electron energies spectrum revealed in nonrelativistic (by Hartree-Fock method), relativistic (by Dirac-Fock method), and scalar-relativistic (using relativistic potential of atomic uranium frame) has been conducted. Optimization procedures of atomic basis in LCAO calculations of molecules and crystals permissive taking into account distortion of atomic orbitals when chemical bonding are discussed, and optimization effect of atomic basis on the results of scalar-relativistic calculations of UF 6 molecule properties is analyzed. Calculations of electronic structure and properties of UO 2 crystal having relativistic and nonrelativistic pseudopotentials have been realized [ru

  19. The Effect of Cellulose Crystal Structure and Solid-State Morphology on the Activity of Cellulases

    Energy Technology Data Exchange (ETDEWEB)

    Stipanovic, Arthur J [SUNY College of Environmental Science and Forestry

    2014-11-17

    Consistent with the US-DOE and USDA “Roadmap” objective of producing ethanol and chemicals from cellulosic feedstocks more efficiently, a three year research project entitled “The Effect of Cellulose Crystal Structure and Solid-State Morphology on the Activity of Cellulases” was initiated in early 2003 under DOE sponsorship (Project Number DE-FG02-02ER15356). A three year continuation was awarded in June 2005 for the period September 15, 2005 through September 14, 2008. The original goal of this project was to determine the effect of cellulose crystal structure, including allomorphic crystalline form (Cellulose I, II, III, IV and sub-allomorphs), relative degree of crystallinity and crystallite size, on the activity of different types of genetically engineered cellulase enzymes to provide insight into the mechanism and kinetics of cellulose digestion by “pure” enzymes rather than complex mixtures. We expected that such information would ultimately help enhance the accessibility of cellulose to enzymatic conversion processes thereby creating a more cost-effective commercial process yielding sugars for fermentation into ethanol and other chemical products. Perhaps the most significant finding of the initial project phase was that conversion of native bacterial cellulose (Cellulose I; BC-I) to the Cellulose II (BC-II) crystal form by aqueous NaOH “pretreatment” provided an increase in cellulase conversion rate approaching 2-4 fold depending on enzyme concentration and temperature, even when initial % crystallinity values were similar for both allomorphs.

  20. X-ray photoelectron spectra and electronic structure of quasi-one-dimensional SbSeI crystals

    Directory of Open Access Journals (Sweden)

    J.Grigas

    2007-01-01

    Full Text Available The paper presents the X-ray photoelectron spectra (XPS of the valence band (VB and of the principal core levels from the (110 and (001 crystal surfaces for the quasi-one-dimensional high permittivity SbSeI single crystal isostructural to ferroelectric SbSI. The XPS were measured with monochromatized Al Ka radiation in the energy range of 0-1400 eV at room temperature. The VB is located from 1.6 to 20 eV below the Fermi level. Experimental energies of the VB and core levels are compared with the results of theoretical ab initio calculations of the molecular model of the SbSeI crystal. The electronic structure of the VB is revealed. Shifts in the core-level binding energies of surface atoms relative to bulk ones, which show a dependency on surface crystallography, have been observed. The chemical shifts of the core levels (CL in the SbSeI crystal for the Sb, I and Se states are obtained.

  1. Crystal structure and solid-state properties of discrete hexa cationic ...

    Indian Academy of Sciences (India)

    Subsequently, weight loss of 33% in two stages from 242 to 691◦C can be assigned to the decomposition of triazole ligands. 3.3 Description of the crystal structure. The solid-state structure of ZnT was unambiguously determined by the single crystal X-ray diffraction tech- nique (figures 2 and 3). Compound ZnT crystallizes in.

  2. Latest Developments in Data Analysis and Structure Determination and Refinement: Software for Chemical Crystallography

    International Nuclear Information System (INIS)

    Dix, I.; Adam, M.; Jacob, H. F.; Roter, A.

    2003-01-01

    The introduction of a two-dimensional CCD X-ray detector nearly 10 years ago by Bruker started a revolution in chemical crystallography. Since then, crystallographers can accomplish a complete data collection even of small and poorly scattering crystals in a few hours instead of days. The launch of the kappa geometry by Nonius a few years ago beforehand equally revolutionized the field of single crystal diffractometry. Currently Bruker Nonius has far more than 500 CCD systems installed. The latest development of Bruker Nonius, the X8 APEX, is the powerful combination of both: the APEX CCD detector and the unique Kappa four-circle goniometer. The APEX 4K CCD detector provides the utmost sensitivity, while the Kappa four-circle goniometer offers a very open geometry, granting all the flexibility to align any crystallographic axis. This provides a more efficient data collection for axial photographs to investigate e.g. diffuse scattering or incommensurate structures. Even the crystal-detector distance is computer-controlled for precise and superior data collection. The X8 APEX software suite gives a whole new look to the CCD users interface. It not only has improved data collection abilities, but also guides the chemist or mineralogist through gathering the raw crystal data to producing the final crystal structure. It provides context-dependent menus, which are well-known from business software packages such as Outlook. The tools for unit cell determination, views into reciprocal space, optimisation of the data collection strategy, data integration, scaling and correcting (SADABS) as well as tools for structure solving and refining (SHELXTL package) will be presented. Low temperature work has become an essential tool for challenging samples. The Bruker Nonius Kryo-Flex cryogenic device makes chemical crystallography at low temperatures a routine method in your laboratory. Of course, the Kryo-Flex is fully controlled by the new graphical user interface of the X8 APEX

  3. Crystal structure and magnetism of UOsAl

    Energy Technology Data Exchange (ETDEWEB)

    Andreev, A.V., E-mail: andreev@fzu.cz [Institute of Physics, Academy of Sciences, Na Slovance 2, 182 21 Prague (Czech Republic); Daniš, S. [Department of Condensed Matter Physics, Charles University, Ke Karlovu 5, 121 16 Prague (Czech Republic); Šebek, J.; Henriques, M.S.; Vejpravová, J. [Institute of Physics, Academy of Sciences, Na Slovance 2, 182 21 Prague (Czech Republic); Gorbunov, D.I. [Institute of Physics, Academy of Sciences, Na Slovance 2, 182 21 Prague (Czech Republic); Dresden High Magnetic Field Laboratory (HLD-EMFL), Helmholtz-Zentrum, Dresden-Rossendorf, D-01314 Dresden (Germany); Havela, L. [Department of Condensed Matter Physics, Charles University, Ke Karlovu 5, 121 16 Prague (Czech Republic)

    2017-04-15

    Crystal structure, magnetization, and specific heat were studied on single crystal of uranium intermetallic compound UOsAl. It is a hexagonal Laves phase of MgZn{sub 2} type, space group P6{sub 3}/mmc, with lattice parameters a=536.4 pm, c=845.3 pm. Shortest inter-uranium distance 313 pm (along the c-axis) is considerably smaller than the Hill limit (340 pm). The compound is a weakly temperature-dependent paramagnet with magnetic susceptibility of ≈1.5*10{sup −8} m{sup 3} mol{sup −1} (at T=2 K), which is slightly higher with magnetic field along the a-axis compared to the c-axis. The Sommerfeld coefficient of electronic specific heat has moderate value of γ=36 mJ mol{sup −1} K{sup −2}. - Highlights: • Crystal structure and magnetic properties were studied on single crystal of UOsAl with hexagonal structure of MgZn{sub 2} type. • Shortest inter-uranium distance 313 pm (along the c-axis) is considerably smaller than the Hill limit (340 pm). • UOsAl has paramagnetic ground state as the compounds with T=Fe and Ru, i.e. 3d and 4d analogues of Os.

  4. Carboxylic acids in crystallization of macromolecules: learning from successful crystallization experiments.

    Science.gov (United States)

    Offermann, Lesa R; He, John Z; Mank, Nicholas J; Booth, William T; Chruszcz, Maksymilian

    2014-03-01

    The production of macromolecular crystals suitable for structural analysis is one of the most important and limiting steps in the structure determination process. Often, preliminary crystallization trials are performed using hundreds of empirically selected conditions. Carboxylic acids and/or their salts are one of the most popular components of these empirically derived crystallization conditions. Our findings indicate that almost 40 % of entries deposited to the Protein Data Bank (PDB) reporting crystallization conditions contain at least one carboxylic acid. In order to analyze the role of carboxylic acids in macromolecular crystallization, a large-scale analysis of the successful crystallization experiments reported to the PDB was performed. The PDB is currently the largest source of crystallization data, however it is not easily searchable. These complications are due to a combination of a free text format, which is used to capture information on the crystallization experiments, and the inconsistent naming of chemicals used in crystallization experiments. Despite these difficulties, our approach allows for the extraction of over 47,000 crystallization conditions from the PDB. Initially, the selected conditions were investigated to determine which carboxylic acids or their salts are most often present in crystallization solutions. From this group, selected sets of crystallization conditions were analyzed in detail, assessing parameters such as concentration, pH, and precipitant used. Our findings will lead to the design of new crystallization screens focused around carboxylic acids.

  5. Programmatic conversion of crystal structures into 3D printable files using Jmol

    OpenAIRE

    Scalfani, Vincent F.; Williams, Antony J.; Tkachenko, Valery; Karapetyan, Karen; Pshenichnov, Alexey; Hanson, Robert M.; Liddie, Jahred M.; Bara, Jason E.

    2016-01-01

    Background Three-dimensional (3D) printed crystal structures are useful for chemistry teaching and research. Current manual methods of converting crystal structures into 3D printable files are time-consuming and tedious. To overcome this limitation, we developed a programmatic method that allows for facile conversion of thousands of crystal structures directly into 3D printable files. Results A collection of over 30,000 crystal structures in crystallographic information file (CIF) format from...

  6. Chemically Patterned Inverse Opal Created by a Selective Photolysis Modification Process.

    Science.gov (United States)

    Tian, Tian; Gao, Ning; Gu, Chen; Li, Jian; Wang, Hui; Lan, Yue; Yin, Xianpeng; Li, Guangtao

    2015-09-02

    Anisotropic photonic crystal materials have long been pursued for their broad applications. A novel method for creating chemically patterned inverse opals is proposed here. The patterning technique is based on selective photolysis of a photolabile polymer together with postmodification on released amine groups. The patterning method allows regioselective modification within an inverse opal structure, taking advantage of selective chemical reaction. Moreover, combined with the unique signal self-reporting feature of the photonic crystal, the fabricated structure is capable of various applications, including gradient photonic bandgap and dynamic chemical patterns. The proposed method provides the ability to extend the structural and chemical complexity of the photonic crystal, as well as its potential applications.

  7. Structural and optical properties of nano-structured CdS thin films prepared by chemical bath deposition

    Energy Technology Data Exchange (ETDEWEB)

    Bai, Rekha, E-mail: rekha.mittal07@gmail.com; Kumar, Dinesh; Chaudhary, Sujeet; Pandya, Dinesh K. [Thin Film Laboratory, Physics Department, Indian Institute of Technology Delhi, New Delhi-110016 (India)

    2016-05-06

    Cadmium sulfide (CdS) thin films have been deposited on conducting glass substrates by chemical bath deposition (CBD) technique. The effect of precursor concentration on the structural, morphological, compositional, and optical properties of the CdS films has been studied. Crystal structure of these CdS films is characterized by X-ray diffraction (XRD) and it reveals polycrystalline structure with mixture of cubic and wurtzite phases with grain size decreasing as precursor concentration is increased. Optical studies reveal that the CdS thin films have high transmittance in visible spectral region reaching 90% and the films possess direct optical band gap that decreases from 2.46 to 2.39 eV with decreasing bath concentration. Our study suggests that growth is nucleation controlled.

  8. Structural and optical properties of nano-structured CdS thin films prepared by chemical bath deposition

    International Nuclear Information System (INIS)

    Bai, Rekha; Kumar, Dinesh; Chaudhary, Sujeet; Pandya, Dinesh K.

    2016-01-01

    Cadmium sulfide (CdS) thin films have been deposited on conducting glass substrates by chemical bath deposition (CBD) technique. The effect of precursor concentration on the structural, morphological, compositional, and optical properties of the CdS films has been studied. Crystal structure of these CdS films is characterized by X-ray diffraction (XRD) and it reveals polycrystalline structure with mixture of cubic and wurtzite phases with grain size decreasing as precursor concentration is increased. Optical studies reveal that the CdS thin films have high transmittance in visible spectral region reaching 90% and the films possess direct optical band gap that decreases from 2.46 to 2.39 eV with decreasing bath concentration. Our study suggests that growth is nucleation controlled.

  9. AB stacked few layer graphene growth by chemical vapor deposition on single crystal Rh(1 1 1) and electronic structure characterization

    International Nuclear Information System (INIS)

    Kordatos, Apostolis; Kelaidis, Nikolaos; Giamini, Sigiava Aminalragia; Marquez-Velasco, Jose; Xenogiannopoulou, Evangelia; Tsipas, Polychronis; Kordas, George; Dimoulas, Athanasios

    2016-01-01

    Highlights: • Growth of non-defective few layer graphene on Rh(1 1 1) substrates using an ambient- pressure CVD method. • Control of graphene stacking order via the cool-down rate. • Graphene is grown with a mainly AB-stacking geometry on single-crystalline Rhodium for a slow cool-down rate and non-AB for a very fast cool-down. • Good epitaxial orientation of the surface is presented through the RHEED data and confirmed with ARPES characterization for the lower cool-down rate, where graphene's ΓK direction a perfectly aligned with the ΓK direction of the Rh(1 1 1) single crystal. - Abstract: Graphene synthesis on single crystal Rh(1 1 1) catalytic substrates is performed by Chemical Vapor Deposition (CVD) at 1000 °C and atmospheric pressure. Raman analysis shows full substrate coverage with few layer graphene. It is found that the cool-down rate strongly affects the graphene stacking order. When lowered, the percentage of AB (Bernal) -stacked regions increases, leading to an almost full AB stacking order. When increased, the percentage of AB-stacked graphene regions decreases to a point where almost a full non AB-stacked graphene is grown. For a slow cool-down rate, graphene with AB stacking order and good epitaxial orientation with the substrate is achieved. This is indicated mainly by Raman characterization and confirmed by Reflection high-energy electron diffraction (RHEED) imaging. Additional Scanning Tunneling Microscopy (STM) topography data confirm that the grown graphene is mainly an AB-stacked structure. The electronic structure of the graphene/Rh(1 1 1) system is examined by Angle resolved Photo-Emission Spectroscopy (ARPES), where σ and π bands of graphene, are observed. Graphene's ΓK direction is aligned with the ΓK direction of the substrate, indicating no significant contribution from rotated domains.

  10. AB stacked few layer graphene growth by chemical vapor deposition on single crystal Rh(1 1 1) and electronic structure characterization

    Energy Technology Data Exchange (ETDEWEB)

    Kordatos, Apostolis [National Center for Scientific Research “Demokritos”, Athens, 15310 (Greece); Kelaidis, Nikolaos, E-mail: n.kelaidis@inn.demokritos.gr [National Center for Scientific Research “Demokritos”, Athens, 15310 (Greece); Giamini, Sigiava Aminalragia [National Center for Scientific Research “Demokritos”, Athens, 15310 (Greece); University of Athens, Department of Physics, Section of Solid State Physics, Athens, 15684 Greece (Greece); Marquez-Velasco, Jose [National Center for Scientific Research “Demokritos”, Athens, 15310 (Greece); National Technical University of Athens, Department of Physics, Athens, 15784 Greece (Greece); Xenogiannopoulou, Evangelia; Tsipas, Polychronis; Kordas, George; Dimoulas, Athanasios [National Center for Scientific Research “Demokritos”, Athens, 15310 (Greece)

    2016-04-30

    Highlights: • Growth of non-defective few layer graphene on Rh(1 1 1) substrates using an ambient- pressure CVD method. • Control of graphene stacking order via the cool-down rate. • Graphene is grown with a mainly AB-stacking geometry on single-crystalline Rhodium for a slow cool-down rate and non-AB for a very fast cool-down. • Good epitaxial orientation of the surface is presented through the RHEED data and confirmed with ARPES characterization for the lower cool-down rate, where graphene's ΓK direction a perfectly aligned with the ΓK direction of the Rh(1 1 1) single crystal. - Abstract: Graphene synthesis on single crystal Rh(1 1 1) catalytic substrates is performed by Chemical Vapor Deposition (CVD) at 1000 °C and atmospheric pressure. Raman analysis shows full substrate coverage with few layer graphene. It is found that the cool-down rate strongly affects the graphene stacking order. When lowered, the percentage of AB (Bernal) -stacked regions increases, leading to an almost full AB stacking order. When increased, the percentage of AB-stacked graphene regions decreases to a point where almost a full non AB-stacked graphene is grown. For a slow cool-down rate, graphene with AB stacking order and good epitaxial orientation with the substrate is achieved. This is indicated mainly by Raman characterization and confirmed by Reflection high-energy electron diffraction (RHEED) imaging. Additional Scanning Tunneling Microscopy (STM) topography data confirm that the grown graphene is mainly an AB-stacked structure. The electronic structure of the graphene/Rh(1 1 1) system is examined by Angle resolved Photo-Emission Spectroscopy (ARPES), where σ and π bands of graphene, are observed. Graphene's ΓK direction is aligned with the ΓK direction of the substrate, indicating no significant contribution from rotated domains.

  11. Crystal and molecular structures of benzo[4,5]imidazo[1,2-c]quinazolin-6-one and 10-carboxybenzo[4,5]imidazo[1,2-c]quinazolin-6-one: A quantum-chemical study of their tautomerism

    International Nuclear Information System (INIS)

    Koval’chukova, O. V.; Stash, A. I.; Strashnov, P. V.; Neborak, E. V.; Strashnova, S. B.; Zaitsev, B. E.

    2011-01-01

    Benzo[4,5]imidazo[1,2-c]quinazolin-6-one and 10-carboxybenzo[4,5]imidazo[1,2-c]quinazolin-6-one were isolated in the crystalline state and studied by X-ray diffraction. The crystal and molecular structures of these compounds were determined by X-ray diffraction. The energy characteristics of the tautomeric and ionic forms were calculated by the quantum-chemical PM3 method.

  12. Crystallization mechanisms of acicular crystals

    Science.gov (United States)

    Puel, François; Verdurand, Elodie; Taulelle, Pascal; Bebon, Christine; Colson, Didier; Klein, Jean-Paul; Veesler, Stéphane

    2008-01-01

    In this contribution, we present an experimental investigation of the growth of four different organic molecules produced at industrial scale with a view to understand the crystallization mechanism of acicular or needle-like crystals. For all organic crystals studied in this article, layer-by-layer growth of the lateral faces is very slow and clear, as soon as the supersaturation is high enough, there is competition between growth and surface-activated secondary nucleation. This gives rise to pseudo-twinned crystals composed of several needle individuals aligned along a crystallographic axis; this is explained by regular over- and inter-growths as in the case of twinning. And when supersaturation is even higher, nucleation is fast and random. In an industrial continuous crystallization, the rapid growth of needle-like crystals is to be avoided as it leads to fragile crystals or needles, which can be partly broken or totally detached from the parent crystals especially along structural anisotropic axis corresponding to weaker chemical bonds, thus leading to slower growing faces. When an activated mechanism is involved such as a secondary surface nucleation, it is no longer possible to obtain a steady state. Therefore, the crystal number, size and habit vary significantly with time, leading to troubles in the downstream processing operations and to modifications of the final solid-specific properties. These results provide valuable information on the unique crystallization mechanisms of acicular crystals, and show that it is important to know these threshold and critical values when running a crystallizer in order to obtain easy-to-handle crystals.

  13. Crystal Growth of Ca3Nb(Ga1−xAlx3Si2O14 Piezoelectric Single Crystals with Various Al Concentrations

    Directory of Open Access Journals (Sweden)

    Yuui Yokota

    2015-08-01

    Full Text Available Ca3Nb(Ga1−xAlx3Si2O14 (CNGAS single crystals with various Al concentrations were grown by a micro-pulling-down (µ-PD method and their crystal structures, chemical compositions, crystallinities were investigated. CNGAS crystals with x = 0.2, 0.4 and 0.6 indicated a single phase of langasite-type structure without any secondary phases. In contrast, the crystals with x = 0.8 and 1 included some secondary phases in addition to the langasite-type phase. Lattice parameters, a- and c-axes lengths, of the langasite-type phase systematically decreased with an increase of Al concentration. The results of chemical composition analysis revealed that the actual Al concentrations in as-grown crystals were almost consistent with the nominal compositions. In addition, there was no large segregation of each cation along the growth direction.

  14. On the strain-induced fibrillar microstructure of polyethylene: Influence of chemical structure, initial morphology and draw temperature

    Directory of Open Access Journals (Sweden)

    B. Xiong

    2016-04-01

    Full Text Available The influence of crystalline microstructure and molecular topology on the strain-induced fibrillar transformation of semi-crystalline polyethylenes having various chemical structures including co-unit content and molecular weight and crystallized under various thermal treatments was studied by in situ SAXS at different draw temperatures. The long period of the nascent microfibrils, Lpf, proved to be strongly dependent on the draw temperature but non-sensitive to the initial crystallization conditions. Lpf was smaller than the initial long period. Both findings have been ascribed to the straininduced melting-recrystallization process as generally claimed in the literature. The microfibrils diameter, Df, was shown to depend on the draw temperature and initial microstructure in a different way as Lpf. The evolution of Df was shown to correlate with the interfacial layer thickness that mainly depends on the chemical structure of the chains. It was concluded that, in contrast to Lpf, the microfibril diameter should not be directly sensitive to the strain-induced melting-recrystallization. The proposed scenario is that after the generation of the protofibrils by fragmentation of the crystalline lamellae at yielding, the diameter of the microfibril during the course of their stabilization should be governed by the chain-unfolding and subsequent aggregation of the unfolded chains onto the lateral surface of the microfibrils. The morphogenesis of the microfibrils should therefore essentially depend on the chemical structure of the polymer that governs its crystallization ability, its chain topology and subsequently its fragmentation process at yielding. This scenario is summed up in a sketch.

  15. CCDC 1416891: Experimental Crystal Structure Determination : Methyl-triphenyl-germanium

    KAUST Repository

    Bernatowicz, Piotr

    2015-01-01

    An entry from the Cambridge Structural Database, the world’s repository for small molecule crystal structures. The entry contains experimental data from a crystal diffraction study. The deposited dataset for this entry is freely available from the CCDC and typically includes 3D coordinates, cell parameters, space group, experimental conditions and quality measures.

  16. CCDC 1408042: Experimental Crystal Structure Determination : 6,13-dimesitylpentacene

    KAUST Repository

    Shi, Xueliang

    2015-01-01

    An entry from the Cambridge Structural Database, the world’s repository for small molecule crystal structures. The entry contains experimental data from a crystal diffraction study. The deposited dataset for this entry is freely available from the CCDC and typically includes 3D coordinates, cell parameters, space group, experimental conditions and quality measures.

  17. CCDC 1475929: Experimental Crystal Structure Determination : trimethylammonium tribromo-tin(iv)

    KAUST Repository

    Dang, Yangyang; Zhong, Cheng; Zhang, Guodong; Ju, Dianxing; Wang, Lei; Xia, Shengqing; Xia, Haibing; Tao, Xutang

    2016-01-01

    An entry from the Cambridge Structural Database, the world’s repository for small molecule crystal structures. The entry contains experimental data from a crystal diffraction study. The deposited dataset for this entry is freely available from

  18. CCDC 1475930: Experimental Crystal Structure Determination : trimethylammonium trichloro-tin(iv)

    KAUST Repository

    Dang, Yangyang; Zhong, Cheng; Zhang, Guodong; Ju, Dianxing; Wang, Lei; Xia, Shengqing; Xia, Haibing; Tao, Xutang

    2016-01-01

    An entry from the Cambridge Structural Database, the world’s repository for small molecule crystal structures. The entry contains experimental data from a crystal diffraction study. The deposited dataset for this entry is freely available from

  19. CCDC 1475931: Experimental Crystal Structure Determination : trimethylammonium trichloro-tin(iv)

    KAUST Repository

    Dang, Yangyang; Zhong, Cheng; Zhang, Guodong; Ju, Dianxing; Wang, Lei; Xia, Shengqing; Xia, Haibing; Tao, Xutang

    2016-01-01

    An entry from the Cambridge Structural Database, the world’s repository for small molecule crystal structures. The entry contains experimental data from a crystal diffraction study. The deposited dataset for this entry is freely available from

  20. CCDC 1482638: Experimental Crystal Structure Determination : trimethylammonium trichloro-tin(iv)

    KAUST Repository

    Dang, Yangyang; Zhong, Cheng; Zhang, Guodong; Ju, Dianxing; Wang, Lei; Xia, Shengqing; Xia, Haibing; Tao, Xutang

    2016-01-01

    An entry from the Cambridge Structural Database, the world’s repository for small molecule crystal structures. The entry contains experimental data from a crystal diffraction study. The deposited dataset for this entry is freely available from

  1. Macromolecular crystallization in microgravity

    International Nuclear Information System (INIS)

    Snell, Edward H; Helliwell, John R

    2005-01-01

    Density difference fluid flows and sedimentation of growing crystals are greatly reduced when crystallization takes place in a reduced gravity environment. In the case of macromolecular crystallography a crystal of a biological macromolecule is used for diffraction experiments (x-ray or neutron) so as to determine the three-dimensional structure of the macromolecule. The better the internal order of the crystal then the greater the molecular structure detail that can be extracted. It is this structural information that enables an understanding of how the molecule functions. This knowledge is changing the biological and chemical sciences, with major potential in understanding disease pathologies. In this review, we examine the use of microgravity as an environment to grow macromolecular crystals. We describe the crystallization procedures used on the ground, how the resulting crystals are studied and the knowledge obtained from those crystals. We address the features desired in an ordered crystal and the techniques used to evaluate those features in detail. We then introduce the microgravity environment, the techniques to access that environment and the theory and evidence behind the use of microgravity for crystallization experiments. We describe how ground-based laboratory techniques have been adapted to microgravity flights and look at some of the methods used to analyse the resulting data. Several case studies illustrate the physical crystal quality improvements and the macromolecular structural advances. Finally, limitations and alternatives to microgravity and future directions for this research are covered. Macromolecular structural crystallography in general is a remarkable field where physics, biology, chemistry and mathematics meet to enable insight to the fundamentals of life. As the reader will see, there is a great deal of physics involved when the microgravity environment is applied to crystallization, some of it known, and undoubtedly much yet to

  2. Electronic structure of single crystal C60

    International Nuclear Information System (INIS)

    Wu, J.; Shen, Z.X.; Dessau, D.S.; Cao, R.; Marshall, D.S.; Pianetta, P.; Lindau, I.; Yang, X.; Terry, J.; King, D.M.; Wells, B.O.; Elloway, D.; Wendt, H.R.; Brown, C.A.; Hunziker, H.; Vries, M.S. de

    1992-01-01

    We report angle-resolved photoemission data from single crystals of C 60 cleaved in UHV. Unlike the other forms of pure carbon, the valence band spectrum of C 60 consists of many sharp features that can be essentially accounted for by the quantum chemical calculations describing individual molecules. This suggests that the electronic structure of solid C 60 is mainly determined by the bonding interactions within the individual molecules. We also observe remarkable intensity modulations of the photoemission features as a function of photon energy, suggesting strong final state effects. Finally, we address the issue of the band width of the HOMO state of C 60 . We assert that the width of the photoemission peak of C 60 does not reflect the intrinsic band width because it is broadened by the non 0-0 transitions via the Franck-Condon principle. Our view point provides a possible reconciliation between these photoemission data and those measured by other techniques. (orig.)

  3. Nonlinear coherent structures in granular crystals

    Science.gov (United States)

    Chong, C.; Porter, Mason A.; Kevrekidis, P. G.; Daraio, C.

    2017-10-01

    The study of granular crystals, which are nonlinear metamaterials that consist of closely packed arrays of particles that interact elastically, is a vibrant area of research that combines ideas from disciplines such as materials science, nonlinear dynamics, and condensed-matter physics. Granular crystals exploit geometrical nonlinearities in their constitutive microstructure to produce properties (such as tunability and energy localization) that are not conventional to engineering materials and linear devices. In this topical review, we focus on recent experimental, computational, and theoretical results on nonlinear coherent structures in granular crystals. Such structures—which include traveling solitary waves, dispersive shock waves, and discrete breathers—have fascinating dynamics, including a diversity of both transient features and robust, long-lived patterns that emerge from broad classes of initial data. In our review, we primarily discuss phenomena in one-dimensional crystals, as most research to date has focused on such scenarios, but we also present some extensions to two-dimensional settings. Throughout the review, we highlight open problems and discuss a variety of potential engineering applications that arise from the rich dynamic response of granular crystals.

  4. Influences of chemical aging on the surface morphology and crystallization behavior of basaltic glass fibers

    DEFF Research Database (Denmark)

    Lund, Majbritt Deichgræber; Yue, Yuanzheng

    2008-01-01

    The impact of aging in high humidity and water on the surface morphology and crystallization behavior of basaltic glass fibers has been studied using scanning electron microscopy, transmission electron microscopy, calorimetry and X-ray diffraction. The results show that interaction between...... the fibers and the surrounding media (high humidity or water at 70 C) leads to chemical changes strongly affecting the surface morphology. The crystallization peak temperature of the basaltic glass fibers are increased without changing the onset temperature, this may be caused by a chemical depletion...

  5. Unique Reversible Crystal-to-Crystal Phase Transition – Structural and Functional Properties of Fused Ladder Thienoarenes

    KAUST Repository

    Abe, Yuichiro

    2017-08-15

    Donor-acceptor type molecules based on fused ladder thienoarenes, indacenodithiophene (IDT) and dithienocyclopenta-thienothiophene (DTCTT), coupled with benzothiadiazole, are prepared and their solid-state structures are investigated. They display a rich variety of solid phases ranging from amorphous glass states to crystalline states, upon changes in the central aromatic core and side group structures. Most notably, the DTCTT-based derivatives showed reversible crystal-to-crystal phase transitions in heating and cooling cycles. Unlike what has been seen in π−conjugated molecules variable temperature XRD revealed that structural change occurs continuously during the transition. A columnar self-assembled structure with slip-stacked π−π interaction is proposed to be involved in the solid-state. This research provides the evidence of unique structural behavior of the DTCTT-based molecules through the detailed structural analysis. This unique structural transition paves the way for these materials to have self-healing of crystal defects, leading to improved optoelectronic properties.

  6. Unique Reversible Crystal-to-Crystal Phase Transition – Structural and Functional Properties of Fused Ladder Thienoarenes

    KAUST Repository

    Abe, Yuichiro; Savikhin, Victoria; Yin, Jun; Grimsdale, Andrew C.; Soci, Cesare; Toney, Michael F.; Lam, Yeng Ming

    2017-01-01

    Donor-acceptor type molecules based on fused ladder thienoarenes, indacenodithiophene (IDT) and dithienocyclopenta-thienothiophene (DTCTT), coupled with benzothiadiazole, are prepared and their solid-state structures are investigated. They display a rich variety of solid phases ranging from amorphous glass states to crystalline states, upon changes in the central aromatic core and side group structures. Most notably, the DTCTT-based derivatives showed reversible crystal-to-crystal phase transitions in heating and cooling cycles. Unlike what has been seen in π−conjugated molecules variable temperature XRD revealed that structural change occurs continuously during the transition. A columnar self-assembled structure with slip-stacked π−π interaction is proposed to be involved in the solid-state. This research provides the evidence of unique structural behavior of the DTCTT-based molecules through the detailed structural analysis. This unique structural transition paves the way for these materials to have self-healing of crystal defects, leading to improved optoelectronic properties.

  7. Photonic Crystal Laser-Driven Accelerator Structures

    International Nuclear Information System (INIS)

    Cowan, Benjamin M.

    2007-01-01

    Laser-driven acceleration holds great promise for significantly improving accelerating gradient. However, scaling the conventional process of structure-based acceleration in vacuum down to optical wavelengths requires a substantially different kind of structure. We require an optical waveguide that (1) is constructed out of dielectric materials, (2) has transverse size on the order of a wavelength, and (3) supports a mode with speed-of-light phase velocity in vacuum. Photonic crystals---structures whose electromagnetic properties are spatially periodic---can meet these requirements. We discuss simulated photonic crystal accelerator structures and describe their properties. We begin with a class of two-dimensional structures which serves to illustrate the design considerations and trade-offs involved. We then present a three-dimensional structure, and describe its performance in terms of accelerating gradient and efficiency. We discuss particle beam dynamics in this structure, demonstrating a method for keeping a beam confined to the waveguide. We also discuss material and fabrication considerations. Since accelerating gradient is limited by optical damage to the structure, the damage threshold of the dielectric is a critical parameter. We experimentally measure the damage threshold of silicon for picosecond pulses in the infrared, and determine that our structure is capable of sustaining an accelerating gradient of 300 MV/m at 1550 nm. Finally, we discuss possibilities for manufacturing these structures using common microfabrication techniques

  8. A materials informatics approach for crystal chemistry

    Science.gov (United States)

    Kong, Chang Sun

    This thesis addresses one of the fundamental questions in materials crystal chemistry, namely why do atoms arrange themselves in the way they do? The ability to broadly design and predict new phases [i.e. crystal structures] can be partly met using concepts that employ phase homologies. Homologous series of compounds are those that seem chemically diverse but can be expressed in terms of a mathematical formula that is capable of producing each chemical member in that crystal structure. A well-established strategy to help discover new compounds -- or at least to try to develop chemical design strategies for discovery -- is to search, organize and classify homologous compounds from known data. These classification schemes are developed with the hope that they can provide sufficient insight to help us forecast with some certainty, specific new phases or compounds. Yet, while the classification schemes (over a dozen have been reported in the last 50 years) have proved to be instructive, mostly in hindsight, but they have had limited impact, if at all, on the a priori design of materials chemistry. The aim of this research project is to develop a totally new approach to the study of chemical complexity in materials science using the tools of information theory and data science, which link diverse and high dimensional data derived from physical modeling and experiments. A very large scale binary AB2 crystallographic database is used as a data platform to develop a new data mining/informatics protocol based on high dimensional recursive partitioning schemes coupled to information theoretic measures to: (1) Identify which type of structure prototype is preferred over another for a given chemistry of compound; (2) discover new classification schemes of structure/chemistry/property relationships that classical homologies do not detect and finally we; (3) Extract and organize the underlying design rules for the formation of a given structure by quantitatively assessing the

  9. Feasibility of one-shot-per-crystal structure determination using Laue diffraction

    Energy Technology Data Exchange (ETDEWEB)

    Cornaby, Sterling [School of Applied and Engineering Physics, Cornell University, Ithaca, New York (United States); CHESS (Cornell High Energy Synchrotron Source), Cornell University, Ithaca, New York (United States); Szebenyi, Doletha M. E. [MacCHESS (Macromolecular Diffraction Facilities at CHESS), Cornell University, Ithaca, New York (United States); Smilgies, Detlef-M. [CHESS (Cornell High Energy Synchrotron Source), Cornell University, Ithaca, New York (United States); Schuller, David J.; Gillilan, Richard; Hao, Quan [MacCHESS (Macromolecular Diffraction Facilities at CHESS), Cornell University, Ithaca, New York (United States); Bilderback, Donald H., E-mail: dhb2@cornell.edu [School of Applied and Engineering Physics, Cornell University, Ithaca, New York (United States); CHESS (Cornell High Energy Synchrotron Source), Cornell University, Ithaca, New York (United States)

    2010-01-01

    Structure determination was successfully carried out using single Laue exposures from a group of lysozyme crystals. The Laue method may be a viable option for collection of one-shot-per-crystal data from microcrystals. Crystal size is an important factor in determining the number of diffraction patterns which may be obtained from a protein crystal before severe radiation damage sets in. As crystal dimensions decrease this number is reduced, eventually falling to one, at which point a complete data set must be assembled using data from multiple crystals. When only a single exposure is to be collected from each crystal, the polychromatic Laue technique may be preferable to monochromatic methods owing to its simultaneous recording of a large number of fully recorded reflections per image. To assess the feasibility of solving structures using single Laue images from multiple crystals, data were collected using a ‘pink’ beam at the CHESS D1 station from groups of lysozyme crystals with dimensions of the order of 20–30 µm mounted on MicroMesh grids. Single-shot Laue data were used for structure determination by molecular replacement and correct solutions were obtained even when as few as five crystals were used.

  10. Feasibility of one-shot-per-crystal structure determination using Laue diffraction

    International Nuclear Information System (INIS)

    Cornaby, Sterling; Szebenyi, Doletha M. E.; Smilgies, Detlef-M.; Schuller, David J.; Gillilan, Richard; Hao, Quan; Bilderback, Donald H.

    2010-01-01

    Structure determination was successfully carried out using single Laue exposures from a group of lysozyme crystals. The Laue method may be a viable option for collection of one-shot-per-crystal data from microcrystals. Crystal size is an important factor in determining the number of diffraction patterns which may be obtained from a protein crystal before severe radiation damage sets in. As crystal dimensions decrease this number is reduced, eventually falling to one, at which point a complete data set must be assembled using data from multiple crystals. When only a single exposure is to be collected from each crystal, the polychromatic Laue technique may be preferable to monochromatic methods owing to its simultaneous recording of a large number of fully recorded reflections per image. To assess the feasibility of solving structures using single Laue images from multiple crystals, data were collected using a ‘pink’ beam at the CHESS D1 station from groups of lysozyme crystals with dimensions of the order of 20–30 µm mounted on MicroMesh grids. Single-shot Laue data were used for structure determination by molecular replacement and correct solutions were obtained even when as few as five crystals were used

  11. Model tool to describe chemical structures in XML format utilizing structural fragments and chemical ontology.

    Science.gov (United States)

    Sankar, Punnaivanam; Alain, Krief; Aghila, Gnanasekaran

    2010-05-24

    We have developed a model structure-editing tool, ChemEd, programmed in JAVA, which allows drawing chemical structures on a graphical user interface (GUI) by selecting appropriate structural fragments defined in a fragment library. The terms representing the structural fragments are organized in fragment ontology to provide a conceptual support. ChemEd describes the chemical structure in an XML document (ChemFul) with rich semantics explicitly encoding the details of the chemical bonding, the hybridization status, and the electron environment around each atom. The document can be further processed through suitable algorithms and with the support of external chemical ontologies to generate understandable reports about the functional groups present in the structure and their specific environment.

  12. Structural and morphological characterization of fullerite crystals prepared from the vapor phase

    International Nuclear Information System (INIS)

    Haluska, M.; Fejdi, P.; Vybornov, M.; Kuzmany, H.

    1993-01-01

    Crystal structure, habits and surface structures of fullerite crystals prepared from vapor phase were characterized by X-ray analysis, interfacial angle measurements and optical and scanning electron microscopy (SEM). The study of selected C 60 crystals confirmed the fcc structure at room temperature. The crystal habit is determined by two types of morphological faces, namely {100} and {111}. SEM was used for the observation of thermal etched surfaces. (orig.)

  13. Chemical composition of cadmium selenochromite crystals doped with indium, silver and gallium

    International Nuclear Information System (INIS)

    Bel'skij, N.K.; Ochertyanova, L.I.; Shabunina, G.G.; Aminov, T.G.

    1985-01-01

    The high accuracy chemical analysis Which allows one to observe doping effect on the cadmium selenochromite crystal composition is performed. The problem on the possibility of impurity atom substitution for basic element is considered on the basis of data of atomic-absorption analysis of doped crystals. The crystals of cadmium selenochromite doped with indium by chromium to cadmium ratio are distributed into two groups and probably two types of substitution take place. At 0.08-1.5 at.% indium concentrations the Cr/Cd ratio >2. One can assume that indium preferably takes cadmium tetrahedral positions whereas at 1.5-2.5 at. % concentrations the Cr/Cd ratio =2 and cadmium is substituted for silver which does not contradict crystallochemical and physical properties of this compound. In crystals with gallium the Cr/Cd ratio <2. Gallium preferably substitutes chromium

  14. PDF analysis on re-crystallized structure from amorphous BiT

    Energy Technology Data Exchange (ETDEWEB)

    Yoneda, Yasuhiro [Japan Atomic Energy Research Institute, Synchrotron Radiation Research Center, Kouto 1-1-1, Mikazuki-cho, Sayo-gun, Hyogo 679-5148 (Japan)]. E-mail: yoneda@spring8.or.jp; Kohara, Shinji [Synchrotron Radiation Research Laboratory, Japan Synchrotron Radiation, Research Institute, Kouto 1-1-1, Mikazuki-cho, Sayo-gun, Hyogo 679-5198 (Japan); Hamazaki, Shin' ichi [Department of Electronics, Iwaki Meisei University, Iino 5-5-1, Chuohdai, Fukushima 970-8551 (Japan); Takashige, Masaaki [Department of Electronics, Iwaki Meisei University, Iino 5-5-1, Chuohdai, Fukushima 970-8551 (Japan); Mizuki, Jun' ichiro [Japan Atomic Energy Research Institute, Synchrotron Radiation Research Center, Kouto 1-1-1, Mikazuki-cho, Sayo-gun, Hyogo 679-5148 (Japan)

    2005-08-15

    A glass sample of composition Bi{sub 4}Ti{sub 3}O{sub 12} was prepared by rapid quenching. The as-quenched sample was confirmed to be amorphous by synchrotron X-ray measurements. The crystallization process of the amorphous sample was also investigated by high-energy X-ray diffraction and by atomic pair distribution function analysis. The perovskite layer in the crystal Bi{sub 4}Ti{sub 3}O{sub 12} is transformed to a pyrochlore structure in the amorphous sample. The amorphous sample first crystallized to a metastable phase by acquiring long-range ordering of the pyrochlore structure at T {sub cryst1}, and then secondary crystallized into a reverted Bi{sub 4}Ti{sub 3}O{sub 12} structure at T {sub cryst2}.

  15. Crystals in light.

    Science.gov (United States)

    Kahr, Bart; Freudenthal, John; Gunn, Erica

    2010-05-18

    We have made images of crystals illuminated with polarized light for almost two decades. Early on, we abandoned photosensitive chemicals in favor of digital electrophotometry with all of the attendant advantages of quantitative intensity data. Accurate intensities are a boon because they can be used to analytically discriminate small effects in the presence of larger ones. The change in the form of our data followed camera technology that transformed picture taking the world over. Ironically, exposures in early photographs were presumed to correlate simply with light intensity, raising the hope that photography would replace sensorial interpretation with mechanical objectivity and supplant the art of visual photometry. This was only true in part. Quantitative imaging accurate enough to render the separation of crystalloptical quantities had to await the invention of the solid-state camera. Many pioneers in crystal optics were also major figures in the early history of photography. We draw out the union of optical crystallography and photography because the tree that connects the inventors of photography is a structure unmatched for organizing our work during the past 20 years, not to mention that silver halide crystallites used in chemical photography are among the most consequential "crystals in light", underscoring our title. We emphasize crystals that have acquired optical properties such as linear birefringence, linear dichroism, circular birefringence, and circular dichroism, during growth from solution. Other crystalloptical effects were discovered that are unique to curiously dissymmetric crystals containing embedded oscillators. In the aggregate, dyed crystals constitute a generalization of single crystal matrix isolation. Simple crystals provided kinetic stability to include guests such as proteins or molecules in excited states. Molecular lifetimes were extended for the preparation of laser gain media and for the study of the photodynamics of single

  16. Nucleation of colloidal crystals on configurable seed structures

    NARCIS (Netherlands)

    Hermes, M; Vermolen, E.C.M.; Leunissen, M.E.; Vossen, D.L.J.; van Oostrum, P.D.J.; Dijkstra, M.; van Blaaderen, A.

    2011-01-01

    Nucleation is an important stage in the growth of crystals. During this stage, the structure and orientation of a crystal are determined. However, short time- and length-scales make nucleation poorly understood. Micrometer-sized colloidal particles form an ideal model system to study nucleation due

  17. Crystal structure of MboIIA methyltransferase.

    Science.gov (United States)

    Osipiuk, Jerzy; Walsh, Martin A; Joachimiak, Andrzej

    2003-09-15

    DNA methyltransferases (MTases) are sequence-specific enzymes which transfer a methyl group from S-adenosyl-L-methionine (AdoMet) to the amino group of either cytosine or adenine within a recognized DNA sequence. Methylation of a base in a specific DNA sequence protects DNA from nucleolytic cleavage by restriction enzymes recognizing the same DNA sequence. We have determined at 1.74 A resolution the crystal structure of a beta-class DNA MTase MboIIA (M.MboIIA) from the bacterium Moraxella bovis, the smallest DNA MTase determined to date. M.MboIIA methylates the 3' adenine of the pentanucleotide sequence 5'-GAAGA-3'. The protein crystallizes with two molecules in the asymmetric unit which we propose to resemble the dimer when M.MboIIA is not bound to DNA. The overall structure of the enzyme closely resembles that of M.RsrI. However, the cofactor-binding pocket in M.MboIIA forms a closed structure which is in contrast to the open-form structures of other known MTases.

  18. Determination of the thickness of chemically removed thin layers on GaAs VPE structures

    Energy Technology Data Exchange (ETDEWEB)

    Somogyi, K.; Nemeth-Sallay, M.; Nemcsics, A. (Research Inst. for Technical Physics, Hungarian Academy of Sciences, Budapest (Hungary))

    1991-01-01

    Thinning of epitaxial GaAs layers was studied during the surface etching, with a special attention to submicron epitaxial structures, like MESFET or varactor-type structures. Each chemical treatment influences the crystal surface during the device preparation processes, though the possible thinning of the active layer is small. Therefore a method allowing determination of thicknesses as small as at about 20 nm of the layer removed by chemical etching from GaAs VPE structures was applied. Using special multilayered structures and a continuous electrochemical carrier concentration depth profiling, the influence of the layer thickness inhomogeneity and of some measurement errors can be minimized. Some frequently used etchants and the influence of different - so called - non-etching processes were compared in different combinations. It was shown that besides the direct etching a change of the surface conditions occurs, which influences the etch rate in the succeeding etching procedure. (orig.).

  19. Validation of experimental molecular crystal structures with dispersion-corrected density functional theory calculations.

    Science.gov (United States)

    van de Streek, Jacco; Neumann, Marcus A

    2010-10-01

    This paper describes the validation of a dispersion-corrected density functional theory (d-DFT) method for the purpose of assessing the correctness of experimental organic crystal structures and enhancing the information content of purely experimental data. 241 experimental organic crystal structures from the August 2008 issue of Acta Cryst. Section E were energy-minimized in full, including unit-cell parameters. The differences between the experimental and the minimized crystal structures were subjected to statistical analysis. The r.m.s. Cartesian displacement excluding H atoms upon energy minimization with flexible unit-cell parameters is selected as a pertinent indicator of the correctness of a crystal structure. All 241 experimental crystal structures are reproduced very well: the average r.m.s. Cartesian displacement for the 241 crystal structures, including 16 disordered structures, is only 0.095 Å (0.084 Å for the 225 ordered structures). R.m.s. Cartesian displacements above 0.25 A either indicate incorrect experimental crystal structures or reveal interesting structural features such as exceptionally large temperature effects, incorrectly modelled disorder or symmetry breaking H atoms. After validation, the method is applied to nine examples that are known to be ambiguous or subtly incorrect.

