WorldWideScience

Sample records for crystal structure analyses

  1. Physicochemical and crystal structure analyses of the antidiabetic agent troglitazone.

    Science.gov (United States)

    Kobayashi, Katsuhiro; Fukuhara, Hiroshi; Hata, Tadashi; Sekine, Akiko; Uekusa, Hidehiro; Ohashi, Yuji

    2003-07-01

    The antidiabetic agent troglitazone has two asymmetric carbons located at the chroman ring and the thiazolidine ring and is produced as a mixture of equal amounts of four optical isomers, 2R-5S, 2S-5R, 2R-5R, and 2S-5S. The crystalline powdered drug substance consists of two diastereomer pairs, 2R-5R/2S-5S and 2R-5S/2S-5R. There are many types of crystals obtained from various crystallization conditions. The X-ray structure analysis and the physicochemical analyses of troglitazone were performed. The solvated crystals of the 2R-5R/2S-5S pair were crystallized from several solutions: methanol, ethanol, acetonitrile, and dichloromethane. The ratio of solvent and troglitazone was 1 : 2 (L1/2-form). The monohydrate crystals were obtained from aqueous acetone solution (L1-form). On the other hand, only an anhydrate crystal of the 2R-5S/2S-5R pair was crystallized from various solutions (H0-form). The dihydrous mixed crystal (MA2-form) was obtained from a mixture of the two diastereomer pairs of 2R-5R/2S-5S and 2R-5S/2S-5R in equal amounts by the slow evaporation of aqueous acetone solution. The crystal structure of the MA2-form is similar to the H0-form. When the MA2 crystal was kept under low humidity, it was converted into the dehydrated form (MA0-form) with retention of the single crystal form. The structure of the MA0-form is isomorphous to the H0-form. The MA2-form was converted into the MA0-form and vice versa with retention of the single crystal under low and high humidity, respectively. The crystallization and storage conditions of the drug substances were successfully analyzed.

  2. Comparative sequence and structural analyses of G-protein-coupled receptor crystal structures and implications for molecular models.

    Directory of Open Access Journals (Sweden)

    Catherine L Worth

    Full Text Available BACKGROUND: Up until recently the only available experimental (high resolution structure of a G-protein-coupled receptor (GPCR was that of bovine rhodopsin. In the past few years the determination of GPCR structures has accelerated with three new receptors, as well as squid rhodopsin, being successfully crystallized. All share a common molecular architecture of seven transmembrane helices and can therefore serve as templates for building molecular models of homologous GPCRs. However, despite the common general architecture of these structures key differences do exist between them. The choice of which experimental GPCR structure(s to use for building a comparative model of a particular GPCR is unclear and without detailed structural and sequence analyses, could be arbitrary. The aim of this study is therefore to perform a systematic and detailed analysis of sequence-structure relationships of known GPCR structures. METHODOLOGY: We analyzed in detail conserved and unique sequence motifs and structural features in experimentally-determined GPCR structures. Deeper insight into specific and important structural features of GPCRs as well as valuable information for template selection has been gained. Using key features a workflow has been formulated for identifying the most appropriate template(s for building homology models of GPCRs of unknown structure. This workflow was applied to a set of 14 human family A GPCRs suggesting for each the most appropriate template(s for building a comparative molecular model. CONCLUSIONS: The available crystal structures represent only a subset of all possible structural variation in family A GPCRs. Some GPCRs have structural features that are distributed over different crystal structures or which are not present in the templates suggesting that homology models should be built using multiple templates. This study provides a systematic analysis of GPCR crystal structures and a consistent method for identifying

  3. Comparative sequence and structural analyses of G-protein-coupled receptor crystal structures and implications for molecular models.

    Science.gov (United States)

    Worth, Catherine L; Kleinau, Gunnar; Krause, Gerd

    2009-09-16

    Up until recently the only available experimental (high resolution) structure of a G-protein-coupled receptor (GPCR) was that of bovine rhodopsin. In the past few years the determination of GPCR structures has accelerated with three new receptors, as well as squid rhodopsin, being successfully crystallized. All share a common molecular architecture of seven transmembrane helices and can therefore serve as templates for building molecular models of homologous GPCRs. However, despite the common general architecture of these structures key differences do exist between them. The choice of which experimental GPCR structure(s) to use for building a comparative model of a particular GPCR is unclear and without detailed structural and sequence analyses, could be arbitrary. The aim of this study is therefore to perform a systematic and detailed analysis of sequence-structure relationships of known GPCR structures. We analyzed in detail conserved and unique sequence motifs and structural features in experimentally-determined GPCR structures. Deeper insight into specific and important structural features of GPCRs as well as valuable information for template selection has been gained. Using key features a workflow has been formulated for identifying the most appropriate template(s) for building homology models of GPCRs of unknown structure. This workflow was applied to a set of 14 human family A GPCRs suggesting for each the most appropriate template(s) for building a comparative molecular model. The available crystal structures represent only a subset of all possible structural variation in family A GPCRs. Some GPCRs have structural features that are distributed over different crystal structures or which are not present in the templates suggesting that homology models should be built using multiple templates. This study provides a systematic analysis of GPCR crystal structures and a consistent method for identifying suitable templates for GPCR homology modelling that will

  4. A framework for analysing relationships between chemical composition and crystal structure in metal oxides

    International Nuclear Information System (INIS)

    Thomas, N.W.

    1991-01-01

    A computer program has been written to characterize the coordination polyhedra of metal cations in terms of their volumes and polyhedral elements, i.e. corners, edges and faces. The sharing of these corners, edges and faces between polyhedra is also quantitatively monitored. In order to develop the methodology, attention is focused on ternary oxides containing the Al 3+ ion, whose structures were retrieved from the Inorganic Crystal Structure Database (ICSD). This also permits an objective assessment of the applicability of Pauling's rules. The influence of ionic valence on the structures of these compounds is examined, by calculating electrostatic bond strengths. Although Pauling's second rule is not supported in detail, the calculation of oxygen-ion valence reveals a basic structural requirement, that the average calculated oxygen-ion valence in any ionic oxide structure is equal to 2. The analysis is further developed to define a general method for the prediction of novel chemical compositions likely to adopt a given desired structure. The polyhedral volumes of this structure are calculated, and use is made of standard ionic radii for cations in sixfold coordination. The electroneutrality principle is invoked to take valence considerations into account. This method can be used to guide the development of new compositions of ceramic materials with certain desirable physical properties. (orig.)

  5. Hirshfeld surface analyses and crystal structures of supramolecular self-assembly thiourea derivatives directed by non-covalent interactions

    Science.gov (United States)

    Gumus, Ilkay; Solmaz, Ummuhan; Binzet, Gun; Keskin, Ebru; Arslan, Birdal; Arslan, Hakan

    2018-04-01

    The novel N-(bis(3,5-dimethoxybenzyl)carbamothioyl)-4-R-benzamide (R: H, Cl, CH3 and OCH3) compounds have been synthesized and characterized by FT-IR, 1H NMR and 13C NMR spectroscopy. Their crystal structures were also determined by single-crystal X-ray diffraction studies. Hirshfeld surfaces analysis and their associated two dimensional fingerprint plots of compounds were used as theoretical approach to assess driving force for crystal structure formation via the intermolecular interactions in the crystal lattices of synthesized compounds. The study of X-ray single crystal diffraction and Hirshfeld surfaces analysis of the prepared compounds shows that hydrogen bonding and other weaker interactions such as Nsbnd H⋯S, weak Csbnd H⋯S, Csbnd H⋯O, Csbnd H⋯N and Csbnd H···π intermolecular interactions and π-π stacking, among molecules of synthesized compounds participate in a cooperative way to stabilize the supramolecular structures.

  6. Single crystal structure analyses of scheelite-powellite CaW1-xMoxO4 solidsolutions and unique occurrence in Jisyakuyama skarn deposits

    Science.gov (United States)

    Yamashita, K.; Yoshiasa, A.; Miyazaki, H.; Tokuda, M.; Tobase, T.; Isobe, H.; Nishiyama, T.; Sugiyama, K.; Miyawaki, R.

    2017-12-01

    Jisyakuyama skarn deposit, Fukuchi, Fukuoka, Japan, shows a simple occurrenceformed by penetration of hot water into limestone cracks. A unique occurrence of scheelite-powellite CaW1-xMoxO4 minerals is observed in the skarn deposit. Many syntheticexperiments for scheelite-powellite solid solutions have been reported as research onfluorescent materials. In this system it is known that a complete continuous solid solution isformed even at room temperature. In this study, we have carried out the chemical analyses,crystal structural refinements and detail description of occurrence on scheelite-powelliteminerals. We have also attempted synthesis of single crystal of solid solution in a widecomposition range. The chemical compositions were determined by JEOL scanningelectron microscope and EDS, INCA system. We have performed the crystal structurerefinements of the scheelite-powellite CaW1-xMoxO4 solid solutions (x=0.0-1.0) byRIGAKU single-crystal structure analysis system RAPID. The R and S values are around0.0s and 1.03. As the result of structural refinements of natural products and many solidsolutions, we confirm that most large natural single crystals have compositions at bothendmembers, and large solid solution crystals are rare. The lattice constants, interatomicdistances and other crystallographic parameters for the solid solution change uniquely withcomposition and it was confirmed as a continuous solid solution. Single crystals of scheeliteendmember + powellite endmember + solid solution with various compositions form anaggregate in the deposit (Figure 1). Crystal shapes of powellite and scheelite arehypidiomorphic and allotriomorphic, respectively. Many solid solution crystals areaccompanied by scheelite endmember and a compositional gap is observed betweenpowellite and solid-solution crystals. The presence of several penetration solutions withsignificantly different W and Mo contents may be assumed. This research can be expectedto lead to giving restrictive

  7. Growth of Bi doped cadmium zinc telluride single crystals by Bridgman oscillation method and its structural, optical, and electrical analyses

    International Nuclear Information System (INIS)

    Carcelen, V.; Rodriguez-Fernandez, J.; Dieguez, E.; Hidalgo, P.

    2010-01-01

    The II-VI compound semiconductor cadmium zinc telluride (CZT) is very useful for room temperature radiation detection applications. In the present research, we have successfully grown Bi doped CZT single crystals with two different zinc concentrations (8 and 14 at. %) by the Bridgman oscillation method, in which one experiment has been carried out with a platinum (Pt) tube as the ampoule support. Pt also acts as a cold finger and reduces the growth velocity and enhances crystalline perfection. The grown single crystals have been studied with different analysis methods. The stoichiometry was confirmed by energy dispersive by x-ray and inductively coupled plasma mass spectroscopy analyses and it was found there is no incorporation of impurities in the grown crystal. The presence of Cd and Te vacancies was determined by cathodoluminescence studies. Electrical properties were assessed by I-V analysis and indicated higher resistive value (8.53x10 8 Ω cm) for the crystal grown with higher zinc concentration (with Cd excess) compare to the other (3.71x10 5 Ω cm).

  8. Zinc(II) halide complexes with 2-methoxyaniline ligand: Synthesis, characterization, thermal analyses, crystal structure determination and luminescent properties

    Science.gov (United States)

    Amani, Vahid

    2018-03-01

    Three new mononuclear zinc(II) complexes, [Zn(2-MeO-C6H4NH2)2X2] (X is Cl in 1, Br in 2 and I in 3), were prepared from the reactions of ZnX2 with 2-methoxyaniline (2-MeO-C6H4NH2) ligand in methanol. Suitable crystals of these complexes were obtained for X-ray diffraction measurements by slow evaporation of methanol solution at room temperature. The three complexes were thoroughly characterized by thermogravimetric analysis, elemental analysis (CHNO), spectral methods (IR, UV-Vis, 13C{1H}NMR, 1H NMR and luminescence), and single crystal X-ray diffraction. The X-ray structural analysis indicated that in the structures of these complexes, the zinc(II) cation is four-coordinated in a distorted tetrahedral configuration by two N atoms from two 2-methoxyanyline ligands and two halide anions. Also, in these complexes intermolecular interactions, for example Nsbnd H⋯X hydrogen bonds (in 1-3), Csbnd H⋯X hydrogen bonds (in 3), Csbnd H⋯π interactions (in 1 and 2) and π⋯π interactions (in 3), are effective in the stabilization of the crystal structures. In addition, the luminescence spectra of all complexes in methanolic solution show that the intensity of their emission bands is stronger than that for free 2-methoxyaniline ligand.

  9. Cocrystals of kaempferol, quercetin and myricetin with 4,4‧-bipyridine: Crystal structures, analyses of intermolecular interactions and antibacterial properties

    Science.gov (United States)

    Zhang, Yu-Nan; Yin, He-Mei; Zhang, Yu; Zhang, Da-Jun; Su, Xin; Kuang, Hai-Xue

    2017-02-01

    With an aim to explore the interactions of Osbnd H⋯N between hydroxyl moiety of the flavonoids and the pyridyl ring of N-containing aromatic amines, three flavonols with varying B-ring-hydroxyl groups (kaempferol, quercetin, and myricetin) were selected to combine with 4,4‧-bipyridine. As a result, three new cocrystals of flavonols were obtained with a solution evaporation approach. These three cocrystals were characterized by single crystal X-ray diffraction, XPRD, IR and NMR methods. The resulting cocrystals were kaempferol: 4,4‧-bipyridine (2:1) (KAE·BPY·2H2O), quercetin: 4,4‧-bipyridine (1:1.5) (QUE·BPY), and myricetin: 4,4‧-bipyridine (1:2) (MYR·BPY·H2O). Structural analyses show that an array of hydrogen bonds and π-π stacking interactions interconnect the molecules to form a two-dimensional (2D) supramolecular layer in KAE·BPY·2H2O, QUE·BPY, and MYR·BPY·H2O. In the three cocrystals, they present as three different synthons-ⅠR88(58), Ⅳ R44(42) and, Ⅶ R66(29) with 4,4‧-bipyridine, respectively-which may yield a strategy for constructing the supramolecule. Cocrystals of flavonols combined with N-containing aromatic amines, 7-OH, B-ring-hydroxyl number and/or the location of the flavonols to play a significant part in extending the dimensionality of the cocrystals. The resulting motif formation and crystal packing in these flavonols cocrystals has combined with N-containing aromatic amines. Additionally, the antibacterial properties of the three cocrystals against Staphylococcus aureus (S. aureus) and Escherichia coli (E. coli) have been investigated.

  10. Decomposition of Intermolecular Interactions in the Crystal Structure of Some Diacetyl Platinum(II Complexes: Combined Hirshfeld, AIM, and NBO Analyses

    Directory of Open Access Journals (Sweden)

    Saied M. Soliman

    2016-12-01

    Full Text Available Intermolecular interactions play a vital role in crystal structures. Therefore, we conducted a topological study, using Hirshfeld surfaces and atom in molecules (AIM analysis, to decompose and analyze, respectively, the different intermolecular interactions in six hydrazone-diacetyl platinum(II complexes. Using AIM and natural bond orbital (NBO analyses, we determined the type, nature, and strength of the interactions. All the studied complexes contain C-H⋯O interactions, and the presence of bond critical points along the intermolecular paths underlines their significance. The electron densities (ρ(r at the bond critical points (0.0031–0.0156 e/a03 fall within the typical range for H-bonding interactions. Also, the positive values of the Laplacian of the electron density (∇2ρ(r revealed the depletion of electronic charge on the interatomic path, another characteristic feature of closed-shell interactions. The ratios of the absolute potential energy density to the kinetic energy density (|V(r|/G(r and ρ(r are highest for the O2⋯H15-N3 interaction in [Pt(COMe2(2-pyCMe=NNH2] (1; hence, this interaction has the highest covalent character of all the O⋯H intermolecular interactions. Interestingly, in [Pt(COMe2(H2NN=CMe-CMe=NNH2] (3, there are significant N-H⋯Pt interactions. Using the NBO method, the second-order interaction energies, E(2, of these interactions range from 3.894 to 4.061 kJ/mol. Furthermore, the hybrid Pt orbitals involved in these interactions are comprised of dxy, dxz, and s atomic orbitals.

  11. SYNTHESIS, CHARACTERIZATION AND CRYSTAL STRUCTURES ...

    African Journals Online (AJOL)

    B. S. Chandravanshi

    ABSTRACT. Reaction of [VO(acac)2] (acac = acetylacetonate) with ... Single crystal X-ray structural studies indicate that the hydrazone ligands coordinate to ..... Molecular structure of complex (1) at 30% probability displacement. Figure 4.

  12. SYNTHESIS, CHARACTERIZATION AND CRYSTAL STRUCTURE ...

    African Journals Online (AJOL)

    Preferred Customer

    Reaction of [MoO2(acac)2] (where acac = acetylacetonate) with N'-(2-hydroxy-4- ... Single crystal X-ray structural studies indicate that the hydrazone ligand coordinates .... Molecular structure of the complex at 30% probability displacement.

  13. Crystal structure determination of Efavirenz

    International Nuclear Information System (INIS)

    Popeneciu, Horea; Dumitru, Ristoiu; Tripon, Carmen; Borodi, Gheorghe; Pop, Mihaela Maria

    2015-01-01

    Needle-shaped single crystals of the title compound, C 14 H 9 ClF 3 NO 2 , were obtained from a co-crystallization experiment of Efavirenz with maleic acid in a (1:1) ratio, using methanol as solvent. Crystal structure determination at room temperature revealed a significant anisotropy of the lattice expansion compared to the previously reported low-temperature structure. In both low- and room temperature structures the cyclopropylethynyl fragment in one of the asymmetric unit molecules is disordered. While at low-temperature only one C atom exhibits positional disorder, at room temperature the disorder is present for two C atoms of the cyclopropane ring

  14. SYNTHESIS, CHARACTERIZATION, AND CRYSTAL STRUCTURE ...

    African Journals Online (AJOL)

    a

    KEY WORDS: Barium, Crystal structure, 2,6-Pyridinedicarboxylic acid .... The rational design of novel metal-organic frameworks has attracted great ..... Bond, A.D.; Jones, W. Supramolecular Organization and Materials Design, Jones, W.; Rao,.

  15. Prediction of molecular crystal structures

    International Nuclear Information System (INIS)

    Beyer, Theresa

    2001-01-01

    The ab initio prediction of molecular crystal structures is a scientific challenge. Reliability of first-principle prediction calculations would show a fundamental understanding of crystallisation. Crystal structure prediction is also of considerable practical importance as different crystalline arrangements of the same molecule in the solid state (polymorphs)are likely to have different physical properties. A method of crystal structure prediction based on lattice energy minimisation has been developed in this work. The choice of the intermolecular potential and of the molecular model is crucial for the results of such studies and both of these criteria have been investigated. An empirical atom-atom repulsion-dispersion potential for carboxylic acids has been derived and applied in a crystal structure prediction study of formic, benzoic and the polymorphic system of tetrolic acid. As many experimental crystal structure determinations at different temperatures are available for the polymorphic system of paracetamol (acetaminophen), the influence of the variations of the molecular model on the crystal structure lattice energy minima, has also been studied. The general problem of prediction methods based on the assumption that the experimental thermodynamically stable polymorph corresponds to the global lattice energy minimum, is that more hypothetical low lattice energy structures are found within a few kJ mol -1 of the global minimum than are likely to be experimentally observed polymorphs. This is illustrated by the results for molecule I, 3-oxabicyclo(3.2.0)hepta-1,4-diene, studied for the first international blindtest for small organic crystal structures organised by the Cambridge Crystallographic Data Centre (CCDC) in May 1999. To reduce the number of predicted polymorphs, additional factors to thermodynamic criteria have to be considered. Therefore the elastic constants and vapour growth morphologies have been calculated for the lowest lattice energy

  16. Prediction of molecular crystal structures

    Energy Technology Data Exchange (ETDEWEB)

    Beyer, Theresa

    2001-07-01

    The ab initio prediction of molecular crystal structures is a scientific challenge. Reliability of first-principle prediction calculations would show a fundamental understanding of crystallisation. Crystal structure prediction is also of considerable practical importance as different crystalline arrangements of the same molecule in the solid state (polymorphs)are likely to have different physical properties. A method of crystal structure prediction based on lattice energy minimisation has been developed in this work. The choice of the intermolecular potential and of the molecular model is crucial for the results of such studies and both of these criteria have been investigated. An empirical atom-atom repulsion-dispersion potential for carboxylic acids has been derived and applied in a crystal structure prediction study of formic, benzoic and the polymorphic system of tetrolic acid. As many experimental crystal structure determinations at different temperatures are available for the polymorphic system of paracetamol (acetaminophen), the influence of the variations of the molecular model on the crystal structure lattice energy minima, has also been studied. The general problem of prediction methods based on the assumption that the experimental thermodynamically stable polymorph corresponds to the global lattice energy minimum, is that more hypothetical low lattice energy structures are found within a few kJ mol{sup -1} of the global minimum than are likely to be experimentally observed polymorphs. This is illustrated by the results for molecule I, 3-oxabicyclo(3.2.0)hepta-1,4-diene, studied for the first international blindtest for small organic crystal structures organised by the Cambridge Crystallographic Data Centre (CCDC) in May 1999. To reduce the number of predicted polymorphs, additional factors to thermodynamic criteria have to be considered. Therefore the elastic constants and vapour growth morphologies have been calculated for the lowest lattice energy

  17. Cyanide bridged hetero-metallic polymeric complexes: Syntheses, vibrational spectra, thermal analyses and crystal structures of complexes [M(1,2-dmi)2Ni(μ-CN)4]n (M = Zn(II) and Cd(II))

    Science.gov (United States)

    Kürkçüoğlu, Güneş Süheyla; Sayın, Elvan; Şahin, Onur

    2015-12-01

    Two cyanide bridged hetero-metallic complexes of general formula, [M(1,2-dmi)2Ni(μ-CN)4]n (1,2-dmi = 1,2-dimethylimidazole and M = Zn(II) or Cd(II)) have been synthesized and characterized by vibrational (FT-IR and Raman) spectroscopy, single crystal X-ray diffraction, thermal analyses and elemental analyses. The crystallographic analyses reveal that the complexes, [Zn(1,2-dmi)2Ni(μ-CN)4] (1) and [Cd(1,2-dmi)2Ni(μ-CN)4] (2), have polymeric 2D networks. In the complexes, four cyanide groups of [Ni(CN)4]2- coordinated to the adjacent M(II) ions and distorted octahedral geometries of complexes are completed by two nitrogen atoms of trans 1,2-dmi ligands. The structures of 1 and 2 are similar and linked via intermolecular hydrogen bonding, C-H⋯Ni interactions to give rise to 3D networks. Vibration assignments are given for all the observed bands and the spectral features also supported to the crystal structures of heteronuclear complexes. The FT-IR and Raman spectra of the complexes are very much consistent with the structural data presented.

  18. Crystal structure of cafenstrole

    Directory of Open Access Journals (Sweden)

    Gihaeng Kang

    2015-08-01

    Full Text Available The title compound (systematic name: N,N-diethyl-3-mesitylsulfonyl-1H-1,2,4-triazole-1-carboxamide, C16H22N4O3S, is a triazole herbicide. The dihedral angle between the planes of the triazole and benzene ring planes is 88.14 (10°. In the crystal, C—H...O hydrogen bonds and weak C—H...π interactions link adjacent molecules, forming one-dimensional chains along the a axis.

  19. Crystal structure of pseudoguainolide

    Directory of Open Access Journals (Sweden)

    Noureddine Beghidja

    2015-03-01

    Full Text Available The lactone ring in the title molecule, C15H22O3 (systematic name: 3,4a,8-trimethyldodecahydroazuleno[6,5-b]furan-2,5-dione, assumes an envelope conformation with the methine C atom adjacent to the the methine C atom carrying the methyl substituent being the flap atom. The other five-membered ring adopts a twisted conformation with the twist being about the methine–methylene C—C bond. The seven-membered ring is based on a twisted boat conformation. No specific interactions are noted in the the crystal packing.

  20. Structural Analyses of Phase Stability in Amorphous and Partially Crystallized Ge-Rich GeTe Films Prepared by Atomic Layer Deposition.

    Science.gov (United States)

    Gwon, Taehong; Mohamed, Ahmed Yousef; Yoo, Chanyoung; Park, Eui-Sang; Kim, Sanggyun; Yoo, Sijung; Lee, Han-Koo; Cho, Deok-Yong; Hwang, Cheol Seong

    2017-11-29

    The local bonding structures of Ge x Te 1-x (x = 0.5, 0.6, and 0.7) films prepared through atomic layer deposition (ALD) with Ge(N(Si(CH 3 ) 3 ) 2 ) 2 and ((CH 3 ) 3 Si) 2 Te precursors were investigated using Ge K-edge X-ray absorption spectroscopy (XAS). The results of the X-ray absorption fine structure analyses show that for all of the compositions, the as-grown films were amorphous with a tetrahedral Ge coordination of a mixture of Ge-Te and Ge-Ge bonds but without any signature of Ge-GeTe decomposition. The compositional evolution in the valence band electronic structures probed through X-ray photoelectron spectroscopy suggests a substantial chemical influence of additional Ge on the nonstoichiometric GeTe. This implies that the ALD process can stabilize Ge-abundant bonding networks like -Te-Ge-Ge-Te- in amorphous GeTe. Meanwhile, the XAS results on the Ge-rich films that had undergone post-deposition annealing at 350 °C show that the parts of the crystalline Ge-rich GeTe became separated into Ge crystallites and rhombohedral GeTe in accordance with the bulk phase diagram, whereas the disordered GeTe domains still remained, consistent with the observations of transmission electron microscopy and Raman spectroscopy. Therefore, amorphousness in GeTe may be essential for the nonsegregated Ge-rich phases and the low growth temperature of the ALD enables the achievement of the structurally metastable phases.

  1. Crystal structure refinement with SHELXL

    Energy Technology Data Exchange (ETDEWEB)

    Sheldrick, George M., E-mail: gsheldr@shelx.uni-ac.gwdg.de [Department of Structural Chemistry, Georg-August Universität Göttingen, Tammannstraße 4, Göttingen 37077 (Germany)

    2015-01-01

    New features added to the refinement program SHELXL since 2008 are described and explained. The improvements in the crystal structure refinement program SHELXL have been closely coupled with the development and increasing importance of the CIF (Crystallographic Information Framework) format for validating and archiving crystal structures. An important simplification is that now only one file in CIF format (for convenience, referred to simply as ‘a CIF’) containing embedded reflection data and SHELXL instructions is needed for a complete structure archive; the program SHREDCIF can be used to extract the .hkl and .ins files required for further refinement with SHELXL. Recent developments in SHELXL facilitate refinement against neutron diffraction data, the treatment of H atoms, the determination of absolute structure, the input of partial structure factors and the refinement of twinned and disordered structures. SHELXL is available free to academics for the Windows, Linux and Mac OS X operating systems, and is particularly suitable for multiple-core processors.

  2. Crystal structure of pymetrozine

    Directory of Open Access Journals (Sweden)

    Youngeun Jeon

    2015-07-01

    Full Text Available The title compound, C10H11N5O {systematic name: 6-methyl-4-[(E-(pyridin-3-ylmethylideneamino]-4,5-dihydro-1,2,4-triazin-3(2H-one}, C10H11N5O, is used as an antifeedant in pest control. The asymmetric unit comprises two independent molecules, A and B, in which the dihedral angles between the pyridinyl and triazinyl ring planes [r.m.s. deviations = 0.0132 and 0.0255 ] are 11.60 (6 and 18.06 (4°, respectively. In the crystal, N—H...O, N—H...N, C—H...N and C—H...O hydrogen bonds, together with weak π–π interactions [ring-centroid separations = 3.5456 (9 and 3.9142 (9 Å], link the pyridinyl and triazinyl rings of A molecules, generating a three-dimensional network.

  3. Crystal structures and Hirshfeld surface analyses of bis[N,N-bis(2-methoxyethyldithiocarbamato-κ2S,S′]di-n-butyltin(IV and [N-(2-methoxyethyl-N-methyldithiocarbamato-κ2S,S′]triphenyltin(IV

    Directory of Open Access Journals (Sweden)

    Rapidah Mohamad

    2018-03-01

    Full Text Available The crystal and molecular structures of the two title organotin dithiocarbamate compounds, [Sn(C4H92(C7H14NO2S22], (I, and [Sn(C6H53(C5H10NOS2], (II, are described. Both structures feature asymmetrically bound dithiocarbamate ligands leading to a skew-trapezoidal bipyramidal geometry for the metal atom in (I and a distorted tetrahedral geometry in (II. The complete molecule of (I is generated by a crystallographic twofold axis (Sn site symmetry 2. In the crystal of (I, molecules self-assemble into a supramolecular array parallel to (10-1 via methylene-C—H...O(methoxy interactions. In the crystal of (II, supramolecular dimers are formed via pairs of weak phenyl-C—H...π(phenyl contacts. In each of (I and (II, the specified assemblies connect into a three-dimensional architecture without directional interactions between them. Hirshfeld surface analyses confirm the importance of H...H contacts in the molecular packing of each of (I and (II, and in the case of (I, highlight the importance of short methoxy-H...H(butyl contacts between layers.

  4. Crystal structures, DFT calculations, and Hirshfeld surface analyses of two new copper(II) and nickel(II) Schiff base complexes derived from meso-1,2-diphenyl-1,2-ethylenediamine

    Science.gov (United States)

    Seifikar Ghomi, Leila; Behzad, Mahdi; Tarahhomi, Atekeh; Arab, Ali

    2017-12-01

    Two new Ni(II) and Cu(II) complexes of a tetradentate Schiff base ligand (1 and 2, respectively), derived from the condensation of meso-1,2-diphenyl-1,2-ethylenediamine with 2-hydroxy-6-methoxy benzaldehyde, were synthesized and characterized by IR, UV-Vis, 1H NMR spectroscopy, and X-Ray crystallography. The central metal ions in both complexes are coordinated via the N2O2 coordination sphere of the ligand with square-planar geometry. DFT results revealed that the Msbnd N and Msbnd O interactions (M = Ni, Cu) are weaker than the typical covalent single bond indicating that ionic and electrostatic interactions are dominated in Msbnd N and Msbnd O bonds. Hirshfeld surface (HS) analyses of the studied structures 1 and 2 have been performed. The study using 3D HSs and 2D fingerprint plots (FPs) highlighted the dominant contacts H⋯H, C⋯H/H⋯C and O⋯H/H⋯O in both structures, and H⋯Cl in 2. The molecular assemblies held by C⋯O/O⋯C (in 1) and C⋯C (in 1 and 2) type dipole-dipole interactions are also found in the crystal packing contributing towards stability. The significant contributions arising from the mentioned interactions in crystal packing are also revealed from the Hirshfeld surface FPs showing a major contribution to total HS area for the H⋯H contacts for both structures.

  5. Structure analysis on synthetic emerald crystals

    Science.gov (United States)

    Lee, Pei-Lun; Lee, Jiann-Shing; Huang, Eugene; Liao, Ju-Hsiou

    2013-05-01

    Single crystals of emerald synthesized by means of the flux method were adopted for crystallographic analyses. Emerald crystals with a wide range of Cr3+-doping content up to 3.16 wt% Cr2O3 were examined by X-ray single crystal diffraction refinement method. The crystal structures of the emerald crystals were refined to R 1 (all data) of 0.019-0.024 and w R 2 (all data) of 0.061-0.073. When Cr3+ substitutes for Al3+, the main adjustment takes place in the Al-octahedron and Be-tetrahedron. The effect of substitution of Cr3+ for Al3+ in the beryl structure results in progressively lengthening of the Al-O distance, while the length of the other bonds remains nearly unchanged. The substitution of Cr3+ for Al3+ may have caused the expansion of a axis, while keeping the c axis unchanged in the emerald lattice. As a consequence, the Al-O-Si and Al-O-Be bonding angles are found to decrease, while the angle of Si-O-Be increases as the Al-O distance increases during the Cr replacement.

  6. Alignment structures in ferroelectric liquid crystals

    Energy Technology Data Exchange (ETDEWEB)

    Islam, N.U

    1998-07-01

    Although for many years liquid crystals were of purely scientific interest, they have now become ubiquitous in everyday life. The use of the nematic liquid crystal phase in flat panel display applications has been the main factor in this popularity. However, with the advent of the SuperTwist Nematic (STN) device, the limits to which this phase could be exploited for display applications was perhaps reached. With the discovery by Clark et al. of the Surface Stabilised Ferroelectric Liquid Crystal (SSFLC) configuration, the possibility arose of using chiral smectic liquid crystals to create large area, passively addressed, fast switching, flat panel displays. Unfortunately, the structures that form within smectic liquid crystals, and the dynamics of the switching within these, are still not fully understood. In this thesis we address the former of these, making a detailed the study of the structures that form within tilted smectic liquid crystal devices. We present here the first complete theoretical and experimental study of various different ferroelectric liquid crystal materials, where we employed theoretical models based on a simple set of assumptions to understand the behaviour of a set of increasingly complex experimental systems. We started with the simplest of these, Freely Suspended Smectic Films (FSSFs) and then worked with progressively more realistic systems in the form of homeotropically, and later, homogeneously aligned liquid crystal cells. The equilibrium structures that form get particularly complex in the last case, taking the form of tilted and chevron layering structures. In each of these cases, the predictions of the modelling are compared with our experimental results. Further, we present here the first model of the chevron cusp that seeks to include the effects of biaxiality in the S{sub C} phase. We also present a model that seeks to analyse the stability of the chevron layering structure and its relationship with tilted layers. This includes

  7. Alignment structures in ferroelectric liquid crystals

    International Nuclear Information System (INIS)

    Islam, N.U.

    1998-01-01

    Although for many years liquid crystals were of purely scientific interest, they have now become ubiquitous in everyday life. The use of the nematic liquid crystal phase in flat panel display applications has been the main factor in this popularity. However, with the advent of the SuperTwist Nematic (STN) device, the limits to which this phase could be exploited for display applications was perhaps reached. With the discovery by Clark et al. of the Surface Stabilised Ferroelectric Liquid Crystal (SSFLC) configuration, the possibility arose of using chiral smectic liquid crystals to create large area, passively addressed, fast switching, flat panel displays. Unfortunately, the structures that form within smectic liquid crystals, and the dynamics of the switching within these, are still not fully understood. In this thesis we address the former of these, making a detailed the study of the structures that form within tilted smectic liquid crystal devices. We present here the first complete theoretical and experimental study of various different ferroelectric liquid crystal materials, where we employed theoretical models based on a simple set of assumptions to understand the behaviour of a set of increasingly complex experimental systems. We started with the simplest of these, Freely Suspended Smectic Films (FSSFs) and then worked with progressively more realistic systems in the form of homeotropically, and later, homogeneously aligned liquid crystal cells. The equilibrium structures that form get particularly complex in the last case, taking the form of tilted and chevron layering structures. In each of these cases, the predictions of the modelling are compared with our experimental results. Further, we present here the first model of the chevron cusp that seeks to include the effects of biaxiality in the S C phase. We also present a model that seeks to analyse the stability of the chevron layering structure and its relationship with tilted layers. This includes an

  8. Re-examination of the crystal structure of the β-pyrochlore oxide superconductor KOs 2O 6 by X-ray and convergent-beam electron diffraction analyses

    Science.gov (United States)

    Yamaura, Jun-Ichi; Hiroi, Zenji; Tsuda, Kenji; Izawa, Koichi; Ohishi, Yasuo; Tsutsui, Satoshi

    2009-01-01

    The crystal structure of the β-pyrochlore oxide superconductor KOs 2O 6 is re-examined. A single-crystal X-ray diffraction (XRD) analysis at room temperature first revealed that the compound crystallizes in a cubic structure with the centrosymmetric space group Fd3¯m, as in conventional pyrochlore oxides. Later, however, Schuck et al. claimed a different non-centrosymmetric F4¯3m structure based on their single-crystal XRD analysis. To unambiguously determine the true crystal structure of KOs 2O 6, we carried out high-resolution synchrotron powder X-ray and convergent-beam electron diffraction measurements at room temperature. The space group was determined with high reliability to be centrosymmetric Fd3¯m, not F4¯3m. This confirms the importance of the K atom location in a high-symmetry site, which causes unusually large rattling of the K atom.

  9. Robustness Analyses of Timber Structures

    DEFF Research Database (Denmark)

    Kirkegaard, Poul Henning; Sørensen, John Dalsgaard; Hald, Frederik

    2013-01-01

    The robustness of structural systems has obtained a renewed interest arising from a much more frequent use of advanced types of structures with limited redundancy and serious consequences in case of failure. In order to minimise the likelihood of such disproportionate structural failures, many mo...... with respect to robustness of timber structures and will discuss the consequences of such robustness issues related to the future development of timber structures.......The robustness of structural systems has obtained a renewed interest arising from a much more frequent use of advanced types of structures with limited redundancy and serious consequences in case of failure. In order to minimise the likelihood of such disproportionate structural failures, many...... modern building codes consider the need for the robustness of structures and provide strategies and methods to obtain robustness. Therefore, a structural engineer may take necessary steps to design robust structures that are insensitive to accidental circumstances. The present paper summaries issues...

  10. Structure and microstructure of Ni-Mn-Ga single crystal exhibiting magnetic shape memory effect analysed by high resolution X-ray diffraction

    Czech Academy of Sciences Publication Activity Database

    Heczko, Oleg; Cejpek, P.; Drahokoupil, Jan; Holý, V.

    2016-01-01

    Roč. 115, Aug (2016), s. 250-258 ISSN 1359-6454 R&D Projects: GA ČR GA13-30397S; GA ČR GA15-00262S Institutional support: RVO:68378271 Keywords : magnetic field-induced strain * magnetic shape memory effect * X-ray diffraction * structure of Ni-Mn-Ga Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 5.301, year: 2016

  11. Crystal structure and magnetic susceptibility of UOSe single crystals

    International Nuclear Information System (INIS)

    Kaczorowski, D.; Muenster Univ.; Poettgen, R.; Jeitschko, W.; Gajek, Z.; Zygmunt, A.

    1993-01-01

    The crystal structure and magnetic susceptibility behaviour of UOSe single crystals have been studied. UOSe crystalizes in the tetragonal PbFC1-type structure (space group P4/nmm) with the lattice parameters: a = 390.38(5) pm and c = 698.05(9) pm. It orders antiferromagnetically at T N =100±2 K and exhibits a very strong anisotropy in the susceptibility vs temperature variation. The magnetic and thermodynamic properties of UOSe are successfully interpreted in the framework of a perturbative ab initio crystal field approach. (Author)

  12. Crystal structure and magnetic susceptibility of UOSe single crystals

    Energy Technology Data Exchange (ETDEWEB)

    Kaczorowski, D. (Polish Academy of Sciences, Wroclaw (Poland). Inst. for Low Temperature and Structure Research Muenster Univ. (Germany). Anorganisch-Chemisches Inst.); Poettgen, R.; Jeitschko, W. (Muenster Univ. (Germany). Anorganisch-Chemisches Inst.); Gajek, Z.; Zygmunt, A. (Polish Academy of Sciences, Wroclaw (Poland). Inst. for Low Temperature and Structure Research)

    1993-01-01

    The crystal structure and magnetic susceptibility behaviour of UOSe single crystals have been studied. UOSe crystalizes in the tetragonal PbFC1-type structure (space group P4/nmm) with the lattice parameters: a = 390.38(5) pm and c = 698.05(9) pm. It orders antiferromagnetically at T[sub N]=100[+-]2 K and exhibits a very strong anisotropy in the susceptibility vs temperature variation. The magnetic and thermodynamic properties of UOSe are successfully interpreted in the framework of a perturbative ab initio crystal field approach. (Author).

  13. Amine free crystal structure: The crystal structure of d(CGCGCG)2 and methylamine complex crystal

    International Nuclear Information System (INIS)

    Ohishi, Hirofumi; Tsukamoto, Koji; Hiyama, Yoichi; Maezaki, Naoyoshi; Tanaka, Tetsuaki; Ishida, Toshimasa

    2006-01-01

    We succeeded in the crystallization of d(CGCGCG) 2 and methylamine Complex. The crystal was clear and of sufficient size to collect the X-ray crystallographic data up to 1.0 A resolution using synchrotron radiation. As a result of X-ray crystallographic analysis of 2F o - F c map was much clear and easily traced. It is First time monoamine co-crystallizes with d(CGCGCG) 2 . However, methylamine was not found from the complex crystal of d(CGCGCG) 2 and methylamine. Five Mg ions were found around d(CGCGCG) 2 molecules. These Mg ions neutralized the anion of 10 values of the phosphate group of DNA with five Mg 2+ . DNA stabilized only by a metallic ion and there is no example of analyzing the X-ray crystal structure like this. Mg ion stabilizes the conformation of Z-DNA. To use monoamine for crystallization of DNA, we found that we can get only d(CGCGCG) 2 and Mg cation crystal. Only Mg cation can stabilize the conformation of Z-DNA. The method of using the monoamine for the crystallization of DNA can be applied to the crystallization of DNA of long chain of length in the future like this

  14. Spin Structure Analyses of Antiferromagnets

    International Nuclear Information System (INIS)

    Chung, Jae Ho; Song, Young Sang; Lee, Hak Bong

    2010-05-01

    We have synthesized series of powder sample of incommensurate antiferromagnetic multiferroics, (Mn, Co)WO 4 and Al doped Ba 0.5 Sr 1.5 Zn 2 Fe 12 O 22 , incommensurate antiferromagnetic multiferroics. Their spin structure was studied by using the HRPD. In addition, we have synthesized series of crystalline samples of incommensurate multiferroics, (Mn, Co)WO 4 and olivines. Their spin structure was investigated using neutron diffraction under high magnetic field. As a result, we were able to draw the phase diagram of (Mn, Co)WO 4 as a function of composition and temperature. We learned the how the spin structure changes with increased ionic substitution. Finally we have drawn the phase diagram of the multicritical olivine Mn2SiS4/Mn2GeS4 as a function of filed and temperature through the spin structure studies

  15. What makes a crystal structure report valid?

    NARCIS (Netherlands)

    Spek, Anthony L.|info:eu-repo/dai/nl/156517566

    2018-01-01

    Single crystal X-ray crystallography has developed into a unique, highly automated and accessible tool to obtain detailed information on molecular structures. Proper archival makes that referees, readers and users of the results of reported crystal structures no longer need to depend solely on the

  16. Crystal structure of prethrombin-1

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Zhiwei; Pelc, Leslie A.; Di Cera, Enrico (St. Louis-MED)

    2010-11-15

    Prothrombin is the zymogen precursor of the clotting enzyme thrombin, which is generated by two sequential cleavages at R271 and R320 by the prothrombinase complex. The structure of prothrombin is currently unknown. Prethrombin-1 differs from prothrombin for the absence of 155 residues in the N-terminal domain and is composed of a single polypeptide chain containing fragment 2 (residues 156-271), A chain (residues 272-320), and B chain (residues 321-579). The X-ray crystal structure of prethrombin-1 solved at 2.2-{angstrom} resolution shows an overall conformation significantly different (rmsd = 3.6 {angstrom}) from that of its active form meizothrombin desF1 carrying a cleavage at R320. Fragment 2 is rotated around the y axis by 29{sup o} and makes only few contacts with the B chain. In the B chain, the oxyanion hole is disrupted due to absence of the I16-D194 ion pair and the Na{sup +} binding site and adjacent primary specificity pocket are highly perturbed. A remarkable feature of the structure is that the autolysis loop assumes a helical conformation enabling W148 and W215, located 17 {angstrom} apart in meizothrombin desF1, to come within 3.3 {angstrom} of each other and completely occlude access to the active site. These findings suggest that the zymogen form of thrombin possesses conformational plasticity comparable to that of the mature enzyme and have significant implications for the mechanism of prothrombin activation and the zymogen {yields} protease conversion in trypsin-like proteases.

  17. The crystal structure and twinning of neodymium gallium perovskite single crystals

    International Nuclear Information System (INIS)

    Ubizskii, S.B.; Vasylechko, L.O.; Savytskii, D.I.; Matkovskii, A.O.; Syvorotka, I.M.

    1994-01-01

    By means of X-ray structure analysis, the crystal structure of neodymium gallium perovskite (NGP) single crystals (NdGaO 3 ) being used as a substrate for HTSC film epitaxy has been refined and the position of atoms has been determined. The possibility of YBa 2 Cu 3 O 7-x film epitaxy on the plane (110) of NGP crystal as well as its advantages and pitfalls are analysed from structural data. The twinning types in the NGP crystal were established. The twinning structure of NGP substrates is found to be stable up to a temperature of 1173 K, as differentiated from the LaGaO 3 and LaAlO 3 substrates. It is intimated that the twinning in the NGP substrates oriented as (001) can result in creation of 90 degrees twin bonds in a film, and in the case of (110)-oriented plates it is possible to ignore the twinning presence in substrate completely. (author)

  18. Crystal structure of 2-pentyloxybenzamide

    Directory of Open Access Journals (Sweden)

    Bernhard Bugenhagen

    2014-10-01

    Full Text Available In the title molecule, C12H17NO2, the amide NH2 group is oriented toward the pentyloxy substituent and an intramolecular N—H...O hydrogen bond is formed with the pentyloxy O atom. The benzene ring forms dihedral angles of 2.93 (2 and 5.60 (2° with the amide group and the pentyloxy group mean planes, respectively. In the crystal, molecules are linked by pairs of N—H...O hydrogen bonds, forming inversion dimers with their molecular planes parallel, but at an offset of 0.45 (1 Å to each other. These dimers are ordered into two types of symmetry-related columns extended along the a axis, with the mean plane of one set of dimers in a column approximately parallel to (121 and the other in a column approximately parallel to (1-21. The two planes form a dihedral angle of 85.31 (2°, and are linked via C—H...O hydrogen bonds and C—H...π interactions, forming a three-dimensional framework structure.

  19. Method of fabricating patterned crystal structures

    KAUST Repository

    Yu, Liyang

    2016-12-15

    A method of manufacturing a patterned crystal structure for includes depositing an amorphous material. The amorphous material is modified such that a first portion of the amorphous thin-film layer has a first height/volume and a second portion of the amorphous thin-film layer has a second height/volume greater than the first portion. The amorphous material is annealed to induce crystallization, wherein crystallization is induced in the second portion first due to the greater height/volume of the second portion relative to the first portion to form patterned crystal structures.

  20. Photonic Crystal Laser-Driven Accelerator Structures

    International Nuclear Information System (INIS)

    Cowan, B

    2004-01-01

    The authors discuss simulated photonic crystal structure designs for laser-driven particle acceleration. They focus on three-dimensional planar structures based on the so-called ''woodpile'' lattice, demonstrating guiding of a speed-of-light accelerating mode by a defect in the photonic crystal lattice. They introduce a candidate geometry and discuss the properties of the accelerating mode. They also discuss the linear beam dynamics in the structure present a novelmethod for focusing the beam. In addition they describe ongoing investigations of photonic crystal fiber-based structures

  1. Phase contrast image segmentation using a Laue analyser crystal

    International Nuclear Information System (INIS)

    Kitchen, Marcus J; Paganin, David M; Lewis, Robert A; Pavlov, Konstantin M; Uesugi, Kentaro; Allison, Beth J; Hooper, Stuart B

    2011-01-01

    Dual-energy x-ray imaging is a powerful tool enabling two-component samples to be separated into their constituent objects from two-dimensional images. Phase contrast x-ray imaging can render the boundaries between media of differing refractive indices visible, despite them having similar attenuation properties; this is important for imaging biological soft tissues. We have used a Laue analyser crystal and a monochromatic x-ray source to combine the benefits of both techniques. The Laue analyser creates two distinct phase contrast images that can be simultaneously acquired on a high-resolution detector. These images can be combined to separate the effects of x-ray phase, absorption and scattering and, using the known complex refractive indices of the sample, to quantitatively segment its component materials. We have successfully validated this phase contrast image segmentation (PCIS) using a two-component phantom, containing an iodinated contrast agent, and have also separated the lungs and ribcage in images of a mouse thorax. Simultaneous image acquisition has enabled us to perform functional segmentation of the mouse thorax throughout the respiratory cycle during mechanical ventilation.

  2. Hydrothermal synthesis, crystal structure and luminescence property ...

    Indian Academy of Sciences (India)

    The design and construction of ... dination polymers. It is difficult to design coordination .... The first endotherm at about 180 ... graphic data for coordination polymer 1. ... Sheldrick G M 1997 SHELXS-97: Program for solution of crystal structures ...

  3. imide, crystal structure, thermal and dielectric studies

    Indian Academy of Sciences (India)

    methyl imidazolium methylidene bis(trifluoromethanesulfonyl)imide, crystal structure, thermal and dielectric studies. BOUMEDIENE HADDAD1,2,3,∗, TAQIYEDDINE MOUMENE2, DIDIER VILLEMIN1,. JEAN-FRANÇOIS LOHIER1 and EL-HABIB ...

  4. SYNTHESIS, CRYSTAL STRUCTURE AND MAGNETIC ...

    African Journals Online (AJOL)

    Preferred Customer

    Much of the current effort on such extended hybrid metal organic complexes is ... In this paper, we report the synthesis, single crystal X-ray diffraction analysis and ..... with g = 2.0 (0.37 cm3 mol−1 K), and smoothly increases to a value of 0.45 ...

  5. Crystal structure from one-electron theory

    DEFF Research Database (Denmark)

    Skriver, H. L.

    1985-01-01

    The authors have studied the crystal structure of all the 3d, 4d, and 5d transition metals at zero pressure and temperature by means of the linear muffin-tin orbital method and Andersen's force theorem. They find that, although the structural energy differences seem to be overestimated by the the......The authors have studied the crystal structure of all the 3d, 4d, and 5d transition metals at zero pressure and temperature by means of the linear muffin-tin orbital method and Andersen's force theorem. They find that, although the structural energy differences seem to be overestimated...

  6. In Vitro Antifungal, Anticancer Activities and POM Analyses of a Novel Bioactive Schiff Base 4-(((E)-furan-2-ylmethylidene)amino)p-henol: Synthesis, Characterization and Crystal Structure

    International Nuclear Information System (INIS)

    Tighadouni, S.; Radi, S.; Sirajuddin, M.; Akkurt, M.; Ozdemir, N.; Mabkhot, Y. N.; Hadda, T. B.

    2016-01-01

    The title compound (1), C/sub 11/H/sub 9/NO/sub 2/, was synthesized and characterized by FT-IR, 1H NMR, /sup 13/C NMR spectroscopy, mass spectrometry and single crystal analysis. It was crystallized in a monoclinic system with a space group P21/n. The dihedral angle between the planes of furan and benzene ring is 21.24 (11)Degree. The torsion angle of bridge C-C-N-C is -177.81(15) Degree. The crystal structure is stabilized by intermolecular hydrogen bonds between O-H-N and C-H-O forming a three dimensional network. The synthesized compound was screened for the in vitro antifungal against the Fusarium oxysporum f.sp albedinis FAO fungal strains and showed good activity. It was also tested for the anticancer activities against breast (MDA-MB231) and colorectal (LOVO) cancer cell lines and exhibited IC50 values of 6.9 μg/mL and 14.6 μg/mL, respectively. POM calculations of molecular properties of 1 are in good agreement with the mode of antifungal action of the compound bearing (XδYδ) pharmacophore site. Also it shows a drug score of 43 percent which is an important parameter for the compound possessing the drug character. (author)

  7. Two-dimensional photonic crystal accelerator structures

    Directory of Open Access Journals (Sweden)

    Benjamin M. Cowan

    2003-10-01

    Full Text Available Photonic crystals provide a method of confining a synchronous speed-of-light mode in an all-dielectric structure, likely a necessary feature in any optical accelerator. We explore computationally a class of photonic crystal structures with translational symmetry in a direction transverse to the electron beam. We demonstrate synchronous waveguide modes and discuss relevant parameters of such modes. We then explore how accelerator parameters vary as the geometry of the structure is changed and consider trade-offs inherent in the design of an accelerator of this type.

  8. Crystal structure of enolase from Drosophila melanogaster.

    Science.gov (United States)

    Sun, Congcong; Xu, Baokui; Liu, Xueyan; Zhang, Zhen; Su, Zhongliang

    2017-04-01

    Enolase is an important enzyme in glycolysis and various biological processes. Its dysfunction is closely associated with diseases. Here, the enolase from Drosophila melanogaster (DmENO) was purified and crystallized. A crystal of DmENO diffracted to 2.0 Å resolution and belonged to space group R32. The structure was solved by molecular replacement. Like most enolases, DmENO forms a homodimer with conserved residues in the dimer interface. DmENO possesses an open conformation in this structure and contains conserved elements for catalytic activity. This work provides a structural basis for further functional and evolutionary studies of enolase.

  9. Crystal structure of isomeric boron difluoride acetylnaphtholates

    International Nuclear Information System (INIS)

    Bukvetskij, B.V.; Fedorenko, E.V.; Mirochnik, A.G.; Karasev, V.E.

    2006-01-01

    Crystal structures of luminescent isomeric acetylnaphtholates of boron difluoride are investigated. Full X-ray structural analysis is done at 293 K. Coordinated of atoms, bond angles, bond lengths, interatomic distances are determined. Results of comparative evaluations of the isomers are represented [ru

  10. Crystal structure of levomepromazine maleate

    Directory of Open Access Journals (Sweden)

    Gyula Tamás Gál

    2016-05-01

    Full Text Available The asymmetric unit of the title salt, C19H25N2OS+·C4H3O4− [systematic name: (S-3-(2-methoxyphenothiazin-10-yl-N,N,2-trimethylpropanaminium hydrogen maleate], comprises two (S-levomepromazine cations and two hydrogen maleate anions. The conformations of the two cations are similar. The major difference relates to the orientation of the methoxy substituent at the phenothiazine ring system. The crystal components form a three-dimensional supramolecular network via N—H...O, C—H...O and C—H...π interactions. A comparison of the conformations of the levomepromazine cations with those of the neutral molecule and similar protonated molecules reveals significant conformational flexibility of the phenothiazine ring system and the substituent at the phenothiazine N atom.

  11. Selection, rejection and optimisation of pyrolytic graphite (PG) crystal analysers for use on the new IRIS graphite analyser bank

    International Nuclear Information System (INIS)

    Marshall, P.J.; Sivia, D.S.; Adams, M.A.; Telling, M.T.F.

    2000-01-01

    This report discusses design problems incurred by equipping the IRIS high-resolution inelastic spectrometer at the ISIS pulsed neutron source, UK with a new 4212 piece pyrolytic graphite crystal analyser array. Of the 4212 graphite pieces required, approximately 2500 will be newly purchased PG crystals with the remainder comprising of the currently installed graphite analysers. The quality of the new analyser pieces, with respect to manufacturing specifications, is assessed, as is the optimum arrangement of new PG pieces amongst old to circumvent degradation of the spectrometer's current angular resolution. Techniques employed to achieve these criteria include accurate calliper measurements, FORTRAN programming and statistical analysis. (author)

  12. Crystal structure of rubidium methyldiazotate

    Directory of Open Access Journals (Sweden)

    Tobias Grassl

    2017-02-01

    Full Text Available The title compound, Rb+·H3CN2O−, has been crystallized in liquid ammonia as a reaction product of the reductive ammonolysis of the natural compound streptozocin. Elemental rubidium was used as reduction agent as it is soluble in liquid ammonia, forming a blue solution. Reductive bond cleavage in biogenic materials under kinetically controlled conditions offers a new approach to gain access to sustainably produced raw materials. The anion is nearly planar [dihedral angle O—N—N—C = −0.4 (2°]. The Rb+ cation has a coordination number of seven, and coordinates to five anions. One anion is bound via both its N atoms, one by both O and N, two anions are bound by only their O atoms, and the last is bound via the N atom adjacent to the methyl group. The diazotate anions are bridged by cations and do not exhibit any direct contacts with each other. The cations form corrugated layers that propagate in the (-101 plane.

  13. Modelling and analysing oriented fibrous structures

    International Nuclear Information System (INIS)

    Rantala, M; Lassas, M; Siltanen, S; Sampo, J; Takalo, J; Timonen, J

    2014-01-01

    A mathematical model for fibrous structures using a direction dependent scaling law is presented. The orientation of fibrous nets (e.g. paper) is analysed with a method based on the curvelet transform. The curvelet-based orientation analysis has been tested successfully on real data from paper samples: the major directions of fibrefibre orientation can apparently be recovered. Similar results are achieved in tests on data simulated by the new model, allowing a comparison with ground truth

  14. Information and crystal structure estimation

    International Nuclear Information System (INIS)

    Wilkins, S.W.; Commonwealth Scientific and Industrial Research Organization, Clayton; Varghese, J.N.; Steenstrup, S.

    1984-01-01

    The conceptual foundations of a general information-theoretic based approach to X-ray structure estimation are reexamined with a view to clarifying some of the subtleties inherent in the approach and to enhancing the scope of the method. More particularly, general reasons for choosing the minimum of the Shannon-Kullback measure for information as the criterion for inference are discussed and it is shown that the minimum information (or maximum entropy) principle enters the present treatment of the structure estimation problem in at least to quite separate ways, and that three formally similar but conceptually quite different expressions for relative information appear at different points in the theory. One of these is the general Shannon-Kullback expression, while the second is a derived form pertaining only under the restrictive assumptions of the present stochastic model for allowed structures, and the third is a measure of the additional information involved in accepting a fluctuation relative to an arbitrary mean structure. (orig.)

  15. Shear induced structures in crystallizing cocoa butter

    Science.gov (United States)

    Mazzanti, Gianfranco; Guthrie, Sarah E.; Sirota, Eric B.; Marangoni, Alejandro G.; Idziak, Stefan H. J.

    2004-03-01

    Cocoa butter is the main structural component of chocolate and many cosmetics. It crystallizes in several polymorphs, called phases I to VI. We used Synchrotron X-ray diffraction to study the effect of shear on its crystallization. A previously unreported phase (phase X) was found and a crystallization path through phase IV under shear was observed. Samples were crystallized under shear from the melt in temperature controlled Couette cells, at final crystallization temperatures of 17.5^oC, 20^oC and 22.5^oC in Beamline X10A of NSLS. The formation of phase X was observed at low shear rates (90 s-1) and low crystallization temperature (17.5^oC), but was absent at high shear (720 s-1) and high temperature (20^oC). The d-spacing and melting point suggest that this new phase is a mixture rich on two of the three major components of cocoa butter. We also found that, contrary to previous reports, the transition from phase II to phase V can happen through the intermediate phase IV, at high shear rates and temperature.

  16. Synthesis, characterization and crystal structure of a ...

    African Journals Online (AJOL)

    The Mo atom in the complex is in octahedral coordination. Thermal stability of the complex has also been studied. KEY WORDS: Molybdenum complex, Hydrazone ligand, Crystal structure, X-ray diffraction, Thermal property. Bull. Chem. Soc. Ethiop. 2014, 28(3), 409-414. DOI: http://dx.doi.org/10.4314/bcse.v28i3.10 ...

  17. Synthesis, crystal structure, thermal analysis and dielectric ...

    Indian Academy of Sciences (India)

    [13] Perry C H and Lowdes R P 1969 J. Chem. Phys. 51 3648. [14] Sheldrick G M 1997 SHELXS9, Program for the Refinement of Crystal Structures (Germany: University of Gottingen). [15] Loukil M, Kabadou A, Salles Ph and Ben Salah A 2004 Chem. Phys. 300 247. [16] Rolies M M and De Ranter C J 1978 Acta Crystallogr.

  18. Crystal Structure of Human Enterovirus 71

    Energy Technology Data Exchange (ETDEWEB)

    Plevka, Pavel; Perera, Rushika; Cardosa, Jane; Kuhn, Richard J.; Rossmann, Michael G. (Purdue); (Sentinext)

    2013-04-08

    Enterovirus 71 is a picornavirus associated with fatal neurological illness in infants and young children. Here, we report the crystal structure of enterovirus 71 and show that, unlike in other enteroviruses, the 'pocket factor,' a small molecule that stabilizes the virus, is partly exposed on the floor of the 'canyon.' Thus, the structure of antiviral compounds may require a hydrophilic head group designed to interact with residues at the entrance of the pocket.

  19. Modular crystals as modulated structures

    DEFF Research Database (Denmark)

    Elcoro, L.; Perez-Mato, J.M.; Friese, K.

    2008-01-01

    The use of the superspace formalism is extended to the description and refinement of the homologous series of modular structures with two symmetry-related modules with different orientations. The lillianite homologous series has been taken as a study case. Starting from a commensurate modulated...... composite description with two basic subsystems corresponding to the two different modules, it is shown how a more efficient description can be achieved using so-called zigzag modulation functions. These linear zigzag modulations, newly implemented in the program JANA2006, have very large fixed amplitudes...... and introduce in the starting model the two orientations of the underlying module sublattices. We show that a composite approach with this type of function, which treats the cations and anions as two separate subsystems forming a misfit compound, is the most appropriate and robust method for the refinements....

  20. DEPUTY: analysing architectural structures and checking style

    International Nuclear Information System (INIS)

    Gorshkov, D.; Kochelev, S.; Kotegov, S.; Pavlov, I.; Pravilnikov, V.; Wellisch, J.P.

    2001-01-01

    The DepUty (dependencies utility) can be classified as a project and process management tool. The main goal of DepUty is to assist by means of source code analysis and graphical representation using UML, in understanding dependencies of sub-systems and packages in CMS Object Oriented software, to understand architectural structure, and to schedule code release in modularised integration. It also allows a new-comer to more easily understand the global structure of CMS software, and to void circular dependencies up-front or re-factor the code, in case it was already too close to the edge of non-maintainability. The authors will discuss the various views DepUty provides to analyse package dependencies, and illustrate both the metrics and style checking facilities it provides

  1. Photonic Crystal Laser-Driven Accelerator Structures

    International Nuclear Information System (INIS)

    Cowan, Benjamin M.

    2007-01-01

    Laser-driven acceleration holds great promise for significantly improving accelerating gradient. However, scaling the conventional process of structure-based acceleration in vacuum down to optical wavelengths requires a substantially different kind of structure. We require an optical waveguide that (1) is constructed out of dielectric materials, (2) has transverse size on the order of a wavelength, and (3) supports a mode with speed-of-light phase velocity in vacuum. Photonic crystals---structures whose electromagnetic properties are spatially periodic---can meet these requirements. We discuss simulated photonic crystal accelerator structures and describe their properties. We begin with a class of two-dimensional structures which serves to illustrate the design considerations and trade-offs involved. We then present a three-dimensional structure, and describe its performance in terms of accelerating gradient and efficiency. We discuss particle beam dynamics in this structure, demonstrating a method for keeping a beam confined to the waveguide. We also discuss material and fabrication considerations. Since accelerating gradient is limited by optical damage to the structure, the damage threshold of the dielectric is a critical parameter. We experimentally measure the damage threshold of silicon for picosecond pulses in the infrared, and determine that our structure is capable of sustaining an accelerating gradient of 300 MV/m at 1550 nm. Finally, we discuss possibilities for manufacturing these structures using common microfabrication techniques

  2. Crystal structure of riboflavin synthase

    Energy Technology Data Exchange (ETDEWEB)

    Liao, D.-I.; Wawrzak, Z.; Calabrese, J.C.; Viitanen, P.V.; Jordan, D.B. (DuPont); (NWU)

    2010-03-05

    Riboflavin synthase catalyzes the dismutation of two molecules of 6,7-dimethyl-8-(1'-D-ribityl)-lumazine to yield riboflavin and 4-ribitylamino-5-amino-2,6-dihydroxypyrimidine. The homotrimer of 23 kDa subunits has no cofactor requirements for catalysis. The enzyme is nonexistent in humans and is an attractive target for antimicrobial agents of organisms whose pathogenicity depends on their ability to biosynthesize riboflavin. The first three-dimensional structure of the enzyme was determined at 2.0 {angstrom} resolution using the multiwavelength anomalous diffraction (MAD) method on the Escherichia coli protein containing selenomethionine residues. The homotrimer consists of an asymmetric assembly of monomers, each of which comprises two similar {beta} barrels and a C-terminal {alpha} helix. The similar {beta} barrels within the monomer confirm a prediction of pseudo two-fold symmetry that is inferred from the sequence similarity between the two halves of the protein. The {beta} barrels closely resemble folds found in phthalate dioxygenase reductase and other flavoproteins. The three active sites of the trimer are proposed to lie between pairs of monomers in which residues conserved among species reside, including two Asp-His-Ser triads and dyads of Cys-Ser and His-Thr. The proposed active sites are located where FMN (an analog of riboflavin) is modeled from an overlay of the {beta} barrels of phthalate dioxygenase reductase and riboflavin synthase. In the trimer, one active site is formed, and the other two active sites are wide open and exposed to solvent. The nature of the trimer configuration suggests that only one active site can be formed and be catalytically competent at a time.

