WorldWideScience

Sample records for crystal polyester monomers

  1. In situ polymerization of vinyl monomers in polyester yarns

    International Nuclear Information System (INIS)

    Avny, Y.; Rebenfeld, L.; Weigmann, H.D.

    1978-01-01

    The effects of a pretreatment of polyester (PET) yarns with a strongly interacting solvent such as dimethylformamide (DMF) on vinyl monomer incorporation were investigated. When the DMF pretreatment is carried out at high temperatures (above 120 0 C), the swollen PET structure is stabilized by solvent-induced secondary crystallization. This substrate is highly suitable for the incorporation of vinyl monomers. In situ polymerization of vinyl monomers in DMF-treated PET was investigated using chemical and γ-irradiation polymerization techniques, both in the presence and in the absence of excess monomer outside the PET fibers. When polymerization was carried out in a system in which a constant supply of free radicals was available from the outside of the PET fibers, lower initiator concentrations and smaller γ-irradiation doses were necessary. These results are attributed to a low efficiency of the initiator inside the PET fiber due to mobility restrictions. Water uptake and moisture regain of PET yarns containing poly(hydroxyethyl methacrylate) and poly(acrylic acid) were also investigated. When most of the vinyl polymer was inside the PET fiber, water absorption was limited. The changes in mechanical properties of the PET yarns resulting from the DMF pretreatment were partially reversed by in situ polymerization of vinyl monomers

  2. Design and Applications of Biodegradable Polyester Tissue Scaffolds Based on Endogenous Monomers Found in Human Metabolism

    Directory of Open Access Journals (Sweden)

    Devin G. Barrett

    2009-10-01

    Full Text Available Synthetic polyesters have deeply impacted various biomedical and engineering fields, such as tissue scaffolding and therapeutic delivery. Currently, many applications involving polyesters are being explored with polymers derived from monomers that are endogenous to the human metabolism. Examples of these monomers include glycerol, xylitol, sorbitol, and lactic, sebacic, citric, succinic, α-ketoglutaric, and fumaric acids. In terms of mechanical versatility, crystallinity, hydrophobicity, and biocompatibility, polyesters synthesized partially or completely from these monomers can display a wide range of properties. The flexibility in these macromolecular properties allows for materials to be tailored according to the needs of a particular application. Along with the presence of natural monomers that allows for a high probability of biocompatibility, there is also an added benefit that this class of polyesters is more environmentally friendly than many other materials used in biomedical engineering. While the selection of monomers may be limited by nature, these polymers have produced or have the potential to produce an enormous number of successes in vitro and in vivo.

  3. Synthesis of poly(ethylene furandicarboxylate) polyester using monomers derived from renewable resources: thermal behavior comparison with PET and PEN.

    Science.gov (United States)

    Papageorgiou, George Z; Tsanaktsis, Vasilios; Bikiaris, Dimitrios N

    2014-05-07

    Poly(ethylene-2,5-furandicarboxylate) (PEF) is a new alipharomatic polyester that can be prepared from monomers derived from renewable resources like furfural and hydroxymethylfurfural. For this reason it has gained high interest recently. In the present work it was synthesized from the dimethylester of 2,5-furandicarboxylic acid and ethylene glycol by applying the two-stage melt polycondensation method. The thermal behavior of PEF was studied in comparison to its terephthalate and naphthalate homologues poly(ethylene terephthalate) (PET) and poly(ethylene naphthalate) (PEN), which were also synthesized following the same procedure. The equilibrium melting point of PEF was found to be 265 °C while the heat of fusion for the pure crystalline PEF was estimated to be about 137 J g(-1). The crystallization kinetics was analyzed using various models. PET showed faster crystallization rates than PEN and this in turn showed faster crystallization than PEF, under both isothermal and non-isothermal conditions. The spherulitic morphology of PEF during isothermal crystallization was investigated by polarized light microscopy (PLM). A large nucleation density and a small spherulite size were observed for PEF even at low supercoolings, in contrast to PET or PEN. Thermogravimetric analysis indicated that PEF is thermally stable up to 325 °C and the temperature for the maximum degradation rate was 438 °C. These values were a little lower than those for PET or PEN.

  4. Functional bio-based polyesters by enzymatic polymerization

    DEFF Research Database (Denmark)

    Daugaard, Anders Egede; Hoffmann, Christian; Andersen, Christian

    During recent years enzymatic polymerization has become increasingly popular as an alternative to classical polyesterification processes. The high regioselectivity observed for lipases permits preparation of novel polyesters with a high number of functional groups.1 This is particularly interesting...... polymerization was applied to prepare functional water soluble polyesters based on dimethyl itaconate and poly(ethyleneglycol).2 The monomer permits postfunctionalization using thiol-ene chemistry or aza-michael additions, which was used to illustrate the possibilites of preparing functional hydrogels. Hydrogels...... based on the polyesters were shown to be degradable and could be prepared either from the pure polyester or from prefunctionalized polyesters, though the thiol-ene reactions were found to be less effective. Since then a new monomer, trans-2,5-dihydroxy-3-pentenoic acid methyl ester (DPM) has been...

  5. Process for the production of a dianhydrohexitol based polyester

    NARCIS (Netherlands)

    2008-01-01

    Process for the production of a polyester by the polycondensation of a mixture comprising isoidide, and a dicarboxylic acid or dicarboxylic acid anhydride, wherein the reaction is performed in the melt of the monomers and wherein these monomers are not activated. The polyesters based on one or more

  6. Synthesis and characterization of polyesters from renewable cardol ...

    African Journals Online (AJOL)

    Bulletin of the Chemical Society of Ethiopia ... The preparation and thermal characteristics of new polyesters from cardol, a renewable monomer ... All prepared polyesters were insoluble in common laboratory solvents at room temperature.

  7. Radiation effects on biodegradable polyesters

    International Nuclear Information System (INIS)

    Hiroshi Mitomo; Darmawan Darwis; Fumio Yoshii; Keizo Makuuchi

    1999-01-01

    Poly(3-hydroxybutyrate) [P(3HB)] and its copolymer poly(3-hydroxybutyrate-co-3hydroxyvalerate) [P(3HB-co-3HV)] are microbial biodegradable polyesters produced by many types of bacteria. Poly(butylene succinate) (PBS) and poly(E-caprolactone) (PCL) are also biodegradable synthetic polyesters which have been commercialized. These thermoplastics are expected for wide usage in environmental protection and blocompatible applications. Radiation grafting of hydrophilic monomers onto many polymers, e.g., polyethylene and polypropylene has been studied mainly for biomedical applications. In the present study, radiation-induced graft polymerization of vinyl monomers onto PHB and P(3HB-co-3HV) was carried out and improvement of their properties was studied. Changes in the properties and biodegradability were compared with the degree of grafting. Radiation-induced crosslinking of PBS and PCL which relatively show thermal and irradiation stability was also carried out to improve their thermal stability or processability. Irradiation to PBS and PCL mainly resulted in crosslinking and characterization of these crosslinked polyesters was investigated

  8. Preparation and properties of high storage stability polyester polyol dispersion for two-component waterborne polyurethane coating

    Science.gov (United States)

    Hao, H.; Hu, J. Q.; Wang, F.; Tu, W. P.

    2017-01-01

    A new type of polyester polyol dispersion with good storage stability was prepared based on a hydrophilic monomer 5-sodium sulfodimethyl isophthalate (5-SIPM), and frequently-used monomers such as neopentyl glycol (NPG), dimethyl terephthalate (DMT), dimethyl phthalate (DMP) and trimethylolpropane (TMP) by the transpolycondensation and polycondensation method. The polyester polyol dispersion was characterized by FTIR and GPC. The proper content of these monomers were determined by the performance of polyester dispersion: the content of TMP was 15wt%, the content of NPG was 7.5wt% and the hydrophilic monomer 5-SIPM content was 5wt%. Two-component waterborne polyurethane (2K-WPU) coatings were prepared by Bayhydur® XP2487/1 and polyester polyol dispersions, which were stored before and after at 40 ° for 6 weeks, the prepared films have no differences in drying time, adhesion, pencil hardness, gloss and chemical resistance, the result also reveals that the polyester polyol dispersion have excellent storage stability resistance.

  9. Biobased functional polyesters for coating applications: Synthesis, characterization and application

    NARCIS (Netherlands)

    Noordover, B.A.J.; Duchateau, R.; Koning, C.E.; Benthem, van R.A.T.M.; Ming, W.; Haveren, van J.; Es, van D.S.

    2007-01-01

    Thermosetting coating systems contain polyesters as binders. A crucial property of these polymers is their functionality. During coating application, the polyesters are cross-linked in situ, which means that each polymer chain needs a sufficient no. of reactive end-groups. Renewable monomers are

  10. Proton-Transfer Polymerization by N-Heterocyclic Carbenes: Monomer and Catalyst Scopes and Mechanism for Converting Dimethacrylates into Unsaturated Polyesters

    KAUST Repository

    Hong, Miao

    2016-01-18

    This contribution presents a full account of experimental and theoretical/computational investigations into the N-heterocyclic carbene (NHC)-catalyzed proton-transfer polymerization (HTP) that converts common dimethacrylates (DMAs) containing no protic groups into unsaturated polyesters. This new HTP proceeds through the step-growth propagation cycles via enamine intermediates, consisting of the proposed conjugate addition–proton transfer–NHC release fundamental steps. This study examines the monomer and catalyst scopes as well as the fundamental steps involved in the overall HTP mechanism. DMAs having six different types of linkages connecting the two methacrylates have been polymerized into the corresponding unsaturated polyesters. The most intriguing unsaturated polyester of the series is that based on the biomass-derived furfuryl dimethacrylate, which showed a unique self-curing ability Four MeO– and Cl–substituted TPT (1,3,4-triphenyl-4,5-dihydro-1H-1,2,4-triazol-5-ylidene) derivatives as methanol insertion products, RxTPT(MeO/H) (R = MeO, Cl; x = 2, 3), and two free carbenes (catalysts), OMe2TPT and OMe3TPT, have been synthesized, while OMe2TPT(MeO/H) and OMe2TPT have also been structurally characterized. The structure/reactivity relationship study revealed that OMe2TPT, being both a strong nucleophile and a good leaving group, exhibits the highest HTP activity and also produced the polyester with the highest Mn, while the Cl–substituted TPT derivatives are least active and efficient. Computational studies have provided mechanistic insights into the tail-to-tail dimerization coupling step as a suitable model for the propagation cycle of the HTP. The extensive energy profile was mapped out and the experimentally observed unicity of the TPT-based catalysts was satisfactorily explained with the thermodynamic formation of key spirocyclic species.

  11. Low-temperature radiation-induced polymerization of vinyl monomers in the crystal matrix of polydimethyl siloxane

    International Nuclear Information System (INIS)

    Mujdinov, M.R.; Kiryukhin, D.P.; Barkalov, I.M.; Gol'danskij, V.I.

    1979-01-01

    It is shown that in the process of the slow cooling of vinyl monomer solution in dimethyl siloxane rubber (SKT mark) crystallization of SKT takes place, at that, considerable part of vinyl monomers (up to 70 wt. % of rubber) is sorbed in the pores of crystal matrix and it does not form its proper crystal phase. Slight anomalies in heat capacity in the 120-140 K range, the melting of non-sorbed part of MA and the melting of SKT + MA ''complex'' have been observed on the calorimetric curve at the SKT - methylacrylate (MA) system heating. In the process of heating such samples, irradiated at 77 K by γ-rays of 60 Co, heat evolution connected with sorbed monomer polarization, has been observed starting from 125-130 K. In the 140-200 K range already before MA and SKT melting intense polymerization takes place, which results in practically full monomer consumption and formation of graft copolymer. Radiation-chemical yield of monomer reduction reaches G(-M) approximately equal to 2x10 5 molecules for 100 eV, radiation yield of postpolymerization of crystal MA does not exceed G(-M) approximately equal to 50 molecules for 100 eV

  12. Procedure for the fabrication of a cross-linked polyester material

    International Nuclear Information System (INIS)

    D'Alelio, G.F.

    1972-01-01

    The procedures are described for the production of a cross-linked polyester material by means of the irradiation of a radiosensitive polyester with a dose of over 0.5 megarad and under 8 megarads high energy, ionising radiation, corresponding to at least 100,000 ev. The polyester is of the telomerised diacrylpolyester type, and may be in a mixture containing about 1% of a coplymerisable aliphatic monomer, or about 30-90% of an unsaturated aliphatic alkyd resin. (JIW)

  13. Monomers and Monomer Mixtures Used in Impregnation of Fibrous Materials

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1968-10-15

    Some important properties of monomers and polymers in relation to their use for reinforcement of fibrous materials are listed. Some monomers and their properties important in impregnation of fibrous materials are also listed. In general it is not advantageous to use a pure monomer for impregnation but rather a mixture of monomers or a mixture of a monomer and a low molecular weight polymer such as unsaturated polyester. Some of these mixtures which have been well studied in connection with WPC are listed together with some of their properties when used in WPC. Other monomer mixtures may well come in question and other monomers can probably be used. For instance, it is reported from Japan that the cheap monomer ethyleneoxide, which cannot be polymerized by gamma radiation as such, can be polymerized (in bulk) as a mixture with methylmethacrylate. Good results with WPC have generally been obtained without swelling agents but more is grafted if some swelling agent is used, and it is possible that a swelling agent might be useful in the case of fibre-boards. Solvents, plasticizers, crosslinkable natural resins, aromatic chlorinated hydrocarbons, and retardants can be added, and with their use the properties of WPC can be widely modified. For example, a chlorinated wax can act as retardant, can reduce the total dose of radiation and can increase the flame resistance simultaneously.

  14. Radiation processed composite materials of wood and elastic polyester resins

    International Nuclear Information System (INIS)

    Tapolcai, I.; Czvikovszky, T.

    1983-01-01

    The radiation polymerization of multifunctional unsaturated polyester-monomer mixtures in wood forms interpenetrating network system. The mechanical resistance (compression, abrasion, hardness, etc.) of these composite materials are generally well over the original wood, however the impact strength is almost the same or even reduced, in comparison to the wood itself. An attempt is made using elastic polyester resins to produced wood-polyester composite materials with improved modulus of elasticity and impact properties. For the impregnation of European beech wood two types of elastic unsaturated polyester resins were used. The exothermic effect of radiation copolymerization of these resins in wood has been measured and the dose rate effects as well as hardening dose was determined. Felxural strength and impact properties were examined. Elastic unsaturated polyester resins improved the impact strength of wood composite materials. (author)

  15. Reduced toxicity polyester resins and microvascular pre-preg tapes for advanced composites manufacturing

    Science.gov (United States)

    Poillucci, Richard

    Advanced composites manufacturing broadly encapsulates topics ranging from matrix chemistries to automated machines that lay-up fiber-reinforced materials. Environmental regulations are stimulating research to reduce matrix resin formulation toxicity. At present, composites fabricated with polyester resins expose workers to the risk of contact with and inhalation of styrene monomer, which is a potential carcinogen, neurotoxin, and respiratory irritant. The first primary goal of this thesis is to reduce the toxicity associated with polyester resins by: (1) identification of potential monomers to replace styrene, (2) determination of monomer solubility within the polyester, and (3) investigation of approaches to rapidly screen a large resin composition parameter space. Monomers are identified based on their ability to react with polyester and their toxicity as determined by the Globally Harmonized System (GHS) and a green screen method. Solubilities were determined by the Hoftyzer -- Van Krevelen method, Hansen solubility parameter database, and experimental mixing of monomers. A combinatorial microfluidic mixing device is designed and tested to obtain distinct resin compositions from two input chemistries. The push for safer materials is complemented by a thrust for multifunctional composites. The second primary goal of this thesis is to design and implement the manufacture of sacrificial fiber materials suitable for use in automated fiber placement of microvascaular multifunctional composites. Two key advancements are required to achieve this goal: (1) development of a roll-to-roll method to place sacrificial fibers onto carbon fiber pre-preg tape; and (2) demonstration of feasible manufacture of microvascular carbon fiber plates with automated fiber placement. An automated method for placing sacrificial fibers onto carbon fiber tapes is designed and a prototype implemented. Carbon fiber tows with manual placement of sacrificial fibers is implemented within an

  16. Isohexide and Sorbitol-Derived, Enzymatically Synthesized Renewable Polyesters with Enhanced Tg.

    Science.gov (United States)

    Gustini, Liliana; Lavilla, Cristina; de Ilarduya, Antxon Martínez; Muñoz-Guerra, Sebastián; Koning, Cor E

    2016-10-10

    Sugar-based polyesters derived from sorbitol and isohexides were obtained via solvent-free enzymatic catalysis. Pendant hydroxyl groups, coming from the sorbitol units, were present along the polyester backbone, whereas the two isohexides, namely, isomannide and isoidide dimethyl ester monomers, were selected to introduce rigidity into the polyester chains. The feasibility of incorporating isomannide as a diol compared to the isoidide dimethyl ester as acyl-donor via lipase-catalyzed polycondensation was investigated. The presence of bicyclic units resulted in enhanced T g with respect to the parent sorbitol-containing polyester lacking isohexides. The different capability of the two isohexides to boost the thermal properties confirmed the more flexible character provided by the isoidide diester derivative. Solvent-borne coatings were prepared by cross-linking the sugar-based polyester polyols with polyisocyanates. The increased rigidity of the obtained sugar-based polyester polyols led to an enhancement in hardness of the resulting coatings.

  17. Bio-based liquid crystalline polyesters

    Science.gov (United States)

    Wilsens, Carolus; Rastogi, Sanjay; Dutch Collaboration

    2013-03-01

    The reported thin-film polymerization has been used as a screening method in order to find bio-based liquid crystalline polyesters with convenient melting temperatures for melt-processing purposes. An in depth study of the structural, morphological and chemical changes occurring during the ongoing polycondensation reactions of these polymers have been performed. Structural and conformational changes during polymerization for different compositions have been followed by time resolved X-ray and Infrared spectroscopy. In this study, bio-based monomers such as vanillic acid and 2,5-furandicarboxylic acid are successfully incorporated in liquid crystalline polyesters and it is shown that bio-based liquid crystalline polymers with high aromatic content and convenient processing temperatures can be synthesized. Special thanks to the Dutch Polymer Institute for financial support

  18. Degradation of microbial polyesters.

    Science.gov (United States)

    Tokiwa, Yutaka; Calabia, Buenaventurada P

    2004-08-01

    Microbial polyhydroxyalkanoates (PHAs), one of the largest groups of thermoplastic polyesters are receiving much attention as biodegradable substitutes for non-degradable plastics. Poly(D-3-hydroxybutyrate) (PHB) is the most ubiquitous and most intensively studied PHA. Microorganisms degrading these polyesters are widely distributed in various environments. Although various PHB-degrading microorganisms and PHB depolymerases have been studied and characterized, there are still many groups of microorganisms and enzymes with varying properties awaiting various applications. Distributions of PHB-degrading microorganisms, factors affecting the biodegradability of PHB, and microbial and enzymatic degradation of PHB are discussed in this review. We also propose an application of a new isolated, thermophilic PHB-degrading microorganism, Streptomyces strain MG, for producing pure monomers of PHA and useful chemicals, including D-3-hydroxycarboxylic acids such as D-3-hydroxybutyric acid, by enzymatic degradation of PHB.

  19. Aza‐Michael addition reaction: Post‐polymerization modification and preparation of PEI/PEG‐based polyester hydrogels from enzymatically synthesized reactive polymers

    DEFF Research Database (Denmark)

    Hoffmann, Christian; Stuparu, Mihaiela C.; Daugaard, Anders Egede

    2015-01-01

    The utility of aza‐Michael addition chemistry for post‐polymerization functionalization of enzymatically prepared polyesters is established. For this, itaconate ester and oligoethylene glycol are selected as monomers. A Candida Antarctica lipase B catalyzed polycondensation reaction between the two...... monomers provides the polyesters, which carry an activated carbon‐carbon double bond in the polymer backbone. These electron deficient alkenes represent suitable aza‐Michael acceptors and can be engaged in a nucleophilic addition reaction with small molecular mono‐amines (aza‐Michael donors) to yield...... functionalized linear polyesters. Employing a poly‐amine as the aza‐Michael donor, on the other hand, results in the formation of hydrophilic polymer networks....

  20. Radiation flame proofing of polyester/cotton blends

    International Nuclear Information System (INIS)

    Liepins, R.; Surles, J.R.; Morosoff, N.; Stannett, V.T.; Barker, R.H.