  20. Validation of experimental molecular crystal structures with dispersion-corrected density functional theory calculations

    International Nuclear Information System (INIS)

    Streek, Jacco van de; Neumann, Marcus A.

    2010-01-01

    The accuracy of a dispersion-corrected density functional theory method is validated against 241 experimental organic crystal structures from Acta Cryst. Section E. This paper describes the validation of a dispersion-corrected density functional theory (d-DFT) method for the purpose of assessing the correctness of experimental organic crystal structures and enhancing the information content of purely experimental data. 241 experimental organic crystal structures from the August 2008 issue of Acta Cryst. Section E were energy-minimized in full, including unit-cell parameters. The differences between the experimental and the minimized crystal structures were subjected to statistical analysis. The r.m.s. Cartesian displacement excluding H atoms upon energy minimization with flexible unit-cell parameters is selected as a pertinent indicator of the correctness of a crystal structure. All 241 experimental crystal structures are reproduced very well: the average r.m.s. Cartesian displacement for the 241 crystal structures, including 16 disordered structures, is only 0.095 Å (0.084 Å for the 225 ordered structures). R.m.s. Cartesian displacements above 0.25 Å either indicate incorrect experimental crystal structures or reveal interesting structural features such as exceptionally large temperature effects, incorrectly modelled disorder or symmetry breaking H atoms. After validation, the method is applied to nine examples that are known to be ambiguous or subtly incorrect

  1. Using support vector machines to improve elemental ion identification in macromolecular crystal structures

    Energy Technology Data Exchange (ETDEWEB)

    Morshed, Nader [University of California, Berkeley, CA 94720 (United States); Lawrence Berkeley National Laboratory, Berkeley, CA 94720 (United States); Echols, Nathaniel, E-mail: nechols@lbl.gov [Lawrence Berkeley National Laboratory, Berkeley, CA 94720 (United States); Adams, Paul D., E-mail: nechols@lbl.gov [Lawrence Berkeley National Laboratory, Berkeley, CA 94720 (United States); University of California, Berkeley, CA 94720 (United States)

    2015-05-01

    A method to automatically identify possible elemental ions in X-ray crystal structures has been extended to use support vector machine (SVM) classifiers trained on selected structures in the PDB, with significantly improved sensitivity over manually encoded heuristics. In the process of macromolecular model building, crystallographers must examine electron density for isolated atoms and differentiate sites containing structured solvent molecules from those containing elemental ions. This task requires specific knowledge of metal-binding chemistry and scattering properties and is prone to error. A method has previously been described to identify ions based on manually chosen criteria for a number of elements. Here, the use of support vector machines (SVMs) to automatically classify isolated atoms as either solvent or one of various ions is described. Two data sets of protein crystal structures, one containing manually curated structures deposited with anomalous diffraction data and another with automatically filtered, high-resolution structures, were constructed. On the manually curated data set, an SVM classifier was able to distinguish calcium from manganese, zinc, iron and nickel, as well as all five of these ions from water molecules, with a high degree of accuracy. Additionally, SVMs trained on the automatically curated set of high-resolution structures were able to successfully classify most common elemental ions in an independent validation test set. This method is readily extensible to other elemental ions and can also be used in conjunction with previous methods based on a priori expectations of the chemical environment and X-ray scattering.

  2. A unified picture of the crystal structures of metals

    Science.gov (United States)

    Söderlind, Per; Eriksson, Olle; Johansson, Börje; Wills, J. M.; Boring, A. M.

    1995-04-01

    THE crystal structures of the light actinides have intrigued physicists and chemists for several decades1. Simple metals and transition metals have close-packed, high-symmetry structures, such as body-centred cubic, face-centred cubic and hexagonal close packing. In contrast, the structures of the light actinides are very loosely packed and of low symmetry-tetragonal, orthorhombic and monoclinic. To understand these differences, we have performed total-energy calculations, as a function of volume, for both high-and low-symmetry structures of a simple metal (aluminium), a non-magnetic transition metal (niobium), a ferromagnetic transition metal (iron) and a light actinide (uranium). We find that the crystal structure of all of these metals is determined by the balance between electrostatic (Madelung) interactions, which favour high symmetry, and a Peierls distortion of the crystal lattice, which favours low symmetry. We show that simple metals and transition metals can adopt low-symmetry structures on expansion of the lattice; and we predict that, conversely, the light actinides will undergo transitions to structures of higher symmetry on compression.

  3. A unified picture of the crystal structures of metals

    International Nuclear Information System (INIS)

    Soederlind, P.; Eriksson, O.; Johansson, B.; Wills, J.M.; Boring, A.M.

    1995-01-01

    The crystal structures of the light actinides have intrigued physicists and chemists for several decades. Simple metals and transition metals have close-packed, high-symmetry structures, such as body-centred cubic, face-centred cubic hexagonal close packing. In contrast, the structures of the light actinides are very loosely packed and of low symmetry -tetragonal, orthorhombic and monoclinic. To understand these differences, we have have performed total-energy calculations, as a function of volume, for both high- and low-symmetry structures of a simple metal (aluminium), a non-magnetic transition metal (niobium), a ferromagnetic transition metal (iron) and a light actinide (uranium). We find that the crystal structure of all these metals is determined by the balance between electrostatic (Madelung) interactions, which favour high symmetry, and a Peierls distortion of the crystal lattice, which favours low symmetry. We show that simple metals and transition metals can adopt low-symmetry structures on expansion of the lattice; and we predict that, conversely, the light actinides will undergo transitions to structures of higher symmetry on compression. (author)

  4. Investigation of the Band Structure of Graphene-Based Plasmonic Photonic Crystals.

    Science.gov (United States)

    Qiu, Pingping; Qiu, Weibin; Lin, Zhili; Chen, Houbo; Tang, Yixin; Wang, Jia-Xian; Kan, Qiang; Pan, Jiao-Qing

    2016-09-09

    In this paper, one-dimensional (1D) and two-dimensional (2D) graphene-based plasmonic photonic crystals (PhCs) are proposed. The band structures and density of states (DOS) have been numerically investigated. Photonic band gaps (PBGs) are found in both 1D and 2D PhCs. Meanwhile, graphene-based plasmonic PhC nanocavity with resonant frequency around 175 THz, is realized by introducing point defect, where the chemical potential is from 0.085 to 0.25 eV, in a 2D PhC. Also, the bending wvaguide and the beam splitter are realized by introducing the line defect into the 2D PhC.

  5. Chemical consequences of compaction within the freezing front of a crystallizing magma ocean

    Science.gov (United States)

    Hier-Majumder, S.; Hirschmann, M. M.

    2013-12-01

    The thermal and compositional evolution of planetary magma oceans have profound influences on the early development and differentiation of terrestrial planets. During crystallization, rejection of elements incompatible in precipitating solids leads to petrologic and geochemical planetary differentiation, including potentially development of a compositionally stratified early mantle and evolution of thick overlying atmospheres. In cases of extremely efficient segregation of melt and crystals, solidified early mantles can be nearly devoid of key incompatible species including heat-producing (U, Th, K) and volatile (H,C,N,& noble gas) elements. A key structural component of a crystallizing magma ocean is the partially molten freezing front. The dynamics of this region influences the distribution of incompatible elements between the earliest mantle and the initial surficial reservoirs. It also can be the locus of heating owing to the dissipation of large amounts of tidal energy potentially available from the early Moon. The dynamics are influenced by the solidification rate, which is coupled to the liberation of volatiles owing to the modulating greenhouse effects in the overlying thick atmosphere. Compaction and melt retention in the freezing front of a magma ocean has received little previous attention. While the front advances during the course of crystallization, coupled conservation of mass, momentum, and energy within the front controls distribution and retention of melt within this layer. Due to compaction within this layer, melt distribution is far from uniform, and the fraction of melt trapped within this front depends on the rate of freezing of the magma ocean. During phases of rapid freezing, high amount of trapped melt within the freezing front retains a larger quantity of dissolved volatiles and the reverse is true during slow periods of crystallization. Similar effects are known from inferred trapped liquid fractions in layered mafic intrusions. Here we

  6. Thermodynamics of Binary Mixed Crystals in the Sub-quasi-chemical/Debye Approximation

    Science.gov (United States)

    van der Kemp, W. J. M.; Verdonk, M. L.

    1995-03-01

    A new statistical model for the description of the thermodynamic properties of binary mixed crystals is discussed. The model is based on an asymmetrical analogue of the quasi-chemical approximation and the Debye model of a solid. With two interchange -energy parameters and two interchange-Debye-temperature parameters, all important thermodynamic functions, at constant volume, of the binary mixed crystal can be calculated as a function of temperature and composition. The binary system {( 1 - x)Nai + xKI}(s) is used for illustration of the model.

  7. A chemical library to screen protein and protein-ligand crystallization using a versatile microfluidic platform

    OpenAIRE

    Gerard , Charline ,; Ferry , Gilles; Vuillard , Laurent ,; Boutin , Jean ,; Ferte , Nathalie ,; Grossier , Romain ,; Candoni , Nadine ,; Veesler , Stéphane ,

    2018-01-01

    Here, we describe a plug-and-play microfluidic platform, suitable for protein crystallization. The droplet factory is designed to generate hundreds of droplets as small as a few nanoliters (2 to 10nL) for screening and optimization of crystallization conditions. Commercially-available microfluidic junctions and tubing are combined to create the appropriate geometry. In addition, a " chemical library " is produced in tubing. The microfluidic geometry for a " crystallization agent-based chemica...

  8. Hydrogen-bond coordination in organic crystal structures: statistics, predictions and applications.

    Science.gov (United States)

    Galek, Peter T A; Chisholm, James A; Pidcock, Elna; Wood, Peter A

    2014-02-01

    Statistical models to predict the number of hydrogen bonds that might be formed by any donor or acceptor atom in a crystal structure have been derived using organic structures in the Cambridge Structural Database. This hydrogen-bond coordination behaviour has been uniquely defined for more than 70 unique atom types, and has led to the development of a methodology to construct hypothetical hydrogen-bond arrangements. Comparing the constructed hydrogen-bond arrangements with known crystal structures shows promise in the assessment of structural stability, and some initial examples of industrially relevant polymorphs, co-crystals and hydrates are described.

  9. Growth of single crystals of BaFe12O19 by solid state crystal growth

    International Nuclear Information System (INIS)

    Fisher, John G.; Sun, Hengyang; Kook, Young-Geun; Kim, Joon-Seong; Le, Phan Gia

    2016-01-01

    Single crystals of BaFe 12 O 19 are grown for the first time by solid state crystal growth. Seed crystals of BaFe 12 O 19 are buried in BaFe 12 O 19 +1 wt% BaCO 3 powder, which are then pressed into pellets containing the seed crystals. During sintering, single crystals of BaFe 12 O 19 up to ∼130 μm thick in the c-axis direction grow on the seed crystals by consuming grains from the surrounding polycrystalline matrix. Scanning electron microscopy-energy dispersive spectroscopy analysis shows that the single crystal and the surrounding polycrystalline matrix have the same chemical composition. Micro-Raman scattering shows the single crystal to have the BaFe 12 O 19 structure. The optimum growth temperature is found to be 1200 °C. The single crystal growth behavior is explained using the mixed control theory of grain growth. - Highlights: • Single crystals of BaFe 12 O 19 are grown by solid state crystal growth. • A single crystal up to ∼130 μm thick (c-axis direction) grows on the seed crystal. • The single crystal and surrounding ceramic matrix have similar composition. • Micro-Raman scattering shows the single crystal has the BaFe 12 O 19 structure.

  10. Multi-structure docking analysis of BACE1 crystal structures and non-peptidic ligands.

    Science.gov (United States)

    Haghighijoo, Zahra; Hemmateenejad, Bahram; Edraki, Najmeh; Miri, Ramin; Emami, Saeed

    2017-09-01

    In order to design novel non-peptidic inhibitors of BACE1, many research groups have attempted using computational studies including docking analyses. Since there are too many 3D structures for BACE1 in the protein database, the selection of suitable crystal structures is a key prerequisite for the successful application of molecular docking. We employed a multi-structure docking protocol. In which 615 ligands' structures were docked into 150 BACE1 structures. The large number of the resultant docking scores were post-processed by different data analysis methods including exploratory data analysis, regression analysis and discriminant analysis. It was found that using one crystal structure for docking did not result in high accuracy for predicting activity of the BACE1 inhibitors. Instead, using of the multi-structural docking scores, post-processed by chemometrics methods arrived to highly accurate predictive models. In this regards, the PDB accession codes of 4B70, 4DVF and 2WEZ could discriminate between active and inactive compounds, with higher accuracy. Clustering of the BACE1 structures based on principal component analysis of the crystallographic structures the revealed that the discriminant structures are in the center of the clusters. Thus, these structures can be selected as predominant crystal structures for docking studies of non-peptidic BACE1 inhibitors. Copyright © 2017 Elsevier Inc. All rights reserved.

  11. Dispersion corrected hartree-fock and density functional theory for organic crystal structure prediction.

    Science.gov (United States)

    Brandenburg, Jan Gerit; Grimme, Stefan

    2014-01-01

    We present and evaluate dispersion corrected Hartree-Fock (HF) and Density Functional Theory (DFT) based quantum chemical methods for organic crystal structure prediction. The necessity of correcting for missing long-range electron correlation, also known as van der Waals (vdW) interaction, is pointed out and some methodological issues such as inclusion of three-body dispersion terms are discussed. One of the most efficient and widely used methods is the semi-classical dispersion correction D3. Its applicability for the calculation of sublimation energies is investigated for the benchmark set X23 consisting of 23 small organic crystals. For PBE-D3 the mean absolute deviation (MAD) is below the estimated experimental uncertainty of 1.3 kcal/mol. For two larger π-systems, the equilibrium crystal geometry is investigated and very good agreement with experimental data is found. Since these calculations are carried out with huge plane-wave basis sets they are rather time consuming and routinely applicable only to systems with less than about 200 atoms in the unit cell. Aiming at crystal structure prediction, which involves screening of many structures, a pre-sorting with faster methods is mandatory. Small, atom-centered basis sets can speed up the computation significantly but they suffer greatly from basis set errors. We present the recently developed geometrical counterpoise correction gCP. It is a fast semi-empirical method which corrects for most of the inter- and intramolecular basis set superposition error. For HF calculations with nearly minimal basis sets, we additionally correct for short-range basis incompleteness. We combine all three terms in the HF-3c denoted scheme which performs very well for the X23 sublimation energies with an MAD of only 1.5 kcal/mol, which is close to the huge basis set DFT-D3 result.

  12. Structural and chemical variations in phlogopite from lamproitic rocks of the Central Mediterranean region

    Science.gov (United States)

    Lepore, Giovanni O.; Bindi, Luca; Pedrazzi, Giuseppe; Conticelli, Sandro; Bonazzi, Paola

    2017-08-01

    Micas from mafic ultrapotassic rocks with lamproitic affinity from several localities of the Central Mediterranean region were studied through single-crystal X-ray diffraction (SC-XRD), electron microprobe analysis (EMPA) and Secondary Ion Mass Spectrometry (SIMS); Mössbauer Spectroscopy (MöS), when feasible, was also applied to minimise the number of unknown variables and uncertainties. Analysed lamproitic samples cover the most important Central Mediterranean type localities, from Plan d'Albard (Western Alps) to Sisco (Corsica), Montecatini Val di Cecina and Orciatico (Tuscany, Italy) and Torre Alfina (Northern Latium, Italy). The studied crystals show distinctive chemical and structural features; all of them belong to the phlogopite-annite join and crystallise in the 1M polytype, except for micas from Torre Alfina, where both 1M and 2M1 polytypes were found. Studied micas have variable but generally high F and Ti contents, with Mg/(Mg + Fe) ranging from 0.5 to 0.9; 2M1 crystals from Torre Alfina radically differ in chemical composition, showing high contents of Ti and Fe as well as of Al in both tetrahedra and octahedra, leading to distinctive structural distortions, especially in tetrahedral sites. SIMS data indicate that studied micas are generally dehydrogenated with OH contents ranging from 0.2 apfu (atoms per formula unit) for Orciatico and Torre Alfina to 1.4 for Plan d'Albard crystals; this feature is also testified by the length of the c parameter, which decreases with the loss of hydrogen and/or the increase of the F → OH substitution. Chemical and structural data suggest that the entry of high charge octahedral cations is mainly balanced by an oxy mechanism and, to a lesser extent, by a M3 +,4 +-Tschermak substitution. Our data confirm that Ti preferentially partitions into the M2 site and that different Ti and F contents, as well as different K/Al values, are both dependant upon fH2O and the composition of magma rather than controlled by P and T

  13. Polar and chemical domain structures of lead scandium tantalate (PST)

    International Nuclear Information System (INIS)

    Peng, J.L.; Bursill, L.A.

    1993-01-01

    The local structure of chemical and polar domains and domain walls is determined directly by atomic resolution high-resolution electron microscopy. Thus the Pb, Ta and Sc atomic positions may be located in the images of very thin crystals. Furthermore the Pb cation displacements away from the ideal perovskite A-site have been measured directly for the first time. Local variations in polarization direction may be mapped directly off the images, provided certain electron optical conditions are met. The results are relevant to recent theories of polar-glass behaviour in relaxor-type complex oxide functional ceramics. 17 refs., 9 figs

  14. Crystal structure of isomeric boron difluoride acetylnaphtholates

    International Nuclear Information System (INIS)

    Bukvetskij, B.V.; Fedorenko, E.V.; Mirochnik, A.G.; Karasev, V.E.

    2006-01-01

    Crystal structures of luminescent isomeric acetylnaphtholates of boron difluoride are investigated. Full X-ray structural analysis is done at 293 K. Coordinated of atoms, bond angles, bond lengths, interatomic distances are determined. Results of comparative evaluations of the isomers are represented [ru

  15. Regio-Regular Oligo and Poly(3-hexyl thiophene): Precise Structural Markers from the Vibrational Spectra of Oligomer Single Crystals.

    KAUST Repository

    Brambilla, Luigi

    2014-10-14

    © 2014 American Chemical Society. In this work, we report a comparative analysis of the infrared and Raman spectra of octa(3-hexylthiophene) (3HT)8, trideca(3-hexylthiophene) (3HT)13, and poly(3-hexylthiophene) P3HT recorded in various phases, namely, amorphous, semicrystalline, polycrystalline and single crystal. We have based our analysis on the spectra of the (3HT)8 single crystal (whose structure has been determined by selected area electron diffraction) taken as reference and on the results of DFT calculations and molecular vibrational dynamics. New and precise spectroscopic markers of the molecular structures show the existence of three phases, namely: hairy (phase 1), ordered (phase 2), and disordered/amorphous (phase 3). Conceptually, the identified markers can be used for the molecular structure analysis of other similar systems.

  16. Structural investigation of chemically synthesized ferrite magnetic nanomaterials

    Science.gov (United States)

    Uyanga, E.; Sangaa, D.; Hirazawa, H.; Tsogbadrakh, N.; Jargalan, N.; Bobrikov, I. A.; Balagurov, A. M.

    2018-05-01

    In recent times, interest in ferrite magnetic nanomaterials has considerably grown, mainly due to their highly promising medical and biological applications. Spinel ferrite powder samples, with high heat generation abilities in AC magnetic fields, were studied for their application to the hyperthermia treatment of cancer tumors. These properties of ferrites strongly depend on their chemical composition, ion distribution between crystallographic positions, magnetic structure and method of preparation. In this study, crystal and magnetic structures of several magnetic spinels were investigated by neutron diffraction. The explanation of the mechanism triggering the heat generation ability in the magnetic materials, and the electronic and magnetic states of ferrite-spinel type structures, were theoretically defined by a first-principles method. Ferrites with the composition of CuxMg1-xFe2O4 have been investigated as a heat generating magnetic nanomaterial. Atomic fraction of copper in ferrite was varied between 0 and 100% (that is, x between 0 and 1.0 with 0.2 steps), with the copper dope limit corresponding to appear a tetragonal phase.

  17. Structure of a second crystal form of Bence-Jones protein Loc: Strikingly different domain associations in two crystal forms of a single protein

    International Nuclear Information System (INIS)

    Schiffer, M.; Ainsworth, C.; Xu, Z.B.; Carperos, W.; Olsen, K.; Solomon, A.; Stevens, F.J.; Chang, C.H.

    1989-01-01

    The authors have determined the structure of the immunoglobulin light-chain dimer Loc in a second crystal form that was grown from distilled water. The crystal structure was determined to 2.8-angstrom resolution; the R factor is 0.22. The two variable domains are related by local 2-fold axes and form an antigen binding pocket. The variable domain-variable domain interaction observed in this crystal form differs from the one exhibited by the protein when crystallized from ammonium sulfate in which the two variable domains formed a protrusion. The structure attained in the distilled water crystals is similar to, but not identical with, the one observed for the Mcg light-chain dimer in crystals grown from ammonium sulfate. Thus, two strikingly different structures were attained by this multisubunit protein in crystals grown under two different, commonly used, crystallization techniques. The quaternary interactions exhibited by the protein in the two crystal forms are sufficiently different to suggest fundamentally different interpretations of the structural basis for the function of this protein. This observation may have general implications regarding the use of single crystallographic determinations for detailed identification of structural and functional relationships. On the other hand, proteins whose structures can be altered by manipulation of crystallization conditions may provide useful systems for study of fundamental structural chemistry

  18. Structure of initial crystals formed during human amelogenesis

    Science.gov (United States)

    Cuisinier, F. J. G.; Voegel, J. C.; Yacaman, J.; Frank, R. M.

    1992-02-01

    X-ray diffraction analysis revealed only the existence of carbonated hydroxyapatite (c.HA) during amelogenesis, whereas conventional transmission electron microscopy investigations showed that developing enamel crystals have a ribbon-like habit. The described compositional changes could be an indication for the presence of minerals different from c.HA. However, the absence of identification of such a mineral shows the need of studies by high resolution electron microscopy (HREM) of initial formed human enamel crystals. We demonstrate the existence of two crystal families involved in the early stages of biomineralization: (a) nanometer-size particles which appeared as a precursor phase; (b) ribbon-like crystals, with a structure closely related to c.HA, which by a progressive thickening process tend to attain the mature enamel crystal habit.

  19. Structures of the OmpF porin crystallized in the presence of foscholine-12.

    Science.gov (United States)

    Kefala, Georgia; Ahn, Chihoon; Krupa, Martin; Esquivies, Luis; Maslennikov, Innokentiy; Kwiatkowski, Witek; Choe, Senyon

    2010-05-01

    The endogenous Escherichia coli porin OmpF was crystallized as an accidental by-product of our efforts to express, purify, and crystallize the E. coli integral membrane protein KdpD in the presence of foscholine-12 (FC12). FC12 is widely used in membrane protein studies, but no crystal structure of a protein that was both purified and crystallized with this detergent has been reported in the Protein Data Bank. Crystallization screening for KdpD yielded two different crystals of contaminating protein OmpF. Here, we report two OmpF structures, the first membrane protein crystal structures for which extraction, purification, and crystallization were done exclusively with FC12. The first structure was refined in space group P21 with cell parameters a = 136.7 A, b = 210.5 A, c = 137 A, and beta = 100.5 degrees , and the resolution of 3.8 A. The second structure was solved at the resolution of 4.4 A and was refined in the P321 space group, with unit cell parameters a = 215.5 A, b = 215.5 A, c = 137.5 A, and gamma = 120 degrees . Both crystal forms show novel crystal packing, in which the building block is a tetrahedral arrangement of four trimers. Additionally, we discuss the use of FC12 for membrane protein crystallization and structure determination, as well as the problem of the OmpF contamination for membrane proteins overexpressed in E. coli.

  20. Structure and magnetic properties of flux grown single crystals of Co3-xFexSn2S2 shandites

    Science.gov (United States)

    Kassem, Mohamed A.; Tabata, Yoshikazu; Waki, Takeshi; Nakamura, Hiroyuki

    2016-01-01

    We report a successful single crystal growth of the shandite-type half-metallic ferromagnet Co3Sn2S2, and its Fe-substituted compounds, Co3-xFexSn2S2, by employing the flux method. Although Fe3Sn2S2 is unstable phase, we found that using the self Sn flux enables us to obtain single phase crystals up to x=0.53. The chemical composition of the grown plate-shaped single crystals was examined using wavelength-dispersive X-ray spectroscopy. The shandite structure with R 3 ̅m symmetry was confirmed by powder X-ray diffraction and the crystal structure parameters were refined using the Rietveld method. Magnetization measurements show suppression of the ferromagnetic order upon Fe-substitution , as well as in other substituted systems such as In- and Ni-substituted Co3Sn2S2. The almost identical magnetic phase diagrams of the Fe- and In-substituted compounds indicate that the electron number is dominantly significant to the magnetism in the Co-based shandite.

  1. Extended model of bond charges and its application in calculation of optical properties of crystals with different types of chemical bonds

    International Nuclear Information System (INIS)

    Tsirelson, V.G.; Korolkova, O.V.; Rez, I.S.; Ozerov, R.P.

    1984-01-01

    A method for calculating the optical characteristics of crystals with different types of chemical bonds within the framework of the dielectric theory of chemical bond put forward by Philips and Van Vechten is suggested. The calculating scheme which does not contain adjustable parameters is based on the bond charge model designed by Levine, which is generalized for the case of multiple bonds and modified involving the density functional method data on the spatial distribution of electrons in atoms. The structural elements of the method are: the screened Coulomb potentials and radii of the atomic core, bond lengths and charges, and the distances from the nuclei to the centers of gravity of the latter. The calculated characteristics of the crystals (dielectric permittivity, quadratic and cubic non-linear susceptibilities, electrooptical constants) are in good accordance with experimental findings. An attempt is made to predict the non-linear optical characteristics according to precision X-ray diffraction data on the electron structure of its only representative, lithium formate deuterate LiHCO 2 xD 2 O, whereby a fairly good fit with the experimental data is achieved. (author)

  2. Electronic structure and pair potential energy analysis of 4-n-methoxy-4′-cyanobiphenyl: A nematic liquid crystal

    Energy Technology Data Exchange (ETDEWEB)

    Sharma, Dipendra, E-mail: d-11sharma@rediffmail.com; Tiwari, S. N., E-mail: sntiwari123@rediffmail.com [Department of Physics, DDU Gorakhpur University, Gorakhpur (India); Dwivedi, M. K., E-mail: dwivedi-ji@gmail.com [Department of Physics, Banaras Hindu University, Varanasi (India)

    2016-05-06

    Electronic structure properties of 4-n-methoxy-4′-cyanobiphenyl, a pure nematic liquid crystal have been examined using an ab‒initio, HF/6‒31G(d,p) technique with GAMESS program. Conformational and charge distribution analysis have been carried out. MEP, HOMO and LUMO surfaces have been scanned. Ionization potential, electron affinity, electronegativity, global hardness and softness of the liquid crystal molecule have been calculated. Further, stacking, side by side and end to end interactions between a molecular pair have been evaluated. Results have been used to elucidate the physico-chemical and liquid crystalline properties of the system.

  3. A multistep single-crystal-to-single-crystal bromodiacetylene dimerization

    Science.gov (United States)

    Hoheisel, Tobias N.; Schrettl, Stephen; Marty, Roman; Todorova, Tanya K.; Corminboeuf, Clémence; Sienkiewicz, Andrzej; Scopelliti, Rosario; Schweizer, W. Bernd; Frauenrath, Holger

    2013-04-01

    Packing constraints and precise placement of functional groups are the reason that organic molecules in the crystalline state often display unusual physical or chemical properties not observed in solution. Here we report a single-crystal-to-single-crystal dimerization of a bromodiacetylene that involves unusually large atom displacements as well as the cleavage and formation of several bonds. Density functional theory computations support a mechanism in which the dimerization is initiated by a [2 + 1] photocycloaddition favoured by the nature of carbon-carbon short contacts in the crystal structure. The reaction proceeded up to the theoretical degree of conversion without loss of crystallinity, and it was also performed on a preparative scale with good yield. Moreover, it represents the first synthetic pathway to (E)-1,2-dibromo-1,2-diethynylethenes, which could serve as synthetic intermediates for the preparation of molecular carbon scaffolds. Our findings both extend the scope of single-crystal-to-single-crystal reactions and highlight their potential as a synthetic tool for complex transformations.

  4. Crystal structure of vanadite: Refinement of anisotropic displacement parameters

    Czech Academy of Sciences Publication Activity Database

    Laufek, F.; Skála, Roman; Haloda, J.; Císařová, I.

    2006-01-01

    Roč. 51, 3-4 (2006), s. 271-275 ISSN 1210-8197 Institutional research plan: CEZ:AV0Z30130516 Keywords : anisotropic displacement parameter * crystal structure * single-crystal X-ray refinement * vanadinite Subject RIV: DB - Geology ; Mineralogy

  5. Crystal structure of N-(quinolin-6-ylhydroxylamine

    Directory of Open Access Journals (Sweden)

    Anuruddha Rajapakse

    2014-11-01

    Full Text Available The title compound, C9H8N2O, crystallized with four independent molecules in the asymmetric unit. The four molecules are linked via one O—H...N and two N—H...N hydrogen bonds, forming a tetramer-like unit. In the crystal, molecules are further linked by O—H...N and N—H...O hydrogen bonds forming layers parallel to (001. These layers are linked via C—H...O hydrogen bonds and a number of weak C—H...π interactions, forming a three-dimensional structure. The crystal was refined as a non-merohedral twin with a minor twin component of 0.319.

  6. Physicochemical and crystal structure analyses of the antidiabetic agent troglitazone.

    Science.gov (United States)

    Kobayashi, Katsuhiro; Fukuhara, Hiroshi; Hata, Tadashi; Sekine, Akiko; Uekusa, Hidehiro; Ohashi, Yuji

    2003-07-01

    The antidiabetic agent troglitazone has two asymmetric carbons located at the chroman ring and the thiazolidine ring and is produced as a mixture of equal amounts of four optical isomers, 2R-5S, 2S-5R, 2R-5R, and 2S-5S. The crystalline powdered drug substance consists of two diastereomer pairs, 2R-5R/2S-5S and 2R-5S/2S-5R. There are many types of crystals obtained from various crystallization conditions. The X-ray structure analysis and the physicochemical analyses of troglitazone were performed. The solvated crystals of the 2R-5R/2S-5S pair were crystallized from several solutions: methanol, ethanol, acetonitrile, and dichloromethane. The ratio of solvent and troglitazone was 1 : 2 (L1/2-form). The monohydrate crystals were obtained from aqueous acetone solution (L1-form). On the other hand, only an anhydrate crystal of the 2R-5S/2S-5R pair was crystallized from various solutions (H0-form). The dihydrous mixed crystal (MA2-form) was obtained from a mixture of the two diastereomer pairs of 2R-5R/2S-5S and 2R-5S/2S-5R in equal amounts by the slow evaporation of aqueous acetone solution. The crystal structure of the MA2-form is similar to the H0-form. When the MA2 crystal was kept under low humidity, it was converted into the dehydrated form (MA0-form) with retention of the single crystal form. The structure of the MA0-form is isomorphous to the H0-form. The MA2-form was converted into the MA0-form and vice versa with retention of the single crystal under low and high humidity, respectively. The crystallization and storage conditions of the drug substances were successfully analyzed.

  7. Two modifications of Y2Piv6(HPiv)6 crystals: synthesis and structures

    International Nuclear Information System (INIS)

    Kiseleva, E.A.; Troyanov, S.I.; Korenev, Yu.M.

    2006-01-01

    Crystal structure of solvate of yttrium pivalate YPiv 3 ·3HPiv is studied. Existing of two polymorphous modifications of the compound is detected. It is shown that α- and β-modifications of yttrium pivalate solvate have molecular crystal structures and are built of Y 2 Piv 6 (HPiv) 6 dimers. Difference of these two modifications is in package of dimer molecules and in center-symmetricity of dimers in α-modification structure. Molecular and crystal structure, crystal lattice parameters are determined [ru

  8. Near-Infrared Trigged Stimulus-Responsive Photonic Crystals with Hierarchical Structures.

    Science.gov (United States)

    Lu, Tao; Pan, Hui; Ma, Jun; Li, Yao; Zhu, Shenmin; Zhang, Di

    2017-10-04

    Stimuli-responsive photonic crystals (PCs) trigged by light would provide a novel intuitive and quantitative method for noninvasive detection. Inspired by the flame-detecting aptitude of fire beetles and the hierarchical photonic structures of butterfly wings, we herein developed near-infrared stimuli-responsive PCs through coupling photothermal Fe 3 O 4 nanoparticles with thermoresponsive poly(N-isopropylacrylamide) (PNIPAM), with hierarchical photonic structured butterfly wing scales as the template. The nanoparticles within 10 s transferred near-infrared radiation into heat that triggered the phase transition of PNIPAM; this almost immediately posed an anticipated effect on the PNIPAM refractive index and resulted in a composite spectrum change of ∼26 nm, leading to the direct visual readout. It is noteworthy that the whole process is durable and stable mainly owing to the chemical bonding formed between PNIPAM and the biotemplate. We envision that this biologically inspired approach could be utilized in a broad range of applications and would have a great impact on various monitoring processes and medical sensing.

  9. Structural coloration of chitosan coated cellulose fabrics by electrostatic self-assembled poly (styrene-methyl methacrylate-acrylic acid) photonic crystals.

    Science.gov (United States)

    Yavuz, Gönül; Zille, Andrea; Seventekin, Necdet; Souto, Antonio P

    2018-08-01

    The structural coloration of a chitosan-coated woven cotton fabric obtained by glutaraldehyde-stabilized deposition of electrostatic self-assembled monodisperse and spherically uniform (250 nm) poly (styrene-methyl methacrylate-acrylic acid) photonic crystal nanospheres (P(St-MMA-AA)) was investigated. Bright iridescent coatings displaying different colors in function of the viewing angle were obtained. The SEM, diffuse reflectance spectroscopy, TGA, DSC and FTIR analyses confirm the presence of structural color and the glutaraldehyde and chitosan ability to provide durable chemical bonding between cotton fabric and photonic crystal (PCs) coating with the highest degradation temperature and the lowest enthalpy. The coatings are characterized by a mixture of face-centered cubic and hexagonal close-packed arrays alternating random packing regions. For the first time a cost-efficient structural coloration with high washing and light fastness using self-assembled P(St-MMA-AA) photonic crystals was successfully developed onto woven cotton fabric using chitosan and/or glutaraldehyde as stabilizing agent opening new strategies for the development of dye-free coloration of textiles. Copyright © 2018 Elsevier Ltd. All rights reserved.

  10. Crystal structure of human protein kinase CK2

    DEFF Research Database (Denmark)

    Niefind, K; Guerra, B; Ermakowa, I

    2001-01-01

    The crystal structure of a fully active form of human protein kinase CK2 (casein kinase 2) consisting of two C-terminally truncated catalytic and two regulatory subunits has been determined at 3.1 A resolution. In the CK2 complex the regulatory subunits form a stable dimer linking the two catalyt...... as a docking partner for various protein kinases. Furthermore it shows an inter-domain mobility in the catalytic subunit known to be functionally important in protein kinases and detected here for the first time directly within one crystal structure.......The crystal structure of a fully active form of human protein kinase CK2 (casein kinase 2) consisting of two C-terminally truncated catalytic and two regulatory subunits has been determined at 3.1 A resolution. In the CK2 complex the regulatory subunits form a stable dimer linking the two catalytic...... subunits, which make no direct contact with one another. Each catalytic subunit interacts with both regulatory chains, predominantly via an extended C-terminal tail of the regulatory subunit. The CK2 structure is consistent with its constitutive activity and with a flexible role of the regulatory subunit...

  11. Crystal structure optimisation using an auxiliary equation of state

    Science.gov (United States)

    Jackson, Adam J.; Skelton, Jonathan M.; Hendon, Christopher H.; Butler, Keith T.; Walsh, Aron

    2015-11-01

    Standard procedures for local crystal-structure optimisation involve numerous energy and force calculations. It is common to calculate an energy-volume curve, fitting an equation of state around the equilibrium cell volume. This is a computationally intensive process, in particular, for low-symmetry crystal structures where each isochoric optimisation involves energy minimisation over many degrees of freedom. Such procedures can be prohibitive for non-local exchange-correlation functionals or other "beyond" density functional theory electronic structure techniques, particularly where analytical gradients are not available. We present a simple approach for efficient optimisation of crystal structures based on a known equation of state. The equilibrium volume can be predicted from one single-point calculation and refined with successive calculations if required. The approach is validated for PbS, PbTe, ZnS, and ZnTe using nine density functionals and applied to the quaternary semiconductor Cu2ZnSnS4 and the magnetic metal-organic framework HKUST-1.

  12. Crystal structure optimisation using an auxiliary equation of state

    International Nuclear Information System (INIS)

    Jackson, Adam J.; Skelton, Jonathan M.; Hendon, Christopher H.; Butler, Keith T.; 3 Institute and Department of Materials Science and Engineering, Yonsei University, Seoul 120-749 (Korea, Republic of))" data-affiliation=" (Centre for Sustainable Chemical Technologies and Department of Chemistry, University of Bath, Claverton Down, Bath BA2 7AY (United Kingdom); Global E3 Institute and Department of Materials Science and Engineering, Yonsei University, Seoul 120-749 (Korea, Republic of))" >Walsh, Aron

    2015-01-01

    Standard procedures for local crystal-structure optimisation involve numerous energy and force calculations. It is common to calculate an energy–volume curve, fitting an equation of state around the equilibrium cell volume. This is a computationally intensive process, in particular, for low-symmetry crystal structures where each isochoric optimisation involves energy minimisation over many degrees of freedom. Such procedures can be prohibitive for non-local exchange-correlation functionals or other “beyond” density functional theory electronic structure techniques, particularly where analytical gradients are not available. We present a simple approach for efficient optimisation of crystal structures based on a known equation of state. The equilibrium volume can be predicted from one single-point calculation and refined with successive calculations if required. The approach is validated for PbS, PbTe, ZnS, and ZnTe using nine density functionals and applied to the quaternary semiconductor Cu 2 ZnSnS 4 and the magnetic metal-organic framework HKUST-1

  13. Crystal structure optimisation using an auxiliary equation of state

    Energy Technology Data Exchange (ETDEWEB)

    Jackson, Adam J.; Skelton, Jonathan M.; Hendon, Christopher H.; Butler, Keith T. [Centre for Sustainable Chemical Technologies and Department of Chemistry, University of Bath, Claverton Down, Bath BA2 7AY (United Kingdom); Walsh, Aron, E-mail: a.walsh@bath.ac.uk [Centre for Sustainable Chemical Technologies and Department of Chemistry, University of Bath, Claverton Down, Bath BA2 7AY (United Kingdom); Global E" 3 Institute and Department of Materials Science and Engineering, Yonsei University, Seoul 120-749 (Korea, Republic of)

    2015-11-14

    Standard procedures for local crystal-structure optimisation involve numerous energy and force calculations. It is common to calculate an energy–volume curve, fitting an equation of state around the equilibrium cell volume. This is a computationally intensive process, in particular, for low-symmetry crystal structures where each isochoric optimisation involves energy minimisation over many degrees of freedom. Such procedures can be prohibitive for non-local exchange-correlation functionals or other “beyond” density functional theory electronic structure techniques, particularly where analytical gradients are not available. We present a simple approach for efficient optimisation of crystal structures based on a known equation of state. The equilibrium volume can be predicted from one single-point calculation and refined with successive calculations if required. The approach is validated for PbS, PbTe, ZnS, and ZnTe using nine density functionals and applied to the quaternary semiconductor Cu{sub 2}ZnSnS{sub 4} and the magnetic metal-organic framework HKUST-1.

  14. CCDC 870534: Experimental Crystal Structure Determination : Dichloro-trimethyl-tantalum(v)

    KAUST Repository

    Chen, Yin; Callens, E.; Abou-Hamad, E.; Merle, N.; White, A.J.P.; Taoufik, M.; Coperet, C.; Le Roux, E.; Basset, J.-M.

    2013-01-01

    An entry from the Cambridge Structural Database, the world’s repository for small molecule crystal structures. The entry contains experimental data from a crystal diffraction study. The deposited dataset for this entry is freely available from the CCDC and typically includes 3D coordinates, cell parameters, space group, experimental conditions and quality measures.

  15. CCDC 1475931: Experimental Crystal Structure Determination : trimethylammonium trichloro-tin(iv)

    KAUST Repository

    Dang, Yangyang

    2016-01-01

    An entry from the Cambridge Structural Database, the world’s repository for small molecule crystal structures. The entry contains experimental data from a crystal diffraction study. The deposited dataset for this entry is freely available from the CCDC and typically includes 3D coordinates, cell parameters, space group, experimental conditions and quality measures.

  16. CCDC 1475929: Experimental Crystal Structure Determination : trimethylammonium tribromo-tin(iv)

    KAUST Repository

    Dang, Yangyang

    2016-01-01

    An entry from the Cambridge Structural Database, the world’s repository for small molecule crystal structures. The entry contains experimental data from a crystal diffraction study. The deposited dataset for this entry is freely available from the CCDC and typically includes 3D coordinates, cell parameters, space group, experimental conditions and quality measures.

  17. CCDC 1482638: Experimental Crystal Structure Determination : trimethylammonium trichloro-tin(iv)

    KAUST Repository

    Dang, Yangyang

    2016-01-01

    An entry from the Cambridge Structural Database, the world’s repository for small molecule crystal structures. The entry contains experimental data from a crystal diffraction study. The deposited dataset for this entry is freely available from the CCDC and typically includes 3D coordinates, cell parameters, space group, experimental conditions and quality measures.

  18. CCDC 1475930: Experimental Crystal Structure Determination : trimethylammonium trichloro-tin(iv)

    KAUST Repository

    Dang, Yangyang

    2016-01-01

    An entry from the Cambridge Structural Database, the world’s repository for small molecule crystal structures. The entry contains experimental data from a crystal diffraction study. The deposited dataset for this entry is freely available from the CCDC and typically includes 3D coordinates, cell parameters, space group, experimental conditions and quality measures.

  19. Crystal structure of clathrates of Hofmann dma-type

    International Nuclear Information System (INIS)

    NIshikiori, Sh.; Ivamoto, T.

    1999-01-01

    Seven new clathrates Cd(DMA) 2 Ni(CN) 4 ·xG (x=1, G=aniline, 2,3-xylidine, 2,4-xylidine, 2,5-xylidine, 2,6-xylidine, 3,5-xylidine, and x=2, G=2,4,6-trimethylaniline) of Hofmann type are synthesized by amine substitution for dimethylamine (DMA). On the base of x-ray diffraction data it is shown that geometry of guest molecule in cage-like hollow determines the structure of the host and crystal structure of clathrates. Two-dimension metallocomplex of the host of studied clathrates is characterized by elastic folded structure appearing as a result of angular deformation of bond between Cd atoms and host cyanide bridge. Guest molecule orientation is fixed by hydrogen bond. Structural elasticity of the host complex directs to differences in crystal structure of clathrates formed and to considerable variety of incorporated guests [ru

  20. Co-Crystal Screening of Diclofenac

    OpenAIRE

    Aaker?y, Christer B.; Grommet, Angela B.; Desper, John

    2011-01-01

    In the pharmaceutical industry, co-crystals are becoming increasingly valuable as crystalline solids that can offer altered/improved physical properties of an active pharmaceutical ingredient (API) without changing its chemical identity or biological activity. In order to identify new solid forms of diclofenac—an analgesic with extremely poor aqueous solubility for which few co-crystal structures have been determined—a range of pyrazoles, pyridines, and pyrimidines were screened for co-crysta...

  1. Shear induced structures in crystallizing cocoa butter

    Science.gov (United States)

    Mazzanti, Gianfranco; Guthrie, Sarah E.; Sirota, Eric B.; Marangoni, Alejandro G.; Idziak, Stefan H. J.

    2004-03-01

    Cocoa butter is the main structural component of chocolate and many cosmetics. It crystallizes in several polymorphs, called phases I to VI. We used Synchrotron X-ray diffraction to study the effect of shear on its crystallization. A previously unreported phase (phase X) was found and a crystallization path through phase IV under shear was observed. Samples were crystallized under shear from the melt in temperature controlled Couette cells, at final crystallization temperatures of 17.5^oC, 20^oC and 22.5^oC in Beamline X10A of NSLS. The formation of phase X was observed at low shear rates (90 s-1) and low crystallization temperature (17.5^oC), but was absent at high shear (720 s-1) and high temperature (20^oC). The d-spacing and melting point suggest that this new phase is a mixture rich on two of the three major components of cocoa butter. We also found that, contrary to previous reports, the transition from phase II to phase V can happen through the intermediate phase IV, at high shear rates and temperature.

  2. Crystal structure and vibrational spectra of piperazinium bis(4-hydroxybenzenesulphonate) molecular-ionic crystal

    Science.gov (United States)

    Marchewka, M. K.; Pietraszko, A.

    2008-02-01

    The piperazinium bis(4-hydroxybenzenesulphonate) crystallizes from water solution at room temperature in P2 1/ c space group of monoclinic system. The crystals are built up of doubly protonated piperazinium cations and ionized 4-hydroxybenzenesulphonate anions that interact through weak hydrogen bonds of O-H⋯O and N-H⋯O type. Mutual orientation of anions is determined by non-conventional hydrogen bonds of C-H⋯π type. Room temperature powder FT IR and FT Raman measurements were carried out. The vibrational spectra are in full agreement with the structure obtained from X-ray crystallography. The big single crystals of the title salt can be grown.