  3. Nonlinear coherent structures in granular crystals

    Science.gov (United States)

    Chong, C.; Porter, Mason A.; Kevrekidis, P. G.; Daraio, C.

    2017-10-01

    The study of granular crystals, which are nonlinear metamaterials that consist of closely packed arrays of particles that interact elastically, is a vibrant area of research that combines ideas from disciplines such as materials science, nonlinear dynamics, and condensed-matter physics. Granular crystals exploit geometrical nonlinearities in their constitutive microstructure to produce properties (such as tunability and energy localization) that are not conventional to engineering materials and linear devices. In this topical review, we focus on recent experimental, computational, and theoretical results on nonlinear coherent structures in granular crystals. Such structures—which include traveling solitary waves, dispersive shock waves, and discrete breathers—have fascinating dynamics, including a diversity of both transient features and robust, long-lived patterns that emerge from broad classes of initial data. In our review, we primarily discuss phenomena in one-dimensional crystals, as most research to date has focused on such scenarios, but we also present some extensions to two-dimensional settings. Throughout the review, we highlight open problems and discuss a variety of potential engineering applications that arise from the rich dynamic response of granular crystals.

  4. Analyses of containment structures with corrosion damage

    International Nuclear Information System (INIS)

    Cherry, J.L.

    1997-01-01

    Corrosion damage that has been found in a number of nuclear power plant containment structures can degrade the pressure capacity of the vessel. This has prompted concerns regarding the capacity of corroded containments to withstand accident loadings. To address these concerns, finite element analyses have been performed for a typical PWR Ice Condenser containment structure. Using ABAQUS, the pressure capacity was calculated for a typical vessel with no corrosion damage. Multiple analyses were then performed with the location of the corrosion and the amount of corrosion varied in each analysis. Using a strain-based failure criterion, a open-quotes lower boundclose quotes, open-quotes best estimateclose quotes, and open-quotes upper boundclose quotes failure level was predicted for each case. These limits were established by: determining the amount of variability that exists in material properties of typical containments, estimating the amount of uncertainty associated with the level of modeling detail and modeling assumptions, and estimating the effect of corrosion on the material properties

  5. PAK4 crystal structures suggest unusual kinase conformational movements.

    Science.gov (United States)

    Zhang, Eric Y; Ha, Byung Hak; Boggon, Titus J

    2018-02-01

    In order for protein kinases to exchange nucleotide they must open and close their catalytic cleft. These motions are associated with rotations of the N-lobe, predominantly around the 'hinge region'. We conducted an analysis of 28 crystal structures of the serine-threonine kinase, p21-activated kinase 4 (PAK4), including three newly determined structures in complex with staurosporine, FRAX486, and fasudil (HA-1077). We find an unusual motion between the N-lobe and C-lobe of PAK4 that manifests as a partial unwinding of helix αC. Principal component analysis of the crystal structures rationalizes these movements into three major states, and analysis of the kinase hydrophobic spines indicates concerted movements that create an accessible back pocket cavity. The conformational changes that we observe for PAK4 differ from previous descriptions of kinase motions, and although we observe these differences in crystal structures there is the possibility that the movements observed may suggest a diversity of kinase conformational changes associated with regulation. Protein kinases are key signaling proteins, and are important drug targets, therefore understanding their regulation is important for both basic research and clinical points of view. In this study, we observe unusual conformational 'hinging' for protein kinases. Hinging, the opening and closing of the kinase sub-domains to allow nucleotide binding and release, is critical for proper kinase regulation and for targeted drug discovery. We determine new crystal structures of PAK4, an important Rho-effector kinase, and conduct analyses of these and previously determined structures. We find that PAK4 crystal structures can be classified into specific conformational groups, and that these groups are associated with previously unobserved hinging motions and an unusual conformation for the kinase hydrophobic core. Our findings therefore indicate that there may be a diversity of kinase hinging motions, and that these may

  6. One dimensional coordination polymers: Synthesis, crystal structures and spectroscopic properties

    Science.gov (United States)

    Karaağaç, Dursun; Kürkçüoğlu, Güneş Süheyla; Şenyel, Mustafa; Şahin, Onur

    2016-11-01

    Two new one dimensional (1D) cyanide complexes, namely [M(4-aepy)2(H2O)2][Pt(CN)4], (4-aepy = 4-(2-aminoethyl)pyridine M = Cu(II) (1) or Zn(II) (2)), have been synthesized and characterized by vibrational (FT-IR and Raman) spectroscopy, single crystal X-ray diffraction, thermal and elemental analyses techniques. The crystallographic analyses reveal that 1 and 2 are isomorphous and isostructural, and crystallize in the monoclinic system and C2 space group. The Pt(II) ions are coordinated by four cyanide-carbon atoms in the square-planar geometry and the [Pt(CN)4]2- ions act as a counter ion. The M(II) ions display an N4O2 coordination sphere with a distorted octahedral geometry, the nitrogen donors belonging to four molecules of the organic 4-aepy that act as unidentate ligands and two oxygen atoms from aqua ligands. The crystal structures of 1 and 2 are similar each other and linked via intermolecular hydrogen bonding, Pt⋯π interactions to form 3D supramolecular network. Vibration assignments of all the observed bands are given and the spectral features also supported to the crystal structures of the complexes.

  7. Solving crystal structures from neutron diffraction data

    International Nuclear Information System (INIS)

    Wilson, C.C.

    1987-07-01

    In order to pursue crystal structure determination using neutron diffraction data, and given the wide experience available of solving structures using X-ray data, the codes used in X-ray structural analysis should be adapted to the different requirements of a neutron experiment. Modifications have been made to a direct methods program MITHRIL and to a Patterson methods program PATMET to incorporate into these the features of neutron rather than X-ray diffraction. While to date these modifications have been fairly straightforward and many sophistications remain to be exploited, results obtained from the neutron versions of both programs are promising. (author)

  8. Infra-Red Gas Analysers of Liquid Crystal Type for Environmental Monitoring

    Directory of Open Access Journals (Sweden)

    V. I. Nazarov

    2004-01-01

    Full Text Available The paper reveals an opportunity to use infra-red gas analysers on the basis of the developed dichroic liquid crystal cells for investigation of absorption bands of various gases in the near infrared spectral region.

  9. Crystal structure of tris(hydroxylammonium orthophosphate

    Directory of Open Access Journals (Sweden)

    Malte Leinemann

    2015-11-01

    Full Text Available The crystal structure of the title salt, ([H3NOH]+3·[PO4]3−, consists of discrete hydroxylammonium cations and orthophosphate anions. The atoms of the cation occupy general positions, whereas the anion is located on a threefold rotation axis that runs through the phosphorus atom and one of the phosphate O atoms. In the crystal structure, cations and anions are linked by intermolecular O—H...O and N—H...O hydrogen bonds into a three-dimensional network. Altogether, one very strong O—H...O, two N—H...O hydrogen bonds of medium strength and two weaker bifurcated N—H...O interactions are observed.

  10. CCDC 1416891: Experimental Crystal Structure Determination : Methyl-triphenyl-germanium

    KAUST Repository

    Bernatowicz, Piotr; Shkurenko, Aleksander; Osior, Agnieszka; Kamieński, Bohdan; Szymański, Sławomir

    2015-01-01

    An entry from the Cambridge Structural Database, the world’s repository for small molecule crystal structures. The entry contains experimental data from a crystal diffraction study. The deposited dataset for this entry is freely available from

  11. Optically induced structural phase transitions in ion Coulomb crystals

    DEFF Research Database (Denmark)

    Horak, Peter; Dantan, Aurelien Romain; Drewsen, Michael

    2012-01-01

    We investigate numerically the structural dynamics of ion Coulomb crystals confined in a three-dimensional harmonic trap when influenced by an additional one-dimensional optically induced periodical potential. We demonstrate that transitions between thermally excited crystal structures, such as b......We investigate numerically the structural dynamics of ion Coulomb crystals confined in a three-dimensional harmonic trap when influenced by an additional one-dimensional optically induced periodical potential. We demonstrate that transitions between thermally excited crystal structures...

  12. Crystal structure of natural phaeosphaeride A

    Directory of Open Access Journals (Sweden)

    Victoria V. Abzianidze

    2015-08-01

    Full Text Available The asymmetric unit of the title compound, C15H23NO5, contains two independent molecules. Phaeosphaeride A contains two primary sections, an alkyl chain consisting of five C atoms and a cyclic system consisting of fused five- and six-membered rings with attached substituents. In the crystal, the molecules form layered structures. Nearly planar sheets, parallel to the (001 plane, form bilayers of two-dimensional hydrogen-bonded networks with the hydroxy groups located on the interior of the bilayer sheets. The network is constructed primarily of four O—H...O hydrogen bonds, which form a zigzag pattern in the (001 plane. The butyl chains interdigitate with the butyl chains on adjacent sheets. The crystal was twinned by a twofold rotation about the c axis, with refined major–minor occupancy fractions of 0.718 (6:0.282 (6.

  13. Activation analyses for different fusion structural alloys

    International Nuclear Information System (INIS)

    Attaya, H.; Smith, D.

    1991-01-01

    The leading candidate structural materials, viz., the vanadium alloys, the nickel or the manganese stabilized austenitic steels, and the ferritic steels, are analysed in terms of their induced activation in the TPSS fusion power reactor. The TPSS reactor has 1950 MW fusion power and inboard and outboard average neutron wall loading of 3.75 and 5.35 MW/m 2 respectively. The results shows that, after one year of continuous operation, the vanadium alloys have the least radioactivity at reactor shutdown. The maximum difference between the induced radioactivity in the vanadium alloys and in the other iron-based alloys occurs at about 10 years after reactor shutdown. At this time, the total reactor radioactivity, using the vanadium alloys, is about two orders of magnitude less than the total reactor radioactivity utilizing any other alloy. The difference is even larger in the first wall, the FW-vanadium activation is 3 orders of magnitude less than other alloys' FW activation. 2 refs., 7 figs

  14. Crystal structure of Cryptosporidium parvum pyruvate kinase.

    Directory of Open Access Journals (Sweden)

    William J Cook

    Full Text Available Pyruvate kinase plays a critical role in cellular metabolism of glucose by serving as a major regulator of glycolysis. This tetrameric enzyme is allosterically regulated by different effector molecules, mainly phosphosugars. In response to binding of effector molecules and substrates, significant structural changes have been identified in various pyruvate kinase structures. Pyruvate kinase of Cryptosporidium parvum is exceptional among known enzymes of protozoan origin in that it exhibits no allosteric property in the presence of commonly known effector molecules. The crystal structure of pyruvate kinase from C. parvum has been solved by molecular replacement techniques and refined to 2.5 Å resolution. In the active site a glycerol molecule is located near the γ-phosphate site of ATP, and the protein structure displays a partially closed active site. However, unlike other structures where the active site is closed, the α6' helix in C. parvum pyruvate kinase unwinds and assumes an extended conformation. In the crystal structure a sulfate ion is found at a site that is occupied by a phosphate of the effector molecule in many pyruvate kinase structures. A new feature of the C. parvum pyruvate kinase structure is the presence of a disulfide bond cross-linking the two monomers in the asymmetric unit. The disulfide bond is formed between cysteine residue 26 in the short N-helix of one monomer with cysteine residue 312 in a long helix (residues 303-320 of the second monomer at the interface of these monomers. Both cysteine residues are unique to C. parvum, and the disulfide bond remained intact in a reduced environment. However, the significance of this bond, if any, remains unknown at this time.

  15. Crystal structures and Hirshfeld surface analyses of bis-[N,N-bis-(2-meth-oxy-eth-yl)di-thio-carbamato-κ2S,S']di-n-butyl-tin(IV) and [N-(2-meth-oxy-eth-yl)-N-methyl-dithio-carbamato-κ2S,S']tri-phenyl-tin(IV).

    Science.gov (United States)

    Mohamad, Rapidah; Awang, Normah; Kamaludin, Nurul Farahana; Jotani, Mukesh M; Tiekink, Edward R T

    2018-03-01

    The crystal and mol-ecular structures of the two title organotin di-thio-carbamate compounds, [Sn(C 4 H 9 ) 2 (C 7 H 14 NO 2 S 2 ) 2 ], (I), and [Sn(C 6 H 5 ) 3 (C 5 H 10 NOS 2 )], (II), are described. Both structures feature asymmetrically bound di-thio-carbamate ligands leading to a skew-trapezoidal bipyramidal geometry for the metal atom in (I) and a distorted tetra-hedral geometry in (II). The complete mol-ecule of (I) is generated by a crystallographic twofold axis (Sn site symmetry 2). In the crystal of (I), mol-ecules self-assemble into a supra-molecular array parallel to (10-1) via methyl-ene-C-H⋯O(meth-oxy) inter-actions. In the crystal of (II), supra-molecular dimers are formed via pairs of weak phenyl-C-H⋯π(phen-yl) contacts. In each of (I) and (II), the specified assemblies connect into a three-dimensional architecture without directional inter-actions between them. Hirshfeld surface analyses confirm the importance of H⋯H contacts in the mol-ecular packing of each of (I) and (II), and in the case of (I), highlight the importance of short meth-oxy-H⋯H(but-yl) contacts between layers.

  16. Crystal structure of MboIIA methyltransferase.

    Science.gov (United States)

    Osipiuk, Jerzy; Walsh, Martin A; Joachimiak, Andrzej

    2003-09-15

    DNA methyltransferases (MTases) are sequence-specific enzymes which transfer a methyl group from S-adenosyl-L-methionine (AdoMet) to the amino group of either cytosine or adenine within a recognized DNA sequence. Methylation of a base in a specific DNA sequence protects DNA from nucleolytic cleavage by restriction enzymes recognizing the same DNA sequence. We have determined at 1.74 A resolution the crystal structure of a beta-class DNA MTase MboIIA (M.MboIIA) from the bacterium Moraxella bovis, the smallest DNA MTase determined to date. M.MboIIA methylates the 3' adenine of the pentanucleotide sequence 5'-GAAGA-3'. The protein crystallizes with two molecules in the asymmetric unit which we propose to resemble the dimer when M.MboIIA is not bound to DNA. The overall structure of the enzyme closely resembles that of M.RsrI. However, the cofactor-binding pocket in M.MboIIA forms a closed structure which is in contrast to the open-form structures of other known MTases.

  17. Crystal Structure of the 30S Ribosomal Subunit from Thermus Thermophilus: Purification, Crystallization and Structure Determination

    International Nuclear Information System (INIS)

    Clemons, William M. Jr.; Brodersen, Ditlev E.; McCutcheonn, John P.; May, Joanna L.C.; Carter, Andrew P.; Morgan-Warren, Robert J.; Wimberly, Brian T.; Ramakrishnan, Venki

    2001-01-01

    We describe the crystallization and structure determination of the 30 S ribosomal subunit from Thermus thermophilus. Previous reports of crystals that diffracted to 10 (angstrom) resolution were used as a starting point to improve the quality of the diffraction. Eventually, ideas such as the addition of substrates or factors to eliminate conformational heterogeneity proved less important than attention to detail in yielding crystals that diffracted beyond 3 (angstrom) resolution. Despite improvements in technology and methodology in the last decade, the structure determination of the 30 S subunit presented some very challenging technical problems because of the size of the asymmetric unit, crystal variability and sensitivity to radiation damage. Some steps that were useful for determination of the atomic structure were: the use of anomalous scattering from the LIII edges of osmium and lutetium to obtain the necessary phasing signal; the use of tunable, third-generation synchrotron sources to obtain data of reasonable quality at high resolution; collection of derivative data precisely about a mirror plane to preserve small anomalous differences between Bijvoet mates despite extensive radiation damage and multi-crystal scaling; the pre-screening of crystals to ensure quality, isomorphism and the efficient use of scarce third-generation synchrotron time; pre-incubation of crystals in cobalt hexaammine to ensure isomorphism with other derivatives; and finally, the placement of proteins whose structures had been previously solved in isolation, in conjunction with biochemical data on protein-RNA interactions, to map out the architecture of the 30 S subunit prior to the construction of a detailed atomic-resolution model.

  18. Accuracy of crystal structure error estimates

    International Nuclear Information System (INIS)

    Taylor, R.; Kennard, O.

    1986-01-01

    A statistical analysis of 100 crystal structures retrieved from the Cambridge Structural Database is reported. Each structure has been determined independently by two different research groups. Comparison of the independent results leads to the following conclusions: (a) The e.s.d.'s of non-hydrogen-atom positional parameters are almost invariably too small. Typically, they are underestimated by a factor of 1.4-1.45. (b) The extent to which e.s.d.'s are underestimated varies significantly from structure to structure and from atom to atom within a structure. (c) Errors in the positional parameters of atoms belonging to the same chemical residue tend to be positively correlated. (d) The e.s.d.'s of heavy-atom positions are less reliable than those of light-atom positions. (e) Experimental errors in atomic positional parameters are normally, or approximately normally, distributed. (f) The e.s.d.'s of cell parameters are grossly underestimated, by an average factor of about 5 for cell lengths and 2.5 for cell angles. There is marginal evidence that the accuracy of atomic-coordinate e.s.d.'s also depends on diffractometer geometry, refinement procedure, whether or not the structure has a centre of symmetry, and the degree of precision attained in the structure determination. (orig.)

  19. The Crystal Structures of Potentially Tautomeric Compounds

    Science.gov (United States)

    Furmanova, Nina G.

    1981-08-01

    Data on the structures of potentially proto-, metallo-, and carbono-tropic compounds, obtained mainly by X-ray diffraction, are surveyed. The results of neutron and electron diffraction studies have also been partly used. It is shown that a characteristic feature of all the systems considered is the formation of hydrogen or secondary bonds ensuring the contribution of both possible tautomeric forms to the structure. Systematic consideration of the experimental data leads to the conclusion that there is a close relation between the crystal structure and the dynamic behaviour of the molecules in solution and that secondary and hydrogen bonds play a significant role in the tautomeric transition. The bibliography includes 152 references.

  20. Novel Crystal Structure C60 Nanowire

    Science.gov (United States)

    Mickelson, William; Aloni, Shaul; Han, Weiqiang; Cumings, John; Zettl, Alex

    2003-03-01

    We have created insulated C60 nanowire by packing C60 molecules into the interior of insulating boron nitride (BN) nanotubes. For small-diameter BN tubes, the wire consists of a linear chain of C60's. With increasing BN tube inner diameter, novel C60 stacking configurations are obtained (including helical, hollow core, and incommensurate) which are unknown for bulk or thin film forms of C60. C60 in BN nanotubes presents a model system for studying the properties of new dimensionally-constrained "silo" crystal structures.

  1. Crystal structure of MboIIA methyltransferase

    OpenAIRE

    Osipiuk, Jerzy; Walsh, Martin A.; Joachimiak, Andrzej

    2003-01-01

    DNA methyltransferases (MTases) are sequence-specific enzymes which transfer a methyl group from S-adenosyl-l-methionine (AdoMet) to the amino group of either cytosine or adenine within a recognized DNA sequence. Methylation of a base in a specific DNA sequence protects DNA from nucleolytic cleavage by restriction enzymes recognizing the same DNA sequence. We have determined at 1.74 Å resolution the crystal structure of a β-class DNA MTase MboIIA (M·MboIIA) from the bacterium Moraxella bovis,...

  2. The crystal structure of (001) twinned xilingolite, Pb3Bi2S6, from Mittal-Hohtenn, Valais, Switzerland

    DEFF Research Database (Denmark)

    Berlepsch, Peter; Armbruster, Thomas; Makovicky, Emil

    2002-01-01

    geology, xilingolite, crystal structure, twinning, lillianite homologue, electron-microprobe analyses, cannizzarite, Bi-containing galena, Mittal-Hohtenn, Valais, Switzerland......geology, xilingolite, crystal structure, twinning, lillianite homologue, electron-microprobe analyses, cannizzarite, Bi-containing galena, Mittal-Hohtenn, Valais, Switzerland...

  3. Multi-structure docking analysis of BACE1 crystal structures and non-peptidic ligands.

    Science.gov (United States)

    Haghighijoo, Zahra; Hemmateenejad, Bahram; Edraki, Najmeh; Miri, Ramin; Emami, Saeed

    2017-09-01

    In order to design novel non-peptidic inhibitors of BACE1, many research groups have attempted using computational studies including docking analyses. Since there are too many 3D structures for BACE1 in the protein database, the selection of suitable crystal structures is a key prerequisite for the successful application of molecular docking. We employed a multi-structure docking protocol. In which 615 ligands' structures were docked into 150 BACE1 structures. The large number of the resultant docking scores were post-processed by different data analysis methods including exploratory data analysis, regression analysis and discriminant analysis. It was found that using one crystal structure for docking did not result in high accuracy for predicting activity of the BACE1 inhibitors. Instead, using of the multi-structural docking scores, post-processed by chemometrics methods arrived to highly accurate predictive models. In this regards, the PDB accession codes of 4B70, 4DVF and 2WEZ could discriminate between active and inactive compounds, with higher accuracy. Clustering of the BACE1 structures based on principal component analysis of the crystallographic structures the revealed that the discriminant structures are in the center of the clusters. Thus, these structures can be selected as predominant crystal structures for docking studies of non-peptidic BACE1 inhibitors. Copyright © 2017 Elsevier Inc. All rights reserved.

  4. Crystal and molecular structure of 2-thiouridine

    Energy Technology Data Exchange (ETDEWEB)

    Hawkinson, S W

    1977-01-01

    The ''minor'' nucleoside 2-thiouridine, C/sub 9/H/sub 12/O/sub 5/N/sub 2/S, crystallizes in a monoclinic cell, space group P2/sub 1/ with a = 5.049 (2), b = 7.526 (2), c = 14.050 (3) A, ..beta.. = 90.17 (2)/sup 0/, and d = 1.619 g cm/sup -3/ (for Z = 2) at 22 +- 2/sup 0/C. The structure was derived from 1334 unique intensities measured with an Oak Ridge computer-controlled diffractometer to a limit of sin theta/lambda = 0.65 A/sup -1/ with Nb-filtered Mo K..cap alpha.. radiation. Atomic parameters were obtained by a combination of Patterson and Fourier techniques and refined by full-matrix least squares to a final R(F) value of 0.023 for all data. The bond lengths and angles in the molecule agree well with those of other thiopyrimidines (C(2) - S = 1.677 A). The conformation of the sugar ring relative to the base is anti with a torsion angle chi(O(1')--C(1') ..-->.. N(1)--C(6)) of 17/sup 0/. The sugar exists in the 3'-endo conformation. The O(5')--C(5') bond is gauche to C(4) - O(1') and trans to C(4')--C(3') (torsion angles of 74 and -169/sup 0/ respectively). The molecules are linked together in the crystal by hydrogen bonds in an intricate network which is identical to that inferred by Kojic-Prodic, Liminga, Sljukic and Ruzic-Toros (Acta Cryst. (1974), B30, 1550-1555) for the crystal structure of 5,6-dihydro-2-thiouridine. 2 figures; 6 tables.

  5. Neutron structure analyses and structural disorders of poly(p-phenylenebenzobisoxazole) and poly(p-phenylenebenzobisthiazole)

    International Nuclear Information System (INIS)

    Takahashi, Yasuhiro

    2001-01-01

    Poly(p-phenylenebenzobisoxazole)(PBO) and poly(p-phenylenebenzobisthiazole)(PBZT) are disordered with respect to the molecular heights. The molecular heights of PBO are disordered by 1/2 along the molecular axis, while the molecular heights of PBZT are disordered by 1/2 on the ac-plane and by every 1/5 on the bc-plane. Neutron structure analyses of both polymers were carried out for the c-projected structure in the temperature range 17 - 295K. The molecular structures of both polymers deviate from the planar structure. The crystal structures are less dependent on the temperature than the flexible polymers, polyethylene and poly(vinyl alcohol). (author)

  6. Syntheses and Crystal Structures of Ferrocenoindenes

    Directory of Open Access Journals (Sweden)

    Gerhard Laus

    2013-02-01

    Full Text Available Ferrocenoindenes display planar chirality and thus represent valuable ligands for asymmetric catalysis. Here, we report on the synthesis of novel 3-(1,1-dibromomethyleneferroceno[1,2-a]indene, (Z-3-(1-bromomethylene-6-iodoferroceno[1,2-a]indene, and benzo[5,6-f]ferroceno[2,3,a]inden-1-one. Any application-oriented design of chiral catalysts requires fundamental knowledge about the ligands involved, not only in terms of atom-connectivity, but also in terms of their three-dimensional structure and steric demand. Therefore, the crystal structures of 2-ferrocenylbenzoic acid, ferroceno[1,2-a]indene, and (Z-3-(1-bromomethylene-6-iodoferroceno[1,2-a]indene have been determined. The bond-lengths that can be retrieved therefrom also allow for an estimation of the reactivity of the aryl-iodo, bromo-methylidene and dibromomethylidene moieties.

  7. The crystal structure of scandium dyhydrate triglycolate

    International Nuclear Information System (INIS)

    Dukareva, L.M.; Antishkina, A.S.; Porai-Koshits, M.A.; Ostrikova, V.N.; Arkhangel'skij, I.V.; Amanov, A.Z.

    1978-01-01

    The structure of colorless crystals of scandium glycolate dehydrate Sc(CH 2 OHCOO) 3 x2H 2 O, synthesized at the chemical department of MSU has been investigated. Parameters of the monoclinic lattice are determined according to roentgenograms of swing and Kforograms and are specified using the DRON-1 diffractor: a=14.624-+0.005 A; b=13.052-+0.003 A; c=5.730+-0.003 A; γ=96.26 deg+-0.01 deg; rhosub(exper.)=1.09 g/cm 3 ; Z=4; Sp.=P 2/b. Experimental photographic data are obtained using the KFOR chamber. Scannings of the layer lines h anti Ko-h anti K4, containing 742 independent reflexes are taken. Deciphering of the structure is carried out by means of analysis of the Paterson functions distribution and conventional and differential electron densities. Description of the system is presented

  8. Structure, thermodynamics, and crystallization of amorphous hafnia

    International Nuclear Information System (INIS)

    Luo, Xuhui; Demkov, Alexander A.

    2015-01-01

    We investigate theoretically amorphous hafnia using the first principles melt and quench method. We identify two types of amorphous structures of hafnia. Type I and type II are related to tetragonal and monoclinic hafnia, respectively. We find type II structure to show stronger disorder than type I. Using the phonon density of states, we calculate the specific heat capacity for type II amorphous hafnia. Using the nudged elastic band method, we show that the averaged transition barrier between the type II amorphous hafnia and monoclinic phase is approximately 0.09 eV/HfO 2 . The crystallization temperature is estimated to be 421 K. The calculations suggest an explanation for the low thermal stability of amorphous hafnia

  9. The Crystal Structures of Two Novel Cadmium-Picolinic Acid ...

    African Journals Online (AJOL)

    The crystal structures of two novel cadmium-picolinic acid complexes grown in aqueous solutions at selected pH values are reported. The structures are compared to expected solution species under the same conditions. The crystal structure of complex 1 exhibits a seven coordinate structure which contains a protonated ...

  10. Structural Transitions in Cholesteric Liquid Crystal Droplets

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Ye; Bukusoglu, Emre; Martínez-González, José A.; Rahimi, Mohammad; Roberts, Tyler F.; Zhang, Rui; Wang, Xiaoguang; Abbott, Nicholas L.; de Pablo, Juan J.

    2016-07-26

    Confinement of cholesteric liquid crystals (ChLC) into droplets leads to a delicate interplay between elasticity, chirality, and surface energy. In this work, we rely on a combination of theory and experiments to understand the rich morphological behavior that arises from that balance. More specifically, a systematic study of micrometer-sized ChLC droplets is presented as a function of chirality and surface energy (or anchoring). With increasing chirality, a continuous transition is observed from a twisted bipolar structure to a radial spherical structure, all within a narrow range of chirality. During such a transition, a bent structure is predicted by simulations and confirmed by experimental observations. Simulations are also able to capture the dynamics of the quenching process observed in experiments. Consistent with published work, it is found that nanoparticles are attracted to defect regions on the surface of the droplets. For weak anchoring conditions at the nanoparticle surface, ChLC droplets adopt a morphology similar to that of the equilibrium helical phase observed for ChLCs in the bulk. As the anchoring strength increases, a planar bipolar structure arises, followed by a morphological transition to a bent structure. The influence of chirality and surface interactions are discussed in the context of the potential use of ChLC droplets as stimuli-responsive materials for reporting molecular adsorbates.

  11. Crystal structure of strontium dinickel iron orthophosphate

    Directory of Open Access Journals (Sweden)

    Said Ouaatta

    2015-10-01

    Full Text Available The title compound, SrNi2Fe(PO43, synthesized by solid-state reaction, crystallizes in an ordered variant of the α-CrPO4 structure. In the asymmetric unit, two O atoms are in general positions, whereas all others atoms are in special positions of the space group Imma: the Sr cation and one P atom occupy the Wyckoff position 4e (mm2, Fe is on 4b (2/m, Ni and the other P atom are on 8g (2, one O atom is on 8h (m and the other on 8i (m. The three-dimensional framework of the crystal structure is built up by [PO4] tetrahedra, [FeO6] octahedra and [Ni2O10] dimers of edge-sharing octahedra, linked through common corners or edges. This structure comprises two types of layers stacked alternately along the [100] direction. The first layer is formed by edge-sharing octahedra ([Ni2O10] dimer linked to [PO4] tetrahedra via common edges while the second layer is built up from a strontium row followed by infinite chains of alternating [PO4] tetrahedra and FeO6 octahedra sharing apices. The layers are held together through vertices of [PO4] tetrahedra and [FeO6] octahedra, leading to the appearance of two types of tunnels parallel to the a- and b-axis directions in which the Sr cations are located. Each Sr cation is surrounded by eight O atoms.

  12. Magnetic activity at infrared frequencies in structured metallic photonic crystals

    International Nuclear Information System (INIS)

    O'Brien, S.; Pendry, J.P.

    2002-01-01

    We derive the effective permeability and permittivity of a nanostructured metallic photonic crystal by analysing the complex reflection and transmission coefficients for slabs of various thicknesses. These quantities were calculated using the transfer matrix method. Our results indicate that these structures could be used to realize a negative effective permeability, at least up to infrared frequencies. The origin of the negative permeability is a resonance due to the internal inductance and capacitance of the structure. We also present an analytic model for the effective permeability of the crystal. The model reveals the importance of the inertial inductance due to the finite mass of the electrons in the metal. We find that this contribution to the inductance has implications for the design of metallic magnetic structures in the optical region of the spectrum. We show that the magnetic activity in the structure is accompanied by the concentration of the incident field energy into very small volumes within the structure. This property will allow us to considerably enhance non-linear effects with minute quantities of material. (author)

  13. Crystal structure of a snake venom cardiotoxin

    International Nuclear Information System (INIS)

    Rees, B.; Samama, J.P.; Thierry, J.C.; Gilibert, M.; Fischer, J.; Schweitz, H.; Lazdunski, M.; Moras, D.

    1987-01-01

    Cardiotoxin V/sup II/4 from Naja mossambica crystallizes in space group P6 1 (a = b = 73.9 A; c = 59.0 A) with two molecules of toxin (molecular mass = 6715 Da) in the asymmetric unit. The structure was solved by using a combination of multiple isomorphous replacement and density modification methods. Model building and least-squares refinement led to an agreement factor of 27% for a data set to 3-A resolution prior to any inclusion of solvent molecules. The topology of the molecule is similar to that found in short and long snake neurotoxins, which block the nicotinic acetylcholine receptor. Major differences occur in the conformation of the central loop, resulting in a change in the concavity of the molecule. Hydrophobic residues are clustered in two distinct areas. The existence of stable dimeric entities in the crystalline state, with the formation of a six-stranded antiparallel β sheet, may be functionally relevant

  14. Electronic structure of single crystal C60

    International Nuclear Information System (INIS)

    Wu, J.; Shen, Z.X.; Dessau, D.S.; Cao, R.; Marshall, D.S.; Pianetta, P.; Lindau, I.; Yang, X.; Terry, J.; King, D.M.; Wells, B.O.; Elloway, D.; Wendt, H.R.; Brown, C.A.; Hunziker, H.; Vries, M.S. de

    1992-01-01

    We report angle-resolved photoemission data from single crystals of C 60 cleaved in UHV. Unlike the other forms of pure carbon, the valence band spectrum of C 60 consists of many sharp features that can be essentially accounted for by the quantum chemical calculations describing individual molecules. This suggests that the electronic structure of solid C 60 is mainly determined by the bonding interactions within the individual molecules. We also observe remarkable intensity modulations of the photoemission features as a function of photon energy, suggesting strong final state effects. Finally, we address the issue of the band width of the HOMO state of C 60 . We assert that the width of the photoemission peak of C 60 does not reflect the intrinsic band width because it is broadened by the non 0-0 transitions via the Franck-Condon principle. Our view point provides a possible reconciliation between these photoemission data and those measured by other techniques. (orig.)

  15. Natural Cr3+-rich ettringite: occurrence, properties, and crystal structure

    Science.gov (United States)

    Seryotkin, Yurii V.; Sokol, Ella V.; Kokh, Svetlana N.; Murashko, Mikhail N.

    2017-08-01

    Cr3+-rich ettringite with Cr3+→Al substitution and Cr/(Cr + Al) ratios up to 0.40-0.50 was found in mineral assemblages of the Ma'aleh Adumim area of Mottled Zone (Judean Desert). The Cr3+-rich compositions were the latest in the thaumasite → ettringite-thaumasite solid solution → ettringite → ettringite-bentorite solid solution series. The mineral-forming solution was enriched in Cr3+ and had a pH buffered by afwillite at 11-12. Chromium was inherited from larnite rocks produced by high-temperature combustion metamorphic alteration of bioproductive calcareous sediments. The Cr/(Cr + Al) ratios are within 0.10-0.15 in most of the analysed crystals. This degree of substitution imparts pink colouration to the crystals, but does not affect their habit (a combination of monohedra and a prism). The habit changes to pyramid faces in coarse and later Cr3+-bearing crystals as Cr/(Cr + Al) ratios increase abruptly to 0.40-0.50. Single-crystal XRD analysis of one Cr-free and two Cr3+-rich samples and their structure determination and refinement indicate that the Cr-rich crystals (with Cr/(Cr + Al) to 0.3) preserve the symmetry and metrics of ettringite. The Ca-O bonding network undergoes differentiation with increase of Cr3+ concentration at octahedral M sites. The compression of Ca2 and expansion of Ca1 polyhedra sub-networks correlates with the degree of Cr3+→Al substitution.

  16. Special analyses reveal coke-deposit structure

    International Nuclear Information System (INIS)

    Albright, L.F.

    1988-01-01

    A scanning electron microscope (SEM) and an energy dispersive X-ray analyzer (EDAX) have been used to obtain information that clarifies the three mechanisms of coke formation in ethylene furnaces, and to analyze the metal condition at the exit of furnace. The results can be used to examine furnace operations and develop improved ethylene plant practices. In this first of four articles on the analyses of coke and metal samples, the coking mechanisms and coke deposits in a section of tube from an actual ethylene furnace (Furnace A) from a plant on the Texas Gulf Coast are discussed. The second articles in the series will analyze the condition of the tube metal in the same furnace. To show how coke deposition and metal condition dependent on the operating parameters of an ethylene furnace, the third article in the series will show the coke deposition in a Texas Gulf Coast furnace tube (Furnace B) that operated at shorter residence time. The fourth article discusses the metal condition in that furnace. Some recommendations, based on the analyses and findings, are offered in the fourth article that could help extend the life of ethylene furnace tubes, and also improve overall ethylene plant operations

  17. Analysing the nanoporous structure of aramid fibres

    DEFF Research Database (Denmark)

    Pauw, Brian Richard; Vigild, Martin Etchells; Mortensen, Kell

    2010-01-01

    After consideration of the applicability of classical methods, a novel analysis method for the characterization of fibre void structures is presented, capable of fitting the entire anisotropic two-dimensional scattering pattern to a model of perfectly aligned, polydisperse ellipsoids. It is tested...... for validity against the computed scattering pattern for a simulated nanostructure, after which it is used to fit the scattering from the void structure of commercially available heat-treated poly(p-phenylene terephtalamide) fibre and its as-spun precursor fibre. The application shows a reasonable fit...... scattering on the scattering pattern. The fit to the scattering pattern of as-spun aramid fibre is improved by the introduction of the large scatterers, while the fit to the scattering pattern obtained from the heat-treated fibre improves when an orientation distribution is taken into account...

  18. Seismic analyses of structures. 1st draft

    International Nuclear Information System (INIS)

    David, M.

    1995-01-01

    The dynamic analysis presented in this paper refers to the seismic analysis of the main building of Paks NPP. The aim of the analysis was to determine the floor response spectra as response to seismic input. This analysis was performed by the 3-dimensional calculation model and the floor response spectra were determined for a number levels from the floor response time histories and no other adjustments were applied. The following results of seismic analysis are presented: 3-dimensional finite element model; basic assumptions of dynamic analyses; table of frequencies and included factors; modal masses for all modes; floor response spectra in all the selected nodes with figures of indicated nodes and important nodes of free vibration

  19. Seismic analyses of structures. 1st draft

    Energy Technology Data Exchange (ETDEWEB)

    David, M [David Consulting, Engineering and Design Office (Czech Republic)

    1995-07-01

    The dynamic analysis presented in this paper refers to the seismic analysis of the main building of Paks NPP. The aim of the analysis was to determine the floor response spectra as responseto seismic input. This analysis was performed by the 3-dimensional calculation model and the floor response spectra were determined for a number levels from the floor response time histories and no other adjustments were applied. The following results of seismic analysis are presented: 3-dimensional finite element model; basic assumptions of dynamic analyses; table of frequencies and included factors; modal masses for all modes; floor response spectra in all the selected nodes with figures of indicated nodes and important nodes of free vibration.

  20. Formamidinium iodide: crystal structure and phase transitions

    Directory of Open Access Journals (Sweden)

    Andrey A. Petrov

    2017-04-01

    Full Text Available At a temperature of 100 K, CH5N2+·I− (I, crystallizes in the monoclinic space group P21/c. The formamidinium cation adopts a planar symmetrical structure [the r.m.s. deviation is 0.002 Å, and the C—N bond lengths are 1.301 (7 and 1.309 (8 Å]. The iodide anion does not lie within the cation plane, but deviates from it by 0.643 (10 Å. The cation and anion of I form a tight ionic pair by a strong N—H...I hydrogen bond. In the crystal of I, the tight ionic pairs form hydrogen-bonded zigzag-like chains propagating toward [20-1] via strong N—H...I hydrogen bonds. The hydrogen-bonded chains are further packed in stacks along [100]. The thermal behaviour of I was studied by different physicochemical methods (thermogravimetry, differential scanning calorimetry and powder diffraction. Differential scanning calorimetry revealed three narrow endothermic peaks at 346, 387 and 525 K, and one broad endothermic peak at ∼605 K. The first and second peaks are related to solid–solid phase transitions, while the third and fourth peaks are attributed to the melting and decomposition of I. The enthalpies of the phase transitions at 346 and 387 K are estimated as 2.60 and 2.75 kJ mol−1, respectively. The X-ray powder diffraction data collected at different temperatures indicate the existence of I as the monoclinic (100–346 K, orthorhombic (346–387 K and cubic (387–525 K polymorphic modifications.

  1. Synthesis, growth, crystal structure, optical and third order nonlinear optical properties of quinolinium derivative single crystal: PNQI

    Science.gov (United States)

    Karthigha, S.; Krishnamoorthi, C.

    2018-03-01

    An organic quinolinium derivative nonlinear optical (NLO) crystal, 1-ethyl-2-[2-(4-nitro-phenyl)-vinyl]-quinolinium iodide (PNQI) was synthesized and successfully grown by slow evaporation solution growth technique. Formation of a crystalline compound was confirmed by single crystal X-ray diffraction. The quinolinium compound PNQI crystallizes in the triclinic crystal system with a centrosymmetric space group of P-1 symmetry. The molecular structure of PNQI was confirmed by 1H NMR and 13C NMR spectral studies. The thermal properties of the crystal have been investigated by thermogravimetric (TG) and differential scanning calorimetry (DSC) studies. The optical characteristics obtained from UV-Vis-NIR spectral data were described and the cut-off wavelength observed at 506 nm. The etching study was performed to analyse the growth features of PNQI single crystal. The third order NLO properties such as nonlinear refractive index (n2), nonlinear absorption coefficient (β) and nonlinear susceptibility (χ (3)) of the crystal were investigated using Z-scan technique at 632.8 nm of Hesbnd Ne laser.

  2. CCDC 1408042: Experimental Crystal Structure Determination : 6,13-dimesitylpentacene

    KAUST Repository

    Shi, Xueliang

    2015-01-01

    An entry from the Cambridge Structural Database, the world’s repository for small molecule crystal structures. The entry contains experimental data from a crystal diffraction study. The deposited dataset for this entry is freely available from the CCDC and typically includes 3D coordinates, cell parameters, space group, experimental conditions and quality measures.

  3. CCDC 1416891: Experimental Crystal Structure Determination : Methyl-triphenyl-germanium

    KAUST Repository

    Bernatowicz, Piotr

    2015-01-01

    An entry from the Cambridge Structural Database, the world’s repository for small molecule crystal structures. The entry contains experimental data from a crystal diffraction study. The deposited dataset for this entry is freely available from the CCDC and typically includes 3D coordinates, cell parameters, space group, experimental conditions and quality measures.

  4. Crystal structure, growth and nonlinear optical studies of isonicotinamide p-nitrophenol: A new organic crystal for optical limiting applications

    Science.gov (United States)

    Vijayalakshmi, A.; Vidyavathy, B.; Vinitha, G.

    2016-08-01

    Isonicotinamide p-nitrophenol (ICPNP), a new organic material, was synthesized using methanol solvent. Single crystals of ICPNP were grown using a slow evaporation solution growth technique. Crystal structure of ICPNP is elucidated by single crystal X-ray diffraction analysis. It belongs to monoclinic crystal system with space group of P21/c. It forms two dimensional networks by O-H…O, N-H…O and C-H…O hydrogen bonds. The molecular structure of ICPNP was further confirmed by Fourier transform infrared (FTIR) spectral analysis. The optical transmittance range and the lower cut-off wavelength (421 nm) with the optical band gap (2.90 eV) of the ICPNP crystal were determined by UV-vis-NIR spectral study. Thermal behavior of ICPNP was studied by thermo gravimetric and differential thermal analyses (TG/DTA). The relative dielectric permittivity was calculated for various temperature ranges. Laser damage threshold of ICPNP crystal was found to be 1.9 GW/cm2 using an Nd:YAG laser. A Z-scan technique was employed to measure the nonlinear absorption coefficient, nonlinear refractive index and nonlinear optical susceptibility. Optical limiting behavior of ICPNP was observed at 35 mW input power.

  5. Crystal structure of Clostridium difficile toxin A

    Energy Technology Data Exchange (ETDEWEB)

    Chumbler, Nicole M.; Rutherford, Stacey A.; Zhang, Zhifen; Farrow, Melissa A.; Lisher, John P.; Farquhar, Erik; Giedroc, David P.; Spiller, Benjamin W.; Melnyk, Roman A.; Lacy, D. Borden

    2016-01-11

    Clostridium difficile infection is the leading cause of hospital-acquired diarrhoea and pseudomembranous colitis. Disease is mediated by the actions of two toxins, TcdA and TcdB, which cause the diarrhoea, as well as inflammation and necrosis within the colon. The toxins are large (308 and 270 kDa, respectively), homologous (47% amino acid identity) glucosyltransferases that target small GTPases within the host. The multidomain toxins enter cells by receptor-mediated endocytosis and, upon exposure to the low pH of the endosome, insert into and deliver two enzymatic domains across the membrane. Eukaryotic inositol-hexakisphosphate (InsP6) binds an autoprocessing domain to activate a proteolysis event that releases the N-terminal glucosyltransferase domain into the cytosol. Here, we report the crystal structure of a 1,832-amino-acid fragment of TcdA (TcdA1832), which reveals a requirement for zinc in the mechanism of toxin autoprocessing and an extended delivery domain that serves as a scaffold for the hydrophobic α-helices involved in pH-dependent pore formation. A surface loop of the delivery domain whose sequence is strictly conserved among all large clostridial toxins is shown to be functionally important, and is highlighted for future efforts in the development of vaccines and novel therapeutics.

  6. Crystallization and Characterization of Galdieria sulphuraria RUBISCO in Two Crystal Forms: Structural Phase Transition Observed in P21 Crystal Form

    Directory of Open Access Journals (Sweden)

    Boguslaw Stec

    2007-10-01

    Full Text Available We have isolated ribulose-1,5-bisphosphate-carboxylase/oxygenase (RUBISCOfrom the red algae Galdieria Sulphuraria. The protein crystallized in two different crystalforms, the I422 crystal form being obtained from high salt and the P21 crystal form beingobtained from lower concentration of salt and PEG. We report here the crystallization,preliminary stages of structure determination and the detection of the structural phasetransition in the P21 crystal form of G. sulphuraria RUBISCO. This red algae enzymebelongs to the hexadecameric class (L8S8 with an approximate molecular weight 0.6MDa.The phase transition in G. sulphuraria RUBISCO leads from two hexadecamers to a singlehexadecamer per asymmetric unit. The preservation of diffraction power in a phasetransition for such a large macromolecule is rare.

  7. Band structures in fractal grading porous phononic crystals

    Science.gov (United States)

    Wang, Kai; Liu, Ying; Liang, Tianshu; Wang, Bin

    2018-05-01

    In this paper, a new grading porous structure is introduced based on a Sierpinski triangle routine, and wave propagation in this fractal grading porous phononic crystal is investigated. The influences of fractal hierarchy and porosity on the band structures in fractal graidng porous phononic crystals are clarified. Vibration modes of unit cell at absolute band gap edges are given to manifest formation mechanism of absolute band gaps. The results show that absolute band gaps are easy to form in fractal structures comparatively to the normal ones with the same porosity. Structures with higher fractal hierarchies benefit multiple wider absolute band gaps. This work provides useful guidance in design of fractal porous phononic crystals.

  8. Structural Color Patterns by Electrohydrodynamic Jet Printed Photonic Crystals.

    Science.gov (United States)

    Ding, Haibo; Zhu, Cun; Tian, Lei; Liu, Cihui; Fu, Guangbin; Shang, Luoran; Gu, Zhongze

    2017-04-05

    In this work, we demonstrate the fabrication of photonic crystal patterns with controllable morphologies and structural colors utilizing electrohydrodynamic jet (E-jet) printing with colloidal crystal inks. The final shape of photonic crystal units is controlled by the applied voltage signal and wettability of the substrate. Optical properties of the structural color patterns are tuned by the self-assembly of the silica nanoparticle building blocks. Using this direct printing technique, it is feasible to print customized functional patterns composed of photonic crystal dots or photonic crystal lines according to relevant printing mode and predesigned tracks. This is the first report for E-jet printing with colloidal crystal inks. Our results exhibit promising applications in displays, biosensors, and other functional devices.

  9. Studies on growth, crystal structure and characterization of novel organic nicotinium trifluoroacetate single crystals

    Energy Technology Data Exchange (ETDEWEB)

    Dhanaraj, P.V. [Centre for Crystal Growth, SSN College of Engineering, Kalavakkam 603 110 (India); Rajesh, N.P., E-mail: rajeshnp@hotmail.com [Centre for Crystal Growth, SSN College of Engineering, Kalavakkam 603 110 (India); Sundar, J. Kalyana; Natarajan, S. [Department of Physics, Madurai Kamaraj University, Madurai 625 021 (India); Vinitha, G. [Department of Physics, Crescent Engineering College, Chennai 600 048 (India)

    2011-09-15

    Highlights: {yields} Good quality crystals of nicotinium trifluoroacetate in monoclinic system were grown for first time. {yields} Nicotinium trifluoroacetate crystal exhibits third order nonlinear optical properties. {yields} The optical spectrum of nicotinium trifluoroacetate crystal reveals the wide transmission in the entire range with cutoff wavelength at 286 nm. {yields} Nicotinium trifluoroacetate is a low dielectric constant material. - Abstract: An organic material, nicotinium trifluoroacetate (NTF) was synthesized and single crystals in monoclinic system were grown from aqueous solution for the first time. Its solubility and metastable zone width were estimated. The crystal structure of NTF was analyzed to reveal the molecular arrangements and the formation of hydrogen bonds in the crystal. High-resolution X-ray diffraction rocking curve measurements were performed to analyze the structural perfection of the grown crystals. Functional groups in NTF were identified by Fourier transform infrared spectral analysis. Thermal behaviour and stability of NTF were studied by thermogravimetric and differential thermal analysis and differential scanning calorimetry. Mechanical and dielectric properties of NTF crystals were analyzed. Optical studies reveal that NTF crystals are transparent in the wavelength range 286-1100 nm. The third order nonlinear optical parameters of NTF were derived by the Z-scan technique.

  10. Photonic Crystal Structures with Tunable Structure Color as Colorimetric Sensors

    Science.gov (United States)

    Wang, Hui; Zhang, Ke-Qin

    2013-01-01

    Colorimetric sensing, which transduces environmental changes into visible color changes, provides a simple yet powerful detection mechanism that is well-suited to the development of low-cost and low-power sensors. A new approach in colorimetric sensing exploits the structural color of photonic crystals (PCs) to create environmentally-influenced color-changeable materials. PCs are composed of periodic dielectrics or metallo-dielectric nanostructures that affect the propagation of electromagnetic waves (EM) by defining the allowed and forbidden photonic bands. Simultaneously, an amazing variety of naturally occurring biological systems exhibit iridescent color due to the presence of PC structures throughout multi-dimensional space. In particular, some kinds of the structural colors in living organisms can be reversibly changed in reaction to external stimuli. Based on the lessons learned from natural photonic structures, some specific examples of PCs-based colorimetric sensors are presented in detail to demonstrate their unprecedented potential in practical applications, such as the detections of temperature, pH, ionic species, solvents, vapor, humidity, pressure and biomolecules. The combination of the nanofabrication technique, useful design methodologies inspired by biological systems and colorimetric sensing will lead to substantial developments in low-cost, miniaturized and widely deployable optical sensors. PMID:23539027

  11. Photonic Crystal Structures with Tunable Structure Color as Colorimetric Sensors

    Directory of Open Access Journals (Sweden)

    Ke-Qin Zhang

    2013-03-01

    Full Text Available Colorimetric sensing, which transduces environmental changes into visible color changes, provides a simple yet powerful detection mechanism that is well-suited to the development of low-cost and low-power sensors. A new approach in colorimetric sensing exploits the structural color of photonic crystals (PCs to create environmentally-influenced color-changeable materials. PCs are composed of periodic dielectrics or metallo-dielectric nanostructures that affect the propagation of electromagnetic waves (EM by defining the allowed and forbidden photonic bands. Simultaneously, an amazing variety of naturally occurring biological systems exhibit iridescent color due to the presence of PC structures throughout multi-dimensional space. In particular, some kinds of the structural colors in living organisms can be reversibly changed in reaction to external stimuli. Based on the lessons learned from natural photonic structures, some specific examples of PCs-based colorimetric sensors are presented in detail to demonstrate their unprecedented potential in practical applications, such as the detections of temperature, pH, ionic species, solvents, vapor, humidity, pressure and biomolecules. The combination of the nanofabrication technique, useful design methodologies inspired by biological systems and colorimetric sensing will lead to substantial developments in low-cost, miniaturized and widely deployable optical sensors.

  12. Elastic properties of Ti-24Nb-4Zr-8Sn single crystals with bcc crystal structure

    International Nuclear Information System (INIS)

    Zhang, Y.W.; Li, S.J.; Obbard, E.G.; Wang, H.; Wang, S.C.; Hao, Y.L.; Yang, R.

    2011-01-01

    Research highlights: → The single crystals of Ti2448 alloy with the bcc crystal structure were prepared. → The elastic moduli and constants were measured by several resonant methods. → The crystal shows significant elastic asymmetry in tension and compression. → The crystal exhibits weak nonlinear elasticity with large elastic strain ∼2.5%. → The crystal has weak atomic interactions against crystal distortion to low symmetry. - Abstract: Single crystals of Ti2448 alloy (Ti-24Nb-4Zr-8Sn in wt.%) were grown successfully using an optical floating-zone furnace. Several kinds of resonant methods gave consistent Young's moduli of 27.1, 56.3 and 88.1 GPa and shear moduli of 34.8, 11.0 and 14.6 GPa for the , and oriented single crystals, and C 11 , C 12 and C 44 of 57.2, 36.1 and 35.9 GPa respectively. Uniaxial testing revealed asymmetrical elastic behaviors of the crystals: tension caused elastic softening with a large reversible strain of ∼4% and a stress plateau of ∼250 MPa, whereas compression resulted in gradual elastic stiffening with much smaller reversible strain. The crystals exhibited weak nonlinear elasticity with a large elastic strain of ∼2.5% and a high strength, approaching ∼20% and ∼30% of its ideal shear and ideal tensile strength respectively. The crystals showed linear elasticity with a small elastic strain of ∼1%. These elastic deformation characteristics have been interpreted in terms of weakened atomic interactions against crystal distortion to low crystal symmetry under external applied stresses. These results are consistent with the properties of polycrystalline Ti2448, including high strength, low elastic modulus, large recoverable strain and weak strengthening effect due to grain refinement.

  13. Preparation and crystal structure of Ca4Sb2O

    International Nuclear Information System (INIS)

    Eisenmann, B.; Limartha, H.; Schaefer, H.

    1980-01-01

    The formerly described compound Ca 2 Sb is to be corrected to Ca 4 Sb 2 O as shown by X-ray diffractometer data of single crystals and neutron diffraction diagrams of powders. The compound crystallizes in the K 2 NiF 4 structure type. (orig.)

  14. Crystal structure of vanadite: Refinement of anisotropic displacement parameters

    Czech Academy of Sciences Publication Activity Database

    Laufek, F.; Skála, Roman; Haloda, J.; Císařová, I.

    2006-01-01

    Roč. 51, 3-4 (2006), s. 271-275 ISSN 1210-8197 Institutional research plan: CEZ:AV0Z30130516 Keywords : anisotropic displacement parameter * crystal structure * single-crystal X-ray refinement * vanadinite Subject RIV: DB - Geology ; Mineralogy

  15. Nucleation of colloidal crystals on configurable seed structures

    NARCIS (Netherlands)

    Hermes, M; Vermolen, E.C.M.; Leunissen, M.E.; Vossen, D.L.J.; van Oostrum, P.D.J.; Dijkstra, M.; van Blaaderen, A.

    2011-01-01

    Nucleation is an important stage in the growth of crystals. During this stage, the structure and orientation of a crystal are determined. However, short time- and length-scales make nucleation poorly understood. Micrometer-sized colloidal particles form an ideal model system to study nucleation due

  16. A comparative study on the crystal structure of bicycle analogues to the natural phytotoxin helminthosporins

    Science.gov (United States)

    Barbosa, Luiz Cláudio de Almeida; Teixeira, Robson Ricardo; Nogueira, Leonardo Brandão; Maltha, Celia Regina Alvares; Doriguetto, Antônio Carlos; Martins, Felipe Terra

    2016-02-01

    Herein we described structural insights of a series of analogues to helminthosporin phytotoxins. The key reaction used to prepare the compounds corresponded to the [3 + 4] cycloaddition between the oxyallyl cation generated from 2,4-dibromopentan-3-one and different furans. Their structures were confirmed upon IR, NMR and X-ray diffraction analyses. While bicycles 7, 8 and 9 crystallize in the centrosymmetric monoclinic space group P21/c, compound 10 was solved in the noncentrosymmetric orthorhombic space group P212121. The solid materials obtained were shown to be racemic crystals (7, 8, 9) or racemic conglomerate (10). In all compounds, there is formation of a bicycle featured by fused tetrahydropyranone and 2,5-dihydrofuran rings. They adopt chair and envelope conformations, respectively. Crystal packing of all compounds is stabilized through C-H•••O contacts. Conformational aspects as well as similarities and differences among the crystal structures of the synthesized analogues are discussed.

  17. Crystal structure analysis, overexpression and refolding behaviour of a DING protein with single mutation

    International Nuclear Information System (INIS)

    Gai, Zuoqi; Nakamura, Akiyoshi; Tanaka, Yoshikazu; Hirano, Nagisa; Tanaka, Isao; Yao, Min

    2013-01-01

    Crystals of a member of the DING protein family (HPBP) were obtained accidentally, and the structure was determined at 1.35 Å resolution. For further analysis, a system for preparation of HPBP was constructed and the structure of a prepared sample was confirmed by X-ray crystal structure analysis at 1.03 Å resolution. After crystallization of a certain protein–RNA complex, well diffracting crystals were obtained. However, the asymmetric unit of the crystal was too small to locate any components. Mass spectrometry and X-ray crystal structure analysis showed that it was a member of the DING protein family (HPBP). Surprisingly, the structure of HPBP reported previously was also determined accidentally as a contaminant, suggesting that HPBP has a strong tendency to crystallize. Furthermore, DING proteins were reported to relate in disease. These observations suggest that DING has potential for application in a wide range of research fields. To enable further analyses, a system for preparation of HPBP was constructed. As HPBP was expressed in insoluble form in Escherichia coli, it was unfolded chemically and refolded. Finally, a very high yield preparation method was constructed, in which 43 mg of HPBP was obtained from 1 L of culture. Furthermore, to evaluate the validity of refolding, its crystal structure was determined at 1.03 Å resolution. The determined structure was identical to the native structure, in which two disulfide bonds were recovered correctly and a phosphate ion was captured. Based on these results, it was concluded that the refolded HPBP recovers its structure correctly

  18. Crystal structure analysis, overexpression and refolding behaviour of a DING protein with single mutation

    Energy Technology Data Exchange (ETDEWEB)

    Gai, Zuoqi; Nakamura, Akiyoshi [Hokkaido University, Sapporo 060-0810 (Japan); Tanaka, Yoshikazu, E-mail: tanaka@sci.hokudai.ac.jp [Hokkaido University, Sapporo 060-0810 (Japan); Hokkaido University, Sapporo 060-0810 (Japan); Hirano, Nagisa [Hokkaido University, Sapporo 060-0810 (Japan); Tanaka, Isao; Yao, Min [Hokkaido University, Sapporo 060-0810 (Japan); Hokkaido University, Sapporo 060-0810 (Japan)

    2013-11-01

    Crystals of a member of the DING protein family (HPBP) were obtained accidentally, and the structure was determined at 1.35 Å resolution. For further analysis, a system for preparation of HPBP was constructed and the structure of a prepared sample was confirmed by X-ray crystal structure analysis at 1.03 Å resolution. After crystallization of a certain protein–RNA complex, well diffracting crystals were obtained. However, the asymmetric unit of the crystal was too small to locate any components. Mass spectrometry and X-ray crystal structure analysis showed that it was a member of the DING protein family (HPBP). Surprisingly, the structure of HPBP reported previously was also determined accidentally as a contaminant, suggesting that HPBP has a strong tendency to crystallize. Furthermore, DING proteins were reported to relate in disease. These observations suggest that DING has potential for application in a wide range of research fields. To enable further analyses, a system for preparation of HPBP was constructed. As HPBP was expressed in insoluble form in Escherichia coli, it was unfolded chemically and refolded. Finally, a very high yield preparation method was constructed, in which 43 mg of HPBP was obtained from 1 L of culture. Furthermore, to evaluate the validity of refolding, its crystal structure was determined at 1.03 Å resolution. The determined structure was identical to the native structure, in which two disulfide bonds were recovered correctly and a phosphate ion was captured. Based on these results, it was concluded that the refolded HPBP recovers its structure correctly.

  19. Understanding surface structure and chemistry of single crystal lanthanum aluminate

    KAUST Repository

    Pramana, Stevin S.

    2017-03-02

    The surface crystallography and chemistry of a LaAlO3 single crystal, a material mainly used as a substrate to deposit technologically important thin films (e.g. for superconducting and magnetic devices), was analysed using surface X-ray diffraction and low energy ion scattering spectroscopy. The surface was determined to be terminated by Al-O species, and was significantly different from the idealised bulk structure. Termination reversal was not observed at higher temperature (600 °C) and chamber pressure of 10−10 Torr, but rather an increased Al-O occupancy occurred, which was accompanied by a larger outwards relaxation of Al from the bulk positions. Changing the oxygen pressure to 10−6 Torr enriched the Al site occupancy fraction at the outermost surface from 0.245(10) to 0.325(9). In contrast the LaO, which is located at the next sub-surface atomic layer, showed no chemical enrichment and the structural relaxation was lower than for the top AlO2 layer. Knowledge of the surface structure will aid the understanding of how and which type of interface will be formed when LaAlO3 is used as a substrate as a function of temperature and pressure, and so lead to improved design of device structures.

  20. Crystal structure and crystal growth of the polar ferrimagnet CaBaFe4O7

    Science.gov (United States)

    Perry, R. S.; Kurebayashi, H.; Gibbs, A.; Gutmann, M. J.

    2018-05-01

    Magnetic materials are a cornerstone for developing spintronic devices for the transport of information via magnetic excitations. To date, relatively few materials have been investigated for the purpose of spin transport, mostly due to the paucity of suitable candidates as these materials are often chemically complex and difficult to synthesize. We present the crystal growth and a structure solution on the high-temperature crystal structure of the layered, polar ferrimagnet CaBaFe4O7 , which is a possible new contender for spintronics research. The space group is identified as P 3 by refinement of single crystal and powder neutron diffraction data. At 400 K, the trigonal lattice parameters are a =11.0114 (11 )Å and c =10.330 (3 )Å . The structure is similar to the low-temperature phase with alternating layers of triangular and Kagome-arranged Fe-O tetrahedra. We also present details of the crystal growth by traveling solvent method.

  1. Synthesis, crystal structure and Thermogravimetry of ortho-phthalic ...

    Indian Academy of Sciences (India)

    satisfied by two chelated carboxylates while fifth and sixth co-ordination positions are satisfied by monodentate ... Keywords. o-Phthalic acid; coordination polymer; X-ray crystal structure; Copper(II); EPR; TGA. 1. .... Absorption coefficient.

  2. Crystal structure and pair potentials: A molecular-dynamics study

    Energy Technology Data Exchange (ETDEWEB)

    Parrinello, M.; Rahman, A.

    1980-10-06

    With use of a Lagrangian which allows for the variation of the shape and size of the periodically repeating molecular-dynamics cell, it is shown that different pair potentials lead to different crystal structures.

  3. Phase relations, crystal structures and physical properties of nuclear fuels

    International Nuclear Information System (INIS)

    Tagawa, Hiroaki; Fujino, Takeo; Tateno, Jun

    1975-07-01

    Phase relations, crystal structures and physical properties of the compounds for nuclear fuels are presented, including melting point, thermal expansion, diffusion and magnetic and electric properties. Emphasis is on oxides, carbides and nitrides of thorium, uranium and plutonium. (auth.)

  4. Crystal structure, thermal behavior, vibrational spectroscopy and ...

    Indian Academy of Sciences (India)

    64

    A single crystal was carefully selected under polarizing microscope and .... properties of our compound using infrared absorption and Raman scattering. ... pics in Raman at 1762 and 1782 cm-1 are assigned to the δ(HOH) mode of the water ...

  5. Formation of structured nanophases in halide crystals

    Czech Academy of Sciences Publication Activity Database

    Kulveit, Jan; Demo, Pavel; Polák, Karel; Sveshnikov, Alexey; Kožíšek, Zdeněk

    2013-01-01

    Roč. 5, č. 6 (2013), s. 561-564 ISSN 2164-6627 R&D Projects: GA ČR GAP108/12/0891 Institutional support: RVO:68378271 Keywords : halide crystals * nucleation Subject RIV: BM - Solid Matter Physics ; Magnetism http://www.aspbs.com/asem.html#v5n6

  6. Solvothermal syntheses, crystal structures, optical and thermal ...

    Indian Academy of Sciences (India)

    compounds 1–3 exhibit optical band gaps between 2.06 and 2.35 eV. Keywords. .... under a nitrogen stream of 100 mL min. −1 . 2.3 X-ray diffraction. Single-crystal ..... Liu G N, Guo G C, Wang M S, Cai L Z and Huang J S. 2010 Five dimeric ...