    1977-01-01

    Methodology has been developed for the grafting of vinyl functional organobromide and organophosphorus compounds on polyester fibers and 50/50 PET/cotton fabric. Procedures were developed for localized grafting of vinyl bromide (VBr) and diethylvinylphosphonate (DEVP) upon PET fibers. Oxygen index was used to evaluate the effect of the location of VBr and DEVP within the filament upon their flame retardance efficiencies. For the various bromine homopolymer grafts the apparent thermal stability of the graft and its flame retardance efficiency may be related to the alpha aliphatic hydrogen to bromine ratio. Using results from the polyester studies, techniques were devised for the treatment of 50/50 polyester/ cotton fabrics. Both homopolymer and copolymer grafts were evaluated but the greatest degree of success was attained using mixtures of phosphorus and bromine containing monomers. The results of these studies will be reviewed and their implications for development as commercial textile treatments discussed. (author)

  1. Novel organometallic aromatic polyester based on ferrocene

    Institute of Scientific and Technical Information of China (English)

    Wei

    2010-01-01

    A novel polyester containing ferrocenyl was prepared by low-temperature interface polycondensation of 1,1'-ferrocenedi-carboxylic acid chloride with 4-(4-hydroxyphenyl)-2,3-phthalazin-l-one(DHPZ), which is a twisted non-coplanar heterocyclic bisphenol-like monomer. The newly generated polymer was evaluated based on characterization of its solubility, viscosity measurements, elemental analysis, FTIR spectroscopy, differential scanning calorimetric and thermogravimetric studies.

  2. Physico-chemical studies of gamma-irradiated polyester. Impregnated cement mortar composite

    International Nuclear Information System (INIS)

    Ismail, M.R.; Afifi, M.S.

    1998-01-01

    The effect of impregnation time on the physico-chemical and mechanical properties of polyester-cement mortar composite has been investigated. The samples were soaked in unsaturated polyester resin containing 40% styrene monomer at impregnation times ranging from 1-15 hours and then exposed to 50 kGy of γ-irradiation. The effects on polymer loading, compressive strength, apparent porosity, and water absorption in addition to IR spectra and TGA of the samples were studied. It was found that, the polymer loading and compressive strength increase with the increased of soaking time up to 4 hours and there is no significant improvement of the polymer loading and strength. Whereas, the apparent porosity and water absorption behave in an opposite direction. These are attributed to the presence of polymer in the pores of the samples. IR spectra showed that, new bands appeared as result of the reaction between polyester and set cement. TGA showed that, the polyester cement composite has higher thermal stability as a compared to irradiated polyester. (author)

  3. Crystallization and preliminary crystallographic investigation of a low-pH native insulin monomer with flexible behaviour.

    Science.gov (United States)

    Zhang, Youshang; Whittingham, Jean L; Turkenburg, Johan P; Dodson, Eleanor J; Brange, Jens; Dodson, G Guy

    2002-01-01

    Insulin naturally aggregates as dimers and hexamers, whose structures have been extensively analysed by X-ray crystallography. Structural determination of the physiologically relevant insulin monomer, however, is an unusual challenge owing to the difficulty in finding solution conditions in which the concentration of insulin is high enough for crystallization yet the molecule remains monomeric. By utilizing solution conditions known to inhibit insulin assembly, namely 20% acetic acid, crystals of insulin in the monomeric state have been obtained. The crystals are strongly diffracting and a data set extending to 1.6 A has recently been collected. The crystals nominally belong to the space group I422, with unit-cell parameters a = b = 57.80, c = 54.61 A, giving rise to one molecule in the asymmetric unit. Preliminary electron-density maps show that whilst most of the insulin monomer is well ordered and similar in conformation to other insulin structures, parts of the B-chain C-terminus main chain adopt more than one conformation.

  4. Fully Biobased Unsaturated Aliphatic Polyesters from Renewable Resources : Enzymatic Synthesis, Characterization, and Properties

    NARCIS (Netherlands)

    Jiang, Yi; Alberda van Ekenstein, Gerhard; Woortman, Albert J. J.; Loos, Katja

    2014-01-01

    Fully biobased saturated and unsaturated aliphatic polyesters and oligoesters are successfully prepared by Candida antarctica lipase B (CALB)-catalyzed polycondensations of succinate, itaconate, and 1,4-butanediol. The effects of monomer substrates and polymerization methods on enzymatic

  5. An Undergraduate Experiment in Polyester (PET) Synthesis

    Science.gov (United States)

    Cammidge, Andrew N.

    1999-02-01

    The most important polyester manufactured industrially is PET (polyethyleneterephthalate). We describe an experiment that conveniently mimics the industrial synthesis in the undergraduate laboratory. The first step of the reaction is a base-catalyzed transesterification between ethane diol and dimethylterephthalate. Methanol is distilled off to drive the reaction to completion. Excess ethane diol is employed to suppress formation of higher oligomers. The intermediate (bis-(2-hydroxyethyl)terephthalate) is isolated by crystallization and filtration and characterized by 1H NMR spectroscopy. In the second step the monomer is heated (with and without acid catalyst) to form polymer. Samples are removed at intervals and their physical properties are recorded as they cool. These properties are used to qualitatively monitor polymerization. This experiment reinforces some fundamental chemical concepts and introduces the students to new laboratory procedures. The students perform a distillation and apply their knowledge of the reaction equilibrium to calculate the volume of distillate (methanol) expected. The reversible nature of esterification reactions is emphasized during the polymerization step (acid-catalyzed), where the process is driven towards polymer formation by the removal (evaporation) of ethane diol.

  6. [Analysis of anatomical pieces preservation with polyester resin for human anatomy study].

    Science.gov (United States)

    de Oliveira, Ítalo Martins; Mindêllo, Marcela Maria Aguiar; Martins, Yasmin de Oliveira; da Silva Filho, Antônio Ribeiro

    2013-01-01

    To evaluate the use of polyester resin in preserving anatomical specimens for the study of human anatomy. We used 150 anatomical specimens, comprised of unfixed (fresh), fixed in 10% formalin and vascular casts of organs injected with vinyl acetate and polyester resin. The solution used consisted of polyester resin with the diluent styrene monomer and catalyst (peroxol). After embedding in this solution, models in transparent resin were obtained, allowing full observation of structures and conservation of the specimens used. upon evaluation of the specimens, we observed a high degree of transparency, which promoted a complete visualization of structures with perfect preservation of the anatomy. The average time for the completion of the embedding was 48 hours. Only 14 specimens (9.3%) were lost during the preparation. Polyester resin can be used for preserving anatomical specimens for teaching human anatomy in a practical, aesthetic and durable way.

  7. Design of Functional Polyesters for Electronic and Biological Applications

    OpenAIRE

    Nelson, Ashley Marie

    2015-01-01

    Melt polymerization and novel monomers enabled the synthesis of polyesters for electronic and biological applications. Inspiration from nature and a passion for environmental preservation instigated an emphasis on the incorporation of renewable resources into polymeric materials. Critical analysis of current research surrounding bisphenol-A replacements and ioncontaining segmented polyurethanes aided in identifying benchmark polymers, including limitations, challenges, and future needs. Struc...

  8. Enzymatic polymerization of bio-based monomers for applications in hydrogels and coatings

    DEFF Research Database (Denmark)

    Hoffmann, Christian; Nguyen, Hiep Dinh; Storgaard, Thomas

    of the enzymatic catalysts that can provide control over polymer structure in functional polymers. Lipase catalyzed polymerizations (specifically CALB) has been applied to prepare functional polyesters and to evaluate the possibilities of using less stable bio-based monomers such as itaconic acid or its...

  9. A critical review of algal biomass: A versatile platform of bio-based polyesters from renewable resources.

    Science.gov (United States)

    Noreen, Aqdas; Zia, Khalid Mahmood; Zuber, Mohammad; Ali, Muhammad; Mujahid, Mohammad

    2016-05-01

    Algal biomass is an excellent renewable resource for the production of polymers and other products due to their higher growth rate, high photosynthetic efficiency, great potential for carbon dioxide fixation, low percentage of lignin and high amount of carbohydrates. Algae contain unique metabolites which are transformed into monomers suitable for development of novel polyesters. This review article mainly focuses on algal bio-refinery concept for polyester synthesis and on exploitation of algae-based biodegradable polyester blends and composites in tissue engineering and controlled drug delivery system. Algae-derived hybrid polyester scaffolds are extensively used for bone, cartilage, cardiac and nerve tissue regeneration due to their biocompatibility and tunable biodegradability. Microcapsules and microspheres of algae-derived polyesters have been used for controlled and continuous release of several pharmaceutical agents and macromolecules to produce humoral and cellular immunity with efficient intracellular delivery. Copyright © 2016 Elsevier B.V. All rights reserved.

  10. Synthesis and degradation kinetics of a novel polyester containing bithiazole rings

    Energy Technology Data Exchange (ETDEWEB)

    He, W., E-mail: hwdut2003@yahoo.com [Research Center of Plastic Engineering, Shenyang University of Chemical Technology, Shenyang 110142 (China); State Key Laboratory of Robotics (China); Department of Chemistry, University of the Free State (Qwaqwa Campus), Private Bag X13, Phuthaditjhaba 9866 (South Africa); Jiang, Y.Y. [Research Center of Plastic Engineering, Shenyang University of Chemical Technology, Shenyang 110142 (China); State Key Laboratory of Robotics (China); Luyt, A.S. [Department of Chemistry, University of the Free State (Qwaqwa Campus), Private Bag X13, Phuthaditjhaba 9866 (South Africa); Ocaya, R.O. [Department of Physics, University of the Free State (Qwaqwa Campus), Private Bag X13, Phuthaditjhaba 9866 (South Africa); Ge, T.J. [Research Center of Plastic Engineering, Shenyang University of Chemical Technology, Shenyang 110142 (China); State Key Laboratory of Robotics (China)

    2011-10-20

    Highlights: {yields} A novel Schiff base type polyester was synthesized and characterized by FTIR spectroscopy, elemental analysis, and X-ray diffraction spectroscopy. {yields} Thermal degradation of the polyester in nitrogen has been studied at several heating rates by thermogravimetric analysis. {yields} The activation energies were calculated by different methods. And the possible conversation function was estimated. {yields} The life time estimates for the polyester can be determined and the results demonstrate that the polymer possesses good thermal resistance. - Abstract: A novel Schiff base type polyester containing 2,2'-diamino-4,4'-bithiazole (DABT) was prepared by low-temperature interface polycondensation of 1,4-benzenedicarbonyl dichloride with 4,4'-(4,4'-bithiazole-2,2'-diylbis(imine-2,1-diyl) diphenol (BDDP), which is derived from a 2,2'-diamino-4,4'-bithiazole (DABT) Schiff base reacted with a 4-hydroxybenzaldehyde monomer. The newly generated polyester was characterized by FTIR spectroscopy, elemental analysis, and X-ray diffraction spectroscopy. The thermal decomposition was investigated in nitrogen atmosphere using thermogravimetric analysis. The activation energies of the decomposition step of the polyester were calculated through the isoconversional methods of Kissinger-Akahira-Sunose (K-A-S) and the iterative equation. In order to estimate the reaction model that best describes the experimental data, the use of an empirical kinetic equation based on that proposed by Sestak-Berggren was investigated here. On the basis of the kinetic data, the life time estimates for the polyester generated from the weight loss of 5%, 10%, and 15% were also constructed.

  11. Biodegradation of polyester. Polyester no bunkai sei

    Energy Technology Data Exchange (ETDEWEB)

    Tokiwa, Y. (Agency of Industrial Science and Technology, Tokyo (Japan). Fermentation Research Inst.)

    1991-09-10

    Penicillium sp. 14-3 and penicillium sp. 26-1 can degrade various kinds of polyester. The results of studies made on hydrolysis of polyester by enzyme, hydrolysis of polyester by various kinds of lipase, and degradation of ester type polyurethane by microbes and lipase are introduced. For the improvement of physical properties of aliphatic polyester, aromatic-aliphatic polyester copolymers (CPE) have been synthesized to study the biodegradability. Copolymer in which a number of polyamide (nylon) are alternately introduced (CPAE) to aliphatic polyester has been developed. The result of studies made on the degradability of a blended body of PCL and natural high polymer, and on the collapsibility by lipase of high polymer materials including aliphatic polyamide are introduced. 26 refs., 5 figs., 1 tab.

  12. Recent developments and future prospects on bio-based polyesters derived from renewable resources: A review.

    Science.gov (United States)

    Zia, Khalid Mahmood; Noreen, Aqdas; Zuber, Mohammad; Tabasum, Shazia; Mujahid, Mohammad

    2016-01-01

    A significantly growing interest is to design a new strategy for development of bio-polyesters from renewable resources due to limited fossil fuel reserves, rise of petrochemicals price and emission of green house gasses. Therefore, this review aims to present an overview on synthesis of biocompatible, biodegradable and cost effective polyesters from biomass and their prospective in different fields including packaging, coating, tissue engineering, drug delivery system and many more. Isosorbide, 2,4:3,5-di-O-methylene-d-mannitol, bicyclic diacetalyzed galactaric acid, 2,5-furandicarboxylic acid, citric, 2,3-O-methylene l-threitol, dimethyl 2,3-O-methylene l-threarate, betulin, dihydrocarvone, decalactone, pimaric acid, ricinoleic acid and sebacic acid, are some important monomers derived from biomass which are used for bio-based polyester manufacturing, consequently, replacing the petrochemical based polyesters. The last part of this review highlights some recent advances in polyester blends and composites in order to improve their properties for exceptional biomedical applications i.e. skin tissue engineering, guided bone regeneration, bone healing process, wound healing and wound acceleration. Copyright © 2015 Elsevier B.V. All rights reserved.

  13. A versatile family of degradable non-viral gene carriers based on hyperbranched poly(ester amine)s

    NARCIS (Netherlands)

    Zhong, Zhiyuan; Song, Y.; Engbersen, Johannes F.J.; Lok, Martin C.; Hennink, Wim E.; Feijen, Jan

    2005-01-01

    A variety of degradable hyperbranched poly(ester amine)s containing primary, secondary and tertiary amino groups, were synthesized and evaluated as non-viral gene carriers. The polymers were obtained in high yields through a Michael-type conjugate addition of diacrylate monomers with trifunctional

  14. Going greener: Synthesis of fully biobased unsaturated polyesters for styrene crosslinked resins with enhanced thermomechanical properties

    Directory of Open Access Journals (Sweden)

    C. S. M. F. Costa

    2017-11-01

    Full Text Available The main goal of this work was the development of fully biobased unsaturated polyesters (UPs that upon crosslinking with unsaturated monomers (UM could lead to greener unsaturated polyester resins (UPRs with similar thermomechanical properties to commercial fossil based UPR. After the successful synthesis of the biobased UPs, those were crosslinked with styrene (Sty, the most commonly used monomer, and the influence of the chemical structure of the UPs on the thermomechanical characteristics of UPRs were evaluated. The properties were compared with those of a commercial resin (Resipur 9837©. The BioUPRs presented high gel contents and contact angles that are similar to the commercial resin. The thermomechanical properties were evaluated by dynamic mechanical thermal analysis (DMTA and it was found that the UPR synthesized using propylene glycol (PG, succinic acid (SuAc and itaconic acid (ItAc presented very close thermomechanical properties compared to the commercial resin.

  15. Radiation hardening lacquer binding agent based on a polyester resin with at least 3.5 double links pr. 1000 molecular weight units

    International Nuclear Information System (INIS)

    Crimlisk, D.J.; Wright, A.; Groves, T.E.

    1976-01-01

    The binding agent is suitable for hardening by electrons with an energy of between 100,000 and 500,000eV. It consists mainly of a solution of a polyester resin with at least 3.5 double links per 1000 mol, in an olefine-unsaturated monomer. The molecular weight of the polyester is between 800 and 1100 and the ratio of the number of double links in the monomer to that in the resin (degree of unsaturation) is in the range 0.75-2.0, or more specifically, between 1 and 1.5. Cellulose acetate/butyrate (CAB) and/or a butylated melamine/formaldehyde resin may be added to improve the surface properties. Likewise from 0.1 to 0.5% polyethylene wax may be added to give a better surface finish and hardness. (JIW)

  16. Synthesis of Functional Polyester Based on Polylactic Acid and Its Effect on PC12 Cells after Coupling with Small Peptides

    Directory of Open Access Journals (Sweden)

    Na Qiang

    2016-01-01

    Full Text Available Polyesters containing functional groups are a suitable candidate matrix for cell culture in tissue engineering. Three types of semicrystalline copolymer poly(L-lactide-co-β-malic acid [P(LA-co-BMD] with pendent carboxyl groups were synthesized in this study. The functional monomer 3(S-[(benzyloxycarbonylmethyl]-1,4-dioxane-2,5-dione (BMD was synthesized using L-aspartic acid. The copolymer P(LA-co-BMD was then synthesized through ring-opening copolymerization of L-LA and BMD, with dodecanol as initiator and stannous octoate as catalyst. Copolymer structure was characterized by 1H nuclear magnetic resonance (1H NMR, gel permeation chromatography (GPC, and differential scanning calorimetry (DSC analyses. Results of 1H NMR and GPC analyses showed that the copolymers were synthesized successfully. DSC curves showed that the crystal melting peak and enthalpy decreased with increased BMD. The crystallinity of the copolymer was destroyed by the presence of the functional monomer. After deprotection, carboxyl groups were coupled with the isoleucine-lysine-valine-alanine-valine peptide through N-hydroxysuccinimide/dicyclohexylcarbodiimide method. The small peptide was beneficial to the axon growth of PC12 cells.

  17. Assessment of the radiation resistance of some aromatic polyesters

    International Nuclear Information System (INIS)

    Choi, E.J.; Hill, D.J.T.; Kim, K.Y.

    1998-01-01

    Full text: For many applications, polyesters have more useful properties than vinyl polymers, and they can be degraded to their monomer components and recycled. In addition, aromatic polyesters are known to display a resistance to high temperatures and high-energy ionizing radiation. Recently, we have reported the γ-radiolysis for some aromatic polyesters at low radiation dose; The G-values of radical formation at 77 K were determined to be in the range 0.38∼0.46 for the polyesters of bisphenol A with fluorine substitution at isopropylidene units and in the range 0.71∼1.18 for the polyesters of halogenated bisphenol A with decamethylene segments. While the radiation sensitivities of the latter polymers were dependent on the position and content of halogen substitution, those of the former polymers were slightly dependent on these factors as assessed by the G-values at 77 K. We also have studied the radiolysis of the commercial aromatic polyesters (UP) and polycarbonate (PC). UP has been found to be more radiation stable than PC with respect to the total yield of radicals formed. The G-values for radical formation at 77K was determined to be 0.31 and 0.5 for UP and PC, respectively. In this work, we have prepared poly(ethylene-, butylene- or decalene-terephthalate)s (PET, PBT or PDT) and poly(ethylene-, buthylene- or decalene-2,6-naphthalenedicarboxylate)s (PEN, PBN or PDN) by standard melt polymerization methods, and have examined their γ-radiolysis at 77 K or room temperature, and in vacuum or air, through the applications of ESR spectroscopy and thermal analysis. Inherent viscosities of the polyesters used for the radiation studies were in the range of 0.16∼0.69 dL/g. The values of G(R) indicates that PEN-related polymers have more radiation stable than PET-related polymers and the E, B and D order is one of decreasing stability as one might expect. The significant decrease in the G(R)-values of the polyester being in the range of 0.1∼0.41 at 77 K by

  18. Adsorption of uranium ions by crosslinked polyester resin functionalized with acrylic acid from aqueous solutions

    International Nuclear Information System (INIS)

    Cemal Oezeroglu; Niluefer Metin

    2012-01-01

    In this paper, the crosslinked polyester resin containing acrylic acid functional groups was used for the adsorption of uranium ions from aqueous solutions. For this purpose, the crosslinked polyester resin of unsaturated polyester in styrene monomer (Polipol 353, Poliya) and acrylic acid as weight percentage at 80 and 20%, respectively was synthesized by using methyl ethyl ketone peroxide (MEKp, Butanox M60, Azo Nobel)-cobalt octoate initiator system. The adsorption of uranium ions on the sample (0.05 g copolymer and 5 mL of U(VI) solution were mixed) of the crosslinked polyester resin functionalized with acrylic acid was carried out in a batch reactor. The effects of adsorption parameters of the contact time, temperature, pH of solution and initial uranium(VI) concentration for U(VI) adsorption on the crosslinked polyester resin functionalized with acrylic acid were investigated. The adsorption data obtained from experimental results depending on the initial U(VI) concentration were analyzed by the Freundlich, Langmuir and Dubinin-Radushkevich (D-R) adsorption isotherms. The adsorption capacity and free energy change were determined by using D-R isotherm. The obtained experimental adsorption data depending on temperature were evaluated to calculate the thermodynamic parameters of enthalpy (ΔH o ), entropy (ΔS o ) and free energy change (ΔG o ) for the U(VI) adsorption on the crosslinked polyester resin functionalized with acrylic acid from aqueous solutions. The obtained adsorption data depending on contact time were analyzed by using adsorption models such as the modified Freundlich, Elovich, pseudo-first order and pseudo-second-order kinetic models. (author)

  19. Kinetics of monomer biodegradation in soil.

    Science.gov (United States)

    Siotto, Michela; Sezenna, Elena; Saponaro, Sabrina; Innocenti, Francesco Degli; Tosin, Maurizio; Bonomo, Luca; Mezzanotte, Valeria

    2012-01-01

    In modern intensive agriculture, plastics are used in several applications (i.e. mulch films, drip irrigation tubes, string, clips, pots, etc.). Interest towards applying biodegradable plastics to replace the conventional plastics is promising. Ten monomers, which can be applied in the synthesis of potentially biodegradable polyesters, were tested according to ASTM 5988-96 (standard respirometric test to evaluate aerobic biodegradation in soil by measuring the carbon dioxide evolution): adipic acid, azelaic acid, 1,4-butanediol, 1,2-ethanediol, 1,6-hexanediol, lactic acid, glucose, sebacic acid, succinic acid and terephthalic acid. Eight replicates were carried out for each monomer for 27-45 days. The numerical code AQUASIM was applied to process the CO₂ experimental data in order to estimate values for the parameters describing the different mechanisms occurring to the monomers in soil: i) the first order solubilization kinetic constant, K(sol) (d⁻¹); ii) the first order biodegradation kinetic constant, K(b) (d⁻¹); iii) the lag time in biodegradation, t(lag) (d); and iv) the carbon fraction biodegraded but not transformed into CO₂, Y (-). The following range of values were obtained: [0.006 d⁻¹, 6.9 d⁻¹] for K(sol), [0.1 d⁻¹, 1.2 d⁻¹] for K(b), and [0.32-0.58] for Y; t(lag) was observed for azelaic acid, 1,2-ethanediol, and terephthalic acid, with estimated values between 3.0 e 4.9 d. Copyright © 2011 Elsevier Ltd. All rights reserved.