  3. Local layer structure of smectic liquid crystals by X-ray micro-diffraction

    CERN Document Server

    Takanishi, Y

    2003-01-01

    The local layer structure of smectic liquid crystal has been measured using time-resolved synchrotron X-ray micro-diffraction. Typical layer disorders observed in surface stabilized (anti-) ferroelectric liquid crystals, i.e. a stripe texture, a needed-like defect and a zigzag defect, are directly analyzed. The detailed analysis slows that the surface anchoring force due to the interaction between the liquid crystal molecule and the alignment thin film plays an important role to realize both the static and dynamic local layer structures. The layer structure of the circular domain observed in the liquid crystal of bent-shaped molecules found to depend on the applied electric field though the optical micrograph shows little difference. The frustrated, double and single layer structures of the bent-shaped molecule liquid crystal are determined depending on the terminal alkyl chain length. (author)

  4. Prediction of inorganic superconductors with quasi-one-dimensional crystal structure

    International Nuclear Information System (INIS)

    Volkova, L M; Marinin, D V

    2013-01-01

    Models of superconductors having a quasi-one-dimensional crystal structure based on the convoluted into a tube Ginzburg sandwich, which comprises a layered dielectric–metal–dielectric structure, have been suggested. The critical crystal chemistry parameters of the Ginzburg sandwich determining the possibility of the emergence of superconductivity and the T c value in layered high-T c cuprates, which could have the same functions in quasi-one-dimensional fragments (sandwich-type tubes), have been examined. The crystal structures of known low-temperature superconductors, in which one can mark out similar quasi-one-dimensional fragments, have been analyzed. Five compounds with quasi-one-dimensional structures, which can be considered as potential parents of new superconductor families, possibly with high transition temperatures, have been suggested. The methods of doping and modification of these compounds are provided. (paper)

  5. Crystal-Chemical Analysis Martian Minerals in Gale Crater

    Science.gov (United States)

    Morrison, S. M.; Downs, R. T.; Blake, D. F.; Bish, D. L.; Ming, D. W.; Morris, R. V.; Yen, A. S.; Chipera, S. J.; Treiman, A. H.; Vaniman, D. T.; hide

    2015-01-01

    The CheMin instrument on the Mars Science Laboratory rover Curiosity performed X-ray diffraction analyses on scooped soil at Rocknest and on drilled rock fines at Yellowknife Bay (John Klein and Cumberland samples), The Kimberley (Windjana sample), and Pahrump (Confidence Hills sample) in Gale crater, Mars. Samples were analyzed with the Rietveld method to determine the unit-cell parameters and abundance of each observed crystalline phase. Unit-cell parameters were used to estimate compositions of the major crystalline phases using crystal-chemical techniques. These phases include olivine, plagioclase and clinopyroxene minerals. Comparison of the CheMin sample unit-cell parameters with those in the literature provides an estimate of the chemical compositions of the major crystalline phases. Preliminary unit-cell parameters, abundances and compositions of crystalline phases found in Rocknest and Yellowknife Bay samples were reported in. Further instrument calibration, development of 2D-to- 1D pattern conversion corrections, and refinement of corrected data allows presentation of improved compositions for the above samples.

  6. Synthesis and crystal structures of three new benzotriazolylpropanamides

    Directory of Open Access Journals (Sweden)

    Donna S. Amenta

    2017-06-01

    Full Text Available The base-catalyzed Michael addition of 2-methylacrylamide to benzotriazole afforded 3-(1H-benzotriazol-1-yl-2-methylpropanamide, C10H12N4O (1, in 32% yield in addition to small amounts of isomeric 3-(2H-benzotriazol-2-yl-2-methylpropanamide, C10H12N4O (2. In a similar manner, 3-(1H-benzotriazol-1-yl-N,N-dimethylpropanamide, C11H14N4O (3, was prepared from benzotriazole and N,N-dimethylacrylamide. All three products have been structurally characterized by single-crystal X-ray diffraction. The crystal structures of 1 and 2 comprise infinite arrays formed by N—H...O and N—H...N bridges, as well as π–π interactions, while the molecules of 3 are aggregated to simple π-dimers in the crystal.

  7. Effects of thermo-order-mechanical coupling on band structures in liquid crystal nematic elastomer porous phononic crystals.

    Science.gov (United States)

    Yang, Shuai; Liu, Ying

    2018-08-01

    Liquid crystal nematic elastomers are one kind of smart anisotropic and viscoelastic solids simultaneously combing the properties of rubber and liquid crystals, which is thermal sensitivity. In this paper, the wave dispersion in a liquid crystal nematic elastomer porous phononic crystal subjected to an external thermal stimulus is theoretically investigated. Firstly, an energy function is proposed to determine thermo-induced deformation in NE periodic structures. Based on this function, thermo-induced band variation in liquid crystal nematic elastomer porous phononic crystals is investigated in detail. The results show that when liquid crystal elastomer changes from nematic state to isotropic state due to the variation of the temperature, the absolute band gaps at different bands are opened or closed. There exists a threshold temperature above which the absolute band gaps are opened or closed. Larger porosity benefits the opening of the absolute band gaps. The deviation of director from the structural symmetry axis is advantageous for the absolute band gap opening in nematic state whist constrains the absolute band gap opening in isotropic state. The combination effect of temperature and director orientation provides an added degree of freedom in the intelligent tuning of the absolute band gaps in phononic crystals. Copyright © 2018 Elsevier B.V. All rights reserved.

  8. Structure and vibrational spectra of melaminium bis(trifluoroacetate) trihydrate: FT-IR, FT-Raman and quantum chemical calculations

    Science.gov (United States)

    Sangeetha, V.; Govindarajan, M.; Kanagathara, N.; Marchewka, M. K.; Gunasekaran, S.; Anbalagan, G.

    Melaminium bis(trifluoroacetate) trihydrate (MTFA), an organic material has been synthesized and single crystals of MTFA have been grown by the slow solvent evaporation method at room temperature. X-ray powder diffraction analysis confirms that MTFA crystal belongs to the monoclinic system with space group P2/c. The molecular geometry, vibrational frequencies and intensity of the vibrational bands have been interpreted with the aid of structure optimization based on density functional theory (DFT) B3LYP method with 6-311G(d,p) and 6-311++G(d,p) basis sets. The X-ray diffraction data have been compared with the data of optimized molecular structure. The theoretical results show that the crystal structure can be reproduced by optimized geometry and the vibrational frequencies show good agreement with the experimental values. The nuclear magnetic resonance (NMR) chemical shift of the molecule has been calculated by the gauge independent atomic orbital (GIAO) method and compared with experimental results. HOMO-LUMO, and other related molecular and electronic properties are calculated. The Mulliken and NBO charges have also been calculated and interpreted.

  9. Crystal structure and optical properties of silver nanorings

    Science.gov (United States)

    Zhou, Li; Fu, Xiao-Feng; Yu, Liao; Zhang, Xian; Yu, Xue-Feng; Hao, Zhong-Hua

    2009-04-01

    We report the polyol synthesis and crystal structure characterization of silver nanorings, which have perfect circular shape, smooth surface, and elliptical wire cross-section. The characterization results show that the silver nanorings have well-defined crystal of singly twinned along the whole ring. The spatial distribution of the scattering of a silver nanoring with slanted incidence reveals the unique focus effect of the nanoring, and the focus scattering varies with the incident wavelength. The silver nanorings with perfect geometry and well-defined crystal have potential applications in nanoscaled photonics, plasmonic devices, and optical manipulation.

  10. Crystal structure of a plant albumin from Cicer arietinum (chickpea) possessing hemopexin fold and hemagglutination activity.

    Science.gov (United States)

    Sharma, Urvashi; Katre, Uma V; Suresh, C G

    2015-05-01

    Crystal structure of a reported PA2 albumin from Cicer arietinum shows that it belongs to hemopexin fold family, has four beta-propeller motifs and possesses hemagglutination activity, making it different from known legume lectins. A plant albumin (PA2) from Cicer arietinum, presumably a lectin (CAL) owing to its hemagglutination activity which is inhibited by complex sugars as well as glycoproteins such as fetuin, desialylated fetuin and fibrinogen. The three-dimensional structure of this homodimeric protein has been determined using X-ray crystallography at 2.2 Å in two crystal forms: orthorhombic (P21212) and trigonal (P3). The structure determined using molecular replacement method and refined in orthorhombic crystal form reached R-factors R free 22.6 % and R work 18.2 % and in trigonal form had 22.3 and 17.9 % in the resolution range of 20.0-2.2 and 35.3-2.2 Å, respectively. Interestingly, unlike the known legume lectin fold, the structure of this homodimeric hemagglutinin belonged to hemopexin fold that consisted of four-bladed β-propeller architecture. Each subunit has a central cavity forming a channel, inside of which is lined with hydrophobic residues. The channel also bears binding sites for ligands such as calcium, sodium and chloride ions, iodine atom in the case of iodine derivative and water molecules. However, none of these ligands seem important for the sugar recognition. No monosaccharide sugar specificity could be detected using hemagglutination inhibition. Chemical modification studies identified a potential sugar-binding site per subunit molecule. Comparison of C-alpha atom positions in subunit structures showed that the deviations between the two crystal forms were more with respect to blades I and IV. Differences also existed between subunits in two forms in terms of type and site of ligand binding.

  11. Crystal structure of PrRh4.8B2

    International Nuclear Information System (INIS)

    Higashi, Iwami; Shishido, Toetsu; Takei, Humihiko; Kobayashi, Takaaki

    1988-01-01

    The crystal structure of a new rare earth ternary boride PrRh 4.8 B 2 was investigated, by single-crystal X-ray diffractometry. PrRh 4.8 B 2 crystallizes in the orthorhombic space group Immm with a = 9.697(4), b = 5.577(2), c = 25.64(3) A, Z=12. The intensity data were collected on a four-circle diffractometer with graphite-monochromatized Mo Kα radiation. The structure was solved by the Patterson method and refined with a full-matrix least-squares program to an R value (equal to Σvertical strokeΔFvertical stroke/Σvertical strokeF 0 vertical stroke) of 0.055 for 1176 reflections. (orig.)

  12. PAK4 crystal structures suggest unusual kinase conformational movements.

    Science.gov (United States)

    Zhang, Eric Y; Ha, Byung Hak; Boggon, Titus J

    2018-02-01

    In order for protein kinases to exchange nucleotide they must open and close their catalytic cleft. These motions are associated with rotations of the N-lobe, predominantly around the 'hinge region'. We conducted an analysis of 28 crystal structures of the serine-threonine kinase, p21-activated kinase 4 (PAK4), including three newly determined structures in complex with staurosporine, FRAX486, and fasudil (HA-1077). We find an unusual motion between the N-lobe and C-lobe of PAK4 that manifests as a partial unwinding of helix αC. Principal component analysis of the crystal structures rationalizes these movements into three major states, and analysis of the kinase hydrophobic spines indicates concerted movements that create an accessible back pocket cavity. The conformational changes that we observe for PAK4 differ from previous descriptions of kinase motions, and although we observe these differences in crystal structures there is the possibility that the movements observed may suggest a diversity of kinase conformational changes associated with regulation. Protein kinases are key signaling proteins, and are important drug targets, therefore understanding their regulation is important for both basic research and clinical points of view. In this study, we observe unusual conformational 'hinging' for protein kinases. Hinging, the opening and closing of the kinase sub-domains to allow nucleotide binding and release, is critical for proper kinase regulation and for targeted drug discovery. We determine new crystal structures of PAK4, an important Rho-effector kinase, and conduct analyses of these and previously determined structures. We find that PAK4 crystal structures can be classified into specific conformational groups, and that these groups are associated with previously unobserved hinging motions and an unusual conformation for the kinase hydrophobic core. Our findings therefore indicate that there may be a diversity of kinase hinging motions, and that these may

  13. Crystal structure of 2-oxo-2H-chromen-7-yl 4-fluorobenzoate

    Directory of Open Access Journals (Sweden)

    Akoun Abou

    2018-05-01

    Full Text Available In the title compound, C16H9FO4, (I, the benzene ring is oriented at an acute angle of 59.03 (15° relative to the coumarin plane (r.m.s deviation = 0.009 Å. This conformation of (I is stabilized by an intramolecular C—H...O hydrogen bond, which closes a five-membering ring. In the crystal, molecules of (I form infinite zigzag chains along the b-axis direction, linked by C—H...O hydrogen bonds. Furthermore, the crystal structure is supported by π–π stacking interactions between neighbouring pyrone and benzene or coumarin rings [centroid–centroid distances in the range 3.5758 (18–3.6115 (16 Å], as well as C=O...π interactions [O...centroid distances in the range 3.266 (3–3.567 (3 Å]. The theoretical data for (I obtained from quantum chemical calculations are in good agreement with the observed structure, although the calculated C—O—C—C torsion angle between the coumarin fragment and the benzene ring (73.7° is somewhat larger than the experimental value [63.4 (4°]. Hirshfeld surface analysis has been used to confirm and quantify the supramolecular interactions.

  14. Determination of the X-ray structure of the snake venom protein omwaprin by total chemical synthesis and racemic protein crystallography.

    Science.gov (United States)

    Banigan, James R; Mandal, Kalyaneswar; Sawaya, Michael R; Thammavongsa, Vilasak; Hendrickx, Antoni P A; Schneewind, Olaf; Yeates, Todd O; Kent, Stephen B H

    2010-10-01

    The 50-residue snake venom protein L-omwaprin and its enantiomer D-omwaprin were prepared by total chemical synthesis. Radial diffusion assays were performed against Bacillus megaterium and Bacillus anthracis; both L- and D-omwaprin showed antibacterial activity against B. megaterium. The native protein enantiomer, made of L-amino acids, failed to crystallize readily. However, when a racemic mixture containing equal amounts of L- and D-omwaprin was used, diffraction quality crystals were obtained. The racemic protein sample crystallized in the centrosymmetric space group P2(1)/c and its structure was determined at atomic resolution (1.33 A) by a combination of Patterson and direct methods based on the strong scattering from the sulfur atoms in the eight cysteine residues per protein. Racemic crystallography once again proved to be a valuable method for obtaining crystals of recalcitrant proteins and for determining high-resolution X-ray structures by direct methods.

  15. Structural and optical properties of WTe2 single crystals synthesized by DVT technique

    Science.gov (United States)

    Dixit, Vijay; Vyas, Chirag; Pathak, V. M.; Soalanki, G. K.; Patel, K. D.

    2018-05-01

    Layered transition metal di-chalcogenide (LTMDCs) crystals have attracted much attention due to their potential in optoelectronic device applications recently due to realization of their monolayer based structures. In the present investigation we report growth of WTe2 single crystals by direct vapor transport (DVT) technique. These crystals are then characterized by energy dispersive analysis of x-rays (EDAX) to study stoichiometric composition after growth. The structural properties are studied by x-ray diffraction (XRD) and selected area electron diffraction (SAED) is used to confirm orthorhombic structure of grown WTe2 crystal. Surface morphological properties of the crystals are also studied by scanning electron microscope (SEM). The optical properties of the grown crystals are studied by UV-Visible spectroscopy which gives direct band gap of 1.44 eV for grown WTe2 single crystals.

  16. Growth of single crystals of BaFe12O19 by solid state crystal growth

    Science.gov (United States)

    Fisher, John G.; Sun, Hengyang; Kook, Young-Geun; Kim, Joon-Seong; Le, Phan Gia

    2016-10-01

    Single crystals of BaFe12O19 are grown for the first time by solid state crystal growth. Seed crystals of BaFe12O19 are buried in BaFe12O19+1 wt% BaCO3 powder, which are then pressed into pellets containing the seed crystals. During sintering, single crystals of BaFe12O19 up to ∼130 μm thick in the c-axis direction grow on the seed crystals by consuming grains from the surrounding polycrystalline matrix. Scanning electron microscopy-energy dispersive spectroscopy analysis shows that the single crystal and the surrounding polycrystalline matrix have the same chemical composition. Micro-Raman scattering shows the single crystal to have the BaFe12O19 structure. The optimum growth temperature is found to be 1200 °C. The single crystal growth behavior is explained using the mixed control theory of grain growth.

  17. A hybrid computational-experimental approach for automated crystal structure solution

    Science.gov (United States)

    Meredig, Bryce; Wolverton, C.

    2013-02-01

    Crystal structure solution from diffraction experiments is one of the most fundamental tasks in materials science, chemistry, physics and geology. Unfortunately, numerous factors render this process labour intensive and error prone. Experimental conditions, such as high pressure or structural metastability, often complicate characterization. Furthermore, many materials of great modern interest, such as batteries and hydrogen storage media, contain light elements such as Li and H that only weakly scatter X-rays. Finally, structural refinements generally require significant human input and intuition, as they rely on good initial guesses for the target structure. To address these many challenges, we demonstrate a new hybrid approach, first-principles-assisted structure solution (FPASS), which combines experimental diffraction data, statistical symmetry information and first-principles-based algorithmic optimization to automatically solve crystal structures. We demonstrate the broad utility of FPASS to clarify four important crystal structure debates: the hydrogen storage candidates MgNH and NH3BH3; Li2O2, relevant to Li-air batteries; and high-pressure silane, SiH4.

  18. Finding Chemical Structures Corresponding to a Set of Coordinates in Chemical Descriptor Space.

    Science.gov (United States)

    Miyao, Tomoyuki; Funatsu, Kimito

    2017-08-01

    When chemical structures are searched based on descriptor values, or descriptors are interpreted based on values, it is important that corresponding chemical structures actually exist. In order to consider the existence of chemical structures located in a specific region in the chemical space, we propose to search them inside training data domains (TDDs), which are dense areas of a training dataset in the chemical space. We investigated TDDs' features using diverse and local datasets, assuming that GDB11 is the chemical universe. These two analyses showed that considering TDDs gives higher chance of finding chemical structures than a random search-based method, and that novel chemical structures actually exist inside TDDs. In addition to those findings, we tested the hypothesis that chemical structures were distributed on the limited areas of chemical space. This hypothesis was confirmed by the fact that distances among chemical structures in several descriptor spaces were much shorter than those among randomly generated coordinates in the training data range. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Coupling between crystal structure and magnetism in transition-metal oxides

    Science.gov (United States)

    Barton, Phillip Thomas

    Transition-metal oxides exhibit a fascinating array of phenomena ranging from superconductivity to negative thermal expansion to catalysis. This dissertation focuses on magnetism, which is integral to engineering applications such as data storage, electric motors/generators, and transformers. The investigative approach follows structure-property relationships from materials science and draws on intuition from solid-state chemistry. The interplay between crystal structure and magnetic properties is studied experimentally in order to enhance the understanding of magnetostructural coupling mechanisms and provide insight into avenues for tuning behavior. A combination of diffraction and physical property measurements were used to study structural and magnetic phase transitions as a function of chemical composition, temperature, and magnetic field. The systems examined are of importance in Li-ion battery electrochemistry, condensed-matter physics, solid-state chemistry, and p-type transparent conducting oxides. The materials were prepared by solid-state reaction of powder reagents at high temperatures for periods lasting tens of hours. The first project discussed is of a solid solution between NiO, a correlated insulator, and LiNiO2, a layered battery cathode. Despite the deceptive structural and compositional simplicity of this system, a complete understanding of its complex magnetic properties has remained elusive. This study shows that nanoscale domains of chemical order form at intermediate compositions, creating interfaces between antiferromagnetism and ferrimagnetism that give rise to magnetic exchange bias. A simple model of the magnetism is presented along with a comprehensive phase diagram. The second set of investigations focus on the Ge-Co-O system where the spin-orbit coupling of Co(II) plays a significant role. GeCo2O 4 is reported to exhibit unusual magnetic behavior that arises from Ising spin in its spinel crystal structure. Studies by variable

  20. Gallium arsenide single crystal solar cell structure and method of making

    Science.gov (United States)

    Stirn, Richard J. (Inventor)

    1983-01-01

    A production method and structure for a thin-film GaAs crystal for a solar cell on a single-crystal silicon substrate (10) comprising the steps of growing a single-crystal interlayer (12) of material having a closer match in lattice and thermal expansion with single-crystal GaAs than the single-crystal silicon of the substrate, and epitaxially growing a single-crystal film (14) on the interlayer. The material of the interlayer may be germanium or graded germanium-silicon alloy, with low germanium content at the silicon substrate interface, and high germanium content at the upper surface. The surface of the interface layer (12) is annealed for recrystallization by a pulsed beam of energy (laser or electron) prior to growing the interlayer. The solar cell structure may be grown as a single-crystal n.sup.+ /p shallow homojunction film or as a p/n or n/p junction film. A Ga(Al)AS heteroface film may be grown over the GaAs film.

  1. First principles study of structural, electronic and optical properties of KCl crystal

    International Nuclear Information System (INIS)

    Chen, Z.J.; Xiao, H.Y.; Zu, X.T.

    2006-01-01

    The structural, electronic and optical properties of KCl crystal in B1, B2, B3 and T1 structures have been systematically studied using first-principle pseudopotential calculations. In addition, pressure-induced phase transition has also been investigated. It was found that when the pressure is below 2.8 GPa, the B1 structure is the most stable. Above 2.8 GPa KCl crystal will undergo a structural phase transition from the relatively open NaCl structure into the more dense CsCl atomic arrangement. Our results also suggested that at about 1.2 GPa structural phase transition from B3 to T1 will occur. When the pressure arrives at 39.9 GPa, the phase transition will occur from B2 to T1. In addition, we found KCl Crystal has indirect band gap in B2 structure and direct band gap in B1, B3 and T1 structures. The band gap value is the smallest in the T1 structure and is the largest in the B1 and B3 structures. Our calculations are found to be in good agreement with available experimental and theoretical results. The dielectric function and energy loss function of KCl crystal in four structures (B1, B2, B3 and T1) have been calculated as well as the anisotropy of the optical properties of KCl crystal in T1 structure

  2. Crystal structure and magnetism of layered perovskites compound EuBaCuFeO5

    Science.gov (United States)

    Lal, Surender; Mukherjee, K.; Yadav, C. S.

    2018-04-01

    Layered perovskite compounds have interesting multiferroic properties.YBaCuFeO5 is one of the layered perovskite compounds which have magnetic and dielectric transition above 200 K. The multiferroic properties can be tuned with the replacement of Y with some other rare earth ions. In this manuscript, structural and magnetic properties of layered perovskite compound EuBaCuFeO5 have been investigated. This compound crystallizes in the tetragonal structure with P4mm space group and is iso-structural with YBaCuFeO5. The magnetic transition has been found to shift to 120 K as compared to YBaCuFeO5 which has the transition at 200 K. This shift in the magnetic transition has been ascribed to the decrease in the chemical pressure that relaxes the magnetic moments.

  3. Solvent effects on the crystal growth structure and morphology of the pharmaceutical dirithromycin

    Science.gov (United States)

    Wang, Yuan; Liang, Zuozhong

    2017-12-01

    Solvent effects on the crystal structure and morphology of pharmaceutical dirithromycin molecules were systematically investigated using both experimental crystallization and theoretical simulation. Dirithromycin is one of the new generation of macrolide antibiotics with two polymorphic forms (Form I and Form II) and many solvate forms. Herein, six solvates of the dirithromycin, including acetonitrile, acetonitrile/water, acetone, 1-propanol, N,N-dimethylformamide (DMF) and cyclohexane, were studied. Experimentally, we crystallized the dirithromycin molecules in different solvents by the solvent evaporating method and measured the crystal structures with the X-ray diffraction (XRD). We compared these crystal structures of dirithromycin solvates and analyzed the solvent property-determined structure evolution. The solvents have a strong interaction with the dirithromycin molecule due to the formation of inter-molecular interactions (such as the hydrogen bonding and close contacts (sum of vdW radii)). Theoretically, we calculated the ideal crystal habit based on the solvated structures with the attachment growth (AE) model. The predicted morphologies and aspect ratios of dirithromycin solvates agree well with the experimental results. This work could be helpful to better understand the structure and morphology evolution of solvates controlled by solvents and guide the crystallization of active pharmaceutical ingredients in the pharmaceutical industry.

  4. Cyclic saturation dislocation structures of multiple-slip-oriented copper single crystals

    International Nuclear Information System (INIS)

    Li, X.W.; Chinese Academy of Sciences, Shenyang; Umakoshi, Y.; Li, S.X.; Wang, Z.G.

    2001-01-01

    The dislocation structures of [011] and [ anti 111] multiple-slip-oriented Cu single crystals cyclically saturated at constant plastic strain amplitudes were investigated through transmission electron microscopy. The results obtained on [001] multiple-slip-oriented Cu single crystals were also included for summarization. Unlike the case for single-slip-oriented Cu single crystals, the crystallographic orientation has a strong effect on the saturation dislocation structure in these three multiple-slip-oriented crystals. For the [011] crystal, different dislocation patterns such as veins, PSB walls, labyrinths and PSB ladders were observed. The formation of PSB ladders is believed to be a major reason for the existence of a plateau region in the cyclic stress-strain (CSS) curve for the [011] crystal. The cyclic saturation dislocation structure of a [ anti 111] crystal cycled at a low applied strain amplitude γ pl of 2.0 x 10 -4 was found to consist of irregular cells, which would develop into a more regular arrangement (e. g. PSB ladder-like) and the scale of which tends to decrease with increasing γ pl . Finally, three kinds of representative micro-deformation mode were summarized and termed as labyrinth-mode (or [001]-mode), cell-mode (or [ anti 111]-mode) and PSB ladder-mode (or [011]-mode). (orig.)

  5. CRYSTAL STRUCTURE ANALYSIS OF A PUTATIVE OXIDOREDUCTASE FROM KLEBSIELLA PNEUMONIAE

    Energy Technology Data Exchange (ETDEWEB)

    Baig, M.; Brown, A.; Eswaramoorthy, S.; Swaminathan, S.

    2009-01-01

    Klebsiella pneumoniae, a gram-negative enteric bacterium, is found in nosocomial infections which are acquired during hospital stays for about 10% of hospital patients in the United States. The crystal structure of a putative oxidoreductase from K. pneumoniae has been determined. The structural information of this K. pneumoniae protein was used to understand its function. Crystals of the putative oxidoreductase enzyme were obtained by the sitting drop vapor diffusion method using Polyethylene glycol (PEG) 3350, Bis-Tris buffer, pH 5.5 as precipitant. These crystals were used to collect X-ray data at beam line X12C of the National Synchrotron Light Source (NSLS) at Brookhaven National Laboratory (BNL). The crystal structure was determined using the SHELX program and refi ned with CNS 1.1. This protein, which is involved in the catalysis of an oxidation-reduction (redox) reaction, has an alpha/beta structure. It utilizes nicotinamide adenine dinucleotide phosphate (NADP) or nicotine adenine dinucleotide (NAD) to perform its function. This structure could be used to determine the active and co-factor binding sites of the protein, information that could help pharmaceutical companies in drug design and in determining the protein’s relationship to disease treatment such as that for pneumonia and other related pathologies.

  6. Crystal structure and thermal property of polyethylene glycol octadecyl ether

    International Nuclear Information System (INIS)

    Meng, Jie-yun; Tang, Xiao-fen; Li, Wei; Shi, Hai-feng; Zhang, Xing-xiang

    2013-01-01

    Highlights: ► The crystal structure of C18En for n ≥ 20 is a monoclinic system. ► Polyethylene glycol octadecyl ether crystallizes perfectly. ► The number of repeat units has significant effect on the melting, crystallizing temperature and enthalpy. ► The thermal stable temperature increases rapidly with increasing the number of repeat unit. - Abstract: The crystal structure, phase change property and thermal stable temperature (T d ) of polyethylene glycol octadecyl ether [HO(CH 2 CH 2 O) n C 18 H 37 , C18En] with various numbers of repeat units (n = 2, 10, 20 and 100) as phase change materials (PCMs) were investigated using temperature variable Fourier transformed infrared spectroscopy (FTIR), wide-angle X-ray diffraction (XRD), differential scanning calorimetry (DSC), and thermogravimetric analysis (TG). C18En crystallizes perfectly at 0 °C; and the crystal structure for n ≥ 20 is a monoclinic system. The number of repeat units has great effect on the phase change properties of C18En. The thermal stable temperature increases rapidly with increasing the number of repeat units. They approach to that of PEG-2000 as the number of repeat units is more than 10. T d increases rapidly with increasing the number of repeat units. C18En are a series of promising polymeric PCMs

  7. imide, crystal structure, thermal and dielectric studies

    Indian Academy of Sciences (India)

    methyl imidazolium methylidene bis(trifluoromethanesulfonyl)imide, crystal structure, thermal and dielectric studies. BOUMEDIENE HADDAD1,2,3,∗, TAQIYEDDINE MOUMENE2, DIDIER VILLEMIN1,. JEAN-FRANÇOIS LOHIER1 and EL-HABIB ...

  8. Study and structural and chemical characterization of human dental smalt by electron microscopy

    International Nuclear Information System (INIS)

    Belio R, I.A.; Reyes G, J.

    1998-01-01

    The study of human dental smalt has been subject to investigation for this methods with electron microscopy, electron diffraction, X-ray diffraction and image simulation programs have been used with the purpose to determine its chemical and structural characteristics of the organic and inorganic materials. This work has been held mainly for the characterization of hydroxyapatite (Ca) 10 (PO 4 ) 6 (OH 4 ) 2 , inorganic material which conforms the dental smalt in 97%, so observing its structural unity which is composed by the prisms and these by crystals and atoms. It was subsequently initiated the study of the organic material, with is precursor of itself. (Author)

  9. Growth and characterization of Bi2Se3 crystals by chemical vapor transport

    Directory of Open Access Journals (Sweden)

    W. H. Jiao

    2012-06-01

    Full Text Available Regularly-shaped high-quality Bi2Se3 crystals were grown by a chemical vapor transport using iodine as the transport agent. In addition to exhibiting a characteristic Dirac cone for a topological insulator, the Bi2Se3 crystals show some outstanding properties including additional crystallographic surfaces, large residual resistance ratio (∼10, and high mobility (∼8000 cm2·V−1·s−1. The low-temperature resistivity abnormally increases with applying pressures up to 1.7 GPa, and no superconductivity was observed down to 0.4 K.

  10. Magnetic assembly of nonmagnetic particles into photonic crystal structures.

    Science.gov (United States)

    He, Le; Hu, Yongxing; Kim, Hyoki; Ge, Jianping; Kwon, Sunghoon; Yin, Yadong

    2010-11-10

    We report the rapid formation of photonic crystal structures by assembly of uniform nonmagnetic colloidal particles in ferrofluids using external magnetic fields. Magnetic manipulation of nonmagnetic particles with size down to a few hundred nanometers, suitable building blocks for producing photonic crystals with band gaps located in the visible regime, has been difficult due to their weak magnetic dipole moment. Increasing the dipole moment of magnetic holes has been limited by the instability of ferrofluids toward aggregation at high concentration or under strong magnetic field. By taking advantage of the superior stability of highly surface-charged magnetite nanocrystal-based ferrofluids, in this paper we have been able to successfully assemble 185 nm nonmagnetic polymer beads into photonic crystal structures, from 1D chains to 3D assemblies as determined by the interplay of magnetic dipole force and packing force. In a strong magnetic field with large field gradient, 3D photonic crystals with high reflectance (83%) in the visible range can be rapidly produced within several minutes, making this general strategy promising for fast creation of large-area photonic crystals using nonmagnetic particles as building blocks.

  11. Crystal structure prediction of flexible molecules using parallel genetic algorithms with a standard force field.

    Science.gov (United States)

    Kim, Seonah; Orendt, Anita M; Ferraro, Marta B; Facelli, Julio C

    2009-10-01

    This article describes the application of our distributed computing framework for crystal structure prediction (CSP) the modified genetic algorithms for crystal and cluster prediction (MGAC), to predict the crystal structure of flexible molecules using the general Amber force field (GAFF) and the CHARMM program. The MGAC distributed computing framework includes a series of tightly integrated computer programs for generating the molecule's force field, sampling crystal structures using a distributed parallel genetic algorithm and local energy minimization of the structures followed by the classifying, sorting, and archiving of the most relevant structures. Our results indicate that the method can consistently find the experimentally known crystal structures of flexible molecules, but the number of missing structures and poor ranking observed in some crystals show the need for further improvement of the potential. Copyright 2009 Wiley Periodicals, Inc.

  12. Damage and recovery of skin barrier function after glycolic acid chemical peeling and crystal microdermabrasion.

    Science.gov (United States)

    Song, Ji Youn; Kang, Hyun A; Kim, Mi-Yeon; Park, Young Min; Kim, Hyung Ok

    2004-03-01

    Superficial chemical peeling and microdermabrasion have become increasingly popular methods for producing facial rejuvenation. However, there are few studies reporting the skin barrier function changes after these procedures. To evaluate objectively the degree of damage visually and the time needed for the skin barrier function to recover after glycolic acid peeling and aluminum oxide crystal microdermabrasion using noninvasive bioengineering methods. Superficial chemical peeling using 30%, 50%, and 70% glycolic acid and aluminum oxide crystal microdermabrasion were used on the volar forearm of 13 healthy women. The skin response was measured by a visual observation and using an evaporimeter, corneometer, and colorimeter before and after peeling at set time intervals. Both glycolic acid peeling and aluminum oxide crystal microdermabrasion induced significant damage to the skin barrier function immediately after the procedure, and the degree of damage was less severe after the aluminum oxide crystal microdermabrasion compared with glycolic acid peeling. The damaged skin barrier function had recovered within 24 hours after both procedures. The degree of erythema induction was less severe after the aluminum oxide crystal microdermabrasion compared with the glycolic acid peeling procedure. The degree of erythema induced after the glycolic acid peeling procedure was not proportional to the peeling solution concentration used. The erythema subsided within 1 day after the aluminum oxide crystal microdermabrasion procedure and within 4 days after the glycolic acid peeling procedure. These results suggest that the skin barrier function is damaged after the glycolic acid peeling and aluminum oxide crystal microdermabrasion procedure but recovers within 1 to 4 days. Therefore, repeating the superficial peeling procedure at 2-week intervals will allow sufficient time for the damaged skin to recover its barrier function.

  13. Synthesis, Crystal Structure and Anti-ischaemic Activity of (E)-1-{4 ...

    African Journals Online (AJOL)

    chloro- phenyl)prop-2-en-1-one (C28H29ClN2O3, Mr = 476.98) (5) was synthesized and studied by the single crystal X-ray diffraction method. Its structure was confirmed by 1HNMR, 13CNMR,HRMSand X-ray single crystal structure ...

  14. New Insights into the Relationship Between Network Structure and Strain Induced Crystallization in Unvolcanized Natural Rubber by Synchrotron X-ray Diffraction

    International Nuclear Information System (INIS)

    Toki, S.; Hsiao, B.; Amnuaypornsri, S.; Sakdapipanich, J.

    2009-01-01

    The relationship between the network structure and strain-induced crystallization in un-vulcanized as well as vulcanized natural rubbers (NR) and synthetic poly-isoprene rubbers (IR) was investigated via synchrotron wide-angle X-ray diffraction (WAXD) technique. It was found that the presence of a naturally occurring network structure formed by natural components in un-vulcanized NR significantly facilitates strain-induced crystallization and enhances modulus and tensile strength. The stress-strain relation in vulcanized NR is due to the combined effect of chemical and naturally occurring networks. The weakness of naturally occurring network against stress and temperature suggests that vulcanized NR has additional relaxation mechanism due to naturally occurring network. The superior mechanical properties in NR compared with IR are mainly due to the existence of naturally occurring network structure.

  15. Structure correlation and chemistry

    International Nuclear Information System (INIS)

    Buergi, H.B.

    1998-01-01

    The main goal of crystal and molecular structure determination is to provide a starting point for understanding the physical, chemical and biological properties of matter. At present, results from nearly 300000 crystal structure studies are available in computer-readable form. Structure correlation attempts to extract knowledge and understanding from this body of information, which is not available from its parts. This article reviews some typical examples: libraries of prototypal molecular dimensions, mappings of chemical reaction pathways, correlations between structure on one hand and energy, reaction rate, catalytic activity or magnetism on the other. The knowledge gained from structure-correlation studies, together with quantum-chemical and other modeling techniques, provides conceptual and practical tools for designing molecules and materials with tailor-made properties. (orig.)

  16. Synthesis and structural characterization of bulk Sb2Te3 single crystal

    Science.gov (United States)

    Sultana, Rabia; Gahtori, Bhasker; Meena, R. S.; Awana, V. P. S.

    2018-05-01

    We report the growth and characterization of bulk Sb2Te3 single crystal synthesized by the self flux method via solid state reaction route from high temperature melt (850˚C) and slow cooling (2˚C/hour) of constituent elements. The single crystal X-ray diffraction pattern showed the 00l alignment and the high crystalline nature of the resultant sample. The rietveld fitted room temperature powder XRD revealed the phase purity and rhombohedral structure of the synthesized crystal. The formation and analysis of unit cell structure further verified the rhombohedral structure composed of three quintuple layers stacked one over the other. The SEM image showed the layered directional growth of the synthesized crystal carried out using the ZEISS-EVOMA-10 scanning electron microscope The electrical resistivity measurement was carried out using the conventional four-probe method on a quantum design Physical Property Measurement System (PPMS). The temperature dependent electrical resistivity plot for studied Sb2Te3 single crystal depicts metallic behaviour in the absence of any applied magnetic field. The synthesis as well as the structural characterization of as grown Sb2Te3 single crystal is reported and discussed in the present letter.

  17. Crystal Structure of Human Enterovirus 71

    Energy Technology Data Exchange (ETDEWEB)

    Plevka, Pavel; Perera, Rushika; Cardosa, Jane; Kuhn, Richard J.; Rossmann, Michael G. (Purdue); (Sentinext)

    2013-04-08

    Enterovirus 71 is a picornavirus associated with fatal neurological illness in infants and young children. Here, we report the crystal structure of enterovirus 71 and show that, unlike in other enteroviruses, the 'pocket factor,' a small molecule that stabilizes the virus, is partly exposed on the floor of the 'canyon.' Thus, the structure of antiviral compounds may require a hydrophilic head group designed to interact with residues at the entrance of the pocket.

  18. Synthetic shibkovite K(K{sub 1.67}H{sub 2}O{sub 0.33})(Ca{sub 1.3}Na{sub 0.7})[Zn{sub 3}Si{sub 12}O{sub 30}]: the crystal structure and comparative crystal chemistry

    Energy Technology Data Exchange (ETDEWEB)

    Kiriukhina, G. V., E-mail: g-biralo@yandex.ru; Yakubovich, O. V.; Dimitrova, O. V. [Moscow State University, Faculty of Geology (Russian Federation)

    2015-01-15

    The structure of a single crystal of a synthetic analog of mineral shibkovite K(K{sub 1.67}H{sub 2}O{sub 0.33})(Ca{sub 1.3}Na{sub 0.7})[Zn{sub 3}Si{sub 12}O{sub 30}] (milarite structure type) obtained by hydrothermal synthesis in the AlPO{sub 4}-K{sub 3}PO{sub 4}-CaCO{sub 3}-Na{sub 2}CO{sub 3}-ZnCO{sub 3}-SiO{sub 2}-H{sub 2}O system has been solved (R = 0.0406) by X-ray diffraction analysis: a = 10.5327(2) Å, c = 14.2019(3) Å, sp. gr. P6/mcc, Z = 2, and ρ{sub calcd} = 2.90 g/cm{sup 3}. The crystal-chemical features of the new phase are studied in comparison with the other terms of the milarite group. It is shown that the crystallization conditions for minerals and synthetic analogs of this group determine the presence or absence of crystallization water in the structures of compounds.

  19. Crystal-Structure-Guided Design of Self-Assembling RNA Nanotriangles.

    Science.gov (United States)

    Boerneke, Mark A; Dibrov, Sergey M; Hermann, Thomas

    2016-03-14

    RNA nanotechnology uses RNA structural motifs to build nanosized architectures that assemble through selective base-pair interactions. Herein, we report the crystal-structure-guided design of highly stable RNA nanotriangles that self-assemble cooperatively from short oligonucleotides. The crystal structure of an 81 nucleotide nanotriangle determined at 2.6 Å resolution reveals the so-far smallest circularly closed nanoobject made entirely of double-stranded RNA. The assembly of the nanotriangle architecture involved RNA corner motifs that were derived from ligand-responsive RNA switches, which offer the opportunity to control self-assembly and dissociation. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. CCDC 1515632: Experimental Crystal Structure Determination : hexakis(dimethyl sulfoxide)-manganese(ii) tetraiodide

    KAUST Repository

    Haque, M.A.; Davaasuren, Bambar; Rothenberger, Alexander; Wu, Tao

    2016-01-01

    An entry from the Cambridge Structural Database, the world’s repository for small molecule crystal structures. The entry contains experimental data from a crystal diffraction study. The deposited dataset for this entry is freely available from

  1. Understanding surface structure and chemistry of single crystal lanthanum aluminate

    KAUST Repository

    Pramana, Stevin S.

    2017-03-02

    The surface crystallography and chemistry of a LaAlO3 single crystal, a material mainly used as a substrate to deposit technologically important thin films (e.g. for superconducting and magnetic devices), was analysed using surface X-ray diffraction and low energy ion scattering spectroscopy. The surface was determined to be terminated by Al-O species, and was significantly different from the idealised bulk structure. Termination reversal was not observed at higher temperature (600 °C) and chamber pressure of 10−10 Torr, but rather an increased Al-O occupancy occurred, which was accompanied by a larger outwards relaxation of Al from the bulk positions. Changing the oxygen pressure to 10−6 Torr enriched the Al site occupancy fraction at the outermost surface from 0.245(10) to 0.325(9). In contrast the LaO, which is located at the next sub-surface atomic layer, showed no chemical enrichment and the structural relaxation was lower than for the top AlO2 layer. Knowledge of the surface structure will aid the understanding of how and which type of interface will be formed when LaAlO3 is used as a substrate as a function of temperature and pressure, and so lead to improved design of device structures.

  2. Hydrogen-bonded co-crystal structure of benzoic acid and zwitterionic l-proline

    Directory of Open Access Journals (Sweden)

    Aaron M. Chesna

    2017-03-01

    Full Text Available The title compound [systematic name: benzoic acid–pyrrolidin-1-ium-2-carboxylate (1/1], C7H6O2·C5H9NO2, is an example of the application of non-centrosymmetric co-crystallization for the growth of a crystal containing a typically centrosymmetric component in a chiral space group. It co-crystallizes in the space group P212121 and contains benzoic acid and l-proline in equal proportions. The crystal structure exhibits chains of l-proline zwitterions capped by benzoic acid molecules which form a C(5[R33(11] hydrogen-bonded network along [100]. The crystal structure is examined and compared to that of a similar co-crystal containing l-proline zwitterions and 4-aminobenzoic acid.

  3. Crystal structure of Sus scrofa quinolinate phosphoribosyltransferase in complex with nicotinate mononucleotide.

    Directory of Open Access Journals (Sweden)

    Hyung-Seop Youn

    Full Text Available We have determined the crystal structure of porcine quinolinate phosphoribosyltransferase (QAPRTase in complex with nicotinate mononucleotide (NAMN, which is the first crystal structure of a mammalian QAPRTase with its reaction product. The structure was determined from protein obtained from the porcine kidney. Because the full protein sequence of porcine QAPRTase was not available in either protein or nucleotide databases, cDNA was synthesized using reverse transcriptase-polymerase chain reaction to determine the porcine QAPRTase amino acid sequence. The crystal structure revealed that porcine QAPRTases have a hexameric structure that is similar to other eukaryotic QAPRTases, such as the human and yeast enzymes. However, the interaction between NAMN and porcine QAPRTase was different from the interaction found in prokaryotic enzymes, such as those of Helicobacter pylori and Mycobacterium tuberculosis. The crystal structure of porcine QAPRTase in complex with NAMN provides a structural framework for understanding the unique properties of the mammalian QAPRTase active site and designing new antibiotics that are selective for the QAPRTases of pathogenic bacteria, such as H. pylori and M. tuberculosis.

  4. Journal of Chemical Sciences | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Chemical Sciences. Malaichamy Sathiyendiran. Articles written in Journal of Chemical Sciences. Volume 126 Issue 5 September 2014 pp 1501-1506 Special issue on Chemical Crystallography. Synthesis and crystal structure of a wheel-shaped supramolecular coordination complex.

  5. Comparison of NMR and crystal structures highlights conformational isomerism in protein active sites

    International Nuclear Information System (INIS)

    Serrano, Pedro; Pedrini, Bill; Geralt, Michael; Jaudzems, Kristaps; Mohanty, Biswaranjan; Horst, Reto; Herrmann, Torsten; Elsliger, Marc-André; Wilson, Ian A.; Wüthrich, Kurt

    2010-01-01

    Tools for systematic comparisons of NMR and crystal structures developed by the JCSG were applied to two proteins with known functions: the T. maritima anti-σ factor antagonist TM1081 and the mouse γ-glutamylamine cyclotransferase A2LD1 (gi:13879369). In an attempt to exploit the complementarity of crystal and NMR data, the combined use of the two structure-determination techniques was explored for the initial steps in the challenge of searching proteins of unknown functions for putative active sites. The JCSG has recently developed a protocol for systematic comparisons of high-quality crystal and NMR structures of proteins. In this paper, the extent to which this approach can provide function-related information on the two functionally annotated proteins TM1081, a Thermotoga maritima anti-σ factor antagonist, and A2LD1 (gi:13879369), a mouse γ-glutamylamine cyclotransferase, is explored. The NMR structures of the two proteins have been determined in solution at 313 and 298 K, respectively, using the current JCSG protocol based on the software package UNIO for extensive automation. The corresponding crystal structures were solved by the JCSG at 100 K and 1.6 Å resolution and at 100 K and 1.9 Å resolution, respectively. The NMR and crystal structures of the two proteins share the same overall molecular architectures. However, the precision of the structure determination along the amino-acid sequence varies over a significantly wider range in the NMR structures than in the crystal structures. Thereby, in each of the two NMR structures about 65% of the residues have displacements below the average and in both proteins the less well ordered residues include large parts of the active sites, in addition to some highly solvent-exposed surface areas. Whereas the latter show increased disorder in the crystal and in solution, the active-site regions display increased displacements only in the NMR structures, where they undergo local conformational exchange on the

  6. CCDC 1024814: Experimental Crystal Structure Determination : 1,3-Dimesitylimidazolidine-2-selenone

    KAUST Repository

    Vummaleti, Sai V. C.; Nelson, David J.; Poater, Albert; Gó mez-Suá rez, Adriá n; Cordes, David B.; Slawin, Alexandra M. Z.; Nolan, Steven P.; Cavallo, Luigi

    2015-01-01

    An entry from the Cambridge Structural Database, the world’s repository for small molecule crystal structures. The entry contains experimental data from a crystal diffraction study. The deposited dataset for this entry is freely available from the CCDC and typically includes 3D coordinates, cell parameters, space group, experimental conditions and quality measures.

  7. CCDC 1446070: Experimental Crystal Structure Determination : tris(Pentafluorophenyl)-(triethylsilyl formate)-boron

    KAUST Repository

    Chen, Jiawei

    2016-01-01

    An entry from the Cambridge Structural Database, the world’s repository for small molecule crystal structures. The entry contains experimental data from a crystal diffraction study. The deposited dataset for this entry is freely available from the CCDC and typically includes 3D coordinates, cell parameters, space group, experimental conditions and quality measures.

  8. CCDC 1446069: Experimental Crystal Structure Determination : tris(Pentafluorophenyl)-(triethylsilyl formate)-aluminium

    KAUST Repository

    Chen, Jiawei

    2016-01-01

    An entry from the Cambridge Structural Database, the world’s repository for small molecule crystal structures. The entry contains experimental data from a crystal diffraction study. The deposited dataset for this entry is freely available from the CCDC and typically includes 3D coordinates, cell parameters, space group, experimental conditions and quality measures.