  7. The crystal structure of tRNA

    Indian Academy of Sciences (India)

    Madhu

    of yeast alanine tRNA by Robert Holley's group at Cornell. University ... decode nonsense codons) with John Smith and Brenner. However, my ... tRNA from 10 g of unfractionated tRNA. ... tRNA crystals were, in fact, protein (Hendrikson et al.

  8. Hydrothermal syntheses and single crystal structural ...

    Indian Academy of Sciences (India)

    Unknown

    Colourless. 84 lined stainless steel bomb. After heating in a pro- grammable oven at the respective temperatures and autogenous pressures for the notified time scale, cooling was carried out on a ramp of 10°C/h to room temperature. The crystals were collected by filtration, washed with, deionized water followed by diethyl-.

  9. Construction of crystal structure prototype database: methods and applications

    International Nuclear Information System (INIS)

    Su, Chuanxun; Lv, Jian; Wang, Hui; Wang, Yanchao; Ma, Yanming; Li, Quan; Zhang, Lijun

    2017-01-01

    Crystal structure prototype data have become a useful source of information for materials discovery in the fields of crystallography, chemistry, physics, and materials science. This work reports the development of a robust and efficient method for assessing the similarity of structures on the basis of their interatomic distances. Using this method, we proposed a simple and unambiguous definition of crystal structure prototype based on hierarchical clustering theory, and constructed the crystal structure prototype database (CSPD) by filtering the known crystallographic structures in a database. With similar method, a program structure prototype analysis package (SPAP) was developed to remove similar structures in CALYPSO prediction results and extract predicted low energy structures for a separate theoretical structure database. A series of statistics describing the distribution of crystal structure prototypes in the CSPD was compiled to provide an important insight for structure prediction and high-throughput calculations. Illustrative examples of the application of the proposed database are given, including the generation of initial structures for structure prediction and determination of the prototype structure in databases. These examples demonstrate the CSPD to be a generally applicable and useful tool for materials discovery. (paper)

  10. Construction of crystal structure prototype database: methods and applications.

    Science.gov (United States)

    Su, Chuanxun; Lv, Jian; Li, Quan; Wang, Hui; Zhang, Lijun; Wang, Yanchao; Ma, Yanming

    2017-04-26

    Crystal structure prototype data have become a useful source of information for materials discovery in the fields of crystallography, chemistry, physics, and materials science. This work reports the development of a robust and efficient method for assessing the similarity of structures on the basis of their interatomic distances. Using this method, we proposed a simple and unambiguous definition of crystal structure prototype based on hierarchical clustering theory, and constructed the crystal structure prototype database (CSPD) by filtering the known crystallographic structures in a database. With similar method, a program structure prototype analysis package (SPAP) was developed to remove similar structures in CALYPSO prediction results and extract predicted low energy structures for a separate theoretical structure database. A series of statistics describing the distribution of crystal structure prototypes in the CSPD was compiled to provide an important insight for structure prediction and high-throughput calculations. Illustrative examples of the application of the proposed database are given, including the generation of initial structures for structure prediction and determination of the prototype structure in databases. These examples demonstrate the CSPD to be a generally applicable and useful tool for materials discovery.

  11. Synthesis, growth, structural, optical, thermal, electrical and mechanical properties of hydrogen bonded organic salt crystal: Triethylammonium-3, 5-dinitrosalicylate

    Science.gov (United States)

    Rajkumar, Madhu; Chandramohan, Angannan

    2017-04-01

    Triethylammonium-3, 5-dinitrosalicylate, an organic salt was synthesized and single crystals grown by slow solvent evaporation solution growth technique using methanol as a solvent. The presence of various functional groups and mode of vibrations has been confirmed by FT-IR spectroscopic technique. The UV-vis-NIR Spectrum was recorded in the range 200-1200 nm to find optical transmittance window and lower cut off wavelength of the title crystal. The formation of the salt and the molecular structure was confirmed by NMR spectroscopic technique. Crystal system, crystalline nature, cell parameters and hydrogen bonding interactions of the grown crystal were determined by single crystal x-ray diffraction analysis. The thermal characteristics of grown crystal were analyzed by thermo gravimetric and differential thermal analyses. Dielectric studies were carried out to study the distribution of charges within the crystal. The mechanical properties of the title crystal were studied by Vicker's microhardness technique.

  12. Crystal structure of actinide metals at high compression

    International Nuclear Information System (INIS)

    Fast, L.; Soederlind, P.

    1995-08-01

    The crystal structures of some light actinide metals are studied theoretically as a function of applied pressure. The first principles electronic structure theory is formulated in the framework of density functional theory, with the gradient corrected local density approximation of the exchange-correlation functional. The light actinide metals are shown to be well described as itinerant (metallic) f-electron metals and generally, they display a crystal structure which have, in agreement with previous theoretical suggestions, increasing degree of symmetry and closed-packing upon compression. The theoretical calculations agree well with available experimental data. At very high compression, the theory predicts closed-packed structures such as the fcc or the hcp structures or the nearly closed-packed bcc structure for the light actinide metals. A simple canonical band picture is presented to explain in which particular closed-packed form these metals will crystallize at ultra-high pressure

  13. The crystal structure of the phosphatidylinositol 4-kinase IIalpha

    Czech Academy of Sciences Publication Activity Database

    Bäumlová, Adriana; Chalupská, Dominika; Rozycki, B.; Jovic, M.; Wisniewski, E.; Klíma, Martin; Dubánková, Anna; Kloer, D. P.; Nencka, Radim; Balla, T.; Bouřa, Evžen

    2015-01-01

    Roč. 22, č. 1 (2015), s. 5 ISSN 1211-5894. [Discussions in Structural Molecular Biology. Annual Meeting of the Czech Society for Structural Biology /13./. 19.03.2015-21.03.2015, Nové Hrady] EU Projects: European Commission(XE) 333916 - STARPI4K Institutional support: RVO:61388963 Keywords : PI4K IIalpha * crystal structure Subject RIV: CE - Biochemistry

  14. Structure of initial crystals formed during human amelogenesis

    Science.gov (United States)

    Cuisinier, F. J. G.; Voegel, J. C.; Yacaman, J.; Frank, R. M.

    1992-02-01

    X-ray diffraction analysis revealed only the existence of carbonated hydroxyapatite (c.HA) during amelogenesis, whereas conventional transmission electron microscopy investigations showed that developing enamel crystals have a ribbon-like habit. The described compositional changes could be an indication for the presence of minerals different from c.HA. However, the absence of identification of such a mineral shows the need of studies by high resolution electron microscopy (HREM) of initial formed human enamel crystals. We demonstrate the existence of two crystal families involved in the early stages of biomineralization: (a) nanometer-size particles which appeared as a precursor phase; (b) ribbon-like crystals, with a structure closely related to c.HA, which by a progressive thickening process tend to attain the mature enamel crystal habit.

  15. Structural analyses of ITER toroidal field coils under fault conditions

    International Nuclear Information System (INIS)

    Jong, C.T.J.

    1992-04-01

    ITER (International Thermonuclear Experimental Reactor) is intended to be an experimental thermonuclear tokamak reactor testing the basic physics performance and technologies essential to future fusion reactors. The magnet system of ITER consists essentially of 4 sub-systems, i.e. toroidal field coils (TFCs), poloidal field coils (PFCs), power supplies, and cryogenic supplies. These subsystems do not contain significant radioactivity inventories, but the large energy inventory is a potential accident initiator. The aim of the structural analyses is to prevent accidents from propagating into vacuum vessel, tritium system and cooling system, which all contain significant amounts of radioactivity. As part of design process 3 conditions are defined for PF and TF coils, at which mechanical behaviour has to be analyzed in some detail, viz: normal operating conditions, upset conditions and fault conditions. This paper describes the work carried out by ECN to create a detailed finite element model of 16 TFCs as well as results of some fault condition analyses made with the model. Due to fault conditions, either electrical or mechanical, magnetic loading of TFCs becomes abnormal and further mechanical failure of parts of the overall structure might occur (e.g. failure of coil, gravitational supports, intercoil structure). The analyses performed consist of linear elastic stress analyses and electro-magneto-structural analyses (coupled field analyses). 8 refs.; 5 figs.; 5 tabs

  16. Synthesis, crystal structures and properties of new quinolinium derivatives

    Science.gov (United States)

    Zhang, Xinyuan; Jiang, Xingxing; Li, Yin; Lin, Zheshuai; Zhang, Guochun; Wu, Yicheng

    2015-11-01

    Four phenyl-substituted quinolinium salts with different counter anions, C27H27NO4S, C26H25NO5S, C25H22NO5SCl, and C25H22NO5SBr, were synthesized and their single crystals were successfully grown from methanol solution by slow evaporation. Single crystal X-ray diffraction analyses showed that C27H27NO4S crystal belongs to the noncentrosymmetric orthorhombic space group Pna21, and the other three crystals belong to centrosymmetric monoclinic space group P21/n. Their first order hyperpolarization and macroscopic nonlinearity were analyzed and physical properties were characterized by UV-vis absorption spectroscopy, and differential scanning calorimetric and thermal gravimetric analysis.

  17. Crystal structure and optical properties of silver nanorings

    Science.gov (United States)

    Zhou, Li; Fu, Xiao-Feng; Yu, Liao; Zhang, Xian; Yu, Xue-Feng; Hao, Zhong-Hua

    2009-04-01

    We report the polyol synthesis and crystal structure characterization of silver nanorings, which have perfect circular shape, smooth surface, and elliptical wire cross-section. The characterization results show that the silver nanorings have well-defined crystal of singly twinned along the whole ring. The spatial distribution of the scattering of a silver nanoring with slanted incidence reveals the unique focus effect of the nanoring, and the focus scattering varies with the incident wavelength. The silver nanorings with perfect geometry and well-defined crystal have potential applications in nanoscaled photonics, plasmonic devices, and optical manipulation.

  18. Synthesis, growth, structural, optical and thermal properties of a new organic salt crystal: 3-nitroanilinium trichloroacetate

    Science.gov (United States)

    Selvakumar, E.; Chandramohan, A.; Anandha Babu, G.; Ramasamy, P.

    2014-09-01

    A new organic non-linear optical salt 3-nitroanilinium trichloroacetate has been synthesized and single crystals grown by slow solvent evaporation solution growth technique at room temperature using methanol as the solvent. The 1H and 13C Nuclear magnetic resonance spectra were recorded to establish the molecular structure of the title salt. The crystal structure of the title crystal has been determined by single crystal X-ray diffraction analysis and it belongs to monoclinic crystal system with non-centrosymmetric space group P21. Fourier transform infrared spectral study has been carried out to confirm the presence of various functional groups. The optical transmittance spectrum was recorded in the range 200-2500 nm, to find the optical transmittance window and lower cut off wavelength. The thermo gravimetric and differential thermal analyses were carried out to establish the thermal stability of the title crystal. The second harmonic generation in the title crystal was confirmed by the modified Kurtz-Perry powder test employing the Nd: YAG laser as the source for infrared radiation.

  19. Crystal structures of two thiacalix[4]arene derivatives anchoring four ...

    Indian Academy of Sciences (India)

    Administrator

    Abstract. The crystal structures of two thiacalixarene derivatives anchoring thiadiazole functional groups at lower rim, C60H72O4S12N8 (1), C64H80O4S12N8 (2), have been determined by single crystal X-ray diffraction. The thiacalix[4]arene framework in both 1 and 2 adopts the 1,3-alternate conformation. Com- pound 1 ...

  20. Crystal structure of ethyl 2,4-dichloroquinoline-3-carboxylate

    Directory of Open Access Journals (Sweden)

    Alberto Cabrera

    2015-12-01

    Full Text Available In the crystal structure of the title compound, C12H9Cl2NO2, the mean planes through the quinoline and carboxylate groups have r.m.s. deviations of 0.006 and 0.021 Å, respectively, and form a dihedral angle of 87.06 (19°. In the crystal, molecules are linked via very weak C—H...O hydrogen bonds, forming chains, which propagate along the c-axis direction.

  1. Isolation, crystallization and crystal structure determination of bovine kidney Na(+),K(+)-ATPase.

    Science.gov (United States)

    Gregersen, Jonas Lindholt; Mattle, Daniel; Fedosova, Natalya U; Nissen, Poul; Reinhard, Linda

    2016-04-01

    Na(+),K(+)-ATPase is responsible for the transport of Na(+) and K(+) across the plasma membrane in animal cells, thereby sustaining vital electrochemical gradients that energize channels and secondary transporters. The crystal structure of Na(+),K(+)-ATPase has previously been elucidated using the enzyme from native sources such as porcine kidney and shark rectal gland. Here, the isolation, crystallization and first structure determination of bovine kidney Na(+),K(+)-ATPase in a high-affinity E2-BeF3(-)-ouabain complex with bound magnesium are described. Crystals belonging to the orthorhombic space group C2221 with one molecule in the asymmetric unit exhibited anisotropic diffraction to a resolution of 3.7 Å with full completeness to a resolution of 4.2 Å. The structure was determined by molecular replacement, revealing unbiased electron-density features for bound BeF3(-), ouabain and Mg(2+) ions.

  2. Band structures and localization properties of aperiodic layered phononic crystals

    Energy Technology Data Exchange (ETDEWEB)

    Yan Zhizhong, E-mail: zzyan@bit.edu.cn [Department of Applied Mathematics, Beijing Institute of Technology, Beijing 100081 (China); Zhang Chuanzeng [Department of Civil Engineering, University of Siegen, D-57078 Siegen (Germany)

    2012-03-15

    The band structures and localization properties of in-plane elastic waves with coupling of longitudinal and transverse modes oblique propagating in aperiodic phononic crystals based on Thue-Morse and Rudin-Shapiro sequences are studied. Using transfer matrix method, the concept of the localization factor is introduced and the correctness is testified through the Rytov dispersion relation. For comparison, the perfect periodic structure and the quasi-periodic Fibonacci system are also considered. In addition, the influences of the random disorder, local resonance, translational and/or mirror symmetries on the band structures of the aperiodic phononic crystals are analyzed in this paper.

  3. Crystal structure and thermal property of polyethylene glycol octadecyl ether

    International Nuclear Information System (INIS)

    Meng, Jie-yun; Tang, Xiao-fen; Li, Wei; Shi, Hai-feng; Zhang, Xing-xiang

    2013-01-01

    Highlights: ► The crystal structure of C18En for n ≥ 20 is a monoclinic system. ► Polyethylene glycol octadecyl ether crystallizes perfectly. ► The number of repeat units has significant effect on the melting, crystallizing temperature and enthalpy. ► The thermal stable temperature increases rapidly with increasing the number of repeat unit. - Abstract: The crystal structure, phase change property and thermal stable temperature (T d ) of polyethylene glycol octadecyl ether [HO(CH 2 CH 2 O) n C 18 H 37 , C18En] with various numbers of repeat units (n = 2, 10, 20 and 100) as phase change materials (PCMs) were investigated using temperature variable Fourier transformed infrared spectroscopy (FTIR), wide-angle X-ray diffraction (XRD), differential scanning calorimetry (DSC), and thermogravimetric analysis (TG). C18En crystallizes perfectly at 0 °C; and the crystal structure for n ≥ 20 is a monoclinic system. The number of repeat units has great effect on the phase change properties of C18En. The thermal stable temperature increases rapidly with increasing the number of repeat units. They approach to that of PEG-2000 as the number of repeat units is more than 10. T d increases rapidly with increasing the number of repeat units. C18En are a series of promising polymeric PCMs

  4. Zinc(II) complexes of carboxamide derivatives: Crystal structures ...

    Indian Academy of Sciences (India)

    can form complexes with a variety of metal ions. Recently, bi- ... tural analyses of both ligands and complex 1 by single crystal X-ray ..... software over a Red Hat Linux IBM cluster using den- .... Change in the relative viscosity (η/ηo)1/3 of CT-.

  5. Crystal structure of 4-methylsulfanyl-2-phenylquinazoline

    Directory of Open Access Journals (Sweden)

    Mohammed B. Alshammari

    2014-08-01

    Full Text Available In the title compound, C15H12N2S, the methylthioquinazoline group is planar with the methyl C displaced by only 0.116 (3 Å from the plane of the quinazoline moiety. The dihedral angle between the phenyl ring and the quinazoline ring system is 13.95 (5°. In the crystal, each molecule is linked by π–π stacking between to two adjacent inversion-related molecules. On one side, the inverted quinazoline groups interact with a centroid–centroid distance of 3.7105 (9 Å. On the other side, the quinazoline group interacts with the pyrimidine and phenyl rings of the second neighbour with centroid–centroid distances of 3.5287 (8 and 3.8601 (9 Å, respectively.

  6. Crystal structure of rubidium peroxide ammonia disolvate

    Directory of Open Access Journals (Sweden)

    Tobias Grassl

    2017-02-01

    Full Text Available The title compound, Rb2O2·2NH3, has been obtained as a reaction product of rubidium metal dissolved in liquid ammonia and glucuronic acid. As a result of the low-temperature crystallization, a disolvate was formed. To our knowledge, only one other solvate of an alkali metal peroxide is known: Na2O2·8H2O has been reported by Grehl et al. [Acta Cryst. (1995, C51, 1038–1040]. We determined the peroxide bond length to be 1.530 (11 Å, which is in accordance with the length reported by Bremm & Jansen [Z. Anorg. Allg. Chem. (1992, 610, 64–66]. One of the ammonia solvate molecules is disordered relative to a mirror plane, with 0.5 occupancy for the corresponding nitrogen atom.

  7. The crystal structure of urea nitrate

    NARCIS (Netherlands)

    Harkema, Sybolt; Feil, D.

    1969-01-01

    The structure of urea nitrate has been solved, by the use of three-dimensional X-ray data. Data were collected using Cu Ke and Mo K0~ radiations. The structure consists of layers with urea and nitrate groups held together by hydrogen bonds. The positions of all hydrogen atoms were found. The final R

  8. A crystal structure prediction enigma solved

    DEFF Research Database (Denmark)

    Hoser, Anna Agnieszka; Sovago, Ioana; Lanzac, A.

    2017-01-01

    The seemingly unpredictable structure of gallic acid monohydrate form IV has been investigated using accurate X-ray diffraction measurements at temperatures of 10 and 123 K. The measurements demonstrate that the structure is commensurately modulated at 10 K and disordered at higher temperatures...

  9. Solving Crystal Structures from Powder Diffraction Data

    DEFF Research Database (Denmark)

    Christensen, A. Nørlund; Lehmann, M. S.; Nielsen, Mogens

    1985-01-01

    High resolution powder data from both neutron and X-ray (synchrotron) sources have been used to estimate the possibility of direct structure determination from powder data. Two known structures were resolved by direct methods with neutron and X-ray data. With synchrotron X-ray data, the measured ...

  10. High-Q microwave resonators with a photonic crystal structure

    International Nuclear Information System (INIS)

    Schuster, M.

    2001-08-01

    The localisation of electromagnetic energy at a defect in a photonic crystal is similar to a well known effect employed to construct high-Q microwave resonators: In a whispering gallery (WHG-) mode resonator the high Q-factor is achieved by localisation of the electromagnetic field energy by total reflection inside a disk made of dielectric material. The topic of this work is to demonstrate, that WHG-like modes can exist in an air defect in a photonic crystal that extends over several lattice periods; and that a high-Q microwave resonator can be made, utilizing these resonant modes. In numerical simulations, the transmission properties of a photonic crystal structure with hexagonal lattice symmetry have been investigated with a transfer-matrix-method. The eigenmodes of a defect structure in a photonic crystal have been calculated with a quasi-3d finite element integration technique. Experimental results confirm the simulated transmission properties and show the existence of modes inside the band gap, when a defect is introduced in the crystal. Resonator measurements show that a microwave resonator can be operated with those defect modes. It was found out that the main losses of the resonator were caused by bad microwave properties of the used dielectric material and by metal losses on the top and bottom resonator walls. Furthermore, it turned out that the detection of the photonic crystal defect mode was difficult because of a lack of simulation possibilities and high housing mode density in the resonator. (orig.)

  11. Accelerated safety analyses - structural analyses Phase I - structural sensitivity evaluation of single- and double-shell waste storage tanks

    International Nuclear Information System (INIS)

    Becker, D.L.

    1994-11-01

    Accelerated Safety Analyses - Phase I (ASA-Phase I) have been conducted to assess the appropriateness of existing tank farm operational controls and/or limits as now stipulated in the Operational Safety Requirements (OSRs) and Operating Specification Documents, and to establish a technical basis for the waste tank operating safety envelope. Structural sensitivity analyses were performed to assess the response of the different waste tank configurations to variations in loading conditions, uncertainties in loading parameters, and uncertainties in material characteristics. Extensive documentation of the sensitivity analyses conducted and results obtained are provided in the detailed ASA-Phase I report, Structural Sensitivity Evaluation of Single- and Double-Shell Waste Tanks for Accelerated Safety Analysis - Phase I. This document provides a summary of the accelerated safety analyses sensitivity evaluations and the resulting findings

  12. Crystal-Size-Dependent Structural Transitions in Nanoporous Crystals: Adsorption-Induced Transitions in ZIF-8

    KAUST Repository

    Zhang, Chen

    2014-09-04

    © 2014 American Chemical Society. Understanding the crystal-size dependence of both guest adsorption and structural transitions of nanoporous solids is crucial to the development of these materials. We find that nano-sized metal-organic framework (MOF) crystals have significantly different guest adsorption properties compared to the bulk material. A new methodology is developed to simulate the adsorption and transition behavior of entire MOF nanoparticles. Our simulations predict that the transition pressure significantly increases with decreasing particle size, in agreement with crystal-size-dependent experimental measurements of the N2-ZIF-8 system. We also propose a simple core-shell model to examine this effect on length scales that are inaccessible to simulations and again find good agreement with experiments. This study is the first to examine particle size effects on structural transitions in ZIFs and provides a thermodynamic framework for understanding the underlying mechanism.

  13. Thiolato-technetium complexes. 5. Synthesis, characterization, and electrochemical properties of bis(o-phenylenebis(dimethylarsine))technetium(II) and -technetium(III) complexes with thiolato ligands. Single-crystal structural analyses of trans-[Tc(SCH3)2(DIARS)2]PF6 and trans-[Tc(SC6H5)2(DIARS)2]0

    International Nuclear Information System (INIS)

    Konno, Takumi; Heineman, W.R.; Deutsch, E.; Kirchhoff, J.R.; Heeg, M.J.; Stuckey, J.A.

    1992-01-01

    Three different thiols have been brought into reaction with trans-[Tc(OH)(O)(DIARS) 2 ] 2+ to produce initially the Tc(II) complex, [Tc(SR) 2 (DIARS) 2 ] 0 , which can be oxidized to the Tc(III) complex, [Tc(SR) 2 (DIARS) 2 ] + (DIARS = o-phenylenebis(dimethylarsine)). In the case of SR = SCH 3 and SCH 2 C 6 H 5 , the Tc(II) and Tc(III) products were found to be in the trans geometry, while for SR = SC 6 H 5 , both cis and trans isomers were generated. Two of the complexes were structurally characterized by X-ray diffraction. trans-[Tc(SCH 3 ) 2 (DIARS) 2 ]PF 6 , chemical formula TcAs 4 S 2 PF 6 C 22 H 38 , crystallizes in the monoclinic space group. The Tc atom occupies an inversion center. Representative elemental analyses, FAB mass spectra, and visible-UV spectra are reported. Electrochemical and spectroelectrochemical measurements were taken on trans-[Tc(SCH 3 ) 2 (DIARS) 2 ] + , trans-[Tc(SCH 2 C 6 H 5 ) 2 (DIARS) 2 ] + , and cis-[Tc(SC 6 H 5 ) 2 (DIARS) 2 ] + , which exhibit a reversible Tc(III/II) redox couple in the range -0.32 to -0.47 V vs. Ag/AgCl. Another redox couple is present in the range -1.22 to -1.70 V; this is ascribed to Tc(II/I) and is reversible only for SR = SCH 2 C 6 H 5 at 20C. At room temperature, chemically irreversible couples are exhibited at ca. +1.0 V for Tc(IV/III)

  14. Crystal structure of aspartame anhydrate from powder diffraction data. Structural aspects of the dehydration process of aspartame

    NARCIS (Netherlands)

    Guguta, C.; Meekes, H.L.M.; Gelder, R. de

    2006-01-01

    Aspartame has three pseudo-polymorphic forms, two hydrates and a hemi-hydrate, for which crystal structures were determined from single-crystal diffraction data. This paper presents the crystal structure of the anhydrate, which was obtained by dehydrating the hemi-hydrate. The crystal structure of

  15. Synthesis, crystal structure and biological activity of novel diester cyclophanes

    International Nuclear Information System (INIS)

    Zhang, Pengfei; Yang, Bingqin; Fang, Xianwen; Cheng, Zhao; Yang, Meipan

    2012-01-01

    A series of novel diester cyclophanes was synthesized by esterification of 1,2-benzenedicarbonyl chloride with eight different diols under high dilution conditions. The structures of the compounds were verified by elemental analysis, 1 H nuclear magnetic resonance (NMR), IR spectroscopy and high resolution mass spectrometry (HRMS). The crystal structures of two compounds were characterized by single crystal X-ray diffractometry (XRD). All the new cyclophanes were evaluated for biological activities and the results showed that some of these compounds have low antibacterial or antifungal activities (author)

  16. Synthesis, crystal structure and biological activity of novel diester cyclophanes

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Pengfei; Yang, Bingqin; Fang, Xianwen; Cheng, Zhao; Yang, Meipan, E-mail: yangbq@nwu.edu.cn [Department of Chemistry, Key Laboratory of Synthetic and Natural Functional Molecule Chemistry, Northwest University, Shaanxi (China)

    2012-10-15

    A series of novel diester cyclophanes was synthesized by esterification of 1,2-benzenedicarbonyl chloride with eight different diols under high dilution conditions. The structures of the compounds were verified by elemental analysis, {sup 1}H nuclear magnetic resonance (NMR), IR spectroscopy and high resolution mass spectrometry (HRMS). The crystal structures of two compounds were characterized by single crystal X-ray diffractometry (XRD). All the new cyclophanes were evaluated for biological activities and the results showed that some of these compounds have low antibacterial or antifungal activities (author)

  17. Photonic crystals, light manipulation, and imaging in complex nematic structures

    Science.gov (United States)

    Ravnik, Miha; Å timulak, Mitja; Mur, Urban; Čančula, Miha; Čopar, Simon; Žumer, Slobodan

    2016-03-01

    Three selected approaches for manipulation of light by complex nematic colloidal and non-colloidal structures are presented using different own custom developed theoretical and modelling approaches. Photonic crystals bands of distorted cholesteric liquid crystal helix and of nematic colloidal opals are presented, also revealing distinct photonic modes and density of states. Light propagation along half-integer nematic disclinations is shown with changes in the light polarization of various winding numbers. As third, simulated light transmission polarization micrographs of nematic torons are shown, offering a new insight into the complex structure characterization. Finally, this work is a contribution towards using complex soft matter in optics and photonics for advanced light manipulation.

  18. On structure of some laminated crystals with organic molecules

    International Nuclear Information System (INIS)

    Volodina, G.F.; Ivanova, V.Ya.; Malinovskij, T.I.

    1982-01-01

    A survey is made of papers dealing with intercalation of organic molecules into crystals of dihalcogenides of some transition metals (TaS 2 , TiS 2 , NbS 2 , ZrS 2 , TaSe 2 ), variation of their structure and physical properties. Among the used intercalates ammonia, pyridine, aniline and other aromatic amines proved to be most satisfactory from the viewpoint of reaction rate and product stability. A possibility is discussed of intercalation into PbI 2 and CdI 2 crystals that are of the same structural type as dihalcogenides

  19. Systematic analysis of crystal and molecular structures

    Czech Academy of Sciences Publication Activity Database

    Hašek, Jindřich; Dohnálek, Jan

    2012-01-01

    Roč. 19, č. 2 (2012), s. 86-87 ISSN 1211-5894. [Struktura 2012. Kolokvium Krystalografické společnosti. 11.06.2012-14.06.2012, Klatovy] R&D Projects: GA ČR GA310/09/1407 Institutional research plan: CEZ:AV0Z40500505 Institutional support: RVO:61389013 Keywords : structure databases * structure-function relations * organic and inorganic materials Subject RIV: EE - Microbiology, Virology

  20. Two Voriconazole salts: Syntheses, crystal structures, solubility and bioactivities

    Science.gov (United States)

    Tang, Gui-Mei; Wang, Yong-Tao

    2018-01-01

    Two Voriconazole salts, namely, (H2FZ)2+·2(Cl-) (1) and (HFZ)+·NO3- (2) (FZ = (2R,3S)-2-(2,4-difluorophenyl)-3-(5-fluoro-4-pyrimidiny)-1-(1H-1,2,4-triazol-1-yl)-2-butanol) have been obtained through the reaction of Voriconazole, hydrochloric acid and nitrate acid, respectively. They were structurally characterized by FT-IR, elemental analyses (EA), single crystal X-ray diffraction, and thermogravimetric analysis (TGA). A variety of hydrogen bonds (Osbnd H⋯N, Nsbnd H⋯Cl/O, Csbnd H⋯N/OF/Cl) were observed in the compounds 1 and 2, through which a 3D supramolecular architecture is generated. Both two salts 1 and 2 show the promising bioactivities against Aspergillus species (Aspergillus niger, Aspergillus terreus, Aspergillus fumigatus and Aspergillus flavus) and Candida ones (Candida albicans, Candida krusei, Candida glabrata and Cryptococcus neoformans), which is obviously more excellent than that of FZ. Additionally, the solubility of two salts is considerably higher than that of the drug Voriconazole.

  1. Photonics of liquid-crystal structures: A review

    Energy Technology Data Exchange (ETDEWEB)

    Palto, S. P., E-mail: palto@online.ru; Blinov, L M; Barnik, M I; Lazarev, V V; Umanskii, B A; Shtykov, N M [Russian Academy of Sciences, Shubnikov Institute of Crystallography (Russian Federation)

    2011-07-15

    The original results of studies of the electro-optical and laser effects which have been performed at the Laboratory of Liquid Crystals of the Institute of Crystallography, Russian Academy of Sciences, over the last few years are reviewed. Cholesteric liquid crystals as vivid representatives of photonic structures and their behavior in an electric field are considered in detail. The formation of higher harmonics in the periodic distribution of the director field in a helical liquid crystal structure and, correspondingly, the new (anharmonic) mode of electro-optical effects are discussed. Another group of studies is devoted to bistable light switching by an electric field in chiral nematics. Polarization diffraction gratings controlled by an electric field are also considered. The results of studies devoted to microlasers on various photonic structures with cholesteric and nematic liquid crystals are considered in detail. Particular attention is given to the new regime: leaky-mode lasing. Designs of liquid crystal light amplifiers and their polarization, field, and spectral characteristics are considered in the last section.

  2. Secondary structural analyses of ITS1 in Paramecium.

    Science.gov (United States)

    Hoshina, Ryo

    2010-01-01

    The nuclear ribosomal RNA gene operon is interrupted by internal transcribed spacer (ITS) 1 and ITS2. Although the secondary structure of ITS2 has been widely investigated, less is known about ITS1 and its structure. In this study, the secondary structure of ITS1 sequences for Paramecium and other ciliates was predicted. Each Paramecium ITS1 forms an open loop with three helices, A through C. Helix B was highly conserved among Paramecium, and similar helices were found in other ciliates. A phylogenetic analysis using the ITS1 sequences showed high-resolution, implying that ITS1 is a good tool for species-level analyses.

  3. Masonry structures built with fictile tubules: Experimental and numerical analyses

    Science.gov (United States)

    Tiberti, Simone; Scuro, Carmelo; Codispoti, Rosamaria; Olivito, Renato S.; Milani, Gabriele

    2017-11-01

    Masonry structures with fictile tubules were a distinctive building technique of the Mediterranean area. This technique dates back to Roman and early Christian times, used to build vaulted constructions and domes with various geometrical forms by virtue of their modular structure. In the present work, experimental tests were carried out to identify the mechanical properties of hollow clay fictile tubules and a possible reinforcing technique for existing buildings employing such elements. The experimental results were then validated by devising and analyzing numerical models with the FE software Abaqus, also aimed at investigating the structural behavior of an arch via linear and nonlinear static analyses.

  4. CRYSTAL STRUCTURE ANALYSIS OF A PUTATIVE OXIDOREDUCTASE FROM KLEBSIELLA PNEUMONIAE

    Energy Technology Data Exchange (ETDEWEB)

    Baig, M.; Brown, A.; Eswaramoorthy, S.; Swaminathan, S.

    2009-01-01

    Klebsiella pneumoniae, a gram-negative enteric bacterium, is found in nosocomial infections which are acquired during hospital stays for about 10% of hospital patients in the United States. The crystal structure of a putative oxidoreductase from K. pneumoniae has been determined. The structural information of this K. pneumoniae protein was used to understand its function. Crystals of the putative oxidoreductase enzyme were obtained by the sitting drop vapor diffusion method using Polyethylene glycol (PEG) 3350, Bis-Tris buffer, pH 5.5 as precipitant. These crystals were used to collect X-ray data at beam line X12C of the National Synchrotron Light Source (NSLS) at Brookhaven National Laboratory (BNL). The crystal structure was determined using the SHELX program and refi ned with CNS 1.1. This protein, which is involved in the catalysis of an oxidation-reduction (redox) reaction, has an alpha/beta structure. It utilizes nicotinamide adenine dinucleotide phosphate (NADP) or nicotine adenine dinucleotide (NAD) to perform its function. This structure could be used to determine the active and co-factor binding sites of the protein, information that could help pharmaceutical companies in drug design and in determining the protein’s relationship to disease treatment such as that for pneumonia and other related pathologies.

  5. Solving crystal structures with the symmetry minimum function

    International Nuclear Information System (INIS)

    Estermann, M.A.

    1995-01-01

    Unravelling the Patterson function (the auto-correlation function of the crystal structure) (A.L. Patterson, Phys. Rev. 46 (1934) 372) can be the only way of solving crystal structures from neutron and incomplete diffraction data (e.g. powder data) when direct methods for phase determination fail. The negative scattering lengths of certain isotopes and the systematic loss of information caused by incomplete diffraction data invalidate the underlying statistical assumptions made in direct methods. In contrast, the Patterson function depends solely on the quality of the available diffraction data. Simpson et al. (P.G. Simpson et al., Acta Crystallogr. 18 (1965) 169) showed that solving a crystal structure with a particular superposition of origin-shifted Patterson functions, the symmetry minimum function, is advantageous over using the Patterson function alone, for single-crystal X-ray data.This paper describes the extension of the Patterson superposition approach to neutron data and powder data by (a) actively using the negative regions in the Patterson map caused by negative scattering lengths and (b) using maximum entropy Patterson maps (W.I.F. David, Nature 346 (1990) 731). Furthermore, prior chemical knowledge such as bond lengths and angles from known fragments have been included. Two successful structure solutions of a known and a previously unknown structure (M. Hofmann, J. Solid State Chem., in press) illustrate the potential of this new development. ((orig.))

  6. Three new hydrochlorothiazide cocrystals: Structural analyses and solubility studies

    Science.gov (United States)

    Ranjan, Subham; Devarapalli, Ramesh; Kundu, Sudeshna; Vangala, Venu R.; Ghosh, Animesh; Reddy, C. Malla

    2017-04-01

    Hydrochlorothiazide (HCT) is a diuretic BCS class IV drug with poor aqueous solubility and low permeability leading to poor oral absorption. The present work explores the cocrystallization technique to enhance the aqueous solubility of HCT. Three new cocrystals of HCT with water soluble coformers phenazine (PHEN), 4-dimethylaminopyridine (DMAP) and picolinamide (PICA) were prepared successfully by solution crystallization method and characterized by single crystal X-ray diffraction (SCXRD), powder X-ray diffraction (PXRD), fourier transform -infraredspectroscopy (FT-IR), differential scanning calorimetry (DSC) and thermogravimetric analysis (TGA). Structural characterization revealed that the cocrystals with PHEN, DMAP and PICA exists in P21/n, P21/c and P21/n space groups, respectively. The improved solubility of HCT-DMAP (4 fold) and HCT-PHEN (1.4 fold) cocrystals whereas decreased solubility of HCT-PICA (0.5 fold) as compared to the free drug were determined after 4 h in phosphate buffer, pH 7.4, at 25 °C by using shaking flask method. HCT-DMAP showed a significant increase in solubility than all previously reported cocrystals of HCT suggest the role of a coformer. The study demonstrates that the selection of coformer could have pronounced impact on the physicochemical properties of HCT and cocrystallization can be a promising approach to improve aqueous solubility of drugs.

  7. Crystal structure of clathrates of Hofmann dma-type

    International Nuclear Information System (INIS)

    NIshikiori, Sh.; Ivamoto, T.

    1999-01-01

    Seven new clathrates Cd(DMA) 2 Ni(CN) 4 ·xG (x=1, G=aniline, 2,3-xylidine, 2,4-xylidine, 2,5-xylidine, 2,6-xylidine, 3,5-xylidine, and x=2, G=2,4,6-trimethylaniline) of Hofmann type are synthesized by amine substitution for dimethylamine (DMA). On the base of x-ray diffraction data it is shown that geometry of guest molecule in cage-like hollow determines the structure of the host and crystal structure of clathrates. Two-dimension metallocomplex of the host of studied clathrates is characterized by elastic folded structure appearing as a result of angular deformation of bond between Cd atoms and host cyanide bridge. Guest molecule orientation is fixed by hydrogen bond. Structural elasticity of the host complex directs to differences in crystal structure of clathrates formed and to considerable variety of incorporated guests [ru

  8. Simulation and design of the photonic crystal microwave accelerating structure

    International Nuclear Information System (INIS)

    Song Ruiying; Wu Congfeng; He Xiaodong; Dong Sai

    2007-01-01

    The authors have derived the global band gaps for general two-dimensional (2D) photonic crystal microwave accelerating structures formed by square or triangular arrays of metal posts. A coordinate-space, finite-difference code was used to calculate the complete dispersion curves for the lattices. The fundamental and higher frequency global photonic band gaps were determined numerically. The structure formed by triangular arrays of metal posts with a missing rod at the center has advantages of higher-order-modes (HOM) suppression and main mode restriction under the condition of a/b<0.2. The relationship between the RF properties and the geometrical parameters have been studied for the 9.37 GHz photonic crystal accelerating structure. The Rs, Q, Rs/Q of the new structure may be comparable to the disk-loaded accelerating structure. (authors)

  9. Synthesis and crystal structures of three new benzotriazolylpropanamides

    Directory of Open Access Journals (Sweden)

    Donna S. Amenta

    2017-06-01

    Full Text Available The base-catalyzed Michael addition of 2-methylacrylamide to benzotriazole afforded 3-(1H-benzotriazol-1-yl-2-methylpropanamide, C10H12N4O (1, in 32% yield in addition to small amounts of isomeric 3-(2H-benzotriazol-2-yl-2-methylpropanamide, C10H12N4O (2. In a similar manner, 3-(1H-benzotriazol-1-yl-N,N-dimethylpropanamide, C11H14N4O (3, was prepared from benzotriazole and N,N-dimethylacrylamide. All three products have been structurally characterized by single-crystal X-ray diffraction. The crystal structures of 1 and 2 comprise infinite arrays formed by N—H...O and N—H...N bridges, as well as π–π interactions, while the molecules of 3 are aggregated to simple π-dimers in the crystal.

  10. Synthesis, Crystal Structure, Density Function Theory, Molecular ...

    African Journals Online (AJOL)

    Tropical Journal of Pharmaceutical Research ... Purpose: To determine the exact structure and antimicrobial activity of 2-(3-(4 phenylpiperazin-1-yl) ... Besides HOMO– LUMO energy gap was performed at B3LYP/6-31G (d,p) level of theory.

  11. Experiment and density functional theory analyses of GdTaO4 single crystal

    Science.gov (United States)

    Ding, Shoujun; Kinross, Ashlie; Wang, Xiaofei; Yang, Huajun; Zhang, Qingli; Liu, Wenpeng; Sun, Dunlu

    2018-05-01

    GdTaO4 is a type of excellent materials that can be used as scintillation, laser matrix as well as self-activated phosphor has generated significant interest. Whereas its band structure, electronic structure and optical properties are still need elucidation. To solve this intriguing problem, high-quality GdTaO4 single crystal (M-type) was grown successfully using Czochralski method. Its structure as well as optical properties was determined in experiment. Moreover, a systematic theoretical calculation based on the density function theory methods were performed on M-type and M‧-type GdTaO4 and their band structure, density of state as well as optical properties were obtained. Combine with the performed experiment results, the calculated results were proved with high reliability. Hence, the calculated results obtained in this work could provide a deep understanding of GdTaO4 material, which also useful for the further investigation on GdTaO4 material.

  12. Crystal engineering of ibuprofen compounds: From molecule to crystal structure to morphology prediction by computational simulation and experimental study

    Science.gov (United States)

    Zhang, Min; Liang, Zuozhong; Wu, Fei; Chen, Jian-Feng; Xue, Chunyu; Zhao, Hong

    2017-06-01

    We selected the crystal structures of ibuprofen with seven common space groups (Cc, P21/c, P212121, P21, Pbca, Pna21, and Pbcn), which was generated from ibuprofen molecule by molecular simulation. The predicted crystal structures of ibuprofen with space group P21/c has the lowest total energy and the largest density, which is nearly indistinguishable with experimental result. In addition, the XRD patterns for predicted crystal structure are highly consistent with recrystallization from solvent of ibuprofen. That indicates that the simulation can accurately predict the crystal structure of ibuprofen from the molecule. Furthermore, based on this crystal structure, we predicted the crystal habit in vacuum using the attachment energy (AE) method and considered solvent effects in a systematic way using the modified attachment energy (MAE) model. The simulation can accurately construct a complete process from molecule to crystal structure to morphology prediction. Experimentally, we observed crystal morphologies in four different polarity solvents compounds (ethanol, acetonitrile, ethyl acetate, and toluene). We found that the aspect ratio decreases of crystal habits in this ibuprofen system were found to vary with increasing solvent relative polarity. Besides, the modified crystal morphologies are in good agreement with the observed experimental morphologies. Finally, this work may guide computer-aided design of the desirable crystal morphology.

  13. Synthesis and crystal structure analysis of uranyl triple acetates

    Energy Technology Data Exchange (ETDEWEB)

    Klepov, Vladislav V., E-mail: vladislavklepov@gmail.com [Institute for Energy and Climate Research (IEK-6), Forschungszentrum Jülich GmbH, 52428 Jülich (Germany); Department of Chemistry, Samara National Research University, 443086 Samara (Russian Federation); Serezhkina, Larisa B.; Serezhkin, Victor N. [Department of Chemistry, Samara National Research University, 443086 Samara (Russian Federation); Alekseev, Evgeny V., E-mail: e.alekseev@fz-juelich.de [Institute for Energy and Climate Research (IEK-6), Forschungszentrum Jülich GmbH, 52428 Jülich (Germany); Institut für Kristallographie, RWTH Aachen University, 52066 Aachen (Germany)

    2016-12-15

    Single crystals of triple acetates NaR[UO{sub 2}(CH{sub 3}COO){sub 3}]{sub 3}·6H{sub 2}O (R=Mg, Co, Ni, Zn), well-known for their use as reagents for sodium determination, were grown from aqueous solutions and their structural and spectroscopic properties were studied. Crystal structures of the mentioned phases are based upon (Na[UO{sub 2}(CH{sub 3}COO){sub 3}]{sub 3}){sup 2–} clusters and [R(H{sub 2}O){sub 6}]{sup 2+} aqua-complexes. The cooling of a single crystal of NaMg[UO{sub 2}(CH{sub 3}COO){sub 3}]{sub 3}·6H{sub 2}O from 300 to 100 K leads to a phase transition from trigonal to monoclinic crystal system. Intermolecular interactions between the structural units and their mutual packing were studied and compared from the point of view of the stereoatomic model of crystal structures based on Voronoi-Dirichlet tessellation. Using this method we compared the crystal structures of the triple acetates with Na[UO{sub 2}(CH{sub 3}COO){sub 3}] and [R(H{sub 2}O){sub 6}][UO{sub 2}(CH{sub 3}COO){sub 3}]{sub 2} and proposed reasons of triple acetates stability. Infrared and Raman spectra were collected and their bands were assigned. - Graphical abstract: Single crystals of uranium based triple acetates, analytical reagents for sodium determination, were synthesized and structurally, spectroscopically and topologically characterized. The structures were compared with the structures of compounds from preceding families [M(H{sub 2}O){sub 6})][UO{sub 2}(CH{sub 3}COO){sub 3}]{sub 2} (M = Mg, Co, Ni, Zn) and Na[UO{sub 2}(CH{sub 3}COO){sub 3}]. Analysis was performed with the method of molecular Voronoi-Dirichlet polyhedra to reveal a large contribution of the hydrogen bonds into intermolecular interactions which can be a reason of low solubility of studied complexes.

  14. Magnetic assembly of nonmagnetic particles into photonic crystal structures.

    Science.gov (United States)

    He, Le; Hu, Yongxing; Kim, Hyoki; Ge, Jianping; Kwon, Sunghoon; Yin, Yadong

    2010-11-10

    We report the rapid formation of photonic crystal structures by assembly of uniform nonmagnetic colloidal particles in ferrofluids using external magnetic fields. Magnetic manipulation of nonmagnetic particles with size down to a few hundred nanometers, suitable building blocks for producing photonic crystals with band gaps located in the visible regime, has been difficult due to their weak magnetic dipole moment. Increasing the dipole moment of magnetic holes has been limited by the instability of ferrofluids toward aggregation at high concentration or under strong magnetic field. By taking advantage of the superior stability of highly surface-charged magnetite nanocrystal-based ferrofluids, in this paper we have been able to successfully assemble 185 nm nonmagnetic polymer beads into photonic crystal structures, from 1D chains to 3D assemblies as determined by the interplay of magnetic dipole force and packing force. In a strong magnetic field with large field gradient, 3D photonic crystals with high reflectance (83%) in the visible range can be rapidly produced within several minutes, making this general strategy promising for fast creation of large-area photonic crystals using nonmagnetic particles as building blocks.

  15. Crystal structure and vibrational spectra of piperazinium bis(4-hydroxybenzenesulphonate) molecular-ionic crystal

    Science.gov (United States)

    Marchewka, M. K.; Pietraszko, A.

    2008-02-01

    The piperazinium bis(4-hydroxybenzenesulphonate) crystallizes from water solution at room temperature in P2 1/ c space group of monoclinic system. The crystals are built up of doubly protonated piperazinium cations and ionized 4-hydroxybenzenesulphonate anions that interact through weak hydrogen bonds of O-H⋯O and N-H⋯O type. Mutual orientation of anions is determined by non-conventional hydrogen bonds of C-H⋯π type. Room temperature powder FT IR and FT Raman measurements were carried out. The vibrational spectra are in full agreement with the structure obtained from X-ray crystallography. The big single crystals of the title salt can be grown.

  16. Structural science using single crystal and pulse neutron scattering

    International Nuclear Information System (INIS)

    Noda, Yukio; Kimura, Hiroyuki; Watanabe, Masashi; Ishikawa, Yoshihisa; Tamura, Itaru; Arai, Masatoshi; Takahashi, Miwako; Ohshima, Ken-ichi; Abe, Hiroshi; Kamiyama, Takashi

    2008-01-01

    The application to single crystal neutron structural analysis is overviewed. Special attention is paid to the pulse neutron method, which will be available soon under J-PARC project in Japan. New proposal and preliminary experiment using Sirius at KENS are described. (author)

  17. Crystal structure, characterization and magnetic properties of a 1D ...

    Indian Academy of Sciences (India)

    Crystal structure, characterization and magnetic properties of a 1D copper(II) polymer incorporating a Schiff base with carboxylate side arm. SHYAMAPADA SHIT MADHUSUDAN NANDY CORRADO RIZZOLI CÉDRIC DESPLANCHES SAMIRAN MITRA. Regular Article Volume 128 Issue 6 June 2016 pp 913-920 ...

  18. BiFeO3 Crystal Structure at Low Temperatures

    International Nuclear Information System (INIS)

    Palewicz, A.; Sosnowska, I.; Przenioslo, R.; Hewat, A.W.

    2010-01-01

    The crystal and magnetic structure of BiFeO 3 have been studied with the use of high resolution neutron diffraction between 5 K and 300 K. The atomic coordinates in BiFeO 3 are almost unchanged between 5 K and 300 K. (authors)

  19. Effect of domains configuration on crystal structure in ferroelectric ...

    Indian Academy of Sciences (India)

    2017-09-09

    Sep 9, 2017 ... It is well known that domains and crystal structure control the physical properties of ferroelectrics. ... The as-prepared ceramics were crushed to fine pow- ders. ..... [1] Gao J, Xue D, Wang Y, Wang D, Zhang L, Wu H et al 2011.

  20. Magnetic structure of URhSi single crystal

    Czech Academy of Sciences Publication Activity Database

    Prokeš, K.; Andreev, Alexander V.; Honda, F.; Sechovský, V.

    2003-01-01

    Roč. 261, - (2003), s. 131-138 ISSN 0304-8853 R&D Projects: GA ČR GA202/02/0739 Institutional research plan: CEZ:AV0Z1010914 Keywords : URhSi single crystal * magnetization * neutron diffraction * magnetic structure determination Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 0.910, year: 2003

  1. Fine structure of fields in 2D photonic crystal waveguides

    DEFF Research Database (Denmark)

    Lavrinenko, Andrei; Volkov, V. S.; Bozhevolnyi, S. I.

    2006-01-01

    We resolve fine structure of fields in a single-row missing photonic crystal waveguide by finite-difference time-domain modelling and SNOM measurements. Both linear dispersion and slow-light regimes in proximity of the cutoff are addressed in the analysis....

  2. Unusual Features of Crystal Structures of Some Simple Copper Compounds

    Science.gov (United States)

    Douglas, Bodie

    2009-01-01

    Some simple copper compounds have unusual crystal structures. Cu[subscript 3]N is cubic with N atoms at centers of octahedra formed by 6 Cu atoms. Cu[subscript 2]O (cuprite) is also cubic; O atoms are in tetrahedra formed by 4 Cu atoms. These tetrahedra are linked by sharing vertices forming two independent networks without linkages between them.…

  3. Isomorph invariance of the structure and dynamics of classical crystals

    DEFF Research Database (Denmark)

    Albrechtsen, Dan; Olsen, Andreas Elmerdahl; Pedersen, Ulf Rørbæk

    2014-01-01

    This paper shows by computer simulations that some crystalline systems have curves in their thermodynamic phase diagrams, so-called isomorphs, along which structure and dynamics in reduced units are invariant to a good approximation. The crystals are studied in a classical-mechanical framework...

  4. short communication synthesis and crystal structure of a polymeric

    African Journals Online (AJOL)

    Preferred Customer

    A new polymeric zinc(II) complex, [ZnL2(PDA)]n, has been prepared by the reaction of zinc sulfate ... complex has been characterized by single-crystal X-ray diffraction. .... Molecular structure of the complex at 30% probability displacement.

  5. Characterization and crystal structures of new Schiff base macrocyclic compounds

    Czech Academy of Sciences Publication Activity Database

    Khalaji, A.D.; Ghoran, S.H.; Pojarová, Michaela; Dušek, Michal

    2015-01-01

    Roč. 56, č. 7 (2015), s. 1410-1414 ISSN 0022-4766 R&D Projects: GA ČR(CZ) GA14-03276S Institutional support: RVO:68378271 Keywords : synthesis * macrocyclic Schiff base * single crystal structure analysis * spectroscopy Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 0.536, year: 2015

  6. Synthesis and structural characterization of CsNiP crystal

    Indian Academy of Sciences (India)

    Unknown

    The crystals obtained by this method were of good quality exhibiting ... type framework structure having Cs atoms inside it (figures. 3 and 4). This helps for .... Gopalakrishna G S, Prasad J S and Lokanath N K 2001 Proc. joint 4th and 6th ICSTR ...

  7. Variational cellular model of the molecular and crystal electronic structure

    International Nuclear Information System (INIS)

    Ferreira, L.G.; Leite, J.R.

    1977-12-01

    A variational version of the cellular method is developed to calculate the electronic structure of molecules and crystals. Due to the simplicity of the secular equation, the method is easy to be implemented. Preliminary calculations on the hydrogen molecular ion suggest that it is also accurate and of fast convergence [pt

  8. A unified picture of the crystal structures of metals

    Science.gov (United States)

    Söderlind, Per; Eriksson, Olle; Johansson, Börje; Wills, J. M.; Boring, A. M.

    1995-04-01

    THE crystal structures of the light actinides have intrigued physicists and chemists for several decades1. Simple metals and transition metals have close-packed, high-symmetry structures, such as body-centred cubic, face-centred cubic and hexagonal close packing. In contrast, the structures of the light actinides are very loosely packed and of low symmetry-tetragonal, orthorhombic and monoclinic. To understand these differences, we have performed total-energy calculations, as a function of volume, for both high-and low-symmetry structures of a simple metal (aluminium), a non-magnetic transition metal (niobium), a ferromagnetic transition metal (iron) and a light actinide (uranium). We find that the crystal structure of all of these metals is determined by the balance between electrostatic (Madelung) interactions, which favour high symmetry, and a Peierls distortion of the crystal lattice, which favours low symmetry. We show that simple metals and transition metals can adopt low-symmetry structures on expansion of the lattice; and we predict that, conversely, the light actinides will undergo transitions to structures of higher symmetry on compression.

  9. A unified picture of the crystal structures of metals

    International Nuclear Information System (INIS)

    Soederlind, P.; Eriksson, O.; Johansson, B.; Wills, J.M.; Boring, A.M.

    1995-01-01

    The crystal structures of the light actinides have intrigued physicists and chemists for several decades. Simple metals and transition metals have close-packed, high-symmetry structures, such as body-centred cubic, face-centred cubic hexagonal close packing. In contrast, the structures of the light actinides are very loosely packed and of low symmetry -tetragonal, orthorhombic and monoclinic. To understand these differences, we have have performed total-energy calculations, as a function of volume, for both high- and low-symmetry structures of a simple metal (aluminium), a non-magnetic transition metal (niobium), a ferromagnetic transition metal (iron) and a light actinide (uranium). We find that the crystal structure of all these metals is determined by the balance between electrostatic (Madelung) interactions, which favour high symmetry, and a Peierls distortion of the crystal lattice, which favours low symmetry. We show that simple metals and transition metals can adopt low-symmetry structures on expansion of the lattice; and we predict that, conversely, the light actinides will undergo transitions to structures of higher symmetry on compression. (author)

  10. Coefficient of crystal lattice matching as a parameter of substrate - crystal structure compatibility in silumins

    Directory of Open Access Journals (Sweden)

    J. Piątkowski

    2009-07-01

    Full Text Available Adding high-melting point elements (Mo, Nb, Ni, Ti, W to complex silumins results in hardening of the latter ones, owing to the formation of new intermetallic phases of the AlxMey type, with refinement of dendrites in α solution and crystals in β phase. The hardening is also due to the effect of various inoculants. An addition of the inoculant is expected to form substrates, the crystal lattice of which, or some (privileged lattice planes and interatomic spaces should bear a strong resemblance to the crystal nucleus. To verify this statement, using binary phase equilibria systems, the coefficient of crystal lattice matching, being one of the measures of the crystallographic similarity, was calculated. A compatibility of this parameter (up to 20% may decide about the structure compatibility between the substrate and crystal which, in turn, is responsible for the effectiveness of alloy modification. Investigations have proved that, given the temperature range of their formation, the density, the lattice type, and the lattice parameter, some intermetallic phases of the AlxMey type can act as substrates for the crystallisation of aluminium and silicon, and some of the silumin hardening phases.

  11. Band structures in Sierpinski triangle fractal porous phononic crystals

    International Nuclear Information System (INIS)

    Wang, Kai; Liu, Ying; Liang, Tianshu

    2016-01-01

    In this paper, the band structures in Sierpinski triangle fractal porous phononic crystals (FPPCs) are studied with the aim to clarify the effect of fractal hierarchy on the band structures. Firstly, one kind of FPPCs based on Sierpinski triangle routine is proposed. Then the influence of the porosity on the elastic wave dispersion in Sierpinski triangle FPPCs is investigated. The sensitivity of the band structures to the fractal hierarchy is discussed in detail. The results show that the increase of the hierarchy increases the sensitivity of ABG (Absolute band gap) central frequency to the porosity. But further increase of the fractal hierarchy weakens this sensitivity. On the same hierarchy, wider ABGs could be opened in Sierpinski equilateral triangle FPPC; whilst, a lower ABG could be opened at lower porosity in Sierpinski right-angled isosceles FPPCs. These results will provide a meaningful guidance in tuning band structures in porous phononic crystals by fractal design.

  12. Band structures in Sierpinski triangle fractal porous phononic crystals

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Kai; Liu, Ying, E-mail: yliu5@bjtu.edu.cn; Liang, Tianshu

    2016-10-01

    In this paper, the band structures in Sierpinski triangle fractal porous phononic crystals (FPPCs) are studied with the aim to clarify the effect of fractal hierarchy on the band structures. Firstly, one kind of FPPCs based on Sierpinski triangle routine is proposed. Then the influence of the porosity on the elastic wave dispersion in Sierpinski triangle FPPCs is investigated. The sensitivity of the band structures to the fractal hierarchy is discussed in detail. The results show that the increase of the hierarchy increases the sensitivity of ABG (Absolute band gap) central frequency to the porosity. But further increase of the fractal hierarchy weakens this sensitivity. On the same hierarchy, wider ABGs could be opened in Sierpinski equilateral triangle FPPC; whilst, a lower ABG could be opened at lower porosity in Sierpinski right-angled isosceles FPPCs. These results will provide a meaningful guidance in tuning band structures in porous phononic crystals by fractal design.

  13. Domain Structures in Nematic Liquid Crystals on a Polycarbonate Surface

    Directory of Open Access Journals (Sweden)

    Vasily F. Shabanov

    2013-08-01

    Full Text Available Alignment of nematic liquid crystals on polycarbonate films obtained with the use of solvents with different solvations is studied. Domain structures occurring during the growth on the polymer surface against the background of the initial thread-like or schlieren texture are demonstrated. It is established by optical methods that the domains are stable formations visualizing the polymer surface structures. In nematic droplets, the temperature-induced transition from the domain structure with two extinction bands to the structure with four bands is observed. This transition is shown to be caused by reorientation of the nematic director in the liquid crystal volume from the planar alignment to the homeotropic state with the pronounced radial configuration of nematic molecules on the surface. The observed textures are compared with different combinations of the volume LC orientations and the radial distribution of the director field and the disclination lines at the polycarbonate surface.

  14. Protein crystal structure analysis using synchrotron radiation at atomic resolution

    International Nuclear Information System (INIS)

    Nonaka, Takamasa

    1999-01-01

    We can now obtain a detailed picture of protein, allowing the identification of individual atoms, by interpreting the diffraction of X-rays from a protein crystal at atomic resolution, 1.2 A or better. As of this writing, about 45 unique protein structures beyond 1.2 A resolution have been deposited in the Protein Data Bank. This review provides a simplified overview of how protein crystallographers use such diffraction data to solve, refine, and validate protein structures. (author)

  15. Crystal structure of new AsS2 compound

    International Nuclear Information System (INIS)

    Bolotina, N. B.; Brazhkin, V. V.; Dyuzheva, T. I.; Lityagina, L. M.; Kulikova, L. F.; Nikolaev, N. A.; Verin, I. A.

    2013-01-01

    AsS 2 single crystals have been obtained for the first time from an As 2 S 3 melt at pressures above 6 GPa and temperatures above 800 K in the As 2 S 3 → AsS + AsS 2 reaction. The monoclinic structure of the new high-pressure phase is solved by X-ray diffraction analysis and compared to the structure of high-pressure AsS phase, which was studied previously.

  16. Spatially periodic structures, under femtosecond pulsed excitation of crystals

    International Nuclear Information System (INIS)

    Martynovitch, Evgueni F.; Petite, Guillaume; Dresvianski, Vladimir P.; Starchenko, Anton A.

    2004-01-01

    Measuring the luminescence intensity of specially prepared irradiation defects induced in crystals, we observe that the longitudinal structure of quasi-interferences induced by two orthogonally polarized femtosecond pulses propagating together with different velocities is insensitive to the spatial broadening due to velocity dispersion in the crystals. On the contrary, it does depend on the pulse duration when it is changed by varying the spectral width of the radiation. It thus allows a direct measurement of the coherence time of such pulses. Stability of the axial selectivity is a good sign, taking away a number of serious limitations concerning possible applications

  17. Crystal structure representations for machine learning models of formation energies

    Energy Technology Data Exchange (ETDEWEB)

    Faber, Felix [Department of Chemistry, Institute of Physical Chemistry and National Center for Computational Design and Discovery of Novel Materials, University of Basel Switzerland; Lindmaa, Alexander [Department of Physics, Chemistry and Biology, Linköping University, SE-581 83 Linköping Sweden; von Lilienfeld, O. Anatole [Department of Chemistry, Institute of Physical Chemistry and National Center for Computational Design and Discovery of Novel Materials, University of Basel Switzerland; Argonne Leadership Computing Facility, Argonne National Laboratory, 9700 S. Cass Avenue Lemont Illinois 60439; Armiento, Rickard [Department of Physics, Chemistry and Biology, Linköping University, SE-581 83 Linköping Sweden

    2015-04-20

    We introduce and evaluate a set of feature vector representations of crystal structures for machine learning (ML) models of formation energies of solids. ML models of atomization energies of organic molecules have been successful using a Coulomb matrix representation of the molecule. We consider three ways to generalize such representations to periodic systems: (i) a matrix where each element is related to the Ewald sum of the electrostatic interaction between two different atoms in the unit cell repeated over the lattice; (ii) an extended Coulomb-like matrix that takes into account a number of neighboring unit cells; and (iii) an ansatz that mimics the periodicity and the basic features of the elements in the Ewald sum matrix using a sine function of the crystal coordinates of the atoms. The representations are compared for a Laplacian kernel with Manhattan norm, trained to reproduce formation energies using a dataset of 3938 crystal structures obtained from the Materials Project. For training sets consisting of 3000 crystals, the generalization error in predicting formation energies of new structures corresponds to (i) 0.49, (ii) 0.64, and (iii) 0.37eV/atom for the respective representations.

  18. Crystal structure and magnetism of UOsAl

    Energy Technology Data Exchange (ETDEWEB)

    Andreev, A.V., E-mail: andreev@fzu.cz [Institute of Physics, Academy of Sciences, Na Slovance 2, 182 21 Prague (Czech Republic); Daniš, S. [Department of Condensed Matter Physics, Charles University, Ke Karlovu 5, 121 16 Prague (Czech Republic); Šebek, J.; Henriques, M.S.; Vejpravová, J. [Institute of Physics, Academy of Sciences, Na Slovance 2, 182 21 Prague (Czech Republic); Gorbunov, D.I. [Institute of Physics, Academy of Sciences, Na Slovance 2, 182 21 Prague (Czech Republic); Dresden High Magnetic Field Laboratory (HLD-EMFL), Helmholtz-Zentrum, Dresden-Rossendorf, D-01314 Dresden (Germany); Havela, L. [Department of Condensed Matter Physics, Charles University, Ke Karlovu 5, 121 16 Prague (Czech Republic)

    2017-04-15

    Crystal structure, magnetization, and specific heat were studied on single crystal of uranium intermetallic compound UOsAl. It is a hexagonal Laves phase of MgZn{sub 2} type, space group P6{sub 3}/mmc, with lattice parameters a=536.4 pm, c=845.3 pm. Shortest inter-uranium distance 313 pm (along the c-axis) is considerably smaller than the Hill limit (340 pm). The compound is a weakly temperature-dependent paramagnet with magnetic susceptibility of ≈1.5*10{sup −8} m{sup 3} mol{sup −1} (at T=2 K), which is slightly higher with magnetic field along the a-axis compared to the c-axis. The Sommerfeld coefficient of electronic specific heat has moderate value of γ=36 mJ mol{sup −1} K{sup −2}. - Highlights: • Crystal structure and magnetic properties were studied on single crystal of UOsAl with hexagonal structure of MgZn{sub 2} type. • Shortest inter-uranium distance 313 pm (along the c-axis) is considerably smaller than the Hill limit (340 pm). • UOsAl has paramagnetic ground state as the compounds with T=Fe and Ru, i.e. 3d and 4d analogues of Os.