  20. Effect of Hydroxyl Monomers on the Enzymatic Degradation of Poly(ethylene succinate, Poly(butylene succinate, and Poly(hexylene succinate

    Directory of Open Access Journals (Sweden)

    Zhenhui Bai

    2018-01-01

    Full Text Available Poly(ethylene succinate (PES, poly(butylene succinate (PBS, and poly(hexylene succinate (PHS, were synthesized using succinic acid and different dihydric alcohols as materials. Enzymatic degradability by cutinase of the three kinds of polyesters was studied, as well as their solid-state properties. The biodegradation behavior relied heavily on the distance between ester groups, crystallinity, and the hydrophilicity-hydrophobicity balance of polyester surfaces. The weight loss through degradation of the three kinds of polyesters with different hydroxyl monomers took place in the order PHS > PBS > PES. The degradation behavior of the polyesters before and after degradation was analyzed by scanning electron microscopy, differential scanning calorimetry, powder X-ray diffraction, Fourier transform infrared spectroscopy, gel permeation chromatography, and thermogravimetric analysis. The decrease in relative intensity at 1800–1650 estedpolyesters were degraded simultaneously. The frequencies of the crystalline and amorphous bands were almost identical before and after degradation. Thus, enzymatic degradation did not change the crystalline structure but destroyed it, and the degree of crystallinity markedly decreased. The molecular weight and polydispersity index only changed slightly. The thermal stability of the three kinds of polyesters decreased during enzymatic degradation.

  1. Phase diagrams in blends of poly(3-hydroxybutyric acid with various aliphatic polyesters

    Directory of Open Access Journals (Sweden)

    2011-07-01

    Full Text Available Phase behavior with immiscibility, miscibility, crystalline morphology, and kinetic analysis in blends of poly(3-hydroxybutyric acid (PHB with aliphatic polyesters such as poly(butylene adipate (PBA, poly(ethylene adipate (PEA, poly(trimethylene adipate (PTA, or poly(ethylene succinate (PESu, respectively, were explored mainly using differential scanning calorimeter (DSC and polarized-light optical microscopy (POM. Immiscibility phase behavior with reversible upper-critical-solution-temperature (UCST is common in the PHB/polyester blends. The polyester/polyester blend of PHB/PTA is partially miscible with no UCST in melt and amorphous glassy states within a composition range of PTA less than 50 wt%. The miscible crystalline/crystalline blend exhibits ring-banded spherulites at Tc = 50~100°C, with inter-ring spacing dependent on Tc. All immiscible or partially miscible PHB/polyester blends, by contrast, exhibit disrupted ringbanded spherulites or discrete spherical phase domains upon cooling from UCST to crystallization. The blends of PHB with all other aliphatic polyesters, such as PESu, PEA, PBA, etc. are only partially miscible or immiscible with an upper critical solution temperature (UCST at 180~221°C depending on blend composition. UCST with reversibility was verified.

  2. The Relationship between the Monomer Chain Length and the Electro-Optical Properties of Polymer Dispersed Liquid Crystals

    Directory of Open Access Journals (Sweden)

    Liu J.

    2016-03-01

    Full Text Available Five polymers dispersed liquid crystalline (LC films were fabricated using photo-polymerizable monomers with different lengths of carbon chains. These LC films have shown different electro-optical (EO properties. Through their SEM pictures, the relationship between the linear electro-optical effect and the mesh size of the polymer network was explored. With the increase of number of photo-polymerizable monomers, the mesh size of the polymer network would become larger. So the liquid crystal molecules would be easily oriented in the electric field and therefore, the threshold voltage and saturation voltage would decrease. The open state response times were also reduced and the off state response times would be extended. The DFT simulations have shown principal role of the ground state dipole moments in the observed electro-optical efficiency.

  3. Effect of the fluorinated groups on nematic liquid crystal alignment on monomer crosslinked film

    International Nuclear Information System (INIS)

    Yu Tao; Peng Zenghui; Ruan Shengping; Xuan Li

    2004-01-01

    It was found in this work that photosensitive monomers, bisphenol A dicinnamate ester and hexafluorobiphenol a dicinnamate ester were crosslinked under irradiation of linearly polarized ultraviolet light. The exposed films induced homogeneous and homeotropic alignment of liquid crystals (LC), respectively. We verified through experiments that it was fluorinated groups that caused the generation of LC homeotropic alignment on the crosslinked film. Photoreaction process was revealed by Fourier transform infrared spectra. There was no clear morphological anisotropy on these aligned films observed through atomic force microscope analysis. The surface energies were measured and homeotropic alignment reason was discussed in this work

  4. Monomer-dependent secondary nucleation in amyloid formation.

    Science.gov (United States)

    Linse, Sara

    2017-08-01

    Secondary nucleation of monomers on the surface of an already existing aggregate that is formed from the same kind of monomers may lead to autocatalytic amplification of a self-assembly process. Such monomer-dependent secondary nucleation occurs during the crystallization of small molecules or proteins and self-assembled materials, as well as in protein self-assembly into fibrous structures. Indications of secondary nucleation may come from analyses of kinetic experiments starting from pure monomers or monomers supplemented with a low concentration of pre-formed aggregates (seeds). More firm evidence requires additional experiments, for example those employing isotope labels to distinguish new aggregates arising from the monomer from those resulting from fragmentation of the seed. In cases of amyloid formation, secondary nucleation leads to the formation of toxic oligomers, and inhibitors of secondary nucleation may serve as starting points for therapeutic developments. Secondary nucleation displays a high degree of structural specificity and may be enhanced by mutations or screening of electrostatic repulsion.

  5. Vogel-Fulcher dependence of relaxation rates in a nematic monomer and elastomer

    Science.gov (United States)

    Shenoy, D.; Filippov, S.; Aliev, F.; Keller, P.; Thomsen, D.; Ratna, B.

    2000-12-01

    Dielectric relaxation spectroscopy is used to study the relaxation processes in a nematic monomer and the corresponding cross-linked polymer nematic liquid crystal (elastomer). In the frequency window 10 mHz to 2 GHz the monomer liquid crystal shows a single relaxation whereas the polymer exhibits three relaxation processes, two of which are quantitatively analyzed. The temperature dependence of relaxation times in both the monomer and polymer follows a Vogel-Fulcher behavior. The relaxation processes are identified with specific molecular motions and activation energies are calculated in a linear approximation for comparison with literature data.

  6. Biodegradable polyesters reinforced with triclosan loaded polylactide micro/nanofibers: Properties, release and biocompatibility

    Directory of Open Access Journals (Sweden)

    L. J. del Valle

    2012-04-01

    Full Text Available Mechanical properties and drug release behavior were studied for three biodegradable polyester matrices (polycaprolactone, poly(nonamethylene azelate and the copolymer derived from 1,9-nonanediol and an equimolar mixture of azelaic and pimelic acids reinforced with polylactide (PLA fibers. Electrospinning was used to produce suitable mats constituted by fibers of different diameters (i.e. from micro- to nanoscale and a homogeneous dispersion of a representative hydrophobic drug (i.e. triclosan. Fabrics were prepared by a molding process, which allowed cold crystallization of PLA micro/nanofibers and hot crystallization of the polyester matrices. The orientation of PLA molecules during electrospinning favored the crystallization process, which was slightly enhanced when the diameter decreased. Incorporation of PLA micro/nanofibers led to a significant increase in the elastic modulus and tensile strength, and in general to a decrease in the strain at break. The brittle fracture was clearer when high molecular weight samples with high plastic deformation were employed. Large differences in the release behavior were detected depending on the loading process, fiber diameter size and hydrophobicity of the polyester matrix. The release of samples with the drug only loaded into the reinforcing fibers was initially fast and then became slow and sustained, resulting in longer lasting antimicrobial activity. Biocompatibility of all samples studied was demonstrated by adhesion and proliferation assays using HEp-2 cell cultures.

  7. Hyperbranched polyester: single route synthesis, characterization and evaluation as impact modifier of an epoxy resin; Poliester hiperramificado: sintese por uma rota simples, caracterizacao e avaliacao como modificador de impacto de uma resina epoxi

    Energy Technology Data Exchange (ETDEWEB)

    Miranda, B.H.S.; Sousa, A.R., E-mail: rangel@deii.cefetmg.br [Centro Federal de Educacao Tecnologica de Minas Gerais (DEMAT/CEFET-MG), Belo Horizonte (Brazil). Departamento de Engenharia de Materiais; Alves, A.P.P.; Silva, G.G. [Universidade Federal de Minas Gerais (UFMG), Belo Horizonte (Brazil). Departamento de Quimica. Lab. de Materiais Polimericos Multicomponentes

    2015-07-01

    Two hyperbranched polyesters were obtained using glycerol and adipic acid as monomers, they were characterized through nuclear magnetic resonance ({sup 13}C NMR) to branching degree determination, size exclusion chromatography to molar mass obtention and thermogravimetric analysis (TGA) to evaluate the thermal stability. The polyesters synthesized were added to epoxy resin, at 10% by weight, to evaluate the implication on mechanical properties, impact and stress strain, and thermal (glassy transition temperature - Tg). We observed that rising the synthesis time from 6 to 15,5 hours the degree of branching, molar mass and thermal stability of the polyester increased. The addition of hyperbranched polyesters did not change the mechanical properties of epoxy resin significantly, but the Tg was reduced. (author)

  8. Degradation of Polyester Polyurethane by Bacterial Polyester Hydrolases

    Directory of Open Access Journals (Sweden)

    Juliane Schmidt

    2017-02-01

    Full Text Available Polyurethanes (PU are widely used synthetic polymers. The growing amount of PU used industrially has resulted in a worldwide increase of plastic wastes. The related environmental pollution as well as the limited availability of the raw materials based on petrochemicals requires novel solutions for their efficient degradation and recycling. The degradation of the polyester PU Impranil DLN by the polyester hydrolases LC cutinase (LCC, TfCut2, Tcur1278 and Tcur0390 was analyzed using a turbidimetric assay. The highest hydrolysis rates were obtained with TfCut2 and Tcur0390. TfCut2 also showed a significantly higher substrate affinity for Impranil DLN than the other three enzymes, indicated by a higher adsorption constant K. Significant weight losses of the solid thermoplastic polyester PU (TPU Elastollan B85A-10 and C85A-10 were detected as a result of the enzymatic degradation by all four polyester hydrolases. Within a reaction time of 200 h at 70 °C, LCC caused weight losses of up to 4.9% and 4.1% of Elastollan B85A-10 and C85A-10, respectively. Gel permeation chromatography confirmed a preferential degradation of the larger polymer chains. Scanning electron microscopy revealed cracks at the surface of the TPU cubes as a result of enzymatic surface erosion. Analysis by Fourier transform infrared spectroscopy indicated that the observed weight losses were a result of the cleavage of ester bonds of the polyester TPU.

  9. Base-catalyzed depolymerization of lignin : separation of monomers

    Energy Technology Data Exchange (ETDEWEB)

    Vigneault, A. [Sherbrooke Univ., PQ (Canada). Dept. of Chemical Engineering; Johnson, D.K. [National Renewable Energy Laboratory, Golden, CO (United States); Chornet, E. [Sherbrooke Univ., PQ (Canada). Dept. of Chemical Engineering; National Renewable Energy Laboratory, Golden, CO (United States)

    2007-12-15

    Biofuels produced from residual lignocellulosic biomass range from ethanol to biodiesel. The use of lignin for the production of alternate biofuels and green chemicals has been studied with particular emphasis on the structure of lignin and its oxyaromatic nature. In an effort to fractionate lignocellulosic biomass and valorize specific constitutive fractions, the authors developed a strategy for the separation of 12 added value monomers produced during the hydrolytic base catalyzed depolymerization (BCD) of a Steam Exploded Aspen Lignin. The separation strategy was similar to vanillin purification to obtain pure monomers, but combining more steps after the lignin depolymerization such as acidification, batch liquid-liquid-extraction (LLE), followed by vacuum distillation, liquid chromatography (LC) and crystallization. The purpose was to develop basic data for an industrial size process flow diagram, and to evaluate both the monomer losses during the separation and the energy requirements. Experimentally testing of LLE, vacuum distillation and flash LC in the laboratory showed that batch vacuum distillation produced up to 4 fractions. Process simulation revealed that a series of 4 vacuum distillation columns could produce 5 distinct monomer streams, of which 3 require further chromatography and crystallization operations for purification. 22 refs., 4 tabs., 8 figs.

  10. Effect of addition of lignin in physical-chemical properties of a polyesters based on glycerol, phthalic and adipic acids

    International Nuclear Information System (INIS)

    Guimaraes, D.H.; Viana, A.P.M.; Lima, A.S.C.; Goncalves, A.P.B.; Miranda, C.S.; Jose, N.M.

    2014-01-01

    In this paper the study of different addition amounts of lignin in the physicochemical properties of polyesters made from glycerol and different amounts of phthalic and adipic acids have been proposed. The following characterizations were made: XRD, FTIR, TGA, DSC and SEM. The variation in the percentage of adipic and phthalic acids had a direct effect on thermal and morphological properties. The thermal analysis showed that there was miscibility between the polyester and lignin, by means of displacement related to the temperature of thermal degradation events. In FTIR analysis was noted displacements of characteristic bands of hydrogen bonds and specific carbonyl ester groups. These shifts were more pronounced as it has larger amounts of phthalic acid as monomer and larger amounts of lignin in the compositions. (author)

  11. Purification and Properties of a Polyester Polyurethane-Degrading Enzyme from Comamonas acidovorans TB-35.

    Science.gov (United States)

    Akutsu, Y; Nakajima-Kambe, T; Nomura, N; Nakahara, T

    1998-01-01

    A polyester polyurethane (PUR)-degrading enzyme, PUR esterase, derived from Comamonas acidovorans TB-35, a bacterium that utilizes polyester PUR as the sole carbon source, was purified until it showed a single band in sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE). This enzyme was bound to the cell surface and was extracted by addition of 0.2% N,N-bis(3-d-gluconamidopropyl)deoxycholamide (deoxy-BIGCHAP). The results of gel filtration and SDS-PAGE showed that the PUR esterase was a monomer with a molecular mass of about 62,000 Da. This enzyme, which is a kind of esterase, degraded solid polyester PUR, with diethylene glycol and adipic acid released as the degradation products. The optimum pH for this enzyme was 6.5, and the optimum temperature was 45 degrees C. PUR degradation by the PUR esterase was strongly inhibited by the addition of 0.04% deoxy-BIGCHAP. On the other hand, deoxy-BIGCHAP did not inhibit the activity when p-nitrophenyl acetate, a water-soluble compound, was used as a substrate. These observations indicated that this enzyme degrades PUR in a two-step reaction: hydrophobic adsorption to the PUR surface and hydrolysis of the ester bond of PUR.

  12. Macromolecular Engineering: New Routes Towards the Synthesis of Well-??Defined Polyethers/Polyesters Co/Terpolymers with Different Architectures

    KAUST Repository

    Alamri, Haleema

    2016-05-18

    styrene oxide (SO) monomer has been less investigated than other well-known epoxide monomers. The new one?pot synthesis of polyether?b?polyester block copolymers allowed a high degree of control with respect to the molecular weight and molecular weight distribution. It also eliminates the need for a multi-step process in which the first block must be isolated and purified prior to its subsequent use as a macroinitiator for the second block. It is also worth noting that this approach is based primarily on the use of organocatalyst because this class of block copolymers has greater potential in biomedical and pharmaceutical applications and because organocatalysts are believed to be less toxic than their metallic counterparts. The fourth part of the thesis describes the extension of the scope of the newly developed catalyst?switching approach in the synthesis of different macromolecular architectures, with a special focus on styrene oxide as a monomer, which had not previously been explored either as a linear copolymer with other monomers (except with EO) or with a macromolecular architecture such as block star or mikto arm star. The results detailed in Chapter 4 demonstrate the validity of extending the newly developed strategy to the synthesis of a variety of polymers with different macromolecular architectures. Since organic catalysts (phoshazene bases) have been utilized in this work for the synthesis of polyethers and polyesters with the aim of alleviating the toxic properties associated with metal-based catalysts, it was necessary to investigate the toxicity of this class of organocatalyst since, until now, no evidence has appeared of any attempt to address this issue. The objective of the work presented in the fifth part of this thesis was therefore to assess whether this class of organocatalysts are safe with respect to human health and whether their structure and concentration are dependent on an evaluation of the level of cytotoxicity or on other parameters. Both

  13. Characterization of polyester composites from recycled polyethylene terephthalate reinforced with empty fruit bunch fibers

    International Nuclear Information System (INIS)

    Tan, Chiachun; Ahmad, Ishak; Heng, Muichin

    2011-01-01

    Highlights: → Unsaturated polyester resin (UPR) was synthesized from recycled PET. → Effect of surface treatment on EFB/UPR was studied. → Treatment on EFB improved the mechanical and thermal properties. → Treatment on EFB also improved fiber-matrix interaction. -- Abstract: Unsaturated polyester resin (UPR) was synthesized from recycled polyethylene terephthalate (PET) which acted as a matrix for the preparation of UPR/empty fruit bunch fibers (EFB) composite. Chemical recycling on fine pieces of PET bottles were conducted through glycolysis process using ethylene glycol. The unsaturated polyester resin (UPR) was then prepared by reacting the glycolysed product with maleic anhydride. FTIR analysis of glycolyzed product and prepared UPR showed that cross-links between unsaturated polyester chain and styrene monomer occurred at the unsaturated sites which resulted in the forming of cross-linking network. The preparation of UPR/EFB composite was carried out by adding EFB into prepared UPR matrix. The effects of surface treatment on EFB with sodium hydroxide solution (NaOH), silane coupling agent and maleic anhydride (MA) were then studied. The experimental results showed that treated EFB have higher values of tensile and impact strength compared with untreated EFB. The best results were obtained for silane treatment followed by MA and NaOH treatments where the tensile strength was increased by about 21%, 18% and 13% respectively. SEM micrographs of the tensile fracture surfaces of UPR/EFB composite also proved that treatment on EFB has increased the interfacial adhesion between the fiber and UPR matrix compared to the untreated UPR/EFB composite.