  9. The plug-based nanovolume Microcapillary Protein Crystallization System (MPCS)

    International Nuclear Information System (INIS)

    Gerdts, Cory J.; Elliott, Mark; Lovell, Scott; Mixon, Mark B.; Napuli, Alberto J.; Staker, Bart L.; Nollert, Peter; Stewart, Lance

    2008-01-01

    The Microcapillary Protein Crystallization System (MPCS) is a new protein-crystallization technology used to generate nanolitre-sized crystallization experiments for crystal screening and optimization. Using the MPCS, diffraction-ready crystals were grown in the plastic MPCS CrystalCard and were used to solve the structure of methionine-R-sulfoxide reductase. The Microcapillary Protein Crystallization System (MPCS) embodies a new semi-automated plug-based crystallization technology which enables nanolitre-volume screening of crystallization conditions in a plasticware format that allows crystals to be easily removed for traditional cryoprotection and X-ray diffraction data collection. Protein crystals grown in these plastic devices can be directly subjected to in situ X-ray diffraction studies. The MPCS integrates the formulation of crystallization cocktails with the preparation of the crystallization experiments. Within microfluidic Teflon tubing or the microfluidic circuitry of a plastic CrystalCard, ∼10–20 nl volume droplets are generated, each representing a microbatch-style crystallization experiment with a different chemical composition. The entire protein sample is utilized in crystallization experiments. Sparse-matrix screening and chemical gradient screening can be combined in one comprehensive ‘hybrid’ crystallization trial. The technology lends itself well to optimization by high-granularity gradient screening using optimization reagents such as precipitation agents, ligands or cryoprotectants

  10. Crystal and electronic structure study of Mn doped wurtzite ZnO nanoparticles

    Directory of Open Access Journals (Sweden)

    O.M. Ozkendir

    2016-08-01

    Full Text Available The change in the crystal and electronic structure properties of wurtzite ZnO nanoparticles was studied according to Mn doping in the powder samples. The investigations were conducted by X-ray Absorption Fine Structure Spectroscopy (XAFS technique for the samples prepared with different heating and doping processes. Electronic analysis was carried out by the collected data from the X-ray Absorption Near-Edge Structure Spectroscopy (XANES measurements. Additional crystal structure properties were studied by Extended-XAFS (EXAFS analysis. Longer heating periods for the undoped wurtzite ZnO samples were determined to own stable crystal geometries. However, for some doped samples, the distortions in the crystal were observed as a result of the low doping amounts of Mn which was treated as an impurity. Besides, the changes in oxygen locations were determined to create defects and distortions in the samples.

  11. Cracking a chemical conundrum

    Energy Technology Data Exchange (ETDEWEB)

    Adams, James M.; Ivanov, Alexandre S.; Johnson, Mark R.; Stride, John A

    2004-07-15

    An everyday laboratory chemical, hexamethylbenzene (HMB) has assumed an important role in the history of molecular structure and crystallography. It was one of the first organic crystal structures to be solved and provided direct experimental proof for the hypothesis of planarity in aromatic systems. Very soon after this, HMB was found to undergo a phase transition at 117 K, resulting in crystal shattering. Since then, many attempts have been made to obtain the low-temperature structure, but none have succeeded until now. Making use of the unique properties of the neutron, we have performed powder diffraction measurements to obtain the low-temperature crystal structure and inelastic measurements to determine the dynamics of the system. These experiments have been augmented by the use of ab initio calculations and molecular modelling to obtain a complete picture of HMB in the solid state.

  12. Cracking a chemical conundrum

    International Nuclear Information System (INIS)

    Adams, James M.; Ivanov, Alexandre S.; Johnson, Mark R.; Stride, John A.

    2004-01-01

    An everyday laboratory chemical, hexamethylbenzene (HMB) has assumed an important role in the history of molecular structure and crystallography. It was one of the first organic crystal structures to be solved and provided direct experimental proof for the hypothesis of planarity in aromatic systems. Very soon after this, HMB was found to undergo a phase transition at 117 K, resulting in crystal shattering. Since then, many attempts have been made to obtain the low-temperature structure, but none have succeeded until now. Making use of the unique properties of the neutron, we have performed powder diffraction measurements to obtain the low-temperature crystal structure and inelastic measurements to determine the dynamics of the system. These experiments have been augmented by the use of ab initio calculations and molecular modelling to obtain a complete picture of HMB in the solid state

  13. Reversible Single-Crystal-to-Single-Crystal Structural Transformation in a Mixed-Ligand 2D Layered Metal-Organic Framework: Structural Characterization and Sorption Study

    Directory of Open Access Journals (Sweden)

    Chih-Chieh Wang

    2017-12-01

    Full Text Available A 3D supramolecular network, [Cd(bipy(C4O4(H2O2]·3H2O (1 (bipy = 4,4′-bipyridine and C4O42− = dianion of H2C4O4, constructed by mixed-ligand two-dimensional (2D metal-organic frameworks (MOFs has been reported and structurally determined by the single-crystal X-ray diffraction method and characterized by other physicochemical methods. In 1, the C4O42− and bipy both act as bridging ligands connecting the Cd(II ions to form a 2D layered MOF, which are then extended to a 3D supramolecular network via the mutually parallel and interpenetrating arrangements among the 2D-layered MOFs. Compound 1 shows a two-step dehydration process with weight losses of 11.0% and 7.3%, corresponding to the weight-loss of three guest and two coordinated water molecules, respectively, and exhibits an interesting reversible single-crystal-to-single-crystal (SCSC structural transformation upon de-hydration and re-hydration for guest water molecules. The SCSC structural transformation have been demonstrated and monitored by single-crystal and X-ray powder diffraction, and thermogravimetic analysis studies.

  14. Simulation of iron impurity in BaTiO3 crystals

    International Nuclear Information System (INIS)

    Stashans, Arvids; Castillo, Darwin

    2009-01-01

    Iron-doped barium titanate (BaTiO 3 ) has been simulated taking into account cubic and tetragonal crystallographic lattices of the crystal. A quantum-chemical method based on the Hartree-Fock formalism has been used throughout the study. The calculated equilibrium structures of Fe-doped crystals reveal the defect-inward displacements of the Ti and O atoms whereas the shifts for the Ba atoms are encountered to be away with respect to the Fe impurity. According to the analysis of electron density population and electron band structure it is found that some unusual chemical bonding might take place between the Fe atom and its six adjacent O atoms. The role of Fe impurity in the ferroelectric polarization of the tetragonal BaTiO 3 crystal has been discussed too.

  15. On structure of some laminated crystals with organic molecules

    International Nuclear Information System (INIS)

    Volodina, G.F.; Ivanova, V.Ya.; Malinovskij, T.I.

    1982-01-01

    A survey is made of papers dealing with intercalation of organic molecules into crystals of dihalcogenides of some transition metals (TaS 2 , TiS 2 , NbS 2 , ZrS 2 , TaSe 2 ), variation of their structure and physical properties. Among the used intercalates ammonia, pyridine, aniline and other aromatic amines proved to be most satisfactory from the viewpoint of reaction rate and product stability. A possibility is discussed of intercalation into PbI 2 and CdI 2 crystals that are of the same structural type as dihalcogenides

  16. Polarization singularities of optical fields caused by structural dislocations in crystals

    International Nuclear Information System (INIS)

    Savaryn, V; Vasylkiv, Yu; Krupych, O; Skab, I; Vlokh, R

    2013-01-01

    We analyze polarization singularities of optical beams that propagate through crystals possessing structural dislocations. We show that screw dislocations of crystalline structure can lead to the appearance of purely screw-type dislocations of light wavefronts. This can happen only in crystals that belong to trigonal and cubic systems. These polarization singularities will give rise to optical vortices with the topological charge equal to ±1, whenever a crystal sample is placed between crossed circular polarizers. We have also found that edge dislocations present in the cubic and trigonal crystals, with the Burgers vector perpendicular to the three-fold symmetry axes, can impose mixed screw-edge dislocations in the wavefronts of optical beams and generate singly charged optical vortices. The results of our analysis can be applied for detecting and identifying dislocations of different types available in crystals. (paper)

  17. Hydrothermal synthesis, crystal structure and luminescence property ...

    Indian Academy of Sciences (India)

    The design and construction of ... dination polymers. It is difficult to design coordination .... The first endotherm at about 180 ... graphic data for coordination polymer 1. ... Sheldrick G M 1997 SHELXS-97: Program for solution of crystal structures ...

  18. Irradiation of zinc single crystal with 500 keV singly-charged carbon ions: surface morphology, structure, hardness, and chemical modifications

    Science.gov (United States)

    Waqas Khaliq, M.; Butt, M. Z.; Saleem, Murtaza

    2017-07-01

    Cylindrical specimens of (1 0 4) oriented zinc single crystal (diameter  =  6 mm and length  =  5 mm) were irradiated with 500 keV C+1 ions with the help of a Pelletron accelerator. Six specimens were irradiated in an ultra-high vacuum (~10‒8 Torr) with different ion doses, namely 3.94  ×  1014, 3.24  ×  1015, 5.33  ×  1015, 7.52  ×  1015, 1.06  ×  1016, and 1.30  ×  1016 ions cm-2. A field emission scanning electron microscope (FESEM) was utilized for the morphological study of the irradiated specimens. Formation of nano- and sub-micron size rods, clusters, flower- and fork-like structures, etc, was observed. Surface roughness of the irradiated specimens showed an increasing trend with the ions dose. Energy dispersive x-ray spectroscopy (EDX) helped to determine chemical modifications in the specimens. It was found that carbon content varied in the range 22.86-31.20 wt.% and that oxygen content was almost constant, with an average value of 10.16 wt.%. The balance content was zinc. Structural parameters, i.e. crystallite size and lattice strain, were determined by Williamson-Hall analysis using x-ray diffraction (XRD) patterns of the irradiated specimens. Both crystallite size and lattice strain showed a decreasing trend with the increasing ions dose. A good linear relationship between crystallite size and lattice strain was observed. Surface hardness depicted a decreasing trend with the ions dose and followed an inverse Hall-Petch relation. FTIR spectra of the specimens revealed that absorption bands gradually diminish as the dose of singly-charged carbon ions is increased from 3.94  ×  1014 ions cm-1 to 1.30  ×  1016 ions cm-1. This indicates progressive deterioration of chemical bonds with the increase in ion dose.

  19. Crystal structure of N′-hydroxypyrimidine-2-carboximidamide

    Directory of Open Access Journals (Sweden)

    Nithianantham Jeeva Jasmine

    2014-10-01

    Full Text Available The title compound, C5H6N4O, is approximately planar, with an angle of 11.04 (15° between the planes of the pyrimidine ring and the non-H atoms of the carboximidamide unit. The molecule adopts an E configuration about the C=N double bond. In the crystal, adjacent molecules are linked by pairs of N—H...O hydrogen bonds, forming inversion dimers with an R22(10 ring motif. The dimers are further linked via N—H...N and O—H...N hydrogen bonds into a sheet structure parallel to the ac plane. The crystal structure also features N—H...O and weak C—H...O hydrogen bonds and offset π–π stacking interactions between adjacent pyrimidine rings [centroid–centroid distance = 3.622 (1 Å].

  20. Effect of Ge atoms on crystal structure and optoelectronic properties of hydrogenated Si-Ge films

    Science.gov (United States)

    Li, Tianwei; Zhang, Jianjun; Ma, Ying; Yu, Yunwu; Zhao, Ying

    2017-07-01

    Optoelectronic and structural properties of hydrogenated microcrystalline silicon-germanium (μc-Si1-xGex:H) alloys prepared by radio-frequency plasma-enhanced chemical vapor deposition (RF-PECVD) were investigated. When the Ge atoms were predominantly incorporated in amorphous matrix, the dark and photo-conductivity decreased due to the reduced crystalline volume fraction of the Si atoms (XSi-Si) and the increased Ge dangling bond density. The photosensitivity decreased monotonously with Ge incorporation under higher hydrogen dilution condition, which was attributed to the increase in both crystallization of Ge and the defect density.

  1. Synthesis and Crystal Structures of Two Metal Complexes Incorporating Malonate and Organodiamine Ligands

    International Nuclear Information System (INIS)

    Zhang, Quan Zheng; Yang, Wen Bin; Chen, Shu Mei; Lu, Can Zhong

    2005-01-01

    In the present work we report the synthesis and X-ray crystal structures of two new malonato complexes incorporating organodiamine ligands: [Ni(phen)(mal)(H_2O)_2]·3H_2O (H_2mal = malonic acid, phen = 1,10-phenanthroline) and [Zn(bpy)(H_2O)]_2[Zn(bpy)(mal)(H_2O)_2]_2(NO_3)_4·4H_2O (bpy = 2,2'-bipyridine). Investigation on novel organic-inorganic hybrid framework assemblies represents one of the most active areas of material science and chemical research. Major advances have been made in these materials due to their interesting properties and potential in various applications, e. g., electrical conductivity, magnetism, host-guest chemistry, ion exchange, catalysis, nonlinear optics, etc. Moreover, discovery and design of such new materials with specific networks remain of a particularly important and active subject in the field of supramolecuar chemistry and crystal engineering. A variety of complexes with interesting compositions and topologies have been prepared through taking certain factors into account, such as the coordination nature of the metal ion and the shape, functionality, flexibility, and symmetry of organic ligand. Recently, some dicarboxylate ligands, such as oxalate, malonate, and terephthalate, have been widely used in the construction of these interesting structures

  2. Bio-inspired fabrication of stimuli-responsive photonic crystals with hierarchical structures and their applications

    International Nuclear Information System (INIS)

    Lu, Tao; Peng, Wenhong; Zhu, Shenmin; Zhang, Di

    2016-01-01

    When the constitutive materials of photonic crystals (PCs) are stimuli-responsive, the resultant PCs exhibit optical properties that can be tuned by the stimuli. This can be exploited for promising applications in colour displays, biological and chemical sensors, inks and paints, and many optically active components. However, the preparation of the required photonic structures is the first issue to be solved. In the past two decades, approaches such as microfabrication and self-assembly have been developed to incorporate stimuli-responsive materials into existing periodic structures for the fabrication of PCs, either as the initial building blocks or as the surrounding matrix. Generally, the materials that respond to thermal, pH, chemical, optical, electrical, or magnetic stimuli are either soft or aggregate, which is why the manufacture of three-dimensional hierarchical photonic structures with responsive properties is a great challenge. Recently, inspired by biological PCs in nature which exhibit both flexible and responsive properties, researchers have developed various methods to synthesize metals and metal oxides with hierarchical structures by using a biological PC as the template. This review will focus on the recent developments in this field. In particular, PCs with biological hierarchical structures that can be tuned by external stimuli have recently been successfully fabricated. These findings offer innovative insights into the design of responsive PCs and should be of great importance for future applications of these materials. (topical review)

  3. Structural templating in a nonplanar phthalocyanine using single crystal copper iodide

    OpenAIRE

    Rochford, L. A. (Luke A.); Ramadan, Alexandra J.; Keeble, Dean S.; Ryan, Mary P.; Heutz, Sandrine; Jones, T. S. (Tim S.)

    2015-01-01

    Solution-grown copper iodide crystals are used as substrates for the templated growth of the nonplanar vanadyl phthalocyanine using organic molecular beam deposition. Structural characterization reveals a single molecular orientation produced by the (111) Miller plane of the copper iodide crystals. These fundamental measurements show the importance of morphology and structure in templating interactions for organic electronics applications.

  4. High-Q microwave resonators with a photonic crystal structure

    International Nuclear Information System (INIS)

    Schuster, M.

    2001-08-01

    The localisation of electromagnetic energy at a defect in a photonic crystal is similar to a well known effect employed to construct high-Q microwave resonators: In a whispering gallery (WHG-) mode resonator the high Q-factor is achieved by localisation of the electromagnetic field energy by total reflection inside a disk made of dielectric material. The topic of this work is to demonstrate, that WHG-like modes can exist in an air defect in a photonic crystal that extends over several lattice periods; and that a high-Q microwave resonator can be made, utilizing these resonant modes. In numerical simulations, the transmission properties of a photonic crystal structure with hexagonal lattice symmetry have been investigated with a transfer-matrix-method. The eigenmodes of a defect structure in a photonic crystal have been calculated with a quasi-3d finite element integration technique. Experimental results confirm the simulated transmission properties and show the existence of modes inside the band gap, when a defect is introduced in the crystal. Resonator measurements show that a microwave resonator can be operated with those defect modes. It was found out that the main losses of the resonator were caused by bad microwave properties of the used dielectric material and by metal losses on the top and bottom resonator walls. Furthermore, it turned out that the detection of the photonic crystal defect mode was difficult because of a lack of simulation possibilities and high housing mode density in the resonator. (orig.)

  5. Effects of Manganese (Ii Sulphate on Structural, Spectral, Optical, Thermal and Mechanical Properties of L-Alanine Sodium Sulphate Single Crystals

    Directory of Open Access Journals (Sweden)

    F. Praveena

    2017-04-01

    Full Text Available New Non-linear Optical materials have been attracting in the research world for their potential applications in emerging opto-electronic technology. The dipolar nature of amino acid leads to peculiar physical and chemical properties, thus making a good candidate for NLO applications. Single crystals of manganese(II sulphate doped L-Alanine sodium sulphate(LASS has been synthesized by slow evaporation technique. Structural property of the grown crystals are characterized by X-ray powder diffraction,FT-IR spectral analysis conforms all the functional groups. Thermogravity (TG and differential themogravimetric (DTA analysis have been performed to study the thermal stability of the crystals. The second harmonic generation efficiency was measured by Kurtz-Perry powder technique. The transmission and absorption of electromagnetic radiation is analysed through UV-VIS spectrum. Microhardness was measured at different applied load to understand the mechanical stability of the crystal.

  6. Ab initio molecular crystal structures, spectra, and phase diagrams.

    Science.gov (United States)

    Hirata, So; Gilliard, Kandis; He, Xiao; Li, Jinjin; Sode, Olaseni

    2014-09-16

    Conspectus Molecular crystals are chemists' solids in the sense that their structures and properties can be understood in terms of those of the constituent molecules merely perturbed by a crystalline environment. They form a large and important class of solids including ices of atmospheric species, drugs, explosives, and even some organic optoelectronic materials and supramolecular assemblies. Recently, surprisingly simple yet extremely efficient, versatile, easily implemented, and systematically accurate electronic structure methods for molecular crystals have been developed. The methods, collectively referred to as the embedded-fragment scheme, divide a crystal into monomers and overlapping dimers and apply modern molecular electronic structure methods and software to these fragments of the crystal that are embedded in a self-consistently determined crystalline electrostatic field. They enable facile applications of accurate but otherwise prohibitively expensive ab initio molecular orbital theories such as Møller-Plesset perturbation and coupled-cluster theories to a broad range of properties of solids such as internal energies, enthalpies, structures, equation of state, phonon dispersion curves and density of states, infrared and Raman spectra (including band intensities and sometimes anharmonic effects), inelastic neutron scattering spectra, heat capacities, Gibbs energies, and phase diagrams, while accounting for many-body electrostatic (namely, induction or polarization) effects as well as two-body exchange and dispersion interactions from first principles. They can fundamentally alter the role of computing in the studies of molecular crystals in the same way ab initio molecular orbital theories have transformed research practices in gas-phase physical chemistry and synthetic chemistry in the last half century. In this Account, after a brief summary of formalisms and algorithms, we discuss applications of these methods performed in our group as compelling

  7. X-radiographic study of rare-earth compounds with special regardment of modulated structures. The response of the crystal structure to stoichiometry deviations; Roentgengraphische Untersuchung von Seltenerdverbindungen mit besonderer Beruecksichtigung modulierter Strukturen. Die Antwort der Kristallstruktur auf Stoechiometrieabweichungen

    Energy Technology Data Exchange (ETDEWEB)

    Leisegang, Tilmann

    2010-04-09

    Even shortly after World War II, as large amounts of ultrapure rare earths (RE) became available for scientific research, a large reservoir of peculiar phenomena was uncovered. These had not been investigated before or were completely unknown. Examples of these phenomena are, magnetic ordering, the KONDO effect, quantum critical points, heavy fermion behaviour, as well as superconductivity. A strong influence of small variations of the chemical composition on the physical properties had been observed. The main focus of the present thesis is the detailed elucidation of the crystal structure of fundamental representatives of this class of substances, as well as the influence of dedicated variations of the chemical composition on their structure and properties. In particular, the characterisation of modulated crystals is an important facet. A large spectrum of physical methods, especially X-ray diffraction, is employed in the investigations. Results on oriented intergrowth in the Y-Ni-B-C system, incommensurately ordered vacancies in the Ce-Si system, incorporation of stacking faults as well as commensurately ordered transition metal atoms (TM) in the RE-TM-Si system and site specific occupancy in the Y-Mn-Fe-O system are presented. Their elucidation is reported for the first time. It is shown which consequences the structural peculiarities will have on the physical properties. An objective of this thesis is to give an overview of the possible ''answers'' that can be obtained with regard to the influence of the crystal structure of rare earth transition metal compounds on deviations of the chemical composition. (orig.)

  8. Crystallization Process of Protein Rv0731c from Mycobacterium Tuberculosis for a Successful Atomic Resolution Crystal Structure at 1.2 Angstrom

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, Liang Cong

    2009-06-08

    Proteins are bio-macromolecules consisting of basic 20 amino acids and have distinct three-dimensional folds. They are essential parts of organisms and participate in every process within cells. Proteins are crucial for human life, and each protein within the body has a specific function, such as antibodies, contractile proteins, enzymes, hormonal proteins, structural proteins, storage proteins and transport proteins. Determining three-dimensional structure of a protein can help researchers discover the remarkable protein folding, binding site, conformation and etc, in order to understand well of protein interaction and aid for possible drug design. The research on protein structure by X-ray protein crystallography carried by Li-Wei Hung's research group in the Physical Bioscience Division at Lawrence Berkeley National Laboratory (LBNL) is focusing on protein crystallography. The research in this lab is in the process of from crystallizing the proteins to determining the three dimensional crystal structures of proteins. Most protein targets are selected from Mycobacterium Tuberculosis. TB (Tuberculosis) is a possible fatal infectious disease. By studying TB target protein can help discover antituberculer drugs, and find treatment for TB. The high-throughput mode of crystallization, crystal harvesting, crystal screening and data collection are applied to the research pipeline (Figure 1). The X-ray diffraction data by protein crystals can be processed and analyzed to result in a three dimensional representation of electron density, producing a detailed model of protein structure. Rv0731c is a conserved hypothetical protein with unknown function from Mycobacterium Tuberculosis. This paper is going to report the crystallization process and brief structure information of Rv0731c.

  9. Molecular Complex of Lumiflavin and 2-Aminobenzoic Acid : Crystal Structure, Crystal Spectra, and Solution Properties

    OpenAIRE

    Shieh, Huey-Sheng; Ghisla, Sandro; Hanson, Louise Karle; Ludwig, Martha L.; Nordman, Christer E.

    1981-01-01

    The molecular complex lumiflavin-2-aminobenzoic acid monohydrate (C13H12N402●C7H7N02●H2O)crystallizes from aqueous solution as red triclinic prisms. The space group is P1 with cell dimensions a = 9.660 A, b = 14.866 Å, c = 7.045 Å, α = 95.44°, β = 95.86°, and γ = 105.66°. The crystal structure was solved by direct methods and refined by block-diagonal least-squares procedures to an R value of 0.050 on the basis of 1338 observed reflections. The structure is composed of stacks of alternating l...

  10. Thermal expansion behavior of empressite, AgTe: A structural study by means of in situ high-temperature single-crystal X-ray diffraction

    International Nuclear Information System (INIS)

    Bindi, Luca

    2009-01-01

    The crystal structure of empressite, AgTe, a rare silver telluride, has been investigated by in situ X-ray single-crystal diffraction methods within the temperature range 298-463 K. AgTe remains orthorhombic, space group Pmnb (Pnma as standard), and shows only normal thermal expansion over the entire temperature range. The unit-cell parameters show a gradual increase with the increase of temperature. Slight adjustments in the geometry of Ag-tetrahedra and in the crystal-chemical environment of tellurium atoms occur in a continuous way without abrupt structural changes. The coefficients of thermal expansion along various axes are: α a = 1.5 x 10 -5 K -1 , α b = 3.0 x 10 -5 K -1 , α c = 2.2 x 10 -5 K -1 , and the bulk thermal expansion coefficient α V is 5.4 x 10 -5 K -1 for the temperature range 298-463 K

  11. Co2+-doped diopside: crystal structure and optical properties

    Science.gov (United States)

    Gori, C.; Tribaudino, M.; Mezzadri, F.; Skogby, H.; Hålenius, U.

    2018-05-01

    Synthetic clinopyroxenes along the CaMgSi2O6-CaCoSi2O6 join were investigated by a combined chemical-structural-spectroscopic approach. Single crystals were synthesized by flux growth methods, both from Ca-saturated and Ca-deficient starting compositions. Single crystal structure refinements show that the incorporation of Co2+ at the octahedrally coordinated cation sites of diopside, increases the unit-cell as well as the M1 and the M2 polyhedral volumes. Spectroscopic investigations (UV-VIS-NIR) of the Ca-rich samples reveal three main optical absorption bands, i.e. 4 T 1g → 4 T 2g( F), 4 T 1g → 4 A 2g( F) and 4 T 1g → 4 T 1g( P) as expected for Co2+ at a six-coordinated site. The bands arising from the 4 T 1g → 4 T 2g( F) and the 4 T 1g → 4 T 1g( P) electronic transitions, are each split into two components, due to the distortions of the M1 polyhedron from ideal Oh-symmetry. In spectra of both types, a band in the NIR range at ca 5000 cm-1 is caused by the 4 A 2g → 4 T 1g( F) electronic transition in Co2+ in a cubic field in the M2 site. Furthermore, an additional component to a band system at 14,000 cm-1, due to electronic transitions in Co2+ at the M2 site, is recorded in absorption spectra of Ca-deficient samples. No variations in Dq and Racah B parameters for Co2+ at the M1 site in response to compositional changes, were demonstrated, suggesting complete relaxation of the M1 polyhedron within the CaMgSi2O6-CaCoSi2O6 solid solution.

  12. Synthesis, crystal structure, physicochemical properties of hydrogen bonded supramolecular assembly of N,N-diethylanilinium-3, 5-dinitrosalicylate crystal

    Science.gov (United States)

    Rajkumar, M.; Chandramohan, A.

    2017-12-01

    An organic salt, N,N-diethylanilinium 3,5-dinitrosalicylate was synthesized and single crystals grown by employing the slow solvent evaporation solution growth technique in methanol-acetone (1:1) mixture. The electronic transitions of the salt crystal were studied by UV-Visible spectrum. The optical transmittance window and lower wavelength cut-off of grown crystal have been identified by UV-Vis-NIR studies. The FT-IR spectrum was recorded to confirm the presence of various functional groups in the grown crystal. 1H and 13C NMR spectrum were recorded to establish the molecular structure of the title crystal. Single crystal X-ray diffraction data indicated that the crystal belongs to monoclinic crystal system with P21/n space group. The thermal stability of the crystal was established by TG/DTA studies. The mechanical properties of the grown crystal were studied by Vickers' microhardness technique. The dielectric studies indicated that the dielectric constant and dielectric loss decrease exponentially with frequency at different temperatures.

  13. Investigation of melt structure and crystallization processes by high-temperature Raman spectroscopy method

    International Nuclear Information System (INIS)

    Voron'ko, Yu.K.; Kudryavtsev, A.B.; Osiko, V.V.; Sobol', A.A.

    1988-01-01

    A review of studies dealing with the melts of alkali, rare earth and other element phosphates, gallates, germanates, niobates and tungstates, which are carried out by the method of high-temperature Raman spectroscopy, is given. The effect of the melt structure on the mechanism of the substance cystallization is considered. It is shown that vitrification and supercooling of the melt, as well as its crystallization in the from of metastable structures, are related to the effect of nonconformity between the melt and crystal strucure. The effect of nonconformity between anion motives in the melt and crystal creates obstacles for equilibrium structure nucleation, which results in the formation mainly of metastable forms with lattice structure for from the structure of the melt, though cases of equilibrium phase crystallization are also possible. 37 refs.; 13 figs.; 2 tabs

  14. Confirming the Revised C-Terminal Domain of the MscL Crystal Structure

    OpenAIRE

    Maurer, Joshua A.; Elmore, Donald E.; Clayton, Daniel; Xiong, Li; Lester, Henry A.; Dougherty, Dennis A.

    2008-01-01

    The structure of the C-terminal domain of the mechanosensitive channel of large conductance (MscL) has generated significant controversy. As a result, several structures have been proposed for this region: the original crystal structure (1MSL) of the Mycobacterium tuberculosis homolog (Tb), a model of the Escherichia coli homolog, and, most recently, a revised crystal structure of Tb-MscL (2OAR). To understand which of these structures represents a physiological conformation, we measured the ...

  15. Crystal structure representations for machine learning models of formation energies

    Energy Technology Data Exchange (ETDEWEB)

    Faber, Felix [Department of Chemistry, Institute of Physical Chemistry and National Center for Computational Design and Discovery of Novel Materials, University of Basel Switzerland; Lindmaa, Alexander [Department of Physics, Chemistry and Biology, Linköping University, SE-581 83 Linköping Sweden; von Lilienfeld, O. Anatole [Department of Chemistry, Institute of Physical Chemistry and National Center for Computational Design and Discovery of Novel Materials, University of Basel Switzerland; Argonne Leadership Computing Facility, Argonne National Laboratory, 9700 S. Cass Avenue Lemont Illinois 60439; Armiento, Rickard [Department of Physics, Chemistry and Biology, Linköping University, SE-581 83 Linköping Sweden

    2015-04-20

    We introduce and evaluate a set of feature vector representations of crystal structures for machine learning (ML) models of formation energies of solids. ML models of atomization energies of organic molecules have been successful using a Coulomb matrix representation of the molecule. We consider three ways to generalize such representations to periodic systems: (i) a matrix where each element is related to the Ewald sum of the electrostatic interaction between two different atoms in the unit cell repeated over the lattice; (ii) an extended Coulomb-like matrix that takes into account a number of neighboring unit cells; and (iii) an ansatz that mimics the periodicity and the basic features of the elements in the Ewald sum matrix using a sine function of the crystal coordinates of the atoms. The representations are compared for a Laplacian kernel with Manhattan norm, trained to reproduce formation energies using a dataset of 3938 crystal structures obtained from the Materials Project. For training sets consisting of 3000 crystals, the generalization error in predicting formation energies of new structures corresponds to (i) 0.49, (ii) 0.64, and (iii) 0.37eV/atom for the respective representations.

  16. Origin of the complex crystal structures of elements at intermediate pressure

    International Nuclear Information System (INIS)

    Ackland, G J; Macleod, I R

    2004-01-01

    We present a unifying theory for the observed complex structures of sp-bonded elements under pressure on the basis of nearly free electron picture. In the intermediate pressure regime, the dominant contribution to crystal structure arises from Fermi-surface Brillouin zone interactions-structures which allow this are favoured. This simple theory explains the observed crystal structures, transport properties and the evolution of internal and unit cell parameters with pressure and appears to hold for elements in groups I-VI. We illustrate it with experimental data for these elements and ab initio calculations for Li

  17. Crystal structure, Raman scattering and magnetic properties of CuCr2-xZrxSe4 and CuCr2-xSnxSe4 selenospinels

    Science.gov (United States)

    Pinto, C.; Galdámez, A.; Barahona, P.; Moris, S.; Peña, O.

    2018-06-01

    Selenospinels, CuCr2-xMxSe4 (M = Zr and Sn), were synthesized via conventional solid-state reactions. The crystal structure of CuCr1.5Sn0.5Se4, CuCr1.7Sn0.3Se4, CuCr1.5Zr0.5Se4, and CuCr1.8Zr0.2Se4 were determined using single-crystal X-ray diffraction. All the phases crystallized in a cubic spinel-type structure. The chemical compositions of the single-crystals were examined using energy-dispersive X-ray analysis (EDS). Powder X-ray diffraction patterns of CuCr1.3Sn0.7Se4 and CuCr1.7Sn0.3Se4 were consistent with phases belonging to the Fd 3 bar m Space group. An analysis of the vibrational properties on the single-crystals was performed using Raman scattering measurements. The magnetic properties showed a spin glass behavior with increasing Sn content and ferromagnetic order for CuCr1.7Sn0.3Se4.

  18. Band structures and localization properties of aperiodic layered phononic crystals

    Energy Technology Data Exchange (ETDEWEB)

    Yan Zhizhong, E-mail: zzyan@bit.edu.cn [Department of Applied Mathematics, Beijing Institute of Technology, Beijing 100081 (China); Zhang Chuanzeng [Department of Civil Engineering, University of Siegen, D-57078 Siegen (Germany)

    2012-03-15

    The band structures and localization properties of in-plane elastic waves with coupling of longitudinal and transverse modes oblique propagating in aperiodic phononic crystals based on Thue-Morse and Rudin-Shapiro sequences are studied. Using transfer matrix method, the concept of the localization factor is introduced and the correctness is testified through the Rytov dispersion relation. For comparison, the perfect periodic structure and the quasi-periodic Fibonacci system are also considered. In addition, the influences of the random disorder, local resonance, translational and/or mirror symmetries on the band structures of the aperiodic phononic crystals are analyzed in this paper.

  19. In situ Spectroscopy of Solid-State Chemical Reaction in PbBr2-Deposited CsBr Crystals

    Science.gov (United States)

    Kondo, Shin-ichi; Matsunaga, Toshihiro; Saito, Tadaaki; Asada, Hiroshi

    2003-09-01

    It is possible to measure the fundamental optical absorption spectra of CsPbBr3 and Cs4PbBr6, whose stability is predicted by the study of phase diagram in the binary system CsBr-PbBr2, by means of in situ optical absorption and reflection spectroscopy of thermally induced solid-state chemical reaction in PbBr2-deposited CsBr crystals. On heavy annealing of the crystals, the Pb2+ ions are uniformly dispersed in the crystal matrix. The present experiment provides a novel method for measuring intrinsic optical absorption of ternary metal halides and also for in situ monitoring of doping metal halide crystal with impurities (metal ions or halogen ions).

  20. Potassium and magnesium succinatouranilates – Synthesis and crystal structure

    Energy Technology Data Exchange (ETDEWEB)

    Novikov, S.A., E-mail: serg.alex.novikov@gmail.com [Samara National Research University, 443086 Samara (Russian Federation); Grigoriev, M.S. [Frumkin Institute of Physical Chemistry and Electrochemistry RAS, 119071 Moscow (Russian Federation); Serezhkina, L.B.; Serezhkin, V.N. [Samara National Research University, 443086 Samara (Russian Federation)

    2017-04-15

    Single crystal X-ray diffraction has been applied to determine the structures of two new uranyl coordination polymers: K{sub 2}[(UO{sub 2}){sub 2}(C{sub 4}H{sub 4}O{sub 4}){sub 3}] (1) and [Mg(H{sub 2}O){sub 6}] [(UO{sub 2}){sub 2}(C{sub 4}H{sub 4}O{sub 4}){sub 3}]·2H{sub 2}O (2), where C{sub 4}H{sub 4}O{sub 4}{sup 2-} is succinate anion. Crystals of 1 and 2 contain polymeric complex anions [(UO{sub 2}){sub 2}(C{sub 4}H{sub 4}O{sub 4}){sub 3}]{sup 2-} with the same A{sub 2}Q{sup 02}{sub 3} crystallochemical formula (A=UO{sub 2}{sup 2+}, Q{sup 02}=C{sub 4}O{sub 4}H{sub 4}{sup 2-}), and have layered (1) or chain (2) structure. It has been found, that conformation of succinate ions is one of the factors, which affects the structure of [(UO{sub 2}){sub 2}(C{sub 4}H{sub 4}O{sub 4}){sub 3}]{sup 2-} anions. IR spectra of these new compounds are in good agreement with crystallographic data. Topological analysis of the uranium dicarboxylates with A{sub 2}Q{sup 02}{sub 3} crystallochemical formula has shown the presence of five isomers which differ from each other in coordination sequences and / or dimensionality. - Graphical abstract: Crystal structures of two new uranium(VI) coordination polymers with succinate linkers, namely K{sub 2}[(UO{sub 2}){sub 2}(C{sub 4}H{sub 4}O{sub 4}){sub 3}] (1) and [Mg(H{sub 2}O){sub 6}][(UO{sub 2}){sub 2}(C{sub 4}H{sub 4}O{sub 4}){sub 3}]·2H{sub 2}O (2), were determined by single-crystal XRD. Crystals of studied compounds are based on 2D or 1D structural units with the same composition and crystallochemical formula. Topological isomerism in A{sub 2}Q{sup 02}{sub 3} crystallochemical group and conformations of succinate anions in uranyl complexes are under discussion. - Highlights: • Two new uranium coordination polymers were synthesized. • Their structural units have the same composition and crystallochemical formula. • In spite the same composition and CCF dimensionality of units is different. • Structural features of uranyl CPs

  1. Molecular Dynamic Simulation of Space and Earth-Grown Crystal Structures of Thermostable T1 Lipase Geobacillus zalihae Revealed a Better Structure.

    Science.gov (United States)

    Ishak, Siti Nor Hasmah; Aris, Sayangku Nor Ariati Mohamad; Halim, Khairul Bariyyah Abd; Ali, Mohd Shukuri Mohamad; Leow, Thean Chor; Kamarudin, Nor Hafizah Ahmad; Masomian, Malihe; Rahman, Raja Noor Zaliha Raja Abd

    2017-09-25

    Less sedimentation and convection in a microgravity environment has become a well-suited condition for growing high quality protein crystals. Thermostable T1 lipase derived from bacterium Geobacillus zalihae has been crystallized using the counter diffusion method under space and earth conditions. Preliminary study using YASARA molecular modeling structure program for both structures showed differences in number of hydrogen bond, ionic interaction, and conformation. The space-grown crystal structure contains more hydrogen bonds as compared with the earth-grown crystal structure. A molecular dynamics simulation study was used to provide insight on the fluctuations and conformational changes of both T1 lipase structures. The analysis of root mean square deviation (RMSD), radius of gyration, and root mean square fluctuation (RMSF) showed that space-grown structure is more stable than the earth-grown structure. Space-structure also showed more hydrogen bonds and ion interactions compared to the earth-grown structure. Further analysis also revealed that the space-grown structure has long-lived interactions, hence it is considered as the more stable structure. This study provides the conformational dynamics of T1 lipase crystal structure grown in space and earth condition.

  2. Effect of chemical and isotope substitution in LiH crystals on polariton emission

    International Nuclear Information System (INIS)

    Plekhanov, V.G.

    1994-01-01

    Measurements of fine structure of phonon-free line of free exciton radiation in mixed crystals LiH x F 1-x (o x D 1-x (O x F 1-x crystals a sharp increase in the intensity of phonon-free line of free exciton radiation as compared with its LO repetitions is observed. The experimental results suggest manifestation of polariton effects in mixed crystals produced on the basis of lithium hydride. 17 refs., 2 figs

  3. Protein NMR Structures Refined with Rosetta Have Higher Accuracy Relative to Corresponding X-ray Crystal Structures

    Science.gov (United States)

    2014-01-01

    We have found that refinement of protein NMR structures using Rosetta with experimental NMR restraints yields more accurate protein NMR structures than those that have been deposited in the PDB using standard refinement protocols. Using 40 pairs of NMR and X-ray crystal structures determined by the Northeast Structural Genomics Consortium, for proteins ranging in size from 5–22 kDa, restrained Rosetta refined structures fit better to the raw experimental data, are in better agreement with their X-ray counterparts, and have better phasing power compared to conventionally determined NMR structures. For 37 proteins for which NMR ensembles were available and which had similar structures in solution and in the crystal, all of the restrained Rosetta refined NMR structures were sufficiently accurate to be used for solving the corresponding X-ray crystal structures by molecular replacement. The protocol for restrained refinement of protein NMR structures was also compared with restrained CS-Rosetta calculations. For proteins smaller than 10 kDa, restrained CS-Rosetta, starting from extended conformations, provides slightly more accurate structures, while for proteins in the size range of 10–25 kDa the less CPU intensive restrained Rosetta refinement protocols provided equally or more accurate structures. The restrained Rosetta protocols described here can improve the accuracy of protein NMR structures and should find broad and general for studies of protein structure and function. PMID:24392845

  4. Time-Resolved Soft X-ray Diffraction Reveals Transient Structural Distortions of Ternary Liquid Crystals

    Directory of Open Access Journals (Sweden)

    Klaus Mann

    2009-11-01

    Full Text Available Home-based soft X-ray time-resolved scattering experiments with nanosecond time resolution (10 ns and nanometer spatial resolution were carried out at a table top soft X-ray plasma source (2.2–5.2 nm. The investigated system was the lyotropic liquid crystal C16E7/paraffin/glycerol/formamide/IR 5. Usually, major changes in physical, chemical, and/or optical properties of the sample occur as a result of structural changes and shrinking morphology. Here, these effects occur as a consequence of the energy absorption in the sample upon optical laser excitation in the IR regime. The liquid crystal shows changes in the structural response within few hundred nanoseconds showing a time decay of 182 ns. A decrease of the Bragg peak diffracted intensity of 30% and a coherent macroscopic movement of the Bragg reflection are found as a response to the optical pump. The Bragg reflection movement is established to be isotropic and diffusion controlled (1 μs. Structural processes are analyzed in the Patterson analysis framework of the time-varying diffraction peaks revealing that the inter-lamellar distance increases by 2.7 Å resulting in an elongation of the coherently expanding lamella crystallite. The present studies emphasize the possibility of applying TR-SXRD techniques for studying the mechanical dynamics of nanosystems.

  5. Synthesis and Single Crystal X-Ray Structure Determination of 3,3',5 ...

    African Journals Online (AJOL)

    Single crystal structure determination at 100 K revealed needle-like crystals in an orthorhombic crystal system. The asymmetric unit of the cell consists of an isolated chloride ion, one half of a tetrahedral [MnCl4]2- anion, a [H2Me4bpz]2+ dication and one half of a molecule of water. Keywords: Crystal Engineering, Hydrogen ...

  6. Local structure, composition, and crystallization mechanism of a model two-phase “composite nanoglass”

    Energy Technology Data Exchange (ETDEWEB)

    Chattopadhyay, Soma; Shibata, Tomohiro [CSRRI-IIT, MRCAT, Sector 10, Advanced Photon Source, Argonne National Laboratory, Argonne, Illinois 60439 (United States); Kelly, S. D. [EXAFS Analysis, Bolingbrook, Illinois 60440 (United States); Balasubramanian, M. [Sector 20 XOR, Advanced Photon Source, Argonne National Laboratory, Argonne, Illinois 60439 (United States); Srinivasan, S. G.; Du, Jincheng; Banerjee, Rajarshi [Department of Materials Science and Engineering, University of North Texas, Denton, Texas 76203-5017 (United States); Ayyub, Pushan, E-mail: pushan@tifr.res.in [Department of Condensed Matter Physics and Materials Science, Tata Institute of Fundamental Research, Mumbai 400005 (India)

    2016-02-14

    We report a detailed study of the local composition and structure of a model, bi-phasic nanoglass with nominal stoichiometry Cu{sub 55}Nb{sub 45}. Three dimensional atom probe data suggest a nanoscale-phase-separated glassy structure having well defined Cu-rich and Nb-rich regions with a characteristic length scale of ≈3 nm. However, extended x-ray absorption fine structure analysis indicates subtle differences in the local environments of Cu and Nb. While the Cu atoms displayed a strong tendency to cluster and negligible structural order beyond the first coordination shell, the Nb atoms had a larger fraction of unlike neighbors (higher chemical order) and a distinctly better-ordered structural environment (higher topological order). This provides the first experimental indication that metallic glass formation may occur due to frustration arising from the competition between chemical ordering and clustering. These observations are complemented by classical as well as ab initio molecular dynamics simulations. Our study indicates that these nanoscale phase-separated glasses are quite distinct from the single phase nanoglasses (studied by Gleiter and others) in the following three respects: (i) they contain at least two structurally and compositionally distinct, nanodispersed, glassy phases, (ii) these phases are separated by comparatively sharp inter-phase boundaries, and (iii) thermally induced crystallization occurs via a complex, multi-step mechanism. Such materials, therefore, appear to constitute a new class of disordered systems that may be called a composite nanoglass.

  7. Preparation and crystal structure of Ca4Sb2O

    International Nuclear Information System (INIS)

    Eisenmann, B.; Limartha, H.; Schaefer, H.

    1980-01-01

    The formerly described compound Ca 2 Sb is to be corrected to Ca 4 Sb 2 O as shown by X-ray diffractometer data of single crystals and neutron diffraction diagrams of powders. The compound crystallizes in the K 2 NiF 4 structure type. (orig.)

  8. The crystal structure and the phase transitions of pyridinium trifluoromethanesulfonate

    International Nuclear Information System (INIS)

    Jesariew, Dominik; Ilczyszyn, Maria M; Pietraszko, Adam

    2014-01-01

    The calorimetric and optical studies and the structural properties of pyridinium trifluoromethanesulfonate (abbreviated as PyHOTf) are reported. A sequence of four fully reversible solid–solid phase transitions, at 223.0, 309.0, 359.9 and 394.3 K, has been discovered. The phase transition sequence was confirmed by x-ray diffraction data. The crystal structures of three phases (V, IV and III) have been determined from the single crystal x-ray diffraction data. Structural properties of the high temperature phases are characterized using powder x-ray diffraction data measured in the 290–425 K temperature range. The structural changes triggered by the temperature change are discussed in relation to the phase transitions. Two low temperature phases (V and IV) belong to the P4 3 2 1 2 space group of the tetragonal system. The intermediate phases (III and II) are monoclinic and the prototype high temperature phase (I) is a pseudo-cubic (tetragonal) one. The low temperature phases (V and IV) are well ordered. The crystal structure of intermediate (III and II) and prototype (I) phases are characterized by high disorder of the pyridinium cations and triflate anions. (papers)

  9. An arc detector for neutron crystal structure investigations

    Energy Technology Data Exchange (ETDEWEB)

    Habib, N [Reactor and Neutron Physics Dept., Nuclear Research Center. AEA, Cairo (Egypt)

    1997-12-31

    An arc detector for neutron structure investigations of powder crystals using time-of-flight technique is described. In order to enable the measurement of integral intensity from about 1/4 of the Debye-Scherrer ring and for simplicity reasons, the scattering angle 20-90 degree was chosen and a special arc collimator was built. The arc collimator-detector had a divergency of about 20 minutes of arc, and the distance between detector-sample was 64 cm. Four {sup 3} He detectors were fixed on the arc of the collimator. Both efficiency and space sensitivity of the detector were determined using a point neutron source. Results of measurements show that parameters of the arc detector are acceptable for high resolution crystal structure investigations. 6 figs.