  19. Icosahedral symmetry described by an incommensurately modulated crystal structure model

    DEFF Research Database (Denmark)

    Wolny, Janusz; Lebech, Bente

    1986-01-01

    A crystal structure model of an incommensurately modulated structure is presented. Although six different reciprocal vectors are used to describe the model, all calculations are done in three dimensions making calculation of the real-space structure trivial. Using this model, it is shown that both...... the positions of the bragg reflections and information about the relative intensities of these reflections are in full accordance with the diffraction patterns reported for microcrystals of the rapidly quenched Al86Mn14 alloy. It is also shown that at least the local structure possesses full icosahedral...

  20. Twinning structures in near-stoichiometric lithium niobate single crystals

    International Nuclear Information System (INIS)

    Yao, Shuhua; Chen, Yanfeng

    2010-01-01

    A near-stoichiometric lithium niobate single crystal has been grown by the Czochralski method in a hanging double crucible with a continuous powder supply system. Twins were found at one of the three characteristic growth ridges of the as-grown crystal. The twin structure was observed and analyzed by transmission synchrotron topography. The image shifts ΔX and ΔY in the transmission synchrotron topograph were calculated for the 3 anti 2 anti 12 and 0 anti 222 reflections based on results from high-resolution X-ray diffractometry. It is confirmed that one of the {01 anti 1 anti 2} m planes is the composition face of the twin and matrix crystals. The formation mechanism of these twins is discussed. (orig.)

  1. Crystal structure of N-(quinolin-6-ylhydroxylamine

    Directory of Open Access Journals (Sweden)

    Anuruddha Rajapakse

    2014-11-01

    Full Text Available The title compound, C9H8N2O, crystallized with four independent molecules in the asymmetric unit. The four molecules are linked via one O—H...N and two N—H...N hydrogen bonds, forming a tetramer-like unit. In the crystal, molecules are further linked by O—H...N and N—H...O hydrogen bonds forming layers parallel to (001. These layers are linked via C—H...O hydrogen bonds and a number of weak C—H...π interactions, forming a three-dimensional structure. The crystal was refined as a non-merohedral twin with a minor twin component of 0.319.

  2. Production, purification, crystallization and structure determination of H-1 Parvovirus

    International Nuclear Information System (INIS)

    Halder, Sujata; Nam, Hyun-Joo; Govindasamy, Lakshmanan; Vogel, Michèle; Dinsart, Christiane; Salomé, Nathalie; McKenna, Robert; Agbandje-McKenna, Mavis

    2012-01-01

    The production, purification, crystallization and crystallographic analysis of H-1 Parvovirus, a gene-therapy vector, are reported. Crystals of H-1 Parvovirus (H-1PV), an antitumor gene-delivery vector, were obtained for DNA-containing capsids and diffracted X-rays to 2.7 Å resolution using synchrotron radiation. The crystals belonged to the monoclinic space group P2 1 , with unit-cell parameters a = 255.4, b = 350.4, c = 271.6 Å, β = 90.34°. The unit cell contained two capsids, with one capsid per crystallographic asymmetric unit. The H-1PV structure has been determined by molecular replacement and is currently being refined

  3. Band structure and optical properties of diglycine nitrate crystal

    International Nuclear Information System (INIS)

    Andriyevsky, Bohdan; Ciepluch-Trojanek, Wioleta; Romanyuk, Mykola; Patryn, Aleksy; Jaskolski, Marcin

    2005-01-01

    Experimental and theoretical investigations of the electron energy characteristics and optical spectra for diglycine nitrate crystal (DGN) (NH 2 CH 2 COOH) 2 .HNO 3 , in the paraelectric phase (T=295K) are presented. Spectral dispersion of light reflection R(E) have been measured in the range of 3-22eV and the optical functions n(E) and k(E) have been calculated using Kramers-Kronig relations. First principal calculations of the electron energy characteristic and optical spectra of DGN crystal have been performed in the frame of density functional theory using CASTEP code (CAmbridge Serial Total Energy Package). Optical transitions forming the low-energy edge of fundamental absorption are associated with the nitrate groups NO 3 . Peculiarities of the band structure and DOS projected onto glycine and NO 3 groups confirm the molecular character of DGN crystal

  4. First principles investigation of the structure of a bacteriochlorophyll crystal

    Energy Technology Data Exchange (ETDEWEB)

    Marchi, M. [Max-Planck-Institut fuer Festkoerperforschung, Stuttgart (Germany)]|[Centre d`Etudes Saclay, Gif-sur-Yvette (France); Hutter, J.; Parrinello, M. [Max-Planck-Institut fuer Festkoerperforschung, Stuttgart (Germany)

    1996-08-21

    In this communication we present an ab initio study of the crystal of methyl bacteriophorbide (MeBPheo) a, a bacteriochlorophyll derivative, and high-precision structure of which is available. Our main purpose has been to investigate the viability of the technique toward complex molecular systems relevant to biologically important phenomena, in this particular case photosynthesis. Here we present the following results: First, we show that DFT is capable of calculating nuclear positions in excellent agreement with the experimental X-ray structure. Second, the calculated electronic density of the HOMO orbital reveals a {pi} type bond between rings I and III, consistent with the one-dimensional chain structure of the MeBPheo a molecules in the crystal. Finally, after performing the optimization of the molecular geometry with one electron in the LUMO state, we find localized bond length changes near the ring II of the MeBPheo a. 19 refs., 3 figs.

  5. High-brightness tapered laser diodes with photonic crystal structures

    Science.gov (United States)

    Li, Yi; Du, Weichuan; Kun, Zhou; Gao, Songxin; Ma, Yi; Tang, Chun

    2018-02-01

    Beam quality of tapered laser diodes is limited by higher order lateral mode. On purpose of optimizing the brightness of tapered laser diodes, we developed a novel design of tapered diodes. This devices based on InGaAs/AlGaAs asymmetry epitaxial structure, containing higher order lateral mode filtering schemes especially photonic crystal structures, which fabricated cost effectively by using standard photolithography and dry etch processes. Meanwhile, the effects of photonic crystal structures on mode control are also investigated theoretically by FDBPM (Finite-Difference Beam Propagation Method) calculation. We achieved a CW optical output power of 6.9W at 940nm for a single emitter with 4 mm cavity length. A nearly diffraction limited beam of M2 ≍1.9 @ 0.5W has been demonstrated, and a highest brightness of β =75MW/(cm2 ·sr) was reached.

  6. Crystal structure and thermal behavior of KB3O6

    International Nuclear Information System (INIS)

    Bubnova, R.S.; Fundamenskij, V.S.; Filatov, S.K.; Polyakova, I.G.

    2004-01-01

    The structure of potassium triborate prepared in metastable state by crystallization from melt at ∼ 800 deg C was studied by the method of X-ray diffraction analysis. It was ascertained that KB 3 O 6 belongs to monoclinic crystal system, space group P2 1 /c, a = 9.319(1), b = 6.648(1), c = 21.094(2) A, β = 94.38(1) deg, Z = 12. The compound is referred to a new structural type. Anion of the structure is a single boron-oxygen frame formed by three independent rigid triborate rings of [B 3 O 5 ] - , each of them consisting of two BO 3 triangles and BO 4 tetrahedron. Phase transformations during KB 3 O 6 heating up to 800 deg C, as well as thermal expansion in the range of 20-650 deg C, were studied [ru

  7. The crystal structure and the phase transitions of pyridinium trifluoromethanesulfonate

    International Nuclear Information System (INIS)

    Jesariew, Dominik; Ilczyszyn, Maria M; Pietraszko, Adam

    2014-01-01

    The calorimetric and optical studies and the structural properties of pyridinium trifluoromethanesulfonate (abbreviated as PyHOTf) are reported. A sequence of four fully reversible solid–solid phase transitions, at 223.0, 309.0, 359.9 and 394.3 K, has been discovered. The phase transition sequence was confirmed by x-ray diffraction data. The crystal structures of three phases (V, IV and III) have been determined from the single crystal x-ray diffraction data. Structural properties of the high temperature phases are characterized using powder x-ray diffraction data measured in the 290–425 K temperature range. The structural changes triggered by the temperature change are discussed in relation to the phase transitions. Two low temperature phases (V and IV) belong to the P4 3 2 1 2 space group of the tetragonal system. The intermediate phases (III and II) are monoclinic and the prototype high temperature phase (I) is a pseudo-cubic (tetragonal) one. The low temperature phases (V and IV) are well ordered. The crystal structure of intermediate (III and II) and prototype (I) phases are characterized by high disorder of the pyridinium cations and triflate anions. (papers)

  8. Molecular Complex of Lumiflavin and 2-Aminobenzoic Acid : Crystal Structure, Crystal Spectra, and Solution Properties

    OpenAIRE

    Shieh, Huey-Sheng; Ghisla, Sandro; Hanson, Louise Karle; Ludwig, Martha L.; Nordman, Christer E.

    1981-01-01

    The molecular complex lumiflavin-2-aminobenzoic acid monohydrate (C13H12N402●C7H7N02●H2O)crystallizes from aqueous solution as red triclinic prisms. The space group is P1 with cell dimensions a = 9.660 A, b = 14.866 Å, c = 7.045 Å, α = 95.44°, β = 95.86°, and γ = 105.66°. The crystal structure was solved by direct methods and refined by block-diagonal least-squares procedures to an R value of 0.050 on the basis of 1338 observed reflections. The structure is composed of stacks of alternating l...

  9. Crystal structure and packing analysis of nitrofurantoin N,N-dimethylformamide solvate

    Energy Technology Data Exchange (ETDEWEB)

    Cvetkovski, A., E-mail: aleksandar.cvetkovski@ugd.edu.mk [University Goce Delcev, Faculty of Medical Sciences, Krste Misirkov bb (Macedonia, The Former Yugoslav Republic of); Ferretti, V. [University of Ferrara, Department of Chemical and Pharmaceutical Sciences (Italy)

    2016-07-15

    The N, N′-dimethylformamide solvated crystal of the drug nitrofurantoin has been prepared and analysed by single-crystal X-ray diffraction. The two co-crystallized molecules, in the 1 : 1 stoichiometric ratio, are linked by a medium/strong N–H···O hydrogen bond (N···O is 2.759 (3) Å) and a weaker C–H···O interaction to form isolated supramolecular adducts, that in turn are packed into the lattice framework mainly through C–H···O hydrogen bonds. Two-dimensional fingerprint plots of Hirshfeld surfaces are used to visualize, analyze and compare intermolecular interactions found in the title compound and in similar structures.

  10. A database structure for radiological optimization analyses of decommissioning operations

    International Nuclear Information System (INIS)

    Zeevaert, T.; Van de Walle, B.

    1995-09-01

    The structure of a database for decommissioning experiences is described. Radiological optimization is a major radiation protection principle in practices and interventions, involving radiological protection factors, economic costs, social factors. An important lack of knowledge with respect to these factors exists in the domain of the decommissioning of nuclear power plants, due to the low number of decommissioning operations already performed. Moreover, decommissioning takes place only once for a installation. Tasks, techniques, and procedures are in most cases rather specific, limiting the use of past experiences in the radiological optimization analyses of new decommissioning operations. Therefore, it is important that relevant data or information be acquired from decommissioning experiences. These data have to be stored in a database in a way they can be used efficiently in ALARA analyses of future decommissioning activities

  11. Crystal structure of human protein kinase CK2

    DEFF Research Database (Denmark)

    Niefind, K; Guerra, B; Ermakowa, I

    2001-01-01

    The crystal structure of a fully active form of human protein kinase CK2 (casein kinase 2) consisting of two C-terminally truncated catalytic and two regulatory subunits has been determined at 3.1 A resolution. In the CK2 complex the regulatory subunits form a stable dimer linking the two catalyt...... as a docking partner for various protein kinases. Furthermore it shows an inter-domain mobility in the catalytic subunit known to be functionally important in protein kinases and detected here for the first time directly within one crystal structure.......The crystal structure of a fully active form of human protein kinase CK2 (casein kinase 2) consisting of two C-terminally truncated catalytic and two regulatory subunits has been determined at 3.1 A resolution. In the CK2 complex the regulatory subunits form a stable dimer linking the two catalytic...... subunits, which make no direct contact with one another. Each catalytic subunit interacts with both regulatory chains, predominantly via an extended C-terminal tail of the regulatory subunit. The CK2 structure is consistent with its constitutive activity and with a flexible role of the regulatory subunit...

  12. Crystal structure optimisation using an auxiliary equation of state

    Science.gov (United States)

    Jackson, Adam J.; Skelton, Jonathan M.; Hendon, Christopher H.; Butler, Keith T.; Walsh, Aron

    2015-11-01

    Standard procedures for local crystal-structure optimisation involve numerous energy and force calculations. It is common to calculate an energy-volume curve, fitting an equation of state around the equilibrium cell volume. This is a computationally intensive process, in particular, for low-symmetry crystal structures where each isochoric optimisation involves energy minimisation over many degrees of freedom. Such procedures can be prohibitive for non-local exchange-correlation functionals or other "beyond" density functional theory electronic structure techniques, particularly where analytical gradients are not available. We present a simple approach for efficient optimisation of crystal structures based on a known equation of state. The equilibrium volume can be predicted from one single-point calculation and refined with successive calculations if required. The approach is validated for PbS, PbTe, ZnS, and ZnTe using nine density functionals and applied to the quaternary semiconductor Cu2ZnSnS4 and the magnetic metal-organic framework HKUST-1.

  13. Crystal structure optimisation using an auxiliary equation of state

    International Nuclear Information System (INIS)

    Jackson, Adam J.; Skelton, Jonathan M.; Hendon, Christopher H.; Butler, Keith T.; 3 Institute and Department of Materials Science and Engineering, Yonsei University, Seoul 120-749 (Korea, Republic of))" data-affiliation=" (Centre for Sustainable Chemical Technologies and Department of Chemistry, University of Bath, Claverton Down, Bath BA2 7AY (United Kingdom); Global E3 Institute and Department of Materials Science and Engineering, Yonsei University, Seoul 120-749 (Korea, Republic of))" >Walsh, Aron

    2015-01-01

    Standard procedures for local crystal-structure optimisation involve numerous energy and force calculations. It is common to calculate an energy–volume curve, fitting an equation of state around the equilibrium cell volume. This is a computationally intensive process, in particular, for low-symmetry crystal structures where each isochoric optimisation involves energy minimisation over many degrees of freedom. Such procedures can be prohibitive for non-local exchange-correlation functionals or other “beyond” density functional theory electronic structure techniques, particularly where analytical gradients are not available. We present a simple approach for efficient optimisation of crystal structures based on a known equation of state. The equilibrium volume can be predicted from one single-point calculation and refined with successive calculations if required. The approach is validated for PbS, PbTe, ZnS, and ZnTe using nine density functionals and applied to the quaternary semiconductor Cu 2 ZnSnS 4 and the magnetic metal-organic framework HKUST-1

  14. Crystal structure optimisation using an auxiliary equation of state

    Energy Technology Data Exchange (ETDEWEB)

    Jackson, Adam J.; Skelton, Jonathan M.; Hendon, Christopher H.; Butler, Keith T. [Centre for Sustainable Chemical Technologies and Department of Chemistry, University of Bath, Claverton Down, Bath BA2 7AY (United Kingdom); Walsh, Aron, E-mail: a.walsh@bath.ac.uk [Centre for Sustainable Chemical Technologies and Department of Chemistry, University of Bath, Claverton Down, Bath BA2 7AY (United Kingdom); Global E" 3 Institute and Department of Materials Science and Engineering, Yonsei University, Seoul 120-749 (Korea, Republic of)

    2015-11-14

    Standard procedures for local crystal-structure optimisation involve numerous energy and force calculations. It is common to calculate an energy–volume curve, fitting an equation of state around the equilibrium cell volume. This is a computationally intensive process, in particular, for low-symmetry crystal structures where each isochoric optimisation involves energy minimisation over many degrees of freedom. Such procedures can be prohibitive for non-local exchange-correlation functionals or other “beyond” density functional theory electronic structure techniques, particularly where analytical gradients are not available. We present a simple approach for efficient optimisation of crystal structures based on a known equation of state. The equilibrium volume can be predicted from one single-point calculation and refined with successive calculations if required. The approach is validated for PbS, PbTe, ZnS, and ZnTe using nine density functionals and applied to the quaternary semiconductor Cu{sub 2}ZnSnS{sub 4} and the magnetic metal-organic framework HKUST-1.

  15. DMPD: Structural and functional analyses of bacterial lipopolysaccharides. [Dynamic Macrophage Pathway CSML Database

    Lifescience Database Archive (English)

    Full Text Available 12106784 Structural and functional analyses of bacterial lipopolysaccharides. Carof...html) (.csml) Show Structural and functional analyses of bacterial lipopolysaccharides. PubmedID 12106784 Title Structural and functi...onal analyses of bacterial lipopolysaccharides. Authors

  16. CRYSTAL AND MOLECULAR STRUCTURE OF 5-NITROPIRIDINE PIPERIDINE-SULFENAMIDE

    OpenAIRE

    Brito, Iván; León, Yasna; Arias, Mauricio; Vargas, Danitza; Carmona, Francisco; Ramírez, Eduardo; Restovic, Ambrosio; Cárdenas, Alejandro; Wittke, Oscar; López-Rodríguez, Matías

    2002-01-01

    The crystal and molecular structure of 5-nitropiridine piperidine-sulfenamide, C10H13N3O2 S is described and compared with other sulfenamides and with other similar compounds. This structure belongs to a type of divalent sulphur compound and crystallizes in the orthorhombic space group Pnma with a= 27.810(4), b=6.797(1), c=6.110(1)Å, and Dx =1.376 g cm-3 with Z=4. The S-N bond distance of 1.699(4) Å is shorter than a single S-N bond [1.74 Å]. The NO2-(C6H3N)-S-N(C 5H10) molecule lies on a cry...

  17. Parallelization for X-ray crystal structural analysis program

    Energy Technology Data Exchange (ETDEWEB)

    Watanabe, Hiroshi [Japan Atomic Energy Research Inst., Tokyo (Japan); Minami, Masayuki; Yamamoto, Akiji

    1997-10-01

    In this report we study vectorization and parallelization for X-ray crystal structural analysis program. The target machine is NEC SX-4 which is a distributed/shared memory type vector parallel supercomputer. X-ray crystal structural analysis is surveyed, and a new multi-dimensional discrete Fourier transform method is proposed. The new method is designed to have a very long vector length, so that it enables to obtain the 12.0 times higher performance result that the original code. Besides the above-mentioned vectorization, the parallelization by micro-task functions on SX-4 reaches 13.7 times acceleration in the part of multi-dimensional discrete Fourier transform with 14 CPUs, and 3.0 times acceleration in the whole program. Totally 35.9 times acceleration to the original 1CPU scalar version is achieved with vectorization and parallelization on SX-4. (author)

  18. Band structure and optical properties of opal photonic crystals

    Science.gov (United States)

    Pavarini, E.; Andreani, L. C.; Soci, C.; Galli, M.; Marabelli, F.; Comoretto, D.

    2005-07-01

    A theoretical approach for the interpretation of reflectance spectra of opal photonic crystals with fcc structure and (111) surface orientation is presented. It is based on the calculation of photonic bands and density of states corresponding to a specified angle of incidence in air. The results yield a clear distinction between diffraction in the direction of light propagation by (111) family planes (leading to the formation of a stop band) and diffraction in other directions by higher-order planes (corresponding to the excitation of photonic modes in the crystal). Reflectance measurements on artificial opals made of self-assembled polystyrene spheres are analyzed according to the theoretical scheme and give evidence of diffraction by higher-order crystalline planes in the photonic structure.

  19. An arc detector for neutron crystal structure investigations

    Energy Technology Data Exchange (ETDEWEB)

    Habib, N [Reactor and Neutron Physics Dept., Nuclear Research Center. AEA, Cairo (Egypt)

    1997-12-31

    An arc detector for neutron structure investigations of powder crystals using time-of-flight technique is described. In order to enable the measurement of integral intensity from about 1/4 of the Debye-Scherrer ring and for simplicity reasons, the scattering angle 20-90 degree was chosen and a special arc collimator was built. The arc collimator-detector had a divergency of about 20 minutes of arc, and the distance between detector-sample was 64 cm. Four {sup 3} He detectors were fixed on the arc of the collimator. Both efficiency and space sensitivity of the detector were determined using a point neutron source. Results of measurements show that parameters of the arc detector are acceptable for high resolution crystal structure investigations. 6 figs.

  20. Crystal structure of N′-hydroxypyrimidine-2-carboximidamide

    Directory of Open Access Journals (Sweden)

    Nithianantham Jeeva Jasmine

    2014-10-01

    Full Text Available The title compound, C5H6N4O, is approximately planar, with an angle of 11.04 (15° between the planes of the pyrimidine ring and the non-H atoms of the carboximidamide unit. The molecule adopts an E configuration about the C=N double bond. In the crystal, adjacent molecules are linked by pairs of N—H...O hydrogen bonds, forming inversion dimers with an R22(10 ring motif. The dimers are further linked via N—H...N and O—H...N hydrogen bonds into a sheet structure parallel to the ac plane. The crystal structure also features N—H...O and weak C—H...O hydrogen bonds and offset π–π stacking interactions between adjacent pyrimidine rings [centroid–centroid distance = 3.622 (1 Å].

  1. CCDC 1515632: Experimental Crystal Structure Determination : hexakis(dimethyl sulfoxide)-manganese(ii) tetraiodide

    KAUST Repository

    Haque, M.A.; Davaasuren, Bambar; Rothenberger, Alexander; Wu, Tao

    2016-01-01

    An entry from the Cambridge Structural Database, the world’s repository for small molecule crystal structures. The entry contains experimental data from a crystal diffraction study. The deposited dataset for this entry is freely available from

  2. CCDC 1475929: Experimental Crystal Structure Determination : trimethylammonium tribromo-tin(iv)

    KAUST Repository

    Dang, Yangyang; Zhong, Cheng; Zhang, Guodong; Ju, Dianxing; Wang, Lei; Xia, Shengqing; Xia, Haibing; Tao, Xutang

    2016-01-01

    An entry from the Cambridge Structural Database, the world’s repository for small molecule crystal structures. The entry contains experimental data from a crystal diffraction study. The deposited dataset for this entry is freely available from

  3. CCDC 1475930: Experimental Crystal Structure Determination : trimethylammonium trichloro-tin(iv)

    KAUST Repository

    Dang, Yangyang; Zhong, Cheng; Zhang, Guodong; Ju, Dianxing; Wang, Lei; Xia, Shengqing; Xia, Haibing; Tao, Xutang

    2016-01-01

    An entry from the Cambridge Structural Database, the world’s repository for small molecule crystal structures. The entry contains experimental data from a crystal diffraction study. The deposited dataset for this entry is freely available from

  4. CCDC 1475931: Experimental Crystal Structure Determination : trimethylammonium trichloro-tin(iv)

    KAUST Repository

    Dang, Yangyang; Zhong, Cheng; Zhang, Guodong; Ju, Dianxing; Wang, Lei; Xia, Shengqing; Xia, Haibing; Tao, Xutang

    2016-01-01

    An entry from the Cambridge Structural Database, the world’s repository for small molecule crystal structures. The entry contains experimental data from a crystal diffraction study. The deposited dataset for this entry is freely available from

  5. CCDC 1482638: Experimental Crystal Structure Determination : trimethylammonium trichloro-tin(iv)

    KAUST Repository

    Dang, Yangyang; Zhong, Cheng; Zhang, Guodong; Ju, Dianxing; Wang, Lei; Xia, Shengqing; Xia, Haibing; Tao, Xutang

    2016-01-01

    An entry from the Cambridge Structural Database, the world’s repository for small molecule crystal structures. The entry contains experimental data from a crystal diffraction study. The deposited dataset for this entry is freely available from

  6. Potassium and magnesium succinatouranilates – Synthesis and crystal structure

    Energy Technology Data Exchange (ETDEWEB)

    Novikov, S.A., E-mail: serg.alex.novikov@gmail.com [Samara National Research University, 443086 Samara (Russian Federation); Grigoriev, M.S. [Frumkin Institute of Physical Chemistry and Electrochemistry RAS, 119071 Moscow (Russian Federation); Serezhkina, L.B.; Serezhkin, V.N. [Samara National Research University, 443086 Samara (Russian Federation)

    2017-04-15

    Single crystal X-ray diffraction has been applied to determine the structures of two new uranyl coordination polymers: K{sub 2}[(UO{sub 2}){sub 2}(C{sub 4}H{sub 4}O{sub 4}){sub 3}] (1) and [Mg(H{sub 2}O){sub 6}] [(UO{sub 2}){sub 2}(C{sub 4}H{sub 4}O{sub 4}){sub 3}]·2H{sub 2}O (2), where C{sub 4}H{sub 4}O{sub 4}{sup 2-} is succinate anion. Crystals of 1 and 2 contain polymeric complex anions [(UO{sub 2}){sub 2}(C{sub 4}H{sub 4}O{sub 4}){sub 3}]{sup 2-} with the same A{sub 2}Q{sup 02}{sub 3} crystallochemical formula (A=UO{sub 2}{sup 2+}, Q{sup 02}=C{sub 4}O{sub 4}H{sub 4}{sup 2-}), and have layered (1) or chain (2) structure. It has been found, that conformation of succinate ions is one of the factors, which affects the structure of [(UO{sub 2}){sub 2}(C{sub 4}H{sub 4}O{sub 4}){sub 3}]{sup 2-} anions. IR spectra of these new compounds are in good agreement with crystallographic data. Topological analysis of the uranium dicarboxylates with A{sub 2}Q{sup 02}{sub 3} crystallochemical formula has shown the presence of five isomers which differ from each other in coordination sequences and / or dimensionality. - Graphical abstract: Crystal structures of two new uranium(VI) coordination polymers with succinate linkers, namely K{sub 2}[(UO{sub 2}){sub 2}(C{sub 4}H{sub 4}O{sub 4}){sub 3}] (1) and [Mg(H{sub 2}O){sub 6}][(UO{sub 2}){sub 2}(C{sub 4}H{sub 4}O{sub 4}){sub 3}]·2H{sub 2}O (2), were determined by single-crystal XRD. Crystals of studied compounds are based on 2D or 1D structural units with the same composition and crystallochemical formula. Topological isomerism in A{sub 2}Q{sup 02}{sub 3} crystallochemical group and conformations of succinate anions in uranyl complexes are under discussion. - Highlights: • Two new uranium coordination polymers were synthesized. • Their structural units have the same composition and crystallochemical formula. • In spite the same composition and CCF dimensionality of units is different. • Structural features of uranyl CPs

  7. Crystal Structure of the Human Laminin Receptor Precursor

    Energy Technology Data Exchange (ETDEWEB)

    Jamieson,K.; Wu, J.; Hubbard, S.; Meruelo, D.

    2008-01-01

    The human laminin receptor (LamR) interacts with many ligands, including laminin, prions, Sindbis virus, and the polyphenol (-)-epigallocatechin-3-gallate (EGCG), and has been implicated in a number of diseases. LamR is overexpressed on tumor cells, and targeting LamR elicits anti-cancer effects. Here, we report the crystal structure of human LamR, which provides insights into its function and should facilitate the design of novel therapeutics targeting LamR.

  8. Incommensurate composite crystal structure of scandium-II

    International Nuclear Information System (INIS)

    Fujihisa, Hiroshi; Gotoh, Yoshito; Yamawaki, Hiroshi; Sakashita, Mami; Takeya, Satoshi; Honda, Kazumasa; Akahama, Yuichi; Kawamura, Haruki

    2005-01-01

    The long-unknown crystal structure of the high pressure phase scandium-II was solved by powder x-ray diffraction and was found to have tetragonal host channels along the c axis and guest chains that are incommensurate with the host, as well as the high pressure phases of Ba, Sr, Bi, and Sb. The pressure dependences of the lattice constants, the incommensurability, the atomic distances, and the atomic volume were investigated

  9. Band structure and optical properties of opal photonic crystals

    OpenAIRE

    Pavarini, E.; Andreani, L. C.; Soci, C.; Galli, M.; Marabelli, F.; Comoretto, D.

    2005-01-01

    A theoretical approach for the interpretation of reflectance spectra of opal photonic crystals with fcc structure and (111) surface orientation is presented. It is based on the calculation of photonic bands and density of states corresponding to a specified angle of incidence in air. The results yield a clear distinction between diffraction in the direction of light propagation by (111) family planes (leading to the formation of a stop band) and diffraction in other directions by higher-order...

  10. Crystal structures of unsymmetrically mixed β-pyrrole substituted ...

    Indian Academy of Sciences (India)

    NiTPP(Ph)3(CN)5, 3 complex was synthesized and its solvated structure was examined by crystallography. ... sive interactions among the peripheral substituents.28,29 ... 1H NMR spectra of porphyrins were. 1047 ... Single crystals of MTPP(Ph)3Cl5 (M = 2H and Ni(II)) .... by ∼0.3–0.6ppm but β-pyrrole phenyls do not show.

  11. Crystal structure of the sodium-potassium pump

    DEFF Research Database (Denmark)

    Morth, J Preben; Pedersen, Bjørn Panyella; Toustrup-Jensen, Mads S

    2007-01-01

    The Na+,K+-ATPase generates electrochemical gradients for sodium and potassium that are vital to animal cells, exchanging three sodium ions for two potassium ions across the plasma membrane during each cycle of ATP hydrolysis. Here we present the X-ray crystal structure at 3.5 A resolution......-subunit is contained within a pocket between transmembrane helices and seems to be a novel regulatory element controlling sodium affinity, possibly influenced by the membrane potential. Udgivelsesdato: 2007-Dec-13...

  12. Crystal structure studies on plate/shelf like disodium ditungstate

    Indian Academy of Sciences (India)

    Inorganic materials; disodium ditungstate; crystal structure; scanning electron microscopy; X-ray ... generation, and horizontal electric furnace with quartz tube ... Unit cell dimensions: a = 7·22192(11) Е, b = 11·91559(17) Е, c = 14·74755(23) Е. Cell content: 8 Na2W2O7). Atom. Position. X(σ(X)). Y(σ(Y)). Z(σ(Z)). B(σ(B)). W (1).

  13. Crystal structure of the uranyl-oxide mineral rameauite

    Czech Academy of Sciences Publication Activity Database

    Plášil, Jakub; Škoda, R.; Čejka, J.; Bourgoin, V.; Boulliard, J.C.

    2016-01-01

    Roč. 28, č. 5 (2016), s. 959-967 ISSN 0935-1221 R&D Projects: GA MŠk LO1603 EU Projects: European Commission(XE) CZ.2.16/3.1.00/24510 Institutional support: RVO:68378271 Keywords : rameauite * uranyl-oxide hydroxy-hydrate * crystal structure * Raman spectrum Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 1.362, year: 2016

  14. Efficient green luminescence of terbium oxalate crystals: A case study with Judd-Ofelt theory and single crystal structure analysis and the effect of dehydration on luminescence

    Science.gov (United States)

    Alexander, Dinu; Joy, Monu; Thomas, Kukku; Sisira, S.; Biju, P. R.; Unnikrishnan, N. V.; Sudarsanakumar, C.; Ittyachen, M. A.; Joseph, Cyriac

    2018-06-01

    Design and synthesis of Lanthanide based metal organic framework is a frontier area of research owing to their structural diversity enabling specific applications. The luminescence properties of rare earths, tuned by the structural features of Ln-MOFs are investigated extensively. Rare earth oxalates which can be synthesized in a facile method, ensuring the structural features of MOFs with excellent photoluminescence characteristics deserves much attention. This work is the first time report on the single crystal structure and Judd-Ofelt (JO) theoretical analysis - their correlation with the intense and sharp green luminescence of Terbium oxalate crystals. The intense green luminescence observed for Terbium oxalate crystals for a wide range of excitation from DUV to visible region despite the luminescence limiting factors are discussed. The absence of concentration quenching and lifting up of forbidden nature of f-f transitions, allowing direct excitation of Terbium ions is analysed with the help of JO theory and single crystal structure analysis. The JO analysis predicted the asymmetry of Terbium sites, allowing the electric dipole transitions and from the JO intensity parameters, promising spectroscopic parameters - emission cross section, branching ratio, gain band width and gain coefficient of the material were calculated. The single crystal structure analysis revealed the asymmetry of Tb sites and structure of Terbium oxalate is formed by the hydrogen bonded stacking of overlapped six Terbium membered rings connected by the oxalate ligands. The molecularly thick layers thus formed on the crystal surface are imaged by the atomic force microscopy. The presence of water channels in the structure and the effect of lattice water molecules on the luminescence intensity are also investigated.

  15. Growth and structural, optical, and electrical properties of zincite crystals

    Science.gov (United States)

    Kaurova, I. A.; Kuz'micheva, G. M.; Rybakov, V. B.

    2013-03-01

    An X-ray diffraction study of ZnO crystals grown by the hydrothermal method has revealed reflections that give grounds to assign them to the sp. gr. P3 rather than to P63 mc. The distribution of Zn1, Zn2, O1, and O2 over structural positions, along with vacancies and incorporated zinc atoms, explains the dissymmetrization observed in terms of the kinetic (growth) phase transition of the order-disorder type, which is caused by ordering Zn and O atoms over structural positions. The color of crystals of refined compositions (Zn0.975□0.025)Zn i(0.015)(O0.990□0.010) (green) and (Zn0.965□0.035)Zn i(0.035)O (bright green) is related to different oxygen contents, which is confirmed by the results of electron probe X-ray microanalysis and absorption spectroscopy. The degree of the structural quality of crystals, their resistivity, and activation energy are also related to oxygen vacancies.

  16. The Synthesis and Crystal Structure of Two New Hydrazone Compounds

    Directory of Open Access Journals (Sweden)

    Li-Hua Wang

    2016-05-01

    Full Text Available Two new hydrazone compounds, 4-formylimidazole-4-hydroxybenzhydrazone dihydrate (1 and 2-nitrobenzaldehyde-2-furan formylhydrazone (2, were synthesized via the classical synthesis method. Their structure was determined via elemental analysis and X-ray single crystal diffraction analysis. Compound 1 crystallizes in triclinic, space group P-1 with a = 7.0321(14 Å, b = 7.3723(15 Å, c = 13.008(3 Å, α = 98.66(3°, β = 101.69(3°, γ = 92.25(3°, V = 651.2(2 Å3, Z = 2, Dc = 1.358 g·cm−3, μ = 0.106 mm−1, F(000 = 280, and final R1 = 0.0564, wR2 = 0.1420. Compound 2 crystallizes in monoclinic, space group P21/c with a = 17.3618(9 Å, b = 9.1506(4 Å, c = 15.5801(7 Å, β = 104.532(5°, V = 2396.05(19 Å3, Z = 8, Dc = 1.437 g·cm−3, μ = 0.111 mm−1, F(000 = 1072, and final R1 = 0.0633, wR2 = 0.1649. Compound 1 forms a 2D-layered structure via the interactions of 1D chains and Compound 2 forms a 3D network structure via the interactions of 1D chains.

  17. Programmatic conversion of crystal structures into 3D printable files using Jmol

    OpenAIRE

    Scalfani, Vincent F.; Williams, Antony J.; Tkachenko, Valery; Karapetyan, Karen; Pshenichnov, Alexey; Hanson, Robert M.; Liddie, Jahred M.; Bara, Jason E.

    2016-01-01

    Background Three-dimensional (3D) printed crystal structures are useful for chemistry teaching and research. Current manual methods of converting crystal structures into 3D printable files are time-consuming and tedious. To overcome this limitation, we developed a programmatic method that allows for facile conversion of thousands of crystal structures directly into 3D printable files. Results A collection of over 30,000 crystal structures in crystallographic information file (CIF) format from...

  18. Ab initio molecular crystal structures, spectra, and phase diagrams.

    Science.gov (United States)

    Hirata, So; Gilliard, Kandis; He, Xiao; Li, Jinjin; Sode, Olaseni

    2014-09-16

    Conspectus Molecular crystals are chemists' solids in the sense that their structures and properties can be understood in terms of those of the constituent molecules merely perturbed by a crystalline environment. They form a large and important class of solids including ices of atmospheric species, drugs, explosives, and even some organic optoelectronic materials and supramolecular assemblies. Recently, surprisingly simple yet extremely efficient, versatile, easily implemented, and systematically accurate electronic structure methods for molecular crystals have been developed. The methods, collectively referred to as the embedded-fragment scheme, divide a crystal into monomers and overlapping dimers and apply modern molecular electronic structure methods and software to these fragments of the crystal that are embedded in a self-consistently determined crystalline electrostatic field. They enable facile applications of accurate but otherwise prohibitively expensive ab initio molecular orbital theories such as Møller-Plesset perturbation and coupled-cluster theories to a broad range of properties of solids such as internal energies, enthalpies, structures, equation of state, phonon dispersion curves and density of states, infrared and Raman spectra (including band intensities and sometimes anharmonic effects), inelastic neutron scattering spectra, heat capacities, Gibbs energies, and phase diagrams, while accounting for many-body electrostatic (namely, induction or polarization) effects as well as two-body exchange and dispersion interactions from first principles. They can fundamentally alter the role of computing in the studies of molecular crystals in the same way ab initio molecular orbital theories have transformed research practices in gas-phase physical chemistry and synthetic chemistry in the last half century. In this Account, after a brief summary of formalisms and algorithms, we discuss applications of these methods performed in our group as compelling

  19. Growth, structure, Hirshfeld surface and spectroscopic properties of 2-amino-4-hydroxy-6-methylpyrimidinium-2,3-pyrazinedicorboxylate single crystal

    Science.gov (United States)

    Faizan, Mohd; Alam, Mohammad Jane; Afroz, Ziya; Rodrigues, Vítor Hugo Nunes; Ahmad, Shabbir

    2018-03-01

    The present work is focused on the crystal structure, vibrational spectroscopy and DFT calculations of hydrogen bonded 2,3-pyrazinedicorboxylic acid and 2-amino-4-hydroxy-6-methylpyrimidine (PDCA-.AHMP+) crystal. The crystal structure has been determined using single crystal X-ray diffraction analysis which shows that the crystal belongs to monoclinic space group P21/n. The PDCA-.AHMP+ crystal has been characterized by FTIR, FT-Raman and FT-NMR spectroscopic techniques. The FTIR and FT-Raman spectra of the complex have unique spectroscopic feature as compared with those of the starting material to confirm salt formation. The theoretical vibrational studies have been performed to understand the modes of the vibrations of asymmetric unit of the complex by DFT methods. Hirschfeld surface and 2D fingerprint plots analyses were carried out to investigate the intermolecular interactions and its contribution in the building of PDCA-.AHMP+ crystal. The experimental and simulated 13C and 1H NMR studies have assisted in structural analysis of PDCA-.AHMP+ crystal. The electronic spectroscopic properties of the complex were explored by the experimental as well as theoretical electronic spectra simulated using TD-DFT/IEF-PCM method at B3LYP/6-311++G (d,p) level of theory. In addition, frontier molecular orbitals, molecular electrostatic potential map (MEP) and nonlinear optical (NLO) properties using DFT method have been also presented.

  20. Analyses of crystal field and exchange interaction of Dy3Ga5O12 under extreme conditions

    International Nuclear Information System (INIS)

    Wang Wei; Qi Xin; Yue Yuan

    2011-01-01

    This paper theoretically investigates the effects of crystal field and exchange interaction field on magnetic properties in dysprosium gallium garnet under extreme conditions (low temperatures and high magnetic fields) based on quantum theory. Here, five sets of crystal field parameters are discussed and compared. It demonstrates that, only considering the crystal field effect, the experiments can not be successfully explained. Thus, referring to the molecular field theory, an effective exchange field associated with the Dy—Dy exchange interaction is further taken into account. Under special consideration of crystal field and the exchange interaction field, it obtains an excellent agreement between the theoretical results and experiments, and further confirms that the exchange interaction field between rare-earth ions has great importance to magnetic properties in paramagnetic rare-earth gallium garnets. (condensed matter: electronic structure, electrical, magnetic, and optical properties)

  1. Molecular complex of lumiflavin and 2-aminobenzoic acid: crystal structure, crystal spectra, and solution properties.

    Science.gov (United States)

    Shieh, H S; Ghisla, S; Hanson, L K; Ludwig, M L; Nordman, C E

    1981-08-04

    The molecular complex lumiflavin-2-aminobenzoic acid monohydrate (C13H12N4O2.C7H7NO2.H2O) crystallizes from from aqueous solution as red triclinic prisms. The space group is P1 with cell dimensions a = 9.660 A, b = 14.866 A, c = 7.045 A, alpha = 95.44 degrees , beta = 95.86 degrees, and gamma = 105.66 degrees . The crystal structure was solved by direct methods and refined by block-diagonal least-squares procedures to an R value of 0.050 on the basis of 1338 observed reflections. The structure is composed of stacks of alternating lumiflavin adn un-ionized (neutral) 2-aminobenzoic acid molecules. Two different modes of stacking interaction are observed. In one, 2-aminobenzoic acid overlaps all three of the isoalloxazine rings, at a mean distance of 3.36 A; in the other, 2-aminobenzoic acid interacts distance of 3.36 A; in the other, 2-aminobenzoic acid interacts with the pyrazine and dimethylbenzene moieties, at a distance of 3.42 A. Perpendicular to the stacking direction, the molecules form a continuous sheet. Each flavin is hydrogen bonded via O(2) and NH(3) to two symmetrically related aminobenzoates; the water of crystallization forms three hydrogen bonds, bridging two flavins, via O(4) and N(5), and one aminobenzoic acid. The red color of the crystals results from a charge-transfer transition involving stacked flavin and 2-aminobenzoic acid. The red color of the crystals results from a charge-transfer transition involving stacked flavin and 2-aminobenzoic acid molecules. Measurements of the polarized optical absorption spectra of crystals show that the transition moment direction for the long wavelength absorbance (beyond 530 nm) contains an out-of-plane component which can only arise from a charge-transfer interaction. Since the amino N does not make exceptionally close interactions with isoalloxazine atoms in either stacking mode (minimum interatomic distance 3.52 A), the charge transfer is presumed to involve pi orbitals of the 2-aminobenzoic acid donor.

  2. Crystal structure of the uranyl-oxide mineral rameauite

    Energy Technology Data Exchange (ETDEWEB)

    Plasil, Jakub [ASCR, Prague (Czech Republic). Inst. of Physics; Skoda, Radek [Masaryk Univ., Brno (Czech Republic). Dept. of Geological Sciences; Cejka, Jiri [National Museum, Prague (Czech Republic). Dept. of Mineralogy and Petrology; Bourgoin, Vincent; Boulliard, Jean-Claude [Pierre et Marie Curie Univ., Paris (France). Association Jean Wyart, Collection des Mineraux de Jussieu

    2016-12-15

    Rameauite is a rare supergene uranyl-oxide hydroxy-hydrate mineral that forms during hydration-oxidation weathering of uraninite. On the basis of single-crystal X-ray diffraction data collected on a microfocus source, rameauite is monoclinic, space group Cc, with a = 13.9458(19), b = 14.3105(19), c = 13.8959(18) Aa, β = 118.477(14) , V = 2437.7(6) Aa{sup 3} and Z = 4, with D{sub calc} = 5.467 g cm{sup -3}. The structure of rameauite (R = 0.060 for 1698 unique observed reflections) contains sheets of the β-U{sub 3}O{sub 8} topology, with both UO{sub 6} and UO{sub 7} bipyramids, which is similar to the sheets found in spriggite, ianthinite and wyartite. The sheets alternate with the interlayer, which contains K{sup +}, Ca{sup 2+} and H{sub 2}O molecules. Interstitial cations are linked into infinite chains that extend along [10-1]. Adjacent sheets are linked through K-O, Ca-O and H-bonds. The structural formula of rameauite is K{sub 2} Ca(H{sub 2}{sup [3]}O){sub 1}(H{sub 2}{sup [5]}O){sub 4}[(UO{sub 2}) {sub 6}O{sub 6}(OH){sub 4}](H{sub 2}{sup [4]}O){sub 1}. The empirical formula obtained from the average of eight electron-microprobe analyses is (on the basi s of 6 U p.f.u.) K{sub 1.87}(Ca{sub 1.10}Sr{sub 0.04}){sub Σ1.14}[(UO 2){sub 6}O{sub 6}(OH){sub 4.15}].6H{sub 2}O. The Raman spectrum is dominate d by U.O and O.H vibrations. A discussion of related uranyl-oxide minerals is given.

  3. Structural integrity analyses: can we manage the advances?

    International Nuclear Information System (INIS)

    Sauve, R.

    2006-01-01

    Engineering has been one of a number of disciplines in which significant advances in analysis procedures has taken place in the last two decades. In particular, advances in computer technology and engineering software have revolutionized the assessment of component structural integrity for a wide range of applications. A significant development in computational mechanics directly related to computer technology that has had a profound impact on the field of structural integrity is the finite element method. The finite element method has re-defined and expanded the role of structural integrity assessments by providing comprehensive modelling capabilities to engineers involved in design and failure analyses. As computer processing speeds and capacity have increased, so has the role of computer modelling in assessments of component structural integrity. With new product development cycles shrinking, the role of initial testing is being reduced in favour of computer modelling and simulation to assess component life and durability. For ageing structures, the evaluation of remaining life and the impact of degraded structural integrity becomes tractable with the modern advances in computational methods. The areas of structural integrity that have derived great benefit from the advances in numerical techniques include stress analysis, fracture mechanics, dynamics, heat transfer, structural reliability, probabilistic methods and continuum mechanics in general. One of the salient features of the current methods is the ability to handle large complex steady state or transient dynamic problems that exhibit highly non-linear behaviour. With the ever-increasing usage of these advanced methods, the question is posed: Can we manage the advances? Better still are we managing the advances? As with all technological advances that enter mainstream use, comes the need for education, training and certification in the application of these methods, improved quality assurance procedures and

  4. Crystal structure of inactive form of Rab3B

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Wei [Hubei Key Laboratory of Genetic Regulation and Integrative Biology, College of Life Science, Huazhong Normal University, Wuhan 430079 (China); Shen, Yang [Structural Genomics Consortium, University of Toronto, 101 College St., Toronto, Ontario, Canada M5G 1L7 (Canada); Jiao, Ronghong [Department of Function Inspection, Hebei Provincial People' s Hospital, Shijiazhuang 050051 (China); Liu, Yanli; Deng, Lingfu [Hubei Key Laboratory of Genetic Regulation and Integrative Biology, College of Life Science, Huazhong Normal University, Wuhan 430079 (China); Qi, Chao, E-mail: qichao@mail.ccnu.edu.cn [Hubei Key Laboratory of Genetic Regulation and Integrative Biology, College of Life Science, Huazhong Normal University, Wuhan 430079 (China)

    2012-02-24

    Highlights: Black-Right-Pointing-Pointer This is the first structural information of human Rab3B. Black-Right-Pointing-Pointer To provides a structural basis for the GDP/GTP switch in controlling the activity of Rab3. Black-Right-Pointing-Pointer The charge distribution of Rab3B indicates its unique roles in vesicular trafficking. -- Abstract: Rab proteins are the largest family of ras-related GTPases in eukaryotic cells. They act as directional molecular switches at membrane trafficking, including vesicle budding, cargo sorting, transport, tethering, and fusion. Here, we generated and crystallized the Rab3B:GDP complex. The structure of the complex was solved to 1.9 A resolution and the structural base comparison with other Rab3 members provides a structural basis for the GDP/GTP switch in controlling the activity of small GTPase. The comparison of charge distribution among the members of Rab3 also indicates their different roles in vesicular trafficking.

  5. Crystal structure of inactive form of Rab3B

    International Nuclear Information System (INIS)

    Zhang, Wei; Shen, Yang; Jiao, Ronghong; Liu, Yanli; Deng, Lingfu; Qi, Chao

    2012-01-01

    Highlights: ► This is the first structural information of human Rab3B. ► To provides a structural basis for the GDP/GTP switch in controlling the activity of Rab3. ► The charge distribution of Rab3B indicates its unique roles in vesicular trafficking. -- Abstract: Rab proteins are the largest family of ras-related GTPases in eukaryotic cells. They act as directional molecular switches at membrane trafficking, including vesicle budding, cargo sorting, transport, tethering, and fusion. Here, we generated and crystallized the Rab3B:GDP complex. The structure of the complex was solved to 1.9 Å resolution and the structural base comparison with other Rab3 members provides a structural basis for the GDP/GTP switch in controlling the activity of small GTPase. The comparison of charge distribution among the members of Rab3 also indicates their different roles in vesicular trafficking.

  6. Facile synthesis of gold nanomaterials with unusual crystal structures.

    Science.gov (United States)

    Fan, Zhanxi; Huang, Xiao; Chen, Ye; Huang, Wei; Zhang, Hua

    2017-11-01

    Gold (Au) nanomaterials have attracted wide research attention, owing to their high chemical stability, promising catalytic properties, excellent biocompatibility, unique electronic structure and outstanding localized surface plasmon resonance (LSPR) absorption properties; all of which are closely related to their size and shape. Recently, crystal-phase-controlled synthesis of noble metal nanomaterials has emerged as a promising strategy to tune their physicochemical properties. This protocol describes the detailed experimental procedures for the crystal-phase-controlled syntheses of Au nanomaterials with unusual crystal structures under mild conditions. Briefly, pure hexagonal close-packed (hcp) Au square sheets (AuSSs) with a thickness of ∼2.4 nm are synthesized using a graphene-oxide-assisted method in which HAuCl 4 is reduced by oleylamine in a mixture of hexane and ethanol. By using pure hexane as the solvent, well-dispersed ultrathin hcp/face-centered cubic (fcc) Au nanowires with a diameter of ∼1.6 nm on graphene oxide can be obtained. Meanwhile, hcp/fcc Au square-like plates with a side length of 200-400 nm are prepared via the secondary growth of Au on the hcp AuSSs. Remarkably, hexagonal (4H) Au nanoribbons with a thickness of 2.0-6.0 nm can be synthesized with a one-pot colloidal method in which HAuCl 4 is reduced by oleylamine in a mixed solvent of hexane and 1,2-dichloropropane. It takes 17-37 h for the synthesis of these Au nanomaterials with unusual crystal structures. Transmission electron microscopy (TEM) and atomic force microscopy (AFM) are used to characterize the resultant Au nanomaterials, which could have many promising applications, such as biosensing, near-IR photothermal therapy, catalysis and surface-enhanced Raman scattering (SERS).

  7. Crystal Structure of the Yeast Nicotinamidase Pnc1p

    OpenAIRE

    Hu, Gang; Taylor, Alexander B.; McAlister-Henn, Lee; Hart, P. John

    2007-01-01

    The yeast nicotinamidase Pnc1p acts in transcriptional silencing by reducing levels of nicotinamide, an inhibitor of the histone deacetylase Sir2p. The Pnc1p structure was determined at 2.9 Å resolution using MAD and MIRAS phasing methods after inadvertent crystallization during the pursuit of the structure of histidine-tagged yeast isocitrate dehydrogenase (IDH). Pnc1p displays a cluster of surface histidine residues likely responsible for its co-fractionation with IDH from Ni2+-coupled chro...

  8. Topological Characterization of Carbon Graphite and Crystal Cubic Carbon Structures.

    Science.gov (United States)

    Siddiqui, Wei Gao Muhammad Kamran; Naeem, Muhammad; Rehman, Najma Abdul

    2017-09-07

    Graph theory is used for modeling, designing, analysis and understanding chemical structures or chemical networks and their properties. The molecular graph is a graph consisting of atoms called vertices and the chemical bond between atoms called edges. In this article, we study the chemical graphs of carbon graphite and crystal structure of cubic carbon. Moreover, we compute and give closed formulas of degree based additive topological indices, namely hyper-Zagreb index, first multiple and second multiple Zagreb indices, and first and second Zagreb polynomials.

  9. Band structures in the nematic elastomers phononic crystals

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Shuai [Department of Mechanics, School of Civil Engineering, Beijing Jiaotong University, Beijing 100044 (China); School of Civil Engineering and Architecture, Anyang Normal University, Anyang 455000 (China); Liu, Ying, E-mail: yliu5@bjtu.edu.cn [Department of Mechanics, School of Civil Engineering, Beijing Jiaotong University, Beijing 100044 (China); Liang, Tianshu [Department of Mechanics, School of Civil Engineering, Beijing Jiaotong University, Beijing 100044 (China)

    2017-02-01

    As one kind of new intelligent materials, nematic elastomers (NEs) represent an exciting physical system that combines the local orientational symmetry breaking and the entropic rubber elasticity, producing a number of unique physical phenomena. In this paper, the potential application of NEs in the band tuning is explored. The band structures in two kinds of NE phononic crystals (PCs) are investigated. Through changing NE intrinsic parameters, the influence of the porosity, director rotation and relaxation on the band structures in NE PCs are analyzed. This work is a meaningful try for application of NEs in acoustic field and proposes a new intelligent strategy in band turning.

  10. Band structures in the nematic elastomers phononic crystals

    International Nuclear Information System (INIS)

    Yang, Shuai; Liu, Ying; Liang, Tianshu

    2017-01-01

    As one kind of new intelligent materials, nematic elastomers (NEs) represent an exciting physical system that combines the local orientational symmetry breaking and the entropic rubber elasticity, producing a number of unique physical phenomena. In this paper, the potential application of NEs in the band tuning is explored. The band structures in two kinds of NE phononic crystals (PCs) are investigated. Through changing NE intrinsic parameters, the influence of the porosity, director rotation and relaxation on the band structures in NE PCs are analyzed. This work is a meaningful try for application of NEs in acoustic field and proposes a new intelligent strategy in band turning.

  11. Synthesis and Single Crystal X-Ray Structure Determination of 3,3',5 ...

    African Journals Online (AJOL)

    Single crystal structure determination at 100 K revealed needle-like crystals in an orthorhombic crystal system. The asymmetric unit of the cell consists of an isolated chloride ion, one half of a tetrahedral [MnCl4]2- anion, a [H2Me4bpz]2+ dication and one half of a molecule of water. Keywords: Crystal Engineering, Hydrogen ...

  12. Defining and systematic analyses of aggregation indices to evaluate degree of calcium oxalate crystal aggregation

    Science.gov (United States)

    Chaiyarit, Sakdithep; Thongboonkerd, Visith

    2017-12-01

    Crystal aggregation is one of the most crucial steps in kidney stone pathogenesis. However, previous studies of crystal aggregation were rarely done and quantitative analysis of aggregation degree was handicapped by a lack of the standard measurement. We thus performed an in vitro assay to generate aggregation of calcium oxalate monohydrate (COM) crystals with various concentrations (25-800 µg/ml) in saturated aggregation buffer. The crystal aggregates were analyzed by microscopic examination, UV-visible spectrophotometry, and GraphPad Prism6 software to define a total of 12 aggregation indices (including number of aggregates, aggregated mass index, optical density, aggregation coefficient, span, number of aggregates at plateau time-point, aggregated area index, aggregated diameter index, aggregated symmetry index, time constant, half-life, and rate constant). The data showed linear correlation between crystal concentration and almost all of these indices, except only for rate constant. Among these, number of aggregates provided the greatest regression coefficient (r=0.997; pr=0.993; pr=‑0.993; pr=0.991; p<0.001 for both). These five indices are thus recommended as the most appropriate indices for quantitative analysis of COM crystal aggregation in vitro.

  13. Crystal structures of two eukaryotic nucleases involved in RNA metabolism

    DEFF Research Database (Denmark)

    Jonstrup, Anette Thyssen; Midtgaard, Søren Fuglsang; Van, Lan Bich

    RNA serves a number of functions in the cell: mRNAs are the carriers of information between gene and protein, tRNAs and rRNAs are involved in the synthesis of proteins, whereas a number of additional RNA species are responsible for other functions in the cell. The quality of the different RNAs...... RNAs. We have solved the structures of two nucleases involved in 3'-5' degradation of RNA; the S. pombe Pop2p and the S. cerevisiae Rrp6p. Pop2p is part of the main cytoplasmatic deadenylation complex in yeast, which also contains the nuclease Ccr4p. Deadenylation, where the poly(A)-tail is removed...... specific transcripts. Here, we present the crystal structure of the S. pombe Pop2p protein to 1.4 Å resolution. The high resolution structure provides a clear picture of the active site architecture. Structural alignment of single nucleotides and poly(A)-oligonucleotides from earlier co-crystal structures...

  14. The crystal structure of human GDP-L-fucose synthase.

    Science.gov (United States)

    Zhou, Huan; Sun, Lihua; Li, Jian; Xu, Chunyan; Yu, Feng; Liu, Yahui; Ji, Chaoneng; He, Jianhua

    2013-09-01

    Human GDP-l-fucose synthase, also known as FX protein, synthesizes GDP-l-fucose from its substrate GDP-4-keto-6-deoxy-d-mannose. The reaction involves epimerization at both C-3 and C-5 followed by an NADPH-dependent reduction of the carbonyl at C-4. In this paper, the first crystal structure of human FX protein was determined at 2.37 Å resolution. The asymmetric unit of the crystal structure contains four molecules which form two homodimers. Each molecule consists of two domains, a Rossmann-fold NADPH-binding motif and a carboxyl terminal domain. Compared with the Escherichia coli GDP-l-fucose synthase, the overall structures of these two enzymes have four major differences. There are four loops in the structure of human FX protein corresponding to two α-helices and two β-sheets in that of the E. coli enzyme. Besides, there are seven different amino acid residues binding with NAPDH comparing human FX protein with that from E. coli. The structure of human FX reveals the key catalytic residues and could be useful for the design of drugs for the treatment of inflammation, auto-immune diseases, and possibly certain types of cancer.

  15. Relation between photochromic properties and molecular structures in salicylideneaniline crystals.

    Science.gov (United States)

    Johmoto, Kohei; Ishida, Takashi; Sekine, Akiko; Uekusa, Hidehiro; Ohashi, Yuji

    2012-06-01

    The crystal structures of the salicylideneaniline derivatives N-salicylidene-4-tert-butyl-aniline (1), N-3,5-di-tert-butyl-salicylidene-3-methoxyaniline (2), N-3,5-di-tert-butyl-salicylidene-3-bromoaniline (3), N-3,5-di-tert-butyl-salicylidene-3-chloroaniline (4), N-3,5-di-tert-butyl-salicylidene-4-bromoaniline (5), N-3,5-di-tert-butyl-salicylidene-aniline (6), N-3,5-di-tert-butyl-salicylidene-4-carboxyaniline (7) and N-salicylidene-2-chloroaniline (8) were analyzed by X-ray diffraction analysis at ambient temperature to investigate the relationship between their photochromic properties and molecular structures. A clear correlation between photochromism and the dihedral angle of the two benzene rings in the salicylideneaniline derivatives was observed. Crystals with dihedral angles less than 20° were non-photochromic, whereas those with dihedral angles greater than 30° were photochromic. Crystals with dihedral angles between 20 and 30° could be either photochromic or non-photochromic. Inhibition of the pedal motion by intra- or intermolecular steric hindrance, however, can result in non-photochromic behaviour even if the dihedral angle is larger than 30°.

  16. Crystal structure of bile salt hydrolase from Lactobacillus salivarius.

    Science.gov (United States)

    Xu, Fuzhou; Guo, Fangfang; Hu, Xiao Jian; Lin, Jun

    2016-05-01

    Bile salt hydrolase (BSH) is a gut-bacterial enzyme that negatively influences host fat digestion and energy harvesting. The BSH enzyme activity functions as a gateway reaction in the small intestine by the deconjugation of glycine-conjugated or taurine-conjugated bile acids. Extensive gut-microbiota studies have suggested that BSH is a key mechanistic microbiome target for the development of novel non-antibiotic food additives to improve animal feed production and for the design of new measures to control obesity in humans. However, research on BSH is still in its infancy, particularly in terms of the structural basis of BSH function, which has hampered the development of BSH-based strategies for improving human and animal health. As an initial step towards the structure-function analysis of BSH, C-terminally His-tagged BSH from Lactobacillus salivarius NRRL B-30514 was crystallized in this study. The 1.90 Å resolution crystal structure of L. salivarius BSH was determined by molecular replacement using the structure of Clostridium perfringens BSH as a starting model. It revealed this BSH to be a member of the N-terminal nucleophile hydrolase superfamily. Crystals of apo BSH belonged to space group P21212, with unit-cell parameters a = 90.79, b = 87.35, c = 86.76 Å (PDB entry 5hke). Two BSH molecules packed perfectly as a dimer in one asymmetric unit. Comparative structural analysis of L. salivarius BSH also identified potential residues that contribute to catalysis and substrate specificity.

  17. SYNTHESIS, CHARACTERIZATION AND CRYSTAL STRUCTURE OF BIS-(2-HYDROXYBENZALDEHYDEDIAMINOGUANIZONE

    Directory of Open Access Journals (Sweden)

    Diana Dragancea, Vladimir B. Arion, Sergiu Shova

    2008-12-01

    Full Text Available The new ligand, bis(2-hydroxybenzaldehydediaminoguanizone (1 has been synthesized and characterized by elemental analysis, IR and 1H NMR spectroscopies. The crystal structure of the compound was determined by X-ray diffraction. The ligand C15H15N5O2·C2H5OH crystallizes in the monoclinic space group P21/c with unit cell parameters a = 8.9102(3, b = 10.0357(3, c = 19.7618(6 Å, β = 98.385(2°, Z = 4, V = 1748.21(9 Å3, R1 = 0.040. The amino form of the ligand adopts a planar conformation stabilized by two intramolecular hydrogen bonds of the type O–H···N, in which the H atoms of the central amino group are directed to the lone-pair regions of the azomethine nitrogen atoms.

  18. Crystal structures and conformers of CyMe4-BTBP

    Directory of Open Access Journals (Sweden)

    Lyczko Krzysztof

    2015-12-01

    Full Text Available The crystal structure of new conformation of the CyMe4-BTBP ligand (ttc has been presented. The ttt conformer of this compound in a form of THF solvate has been also crystallized. The geometries of six possible conformations (ttt, ttc, tct, tcc, ctc and ccc of the CyMe4-BTBP ligand have been modeled in the gas phase and in solutions (MeOH and H2O by DFT calculations using B3LYP/6-31G(d,p method. According to the calculations, in the three different media the conformers with trans orientation of the N atoms in the bipyridyl moiety are the most stable.

  19. Crystal structure of dichloridobis(dimethyl N-cyanodithioiminocarbonatecobalt(II

    Directory of Open Access Journals (Sweden)

    Mouhamadou Birame Diop

    2016-01-01

    Full Text Available The structure of the mononuclear title complex, [{(H3CS2C=NC[triple-bond] N}2CoCl2], consists of a CoII atom coordinated in a distorted tetrahedral manner by two Cl− ligands and the terminal N atoms of two dimethyl N-cyanodithioiminocarbonate ligands. The two organic ligands are almost coplanar, with a dihedral angle of 5.99 (6° between their least-squares planes. The crystal packing features pairs of inversion-related complexes that are held together through C—H...Cl and C—H...S interactions and π–π stacking [centroid-to-centroid distance = 3.515 (su? Å]. Additional C—H...Cl and C—H...S interactions, as well as Cl...S contacts < 3.6 Å, consolidate the crystal packing.

  20. Crystal Structure of Na3MoCl6

    Directory of Open Access Journals (Sweden)

    Martin Beran

    2011-07-01

    Full Text Available The ternary chloride Na3MoCl6 is obtained as red crystals from a disproportionation reaction of molybdenum dichloride, {Mo6}Cl12, in an acidic NaCl/AlCl3 melt at 350 °C. The crystal structure (trigonal, P-31c, a = 687.1(1, c = 1225.3(2 pm, Z = 2, V = 501,0(1 106 pm3 is that of Na3CrCl6: within a hexagonal closest-packing of chloride ions two thirds of the octahedral voids are filled between the AB double layers with Na+/Mo3+, and between the BA layers with Na+.