  14. Thermal and Optical Properties of CdS Nanoparticles in Thermotropic Liquid Crystal Monomers

    Directory of Open Access Journals (Sweden)

    Marc Alnot

    2010-03-01

    Full Text Available Two new mesogenic monomers, namely 3,3’-dimethoxy-4,4’-di(hydroxyhexoxy-N-benzylidene-o-Tolidine (Ia and 4,4’-di(6-hydroxyhexoxy-N-benzylidene-o-Tolidine (IIa, were reacted with cadmium sulfide (CdS via an in situ chemical precipitation method in ethanol to produce CdS nanocomposites. A series of different mass compositions of CdS with Ia and IIa ranging from 0.1:1.0 to 1.0:1.0 (w/w were prepared and characterized using X-ray Diffraction (XRD, Raman spectroscopy, Fourier Transform Infrared Spectroscopy (FT-IR, Transmission Electron Microscopy (TEM, Polarizing Optical Microscopy (POM and Differential Scanning Calorimetry (DSC, X-ray Photoelectron Spectroscopy (XPS and Photoluminescence Spectroscopy (PL. XRD showed that the broad peaks are ascribed to the formation of cubic CdS nanoparticles in both Ia and IIa. The average particle size for both nanocomposites was less than 5 nm with a narrower size distribution when compared with pure CdS nanoparticles. The analyses from POM and DSC demonstrated that mass composition from 0.1:1.0 up to 0.5:1.0 of CdS:Ia nanocomposites showed their enantiotropic nematic phase. On the other hand, polarizing optical microscopy (POM for IIa nanocomposites showed that the liquid crystal property vanished completely when the mass composition was at 0.2:1.0. PL emissions for CdS: Ia or IIa nanocomposites indicated deep trap defects occurred in these both samples. The PL results revealed that addition of CdS to Ia monomers suppressed the photoluminescence intensity of Ia. However, the introduction of CdS to IIa monomers increased the photoluminescence and was at a maximum when the mass composition was 0.3:1.0, then decreased in intensity as more CdS was added. The XPS results also showed that the stoichiometric ratios of S/Cd were close to 1.0:1.0 for both types of nanocomposites for a mass composition of 1.0:1.0 (CdS:matrix.

  15. New poly(ester urea) derived from L-leucine: Electrospun scaffolds loaded with antibacterial drugs and enzymes

    Energy Technology Data Exchange (ETDEWEB)

    Díaz, Angélica; Valle, Luis J. del [Departament d' Enginyeria Química, Universitat Politècnica de Catalunya, Av. Diagonal 647, Barcelona E-08028 (Spain); Tugushi, David; Katsarava, Ramaz [Institute of Chemistry and Molecular Engineering, Agricultural University of Georgia, 13 km. David Aghmashenebeli Alley, Tblisi 0131, Georgia (United States); Puiggalí, Jordi, E-mail: Jordi.Puiggali@upc.edu [Departament d' Enginyeria Química, Universitat Politècnica de Catalunya, Av. Diagonal 647, Barcelona E-08028 (Spain)

    2015-01-01

    Electrospun scaffolds from an amino acid containing poly(ester urea) (PEU) were developed as promising materials in the biomedical field and specifically in tissue engineering applications. The selected poly(ester urea) was obtained with a high yield and molecular weight by reaction of phosgene with a bis(α-aminoacyl)-α,ω-diol-diester monomer. The polymer having L-leucine, 1,6-hexanediol and carbonic acid units had a semicrystalline character and relatively high glass transition and melting temperatures. Furthermore it was highly soluble in most organic solvents, an interesting feature that facilitated the electrospinning process and the effective incorporation of drugs with bactericidal activity (e.g. biguanide derivatives such as clorhexidine and polyhexamethylenebiguanide) and enzymes (e.g. α-chymotrypsin) that accelerated the degradation process. Continuous micro/nanofibers were obtained under a wide range of processing conditions, being diameters of electrospun fibers dependent on the drug and solvent used. Poly(ester urea) samples were degradable in media containing lipases and proteinases but the degradation rate was highly dependent on the surface area, being specifically greater for scaffolds with respect to films. The high hydrophobicity of new scaffolds had repercussions on enzymatic degradability since different weight loss rates were found depending on how samples were exposed to the medium (e.g. forced or non-forced immersion). New scaffolds were biocompatible, as demonstrated by adhesion and proliferation assays performed with fibroblast and epithelial cells. - Highlights: • Electrospun scaffolds from a biodegradable poly(ester urea) have been prepared. • Scaffolds were effectively loaded with bactericide agents. • Enzymatic degradability of the L-leucine derived poly(ester urea) was demonstrated. • Enzymes that accelerate degradation were incorporated in the electrospun fibers. • Cell adhesion/proliferation assays demonstrated

  16. Synthesis and characterization of poly(ester amide from remewable resources through melt polycondensation

    Directory of Open Access Journals (Sweden)

    B. B. Wang

    2014-01-01

    Full Text Available Biodegradable poly(ester amides (PEAs were synthesized from lactic acid and 11-aminoundecanoic acid via melt polycondensation. Molecular weights, chemical structures and thermal properties of the poly(ester amides were characterized in terms of gel permeation chromatography (GPC, Fourier transform infrared spectroscopy (FTIR, 1H nuclear magnetic resonance (1H NMR, differential scanning calorimetry (DSC and thermogravimetric analysis (TGA, respectively. The PEAs have low molecular weights and display a lower cold crystallization temperature as well as smaller crystallinity by comparison with the pure poly(lactic acid (PLA. The incorporation of the 11-aminoundecanoic acid into the PLA chain not only improved the thermal stability but changed the decomposition process.

  17. Controllable synthesis, crystal structure and magnetic properties of Monomer-Dimer Cocrystallized MnIII Salen-type composite material

    Science.gov (United States)

    Wu, Qiong; Wu, Wei; Wu, Yongmei; Li, Weili; Qiao, Yongfeng; Wang, Ying; Wang, Baoling

    2018-04-01

    By the reaction of manganese-Schiff-base complexes with penta-anionic Anderson heteropolyanion, a new supramolecular architecture [Mn2(Salen)2(H2O)2][Mn(Salen)(H2O)2]2Na[IMo6O24]·8H2O (1) (salen = N,N‧-ethylene-bis (salicylideneiminate) has been isolated. Compound 1 was characterized by the single-crystal X-ray diffraction, elemental, IR and thermal gravimetric analyses. Structural analysis reveals that the unit cell simultaneously contains MnIII-Salen dimer and monomer cation fragments, for which the Anderson-type polyanions serve as counter anions. In the packing arrangement, all the MnIII dimers are well separated by polyoxometalate units and form tertiary structure together with MnIII monomers. Interestingly, different from the previous work, in the exact same reaction conditions, we are able to template MnIII-Salen complexes into different configurations by varying the charge state of polyanions. Besides, the magnetic properties of 1 were also examined by using both dc and ac magnetic field of the superconducting quantum interference devices. Most importantly, our fitting of the experimental data to a Heisenberg-type spin model shows that there exists a ferromagnetic exchange interaction ∼5 K between the spins (S = 2) on MnIII in the dimer, while antiferromagnetic ones exist among monomers and dimer (∼2 K). This meta-magnetic state could induce a slight spin frustration at low temperature, which would in turn affect the magnetic behavior. In addition, our ac field measurement of the susceptibilities suggests a typical signature for a single-molecule magnet.

  18. Intensification of polyester synthesis by continuous reactive distillation

    NARCIS (Netherlands)

    Shah, M.R.

    2011-01-01

    The thesis starts with a brief overview of unsaturated polyesters. In particular, the usage of raw materials, the application of unsaturated polyester resins, and, the worldwide supply and demand of the unsaturated polyester resins are discussed. Unsaturated polyester is traditionally produced in a

  19. Liquid-crystalline polyesters with end nitroxyl radical and their use in living free-radical polymerization

    Czech Academy of Sciences Publication Activity Database

    Razina, A B.; Sedláková, Zdeňka; Bouchal, Karel; Tenkovtsev, A. V.; Ilavský, Michal

    2002-01-01

    Roč. 44, č. 9 (2002), s. 924-930 ISSN 0965-545X R&D Projects: GA AV ČR KSK4050111 Institutional research plan: CEZ:AV0Z4050913 Keywords : liquid crystal * polyesters * nitroxyl radical Subject RIV: CD - Macromolecular Chemistry Impact factor: 0.627, year: 2002

  20. 40 CFR 721.8082 - Polyester polyurethane acrylate.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Polyester polyurethane acrylate. 721... Substances § 721.8082 Polyester polyurethane acrylate. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified generically as polyester polyurethane acrylate...

  1. Lipase-catalyzed ring-opening polymerization of lactones to polyesters and its mechanistic aspects.

    Science.gov (United States)

    Namekawa, S; Suda, S; Uyama, H; Kobayashi, S

    1999-01-01

    Lipase catalysis induced a ring-opening polymerization of lactones with different ring-sizes. Small-size (four-membered) and medium-size lactones (six- and seven-membered) as well as macrolides (12-, 13-, 16-, and 17-membered) were subjected to lipase-catalyzed polymerization. The polymerization behaviors depended primarily on the lipase origin and the monomer structure. The macrolides showing much lower anionic polymerizability were enzymatically polymerized faster than epsilon-caprolactone. The granular immobilized lipase derived from Candida antartica showed extremely efficient catalysis in the polymerization of epsilon-caprolactone. Single-step terminal functionalization of the polyester was achieved by initiator and terminator methods. The enzymatic polymerizability of lactones was quantitatively evaluated by Michaelis-Menten kinetics.

  2. Experimental Evaluation of Polyester and Epoxy–Polyester Powder Coatings in Aggressive Media

    Directory of Open Access Journals (Sweden)

    Ivan Stojanović

    2018-03-01

    Full Text Available Protective coatings are the most widely used corrosion protection method for construction materials in different environmental conditions. They isolate metals from aggressive media, making the structure more durable. Today, alongside good anti-corrosive properties, coatings need to be safe for the environment and harmless to those who apply them. The high volatile organic compound (VOC content in conventional solvent-borne coatings presents a huge ecological problem. A solution for indispensable solvent emission reduction is the application of powder coatings. This study evaluates the corrosion performance and surface morphology of polyester and epoxy–polyester powder coatings. Electrochemical impedance spectroscopy (EIS, open circuit potential (OCP measurement, salt spray chamber and humidity chamber testing followed by adhesion testing were used to investigate the protective properties of powder coatings. Scanning electron microscope (SEM with energy-dispersive X-ray spectroscopy (EDX was used to analyse the surface morphology and chemical composition, whereas the microstructure and coating uniformity were determined by optical microscope examination. The research revealed a negative influence of coating surface texture on coating thickness and consequently a lack of barrier and adhesion properties. The epoxy–polyester powder coating showed a better performance than the polyester coating. All tested coatings showed uniform structure.

  3. Castor Oil-Based Biodegradable Polyesters.

    Science.gov (United States)

    Kunduru, Konda Reddy; Basu, Arijit; Haim Zada, Moran; Domb, Abraham J

    2015-09-14

    This Review compiles the synthesis, physical properties, and biomedical applications for the polyesters based on castor oil and ricinoleic acid. Castor oil has been known for its medicinal value since ancient times. It contains ∼90% ricinoleic acid, which enables direct chemical transformation into polyesters without interference of other fatty acids. The presence of ricinoleic acid (hydroxyl containing fatty acid) enables synthesis of various polyester/anhydrides. In addition, castor oil contains a cis-double bond that can be hydrogenated, oxidized, halogenated, and polymerized. Castor oil is obtained pure in large quantities from natural sources; it is safe and biocompatible.

  4. Application of eco-friendly antimicrobial finish butea monosperma leaves on fabric properties of polyester and cotton/polyester

    International Nuclear Information System (INIS)

    Sadaf, S.; Saeed, M.; Kalsoom, S.; Saeed, M.

    2017-01-01

    The study was aimed to check the effect of eco-friendly antimicrobial finish on 100% polyester and 50/50 cotton/polyester woven fabrics. The leaves' extract of Butea monosperma was used as an eco-friendly antimicrobial finish. The fabric was first desized, scoured, bleached and washed then antimicrobial finish was applied by using pad dry cure method. The aesthetic, comfort and mechanical fabrics properties were checked before and after applying antimicrobial finish. Under aesthetic property stiffness and smoothness appearance was checked, under comfort related property absorbency and air permeability was checked and under mechanical property tear and tensile strength was checked. The antimicrobial finish was checked by using ASTEM E2149 Shake Flask method. The AATCC and ISO standard testing methods were used for checking fabric properties. One way ANOVA statistical test was applied for analysis of results. Antimicrobial finish has increased aesthetic (stiffness, smoothness appearance), comfort (absorbency, air permeability) and mechanical (tensile and tear strengths) properties of polyester and cotton/polyester fabrics. The antimicrobial finish was effective on both 100% polyester and 50/50 cotton/polyester fabrics up to 25 washes. This study is beneficial to medical industry, paramedical staff, sports wears, home furnishing as well as common people. (author)

  5. Solid-State Polymerization of Poly(Ethylene Furanoate Biobased Polyester, II: An Efficient and Facile Method to Synthesize High Molecular Weight Polyester Appropriate for Food Packaging Applications

    Directory of Open Access Journals (Sweden)

    Nejib Kasmi

    2018-04-01

    Full Text Available The goal of this study was to synthesize, through a facile strategy, high molecular weight poly(ethylene furanoate (PEF, which could be applicable in food packaging applications. The efficient method to generate PEF with high molecular weight consists of carrying out a first solid-state polycondensation under vacuum for 6 h reaction time at 205 °C for the resulting polymer from two-step melt polycondensation process, which is catalyzed by tetrabutyl titanate (TBT. A remelting step was thereafter applied for 15 min at 250 °C for the obtained polyester. Thus, the PEF sample was ground into powder, and was then crystallized for 6 h at 170 °C. This polyester is then submitted to a second solid-state polycondensation (SSP carried out at different reaction times (1, 2, 3.5, and 5 h and temperatures 190, 200, and 205 °C, under vacuum. Ultimately, a significant increase in intrinsic viscosity is observed with only 5 h reaction time at 205 °C during the second SSP being needed to obtain very high molecular weight PEF polymer greater than 1 dL/g, which sufficient for manufacturing purposes. Intrinsic viscosity (IV, carboxyl end-group content (–COOH, and thermal properties, via differential scanning calorimetry (DSC, were measured for all resultant polyesters. Thanks to the post-polymerization process, DSC results showed that the melting temperatures of the prepared PEF samples were steadily enhanced in an obvious way as a function of reaction time and temperature increase. It was revealed, as was expected for all SSP samples, that the intrinsic viscosity and the average molecular weight of PEF polyester increased with increasing SSP time and temperature, whereas the number of carboxyl end-group concentration was decreased. A simple kinetic model was also developed and used to predict the time evolution of polyesters IV, as well as the carboxyl and hydroxyl end-groups of PEF during the SSP.

  6. Polyester projects for India, Pakistan

    International Nuclear Information System (INIS)

    Siddiqi, R.

    1993-01-01

    India's Indo Rama Synthetics (Bombay) is planning a $186-million integrated polyester fiber and filament complex at Nagpur, Maharashtra. The complex will have annual capacities for 38,000 m.t. of polyester chips by polycondensation, 25,000 m.t. of polyester staple fiber, and 12,000 m.t. of polyester blended yarn. The company is negotiating with the main world suppliers of polycondensation technology. The first stage of the project is slated to begin production by the end of this year and be fully completed by 1994. In Pakistan, National Fibers Ltd. (PNF; Karachi) has signed a deal with Zimmer (Frankfurt) for technology, procurement, construction, and support work to expand polyester staple fiber capacity from 14,000 m.t./year to 52,000 m.t./year. The technology involves a continuous polymerization process. The project also calls for improvements to PNF's existing batch plant. It is scheduled for completion by the end of 1994. Total cost of the project is estimated at Rs1.745 billion ($70 million), out of which the foreign exchange component is Rs1.05 billion. The Islamic Development Bank (Jeddah; Saudi Arabia) has already approved a $27-million slice of the financing, while the balance of the foreign exchange loan is being arranged through suppliers credit. Local currency loans will be provided by other financial institutions in Pakistan

  7. Synthesis and characterization of polyester copolymers based on poly(butylene succinate) and poly(ethylene glycol)

    International Nuclear Information System (INIS)

    Zhou, Xiao-Ming

    2012-01-01

    A series of polyester copolymers was synthesized from 1,4-succinic acid with 1,4-butanediol and poly(ethylene glycol) through a two-step process of esterification and polycondensation in this article. The composition and physical properties of copolyesters were investigated via GPC, 1 HNMR, DSC and PLM. The copolymer composition was in good agreement with that expected from the feed composition of the reactants. The melting temperature (T m ), crystallization temperature (T c ), and crystallinity (X c ) of these copolyesters decreased gradually as the content of PEG unit increased. Otherwise, experimental results also showed that the contents of PEG in copolymers had an effect on the molecular weight, distribution, thermal properties, hydrolysis degradation properties, and crystalline morphology of polyester copolymers. - Graphical abstract: The composition of polyester copolymer was determined from the 1 H NMR spectra using the relative intensities of the proton peaks. As a sample, the 1 H NMR spectrum of polyester copolymer with 10 mol% of PEG is shown in Fig. 2: CO-(CH 2 ) 2 -CO; O-CH 2 - and C-(CH 2 ) 2 -C from the SA and BD unit at δ2.59; δ 4.08 and δ1.67; O-(CH 2 CH 2 ) n -O from the PEG unit at δ 3.61. The molar composition of polyester copolymer was measured as the area ratio of δ3.61/(δ4.08 + δ1.67) peak. The PEG unit is incorporated into the copolymers in an amount of about 9.12mol% less than that of the feed proportion. These results showed that the composition of the copolymers is in good agreement with that expected from the feed proportion. Highlights: ► The introduction of PEG unit changed the flexibility of PBS main chain. ► PEG unit did not alter the crystal form of PBS in copolymers. ► PEG unit hindered the formation of ring-banded spherulite morphology in copolymers. ► The copolyesters had good in vitro degradation performance. ► The composition ratio of PEG unit can adjust the in vitro degradation performance.

  8. Propagation of polarized light through azobenzene polyester films

    DEFF Research Database (Denmark)

    Nedelchev, L; Matharu, A; Nikolova, Ludmila

    2002-01-01

    When elliptically polarized light of appropriate wavelength Corresponding to trans-cis-trans isomerisation process is incident on thin films of azobenzene polyesters, a helical structure is induced. We investigate the propagation of the exciting light beam (self-induced) as well as a probe light...... beam outside the absorption band through the polyester films. Investigations are carried out in one amorphous and one liquid crystalline polyester. We show that amorphous polyester after irradiation behaves like classical helical material....

  9. Chemical and enzymatic catalytic routes to polyesters and oligopeptides biobased materials

    Science.gov (United States)

    Zhu, Jianhui

    My Ph.D research focuses on the synthesis and property studies of different biobased materials, including polyesters, polyurethanes and oligopeptides. The first study describes the synthesis, crystal structure and physico-mechanical properties of a bio-based polyester prepared from 2,5-furandicarboxylic acid (FDCA) and 1,4-butanediol. Melt-polycondensation experiments were conducted by a two-stage polymerization using titanium tetraisopropoxide (Ti[OiPr] 4) as catalyst. Polymerization conditions (catalyst concentration, reaction time and 2nd stage reaction temperature) were varied to optimize poly(butylene furan dicarboxylate), PBF, molecular weight. A series of PBFs with different Mw were characterized by Differential Scanning Calorimetry (DSC), Thermogravimetric Analysis (TGA), Dynamic Mechanical Thermal Analysis (DMTA), X-Ray diffraction and tensile testing. Influence of molecular weight and melting/crystallization enthalpy on PBF material tensile properties was explored. Cold-drawing tensile tests at room temperature for PBF with Mw 16K to 27K showed a brittle-to-ductile transition. When Mw reaches 38K, the Young's Modulus of PBF remains above 900 MPa, and the elongation at break increases to above 1000%. The mechanical properties, thermal properties and crystal structures of PBF were similar to petroleum derived poly(butylenes terephthalate), PBT. Fiber diagrams of uniaxially stretched PBF films were collected, indexed, and the unit cell was determined as triclinic (a=4.78(3) A, b=6.03(5) A, c=12.3(1) A, alpha=110.1(2)°, beta=121.1(3)°, gamma=100.6(2)°). A crystal structure was derived from this data and final atomic coordinates are reported. We concluded that there is a close similarity of the PBF structure to PBT alpha- and beta-forms. In the second study, a biobased long chain polyester polyol (PC14-OH) was synthesized from o-hydroxytetradecanoic acid (o-HOC14) and 1,4-butanediol. The first section about polyester polyurethanes describes the synthesis

  10. Polyester Apparel Cutting Waste as Insulation Material

    OpenAIRE

    Trajković, Dušan; Jordeva, Sonja; Tomovska, Elena; Zafirova, Koleta

    2017-01-01

    Polyester waste is the dominant component of the clothing industry waste stream, yet its recycling in this industry is rarely addressed. This paper proposes using polyester cutting waste as an insulation blanket for roofing and buildings’ internal walls in order to reduce environmental pollution. The designed textile structures used waste cuttings from different polyester fabrics without opening the fabric to fibre. Thermal insulation, acoustic insulation, fire resistance and biodegradation o...