  10. Simulation of iron impurity in BaTiO{sub 3} crystals

    Energy Technology Data Exchange (ETDEWEB)

    Stashans, Arvids, E-mail: arvids@utpl.edu.e [Grupo de Fisicoquimica de Materiales, Instituto de Quimica Aplicada, Universidad Tecnica Particular de Loja, Apartado 11-01-608, Loja (Ecuador); Castillo, Darwin [Grupo de Fisicoquimica de Materiales, Instituto de Quimica Aplicada, Universidad Tecnica Particular de Loja, Apartado 11-01-608, Loja (Ecuador); Escuela de Electronica y Telecomunicaciones, Universidad Tecnica Particular de Loja, Apartado 11-01-608, Loja (Ecuador)

    2009-05-01

    Iron-doped barium titanate (BaTiO{sub 3}) has been simulated taking into account cubic and tetragonal crystallographic lattices of the crystal. A quantum-chemical method based on the Hartree-Fock formalism has been used throughout the study. The calculated equilibrium structures of Fe-doped crystals reveal the defect-inward displacements of the Ti and O atoms whereas the shifts for the Ba atoms are encountered to be away with respect to the Fe impurity. According to the analysis of electron density population and electron band structure it is found that some unusual chemical bonding might take place between the Fe atom and its six adjacent O atoms. The role of Fe impurity in the ferroelectric polarization of the tetragonal BaTiO{sub 3} crystal has been discussed too.

  11. Atomic structures and mechanical properties of single-crystal GaN nanotubes

    International Nuclear Information System (INIS)

    Xu, B.; Lu, A.J.; Pan, B.C.; Yu, Q.X.

    2005-01-01

    An approach is proposed to theoretically construct a realistic single-crystal GaN nanotube at atomic scale. The generated atomic structures of the single-crystal GaN nanotubes match the structural aspects from experiment very well. Our energetic calculations show that a single-crystal GaN nanotube with [100]-oriented lateral facets is more stable than that with [110]-oriented lateral facets, when they have around the same wall thickness. For a specified orientation of the lateral facets on the single-crystal GaN nanotubes, the energetic stabilities of the tubes obey a P rule, in which P is the ratio of the number of four-coordinated atoms to the number of three-coordinated atoms. Furthermore, the Young's modulus of the considered GaN nanotubes decrease with increasing the ratio of the number of bulk atoms to the number of surface atoms in each type of tube. Our calculations and analysis demonstrate that the surface effect of a single-crystal nanotube enhances its Young's modulus significantly

  12. Protein Crystals as Novel Catalytic Materials.

    Science.gov (United States)

    Margolin, Alexey L.; Navia, Manuel A.

    2001-06-18

    In this era of molecular biology, protein crystallization is often considered to be a necessary first step in obtaining structural information through X-ray diffraction analysis. In a different light, protein crystals can also be thought of as materials, whose chemical and physical properties make them broadly attractive and useful across a larger spectrum of disciplines. The full potential of these protein crystalline materials has been severely restricted in practice, however, both by their inherent fragility, and by strongly held skepticism concerning their routine and predictable growth, formulation, and practical application. Fortunately, these problems have turned out to be solvable. A systematic exploration of the biophysics and biochemistry of protein crystallization has shown that one can dependably create new protein crystalline materials more or less at will. In turn, these crystals can be readily strengthened, both chemically and mechanically, to make them suitable for practical commercialization. Today, these novel materials are used as industrial catalysts on a commercial scale, in bioremediation and "green chemistry" applications, and in enantioselective chromatography of pharmaceuticals and fine chemicals. In the near future, their utility will expand, to include the purification of protein drugs, formulation of direct protein therapeutics, and development of adjuvant-less vaccines.

  13. Conformation of the azo bond and its influence on the molecular and crystal structures, IR and Raman spectra, and electron properties of 6-methyl-3,5-dinitro-2-[(E)-phenyldiazenyl]pyridine - Quantum chemical DFT calculations

    Science.gov (United States)

    Michalski, J.; Bryndal, I.; Lorenc, J.; Hermanowicz, K.; Janczak, J.; Hanuza, J.

    2018-02-01

    The crystal and molecular structures of 6-methyl-3,5-dinitro-2-[(E)-phenyldiazenyl]pyridine have been determined by X-ray diffraction and quantum chemical DFT calculations. The crystal is monoclinic, space group Cc (No. 9) with Z = 4 with the unit cell parameters: a = 12.083(7), b = 12.881(6), c = 8.134(3) Å and β = 97.09(5)°. The azo-bridge appears in the trans conformation in which C2-N2-N2‧-C1‧ torsion angle takes a value - 178.6(3)°, whereas the dihedral angle between the planes of the phenyl and pyridine rings is 3.5(2)°. The IR and Raman spectra measured in the temperature range 80-350 K and quantum chemical calculations with the use of B3LYP/6-311G(2d,2p) approach confirmed the trans configuration of the azo-bridge as the most stable energetically and allowed determination of the energy other virtual structures. The observed effects were used in the discussion of vibrational dynamics of the studied compound. The energy gap between cis and trans conformers equals to 1.054 eV (0.03873 Hartree). The electron absorption and emission spectra have been measured and analyzed on the basis of DFT calculations. The life time of the excited state is 12 μs and the Stokes shift is close to 5470 cm- 1.

  14. Crystal structures of HIV-1 nonnucleoside reverse transcriptase inhibitors: N-benzyl-4-methyl-benzimidazoles

    Science.gov (United States)

    Ziółkowska, Natasza E.; Michejda, Christopher J.; Bujacz, Grzegorz D.

    2009-07-01

    HIV-1 nonnucleoside reverse transcriptase inhibitors are potentially specific and effective drugs in AIDS therapy. The presence of two aromatic systems with an angled orientation in the molecule of the inhibitor is crucial for interactions with HIV-1 RT. The inhibitor drives like a wedge into the cluster of aromatic residues of RT HIV-1 and restrains the enzyme in a conformation that blocks the chemical step of nucleotide incorporation. Structural studies provide useful information for designing new, more active inhibitors. The crystal structures of four NNRTIs are presented here. The investigated compounds are derivatives of N-benzyl-4-methyl-benzimidazole with various aliphatic and aromatic substituents at carbon 2 positions and a 2,6-dihalogeno-substituted N-benzyl moiety. Structural data reported here show that the conformation of the investigated compounds is relatively rigid. Such feature is important for the nonnucleoside inhibitor binding to HIV-1 reverse transcriptase.

  15. Extracting and connecting chemical structures from text sources using chemicalize.org.

    Science.gov (United States)

    Southan, Christopher; Stracz, Andras

    2013-04-23

    Exploring bioactive chemistry requires navigating between structures and data from a variety of text-based sources. While PubChem currently includes approximately 16 million document-extracted structures (15 million from patents) the extent of public inter-document and document-to-database links is still well below any estimated total, especially for journal articles. A major expansion in access to text-entombed chemistry is enabled by chemicalize.org. This on-line resource can process IUPAC names, SMILES, InChI strings, CAS numbers and drug names from pasted text, PDFs or URLs to generate structures, calculate properties and launch searches. Here, we explore its utility for answering questions related to chemical structures in documents and where these overlap with database records. These aspects are illustrated using a common theme of Dipeptidyl Peptidase 4 (DPPIV) inhibitors. Full-text open URL sources facilitated the download of over 1400 structures from a DPPIV patent and the alignment of specific examples with IC50 data. Uploading the SMILES to PubChem revealed extensive linking to patents and papers, including prior submissions from chemicalize.org as submitting source. A DPPIV medicinal chemistry paper was completely extracted and structures were aligned to the activity results table, as well as linked to other documents via PubChem. In both cases, key structures with data were partitioned from common chemistry by dividing them into individual new PDFs for conversion. Over 500 structures were also extracted from a batch of PubMed abstracts related to DPPIV inhibition. The drug structures could be stepped through each text occurrence and included some converted MeSH-only IUPAC names not linked in PubChem. Performing set intersections proved effective for detecting compounds-in-common between documents and merged extractions. This work demonstrates the utility of chemicalize.org for the exploration of chemical structure connectivity between documents and

  16. Growth and structural, optical, and electrical properties of zincite crystals

    Science.gov (United States)

    Kaurova, I. A.; Kuz'micheva, G. M.; Rybakov, V. B.

    2013-03-01

    An X-ray diffraction study of ZnO crystals grown by the hydrothermal method has revealed reflections that give grounds to assign them to the sp. gr. P3 rather than to P63 mc. The distribution of Zn1, Zn2, O1, and O2 over structural positions, along with vacancies and incorporated zinc atoms, explains the dissymmetrization observed in terms of the kinetic (growth) phase transition of the order-disorder type, which is caused by ordering Zn and O atoms over structural positions. The color of crystals of refined compositions (Zn0.975□0.025)Zn i(0.015)(O0.990□0.010) (green) and (Zn0.965□0.035)Zn i(0.035)O (bright green) is related to different oxygen contents, which is confirmed by the results of electron probe X-ray microanalysis and absorption spectroscopy. The degree of the structural quality of crystals, their resistivity, and activation energy are also related to oxygen vacancies.

  17. Synthesis, structure, growth and characterization of a novel organic NLO single crystal: Morpholin-4-ium p-aminobenzoate

    International Nuclear Information System (INIS)

    Shanmugam, G.; Ravi Kumar, K.; Sridhar, B.; Brahadeeswaran, S.

    2012-01-01

    Highlights: ► A new organic NLO crystal morpholin-4-ium p-aminobenzoate has been grown for the first time. ► The structure is reported for the first time in the literature. ► Thermal, optical and SHG studies suggest its suitability for various NLO applications. -- Abstract: The title compound, morpholin-4-ium p-aminobenzoate (MPABA)(C 4 H 10 NO + ,C 7 H 6 NO 2 − ), has been synthesized for the first time by the addition of morpholine with 4-aminobenzoic acid in equi-molar ratio and good quality single crystals have been grown by solution growth technique using methanol as a solvent. The molecular structure of the compound was solved and refined by Direct Methods using SHELXS97 and full-matrix least-squares technique using SHELXL97, respectively. MPABA crystallizes in a monoclinic system with unit cell parameters, a = 5.948(5) Å, b = 18.033(4) Å, c = 10.577(5) Å, β = 90.40(1)° and non-centrosymmetric space group Cc. The experimentally measured density and chemical compositions were found to be in good agreement with the theoretical values. The phases and functional groups of MPABA have been identified and confirmed through powder X-ray diffraction and Fourier transform infrared (FTIR) studies, respectively. The thermal stability and decomposition details were studied through TG/DTA thermograms. The UV–visible transmission spectra were recorded for the grown crystal and its NLO characteristic was explored by powder second harmonic generation (SHG) studies.

  18. Effects of crystallization on thermal properties and chemical durability of the glasses containing simulated high level radioactive wastes

    International Nuclear Information System (INIS)

    Kawamoto, Takamichi; Terai, Ryohei; Hara, Shigeo

    1978-01-01

    In order to improve the thermodynamic stability of the glasses containing high level radioactive wastes, the conversion to glass-ceramics by the heat-treatment was carried out with two kinds of glasses, and the change of thermal properties and chemical durability by crystallization was investigated. One of the glasses has a composition of SiO 2 -Al 2 O 3 -ZnO-TiO 2 system, and another one has a composition which could grow the nephelite crystals from Na 2 O in wastes and Al 2 O 3 and SiO 2 added as glass-forming materials. Transition and yield points shifted to higher temperatures by the conversion and the glass-ceramics were found to be more stable than the original glasses. The glass-ceramics of the composition of SiO 2 -Al 2 O 3 -ZnO-TiO 2 showed poor durability, whereas the chemical durability of the glass-ceramics containing nephelite crystals was considerably improved. In the latter case, improvement of the durability is attributable to that some parts of glass are converted to nephelite crystals and the crystals are more durable than glass under most conditions. (auth.)

  19. Cultivation and characterization of GaInSe2 crystals

    International Nuclear Information System (INIS)

    Panakhov, T.M.; Kafarova, D.M.

    2013-01-01

    This work is the first systematic study devoted to the growth of GaInSe 2 crystals and their characterization by experimental methods such as X-ray diffraction, electron microscopy transmission with high resolution, sample electron diffraction. By the method of photoelectron roentgen spectroscopy it was studied the chemical structure of the GaInSe 2 crystals and the microprobe analysis indicated that the individual crystals have an excess of gallium. GaInSe 2 crystals were grown by the Bridgman method. Samples were prepared as single crystals by the Bridgman method. Studies showed that the GaInSe 2 crystals are hexagonal ones

  20. Comparative sequence and structural analyses of G-protein-coupled receptor crystal structures and implications for molecular models.

    Directory of Open Access Journals (Sweden)

    Catherine L Worth

    Full Text Available BACKGROUND: Up until recently the only available experimental (high resolution structure of a G-protein-coupled receptor (GPCR was that of bovine rhodopsin. In the past few years the determination of GPCR structures has accelerated with three new receptors, as well as squid rhodopsin, being successfully crystallized. All share a common molecular architecture of seven transmembrane helices and can therefore serve as templates for building molecular models of homologous GPCRs. However, despite the common general architecture of these structures key differences do exist between them. The choice of which experimental GPCR structure(s to use for building a comparative model of a particular GPCR is unclear and without detailed structural and sequence analyses, could be arbitrary. The aim of this study is therefore to perform a systematic and detailed analysis of sequence-structure relationships of known GPCR structures. METHODOLOGY: We analyzed in detail conserved and unique sequence motifs and structural features in experimentally-determined GPCR structures. Deeper insight into specific and important structural features of GPCRs as well as valuable information for template selection has been gained. Using key features a workflow has been formulated for identifying the most appropriate template(s for building homology models of GPCRs of unknown structure. This workflow was applied to a set of 14 human family A GPCRs suggesting for each the most appropriate template(s for building a comparative molecular model. CONCLUSIONS: The available crystal structures represent only a subset of all possible structural variation in family A GPCRs. Some GPCRs have structural features that are distributed over different crystal structures or which are not present in the templates suggesting that homology models should be built using multiple templates. This study provides a systematic analysis of GPCR crystal structures and a consistent method for identifying

  1. Comparative sequence and structural analyses of G-protein-coupled receptor crystal structures and implications for molecular models.

    Science.gov (United States)

    Worth, Catherine L; Kleinau, Gunnar; Krause, Gerd

    2009-09-16

    Up until recently the only available experimental (high resolution) structure of a G-protein-coupled receptor (GPCR) was that of bovine rhodopsin. In the past few years the determination of GPCR structures has accelerated with three new receptors, as well as squid rhodopsin, being successfully crystallized. All share a common molecular architecture of seven transmembrane helices and can therefore serve as templates for building molecular models of homologous GPCRs. However, despite the common general architecture of these structures key differences do exist between them. The choice of which experimental GPCR structure(s) to use for building a comparative model of a particular GPCR is unclear and without detailed structural and sequence analyses, could be arbitrary. The aim of this study is therefore to perform a systematic and detailed analysis of sequence-structure relationships of known GPCR structures. We analyzed in detail conserved and unique sequence motifs and structural features in experimentally-determined GPCR structures. Deeper insight into specific and important structural features of GPCRs as well as valuable information for template selection has been gained. Using key features a workflow has been formulated for identifying the most appropriate template(s) for building homology models of GPCRs of unknown structure. This workflow was applied to a set of 14 human family A GPCRs suggesting for each the most appropriate template(s) for building a comparative molecular model. The available crystal structures represent only a subset of all possible structural variation in family A GPCRs. Some GPCRs have structural features that are distributed over different crystal structures or which are not present in the templates suggesting that homology models should be built using multiple templates. This study provides a systematic analysis of GPCR crystal structures and a consistent method for identifying suitable templates for GPCR homology modelling that will

  2. Direct growth of large grain polycrystalline silicon films on aluminum-induced crystallization seed layer using hot-wire chemical vapor deposition

    International Nuclear Information System (INIS)

    Wu, Bing-Rui; Lo, Shih-Yung; Wuu, Dong-Sing; Ou, Sin-Liang; Mao, Hsin-Yuan; Wang, Jui-Hao; Horng, Ray-Hua

    2012-01-01

    Large grain polycrystalline silicon (poly-Si) films on glass substrates have been deposited on an aluminum-induced crystallization (AIC) seed layer using hot-wire chemical vapor deposition (HWCVD). A poly-Si seed layer was first formed by the AIC process and a thicker poly-Si film was subsequently deposited upon the seed layer using HWCVD. The effects of AIC annealing parameters on the structural and electrical properties of the poly-Si seed layers were characterized by Raman scattering spectroscopy, field-emission scanning electron microscopy, and Hall measurements. It was found that the crystallinity of seed layer was enhanced with increasing the annealing duration and temperature. The poly-Si seed layer formed at optimum annealing parameters can reach a grain size of 700 nm, hole concentration of 3.5 × 10 18 cm −3 , and Hall mobility of 22 cm 2 /Vs. After forming the seed layer, poly-Si films with good crystalline quality and high growth rate (> 1 nm/s) can be obtained using HWCVD. These results indicated that the HWCVD-deposited poly-Si film on an AIC seed layer could be a promising candidate for thin-film Si photovoltaic applications. - Highlights: ►Poly-Si seed layers are formed by aluminum-induced crystallization (AIC) process. ►Poly-Si on AIC seed layers are prepared by hot-wire chemical vapor deposition. ►AIC process parameters affect structural properties of poly-Si films. ►Increasing the annealing duration and temperature increases the film crystallinity.

  3. Synthesis and crystal structure of the cesium silver permanganate Cs_3Ag[MnO_4]_4

    International Nuclear Information System (INIS)

    Bauchert, Joerg M.; Henning, Harald; Schleid, Thomas

    2012-01-01

    After successful syntheses and structural refinements of the already known permanganates of cesium (Cs[MnO_4]) and silver (Ag[MnO_4]) we started to blend aqueous solutions of both components in various molar ratios. From crystallization experiments of these mixtures only three species of crystals with different chemical compositions were obtained: tricesium monosilver tetrakispermanganate (Cs_3Ag[MnO_4]_4) and, depending upon the respective ratio, either additional silver permanganate or surplus cesium permanganate, namely. The new title compound crystallizes in the orthorhombic space group Pnnm (no. 58) with two formula units per unit cell and cell dimensions of a = 764.53(4), b = 1883.57(9) and c = 584.34(3) pm. The crystal structure of Cs_3Ag[MnO_4]_4 consists of two crystallographically distinguishable cesium cations. (Cs1)"+ is surrounded by fourteen oxygen atoms constructing a slightly distorted bicapped hexagonal prism. These polyhedra are connected through edge-sharing with two other polyhedra of this kind to form chains along [001]. The chains are linked to each other via sixfold coordinated Ag"+ cations (d(Ag-O) = 238-246 pm), arranged in such a manner that they link three oxygen atoms of two cesium polyhedra, leading to a two-dimensional layer spreading out parallel to the (001) plane. Together with the two crystallographically different tetrahedral oxomanganate(VII) anions [MnO_4]"- (d(Mn-O) = 161-162 pm) the other kind of cesium cations ((Cs2)"+ with CN = 13) finally connect these layers three-dimensionally. (Copyright copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  4. Simulation and design of the photonic crystal microwave accelerating structure

    International Nuclear Information System (INIS)

    Song Ruiying; Wu Congfeng; He Xiaodong; Dong Sai

    2007-01-01

    The authors have derived the global band gaps for general two-dimensional (2D) photonic crystal microwave accelerating structures formed by square or triangular arrays of metal posts. A coordinate-space, finite-difference code was used to calculate the complete dispersion curves for the lattices. The fundamental and higher frequency global photonic band gaps were determined numerically. The structure formed by triangular arrays of metal posts with a missing rod at the center has advantages of higher-order-modes (HOM) suppression and main mode restriction under the condition of a/b<0.2. The relationship between the RF properties and the geometrical parameters have been studied for the 9.37 GHz photonic crystal accelerating structure. The Rs, Q, Rs/Q of the new structure may be comparable to the disk-loaded accelerating structure. (authors)

  5. Crystal structure of calcioburbankite and the characteristic features of the burbankite structure type

    International Nuclear Information System (INIS)

    Belovitskaya, Yu.V.; Pekov, I.V.; Gobechiya, E.R.; Kabalov, Yu.K.; Subbotin, V.V.

    2001-01-01

    The crystal structure of calcioburbankite (Na,Ca) 3 (Ca,RE,Sr,Ba) 3 (CO 3 ) 5 found in carbonatites from Vuoriyarvi (North Kareliya) was solved by the Rietveld method. The experimental data were collected on an ADP-2 diffractometer (λCuK α radiation; Ni filter; 16.00 deg. 1 + α 2 ) reflections was 455). All the calculations were performed within the sp. gr. P6 3 mc; a = 10.4974(1) A, c = 6.4309(1) A, V = 613.72(1) A 3 ; R wp = 2.49%. The structure was refined with the use of the anisotropic thermal parameters for the (Na,Ca) and (Sr,Ba,Ce) cations. The comparison of the crystal structures of all of the known hexagonal representatives of the burbankite family demonstrates that the burbankite structure type (sp. gr. P6 3 mc) is stable, irrespectively of the occupancy of the ten-vertex polyhedra predominantly with Ca, Sr, or Ba cations and the occupancies of the positions in the eight-vertex polyhedra

  6. Several new phases in RE-Mg-Ge systems (RE = rare earth metal) - syntheses, structures, and chemical bonding

    International Nuclear Information System (INIS)

    Suen, Nian-Tzu; Bobev, Svilen

    2012-01-01

    Reported are the synthesis and structural characterization of Ce_5Mg_8Ge_8 (its own structure type), CeMg_2_-_xGe_2_+_x (BaAl_4-type structure), RE_4Mg_7Ge_6 (RE = Ce-Nd, Sm; La_4Mg_7Ge_6-type structure), and RE_4Mg_5Ge_6 (RE = Ce, Pr; Tm_4Zn_5Ge_6-type structure). The structures of these compounds have been established by single-crystal and powder X-ray diffraction. These compounds are closely related to each other not only in their chemical compositions but also in their structures. A common structural feature of all are MgGe_4 tetrahedra, which are connected by corner- and/or edge-sharing into complex polyanionic frameworks with the rare-earth metal atoms filling the ''empty'' space. The structures are compared to known types of structures, and we have investigated the chemical bonding in Ce_5Mg_8Ge_8 with electronic structure calculations, which were carried out by the tight-bonding linear muffin-tin orbital (TB-LMTO) method. (Copyright copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  7. Synthesis, crystal structure and Thermogravimetry of ortho-phthalic ...

    Indian Academy of Sciences (India)

    satisfied by two chelated carboxylates while fifth and sixth co-ordination positions are satisfied by monodentate ... Keywords. o-Phthalic acid; coordination polymer; X-ray crystal structure; Copper(II); EPR; TGA. 1. .... Absorption coefficient.

  8. GPCR crystal structures: Medicinal chemistry in the pocket.

    Science.gov (United States)

    Shonberg, Jeremy; Kling, Ralf C; Gmeiner, Peter; Löber, Stefan

    2015-07-15

    Recent breakthroughs in GPCR structural biology have significantly increased our understanding of drug action at these therapeutically relevant receptors, and this will undoubtedly lead to the design of better therapeutics. In recent years, crystal structures of GPCRs from classes A, B, C and F have been solved, unveiling a precise snapshot of ligand-receptor interactions. Furthermore, some receptors have been crystallized in different functional states in complex with antagonists, partial agonists, full agonists, biased agonists and allosteric modulators, providing further insight into the mechanisms of ligand-induced GPCR activation. It is now obvious that there is enormous diversity in the size, shape and position of the ligand binding pockets in GPCRs. In this review, we summarise the current state of solved GPCR structures, with a particular focus on ligand-receptor interactions in the binding pocket, and how this can contribute to the design of GPCR ligands with better affinity, subtype selectivity or efficacy. Copyright © 2015 Elsevier Ltd. All rights reserved.

  9. Thermal expansion behavior of empressite, AgTe: A structural study by means of in situ high-temperature single-crystal X-ray diffraction

    Energy Technology Data Exchange (ETDEWEB)

    Bindi, Luca [Museo di Storia Naturale, sez. di Mineralogia, Universita di Firenze, Via La Pira 4, I-50121 Firenze (Italy)], E-mail: luca.bindi@unifi.it

    2009-04-03

    The crystal structure of empressite, AgTe, a rare silver telluride, has been investigated by in situ X-ray single-crystal diffraction methods within the temperature range 298-463 K. AgTe remains orthorhombic, space group Pmnb (Pnma as standard), and shows only normal thermal expansion over the entire temperature range. The unit-cell parameters show a gradual increase with the increase of temperature. Slight adjustments in the geometry of Ag-tetrahedra and in the crystal-chemical environment of tellurium atoms occur in a continuous way without abrupt structural changes. The coefficients of thermal expansion along various axes are: {alpha}{sub a} = 1.5 x 10{sup -5} K{sup -1}, {alpha}{sub b} = 3.0 x 10{sup -5} K{sup -1}, {alpha}{sub c} = 2.2 x 10{sup -5} K{sup -1}, and the bulk thermal expansion coefficient {alpha}{sub V} is 5.4 x 10{sup -5} K{sup -1} for the temperature range 298-463 K.

  10. The use of radionuclides for the study of crystal structure of solids

    International Nuclear Information System (INIS)

    Jech, C.

    1976-01-01

    It is well known that by the coordinated action of atoms arranged in rows and planes in the crystal lattice, the motion of charged particles such as protons, alpha particles and heavier ions can be influenced so that their range in the single crystals is considerably enhanced in low-index directions. A technique has been developed based on such enhanced penetration (channeling) of radioactive atoms ( 220 Rn) emitted by recoil with a 100 keV energy from a 224 Ra point source to record channeling patterns which show the crystal structure. The radioactive recoil atoms impinging from this source on the surface of a single crystal penetrate deeper in places where their direction of impact is identical with low index crystal directions and planes. These places can be visualized by autoradiography when having first stripped a thin layer from the surface corresponding to the random range of the atoms. This technique is generally applicable in close packed crystals and gives information about the crystal structure of very thin surface layers. (author)

  11. A Java Chemical Structure Editor Supporting the Modular Chemical Descriptor Language (MCDL

    Directory of Open Access Journals (Sweden)

    Andrei A. Gakh

    2006-03-01

    Full Text Available A compact Modular Chemical Descriptor Language (MCDL chemical structure editor (Java applet is described. The small size (approximately 200 KB of the applet allows its use to display and edit chemical structures in various Internet applications. The editor supports the MCDL format, in which structures are presented in compact canonical form and is capable of restoring bond orders as well as of managing atom and bond drawing overlap. A small database of cage and large cyclic fragment is used for optimal representation of difficult-to-draw molecules. The improved algorithm of the structure diagram generation can be used for other chemical notations that lack atomic coordinates (SMILES, InChI.

  12. CCDC 1048727: Experimental Crystal Structure Determination : bis(2-(hydroxyimino)propanoato)-tin(ii)

    KAUST Repository

    Khanderi, Jayaprakash; Davaasuren, Bambar; Alshankiti, Buthainah; Rothenberger, Alexander

    2015-01-01

    An entry from the Cambridge Structural Database, the world’s repository for small molecule crystal structures. The entry contains experimental data from a crystal diffraction study. The deposited dataset for this entry is freely available from the CCDC and typically includes 3D coordinates, cell parameters, space group, experimental conditions and quality measures.

  13. CCDC 1515632: Experimental Crystal Structure Determination : hexakis(dimethyl sulfoxide)-manganese(ii) tetraiodide

    KAUST Repository

    Haque, M.A.

    2016-01-01

    An entry from the Cambridge Structural Database, the world’s repository for small molecule crystal structures. The entry contains experimental data from a crystal diffraction study. The deposited dataset for this entry is freely available from the CCDC and typically includes 3D coordinates, cell parameters, space group, experimental conditions and quality measures.

  14. CCDC 1429311: Experimental Crystal Structure Determination : N-(5-Bromoquinolin-8-yl)benzamide

    KAUST Repository

    Xu, Jun; Shen, Chao; Zhu, Xiaolei; Zhang, Pengfei; Ajitha, Manjaly John; Huang, Kuo-Wei; An, Zhongfu; Liu, Xiaogang

    2016-01-01

    An entry from the Cambridge Structural Database, the world’s repository for small molecule crystal structures. The entry contains experimental data from a crystal diffraction study. The deposited dataset for this entry is freely available from the CCDC and typically includes 3D coordinates, cell parameters, space group, experimental conditions and quality measures.

  15. CCDC 1427126: Experimental Crystal Structure Determination : bis(1,10-Phenanthroline)-copper pentafluoropropanoate

    KAUST Repository

    Huang, Yangjie

    2016-01-01

    An entry from the Cambridge Structural Database, the world’s repository for small molecule crystal structures. The entry contains experimental data from a crystal diffraction study. The deposited dataset for this entry is freely available from the CCDC and typically includes 3D coordinates, cell parameters, space group, experimental conditions and quality measures.

  16. Synthesis, crystal structure and biological activity of novel diester cyclophanes

    International Nuclear Information System (INIS)

    Zhang, Pengfei; Yang, Bingqin; Fang, Xianwen; Cheng, Zhao; Yang, Meipan

    2012-01-01

    A series of novel diester cyclophanes was synthesized by esterification of 1,2-benzenedicarbonyl chloride with eight different diols under high dilution conditions. The structures of the compounds were verified by elemental analysis, 1 H nuclear magnetic resonance (NMR), IR spectroscopy and high resolution mass spectrometry (HRMS). The crystal structures of two compounds were characterized by single crystal X-ray diffractometry (XRD). All the new cyclophanes were evaluated for biological activities and the results showed that some of these compounds have low antibacterial or antifungal activities (author)

  17. Moessbauer determination of magnetic structure of Fe3BO6 crystal

    International Nuclear Information System (INIS)

    Kovalenko, P.P.; Labushkin, V.G.; Ovsepyan, A.K.; Sarkisov, Eh.R.; Smirnov, E.V.; Prokopov, A.R.; Seleznev, V.N.

    1984-01-01

    The magnetic structure of a Fe 3 BO 6 crystal belonging to space group Dsub(2h)sup(16)(Psub(nma)) is determined by the Moessbauer γ-radiation diffraction. The bragg reflection (700) of Moessbauer 14.4 keV γ-quanta from the Fe 3 BO 6 monocrystal has been studied experimentally. A high sensitivity of the interference of γ-quantum diffraction scattering on Fe nuclei being in crystallographically non-equivalent 8d- and 4s-positions to the type of magnetic ordering in the crystal is used for determination of the magnetic structure. Agreement of the experimental results with the theoretical calculations, conducted for types of magnetic ordering resolved by the symmetry of the crystal, permitted to reliably determine the magnetic structure of this compound. The results obtained confirm the data of neutrondiffraction studies on magnetic ordering in Fe 3 BO 6 . Advantages of the Moessbauer-diffraction study, as compared to the magnetic neutrondiffraction method, in particular, for investigation of crystals, in which the hyperfine magnetic fields on Fe nuclei have different values, are revealed and discussed in detail

  18. Crystal and molecular structures of 3-amino-4-hydroxy benzenesulfonamide and its hydrochloride: Quantum-chemical study of their tautomerism

    Energy Technology Data Exchange (ETDEWEB)

    Kovalchukova, O. V., E-mail: okovalchukova@mail.ru; Strashnova, S. B.; Romashkina, E. P.; Strashnov, P. V.; Zaitsev, B. E. [Peoples' Friendship University of Russia (Russian Federation); Sergienko, V. S. [Russian Academy of Sciences, Kurnakov Institute of General and Inorganic Chemistry (Russian Federation)

    2013-03-15

    3-amino-4-hydroxy benzenesulfonamide and its hydrochloride have been isolated in the crystalline state. Their crystal and molecular structures are determined by X-ray diffraction. The equilibrium between neutral tautomeric forms of the 3-amino-4-hydroxy benzenesulfonamide molecule is studied within the approximation of density functional theory (B3LYP/aug-cc-pVDZ). The constants of acid-base equilibrium of 3-amino-4-hydroxy benzenesulfonamide are deter-mined using spectrophotometry.

  19. Rapid X-ray crystal structure analysis in few second measurements using microstrip gas chamber

    CERN Document Server

    Ochi, A; Tanimori, T; Ohashi, Y; Toyokawa, H; Nishi, Y; Nishi, Y; Nagayoshi, T; Koishi, S

    2001-01-01

    X-ray crystal structure analysis using microstrip gas chamber was successfully carried out in a measurement time within a few seconds. The continuous rotation photograph method, in which most of the diffraction peaks can be obtained within one continuous rotation of the sample crystal (without stopping or oscillation), was applied for this measurement. As an example, the structure of a single crystal of ammonium bitartrate (r=1 mm, spherical) was measured. Diffraction spots from the sample, which were sufficient to obtain crystal structure, were successfully obtained by taking only 2 s measurements with a commercially available laboratory X-ray source.

  20. Crystal Graph Convolutional Neural Networks for an Accurate and Interpretable Prediction of Material Properties

    Science.gov (United States)

    Xie, Tian; Grossman, Jeffrey C.

    2018-04-01

    The use of machine learning methods for accelerating the design of crystalline materials usually requires manually constructed feature vectors or complex transformation of atom coordinates to input the crystal structure, which either constrains the model to certain crystal types or makes it difficult to provide chemical insights. Here, we develop a crystal graph convolutional neural networks framework to directly learn material properties from the connection of atoms in the crystal, providing a universal and interpretable representation of crystalline materials. Our method provides a highly accurate prediction of density functional theory calculated properties for eight different properties of crystals with various structure types and compositions after being trained with 1 04 data points. Further, our framework is interpretable because one can extract the contributions from local chemical environments to global properties. Using an example of perovskites, we show how this information can be utilized to discover empirical rules for materials design.

  1. Welcome to Crystals: A New Open-Access, Multidisciplinary Forum for Growth, Structures and Properties of Crystals

    Directory of Open Access Journals (Sweden)

    Gerd Meyer

    2010-12-01

    Full Text Available The majority of the earth’s crust is made up of crystalline material. The research areas of mineralogy, petrology, chimie minerále (inorganic chemistry and, of course, crystallography outgrew from the fascination of mankind with the color and symmetry of crystals. Crystals have translational symmetry in two or three dimensions, quasicrystals have translational symmetry in higher spaces. Further symmetries may be observed by the eye, by microscopic techniques or by the diffraction of X-ray, electron, or neutron beams. Diffraction techniques are also used, due to Max von Laue’s eminent discovery a century ago, to determine crystal structures. [...

  2. A phenomenological model for the structure-composition relationship of the high Tc cuprates based on simple chemical principles

    International Nuclear Information System (INIS)

    Alarco, J.A.; Talbot, P.C.

    2012-01-01

    A simple phenomenological model for the relationship between structure and composition of the high Tc cuprates is presented. The model is based on two simple crystal chemistry principles: unit cell doping and charge balance within unit cells. These principles are inspired by key experimental observations of how the materials accommodate large deviations from stoichiometry. Consistent explanations for significant HTSC properties can be explained without any additional assumptions while retaining valuable insight for geometric interpretation. Combining these two chemical principles with a review of Crystal Field Theory (CFT) or Ligand Field Theory (LFT), it becomes clear that the two oxidation states in the conduction planes (typically d 8 and d 9 ) belong to the most strongly divergent d-levels as a function of deformation from regular octahedral coordination. This observation offers a link to a range of coupling effects relating vibrations and spin waves through application of Hund’s rules. An indication of this model’s capacity to predict physical properties for HTSC is provided and will be elaborated in subsequent publications. Simple criteria for the relationship between structure and composition in HTSC systems may guide chemical syntheses within new material systems.

  3. Influence of smectite crystal chemistry on the organization of interlayer water and cations

    International Nuclear Information System (INIS)

    Dazas, Baptiste

    2014-01-01

    Swelling clay minerals such as smectites are ubiquitous at the Earth surface and possess major hydration ability and contaminant uptake/retention capacity. As a consequence smectites exert a pivotal influence on elemental transfers in surficial environments. These properties are especially relevant also when smectites are used as sealant in engineered or geological barriers for waste disposal facilities. As interlayer H_2O molecules account for more than 80% of smectite water in under-saturated conditions, characterization of H_2O organization and dynamics in smectites interlayers is essential to determining the geometrical and dynamical properties of clay barriers for waste disposal and to predicting the mobility of contaminant whose principal vector is water. Within this general framework, the present works describe, in a first time, the structuration of interlayer water/cations in saturated conditions. Then, in a second time, review the influence of structural parameters such as the amount and location of layer charge deficit and the chemical composition (and more especially the presence of structural fluorine/hydroxyl) on smectite hydration properties. A set of samples covering the whole compositional range of swelling phyllosilicates has thus been synthesized and characterized chemically and structurally. Special attention was paid to determining the amount (water vapor sorption isotherms) and the distribution (X-ray diffraction) of interlayer water. Molecular modeling allowed unraveling the origin of the contrasting behaviors observed experimentally and to determine the influence of the different crystal-chemical parameters on smectite hydration. This step is essential for the prediction of smectite reactivity in the environment from a limited number of crystal-chemical parameters. Molecular modeling allowed unraveling the origin of the contrasting behaviors observed experimentally and to determine the influence of the different crystal-chemical parameters on

  4. The structure and growth mechanism of Si nanoneedles prepared by plasma-enhanced chemical vapor deposition

    Czech Academy of Sciences Publication Activity Database

    Červenka, Jiří; Ledinský, Martin; Stuchlík, Jiří; Stuchlíková, The-Ha; Bakardjieva, Snejana; Hruška, Karel; Fejfar, Antonín; Kočka, Jan

    2010-01-01

    Roč. 21, č. 41 (2010), 415604/1-415604/7 ISSN 0957-4484 R&D Projects: GA MŠk(CZ) LC06040; GA AV ČR KAN400100701; GA MŠk LC510 EU Projects: European Commission(XE) 240826 - PolySiMode Institutional research plan: CEZ:AV0Z10100521; CEZ:AV0Z40320502 Keywords : nanoneedles * nanowires * silicon * plasma * chemical vapor deposition * crystal structure * growth * phonon * SEM * Raman Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 3.644, year: 2010

  5. Crystal structure of bile salt hydrolase from Lactobacillus salivarius.

    Science.gov (United States)

    Xu, Fuzhou; Guo, Fangfang; Hu, Xiao Jian; Lin, Jun

    2016-05-01

    Bile salt hydrolase (BSH) is a gut-bacterial enzyme that negatively influences host fat digestion and energy harvesting. The BSH enzyme activity functions as a gateway reaction in the small intestine by the deconjugation of glycine-conjugated or taurine-conjugated bile acids. Extensive gut-microbiota studies have suggested that BSH is a key mechanistic microbiome target for the development of novel non-antibiotic food additives to improve animal feed production and for the design of new measures to control obesity in humans. However, research on BSH is still in its infancy, particularly in terms of the structural basis of BSH function, which has hampered the development of BSH-based strategies for improving human and animal health. As an initial step towards the structure-function analysis of BSH, C-terminally His-tagged BSH from Lactobacillus salivarius NRRL B-30514 was crystallized in this study. The 1.90 Å resolution crystal structure of L. salivarius BSH was determined by molecular replacement using the structure of Clostridium perfringens BSH as a starting model. It revealed this BSH to be a member of the N-terminal nucleophile hydrolase superfamily. Crystals of apo BSH belonged to space group P21212, with unit-cell parameters a = 90.79, b = 87.35, c = 86.76 Å (PDB entry 5hke). Two BSH molecules packed perfectly as a dimer in one asymmetric unit. Comparative structural analysis of L. salivarius BSH also identified potential residues that contribute to catalysis and substrate specificity.

  6. Chemical state analysis of oxide thin films using a high resolution double crystal X-ray fluorescence spectrometer

    International Nuclear Information System (INIS)

    Masuda, Hirohisa; Morinaga, Kenji; Ohta, Yoshio.

    1995-01-01

    The chemical state analysis of r.f.-sputtered amorphous oxide thin films was determined by a high resolution X-ray fluorescence spectrometer with double crystals. The polymerization degree of silicate anions in the silicate film was as same as a target (α-Quartz). The oxygen coordination number of Al 3+ ions in the aluminate film was different from a target (α-Al 2 O 3 ), and it was a mixture of 4 and 6 in a spinel-like structure. In CaO-SiO 2 and CaO-Al 2 O 3 films, when the film thickness is thin at the beginning of sputtering, the composition of films are in the shortage of CaO. But when the film thickness become thicker, the composition of films become as same as the target. From the results above, the chemical state of films and their variations with film thickness can be clarified by using the apparatus. (author)

  7. Reversible thermochromic response based on photonic crystal structure in butterfly wing

    Science.gov (United States)

    Wang, Wanlin; Wang, Guo Ping; Zhang, Wang; Zhang, Di

    2018-01-01

    Subtle responsive properties can be achieved by the photonic crystal (PC) nanostructures of butterfly based on thermal expansion effect. The studies focused on making the sample visually distinct. However, the response is restricted by limited thermal expansion coefficients. We herein report a new class of reversible thermochromic response achieved by controlling the ambient refractive index in butterfly PC structure. The photonic ethanol-filled nanoarchitecture sample is simply assembled by sealing liquid ethanol filling Papilio ulysses butterfly wing. Volatile ethanol is used to modulate the ambient refractive index. The sample is sealed with glasses to ensure reversibility. Liquid ethanol filling butterfly wing demonstrated significant allochroic response to ambient refractive index, which can be controlled by the liquefaction and vaporization of ethanol. This design is capable of converting thermal energy into visual color signals. The mechanism of this distinct response is simulated and proven by band theory. The response properties are performed with different filled chemicals and different structure parameters. Thus, the reversible thermochromic response design might have potential use in the fields such as detection, photonic switch, displays, and so forth.

  8. Crystallization and structure of chromium cast iron with addition of Mo and Ni

    International Nuclear Information System (INIS)

    Pietrowski, S.

    1998-01-01

    The aim of the presented paper is to show the results of examination of the crystallization process using the method of thermal-derivative analysis (ATD) and the structure examination of chromium cast iron, chromium molybdenum c. i. and chromium molybdenum nickel c.i. It was found that molybdenum in amount over 2 wt % causes the crystallization of eutectic carbides M 23 C 6 and M 6 C. The M 23 C 6 carbide crystallizes upon the crystallization of eutectic carbides M 3 C and M 7 C 3 . It is shown that ATD method facilitates both interpretation and control of the crystallization as well as formation of the cast iron structure at the solid state. (author)

  9. The PubChem chemical structure sketcher

    Directory of Open Access Journals (Sweden)

    Ihlenfeldt Wolf D

    2009-12-01

    Full Text Available Abstract PubChem is an important public, Web-based information source for chemical and bioactivity information. In order to provide convenient structure search methods on compounds stored in this database, one mandatory component is a Web-based drawing tool for interactive sketching of chemical query structures. Web-enabled chemical structure sketchers are not new, being in existence for years; however, solutions available rely on complex technology like Java applets or platform-dependent plug-ins. Due to general policy and support incident rate considerations, Java-based or platform-specific sketchers cannot be deployed as a part of public NCBI Web services. Our solution: a chemical structure sketching tool based exclusively on CGI server processing, client-side JavaScript functions, and image sequence streaming. The PubChem structure editor does not require the presence of any specific runtime support libraries or browser configurations on the client. It is completely platform-independent and verified to work on all major Web browsers, including older ones without support for Web2.0 JavaScript objects.

  10. Crystal structure, growth and nonlinear optical studies of isonicotinamide p-nitrophenol: A new organic crystal for optical limiting applications

    Science.gov (United States)

    Vijayalakshmi, A.; Vidyavathy, B.; Vinitha, G.

    2016-08-01

    Isonicotinamide p-nitrophenol (ICPNP), a new organic material, was synthesized using methanol solvent. Single crystals of ICPNP were grown using a slow evaporation solution growth technique. Crystal structure of ICPNP is elucidated by single crystal X-ray diffraction analysis. It belongs to monoclinic crystal system with space group of P21/c. It forms two dimensional networks by O-H…O, N-H…O and C-H…O hydrogen bonds. The molecular structure of ICPNP was further confirmed by Fourier transform infrared (FTIR) spectral analysis. The optical transmittance range and the lower cut-off wavelength (421 nm) with the optical band gap (2.90 eV) of the ICPNP crystal were determined by UV-vis-NIR spectral study. Thermal behavior of ICPNP was studied by thermo gravimetric and differential thermal analyses (TG/DTA). The relative dielectric permittivity was calculated for various temperature ranges. Laser damage threshold of ICPNP crystal was found to be 1.9 GW/cm2 using an Nd:YAG laser. A Z-scan technique was employed to measure the nonlinear absorption coefficient, nonlinear refractive index and nonlinear optical susceptibility. Optical limiting behavior of ICPNP was observed at 35 mW input power.

  11. Crystal structure of Cryptosporidium parvum pyruvate kinase.

    Directory of Open Access Journals (Sweden)

    William J Cook

    Full Text Available Pyruvate kinase plays a critical role in cellular metabolism of glucose by serving as a major regulator of glycolysis. This tetrameric enzyme is allosterically regulated by different effector molecules, mainly phosphosugars. In response to binding of effector molecules and substrates, significant structural changes have been identified in various pyruvate kinase structures. Pyruvate kinase of Cryptosporidium parvum is exceptional among known enzymes of protozoan origin in that it exhibits no allosteric property in the presence of commonly known effector molecules. The crystal structure of pyruvate kinase from C. parvum has been solved by molecular replacement techniques and refined to 2.5 Å resolution. In the active site a glycerol molecule is located near the γ-phosphate site of ATP, and the protein structure displays a partially closed active site. However, unlike other structures where the active site is closed, the α6' helix in C. parvum pyruvate kinase unwinds and assumes an extended conformation. In the crystal structure a sulfate ion is found at a site that is occupied by a phosphate of the effector molecule in many pyruvate kinase structures. A new feature of the C. parvum pyruvate kinase structure is the presence of a disulfide bond cross-linking the two monomers in the asymmetric unit. The disulfide bond is formed between cysteine residue 26 in the short N-helix of one monomer with cysteine residue 312 in a long helix (residues 303-320 of the second monomer at the interface of these monomers. Both cysteine residues are unique to C. parvum, and the disulfide bond remained intact in a reduced environment. However, the significance of this bond, if any, remains unknown at this time.

  12. Near-equilibrium chemical vapor deposition of high-quality single-crystal graphene directly on various dielectric substrates.

    Science.gov (United States)

    Chen, Jianyi; Guo, Yunlong; Jiang, Lili; Xu, Zhiping; Huang, Liping; Xue, Yunzhou; Geng, Dechao; Wu, Bin; Hu, Wenping; Yu, Gui; Liu, Yunqi

    2014-03-05

    By using near-equilibrium chemical vapor deposition, it is demonstrated that high-quality single-crystal graphene can be grown on dielectric substrates. The maximum size is about 11 μm. The carrier mobility can reach about 5650 cm(2) V(-1) s(-1) , which is comparable to those of some metal-catalyzed graphene crystals, reflecting the good quality of the graphene lattice. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Crystal Structure of a Eukaryotic GEN1 Resolving Enzyme Bound to DNA

    Directory of Open Access Journals (Sweden)

    Yijin Liu

    2015-12-01

    Full Text Available We present the crystal structure of the junction-resolving enzyme GEN1 bound to DNA at 2.5 Å resolution. The structure of the GEN1 protein reveals it to have an elaborated FEN-XPG family fold that is modified for its role in four-way junction resolution. The functional unit in the crystal is a monomer of active GEN1 bound to the product of resolution cleavage, with an extensive DNA binding interface for both helical arms. Within the crystal lattice, a GEN1 dimer interface juxtaposes two products, whereby they can be reconnected into a four-way junction, the structure of which agrees with that determined in solution. The reconnection requires some opening of the DNA structure at the center, in agreement with permanganate probing and 2-aminopurine fluorescence. The structure shows that a relaxation of the DNA structure accompanies cleavage, suggesting how second-strand cleavage is accelerated to ensure productive resolution of the junction.