  1. Analyses of significant features of L-Prolinium Picrate single crystal: An excellent material for non linear optical applications

    Energy Technology Data Exchange (ETDEWEB)

    Thukral, Kanika [Academy of Scientific and Innovative Research, CSIR- National Physical Laboratory, New Delhi, 110012 (India); CSIR-National Physical Laboratory, Dr. K.S. Krishnan Road, New Delhi, 110 012 (India); Vijayan, N., E-mail: nvijayan@nplindia.org [CSIR-National Physical Laboratory, Dr. K.S. Krishnan Road, New Delhi, 110 012 (India); Vij, Mahak [CSIR-National Physical Laboratory, Dr. K.S. Krishnan Road, New Delhi, 110 012 (India); Nagaraja, C.M. [Department of Chemistry, Indian Institute of Technology Ropar, Rupnagar, 140001, Punjab (India); Jayaramakrishnan, V. [Centro De Investigations En Optica, Loma del Bosque 115, Colonia Lomas del Campestre, León, Guanajuato, Código Postal, 37150 (Mexico); Jayalakshmy, M.S. [International and Inter University Centre for Nanoscience and Nanotechnology, Mahatma Gandhi University, Kottayam, Kerala, 686560 (India); Kant, Rajni [Department of Physics and Electronics, University of Jammu, Jammu Tawi, 180006 (India)

    2017-06-15

    Today the fundamental aspect of the researchers is to explore maximum physical properties of the material for device fabrication. In the present article, single crystal X-ray diffraction has been carried out to verify the formation of the synthesized compound. In addition to that, powder X-ray diffraction has been performed to obtain diffraction pattern of L-Prolinium Picrate single crystal. The strain present inside the single crystal was measured using Hall-Williamson equation from PXRD measurements. The dark current and photon current was obtained from photoconductivity technique whose plot depicted that the sample was negative photoconducting material. Optical homogeneity of the single crystal was analyzed using birefringence technique. Its resistance towards Nd: YAG laser was scrutinized for L-Prolinium Picrate single crystal by applying 1 pulse per second. Different thermal parameters like thermal conductivity, thermal diffusivity, thermal effusivity and specific heat were computed using photo-pyroelectric technique. Solid state parameters were calculated from Clausius Mossotti relation by taking structural information of the title compound. Also, optical parameters like refractive index, reflectance etc were calculated through UV–Vis–NIR analysis. - Highlights: • An optically transparent L-Prolinium Picrate single crystal was harvested from slow evaporation solution growth technique. • The compound shows negative photoconducting nature. • Its optical homogeneity was analyzed using birefringence. • Single shot of laser was applied to sample to measure laser damage threshold value. • The thermal parameters were computed from Photopyroelectric technique.

  2. Crystal structure of homoserine O-acetyltransferase from Leptospira interrogans

    International Nuclear Information System (INIS)

    Wang Mingzhu; Liu Lin; Wang Yanli; Wei Zhiyi; Zhang Ping; Li Yikun; Jiang Xiaohua; Xu Hang; Gong Weimin

    2007-01-01

    Homoserine O-acetyltransferase (HTA, EC 2.3.1.31) initiates methionine biosynthesis pathway by catalyzing the transfer of acetyl group from acetyl-CoA to homoserine. This study reports the crystal structure of HTA from Leptospira interrogans determined at 2.2 A resolution using selenomethionyl single-wavelength anomalous diffraction method. HTA is modular and consists of two structurally distinct domains-a core α/β domain containing the catalytic site and a helical bundle called the lid domain. Overall, the structure fold belongs to α/β hydrolase superfamily with the characteristic 'catalytic triad' residues in the active site. Detailed structure analysis showed that the catalytic histidine and serine are both present in two conformations, which may be involved in the catalytic mechanism for acetyl transfer

  3. Crystal structure of isoflavone reductase from alfalfa (Medicago sativa L.).

    Science.gov (United States)

    Wang, Xiaoqiang; He, Xianzhi; Lin, Jianqiao; Shao, Hui; Chang, Zhenzhan; Dixon, Richard A

    2006-05-19

    Isoflavonoids play important roles in plant defense and exhibit a range of mammalian health-promoting activities. Isoflavone reductase (IFR) specifically recognizes isoflavones and catalyzes a stereospecific NADPH-dependent reduction to (3R)-isoflavanone. The crystal structure of Medicago sativa IFR with deletion of residues 39-47 has been determined at 1.6A resolution. Structural analysis, molecular modeling and docking, and comparison with the structures of other NADPH-dependent enzymes, defined the putative binding sites for co-factor and substrate and potential key residues for enzyme activity and substrate specificity. Further mutagenesis has confirmed the role of Lys144 as a catalytic residue. This study provides a structural basis for understanding the enzymatic mechanism and substrate specificity of IFRs as well as the functions of IFR-like proteins.

  4. Crystal structure and thin film morphology of BBL ladder polymer

    Energy Technology Data Exchange (ETDEWEB)

    Song, H H [Department of Macromolecular Science, Han Nam University, Taejon (Korea, Republic of); Fratini, A V [Department of Chemistry, University of Dayton, Dayton, OH (United States); Chabinyc, M [Department of Chemistry, University of Dayton, Dayton, OH (United States); Price, G E [University of Dayton Research, Dayton, OH (United States); Agrawal, A K [Systran Corporation, Dayton, OH (United States); Wang, C S [University of Dayton Research, Dayton, OH (United States); Burkette, J [University of Dayton Research, Dayton, OH (United States); Dudis, D S [Materials Directorate, Wright Laboratory, Wright-Patterson Air Force Base, OH (United States); Arnold, F E [Materials Directorate, Wright Laboratory, Wright-Patterson Air Force Base, OH (United States)

    1995-03-01

    Crystal structure and morphology of poly[7-oxo-7H-benz(d,e)imidazo(4`,5`:5,6)-benzimidazo(2,1-a)isoquinoline-3,4:10,11-tetrayl-10-carbonyl] (BBL) ladder-like polymer were studied. The polymer forms a two-dimensional lattice of nematic liquid crystalline structure. An orthorhombic unit cell with cell parameters of a=7.87 b=3.37 c=11.97A was determined from the fiber diffraction pattern. In thin films, the rigid chains spontaneously form a layered structure across the film thickness, but in a very unusual manner, i.e. the very large molecular plane is standing perpendicularly to the film surface plane. The results are identical to our recent results of poly(p-phenylene benzobisthiazole) (PBT) film [7]. The polymer, however, lost its anisotropic order upon extrusion into a film and resulted in a fiber-like structure. (orig.)

  5. Structural and morphological characterization of fullerite crystals prepared from the vapor phase

    International Nuclear Information System (INIS)

    Haluska, M.; Fejdi, P.; Vybornov, M.; Kuzmany, H.

    1993-01-01

    Crystal structure, habits and surface structures of fullerite crystals prepared from vapor phase were characterized by X-ray analysis, interfacial angle measurements and optical and scanning electron microscopy (SEM). The study of selected C 60 crystals confirmed the fcc structure at room temperature. The crystal habit is determined by two types of morphological faces, namely {100} and {111}. SEM was used for the observation of thermal etched surfaces. (orig.)

  6. Crystal structure of the Japanese encephalitis virus envelope protein.

    Science.gov (United States)

    Luca, Vincent C; AbiMansour, Jad; Nelson, Christopher A; Fremont, Daved H

    2012-02-01

    Japanese encephalitis virus (JEV) is the leading global cause of viral encephalitis. The JEV envelope protein (E) facilitates cellular attachment and membrane fusion and is the primary target of neutralizing antibodies. We have determined the 2.1-Å resolution crystal structure of the JEV E ectodomain refolded from bacterial inclusion bodies. The E protein possesses the three domains characteristic of flavivirus envelopes and epitope mapping of neutralizing antibodies onto the structure reveals determinants that correspond to the domain I lateral ridge, fusion loop, domain III lateral ridge, and domain I-II hinge. While monomeric in solution, JEV E assembles as an antiparallel dimer in the crystal lattice organized in a highly similar fashion as seen in cryo-electron microscopy models of mature flavivirus virions. The dimer interface, however, is remarkably small and lacks many of the domain II contacts observed in other flavivirus E homodimers. In addition, uniquely conserved histidines within the JEV serocomplex suggest that pH-mediated structural transitions may be aided by lateral interactions outside the dimer interface in the icosahedral virion. Our results suggest that variation in dimer structure and stability may significantly influence the assembly, receptor interaction, and uncoating of virions.

  7. Crystal Structure of Rat Carnitine Palmitoyltransferase II (CPT-II)

    Energy Technology Data Exchange (ETDEWEB)

    Hsiao,Y.; Jogl, G.; Esser, V.; Tong, L.

    2006-01-01

    Carnitine palmitoyltransferase II (CPT-II) has a crucial role in the {beta}-oxidation of long-chain fatty acids in mitochondria. We report here the crystal structure of rat CPT-II at 1.9 Angstroms resolution. The overall structure shares strong similarity to those of short- and medium-chain carnitine acyltransferases, although detailed structural differences in the active site region have a significant impact on the substrate selectivity of CPT-II. Three aliphatic chains, possibly from a detergent that is used for the crystallization, were found in the structure. Two of them are located in the carnitine and CoA binding sites, respectively. The third aliphatic chain may mimic the long-chain acyl group in the substrate of CPT-II. The binding site for this aliphatic chain does not exist in the short- and medium-chain carnitine acyltransferases, due to conformational differences among the enzymes. A unique insert in CPT-II is positioned on the surface of the enzyme, with a highly hydrophobic surface. It is likely that this surface patch mediates the association of CPT-II with the inner membrane of the mitochondria.

  8. Synthesis and crystal structure of chromium-bearing anhydrous wadsleyite

    Science.gov (United States)

    Sirotkina, E. A.; Bindi, L.; Bobrov, A. V.; Aksenov, S. M.; Irifune, T.

    2018-04-01

    A chromium-bearing wadsleyite (Cr- Wad) was synthesized in the model system Mg2SiO4-MgCr2O4 at 14 GPa and 1600 °C and studied from the chemical and structural point of views. Microprobe data gave the formula Mg1.930Cr0.120Si0.945O4, on the basis of 4 oxygen atoms. The crystal structure has been studied by single-crystal X-ray diffraction. The orthorhombic unit-cell parameters are: a = 5.6909(5) Å, b = 11.4640(10) Å, c = 8.2406(9) Å, V = 537.62(9) Å3, Z = 8. The structure, space group Imma, was refined to R 1 = 5.99% in anisotropic approximation using 1135 reflections with F o > 4σ( F o) and 43 parameters. Chromium was found to substitute for both Mg at the octahedral sites and Si at the tetrahedral site, according to the reaction VIMg2+ + IVSi4+ = VICr3+ + IVCr3+. On the whole, the structural topology is nearly identical to that of pure wadsleyite. The successful synthesis of Cr- Wad may be important for the thermobarometry of mantle phase associations.

  9. Ionothermal synthesis, crystal structure, and magnetic study of Co2PO4OH isostructural with caminite.

    Science.gov (United States)

    Wang, Guangmei; Valldor, Martin; Spielberg, Eike T; Mudring, Anja-Verena

    2014-03-17

    A new framework cobalt(II) hydroxyl phosphate, Co2PO4OH, was prepared by ionothermal synthesis using 1-butyl-4-methyl-pyridinium hexafluorophosphate as the ionic liquid. As the formation of Co2PO4F competes in the synthesis, the synthesis conditions have to be judiciously chosen to obtain well-crystallized, single phase Co2PO4OH. Single-crystal X-ray diffraction analyses reveal Co2PO4OH crystallizes with space group I41/amd (a = b = 5.2713(7) Å, c = 12.907(3) Å, V = 358.63(10) Å(3), and Z = 4). Astonishingly, it does not crystallize isotypically with Co2PO4F but rather isotypically with the hydroxyl minerals caminite Mg1.33[SO4(OH)0.66(H2O)0.33] and lipscombite Fe(2–y)PO4(OH) (0 ≤ y ≤ 2/3). Phosphate tetrahedra groups interconnect four rod-packed face-sharing ∞(1){CoO(6/2)} octahedra chains to form a three-dimensional framework structure. The compound Co2PO4OH was further characterized by powder X-ray diffraction, Fourier transform–infrared, and ultraviolet–visible spectroscopy, confirming the discussed structure. The magnetic measurement reveals that Co2PO4OH undergoes a magnetic transition and presents at low temperatures a canted antiferromagnetic spin order in the ground state.

  10. Synthesis, crystal structure, characterizations and magnetic study of a novel two-dimensional iron fluoride

    Science.gov (United States)

    Bouketaya, Sabrine; Smida, Mouna; Abdelbaky, Mohammed S. M.; Dammak, Mohamed; García-Granda, Santiago

    2018-06-01

    A new hybrid compound formulated as [Fe3F8(H2O)2](Am2TAZ)2 (Am2TAZ= 3,5-diamino-1,2,4-triazole) was prepared under hydrothermal conditions. The crystal structure was solved by single-crystal X-ray diffraction and the bulk was characterized by thermal analyses (TG-MS), vibrational spectroscopy (FTIR, Raman), Ultraviolet-visible spectroscopy (UV-Vis), and scanning electron microscopy (SEM-EDX). It crystallizes in the triclinic system space group P 1 ̅ with unit cell parameters a= 7.100(2) Å, b= 7.658(2) Å, c= 8.321(2) Å, α = 107.330(20)°, β = 111.842(18)°, γ = 93.049(17)°, Z = 1 and V= 394.01(17) Å3. The studied X-ray crystal structure shows the two oxidation states for iron atoms (Fe2+, Fe3+) and generates a 2D inorganic network, built up of inorganic layers constructed from infinite inorganic chains running along a axis. In fact, these chains are connected via (Fe3+(3)F6) octahedral. OW-H…F and N-H…F hydrogen bonds, making up the whole 3D network, are strongly linked in the layers. Magnetization measurements were performed, exhibiting the paramagnetic feature of the studied compound above 150 K.

  11. Structural, Bioinformatic, and In Vivo Analyses of Two Treponema pallidum Lipoproteins Reveal a Unique TRAP Transporter

    Energy Technology Data Exchange (ETDEWEB)

    Deka, Ranjit K.; Brautigam, Chad A.; Goldberg, Martin; Schuck, Peter; Tomchick, Diana R.; Norgard, Michael V. (NIH); (UTSMC)

    2012-05-25

    Treponema pallidum, the bacterial agent of syphilis, is predicted to encode one tripartite ATP-independent periplasmic transporter (TRAP-T). TRAP-Ts typically employ a periplasmic substrate-binding protein (SBP) to deliver the cognate ligand to the transmembrane symporter. Herein, we demonstrate that the genes encoding the putative TRAP-T components from T. pallidum, tp0957 (the SBP), and tp0958 (the symporter), are in an operon with an uncharacterized third gene, tp0956. We determined the crystal structure of recombinant Tp0956; the protein is trimeric and perforated by a pore. Part of Tp0956 forms an assembly similar to those of 'tetratricopeptide repeat' (TPR) motifs. The crystal structure of recombinant Tp0957 was also determined; like the SBPs of other TRAP-Ts, there are two lobes separated by a cleft. In these other SBPs, the cleft binds a negatively charged ligand. However, the cleft of Tp0957 has a strikingly hydrophobic chemical composition, indicating that its ligand may be substantially different and likely hydrophobic. Analytical ultracentrifugation of the recombinant versions of Tp0956 and Tp0957 established that these proteins associate avidly. This unprecedented interaction was confirmed for the native molecules using in vivo cross-linking experiments. Finally, bioinformatic analyses suggested that this transporter exemplifies a new subfamily of TPATs (TPR-protein-associated TRAP-Ts) that require the action of a TPR-containing accessory protein for the periplasmic transport of a potentially hydrophobic ligand(s).

  12. Crystal structure of the new diamond-like semiconductor CuMn2InSe4

    Indian Academy of Sciences (India)

    Abstract. The crystal structure of the semiconductor compound CuMn2InSe4 was analysed using X-ray powder ... properties arising from the presence of magnetic ions in the ... by SEM technique, using a Hitachi S2500 microscope equip-.

  13. Hakite from Příbram, Czech Republic: compositional variability, crystal structure and the role in Se mineralization

    Czech Academy of Sciences Publication Activity Database

    Škácha, P.; Sejkora, J.; Palatinus, Lukáš; Makovicky, E.; Plášil, Jakub; Macek, I.; Goliáš, V.

    2016-01-01

    Roč. 80, č. 6 (2016), s. 1115-1128 ISSN 0026-461X Institutional support: RVO:68378271 Keywords : hakite * selenides * tetrahedrite group * crystal structure * Příbram * uranium district * analyses * diffraction data Subject RIV: DB - Geology ; Mineralogy Impact factor: 1.285, year: 2016

  14. Synthesis, crystal structure, physicochemical properties of hydrogen bonded supramolecular assembly of N,N-diethylanilinium-3, 5-dinitrosalicylate crystal

    Science.gov (United States)

    Rajkumar, M.; Chandramohan, A.

    2017-12-01

    An organic salt, N,N-diethylanilinium 3,5-dinitrosalicylate was synthesized and single crystals grown by employing the slow solvent evaporation solution growth technique in methanol-acetone (1:1) mixture. The electronic transitions of the salt crystal were studied by UV-Visible spectrum. The optical transmittance window and lower wavelength cut-off of grown crystal have been identified by UV-Vis-NIR studies. The FT-IR spectrum was recorded to confirm the presence of various functional groups in the grown crystal. 1H and 13C NMR spectrum were recorded to establish the molecular structure of the title crystal. Single crystal X-ray diffraction data indicated that the crystal belongs to monoclinic crystal system with P21/n space group. The thermal stability of the crystal was established by TG/DTA studies. The mechanical properties of the grown crystal were studied by Vickers' microhardness technique. The dielectric studies indicated that the dielectric constant and dielectric loss decrease exponentially with frequency at different temperatures.

  15. Synthesis and crystal structure of MgB12

    International Nuclear Information System (INIS)

    Adasch, Volker; Hess, Kai-Uwe; Ludwig, Thilo; Vojteer, Natascha; Hillebrecht, Harald

    2006-01-01

    Single crystals of MgB 12 were synthesized from the elements in a Mg/Cu melt at 1600deg. C. MgB 12 crystallizes orthorhombic in space group Pnma with a=16.632(3)A, b=17.803(4)A and c=10.396(2)A. The crystal structure (Z=30, 5796 reflections, 510 variables, R 1 (F)=0.049, wR 2 (I)=0.134) consists of a three dimensional net of B 12 icosahedra and B 21 units in a ratio 2:1. The B 21 units are observed for the first time in a solid compound. Mg is on positions with partial occupation. The summation reveals the composition MgB 12.35 or Mg 0.97 B 12 , respectively. This is in good agreement with the value of MgB 11.25 as expected by electronic reasons to stabilize the boron polyhedra B 12 2- and B 21 4-

  16. Structure and Chemical Durability of Lead Crystal Glass.

    Science.gov (United States)

    Angeli, Frédéric; Jollivet, Patrick; Charpentier, Thibault; Fournier, Maxime; Gin, Stéphane

    2016-11-01

    Silicate glasses containing lead, also called lead crystal glasses, are commonly used as food product containers, in particular for alcoholic beverages. Lead's health hazards require major attention, which can first be investigated through the understanding of Pb release mechanisms in solution. The behavior of a commercial crystal glass containing 10.6 mol % of PbO (28.3 wt %) was studied in a reference solution of 4% acetic acid at 22, 40, and 70 °C at early and advanced stages of reaction. High-resolution solid-state 17 O and 29 Si NMR was used to probe the local structure of the pristine and, for the first time, of the altered lead crystal glass. Inserted into the vitreous structure between the network formers as Si-O-Pb bonds, Pb does not form Pb-O-Pb clusters which are expected to be more easily leached. A part of K is located near Pb, forming mixed Si-O-(Pb,K) near the nonbridging oxygens. Pb is always released into the solution following a diffusion-controlled dissolution over various periods of time, at a rate between 1 and 2 orders of magnitude lower than the alkalis (K and Na). The preferential release of alkalis is followed by an in situ repolymerization of the silicate network. Pb is only depleted in the outermost part of the alteration layer. In the remaining part, it stays mainly surrounded by Si in a stable structural configuration similar to that of the pristine glass. A simple model is proposed to estimate the Pb concentration as a function of glass surface, solution volume, temperature, and contact time.

  17. Crystal structure and solid-state properties of discrete hexa cationic ...

    Indian Academy of Sciences (India)

    Subsequently, weight loss of 33% in two stages from 242 to 691◦C can be assigned to the decomposition of triazole ligands. 3.3 Description of the crystal structure. The solid-state structure of ZnT was unambiguously determined by the single crystal X-ray diffraction tech- nique (figures 2 and 3). Compound ZnT crystallizes in.

  18. Crystal structure of Homo sapiens protein LOC79017

    Energy Technology Data Exchange (ETDEWEB)

    Bae, Euiyoung; Bingman, Craig A.; Aceti, David J.; Phillips, Jr., George N. (UW)

    2010-02-08

    LOC79017 (MW 21.0 kDa, residues 1-188) was annotated as a hypothetical protein encoded by Homo sapiens chromosome 7 open reading frame 24. It was selected as a target by the Center for Eukaryotic Structural Genomics (CESG) because it did not share more than 30% sequence identity with any protein for which the three-dimensional structure is known. The biological function of the protein has not been established yet. Parts of LOC79017 were identified as members of uncharacterized Pfam families (residues 1-95 as PB006073 and residues 104-180 as PB031696). BLAST searches revealed homologues of LOC79017 in many eukaryotes, but none of them have been functionally characterized. Here, we report the crystal structure of H. sapiens protein LOC79017 (UniGene code Hs.530024, UniProt code O75223, CESG target number go.35223).

  19. Crystal Structure of a Lipid G Protein-Coupled Receptor

    Energy Technology Data Exchange (ETDEWEB)

    Hanson, Michael A; Roth, Christopher B; Jo, Euijung; Griffith, Mark T; Scott, Fiona L; Reinhart, Greg; Desale, Hans; Clemons, Bryan; Cahalan, Stuart M; Schuerer, Stephan C; Sanna, M Germana; Han, Gye Won; Kuhn, Peter; Rosen, Hugh; Stevens, Raymond C [Scripps; (Receptos)

    2012-03-01

    The lyso-phospholipid sphingosine 1-phosphate modulates lymphocyte trafficking, endothelial development and integrity, heart rate, and vascular tone and maturation by activating G protein-coupled sphingosine 1-phosphate receptors. Here, we present the crystal structure of the sphingosine 1-phosphate receptor 1 fused to T4-lysozyme (S1P1-T4L) in complex with an antagonist sphingolipid mimic. Extracellular access to the binding pocket is occluded by the amino terminus and extracellular loops of the receptor. Access is gained by ligands entering laterally between helices I and VII within the transmembrane region of the receptor. This structure, along with mutagenesis, agonist structure-activity relationship data, and modeling, provides a detailed view of the molecular recognition and requirement for hydrophobic volume that activates S1P1, resulting in the modulation of immune and stromal cell responses.

  20. Syntheses, Crystal Structures and Bioactivities of Two Novel Isatin Derivatives

    Institute of Scientific and Technical Information of China (English)

    SHANG Jian-li; LI Hui-dong; SHANG Jun; SONG Hai-bin; LI Zheng-ming; WANG Jian-guo

    2011-01-01

    Two novel compoundsl-(4-fluorobenzyl)-4-chloro-(Z)-3-benzoylhydrazono-2-indolinone(1) and 1-(4-methoxybenzyl)-(Z)-3-benzoylhydrazono-2-indolinone(2) were synthesized and their crystal structures were determined by single-crystal X-ray diffraction.Compound 1(C22H15ClFN3O2) crystallized in the triclinic system,space group P1- with a=0.94198(19) nm,b=1.4339(3) nm,c=1.5018(3) nm,a=101.58(3)°,β=102.96(3)°,γ=102.73°,V=1.8602(6) nm3,Mr=407.82,Dc=1.456 g/cm3,μ=0.240 mm-1,F(000)=840,Z=4,R1=0.0442 and wR2=0.1064.Compound 2(C23H19N3O3) crystallized in the triclinic system,space group P1- with a=1.0022(2) nm,b=1.0192(2) nm,c=1.0461(2) nm,a=99.86(3)°,β=117.30(3)°,γ=94.13(3)°,V=0.9215(3) nm3,Mr=385.41,Dc=1.389 g/cm3,μ=0.094mm-1,F(000)=404,Z=2,R1=0.0403 and wR2=0.1142.The preliminary herbicidal activities of the two compounds were also evaluated.

  1. Crystal structure of the yeast nicotinamidase Pnc1p.

    Science.gov (United States)

    Hu, Gang; Taylor, Alexander B; McAlister-Henn, Lee; Hart, P John

    2007-05-01

    The yeast nicotinamidase Pnc1p acts in transcriptional silencing by reducing levels of nicotinamide, an inhibitor of the histone deacetylase Sir2p. The Pnc1p structure was determined at 2.9A resolution using MAD and MIRAS phasing methods after inadvertent crystallization during the pursuit of the structure of histidine-tagged yeast isocitrate dehydrogenase (IDH). Pnc1p displays a cluster of surface histidine residues likely responsible for its co-fractionation with IDH from Ni(2+)-coupled chromatography resins. Researchers expressing histidine-tagged proteins in yeast should be aware of the propensity of Pnc1p to crystallize, even when overwhelmed in concentration by the protein of interest. The protein assembles into extended helical arrays interwoven to form an unusually robust, yet porous superstructure. Comparison of the Pnc1p structure with those of three homologous bacterial proteins reveals a common core fold punctuated by amino acid insertions unique to each protein. These insertions mediate the self-interactions that define the distinct higher order oligomeric states attained by these molecules. Pnc1p also acts on pyrazinamide, a substrate analog converted by the nicotinamidase from Mycobacterium tuberculosis into a product toxic to that organism. However, we find no evidence for detrimental effects of the drug on yeast cell growth.

  2. GPCR crystal structures: Medicinal chemistry in the pocket.

    Science.gov (United States)

    Shonberg, Jeremy; Kling, Ralf C; Gmeiner, Peter; Löber, Stefan

    2015-07-15

    Recent breakthroughs in GPCR structural biology have significantly increased our understanding of drug action at these therapeutically relevant receptors, and this will undoubtedly lead to the design of better therapeutics. In recent years, crystal structures of GPCRs from classes A, B, C and F have been solved, unveiling a precise snapshot of ligand-receptor interactions. Furthermore, some receptors have been crystallized in different functional states in complex with antagonists, partial agonists, full agonists, biased agonists and allosteric modulators, providing further insight into the mechanisms of ligand-induced GPCR activation. It is now obvious that there is enormous diversity in the size, shape and position of the ligand binding pockets in GPCRs. In this review, we summarise the current state of solved GPCR structures, with a particular focus on ligand-receptor interactions in the binding pocket, and how this can contribute to the design of GPCR ligands with better affinity, subtype selectivity or efficacy. Copyright © 2015 Elsevier Ltd. All rights reserved.

  3. Redetermination of the Crystal Structure of Al2Br6

    DEFF Research Database (Denmark)

    Berg, Rolf W.; Poulsen, Finn W.; Nielsen, Kurt

    1997-01-01

    . In accordance with previous results, the structure belongs to the monoclinic space group P2(1)/a, no. 14, C-2h(5), with a = 10.301(4), b = 7.095(2), c = 7.525(3) Angstrom, and beta = 96.44(3)degrees, and with two Al2Br6 molecules per unit cell. The single crystal was refined to R = 0.0746. Rather similar......The structure of aluminium bromide has been reinvestigated by X-ray diffraction in three different ways: (a) on a single crystal grown in a glass capillary, (b) on powder in a Debye-Scherrer glass capillary and (c) on an area of powder placed in a protective container for Bragg-Brentano geometry...... structural results were obtained from full-profile Rietveld refinements of powder data [goodness of fit = 1.38 and 2.54 for (b) and (c), respectively]. The Al2Br6 molecule consists of two edge-sharing, almost regular AlBr4 tetrahedra. The Al-Br bond distances are in the range 2.21-2.42 Angstrom...

  4. New halides of neodymium and their crystal structures

    International Nuclear Information System (INIS)

    Loechner, U.

    1980-01-01

    The crystal structures of the peritectic phases NdClsub(2.27) (t-phase) and NdClsub(2.37) (rh-phase) were determined. The structure of the rh-phase was solved, from the t-phase only the elementary cell could be determined because no single crystals of sufficient quality were obtained. Jutting out feature of the rh-phase which has to be formulated as Nd 14 Cl 32 O is a polyeder cluster of 6 quadratic antiprisms the inner cubo octahedric cavity of which is occupied by an oxygen atom. The linkage of these polyeder cluster ensues only under each other along the triple axis of the rhomboedric system over 3 upper and 3 lower common borders each. Therewith for the first time a superlattice of the fluorite-type was found in which this unit exclusively occurs. The type of linkage of polyeder clusters causes the occurrence of an exceptional polyeder around the twovalent Nd ions which can be looked at as a zwitter polyeder of icosahedron and cube and therefore coordinates tenfold the twovalent neodymium. The strict order of chemically and crystallografically clearly differentiated cations is expressed by a hexagonal-rhomboedric superstructure of the fluorite-aristotyp with a doubled c-axis. The phase diagram of the system Nd-NdBr 3 was determined and a structure proposition was worked out for the first Vernier phase in there with n=4 of the series Lnsub(n)Xsub(2n+1). (SPI)

  5. Analysis of the crystal structure of an active MCM hexamer.

    Science.gov (United States)

    Miller, Justin M; Arachea, Buenafe T; Epling, Leslie B; Enemark, Eric J

    2014-09-29

    In a previous Research article (Froelich et al., 2014), we suggested an MCM helicase activation mechanism, but were limited in discussing the ATPase domain because it was absent from the crystal structure. Here we present the crystal structure of a nearly full-length MCM hexamer that is helicase-active and thus has all features essential for unwinding DNA. The structure is a chimera of Sulfolobus solfataricus N-terminal domain and Pyrococcus furiosus ATPase domain. We discuss three major findings: 1) a novel conformation for the A-subdomain that could play a role in MCM regulation; 2) interaction of a universally conserved glutamine in the N-terminal Allosteric Communication Loop with the AAA+ domain helix-2-insert (h2i); and 3) a recessed binding pocket for the MCM ssDNA-binding motif influenced by the h2i. We suggest that during helicase activation, the h2i clamps down on the leading strand to facilitate strand retention and regulate ATP hydrolysis.

  6. Models of protein-ligand crystal structures: trust, but verify.

    Science.gov (United States)

    Deller, Marc C; Rupp, Bernhard

    2015-09-01

    X-ray crystallography provides the most accurate models of protein-ligand structures. These models serve as the foundation of many computational methods including structure prediction, molecular modelling, and structure-based drug design. The success of these computational methods ultimately depends on the quality of the underlying protein-ligand models. X-ray crystallography offers the unparalleled advantage of a clear mathematical formalism relating the experimental data to the protein-ligand model. In the case of X-ray crystallography, the primary experimental evidence is the electron density of the molecules forming the crystal. The first step in the generation of an accurate and precise crystallographic model is the interpretation of the electron density of the crystal, typically carried out by construction of an atomic model. The atomic model must then be validated for fit to the experimental electron density and also for agreement with prior expectations of stereochemistry. Stringent validation of protein-ligand models has become possible as a result of the mandatory deposition of primary diffraction data, and many computational tools are now available to aid in the validation process. Validation of protein-ligand complexes has revealed some instances of overenthusiastic interpretation of ligand density. Fundamental concepts and metrics of protein-ligand quality validation are discussed and we highlight software tools to assist in this process. It is essential that end users select high quality protein-ligand models for their computational and biological studies, and we provide an overview of how this can be achieved.

  7. Crystal structure of the Al2CuIr phase

    International Nuclear Information System (INIS)

    Meshi, L.; Ezersky, V.; Kapush, D.; Grushko, B.

    2010-01-01

    A new ternary Al 2 CuIr phase was revealed in the Al-Cu-Ir system. It is formed below 1063 o C from the β-phase (CsCl-type structure) extending at elevated temperatures from AlIr. The crystal structure of the Al 2 CuIr phase was determined using a combination of precession electron diffraction and X-ray powder diffraction techniques. The phase has an orthorhombic C-centered unit cell with lattice parameters a = 8.1196(7) A, b = 5.0646(2) A and c = 5.18513(3) A; its crystal symmetry can be described by the Cmme (no. 67) space group (Pearson symbol oC16). The unit cell of the new phase contains 8 Al, 4 Cu and 4 Ir atoms and exhibits a new structure type. The reliability factors characterizing the Rietveld refinement procedure are: R p = 4.45%, R wp = 6.45%, R B = 3.69% and R f = 2.41%.

  8. Crystal structure of 2-cyano-1-methylpyridinium perchlorate

    Directory of Open Access Journals (Sweden)

    Vu D. Nguyen

    2015-11-01

    Full Text Available The asymmetric unit of the title salt, C7H7N2+·ClO4−, comprises two independent formula units. The solid-state structure comprises corrugated layers of cations and of anions, approximately parallel to (010. The supramolecular layers are stabilized and connected by C—H...O hydrogen bonding to consolidate a three-dimensional architecture. A close pyridinium–perchlorate N...O contact [2.867 (5 Å] is noted. The crystal was refined as an inversion twin.

  9. Electrical and Structural Characterization of Web Dendrite Crystals

    Science.gov (United States)

    Schwuttke, G. H.; Koliwad, K.; Dumas, K. A.

    1985-01-01

    Minority carrier lifetime distributions in silicon web dendrites are measured. Emphasis is placed on measuring areal homogeneity of lifetime, show its dependency on structural defects, and its unique change during hot processing. The internal gettering action of defect layers present in web crystals and their relation to minority carrier lifetime distributions is discussed. Minority carrier lifetime maps of web dendrites obtained before and after high temperature heat treatment are compared to similar maps obtained from 100 mm diameter Czochralski silicon wafers. Such maps indicate similar or superior areal homogeneity of minority carrier lifetime in webs.

  10. Crystal structure of pure ZrO2 nanopowders

    International Nuclear Information System (INIS)

    Lamas, D.G.; Rosso, A.M.; Anzorena, M. Suarez; Fernandez, A.; Bellino, M.G.; Cabezas, M.D.; Walsoee de Reca, N.E.; Craievich, A.F.

    2006-01-01

    The crystal structure of pure (undoped) zirconia nanopowders synthesized by different wet-chemical routes has been investigated by synchrotron X-ray diffraction. Whereas some previous authors reported the retention of the cubic phase in similar materials, we demonstrate here that pure zirconia nanopowders with average crystallite sizes ranging from 5 to 10 nm exhibit the tetragonal phase. In addition, our results suggest that a tetragonal-to-cubic transition for decreasing crystallite size could eventually occur at a very small critical crystallite size

  11. Alkyltributylphosphonium chloride ionic liquids: synthesis, physicochemical properties and crystal structure.

    Science.gov (United States)

    Adamová, Gabriela; Gardas, Ramesh L; Nieuwenhuyzen, Mark; Puga, Alberto V; Rebelo, Luís Paulo N; Robertson, Allan J; Seddon, Kenneth R

    2012-07-21

    A series of alkyltributylphosphonium chloride ionic liquids, prepared from tributylphosphine and the respective 1-chloroalkane, C(n)H(2n+1)Cl (where n = 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 12 or 14), is reported. This work is a continuation of an extended series of tetraalkylphosphonium ionic liquids, where the focus is on the variability of n and its impact on the physical properties, such as melting points/glass transitions, thermal stability, density and viscosity. Experimental density and viscosity data were interpreted using QPSR and group contribution methods and the crystal structure of propyl(tributyl)phosphonium chloride is detailed.

  12. Structural, mechanical and light yield characterisation of heat treated LYSO:Ce single crystals for medical imaging applications

    CERN Document Server

    Mengucci, P; Auffray, E; Barucca, G; Cecchi, C; Chipaux, R; Cousson, A; Davì, F; Di Vara, N; Rinaldi, D; Santecchia, E

    2015-01-01

    Five single crystals of cerium-doped lutetium yttrium oxyorthosilicate (LYSO:Ce) grown by the Czochralski method were submitted to structural characterisation by X-ray (XRD) and neutron (ND) diffraction, scanning (SEM) and transmission (TEM) electron microscopy and energy dispersive microanalysis (EDS). The Ultimate Tensile Strength (UTS), the Young Modulus (YM) and the Light Yield (LY) of the samples were also measured in order to correlate the mechanical and the optical behaviour of the crystals with the characteristics of their microstructure. Two of the samples analysed were also heat treated at 300 °C for 10 h to evidence possible variations induced by the temperature in the optical and mechanical response of the crystals. Results showed that the mean compositional variations evidenced by the structural analyses do not affect the mechanical and optical behaviour of the samples. On the contrary, the thermal treatment could induce the formation of coherent spherical particles (size 10 to 15 nm), not unifo...

  13. The crystal structure and stability of molybdenum at ultrahigh pressures

    International Nuclear Information System (INIS)

    Jona, F; Marcus, P M

    2005-01-01

    Crystal structures and their stabilities for molybdenum under increasing hydrostatic pressures are investigated by first-principles calculations of the Gibbs free energy. Three structures are considered: body-centred cubic (bcc, the ground state at zero pressure), hexagonal close-packed (hcp) and face-centred cubic (fcc). For each structure and each pressure (up to 8 Mbar) the equilibrium states are found from minima of the Gibbs free energy at zero temperature. The stability is tested by calculating the elastic constants and checking whether they satisfy the appropriate stability conditions. The bcc structure is confirmed to be stable at zero pressure and at 6 Mbar. At and above 6.2 M-bar the ground-state structure changes to hcp, which is found to be stable at 7 M-bar. At 7.7 Mbar another transition occurs, and the ground-state structure changes from hcp to fcc. The fcc structure, which is unstable at zero pressure, becomes metastable over the range from 3 to 7.7 M-bar and becomes the ground state at higher pressures (at least up to 8 Mbar). Direct confirmation of these calculated transition pressures with experiment is not now possible, as the maximum static pressure currently reached experimentally is 5.6 Mbar, where Mo is found to be still in the bcc phase

  14. Neutron beam applications - Development of single crystal structure analysis technique using the HANARO neutron four circle diffractometer

    Energy Technology Data Exchange (ETDEWEB)

    Suh, Il Hwan; Kim, Moon Jib; Kim, Jin Gyu [Chungnam National University, Taejon (Korea)

    2000-04-01

    As the four circle diffractometer (FCD) has been set up in HANARO, it has become possible to study the single crystal structures by means of the neutron diffraction. Taking account of the geometry of the FCD, a program for the control of te FCD and neutron data acquisition operating under Windows' circumstance has been accomplished. Also, a computer program which can automatically measure the diffraction intensity data has been developed. All data obtained from the FCD are processed automatically for further work and a software for the single crystal structure analyses has been prepared. A KC1 single crystal was selected as first test sample for a structure analysis had been successfully performed on the FCD using in-house developed program and accordingly their functionings with precision were confirmed. For regular single crystal diffraction experiments, the structure analyses of chrysoberyl and Zr(Y)0{sub 1.87} single crystals were performed using both neutron and X-ray diffraction methods, and the result showed that the neutron diffraction work is superior to the X-ray one from the viewpoint of certain crystallographic information obtainable only from the former one. 24 refs., 15 figs., 15 tabs. (Author)

  15. Magnetic and Crystal Structure of α-RuCl3

    Science.gov (United States)

    Sears, Jennifer

    The layered honeycomb material α-RuCl3 has been proposed as a candidate material to show significant bond-dependent Kitaev type interactions. This has prompted several recent studies of magnetism in this material that have found evidence for multiple magnetic transitions in the temperature range of 8-14 K. We will present elastic neutron scattering measurements collected using a co-aligned array of α-RuCl3 crystals, identifying zigzag magnetic order within the honeycomb planes with an ordering temperature of ~8 K. It has been reported that the ordering temperature depends on the c axis periodicity of the layered structure, with ordering temperatures of 8 and 14 K for three and two-layer periodicity respectively. While the in-plane magnetic order has been identified, it is clear that a complete understanding of magnetic ordering and interactions will depend on the three dimensional structure of the crystal. Evidence of a structural transition at ~150 K has been reported and questions remain about the structural details, in particular the stacking of the honeycomb layers. We will present x-ray diffraction measurements investigating the low and high temperature structures and stacking disorder in α-RuCl3. Finally, we will present inelastic neutron scattering measurements of magnetic excitations in this material. Work done in collaboration with K. W. Plumb (Johns Hopkins University), J. P. Clancy, Young-June Kim (University of Toronto), J. Britten (McMaster University), Yu-Sheng Chen (Argonne National Laboratory), Y. Qiu, Y. Zhao, D. Parshall, and J. W. Lynn (NCNR).

  16. Structural, mechanical and light yield characterisation of heat treated LYSO:Ce single crystals for medical imaging applications

    Energy Technology Data Exchange (ETDEWEB)

    Mengucci, P., E-mail: p.mengucci@univpm.it [Università Politecnica delle Marche, Via Brecce Bianche, 60131 Ancona (Italy); André, G. [Laboratoire Léon Brillouin, CEA-CNRS, CE-Saclay, 91191 Gif sur Yvette cedex (France); Auffray, E. [Department PH-CMX CERN, Route de Meyrin, 1211 Geneva 23 (Switzerland); Barucca, G. [Università Politecnica delle Marche, Via Brecce Bianche, 60131 Ancona (Italy); Cecchi, C. [Dipartimento di Fisica e Geologia, Università di Perugia, Via A. Pascoli, 06123 Perugia (Italy); Chipaux, R. [CEA DSM/IRFU/SEDI, CE-Saclay, 91191 Gif sur Yvette cedex (France); Cousson, A. [Laboratoire Léon Brillouin, CEA-CNRS, CE-Saclay, 91191 Gif sur Yvette cedex (France); Davì, F. [Università Politecnica delle Marche, Via Brecce Bianche, 60131 Ancona (Italy); Di Vara, N. [Department PH-CMX CERN, Route de Meyrin, 1211 Geneva 23 (Switzerland); Rinaldi, D.; Santecchia, E. [Università Politecnica delle Marche, Via Brecce Bianche, 60131 Ancona (Italy)

    2015-06-11

    Five single crystals of cerium-doped lutetium yttrium oxyorthosilicate (LYSO:Ce) grown by the Czochralski method were submitted to structural characterisation by X-ray (XRD) and neutron (ND) diffraction, scanning (SEM) and transmission (TEM) electron microscopy and energy dispersive microanalysis (EDS). The Ultimate Tensile Strength (UTS), the Young Modulus (YM) and the Light Yield (LY) of the samples were also measured in order to correlate the mechanical and the optical behaviour of the crystals with the characteristics of their microstructure. Two of the samples analysed were also heat treated at 300 °C for 10 h to evidence possible variations induced by the temperature in the optical and mechanical response of the crystals. Results showed that the mean compositional variations evidenced by the structural analyses do not affect the mechanical and optical behaviour of the samples. On the contrary, the thermal treatment could induce the formation of coherent spherical particles (size 10 to 15 nm), not uniformly distributed inside the sample, that strongly reduce the UTS and YM values, but it does not affect the optical response of the crystal. This latter result was attributed to the low value of the heating temperature (300 °C) that is not sufficiently high to induce annealing of the oxygen vacancies traps that are responsible of the deterioration of the scintillation properties of the LYSO:Ce crystals. This study was carried out in the framework of the Crystal Clear Collaboration (CCC)

  17. AACSD: An atomistic analyzer for crystal structure and defects

    Science.gov (United States)

    Liu, Z. R.; Zhang, R. F.

    2018-01-01

    We have developed an efficient command-line program named AACSD (Atomistic Analyzer for Crystal Structure and Defects) for the post-analysis of atomic configurations generated by various atomistic simulation codes. The program has implemented not only the traditional filter methods like the excess potential energy (EPE), the centrosymmetry parameter (CSP), the common neighbor analysis (CNA), the common neighborhood parameter (CNP), the bond angle analysis (BAA), and the neighbor distance analysis (NDA), but also the newly developed ones including the modified centrosymmetry parameter (m-CSP), the orientation imaging map (OIM) and the local crystallographic orientation (LCO). The newly proposed OIM and LCO methods have been extended for all three crystal structures including face centered cubic, body centered cubic and hexagonal close packed. More specially, AACSD can be easily used for the atomistic analysis of metallic nanocomposite with each phase to be analyzed independently, which provides a unique pathway to capture their dynamic evolution of various defects on the fly. In this paper, we provide not only a throughout overview on various theoretical methods and their implementation into AACSD program, but some critical evaluations, specific testing and applications, demonstrating the capability of the program on each functionality.

  18. 1. The determination of crystal and magnetic structures

    International Nuclear Information System (INIS)

    Elemans, J.B.A.A.

    1975-01-01

    A theoretical foundation of the technique of thermal neutron scattering by powders is outlined. A description of the experimental set-up is given. A beam of themalized neutrons emerges from the reactor (HFR at Petten) through a slit system. It is diffracted by a manochromator crystal with a finite mosaic structure, a Cu (111) crystal being used. After passing through 10 cm pyrolytic graphite with a ''window'' from 0.23 to 0.29 nm as a lambda/2 filter, resulting in a wave length of 0.257 nm, the neutrons are taken off at a predetermined angle defined by a second slit system, resulting in a beam in which the sample is bathed. The neutrons scattered by the sample are detected by a counter moving in an arc with the position of the sample as center. The standard measurement time for a 10 cm 3 sample was two days. A discussion of the mathematical procedures for deriving the magnetic structure from the observed counts is given

  19. Facile synthesis and structure characterization of hexagonal tungsten bronzes crystals

    Science.gov (United States)

    Lee, Jiann-Shing; Liu, Hao-Chuan; Peng, Gao-De; Tseng, Yawteng

    2017-05-01

    A facile molten-salt route was used to synthesize hexagonal Cs0.33WO3, Rb0.33WO3 and K0.30WO3 crystals. The three isostructural compounds were successfully prepared from the reaction of MxWO3 powders (M = Cs, Rb, K) in the CsCl/NaCl, RbCl/NaCl and KCl/NaCl fluxes, respectively. The structure determination and refinement, based on single-crystal X-ray diffraction data, are in agreement with previous works, possessing space group P63/mcm. The a and c parameters vary non-linearly with increasing radii of the M+ cations (rM) that is coordinated to twelve oxygen atoms. Both the volumes of unit-cell and WO6 octahedra vary linearly with rM, which become smaller from Cs0.33WO3 to K0.30WO3. The distortion of WO6 octahedra as well as isotropic displacement parameters increases from Cs0.33WO3 to K0.30WO3. The geometry of the WO6 octahedron becomes more regular with increasing rM. These structural trends arise from the effective size of the M+ cation.

  20. Crystal and molecular structure of neodymium (3) p-aminobenzoaate

    International Nuclear Information System (INIS)

    Khiyalov, M.S.; Amiraslanov, I.R.; Mamedov, Kh.S.; Movsumov, Eh.M.

    1981-01-01

    X-ray structural study (lambda MoKsub(α), automatic diffractometer, the method of heavy atom, anisotropic specification) of neodymium (3) n-aminobenzoate has been carried out. The crystals are monoclinic: a=9.882 (5), b=22.810 (12), c=9.851 (8)A, β=100.02 (5)deg, v=2186.59 A 3 , Z=4, sp. gr. P2 1 /n, R=0.046. The crystal structure of Nd(OOCC 6 H 4 NH 2 ) 3 xH 2 O consists of dimer-periodic layers alternating along the b axis. Surrounding of Nd atom in the chain is formed with four oxygen atoms of four carboxyl groups of bidentate-bridge and one carboxyl bidentate-cyclic ligands, one water molecule and N atom of ligand aminogroup from the neigbouring chain. The atom simultaneously bonds the neighbouring chains into continuous layer. The mean distances Nd-O, and Nd-N are equal to 2.45 and 2.74 A. An attempt to determine hydrogen atom coordinates has failed [ru

  1. Crystal structures of superconducting sodium intercalates of hafnium nitride chloride

    International Nuclear Information System (INIS)

    Oro-Sole, J.; Frontera, C.; Beltran-Porter, D.; Lebedev, O.I.; Van Tendeloo, G.; Fuertes, A.

    2006-01-01

    Sodium intercalation compounds of HfNCl have been prepared at room temperature in naphtyl sodium solutions in tetrahydrofuran and their crystal structure has been investigated by Rietveld refinement using X-ray powder diffraction data and high-resolution electron microscopy. The structure of two intercalates with space group R3-bar m and lattice parameters a=3.58131(6)A, c=57.752(6)A, and a=3.58791(8)A, c=29.6785(17)A is reported, corresponding to the stages 2 and 1, respectively, of Na x HfNCl. For the stage 2 phase an ordered model is presented, showing two crystallographically independent [HfNCl] units with an alternation of the Hf-Hf interlayer distance along the c-axis, according with the occupation by sodium atoms of one out of two van der Waals gaps. Both stages 1 and 2 phases are superconducting with critical temperatures between 20 and 24K, they coexist in different samples with proportions depending on the synthesis conditions, and show a variation in c spacing that can be correlated with the sodium stoichiometry. High-resolution electron microscopy images of the host and intercalated samples show bending of the HfNCl bilayers as well as stacking faults in some regions, which coexist in the same crystal with ordered domains

  2. Escherichia coli PII protein: purification, crystallization and oligomeric structure.

    Science.gov (United States)

    Vasudevan, S G; Gedye, C; Dixon, N E; Cheah, E; Carr, P D; Suffolk, P M; Jeffrey, P D; Ollis, D L

    1994-01-17

    The Escherichia coli signal transduction protein PII, product of the glnB gene, was overproduced and purified. The predicted molecular weight of the protein based on the correct nucleotide sequence is 12,427 and is very close to the value 12,435 obtained by matrix-assisted laser desorption mass spectrometry. Hexagonal crystals of the unuridylylated form of PII with dimensions 0.2 x 0.2 x 0.3 mm were grown and analysed by X-ray diffraction. The crystals belong to space group P6(3) with a = b = 61.6 A, c = 56.3 A and Vm of 2.5 for one subunit in the asymmetric unit. A low-resolution electron density map showed electron density concentrated around a three-fold axis, suggesting the molecule to be a trimer. A sedimentation equilibrium experiment of the meniscus depletion type was used to estimate a molecular weight of 35,000 +/- 1,000 for PII in solution. This result is consistent with the native protein being a homotrimer.

  3. Effects of thermo-order-mechanical coupling on band structures in liquid crystal nematic elastomer porous phononic crystals.

    Science.gov (United States)

    Yang, Shuai; Liu, Ying

    2018-08-01

    Liquid crystal nematic elastomers are one kind of smart anisotropic and viscoelastic solids simultaneously combing the properties of rubber and liquid crystals, which is thermal sensitivity. In this paper, the wave dispersion in a liquid crystal nematic elastomer porous phononic crystal subjected to an external thermal stimulus is theoretically investigated. Firstly, an energy function is proposed to determine thermo-induced deformation in NE periodic structures. Based on this function, thermo-induced band variation in liquid crystal nematic elastomer porous phononic crystals is investigated in detail. The results show that when liquid crystal elastomer changes from nematic state to isotropic state due to the variation of the temperature, the absolute band gaps at different bands are opened or closed. There exists a threshold temperature above which the absolute band gaps are opened or closed. Larger porosity benefits the opening of the absolute band gaps. The deviation of director from the structural symmetry axis is advantageous for the absolute band gap opening in nematic state whist constrains the absolute band gap opening in isotropic state. The combination effect of temperature and director orientation provides an added degree of freedom in the intelligent tuning of the absolute band gaps in phononic crystals. Copyright © 2018 Elsevier B.V. All rights reserved.

  4. Predicted crystal structures of molybdenum under high pressure

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Bing; Zhang, Guang Biao [Institute for Computational Materials Science, School of Physics and Electronics, Henan University, Kaifeng 475004 (China); Wang, Yuan Xu, E-mail: wangyx@henu.edu.cn [Institute for Computational Materials Science, School of Physics and Electronics, Henan University, Kaifeng 475004 (China); Guizhou Provincial Key Laboratory of Computational Nano-Material Science, Institute of Applied Physics, Guizhou Normal College, Guiyang 550018 (China)

    2013-04-15

    Highlights: ► A double-hexagonal close-packed (dhcp) structure of molybdenum is predicted. ► Calculated acoustic velocity confirms the bcc–dhcp phase transition at 660 GPa. ► The valence electrons of dhcp Mo are mostly localized in the interstitial sites. -- Abstract: The high-pressure structures of molybdenum (Mo) at zero temperature have been extensively explored through the newly developed particle swarm optimization (PSO) algorithm on crystal structural prediction. All the experimental and earlier theoretical structures were successfully reproduced in certain pressure ranges, validating our methodology in application to Mo. A double-hexagonal close-packed (dhcp) structure found by Mikhaylushkin et al. (2008) [12] is confirmed by the present PSO calculations. The lattice parameters and physical properties of the dhcp phase were investigated based on first principles calculations. The phase transition occurs only from bcc phase to dhcp phase at 660 GPa and at zero temperature. The calculated acoustic velocities also indicate a transition from the bcc to dhcp phases for Mo. More intriguingly, the calculated density of states (DOS) shows that the dhcp structure remains metallic. The calculated electron density difference (EDD) reveals that its valence electrons are localized in the interstitial regions.

  5. A Novel Coordination Polymer Based on Trinuclear Cobalt Building Blocks Cluster: Synthesis, Crystal Structure, and Properties

    Science.gov (United States)

    Lu, J. F.; Tang, Z. H.; Shi, J.; Ge, H. G.; Jiang, M.; Song, J.; Jin, L. X.

    2017-12-01

    The title compound {[Co3(μ3-OH)(μ2-H2O)2(H2O)5(BTC)2] · 6H2O} n (H3BTC is a 1,3,5-benzenetricarboxylic acid) was prepared and characterized by single crystal and powder X-ray diffraction, Fourier transform infrared spectroscopy, thermogravimetric and elemental analyses. The single crystal X-ray diffraction reveals that the title compound consists of 1D infinite zigzag chains which were constructed by trinuclear cobalt cluster and BTC3- ligand. Neighbouring above-mentioned 1D infinite zigzag chains are further linked by intermolecular hydrogen bonding to form a 3D supermolecular structure. In addition, the luminescent properties of the title compound were investigated.

  6. Coherent structures in granular crystals from experiment and modelling to computation and mathematical analysis

    CERN Document Server

    Chong, Christopher

    2018-01-01

    This book summarizes a number of fundamental developments at the interface of granular crystals and the mathematical and computational analysis of some of their key localized nonlinear wave solutions. The subject presents a blend of the appeal of granular crystals as a prototypical engineering tested for a variety of diverse applications, the novelty in the nonlinear physics of its coherent structures, and the tractability of a series of mathematical and computational techniques to analyse them. While the focus is on principal one-dimensional solutions such as shock waves, traveling waves, and discrete breathers, numerous extensions of the discussed patterns, e.g., in two dimensions, chains with defects, heterogeneous settings, and other recent developments are discussed. The book appeals to researchers in the field, as well as for graduate and advanced undergraduate students. It will be of interest to mathematicians, physicists and engineers alike.

  7. Structure of cleaved (001) USb2 single crystal

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Shao-ping [Los Alamos National Laboratory; Hawley, Marilyn [Los Alamos National Laboratory; Bauer, Eric D [Los Alamos National Laboratory; Stockum, Phil B [STANFORD UNIV.; Manoharan, Hari C [STANFORD UNIV

    2009-01-01

    We have achieved what we believe to be the first atomic resolution STM images for a uranium compound taken at room temperature. The a, b, and c lattice parameters in the images confirm that the USb{sub 2} crystals cleave on the (001) basal plane as expected. The a and b dimensions were equal, with the atoms arranged in a cubic pattern. Our calculations indicate a symmetric cut between Sb planes to be the most favorable cleavage plane and U atoms to be responsible for most of the DOS measured by STM. Some strange features observed in the STM will be discussed in conjunction with ab initio calculations. The purpose of this work is to demonstrate the power of scanning tunneling microscopy (STM) techniques combined with a theoretical underpinning to determine the surface atomic structure and properties of actinide materials, such as the quasi 2-dimensional uranium dipnictide USb{sub 2} single crystal, thereby contributing to the understanding of their surface structural and electronic properties. The members of this interesting UX{sub 2} (X=P, As, Sb, Bi) series of compounds display dual localized and itinerant 5f electron behavior within the same compound due to the hybridization of the 5f orbitals with the conduction band. With the exception of UO{sub 2}, which has to be studied at elevated temperature to generate enough carriers for STM imaging, STM techniques have not been applied successfully to the characterization of the surface atomic structure of any other single crystal actinide compound, to the best of our knowledge. However, STM has been used to a limited extent for the study of some cerium compounds. STM probes electronic properties at the atomic level and can directly provide information about the local density of filled and empty states (LDOS) states simultaneously. A STM topograph provides the local atomic arrangement and spacing of the atoms on the surface, local defect structures (e.g. steps, vacancies, and kink sites) and the presence of contaminants

  8. Crystal structure of Fe2TiO5

    International Nuclear Information System (INIS)

    Shiojiri, M.; Sekimoto, S.; Maeda, T.; Ikeda, Y.; Iwauchi, K.

    1984-01-01

    The crystal structure of metal pseudobrookite, Fe 2 TiO 5 , is determined from high-resolution electron microscopy images observed and their computer simulated images, with the aid of electron diffraction and X-ray powder diffraction. The new structure has a monoclinic unit, containing eight molecules, with a = 2.223, b = 0.373, c = 0.980 nm, and β = 116.2 0 . The Fe, Ti, and O atoms occupy the positions (4c), +-(u, 0, w; 1/2 + u, 1/2, w), of C 2 3 (C2). The most probable parameters u and w, of Fe(1 to 4), Ti(1, 2), and O(1 to 10) are given. (author)

  9. Crystal chemistry of nephelines from ijolites and nepheline-rich pegmatites: influence of composition and genesis on the crystal structure investigated by X-ray diffraction

    DEFF Research Database (Denmark)

    Vulić, Predrag; Balić-Žunić, Tonči; Belmonte, Louise Josefine

    2011-01-01

    Ten nepheline single crystals from five different localities representing rocks from nepheline-syenite pegmatites to urtite, ijolite and cancrinite-ijolite were investigated chemically and structurally. The chemical compositions were determined by electron microprobe, whereas the crystal structur...

  10. submitter Light Extraction From Scintillating Crystals Enhanced by Photonic Crystal Structures Patterned by Focused Ion Beam

    CERN Document Server

    Modrzynski, Pawel; Knapitsch, Arno; Kunicki, Piotr; Lecoq, Paul; Moczala, Magdalena; Papakonstantinou, Ioannis; Auffray, Etiennette

    2016-01-01

    “Photonic Crystals (PhC)” have been used in a variety of fields as a structure for improving the light extraction efficiency from materials with high index of refraction. In previous work we already showed the light extraction improvement of several PhC covered LYSO crystals in computer simulations and practical measurements. In this work, new samples are made using different materials and techniques which allows further efficiency improvements. For rapid prototyping of PhC patterns on scintillators we tested a new method using “Focused Ion Beam (FIB)” patterning. The FIB machine is a device similar to a “Scanning Electron Microscope (SEM)”, but it uses ions (mainly gallium) instead of electrons for the imaging of the samples' surface. The additional feature of FIB devices is the option of surface patterning in nano-scale which was exploited for our samples. Three samples using FIB patterning have been produced. One of them is a direct patterning of the extraction face of a 0.8×0.8×10 $mm^3$ LYS...

  11. High-resolution X-ray crystal structure of bovine H-protein using the high-pressure cryocooling method

    International Nuclear Information System (INIS)

    Higashiura, Akifumi; Ohta, Kazunori; Masaki, Mika; Sato, Masaru; Inaka, Koji; Tanaka, Hiroaki; Nakagawa, Atsushi

    2013-01-01

    Using the high-pressure cryocooling method, the high-resolution X-ray crystal structure of bovine H-protein was determined at 0.86 Å resolution. This is the first ultra-high-resolution structure obtained from a high-pressure cryocooled crystal. Recently, many technical improvements in macromolecular X-ray crystallography have increased the number of structures deposited in the Protein Data Bank and improved the resolution limit of protein structures. Almost all high-resolution structures have been determined using a synchrotron radiation source in conjunction with cryocooling techniques, which are required in order to minimize radiation damage. However, optimization of cryoprotectant conditions is a time-consuming and difficult step. To overcome this problem, the high-pressure cryocooling method was developed (Kim et al., 2005 ▶) and successfully applied to many protein-structure analyses. In this report, using the high-pressure cryocooling method, the X-ray crystal structure of bovine H-protein was determined at 0.86 Å resolution. Structural comparisons between high- and ambient-pressure cryocooled crystals at ultra-high resolution illustrate the versatility of this technique. This is the first ultra-high-resolution X-ray structure obtained using the high-pressure cryocooling method

  12. Crystal structure prediction of flexible molecules using parallel genetic algorithms with a standard force field.

    Science.gov (United States)

    Kim, Seonah; Orendt, Anita M; Ferraro, Marta B; Facelli, Julio C

    2009-10-01

    This article describes the application of our distributed computing framework for crystal structure prediction (CSP) the modified genetic algorithms for crystal and cluster prediction (MGAC), to predict the crystal structure of flexible molecules using the general Amber force field (GAFF) and the CHARMM program. The MGAC distributed computing framework includes a series of tightly integrated computer programs for generating the molecule's force field, sampling crystal structures using a distributed parallel genetic algorithm and local energy minimization of the structures followed by the classifying, sorting, and archiving of the most relevant structures. Our results indicate that the method can consistently find the experimentally known crystal structures of flexible molecules, but the number of missing structures and poor ranking observed in some crystals show the need for further improvement of the potential. Copyright 2009 Wiley Periodicals, Inc.

  13. Structural and functional analyses of DNA-sensing and immune activation by human cGAS.

    Science.gov (United States)

    Kato, Kazuki; Ishii, Ryohei; Goto, Eiji; Ishitani, Ryuichiro; Tokunaga, Fuminori; Nureki, Osamu

    2013-01-01

    The detection of cytosolic DNA, derived from pathogens or host cells, by cytosolic receptors is essential for appropriate host immune responses. Cyclic GMP-AMP synthase (cGAS) is a newly identified cytosolic DNA receptor that produces cyclic GMP-AMP, which activates stimulator of interferon genes (STING), resulting in TBK1-IRF3 pathway activation followed by the production of type I interferons. Here we report the crystal structure of human cGAS. The structure revealed that a cluster of lysine and arginine residues forms the positively charged DNA binding surface of human cGAS, which is important for the STING-dependent immune activation. A structural comparison with other previously determined cGASs and our functional analyses suggested that a conserved zinc finger motif and a leucine residue on the DNA binding surface are crucial for the DNA-specific immune response of human cGAS, consistent with previous work. These structural features properly orient the DNA binding to cGAS, which is critical for DNA-induced cGAS activation and STING-dependent immune activation. Furthermore, we showed that the cGAS-induced activation of STING also involves the activation of the NF-κB and IRF3 pathways. Our results indicated that cGAS is a DNA sensor that efficiently activates the host immune system by inducing two distinct pathways.

  14. Structural and functional analyses of DNA-sensing and immune activation by human cGAS.

    Directory of Open Access Journals (Sweden)

    Kazuki Kato

    Full Text Available The detection of cytosolic DNA, derived from pathogens or host cells, by cytosolic receptors is essential for appropriate host immune responses. Cyclic GMP-AMP synthase (cGAS is a newly identified cytosolic DNA receptor that produces cyclic GMP-AMP, which activates stimulator of interferon genes (STING, resulting in TBK1-IRF3 pathway activation followed by the production of type I interferons. Here we report the crystal structure of human cGAS. The structure revealed that a cluster of lysine and arginine residues forms the positively charged DNA binding surface of human cGAS, which is important for the STING-dependent immune activation. A structural comparison with other previously determined cGASs and our functional analyses suggested that a conserved zinc finger motif and a leucine residue on the DNA binding surface are crucial for the DNA-specific immune response of human cGAS, consistent with previous work. These structural features properly orient the DNA binding to cGAS, which is critical for DNA-induced cGAS activation and STING-dependent immune activation. Furthermore, we showed that the cGAS-induced activation of STING also involves the activation of the NF-κB and IRF3 pathways. Our results indicated that cGAS is a DNA sensor that efficiently activates the host immune system by inducing two distinct pathways.

  15. Visualization of Hyperconjugation and Subsequent Structural Distortions through 3D Printing of Crystal Structures.

    Science.gov (United States)

    Mithila, Farha J; Oyola-Reynoso, Stephanie; Thuo, Martin M; Atkinson, Manza Bj

    2016-01-01

    Structural distortions due to hyperconjugation in organic molecules, like norbornenes, are well captured through X-ray crystallographic data, but are sometimes difficult to visualize especially for those applying chemical knowledge and are not chemists. Crystal structure from the Cambridge database were downloaded and converted to .stl format. The structures were then printed at the desired scale using a 3D printer. Replicas of the crystal structures were accurately reproduced in scale and any resulting distortions were clearly visible from the macroscale models. Through space interactions or effect of through space hyperconjugation was illustrated through loss of symmetry or distortions thereof. The norbornene structures exhibits distortion that cannot be observed through conventional ball and stick modelling kits. We show that 3D printed models derived from crystallographic data capture even subtle distortions in molecules. We translate such crystallographic data into scaled-up models through 3D printing.