  11. Surface modification of polyester biomaterials for tissue engineering

    International Nuclear Information System (INIS)

    Jiao Yanpeng; Cui Fuzhai

    2007-01-01

    Surfaces play an important role in a biological system for most biological reactions occurring at surfaces and interfaces. The development of biomaterials for tissue engineering is to create perfect surfaces which can provoke specific cellular responses and direct new tissue regeneration. The improvement in biocompatibility of biomaterials for tissue engineering by directed surface modification is an important contribution to biomaterials development. Among many biomaterials used for tissue engineering, polyesters have been well documented for their excellent biodegradability, biocompatibility and nontoxicity. However, poor hydrophilicity and the lack of natural recognition sites on the surface of polyesters have greatly limited their further application in the tissue engineering field. Therefore, how to introduce functional groups or molecules to polyester surfaces, which ideally adjust cell/tissue biological functions, becomes more and more important. In this review, recent advances in polyester surface modification and their applications are reviewed. The development of new technologies or methods used to modify polyester surfaces for developing their biocompatibility is introduced. The results of polyester surface modifications by surface morphological modification, surface chemical group/charge modification, surface biomacromolecule modification and so on are reported in detail. Modified surface properties of polyesters directly related to in vitro/vivo biological performances are presented as well, such as protein adsorption, cell attachment and growth and tissue response. Lastly, the prospect of polyester surface modification is discussed, especially the current conception of biomimetic and molecular recognition. (topical review)

  12. Probing the molecular design of hyper-branched aryl polyesters towards lubricant applications.

    Science.gov (United States)

    Robinson, Joshua W; Zhou, Yan; Bhattacharya, Priyanka; Erck, Robert; Qu, Jun; Bays, J Timothy; Cosimbescu, Lelia

    2016-01-05

    We report novel polymeric materials that may be used as viscosity index improvers (VII) for lubricant applications. Our efforts included probing the comb-burst hyper-branched aryl polyester architecture for beneficial viscosity and friction behavior when utilized as an additive in a group I oil. The monomer was designed as to undergo polymerization via polycondensation within the architectural construct (AB2), typical of hyperbranched polymers. The monomer design was comprised of aliphatic arms (12 or 16 methylenes) to provide the necessary lipophilicity to achieve solubility in a non-polar medium. Once polymerized, via catalyst and heat, the surface alcohols were functionalized with fatty acids (lauric and palmitic). Controlling the aliphatic nature of the internal arms and peripheral end-groups provided four unique flexible polymer designs. Changing the reaction time and concentration provided opportunities to investigate the influence of molecular weight and branching density on oil-solubility, viscosity, and friction. Oil-solubility was found to decrease with fewer internal carbons, but the number of internal carbons appears to have little influence on the bulk solution viscosity. At concentrations of 2 wt % in a group I base oil, these polymer additives demonstrated an improved viscosity index and reduced friction coefficient, validating the basic approach.

  13. Probing the molecular design of hyper-branched aryl polyesters towards lubricant applications

    Science.gov (United States)

    Robinson, Joshua W.; Zhou, Yan; Bhattacharya, Priyanka; Erck, Robert; Qu, Jun; Bays, J. Timothy; Cosimbescu, Lelia

    2016-01-01

    We report novel polymeric materials that may be used as viscosity index improvers (VII) for lubricant applications. Our efforts included probing the comb-burst hyper-branched aryl polyester architecture for beneficial viscosity and friction behavior when utilized as an additive in a group I oil. The monomer was designed as to undergo polymerization via polycondensation within the architectural construct (AB2), typical of hyperbranched polymers. The monomer design was comprised of aliphatic arms (12 or 16 methylenes) to provide the necessary lipophilicity to achieve solubility in a non-polar medium. Once polymerized, via catalyst and heat, the surface alcohols were functionalized with fatty acids (lauric and palmitic). Controlling the aliphatic nature of the internal arms and peripheral end-groups provided four unique flexible polymer designs. Changing the reaction time and concentration provided opportunities to investigate the influence of molecular weight and branching density on oil-solubility, viscosity, and friction. Oil-solubility was found to decrease with fewer internal carbons, but the number of internal carbons appears to have little influence on the bulk solution viscosity. At concentrations of 2 wt % in a group I base oil, these polymer additives demonstrated an improved viscosity index and reduced friction coefficient, validating the basic approach.

  14. Polystyrene/Hyperbranched Polyester Blends and Reactive Polystyrene/Hyperbranched Polyester Blends

    National Research Council Canada - National Science Library

    Mulkern, Thomas

    1999-01-01

    .... In this work, the incorporation of HBPs in thermoplastic blends was investigated. Several volume fractions of hydroxyl functionalized hyperbranched polyesters were melt blended with nonreactive polystyrene (PS...

  15. Structural, optical and electrical characteristics of ITO thin films deposited by sputtering on different polyester substrates

    International Nuclear Information System (INIS)

    Guillen, C.; Herrero, J.

    2008-01-01

    Indium tin oxide (ITO) thin films were deposited by sputtering at room temperature on glass and different polyester substrates; namely polyarylate (PA), polycarbonate (PC) and polyethylene terephtalate (PET). The influence of the substrate on the structural, optical and electrical characteristics of the ITO layers was investigated. The sputtered films exhibited crystallization in the (2 2 2) orientation, with higher mean crystallite size and lower structural distortion onto PET than onto PA, PC or glass substrates. ITO films deposited onto PET showed also higher band gap energy, higher carrier concentration and lower resistivity than the ITO layers onto the other tested substrates. These optical and electrical characteristics have been related to the structural distortion that was found dependent on the specific polyester substrate

  16. Abaca/polyester nonwoven fabric functionalization for metal ion adsorbent synthesis via electron beam-induced emulsion grafting

    International Nuclear Information System (INIS)

    Madrid, Jordan F.; Ueki, Yuji; Seko, Noriaki

    2013-01-01

    A metal ion adsorbent was developed from a nonwoven fabric trunk material composed of both natural and synthetic polymers. A pre-irradiation technique was used for emulsion grafting of glycidyl methacrylate (GMA) onto an electron beam irradiated abaca/polyester nonwoven fabric (APNWF). The dependence of degree of grafting (Dg), calculated from the weight of APNWF before and after grafting, on absorbed dose, reaction time and monomer concentration were evaluated. After 50 kGy irradiation with 2 MeV electron beam and subsequent 3 h reaction with an emulsion consisting of 5% GMA and 0.5% polyoxyethylene sorbitan monolaurate (Tween 20) surfactant in deionized water at 40 °C, a grafted APNWF with a Dg greater than 150% was obtained. The GMA-grafted APNWF was further modified by reaction with ethylenediamine (EDA) in isopropyl alcohol at 60 °C to introduce amine functional groups. After a 3 h reaction with 50% EDA, an amine group density of 2.7 mmole/gram adsorbent was achieved based from elemental analysis. Batch adsorption experiments were performed using Cu 2+ and Ni 2+ ions in aqueous solutions with initial pH of 5 at 30 °C. Results show that the adsorption capacity of the grafted adsorbent for Cu 2+ is four times higher than Ni 2+ ions. - Highlights: • An amine type adsorbent from abaca/polyester nonwoven fabric was synthesized. • Pre-irradiation method was used in grafting glycidyl methacrylate on nonwoven fabric. • Radiation-induced grafting was performed with monomer in emulsion state. • The calculated adsorption capacity for Cu 2+ is four times higher than Ni 2+ ions. • Grafted adsorbent can remove Cu 2+ faster than a chemically similar commercial resin

  17. Synthetic polyester-hydrolyzing enzymes from thermophilic actinomycetes.

    Science.gov (United States)

    Wei, Ren; Oeser, Thorsten; Zimmermann, Wolfgang

    2014-01-01

    Thermophilic actinomycetes produce enzymes capable of hydrolyzing synthetic polyesters such as polyethylene terephthalate (PET). In addition to carboxylesterases, which have hydrolytic activity predominantly against PET oligomers, esterases related to cutinases also hydrolyze synthetic polymers. The production of these enzymes by actinomycetes as well as their recombinant expression in heterologous hosts is described and their catalytic activity against polyester substrates is compared. Assays to analyze the enzymatic hydrolysis of synthetic polyesters are evaluated, and a kinetic model describing the enzymatic heterogeneous hydrolysis process is discussed. Structure-function and structure-stability relationships of actinomycete polyester hydrolases are compared based on molecular dynamics simulations and recently solved protein structures. In addition, recent progress in enhancing their activity and thermal stability by random or site-directed mutagenesis is presented. © 2014 Elsevier Inc. All rights reserved.

  18. Microbial degradation of polyurethane, polyester polyurethanes and polyether polyurethanes.

    Science.gov (United States)

    Nakajima-Kambe, T; Shigeno-Akutsu, Y; Nomura, N; Onuma, F; Nakahara, T

    1999-02-01

    Polyurethane (PUR) is a polymer derived from the condensation of polyisocyanate and polyol and it is widely used as a base material in various industries. PUR, in particular, polyester PUR, is known to be vulnerable to microbial attack. Recently, environmental pollution by plastic wastes has become a serious issue and polyester PUR had attracted attention because of its biodegradability. There are many reports on the degradation of polyester PUR by microorganisms, especially by fungi. Microbial degradation of polyester PUR is thought to be mainly due to the hydrolysis of ester bonds by esterases. Recently, polyester-PUR-degrading enzymes have been purified and their characteristics reported. Among them, a solid-polyester-PUR-degrading enzyme (PUR esterase) derived from Comamonas acidovorans TB-35 had unique characteristics. This enzyme has a hydrophobic PUR-surface-binding domain and a catalytic domain, and the surface-binding domain was considered as being essential for PUR degradation. This hydrophobic surface-binding domain is also observed in other solid-polyester-degrading enzymes such as poly(hydroxyalkanoate) (PHA) depolymerases. There was no significant homology between the amino acid sequence of PUR esterase and that of PHA depolymerases, except in the hydrophobic surface-binding region. Thus, PUR esterase and PHA depolymerase are probably different in terms of their evolutionary origin and it is possible that PUR esterases come to be classified as a new solid-polyester-degrading enzyme family.

  19. Studies in reactive extrusion processing of biodegradable polymeric materials

    Science.gov (United States)

    Balakrishnan, Sunder

    Various reaction chemistries such as Polymerization, Polymer cross-linking and Reactive grafting were investigated in twin-screw extruders. Poly (1,4-dioxan-2-one) (PPDX) was manufactured in melt by the continuous polymerization of 1,4-dioxan-2-one (PDX) monomer in a twin-screw extruder using Aluminum tri-sec butoxide (ATSB) initiator. Good and accurate control over molecular weight was obtained by controlling the ratio of monomer to initiator. A screw configuration consisting of only conveying elements was used for the polymerization. The polymerization reaction was characterized by a monomer-polymer dynamic equilibrium, above the melting temperature of the polymer, limiting the equilibrium conversion to 78-percent. Near complete (˜100-percent) conversion was obtained on co-polymerizing PDX monomer with a few mol-percent (around 8-percent) Caprolactone (CL) monomer in a twin-screw extruder using ATSB initiator. The co-polymers exhibited improved thermal stability with reduction in glass transition temperature. The extruder was modeled as an Axial Dispersed Plug Flow Reactor for the polymerization of CL monomer using Residence Time Distribution (RTD) Analysis. The model provided a good fit to the experimental RTD and conversion data. Aliphatic and aliphatic-aromatic co-polyesters, namely Polycaprolactone (PCL) and Poly butylenes (adipate-co-terephthalate) (Ecoflex) were cross-linked in a twin-screw extruder using radical initiator to form micro-gel reinforced biodegradable polyesters. Cross-linked Ecoflex was further extrusion blended with talc to form blends suitable to be blown into films. A screw configuration consisting of conveying and kneading elements was found to be effective in dispersion of the talc particles (5--10 microns) in the polyester matrix. While the rates of crystallization increased for the talc filled polyester blends, overall crystallinity reduced. Mechanical, tear and puncture properties of films made using the talc filled polyester blends

  20. Polyester monomers lack ability to bind and activate both androgenic and estrogenic receptors as determined by in vitro and in silico methods.

    Science.gov (United States)

    Osimitz, Thomas G; Welsh, William J; Ai, Ni; Toole, Colleen

    2015-01-01

    The paper presents results from the screening of seven monomers used by Eastman Chemical to make various polymers. Ethylene glycol, diethylene glycol, polytetramethylene glycol, isophthalic acid, monosodium-5-sulfoisophthalic acid, 1,4-cyclohexanedicarboxylic acid, and dimethylcyclohexanedicarboxylate were screened for potential androgenicity or estrogenicity. The following studies were conducted: QSAR for binding to the AR and ER, in vitro Androgen Receptor Binding Assay, in vitro Estrogen Receptor Binding Assays (alpha and beta isoforms), in vitro Androgen Receptor Transactivation Assay in human cells, and in vitro Estrogen Receptor Transactivation Assay in human cells. None of the QSAR models predicted that any of the monomers possessed appreciable binding affinity for either AR or ER. Binding assays showed no evidence of interaction with either the AR or the alpha or beta ER receptors. Similarly, the AR and ER transactivation assays were negative. Moreover, six of the seven monomers have been subjected to 13-week and developmental toxicity studies in rats with no androgen- or estrogen-related effects being noted. Given the negative results of the in vitro screening assays (except PMG which demonstrated cytotoxicity) as well as available repeated dose and developmental and reproductive studies, the data suggest that none of the monomers tested exhibit androgenic or estrogenic hazards. Copyright © 2014 Elsevier Ltd. All rights reserved.

  1. Enzymatic Synthesis and Characterization of Hydrophilic Sugar Based Polyesters and Their Modification with Stearic Acid

    Directory of Open Access Journals (Sweden)

    Muhammad Humayun Bilal

    2016-03-01

    Full Text Available Biodegradable and hydrophilic functional polyesters were synthesized enzymatically using xylitol or d-sorbitol together with divinyl adipate and lipase B from Candida antartica (CAL-B. The resulting polyesters had pendant OH-groups from their sugar units which were esterified to different degrees with stearic acid chloride. The structure and the degrees of polymerization of the resulting graft copolymers based on poly(xylitol adipate and poly(d-sorbitol adipate were characterized by 1H NMR spectroscopy and SEC. DSC, WAXS and SAXS measurements indicated that a phase separation between polymer backbone and stearoyl side chains occurred in the graft copolymers, and, additionally, the side chains were able to crystallize which resulted in the formation of a lamellar morphology. Additionally, nanoparticles of the graft copolymers in an aqueous environment were studied by DLS and negative stain TEM.

  2. Blends of polyester ionomers with polar polymers: Interactions, reactions, and compatibilization

    Science.gov (United States)

    Boykin, Timothy Lamar

    The compatibility of amorphous and semicrystalline polyester ionomers with various polar polymers (i.e., polyesters and polyamides) has been investigated for their potential use as minor component compatibilizers. The degree of compatibility (i.e., ranging from incompatible to miscible) between the polyester ionomers and the polar polymers was determined by evaluating the effect of blend composition on the melting behavior and phase behavior of binary blends. In addition, the origin of compatibility and/or incompatibility for each of the binary blends (i.e., polyamide/ionomer and polyester/ionomer) was determined by evaluating blends prepared by both solution and melt mixed methods. Subsequent to investigation of the binary blends, the effect of polyester ionomer addition on the compatibility of polyamide/polyester blends was investigated by evaluating the mechanical properties and phase morphology of ionomer compatibilized polyamide/polyester blends. Polyester ionomers (amorphous and semicrystalline) were shown to exhibit a high degree of compatibility (even miscibility) with polyamides, such as nylon 6,6 (N66). Compatibility was attributed to specific interactions between the metal counterion of the polyester ionomer and the amide groups of N66. The degree of compatibility (or miscibility) was shown to be dependent on the counterion type of the ionomer, with the highest degree exhibited by blends containing the divalent form of the polyester ionomers. Although polyester ionomers were shown to exhibit incompatibility with both poly(ethylene terephthalate) (PET) and poly(butylene terephthalate) (PBT), increasing the time of melt processing significantly enhanced the compatibility of the polyester ionomers with both PET and PBT. The observed enhancement in compatibility was attributed to ester-ester interchange between the polyester blend components, which was confirmed by NMR spectroscopy. The addition of polyester ionomers as a minor component compatibilizer (i

  3. Preparation and applications of wood-polyester composites

    International Nuclear Information System (INIS)

    Czvikovszky, T.

    1982-01-01

    Optimum processing parameters were searched for the pilot-scale production of wood-polyester composites by irradiation of resin-impregnated wood material. The radiation initiation of the following systems were examined in wood and without wood matrix: methyl methacrylate, mixture of styrene and acrylonitryle, and their combination with unsaturated polyester. In the most cases the over-all rate of the complete polymerization process in wood matrix is proportional to the square root of the initiation rate. The parameters of the radiation technology of wood-polyester composites have been determined, using 260 TBq (7 kCi) 60 Co radiation source. A pilot plant has been constructed using an underwater irradiation system of 1.85 PBq (50 kCi) 60 Co. The successful production rate of 200 kg wood-polyester composite per day, as well as the application tests have demonstrated the technical feasibility of this new structural material. (author)

  4. High-resolution structure of a retroviral protease folded as a monomer

    Czech Academy of Sciences Publication Activity Database

    Gilski, M.; Kazmierczyk, M.; Krzywda, S.; Zábranská, Helena; Cooper, S.; Popovic, Z.; Khatíb, F.; Dímaio, F.; Thompson, J.; Baker, D.; Pichová, Iva; Jaskolski, M.

    D67, č. 11 (2011), s. 907-914 ISSN 0907-4449 R&D Projects: GA MŠk 1M0508 Institutional research plan: CEZ:AV0Z40550506 Keywords : M-PMV protease * crystal structure * monomer * dimerization inhibitors Subject RIV: CE - Biochemistry Impact factor: 12.619, year: 2011

  5. Microbial degradation of aliphatic and aliphatic-aromatic co-polyesters.

    Science.gov (United States)

    Shah, Aamer Ali; Kato, Satoshi; Shintani, Noboru; Kamini, Numbi Ramudu; Nakajima-Kambe, Toshiaki

    2014-04-01

    Biodegradable plastics (BPs) have attracted much attention since more than a decade because they can easily be degraded by microorganisms in the environment. The development of aliphatic-aromatic co-polyesters has combined excellent mechanical properties with biodegradability and an ideal replacement for the conventional nondegradable thermoplastics. The microorganisms degrading these polyesters are widely distributed in various environments. Although various aliphatic, aromatic, and aliphatic-aromatic co-polyester-degrading microorganisms and their enzymes have been studied and characterized, there are still many groups of microorganisms and enzymes with varying properties awaiting various applications. In this review, we have reported some new microorganisms and their enzymes which could degrade various aliphatic, aromatic, as well as aliphatic-aromatic co-polyesters like poly(butylene succinate) (PBS), poly(butylene succinate)-co-(butylene adipate) (PBSA), poly(ε-caprolactone) (PCL), poly(ethylene succinate) (PES), poly(L-lactic acid) (PLA), poly(3-hydroxybutyrate) and poly(3-hydoxybutyrate-co-3-hydroxyvalterate) (PHB/PHBV), poly(ethylene terephthalate) (PET), poly(butylene terephthalate) (PBT), poly(butylene adipate-co-terephthalate (PBAT), poly(butylene succinate-co-terephthalate) (PBST), and poly(butylene succinate/terephthalate/isophthalate)-co-(lactate) (PBSTIL). The mechanism of degradation of aliphatic as well as aliphatic-aromatic co-polyesters has also been discussed. The degradation ability of microorganisms against various polyesters might be useful for the treatment and recycling of biodegradable wastes or bioremediation of the polyester-contaminated environments.