  14. The crystal structure of the phosphatidylinositol 4-kinase IIalpha

    Czech Academy of Sciences Publication Activity Database

    Bäumlová, Adriana; Chalupská, Dominika; Rozycki, B.; Jovic, M.; Wisniewski, E.; Klíma, Martin; Dubánková, Anna; Kloer, D. P.; Nencka, Radim; Balla, T.; Bouřa, Evžen

    2015-01-01

    Roč. 22, č. 1 (2015), s. 5 ISSN 1211-5894. [Discussions in Structural Molecular Biology. Annual Meeting of the Czech Society for Structural Biology /13./. 19.03.2015-21.03.2015, Nové Hrady] EU Projects: European Commission(XE) 333916 - STARPI4K Institutional support: RVO:61388963 Keywords : PI4K IIalpha * crystal structure Subject RIV: CE - Biochemistry

  15. Nb2OsB2, with a new twofold superstructure of the U3Si2 type: Synthesis, crystal chemistry and chemical bonding

    International Nuclear Information System (INIS)

    Mbarki, Mohammed; Touzani, Rachid St.; Fokwa, Boniface P.T.

    2013-01-01

    The new ternary metal-rich boride, Nb 2 OsB 2 , was synthesized by arc-melting the elements in a water-cooled copper crucible under an argon atmosphere. The compound was characterized from single-crystal X-ray data and EDX measurements. It crystallizes as a new superstructure (space group P4/mnc, no. 128) of the tetragonal U 3 Si 2 -structure type with lattice parameters a=5.922(1) Å and c=6.879(2) Å. All of the B atoms are involved in B 2 dumbbells with B–B distances of 1.89(4) Å. Structure relaxation using VASP (Vienna ab intio Simulation Package) has confirmed the space group and the lattice parameters. According to electronic structure calculations (TB–LMTO–ASA), the homoatomic B–B interactions are optimized and very strong, but relatively strong heteroatomic Os–B, Nb–B and Nb–Os bonds are also found: These interactions, which together build a three-dimensional network, are mainly responsible for the structural stability of this new phase. The density of state at the Fermi level predicts metallic behavior, as expected, from this metal-rich boride. - Graphical abstract: Nb 2 OsB 2 is, to the best of our knowledge, the first fully characterized phase in the ternary Nb–Os–B system. It crystallizes (space group P4/mnc, 128) with a new twofold superstructure of the U 3 Si 2 structure type (space group P4/mbm, 127), and is therefore the first boride in this structure family crystallizing with a superstructure of the U 3 Si 2 structure type. We show that the distortions leading to this superstructure occurs mainly in the Nb-layer, which tries to accommodate the large osmium atoms. The consequence of this puckering is the building osmium dumbbells instead of chains along [001]. - Highlights: • First compound in the Nb–Os–B system. • New twofold superstructure of U 3 Si 2 structure type. • Puckering of Nb-layer responsible for superstructure occurrence. • Chemical bonding studied by density functional theory

  16. Synthesis, crystal structure and biological activity of novel diester cyclophanes

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Pengfei; Yang, Bingqin; Fang, Xianwen; Cheng, Zhao; Yang, Meipan, E-mail: yangbq@nwu.edu.cn [Department of Chemistry, Key Laboratory of Synthetic and Natural Functional Molecule Chemistry, Northwest University, Shaanxi (China)

    2012-10-15

    A series of novel diester cyclophanes was synthesized by esterification of 1,2-benzenedicarbonyl chloride with eight different diols under high dilution conditions. The structures of the compounds were verified by elemental analysis, {sup 1}H nuclear magnetic resonance (NMR), IR spectroscopy and high resolution mass spectrometry (HRMS). The crystal structures of two compounds were characterized by single crystal X-ray diffractometry (XRD). All the new cyclophanes were evaluated for biological activities and the results showed that some of these compounds have low antibacterial or antifungal activities (author)

  17. Bismuth zinc vanadate, BiZn2VO6: New crystal structure type and electronic structure

    International Nuclear Information System (INIS)

    Eliziario Nunes, Sayonara; Wang, Chun-Hai; So, Karwei; Evans, John S.O.; Evans, Ivana Radosavljević

    2015-01-01

    We report a combined experimental and computational study of the crystal structure and electronic properties of bismuth zinc vanadate, BiZn 2 VO 6 , known for its visible light photocatalytic activity. The crystal structure has been solved from laboratory powder X-ray diffraction data using the repeated minimisations from random starting values method. BiZn 2 VO 6 adopts a new structure type, based on the following building blocks: corner- and edge-sharing ZnO 4 tetrahedra, ZnO 6 octahedra and VO 4 tetrahedra, and Bi 2 O 12 dimers. It is the only known member of the BiM 2 AO 6 (M=Pb, Ca, Cd, Mn, Zn, Mg, Cu; A=V, P, As) family which does not appear to be structurally closely related to others. The electronic structure of BiZn 2 VO 6 , calculated by DFT methods, shows that it is an indirect gap semiconductor with a calculated band gap of 1.6 eV, which compares favourably to the experimentally measured value of 2.4 eV. - Graphical abstract: The crystal structure of BiZn 2 VO 6 , a new structure type in the BiM 2 AO 6 (M=Mg, Ca, Cd, Cu, Pb, Mn, Zn; A=V, P, As) family. - Highlights: • Structure solution from PXRD data by repeated minimisations from random starting values. • New structure type in the BiM 2 AO 6 (M=Pb, Ca, Cd, Mn, Zn, Mg, Cu; A=V, P, As) family. • Electronic structure calculation

  18. Synthesis, growth, crystal structure, optical and third order nonlinear optical properties of quinolinium derivative single crystal: PNQI

    Science.gov (United States)

    Karthigha, S.; Krishnamoorthi, C.

    2018-03-01

    An organic quinolinium derivative nonlinear optical (NLO) crystal, 1-ethyl-2-[2-(4-nitro-phenyl)-vinyl]-quinolinium iodide (PNQI) was synthesized and successfully grown by slow evaporation solution growth technique. Formation of a crystalline compound was confirmed by single crystal X-ray diffraction. The quinolinium compound PNQI crystallizes in the triclinic crystal system with a centrosymmetric space group of P-1 symmetry. The molecular structure of PNQI was confirmed by 1H NMR and 13C NMR spectral studies. The thermal properties of the crystal have been investigated by thermogravimetric (TG) and differential scanning calorimetry (DSC) studies. The optical characteristics obtained from UV-Vis-NIR spectral data were described and the cut-off wavelength observed at 506 nm. The etching study was performed to analyse the growth features of PNQI single crystal. The third order NLO properties such as nonlinear refractive index (n2), nonlinear absorption coefficient (β) and nonlinear susceptibility (χ (3)) of the crystal were investigated using Z-scan technique at 632.8 nm of Hesbnd Ne laser.

  19. 71Ga Chemical Shielding and Quadrupole Coupling Tensors of the Garnet Y(3)Ga(5)O(12) from Single-Crystal (71)Ga NMR

    DEFF Research Database (Denmark)

    Vosegaard, Thomas; Massiot, Dominique; Gautier, Nathalie

    1997-01-01

    A single-crystal (71)Ga NMR study of the garnet Y(3)Ga(5)O(12) (YGG) has resulted in the determination of the first chemical shielding tensors reported for the (71)Ga quadrupole. The single-crystal spectra are analyzed in terms of the combined effect of quadrupole coupling and chemical shielding ...

  20. Atomic Scale Structure-Chemistry Relationships at Oxide Catalyst Surfaces and Interfaces

    Science.gov (United States)

    McBriarty, Martin E.

    Oxide catalysts are integral to chemical production, fuel refining, and the removal of environmental pollutants. However, the atomic-scale phenomena which lead to the useful reactive properties of catalyst materials are not sufficiently understood. In this work, the tools of surface and interface science and electronic structure theory are applied to investigate the structure and chemical properties of catalytically active particles and ultrathin films supported on oxide single crystals. These studies focus on structure-property relationships in vanadium oxide, tungsten oxide, and mixed V-W oxides on the surfaces of alpha-Al2O3 and alpha-Fe2O 3 (0001)-oriented single crystal substrates, two materials with nearly identical crystal structures but drastically different chemical properties. In situ synchrotron X-ray standing wave (XSW) measurements are sensitive to changes in the atomic-scale geometry of single crystal model catalyst surfaces through chemical reaction cycles, while X-ray photoelectron spectroscopy (XPS) reveals corresponding chemical changes. Experimental results agree with theoretical calculations of surface structures, allowing for detailed electronic structure investigations and predictions of surface chemical phenomena. The surface configurations and oxidation states of V and W are found to depend on the coverage of each, and reversible structural shifts accompany chemical state changes through reduction-oxidation cycles. Substrate-dependent effects suggest how the choice of oxide support material may affect catalytic behavior. Additionally, the structure and chemistry of W deposited on alpha-Fe 2O3 nanopowders is studied using X-ray absorption fine structure (XAFS) measurements in an attempt to bridge single crystal surface studies with real catalysts. These investigations of catalytically active material surfaces can inform the rational design of new catalysts for more efficient and sustainable chemistry.

  1. Optical and electrical properties of ZrSe3 single crystals grown by chemical vapour transport technique

    International Nuclear Information System (INIS)

    Patel, Kaushik; Prajapati, Jagdish; Vaidya, Rajiv; Patel, S.G.

    2005-01-01

    Single crystals of the lamellar compound, ZrSe 3 , were grown by chemical vapour transport technique using iodine as a transporting agent. The grown crystals were characterized with the help of energy dispersive analysis by X-ray (EDAX), which gave confirmation about the stoichiometry. The optical band gap measurement of as grown crystals was carried out with the help of optical absorption spectra in the range 700-1450 nm. The indirect as well as direct band gap of ZrSe 3 were found to be 1.1 eV and 1.47 eV, respectively. The resistivity of the as grown crystals was measured using van der Pauw method. The Hall parameters of the grown crystals were determined at room temperature from Hall effect measurements. Electrical resistivity measurements were performed on this crystal in the temperature range 303-423 K. The crystals were found to exhibit semiconducting nature in this range. The activation energy and anisotropy measurements were carried out for this crystal. Pressure dependence of electrical resistance was studied using Bridgman opposed anvils set up up to 8 GPa. The semiconducting nature of ZrSe 3 single crystal was inferred from the graph of resistance vs pressure. The results obtained are discussed in detail. (author)

  2. Effect of crystal structure on optical properties of sol–gel derived zirconia thin films

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Xiaodong, E-mail: xiaodong_wang@tongji.edu.cn [Pohl Institute of Solid State Physics, Shanghai Key Laboratory of Special Artificial Microstructure Materials and Technology, Tongji University, Shanghai 200092 (China); Wu, Guangming; Zhou, Bin [Pohl Institute of Solid State Physics, Shanghai Key Laboratory of Special Artificial Microstructure Materials and Technology, Tongji University, Shanghai 200092 (China); Shen, Jun, E-mail: shenjun67@tongji.edu.cn [Pohl Institute of Solid State Physics, Shanghai Key Laboratory of Special Artificial Microstructure Materials and Technology, Tongji University, Shanghai 200092 (China)

    2013-04-15

    Highlights: ► ZrO{sub 2} films were deposited by sol–gel method. ► Crystal structures of the films were tuned by different thermal annealing methods. ► The refractive indices vary with the crystal structures of the films. ► Lattice-mismatch was found to reduce the refractive index of ZrO{sub 2} films. -- Abstract: The optical properties of sol–gel derived zirconia thin films and their relation to the crystal structure are studied in this paper. ZrO{sub 2} films were deposited on quartz glass and silicon wafer substrates by sol–gel method with conventional furnace annealing (CFA) and rapid thermal annealing (RTA). Crystal structures of the films were analyzed by X-ray diffraction (XRD) and Raman spectroscopy, while refractive indices of the films were determined from the reflectance and transmittance spectra. The refractive indices vary with the function of crystal structure and density of the films, which depends on annealing temperature and annealing technique. Lattice-mismatch between monoclinic phase and tetragonal phase was found to reduce the refractive index of ZrO{sub 2} films.

  3. Anodic processes in the chemical and electrochemical etching of Si crystals in acid-fluoride solutions: Pore formation mechanism

    Energy Technology Data Exchange (ETDEWEB)

    Ulin, V. P.; Ulin, N. V.; Soldatenkov, F. Yu., E-mail: f.soldatenkov@mail.ioffe.ru [Ioffe Physical–Technical Institute (Russian Federation)

    2017-04-15

    The interaction of heavily doped p- and n-type Si crystals with hydrofluoric acid in the dark with and without contact with metals having greatly differing work functions (Ag and Pd) is studied. The dependences of the dissolution rates of Si crystals in HF solutions that contain oxidizing agents with different redox potentials (FeCl{sub 3}, V{sub 2}O{sub 5} and CrO{sub 3}) on the type and level of silicon doping are determined. Analysis of the experimental data suggests that valence-band holes in silicon are not directly involved in the anodic reactions of silicon oxidation and dissolution and their generation in crystals does not limit the rate of these processes. It is also shown that the character and rate of the chemical process leading to silicon dissolution in HF-containing electrolytes are determined by the interfacial potential attained at the semiconductor–electrolyte interface. The mechanism of electrochemical pore formation in silicon crystals is discussed in terms of selfconsistent cooperative reactions of nucleophilic substitution between chemisorbed fluorine anions and coordination- saturated silicon atoms in the crystal subsurface layer. A specific feature of these reactions for silicon crystals is that vacant nonbonding d{sup 2}sp{sup 3} orbitals of Si atoms, associated with sixfold degenerate states corresponding to the Δ valley of the conduction band, are involved in the formation of intermediate complexes. According to the suggested model, the pore-formation process spontaneously develops in local regions of the interface under the action of the interfacial potential in the adsorption layer and occurs as a result of the detachment of (SiF{sub 2}){sub n} polymer chains from the crystal. Just this process leads to the preferential propagation of pores along the <100> crystallographic directions. The thermodynamic aspects of pore nucleation and the effect of the potential drop across the interface, conduction type, and free-carrier concentration

  4. Elastic properties of Ti-24Nb-4Zr-8Sn single crystals with bcc crystal structure

    International Nuclear Information System (INIS)

    Zhang, Y.W.; Li, S.J.; Obbard, E.G.; Wang, H.; Wang, S.C.; Hao, Y.L.; Yang, R.

    2011-01-01

    Research highlights: → The single crystals of Ti2448 alloy with the bcc crystal structure were prepared. → The elastic moduli and constants were measured by several resonant methods. → The crystal shows significant elastic asymmetry in tension and compression. → The crystal exhibits weak nonlinear elasticity with large elastic strain ∼2.5%. → The crystal has weak atomic interactions against crystal distortion to low symmetry. - Abstract: Single crystals of Ti2448 alloy (Ti-24Nb-4Zr-8Sn in wt.%) were grown successfully using an optical floating-zone furnace. Several kinds of resonant methods gave consistent Young's moduli of 27.1, 56.3 and 88.1 GPa and shear moduli of 34.8, 11.0 and 14.6 GPa for the , and oriented single crystals, and C 11 , C 12 and C 44 of 57.2, 36.1 and 35.9 GPa respectively. Uniaxial testing revealed asymmetrical elastic behaviors of the crystals: tension caused elastic softening with a large reversible strain of ∼4% and a stress plateau of ∼250 MPa, whereas compression resulted in gradual elastic stiffening with much smaller reversible strain. The crystals exhibited weak nonlinear elasticity with a large elastic strain of ∼2.5% and a high strength, approaching ∼20% and ∼30% of its ideal shear and ideal tensile strength respectively. The crystals showed linear elasticity with a small elastic strain of ∼1%. These elastic deformation characteristics have been interpreted in terms of weakened atomic interactions against crystal distortion to low crystal symmetry under external applied stresses. These results are consistent with the properties of polycrystalline Ti2448, including high strength, low elastic modulus, large recoverable strain and weak strengthening effect due to grain refinement.

  5. Band structures in Sierpinski triangle fractal porous phononic crystals

    International Nuclear Information System (INIS)

    Wang, Kai; Liu, Ying; Liang, Tianshu

    2016-01-01

    In this paper, the band structures in Sierpinski triangle fractal porous phononic crystals (FPPCs) are studied with the aim to clarify the effect of fractal hierarchy on the band structures. Firstly, one kind of FPPCs based on Sierpinski triangle routine is proposed. Then the influence of the porosity on the elastic wave dispersion in Sierpinski triangle FPPCs is investigated. The sensitivity of the band structures to the fractal hierarchy is discussed in detail. The results show that the increase of the hierarchy increases the sensitivity of ABG (Absolute band gap) central frequency to the porosity. But further increase of the fractal hierarchy weakens this sensitivity. On the same hierarchy, wider ABGs could be opened in Sierpinski equilateral triangle FPPC; whilst, a lower ABG could be opened at lower porosity in Sierpinski right-angled isosceles FPPCs. These results will provide a meaningful guidance in tuning band structures in porous phononic crystals by fractal design.

  6. Band structures in Sierpinski triangle fractal porous phononic crystals

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Kai; Liu, Ying, E-mail: yliu5@bjtu.edu.cn; Liang, Tianshu

    2016-10-01

    In this paper, the band structures in Sierpinski triangle fractal porous phononic crystals (FPPCs) are studied with the aim to clarify the effect of fractal hierarchy on the band structures. Firstly, one kind of FPPCs based on Sierpinski triangle routine is proposed. Then the influence of the porosity on the elastic wave dispersion in Sierpinski triangle FPPCs is investigated. The sensitivity of the band structures to the fractal hierarchy is discussed in detail. The results show that the increase of the hierarchy increases the sensitivity of ABG (Absolute band gap) central frequency to the porosity. But further increase of the fractal hierarchy weakens this sensitivity. On the same hierarchy, wider ABGs could be opened in Sierpinski equilateral triangle FPPC; whilst, a lower ABG could be opened at lower porosity in Sierpinski right-angled isosceles FPPCs. These results will provide a meaningful guidance in tuning band structures in porous phononic crystals by fractal design.

  7. Synthesis and Crystal Structure of 1-Chloro-2-methyl-4-nitrobenzene

    Directory of Open Access Journals (Sweden)

    Jim Simpson

    2012-03-01

    Full Text Available The title compound (3 was prepared from 4-chloroaniline in good yield on successive oxidation and methylation and its crystal and molecular structure is reported. The compound crystallizes in the monoclinic space group P 21/n with unit cell dimensions a = 13.5698(8, b = 3.7195 (3, c = 13.5967 (8 Å, ß = 91.703(3 °, V = 685.96 (10 Å3. The molecule is essentially planar with a dihedral angle of 6.2(3 ° between the nitro group and the phenyl ring. The crystal structure is stabilised by π...π contacts between adjacent benzene rings together with C–H...O hydrogen bonds and close Cl...O contacts.

  8. Structure of single-chain single crystals of isotactic polystyrene and their radiation resistance

    International Nuclear Information System (INIS)

    Bu Haishan; Cao Jie; Xu Shengyong; Zhang Ze

    1997-01-01

    The structure of the single-chain single crystals of isotactic polystyrene (i-PS) was investigated by electron diffraction (ED) and high resolution electron microscopy (HREM). The nano-scale single-chain single crystals were found to be very stable to electron irradiation. According to the unit cell of i-PS crystals, the reflection rings in ED pattern and the lattice fringes in HREM images could be indexed, but the lower-index diffractions were not found. It is proposed that the single-chain single crystals are very small, thus secondary electrons may be allowed to escape and radiation damage is highly reduced, and that there are less lower-index lattice planes in the single-chain single crystals to provide sufficient diffraction intensity for recording. HREM images can be achieved at room temperature in the case of single-chain single crystals because of its stability to electron irradiation, therefore, this might be a novel experimental approach to the study of crystal structure of macromolecules

  9. ACToR Chemical Structure processing using Open Source ...

    Science.gov (United States)

    ACToR (Aggregated Computational Toxicology Resource) is a centralized database repository developed by the National Center for Computational Toxicology (NCCT) at the U.S. Environmental Protection Agency (EPA). Free and open source tools were used to compile toxicity data from over 1,950 public sources. ACToR contains chemical structure information and toxicological data for over 558,000 unique chemicals. The database primarily includes data from NCCT research programs, in vivo toxicity data from ToxRef, human exposure data from ExpoCast, high-throughput screening data from ToxCast and high quality chemical structure information from the EPA DSSTox program. The DSSTox database is a chemical structure inventory for the NCCT programs and currently has about 16,000 unique structures. Included are also data from PubChem, ChemSpider, USDA, FDA, NIH and several other public data sources. ACToR has been a resource to various international and national research groups. Most of our recent efforts on ACToR are focused on improving the structural identifiers and Physico-Chemical properties of the chemicals in the database. Organizing this huge collection of data and improving the chemical structure quality of the database has posed some major challenges. Workflows have been developed to process structures, calculate chemical properties and identify relationships between CAS numbers. The Structure processing workflow integrates web services (PubChem and NIH NCI Cactus) to d

  10. Crystal Structure of Tetragonal Form of La2NiO4+x

    Science.gov (United States)

    Kajitani, Tsuyoshi; Hosoya, Syoichi; Hirabayashi, Makoto; Fukuda, Tsuguo; Onozuka, Takashi

    1989-10-01

    The crystal structure of the title oxide was studied by means of the X-ray and neutron single crystal diffraction measurements. At room temperature, the tetragonal crystal structure is P42/ncm-type (No. 138), which is one of the subgroup of the space group I4/mmm. The lattice parameters of a sample annealed and slowly cooled in oxygen atmosphere from 673 K are a{=}b{=}5.4640(1) Å and c{=}12.6719(2) Å, while the oxygen content, x{=}0.10(4), was determined from obtained neutron data. The title oxide undergoes a tetragonal (P42/ncm)/tetragonal (I4/mmm) phase transition at about 560 K. The transition temperature is almost identical both in the annealed and as-grown crystals.

  11. Machine learning for the structure-energy-property landscapes of molecular crystals.

    Science.gov (United States)

    Musil, Félix; De, Sandip; Yang, Jack; Campbell, Joshua E; Day, Graeme M; Ceriotti, Michele

    2018-02-07

    Molecular crystals play an important role in several fields of science and technology. They frequently crystallize in different polymorphs with substantially different physical properties. To help guide the synthesis of candidate materials, atomic-scale modelling can be used to enumerate the stable polymorphs and to predict their properties, as well as to propose heuristic rules to rationalize the correlations between crystal structure and materials properties. Here we show how a recently-developed machine-learning (ML) framework can be used to achieve inexpensive and accurate predictions of the stability and properties of polymorphs, and a data-driven classification that is less biased and more flexible than typical heuristic rules. We discuss, as examples, the lattice energy and property landscapes of pentacene and two azapentacene isomers that are of interest as organic semiconductor materials. We show that we can estimate force field or DFT lattice energies with sub-kJ mol -1 accuracy, using only a few hundred reference configurations, and reduce by a factor of ten the computational effort needed to predict charge mobility in the crystal structures. The automatic structural classification of the polymorphs reveals a more detailed picture of molecular packing than that provided by conventional heuristics, and helps disentangle the role of hydrogen bonded and π-stacking interactions in determining molecular self-assembly. This observation demonstrates that ML is not just a black-box scheme to interpolate between reference calculations, but can also be used as a tool to gain intuitive insights into structure-property relations in molecular crystal engineering.

  12. High-brightness tapered laser diodes with photonic crystal structures

    Science.gov (United States)

    Li, Yi; Du, Weichuan; Kun, Zhou; Gao, Songxin; Ma, Yi; Tang, Chun

    2018-02-01

    Beam quality of tapered laser diodes is limited by higher order lateral mode. On purpose of optimizing the brightness of tapered laser diodes, we developed a novel design of tapered diodes. This devices based on InGaAs/AlGaAs asymmetry epitaxial structure, containing higher order lateral mode filtering schemes especially photonic crystal structures, which fabricated cost effectively by using standard photolithography and dry etch processes. Meanwhile, the effects of photonic crystal structures on mode control are also investigated theoretically by FDBPM (Finite-Difference Beam Propagation Method) calculation. We achieved a CW optical output power of 6.9W at 940nm for a single emitter with 4 mm cavity length. A nearly diffraction limited beam of M2 ≍1.9 @ 0.5W has been demonstrated, and a highest brightness of β =75MW/(cm2 ·sr) was reached.

  13. Journal of Chemical Sciences | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Chemical Sciences. YIN ZHOU. Articles written in Journal of Chemical Sciences. Volume 130 Issue 2 February 2018 pp 19. Polynuclear and one-dimensional cyanide-bridged heterobimetallic complexes: synthesis, crystal structures and magnetic properties · JINGWEN SHI WENLONG LAN YIN ...

  14. Crystal structure and X-ray photoemission spectroscopic study of A{sub 2}LaMO{sub 6} [A=Ba, Ca; M=Nb, Ta

    Energy Technology Data Exchange (ETDEWEB)

    Dutta, Alo, E-mail: alo_dutta@yahoo.com [Department of Condensed Matter Physics and Material Sciences, S. N. Bose National Centre for Basic Sciences, Block-JD, Sector-III, Salt Lake, Kolkata 700098 (India); Saha, Sujoy [Department of Physics, Bose Institute, 93/1 Acharya Prafulla Chandra Road, Kolkata 700009 (India); Kumari, Premlata [Department of Chemistry, Government P.G. College, Lansdowne, Pauri-Garhwal 246139 (India); Sinha, T.P. [Department of Physics, Bose Institute, 93/1 Acharya Prafulla Chandra Road, Kolkata 700009 (India); Shannigrahi, Santiranjan [Institute of Materials Research and Engineering, Agency for Science Technology and Research, 3 Research Link, Singapore 117602 (Singapore)

    2015-09-15

    The X-ray photoemission spectroscopic (XPS) study of the double perovskite oxides A{sub 2}LaMO{sub 6} [A=Ba, Ca; M=Nb, Ta] synthesized by the solid-state reaction technique has been carried out to investigate the nature of the chemical state of the constituent ions and the bonding between them. The Rietveld refinement of the X-ray diffraction patterns suggests the monoclinic crystal structure of all the materials at room temperature. The negative and positive chemical shifts of the core level XPS spectrum of O-1s and Nb-3d{sub 3/2}/Ta-4f{sub 5/2} respectively suggest the covalent bonding between Nb/Ta cations and O ion. The change of the bonding strength between the anion and the cations from one material to another has been analyzed. The vibrational property of the materials is investigated using the room temperature Raman spectra. A large covalency of Ta-based compound than Nb compound is confirmed from the relative shifting of the Raman modes of the materials. - Graphical abstract: Crystal structure of two perovskite oxides CLN and CLT is investigated. XPS study confirms the two different co-ordination environments of Ca and covalent bonding between B-site cations and O-ion. - Highlights: • Ordered perovskite structure obtained by Rietveld refinement of XRD patterns. • Study of nature of chemical bonding by X-ray photoemission spectroscopy. • Opposite chemical shift of d-states of Nb/Ta with respect to O. • Covalent bonding between d-states of Nb/Ta and O. • Relative Raman shifts of CLN and CLT substantiate the more covalent character of Ta than Nb.

  15. Solving crystal structures from neutron diffraction data

    International Nuclear Information System (INIS)

    Wilson, C.C.

    1987-07-01

    In order to pursue crystal structure determination using neutron diffraction data, and given the wide experience available of solving structures using X-ray data, the codes used in X-ray structural analysis should be adapted to the different requirements of a neutron experiment. Modifications have been made to a direct methods program MITHRIL and to a Patterson methods program PATMET to incorporate into these the features of neutron rather than X-ray diffraction. While to date these modifications have been fairly straightforward and many sophistications remain to be exploited, results obtained from the neutron versions of both programs are promising. (author)

  16. Fundamental problems on immiscibility, crystallization, and chemical interaction between stainless steel 304 and glasses for radioactivewaste glasses

    International Nuclear Information System (INIS)

    Inoue, Tadashi; Yokoyama, Hayaichi

    1982-01-01

    Immiscibility and crystallization, and chemical interaction with stainless steel, SUS 304, which is designed as a canister material, were investigated on non-radioactive glasses with simulated waste of 26.4 wt%. Although glasses whose initial color was black changed to yellow or yellow-brown by heat-treatment at 600 0 C, the change of color was hardly observed by the treatment at 850 0 C. Molybdenum oxide and molybdate were detected in all heat-treated glasses. It was deduced that the compounds were existing as meta-stable particle corresponding to immiscibility particle at 600 0 C and as stable crystallized particle at 850 0 C. The chemical interaction occurred at the interface between glasses and SUS 304, whose surface was attacked by boundary corrosion proceeding to uniform corrosion with increasing temperature and time. Chromium oxide layer was mainly formed in the region suffered chemical interaction. It was deduced that the chemical interaction was moderated due to the formation of protective layer, which mainly consisted of nickel oxide, at the same time as the formation of Cr 2 O 3 layer. (author)

  17. Crystallization and X-ray structure analysis of a thermostable penicillin G acylase from Alcaligenes faecalis

    International Nuclear Information System (INIS)

    Varshney, Nishant Kumar; Suresh Kumar, R.; Ignatova, Zoya; Prabhune, Asmita; Pundle, Archana; Dodson, Eleanor; Suresh, C. G.

    2012-01-01

    A thermostable penicillin G acylase from A. faecalis has been crystallized in two space groups: C222 1 and P4 1 2 1 2. X-ray diffraction data were collected to 3.3 and 3.5 Å resolution, respectively. The enzyme penicillin G acylase (EC 3.5.1.11) catalyzes amide-bond cleavage in benzylpenicillin (penicillin G) to yield 6-aminopenicillanic acid, an intermediate chemical used in the production of semisynthetic penicillins. A thermostable penicillin G acylase from Alcaligenes faecalis (AfPGA) has been crystallized using the hanging-drop vapour-diffusion method in two different space groups: C222 1 , with unit-cell parameters a = 72.9, b = 86.0, c = 260.2 Å, and P4 1 2 1 2, with unit-cell parameters a = b = 85.6, c = 298.8 Å. Data were collected at 293 K and the structure was determined using the molecular-replacement method. Like other penicillin acylases, AfPGA belongs to the N-terminal nucleophilic hydrolase superfamily, has undergone post-translational processing and has a serine as the N-terminal residue of the β-chain. A disulfide bridge has been identified in the structure that was not found in the other two known penicillin G acylase structures. The presence of the disulfide bridge is perceived to be one factor that confers higher stability to this enzyme

  18. CRYSTAL AND MOLECULAR STRUCTURE OF 5-NITROPIRIDINE PIPERIDINE-SULFENAMIDE

    OpenAIRE

    Brito, Iván; León, Yasna; Arias, Mauricio; Vargas, Danitza; Carmona, Francisco; Ramírez, Eduardo; Restovic, Ambrosio; Cárdenas, Alejandro; Wittke, Oscar; López-Rodríguez, Matías

    2002-01-01

    The crystal and molecular structure of 5-nitropiridine piperidine-sulfenamide, C10H13N3O2 S is described and compared with other sulfenamides and with other similar compounds. This structure belongs to a type of divalent sulphur compound and crystallizes in the orthorhombic space group Pnma with a= 27.810(4), b=6.797(1), c=6.110(1)Å, and Dx =1.376 g cm-3 with Z=4. The S-N bond distance of 1.699(4) Å is shorter than a single S-N bond [1.74 Å]. The NO2-(C6H3N)-S-N(C 5H10) molecule lies on a cry...

  19. Protein crystal growth on board Shenzhou 3: a concerted effort improves crystal diffraction quality and facilitates structure determination

    International Nuclear Information System (INIS)

    Han, Y.; Cang, H.-X.; Zhou, J.-X.; Wang, Y.-P.; Bi, R.-C.; Colelesage, J.; Delbaere, L.T.J.; Nahoum, V.; Shi, R.; Zhou, M.; Zhu, D.-W.; Lin, S.-X.

    2004-01-01

    The crystallization of 16 proteins was carried out using 60 wells on board Shenzhou 3 in 2002. Although the mission was only 7 days, careful and concerted planning at all stages made it possible to obtain crystals of improved quality compared to their ground controls for some of the proteins. Significantly improved resolutions were obtained from diffracted crystals of 4 proteins. A complete data set from a space crystal of the PEP carboxykinase yielded significantly higher resolution (1.46 A vs. 1.87 A), I/sigma (22.4 vs. 15.5), and a lower average temperature factor (29.2 A 2 vs. 42.9 A 2 ) than the best ground-based control crystal. The 3-D structure of the enzyme is well improved with significant ligand density. It has been postulated that the reduced convection and absence of macromolecule sedimentation under microgravity have advantages/benefits for protein crystal growth. Improvements in experimental design for protein crystal growth in microgravity are ongoing

  20. Parallelization for X-ray crystal structural analysis program

    Energy Technology Data Exchange (ETDEWEB)

    Watanabe, Hiroshi [Japan Atomic Energy Research Inst., Tokyo (Japan); Minami, Masayuki; Yamamoto, Akiji

    1997-10-01

    In this report we study vectorization and parallelization for X-ray crystal structural analysis program. The target machine is NEC SX-4 which is a distributed/shared memory type vector parallel supercomputer. X-ray crystal structural analysis is surveyed, and a new multi-dimensional discrete Fourier transform method is proposed. The new method is designed to have a very long vector length, so that it enables to obtain the 12.0 times higher performance result that the original code. Besides the above-mentioned vectorization, the parallelization by micro-task functions on SX-4 reaches 13.7 times acceleration in the part of multi-dimensional discrete Fourier transform with 14 CPUs, and 3.0 times acceleration in the whole program. Totally 35.9 times acceleration to the original 1CPU scalar version is achieved with vectorization and parallelization on SX-4. (author)

  1. Re-investigation of the crystal structure of enstatite under high-pressure conditions

    DEFF Research Database (Denmark)

    Periotto, Benedetta; Balic Zunic, Tonci; Nestola, Fabrizio

    2012-01-01

    A synthetic single crystal of pure orthoenstatite (MgSiO3, space group Pbca) has been investigated at high pressure for structural determinations by in situ single-crystal X‑ray diffraction using a diamond-anvil cell. Ten complete intensity data collections were performed up to 9.36 GPa. This study...... with different compositions. The structural evolution determined in this work confirms the high-pressure evolution found previously for other orthopyroxenes and removes some ambiguities originating from the less accurate published data on the MgSiO3 structure at high pressure. The structural compression...

  2. Tetraaryl pyrenes: photophysical properties, computational studies, crystal structures, and application in OLEDs

    KAUST Repository

    El-Assaad, Tarek H.; Auer, Manuel; Castañ eda, Raul; Hallal, Kassem M.; Jradi, Fadi M.; Mosca, Lorenzo; Khnayzer, Rony S.; Patra, Digambara; Timofeeva, Tatiana V.; Bredas, Jean-Luc; List-Kratochvil, Emil J. W.; Wex, Brigitte; Kaafarani, Bilal R.

    2015-01-01

    Pyrene was derivatized in positions 1, 3, 6, and 8 to yield a series of nine tetraarylpyrenes for which absorption, emission, emission lifetimes and solvatochromism in solution were determined. The fluorescence quantum yields in thin films and crystalline state, electrochemistry, and quantum-chemical calculations were completed for the series along with the X-ray crystal structure analysis of compounds 1, 2, 4, 5, 7, and 9. Compounds 2, 3, 4 as well as 7 were identified as the most suitable candidates for OLED application. Notably, in an unoptimized single-layer device geometry, these compounds exhibited blue electroluminescence coupled with impressively low turn-on voltages and high maximum luminances such as 2.8 V and 13 542 cd m-2 at 8.2 V for compound 2, respectively. © The Royal Society of Chemistry 2016.

  3. Tetraaryl pyrenes: photophysical properties, computational studies, crystal structures, and application in OLEDs

    KAUST Repository

    El-Assaad, Tarek H.

    2015-10-15

    Pyrene was derivatized in positions 1, 3, 6, and 8 to yield a series of nine tetraarylpyrenes for which absorption, emission, emission lifetimes and solvatochromism in solution were determined. The fluorescence quantum yields in thin films and crystalline state, electrochemistry, and quantum-chemical calculations were completed for the series along with the X-ray crystal structure analysis of compounds 1, 2, 4, 5, 7, and 9. Compounds 2, 3, 4 as well as 7 were identified as the most suitable candidates for OLED application. Notably, in an unoptimized single-layer device geometry, these compounds exhibited blue electroluminescence coupled with impressively low turn-on voltages and high maximum luminances such as 2.8 V and 13 542 cd m-2 at 8.2 V for compound 2, respectively. © The Royal Society of Chemistry 2016.

  4. Magnetic structure of URhSi single crystal

    Czech Academy of Sciences Publication Activity Database

    Prokeš, K.; Andreev, Alexander V.; Honda, F.; Sechovský, V.

    2003-01-01

    Roč. 261, - (2003), s. 131-138 ISSN 0304-8853 R&D Projects: GA ČR GA202/02/0739 Institutional research plan: CEZ:AV0Z1010914 Keywords : URhSi single crystal * magnetization * neutron diffraction * magnetic structure determination Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 0.910, year: 2003

  5. Band structures of two dimensional solid/air hierarchical phononic crystals

    International Nuclear Information System (INIS)

    Xu, Y.L.; Tian, X.G.; Chen, C.Q.

    2012-01-01

    The hierarchical phononic crystals to be considered show a two-order “hierarchical” feature, which consists of square array arranged macroscopic periodic unit cells with each unit cell itself including four sub-units. Propagation of acoustic wave in such two dimensional solid/air phononic crystals is investigated by the finite element method (FEM) with the Bloch theory. Their band structure, wave filtering property, and the physical mechanism responsible for the broadened band gap are explored. The corresponding ordinary phononic crystal without hierarchical feature is used for comparison. Obtained results show that the solid/air hierarchical phononic crystals possess tunable outstanding band gap features, which are favorable for applications such as sound insulation and vibration attenuation.

  6. Band structures of two dimensional solid/air hierarchical phononic crystals

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Y.L.; Tian, X.G. [State Key Laboratory for Mechanical Structure Strength and Vibration, Xi' an Jiaotong University, Xi' an 710049 (China); Chen, C.Q., E-mail: chencq@tsinghua.edu.cn [Department of Engineering Mechanics, AML and CNMM, Tsinghua University, Beijing 100084 (China)

    2012-06-15

    The hierarchical phononic crystals to be considered show a two-order 'hierarchical' feature, which consists of square array arranged macroscopic periodic unit cells with each unit cell itself including four sub-units. Propagation of acoustic wave in such two dimensional solid/air phononic crystals is investigated by the finite element method (FEM) with the Bloch theory. Their band structure, wave filtering property, and the physical mechanism responsible for the broadened band gap are explored. The corresponding ordinary phononic crystal without hierarchical feature is used for comparison. Obtained results show that the solid/air hierarchical phononic crystals possess tunable outstanding band gap features, which are favorable for applications such as sound insulation and vibration attenuation.

  7. Crystallization and preliminary X-ray structural studies of adeno-associated virus serotype 6

    International Nuclear Information System (INIS)

    Xie, Qing; Ongley, Heather M.; Hare, Joan; Chapman, Michael S.

    2008-01-01

    Adeno-associated virus type 6, a human DNA virus that is being developed as a vector for gene therapy, has been crystallized in a form suitable for structure determination at about 3.2 Å resolution. Adeno-associated viruses are being developed as vectors for gene therapy and have been used in a number of clinical trials. Vectors to date have been based on the type species AAV-2, the structure of which was published in 2002. There is growing interest in modulating the cellular tropism and immune neutralization of AAV-2 with variants inspired by the properties of other serotypes. Towards the determination of a structure for AAV type 6, this paper reports the high-yield production, purification, crystallization and preliminary diffraction studies of infectious AAV-6 virions. The crystals diffracted to 3.2 Å resolution using synchrotron radiation. The most promising crystal form belonged to space group R3 and appeared to be suitable for initial structure determination

  8. Crystal Structure of Cocosin, A Potential Food Allergen from Coconut (Cocos nucifera).

    Science.gov (United States)

    Jin, Tengchuan; Wang, Cheng; Zhang, Caiying; Wang, Yang; Chen, Yu-Wei; Guo, Feng; Howard, Andrew; Cao, Min-Jie; Fu, Tong-Jen; McHugh, Tara H; Zhang, Yuzhu

    2017-08-30

    Coconut (Cocos nucifera) is an important palm tree. Coconut fruit is widely consumed. The most abundant storage protein in coconut fruit is cocosin (a likely food allergen), which belongs to the 11S globulin family. Cocosin was crystallized near a century ago, but its structure remains unknown. By optimizing crystallization conditions and cryoprotectant solutions, we were able to obtain cocosin crystals that diffracted to 1.85 Å. The cocosin gene was cloned from genomic DNA isolated from dry coconut tissue. The protein sequence deduced from the predicted cocosin coding sequence was used to guide model building and structure refinement. The structure of cocosin was determined for the first time, and it revealed a typical 11S globulin feature of a double layer doughnut-shaped hexamer.

  9. Low-Temperature Crystal Structures of the Hard Core Square Shoulder Model

    Directory of Open Access Journals (Sweden)

    Alexander Gabriëlse

    2017-11-01

    Full Text Available In many cases, the stability of complex structures in colloidal systems is enhanced by a competition between different length scales. Inspired by recent experiments on nanoparticles coated with polymers, we use Monte Carlo simulations to explore the types of crystal structures that can form in a simple hard-core square shoulder model that explicitly incorporates two favored distances between the particles. To this end, we combine Monte Carlo-based crystal structure finding algorithms with free energies obtained using a mean-field cell theory approach, and draw phase diagrams for two different values of the square shoulder width as a function of the density and temperature. Moreover, we map out the zero-temperature phase diagram for a broad range of shoulder widths. Our results show the stability of a rich variety of crystal phases, such as body-centered orthogonal (BCO lattices not previously considered for the square shoulder model.

  10. X-ray crystal structure and small-angle X-ray scattering of sheep liver sorbitol dehydrogenase

    DEFF Research Database (Denmark)

    Yennawar, Hemant; Møller, Magda; Gillilan, Richard

    2011-01-01

    The X-ray crystal structure of sheep liver sorbitol dehydrogenase (slSDH) has been determined using the crystal structure of human sorbitol dehydrogenase (hSDH) as a molecular-replacement model. slSDH crystallized in space group I222 with one monomer in the asymmetric unit. A conserved tetramer...

  11. Structure and properties of diamond and diamond-like films

    Energy Technology Data Exchange (ETDEWEB)

    Clausing, R.E. [Oak Ridge National Lab., TN (United States)

    1993-01-01

    This section is broken into four parts: (1) introduction, (2) natural IIa diamond, (3) importance of structure and composition, and (4) control of structure and properties. Conclusions of this discussion are that properties of chemical vapor deposited diamond films can compare favorably with natural diamond, that properties are anisotropic and are a strong function of structure and crystal perfection, that crystal perfection and morphology are functions of growth conditions and can be controlled, and that the manipulation of texture and thereby surface morphology and internal crystal perfection is an important step in optimizing chemically deposited diamond films for applications.

  12. Synthesis, structure, growth and characterization of a novel organic NLO single crystal: Morpholin-4-ium p-aminobenzoate

    Energy Technology Data Exchange (ETDEWEB)

    Shanmugam, G. [Department of Physics, Anna University of Technology Tiruchirappalli, Tiruchirappalli 620024 (India); Ravi Kumar, K.; Sridhar, B. [X-ray Crystallography Division, Indian Institute of Chemical Technology, CSIR, Hyderabad 500007 (India); Brahadeeswaran, S., E-mail: sbrag67@yahoo.com [Department of Physics, Anna University of Technology Tiruchirappalli, Tiruchirappalli 620024 (India)

    2012-09-15

    Highlights: ► A new organic NLO crystal morpholin-4-ium p-aminobenzoate has been grown for the first time. ► The structure is reported for the first time in the literature. ► Thermal, optical and SHG studies suggest its suitability for various NLO applications. -- Abstract: The title compound, morpholin-4-ium p-aminobenzoate (MPABA)(C{sub 4}H{sub 10}NO{sup +},C{sub 7}H{sub 6}NO{sub 2}{sup −}), has been synthesized for the first time by the addition of morpholine with 4-aminobenzoic acid in equi-molar ratio and good quality single crystals have been grown by solution growth technique using methanol as a solvent. The molecular structure of the compound was solved and refined by Direct Methods using SHELXS97 and full-matrix least-squares technique using SHELXL97, respectively. MPABA crystallizes in a monoclinic system with unit cell parameters, a = 5.948(5) Å, b = 18.033(4) Å, c = 10.577(5) Å, β = 90.40(1)° and non-centrosymmetric space group Cc. The experimentally measured density and chemical compositions were found to be in good agreement with the theoretical values. The phases and functional groups of MPABA have been identified and confirmed through powder X-ray diffraction and Fourier transform infrared (FTIR) studies, respectively. The thermal stability and decomposition details were studied through TG/DTA thermograms. The UV–visible transmission spectra were recorded for the grown crystal and its NLO characteristic was explored by powder second harmonic generation (SHG) studies.

  13. Photonic guiding structures in lithium niobate crystals produced by energetic ion beams

    Science.gov (United States)

    Chen, Feng

    2009-10-01

    A range of ion beam techniques have been used to fabricate a variety of photonic guiding structures in the well-known lithium niobate (LiNbO3 or LN) crystals that are of great importance in integrated photonics/optics. This paper reviews the up-to-date research progress of ion-beam-processed LiNbO3 photonic structures and reports on their fabrication, characterization, and applications. Ion beams are being used with this material in a wide range of techniques, as exemplified by the following examples. Ion beam milling/etching can remove the selected surface regions of LiNbO3 crystals via the sputtering effects. Ion implantation and swift ion irradiation can form optical waveguide structures by modifying the surface refractive indices of the LiNbO3 wafers. Crystal ion slicing has been used to obtain bulk-quality LiNbO3 single-crystalline thin films or membranes by exfoliating the implanted layer from the original substrate. Focused ion beams can either generate small structures of micron or submicron dimensions, to realize photonic bandgap crystals in LiNbO3, or directly write surface waveguides or other guiding devices in the crystal. Ion beam-enhanced etching has been extensively applied for micro- or nanostructuring of LiNbO3 surfaces. Methods developed to fabricate a range of photonic guiding structures in LiNbO3 are introduced. Modifications of LiNbO3 through the use of various energetic ion beams, including changes in refractive index and properties related to the photonic guiding structures as well as to the materials (i.e., electro-optic, nonlinear optic, luminescent, and photorefractive features), are overviewed in detail. The application of these LiNbO3 photonic guiding structures in both micro- and nanophotonics are briefly summarized.