  16. Crystal structure of arginine methyltransferase 6 from Trypanosoma brucei.

    Directory of Open Access Journals (Sweden)

    Chongyuan Wang

    Full Text Available Arginine methylation plays vital roles in the cellular functions of the protozoan Trypanosoma brucei. The T. brucei arginine methyltransferase 6 (TbPRMT6 is a type I arginine methyltransferase homologous to human PRMT6. In this study, we report the crystal structures of apo-TbPRMT6 and its complex with the reaction product S-adenosyl-homocysteine (SAH. The structure of apo-TbPRMT6 displays several features that are different from those of type I PRMTs that were structurally characterized previously, including four stretches of insertion, the absence of strand β15, and a distinct dimerization arm. The comparison of the apo-TbPRMT6 and SAH-TbPRMT6 structures revealed the fine rearrangements in the active site upon SAH binding. The isothermal titration calorimetry results demonstrated that SAH binding greatly increases the affinity of TbPRMT6 to a substrate peptide derived from bovine histone H4. The western blotting and mass spectrometry results revealed that TbPRMT6 methylates bovine histone H4 tail at arginine 3 but cannot methylate several T. brucei histone tails. In summary, our results highlight the structural differences between TbPRMT6 and other type I PRMTs and reveal that the active site rearrangement upon SAH binding is important for the substrate binding of TbPRMT6.

  17. Colloidal Photonic Crystals Containing Silver Nanoparticles with Tunable Structural Colors

    Directory of Open Access Journals (Sweden)

    Chun-Feng Lai

    2016-05-01

    Full Text Available Polystyrene (PS colloidal photonic crystals (CPhCs containing silver nanoparticles (AgNPs present tunable structural colors. PS CPhC color films containing a high concentration of AgNPs were prepared using self-assembly process through gravitational sedimentation method. High-concentration AgNPs were deposited on the bottom of the substrate and acted as black materials to absorb background and scattering light. Brilliant structural colors were enhanced because of the absorption of incoherent scattering light, and color saturation was increased by the distribution AgNPs on the PS CPhC surfaces. The vivid iridescent structural colors of AgNPs/PS hybrid CPhC films were based on Bragg diffraction and backward scattering absorption using AgNPs. The photonic stop band of PS CPhCs and AgNPs/PS hybrid CPhCs were measured by UV–visible reflection spectrometry and calculated based on the Bragg–Snell law. In addition, the tunable structural colors of AgNPs/PS hybrid CPhC films were evaluated using color measurements according to the Commission International d’Eclairage standard colorimetric system. This paper presents a simple and inexpensive method to produce tunable structural colors for numerous applications, such as textile fabrics, bionic colors, catalysis, and paints.

  18. Water polygons in high-resolution protein crystal structures.

    Science.gov (United States)

    Lee, Jonas; Kim, Sung-Hou

    2009-07-01

    We have analyzed the interstitial water (ISW) structures in 1500 protein crystal structures deposited in the Protein Data Bank that have greater than 1.5 A resolution with less than 90% sequence similarity with each other. We observed varieties of polygonal water structures composed of three to eight water molecules. These polygons may represent the time- and space-averaged structures of "stable" water oligomers present in liquid water, and their presence as well as relative population may be relevant in understanding physical properties of liquid water at a given temperature. On an average, 13% of ISWs are localized enough to be visible by X-ray diffraction. Of those, averages of 78% are water molecules in the first water layer on the protein surface. Of the localized ISWs beyond the first layer, almost half of them form water polygons such as trigons, tetragons, as well as expected pentagons, hexagons, higher polygons, partial dodecahedrons, and disordered networks. Most of the octagons and nanogons are formed by fusion of smaller polygons. The trigons are most commonly observed. We suggest that our observation provides an experimental basis for including these water polygon structures in correlating and predicting various water properties in liquid state.

  19. Local structural ordering in surface-confined liquid crystals

    Science.gov (United States)

    Śliwa, I.; Jeżewski, W.; Zakharov, A. V.

    2017-06-01

    The effect of the interplay between attractive nonlocal surface interactions and attractive pair long-range intermolecular couplings on molecular structures of liquid crystals confined in thin cells with flat solid surfaces has been studied. Extending the McMillan mean field theory to include finite systems, it has been shown that confining surfaces can induce complex orientational and translational ordering of molecules. Typically, local smectic A, nematic, and isotropic phases have been shown to coexist in certain temperature ranges, provided that confining cells are sufficiently thick, albeit finite. Due to the nonlocality of surface interactions, the spatial arrangement of these local phases can display, in general, an unexpected complexity along the surface normal direction. In particular, molecules located in the vicinity of surfaces can still be organized in smectic layers, even though nematic and/or isotropic order can simultaneously appear in the interior of cells. The resulting surface freezing of smectic layers has been confirmed to occur even for rather weak surface interactions. The surface interactions cannot, however, prevent smectic layers from melting relatively close to system boundaries, even when molecules are still arranged in layers within the central region of the system. The internal interfaces, separating individual liquid-crystal phases, are demonstrated here to form fronts of local finite-size transitions that move across cells under temperature changes. Although the complex molecular ordering in surface confined liquid-crystal systems can essentially be controlled by temperature variations, specific thermal properties of these systems, especially the nature of the local transitions, are argued to be strongly conditioned to the degree of molecular packing.

  20. Crystal structure of a human single domain antibody dimer formed through V(H-V(H non-covalent interactions.

    Directory of Open Access Journals (Sweden)

    Toya Nath Baral

    Full Text Available Single-domain antibodies (sdAbs derived from human V(H are considered to be less soluble and prone to aggregate which makes it difficult to determine the crystal structures. In this study, we isolated and characterized two anti-human epidermal growth factor receptor-2 (HER2 sdAbs, Gr3 and Gr6, from a synthetic human V(H phage display library. Size exclusion chromatography and surface plasmon resonance analyses demonstrated that Gr3 is a monomer, but that Gr6 is a strict dimer. To understand this different molecular behavior, we solved the crystal structure of Gr6 to 1.6 Å resolution. The crystal structure revealed that the homodimer assembly of Gr6 closely mimics the V(H-V(L heterodimer of immunoglobulin variable domains and the dimerization interface is dominated by hydrophobic interactions.

  1. Proceedings of the international workshop on structural analyses bridging over between amorphous and crystalline materials (SABAC2008)

    International Nuclear Information System (INIS)

    Shamoto, Shin-ichi; Kodama, Katsuaki

    2008-07-01

    International workshop entitled 'Structural Analyses Bridging over between Amorphous and Crystalline Materials' (SABAC2008) was held on January 10 and 11, 2007 at Techno Community Square 'RICOTTI' in Tokai. Amorphous and crystalline materials are studied historically by various approaches. Recent industrial functional materials such as optical memory material, thermoelectric material, hydrogen storage material, and ionic conductor have intrinsic atomic disorders in their lattices. These local lattice disorders cannot be studied by conventional crystal structure analyses such as Rietveld analysis. Similar difficulty also exists in the structure analysis of nanomaterials. In the workshop, new approaches to the structural analysis on these materials were discussed. This report includes abstracts and materials of the presentations in the workshop. (author)

  2. Models of protein–ligand crystal structures: trust, but verify

    Science.gov (United States)

    Deller, Marc C.

    2015-01-01

    X-ray crystallography provides the most accurate models of protein–ligand structures. These models serve as the foundation of many computational methods including structure prediction, molecular modelling, and structure-based drug design. The success of these computational methods ultimately depends on the quality of the underlying protein–ligand models. X-ray crystallography offers the unparalleled advantage of a clear mathematical formalism relating the experimental data to the protein–ligand model. In the case of X-ray crystallography, the primary experimental evidence is the electron density of the molecules forming the crystal. The first step in the generation of an accurate and precise crystallographic model is the interpretation of the electron density of the crystal, typically carried out by construction of an atomic model. The atomic model must then be validated for fit to the experimental electron density and also for agreement with prior expectations of stereochemistry. Stringent validation of protein–ligand models has become possible as a result of the mandatory deposition of primary diffraction data, and many computational tools are now available to aid in the validation process. Validation of protein–ligand complexes has revealed some instances of overenthusiastic interpretation of ligand density. Fundamental concepts and metrics of protein–ligand quality validation are discussed and we highlight software tools to assist in this process. It is essential that end users select high quality protein–ligand models for their computational and biological studies, and we provide an overview of how this can be achieved. PMID:25665575

  3. Structures of the OmpF porin crystallized in the presence of foscholine-12.

    Science.gov (United States)

    Kefala, Georgia; Ahn, Chihoon; Krupa, Martin; Esquivies, Luis; Maslennikov, Innokentiy; Kwiatkowski, Witek; Choe, Senyon

    2010-05-01

    The endogenous Escherichia coli porin OmpF was crystallized as an accidental by-product of our efforts to express, purify, and crystallize the E. coli integral membrane protein KdpD in the presence of foscholine-12 (FC12). FC12 is widely used in membrane protein studies, but no crystal structure of a protein that was both purified and crystallized with this detergent has been reported in the Protein Data Bank. Crystallization screening for KdpD yielded two different crystals of contaminating protein OmpF. Here, we report two OmpF structures, the first membrane protein crystal structures for which extraction, purification, and crystallization were done exclusively with FC12. The first structure was refined in space group P21 with cell parameters a = 136.7 A, b = 210.5 A, c = 137 A, and beta = 100.5 degrees , and the resolution of 3.8 A. The second structure was solved at the resolution of 4.4 A and was refined in the P321 space group, with unit cell parameters a = 215.5 A, b = 215.5 A, c = 137.5 A, and gamma = 120 degrees . Both crystal forms show novel crystal packing, in which the building block is a tetrahedral arrangement of four trimers. Additionally, we discuss the use of FC12 for membrane protein crystallization and structure determination, as well as the problem of the OmpF contamination for membrane proteins overexpressed in E. coli.

  4. Crystal structure of a photobiologically active furanocoumarin from Artemisia reticulata

    Directory of Open Access Journals (Sweden)

    A. K. Bauri

    2016-04-01

    Full Text Available The title furanocoumarin, C14H12O4 [systematic name: 9-hydroxy-2-(prop-1-en-2-yl-2,3-dihydro-7H-furo[3,2-g]chromen-7-one], crystallizes with two independent molecules (A and B in the asymmetric unit. The two molecules differ essentially in the orientation of the propenyl group with respect to the mean plane of the furanocoumarin moiety; the O—C(H—C=C torsion angle is 122.2 (7° in molecule A and −10.8 (11° in molecule B. In the crystal, the A and B molecules are linked via O—H...O hydrogen bonds, forming zigzag –A–B–A–B– chains propagating along [001]. The chains are reinforced by bifurcated C—H...(O,O hydrogen bonds, forming ribbons which are linked via C—H...π and π–π interactions [intercentroid distance = 3.602 (2 Å], forming a three-dimensional structure.

  5. Hydrothermal synthesis, crystal structures, and enantioselective adsorption property of bis(L-histidinato)nickel(II) monohydrate

    Science.gov (United States)

    Ramos, Christian Paul L.; Conato, Marlon T.

    2018-05-01

    Despite the numerous researches in metal-organic frameworks (MOFs), there are only few reports on biologically important amino acids, histidine in particular, on its use as bridging ligand in the construction of open-framework architectures. In this work, hydrothermal synthesis was used to prepare a compound based on Ni2+ and histidine. The coordination assembly of imidazole side chain of histidine with divalent nickel ions in aqueous condition yielded purple prismatic solids. Single crystal X-ray diffraction (XRD) analysis of the product revealed structure for Ni(C6H8N3O2)2 • H2O that has a monoclinic (C2) structure with lattice parameters, a = 29.41, b = 8.27, c = 6.31 Å, β = 90.01 ˚. Circular dichroism - optical rotatory dispersion (CD-ORD), Powder X-ray diffraction (PXRD) and Fourier transform - infrared spectroscopy (FT-IR) analyses are conducted to further characterize the crystals. Enantioselective adsorption analysis using racemic mixture of 2-butanol confirmed bis(L-histidinato)nickel(II) monohydrate MOF crystal's enantioselective property preferentially favoring the adsorption of (S)-2-butanol isomer.

  6. Thermal analyses to assess diffusion kinetics in the nano-sized interspaces between the growing crystals of a glass ceramics

    Energy Technology Data Exchange (ETDEWEB)

    Fotheringham, Ulrich, E-mail: ulrich.fotheringham@schott.com [SCHOTT AG, 55014 Mainz (Germany); Wurth, Roman; Ruessel, Christian [Otto-Schott-Institut, Jena University, Jena (Germany)

    2011-08-10

    Highlights: {yields} Macroscopic, routine laboratory methods of the 'Thermal Analysis' type (DSC, DMA) allow a rough description of the kinetics in the nano-sized interstitial spaces of glass ceramics. {yields} These macroscopic measurements support the idea of a rigid zone around the crystals which builds up during ceramization and is part of a negative feedback loop which finally stops crystal growth and Ostwald ripening within the time window of observation. {yields} Ostwald ripening may be provoked by thermally softening said rigid zone. Under certain conditions, this gives rise to a characteristic peak in the DSC. - Abstract: According to a hypothesis by Ruessel and coworkers, the absence of Ostwald ripening during isothermal crystallization of lithium aluminosilicate (LAS) and other glass ceramics indicates the existence of a kinetic hindrance of atomic reorganization in the interstitial spaces between the crystals. Methods of Thermal Analysis (Differential Scanning Calorimetry (DSC), Dynamic Mechanical Analysis (DMA)) which are sensitive to the local atomic rearrangements in the interstitial spaces (including viscous flow) are applied to find support for the idea of kinetic hindrance and the formation of a core shell structure acting as diffusion barrier. Both the DSC-measured calorimetric glass transition and the DMA-measured viscoelastic properties indicate an increase in the time constants of atomic rearrangements and diffusion by at least two orders of magnitude during ceramization. This fits to the above idea. Based on these findings, thermo analytic studies have been performed in order to find out how Ostwald ripening may be provoked.

  7. Crystal structures of sol-gel deposited zirconia thin films

    International Nuclear Information System (INIS)

    Bell, J.M.; Cheary, R.W.; Rice, M.; Ben-Nissan, B.; Cocking, J.L.; Johnstone, G.R.

    1992-01-01

    The authors reports on the crystal structure of zirconia thin films by high temperature x-ray diffraction. The films were deposited by sol-gel processing onto polished stainless steel substrates, and dried at 200 deg C. X-ray diffraction at temperatures between 400 deg C and 800 deg C was carried out using an APEX diffractometer with a position sensitive detector. Previous results indicated that there was a transformation between the tetragonal phase and the monoclinic phase at approximately 770 deg C. Two experiments have been carried out: temperature runs, where the structure evolution is studied as a function of temperature; and time evolution of the structure at fixed temperatures. The results for both experiments, including structural analysis of the different phases found in the thin zirconia films and an analysis of the kinetics of the phase transformation(s) from the time evolution work are presented. This will include a comparison with theories of nucleation and crystallisation in single element films. Impurity phases introduced by interaction of the zirconia with the substrate have been observed, and the effect of increasing annealing time on the substrate-film interaction will also be discussed. 17 refs., 1 tab., 3 figs

  8. The hydroxynitrile lyase from almond: crystal structure and mechanistical studies

    International Nuclear Information System (INIS)

    Dreveny, Ingrid

    2001-09-01

    Cyanogenesis is a defense process of several thousand plant species. Hydroxynitrile lyase (HNL), a key enzyme of this process, cleaves a cyanohydrin precursor into hydrocyanic acid and the corresponding aldehyde or ketone. The reverse reaction constitutes an important tool in industrial biocatalysis. Different classes of hydroxynitrile lyases have convergently evolved from FAD-dependent oxidoreductases, α/β hydrolases and alcohol dehydrogenases. The FAD-dependent hydroxynitrile lyases (FAD-HNLs) carry a flavin cofactor whose redox properties appear to be unimportant for catalysis. The high resolution crystal structure of the hydroxynitrile lyase from almond (Prunus amygdalus), PaHNL1, has been determined and constitutes the first 3D structure of an FAD-HNL. The overall fold and the architecture of the active site region showed that PaHNL1 belongs to the glucose-methanol-choline-oxidoreductase family, with closest structural similarity to glucose oxidase. There is strong evidence from the sequence and the reaction product that FAD-dependent hydroxynitrile lyases have evolved from an aryl alcohol oxidizing precursor. Structures of PaHNL1 in complex with its natural substrate mandelonitrile and the competitive inhibitor benzyl alcohol provided insight into the residues involved in catalysis and a mechanism without participation of the cofactor could be suggested. Although the catalytic residues differ between the α/β-hydrolase-type HNLs and PaHNL1, common general features relevant for hydroxynitrile lyase activity could be proposed. (author)

  9. Crystal Structure of the Marburg Virus VP35 Oligomerization Domain

    Energy Technology Data Exchange (ETDEWEB)

    Bruhn, Jessica F.; Kirchdoerfer, Robert N.; Urata, Sarah M.; Li, Sheng; Tickle, Ian J.; Bricogne, Gérard; Saphire, Erica Ollmann (Scripps); (Globel Phasing); (UCSD)

    2016-11-09

    ABSTRACT

    Marburg virus (MARV) is a highly pathogenic filovirus that is classified in a genus distinct from that of Ebola virus (EBOV) (generaMarburgvirusandEbolavirus, respectively). Both viruses produce a multifunctional protein termed VP35, which acts as a polymerase cofactor, a viral protein chaperone, and an antagonist of the innate immune response. VP35 contains a central oligomerization domain with a predicted coiled-coil motif. This domain has been shown to be essential for RNA polymerase function. Here we present crystal structures of the MARV VP35 oligomerization domain. These structures and accompanying biophysical characterization suggest that MARV VP35 is a trimer. In contrast, EBOV VP35 is likely a tetramer in solution. Differences in the oligomeric state of this protein may explain mechanistic differences in replication and immune evasion observed for MARV and EBOV.

    IMPORTANCEMarburg virus can cause severe disease, with up to 90% human lethality. Its genome is concise, only producing seven proteins. One of the proteins, VP35, is essential for replication of the viral genome and for evasion of host immune responses. VP35 oligomerizes (self-assembles) in order to function, yet the structure by which it assembles has not been visualized. Here we present two crystal structures of this oligomerization domain. In both structures, three copies of VP35 twist about each other to form a coiled coil. This trimeric assembly is in contrast to tetrameric predictions for VP35 of Ebola virus and to known structures of homologous proteins in the measles, mumps, and Nipah viruses. Distinct oligomeric states of the Marburg and Ebola virus VP35 proteins may explain differences between them in polymerase function and immune evasion. These findings may provide a more accurate understanding of the

  10. Spectral element method for band-structure calculations of 3D phononic crystals

    International Nuclear Information System (INIS)

    Shi, Linlin; Liu, Na; Zhou, Jianyang; Zhou, Yuanguo; Wang, Jiamin; Liu, Qing Huo

    2016-01-01

    The spectral element method (SEM) is a special kind of high-order finite element method (FEM) which combines the flexibility of a finite element method with the accuracy of a spectral method. In contrast to the traditional FEM, the SEM exhibits advantages in the high-order accuracy as the error decreases exponentially with the increase of interpolation degree by employing the Gauss–Lobatto–Legendre (GLL) polynomials as basis functions. In this study, the spectral element method is developed for the first time for the determination of band structures of 3D isotropic/anisotropic phononic crystals (PCs). Based on the Bloch theorem, we present a novel, intuitive discretization formulation for Navier equation in the SEM scheme for periodic media. By virtue of using the orthogonal Legendre polynomials, the generalized eigenvalue problem is converted to a regular one in our SEM implementation to improve the efficiency. Besides, according to the specific geometry structure, 8-node and 27-node hexahedral elements as well as an analytic mesh have been used to accurately capture curved PC models in our SEM scheme. To verify its accuracy and efficiency, this study analyses the phononic-crystal plates with square and triangular lattice arrangements, and the 3D cubic phononic crystals consisting of simple cubic (SC), bulk central cubic (BCC) and faced central cubic (FCC) lattices with isotropic or anisotropic scatters. All the numerical results considered demonstrate that SEM is superior to the conventional FEM and can be an efficient alternative method for accurate determination of band structures of 3D phononic crystals. (paper)

  11. Welcome to Crystals: A New Open-Access, Multidisciplinary Forum for Growth, Structures and Properties of Crystals

    Directory of Open Access Journals (Sweden)

    Gerd Meyer

    2010-12-01

    Full Text Available The majority of the earth’s crust is made up of crystalline material. The research areas of mineralogy, petrology, chimie minerále (inorganic chemistry and, of course, crystallography outgrew from the fascination of mankind with the color and symmetry of crystals. Crystals have translational symmetry in two or three dimensions, quasicrystals have translational symmetry in higher spaces. Further symmetries may be observed by the eye, by microscopic techniques or by the diffraction of X-ray, electron, or neutron beams. Diffraction techniques are also used, due to Max von Laue’s eminent discovery a century ago, to determine crystal structures. [...

  12. NMR structure of the protein NP-247299.1: comparison with the crystal structure

    International Nuclear Information System (INIS)

    Jaudzems, Kristaps; Geralt, Michael; Serrano, Pedro; Mohanty, Biswaranjan; Horst, Reto; Pedrini, Bill; Elsliger, Marc-André; Wilson, Ian A.; Wüthrich, Kurt

    2010-01-01

    Comparison of the NMR and crystal structures of a protein determined using largely automated methods has enabled the interpretation of local differences in the highly similar structures. These differences are found in segments of higher B values in the crystal and correlate with dynamic processes on the NMR chemical shift timescale observed in solution. The NMR structure of the protein NP-247299.1 in solution at 313 K has been determined and is compared with the X-ray crystal structure, which was also solved in the Joint Center for Structural Genomics (JCSG) at 100 K and at 1.7 Å resolution. Both structures were obtained using the current largely automated crystallographic and solution NMR methods used by the JCSG. This paper assesses the accuracy and precision of the results from these recently established automated approaches, aiming for quantitative statements about the location of structure variations that may arise from either one of the methods used or from the different environments in solution and in the crystal. To evaluate the possible impact of the different software used for the crystallographic and the NMR structure determinations and analysis, the concept is introduced of reference structures, which are computed using the NMR software with input of upper-limit distance constraints derived from the molecular models representing the results of the two structure determinations. The use of this new approach is explored to quantify global differences that arise from the different methods of structure determination and analysis versus those that represent interesting local variations or dynamics. The near-identity of the protein core in the NMR and crystal structures thus provided a basis for the identification of complementary information from the two different methods. It was thus observed that locally increased crystallographic B values correlate with dynamic structural polymorphisms in solution, including that the solution state of the protein involves

  13. Crystal structure study of new lanthanide silicates with silico-carnotite structure

    International Nuclear Information System (INIS)

    Piccinelli, F.; Lausi, A.; Speghini, A.; Bettinelli, M.

    2012-01-01

    The crystal structures of new rare earth-based silicate compounds (Ca 3 Eu 2 Si 3 O 12 , Ca 3 Gd 2 Si 3 O 12 , Ca 3 Dy 2 Si 3 O 12 , Ca 3 Er 2 Si 3 O 12 and Ca 3 Lu 2 Si 3 O 12 ) have been determined using powder X-ray diffraction. From Rietveld refinement calculations on the collected powder patterns we observe a different distribution of the rare earth ions on the three available crystal sites characterized by different coordination numbers, depending on the ionic radius of the rare earth ion. The reasons of the instability of the silico-carnotite structure for lanthanide ions larger than Eu 3+ have been deduced. In addition, in order to detect crystal phase transitions, the powder patterns of Ca 3 Eu 2 Si 3 O 12 and Ca 3 Sm 2 Si 3 O 12 samples have been collected as a function of the temperature (RT-1000 °C range), but no phase transitions have been observed. - Graphical abstract: Synchrotron X-ray diffraction allows us the accurate determination of the RE 3+ ions distribution on the three available crystal sites of the silico-carnotite structure. Highlights: ► The structure of the Ca 3 M 2 Si 3 O 12 (M=Eu, Gd, Dy, Er and Lu) was determined. ► Different distribution of RE 3+ ions on the three available crystal sites was observed. ► The instability of the silico-carnotite structure for RE=La→Sm was discussed.

  14. Mechanosynthesis, crystal structure and magnetic characterization of neodymium orthoferrite

    Energy Technology Data Exchange (ETDEWEB)

    Serna, Pedro Vera; Campos, Cecilio Garcia [Division de Ingenierias, Universidad Politecnica de Tecamac (UPTECAMAC), Tecamac de Felipe Villanueva, Estado de Mexico (Mexico); De Jesus, Felix Sanchez; Miro, Ana Maria Bolarin [Area Academica de Ciencias de la Tierra y Materiales, Universidad Autonoma del Estado de Hidalgo (UAEH), Mineral de la Reforma, Hidalgo (Mexico); Loran, Jose Antonio Juanico [Division de Ingenieria Industrial Nanotecnologia, Universidad Politecnica del Valle de Mexico (UPVM), Tultitlan, Estado de Mexico (Mexico); Longwell, Jeffrey, E-mail: pedrovera.upt@gmail.com [Department of Languages and Linguistics, New Mexico State University (NMSU), Las Cruces, NM (United States)

    2016-03-15

    Neodymium orthoferrite NdFeO{sub 3} was obtained at room temperature by mechanosynthesis with a stoichiometric ratio of Nd2O{sub 3} and Fe{sub 2}O{sub 3} powders, whereas the traditional synthesis requires a temperature of approximately 1000 °C. The crystal structure was analyzed by X-ray diffraction analysis using Cu radiation and a LynxEye XE detector, whose strong fluorescence filtering enabled a high signal intensity. The analysis indicated that the obtained crystallites were nano-sized. The particle morphology was observed by scanning electron microscopy, and the magnetic saturation was tested by vibrating sample magnetometry. The synthesis of NdFeO{sub 3} was detected after a few hours of milling, indicating that the milling imparted mechanical energy to the system. (author)

  15. The crystal structure of γ-AlD3

    International Nuclear Information System (INIS)

    Brinks, H.W.; Brown, C.; Jensen, C.M.; Graetz, J.; Reilly, J.J.; Hauback, B.C.

    2007-01-01

    γ-AlD 3 was synthesized from LiAlD 4 and AlCl 3 via thermal decomposition of aluminum hydride etherate in presence of excess LiAlD 4 . γ-AlD 3 was determined by powder neutron diffraction and synchrotron X-ray diffraction to crystallize in the space group Pnnm. The orthorhombic structure has unit-cell dimensions a = 7.3360(3) A, b = 5.3672(2) A and c = 5.7562(1) A, and it consists of both corner- and edge-sharing AlD 6 octahedra where each hydrogen is shared between two octahedra. The average Al-D distances in octahedra with edge-sharing is 1.706 A and in the octahedra with only corner-sharing 1.719 A

  16. Optical nonreciprocal transmission in an asymmetric silicon photonic crystal structure

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Zheng; Chen, Juguang; Ji, Mengxi; Huang, Qingzhong; Xia, Jinsong; Wang, Yi, E-mail: yingwu2@126.com, E-mail: ywangwnlo@mail.hust.edu.cn [Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, Hubei 430074 (China); Wu, Ying, E-mail: yingwu2@126.com, E-mail: ywangwnlo@mail.hust.edu.cn [Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, Hubei 430074 (China); School of Physics, Huazhong University of Science and Technology, Wuhan, Hubei 430074 (China)

    2015-11-30

    An optical nonreciprocal transmission (ONT) is realized by employing the nonlinear effects in a compact asymmetric direct-coupled nanocavity-waveguide silicon photonic crystal structure with a high loaded quality factor (Q{sub L}) of 42 360 and large extinction ratio exceeding 30 dB. Applying a single step lithography and successive etching, the device can realize the ONT in an individual nanocavity, alleviating the requirement to accurately control the resonance of the cavities. A maximum nonreciprocal transmission ratio of 21.1 dB as well as a working bandwidth of 280 pm in the telecommunication band are obtained at a low input power of 76.7 μW. The calculated results by employing a nonlinear coupled-mode model are in good agreement with the experiment.

  17. Crystal structure of 4-methoxy-N-(piperidine-1-carbonothioylbenzamide

    Directory of Open Access Journals (Sweden)

    Khairi Suhud

    2017-10-01

    Full Text Available In the title compound, C14H18N2O2S, the piperidine ring has a chair conformation. Its mean plane is twisted with respect to the 4-methoxybenzoyl ring, with a dihedral angle of 63.0 (3°. The central N—C(=S—N(H—C(=O bridge is twisted with an N—C—N—C torsion angle of 74.8 (6°. In the crystal, molecules are linked by N—H...O and C—H...O hydrogen bonds, forming chains along the c-axis direction. Adjacent chains are linked by C—H...π interactions, forming layers parallel to the ac plane. The layers are linked by offset π–π interactions [intercentroid distance = 3.927 (3 Å], forming a supramolecular three-dimensional structure.

  18. Crystal structure and phase transitions of sodium potassium niobate perovskites

    Science.gov (United States)

    Tellier, J.; Malic, B.; Dkhil, B.; Jenko, D.; Cilensek, J.; Kosec, M.

    2009-02-01

    This paper presents the crystal structure and the phase transitions of K xNa 1- xNbO 3 (0.4 ≤ x ≤ 0.6). X-ray diffraction measurements were used to follow the change of the unit-cell parameters and the symmetry in the temperature range 100-800 K. At room temperature all the compositions exhibited a monoclinic metric of the unit cell with a small monoclinic distortion (90.32° ≤ β ≤ 90.34°). No major change of symmetry was evidenced in the investigated compositional range, which should be characteristic of the morphotropic phase-boundary region. With increasing temperature, the samples underwent first-order monoclinic-tetragonal and tetragonal-cubic transitions. Only the potassium-rich phases were rhombohedral at 100 K.

  19. Crystal and molecular structure of dysprosium (3) n-aminobenzoate

    International Nuclear Information System (INIS)

    Khiyalov, M.S.; Amiraslanov, I.R.; Mamedov, Kh.S.; Movsumov, Eh.M.

    1981-01-01

    The X ray diffraction investigation of the Dy(NH 2 C 6 H 4 COO) 3 x3H 2 O complex is carried out. Triclinic crystals have lattice parameters α=11.095(15), b=9.099(17), c=12.780 (15)A, α=108.051(12), β=89.072(10); γ=104.954(12) 0 , space group P anti 1, Z=2. The structure consists of dimer molecules. The third water molecule in the formula is an outer spherical one. The average lengths of Dy-O and Dy-OH 2 are 2.39 and 2.40 A respectively, the average value of Dy-O in bridge carboxylates (2.26A) is remarkably shorter. Hydrogen bonds between amine ligand ends, carboxylic groups oxygen and water molecules bind complex molecules into the three-dimensional frame [ru

  20. Crystal structure of 5-hydroxy-5-propylbarbituric acid

    Directory of Open Access Journals (Sweden)

    Thomas Gelbrich

    2015-11-01

    Full Text Available Molecules of the title compound, C7H10N2O4, systematic name 5-hydroxy-5-propylpyrimidine-2,4,6(1H,3H,5H-trione, form a hydrogen-bonded framework which is based on three independent hydrogen bonds, N—H...O(carbonyl, N—H...O(hydroxy and O—H...O(carbonyl. This framework has the topology of the 5-connected nov net. Each molecule is linked to five other molecules via six hydrogen bonds, and the descriptor of the hydrogen-bonded structure is F65[44.66-nov]. The crystal packing is isostructural with that of the previously reported 5-hydroxy-5-ethyl analogue.

  1. 1-Hydroxyethyl-2-Substituted Phenoxymethyl Benzimidazoles: Synthesis and Crystal Structures

    International Nuclear Information System (INIS)

    Wu, J.; Wang, Z.; Gu, H.; Chen, W.; Zhao, L.; Zhao, C.

    2016-01-01

    Five novel 1-hydroxyethyl-2-substituted phenoxymethyl benzimidazoles c1-c5 were successfully synthesized by a three-step route. Firstly, five substituted phenoxymethyl acids a1-a5 were prepared by the O-carboxymethylation reaction of the starting substituted phenols under microwave irradiation. Then, these compounds reacted with o-phenylendiamine to get the key intermediates 2-substituted phenoxymethyl benzimidazoles b1-b5. At last, the target compounds were synthesized by the N-hydroxyethylation reaction of b1-b5 with 2-chloroethyl alcohol through the solid-liquid phase transfer catalysis method, where tetrabutyl ammonium bromide (TBAB) was used as the catalyst. The structures of the target compounds were well characterized and verified by elemental analysis, MS, IR, 1H NMR, 13C NMR and single crystal X-ray diffraction analysis. (author)

  2. Crystal structure of 2,5-dimethylanilinium salicylate

    Directory of Open Access Journals (Sweden)

    A. Mani

    2015-09-01

    Full Text Available The title molecular salt, C8H12N+·C7H5O3− arose from the proton-transfer reaction between 2,5-xylidine and salicylic acid. In the anion, the dihedral angle between the planes of the aromatic ring and the –CO2− group is 11.08 (8°; this near planarity is consolidated by an intramolecular O—H...O hydrogen bond. In the crystal, the components are connected by N—H...O hydrogen bonds, with all three O atoms in the anion acting as acceptors; the result is a [100] chain. The structure also features weak C—H...O bonds and aromatic π–π stacking [centroid-to-centroid distance = 3.7416 (10 Å] interactions, which lead to a three-dimensional network.

  3. Co2+-doped diopside: crystal structure and optical properties

    Science.gov (United States)

    Gori, C.; Tribaudino, M.; Mezzadri, F.; Skogby, H.; Hålenius, U.

    2018-05-01

    Synthetic clinopyroxenes along the CaMgSi2O6-CaCoSi2O6 join were investigated by a combined chemical-structural-spectroscopic approach. Single crystals were synthesized by flux growth methods, both from Ca-saturated and Ca-deficient starting compositions. Single crystal structure refinements show that the incorporation of Co2+ at the octahedrally coordinated cation sites of diopside, increases the unit-cell as well as the M1 and the M2 polyhedral volumes. Spectroscopic investigations (UV-VIS-NIR) of the Ca-rich samples reveal three main optical absorption bands, i.e. 4 T 1g → 4 T 2g( F), 4 T 1g → 4 A 2g( F) and 4 T 1g → 4 T 1g( P) as expected for Co2+ at a six-coordinated site. The bands arising from the 4 T 1g → 4 T 2g( F) and the 4 T 1g → 4 T 1g( P) electronic transitions, are each split into two components, due to the distortions of the M1 polyhedron from ideal Oh-symmetry. In spectra of both types, a band in the NIR range at ca 5000 cm-1 is caused by the 4 A 2g → 4 T 1g( F) electronic transition in Co2+ in a cubic field in the M2 site. Furthermore, an additional component to a band system at 14,000 cm-1, due to electronic transitions in Co2+ at the M2 site, is recorded in absorption spectra of Ca-deficient samples. No variations in Dq and Racah B parameters for Co2+ at the M1 site in response to compositional changes, were demonstrated, suggesting complete relaxation of the M1 polyhedron within the CaMgSi2O6-CaCoSi2O6 solid solution.

  4. Crystal structures and phase transformation of deuterated lithium imide, Li2ND

    International Nuclear Information System (INIS)

    Balogh, Michael P.; Jones, Camille Y.; Herbst, J.F.; Hector, Louis G.; Kundrat, Matthew

    2006-01-01

    We have investigated the crystal structure of deuterated lithium imide, Li 2 ND, by means of neutron and X-ray diffraction. An order-disorder transition occurs near 360K. Below that temperature Li 2 ND can be described to the same level of accuracy as a disordered cubic (Fd3-bar m) structure with partially occupied Li 32e sites or as a fully occupied orthorhombic (Ima2 or Imm2) structure. The high temperature phase is best characterized as disordered cubic (Fm3-bar m) with D atoms randomized over the 192l sites. Density functional theory calculations complement and support the diffraction analyses. We compare our findings in detail with previous studies

  5. Two modifications of Y2Piv6(HPiv)6 crystals: synthesis and structures

    International Nuclear Information System (INIS)

    Kiseleva, E.A.; Troyanov, S.I.; Korenev, Yu.M.

    2006-01-01

    Crystal structure of solvate of yttrium pivalate YPiv 3 ·3HPiv is studied. Existing of two polymorphous modifications of the compound is detected. It is shown that α- and β-modifications of yttrium pivalate solvate have molecular crystal structures and are built of Y 2 Piv 6 (HPiv) 6 dimers. Difference of these two modifications is in package of dimer molecules and in center-symmetricity of dimers in α-modification structure. Molecular and crystal structure, crystal lattice parameters are determined [ru

  6. High geomagnetic intensity during the mid-Cretaceous from Thellier analyses of single plagioclase crystals.

    Science.gov (United States)

    Tarduno, J A; Cottrell, R D; Smirnov, A V

    2001-03-02

    Recent numerical simulations have yielded the most efficient geodynamo, having the largest dipole intensity when reversal frequency is low. Reliable paleointensity data are limited but heretofore have suggested that reversal frequency and paleointensity are decoupled. We report data from 56 Thellier-Thellier experiments on plagioclase crystals separated from basalts of the Rajmahal Traps (113 to 116 million years old) of India that formed during the Cretaceous Normal Polarity Superchron. These data suggest a time-averaged paleomagnetic dipole moment of 12.5 +/- 1.4 x 10(22) amperes per square meter, three times greater than mean Cenozoic and Early Cretaceous-Late Jurassic dipole moments when geomagnetic reversals were frequent. This result supports a correlation between intervals of low reversal frequency and high geomagnetic field strength.

  7. Structural and optical properties of WTe2 single crystals synthesized by DVT technique

    Science.gov (United States)

    Dixit, Vijay; Vyas, Chirag; Pathak, V. M.; Soalanki, G. K.; Patel, K. D.

    2018-05-01

    Layered transition metal di-chalcogenide (LTMDCs) crystals have attracted much attention due to their potential in optoelectronic device applications recently due to realization of their monolayer based structures. In the present investigation we report growth of WTe2 single crystals by direct vapor transport (DVT) technique. These crystals are then characterized by energy dispersive analysis of x-rays (EDAX) to study stoichiometric composition after growth. The structural properties are studied by x-ray diffraction (XRD) and selected area electron diffraction (SAED) is used to confirm orthorhombic structure of grown WTe2 crystal. Surface morphological properties of the crystals are also studied by scanning electron microscope (SEM). The optical properties of the grown crystals are studied by UV-Visible spectroscopy which gives direct band gap of 1.44 eV for grown WTe2 single crystals.

  8. Transient electromagnetic and dynamic structural analyses of a blanket structure with coupling effects

    Energy Technology Data Exchange (ETDEWEB)

    Koganezawa, K. [Mitsubishi Atomic Power Industries, Inc., Yokohama (Japan); Kushiyama, M. [Mitsubishi Atomic Power Industries, Inc., Yokohama (Japan); Niikura, S. [Mitsubishi Atomic Power Industries, Inc., Yokohama (Japan); Kudough, F. [Mitsubishi Atomic Power Industries, Inc., Yokohama (Japan); Onozuka, M. [Mitsubishi Heavy Industries Ltd., Yokohama (Japan); Koizumi, K. [Japan Atomic Energy Research Inst., Ibaraki (Japan)

    1995-12-31

    Transient electromagnetic and dynamic structural analyses of a blanket structure in the fusion experimental reactor (FER) under a plasma disruption event and a vertical displacement event (VDE) have been performed to investigate the dynamic structural characteristics and the feasibility of the structure. Coupling effects between eddy currents and dynamic deflections have also been taken into account in these analyses. In this study, the inboard blanket was employed because of our computer memory limitation. A 1/192 segment model of a full torus was analyzed using the analytical code, EDDYCUFF. In the plasma disruption event, the maximum magnetic pressure caused by eddy currents and poloidal fields was 1.2MPa. The maximum stress intensity by this magnetic pressure was 114MPa. In the VDE, the maximum magnetic pressure was 2.4MPa and the maximum stress intensity was 253MPa. This stress was somewhat beyond the allowable stress limit. Therefore, the blanket structure and support design should be reviewed to reduce the stress to a suitable value. In summary, the dynamic structural characteristics and design issues of the blanket structure have been identified. (orig.).

  9. Structural and functional analyses of the putrescine binding protein PotF from Xanthomonas citri

    Energy Technology Data Exchange (ETDEWEB)

    Santana, L.D.F.; Balan, A. [Laboratorio Nacional de Biociencias - LNBIO, Campinas, SP (Brazil)

    2012-07-01

    Full text: The focus of our group is to determinate the role of ABC transporters in the physiology and growth of Xanthomonas citri, a phytopathogenic bacteria that infects citrus plants causing significant losses for the economy. One of the ABC transporters identified in the X. citri genome and that was showed to be active during the infection in Citrus sinensis plants was the putrescine transporter. This transporter consists of two internal membrane proteins PotG and PotH that form a pore, a cytoplasmic protein that gives energy for the transport and the periplasmic-binding protein PotF, which is responsible for the affinity and specificity of the system. Its function is associated to the microbial carcinogenesis, biofilm formation, escape from phagolysosomes, bacteriocin production, toxin activity and protection from oxidative and acid stress. In this work, we show for the first time, the expression, purification, functional and structural analyses of the X. citri PotF protein. The PotF was expressed from Escherichia coli cells strain Arctic, as a 40 kDa soluble protein, after induction of IPTG for twenty four hours at thirteen deg C. Using immobilized metal affinity chromatography for purification, the protein was eluted in the fractions with 10-500 mM of imidazole. To test the folding and cability to bind putrescine, spectroscopic analyses were performed using circular dichroism and intrinsic fluorescence. The data showed that PotF suffers conformational changes in presence of ligands and in different pH, suggesting a possible interaction with the tested ligand. Moreover, based on bioinformatics studies and molecular modeling analyses, we showed that X. citri PotF is highly conserved when compared to orthologs present in other bacteria, including the residues that form the ligand-binding site. The production of PotF in a soluble and stable form will allow us to start the crystallization trials in attempt to solve its structure. (author)

  10. Structural and functional analyses of the putrescine binding protein PotF from Xanthomonas citri

    International Nuclear Information System (INIS)

    Santana, L.D.F.; Balan, A.

    2012-01-01

    Full text: The focus of our group is to determinate the role of ABC transporters in the physiology and growth of Xanthomonas citri, a phytopathogenic bacteria that infects citrus plants causing significant losses for the economy. One of the ABC transporters identified in the X. citri genome and that was showed to be active during the infection in Citrus sinensis plants was the putrescine transporter. This transporter consists of two internal membrane proteins PotG and PotH that form a pore, a cytoplasmic protein that gives energy for the transport and the periplasmic-binding protein PotF, which is responsible for the affinity and specificity of the system. Its function is associated to the microbial carcinogenesis, biofilm formation, escape from phagolysosomes, bacteriocin production, toxin activity and protection from oxidative and acid stress. In this work, we show for the first time, the expression, purification, functional and structural analyses of the X. citri PotF protein. The PotF was expressed from Escherichia coli cells strain Arctic, as a 40 kDa soluble protein, after induction of IPTG for twenty four hours at thirteen deg C. Using immobilized metal affinity chromatography for purification, the protein was eluted in the fractions with 10-500 mM of imidazole. To test the folding and cability to bind putrescine, spectroscopic analyses were performed using circular dichroism and intrinsic fluorescence. The data showed that PotF suffers conformational changes in presence of ligands and in different pH, suggesting a possible interaction with the tested ligand. Moreover, based on bioinformatics studies and molecular modeling analyses, we showed that X. citri PotF is highly conserved when compared to orthologs present in other bacteria, including the residues that form the ligand-binding site. The production of PotF in a soluble and stable form will allow us to start the crystallization trials in attempt to solve its structure. (author)

  11. Crystal structure of the epithelial calcium channel TRPV6.

    Science.gov (United States)

    Saotome, Kei; Singh, Appu K; Yelshanskaya, Maria V; Sobolevsky, Alexander I

    2016-06-23

    Precise regulation of calcium homeostasis is essential for many physiological functions. The Ca(2+)-selective transient receptor potential (TRP) channels TRPV5 and TRPV6 play vital roles in calcium homeostasis as Ca(2+) uptake channels in epithelial tissues. Detailed structural bases for their assembly and Ca(2+) permeation remain obscure. Here we report the crystal structure of rat TRPV6 at 3.25 Å resolution. The overall architecture of TRPV6 reveals shared and unique features compared with other TRP channels. Intracellular domains engage in extensive interactions to form an intracellular 'skirt' involved in allosteric modulation. In the K(+) channel-like transmembrane domain, Ca(2+) selectivity is determined by direct coordination of Ca(2+) by a ring of aspartate side chains in the selectivity filter. On the basis of crystallographically identified cation-binding sites at the pore axis and extracellular vestibule, we propose a Ca(2+) permeation mechanism. Our results provide a structural foundation for understanding the regulation of epithelial Ca(2+) uptake and its role in pathophysiology.

  12. Crystal structure of bis(4-acetylanilinium tetrachloridocobaltate(II

    Directory of Open Access Journals (Sweden)

    Manickam Thairiyaraja

    2015-12-01

    Full Text Available The structure of the title salt, (C8H10NO2[CoCl4], is isotypic with the analogous cuprate(II structure. The asymmetric unit contains one 4-acetylanilinium cation and one half of a tetrachloridocobaltate(II anion for which the CoII atom and two Cl− ligands lie on a mirror plane. The Co—Cl distances in the distorted tetrahedral anion range from 2.2519 (6 to 2.2954 (9 Å and the Cl—Co—Cl angles range from 106.53 (2 to 110.81 (4°. In the crystal, cations are self-assembled by intermolecular N—H...O hydrogen-bonding interactions, leading to a C(8 chain motif with the chains running parallel to the b axis. π–π stacking interactions between benzene rings, with a centroid-to-centroid distance of 3.709 Å, are also observed along this direction. The CoCl42− anions are sandwiched between the cationic chains and interact with each other through intermolecular N—H...Cl hydrogen-bonding interactions, forming a three-dimensional network structure.

  13. Validation of experimental molecular crystal structures with dispersion-corrected density functional theory calculations

    International Nuclear Information System (INIS)

    Streek, Jacco van de; Neumann, Marcus A.

    2010-01-01

    The accuracy of a dispersion-corrected density functional theory method is validated against 241 experimental organic crystal structures from Acta Cryst. Section E. This paper describes the validation of a dispersion-corrected density functional theory (d-DFT) method for the purpose of assessing the correctness of experimental organic crystal structures and enhancing the information content of purely experimental data. 241 experimental organic crystal structures from the August 2008 issue of Acta Cryst. Section E were energy-minimized in full, including unit-cell parameters. The differences between the experimental and the minimized crystal structures were subjected to statistical analysis. The r.m.s. Cartesian displacement excluding H atoms upon energy minimization with flexible unit-cell parameters is selected as a pertinent indicator of the correctness of a crystal structure. All 241 experimental crystal structures are reproduced very well: the average r.m.s. Cartesian displacement for the 241 crystal structures, including 16 disordered structures, is only 0.095 Å (0.084 Å for the 225 ordered structures). R.m.s. Cartesian displacements above 0.25 Å either indicate incorrect experimental crystal structures or reveal interesting structural features such as exceptionally large temperature effects, incorrectly modelled disorder or symmetry breaking H atoms. After validation, the method is applied to nine examples that are known to be ambiguous or subtly incorrect

  14. Site response - a critical problem in soil-structure interaction analyses for embedded structures

    International Nuclear Information System (INIS)

    Seed, H.B.; Lysmer, J.

    1986-01-01

    Soil-structure interaction analyses for embedded structures must necessarily be based on a knowledge of the manner in which the soil would behave in the absence of any structure - that is on a knowledge and understanding of the spatial distribution of motions in the ground within the depth of embedment of the structure. The nature of these spatial variations is discussed and illustrated by examples of recorded motions. It is shown that both the amplitude of peak acceleration and the form of the acceleration response spectrum for earthquake motions will necessarily vary with depth and failure to take these variations into account may introduce an unwarranted degree of conservatism into the soil-structure interaction analysis procedure

  15. Crystal structure of ammonium and rubidium octacyanomolybdates (4)

    Energy Technology Data Exchange (ETDEWEB)

    Semenishin, D.I.; Glovyak, T.; Mys' kiv, M.G.

    1985-01-01

    By the method of monocrystal at the automatic diffractometer ''Syntex P2/sub 1/'' the crystal structure of ammonium and rubidium octacyanomolybdates (4)-(NH/sub 4/)/sub 4/(Mo(CN)/sub 8/)x0.5H/sub 2/O (1) (sp.gr. Pma5 2, a=15.50(3), b=14.118 (3), c=7.438 (1)A, Z=4, R=0.062 and Rb/sub 4/(Mo(CN)/sub 8/):3H/sub 2/O (2) (sp.gr. P4/sub 1/2/sub 1/2, a=9.300 (1), c=21.807 (3) A, Z=4, R=0.065) is determined. Mo atoms in the structure 1 occupy two 2(b) and 2(c) particular positions and are surrounded, each of them, by light CN-ligands. The mean values of Mo-C distances for Mo(1) are equal 2.216, for Mo(2)-2.235 A. Mo-N mean values, practically are identical in both molybdenum anions and are equal 3.353 A. MoCN angles are varied from 175.0 to 178.4. The dodecahedron with the only symmetry axis 2 corresponds to the Mo(1) coordination sphere whereas the Mo(2) atoms coordination polyhedron (CP) is the symmetry in antiprism. In the structure 2 Mo-C distances are in the limits of 2.130-2.160 and Mo-N 3.290-3.307 A. MoCN angles are varied from 176.0 to 179.3 deg, the (MoC/sub 8/) CP represents a symmetry 2 dodecahedron. The existence of two Mo coordination forms in the structure 1 is up to now the only example among structurally studied octacyanomolybdates (4).

  16. A new crystal form of Aspergillus oryzae catechol oxidase and evaluation of copper site structures in coupled binuclear copper enzymes.

    Science.gov (United States)

    Penttinen, Leena; Rutanen, Chiara; Saloheimo, Markku; Kruus, Kristiina; Rouvinen, Juha; Hakulinen, Nina

    2018-01-01

    Coupled binuclear copper (CBC) enzymes have a conserved type 3 copper site that binds molecular oxygen to oxidize various mono- and diphenolic compounds. In this study, we found a new crystal form of catechol oxidase from Aspergillus oryzae (AoCO4) and solved two new structures from two different crystals at 1.8-Å and at 2.5-Å resolutions. These structures showed different copper site forms (met/deoxy and deoxy) and also differed from the copper site observed in the previously solved structure of AoCO4. We also analysed the electron density maps of all of the 56 CBC enzyme structures available in the protein data bank (PDB) and found that many of the published structures have vague copper sites. Some of the copper sites were then re-refined to find a better fit to the observed electron density. General problems in the refinement of metalloproteins and metal centres are discussed.

  17. A new crystal form of Aspergillus oryzae catechol oxidase and evaluation of copper site structures in coupled binuclear copper enzymes.

    Directory of Open Access Journals (Sweden)

    Leena Penttinen

    Full Text Available Coupled binuclear copper (CBC enzymes have a conserved type 3 copper site that binds molecular oxygen to oxidize various mono- and diphenolic compounds. In this study, we found a new crystal form of catechol oxidase from Aspergillus oryzae (AoCO4 and solved two new structures from two different crystals at 1.8-Å and at 2.5-Å resolutions. These structures showed different copper site forms (met/deoxy and deoxy and also differed from the copper site observed in the previously solved structure of AoCO4. We also analysed the electron density maps of all of the 56 CBC enzyme structures available in the protein data bank (PDB and found that many of the published structures have vague copper sites. Some of the copper sites were then re-refined to find a better fit to the observed electron density. General problems in the refinement of metalloproteins and metal centres are discussed.

  18. Bismuth zinc vanadate, BiZn2VO6: New crystal structure type and electronic structure

    International Nuclear Information System (INIS)

    Eliziario Nunes, Sayonara; Wang, Chun-Hai; So, Karwei; Evans, John S.O.; Evans, Ivana Radosavljević

    2015-01-01

    We report a combined experimental and computational study of the crystal structure and electronic properties of bismuth zinc vanadate, BiZn 2 VO 6 , known for its visible light photocatalytic activity. The crystal structure has been solved from laboratory powder X-ray diffraction data using the repeated minimisations from random starting values method. BiZn 2 VO 6 adopts a new structure type, based on the following building blocks: corner- and edge-sharing ZnO 4 tetrahedra, ZnO 6 octahedra and VO 4 tetrahedra, and Bi 2 O 12 dimers. It is the only known member of the BiM 2 AO 6 (M=Pb, Ca, Cd, Mn, Zn, Mg, Cu; A=V, P, As) family which does not appear to be structurally closely related to others. The electronic structure of BiZn 2 VO 6 , calculated by DFT methods, shows that it is an indirect gap semiconductor with a calculated band gap of 1.6 eV, which compares favourably to the experimentally measured value of 2.4 eV. - Graphical abstract: The crystal structure of BiZn 2 VO 6 , a new structure type in the BiM 2 AO 6 (M=Mg, Ca, Cd, Cu, Pb, Mn, Zn; A=V, P, As) family. - Highlights: • Structure solution from PXRD data by repeated minimisations from random starting values. • New structure type in the BiM 2 AO 6 (M=Pb, Ca, Cd, Mn, Zn, Mg, Cu; A=V, P, As) family. • Electronic structure calculation

  19. Analyses Of Techniques On Structural Fatigue Failure Detection ...

    African Journals Online (AJOL)

    Machines and structures are subjected to variable loading conditions where the stress cycle does not remain the same during the operation of the machine. Fatigue is undoubtedly one of the most serious of all causes of breakdowns of machines and structures which results in sudden failures. The use of the time domain ...

  20. Steady distribution structure of point defects near crystal-melt interface under pulling stop of CZ Si crystal

    Science.gov (United States)

    Abe, T.; Takahashi, T.; Shirai, K.

    2017-02-01

    In order to reveal a steady distribution structure of point defects of no growing Si on the solid-liquid interface, the crystals were grown at a high pulling rate, which Vs becomes predominant, and the pulling was suddenly stopped. After restoring the variations of the crystal by the pulling-stop, the crystals were then left in prolonged contact with the melt. Finally, the crystals were detached and rapidly cooled to freeze point defects and then a distribution of the point defects of the as-grown crystals was observed. As a result, a dislocation loop (DL) region, which is formed by the aggregation of interstitials (Is), was formed over the solid-liquid interface and was surrounded with a Vs-and-Is-free recombination region (Rc-region), although the entire crystals had been Vs rich in the beginning. It was also revealed that the crystal on the solid-liquid interface after the prolonged contact with the melt can partially have a Rc-region to be directly in contact with the melt, unlike a defect distribution of a solid-liquid interface that has been growing. This experimental result contradicts a hypothesis of Voronkov's diffusion model, which always assumes the equilibrium concentrations of Vs and Is as the boundary condition for distribution of point defects on the growth interface. The results were disscussed from a qualitative point of view of temperature distribution and thermal stress by the pulling-stop.

  1. Protein crystal growth on board Shenzhou 3: a concerted effort improves crystal diffraction quality and facilitates structure determination

    International Nuclear Information System (INIS)

    Han, Y.; Cang, H.-X.; Zhou, J.-X.; Wang, Y.-P.; Bi, R.-C.; Colelesage, J.; Delbaere, L.T.J.; Nahoum, V.; Shi, R.; Zhou, M.; Zhu, D.-W.; Lin, S.-X.

    2004-01-01

    The crystallization of 16 proteins was carried out using 60 wells on board Shenzhou 3 in 2002. Although the mission was only 7 days, careful and concerted planning at all stages made it possible to obtain crystals of improved quality compared to their ground controls for some of the proteins. Significantly improved resolutions were obtained from diffracted crystals of 4 proteins. A complete data set from a space crystal of the PEP carboxykinase yielded significantly higher resolution (1.46 A vs. 1.87 A), I/sigma (22.4 vs. 15.5), and a lower average temperature factor (29.2 A 2 vs. 42.9 A 2 ) than the best ground-based control crystal. The 3-D structure of the enzyme is well improved with significant ligand density. It has been postulated that the reduced convection and absence of macromolecule sedimentation under microgravity have advantages/benefits for protein crystal growth. Improvements in experimental design for protein crystal growth in microgravity are ongoing

  2. Synthesis, characterization and x-ray crystal structure of a dimethyltin (IV) dichloride complex of 2-acetylpyridine benzophenone azine

    International Nuclear Information System (INIS)

    Mustaffa Shamsuddin; Md Abu Affan; Ramli Atan

    1998-01-01

    Dimethyltin dichloride react with 2-ac ethylpyridine benzophenone azine (apba) in refluxing dry hexane to give (SnMe 2 Cl 2 (apba)) where the azine ligand acts as a bidentate N-N chelating ligand. The complex has been characterized by IR spectroscopy, 1 H and 13 C NMR spectroscopic data and elemental analyses. The crystal structure of the dimethyltin(IV) derivative has also been determined. Crystals are monoclinic with space group P2(1)/n with cell dimensions: a = 10.1819(3) Armstrong, b = 18.3113(5) Armstrong, c = 12.6451(4) Armstrong

  3. Crystal Structure, Conformational Analysis, and Charge Density Distribution for Eng-Epifisetinidol: An Explanation for Regiospecific Aromatic Substitution of 5-Deoxyflavan

    Science.gov (United States)

    Fred L. Tobiason; Frank R. Fronczek; Jan P. Steynberg; Elizabeth C. Steynberg; Richard W. Hemingway; Wayne L. Mattice

    1993-01-01

    Molecular modeling and molecular orbital analyses of ent-epifisetinidol gave &ood predictions of the approximate "reverse half-chair" conformation found for the crystal structure. MNDO and AM1 analyses of HOMO electron densities provided an explanation for the stereospecific electrophilic aromatic substitution at C(6) in 5-deoxy-flavans...

  4. Active liquid-crystal deflector and lens with Fresnel structure

    Science.gov (United States)

    Shibuya, Giichi; Yamano, Shohei; Yoshida, Hiroyuki; Ozaki, Masanori

    2017-02-01

    A new type of tunable Fresnel deflector and lens composed of liquid crystal was developed. Combined structure of multiple interdigitated electrodes and the high-resistivity (HR) layer implements the saw-tooth distribution of electrical potential with only the planar surfaces of the transparent substrates. According to the numerical calculation and design, experimental devices were manufactured with the liquid crystal (LC) material sealed into the sandwiched flat glass plates of 0.7 mm thickness with rubbed alignment layers set to an anti-parallel configuration. Fabricated beam deflector with no moving parts shows the maximum tilt angle of +/-1.3 deg which can apply for optical image stabilizer (OIS) of micro camera. We also discussed and verified their lens characteristics to be extended more advanced applications. Transparent interdigitated electrodes were concentrically aligned on the lens aperture with the insulator gaps under their boundary area. The diameter of the lens aperture was 30 mm and the total number of Fresnel zone was 100. Phase retardation of the beam wavefront irradiated from the LC lens device can be evaluated by polarizing microscope images with a monochromatic filter. Radial positions of each observed fringe are plotted and fitted with 2nd degree polynomial approximation. The number of appeared fringes is over 600 in whole lens aperture area and the correlation coefficients of all approximations are over 0.993 that seems enough ideal optical wavefront. The obtained maximum lens powers from the approximations are about +/-4 m-1 which was satisfied both convex and concave lens characteristics; and their practical use for the tunable lens grade eyeglasses became more prospective.

  5. Quantitative analyses of Streptococcus mutans biofilms with quartz crystal microbalance, microjet impingement and confocal microscopy.

    Science.gov (United States)

    Kreth, J; Hagerman, E; Tam, K; Merritt, J; Wong, D T W; Wu, B M; Myung, N V; Shi, W; Qi, F

    2004-10-01

    Microbial biofilm formation can be influenced by many physiological and genetic factors. The conventional microtiter plate assay provides useful but limited information about biofilm formation. With the fast expansion of the biofilm research field, there are urgent needs for more informative techniques to quantify the major parameters of a biofilm, such as adhesive strength and total biomass. It would be even more ideal if these measurements could be conducted in a real-time, non-invasive manner. In this study, we used quartz crystal microbalance (QCM) and microjet impingement (MJI) to measure total biomass and adhesive strength, respectively, of S. mutans biofilms formed under different sucrose concentrations. In conjunction with confocal laser scanning microscopy (CLSM) and the COMSTAT software, we show that sucrose concentration affects the biofilm strength, total biomass, and architecture in both qualitative and quantitative manners. Our data correlate well with previous observations about the effect of sucrose on the adherence of S. mutans to the tooth surface, and demonstrate that QCM is a useful tool for studying the kinetics of biofilm formation in real time and that MJI is a sensitive, easy-to-use device to measure the adhesive strength of a biofilm.

  6. Crystal Structure of the FERM Domain of Focal Adhesion Kinase

    International Nuclear Information System (INIS)

    Ceccarelli, D.; Song, H.; Poy, F.; Schaller, M.; Eck, M.

    2006-01-01

    Focal adhesion kinase (FAK) is a non-receptor tyrosine kinase that localizes to focal adhesions in adherent cells. Through phosphorylation of proteins assembled at the cytoplasmic tails of integrins, FAK promotes signaling events that modulate cellular growth, survival, and migration. The amino-terminal region of FAK contains a region of sequence homology with band 4.1 and ezrin/radixin/moesin (ERM) proteins termed a FERM domain. FERM domains are found in a variety of signaling and cytoskeletal proteins and are thought to mediate intermolecular interactions with partner proteins and phospholipids at the plasma membrane and intramolecular regulatory interactions. Here we report two crystal structures of an NH2-terminal fragment of avian FAK containing the FERM domain and a portion of the regulatory linker that connects the FERM and kinase domains. The tertiary folds of the three subdomains (F1, F2, and F3) are similar to those of known FERM structures despite low sequence conservation. Differences in the sequence and relative orientation of the F3 subdomain alters the nature of the interdomain interface, and the phosphoinositide binding site found in ERM family FERM domains is not present in FAK. A putative protein interaction site on the F3 lobe is masked by the proximal region of the linker. Additionally, in one structure the adjacent Src SH3 and SH2 binding sites in the linker associate with the surfaces of the F3 and F1 lobes, respectively. These structural features suggest the possibility that protein interactions of the FAK FERM domain can be regulated by binding of Src kinases to the linker segment

  7. Double-crystal analyser system for the PRISMA spectrometer: test of a prototype

    International Nuclear Information System (INIS)

    Petrillo, C.; Sacchetti, F.; Steigenberger, U.

    1993-11-01

    A prototype of a double-analyser system has been tested at the ISIS pulsed neutron source in order to determine the performance of such an analysing device in the low energy transfer region. The performance of such a system has been found satisfactory in terms of reflectivity and energy resolution as well as alignment procedures. Based on our test results we propose the construction of a second arm for the PRISMA (PRogetto deol'Istituto di Struttura della MAteria del Consiglio Nazionale delle Ricerche) spectrometer at ISIS. This new arm would enable us to perform measurements with much improved energy resolution and to extend the wavevector transfer range to much smaller values thus improving the instrument performance significantly for magnetic scattering experiments. The new, modular approach of the upgrade will also strengthen the flexibility of the instrument and open up the opportunity for further instrumental developments, for example the introduction of a polarization option. (Author)

  8. Crystal Structure of an LSD-Bound Human Serotonin Receptor

    Energy Technology Data Exchange (ETDEWEB)

    Wacker, Daniel; Wang, Sheng; McCorvy, John D.; Betz, Robin M.; Venkatakrishnan, A.J.; Levit, Anat; Lansu, Katherine; Schools, Zachary L.; Che, Tao; Nichols, David E.; Shoichet, Brian K.; Dror, Ron O.; Roth, Bryan L. (UNCSM); (UNC); (Stanford); (Stanford-MED); (UCSF)

    2017-01-01

    The prototypical hallucinogen LSD acts via serotonin receptors, and here we describe the crystal structure of LSD in complex with the human serotonin receptor 5-HT2B. The complex reveals conformational rearrangements to accommodate LSD, providing a structural explanation for the conformational selectivity of LSD’s key diethylamide moiety. LSD dissociates exceptionally slow from both 5-HT2BR and 5-HT2AR—a major target for its psychoactivity. Molecular dynamics (MD) simulations suggest that LSD’s slow binding kinetics may be due to a “lid” formed by extracellular loop 2 (EL2) at the entrance to the binding pocket. A mutation predicted to increase the mobility of this lid greatly accelerates LSD’s binding kinetics and selectively dampens LSD-mediated β-arrestin2 recruitment. This study thus reveals an unexpected binding mode of LSD; illuminates key features of its kinetics, stereochemistry, and signaling; and provides a molecular explanation for LSD’s actions at human serotonin receptors.