  6. Structure of human insulin monomer in water/acetonitrile solution

    International Nuclear Information System (INIS)

    Bocian, Wojciech; Sitkowski, Jerzy; Bednarek, Elzbieta; Tarnowska, Anna; Kawecki, Robert; Kozerski, Lech

    2008-01-01

    Here we present evidence that in water/acetonitrile solvent detailed structural and dynamic information can be obtained for important proteins that are naturally present as oligomers under native conditions. An NMR-derived human insulin monomer structure in H 2 O/CD 3 CN, 65/35 vol%, pH 3.6 is presented and compared with the available X-ray structure of a monomer that forms part of a hexamer (Acta Crystallogr. 2003 Sec. D59, 474) and with NMR structures in water and organic cosolvent. Detailed analysis using PFGSE NMR, temperature-dependent NMR, dilution experiments and CSI proves that the structure is monomeric in the concentration and temperature ranges 0.1-3 mM and 10-30 deg. C, respectively. The presence of long-range interstrand NOEs, as found in the crystal structure of the monomer, provides the evidence for conservation of the tertiary structure. Starting from structures calculated by the program CYANA, two different molecular dynamics simulated annealing refinement protocols were applied, either using the program AMBER in vacuum (AMBER V C), or including a generalized Born solvent model (AMBER G B)

  7. Holographic recording in thiophene-based polyester

    DEFF Research Database (Denmark)

    Matharu, Avtar Singh; Chambers-Asman, David; Jeeva, Shehzad

    2008-01-01

    The synthesis and optical data storage properties of a side-chain thiophene-phenyl azopolyester ThPhAzoP.ol is reported. The polyester is derived from diphenyl tetradecanedioate and a thiophenebased liquid crystalline diol which exhibits a short-lived enantiotropic SmA phase (Cryst 177.7 SmA 180.......4 I). The polyester ThPhAzoPol exhibits amorphous (Tg, 78.6 DC), crystalline and liquid crystalline character as evidenced by differential scanning calorimetry and thermal polarising microscopy. A grainy texture, which is thermally reversible, with increasing birefringence on cooling from...... the isotropic melt is observed. The polyester is amenable to optical data storage, showing efficient induced anisotropy, which is stable at room temperature. Polarisation gratings can be inscribed using orthogonally.linear and circularly polarised light to good effect (>10/0) and surface relief gratings...

  8. Rheological Behavior of Bentonite-Polyester Dispersions

    Science.gov (United States)

    Abu-Jdayil, Basim; Al-Omari, Salah Addin

    2013-07-01

    The rheological behavior of a bentonite clay dispersed in unsaturated polyester was investigated. The effects of the solid content and particle size on the steady and transient rheological properties of the dispersions were studied. In addition, two types of bentonite with different Na+/Ca+2 ratio were used in this study. The Herschel-Bulkley and the Weltman models were used to describe the apparent viscosity of the bentonite-polyester composite in relation to the shear rate and shearing time. The bentonite-polyester dispersions were found to exhibit both Newtonian and non-Newtonian behavior. The transition from a Newtonian to a Bingham plastic and then to a shear-thinning material with a yield stress was found to depend on the solid concentration, the particle size, and the type of bentonite. At a low solid content, the apparent viscosity of the bentonite dispersion increased linearly with solid concentration. But a dramatic increase in the apparent viscosity beyond a solid content of 20 wt.% was observed. On the other hand, a thixotropic behavior was detected in bentonite-polyester dispersions with a high solid content and a low particle size. However, this behavior was more pronounced in dispersions with a high Na+/Ca+2 ratio.

  9. Light scattering of thin azobenzene side-chain polyester layers

    DEFF Research Database (Denmark)

    Kerekes, Á.; Lörincz, E.; Ramanujam, P.S.

    2002-01-01

    Light scattering properties of liquid crystalline and amorphous azobenzene side-chain polyester layers used for optical data storage were examined by means of transmissive scatterometry. Comparative experiments show that the amorphous polyester has significantly lower light scattering...... characteristics than the liquid crystalline polyester. The amorphous samples have negligible polarization part orthogonal to the incident beam. the liquid crystalline samples have relative high orthogonal polarization part in light scattering, The light scattering results can be used to give a lower limit...... for the domain size in thin liquid crystalline polyester layers being responsible for the dominant light scattering. The characteristic domain Sizes obtained from the Fourier transformation of polarization microscopic Pictures confirm these values....

  10. Influence of the molecular structure on hydrolysability of unsaturated polyesters

    International Nuclear Information System (INIS)

    Pays, M.F.; Denis, V.

    1993-09-01

    EDF has decided to replace conventional materials by glass reinforced plastics for certain PWR water distribution systems (raw water system, essential service water system, firefighting water distribution system, etc...). Since steel corrodes rapidly in these pipings, introducing composite materials will be economically beneficial if the long-term resistance of these materials can be guaranteed. However, due to hydrolysis of the resin or of the fiber-matrix interface, composite materials deteriorations may occur during service life. This paper reports on the hydrolysis resistance of polyester and vinylester resins. - Model monomers were studied to relate the molecular structure to the hydrolysis resistance. Two ester categories were determined, the diacids and the diols. For the diacids, we obtained the following classification in increasing order of resistance: < maleates < ethoxysuccinates < succinates < fumerates < terephtalates < orthophtalates < isophtalates and for the diols: trioxyethylene glycol << butane diol ∼ ethylene glycol < neopentyl glycol < bisphenol A. The positions obtained for neopentyl glycol and isophtalic acid on this scale justify their inclusion in the formulation of hydrolysis-resistant resins. Since aliphatic unsaturated esters are highly sensitive to hydrolysis, the cross linking procedures for these materials, notably the post-cure stages, must be the subject of particular care. - The hydrolytic degradation of cross linked materials was studied. It was shown that hydrolysis could be monitored by a simple gravimetric method. Used in association with accelerated aging tests, it predicts the time lapse to initiation of the phenomenon. The better hydrolysis resistance of vinylester resins as compared with unsaturated polyesters has been demonstrated. However, forecasting over a 30-year life span is difficult to guarantee in that this involves indicating in the resin specifications the in-service stress which it will be required to

  11. Side-chain liquid crystalline polyesters for optical information storage

    DEFF Research Database (Denmark)

    Ramanujam, P.S.; Holme, Christian; Hvilsted, Søren

    1996-01-01

    and holographic storage in one particular polyester are described in detail and polarized Fourier transform infrared spectroscopic data complementing the optical data are presented. Optical and atomic force microscope investigations point to a laser-induced aggregation as responsible for permanent optical storage.......Azobenzene side-chain liquid crystalline polyester structures suitable for permanent optical storage are described. The synthesis and characterization of the polyesters together with differential scanning calorimetry and X-ray investigations are discussed. Optical anisotropic investigations...

  12. Aliphatic polyesters for medical imaging and theranostic applications.

    Science.gov (United States)

    Nottelet, Benjamin; Darcos, Vincent; Coudane, Jean

    2015-11-01

    Medical imaging is a cornerstone of modern medicine. In that context the development of innovative imaging systems combining biomaterials and contrast agents (CAs)/imaging probes (IPs) for improved diagnostic and theranostic applications focuses intense research efforts. In particular, the classical aliphatic (co)polyesters poly(lactide) (PLA), poly(lactide-co-glycolide) (PLGA) and poly(ɛ-caprolactone) (PCL), attract much attention due to their long track record in the medical field. This review aims therefore at providing a state-of-the-art of polyester-based imaging systems. In a first section a rapid description of the various imaging modalities, including magnetic resonance imaging (MRI), optical imaging, computed tomography (CT), ultrasound (US) and radionuclide imaging (SPECT, PET) will be given. Then, the two main strategies used to combine the CAs/IPs and the polyesters will be discussed. In more detail we will first present the strategies relying on CAs/IPs encapsulation in nanoparticles, micelles, dendrimers or capsules. We will then present chemical modifications of polyesters backbones and/or polyester surfaces to yield macromolecular imaging agents. Finally, opportunities offered by these innovative systems will be illustrated with some recent examples in the fields of cell labeling, diagnostic or theranostic applications and medical devices. Copyright © 2015 Elsevier B.V. All rights reserved.

  13. Structure of human insulin monomer in water/acetonitrile solution

    Energy Technology Data Exchange (ETDEWEB)

    Bocian, Wojciech; Sitkowski, Jerzy; Bednarek, Elzbieta [National Medicines Institute (Poland); Tarnowska, Anna; Kawecki, Robert [Institute of Organic Chemistry Polish Academy of Sciences (Poland); Kozerski, Lech [National Medicines Institute (Poland)], E-mail: lkoz@icho.edu.pl

    2008-01-15

    Here we present evidence that in water/acetonitrile solvent detailed structural and dynamic information can be obtained for important proteins that are naturally present as oligomers under native conditions. An NMR-derived human insulin monomer structure in H{sub 2}O/CD{sub 3}CN, 65/35 vol%, pH 3.6 is presented and compared with the available X-ray structure of a monomer that forms part of a hexamer (Acta Crystallogr. 2003 Sec. D59, 474) and with NMR structures in water and organic cosolvent. Detailed analysis using PFGSE NMR, temperature-dependent NMR, dilution experiments and CSI proves that the structure is monomeric in the concentration and temperature ranges 0.1-3 mM and 10-30 deg. C, respectively. The presence of long-range interstrand NOEs, as found in the crystal structure of the monomer, provides the evidence for conservation of the tertiary structure. Starting from structures calculated by the program CYANA, two different molecular dynamics simulated annealing refinement protocols were applied, either using the program AMBER in vacuum (AMBER{sub V}C), or including a generalized Born solvent model (AMBER{sub G}B)

  14. Polarisation-sensitive optical elements in azobenzene polyesters and peptides

    DEFF Research Database (Denmark)

    Ramanujam, P.S.; Dam-Hansen, Carsten; Berg, Rolf Henrik

    2006-01-01

    In this article, we describe fabrication of polarisation holographic optical elements in azobenzene polyesters. Both liquid crystalline and amorphous side-chain polyesters have been utilised. Diffractive optical elements such as lenses and gratings that are sensitive to the polarisation...... of the incident light have been fabricated with polarisation holography. Computer-generated optical elements and patterns have also been written with a single polarised laser beam. Recording of polarisation defects enabling easy visualisation is also shown to be feasible in azobenzene polyesters....

  15. Carboxylated Polyurethanes Containing Hyperbranched Polyester Soft Segments

    Directory of Open Access Journals (Sweden)

    Žigon, M.

    2006-09-01

    Full Text Available hyperbranched polyester soft segments (HB PU with functional carboxylic groups in order to enable the preparation of stable HB PU dispersions. Carboxylated hyperbranched polyurethanes were synthesized using a hyperbranched polyester based on 2,2-bis(methylolpropionic acid of the fourth pseudo-generation (Boltorn H40 and hexamethylene (HDI or isophorone diisocyanate (IPDI. The reactivity of hyperbranched polyester with HDI was lower than expected, possibly due to the presence of less reactive hydroxyl groups in the linear repeat units. A gel was formed at mole ratios rNCO/OH = 1:2 or 1:4. The synthesis of HB PU was performed with partly esterified hyperbranched polyester with lowered hydroxyl functionality. The carboxyl groups were incorporated in the HB PU backbone by reaction of residual hydroxyl groups with cis-1,2-cyclohexanedicarboxylic anhydride. HB PU aqueous dispersions were stable at least for two months, although their films were brittle. The tensile strength and Young's modulus of blends of linear and HB PU decreased with increasing content of HB PU whereas elongation at break remained nearly constant, which was explained in terms of looser chain packing due to more open tree-like hyperbranched structures.

  16. Synthesis, properties and applications of biodegradable polymers derived from diols and dicarboxylic acids: from polyesters to poly(ester amide)s.

    Science.gov (United States)

    Díaz, Angélica; Katsarava, Ramaz; Puiggalí, Jordi

    2014-04-25

    Poly(alkylene dicarboxylate)s constitute a family of biodegradable polymers with increasing interest for both commodity and speciality applications. Most of these polymers can be prepared from biobased diols and dicarboxylic acids such as 1,4-butanediol, succinic acid and carbohydrates. This review provides a current status report concerning synthesis, biodegradation and applications of a series of polymers that cover a wide range of properties, namely, materials from elastomeric to rigid characteristics that are suitable for applications such as hydrogels, soft tissue engineering, drug delivery systems and liquid crystals. Finally, the incorporation of aromatic units and α-amino acids is considered since stiffness of molecular chains and intermolecular interactions can be drastically changed. In fact, poly(ester amide)s derived from naturally occurring amino acids offer great possibilities as biodegradable materials for biomedical applications which are also extensively discussed.

  17. (Citric acid–co–polycaprolactone triol) polyester

    Science.gov (United States)

    Thomas, Lynda V.; Nair, Prabha D.

    2011-01-01

    Tissue engineering holds enormous challenges for materials science, wherein the ideal scaffold to be used is expected to be biocompatible, biodegradable and possess mechanical and physical properties that are suitable for target application. In this context, we have prepared degradable polyesters in different ratios by a simple polycondensation technique with citric acid and polycaprolactone triol. Differential scanning calorimetry indicated that the materials were amorphous based the absence of a crystalline melting peak and the presence of a glass transition temperature below 37°C. These polyesters were found to be hydrophilic and could be tailor-made into tubes and films. Porosity could also be introduced by addition of porogens. All the materials were non-cytotoxic in an in vitro cytotoxicity assay and may degrade via hydrolysis to non-toxic degradation products. These polyesters have potential implications in the field of soft tissue engineering on account of their similarity of properties. PMID:23507730

  18. Method of solidifying radioactive laundry wastes

    International Nuclear Information System (INIS)

    Yasumura, Keijiro

    1984-01-01

    Purpose: To enable to solidify radioactive laundry wastes containing non-ionic liquid detergents less solidifiable by plastic solidification process in liquid laundry wastes for cloths or the likes discharged from a nuclear power plant. Method: Radioactive laundry wastes are solidified by using plastic solidifying agent comprising, as a main ingredient, unsaturated polyester resins and methylmethacrylate monomers. The plastic solidifying agents usable herein include, for example, unsaturated polyester resins prepared by condensating maleic anhydride and phthalic anhydride with propylene glycol and incorporated with methylmethacrylate monomers. The mixing ratio of the methylmethacrylate monomers is preferably 30 % by weight based on the unsaturated polyester resins. (Aizawa, K.)

  19. Effect of addition of lignin in physical-chemical properties of a polyesters based on glycerol, phthalic and adipic acids; Efeito da adicao de lignina nas propriedades fisico-quimicas de poliesteres a base de glicerol e acidos ftalico e adipico

    Energy Technology Data Exchange (ETDEWEB)

    Guimaraes, D.H.; Viana, A.P.M.; Lima, A.S.C.; Goncalves, A.P.B.; Miranda, C.S.; Jose, N.M., E-mail: dhanseng@yahoo.com.br [Universidade Federal da Bahia (UFBA), alvador, BA (Brazil)

    2014-07-01

    In this paper the study of different addition amounts of lignin in the physicochemical properties of polyesters made from glycerol and different amounts of phthalic and adipic acids have been proposed. The following characterizations were made: XRD, FTIR, TGA, DSC and SEM. The variation in the percentage of adipic and phthalic acids had a direct effect on thermal and morphological properties. The thermal analysis showed that there was miscibility between the polyester and lignin, by means of displacement related to the temperature of thermal degradation events. In FTIR analysis was noted displacements of characteristic bands of hydrogen bonds and specific carbonyl ester groups. These shifts were more pronounced as it has larger amounts of phthalic acid as monomer and larger amounts of lignin in the compositions. (author)

  20. Novel side-chain liquid crystalline polyester architecture for reversible optical storage

    DEFF Research Database (Denmark)

    Hvilsted, Søren; Andruzzi, Fulvio; Kulinna, Chrisian

    1995-01-01

    New side-chain liquid crystalline polyesters have been prepared by melt transesterification of diphenyl tetradecanedioate and a series of mesogenic 2-[omega-[4-[(4-cyanophenyl)azo]phenoxyl] alkyl]-1,3-propanediols, where the alkyl spacer is hexa-, octa-, and decamethylene in turn. The polyesters...... have molecular masses in the range 5000-89 000. Solution C-13 NMR spectroscopy has been employed to identify carbons of polyester repeat units and of both types of end groups. Polyester phases and phase transitions have been investigated in detail by polarizing optical microscopy and differential...... scanning calorimetry for the hexamethylene spacer architecture with different molecular masses. Using FTIR polarization spectroscopy, the segmental orientation in unoriented polyester films induced by argon ion laser irradiation has been followed and an irradiation-dependent order parameter...

  1. The biochemistry of the protein crystal toxin of Bacillus thuringiensis

    Science.gov (United States)

    Paul G. Fast

    1985-01-01

    The crystal consists of dimeric protein subunits. The monomer peptide chains are held together in the subunit and the subunit in the crystal by disulfide and non-covalent bonds. The monomer peptide has a molecular weight of about 130 kdaltons which, in the presence of proteases, is hydrolyzed to a protease-resistant-protein of 65 kda that is toxic both to larvae by...

  2. Air-drying paint compositions comprising carbohydrate-based polyesters and polyester preparation

    NARCIS (Netherlands)

    Oostveen, E.A.; Weijnen, J.; Haveren, van J.; Gillard, M.

    2003-01-01

    The invention relates to a polyester obtainable by transesterification or interesterification of:(i) a carbohydrate or an acyl ester thereof, (ii) an alkyl ester of a drying fatty acid, semi-drying fatty acid or mixture thereof; and (iii) an alkyl ester of a non aromatic polycarboxylic acid. The

  3. Growth of monodisperse mesoscopic metal-oxide colloids under constant monomer supply

    Science.gov (United States)

    Nozawa, Koh; Delville, Marie-Hélène; Ushiki, Hideharu; Panizza, Pascal; Delville, Jean-Pierre

    2005-07-01

    In closed systems, control over the size of monodisperse metal-oxide colloids is generally limited to submicrometric dimensions. To overcome this difficulty, we explore the formation and growth of silica particles under constant monomer supply. The monomer source is externally driven by the progressive addition into the system of one of the precursors. Monodisperse spherical particles are produced up to a mesoscopic size. We analyze their growth versus the monomer addition rate at different temperatures. Our results show that in the presence of a continuous monomer addition, growth is limited by diffusion over the investigated temporal window. Using the temperature variation of the growth rate, we prove that rescaling leads to a data reduction onto a single master curve. Contrary to the growth process, the final particle’s size reached after the end of the reagent supply strongly depends on the addition rate. The variation of the final particle size versus addition rate can be deduced from an analogy with crystal formation in jet precipitation. Within this framework, and using the temperature dependences of both the particle growth law and the final size, we determine the value of the molecular heat of dissolution associated to the silica solubility. These observations support the fact that classical theories of phase-ordering dynamics can be extended to the synthesis of inorganic particles. The emergence of a master behavior in the presence of continuous monomer addition also suggests the extension of these theories to open systems.

  4. Effect of gamma irradiation on poly(butylene naphthalate) based polyesters

    International Nuclear Information System (INIS)

    Malavasi, I.; Consolati, G.; Quasso, F.; Soccio, M.; Gigli, M.; Negrin, M.; Macerata, E.; Giacobbo, F.; Lotti, N.; Munari, A.; Mariani, M.