  14. Coefficient of crystal lattice matching as a parameter of substrate - crystal structure compatibility in silumins

    Directory of Open Access Journals (Sweden)

    J. Piątkowski

    2009-07-01

    Full Text Available Adding high-melting point elements (Mo, Nb, Ni, Ti, W to complex silumins results in hardening of the latter ones, owing to the formation of new intermetallic phases of the AlxMey type, with refinement of dendrites in α solution and crystals in β phase. The hardening is also due to the effect of various inoculants. An addition of the inoculant is expected to form substrates, the crystal lattice of which, or some (privileged lattice planes and interatomic spaces should bear a strong resemblance to the crystal nucleus. To verify this statement, using binary phase equilibria systems, the coefficient of crystal lattice matching, being one of the measures of the crystallographic similarity, was calculated. A compatibility of this parameter (up to 20% may decide about the structure compatibility between the substrate and crystal which, in turn, is responsible for the effectiveness of alloy modification. Investigations have proved that, given the temperature range of their formation, the density, the lattice type, and the lattice parameter, some intermetallic phases of the AlxMey type can act as substrates for the crystallisation of aluminium and silicon, and some of the silumin hardening phases.

  15. Synthesis, characterization and crystal structure of a ...

    African Journals Online (AJOL)

    The Mo atom in the complex is in octahedral coordination. Thermal stability of the complex has also been studied. KEY WORDS: Molybdenum complex, Hydrazone ligand, Crystal structure, X-ray diffraction, Thermal property. Bull. Chem. Soc. Ethiop. 2014, 28(3), 409-414. DOI: http://dx.doi.org/10.4314/bcse.v28i3.10 ...

  16. Journal of Chemical Sciences | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Chemical Sciences. Fatemeh Baber Shamsi Mogoii. Articles written in Journal of Chemical Sciences. Volume 127 Issue 12 December 2015 pp 2171-2181. Synthesis, characterization and crystal structure of four new asymmetric triazene ligands: An example of linear H complex with H.

  17. A crystal chemical approach to superconductivity. I. A bond-valence sum analysis of inorganic compounds

    International Nuclear Information System (INIS)

    Liebau, Friedrich; Klein, Hans-Joachim; Wang, Xiqu

    2011-01-01

    A crystal-chemical approach to superconductivity is described that is intended to complement the corresponding physical approach. The former approach takes into account the distinction between the stoichiometric valence ( stoich V) and the structural valence ( struct V) which is represented by the bond-valence sums (BVS). Through calculations of BVS values from crystal-structure data determined at ambient temperature and pressure it has been found that in chalcogenides und pnictides of the transition metals Fe, Co, Ni, Mn, Hf, and Zr the atoms of the potential superconducting units yield values of vertical stroke BVS vertical stroke = vertical stroke struct V vertical stroke ≥ 1.11 x vertical stroke stoich V vertical stroke, whereas the atoms of the charge reservoirs have in general values of vertical stroke struct V vertical stroke stoich V vertical stroke. In corresponding compounds which contain the same elements but are not becoming superconducting, nearly all atoms are found to have vertical stroke struct V vertical stroke stoich V vertical stroke. For atoms of oxocuprates that are not becoming superconducting and for atoms of the charge reservoirs of oxocuprates that become superconducting, the relation vertical stroke struct V vertical stroke stoich V vertical stroke seems also to be fulfilled, with the exception of Ba. However, in several oxocuprates the relation vertical stroke struct V vertical stroke = 1.11 x vertical stroke stoich V vertical stroke for the atoms that become superconducting units is violated. These violations seem to indicate that in oxocuprates it is the local bond-valence distribution rather than the bond-valence sums that is essential for superconductivity. The present analysis can possibly be used to predict, by a simple consideration of ambient-T, P structures, whether a compound can become an unconventional superconductor at low T, under high P and/or by doping, or not. (orig.)

  18. Crystal structure of ethyl 2,4-dichloroquinoline-3-carboxylate

    Directory of Open Access Journals (Sweden)

    Alberto Cabrera

    2015-12-01

    Full Text Available In the crystal structure of the title compound, C12H9Cl2NO2, the mean planes through the quinoline and carboxylate groups have r.m.s. deviations of 0.006 and 0.021 Å, respectively, and form a dihedral angle of 87.06 (19°. In the crystal, molecules are linked via very weak C—H...O hydrogen bonds, forming chains, which propagate along the c-axis direction.

  19. Preparation, crystal structure, vibrational spectral and density functional studies of bis (4-nitrophenol)-2,4,6-triamino-1,3,5-triazine monohydrate

    Science.gov (United States)

    Kanagathara, N.; Marchewka, M. K.; Drozd, M.; Renganathan, N. G.; Gunasekaran, S.; Anbalagan, G.

    2013-10-01

    An organic-organic salt, bis (4-nitrophenol) 2,4,6-triamino 1,3,5-triazine monohydrate (BNPM) has been prepared by slow evaporation technique at room temperature. Single crystal X-ray diffraction analysis reveals that the compound crystallizes in triclinic system with centrosymmetric space group P-1. IR and Raman spectra of BNPM have been recorded and analyzed. The study has been extended to confocal Raman spectral analysis. Band assignments have been made for the melamine and p-nitrophenol molecules. Vibrational spectra have also been discussed on the basis of quantum chemical density functional theory calculations using Firefly (PC GAMESS) Version 7.1 G. Vibrational frequencies are calculated and scaled values are compared with the experimental one. The Mulliken charges, HOMO-LUMO orbital energies are calculated and analyzed. The chemical structure of the compound was established by 1H NMR and 13C NMR spectra.

  20. The crystal structure of bøgvadite (Na2SrBa2Al4F20)

    DEFF Research Database (Denmark)

    Balic Zunic, Tonci

    2014-01-01

    The crystal structure of bøgvadite, Na2SrBa2Al4F20, has been solved and refined to a R1 factor of 4.4% from single-crystal data (MoKα X-ray diffraction, CCD area detector) on a sample from the cryolite deposit at Ivittuut, SW Greenland. Bøgvadite is monoclinic, P21/n space group, with unit cell...... parameters a= 7.134(1), b= 19.996(3) and c= 5.3440(8) Å, β = 90.02(1)o. A close proximity of the crystal structure to an orthorhombic symmetry and the presence of the two twin components in a nearly 1:1 ratio suggest that the investigated bøgvadite crystal has originally formed as a high......-temperature orthorhombic polymorph which on cooling transformed to the stable low temperature monoclinic structure. The bøgvadite crystal structure has groupings of cation-fluoride coordination polyhedra similar to those found in the crystal structures of the genetically closely associated minerals jarlite...

  1. Synthesis, Crystal Structure, and DFT Calculations of 1,3-Diisobutyl Thiourea

    Directory of Open Access Journals (Sweden)

    Ataf A. Altaf

    2015-01-01

    Full Text Available 1,3-Diisobutyl thiourea was synthesized and characterized by single crystal X-ray diffraction. It gives a monoclinic (α = γ = 90 and β  ≠ 90 structure with the space group P21/c. The unit cell dimensions are a = 11.5131 (4 Å, b = 9.2355 (3 Å, c = 11.3093 (5 Å, α = 90°, β = 99.569° (2, γ = 90°, V = 1185.78 (8 Å3, and Z = 4. The crystal packing is stabilized by intermolecular (N–H⋯S hydrogen bonding in the molecules. The optimized geometry and Mullikan's charges of the said molecule calculated with the help of DFT using B3LYP-6-311G model support the crystal structure.

  2. The crystal structures of three pyrazine-2,5-dicarboxamides: three-dimensional supramolecular structures

    Directory of Open Access Journals (Sweden)

    Dilovan S. Cati

    2017-05-01

    Full Text Available The complete molecules of the title compounds, N2,N5-bis(pyridin-2-ylmethylpyrazine-2,5-dicarboxamide, C18H16N6O2 (I, 3,6-dimethyl-N2,N5-bis(pyridin-2-ylmethylpyrazine-2,5-dicarboxamide, C20H20N6O2 (II, and N2,N5-bis(pyridin-4-ylmethylpyrazine-2,5-dicarboxamide, C18H16N6O2 (III, are generated by inversion symmetry, with the pyrazine rings being located about centres of inversion. Each molecule has an extended conformation with the pyridine rings inclined to the pyrazine ring by 89.17 (7° in (I, 75.83 (8° in (II and by 82.71 (6° in (III. In the crystal of (I, molecules are linked by N—H...N hydrogen bonds, forming layers lying parallel to the bc plane. The layers are linked by C—H...O hydrogen bonds, forming a three-dimensional supramolecular structure. In the crystal of (II, molecules are also linked by N—H...N hydrogen bonds, forming layers lying parallel to the (10-1 plane. As in (I, the layers are linked by C—H...O hydrogen bonds, forming a three-dimensional supramolecular structure. In the crystal of (III, molecules are again linked by N—H...N hydrogen bonds, but here form corrugated sheets lying parallel to the bc plane. Within the sheets, neighbouring pyridine rings are linked by offset π–π interactions [intercentroid distance = 3.739 (1 Å]. The sheets are linked by C—H...O hydrogen bonds, forming a three-dimensional supramolecular structure. Compound (I crystallizes in the monoclinic space group P21/c. Another monoclinic polymorph, space group C2/c, has been reported on by Cockriel et al. [Inorg. Chem. Commun. (2008, 11, 1–4]. The molecular structures of the two polymorphs are compared.

  3. Crystal structure of natural phaeosphaeride A

    Directory of Open Access Journals (Sweden)

    Victoria V. Abzianidze

    2015-08-01

    Full Text Available The asymmetric unit of the title compound, C15H23NO5, contains two independent molecules. Phaeosphaeride A contains two primary sections, an alkyl chain consisting of five C atoms and a cyclic system consisting of fused five- and six-membered rings with attached substituents. In the crystal, the molecules form layered structures. Nearly planar sheets, parallel to the (001 plane, form bilayers of two-dimensional hydrogen-bonded networks with the hydroxy groups located on the interior of the bilayer sheets. The network is constructed primarily of four O—H...O hydrogen bonds, which form a zigzag pattern in the (001 plane. The butyl chains interdigitate with the butyl chains on adjacent sheets. The crystal was twinned by a twofold rotation about the c axis, with refined major–minor occupancy fractions of 0.718 (6:0.282 (6.

  4. Chemical conversion of cisplatin and carboplatin with histidine in a model protein crystallized under sodium iodide conditions

    Energy Technology Data Exchange (ETDEWEB)

    Tanley, Simon W. M.; Helliwell, John R., E-mail: john.helliwell@manchester.ac.uk [University of Manchester, Brunswick Street, Manchester M13 9PL (United Kingdom)

    2014-08-29

    Crystals of HEWL with cisplatin and HEWL with carboplatin grown in sodium iodide conditions both show a partial chemical transformation of cisplatin or carboplatin to a transiodoplatin (PtI{sub 2}X{sub 2}) form. The binding is only at the N{sup δ} atom of His15. A further Pt species (PtI{sub 3}X) is also seen, in both cases bound in a crevice between symmetry-related protein molecules. Cisplatin and carboplatin are platinum anticancer agents that are used to treat a variety of cancers. Previous X-ray crystallographic studies of carboplatin binding to histidine in hen egg-white lysozyme (HEWL) showed a partial chemical conversion of carboplatin to cisplatin owing to the high sodium chloride concentration used in the crystallization conditions. Also, the co-crystallization of HEWL with carboplatin in sodium bromide conditions resulted in the partial conversion of carboplatin to the transbromoplatin form, with a portion of the cyclobutanedicarboxylate (CBDC) moiety still present. The results of the co-crystallization of HEWL with cisplatin or carboplatin in sodium iodide conditions are now reported in order to determine whether the cisplatin and carboplatin converted to the iodo form, and whether this took place in a similar way to the partial conversion of carboplatin to cisplatin in NaCl conditions or to transbromoplatin in NaBr conditions as seen previously. It is reported here that a partial chemical transformation has taken place to a transplatin form for both ligands. The NaI-grown crystals belonged to the monoclinic space group P2{sub 1} with two molecules in the asymmetric unit. The chemically transformed cisplatin and carboplatin bind to both His15 residues, i.e. in each asymmetric unit. The binding is only at the N{sup δ} atom of His15. A third platinum species is also seen in both conditions bound in a crevice between symmetry-related molecules. Here, the platinum is bound to three I atoms identified based on their anomalous difference electron densities

  5. Crystal-chemical features of the solid solutions

    Energy Technology Data Exchange (ETDEWEB)

    Titov, V.V.; Kesler, Ya.A.; Gordeev, I.V.; Mozhaev, A.P.

    1988-04-01

    The unusual magnetic properties of the solid solutions of CuCr/sub 2/S/sub 4/ in Cu/sub 0.5/Mo/sub 0.5/Cr/sub 2/S/sub 4/ (M = Al, Ga, In) are closely related to the crystal chemistry of these compounds. Specimens for structural investigation were obtained by solid-phase synthesis in evacuated quartz capsules. X-ray phase analysis of all the compounds was made by the powder method in a DRON-1 diffractometer with Cu K..cap alpha.. filtered radiation. The experimental confirmation of the ordering of the cations in the tetrahedral sublattice of the investigated spinels was obtained by the authors from their IR absorption spectra taken in the range 400-33 cm/sup /minus/1/. The presence of seven intense absorption bands in the spectra of the specimens indicates that these materials belong to the space group F/anti/43m, i.e., that there is ordering in the A sublattice. Their investigation led them to the conclusion that in a number of cases the vibrational spectra of the crystals are more sensitive in the investigation of atomic ordering than the spectra of x-ray and neutron diffraction, in agreement with the theoretical predictions.

  6. Molecular complex of lumiflavin and 2-aminobenzoic acid: crystal structure, crystal spectra, and solution properties.

    Science.gov (United States)

    Shieh, H S; Ghisla, S; Hanson, L K; Ludwig, M L; Nordman, C E

    1981-08-04

    The molecular complex lumiflavin-2-aminobenzoic acid monohydrate (C13H12N4O2.C7H7NO2.H2O) crystallizes from from aqueous solution as red triclinic prisms. The space group is P1 with cell dimensions a = 9.660 A, b = 14.866 A, c = 7.045 A, alpha = 95.44 degrees , beta = 95.86 degrees, and gamma = 105.66 degrees . The crystal structure was solved by direct methods and refined by block-diagonal least-squares procedures to an R value of 0.050 on the basis of 1338 observed reflections. The structure is composed of stacks of alternating lumiflavin adn un-ionized (neutral) 2-aminobenzoic acid molecules. Two different modes of stacking interaction are observed. In one, 2-aminobenzoic acid overlaps all three of the isoalloxazine rings, at a mean distance of 3.36 A; in the other, 2-aminobenzoic acid interacts distance of 3.36 A; in the other, 2-aminobenzoic acid interacts with the pyrazine and dimethylbenzene moieties, at a distance of 3.42 A. Perpendicular to the stacking direction, the molecules form a continuous sheet. Each flavin is hydrogen bonded via O(2) and NH(3) to two symmetrically related aminobenzoates; the water of crystallization forms three hydrogen bonds, bridging two flavins, via O(4) and N(5), and one aminobenzoic acid. The red color of the crystals results from a charge-transfer transition involving stacked flavin and 2-aminobenzoic acid. The red color of the crystals results from a charge-transfer transition involving stacked flavin and 2-aminobenzoic acid molecules. Measurements of the polarized optical absorption spectra of crystals show that the transition moment direction for the long wavelength absorbance (beyond 530 nm) contains an out-of-plane component which can only arise from a charge-transfer interaction. Since the amino N does not make exceptionally close interactions with isoalloxazine atoms in either stacking mode (minimum interatomic distance 3.52 A), the charge transfer is presumed to involve pi orbitals of the 2-aminobenzoic acid donor.

  7. Crystallization processes in Ni-Ti-B glassy alloys of near-ternary-eutectic composition

    International Nuclear Information System (INIS)

    Merk, N.; Morris, D.G.; Stadelmann, P.

    1987-01-01

    The crystallization kinetics and mechanisms of three Ni-Ti-B glasses have been examined with a view to elucidating the roles of chemical composition and quenched structure on behaviour. Alloys of composition near a ternary-eutectic point have been chosen because they represent a real and complex situation where several crystalline phases may form simultaneously. Crystallization processes are analysed in terms of nucleation and growth stages. Different nucleation mechanisms seem to be best explained in terms of the short range ordered structure of the quenched glass. Analysis of crystal glass interface energies indicates that it is not this energy term which controls the nucleation of crystals on annealing. Crystal growth may involve a eutectic mechanism or a single-phase mechanism controlled by interface or matrix-diffusion kinetics. Crystallization is fastest when eutectic nucleation and growth occurs. Formation of the eutectic colony requires the initial formation of the phase of complex structure followed by the phase of simpler structure

  8. On the crystal structure of Z-phase Cr(V,Nb)N

    DEFF Research Database (Denmark)

    Danielsen, Hilmar Kjartansson; Hald, John; Grumsen, Flemming Bjerg

    2006-01-01

    The Z-phase Cr(YNb)N particles in various 9 to 12 pct Cr creep-resistant steels were investigated with electron diffraction, energy dispersive spectroscopy (EDS), and electron energy loss spectroscopy(EELS). In addition to the well-known tetragonal crystal structure for Z phase, a cubic crystal s...

  9. Structural phase transition and erasable optically memorized effect in layered γ-In2Se3 crystals

    International Nuclear Information System (INIS)

    Ho, Ching-Hwa; Chen, Ying-Cen; Pan, Chia-Chi

    2014-01-01

    We have grown In 2 Se 3 layered-type crystals using chemical vapor transport method with ICl 3 as the transport agent. The as-grown crystals show two different color groups of black shiny for α-phase In 2 Se 3 and red to yellow for γ-phase In 2 Se 3 . High-resolution transmission electron micro scopy verifies crystalline state and structural polytype of the as-grown In 2 Se 3 . The results indicate that the α-In 2 Se 3 crystals present more crystalline states than those of the other amorphous γ-In 2 Se 3 . The amorphous effect on the advancing of optoelectronic property of γ-In 2 Se 3 shows erasable optical-memorized effect in the disordered and polycrystalline γ-In 2 Se 3 layers. Laser-induced photodarkening and annealed-recovery test verified that a reversible structural-phase transition of γ↔α can occur inside the γ-In 2 Se 3 . Thermoreflectance and Raman scattering measurements are carried out to identify the inter-phase transformation of the γ-In 2 Se 3 polycrystals using different heat treatments. Direct band gaps and Raman vibration modes for the γ- and α-In 2 Se 3 crystalline phases are, respectively, characterized and identified. The character of γ↔α inter-phase transition promotes feasible optical and optoelectronic applications of the γ-In 2 Se 3 material in optical memory, optics, and solar-energy devices

  10. Structural phase transition and erasable optically memorized effect in layered γ-In2Se3 crystals

    Science.gov (United States)

    Ho, Ching-Hwa; Chen, Ying-Cen; Pan, Chia-Chi

    2014-01-01

    We have grown In2Se3 layered-type crystals using chemical vapor transport method with ICl3 as the transport agent. The as-grown crystals show two different color groups of black shiny for α-phase In2Se3 and red to yellow for γ-phase In2Se3. High-resolution transmission electron micro scopy verifies crystalline state and structural polytype of the as-grown In2Se3. The results indicate that the α-In2Se3 crystals present more crystalline states than those of the other amorphous γ-In2Se3. The amorphous effect on the advancing of optoelectronic property of γ-In2Se3 shows erasable optical-memorized effect in the disordered and polycrystalline γ-In2Se3 layers. Laser-induced photodarkening and annealed-recovery test verified that a reversible structural-phase transition of γ↔α can occur inside the γ-In2Se3. Thermoreflectance and Raman scattering measurements are carried out to identify the inter-phase transformation of the γ-In2Se3 polycrystals using different heat treatments. Direct band gaps and Raman vibration modes for the γ- and α-In2Se3 crystalline phases are, respectively, characterized and identified. The character of γ↔α inter-phase transition promotes feasible optical and optoelectronic applications of the γ-In2Se3 material in optical memory, optics, and solar-energy devices.

  11. One dimensional coordination polymers: Synthesis, crystal structures and spectroscopic properties

    Science.gov (United States)

    Karaağaç, Dursun; Kürkçüoğlu, Güneş Süheyla; Şenyel, Mustafa; Şahin, Onur

    2016-11-01

    Two new one dimensional (1D) cyanide complexes, namely [M(4-aepy)2(H2O)2][Pt(CN)4], (4-aepy = 4-(2-aminoethyl)pyridine M = Cu(II) (1) or Zn(II) (2)), have been synthesized and characterized by vibrational (FT-IR and Raman) spectroscopy, single crystal X-ray diffraction, thermal and elemental analyses techniques. The crystallographic analyses reveal that 1 and 2 are isomorphous and isostructural, and crystallize in the monoclinic system and C2 space group. The Pt(II) ions are coordinated by four cyanide-carbon atoms in the square-planar geometry and the [Pt(CN)4]2- ions act as a counter ion. The M(II) ions display an N4O2 coordination sphere with a distorted octahedral geometry, the nitrogen donors belonging to four molecules of the organic 4-aepy that act as unidentate ligands and two oxygen atoms from aqua ligands. The crystal structures of 1 and 2 are similar each other and linked via intermolecular hydrogen bonding, Pt⋯π interactions to form 3D supramolecular network. Vibration assignments of all the observed bands are given and the spectral features also supported to the crystal structures of the complexes.

  12. Probing Zeolite Crystal Architecture and Structural Imperfections using Differently Sized Fluorescent Organic Probe Molecules.

    Science.gov (United States)

    Hendriks, Frank C; Schmidt, Joel E; Rombouts, Jeroen A; Lammertsma, Koop; Bruijnincx, Pieter C A; Weckhuysen, Bert M

    2017-05-05

    A micro-spectroscopic method has been developed to probe the accessibility of zeolite crystals using a series of fluorescent 4-(4-diethylaminostyryl)-1-methylpyridinium iodide (DAMPI) probes of increasing molecular size. Staining large zeolite crystals with MFI (ZSM-5) topology and subsequent mapping of the resulting fluorescence using confocal fluorescence microscopy reveal differences in structural integrity: the 90° intergrowth sections of MFI crystals are prone to develop structural imperfections, which act as entrance routes for the probes into the zeolite crystal. Polarization-dependent measurements provide evidence for the probe molecule's alignment within the MFI zeolite pore system. The developed method was extended to BEA (Beta) crystals, showing that the previously observed hourglass pattern is a general feature of BEA crystals with this morphology. Furthermore, the probes can accurately identify at which crystal faces of BEA straight or sinusoidal pores open to the surface. The results show this method can spatially resolve the architecture-dependent internal pore structure of microporous materials, which is difficult to assess using other characterization techniques such as X-ray diffraction. © 2017 The Authors. Published by Wiley-VCH Verlag GmbH & Co. KGaA.

  13. Band structure and optical properties of opal photonic crystals

    Science.gov (United States)

    Pavarini, E.; Andreani, L. C.; Soci, C.; Galli, M.; Marabelli, F.; Comoretto, D.

    2005-07-01

    A theoretical approach for the interpretation of reflectance spectra of opal photonic crystals with fcc structure and (111) surface orientation is presented. It is based on the calculation of photonic bands and density of states corresponding to a specified angle of incidence in air. The results yield a clear distinction between diffraction in the direction of light propagation by (111) family planes (leading to the formation of a stop band) and diffraction in other directions by higher-order planes (corresponding to the excitation of photonic modes in the crystal). Reflectance measurements on artificial opals made of self-assembled polystyrene spheres are analyzed according to the theoretical scheme and give evidence of diffraction by higher-order crystalline planes in the photonic structure.

  14. Crystals structure of Na3Li(TiF6)2

    International Nuclear Information System (INIS)

    Popov, D.Yu.; Antokhina, T.F.; Gerasimenko, A.V.; Kajdalova, T.A.; Sergienko, V.I.

    2004-01-01

    Crystals of Na 3 Li(TiF 6 ) 2 (1) were synthesized in aqueous solution and characterized by the elementary and X-ray phase analysis methods. According to X-ray diffraction analysis data compound 1 is crystallized in a tetragonal crystal system with the following parameters: a=5.130(1), c=18.046(4) A, Z=2, space group P4-bar2 1 c. Alternating layers on the basis of dimers made up by octahedrons of TiF 6 and Na(1)F 6 constitute the frame of compound 1 crystal structure. The dimer layers are joined in a continuous frame by Na(2) and Li cations. Coordination polyhedron of Li atom is tetrahedron (Li-F 1.898(3) A) [ru

  15. Structural-chemical characteristics of implanted metals

    International Nuclear Information System (INIS)

    Kozejkin, B.V.; Pavlov, P.V.; Pitirimova, E.A.; Frolov, A.I.

    1988-01-01

    Corrosion and structural characteristics of metallic layers implanted by ions of chemically active impurities and noble gases are studied. Dependence of experimental results on parameters of initial materials and technological conditions of implantation is established. In studying corrosion characteristics of implanted metals a strong dependence of chemical passivation effect on technological conditions of ion-implantation and structure of initial material is stated. On the basis of developed mathematical model of chemical passivation effect it is shown that increase of corrosion characteristics of implanted metals is defined by superposition of surface and volumetric mechanisms

  16. CCDC 963856: Experimental Crystal Structure Determination : catena-[bis(mu2-2-methylimidazole)-zinc

    KAUST Repository

    Shekhah, Osama; Swaidan, Raja; Belmabkhout, Youssef; du Plessis, Marike; Jacobs, Tia; Barbour, Leonard J.; Pinnau, Ingo; Eddaoudi, Mohamed

    2014-01-01

    An entry from the Cambridge Structural Database, the world’s repository for small molecule crystal structures. The entry contains experimental data from a crystal diffraction study. The deposited dataset for this entry is freely available from the CCDC and typically includes 3D coordinates, cell parameters, space group, experimental conditions and quality measures.

  17. CCDC 1477679: Experimental Crystal Structure Determination : (1,3-dimesitylimidazolidin-2-ylidene)-trimethyl-indium

    KAUST Repository

    Wu, Melissa M.; Gill, Arran M.; Yunpeng, Lu; Yongxin, Li; Ganguly, Rakesh; Falivene, Laura; Garcí a, Felipe

    2017-01-01

    An entry from the Cambridge Structural Database, the world’s repository for small molecule crystal structures. The entry contains experimental data from a crystal diffraction study. The deposited dataset for this entry is freely available from the CCDC and typically includes 3D coordinates, cell parameters, space group, experimental conditions and quality measures.

  18. CCDC 1477678: Experimental Crystal Structure Determination : (1,3-dimesitylimidazolidin-2-ylidene)-trimethyl-gallium

    KAUST Repository

    Wu, Melissa M.; Gill, Arran M.; Yunpeng, Lu; Yongxin, Li; Ganguly, Rakesh; Falivene, Laura; Garcí a, Felipe

    2017-01-01

    An entry from the Cambridge Structural Database, the world’s repository for small molecule crystal structures. The entry contains experimental data from a crystal diffraction study. The deposited dataset for this entry is freely available from the CCDC and typically includes 3D coordinates, cell parameters, space group, experimental conditions and quality measures.

  19. CCDC 1059905: Experimental Crystal Structure Determination : 7,13-dimesitylindeno[1,2-b]thioxanthene

    KAUST Repository

    Shi, Xueliang; Kueh, Weixiang; Zheng, Bin; Huang, Kuo-Wei; Chi, Chunyan

    2015-01-01

    An entry from the Cambridge Structural Database, the world’s repository for small molecule crystal structures. The entry contains experimental data from a crystal diffraction study. The deposited dataset for this entry is freely available from the CCDC and typically includes 3D coordinates, cell parameters, space group, experimental conditions and quality measures.

  20. CCDC 844302: Experimental Crystal Structure Determination : N-1-Naphthyl-P,P-diphenylphosphinoselenoic amide

    KAUST Repository

    Al-Masri, H.T.; Emwas, Abdul-Hamid M.; Al-Talla, Zeyad; Al Kordi, Mohamed

    2012-01-01

    An entry from the Cambridge Structural Database, the world’s repository for small molecule crystal structures. The entry contains experimental data from a crystal diffraction study. The deposited dataset for this entry is freely available from the CCDC and typically includes 3D coordinates, cell parameters, space group, experimental conditions and quality measures.

  1. CCDC 1010350: Experimental Crystal Structure Determination : dichloro-(methylenebis(di-t-butylphosphine))-palladium(ii)

    KAUST Repository

    Roesle, Philipp; Caporaso, Lucia; Schnitte, Manuel; Goldbach, Verena; Cavallo, Luigi; Mecking, Stefan

    2015-01-01

    An entry from the Cambridge Structural Database, the world’s repository for small molecule crystal structures. The entry contains experimental data from a crystal diffraction study. The deposited dataset for this entry is freely available from the CCDC and typically includes 3D coordinates, cell parameters, space group, experimental conditions and quality measures.

  2. CCDC 721713: Experimental Crystal Structure Determination : Dichloro-(ethyl phenylalaninate)-tris(pyridine)-ruthenium(ii)

    KAUST Repository

    Reiner, Thomas; Jantke, Dominik; Miao, Xiao-He; Marziale, Alexander N.; Kiefer, Florian J.; Eppinger, Jö rg

    2013-01-01

    An entry from the Cambridge Structural Database, the world’s repository for small molecule crystal structures. The entry contains experimental data from a crystal diffraction study. The deposited dataset for this entry is freely available from the CCDC and typically includes 3D coordinates, cell parameters, space group, experimental conditions and quality measures.

  3. CCDC 713130: Experimental Crystal Structure Determination : bis(2,5-Dihydrobenzylammonium) hexachloro-osmium(iv)

    KAUST Repository

    Reiner, T.

    2011-01-01

    An entry from the Cambridge Structural Database, the world’s repository for small molecule crystal structures. The entry contains experimental data from a crystal diffraction study. The deposited dataset for this entry is freely available from the CCDC and typically includes 3D coordinates, cell parameters, space group, experimental conditions and quality measures.

  4. CCDC 1420581: Experimental Crystal Structure Determination : catena-[(mu-4,4'-sulfonyldibenzoato)-calcium ethylene

    KAUST Repository

    Plonka, Anna M.

    2016-01-01

    An entry from the Cambridge Structural Database, the world’s repository for small molecule crystal structures. The entry contains experimental data from a crystal diffraction study. The deposited dataset for this entry is freely available from the CCDC and typically includes 3D coordinates, cell parameters, space group, experimental conditions and quality measures.

  5. CCDC 1420582: Experimental Crystal Structure Determination : catena-[(mu-4,4'-sulfonyldibenzoato)-calcium ethane

    KAUST Repository

    Plonka, Anna M.

    2016-01-01

    An entry from the Cambridge Structural Database, the world’s repository for small molecule crystal structures. The entry contains experimental data from a crystal diffraction study. The deposited dataset for this entry is freely available from the CCDC and typically includes 3D coordinates, cell parameters, space group, experimental conditions and quality measures.

  6. CCDC 1420580: Experimental Crystal Structure Determination : catena-[(mu-4,4'-sulfonyldibenzoato)-calcium acetylene

    KAUST Repository

    Plonka, Anna M.

    2016-01-01

    An entry from the Cambridge Structural Database, the world’s repository for small molecule crystal structures. The entry contains experimental data from a crystal diffraction study. The deposited dataset for this entry is freely available from the CCDC and typically includes 3D coordinates, cell parameters, space group, experimental conditions and quality measures.

  7. CCDC 1048729: Experimental Crystal Structure Determination : bis(2-(hydroxyimino)-3-phenylpropanoato)-tin(ii)

    KAUST Repository

    Khanderi, Jayaprakash

    2015-01-01

    An entry from the Cambridge Structural Database, the world’s repository for small molecule crystal structures. The entry contains experimental data from a crystal diffraction study. The deposited dataset for this entry is freely available from the CCDC and typically includes 3D coordinates, cell parameters, space group, experimental conditions and quality measures.

  8. Effect of antimony incorporation on structural properties of CuInS2 crystals

    International Nuclear Information System (INIS)

    Ben Rabeh, M.; Chaglabou, N.; Kanzari, M.

    2010-01-01

    CuInS 2 (CIS) single crystals doped with 1, 2, 3 and 4 atomic percent (at.%) of antimony (Sb) were grown by the horizontal Bridgman method. The effect of Sb doping on the structural properties of CIS crystal was studied by means of X-ray diffraction (XRD), energy dispersive X-ray analysis (EDAX), scanning electron microscopy (SEM) and PL measurements. X-ray diffraction data suggests that the doping of Sb in the CIS single crystals does not affect the tetragonal (chalcopyrite) crystal structure and exhibited a (1 1 2) preferred orientation. In addition, with increasing Sb concentration, the X-ray diffraction analysis show that Sb doped CIS crystals are more crystallized and the diffraction peaks of the CuInS 2 phase were more pronounced in particular the (1 1 2) plane. EDAX study revealed that Sb atoms can occupy the indium site and/or occupying the sulfur site to make an acceptor. PL spectra of undoped and Sb doped CIS crystals show two emission peaks at 1.52 and 1.62 eV, respectively which decreased with increasing atomic percent antimony. Sb doped CIS crystals show p-type conductivity.

  9. Crystal structures of two eukaryotic nucleases involved in RNA metabolism

    DEFF Research Database (Denmark)

    Jonstrup, Anette Thyssen; Midtgaard, Søren Fuglsang; Van, Lan Bich

    RNA serves a number of functions in the cell: mRNAs are the carriers of information between gene and protein, tRNAs and rRNAs are involved in the synthesis of proteins, whereas a number of additional RNA species are responsible for other functions in the cell. The quality of the different RNAs...... RNAs. We have solved the structures of two nucleases involved in 3'-5' degradation of RNA; the S. pombe Pop2p and the S. cerevisiae Rrp6p. Pop2p is part of the main cytoplasmatic deadenylation complex in yeast, which also contains the nuclease Ccr4p. Deadenylation, where the poly(A)-tail is removed...... specific transcripts. Here, we present the crystal structure of the S. pombe Pop2p protein to 1.4 Å resolution. The high resolution structure provides a clear picture of the active site architecture. Structural alignment of single nucleotides and poly(A)-oligonucleotides from earlier co-crystal structures...

  10. Crystal structures of two thiacalix[4]arene derivatives anchoring four ...

    Indian Academy of Sciences (India)

    Administrator

    Abstract. The crystal structures of two thiacalixarene derivatives anchoring thiadiazole functional groups at lower rim, C60H72O4S12N8 (1), C64H80O4S12N8 (2), have been determined by single crystal X-ray diffraction. The thiacalix[4]arene framework in both 1 and 2 adopts the 1,3-alternate conformation. Com- pound 1 ...

  11. Synthesis, crystal structure and growth of a new inorganic- organic hybrid compound for nonlinear optical applications: Aquadiiodo (3-aminopropanoic acid) cadmium (II)

    Science.gov (United States)

    Boopathi, K.; Babu, S. Moorthy; Jagan, R.; Ramasamy, P.

    2017-12-01

    The new inorganic-organic hybrid material aquadiiodo (3-aminopropanoic acid) cadmium (II) [ADI (3-AP) Cd] has been successfully synthesized and good quality crystals have been grown by slow evaporation solution technique. The structure was determined by single crystal X-ray diffraction at room temperature. The compound crystallizes in monoclinic crystal system with centro symmetric space group P21/c and four molecules in the unit cell. The structure of the title compound was further confirmed by 1H and 13C nuclear magnetic resonance spectral analysis. FT-IR spectroscopy was used to confirm the presence of various functional groups in the compound. The transmittance and optical parameters of the crystal were studied by UV- Visible-NIR spectroscopy. The thermal stability of the grown crystal was evaluated using thermogravimetric and differential thermal analyses. Mechanical hardness has been identified by Vickers micro hardness study and work hardening coefficient was calculated. Dielectric measurement was carried out as a function of frequency and results are discussed. The growth mechanism of the crystal was assessed by chemical etching studies. The third-order nonlinear optical susceptibility of [ADI (3-AP) Cd] was derived using the Z-scan technique, and it was 3.24955 × 10-8 esu. The positive nonlinear refractive index 2.48505 × 10-11 m2/W, is an indication of self-defocusing optical nonlinearity of the sample. It is believed that the [ADI (3-AP) Cd] is a promising new candidate for developing efficient nonlinear optical and optical power limiting devices.

  12. Crystal Structure of Rat Carnitine Palmitoyltransferase II (CPT-II)

    Energy Technology Data Exchange (ETDEWEB)

    Hsiao,Y.; Jogl, G.; Esser, V.; Tong, L.

    2006-01-01

    Carnitine palmitoyltransferase II (CPT-II) has a crucial role in the {beta}-oxidation of long-chain fatty acids in mitochondria. We report here the crystal structure of rat CPT-II at 1.9 Angstroms resolution. The overall structure shares strong similarity to those of short- and medium-chain carnitine acyltransferases, although detailed structural differences in the active site region have a significant impact on the substrate selectivity of CPT-II. Three aliphatic chains, possibly from a detergent that is used for the crystallization, were found in the structure. Two of them are located in the carnitine and CoA binding sites, respectively. The third aliphatic chain may mimic the long-chain acyl group in the substrate of CPT-II. The binding site for this aliphatic chain does not exist in the short- and medium-chain carnitine acyltransferases, due to conformational differences among the enzymes. A unique insert in CPT-II is positioned on the surface of the enzyme, with a highly hydrophobic surface. It is likely that this surface patch mediates the association of CPT-II with the inner membrane of the mitochondria.

  13. X-ray absorption spectroscopy investigation of structurally modified lithium niobate crystals

    International Nuclear Information System (INIS)

    Vitova, Tonya

    2008-02-01

    The type and concentration of impurity centers in different valence states are crucial for tuning the photorefractive properties of doped Lithium Niobate (LN) crystals. X-ray Absorption Spectroscopy (XAS) is an appropriate tool for studying the local structure of impurity centers. XAS combined with absorption in UV/VIS/IR and High Resolution X-ray Emission Spectroscopy (HRXES) provide information about the valence state of the dopant ions in as-grown, reduced or oxidized doped LN crystals. Cu (Cu 1+ and Cu 2+ ) and Fe (Fe 2+ and Fe 3+ ) atoms are found in two different valence states, whereas there are indications for a third Mn valency, in addition to Mn 2+ and Mn 3+ in manganese-doped LN crystals. One of the charge compensation mechanisms during reduction of copper- doped LN crystals is outgassing of oxygen atoms. Cu ions in the reduced crystals have at least two different site symmetries: twofold (Cu 1+ ) and sixfold (Cu 2+ ) coordinated by O atoms. Fe and Mn atoms are coordinated by six O atoms. Cu and Fe ions are found to occupy only Li sites, whereas Mn ions are also incorporated into Li and Nb sites. The refractive index change in LN crystals irradiated with 3 He 2+ ions is caused by structurally disordered centers, where Nb atoms are displaced from normal crystallographic sites and Li or/and O vacancies are present. (orig.)

  14. Growth and microtopographic study of CuInSe{sub 2} single crystals

    Energy Technology Data Exchange (ETDEWEB)

    Chauhan, Sanjaysinh M.; Chaki, Sunil, E-mail: sunilchaki@yahoo.co.in; Deshpande, M. P. [Department of Physics, Sardar Patel University, Vallabh Vidyanagar, Gujarat - 388120 (India); Tailor, J. P. [Applied Physics Department, S.V.N.I.T., Surat, Gujarat - 395007 (India)

    2016-05-23

    The CuInSe{sub 2} single crystals were grown by chemical vapour transport (CVT) technique using iodine as transporting agent. The elemental composition of the as-grown CuInSe{sub 2} single crystals was determined by energy dispersive analysis of X-ray (EDAX). The unit cell crystal structure and lattice parameters were determined by X-ray diffraction (XRD) technique. The surface microtopographic study of the as-grown CuInSe{sub 2} single crystals surfaces were done to study the defects, growth mechanism, etc. of the CVT grown crystals.

  15. Shear effects on crystallization behaviors and structure transitions of isotactic poly-1-butene

    DEFF Research Database (Denmark)

    Li, Jingqing; Guan, Peipei; Zhang, Yao

    2014-01-01

    Different melt pre-shear conditions were applied to isotactic poly-1-butene (iP-1-B) and the effect on the crystallization behaviors and the crystalline structure transitions of iP-1-B were investigated. The polarized optical microscope observations during isothermal crystallization process...... revealed that the applied melt pre-shear within the experimental range could enhance the nucleation of crystal II and accelerate the diameter growth of the formed spherulites. If the applied melt pre-shear rate was large enough, Shish-Kebabs structure could be formed. After the isothermal crystallization...... was formed in the melt pre-sheared iP-1-B samples. Further investigations were applied with synchrotron radiation instruments. Wide angle X-ray scattering (WAXS) and small angle X-ray scattering (SAXS) after the crystal transition showed that the applied melt pre-shear could result in orientated fine...

  16. Structural insights into the mycobacteria transcription initiation complex from analysis of X-ray crystal structures

    Energy Technology Data Exchange (ETDEWEB)

    Hubin, Elizabeth A.; Lilic, Mirjana; Darst, Seth A.; Campbell, Elizabeth A.

    2017-07-13

    The mycobacteria RNA polymerase (RNAP) is a target for antimicrobials against tuberculosis, motivating structure/function studies. Here we report a 3.2 Å-resolution crystal structure of a Mycobacterium smegmatis (Msm) open promoter complex (RPo), along with structural analysis of the Msm RPo and a previously reported 2.76 Å-resolution crystal structure of an Msm transcription initiation complex with a promoter DNA fragment. We observe the interaction of the Msm RNAP α-subunit C-terminal domain (αCTD) with DNA, and we provide evidence that the αCTD may play a role in Mtb transcription regulation. Our results reveal the structure of an Actinobacteria-unique insert of the RNAP β' subunit. Finally, our analysis reveals the disposition of the N-terminal segment of Msm σA, which may comprise an intrinsically disordered protein domain unique to mycobacteria. The clade-specific features of the mycobacteria RNAP provide clues to the profound instability of mycobacteria RPo compared with E. coli.

  17. High-throughput crystal-optimization strategies in the South Paris Yeast Structural Genomics Project: one size fits all?

    Science.gov (United States)

    Leulliot, Nicolas; Trésaugues, Lionel; Bremang, Michael; Sorel, Isabelle; Ulryck, Nathalie; Graille, Marc; Aboulfath, Ilham; Poupon, Anne; Liger, Dominique; Quevillon-Cheruel, Sophie; Janin, Joël; van Tilbeurgh, Herman

    2005-06-01

    Crystallization has long been regarded as one of the major bottlenecks in high-throughput structural determination by X-ray crystallography. Structural genomics projects have addressed this issue by using robots to set up automated crystal screens using nanodrop technology. This has moved the bottleneck from obtaining the first crystal hit to obtaining diffraction-quality crystals, as crystal optimization is a notoriously slow process that is difficult to automatize. This article describes the high-throughput optimization strategies used in the Yeast Structural Genomics project, with selected successful examples.

  18. Equiatomic indides REIrIn (RE=La, Pr, Nd, Er-Yb). Crystal and electronic structure

    Energy Technology Data Exchange (ETDEWEB)

    Zaremba, Nazar [Ivan Franko National Univ. of Lviv (Ukraine). Dept. of Inorganic Chemistry; Technische Univ. Muenchen, Garching (Germany). Fakultaet fuer Chemie; Muts, Ihor; Zaremba, Vasyl [Ivan Franko National Univ. of Lviv (Ukraine). Dept. of Inorganic Chemistry; Hlukhyy, Viktor [Technische Univ. Muenchen, Garching (Germany). Fakultaet fuer Chemie; Stein, Sebastian; Rodewald, Ute C.; Poettgen, Rainer [Muenster Univ. (Germany). Inst. fuer Anorganische und Analytische Chemie; Pavlyuk, Volodymyr [Ivan Franko National Univ. of Lviv (Ukraine). Dept. of Inorganic Chemistry; Czestochowa Jan Dlugosz Univ., Czestochowa (Poland). Inst. of Chemistry, Environmental Protection and Biotechnology

    2017-10-01

    The equiatomic rare earth iridium indides REIrIn (RE=La, Pr, Nd, Er-Yb) were synthesized by reaction of the elements in induction or muffle furnaces and were characterized through X-ray powder patterns. The structures of LaIr{sub 0.86}In{sub 1.14}, PrIr{sub 0.89}In{sub 1.11}, NdIr{sub 0.94}In{sub 1.06}, ErIrIn (all ZrNiAl type, P anti 62m), and YbIrIn (TiNiSi type, Pnma) were refined from single crystal X-ray diffractometer data. Refinements of the occupancy parameters revealed small degrees of solid solutions with indium substitution on the iridium sites. Chemical bonding analyses and electronic structure calculations indicate the dominance of metallic bonding in addition to partial ionic interactions between the cations and polyanions, as well as covalent contributions between the indium and iridium atoms.

  19. The crystal structure of human GDP-L-fucose synthase.

    Science.gov (United States)

    Zhou, Huan; Sun, Lihua; Li, Jian; Xu, Chunyan; Yu, Feng; Liu, Yahui; Ji, Chaoneng; He, Jianhua

    2013-09-01

    Human GDP-l-fucose synthase, also known as FX protein, synthesizes GDP-l-fucose from its substrate GDP-4-keto-6-deoxy-d-mannose. The reaction involves epimerization at both C-3 and C-5 followed by an NADPH-dependent reduction of the carbonyl at C-4. In this paper, the first crystal structure of human FX protein was determined at 2.37 Å resolution. The asymmetric unit of the crystal structure contains four molecules which form two homodimers. Each molecule consists of two domains, a Rossmann-fold NADPH-binding motif and a carboxyl terminal domain. Compared with the Escherichia coli GDP-l-fucose synthase, the overall structures of these two enzymes have four major differences. There are four loops in the structure of human FX protein corresponding to two α-helices and two β-sheets in that of the E. coli enzyme. Besides, there are seven different amino acid residues binding with NAPDH comparing human FX protein with that from E. coli. The structure of human FX reveals the key catalytic residues and could be useful for the design of drugs for the treatment of inflammation, auto-immune diseases, and possibly certain types of cancer.

  20. Influence of the chemical composition of rapidly quenched amorphous alloys (Ni, Fe, Cr)-B-Si on its crystallization process

    Science.gov (United States)

    Elmanov, G.; Dzhumaev, P.; Ivanitskaya, E.; Skrytnyi, V.; Ruslanov, A.