  9. Large scale structures in liquid crystal/clay colloids

    Science.gov (United States)

    van Duijneveldt, Jeroen S.; Klein, Susanne; Leach, Edward; Pizzey, Claire; Richardson, Robert M.

    2005-04-01

    Suspensions of three different clays in K15, a thermotropic liquid crystal, have been studied by optical microscopy and small angle x-ray scattering. The three clays were claytone AF, a surface treated natural montmorillonite, laponite RD, a synthetic hectorite, and mined sepiolite. The claytone and laponite were sterically stabilized whereas sepiolite formed a relatively stable suspension in K15 without any surface treatment. Micrographs of the different suspensions revealed that all three suspensions contained large scale structures. The nature of these aggregates was investigated using small angle x-ray scattering. For the clays with sheet-like particles, claytone and laponite, the flocs contain a mixture of stacked and single platelets. The basal spacing in the stacks was independent of particle concentration in the suspension and the phase of the solvent. The number of platelets in the stack and their percentage in the suspension varied with concentration and the aspect ratio of the platelets. The lath shaped sepiolite did not show any tendency to organize into ordered structures. Here the aggregates are networks of randomly oriented single rods.

  10. Large scale structures in liquid crystal/clay colloids

    International Nuclear Information System (INIS)

    Duijneveldt, Jeroen S van; Klein, Susanne; Leach, Edward; Pizzey, Claire; Richardson, Robert M

    2005-01-01

    Suspensions of three different clays in K15, a thermotropic liquid crystal, have been studied by optical microscopy and small angle x-ray scattering. The three clays were claytone AF, a surface treated natural montmorillonite, laponite RD, a synthetic hectorite, and mined sepiolite. The claytone and laponite were sterically stabilized whereas sepiolite formed a relatively stable suspension in K15 without any surface treatment. Micrographs of the different suspensions revealed that all three suspensions contained large scale structures. The nature of these aggregates was investigated using small angle x-ray scattering. For the clays with sheet-like particles, claytone and laponite, the flocs contain a mixture of stacked and single platelets. The basal spacing in the stacks was independent of particle concentration in the suspension and the phase of the solvent. The number of platelets in the stack and their percentage in the suspension varied with concentration and the aspect ratio of the platelets. The lath shaped sepiolite did not show any tendency to organize into ordered structures. Here the aggregates are networks of randomly oriented single rods

  11. Crystal Structure of an LSD-Bound Human Serotonin Receptor.

    Science.gov (United States)

    Wacker, Daniel; Wang, Sheng; McCorvy, John D; Betz, Robin M; Venkatakrishnan, A J; Levit, Anat; Lansu, Katherine; Schools, Zachary L; Che, Tao; Nichols, David E; Shoichet, Brian K; Dror, Ron O; Roth, Bryan L

    2017-01-26

    The prototypical hallucinogen LSD acts via serotonin receptors, and here we describe the crystal structure of LSD in complex with the human serotonin receptor 5-HT 2B . The complex reveals conformational rearrangements to accommodate LSD, providing a structural explanation for the conformational selectivity of LSD's key diethylamide moiety. LSD dissociates exceptionally slow from both 5-HT 2B R and 5-HT 2A R-a major target for its psychoactivity. Molecular dynamics (MD) simulations suggest that LSD's slow binding kinetics may be due to a "lid" formed by extracellular loop 2 (EL2) at the entrance to the binding pocket. A mutation predicted to increase the mobility of this lid greatly accelerates LSD's binding kinetics and selectively dampens LSD-mediated β-arrestin2 recruitment. This study thus reveals an unexpected binding mode of LSD; illuminates key features of its kinetics, stereochemistry, and signaling; and provides a molecular explanation for LSD's actions at human serotonin receptors. PAPERCLIP. Copyright © 2017 Elsevier Inc. All rights reserved.

  12. Structural Transformations in Nematic Liquid Crystals with a Hybrid Orientation

    Science.gov (United States)

    Delev, V. A.; Krekhov, A. P.

    2017-12-01

    The structural transformations in a nematic liquid crystal (NLC) layer with a hybrid orientation (planar director orientation is created on one substrate and homeotropic director orientation is created on the other) are studied. In the case of a dc voltage applied to the NLC layer, the primary instability is flexoelectric. It causes the appearance of flexoelectric domains oriented along the director on the substrate with a planar orientation. When the voltage increases further, an electroconvective instability in the form of rolls moving almost normal to flexoelectric domains develops along with these domains. Thus, the following spatially periodic structures of different natures coexist in one system: equilibrium static flexoelectric deformation of a director and dissipative moving oblique electroconvection rolls. The primary instability in the case of an ac voltage is represented by electroconvection, which leads to moving oblique or normal rolls depending on the electric field frequency. Above the electroconvection threshold, a transition to moving "abnormal" rolls is detected. The wavevector of the rolls coincides with the initial director orientation on the substrate with a planar orientation, and the projection of the director at the midplane of the NLC layer on the layer plane makes a certain angle with the wavevector. The results of numerical calculations of the threshold characteristics of the primary instabilities agree well with the obtained experimental data.

  13. Artemin Crystal Structure Reveals Insights into Heparan Sulfate Binding

    Energy Technology Data Exchange (ETDEWEB)

    Silvian,L.; Jin, P.; Carmillo, P.; Boriack-Sjodin, P.; Pelletier, C.; Rushe, M.; Gong, B.; Sah, D.; Pepinsky, B.; Rossomando, A.

    2006-01-01

    Artemin (ART) promotes the growth of developing peripheral neurons by signaling through a multicomponent receptor complex comprised of a transmembrane tyrosine kinase receptor (cRET) and a specific glycosylphosphatidylinositol-linked co-receptor (GFR{alpha}3). Glial cell line-derived neurotrophic factor (GDNF) signals through a similar ternary complex but requires heparan sulfate proteoglycans (HSPGs) for full activity. HSPG has not been demonstrated as a requirement for ART signaling. We crystallized ART in the presence of sulfate and solved its structure by isomorphous replacement. The structure reveals ordered sulfate anions bound to arginine residues in the pre-helix and amino-terminal regions that were organized in a triad arrangement characteristic of heparan sulfate. Three residues in the pre-helix were singly or triply substituted with glutamic acid, and the resulting proteins were shown to have reduced heparin-binding affinity that is partly reflected in their ability to activate cRET. This study suggests that ART binds HSPGs and identifies residues that may be involved in HSPG binding.

  14. Crystal structure of bis(4-acetylanilinium tetrachloridomercurate(II

    Directory of Open Access Journals (Sweden)

    Manickam Thairiyaraja

    2015-12-01

    Full Text Available The structure of the title salt, (C8H10NO2[HgCl4], is isotypic with that of the cuprate(II and cobaltate(II analogues. The asymmetric unit contains one 4-acetylanilinium cation and one half of a tetrachloridomercurate(II anion (point group symmetry m. The Hg—Cl distances are in the range 2.4308 (7–2.5244 (11 Å and the Cl—Hg—Cl angles in the range of 104.66 (2–122.94 (4°, indicating a considerable distortion of the tetrahedral anion. In the crystal, cations are linked by an intermolecular N—H...O hydrogen-bonding interaction, leading to a C(8 chain motif with the chains extending parallel to the b axis. There is also a π–π stacking interaction with a centroid-to-centroid distance of 3.735 (2 Å between neighbouring benzene rings along this direction. The anions lie between the chains and interact with the cations through intermolecular N—H...Cl hydrogen bonds, leading to the formation of a three-dimensional network structure.

  15. Rapid X-ray crystal structure analysis in few second measurements using microstrip gas chamber

    CERN Document Server

    Ochi, A; Tanimori, T; Ohashi, Y; Toyokawa, H; Nishi, Y; Nishi, Y; Nagayoshi, T; Koishi, S

    2001-01-01

    X-ray crystal structure analysis using microstrip gas chamber was successfully carried out in a measurement time within a few seconds. The continuous rotation photograph method, in which most of the diffraction peaks can be obtained within one continuous rotation of the sample crystal (without stopping or oscillation), was applied for this measurement. As an example, the structure of a single crystal of ammonium bitartrate (r=1 mm, spherical) was measured. Diffraction spots from the sample, which were sufficient to obtain crystal structure, were successfully obtained by taking only 2 s measurements with a commercially available laboratory X-ray source.

  16. Syntheses and crystal structure determination by X-ray powder diffraction of new compounds of Benzovesamicol

    International Nuclear Information System (INIS)

    Rukiah, M.; Assaad, Th.

    2012-06-01

    The compound 2,2,2-Trifluoro-N-(1a,2,7,7 a-tetra-hydronaphtho[2,3-b]oxiren-3-yl)- acetamide, C 1 2H 1 0F 3 NO 2 , an important precursor in the preparation of benzovesamicol analogues for the diagnosis of Alzheimers disease, was prepared by the epoxidation of 5,8-dihydronaphthalene-1-amine using 3-chloroperoxybenzoic acid. The structure was determined by X-ray powder diffraction, multinuclear NMR spectroscopy and FT-IR spectroscopy. A pair of molecules form intermolecular N- H...O hydrogen bonds, involving the amino and oxirene groups, to produce a dimer.The two racemic compounds (2RS,3RS)-5-amino-3-(4-phenylpiperazin-1-yl)-1,2,3,4 tetrahydronaphthalene-2-ol, C 2 0H 2 5N 3 O, (I) and (2RS,3RS)-5-amino-3-[4-(3- methoxyphenyl)piperazin-1-yl]-1,2,3,4-tetrahydronaphthalene-2-ol, C 2 1H 2 7N 3 O 2 , (II) important benzovesamicol analogues for the diagnosis of Alzheimer's disease, have been synthesized and characterized by FT-IR, and 1 H and 13 C NMR spectroscopic analyses. The crystal structures were analyses using powder diffraction as no suitable single crystal were obtained. The two compounds are racemic mixtures of enantiomers which crystallize in the monoclinic system in a centrosymmetric space group (P21/c). Crystallography, in particular powder X-ray diffraction, was pivotal in revealing that the enantio-resolution did not succeed. In two compounds, the piperazine ring has a chair conformation, while the cyclohexene ring assumes a half-chair conformation. In (I) the crystal packing is mediated by weak contacts, principally by complementary intermolecular N--H...O hydrogen bonds that connect successive molecules into a chain. Further stabilization is provided by weak C--H...N contacts and by a weak intermolecular C--H...π interaction. While in (II), the crystal packing is dominated by intermolecular O--H...N hydrogen bonding which links molecules along the c direction. (authors)

  17. Structural and gene expression analyses of uptake hydrogenases ...

    Indian Academy of Sciences (India)

    2013-10-01

    Oct 1, 2013 ... subunits resemble the structures of known [NiFe] hydrogenases (Volbeda et al. 1995) ..... abundant lipid in Frankia cells and in nitrogen-fixing nodule tissue. .... Vignais PM and Billoud B 2007 Occurrence, classification, and.

  18. 1D cyanide complexes with 2-pyridinemethanol: Synthesis, crystal structures and spectroscopic properties

    Science.gov (United States)

    Sayın, Elvan; Kürkçüoğlu, Güneş Süheyla; Yeşilel, Okan Zafer; Hökelek, Tuncer

    2015-12-01

    Two new one-dimensional coordination polymers, [Cu(hmpH)2Pd(μ-CN)2(CN)2]n (1) and [Cu(hmpH)2Pt(μ-CN)2(CN)2]n (2), (hmpH = 2-pyridinemethanol), have been synthesized and characterized by vibrational (FT-IR and Raman) spectroscopy, single crystal X-ray diffraction, thermal and elemental analyses techniques. Single crystal X-ray diffraction analysis indicates that complexes 1 and 2 are isomorphous and isostructural, and crystallize in the triclinic system and P-1 space group. The Pd(II) or Pt(II) ions are four coordinated with four cyanide-carbon atoms in a square planar geometry. Cu(II) ion displays a distorted octahedral coordination by two N-atoms and two O-atoms of hmpH ligands, two bridging cyanide groups. In one dimensional structure of the complexes, [M(CN)4]2- (M = Pd(II) or Pt(II)) anions and [Cu(hmpH)2]2+ cations are linked via bridging cyanide ligands. In the complexes, the presence of intramolecular C-H⋯M (M = Pd(II) or Pt(II)) interactions with distance values of 3.00-2.95 Å are established, respectively.

  19. Confirming the Revised C-Terminal Domain of the MscL Crystal Structure

    OpenAIRE

    Maurer, Joshua A.; Elmore, Donald E.; Clayton, Daniel; Xiong, Li; Lester, Henry A.; Dougherty, Dennis A.

    2008-01-01

    The structure of the C-terminal domain of the mechanosensitive channel of large conductance (MscL) has generated significant controversy. As a result, several structures have been proposed for this region: the original crystal structure (1MSL) of the Mycobacterium tuberculosis homolog (Tb), a model of the Escherichia coli homolog, and, most recently, a revised crystal structure of Tb-MscL (2OAR). To understand which of these structures represents a physiological conformation, we measured the ...

  20. Synthetical bone-like and biological hydroxyapatites: a comparative study of crystal structure and morphology

    Energy Technology Data Exchange (ETDEWEB)

    Markovic, Smilja; Veselinovic, Ljiljana; Lukic, Miodrag J; Ignjatovic, Nenad; Uskokovic, Dragan [Institute of Technical Sciences of the Serbian Academy of Sciences and Arts, Knez Mihailova 35/IV, 11001 Belgrade (Serbia); Karanovic, Ljiljana [Laboratory for Crystallography, Faculty of Mining and Geology, University of Belgrade, Dusina 7, 11000 Belgrade (Serbia); Bracko, Ines, E-mail: dragan.uskokovic@itn.sanu.ac.rs [Jozef Stefan Institute, Jamova 39, 1000 Ljubljana (Slovenia)

    2011-08-15

    Phase composition, crystal structure and morphology of biological hydroxyapatite (BHAp) extracted from human mandible bone, and carbonated hydroxyapatite (CHAp), synthesized by the chemical precipitation method, were studied by x-ray powder diffraction (XRD), Fourier transform infrared (FTIR) and Raman (R) spectroscopy techniques, combined with transmission electron microscopy (TEM). Structural and microstructural parameters were determined through Rietveld refinement of recorded XRD data, performed using the FullProf computing program, and TEM. Microstructural analysis shows anisotropic extension along the [0 0 l] crystallographic direction (i.e. elongated crystallites shape) of both investigated samples. The average crystallite sizes of 10 and 8 nm were estimated for BHAp and CHAp, respectively. The FTIR and R spectroscopy studies show that carbonate ions substitute both phosphate and hydroxyl ions in the crystal structure of BHAp as well as in CHAp, indicating that both of them are mixed AB-type of CHAp. The thermal behaviour and carbonate content were analysed using thermogravimetric and differential thermal analysis. The carbonate content of about 1 wt.% and phase transition, at near 790 {sup 0}C, from HAp to {beta}-tricalcium phosphate were determined in both samples. The quality of synthesized CHAp powder, particularly, the particle size distribution and uniformity of morphology, was analysed by a particle size analyser based on laser diffraction and field emission scanning electron microscopy, respectively. These data were used to discuss similarity between natural and synthetic CHAp. Good correlation between the unit cell parameters, average crystallite size, morphology, carbonate content and crystallographic positions of carbonate ions in natural and synthetic HAp samples was found.

  1. Synthetical bone-like and biological hydroxyapatites: a comparative study of crystal structure and morphology

    International Nuclear Information System (INIS)

    Markovic, Smilja; Veselinovic, Ljiljana; Lukic, Miodrag J; Ignjatovic, Nenad; Uskokovic, Dragan; Karanovic, Ljiljana; Bracko, Ines

    2011-01-01

    Phase composition, crystal structure and morphology of biological hydroxyapatite (BHAp) extracted from human mandible bone, and carbonated hydroxyapatite (CHAp), synthesized by the chemical precipitation method, were studied by x-ray powder diffraction (XRD), Fourier transform infrared (FTIR) and Raman (R) spectroscopy techniques, combined with transmission electron microscopy (TEM). Structural and microstructural parameters were determined through Rietveld refinement of recorded XRD data, performed using the FullProf computing program, and TEM. Microstructural analysis shows anisotropic extension along the [0 0 l] crystallographic direction (i.e. elongated crystallites shape) of both investigated samples. The average crystallite sizes of 10 and 8 nm were estimated for BHAp and CHAp, respectively. The FTIR and R spectroscopy studies show that carbonate ions substitute both phosphate and hydroxyl ions in the crystal structure of BHAp as well as in CHAp, indicating that both of them are mixed AB-type of CHAp. The thermal behaviour and carbonate content were analysed using thermogravimetric and differential thermal analysis. The carbonate content of about 1 wt.% and phase transition, at near 790 0 C, from HAp to β-tricalcium phosphate were determined in both samples. The quality of synthesized CHAp powder, particularly, the particle size distribution and uniformity of morphology, was analysed by a particle size analyser based on laser diffraction and field emission scanning electron microscopy, respectively. These data were used to discuss similarity between natural and synthetic CHAp. Good correlation between the unit cell parameters, average crystallite size, morphology, carbonate content and crystallographic positions of carbonate ions in natural and synthetic HAp samples was found.

  2. Spatially resolved analysis of short-range structure perturbations in a plastically bent molecular crystal

    Science.gov (United States)

    Panda, Manas K.; Ghosh, Soumyajit; Yasuda, Nobuhiro; Moriwaki, Taro; Mukherjee, Goutam Dev; Reddy, C. Malla; Naumov, Panče

    2015-01-01

    The exceptional mechanical flexibility observed with certain organic crystals defies the common perception of single crystals as brittle objects. Here, we describe the morphostructural consequences of plastic deformation in crystals of hexachlorobenzene that can be bent mechanically at multiple locations to 360° with retention of macroscopic integrity. This extraordinary plasticity proceeds by segregation of the bent section into flexible layers that slide on top of each other, thereby generating domains with slightly different lattice orientations. Microscopic, spectroscopic and diffraction analyses of the bent crystal showed that the preservation of crystal integrity when stress is applied on the (001) face requires sliding of layers by breaking and re-formation of halogen-halogen interactions. Application of stress on the (100) face, in the direction where π···π interactions dominate the packing, leads to immediate crystal disintegration. Within a broader perspective, this study highlights the yet unrecognized extraordinary malleability of molecular crystals with strongly anisotropic supramolecular interactions.

  3. Crystal structure and vibrational spectra of melaminium arsenate

    Science.gov (United States)

    Anbalagan, G.; Marchewka, M. K.; Pawlus, K.; Kanagathara, N.

    2015-01-01

    The crystals of the new melaminium arsenate (MAS) [C3H7N6+ṡH2AsO4-] were obtained by the slow evaporation of an aqueous solution at room temperature. Single crystal X-ray diffraction analysis reveals that the crystal belongs to triclinic system with centro symmetric space group P-1. The crystals are built up from single protonated melaminium residues and single dissociated arsenate H2AsO4- anions. The protonated melaminium ring is almost planar. A combination of ionic and donor-acceptor hydrogen-bond interactions linking together the melaminium and arsenate residues forms a three-dimensional network. Vibrational spectroscopic analysis is reported on the basis of FT-IR and FT-Raman spectra recorded at room temperature. Hydrogen bonded network present in the crystal gives notable vibrational effect. DSC has also been performed for the crystal shows no phase transition in the studied temperature range (113-293 K).

  4. Anisotropic crystal structure distortion of the monoclinic polymorph of acetaminophen at high hydrostatic pressures.

    Science.gov (United States)

    Boldyreva, E V; Shakhtshneider, T P; Vasilchenko, M A; Ahsbahs, H; Uchtmann, H

    2000-04-01

    The anisotropy of structural distortion of the monoclinic polymorph of acetaminophen induced by hydrostatic pressure up to 4.0 GPa was studied by single-crystal X-ray diffraction in a Merrill-Bassett diamond anvil cell (DAC). The space group (P2(1)/n) and the general structural pattern remained unchanged with pressure. Despite the overall decrease in the molar volume with pressure, the structure expanded in particular crystallographic directions. One of the linear cell parameters (c) passed through a minimum as the pressure increased. The intramolecular bond lengths changed only slightly with pressure, but the changes in the dihedral and torsion angles were very large. The compressibility of the intermolecular hydrogen bonds NH...O and OH...O was measured. NH...O bonds were shown to be slightly more compressible than OH...O bonds. The anisotropy of structural distortion was analysed in detail in relation to the pressure-induced changes in the molecular conformations, to the compression of the hydrogen-bond network, and to the changes in the orientation of molecules with respect to each other in the pleated sheets in the structure. Dirichlet domains were calculated in order to analyse the relative shifts of the centroids of the hydrogen-bonded cycles and of the centroids of the benzene rings with pressure.

  5. Crystallization: the hidden dimension of Hedge funds' fee structure

    OpenAIRE

    Elaut, Gert; Frömmel, Michael; Sjödin, John

    2014-01-01

    We investigate the implications of variations in the frequency with which hedge fund managers update their high-water mark on fees paid by investors. We first document the crystallization frequencies used by Commodity Trading Advisors (CTAs) and then perform simulations and a bootstrap analysis. We find a statistically and economically significant effect of the crystallization frequency on the total fee load. Hedge funds' total fee load increases significantly as the crystallization frequency...

  6. Crystal Structure of the Herpesvirus Nuclear Egress Complex Provides Insights into Inner Nuclear Membrane Remodeling

    Directory of Open Access Journals (Sweden)

    Tzviya Zeev-Ben-Mordehai

    2015-12-01

    Full Text Available Although nucleo-cytoplasmic transport is typically mediated through nuclear pore complexes, herpesvirus capsids exit the nucleus via a unique vesicular pathway. Together, the conserved herpesvirus proteins pUL31 and pUL34 form the heterodimeric nuclear egress complex (NEC, which, in turn, mediates the formation of tight-fitting membrane vesicles around capsids at the inner nuclear membrane. Here, we present the crystal structure of the pseudorabies virus NEC. The structure revealed that a zinc finger motif in pUL31 and an extensive interaction network between the two proteins stabilize the complex. Comprehensive mutational analyses, characterized both in situ and in vitro, indicated that the interaction network is not redundant but rather complementary. Fitting of the NEC crystal structure into the recently determined cryoEM-derived hexagonal lattice, formed in situ by pUL31 and pUL34, provided details on the molecular basis of NEC coat formation and inner nuclear membrane remodeling.

  7. Solar cell structure incorporating a novel single crystal silicon material

    Science.gov (United States)

    Pankove, Jacques I.; Wu, Chung P.

    1983-01-01

    A novel hydrogen rich single crystal silicon material having a band gap energy greater than 1.1 eV can be fabricated by forming an amorphous region of graded crystallinity in a body of single crystalline silicon and thereafter contacting the region with atomic hydrogen followed by pulsed laser annealing at a sufficient power and for a sufficient duration to recrystallize the region into single crystal silicon without out-gassing the hydrogen. The new material can be used to fabricate semiconductor devices such as single crystal silicon solar cells with surface window regions having a greater band gap energy than that of single crystal silicon without hydrogen.

  8. Crystal structure of the Alcanivorax borkumensis YdaH transporter reveals an unusual topology

    Science.gov (United States)

    Bolla, Jani Reddy; Su, Chih-Chia; Delmar, Jared A.; Radhakrishnan, Abhijith; Kumar, Nitin; Chou, Tsung-Han; Long, Feng; Rajashankar, Kanagalaghatta R.; Yu, Edward W.

    2015-04-01

    The potential of the folic acid biosynthesis pathway as a target for the development of antibiotics has been clinically validated. However, many pathogens have developed resistance to these antibiotics, prompting a re-evaluation of potential drug targets within the pathway. The ydaH gene of Alcanivorax borkumensis encodes an integral membrane protein of the AbgT family of transporters for which no structural information was available. Here we report the crystal structure of A. borkumensis YdaH, revealing a dimeric molecule with an architecture distinct from other families of transporters. YdaH is a bowl-shaped dimer with a solvent-filled basin extending from the cytoplasm to halfway across the membrane bilayer. Each subunit of the transporter contains nine transmembrane helices and two hairpins that suggest a plausible pathway for substrate transport. Further analyses also suggest that YdaH could act as an antibiotic efflux pump and mediate bacterial resistance to sulfonamide antimetabolite drugs.

  9. Raphide crystal structure in agave tequilana determined by x-ray originating from synchrotron radiation

    International Nuclear Information System (INIS)

    Tadokoro, Makoto; Ozawa, Yoshiki; Mitsumi, Minoru; Toriumi, Kohshiro; Ogura, Tetsuya

    2005-01-01

    The first single crystal structure of small natural raphides in an agave plant is completely determined using an intense X-ray originating from a synchrotron radiation. The SEM image shows that the tip of the crystal is approximately hundreds of nanometer in width sharply grow to stick to the tissue of herbivorous vermin. Furthermore, the crystal develops cracks that propagate at an inclination of approximately 45deg towards the direction of crystal growth such that the crystal easily splits into small pieces in the tissue. (author)

  10. Tackling pseudosymmetry problems in electron backscatter diffraction (EBSD) analyses of perovskite structures

    Science.gov (United States)

    Mariani, Elisabetta; Kaercher, Pamela; Mecklenburgh, Julian; Wheeler, John

    2016-04-01

    Perovskite minerals form an important mineral group that has applications in Earth science and emerging alternative energy technologies, however crystallographic quantification of these minerals with electron backscatter diffraction (EBSD) is not accurate due to pseudosymmetry problems. The silicate perovskite Bridgmanite, (Mg,Fe)SiO3, is understood to be the dominant phase in the Earth's lower mantle. Gaining insight into its physical and rheological properties is therefore vital to understand the dynamics of the Earth's deep interior. Rock deformation experiments on analogue perovskite phases, for example (Ca,Sr)TiO3, combined with quantitative microstructural analyses of the recovered samples by EBSD, yield datasets that can reveal what deformation mechanisms may dominate the flow of perovskite in the lower mantle. Additionally, perovskite structures have important technological applications as new, suitable cathodes for the operation of more efficient and environmentally-friendly solid oxide fuel cells (SOFC). In recent years they have also been recognised as a potential substitute for silicon in the next generation of photovoltaic cells for the construction of economic and energy efficient solar panels. EBSD has the potential to be a valuable tool for the study of crystal orientations achieved in perovskite substrates as crystal alignment has a direct control on the properties of these materials. However, perovskite structures currently present us with challenges during the automated indexing of Kikuchi bands in electron backscatter diffraction patterns (EBSPs). Such challenges are represented by the pseudosymmetric character of perovskites, where atoms are subtly displaced (0.005 nm to 0.05 nm) from their higher symmetry positions. In orthorhombic Pbnm perovskites, for example, pseudosymmetry may be evaluated from the c/a unit cell parameter ratio, which is very close to 1. Two main types of distortions from the higher symmetry structure are recognised: a

  11. CCDC 1059905: Experimental Crystal Structure Determination : 7,13-dimesitylindeno[1,2-b]thioxanthene

    KAUST Repository

    Shi, Xueliang; Kueh, Weixiang; Zheng, Bin; Huang, Kuo-Wei; Chi, Chunyan

    2015-01-01

    An entry from the Cambridge Structural Database, the world’s repository for small molecule crystal structures. The entry contains experimental data from a crystal diffraction study. The deposited dataset for this entry is freely available from the CCDC and typically includes 3D coordinates, cell parameters, space group, experimental conditions and quality measures.

  12. CCDC 1048727: Experimental Crystal Structure Determination : bis(2-(hydroxyimino)propanoato)-tin(ii)

    KAUST Repository

    Khanderi, Jayaprakash; Davaasuren, Bambar; Alshankiti, Buthainah; Rothenberger, Alexander

    2015-01-01

    An entry from the Cambridge Structural Database, the world’s repository for small molecule crystal structures. The entry contains experimental data from a crystal diffraction study. The deposited dataset for this entry is freely available from the CCDC and typically includes 3D coordinates, cell parameters, space group, experimental conditions and quality measures.

  13. CCDC 844303: Experimental Crystal Structure Determination : 1,1,3,3-Tetraphenyldiphosphoxane 1,3-disulfide

    KAUST Repository

    Al-Masri, H.T.; Emwas, Abdul-Hamid M.; Al-Talla, Zeyad; Al Kordi, Mohamed

    2012-01-01

    An entry from the Cambridge Structural Database, the world’s repository for small molecule crystal structures. The entry contains experimental data from a crystal diffraction study. The deposited dataset for this entry is freely available from the CCDC and typically includes 3D coordinates, cell parameters, space group, experimental conditions and quality measures.

  14. CCDC 844302: Experimental Crystal Structure Determination : N-1-Naphthyl-P,P-diphenylphosphinoselenoic amide

    KAUST Repository

    Al-Masri, H.T.; Emwas, Abdul-Hamid M.; Al-Talla, Zeyad; Al Kordi, Mohamed

    2012-01-01

    An entry from the Cambridge Structural Database, the world’s repository for small molecule crystal structures. The entry contains experimental data from a crystal diffraction study. The deposited dataset for this entry is freely available from the CCDC and typically includes 3D coordinates, cell parameters, space group, experimental conditions and quality measures.

  15. CCDC 1477679: Experimental Crystal Structure Determination : (1,3-dimesitylimidazolidin-2-ylidene)-trimethyl-indium

    KAUST Repository

    Wu, Melissa M.; Gill, Arran M.; Yunpeng, Lu; Yongxin, Li; Ganguly, Rakesh; Falivene, Laura; Garcí a, Felipe

    2017-01-01

    An entry from the Cambridge Structural Database, the world’s repository for small molecule crystal structures. The entry contains experimental data from a crystal diffraction study. The deposited dataset for this entry is freely available from the CCDC and typically includes 3D coordinates, cell parameters, space group, experimental conditions and quality measures.

  16. CCDC 1477678: Experimental Crystal Structure Determination : (1,3-dimesitylimidazolidin-2-ylidene)-trimethyl-gallium

    KAUST Repository

    Wu, Melissa M.; Gill, Arran M.; Yunpeng, Lu; Yongxin, Li; Ganguly, Rakesh; Falivene, Laura; Garcí a, Felipe

    2017-01-01

    An entry from the Cambridge Structural Database, the world’s repository for small molecule crystal structures. The entry contains experimental data from a crystal diffraction study. The deposited dataset for this entry is freely available from the CCDC and typically includes 3D coordinates, cell parameters, space group, experimental conditions and quality measures.

  17. CCDC 1024814: Experimental Crystal Structure Determination : 1,3-Dimesitylimidazolidine-2-selenone

    KAUST Repository

    Vummaleti, Sai V. C.; Nelson, David J.; Poater, Albert; Gó mez-Suá rez, Adriá n; Cordes, David B.; Slawin, Alexandra M. Z.; Nolan, Steven P.; Cavallo, Luigi

    2015-01-01

    An entry from the Cambridge Structural Database, the world’s repository for small molecule crystal structures. The entry contains experimental data from a crystal diffraction study. The deposited dataset for this entry is freely available from the CCDC and typically includes 3D coordinates, cell parameters, space group, experimental conditions and quality measures.

  18. CCDC 930139: Experimental Crystal Structure Determination : Chloro-(1-cyclododecyl-3-mesitylimidazol-2-ylidene)-silver

    KAUST Repository

    Queval, Pierre

    2014-01-01

    An entry from the Cambridge Structural Database, the world’s repository for small molecule crystal structures. The entry contains experimental data from a crystal diffraction study. The deposited dataset for this entry is freely available from the CCDC and typically includes 3D coordinates, cell parameters, space group, experimental conditions and quality measures.

  19. CCDC 1429311: Experimental Crystal Structure Determination : N-(5-Bromoquinolin-8-yl)benzamide

    KAUST Repository

    Xu, Jun; Shen, Chao; Zhu, Xiaolei; Zhang, Pengfei; Ajitha, Manjaly John; Huang, Kuo-Wei; An, Zhongfu; Liu, Xiaogang

    2016-01-01

    An entry from the Cambridge Structural Database, the world’s repository for small molecule crystal structures. The entry contains experimental data from a crystal diffraction study. The deposited dataset for this entry is freely available from the CCDC and typically includes 3D coordinates, cell parameters, space group, experimental conditions and quality measures.

  20. CCDC 933273: Experimental Crystal Structure Determination : Chloro-(1-cyclododecyl-3-mesitylimidazol-2-ylidene)-gold

    KAUST Repository

    Queval, Pierre; Jahier, Claire; Rouen, Mathieu; Artur, Isabelle; Legeay, Jean-Christophe; Falivene, Laura; Toupet, loic; Cré visy, Christophe; Cavallo, Luigi; Basle, Olivier; Mauduit, Marc

    2014-01-01

    An entry from the Cambridge Structural Database, the world’s repository for small molecule crystal structures. The entry contains experimental data from a crystal diffraction study. The deposited dataset for this entry is freely available from the CCDC and typically includes 3D coordinates, cell parameters, space group, experimental conditions and quality measures.

  1. CCDC 963856: Experimental Crystal Structure Determination : catena-[bis(mu2-2-methylimidazole)-zinc

    KAUST Repository

    Shekhah, Osama; Swaidan, Raja; Belmabkhout, Youssef; du Plessis, Marike; Jacobs, Tia; Barbour, Leonard J.; Pinnau, Ingo; Eddaoudi, Mohamed

    2014-01-01

    An entry from the Cambridge Structural Database, the world’s repository for small molecule crystal structures. The entry contains experimental data from a crystal diffraction study. The deposited dataset for this entry is freely available from the CCDC and typically includes 3D coordinates, cell parameters, space group, experimental conditions and quality measures.

  2. CCDC 951636: Experimental Crystal Structure Determination : bis(tetra-n-butylammonium) trichloro-(nitrosyl)-(oxalato)-ruthenium

    KAUST Repository

    Kuhn, Paul-Steffen; Cremer, Laura; Gavriluta, Anatolie; Jovanović, Katarina K.; Filipović, Lana; Hummer, Alfred A.; Bü chel, Gabriel E.; Dojčinović, Biljana P.; Meier, Samuel M.; Rompel, Annette; Radulović, Siniša; Tommasino, Jean Bernard; Luneau, Dominique; Arion, Vladimir B.

    2015-01-01

    An entry from the Cambridge Structural Database, the world’s repository for small molecule crystal structures. The entry contains experimental data from a crystal diffraction study. The deposited dataset for this entry is freely available from the CCDC and typically includes 3D coordinates, cell parameters, space group, experimental conditions and quality measures.

  3. Synthesis, Crystal Structure and Anti-ischaemic Activity of (E)-1-{4 ...

    African Journals Online (AJOL)

    chloro- phenyl)prop-2-en-1-one (C28H29ClN2O3, Mr = 476.98) (5) was synthesized and studied by the single crystal X-ray diffraction method. Its structure was confirmed by 1HNMR, 13CNMR,HRMSand X-ray single crystal structure ...

  4. CCDC 870534: Experimental Crystal Structure Determination : Dichloro-trimethyl-tantalum(v)

    KAUST Repository

    Chen, Yin; Callens, E.; Abou-Hamad, E.; Merle, N.; White, A.J.P.; Taoufik, M.; Coperet, C.; Le Roux, E.; Basset, J.-M.

    2013-01-01

    An entry from the Cambridge Structural Database, the world’s repository for small molecule crystal structures. The entry contains experimental data from a crystal diffraction study. The deposited dataset for this entry is freely available from the CCDC and typically includes 3D coordinates, cell parameters, space group, experimental conditions and quality measures.

  5. CCDC 1475931: Experimental Crystal Structure Determination : trimethylammonium trichloro-tin(iv)

    KAUST Repository

    Dang, Yangyang

    2016-01-01

    An entry from the Cambridge Structural Database, the world’s repository for small molecule crystal structures. The entry contains experimental data from a crystal diffraction study. The deposited dataset for this entry is freely available from the CCDC and typically includes 3D coordinates, cell parameters, space group, experimental conditions and quality measures.

  6. CCDC 1475929: Experimental Crystal Structure Determination : trimethylammonium tribromo-tin(iv)

    KAUST Repository

    Dang, Yangyang

    2016-01-01

    An entry from the Cambridge Structural Database, the world’s repository for small molecule crystal structures. The entry contains experimental data from a crystal diffraction study. The deposited dataset for this entry is freely available from the CCDC and typically includes 3D coordinates, cell parameters, space group, experimental conditions and quality measures.

  7. CCDC 887968: Experimental Crystal Structure Determination : Dichloro-bis(tricyclohexylphosphine)-(3-phenylindenylidene)-ruthenium tetrahydrofuran solvate

    KAUST Repository

    Urbina-Blanco, C.A.

    2014-01-01

    An entry from the Cambridge Structural Database, the world’s repository for small molecule crystal structures. The entry contains experimental data from a crystal diffraction study. The deposited dataset for this entry is freely available from the CCDC and typically includes 3D coordinates, cell parameters, space group, experimental conditions and quality measures.

  8. CCDC 713130: Experimental Crystal Structure Determination : bis(2,5-Dihydrobenzylammonium) hexachloro-osmium(iv)

    KAUST Repository

    Reiner, T.

    2011-01-01

    An entry from the Cambridge Structural Database, the world’s repository for small molecule crystal structures. The entry contains experimental data from a crystal diffraction study. The deposited dataset for this entry is freely available from the CCDC and typically includes 3D coordinates, cell parameters, space group, experimental conditions and quality measures.

  9. CCDC 721712: Experimental Crystal Structure Determination : (N-(2-Aminoethyl)-4-methylbenzenesulfonamidato)-(phenylalaninato)-ruthenium dimethylsulfoxide solvate

    KAUST Repository

    Reiner, Thomas; Jantke, Dominik; Miao, Xiao-He; Marziale, Alexander N.; Kiefer, Florian J.; Eppinger, Jö rg

    2013-01-01

    An entry from the Cambridge Structural Database, the world’s repository for small molecule crystal structures. The entry contains experimental data from a crystal diffraction study. The deposited dataset for this entry is freely available from the CCDC and typically includes 3D coordinates, cell parameters, space group, experimental conditions and quality measures.

  10. CCDC 721713: Experimental Crystal Structure Determination : Dichloro-(ethyl phenylalaninate)-tris(pyridine)-ruthenium(ii)

    KAUST Repository

    Reiner, Thomas; Jantke, Dominik; Miao, Xiao-He; Marziale, Alexander N.; Kiefer, Florian J.; Eppinger, Jö rg

    2013-01-01

    An entry from the Cambridge Structural Database, the world’s repository for small molecule crystal structures. The entry contains experimental data from a crystal diffraction study. The deposited dataset for this entry is freely available from the CCDC and typically includes 3D coordinates, cell parameters, space group, experimental conditions and quality measures.

  11. Purification, crystallization and preliminary X-ray structure analysis of the banana lectin from Musa paradisiaca.

    Science.gov (United States)

    Singh, D D; Saikrishnan, K; Kumar, Prashant; Dauter, Z; Sekar, K; Surolia, A; Vijayan, M

    2004-11-01

    The banana lectin from Musa paradisiaca, MW 29.4 kDa, has been isolated, purified and crystallized. The trigonal crystals contain one dimeric molecule in the asymmetric unit. The structure has been solved using molecular replacement to a resolution of 3 A. The structure of the subunit is similar to that of jacalin-like lectins.

  12. CCDC 1015953: Experimental Crystal Structure Determination : 1,3,6,8-tetrakis(4-phenoxyphenyl)pyrene

    KAUST Repository

    El-Assaad, Tarek H.; Auer, Manuel; Castañ eda, Raul; Hallal, Kassem M.; Jradi, Fadi M.; Mosca, Lorenzo; Khnayzer, Rony S.; Patra, Digambara; Timofeeva, Tatiana V.; Bredas, Jean-Luc; List-Kratochvil, Emil J. W.; Wex, Brigitte; Kaafarani, Bilal R.

    2015-01-01

    An entry from the Cambridge Structural Database, the world’s repository for small molecule crystal structures. The entry contains experimental data from a crystal diffraction study. The deposited dataset for this entry is freely available from the CCDC and typically includes 3D coordinates, cell parameters, space group, experimental conditions and quality measures.

  13. CCDC 1010350: Experimental Crystal Structure Determination : dichloro-(methylenebis(di-t-butylphosphine))-palladium(ii)

    KAUST Repository

    Roesle, Philipp; Caporaso, Lucia; Schnitte, Manuel; Goldbach, Verena; Cavallo, Luigi; Mecking, Stefan

    2015-01-01

    An entry from the Cambridge Structural Database, the world’s repository for small molecule crystal structures. The entry contains experimental data from a crystal diffraction study. The deposited dataset for this entry is freely available from the CCDC and typically includes 3D coordinates, cell parameters, space group, experimental conditions and quality measures.

  14. CCDC 1446070: Experimental Crystal Structure Determination : tris(Pentafluorophenyl)-(triethylsilyl formate)-boron

    KAUST Repository

    Chen, Jiawei

    2016-01-01

    An entry from the Cambridge Structural Database, the world’s repository for small molecule crystal structures. The entry contains experimental data from a crystal diffraction study. The deposited dataset for this entry is freely available from the CCDC and typically includes 3D coordinates, cell parameters, space group, experimental conditions and quality measures.

  15. CCDC 1420581: Experimental Crystal Structure Determination : catena-[(mu-4,4'-sulfonyldibenzoato)-calcium ethylene

    KAUST Repository

    Plonka, Anna M.

    2016-01-01

    An entry from the Cambridge Structural Database, the world’s repository for small molecule crystal structures. The entry contains experimental data from a crystal diffraction study. The deposited dataset for this entry is freely available from the CCDC and typically includes 3D coordinates, cell parameters, space group, experimental conditions and quality measures.

  16. CCDC 1420582: Experimental Crystal Structure Determination : catena-[(mu-4,4'-sulfonyldibenzoato)-calcium ethane

    KAUST Repository

    Plonka, Anna M.

    2016-01-01

    An entry from the Cambridge Structural Database, the world’s repository for small molecule crystal structures. The entry contains experimental data from a crystal diffraction study. The deposited dataset for this entry is freely available from the CCDC and typically includes 3D coordinates, cell parameters, space group, experimental conditions and quality measures.

  17. CCDC 1420580: Experimental Crystal Structure Determination : catena-[(mu-4,4'-sulfonyldibenzoato)-calcium acetylene

    KAUST Repository

    Plonka, Anna M.

    2016-01-01

    An entry from the Cambridge Structural Database, the world’s repository for small molecule crystal structures. The entry contains experimental data from a crystal diffraction study. The deposited dataset for this entry is freely available from the CCDC and typically includes 3D coordinates, cell parameters, space group, experimental conditions and quality measures.

  18. CCDC 1436717: Experimental Crystal Structure Determination : 2-bromo-4,5-diiodo-1,3-thiazole

    KAUST Repository

    Shi, Qinqin

    2016-01-01

    An entry from the Cambridge Structural Database, the world’s repository for small molecule crystal structures. The entry contains experimental data from a crystal diffraction study. The deposited dataset for this entry is freely available from the CCDC and typically includes 3D coordinates, cell parameters, space group, experimental conditions and quality measures.

  19. CCDC 1436716: Experimental Crystal Structure Determination : 5-fluoro-4-iodo-2,1,3-benzothiadiazole

    KAUST Repository

    Shi, Qinqin

    2016-01-01

    An entry from the Cambridge Structural Database, the world’s repository for small molecule crystal structures. The entry contains experimental data from a crystal diffraction study. The deposited dataset for this entry is freely available from the CCDC and typically includes 3D coordinates, cell parameters, space group, experimental conditions and quality measures.

  20. CCDC 1048728: Experimental Crystal Structure Determination : ammonium tris(2-(methoxyimino)propanoato)-tin(ii) dihydrate

    KAUST Repository

    Khanderi, Jayaprakash

    2015-01-01

    An entry from the Cambridge Structural Database, the world’s repository for small molecule crystal structures. The entry contains experimental data from a crystal diffraction study. The deposited dataset for this entry is freely available from the CCDC and typically includes 3D coordinates, cell parameters, space group, experimental conditions and quality measures.

  1. CCDC 1048729: Experimental Crystal Structure Determination : bis(2-(hydroxyimino)-3-phenylpropanoato)-tin(ii)

    KAUST Repository

    Khanderi, Jayaprakash

    2015-01-01

    An entry from the Cambridge Structural Database, the world’s repository for small molecule crystal structures. The entry contains experimental data from a crystal diffraction study. The deposited dataset for this entry is freely available from the CCDC and typically includes 3D coordinates, cell parameters, space group, experimental conditions and quality measures.

  2. CCDC 1515632: Experimental Crystal Structure Determination : hexakis(dimethyl sulfoxide)-manganese(ii) tetraiodide

    KAUST Repository

    Haque, M.A.

    2016-01-01

    An entry from the Cambridge Structural Database, the world’s repository for small molecule crystal structures. The entry contains experimental data from a crystal diffraction study. The deposited dataset for this entry is freely available from the CCDC and typically includes 3D coordinates, cell parameters, space group, experimental conditions and quality measures.

  3. CCDC 713129: Experimental Crystal Structure Determination : (eta^6^-Benzylammonium)-dichloro-(dimethylsulfoxide-S)-ruthenium(ii) chloride

    KAUST Repository

    Reiner, T.; Waibel, M.; Marziale, Alexander N.; Jantke, Dominik; Kiefer, F.J.; Fassler, T.F.; Eppinger, Jö rg

    2011-01-01

    An entry from the Cambridge Structural Database, the world’s repository for small molecule crystal structures. The entry contains experimental data from a crystal diffraction study. The deposited dataset for this entry is freely available from the CCDC and typically includes 3D coordinates, cell parameters, space group, experimental conditions and quality measures.

  4. CCDC 1011330: Experimental Crystal Structure Determination : 1,3,6,8-tetrakis(4-fluorophenyl)pyrene

    KAUST Repository

    El-Assaad, Tarek H.; Auer, Manuel; Castañ eda, Raul; Hallal, Kassem M.; Jradi, Fadi M.; Mosca, Lorenzo; Khnayzer, Rony S.; Patra, Digambara; Timofeeva, Tatiana V.; Bredas, Jean-Luc; List-Kratochvil, Emil J. W.; Wex, Brigitte; Kaafarani, Bilal R.

    2015-01-01

    An entry from the Cambridge Structural Database, the world’s repository for small molecule crystal structures. The entry contains experimental data from a crystal diffraction study. The deposited dataset for this entry is freely available from the CCDC and typically includes 3D coordinates, cell parameters, space group, experimental conditions and quality measures.

  5. Structural templating in a nonplanar phthalocyanine using single crystal copper iodide

    OpenAIRE

    Rochford, L. A. (Luke A.); Ramadan, Alexandra J.; Keeble, Dean S.; Ryan, Mary P.; Heutz, Sandrine; Jones, T. S. (Tim S.)

    2015-01-01

    Solution-grown copper iodide crystals are used as substrates for the templated growth of the nonplanar vanadyl phthalocyanine using organic molecular beam deposition. Structural characterization reveals a single molecular orientation produced by the (111) Miller plane of the copper iodide crystals. These fundamental measurements show the importance of morphology and structure in templating interactions for organic electronics applications.

  6. CCDC 1446069: Experimental Crystal Structure Determination : tris(Pentafluorophenyl)-(triethylsilyl formate)-aluminium

    KAUST Repository

    Chen, Jiawei

    2016-01-01

    An entry from the Cambridge Structural Database, the world’s repository for small molecule crystal structures. The entry contains experimental data from a crystal diffraction study. The deposited dataset for this entry is freely available from the CCDC and typically includes 3D coordinates, cell parameters, space group, experimental conditions and quality measures.

  7. CCDC 1427126: Experimental Crystal Structure Determination : bis(1,10-Phenanthroline)-copper pentafluoropropanoate

    KAUST Repository

    Huang, Yangjie

    2016-01-01

    An entry from the Cambridge Structural Database, the world’s repository for small molecule crystal structures. The entry contains experimental data from a crystal diffraction study. The deposited dataset for this entry is freely available from the CCDC and typically includes 3D coordinates, cell parameters, space group, experimental conditions and quality measures.

  8. CCDC 1427127: Experimental Crystal Structure Determination : bis(1,10-Phenanthroline)-copper heptafluorobutanoate benzene solvate

    KAUST Repository

    Huang, Yangjie

    2016-01-01

    An entry from the Cambridge Structural Database, the world’s repository for small molecule crystal structures. The entry contains experimental data from a crystal diffraction study. The deposited dataset for this entry is freely available from the CCDC and typically includes 3D coordinates, cell parameters, space group, experimental conditions and quality measures.

  9. CCDC 1482638: Experimental Crystal Structure Determination : trimethylammonium trichloro-tin(iv)

    KAUST Repository

    Dang, Yangyang

    2016-01-01

    An entry from the Cambridge Structural Database, the world’s repository for small molecule crystal structures. The entry contains experimental data from a crystal diffraction study. The deposited dataset for this entry is freely available from the CCDC and typically includes 3D coordinates, cell parameters, space group, experimental conditions and quality measures.

  10. CCDC 1475930: Experimental Crystal Structure Determination : trimethylammonium trichloro-tin(iv)

    KAUST Repository

    Dang, Yangyang

    2016-01-01

    An entry from the Cambridge Structural Database, the world’s repository for small molecule crystal structures. The entry contains experimental data from a crystal diffraction study. The deposited dataset for this entry is freely available from the CCDC and typically includes 3D coordinates, cell parameters, space group, experimental conditions and quality measures.

  11. On the crystal structure of colloidally prepared CsPbBr3 quantum dots.

    Science.gov (United States)

    Cottingham, Patrick; Brutchey, Richard L

    2016-04-18

    Colloidally synthesized quantum dots of CsPbBr3 are highly promising for light-emitting applications. Previous reports based on benchtop diffraction conflict as to the crystal structure of CsPbBr3 quantum dots. We present X-ray diffraction and PDF analysis of X-ray total scattering data that indicate that the crystal structure is unequivocally orthorhombic (Pnma).

  12. U6+ minerals and inorganic compounds: insights into an expanded structural hierarchy of crystal structures

    International Nuclear Information System (INIS)

    Burns, P.C.

    2005-01-01

    The crystal structures of uranyl minerals and inorganic uranyl compounds are important for understanding the genesis of U deposits, the interaction of U mine and mill tailings with the environment, transport of actinides in soils and the vadose zone, the performance of geological repositories for nuclear waste, and for the development of advanced materials with novel applications. Over the past decade, the number of inorganic uranyl compounds (including minerals) with known structures has more than doubled, and reconsideration of the structural hierarchy of uranyl compounds is warranted. Here, 368 inorganic crystal structures that contain essential U 6+ are considered (of which 89 are minerals). They are arranged on the basis of the topological details of their structural units, which are formed by the polymerization of polyhedra containing higher-valence cations. Overarching structural categories correspond to those based upon isolated polyhedra (8), finite clusters (43), chains (57), sheets (204), and frameworks (56) of polyhedra. Within these categories, structures are organized and compared upon the basis of either their graphical representations, or in the case of sheets involving sharing of edges of polyhedra, upon the topological arrangement of anions within the sheets. (author)

  13. Studies of switching structures in ferroelectric liquid crystal devices

    International Nuclear Information System (INIS)

    Pabla, D.S.

    1998-01-01

    The fast, bistable electro-optic response of ferroelectric liquid crystal (FLC) devices has made them prime candidates for use in display applications. However, before these applications can become widely commercially viable a number of key issues relating to the switching within these devices need to be addressed. One of these is related to the fact that while there has been much work done on modelling the switching process in FLC devices, with some moderate success, in the main these models have not accurately accounted for the physical processes taking place. In order to rectify this situation we present a simple, multi-variable approach which includes important physical phenomenon such as stressed states, partial and domain switching. Through using this model we learn more about the dynamic molecular profiles which may exist in devices, and use this as a springboard to undertake a comprehensive theoretical and experimental study of the molecular profiles of chevron structures under different types of addressing pulses and voltages. This entails modelling the dynamic profiles using a simple non flow reorientation theory and comparing these simulations directly with experimental data obtained through the use of two different optical characterisation techniques. Our findings show quite conclusively that for monopolar addressing within low and high voltage regimes and for low voltage bipolar pulses during the early stages of switching, the dynamic reorientation near the surfaces and central regions of the device lags the reorientation within the bulk. The reverse however being true for the high voltage bipolar addressing case. These results for chevron structures differ from previous theoretical predictions made by others using equations derived from the flow coupled chiral smectic C continuum theory. These flow coupled simulations however, refer to reorientation in bookshelf structures rather than the chevron type structures thought to exist in FLC devices. As

  14. Studies of switching structures in ferroelectric liquid crystal devices

    Energy Technology Data Exchange (ETDEWEB)

    Pabla, D.S

    1998-07-01

    The fast, bistable electro-optic response of ferroelectric liquid crystal (FLC) devices has made them prime candidates for use in display applications. However, before these applications can become widely commercially viable a number of key issues relating to the switching within these devices need to be addressed. One of these is related to the fact that while there has been much work done on modelling the switching process in FLC devices, with some moderate success, in the main these models have not accurately accounted for the physical processes taking place. In order to rectify this situation we present a simple, multi-variable approach which includes important physical phenomenon such as stressed states, partial and domain switching. Through using this model we learn more about the dynamic molecular profiles which may exist in devices, and use this as a springboard to undertake a comprehensive theoretical and experimental study of the molecular profiles of chevron structures under different types of addressing pulses and voltages. This entails modelling the dynamic profiles using a simple non flow reorientation theory and comparing these simulations directly with experimental data obtained through the use of two different optical characterisation techniques. Our findings show quite conclusively that for monopolar addressing within low and high voltage regimes and for low voltage bipolar pulses during the early stages of switching, the dynamic reorientation near the surfaces and central regions of the device lags the reorientation within the bulk. The reverse however being true for the high voltage bipolar addressing case. These results for chevron structures differ from previous theoretical predictions made by others using equations derived from the flow coupled chiral smectic C continuum theory. These flow coupled simulations however, refer to reorientation in bookshelf structures rather than the chevron type structures thought to exist in FLC devices. As

  15. The crystal structure of Toxoplasma gondii pyruvate kinase 1.

    Directory of Open Access Journals (Sweden)

    Rebecca Bakszt

    2010-09-01

    Full Text Available Pyruvate kinase (PK, which catalyzes the final step in glycolysis converting phosphoenolpyruvate to pyruvate, is a central metabolic regulator in most organisms. Consequently PK represents an attractive therapeutic target in cancer and human pathogens, like Apicomplexans. The phylum Aplicomplexa, a group of exclusively parasitic organisms, includes the genera Plasmodium, Cryptosporidium and Toxoplasma, the etiological agents of malaria, cryptosporidiosis and toxoplasmosis respectively. Toxoplasma gondii infection causes a mild illness and is a very common infection affecting nearly one third of the world's population.We have determined the crystal structure of the PK1 enzyme from T. gondii, with the B domain in the open and closed conformations. We have also characterized its enzymatic activity and confirmed glucose-6-phosphate as its allosteric activator. This is the first description of a PK enzyme in a closed inactive conformation without any bound substrate. Comparison of the two tetrameric TgPK1 structures indicates a reorientation of the monomers with a concomitant change in the buried surface among adjacent monomers. The change in the buried surface was associated with significant B domain movements in one of the interacting monomers.We hypothesize that a loop in the interface between the A and B domains plays an important role linking the position of the B domain to the buried surface among monomers through two α-helices. The proposed model links the catalytic cycle of the enzyme with its domain movements and highlights the contribution of the interface between adjacent subunits. In addition, an unusual ordered conformation was observed in one of the allosteric binding domains and it is related to a specific apicomplexan insertion. The sequence and structural particularity would explain the atypical activation by a mono-phosphorylated sugar. The sum of peculiarities raises this enzyme as an emerging target for drug discovery.

  16. The crystal structure of Toxoplasma gondii pyruvate kinase 1.

    Science.gov (United States)

    Bakszt, Rebecca; Wernimont, Amy; Allali-Hassani, Abdellah; Mok, Man Wai; Hills, Tanya; Hui, Raymond; Pizarro, Juan C

    2010-09-14

    Pyruvate kinase (PK), which catalyzes the final step in glycolysis converting phosphoenolpyruvate to pyruvate, is a central metabolic regulator in most organisms. Consequently PK represents an attractive therapeutic target in cancer and human pathogens, like Apicomplexans. The phylum Aplicomplexa, a group of exclusively parasitic organisms, includes the genera Plasmodium, Cryptosporidium and Toxoplasma, the etiological agents of malaria, cryptosporidiosis and toxoplasmosis respectively. Toxoplasma gondii infection causes a mild illness and is a very common infection affecting nearly one third of the world's population. We have determined the crystal structure of the PK1 enzyme from T. gondii, with the B domain in the open and closed conformations. We have also characterized its enzymatic activity and confirmed glucose-6-phosphate as its allosteric activator. This is the first description of a PK enzyme in a closed inactive conformation without any bound substrate. Comparison of the two tetrameric TgPK1 structures indicates a reorientation of the monomers with a concomitant change in the buried surface among adjacent monomers. The change in the buried surface was associated with significant B domain movements in one of the interacting monomers. We hypothesize that a loop in the interface between the A and B domains plays an important role linking the position of the B domain to the buried surface among monomers through two α-helices. The proposed model links the catalytic cycle of the enzyme with its domain movements and highlights the contribution of the interface between adjacent subunits. In addition, an unusual ordered conformation was observed in one of the allosteric binding domains and it is related to a specific apicomplexan insertion. The sequence and structural particularity would explain the atypical activation by a mono-phosphorylated sugar. The sum of peculiarities raises this enzyme as an emerging target for drug discovery.

  17. The Crystal Structure of Toxoplasma gondii Pyruvate Kinase 1

    Energy Technology Data Exchange (ETDEWEB)

    Bakszt, R.; Wernimont, A; Allali-Hassani, A; Mok, M; Hills, T; Hui, R; Pizarro, J

    2010-01-01

    Pyruvate kinase (PK), which catalyzes the final step in glycolysis converting phosphoenolpyruvate to pyruvate, is a central metabolic regulator in most organisms. Consequently PK represents an attractive therapeutic target in cancer and human pathogens, like Apicomplexans. The phylum Aplicomplexa, a group of exclusively parasitic organisms, includes the genera Plasmodium, Cryptosporidium and Toxoplasma, the etiological agents of malaria, cryptosporidiosis and toxoplasmosis respectively. Toxoplasma gondii infection causes a mild illness and is a very common infection affecting nearly one third of the world's population. We have determined the crystal structure of the PK1 enzyme from T. gondii, with the B domain in the open and closed conformations. We have also characterized its enzymatic activity and confirmed glucose-6-phosphate as its allosteric activator. This is the first description of a PK enzyme in a closed inactive conformation without any bound substrate. Comparison of the two tetrameric TgPK1 structures indicates a reorientation of the monomers with a concomitant change in the buried surface among adjacent monomers. The change in the buried surface was associated with significant B domain movements in one of the interacting monomers. We hypothesize that a loop in the interface between the A and B domains plays an important role linking the position of the B domain to the buried surface among monomers through two {alpha}-helices. The proposed model links the catalytic cycle of the enzyme with its domain movements and highlights the contribution of the interface between adjacent subunits. In addition, an unusual ordered conformation was observed in one of the allosteric binding domains and it is related to a specific apicomplexan insertion. The sequence and structural particularity would explain the atypical activation by a mono-phosphorylated sugar. The sum of peculiarities raises this enzyme as an emerging target for drug discovery.

  18. Analyse des structures planaires multicouches à ferrite par la ...

    African Journals Online (AJOL)

    Finite element analysis of multi-layer planar structures with Ferrite. Electromagnetic Analysis of microwave integrated circuits is an attractive subject do to the recent development and use of new materials such as magnetic anisotropic materials (hexaferrite, ...). These materials are used in many microwave components ...

  19. Seismic response Analyses of Hanaro in-chimney bracket structures

    International Nuclear Information System (INIS)

    Lee, Jae Han; Ryu, J.S.; Cho, Y.G.; Lee, H.Y.; Kim, J.B.

    1999-05-01

    The in-chimney bracket will be installed in the upper part of chimney, which holds the capsule extension pipes in upper one-third of length. For evaluating the effects on the capsules and related reactor structures, ANSYS finite element analysis model is developed and the dynamic characteristics are analyzed. The seismic response anlayses of in-chimney bracket and related reactor structures of HANARO under the design earthquake response spectrum loads of OBE (0.1 g) and SSE (0.2 g) are performed. The maximum horizontal displacements of the flow tubes are within the minimum half gaps between close flow tubes, it is expected that these displacement will not produce any contact between neighbor flow tubes. The stress values in main points of reactor structures and in-chimney bracket for the seismic loads are also within the ASME Code limits. It is also confirmed that the fatigue usage factor is much less than 1.0. So, any damage on structural integrity is not expected when an in-chimney bracket is installed to upper part of the reactor chimney. (author). 12 refs., 24 tabs., 37 figs

  20. Structural analyses of sucrose laurate regioisomers by mass spectrometry techniques

    DEFF Research Database (Denmark)

    Lie, Aleksander; Stensballe, Allan; Pedersen, Lars Haastrup

    2015-01-01

    6- And 6′-O-lauroyl sucrose were isolated and analyzed by matrix-assisted laser desorption/ionisation (MALDI) time-of-flight (TOF) mass spectrometry (MS), Orbitrap high-resolution (HR) MS, and electrospray-ionization (ESI) tandem mass spectrometry (MS/MS). The analyses aimed to explore the physic......6- And 6′-O-lauroyl sucrose were isolated and analyzed by matrix-assisted laser desorption/ionisation (MALDI) time-of-flight (TOF) mass spectrometry (MS), Orbitrap high-resolution (HR) MS, and electrospray-ionization (ESI) tandem mass spectrometry (MS/MS). The analyses aimed to explore.......8, respectively, and Orbitrap HRMS confirmed the mass of [M+Na]+ (m/z 547.2712). ESI-MS/MS on the precursor ion [M+Na]+ resulted in product ion mass spectra showing two high-intensity signals for each sample. 6-O-Lauroyl sucrose produced signals located at m/z 547.27 and m/z 385.21, corresponding to the 6-O...

  1. Structural and biochemical analyses of a Clostridium perfringens sortase D transpeptidase

    Energy Technology Data Exchange (ETDEWEB)

    Suryadinata, Randy, E-mail: randy.suryadinata@csiro.au; Seabrook, Shane A.; Adams, Timothy E.; Nuttall, Stewart D.; Peat, Thomas S., E-mail: randy.suryadinata@csiro.au [Commonwealth Scientific and Industrial Research Organisation, 343 Royal Parade, Parkville, Victoria 3052 (Australia)

    2015-06-30

    The structure of C. perfringens sortase D was determined at 1.99 Å resolution. Comparative biochemical and structural analyses revealed that this transpeptidase may represent a new subclass of the sortase D family. The assembly and anchorage of various pathogenic proteins on the surface of Gram-positive bacteria is mediated by the sortase family of enzymes. These cysteine transpeptidases catalyze a unique sorting signal motif located at the C-terminus of their target substrate and promote the covalent attachment of these proteins onto an amino nucleophile located on another protein or on the bacterial cell wall. Each of the six distinct classes of sortases displays a unique biological role, with sequential activation of multiple sortases often observed in many Gram-positive bacteria to decorate their peptidoglycans. Less is known about the members of the class D family of sortases (SrtD), but they have a suggested role in spore formation in an oxygen-limiting environment. Here, the crystal structure of the SrtD enzyme from Clostridium perfringens was determined at 1.99 Å resolution. Comparative analysis of the C. perfringens SrtD structure reveals the typical eight-stranded β-barrel fold observed in all other known sortases, along with the conserved catalytic triad consisting of cysteine, histidine and arginine residues. Biochemical approaches further reveal the specifics of the SrtD catalytic activity in vitro, with a significant preference for the LPQTGS sorting motif. Additionally, the catalytic activity of SrtD is most efficient at 316 K and can be further improved in the presence of magnesium cations. Since C. perfringens spores are heat-resistant and lead to foodborne illnesses, characterization of the spore-promoting sortase SrtD may lead to the development of new antimicrobial agents.