    2016-01-01

    The present work investigates the effect of gamma radiation on the properties of three naphthalate-based polyesters, i.e. poly(butylene naphthalate) (PBN), poly(diethylene naphthalate) (PDEN) and poly(thiodiethylene naphthalate) (PTDEN). In addition, the analogous terephthalate-based polymers of PDEN and PTDEN, i.e. poly(diethylene terephthalate) (PDET) and poly(thiodiethylene terephthalate) (PTDET), are also investigated, in order to check the effect of a lower number of aromatic rings. All the polymers, irradiated in air at different absorbed doses, were characterized by several techniques. The data obtained indicate that all the polymers, except PBN, show a decrease of molecular weight with the dose increase. The thermal behavior and the morphology confirm the previous results and show that the higher the crystallinity degree and number of aromatic rings, the higher the radiation resistance. The introduction of heteroatoms decreases the ability of a polymer to crystallize due to a reduction of polymer chain symmetry, thus worsening their radiation resistance. - Highlights: • Gamma irradiation of polyesters with different number of aromatic rings was studied. • Effect of gamma radiation on PBN, PDEN, PTDEN, PDET, and PTDET was investigated. • Irradiated polymers were studied by GPC, DSC and PALS. • Introduction of heteroatoms decreases polymers radiation resistance. • Presence of double aromatic ring confers a higher stability with increasing doses.

  5. Crystal and molecular simulation of high-performance polymers.

    Science.gov (United States)

    Colquhoun, H M; Williams, D J

    2000-03-01

    Single-crystal X-ray analyses of oligomeric models for high-performance aromatic polymers, interfaced to computer-based molecular modeling and diffraction simulation, have enabled the determination of a range of previously unknown polymer crystal structures from X-ray powder data. Materials which have been successfully analyzed using this approach include aromatic polyesters, polyetherketones, polythioetherketones, polyphenylenes, and polycarboranes. Pure macrocyclic homologues of noncrystalline polyethersulfones afford high-quality single crystals-even at very large ring sizes-and have provided the first examples of a "protein crystallographic" approach to the structures of conventionally amorphous synthetic polymers.

  6. Komposit Hibrid Polyester Berpenguat Serbuk Batang Dan Serat Sabut Kelapa

    OpenAIRE

    Lumintang, Romels C. A; Soenoko, Rudy; Wahyudi, Slamet

    2011-01-01

    Sawdust coconut trunks of palm trees and fiber coconut coir are two waste materials from the processing of coconuts and coconut tree trunks sawmill waste are plentiful materials can be utilized for producing composites using polyester resins. Both each properties materials as follow polyester resin: liquid in the open air conditions, sawdust coconut and coconut coir fiber properties is lightweight and fragile nature of the polyester adhesive used as a binder (binder) between fiber coconut coi...

  7. Highly Branched Bio-Based Unsaturated Polyesters by Enzymatic Polymerization

    Directory of Open Access Journals (Sweden)

    Hiep Dinh Nguyen

    2016-10-01

    Full Text Available A one-pot, enzyme-catalyzed bulk polymerization method for direct production of highly branched polyesters has been developed as an alternative to currently used industrial procedures. Bio-based feed components in the form of glycerol, pentaerythritol, azelaic acid, and tall oil fatty acid (TOFA were polymerized using an immobilized Candida antarctica lipase B (CALB and the potential for an enzymatic synthesis of alkyds was investigated. The developed method enables the use of both glycerol and also pentaerythritol (for the first time as the alcohol source and was found to be very robust. This allows simple variations in the molar mass and structure of the polyester without premature gelation, thus enabling easy tailoring of the branched polyester structure. The postpolymerization crosslinking of the polyesters illustrates their potential as binders in alkyds. The formed films had good UV stability, very high water contact angles of up to 141° and a glass transition temperature that could be controlled through the feed composition.

  8. Synthesis and Properties of Some polyurethane/ Partially Aromatic Polyester Casting Samples

    International Nuclear Information System (INIS)

    Sadek, E.M.; Mazroua, A.M.; Emam, A.S.; Motawie, A.M.

    2005-01-01

    A series of partially aromatic terephthalate polyesters were synthesized by melt transesterification of dimethyl terephthalate with various types of aliphatic diol compounds in 1:1.1 molar ratio. Ethylene-, di-, tri-, tetra ethylene glycol and polyethylene glycol with different molecular weights 1000, 4000, 6000 as well as the prepared dihydroxy natural rubber were used. Another series of partially aromatic adipate and sebacate polyesters based on the prepared bisphenol A and its tetrabromo derivative were also synthesized by direct polycondensation esterification with adipic and sebacic acid. Polyurethane with NCO/OH ratio equal 4 was prepared from the reaction of 2,4 toluene diisocyanate with polyethylene glycol 1000. The prepared polyurethane was mixed with different weight percentages (2, 4, 6, 8, 10 or 12 % w/w) of the prepared partially aromatic polyesters to give polyurethane/polyester compositions. Mechanical and electrical properties as well as water and chemical resistance of the prepared film samples with thickness 3-4 mm were determined and compared with those of polyurethane film sample without polyester. The data indicate that 10 % w/w of the added partially aromatic polyester increases polyurethane tensile strength, improves its insulation properties and hydrolytic stability as well as its chemical resistance. Film samples based on bisphenol A impart excellent properties as compared with those based on aliphatic glycol species and dihydroxy natural rubber. Keywords: Partially aromatic polyesters, Dimethyl terephthalate, Glycols, Bisphenol A, Tetrabromo bisphenol A, Natural rubber, Adipic acid, Sebacic acid, Polyurethane, Casting

  9. Monomers capable of forming four hydrogen bridges and supramolecular polymers formed by copolymerization of these monomers with regular monomers

    NARCIS (Netherlands)

    2004-01-01

    The invention relates to the synthesis of polymers containing self-complementary quadruple hydrogen groups by copolymerizing monomers containing a quadruple hydrogen bonding group with one or more monomers of choice. The resulting polymers show unique new characteristics due to the presence of

  10. Interior microelectrolysis oxidation of polyester wastewater and its treatment technology

    Energy Technology Data Exchange (ETDEWEB)

    Yang Xiaoyi, E-mail: yangxiaoyi@buaa.edu.cn [Department of Thermal Energy Engineering, BeiHang University, Beijing 100191 (China)

    2009-09-30

    This paper has investigated the effects of interior microelectrolysis pretreatment on polyester wastewater treatment and analyzed its mechanism on COD and surfactant removal. The efficiency of interior microelectrolysis is mainly influenced by solution pH, aeration and reaction time. Contaminants can be removed not only by redox reaction and flocculation in the result of ferrous and ferric hydroxides but also by electrophoresis under electric fields created by electron flow. pH confirms the chemical states of surfactants, Fe(II)/Fe(III) ratio and the redox potential, and thus influences the effects of electrophoresis, flocculation and redox action on contaminant removal. Anaerobic and aerobic batch tests were performed to study the degradation of polyester wastewater. The results imply that interior microelectrolysis and anaerobic pretreatment are lacking of effectiveness if applied individually in treating polyester wastewater in spite of their individual advantages. The interior microelectrolysis-anaerobic-aerobic process was investigated to treat polyester wastewater with comparison with interior microelectrolysis-aerobic process and anaerobic-aerobic process. High COD removal efficiencies have been gotten by the combination of interior microelectrolysis with anaerobic technology and aerobic technology. The results also imply that only biological treatment was less effective in polyester wastewater treatment.

  11. Interior microelectrolysis oxidation of polyester wastewater and its treatment technology

    International Nuclear Information System (INIS)

    Yang Xiaoyi

    2009-01-01

    This paper has investigated the effects of interior microelectrolysis pretreatment on polyester wastewater treatment and analyzed its mechanism on COD and surfactant removal. The efficiency of interior microelectrolysis is mainly influenced by solution pH, aeration and reaction time. Contaminants can be removed not only by redox reaction and flocculation in the result of ferrous and ferric hydroxides but also by electrophoresis under electric fields created by electron flow. pH confirms the chemical states of surfactants, Fe(II)/Fe(III) ratio and the redox potential, and thus influences the effects of electrophoresis, flocculation and redox action on contaminant removal. Anaerobic and aerobic batch tests were performed to study the degradation of polyester wastewater. The results imply that interior microelectrolysis and anaerobic pretreatment are lacking of effectiveness if applied individually in treating polyester wastewater in spite of their individual advantages. The interior microelectrolysis-anaerobic-aerobic process was investigated to treat polyester wastewater with comparison with interior microelectrolysis-aerobic process and anaerobic-aerobic process. High COD removal efficiencies have been gotten by the combination of interior microelectrolysis with anaerobic technology and aerobic technology. The results also imply that only biological treatment was less effective in polyester wastewater treatment.

  12. Interior microelectrolysis oxidation of polyester wastewater and its treatment technology.

    Science.gov (United States)

    Yang, Xiaoyi

    2009-09-30

    This paper has investigated the effects of interior microelectrolysis pretreatment on polyester wastewater treatment and analyzed its mechanism on COD and surfactant removal. The efficiency of interior microelectrolysis is mainly influenced by solution pH, aeration and reaction time. Contaminants can be removed not only by redox reaction and flocculation in the result of ferrous and ferric hydroxides but also by electrophoresis under electric fields created by electron flow. pH confirms the chemical states of surfactants, Fe(II)/Fe(III) ratio and the redox potential, and thus influences the effects of electrophoresis, flocculation and redox action on contaminant removal. Anaerobic and aerobic batch tests were performed to study the degradation of polyester wastewater. The results imply that interior microelectrolysis and anaerobic pretreatment are lacking of effectiveness if applied individually in treating polyester wastewater in spite of their individual advantages. The interior microelectrolysis-anaerobic-aerobic process was investigated to treat polyester wastewater with comparison with interior microelectrolysis-aerobic process and anaerobic-aerobic process. High COD removal efficiencies have been gotten by the combination of interior microelectrolysis with anaerobic technology and aerobic technology. The results also imply that only biological treatment was less effective in polyester wastewater treatment.

  13. Wettability and Impact Performance of Wood Veneer/Polyester Composites

    Directory of Open Access Journals (Sweden)

    Shayesteh Haghdan

    2015-07-01

    Full Text Available Fiber-reinforced thermosetting composites have been of interest since the 1940s due to their ease of use in processing, fast curing times, and high specific stiffness and strength. While the use of plant fibers in a polyester matrix has been thoroughly studied, only limited information is available regarding using wood as reinforcement. In this study, composites of thin wood veneer and a polyester matrix were made and the difficulties in the lamination and curing processes were investigated. Sheets of Douglas fir, maple, and oak veneers using a catalyzed polyester resin were assembled as unidirectional, balanced, and unbalanced cross-ply laminates. These were compared to control specimens using glass fiber as reinforcement. The impact properties of the samples, with respect to the laminate thicknesses, were characterized using a drop-weight impact tester. The wettability and surface roughness of unsanded and sanded wood veneers were also investigated. Results showed that Douglas fir cross-ply laminates had an impact energy equivalent to glass fiber laminates, making them an interesting alternative to synthetic fiber composites. Wood/polyester laminates absorbed a considerable amount of energy through a higher number of fracture modes. The balanced lay-up limited twisting of the wood/polyester composites. The lowest contact angle and highest wettability were observed in unsanded Douglas fir veneers.

  14. Polyester polymer concrete overlay.

    Science.gov (United States)

    2013-01-01

    Polyester polymer concrete (PPC) was used in a trial application on a section of pavement that suffers from extensive studded tire wear. The purpose of the trial section is to determine if PPC is a possible repair strategy for this type of pavement d...

  15. Chemistry of Discotic Liquid Crystals From Monomers to Polymers

    CERN Document Server

    Kumar, Sandeep

    2010-01-01

    Compiling the scattered literature into a single seminal work, this book describes the basic design principles, synthesis, and mesomorphic properties of discotic liquid crystals. Of fundamental importance as models for the study of energy and charge migration in self-organized systems, discotic liquid crystals find functional application as one-dimensional conductors, photoconductors, light emitting diodes, photovoltaic solar cells, field-effect transistors, and gas sensors. This book highlights the scientific concepts behind the hierarchical self-assembly of these disc-shaped molecules alongs

  16. Biodegradation of Halloysite Nanotubes-Polyester Nanocomposites Exposed to Short Term Seawater Immersion

    Directory of Open Access Journals (Sweden)

    Mohd Shahneel Saharudin

    2017-07-01

    Full Text Available Halloysite nanotubes (HNTs-polyester nanocomposites with four different concentrations were produced using solution casting technique and the biodegradation effect of short-term seawater exposure (120 h was studied. Monolithic polyester was observed to have the highest seawater absorption with 1.37%. At 0.3 wt % HNTs reinforcement, the seawater absorption dropped significantly to the lowest value of 0.77% due to increase of liquid diffusion path. For samples tested in dry conditions, the Tg, storage modulus, tensile properties and flexural properties were improved. The highest improvement of Tg was from 79.3 to 82.4 °C (increase 3.1 °C in the case of 0.3 wt % HNTs. This can be associated with the exfoliated HNTs particles, which restrict the mobility of polymer chains and thus raised the Tg. After seawater exposure, the Tg, storage modulus, tensile properties and flexural properties of polyester and its nanocomposites were decreased. The Young’s modulus of 0.3 wt % HNTs-polyester dropped 20% while monolithic polyester dropped up to 24% compared to their values in dry condition. Apart from that, 29% flexural modulus reduction was observed, which was 18% higher than monolithic polyester. In contrast, fracture toughness and surface roughness increased due to plasticization effect. The presence of various microbial communities caused gradual biodegradation on the microstructure of the polyester matrix as also evidently shown by SEM images.

  17. Effects of monomer shape on the formation of aggregates from a power law monomer distribution

    International Nuclear Information System (INIS)

    Perry, J; Kimery, J; Matthews, L S; Hyde, T W

    2013-01-01

    The coagulation of dust aggregates is an important process in many physical systems such as the Earth's upper atmosphere, comet tails and protoplanetary discs. Numerical models which study the aggregation in these systems typically involve spherical monomers. There is evidence, however, via the polarization of sunlight in the interstellar medium, as well as optical and LIDAR observations of high-altitude particles in Earth's atmosphere (70–100 km), which indicate that dust monomers may not necessarily be spherical. This study investigates the influence of different ellipsoidal monomer shapes on the morphology of aggregates given various distributions of monomer sizes. Populations of aggregates are grown from a single monomer using a combination of ballistic particle–cluster aggregation and ballistic cluster–cluster aggregation regimes incorporating the rotation of monomers and aggregates. The resulting structures of the aggregates are then compared via the compactness factor, geometric cross-section and friction time. (paper)

  18. Oleic Acid Based Polyesters of Trimethylolpropane and Pentaerythritol for Bio lubricant Application

    International Nuclear Information System (INIS)

    Hamizah Ammarah Mahmud; Nadia Salih; Jumat Salimon

    2015-01-01

    The production of polyesters based on oleic acid and trimethylolpropane (TMP) or pentaerythritol (PE) as potential bio lubricant were carried out. The esterification processes between oleic acid with TMP or PE were carried out using sulfuric acid as a catalyst. The esterification process produced high yield between 92 %-94 % w/w respectively. The formation of polyesters was confirmed using gas chromatography (GC-FID), Fourier Transform Infrared Spectroscopy (FTIR) and Nuclear Magnetic Resonance (NMR). The polyesters were analyzed for basic lubrication physicochemical properties. The results showed that polyesters of both TMP and PE having high viscosity index between 200-309, good pour points ranging from -42 to -59 degree Celsius and high flash points of 280 - 300 degree Celsius respectively. The polyesters also showed good thermal oxidative stability with TGA onset temperatures above 180 degree Celsius. In general both products are plausible to be used as bio lubricant for industrial application. (author)

  19. Thermal Analysis, Mechanical and Rheological Behaviour of Melt Manufactured Polyethylene/Liquid Crystal Polymer Blends

    Directory of Open Access Journals (Sweden)

    Ilze ELKSNITE

    2011-07-01

    Full Text Available Modification of properties of conventional thermoplastics with thermotropic liquid crystal polymers, from one hand, allows decrease their viscosities, substantially facilitating processing conditions, and, from another hand, allows increase their exploitation properties. Orientation of the labile structure of liquid crystal polymer in extrusion or injection moulding causes specific reinforcement (so-called self-reinforcement to occur in the blends containing liquid crystal polymer. Up to now the effect of self-reinforcement is mostly investigated in the blends, containing considerable amount of liquid crystal polymer. In this research the effect of minor amounts of liquid crystalline co-polyester modifier on the properties of polyethylene is investigated. Various compositions of laboratory synthesized hydroxybenzoic acid /polyethylene terephtalate copolymer containing polyethylene composites have been manufactured by thermoplastic blending. It has been observed that 1 modulus of elasticity, yield strength and ultimate strength increase with raising the content of liquid crystalline modifier; 2 void content in the investigated polyethylene/liquid crystal copolymer composites is not greater that 1 %; 3 addition of liquid crystalline co-polyester modifier improves arrangement of PE crystalline phase.http://dx.doi.org/10.5755/j01.ms.17.2.483

  20. Life-cycle assessment of textiles manufacture of polyester shirt (VB)

    DEFF Research Database (Denmark)

    Othman, Samer; Peter, Oduro Justice; Hassan, Osama

    1998-01-01

    According to the EDIP (Environmental Design of Industrial Products), It is made possible to perform resource and environmental profile analysis of the 100% polyester shirt. In order to understand the true life-cycle consequences, life-cycle analysis of a typical 100% polyester shirt was carried out...

  1. Corrosion Protection Performance of Polyester-Melamine Coating with Natural Wood Fiber Using EIS Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Shin, PyongHwa; Shon, MinYoung [Pukyong National University, Busan (Korea, Republic of); Jo, DuHwan [POSCO, Gwangyang (Korea, Republic of)

    2016-04-15

    In the present study, polyester-melamine coating systems with natural wood fiber (NWF) were prepared and the effects of NWF on the corrosion protectiveness of the polyester-melamine coating were examined using EIS analysis. From the results, higher average surface roughness was observed with increase of NWF content. Water diffusivity and water uptake into the polyester-melamine coatings with NWF were much higher than that into the pure polyester-melamine coating. The decrease in the impedance modulus |Z| was associated with the localized corrosion on carbon steel, confirming that corrosion protection of the polyester-melamine coatings with NWF well agrees with its water transport behavior.

  2. Effect of sucrose polyesters on crystallization rate of vegetable ghee: solid fat content study

    Directory of Open Access Journals (Sweden)

    Ibrahim Nasir, Mohammad

    2003-12-01

    Full Text Available Crystallization rate of partial hydrogenated blend of soybean oil and cottonseed oil used for making vegetable ghee (vanaspati was investigated, by solid fat content (SFC using pulsed nuclear magnetic resonance (p-NMR. The effects of adding sucrose fatty acid esters or sucrose polyesters (SPE on the crystallization rate of the blend fat were studied. Sucrose tetrastearate DK ester F-10 (stearate 70% - palmitate 30% was added to the fat at different concentration, namely 0.5% and 1.0%. Blank sample and sample containing 0.5% and 1.0% DK ester F-10 / (DK F-10 were chosen to measure the change in SFC at constant temperature of 15ºC for a period of 25 hr. Five determinations of SFC were taken to the fat samples during the 25 hr i.e. 2,5,9,13 and 25th hr. SFC vs. time of crystallization of the three samples showed continuous increasing in SFC in all samples during the 25 hr, with sharp increasing at the first two hours. Samples containing 0.0% and 0.5% DK F-10, showed no significant difference in SFC during the first thirteen hours, while sample containing 1.0% DK F-10, showed higher SFC than the other two samples, through out the period. The amount of SFC for 1.0% DK F-10 sample at the 13th hour is equal to the SFC of the blank (0.0% sample at the 25th hour. Melting point of the same samples increased with the increasing DK F-10 concentration in the fat samples. The results of SFC make it sure that the addition of 1.0% DK F- 10 will shorten the time required for the crystallization of vegetable ghee while the addition of 0.5% will not have significant effect.Se ha investigado, mediante el contenido en grasa sólida (SFC por resonancia magnética nuclear pulsada (p-NMR, la velocidad de cristalización de mezcla de aceite de la soja y aceite de semilla del algodón parcialmente hidrogenada utilizada en la elaboración de ghee vegetal (vanaspati. Se han estudiado los efectos de añadir ésteres de sacarosa de ácidos grasos o poliésteres de

  3. Scattering Studies of Hydrophobic Monomers in Liposomal Bilayers: An Expanding Shell Model of Monomer Distribution

    International Nuclear Information System (INIS)

    Richter, Andrew; Dergunov, Sergey; Ganus, Bill; Thomas, Zachary; Pingali, Sai Venkatesh; Urban, Volker S.; Liu, Yun; Porcar, Lionel; Pinkhassik, Eugene

    2011-01-01

    Hydrophobic monomers partially phase separate from saturated lipids when loaded into lipid bilayers in amounts exceeding a 1:1 monomer/lipid molar ratio. This conclusion is based on the agreement between two independent methods of examining the structure of monomer-loaded bilayers. Complete phase separation of monomers from lipids would result in an increase in bilayer thickness and a slight increase in the diameter of liposomes. A homogeneous distribution of monomers within the bilayer would not change the bilayer thickness and would lead to an increase in the liposome diameter. The increase in bilayer thickness, measured by the combination of small-angle neutron scattering (SANS) and small-angle X-ray scattering (SAXS), was approximately half of what was predicted for complete phase separation. The increase in liposome diameter, measured by dynamic light scattering (DLS), was intermediate between values predicted for a homogeneous distribution and complete phase separation. Combined SANS, SAXS, and DLS data suggest that at a 1.2 monomer/lipid ratio approximately half of the monomers are located in an interstitial layer sandwiched between lipid sheets. These results expand our understanding of using self-assembled bilayers as scaffolds for the directed covalent assembly of organic nanomaterials. In particular, the partial phase separation of monomers from lipids corroborates the successful creation of nanothin polymer materials with uniform imprinted nanopores. Pore-forming templates do not need to span the lipid bilayer to create a pore in the bilayer-templated films.