    2016-04-01

    This paper presents results of research of the structure and phase transformations during the multistage crystallization of the metallic glasses with the compositions Ni71,5Cr6,8Fe2,7B11,9Si7,1 and Ni63,4Cr7,4Fe4,3Mn0,8B15,6Si8,5 labeled as AWS BNi-2 according to American Welding Society. Differential scanning calorimetry (DSC), X-ray diffraction analysis (XRD), scanning electron microscopy (SEM) and energy-dispersive X-ray microanalysis (EDX) were used as experimental research methods. The influence of the alloys chemical composition (boron, manganese and iron) on the temperatures and the exothermic heat effects of phase transformations, as well as on the phase composition of alloys at three stages of crystallization was analyzed. We present a thermodynamic explanation of the observed heat effects. It has been shown that manganese has the main influence on the phase transformations temperatures and heat effects in these two alloys. It is also assumed that at the final crystallization stage simultaneously with the formation of phases Ni3B and β1-Ni3Si should occur the nucleation of borides of CrB type with high Cr and low Si content.

  1. Synthesis, crystal structure and electronic structure of the binary phase Rh{sub 2}Cd{sub 5}

    Energy Technology Data Exchange (ETDEWEB)

    Koley, Biplab [Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur 721302 (India); Chatterjee, S. [Department of Physics, Indian Institute of Technology Kharagpur, Kharagpur 721302 (India); Jana, Partha P., E-mail: ppj@chem.iitkgp.ernet.in [Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur 721302 (India)

    2017-02-15

    A new phase in the Rh-Cd binary system - Rh{sub 2}Cd{sub 5} has been identified and characterized by single crystal X-ray diffraction and Energy dispersive X-ray analysis. The stoichiometric compound Rh{sub 2}Cd{sub 5} crystallizes with a unit cell containing 14 atoms, in the orthorhombic space group Pbam (55). The crystal structure of Rh{sub 2}Cd{sub 5} can be described as a defect form of the In{sub 3}Pd{sub 5} structure with ordered vacancies, formed of two 2D atomic layers with the stacking sequence: ABAB. The A type layers consist of (3.6.3.6)-Kagomé nets of Cd atoms while the B type layers consist of (3{sup 5}) (3{sup 7})- nets of both Cd and Rh atoms. The stability of this line phase is investigated by first principle electronic structure calculations on the model of ordered Rh{sub 2}Cd{sub 5}. - Graphical abstract: (3.6.3.6)-Kagomé nets of cadmium atoms (top) and (3{sup 5}) (3{sup 7})- nets of both cadmium and rhodium atoms (bottom) in the structure of Rh{sub 2}Cd{sub 5}.

  2. Crystal structure of di-( N-methylmorpholine betaine)- L(+)-tartrate

    Science.gov (United States)

    Dega-Szafran, Z.; Dutkiewicz, G.; Kosturkiewicz, Z.; Szafran, M.

    2002-11-01

    The crystal structure of di-( N-methylmorpholine betaine)- L(+)-tartrate has been determined by X-ray diffraction method. Crystals are orthorhombic, space group P2 12 12 1, a=9.580(1), b=12.208(1), c=18.677(1) Å, Z=4, R=0.037. The molecule of L(+)-tartaric acid appears in the extended form with the hydroxyl groups as well as carboxyl groups in anti positions. The molecule is involved in a number of the intra- and intermolecular hydrogen bonds. The COOH groups of the tartaric acid link two non-equivalent N-methylmorpholine betaine molecules by a short, intermolecular O-H⋯O bonds of the lengths 2.456(1) and 2.510(1) Å. The OH groups form two different bifurcated hydrogen bonds, the intramolecular with the CO oxygen atoms (2.641(2) and 2.638(2) Å) and the intermolecular (2.919(2) and 3.084(2) Å) with neighbouring tartaric acid molecules, and link complexes in the zigzag ribbon parallel to the x-axis. The morpholine rings of both betaine molecules are in chair conformation with methyl groups in an axial position and CH 2COO - substituents in an equatorial one. In the crystals and the PM3-optimized structures there is no symmetry, both in the tartrate and N-methylmorpholine betaine moieties. FTIR spectrum confirms the complex structure of the investigated molecule.

  3. Tunable alumina 2D photonic-crystal structures via biomineralization of peacock tail feathers

    Science.gov (United States)

    Jiang, Yonggang; Wang, Rui; Feng, Lin; Li, Jian; An, Zhonglie; Zhang, Deyuan

    2018-04-01

    Peacock tail feathers with subtle periodic nanostructures exhibit diverse striking brilliancy, which can be applied as natural templates to fabricate artificial photonic crystals (PhCs) via a biomineralization method. Alumina photonic-crystal structures are successfully synthesized via an immersion and two-step calcination process. The lattice constants of the artificial PhCs are greatly reduced compared to their natural matrices. The lattice constants are tunable by modifying the final annealing conditions in the biomineralization process. The reflection spectra of the alumina photonic-crystal structures are measured, which is related to their material and structural parameters. This work suggests a facile fabrication process to construct alumina PhCs with a high-temperature resistance.

  4. Conservation-dissipation structure of chemical reaction systems.

    Science.gov (United States)

    Yong, Wen-An

    2012-12-01

    In this Brief Report, we show that balanced chemical reaction systems governed by the law of mass action have an elegant conservation-dissipation structure. From this structure a number of important conclusions can be easily deduced. In particular, with the help of this structure we can rigorously justify the classical partial equilibrium approximation in chemical kinetics.

  5. Twinning structures in near-stoichiometric lithium niobate single crystals

    International Nuclear Information System (INIS)

    Yao, Shuhua; Chen, Yanfeng

    2010-01-01

    A near-stoichiometric lithium niobate single crystal has been grown by the Czochralski method in a hanging double crucible with a continuous powder supply system. Twins were found at one of the three characteristic growth ridges of the as-grown crystal. The twin structure was observed and analyzed by transmission synchrotron topography. The image shifts ΔX and ΔY in the transmission synchrotron topograph were calculated for the 3 anti 2 anti 12 and 0 anti 222 reflections based on results from high-resolution X-ray diffractometry. It is confirmed that one of the {01 anti 1 anti 2} m planes is the composition face of the twin and matrix crystals. The formation mechanism of these twins is discussed. (orig.)

  6. Crystal structure and spin state of mixed-crystals of iron with zinc and cobalt for the assembled complexes bridged by 1,3-bis(4-pyridyl)propanes

    Energy Technology Data Exchange (ETDEWEB)

    Dote, Haruka [Hiroshima University, Graduate School of Science (Japan); Nakashima, Satoru, E-mail: snaka@hiroshima-u.ac.jp [Hiroshima University, Natural Science Center for Basic Research and Development (Japan)

    2012-03-15

    Mixed crystals of cobalt and zinc were synthesized using 1,3-bis(4-pyridyl)propane (bpp) as bridging ligand and NCS{sup - } as anion. Red crystals and blue crystals were obtained. Powder X-ray diffraction patterns showed that the former is in 2D interpenetrated structure, while the latter has the same structure with Zn(NCS){sub 2}(bpp). Iron ion was introduced both into the red crystals and blue crystals of the mixed crystals of cobalt with zinc. {sup 57}Fe Moessbauer spectrum of the red crystals showed a main doublet of Fe{sup II} high-spin state at 78 K, while the spectrum of blue crystals did not show Fe{sup II} high-spin state at 78 K.

  7. Crystal structure and spin state of mixed-crystals of iron with zinc and cobalt for the assembled complexes bridged by 1,3-bis(4-pyridyl)propanes

    International Nuclear Information System (INIS)

    Dote, Haruka; Nakashima, Satoru

    2012-01-01

    Mixed crystals of cobalt and zinc were synthesized using 1,3–bis(4–pyridyl)propane (bpp) as bridging ligand and NCS  −  as anion. Red crystals and blue crystals were obtained. Powder X-ray diffraction patterns showed that the former is in 2D interpenetrated structure, while the latter has the same structure with Zn(NCS) 2 (bpp). Iron ion was introduced both into the red crystals and blue crystals of the mixed crystals of cobalt with zinc. 57 Fe Mössbauer spectrum of the red crystals showed a main doublet of Fe II high-spin state at 78 K, while the spectrum of blue crystals did not show Fe II high-spin state at 78 K.

  8. Photonic crystals, light manipulation, and imaging in complex nematic structures

    Science.gov (United States)

    Ravnik, Miha; Å timulak, Mitja; Mur, Urban; Čančula, Miha; Čopar, Simon; Žumer, Slobodan

    2016-03-01

    Three selected approaches for manipulation of light by complex nematic colloidal and non-colloidal structures are presented using different own custom developed theoretical and modelling approaches. Photonic crystals bands of distorted cholesteric liquid crystal helix and of nematic colloidal opals are presented, also revealing distinct photonic modes and density of states. Light propagation along half-integer nematic disclinations is shown with changes in the light polarization of various winding numbers. As third, simulated light transmission polarization micrographs of nematic torons are shown, offering a new insight into the complex structure characterization. Finally, this work is a contribution towards using complex soft matter in optics and photonics for advanced light manipulation.

  9. Domain Structures in Nematic Liquid Crystals on a Polycarbonate Surface

    Directory of Open Access Journals (Sweden)

    Vasily F. Shabanov

    2013-08-01

    Full Text Available Alignment of nematic liquid crystals on polycarbonate films obtained with the use of solvents with different solvations is studied. Domain structures occurring during the growth on the polymer surface against the background of the initial thread-like or schlieren texture are demonstrated. It is established by optical methods that the domains are stable formations visualizing the polymer surface structures. In nematic droplets, the temperature-induced transition from the domain structure with two extinction bands to the structure with four bands is observed. This transition is shown to be caused by reorientation of the nematic director in the liquid crystal volume from the planar alignment to the homeotropic state with the pronounced radial configuration of nematic molecules on the surface. The observed textures are compared with different combinations of the volume LC orientations and the radial distribution of the director field and the disclination lines at the polycarbonate surface.

  10. The crystal structure of tris(thenoyltrifluoroacetonato)bis(triphenylphosphine oxide)neodymium(III)

    International Nuclear Information System (INIS)

    Leipoldt, J.G.; Bok, L.D.C.; Laubscher, A.E.; Basson, S.S.

    1975-01-01

    The crystal structure of tris(thenoyltrifluoroacetonato)bis= x (triphenylphosphine oxide)neodymium(III), (Nd(TTa) 3 .2TPPO), has been determined by single crystal X-ray diffraction. A total number of 5505 independent reflections was used for the structure determination. The complex crystallized in the triclinic space group P 1 - with two molecules in the unit cell. The cell dimensions are a = 23.64 A, b Z= 12.15 A, C 11.19 A, α = 109.4 0 , β = 104.2 0 , γ = 90.8 0 . The final calculated R vale is 8.4%. The molecule is monomeric and the neodymium atom is coordinated to eight oxygen atoms (six from the three thenoyltrifluoroacetone groups and two from the two triphenylphosphine groups) which form a dodecahedron. The average neodymium-oxygen bond length is 2.44 A. (author)

  11. The effect of exchange-correlation on change and stability of crystal structure

    International Nuclear Information System (INIS)

    Yazdani, A.; Niazi, M.; Alimardan, V.

    2007-01-01

    Since exchange interaction energy has effect on band structure via polarization of spin of free electron, then can directly effects formation crystal structure. Therefore exchange-correlation is able to have an effect on determination of crystal structure or its change and stability. This energy is subject to fluctuation range of electrons between conduction band and valance band or density of electrons which due to increase the entropy of system, via Gibss Energy .We investigated these factors: 1) Size of ions 2) Density of States 3) Range of inter atomic and pair-potential.

  12. The Hirshfeld surface of three new isonicotinylhydrazine co-crystals: Comparison of hydrogen bonds and crystal structures

    Science.gov (United States)

    Cunha, Mariana S.; Ribeiro, Carlos Eduardo P.; Corrêa, Charlane C.; Diniz, Renata

    2017-12-01

    The influence of the change of aromatic acids ligand in the interactions with isonicotinylhydrazine (ISO) molecule in three new co-crystals has been investigated as well as a study of the hydrogen bonds formed between the ligands through Hirshfeld surface analysis and fingerprint plots. These analyses are extremely sensitive to the chemical environment of the molecule and are unique to a particular molecule so they can identify the differences between the crystal packing in the solid state. Although the conformation of ISO molecule being practically identical in all three compounds and the interactions mainly involve the Nsbnd H⋯O and Osbnd H⋯N type, the fingerprint plots only for ISO molecule in the three compounds are different and exhibit the influence in this molecule due to the modification of the functional groups of ligands.

  13. Growth and Characterization of Tetraphenylphosphonium Bromide Crystal

    Directory of Open Access Journals (Sweden)

    Guangqiang Wang

    2017-05-01

    Full Text Available Multiple-phenyl phosphorous compounds are a group of chemical materials that have been used as reactants, pharmaceutical intermediates, extractants, and catalysts in organic synthetic reactions. However, the crystal growth of bulk crystals of multiple-phenyl phosphorous compounds, which may expand their applications in photonics technology, have been largely overlooked. In this article, the crystal growth of tetraphenylphosphonium bromide (TPPB has been studied in organic solvents and water. The crystal structures and crystallization features are analyzed by X-ray diffraction data. By a slow temperature-lowering method, a single-crystal of TPPB (2H2O with the size of 27 × 20 × 20 mm3 has been obtained in water. The basic thermal and optical properties were characterized. We find that the TPPB (2H2O crystal shows excellent transparent property in the near-IR region. Large Raman shifts and strong Raman scattering intensity indicate that TPPB is a potential candidate in Raman-scattering-based nonlinearity applications.

  14. Crystal structure of the Al2CuIr phase

    International Nuclear Information System (INIS)

    Meshi, L.; Ezersky, V.; Kapush, D.; Grushko, B.

    2010-01-01

    A new ternary Al 2 CuIr phase was revealed in the Al-Cu-Ir system. It is formed below 1063 o C from the β-phase (CsCl-type structure) extending at elevated temperatures from AlIr. The crystal structure of the Al 2 CuIr phase was determined using a combination of precession electron diffraction and X-ray powder diffraction techniques. The phase has an orthorhombic C-centered unit cell with lattice parameters a = 8.1196(7) A, b = 5.0646(2) A and c = 5.18513(3) A; its crystal symmetry can be described by the Cmme (no. 67) space group (Pearson symbol oC16). The unit cell of the new phase contains 8 Al, 4 Cu and 4 Ir atoms and exhibits a new structure type. The reliability factors characterizing the Rietveld refinement procedure are: R p = 4.45%, R wp = 6.45%, R B = 3.69% and R f = 2.41%.

  15. On the crystal structure of colloidally prepared CsPbBr3 quantum dots.

    Science.gov (United States)

    Cottingham, Patrick; Brutchey, Richard L

    2016-04-18

    Colloidally synthesized quantum dots of CsPbBr3 are highly promising for light-emitting applications. Previous reports based on benchtop diffraction conflict as to the crystal structure of CsPbBr3 quantum dots. We present X-ray diffraction and PDF analysis of X-ray total scattering data that indicate that the crystal structure is unequivocally orthorhombic (Pnma).

  16. Synthesis and crystal structure of two lead (II) complexes with 1,10-phenanthroline ligand

    International Nuclear Information System (INIS)

    Olivera, Fiorella L.; Santillan, Guillermo A.

    2012-01-01

    Two coordination complexes have been synthesized by the reaction of lead nitrate (II) with 1,10-phenanthroline in methanol/water. The crystals of these complexes were obtained by using the diffusion method and structurally characterized by X-ray single crystal diffraction. Both complexes crystallized in the monoclinic space group P2 1 /c. The analysis by crystal X-ray diffraction reveals that in both complexes the coordination around the lead (II) ion is a distorted octahedral structure where the ion is bonded to the heterocyclic nitrogen atoms of chelating ligand 1,10-phenanthroline, three oxygen atoms of three nitrate groups and one oxygen from the water molecule. The difference between the complexes lies in the way of nitrate ion in presence of carboxylic acid aromatics. In addition, the crystal structure of complexes can be regarded as a 3D coordination polymer through Pb-O weak interactions, hydrogen bonds and π-π stacking interactions. (author).

  17. Semantic modeling of the structural and process entities during plastic deformation of crystals and rocks

    Science.gov (United States)

    Babaie, Hassan; Davarpanah, Armita

    2016-04-01

    We are semantically modeling the structural and dynamic process components of the plastic deformation of minerals and rocks in the Plastic Deformation Ontology (PDO). Applying the Ontology of Physics in Biology, the PDO classifies the spatial entities that participate in the diverse processes of plastic deformation into the Physical_Plastic_Deformation_Entity and Nonphysical_Plastic_Deformation_Entity classes. The Material_Physical_Plastic_Deformation_Entity class includes things such as microstructures, lattice defects, atoms, liquid, and grain boundaries, and the Immaterial_Physical_Plastic_Deformation_Entity class includes vacancies in crystals and voids along mineral grain boundaries. The objects under the many subclasses of these classes (e.g., crystal, lattice defect, layering) have spatial parts that are related to each other through taxonomic (e.g., Line_Defect isA Lattice_Defect), structural (mereological, e.g., Twin_Plane partOf Twin), spatial-topological (e.g., Vacancy adjacentTo Atom, Fluid locatedAlong Grain_Boundary), and domain specific (e.g., displaces, Fluid crystallizes Dissolved_Ion, Void existsAlong Grain_Boundary) relationships. The dynamic aspect of the plastic deformation is modeled under the dynamical Process_Entity class that subsumes classes such as Recrystallization and Pressure_Solution that define the flow of energy amongst the physical entities. The values of the dynamical state properties of the physical entities (e.g., Chemical_Potential, Temperature, Particle_Velocity) change while they take part in the deformational processes such as Diffusion and Dislocation_Glide. The process entities have temporal parts (phases) that are related to each other through temporal relations such as precedes, isSubprocessOf, and overlaps. The properties of the physical entities, defined under the Physical_Property class, change as they participate in the plastic deformational processes. The properties are categorized into dynamical, constitutive

  18. Crystal structure of new AsS2 compound

    International Nuclear Information System (INIS)

    Bolotina, N. B.; Brazhkin, V. V.; Dyuzheva, T. I.; Lityagina, L. M.; Kulikova, L. F.; Nikolaev, N. A.; Verin, I. A.

    2013-01-01

    AsS 2 single crystals have been obtained for the first time from an As 2 S 3 melt at pressures above 6 GPa and temperatures above 800 K in the As 2 S 3 → AsS + AsS 2 reaction. The monoclinic structure of the new high-pressure phase is solved by X-ray diffraction analysis and compared to the structure of high-pressure AsS phase, which was studied previously.

  19. Synthesis, crystal structure, thermal analysis and dielectric ...

    Indian Academy of Sciences (India)

    [13] Perry C H and Lowdes R P 1969 J. Chem. Phys. 51 3648. [14] Sheldrick G M 1997 SHELXS9, Program for the Refinement of Crystal Structures (Germany: University of Gottingen). [15] Loukil M, Kabadou A, Salles Ph and Ben Salah A 2004 Chem. Phys. 300 247. [16] Rolies M M and De Ranter C J 1978 Acta Crystallogr.

  20. Crystal growth and structure of KLnP/sub 4/O/sub 12/

    International Nuclear Information System (INIS)

    Guangyan, H.; Shuzhen, L.; Shuying, Y.; Mingyu, C.

    1985-01-01

    Potassium rare earth tetraphosphates KLnP/sub 4/O/sub 12/ are a kind of polyphosphates of rare earths with unique properties and structures. KNdP/sub 4/O/sub 12/ is a high-Nd-concentration laser material with a non-centrosymmetric space group P2, yielding linear and nonlinear optical properties. α-KErP/sub 4/O/sub 12/ might be used as a material for engineering device purpose. KTbP/sub 4/O/sub 12/ can emit strong green fluorescence, it might be a kind of a new crystal material for laser or luminescence. In order to search for new crystal materials and to study the correlations among the composition, structures and the properties of rare earth compounds, the crystal growth of KLnP/sub 4/O/sub 12/ and their structures are studied in this paper

  1. Surface structures of normal paraffins and cyclohexane monolayers and thin crystals grown on the (111) crystal face of platinum. A low-energy electron diffraction study

    International Nuclear Information System (INIS)

    Firment, L.E.; Somorjai, G.A.

    1977-01-01

    The surfaces of the normal paraffins (C 3 --C 8 ) and cyclohexane have been studied using low-energy electron diffraction (LEED). The samples were prepared by vapor deposition on the (111) face of a platinum single crystal in ultrahigh vacuum, and were studied both as thick films and as adsorbed monolayers. These molecules form ordered monolayers on the clean metal surface in the temperature range 100--220 K and at a vapor flux corresponding to 10 -7 Torr. In the adsorbed monolayers of the normal paraffins (C 4 --C 8 ), the molecules lie with their chain axes parallel to the Pt surface and Pt[110]. The paraffin monolayer structures undergo order--disorder transitions as a function of temperature. Multilayers condensed upon the ordered monolayers maintained the same orientation and packing as found in the monolayers. The surface structures of the growing organic crystals do not corresond to planes in their reported bulk crystal structures and are evidence for epitaxial growth of pseudomorphic crystal forms. Multilayers of n-octane and n-heptane condensed upon disordered monolayers have also grown with the (001) plane of the triclinic bulk crystal structures parallel to the surface. n-Butane has three monolayer structures on Pt(111) and one of the three is maintained during growth of the crystal. Cyclohexane forms an ordered monolayer, upon which a multilayer of cyclohexane grows exhibiting the (001) surface orientation of the monoclinic bulk crystal structure. Surface structures of saturated hydrocarbons are found to be very susceptible to electron beam induced damage. Surface charging interferes with LEED only at sample thicknesses greater than 200 A

  2. Crystal structure and pair potentials: A molecular-dynamics study

    Energy Technology Data Exchange (ETDEWEB)

    Parrinello, M.; Rahman, A.

    1980-10-06

    With use of a Lagrangian which allows for the variation of the shape and size of the periodically repeating molecular-dynamics cell, it is shown that different pair potentials lead to different crystal structures.

  3. Crystal structure and DFT study of (E-4-[({4-[(pyridin-2-ylmethylideneamino]phenyl}aminomethyl]phenol

    Directory of Open Access Journals (Sweden)

    Md. Serajul Haque Faizi

    2018-03-01

    Full Text Available In the title Schiff base compound, C19H17N3O, the configuration about the C=N bond is E. The molecule is non-planar, with the phenolic and pyridine rings being inclined to the central benzene ring by 56.59 (4 and 15.13 (14°, respectively. In the crystal, molecules are linked by pairs of O—H...N hydrogen bonds, forming inversion dimers. The dimers are connected to neighbouring dimers by N—H...O hydrogen bonds and C—H...π interactions, forming layers parallel to the bc plane. The layers are linked by offset π–π interactions [intercentroid distance = 3.779 (2 Å], forming a three-dimensional supramolecular structure. Quantum chemical calculations of the molecule are in good agreement with the solid-state structure.

  4. Crystal structure of the Ce2Ni2Zn15 compound

    International Nuclear Information System (INIS)

    Opainich, I.M.; Pavlyuk, V.V.; Bodak, O.I.; Cherny, R.; Yvon, K.

    1996-01-01

    A structure of a new ternary compound of the composition Ce2Ni2Zn15 (sp.gr.R3-barm,a=0.9080(3) nm, c=1.3294(3) nm) was determined on single-crystal and powder specimens. The study was performed on a Philips PW1100 automatic diffractometer and a DRON-4.07 powder diffractometer. The Ce2Ni2Zn15 compound is crystallized in the Ce2Al2Co15 structure type with the aluminum positions being occupied by nickel and cobalt positions being occupied by zinc

  5. Crystal Structure of Na3MoCl6

    Directory of Open Access Journals (Sweden)

    Martin Beran

    2011-07-01

    Full Text Available The ternary chloride Na3MoCl6 is obtained as red crystals from a disproportionation reaction of molybdenum dichloride, {Mo6}Cl12, in an acidic NaCl/AlCl3 melt at 350 °C. The crystal structure (trigonal, P-31c, a = 687.1(1, c = 1225.3(2 pm, Z = 2, V = 501,0(1 106 pm3 is that of Na3CrCl6: within a hexagonal closest-packing of chloride ions two thirds of the octahedral voids are filled between the AB double layers with Na+/Mo3+, and between the BA layers with Na+.

  6. Expression, purification, crystallization and structure of human adipocyte lipid-binding protein (aP2)

    International Nuclear Information System (INIS)

    Marr, Eric; Tardie, Mark; Carty, Maynard; Brown Phillips, Tracy; Wang, Ing-Kae; Soeller, Walt; Qiu, Xiayang; Karam, George

    2006-01-01

    The crystal structure of human adipocyte lipid-binding protein (aP2) with a bound palmitate is reported at 1.5 Å resolution. Human adipocyte lipid-binding protein (aP2) belongs to a family of intracellular lipid-binding proteins involved in the transport and storage of lipids. Here, the crystal structure of human aP2 with a bound palmitate is described at 1.5 Å resolution. Unlike the known crystal structure of murine aP2 in complex with palmitate, this structure shows that the fatty acid is in a folded conformation and that the loop containing Phe57 acts as a lid to regulate ligand binding by excluding solvent exposure to the central binding cavity

  7. 1. The determination of crystal and magnetic structures

    International Nuclear Information System (INIS)

    Elemans, J.B.A.A.

    1975-01-01

    A theoretical foundation of the technique of thermal neutron scattering by powders is outlined. A description of the experimental set-up is given. A beam of themalized neutrons emerges from the reactor (HFR at Petten) through a slit system. It is diffracted by a manochromator crystal with a finite mosaic structure, a Cu (111) crystal being used. After passing through 10 cm pyrolytic graphite with a ''window'' from 0.23 to 0.29 nm as a lambda/2 filter, resulting in a wave length of 0.257 nm, the neutrons are taken off at a predetermined angle defined by a second slit system, resulting in a beam in which the sample is bathed. The neutrons scattered by the sample are detected by a counter moving in an arc with the position of the sample as center. The standard measurement time for a 10 cm 3 sample was two days. A discussion of the mathematical procedures for deriving the magnetic structure from the observed counts is given

  8. Chemical and structural properties of polymorphous silicon thin films grown from dichlorosilane

    Energy Technology Data Exchange (ETDEWEB)

    Álvarez-Macías, C.; Monroy, B.M.; Huerta, L.; Canseco-Martínez, M.A. [Instituto de Investigaciones en Materiales, Universidad Nacional Autónoma de México, A.P. 70-360, Coyoacán, C.P. 04510 México, D.F. (Mexico); Picquart, M. [Departamento de Física, Universidad Autónoma Metropolitana, Iztapalapa, A.P. 55-534, 09340 México, D.F. (Mexico); Santoyo-Salazar, J. [Departamento de Física, CINVESTAV-IPN, A.P. 14-740, C.P. 07000 México, D.F. (Mexico); Sánchez, M.F. García [Unidad Profesional Interdisciplinaria en Ingeniería y Tecnologías Avanzadas, Instituto Politécnico Nacional, Av. I.P.N. 2580, Gustavo A. Madero, 07340 México .D.F. (Mexico); Santana, G., E-mail: gsantana@iim.unam.mx [Instituto de Investigaciones en Materiales, Universidad Nacional Autónoma de México, A.P. 70-360, Coyoacán, C.P. 04510 México, D.F. (Mexico)

    2013-11-15

    We have examined the effects of hydrogen dilution (R{sub H}) and deposition pressure on the morphological, structural and chemical properties of polymorphous silicon thin films (pm-Si:H), using dichlorosilane as silicon precursor in the plasma enhanced chemical vapor deposition (PECVD) process. The use of silicon chlorinated precursors enhances the crystallization process in as grown pm-Si:H samples, obtaining crystalline fractions from Raman spectra in the range of 65–95%. Atomic Force Microscopy results show the morphological differences obtained when the chlorine chemistry dominates the growth process and when the plasma–surface interactions become more prominent. Augmenting R{sub H} causes a considerable reduction in both roughness and topography, demonstrating an enhancement of ion bombardment and attack of the growing surface. X-ray Photoelectron Spectroscopy results show that, after ambient exposure, there is low concentration of oxygen inside the films grown at low R{sub H}, present in the form of Si-O, which can be considered as structural defects. Instead, oxidation increases with deposition pressure and dilution, along with film porosity, generating a secondary SiO{sub x} phase. For higher pressure and dilution, the amount of chlorine incorporated to the film decreases congruently with HCl chlorine extraction processes involving atomic hydrogen interactions with the surface. In all cases, weak silicon hydride (Si-H) bonds were not detected by infrared spectroscopy, while bonding configurations associated to the silicon nanocrystal surface were clearly observed. Since these films are generally used in photovoltaic devices, analyzing their chemical and structural properties such as oxygen incorporation to the films, along with chlorine and hydrogen, is fundamental in order to understand and optimize their electrical and optical properties.

  9. The crystal structure of vurroite, Pb20Sn2(Bi,As)(22)S51Cl6

    DEFF Research Database (Denmark)

    Pinto, Daniela; Bonaccorsi, Elena; Balic Zunic, Tonci

    2008-01-01

    The crystal structure of the type specimen of vurroite from Vulcano (Aeolian Islands, Italy) has been solved and refined using single-crystal X-ray diffraction data collected at the Elettra synchrotron facility (Basovizza, Trieste). Vurroite has an OD (order-disorder) structure belonging to the c......The crystal structure of the type specimen of vurroite from Vulcano (Aeolian Islands, Italy) has been solved and refined using single-crystal X-ray diffraction data collected at the Elettra synchrotron facility (Basovizza, Trieste). Vurroite has an OD (order-disorder) structure belonging...... to the category III of OD structures composed of equivalent layers. The OD-groupoid family (lambda and sigma partial operations) and MDO structures were derived by means of the application of the OD theory. The two theoretically possible polytypes with maximum degree of order (MDO polytypes) have pseudo...

  10. Structure and Stability of Molecular Crystals with Many-Body Dispersion-Inclusive Density Functional Tight Binding.

    Science.gov (United States)

    Mortazavi, Majid; Brandenburg, Jan Gerit; Maurer, Reinhard J; Tkatchenko, Alexandre

    2018-01-18

    Accurate prediction of structure and stability of molecular crystals is crucial in materials science and requires reliable modeling of long-range dispersion interactions. Semiempirical electronic structure methods are computationally more efficient than their ab initio counterparts, allowing structure sampling with significant speedups. We combine the Tkatchenko-Scheffler van der Waals method (TS) and the many-body dispersion method (MBD) with third-order density functional tight-binding (DFTB3) via a charge population-based method. We find an overall good performance for the X23 benchmark database of molecular crystals, despite an underestimation of crystal volume that can be traced to the DFTB parametrization. We achieve accurate lattice energy predictions with DFT+MBD energetics on top of vdW-inclusive DFTB3 structures, resulting in a speedup of up to 3000 times compared with a full DFT treatment. This suggests that vdW-inclusive DFTB3 can serve as a viable structural prescreening tool in crystal structure prediction.

  11. Mesoscale martensitic transformation in single crystals of topological defects

    Energy Technology Data Exchange (ETDEWEB)

    Li, Xiao; Martínez-González, José A.; Hernández-Ortiz, Juan P.; Ramírez-Hernández, Abelardo; Zhou, Ye; Sadati, Monirosadat; Zhang, Rui; Nealey, Paul F.; de Pablo, Juan J.

    2017-09-05

    Liquid crystal blue phases (BPs) are highly ordered at two levels. Molecules exhibit orientational order at nanometer length scales, while chirality leads to ordered arrays of doubletwisted cylinders over micrometer scales. Past studies of polycrystalline BPs were challenged by grain boundaries between randomly oriented crystalline nanodomains. Here, the nucleation of BPs is controlled with considerable precision by relying on chemically nano-patterned surfaces, leading to macroscopic single-crystal BP specimens where the dynamics of meso-crystal formation can be directly observed. Theory and experiments show that transitions between two BPs having a different network structure proceed through local re-organization of the crystalline array, without diffusion of the double twisted cylinders. In solid crystals, martensitic transformations between crystal structures involve the concerted motion of a few atoms, without diffusion. The transformation between BPs, where crystal features arise in the sub-micron regime, is found to be martensitic in nature, with the diffusion-less feature associated to the collective behavior of the double twist cylinders. Single-crystal BPs are shown to offer fertile grounds for the study of directed crystal-nucleation and the controlled growth of soft matter.

  12. Phase equilibria in the NaF-CdO-NaPO{sub 3} system at 873 K and crystal structure and physico-chemical characterizations of the new Na{sub 2}CdPO{sub 4}F fluorophosphate

    Energy Technology Data Exchange (ETDEWEB)

    Aboussatar, Mohamed [Université Clermont Auvergne, Université Blaise Pascal, Institut de Chimie de Clermont-Ferrand, UMR 6296 CNRS, BP 10448, F-63000 Clermont-Ferrand (France); Laboratoire de Physico-Chimie de l’État Solide, Faculté des Sciences de Sfax, Université de Sfax, BP 1171, 3000 Sfax (Tunisia); Mbarek, Aïcha [Laboratoire de Chimie Industrielle, Ecole Nationale d’Ingénieurs de Sfax, Université de Sfax, BP W3038, 3000 Sfax (Tunisia); Naili, Houcine [Laboratoire de Physico-Chimie de l’État Solide, Faculté des Sciences de Sfax, Université de Sfax, BP 1171, 3000 Sfax (Tunisia); El-Ghozzi, Malika [Université Clermont Auvergne, Université Blaise Pascal, Institut de Chimie de Clermont-Ferrand, UMR 6296 CNRS, BP 10448, F-63000 Clermont-Ferrand (France); Chadeyron, Geneviève [Université Clermont Auvergne, Institut de Chimie de Clermont-Ferrand, UMR 6296 CNRS/UBP/SIGMA, BP 10448, F-63000 Clermont-Ferrand (France); Avignant, Daniel [Université Clermont Auvergne, Université Blaise Pascal, Institut de Chimie de Clermont-Ferrand, UMR 6296 CNRS, BP 10448, F-63000 Clermont-Ferrand (France); Zambon, Daniel, E-mail: Daniel.Zambon@univ-bpclermont.fr [Université Clermont Auvergne, Université Blaise Pascal, Institut de Chimie de Clermont-Ferrand, UMR 6296 CNRS, BP 10448, F-63000 Clermont-Ferrand (France)

    2017-04-15

    Isothermal sections of the diagram representing phase relationships in the NaF-CdO-NaPO{sub 3} system have been investigated by solid state reactions and powder X-ray diffraction. This phase diagram investigation confirms the polymorphism of the NaCdPO{sub 4} side component and the structure of the ß high temperature polymorph (orthorhombic, space group Pnma and unit cell parameters a=9.3118(2), b=7.0459(1), c=5.1849(1) Å has been refined. A new fluorophosphate, Na{sub 2}CdPO{sub 4}F, has been discovered and its crystal structure determined and refined from powder X-ray diffraction data. It exhibits a new 3D structure with orthorhombic symmetry, space group Pnma and unit cell parameters a=5.3731(1), b=6.8530(1), c=12.2691(2) Å. The structure is closely related to those of the high temperature polymorph of the nacaphite Na{sub 2}CaPO{sub 4}F and the fluorosilicate Ca{sub 2}NaSiO{sub 4}F but differs essentially in the cationic repartition since the structure is fully ordered with one Na site (8d) and one Cd site (4c). Relationships with other Na{sub 2}M{sup II}PO{sub 4}F (M{sup II}=Mg, Ca, Mn, Fe, Co, Ni) have been examined and the crystal-chemical and topographical analysis of these fluorophosphates is briefly reviewed. IR, Raman, optical and {sup 19}F, {sup 23}Na, {sup 31}P MAS NMR characterizations of Na{sub 2}CdPO{sub 4}F have been investigated. - Graphical abstract: The structure of the compound Na{sub 2}CdPO{sub 4}F, discovered during the study of the phase relationships in the NaF-CdO-NaPO{sub 3} system, has been determined and compared with other Na{sub 2}M{sup II}PO{sub 4}F fluorophosphates. - Highlights: • XRD analysis of the isothermal section of the NaF-CdO-NaPO{sub 3} system at 923 K. • Rietveld refinement of the high temperature polymorph β-NaCdPO{sub 4}. • Crystal structure of the new Na{sub 2}CdPO{sub 4}F fluorophosphate determined from powder XRD. • Crystal structure - composition relationships of Na{sub 2}M{sup II}PO{sub 4}F compounds

  13. Synthetical bone-like and biological hydroxyapatites: a comparative study of crystal structure and morphology

    Energy Technology Data Exchange (ETDEWEB)

    Markovic, Smilja; Veselinovic, Ljiljana; Lukic, Miodrag J; Ignjatovic, Nenad; Uskokovic, Dragan [Institute of Technical Sciences of the Serbian Academy of Sciences and Arts, Knez Mihailova 35/IV, 11001 Belgrade (Serbia); Karanovic, Ljiljana [Laboratory for Crystallography, Faculty of Mining and Geology, University of Belgrade, Dusina 7, 11000 Belgrade (Serbia); Bracko, Ines, E-mail: dragan.uskokovic@itn.sanu.ac.rs [Jozef Stefan Institute, Jamova 39, 1000 Ljubljana (Slovenia)

    2011-08-15

    Phase composition, crystal structure and morphology of biological hydroxyapatite (BHAp) extracted from human mandible bone, and carbonated hydroxyapatite (CHAp), synthesized by the chemical precipitation method, were studied by x-ray powder diffraction (XRD), Fourier transform infrared (FTIR) and Raman (R) spectroscopy techniques, combined with transmission electron microscopy (TEM). Structural and microstructural parameters were determined through Rietveld refinement of recorded XRD data, performed using the FullProf computing program, and TEM. Microstructural analysis shows anisotropic extension along the [0 0 l] crystallographic direction (i.e. elongated crystallites shape) of both investigated samples. The average crystallite sizes of 10 and 8 nm were estimated for BHAp and CHAp, respectively. The FTIR and R spectroscopy studies show that carbonate ions substitute both phosphate and hydroxyl ions in the crystal structure of BHAp as well as in CHAp, indicating that both of them are mixed AB-type of CHAp. The thermal behaviour and carbonate content were analysed using thermogravimetric and differential thermal analysis. The carbonate content of about 1 wt.% and phase transition, at near 790 {sup 0}C, from HAp to {beta}-tricalcium phosphate were determined in both samples. The quality of synthesized CHAp powder, particularly, the particle size distribution and uniformity of morphology, was analysed by a particle size analyser based on laser diffraction and field emission scanning electron microscopy, respectively. These data were used to discuss similarity between natural and synthetic CHAp. Good correlation between the unit cell parameters, average crystallite size, morphology, carbonate content and crystallographic positions of carbonate ions in natural and synthetic HAp samples was found.

  14. Synthetical bone-like and biological hydroxyapatites: a comparative study of crystal structure and morphology

    International Nuclear Information System (INIS)

    Markovic, Smilja; Veselinovic, Ljiljana; Lukic, Miodrag J; Ignjatovic, Nenad; Uskokovic, Dragan; Karanovic, Ljiljana; Bracko, Ines

    2011-01-01

    Phase composition, crystal structure and morphology of biological hydroxyapatite (BHAp) extracted from human mandible bone, and carbonated hydroxyapatite (CHAp), synthesized by the chemical precipitation method, were studied by x-ray powder diffraction (XRD), Fourier transform infrared (FTIR) and Raman (R) spectroscopy techniques, combined with transmission electron microscopy (TEM). Structural and microstructural parameters were determined through Rietveld refinement of recorded XRD data, performed using the FullProf computing program, and TEM. Microstructural analysis shows anisotropic extension along the [0 0 l] crystallographic direction (i.e. elongated crystallites shape) of both investigated samples. The average crystallite sizes of 10 and 8 nm were estimated for BHAp and CHAp, respectively. The FTIR and R spectroscopy studies show that carbonate ions substitute both phosphate and hydroxyl ions in the crystal structure of BHAp as well as in CHAp, indicating that both of them are mixed AB-type of CHAp. The thermal behaviour and carbonate content were analysed using thermogravimetric and differential thermal analysis. The carbonate content of about 1 wt.% and phase transition, at near 790 0 C, from HAp to β-tricalcium phosphate were determined in both samples. The quality of synthesized CHAp powder, particularly, the particle size distribution and uniformity of morphology, was analysed by a particle size analyser based on laser diffraction and field emission scanning electron microscopy, respectively. These data were used to discuss similarity between natural and synthetic CHAp. Good correlation between the unit cell parameters, average crystallite size, morphology, carbonate content and crystallographic positions of carbonate ions in natural and synthetic HAp samples was found.

  15. Development of Single Crystal Chemical Vapor Deposition Diamonds for Detector Applications

    International Nuclear Information System (INIS)

    Kagan, Harris; Gan, K.K.; Kass, Richard

    2009-01-01

    Diamond was studied as a possible radiation hard technology for use in future high radiation environments. With the commissioning of the LHC expected in 2009, and the LHC upgrades expected in 2013, all LHC experiments are planning for detector upgrades which require radiation hard technologies. Chemical Vapor Deposition (CVD) diamond has now been used extensively in beam conditions monitors as the innermost detectors in the highest radiation areas of BaBar, Belle and CDF and is installed in all LHC experiments. As a result, this material is now being discussed as an alternative sensor material for tracking very close to the interaction region of the super-LHC where the most extreme radiation conditions will exist. Our work addressed the further development of the new material, single-crystal Chemical Vapor Deposition diamond, towards reliable industrial production of large pieces and new geometries needed for detector applications.

  16. Crystal structures and intermolecular interactions of two novel antioxidant triazolyl-benzimidazole compounds

    International Nuclear Information System (INIS)

    Karayel, A.; Özbey, S.; Ayhan-Kılcıgil, G.; Kuş, C.

    2015-01-01

    The crystal structures of 5-(2-(p-chlorophenylbenzimidazol-1-yl-methyl)-4-(3-fluorophenyl)-2, 4-dihydro-[1,2,4]-triazole-3-thione (G6C) and 5-(2-(p-chlorophenylbenzimidazol-1-yl-methyl)-4-(2-methylphenyl)-2, 4-dihydro-[1,2,4]-triazole-3-thione (G4C) have been determined by single-crystal X-ray diffraction. Benzimidazole ring systems in both molecules are planar. The triazole part is almost perpendicular to the phenyl and the benzimidazole parts of the molecules in order to avoid steric interactions between the rings. The crystal structures are stabilized by intermolecular hydrogen bonds between the amino group of the triazole and the nitrogen atom of benzimidazole of a neighboring molecule

  17. The Crystal Structures of Potentially Tautomeric Compounds

    Science.gov (United States)

    Furmanova, Nina G.

    1981-08-01

    Data on the structures of potentially proto-, metallo-, and carbono-tropic compounds, obtained mainly by X-ray diffraction, are surveyed. The results of neutron and electron diffraction studies have also been partly used. It is shown that a characteristic feature of all the systems considered is the formation of hydrogen or secondary bonds ensuring the contribution of both possible tautomeric forms to the structure. Systematic consideration of the experimental data leads to the conclusion that there is a close relation between the crystal structure and the dynamic behaviour of the molecules in solution and that secondary and hydrogen bonds play a significant role in the tautomeric transition. The bibliography includes 152 references.

  18. Production, purification, crystallization and structure determination of H-1 Parvovirus

    International Nuclear Information System (INIS)

    Halder, Sujata; Nam, Hyun-Joo; Govindasamy, Lakshmanan; Vogel, Michèle; Dinsart, Christiane; Salomé, Nathalie; McKenna, Robert; Agbandje-McKenna, Mavis

    2012-01-01

    The production, purification, crystallization and crystallographic analysis of H-1 Parvovirus, a gene-therapy vector, are reported. Crystals of H-1 Parvovirus (H-1PV), an antitumor gene-delivery vector, were obtained for DNA-containing capsids and diffracted X-rays to 2.7 Å resolution using synchrotron radiation. The crystals belonged to the monoclinic space group P2 1 , with unit-cell parameters a = 255.4, b = 350.4, c = 271.6 Å, β = 90.34°. The unit cell contained two capsids, with one capsid per crystallographic asymmetric unit. The H-1PV structure has been determined by molecular replacement and is currently being refined

  19. Synthesis and crystal structure of MgB12

    International Nuclear Information System (INIS)

    Adasch, Volker; Hess, Kai-Uwe; Ludwig, Thilo; Vojteer, Natascha; Hillebrecht, Harald

    2006-01-01

    Single crystals of MgB 12 were synthesized from the elements in a Mg/Cu melt at 1600deg. C. MgB 12 crystallizes orthorhombic in space group Pnma with a=16.632(3)A, b=17.803(4)A and c=10.396(2)A. The crystal structure (Z=30, 5796 reflections, 510 variables, R 1 (F)=0.049, wR 2 (I)=0.134) consists of a three dimensional net of B 12 icosahedra and B 21 units in a ratio 2:1. The B 21 units are observed for the first time in a solid compound. Mg is on positions with partial occupation. The summation reveals the composition MgB 12.35 or Mg 0.97 B 12 , respectively. This is in good agreement with the value of MgB 11.25 as expected by electronic reasons to stabilize the boron polyhedra B 12 2- and B 21 4-

  20. Study of structural and optical properties of YAG and Nd:YAG single crystals

    Energy Technology Data Exchange (ETDEWEB)

    Kostić, S. [Institute of Physics, University of Belgrade, P.O. Box 68, Pregrevica 118, Zemun, Belgrade (Serbia); Lazarević, Z.Ž., E-mail: lzorica@yahoo.com [Institute of Physics, University of Belgrade, P.O. Box 68, Pregrevica 118, Zemun, Belgrade (Serbia); Radojević, V. [Faculty of Technology and Metallurgy, University of Belgrade, Belgrade (Serbia); Milutinović, A.; Romčević, M.; Romčević, N.Ž. [Institute of Physics, University of Belgrade, P.O. Box 68, Pregrevica 118, Zemun, Belgrade (Serbia); Valčić, A. [Faculty of Technology and Metallurgy, University of Belgrade, Belgrade (Serbia)

    2015-03-15

    Highlights: • Transparent YAG and pale pink Nd:YAG single crystals were produced by the Czochralski technique. • Growth mechanisms and shape of the liquid/solid interface and incorporation of Nd{sup 3+} were studied. • The structure of the crystals was investigated by X-ray diffraction, Raman and IR spectroscopy. • The 15 Raman and 17 IR modes were observed. • The obtained YAG and Nd:YAG single crystals were without core and of good optical quality. - Abstract: Yttrium aluminum garnet (YAG, Y{sub 3}Al{sub 5}O{sub 12}) and yttrium aluminum garnet doped with neodymium (Nd:YAG) single crystals were grown by the Czochralski technique. The critical diameter and the critical rate of rotation were calculated. Suitable polishing and etching solutions were determined. As a result of our experiments, the transparent YAG and pale pink Nd:YAG single crystals were produced. The obtained crystals were studied by X-ray diffraction, Raman and IR spectroscopy. The crystal structure was confirmed by XRD. The 15 Raman and 17 IR modes were observed. The Raman and IR spectroscopy results are in accordance with X-ray diffraction analysis. The obtained YAG and Nd:YAG single crystals were without core and of good optical quality. The absence of a core was confirmed by viewing polished crystal slices. Also, it is important to emphasize that the obtained Nd:YAG single crystal has a concentration of 0.8 wt.% Nd{sup 3+} that is characteristic for laser materials.