  2. crystal

    Science.gov (United States)

    Yu, Yi; Huang, Yisheng; Zhang, Lizhen; Lin, Zhoubin; Sun, Shijia; Wang, Guofu

    2014-07-01

    A Nd3+:Na2La4(WO4)7 crystal with dimensions of ϕ 17 × 30 mm3 was grown by the Czochralski method. The thermal expansion coefficients of Nd3+:Na2La4(WO4)7 crystal are 1.32 × 10-5 K-1 along c-axis and 1.23 × 10-5 K-1 along a-axis, respectively. The spectroscopic characteristics of Nd3+:Na2La4(WO4)7 crystal were investigated. The Judd-Ofelt theory was applied to calculate the spectral parameters. The absorption cross sections at 805 nm are 2.17 × 10-20 cm2 with a full width at half maximum (FWHM) of 15 nm for π-polarization, and 2.29 × 10-20 cm2 with a FWHM of 14 nm for σ-polarization. The emission cross sections are 3.19 × 10-20 cm2 for σ-polarization and 2.67 × 10-20 cm2 for π-polarization at 1,064 nm. The fluorescence quantum efficiency is 67 %. The quasi-cw laser of Nd3+:Na2La4(WO4)7 crystal was performed. The maximum output power is 80 mW. The slope efficiency is 7.12 %. The results suggest Nd3+:Na2La4(WO4)7 crystal as a promising laser crystal fit for laser diode pumping.

  3. Hydrogen-bond coordination in organic crystal structures: statistics, predictions and applications.

    Science.gov (United States)

    Galek, Peter T A; Chisholm, James A; Pidcock, Elna; Wood, Peter A

    2014-02-01

    Statistical models to predict the number of hydrogen bonds that might be formed by any donor or acceptor atom in a crystal structure have been derived using organic structures in the Cambridge Structural Database. This hydrogen-bond coordination behaviour has been uniquely defined for more than 70 unique atom types, and has led to the development of a methodology to construct hypothetical hydrogen-bond arrangements. Comparing the constructed hydrogen-bond arrangements with known crystal structures shows promise in the assessment of structural stability, and some initial examples of industrially relevant polymorphs, co-crystals and hydrates are described.

  4. Validation of experimental molecular crystal structures with dispersion-corrected density functional theory calculations.

    Science.gov (United States)

    van de Streek, Jacco; Neumann, Marcus A

    2010-10-01

    This paper describes the validation of a dispersion-corrected density functional theory (d-DFT) method for the purpose of assessing the correctness of experimental organic crystal structures and enhancing the information content of purely experimental data. 241 experimental organic crystal structures from the August 2008 issue of Acta Cryst. Section E were energy-minimized in full, including unit-cell parameters. The differences between the experimental and the minimized crystal structures were subjected to statistical analysis. The r.m.s. Cartesian displacement excluding H atoms upon energy minimization with flexible unit-cell parameters is selected as a pertinent indicator of the correctness of a crystal structure. All 241 experimental crystal structures are reproduced very well: the average r.m.s. Cartesian displacement for the 241 crystal structures, including 16 disordered structures, is only 0.095 Å (0.084 Å for the 225 ordered structures). R.m.s. Cartesian displacements above 0.25 A either indicate incorrect experimental crystal structures or reveal interesting structural features such as exceptionally large temperature effects, incorrectly modelled disorder or symmetry breaking H atoms. After validation, the method is applied to nine examples that are known to be ambiguous or subtly incorrect.

  5. Comparison of multiple crystal structures with NMR data for engrailed homeodomain

    Energy Technology Data Exchange (ETDEWEB)

    Religa, Tomasz L. [MRC Centre for Protein Engineering (United Kingdom)], E-mail: tlr25@mrc-lmb.cam.ac.uk

    2008-03-15

    Two methods are currently available to solve high resolution protein structures-X-ray crystallography and nuclear magnetic resonance (NMR). Both methods usually produce highly similar structures, but small differences between both solutions are always observed. Here the raw NMR data as well as the solved NMR structure were compared to the multiple crystal structures solved for the WT 60 residue three helix bundle engrailed homeodomain (EnHD) and single point mutants. There was excellent agreement between TALOS-predicted and crystal structure-observed dihedral angles and a good agreement for the {sup 3}J(H{sup N}H{sup {alpha}}) couplings for the multiple crystal structures. Around 1% of NOEs were violated for any crystal structure, but no NOE was inconsistent with all of the crystal structures. Violations usually occurred for surface residues or for residues for which multiple discreet conformations were observed between the crystal structures. Comparison of the disorder shown in the multiple crystal structures shows little correlation with dynamics under native conditions for this protein.

  6. Synthesis, crystal structure determination of two-dimensional ...

    Indian Academy of Sciences (India)

    Abstract. The 2-D polymeric complex (I) has the formula [Ag(phSE)(NO3)]n, which has been crystallized from methanol-acetonitrile mixture and characterized by elemental analysis and single-crystal X-ray diffraction analysis. In this polymer, each Ag(I) ion occupies distorted trigonal pyramidal geometry coordinating with two.

  7. Structural transitions in crystals of native aspartate carbamoyltransferase

    International Nuclear Information System (INIS)

    Gouaux, J.E.; Lipscomb, W.N.

    1989-01-01

    Screened precession x-ray photographs of crystals of native aspartate carbamoyltransferase ligated with L-aspartate and phosphate reveal the presence of a crystal unit-cell dimension that is intermediate between the T (tense) and R (relaxed) states. Characterizing the intermediate (I) crystal is a c-axis unit-cell dimension of 149 angstrom, halfway between the c-axis length of the T (c = 142 angstrom) and R (c = 156 angstrom) states, in the space group P321. Preservation of the P321 space group indicates that the intermediate crystal form retains a threefold axis of symmetry, and therefore the enzyme has at minimum a threefold axis; however, it is not known whether the molecular twofold axis is conserved. The I crystals are formed by soaking T-state crystals with L-aspartate and phosphate. By raising the concentration of L-aspartate the authors can further transform the I crystals, without fragmentation, to a form that has the same unit-cell dimensions as R-state crystals grown in the presence of N-(phosphonoacetyl)-L-aspartate

  8. A shock absorber model for structure-borne noise analyses

    Science.gov (United States)

    Benaziz, Marouane; Nacivet, Samuel; Thouverez, Fabrice

    2015-08-01

    Shock absorbers are often responsible for undesirable structure-borne noise in cars. The early numerical prediction of this noise in the automobile development process can save time and money and yet remains a challenge for industry. In this paper, a new approach to predicting shock absorber structure-borne noise is proposed; it consists in modelling the shock absorber and including the main nonlinear phenomena responsible for discontinuities in the response. The model set forth herein features: compressible fluid behaviour, nonlinear flow rate-pressure relations, valve mechanical equations and rubber mounts. The piston, base valve and complete shock absorber model are compared with experimental results. Sensitivity of the shock absorber response is evaluated and the most important parameters are classified. The response envelope is also computed. This shock absorber model is able to accurately reproduce local nonlinear phenomena and improves our state of knowledge on potential noise sources within the shock absorber.

  9. Analysing inequalities in Germany a structured additive distributional regression approach

    CERN Document Server

    Silbersdorff, Alexander

    2017-01-01

    This book seeks new perspectives on the growing inequalities that our societies face, putting forward Structured Additive Distributional Regression as a means of statistical analysis that circumvents the common problem of analytical reduction to simple point estimators. This new approach allows the observed discrepancy between the individuals’ realities and the abstract representation of those realities to be explicitly taken into consideration using the arithmetic mean alone. In turn, the method is applied to the question of economic inequality in Germany.

  10. Bioinformatics analyses of Shigella CRISPR structure and spacer classification.

    Science.gov (United States)

    Wang, Pengfei; Zhang, Bing; Duan, Guangcai; Wang, Yingfang; Hong, Lijuan; Wang, Linlin; Guo, Xiangjiao; Xi, Yuanlin; Yang, Haiyan

    2016-03-01

    Clustered regularly interspaced short palindromic repeats (CRISPR) are inheritable genetic elements of a variety of archaea and bacteria and indicative of the bacterial ecological adaptation, conferring acquired immunity against invading foreign nucleic acids. Shigella is an important pathogen for anthroponosis. This study aimed to analyze the features of Shigella CRISPR structure and classify the spacers through bioinformatics approach. Among 107 Shigella, 434 CRISPR structure loci were identified with two to seven loci in different strains. CRISPR-Q1, CRISPR-Q4 and CRISPR-Q5 were widely distributed in Shigella strains. Comparison of the first and last repeats of CRISPR1, CRISPR2 and CRISPR3 revealed several base variants and different stem-loop structures. A total of 259 cas genes were found among these 107 Shigella strains. The cas gene deletions were discovered in 88 strains. However, there is one strain that does not contain cas gene. Intact clusters of cas genes were found in 19 strains. From comprehensive analysis of sequence signature and BLAST and CRISPRTarget score, the 708 spacers were classified into three subtypes: Type I, Type II and Type III. Of them, Type I spacer referred to those linked with one gene segment, Type II spacer linked with two or more different gene segments, and Type III spacer undefined. This study examined the diversity of CRISPR/cas system in Shigella strains, demonstrated the main features of CRISPR structure and spacer classification, which provided critical information for elucidation of the mechanisms of spacer formation and exploration of the role the spacers play in the function of the CRISPR/cas system.

  11. Synthesis, crystal structure, and magnetic properties of two-dimensional divalent metal glutarate/dipyridylamine coordination polymers, with a single crystal-to-single crystal transformation in the copper derivative

    International Nuclear Information System (INIS)

    Montney, Matthew R.; Supkowski, Ronald M.; Staples, Richard J.; LaDuca, Robert L.

    2009-01-01

    Hydrothermal reaction of divalent metal chlorides with glutaric acid and 4,4'-dipyridylamine (dpa) has afforded an isostructural family of coordination polymers with formulation [M(glu)(dpa)] n (M=Co (1), Ni (2), Cu (3); glu=glutarate). Square pyramidal coordination is seen in 1-3, with semi-ligation of a sixth donor to produce a '5+1' extended coordination sphere. Neighboring metal atoms are linked into 1D [M(glu)] n neutral chains through chelating/monodentate bridging glutarate moieties with a syn-anti binding mode, and semi-chelation of the pendant carboxylate oxygen. These chains further connect into 2D layers through dipodal dpa ligands. Neighboring layers stack into the pseudo 3D crystal structure of 1-3 through supramolecular hydrogen bonding between dpa amine units and the semi-chelated glutarate oxygen atoms. The variable temperature magnetic behavior of 1-3 was explored and modeled as infinite 1D Heisenberg chains. Notably, complex 3 undergoes a thermally induced single crystal-to-single crystal transformation between centric and acentric space groups, with a conformationally disordered unilayer structure at 293 K and an ordered bilayer structure at 173 K. All materials were further characterized via infrared spectroscopy and elemental and thermogravimetric analyses. - Graphical abstract: The coordination polymers [M(glu)(dpa)] n (M=Co (1), Ni (2), Cu (3); glu=glutarate, dpa=4,4'-dipyridylamine) exhibit 2D layer structures based on 1D [M(glu)] n chains linked through dpa tethers. Antiferromagnetic coupling is observed for 2 and 3, while ferromagnetism is predominant in 1. Compound 3 undergoes a thermally induced single crystal-to-single crystal transformation from an acentric to a centrosymmetric space group

  12. Structure of the ordered hydration of amino acids in proteins: analysis of crystal structures

    Energy Technology Data Exchange (ETDEWEB)

    Biedermannová, Lada, E-mail: lada.biedermannova@ibt.cas.cz; Schneider, Bohdan [Institute of Biotechnology CAS, Videnska 1083, 142 20 Prague (Czech Republic)

    2015-10-27

    The hydration of protein crystal structures was studied at the level of individual amino acids. The dependence of the number of water molecules and their preferred spatial localization on various parameters, such as solvent accessibility, secondary structure and side-chain conformation, was determined. Crystallography provides unique information about the arrangement of water molecules near protein surfaces. Using a nonredundant set of 2818 protein crystal structures with a resolution of better than 1.8 Å, the extent and structure of the hydration shell of all 20 standard amino-acid residues were analyzed as function of the residue conformation, secondary structure and solvent accessibility. The results show how hydration depends on the amino-acid conformation and the environment in which it occurs. After conformational clustering of individual residues, the density distribution of water molecules was compiled and the preferred hydration sites were determined as maxima in the pseudo-electron-density representation of water distributions. Many hydration sites interact with both main-chain and side-chain amino-acid atoms, and several occurrences of hydration sites with less canonical contacts, such as carbon–donor hydrogen bonds, OH–π interactions and off-plane interactions with aromatic heteroatoms, are also reported. Information about the location and relative importance of the empirically determined preferred hydration sites in proteins has applications in improving the current methods of hydration-site prediction in molecular replacement, ab initio protein structure prediction and the set-up of molecular-dynamics simulations.

  13. Topotactic decomposition and crystal structure of white molybdenum trioxide--monohydrate: prediction of structure by topotaxy

    International Nuclear Information System (INIS)

    Oswald, H.R.; Guenter, J.R.; Dubler, E.

    1975-01-01

    Single crystals of the white MoO 3 . H 2 O modification (''α-molybdic acid'') were transformed by heating to 160 0 C into perfect pseudomorphs built up from oriented MoO 3 crystallites of known structure. From the mutual orientation relationship of the unit cells of both phases involved in this topotactic reaction, as determined by X-ray photographs, a model for the so far unknown crystal structure of white MoO 3 . H 2 O could be deduced. Independently, this structure was determined by X-ray diffractometer data then: space group P anti 1, a = 7.388, b = 3.700, c = 6.673 A, α = 107.8, β = 113.6, γ = 91.2 0 , Z = 2. The structure was solved from the Patterson function and refined until R = 0.088. It is built up from isolated double chains of strongly distorted [MoO 5 (H 2 O)]-octahedra sharing two common edges with each other. This result agrees well with the model derived from topotaxy, and it becomes evident how the MoO 3 lattice is formed through corner linking of the isolated double chains after the water molecules are removed. The study of topotactic phenomena seems rather generally applicable to deduce the main features of structures involved and for better understanding of structural relationships. (U.S.)

  14. Optics of anisotropic metamaterial based structurally chiral photonic crystals

    International Nuclear Information System (INIS)

    Gevorgyan, A H; Rafayelyan, M S

    2013-01-01

    Light transmission through and reflection from a medium layer with dielectric and magnetic helicities are discussed. The axes of the dielectric permittivity tensor, ε-hat , and the magnetic permeability tensor, μ-hat , as well as the medium helix axis are all parallel to each other and they are perpendicular to the boundary surfaces. The possibilities of formation of some new types of photonic bandgaps (PBGs) are presented for large anisotropies of the medium—namely, direct and indirect nonselective PBGs (with respect to the incident light polarization, in contrast to the usual direct PBGs, which are selective with respect to the polarization of the incident light). It is shown that a transmission region can arise among the three types of PBGs, in certain conditions, of course. In this paper we generalize the concept of nihility for structurally chiral media, such as cholesteric liquid crystals (CLCs) and we identify two types of CLC nihilities. It is shown that, for certain characteristic parameters of the medium, superluminal light propagation is possible in the transmission band. The influence of the anisotropy of the medium on the reflection spectra is considered and it is shown that one can tune the width, number and frequency range of PBGs of this layer, at essentially large limits, tuning the parameters of the layer. The case of oblique light incidence on the CLC layer is also discussed. (paper)

  15. Synthesis, crystal structure and applications of palladium thiosalicylate complexes

    Directory of Open Access Journals (Sweden)

    S.B. Moosun

    2017-05-01

    Full Text Available Three palladium thiosalicylate complexes [Pd(tb(bipy]·3H2O (1, [Pd2(tb2(bipy2]·(dtdb2 (2 and [Pd2(tb2(phen2]·dtdb·H2O (3 (bipy = bipyridine; phen = phenanthroline were prepared from the reaction of PdCl2(CH3CN2 with dithiosalicylic acid (dtdb which underwent cleavage to form thiobenzoate anion (tb in DMF/MeOH. Square planar geometries of the complexes with a N2SO coordination type were proposed on the basis of single crystal X-ray structural study. The presence of trapped and uncoordinated dtdb was observed in complexes 2 and 3. Complexes 1–3 were evaluated as catalysts for Heck coupling reactions of methyl acrylate with iodobenzene, and showed moderate activities at a very low catalyst loading. Complex 1 was found to inhibit the growth of bacteria and scavenge free radicals efficiently.

  16. Benzofuranyl Esters: Synthesis, Crystal Structure Determination, Antimicrobial and Antioxidant Activities

    Directory of Open Access Journals (Sweden)

    C. S. Chidan Kumar

    2015-09-01

    Full Text Available A series of five new 2‐(1‐benzofuran‐2‐yl‐2‐oxoethyl 4-(un/substitutedbenzoates 4(a–e, with the general formula of C8H5O(C=OCH2O(C=OC6H4X, X = H, Cl, CH3, OCH3 or NO2, was synthesized in high purity and good yield under mild conditions. The synthesized products 4(a–e were characterized by FTIR, 1H-, 13C- and 1H-13C HMQC NMR spectroscopic analysis and their 3D structures were confirmed by single-crystal X-ray diffraction studies. These compounds were screened for their antimicrobial and antioxidant activities. The tested compounds showed antimicrobial ability in the order of 4b < 4a < 4c < 4d < 4e and the highest potency with minimum inhibition concentration (MIC value of 125 µg/mL was observed for 4e. The results of antioxidant activities revealed the highest activity for compound 4e (32.62% ± 1.34% in diphenyl-2-picrylhydrazyl (DPPH radical scavenging, 4d (31.01% ± 4.35% in ferric reducing antioxidant power (FRAP assay and 4a (27.11% ± 1.06% in metal chelating (MC activity.

  17. Crystallization and preliminary X-ray structural studies of a Melan-A pMHC–TCR complex

    International Nuclear Information System (INIS)

    Yuan, Fang; Georgiou, Theonie; Hillon, Theresa; Gostick, Emma; Price, David A.; Sewell, Andrew K.; Moysey, Ruth; Gavarret, Jessie; Vuidepot, Annelise; Sami, Malkit; Bell, John I.; Gao, George F.; Rizkallah, Pierre J.; Jakobsen, Bent K.

    2007-01-01

    A preliminary X-ray crystal structural study of a soluble cognate T-cell receptor (TCR) in complex with a pMHC presenting the Melan-A peptide (ELAGIGILTV) is reported. The TCR and pMHC were refolded, purified and mixed together to form complexes, which were crystallized using the sitting-drop vapour-diffusion method. Single TCR–pMHC complex crystals were cryocooled and used for data collection. Melanocytes are specialized pigmented cells that are found in all healthy skin tissue. In certain individuals, diseased melanocytes can form malignant tumours, melanomas, which cause the majority of skin-cancer-related deaths. The melanoma-associated antigenic peptides are presented on cell surfaces via the class I major histocompatibility complex (MHC). Among the melanoma-associated antigens, the melanoma self-antigen A/melanoma antigen recognized by T cells (Melan-A/MART-1) has attracted attention because of its wide expression in primary and metastatic melanomas. Here, a preliminary X-ray crystal structural study of a soluble cognate T-cell receptor (TCR) in complex with a pMHC presenting the Melan-A peptide (ELAGIGILTV) is reported. The TCR and pMHC were refolded, purified and mixed together to form complexes, which were crystallized using the sitting-drop vapour-diffusion method. Single TCR–pMHC complex crystals were cryocooled and used for data collection. Diffraction data showed that these crystals belonged to space group P4 1 /P4 3 , with unit-cell parameters a = b = 120.4, c = 81.6 Å. A complete data set was collected to 3.1 Å and the structure is currently being analysed

  18. Annealing effect of H+ -implanted single crystal silicon on strain and crystal structure

    International Nuclear Information System (INIS)

    Duo Xinzhong; Liu Weili; Zhang Miao; Gao Jianxia; Fu Xiaorong; Lin Chenglu

    2000-01-01

    The work focuses on the rocking curves of H + -implanted single silicon crystal detected by Four-Crystal X-ray diffractometer. The samples were annealed under different temperatures. Lattice defect in H + -implanted silicon crystals was detected by Rutherford Backscattering Spectrometry. It appeared that H-related complex did not crush until annealing temperature reached about 400 degree C. At that temperature H 2 was formed, deflated in silicon lattice and strained the lattice. But defects did not come into being in large quantity. The lattice was undamaged. When annealing temperature reached 500 degree C, strain induced by H 2 deflation crashed the silicon lattice. A large number of defects were formed. At the same time bubbles in the crystal and blister/flaking on the surface could be observed

  19. Feasibility of one-shot-per-crystal structure determination using Laue diffraction

    Energy Technology Data Exchange (ETDEWEB)

    Cornaby, Sterling [School of Applied and Engineering Physics, Cornell University, Ithaca, New York (United States); CHESS (Cornell High Energy Synchrotron Source), Cornell University, Ithaca, New York (United States); Szebenyi, Doletha M. E. [MacCHESS (Macromolecular Diffraction Facilities at CHESS), Cornell University, Ithaca, New York (United States); Smilgies, Detlef-M. [CHESS (Cornell High Energy Synchrotron Source), Cornell University, Ithaca, New York (United States); Schuller, David J.; Gillilan, Richard; Hao, Quan [MacCHESS (Macromolecular Diffraction Facilities at CHESS), Cornell University, Ithaca, New York (United States); Bilderback, Donald H., E-mail: dhb2@cornell.edu [School of Applied and Engineering Physics, Cornell University, Ithaca, New York (United States); CHESS (Cornell High Energy Synchrotron Source), Cornell University, Ithaca, New York (United States)

    2010-01-01

    Structure determination was successfully carried out using single Laue exposures from a group of lysozyme crystals. The Laue method may be a viable option for collection of one-shot-per-crystal data from microcrystals. Crystal size is an important factor in determining the number of diffraction patterns which may be obtained from a protein crystal before severe radiation damage sets in. As crystal dimensions decrease this number is reduced, eventually falling to one, at which point a complete data set must be assembled using data from multiple crystals. When only a single exposure is to be collected from each crystal, the polychromatic Laue technique may be preferable to monochromatic methods owing to its simultaneous recording of a large number of fully recorded reflections per image. To assess the feasibility of solving structures using single Laue images from multiple crystals, data were collected using a ‘pink’ beam at the CHESS D1 station from groups of lysozyme crystals with dimensions of the order of 20–30 µm mounted on MicroMesh grids. Single-shot Laue data were used for structure determination by molecular replacement and correct solutions were obtained even when as few as five crystals were used.

  20. Feasibility of one-shot-per-crystal structure determination using Laue diffraction

    International Nuclear Information System (INIS)

    Cornaby, Sterling; Szebenyi, Doletha M. E.; Smilgies, Detlef-M.; Schuller, David J.; Gillilan, Richard; Hao, Quan; Bilderback, Donald H.

    2010-01-01

    Structure determination was successfully carried out using single Laue exposures from a group of lysozyme crystals. The Laue method may be a viable option for collection of one-shot-per-crystal data from microcrystals. Crystal size is an important factor in determining the number of diffraction patterns which may be obtained from a protein crystal before severe radiation damage sets in. As crystal dimensions decrease this number is reduced, eventually falling to one, at which point a complete data set must be assembled using data from multiple crystals. When only a single exposure is to be collected from each crystal, the polychromatic Laue technique may be preferable to monochromatic methods owing to its simultaneous recording of a large number of fully recorded reflections per image. To assess the feasibility of solving structures using single Laue images from multiple crystals, data were collected using a ‘pink’ beam at the CHESS D1 station from groups of lysozyme crystals with dimensions of the order of 20–30 µm mounted on MicroMesh grids. Single-shot Laue data were used for structure determination by molecular replacement and correct solutions were obtained even when as few as five crystals were used

  1. Influence of submelting on formation of single crystals of nickel alloy with cellular-dendritic structure

    International Nuclear Information System (INIS)

    Pankin, G.N.; Esin, V.O.; Ponomarev, V.V.

    1996-01-01

    A study was made into specific features of cellular - dendritic structure formation in single crystals of nickel base alloy ZhS26 which had been crystallized following the pattern of solid solution. The single crystals in growing were subjected to periodic partial remelting to suppress the transition of cellular structure into a cellular - dendritic one during directional solidification. The results obtained showed the possibility to stabilize cellular growth of solid solution by way of inversion of interphase surface motion in the process of directional crystallization. 4 refs.; 5 figs

  2. Synthesis, crystal structures and properties of lead phosphite compounds

    International Nuclear Information System (INIS)

    Song, Jun-Ling; Hu, Chun-Li; Xu, Xiang; Kong, Fang; Mao, Jiang-Gao

    2015-01-01

    Here, we report the preparation and characterization of two lead(II) phosphites, namely, Pb_2(HPO_3)_2 and Pb_2(HPO_3)(NO_3)_2 through hydrothermal reaction or simple solution synthesis, respectively. A new lead phosphite, namely, Pb_2(HPO_3)_2, crystallizes in the noncentrosymmetric space group Cmc2_1 (no. 36), which features 3D framework formed by the interconnection of 2D layer of lead(II) phosphites and 1D chain of [Pb(HPO_3)_5]_∞. The nonlinear optical properties of Pb_2(HPO_3)(NO_3)_2 have been studied for the first time. The synergistic effect of the stereo-active lone-pairs on Pb"2"+ cations and π-conjugated NO_3 units in Pb_2(HPO_3)(NO_3)_2 produces a moderate second harmonic generation (SHG) response of ∼1.8×KDP (KH_2PO_4), which is phase matchable (type I). IR, UV–vis spectra and thermogravimetric analysis (TGA) for the two compounds were also measured. - Graphical abstract: Two lead phosphites Pb_2(HPO_3)_2 and Pb_2(HPO_3)(NO_3)_2 are studied. A new lead phosphite Pb_2(HPO_3)_2 features a unique 3D framework structure and Pb_2(HPO_3)(NO_3)_2 shows a moderate SHG response of ∼1.8×KDP (KH_2PO_4). - Highlights: • A new lead phosphite, Pb_2(HPO_3)_2 is reported. • Pb_2(HPO_3)_2 features a unique 3D framework structure. • NLO property of Pb_2(HPO_3)(NO_3)_2 is investigated. • Pb_2(HPO_3)(NO_3)_2 produces a moderate SHG response of ∼1.8×KDP (KH_2PO_4).

  3. Unique Reversible Crystal-to-Crystal Phase Transition – Structural and Functional Properties of Fused Ladder Thienoarenes

    KAUST Repository

    Abe, Yuichiro

    2017-08-15

    Donor-acceptor type molecules based on fused ladder thienoarenes, indacenodithiophene (IDT) and dithienocyclopenta-thienothiophene (DTCTT), coupled with benzothiadiazole, are prepared and their solid-state structures are investigated. They display a rich variety of solid phases ranging from amorphous glass states to crystalline states, upon changes in the central aromatic core and side group structures. Most notably, the DTCTT-based derivatives showed reversible crystal-to-crystal phase transitions in heating and cooling cycles. Unlike what has been seen in π−conjugated molecules variable temperature XRD revealed that structural change occurs continuously during the transition. A columnar self-assembled structure with slip-stacked π−π interaction is proposed to be involved in the solid-state. This research provides the evidence of unique structural behavior of the DTCTT-based molecules through the detailed structural analysis. This unique structural transition paves the way for these materials to have self-healing of crystal defects, leading to improved optoelectronic properties.

  4. Unique Reversible Crystal-to-Crystal Phase Transition – Structural and Functional Properties of Fused Ladder Thienoarenes

    KAUST Repository

    Abe, Yuichiro; Savikhin, Victoria; Yin, Jun; Grimsdale, Andrew C.; Soci, Cesare; Toney, Michael F.; Lam, Yeng Ming

    2017-01-01

    Donor-acceptor type molecules based on fused ladder thienoarenes, indacenodithiophene (IDT) and dithienocyclopenta-thienothiophene (DTCTT), coupled with benzothiadiazole, are prepared and their solid-state structures are investigated. They display a rich variety of solid phases ranging from amorphous glass states to crystalline states, upon changes in the central aromatic core and side group structures. Most notably, the DTCTT-based derivatives showed reversible crystal-to-crystal phase transitions in heating and cooling cycles. Unlike what has been seen in π−conjugated molecules variable temperature XRD revealed that structural change occurs continuously during the transition. A columnar self-assembled structure with slip-stacked π−π interaction is proposed to be involved in the solid-state. This research provides the evidence of unique structural behavior of the DTCTT-based molecules through the detailed structural analysis. This unique structural transition paves the way for these materials to have self-healing of crystal defects, leading to improved optoelectronic properties.

  5. Numerical analyses of flashing jet structure and droplet size characteristics

    International Nuclear Information System (INIS)

    Duan Riqiang; Jiang Shengyao; Koshizuka, Seiichi; Oka, Yoshiaki; Yamaguchi, Akira; Takata, Takashi

    2006-01-01

    In this paper, flashing jets are numerically simulated using the MPS method. The boiling mode for flashing is identified as surface boiling mode, based on the postulation of jets from a short nozzle under high depressurization. The Homogeneous Non-equilibrium Relaxation Model (HRM) is used for calculating the evaporation rate of flashing. The numerical simulation results show that flashing jets comprise an inner intact core which is surrounded by two-phase droplet flow. The effect of degree of superheat on the jet topological geometry is investigated. With increasing degree of superheat, the topological shape of flashing jets evolves from cylindrical core for low degree of superheat to cone-shaped core for high degree of superheat, and meanwhile the extinction length comes to decrease and tends asymptotically constant as the injection temperature approaches the saturation temperature corresponding to the injection pressure. The analyses of the droplet size distribution engendered from primary breakup of flashing jets show that: two peaks exist for droplet size distribution at lower degree of superheat; however, merely one peak for higher degree of superheat. From droplet size distribution, it is revealed that the primary breakup mechanism of flashing jets can be attributed to dominant mechanical breakup mode plus enhancement via surface evaporation. (author)

  6. What Can We Learn from the Crystal Structures of Metallacarboranes?

    Directory of Open Access Journals (Sweden)

    Alan J. Welch

    2017-07-01

    Full Text Available The determination of the molecular structures of metallacarboranes by X-ray diffraction remains critical to the development of the field, in some cases being the only viable way in which the overall architecture and the isomeric form of the molecule can be established. In such studies one problem frequently met is how to distinguish correctly {BH} and {CH} vertices, and this review begins by describing two relatively new methods, the Vertex-Centroid Distance (VCD and Boron-Hydrogen Distance (BHD methods, that have been developed to overcome the problem. Once the cage C atoms are located correctly, the resulting metallacarborane structure can frequently be analysed on the basis that cage B has a greater Structural Trans Effect (STE than does cage C. In the absence of significant competing effects this gives rise to unequal M–L distances for a homogeneous ligand set and to a preferred Exopolyhedral Ligand Orientation (ELO for a heterogeneous ligand set. ELO considerations can be used, amongst other things, to rank order the STEs of ligands and to identify suspect (in terms of cage C atom positions metallacarborane structures.

  7. Structural insights into the mycobacteria transcription initiation complex from analysis of X-ray crystal structures

    Energy Technology Data Exchange (ETDEWEB)

    Hubin, Elizabeth A.; Lilic, Mirjana; Darst, Seth A.; Campbell, Elizabeth A.

    2017-07-13

    The mycobacteria RNA polymerase (RNAP) is a target for antimicrobials against tuberculosis, motivating structure/function studies. Here we report a 3.2 Å-resolution crystal structure of a Mycobacterium smegmatis (Msm) open promoter complex (RPo), along with structural analysis of the Msm RPo and a previously reported 2.76 Å-resolution crystal structure of an Msm transcription initiation complex with a promoter DNA fragment. We observe the interaction of the Msm RNAP α-subunit C-terminal domain (αCTD) with DNA, and we provide evidence that the αCTD may play a role in Mtb transcription regulation. Our results reveal the structure of an Actinobacteria-unique insert of the RNAP β' subunit. Finally, our analysis reveals the disposition of the N-terminal segment of Msm σA, which may comprise an intrinsically disordered protein domain unique to mycobacteria. The clade-specific features of the mycobacteria RNAP provide clues to the profound instability of mycobacteria RPo compared with E. coli.

  8. Local layer structure of smectic liquid crystals by X-ray micro-diffraction

    CERN Document Server

    Takanishi, Y

    2003-01-01

    The local layer structure of smectic liquid crystal has been measured using time-resolved synchrotron X-ray micro-diffraction. Typical layer disorders observed in surface stabilized (anti-) ferroelectric liquid crystals, i.e. a stripe texture, a needed-like defect and a zigzag defect, are directly analyzed. The detailed analysis slows that the surface anchoring force due to the interaction between the liquid crystal molecule and the alignment thin film plays an important role to realize both the static and dynamic local layer structures. The layer structure of the circular domain observed in the liquid crystal of bent-shaped molecules found to depend on the applied electric field though the optical micrograph shows little difference. The frustrated, double and single layer structures of the bent-shaped molecule liquid crystal are determined depending on the terminal alkyl chain length. (author)

  9. Structured Intuition: A Methodology to Analyse Entity Authentication

    DEFF Research Database (Denmark)

    Ahmed, Naveed

    and the level of abstraction used in the analysis. Thus, the goal of developing a high level methodology that can be used with different notions of security, authentication, and abstraction is worth considering. In this thesis, we propose a new methodology, called the structured intuition (SI), which addresses...... in our methodology, which is called canonicity, which is a weaker form of message authenticity. As compared to many contemporary analysis techniques, an SI based analysis provides detailed results regarding the design rationales and entity authentication goals of a protocol....... consequences for the security of the system, e.g., private information of legitimate parties may be leaked or the security policy of a trusted system may be violated. At a corporate level, such a failure of authentication may result in loss of proprietary technology or customers' credit card information...

  10. Lipids: From Chemical Structures, Biosynthesis, and Analyses to Industrial Applications.

    Science.gov (United States)

    Li-Beisson, Yonghua; Nakamura, Yuki; Harwood, John

    2016-01-01

    Lipids are one of the major subcellular components, and play numerous essential functions. As well as their physiological roles, oils stored in biomass are useful commodities for a variety of biotechnological applications including food, chemical feedstocks, and fuel. Due to their agronomic as well as economic and societal importance, lipids have historically been subjected to intensive studies. Major current efforts are to increase the energy density of cell biomass, and/or create designer oils suitable for specific applications. This chapter covers some basic aspects of what one needs to know about lipids: definition, structure, function, metabolism and focus is also given on the development of modern lipid analytical tools and major current engineering approaches for biotechnological applications. This introductory chapter is intended to serve as a primer for all subsequent chapters in this book outlining current development in specific areas of lipids and their metabolism.

  11. Electroerosion impulse effect on W single crystal structure

    International Nuclear Information System (INIS)

    Aleshina, S.A.; Khvostikova, V.D.; Zolotykh, B.N.; Marchuk, A.I.

    1977-01-01

    The mechanism has been studied of brittle failure of single crystal tungsten on planes of crystallographic orientations [100], [110]; [111] in the process of electro-erosion machining by pulses of energies ranging from 1200 to 5000 μJ and of duration of 1 μs. It is shown that the electro-erosion machining of single crystal tungsten is characterized by the formation of a defect layer with a grid of microcracks which lie at a depth of approximately 80 μm. The appearance and the distribution of cracks on the surface of single crystals depends on the crystallogrpahic orientation

  12. Hydrogen-bonded co-crystal structure of benzoic acid and zwitterionic l-proline

    Directory of Open Access Journals (Sweden)

    Aaron M. Chesna

    2017-03-01

    Full Text Available The title compound [systematic name: benzoic acid–pyrrolidin-1-ium-2-carboxylate (1/1], C7H6O2·C5H9NO2, is an example of the application of non-centrosymmetric co-crystallization for the growth of a crystal containing a typically centrosymmetric component in a chiral space group. It co-crystallizes in the space group P212121 and contains benzoic acid and l-proline in equal proportions. The crystal structure exhibits chains of l-proline zwitterions capped by benzoic acid molecules which form a C(5[R33(11] hydrogen-bonded network along [100]. The crystal structure is examined and compared to that of a similar co-crystal containing l-proline zwitterions and 4-aminobenzoic acid.

  13. Structure of a second crystal form of Bence-Jones protein Loc: Strikingly different domain associations in two crystal forms of a single protein

    International Nuclear Information System (INIS)

    Schiffer, M.; Ainsworth, C.; Xu, Z.B.; Carperos, W.; Olsen, K.; Solomon, A.; Stevens, F.J.; Chang, C.H.

    1989-01-01

    The authors have determined the structure of the immunoglobulin light-chain dimer Loc in a second crystal form that was grown from distilled water. The crystal structure was determined to 2.8-angstrom resolution; the R factor is 0.22. The two variable domains are related by local 2-fold axes and form an antigen binding pocket. The variable domain-variable domain interaction observed in this crystal form differs from the one exhibited by the protein when crystallized from ammonium sulfate in which the two variable domains formed a protrusion. The structure attained in the distilled water crystals is similar to, but not identical with, the one observed for the Mcg light-chain dimer in crystals grown from ammonium sulfate. Thus, two strikingly different structures were attained by this multisubunit protein in crystals grown under two different, commonly used, crystallization techniques. The quaternary interactions exhibited by the protein in the two crystal forms are sufficiently different to suggest fundamentally different interpretations of the structural basis for the function of this protein. This observation may have general implications regarding the use of single crystallographic determinations for detailed identification of structural and functional relationships. On the other hand, proteins whose structures can be altered by manipulation of crystallization conditions may provide useful systems for study of fundamental structural chemistry

  14. Crystal structure analysis of C-phycoerythrin from marine cyanobacterium Phormidium sp. A09DM.

    Science.gov (United States)

    Kumar, Vinay; Sonani, Ravi R; Sharma, Mahima; Gupta, Gagan D; Madamwar, Datta

    2016-07-01

    The role of unique sequence features of C-phycoerythrin, isolated from Phormidium sp. A09DM, has been investigated by crystallographic studies. Two conserved indels (i.e. inserts or deletions) are found in the β-subunit of Phormidium phycoerythrin that are distinctive characteristics of large number of cyanobacterial sequences. The identified signatures are a two-residue deletion from position 21 and a nine-residue insertion at position 146. Crystals of Phormidium phycoerythrin were obtained at pH values of 5 and 8.5, and structures have been resolved to high precision at 1.95 and 2.1 Å resolution, respectively. In both the structures, heterodimers of α- and β- subunits assemble as hexamers. The 7-residue insertion at position 146 significantly reduces solvent exposure of π-conjugated A-C rings of a phycoerythrobilin (PEB) chromophore, and can influence energy absorption and energy transfer characteristics. The structural analyses (with 12-fold redundancy) suggest that protein micro-environment alone dictates the conformation of bound chromophores. The low- and high-energy absorbing chromophores are identified based on A-B ring coplanarity. The spatial distribution of these is found to be similar to that observed in R-phycoerythrin, suggesting the direction of energy transfer from outer-surface of hexamer to inner-hollow cavity in the Phormidium protein. The crystal structures also reveal that a commonly observed Hydrogen-bonding network in phycobiliproteins, involving chromophore bound to α-subunit and amino acid at position 73 of β-subunit, may not be essential for structural and functional integrity of C-phycoerythrin orthologs. In solution, the protein displays slight red shift and decrease in fluorescence emission at acidic pH. The mechanism for which may be static and correlates with the proximity of +ve electric field of Arg148 to the C-ring of a PEB chromophore.

  15. A simulation model for analysing brain structure deformations

    Energy Technology Data Exchange (ETDEWEB)

    Bona, Sergio Di [Institute for Information Science and Technologies, Italian National Research Council (ISTI-8211-CNR), Via G Moruzzi, 1-56124 Pisa (Italy); Lutzemberger, Ludovico [Department of Neuroscience, Institute of Neurosurgery, University of Pisa, Via Roma, 67-56100 Pisa (Italy); Salvetti, Ovidio [Institute for Information Science and Technologies, Italian National Research Council (ISTI-8211-CNR), Via G Moruzzi, 1-56124 Pisa (Italy)

    2003-12-21

    Recent developments of medical software applications from the simulation to the planning of surgical operations have revealed the need for modelling human tissues and organs, not only from a geometric point of view but also from a physical one, i.e. soft tissues, rigid body, viscoelasticity, etc. This has given rise to the term 'deformable objects', which refers to objects with a morphology, a physical and a mechanical behaviour of their own and that reflects their natural properties. In this paper, we propose a model, based upon physical laws, suitable for the realistic manipulation of geometric reconstructions of volumetric data taken from MR and CT scans. In particular, a physically based model of the brain is presented that is able to simulate the evolution of different nature pathological intra-cranial phenomena such as haemorrhages, neoplasm, haematoma, etc and to describe the consequences that are caused by their volume expansions and the influences they have on the anatomical and neuro-functional structures of the brain.

  16. SYNTHESIS AND CRYSTAL STRUCTURE OF AN OXORHENIUM(V ...

    African Journals Online (AJOL)

    a

    2007 Chemical Society of Ethiopia. ______ ... 1Department of Chemistry, Nelson Mandela Metropolitan University, P.O. Box 77000, Port .... Details of the crystal data are given in Table 1, with selected bond lengths and angles in Table 2.

  17. Nanomechanical resonant structures in single-crystal diamond

    OpenAIRE

    Burek, Michael J.; Ramos, Daniel; Patel, Parth; Frank, Ian W.; Lončar, Marko

    2013-01-01

    With its host of outstanding material properties, single-crystal diamond is an attractive material for nanomechanical systems. Here, the mechanical resonance characteristics of freestanding, single-crystal diamond nanobeams fabricated by an angled-etching methodology are reported. Resonance frequencies displayed evidence of significant compressive stress in doubly clamped diamond nanobeams, while cantilever resonance modes followed the expected inverse-length-squared trend. Q-factors on the o...

  18. Generalized structural equations improve sexual-selection analyses.

    Directory of Open Access Journals (Sweden)

    Sonia Lombardi

    Full Text Available Sexual selection is an intense evolutionary force, which operates through competition for the access to breeding resources. There are many cases where male copulatory success is highly asymmetric, and few males are able to sire most females. Two main hypotheses were proposed to explain this asymmetry: "female choice" and "male dominance". The literature reports contrasting results. This variability may reflect actual differences among studied populations, but it may also be generated by methodological differences and statistical shortcomings in data analysis. A review of the statistical methods used so far in lek studies, shows a prevalence of Linear Models (LM and Generalized Linear Models (GLM which may be affected by problems in inferring cause-effect relationships; multi-collinearity among explanatory variables and erroneous handling of non-normal and non-continuous distributions of the response variable. In lek breeding, selective pressure is maximal, because large numbers of males and females congregate in small arenas. We used a dataset on lekking fallow deer (Dama dama, to contrast the methods and procedures employed so far, and we propose a novel approach based on Generalized Structural Equations Models (GSEMs. GSEMs combine the power and flexibility of both SEM and GLM in a unified modeling framework. We showed that LMs fail to identify several important predictors of male copulatory success and yields very imprecise parameter estimates. Minor variations in data transformation yield wide changes in results and the method appears unreliable. GLMs improved the analysis, but GSEMs provided better results, because the use of latent variables decreases the impact of measurement errors. Using GSEMs, we were able to test contrasting hypotheses and calculate both direct and indirect effects, and we reached a high precision of the estimates, which implies a high predictive ability. In synthesis, we recommend the use of GSEMs in studies on

  19. An impedance function approach for soil-structure interaction analyses including structure-to-structure interaction effects

    International Nuclear Information System (INIS)

    Gantayat, A.; Kamil, H.

    1981-01-01

    The dynamic soil-structure and structure-to-structure interaction effects may be determined in one of the two ways: by modeling the entire soil-structure system by a finite-element model, or by using a frequency-dependent (or frequency-independent) impedance function approach. In seismic design of nuclear power plant structures, the normal practice is to use the first approach because of its simplicity and easy availability of computer codes to perform such analyses. However, in the finite-element approach, because of the size and cost restrictions, the three-dimensional behavior of the entire soil-structure system and the radiation damping in soil are only approximately included by using a two-dimensional finite-element mesh. In using the impedance function approach, the soil-structure analyses can be performed in four steps: (a) determination of the dynamic properties of the fixed base superstructure, (b) determination of foundation and structure impedance matrices and input motions, (c) evaluation of foundation motion, (d) analysis of the fixed base superstructure using computed foundation motion. (orig./RW)

  20. CCDC 808551: Experimental Crystal Structure Determination : (4,7-Diphenyl-1,10-phenanthroline)-trifluoromethyl-silver tetrahydrofuran solvate

    KAUST Repository

    Weng, Zhiqiang; Lee, R.; Jia, Weiguo; Yuan, Yaofeng; Wang, Wenfeng; Feng, Xue; Huang, Kuo-Wei

    2011-01-01

    An entry from the Cambridge Structural Database, the world’s repository for small molecule crystal structures. The entry contains experimental data from a crystal diffraction study. The deposited dataset for this entry is freely available from

  1. CCDC 808552: Experimental Crystal Structure Determination : (4,7-Diphenyl-1,10-phenanthroline)(trifluoromethyl)-copper tetrahydrofuran solvate

    KAUST Repository

    Weng, Zhiqiang; Lee, R.; Jia, Weiguo; Yuan, Yaofeng; Wang, Wenfeng; Feng, Xue; Huang, Kuo-Wei

    2011-01-01

    An entry from the Cambridge Structural Database, the world’s repository for small molecule crystal structures. The entry contains experimental data from a crystal diffraction study. The deposited dataset for this entry is freely available from

  2. CCDC 949811: Experimental Crystal Structure Determination : bis(2,9-Dimethyl-1,10-phenanthroline)-copper hydrogen difluoride monohydrate

    KAUST Repository

    Liu, Yanpin; Chen, Chaohuang; Li, Huaifeng; Huang, Kuo-Wei; Tan, Jianwei; Weng, Zhiqiang

    2014-01-01

    An entry from the Cambridge Structural Database, the world’s repository for small molecule crystal structures. The entry contains experimental data from a crystal diffraction study. The deposited dataset for this entry is freely available from

  3. CCDC 1036004: Experimental Crystal Structure Determination : catena-[(mu5-5-(pyridin-3-ylamino)isophthalato)-copper unknown solvate

    KAUST Repository

    Chen, Zhijie; Adil, Karim; Weseliński, Łukasz J.; Belmabkhout, Youssef; Eddaoudi, Mohamed

    2015-01-01

    An entry from the Cambridge Structural Database, the world’s repository for small molecule crystal structures. The entry contains experimental data from a crystal diffraction study. The deposited dataset for this entry is freely available from

  4. Crystal structure of calcioburbankite and the characteristic features of the burbankite structure type

    International Nuclear Information System (INIS)

    Belovitskaya, Yu.V.; Pekov, I.V.; Gobechiya, E.R.; Kabalov, Yu.K.; Subbotin, V.V.

    2001-01-01

    The crystal structure of calcioburbankite (Na,Ca) 3 (Ca,RE,Sr,Ba) 3 (CO 3 ) 5 found in carbonatites from Vuoriyarvi (North Kareliya) was solved by the Rietveld method. The experimental data were collected on an ADP-2 diffractometer (λCuK α radiation; Ni filter; 16.00 deg. 1 + α 2 ) reflections was 455). All the calculations were performed within the sp. gr. P6 3 mc; a = 10.4974(1) A, c = 6.4309(1) A, V = 613.72(1) A 3 ; R wp = 2.49%. The structure was refined with the use of the anisotropic thermal parameters for the (Na,Ca) and (Sr,Ba,Ce) cations. The comparison of the crystal structures of all of the known hexagonal representatives of the burbankite family demonstrates that the burbankite structure type (sp. gr. P6 3 mc) is stable, irrespectively of the occupancy of the ten-vertex polyhedra predominantly with Ca, Sr, or Ba cations and the occupancies of the positions in the eight-vertex polyhedra

  5. Crystal structure mediates mode of cell death in TiO2 nanotoxicity

    International Nuclear Information System (INIS)

    Braydich-Stolle, Laura K.; Schaeublin, Nicole M.; Murdock, Richard C.; Jiang, Jingkun; Biswas, Pratim; Schlager, John J.; Hussain, Saber M.

    2009-01-01

    Certain properties that nanoparticles possess differentiate them from their bulk counterparts, and these characteristics must be evaluated prior to nanoparticle studies and include: size, shape, dispersion, physical and chemical properties, surface area, and surface chemistry. Early nanotoxicity studies evaluating TiO 2 have yielded conflicting data which identify either size or crystal structure as the mediating property for nano-TiO 2 toxicity. However, it is important to note that none of these studies examined size with the crystal structure composition controlled for or examined crystal structure while controlling the nanoparticle size. The goal of this study was to evaluate the role of size and crystal structure in TiO 2 nanotoxicity while controlling for as many other nanoproperties as possible using the HEL-30 mouse keratinocyte cell line as a model for dermal exposure. In the size-dependent studies, all the nanoparticles are 100% anatase, and aggregate sizes were determined in order to take into account the effect of agglomeration on size-dependent toxicity. In addition, varying crystal structures were assessed while the size of the nanoparticles was controlled. We were able to identify that both size and crystal structure contribute to cytotoxicity and that the mechanism of cell death varies based on crystal structure. The 100% anatase TiO 2 nanoparticles, regardless of size, induced cell necrosis, while the rutile TiO 2 nanoparticles initiated apoptosis through formation of reactive oxygen species (ROS).

  6. Crystal structure mediates mode of cell death in TiO{sub 2} nanotoxicity

    Energy Technology Data Exchange (ETDEWEB)

    Braydich-Stolle, Laura K.; Schaeublin, Nicole M.; Murdock, Richard C. [Wright-Patterson AFB, Applied Biotechnology Branch, Human Effectiveness Directorate, Air Force Research Laboratory (United States); Jiang, Jingkun; Biswas, Pratim [Washington University in St. Louis, Department of Energy, Environmental, and Chemical Engineering (United States); Schlager, John J.; Hussain, Saber M., E-mail: Saber.Hussain@wpafb.af.mi [Wright-Patterson AFB, Applied Biotechnology Branch, Human Effectiveness Directorate, Air Force Research Laboratory (United States)

    2009-08-15

    Certain properties that nanoparticles possess differentiate them from their bulk counterparts, and these characteristics must be evaluated prior to nanoparticle studies and include: size, shape, dispersion, physical and chemical properties, surface area, and surface chemistry. Early nanotoxicity studies evaluating TiO{sub 2} have yielded conflicting data which identify either size or crystal structure as the mediating property for nano-TiO{sub 2} toxicity. However, it is important to note that none of these studies examined size with the crystal structure composition controlled for or examined crystal structure while controlling the nanoparticle size. The goal of this study was to evaluate the role of size and crystal structure in TiO{sub 2} nanotoxicity while controlling for as many other nanoproperties as possible using the HEL-30 mouse keratinocyte cell line as a model for dermal exposure. In the size-dependent studies, all the nanoparticles are 100% anatase, and aggregate sizes were determined in order to take into account the effect of agglomeration on size-dependent toxicity. In addition, varying crystal structures were assessed while the size of the nanoparticles was controlled. We were able to identify that both size and crystal structure contribute to cytotoxicity and that the mechanism of cell death varies based on crystal structure. The 100% anatase TiO{sub 2} nanoparticles, regardless of size, induced cell necrosis, while the rutile TiO{sub 2} nanoparticles initiated apoptosis through formation of reactive oxygen species (ROS).

  7. Structuring β-Ga2O3 photonic crystal photocatalyst for efficient degradation of organic pollutants.

    Science.gov (United States)

    Li, Xiaofang; Zhen, Xiuzheng; Meng, Sugang; Xian, Jiangjun; Shao, Yu; Fu, Xianzhi; Li, Danzhen

    2013-09-03

    Coupling photocatalysts with photonic crystals structure is based on the unique property of photonic crystals in confining, controlling, and manipulating the incident photons. This combination enhances the light absorption in photocatalysts and thus greatly improves their photocatalytic performance. In this study, Ga2O3 photonic crystals with well-arranged skeleton structures were prepared via a dip-coating infiltration method. The positions of the electronic band absorption for Ga2O3 photonic crystals could be made to locate on the red edge, on the blue edge, and away from the edge of their photonic band gaps by changing the pore sizes of the samples, respectively. Particularly, the electronic band absorption of the Ga2O3 photonic crystal with a pore size of 135 nm was enhanced more than other samples by making it locate on the red edge of its photonic band gap, which was confirmed by the higher instantaneous photocurrent and photocatalytic activity for the degradation of various organic pollutants under ultraviolet light irradiation. Furthermore, the degradation mechanism over Ga2O3 photonic crystals was discussed. The design of Ga2O3 photonic crystals presents a prospective application of photonic crystals in photocatalysis to address light harvesting and quantum efficiency problems through manipulating photons or constructing photonic crystal structure as groundwork.

  8. Isolation and crystal structure determination of piperazine dicarbamate obtained from a direct reaction

    Energy Technology Data Exchange (ETDEWEB)

    Sim, Jae Ung; Jo, Eun Hee; Jhon, Young Ho; Paek, Kyung Soo; Kim, Ja Heon [Dept. of Chemistry, Soongsil University, Seoul (Korea, Republic of); Jang Se Gyu; Shim, Jae Goo; Jang, Kyung Ryong [Korea Future Technology Research Laboratory, Korea Electric Power Research Institute (KEPRI), Daejeon (Korea, Republic of)

    2016-11-15

    Separation of CO{sub 2} in the flue gas emitted from coal-fired power plants is the first technological step toward reducing the CO{sub 2} concentration in atmosphere, and eventually for mitigating the global climate change. We could isolate the PZ-dicarbamate, where two CO{sub 2} molecules are bonded to each secondary amine group, through CO{sub 2} absorption by PZ in methanol, and determined its crystal structure by X-ray crystallography. The PZ-dicarbamate as a salt with piperazinium allowed further analyses such as TGA and NMR measurements, which gave information on the fate of the salt. In particular, the salt can be used as a standard sample exhibiting 100% CO{sub 2} loading in a PZ molecule.

  9. Single crystal X-ray structure of the artists’ pigment zinc yellow

    DEFF Research Database (Denmark)

    Simonsen, Kim Pilkjær; Christiansen, Marie Bitsch; Vinum, Morten Gotthold

    2017-01-01

    electron microscopy-energy dispersive X-ray spectroscopy (SEM-EDS), attenuated total reflectance-Fourier transform infrared spectroscopy (ATR-FTIR), and powder X-ray diffraction (PXRD), showed that the synthesised products and the industrial pigment were identical. Single-crystal X-ray crystallography......The artists’ pigment zinc yellow is in general described as a complex potassium zinc chromate with the empirical formula 4ZnCrO4·K2O·3H2O. Even though the pigment has been in use since the second half of the 19th century also in large-scale industrial applications, the exact structure had hitherto...... been unknown. In this work, zinc yellow was synthesised by precipitation from an aqueous solution of zinc nitrate and potassium chromate under both neutral and basic conditions, and the products were compared with the pigment used in industrial paints. Analyses by Raman microscopy (MRS), scanning...

  10. Fortuitous structure determination of ‘as-isolated’ Escherichia coli bacterioferritin in a novel crystal form

    International Nuclear Information System (INIS)

    Eerde, André van; Wolterink-van Loo, Suzanne; Oost, John van der; Dijkstra, Bauke W.

    2006-01-01

    E. coli bacterioferritin was crystallized in a novel crystal form from different conditions and the structure was solved. The crystals belonged to space group P2 1 3 and diffracted to a resolution of 2.5 Å. Escherichia coli bacterioferritin was serendipitously crystallized in a novel cubic crystal form and its structure could be determined to 2.5 Å resolution despite a high degree of merohedral twinning. This is the first report of crystallographic data on ‘as-isolated’ E. coli bacterioferritin. The ferroxidase active site contains positive difference density consistent with two metal ions that had co-purified with the protein. X-ray fluorescence studies suggest that the metal composition is different from that of previous structures and is a mix of zinc and native iron ions. The ferroxidase-centre configuration displays a similar flexibility as previously noted for other bacterioferritins

  11. Ultrasmall-angle X-ray scattering analysis of photonic crystal structure

    International Nuclear Information System (INIS)

    Abramova, V. V.; Sinitskii, A. S.; Grigor'eva, N. A.; Grigor'ev, S. V.; Belov, D. V.; Petukhov, A. V.; Mistonov, A. A.; Vasil'eva, A. V.; Tret'yakov, Yu. D.

    2009-01-01

    The results of an ultrasmall-angle X-ray scattering study of iron(III) oxide inverse opal thin films are presented. The photonic crystals examined are shown to have fcc structure with amount of stacking faults varying among the samples. The method used in this study makes it possible to easily distinguish between samples with predominantly twinned fcc structure and nearly perfect fcc stacking. The difference observed between samples fabricated under identical conditions is attributed to random layer stacking in the self-assembled colloidal crystals used as templates for fabricating the inverse opals. The present method provides a versatile tool for analyzing photonic crystal structure in studies of inverse opals made of various materials, colloidal crystals, and three-dimensional photonic crystals of other types.

  12. Synthesis and crystal structure of two lead (II) complexes with 1,10-phenanthroline ligand

    International Nuclear Information System (INIS)

    Olivera, Fiorella L.; Santillan, Guillermo A.

    2012-01-01

    Two coordination complexes have been synthesized by the reaction of lead nitrate (II) with 1,10-phenanthroline in methanol/water. The crystals of these complexes were obtained by using the diffusion method and structurally characterized by X-ray single crystal diffraction. Both complexes crystallized in the monoclinic space group P2 1 /c. The analysis by crystal X-ray diffraction reveals that in both complexes the coordination around the lead (II) ion is a distorted octahedral structure where the ion is bonded to the heterocyclic nitrogen atoms of chelating ligand 1,10-phenanthroline, three oxygen atoms of three nitrate groups and one oxygen from the water molecule. The difference between the complexes lies in the way of nitrate ion in presence of carboxylic acid aromatics. In addition, the crystal structure of complexes can be regarded as a 3D coordination polymer through Pb-O weak interactions, hydrogen bonds and π-π stacking interactions. (author).

  13. Radial wave crystals: radially periodic structures from anisotropic metamaterials for engineering acoustic or electromagnetic waves.

    Science.gov (United States)

    Torrent, Daniel; Sánchez-Dehesa, José

    2009-08-07

    We demonstrate that metamaterials with anisotropic properties can be used to develop a new class of periodic structures that has been named radial wave crystals. They can be sonic or photonic, and wave propagation along the radial directions is obtained through Bloch states like in usual sonic or photonic crystals. The band structure of the proposed structures can be tailored in a large amount to get exciting novel wave phenomena. For example, it is shown that acoustical cavities based on radial sonic crystals can be employed as passive devices for beam forming or dynamically orientated antennas for sound localization.

  14. Preparation and crystal structure of Ca/sub 4/Sb/sub 2/O

    Energy Technology Data Exchange (ETDEWEB)

    Eisenmann, B; Limartha, H; Schaefer, H; Graf, H A

    1980-12-01

    The formerly described compound Ca/sub 2/Sb is to be corrected to Ca/sub 4/Sb/sub 2/O as shown by X-ray diffractometer data of single crystals and neutron diffraction diagrams of powders. The compound crystallizes in the K/sub 2/NiF/sub 4/ type structure.

  15. On the crystal structure of Z-phase Cr(V,Nb)N

    DEFF Research Database (Denmark)

    Danielsen, Hilmar Kjartansson; Hald, John; Grumsen, Flemming Bjerg

    2006-01-01

    The Z-phase Cr(YNb)N particles in various 9 to 12 pct Cr creep-resistant steels were investigated with electron diffraction, energy dispersive spectroscopy (EDS), and electron energy loss spectroscopy(EELS). In addition to the well-known tetragonal crystal structure for Z phase, a cubic crystal s...

  16. Solvent effects on the crystal growth structure and morphology of the pharmaceutical dirithromycin

    Science.gov (United States)

    Wang, Yuan; Liang, Zuozhong

    2017-12-01

    Solvent effects on the crystal structure and morphology of pharmaceutical dirithromycin molecules were systematically investigated using both experimental crystallization and theoretical simulation. Dirithromycin is one of the new generation of macrolide antibiotics with two polymorphic forms (Form I and Form II) and many solvate forms. Herein, six solvates of the dirithromycin, including acetonitrile, acetonitrile/water, acetone, 1-propanol, N,N-dimethylformamide (DMF) and cyclohexane, were studied. Experimentally, we crystallized the dirithromycin molecules in different solvents by the solvent evaporating method and measured the crystal structures with the X-ray diffraction (XRD). We compared these crystal structures of dirithromycin solvates and analyzed the solvent property-determined structure evolution. The solvents have a strong interaction with the dirithromycin molecule due to the formation of inter-molecular interactions (such as the hydrogen bonding and close contacts (sum of vdW radii)). Theoretically, we calculated the ideal crystal habit based on the solvated structures with the attachment growth (AE) model. The predicted morphologies and aspect ratios of dirithromycin solvates agree well with the experimental results. This work could be helpful to better understand the structure and morphology evolution of solvates controlled by solvents and guide the crystallization of active pharmaceutical ingredients in the pharmaceutical industry.

  17. Combined crystal structure prediction and high-pressure crystallization in rational pharmaceutical polymorph screening

    DEFF Research Database (Denmark)

    Neumann, M A; van de Streek, J; Fabbiani, F P A

    2015-01-01

    Organic molecules, such as pharmaceuticals, agro-chemicals and pigments, frequently form several crystal polymorphs with different physicochemical properties. Finding polymorphs has long been a purely experimental game of trial-and-error. Here we utilize in silico polymorph screening in combination...

  18. Investigation of melt structure and crystallization processes by high-temperature Raman spectroscopy method

    International Nuclear Information System (INIS)

    Voron'ko, Yu.K.; Kudryavtsev, A.B.; Osiko, V.V.; Sobol', A.A.

    1988-01-01

    A review of studies dealing with the melts of alkali, rare earth and other element phosphates, gallates, germanates, niobates and tungstates, which are carried out by the method of high-temperature Raman spectroscopy, is given. The effect of the melt structure on the mechanism of the substance cystallization is considered. It is shown that vitrification and supercooling of the melt, as well as its crystallization in the from of metastable structures, are related to the effect of nonconformity between the melt and crystal strucure. The effect of nonconformity between anion motives in the melt and crystal creates obstacles for equilibrium structure nucleation, which results in the formation mainly of metastable forms with lattice structure for from the structure of the melt, though cases of equilibrium phase crystallization are also possible. 37 refs.; 13 figs.; 2 tabs

  19. First principles study of structural, electronic and optical properties of KCl crystal

    International Nuclear Information System (INIS)

    Chen, Z.J.; Xiao, H.Y.; Zu, X.T.

    2006-01-01

    The structural, electronic and optical properties of KCl crystal in B1, B2, B3 and T1 structures have been systematically studied using first-principle pseudopotential calculations. In addition, pressure-induced phase transition has also been investigated. It was found that when the pressure is below 2.8 GPa, the B1 structure is the most stable. Above 2.8 GPa KCl crystal will undergo a structural phase transition from the relatively open NaCl structure into the more dense CsCl atomic arrangement. Our results also suggested that at about 1.2 GPa structural phase transition from B3 to T1 will occur. When the pressure arrives at 39.9 GPa, the phase transition will occur from B2 to T1. In addition, we found KCl Crystal has indirect band gap in B2 structure and direct band gap in B1, B3 and T1 structures. The band gap value is the smallest in the T1 structure and is the largest in the B1 and B3 structures. Our calculations are found to be in good agreement with available experimental and theoretical results. The dielectric function and energy loss function of KCl crystal in four structures (B1, B2, B3 and T1) have been calculated as well as the anisotropy of the optical properties of KCl crystal in T1 structure

  20. Effects of tellurium concentration on the structure of melt-grown ZnSe crystals

    International Nuclear Information System (INIS)

    Atroshchenko, Lyubov V.; Galkin, Sergey N.; Rybalka, Irina A.; Voronkin, Evgeniy F.; Lalayants, Alexandr I.; Ryzhikov, Vladimir D.; Fedorov, Alexandr G.

    2005-01-01

    It has been shown that isovalent doping by tellurium positively affects the structural perfection of ZnSe crystals related to the completeness of the wurtzite-sphalerite phase transition. The optimum concentration range of tellurium in ZnSe crystals is 0.3-0.6 mass %. X-ray diffraction studies have shown that in ZnSe 1-x Te x crystals at tellurium concentrations below 0.3 mass % twinning and packing defects occur, while tellurium concentrations above 0.6 mass % lead to formation of tetragonal crystal lattice