  4. Diphenyl (4′-(Aryldiazenylbiphenyl-4-ylamino(pyridin-3-ylmethylphosphonates as Azo Disperse Dyes for Dyeing Polyester Fabrics

    Directory of Open Access Journals (Sweden)

    Mohamed F. Abdel-Megeed

    2013-01-01

    Full Text Available Diphenyl (4′-aminobiphenyl-4-ylamino(pyridin-3-ylmethylphosphonate (1 was synthesized in 88% yield from reaction of pyridine-3-carboxaldehyde with benzidine and triphenylphosphite in the presence of titanium tetrachloride as a catalyst. Diazotization of 1 gave the corresponding diazonium salt 2 which was coupled with several hydroxyl or amino compounds to give the corresponding azo dyes 3–8 in 82–88% yields after crystallization. The dyes produced were applied to polyesters as disperse dyes and their fastness properties were elevated.

  5. Obtaining polyester from glycerin for synthesis of polyurethanes

    International Nuclear Information System (INIS)

    Breves, Rodolfo A.; Ghesti, Grace F.; Sales, Maria J.A.

    2014-01-01

    The use of renewable resources has been increasing, due to the development of materials that have viable applications that are environmentally friendly. In this paper, a polyester was synthesized from glycerin, with the addition of adipic acid in a molar ratio of 1: 1.5, with dilauryl tin catalyst, which was added in proportions of 1 to 3% obtained PUs from castor oil (Ricinus communis) and MDI (diphenyl methane diisocyanate). The materials were characterized by infrared spectroscopy (FTIR), nuclear magnetic resonance "1H NMR, thermogravimetry (TG) and derivative thermogravimetry (DTG). The reaction for obtaining the polyester was confirmed by FTIR, the absorption band between 1708-1730 cm"-"1 and "1H NMR, in the region 1.4 to 1.8 ppm and 2.2 to 2.6 ppm. The thermal decomposition of polyester occurred with temperature above 300 ° C. PUs showed similar thermal stability. (author)

  6. S Sivaram, NCL, Pune

    Indian Academy of Sciences (India)

    admin

    Sustainable materials based on aliphatic polyesters: Teaching old chemistry some new tricks. Aliphatic polyesters, a ... strategies to get around these limitations. Many such strategies have emerged in ... This lecture will highlight current challenges in the synthesis of aliphatic polyesters using a wide variety of monomers and ...

  7. Radiation cured polyester compositions containing metal-properties

    Science.gov (United States)

    Szalińska, H.; Pietrzak, M.; Gonerski, A.

    The subject of the studies was unsaturated polyester resin, Polimal-109 and its compositions containing acrylates of: sodium, potassium, calcium, magnesium, barium, manganese, iron, cobalt, copper and acrylic acid. Polyester resin modified with acrylic acid salts was cured with 60Co gamma radiation. Measurements of Vicat softening temperature, water absorption, creep current resistance, volume and surface resistivity, the tangent of dielectric loss angle and permittivity of radiation cured compositions were carried out. The results of the studies presented testify to the fact that the properties of cross-linked polymers alter after ionogenic compounds have been introduced into them.

  8. Radiation cured polyester compositions containing metal-properties

    International Nuclear Information System (INIS)

    Szalinska, H.; Pietrzak, M.; Gonerski, A.

    1987-01-01

    The subject of the studies was unsaturated polyester resin, Polimal-109 and its compositions containing acrylates of: sodium, potassium, calcium, magnesium, barium, manganese, iron, cobalt, copper and acrylic acid. Polyester resin modified with acrylic acid salts was cured with 60 Co gamma radiation. Measurements of Vicat softening temperature, water absorption, creep current resistance, volume and surface resistivity, the tangent of dielectric loss angle and permittivity of radiation cured compositions were carried out. The results of the studies presented testify to the fact that the properties of cross-linked polymers alter after ionogenic compounds have been introduced into them. (author)

  9. Sustainable coatings from bio-based, enzymatically synthesized polyesters with enhanced functionalities

    NARCIS (Netherlands)

    Gustini, L.; Lavilla, C.; Finzel, L.; Noordover, B.A.J.; Hendrix, M.M.R.M.; Koning, C.E.

    2016-01-01

    Bio-based sorbitol-containing polyester polyols were synthesized via enzymatic polycondensation. The selectivity of the biocatalyst for primary vs. secondary hydroxyl groups allowed for the preparation of close to linear renewable polyester polyols with enhanced hydroxyl functionalities, both as

  10. Liquid crystal polyester-carbon fiber composites

    Science.gov (United States)

    Chung, T. S.

    1984-01-01

    Liquid crystal polymers (LCP) have been developed as a thermoplastic matrix for high performance composites. A successful melt impregnation method has been developed which results in the production of continuous carbon fiber (CF) reinforced LCP prepreg tape. Subsequent layup and molding of prepreg into laminates has yielded composites of good quality. Tensile and flexural properties of LCP/CF composites are comparable to those of epoxy/CF composites. The LCP/CF composites have better impact resistance than the latter, although epoxy/CF composites possess superior compression and shear strength. The LCP/CF composites have good property retention until 200 F (67 % of room temperature value). Above 200 F, mechanical properties decrease significantly. Experimental results indicate that the poor compression and shear strength may be due to the poor interfacial adhesion between the matrix and carbon fiber as adequate toughness of the LCP matrix. Low mechanical property retention at high temperatures may be attributable to the low beta-transition temperature (around 80 C) of the LCP matrix material.

  11. Surface coatings of unsaturated polyester resin Kamper wood (Dry obalan ops spp.) by using UV radiation

    International Nuclear Information System (INIS)

    Sugiarto Danu; Yusuf Sudo Hadi; Novi Eka Putri

    1999-01-01

    Kamper wood (Dryobalanops spp.) has high contribution in wood working industry and most of them need surface coating process. Radiation curing of surface coating, especially the use of ultra-violet (UV) light have potential to give contribution in the wood finishing. The experiment on surface coating of kamper wood has been conducted by using UV-radiation. Unsaturated polyester resin with the commercial name of Yucalac type 157 was used as coating materials after being added with styrene monomer, some fillers and radical photoinitiator of 2-hydroxy-2-2-methyl-l- phenyl propanone. Four photoinitiator concentration levels of 1.5 ; 2 ; 2.5 and 3 % by weight of resin were used. The coating materials were coated onto the wood panel samples by using high pressure sprayer. The wood samples were then exposed to irradiation by using 80 Watts/cm UV-source with variable conveyor speed of 3 ; 4 ; 5 and 5.8 m/min. Formulation of coating materials, pendulum hardness, adhesion, and gloss of cured films were evaluated

  12. Reactive distillation: an attractive alternative for the synthesis of unsaturated polyester

    NARCIS (Netherlands)

    Shah, M.R.; Zondervan, E.; Oudshoorn, M.L.; Haan, de A.B.

    2011-01-01

    Unsaturated polyester is traditionally produced in a batch wise operating reaction vessel connected to a distillation unit. An attractive alternative for the synthesis of unsaturated polyester is a reactive distillation. To value such alternative synthesis route reliable process models need to be

  13. Synthesis of the diazonium (perfluoroalkyl) benzenesulfonimide monomer from Nafion monomer for proton exchange membrane fuel cells

    Science.gov (United States)

    Mei, Hua; D'Andrea, Dan; Nguyen, Tuyet-Trinh; Nworie, Chima

    2014-02-01

    One diazonium (perfluoroalkyl) benzenesulfonimide monomer, perfluoro-3, 6-dioxa-4-methyl-7-octene benzenesulfonyl imide, has been synthesized from Nafion monomer for the first time. With trifluorovinyl ether and diazonium precursors, the partially-fluorinated diazonium PFSI monomer can be polymerized and will provide chemically bonding with carbon electrode in proton exchange membrane fuel cells. A systematic study of the synthesis and characterization of this diazonium PFSI monomer has been conducted by varying reaction conditions. The optimized synthesis method has been established in the lab.

  14. Thermal Degradation Mechanism of a Thermostable Polyester Stabilized with an Open-Cage Oligomeric Silsesquioxane

    Directory of Open Access Journals (Sweden)

    Yolanda Bautista

    2017-12-01

    Full Text Available A polyester composite was prepared through the polymerization of an unsaturated ester resin with styrene and an open-cage oligomeric silsesquioxane with methacrylate groups. The effect of the open-cage oligomeric silsesquioxane on the thermal stability of the thermostable polyester was studied using both thermogravimetric analysis and differential thermal analysis. The results showed that the methacryl oligomeric silsesquioxane improved the thermal stability of the polyester. The decomposition mechanism of the polyester/oligomer silsesquioxane composite was proposed by Fourier transform infrared spectroscopy (FTIR analysis of the volatiles.

  15. Study on the control of the compositions and properties of a biodegradable polyester elastomer

    Energy Technology Data Exchange (ETDEWEB)

    Liu Quanyong; Weng Jingyi; Zhang Liqun [Key Laboratory of Beijing City on Preparation and Processing of Novel Polymer Materials, Beijing University of Chemical Technology, Beijing 100029 (China); Tan Tianwei, E-mail: liu_quanyong@126.co, E-mail: zhanglq@mail.buct.edu.c [Key Laboratory of Bioprocess of Beijing, Beijing University of Chemical Technology, Beijing 100029 (China)

    2009-04-15

    Biodegradable polyester elastomers are widely reported to be applied in varied biomedical fields. In this paper, we attempt to investigate how both the thermal-curing time and molar ratio of the monomers affect the final compositions and properties of the novel poly(glycerol-sebacate-citrate) (PGSC) elastomers. First, PGSC elastomers are obtained after the thermal curing of the moldable mixtures consisting of citric acid and poly(glycerol-sebacate) (PGS) prepolymers synthesized in the lab. Then further studies show that, on the one hand, the control of longer thermal-curing time results in elastomers with less sol, lower swelling degree, slower degradation, greater mechanical strength and higher glass transition temperature and, on the other hand, the crosslink with more citric acid is advantageous to greatly improving their mechanical strength and glass transition temperatures, simultaneously decreasing their sol contents, swelling degrees and degradation rates. The PGSC elastomers show thermosetting properties, certain strength, mass losses lower than 20% after 4-week degradation and durative water absorption during degradation. Thus they might be potentially used as degradable bio-coatings, varied soft biomedical membranes and drug delivery matrices.

  16. 76 FR 11268 - Certain Polyester Staple Fiber From Korea and Taiwan

    Science.gov (United States)

    2011-03-01

    ... Polyester Staple Fiber From Korea and Taiwan AGENCY: United States International Trade Commission. ACTION... Korea and Taiwan. SUMMARY: The Commission hereby gives notice that it has instituted reviews pursuant to... the antidumping duty orders on certain polyester staple fiber from Korea and Taiwan would be likely to...

  17. Synthesis, characterization and ESR study of polyesters containing isomeric naphthylene units by gamma irradiation

    International Nuclear Information System (INIS)

    Choi, B.K.; Hill, D.J.T.; Choi, E.J.; Ahn, H.K.

    1998-01-01

    Full text: Aromatic polyesters containing naphthalene groups have interesting properties because the geometry of the naphthalene group can provide many of the structural features for the polymer chain. In this study we synthesized six polyesters from 4,4 ' - (hexafluoroisopropyl-idene)bis(benzoic acid) and isomeric naphthylene-diols. An ESR study of the radicals formed on gamma radiolysis of the polyesters has been undertaken to investigate their relative radiation sensitivities. The structures of the polyesters were characterized by means of IR spectroscopy. Inherent viscosities were measured in the range of 0.11 - 0.46 dL/g. Thermal properties of polyesters were determined by DSC and TGA thermograms, respectively. All polyesters were irradiated in an AECL Gamma cell with a dose rate of approximately 6.7kGy h -1 to doses in the range of 0 - 15kGy at 77K and 300K, respectively. In order to identify other radicals present at 77K, annealing studies were utilized by taking advantage of the different reactivities of these radicals

  18. Rewritable azobenzene polyester for polarization holographic data storage

    DEFF Research Database (Denmark)

    Kerekes, A; Sajti, Sz.; Loerincz, Emoeke

    2000-01-01

    Optical storage properties of thin azobenzene side-chain polyester films were examined by polarization holographic measurements. The new amorphous polyester film is the candidate material for the purpose of rewritable holographic memory system. Temporal formation of anisotropic and topographic...... gratings was studied in case of films with and without a hard protective layer. We showed that the dominant contribution to the diffraction efficiency comes from the anisotropy in case of expositions below 1 sec even for high incident intensity. The usage of the same wavelength for writing, reading...

  19. The biomechanical evaluation of polyester as a tension band for the internal fixation of patellar fractures.

    LENUS (Irish Health Repository)

    McGreal, G

    2012-02-03

    We use a braided polyester suture in place of cerclage wire in tension band fixations. The objective of this study was to test the biomechanical properties of this technique. Sixteen cadaveric patellae were fractured and repaired by modified tension band fixation. Eight were fixed using eighteen gauge stainless steel wire as a tension band and eight using braided polyester. All specimens were subjected to tensile testing. Polyester was 75.0% as strong as wire. For dynamic testing, the patellae of seven cadaveric knees were fractured and then fixed with polyester tension bands. These were mounted in a device capable of extending the knees from 90 degrees to neutral against an applied force. None of the fixations failed. Three of the specimens fixed using 18 gauge stainless steel wire were compared with three fixed using polyester over 2000 cycles of knee flexion and extension. Polyester performed as well as wire. We conclude that polyester is an acceptable alternative to wire in tension band fixation.

  20. Study on the improvement of hydrophilic character on polyvinylalcohol treated polyester fabric

    Directory of Open Access Journals (Sweden)

    S. Pitchai

    2014-12-01

    Full Text Available Polyester fabric was treated with polyvinyl alcohol in alkaline medium. The moisture regain, water retention and wettability of the PVA treated polyester fabric were tested. The PVA treated PET fabric was dyed with disperse dye. The presence of PVA in the treated PET fabric was assessed by spot test. The treated fabric was also characterized by scanning electron microscope, FTIR and differential scanning calorimetry. The PVA treated polyester fabric showed improved hydrophilic character over intact and sodium hydroxide treated PET fabrics.

  1. Characterizing the sorption of polybrominated diphenyl ethers (PBDEs) to cotton and polyester fabrics under controlled conditions

    Energy Technology Data Exchange (ETDEWEB)

    Saini, Amandeep [Department of Physical and Environmental Sciences, University of Toronto Scarborough, 1265 Military trail, Toronto, ON M1C 1A4 (Canada); Rauert, Cassandra [School of Geography, Earth and Environmental Sciences, University of Birmingham, Birmingham B15 2TT (United Kingdom); Simpson, Myrna J. [Department of Physical and Environmental Sciences, University of Toronto Scarborough, 1265 Military trail, Toronto, ON M1C 1A4 (Canada); Harrad, Stuart [School of Geography, Earth and Environmental Sciences, University of Birmingham, Birmingham B15 2TT (United Kingdom); Diamond, Miriam L., E-mail: miriam.diamond@utoronto.ca [Department of Earth Sciences, 22 Russell Street, University of Toronto, Toronto, ON M5S 3B1 (Canada); Department of Physical and Environmental Sciences, University of Toronto Scarborough, 1265 Military trail, Toronto, ON M1C 1A4 (Canada)

    2016-09-01

    Cotton and polyester, physically and chemically different fabrics, were characterized for sorption of gas-phase polybrominated diphenyl ethers (PBDEs). Scanning electron microscopic (SEM) images and BET specific surface area (BET-SSA) analysis showed cotton's high microsurface area; NMR analysis showed richness of hexose- and aromatic-carbon in cotton and polyester, respectively. Cotton and polyester sorbed similar concentrations of gas-phase PBDEs in chamber studies, when normalized to planar surface area. However, polyester concentrations were 20–50 times greater than cotton when normalized to BET-SSA, greater than the 10 times difference in BET-SSA. The difference in sorption between cotton and polyester is hypothesized to be due to ‘dilution’ due to cotton's large BET-SSA and/or greater affinity of PBDEs for aromatic-rich polyester. Similar fabric-air area normalized distribution coefficients (K'{sub D}, 10{sup 3} to 10{sup 4} m) for cotton and polyester support air-side controlled uptake under non-equilibrium conditions. K'{sub D} values imply that 1 m{sup 2} of cotton or polyester fabrics would sorb gas-phase PBDEs present in 10{sup 3} to 10{sup 4} m{sup 3} of equivalent air volume at room temperature over one week, assuming similar air flow conditions. Sorption of PBDEs to fabrics has implications for their fate indoors and human exposure. - Highlights: • Sorption of gas-phase PBDEs by cotton and polyester fabrics • Similar sorption to cotton and polyester per unit planar surface area • Greater sorption by polyester/BET-SSA; cotton's dilution or polyester’s affinity • 1 m{sup 2} fabric sorbs PBDEs in 10{sup 3} to 10{sup 4} m{sup 3} of equivalent air volume • Clothing likely a large indoor sink of PBDEs and influence human exposure.

  2. The radiation chemistry of symmetric aliphatic polyesters

    International Nuclear Information System (INIS)

    Babanalbandi, A.; Hill, D.J.T.; Pomery, P.J.; Whittaker, A.K.

    1996-01-01

    Full text: Naturally occurring, symmetric polyesters, including polyglycolic acid, polylactic acid and polyhydroxybutyrate, have found biomedical applications in areas as diverse as the controlled release of pharmaceuticals and the manufacture of surgical sutures. As biomedical products, the materials require sterilization by high energy radiation. This has provided the motivation for the present work. D'Alelio et al. have reported that linear, asymmetric polyesters undergo scission on irradiation, but that branched polyesters containing a methyl group in the diol segments undergo crosslinking. However, for the symmetric polyhydroxybutyrate, Carswell-Pomerantz et al. have reported that only scission occurs on radiolysis, with the evolution of CO and CO 2 as a result of the loss of ester linkages. These workers also found that G(CO + CO 2 ) was approximately equal to G(S) for this polyester. By contrast, Collett et al. have reported that G(S) = 1.26 and G(X) = 0.53 for polylactic acid, which indicates that the polymer undergoes nett crosslinking on radiolysis to form a gel. They have also reported that poly(lactic-co-glycolic acid) should form a gel on radiolysis, since G(S) = 1.66 and G(X) = 0.65 for a 1:1 copolymer composition. In the present work the radiolysis of polylactic acid and poly(lactic-co-glycolic acid) have been reinvestigated in order to resolve the differences between the work of Collett et al. and that of Carswell-Pomerantz et al. In these studies, ESR has been used to study the radicals formed, GPC has been used to investigate scission and crosslinking, GC has been used to study the small molecule volatile products and NMR spectroscopy has been used to identify and measure the new chemical structures formed in the polymers

  3. Copolymerization of Carbon–carbon Double-bond Monomer (Styrene with Cyclic Monomer (Tetrahydrofuran

    Directory of Open Access Journals (Sweden)

    Sari Fouad

    2012-12-01

    Full Text Available We reported in this work that the cationic copolymerization in one step takes place between carbon–carbon double-bond monomer styrene with cyclic monomer tetrahydrofuran. The comonomers studied belong to different families: vinylic and cyclic ether. The reaction is initiated with maghnite-H+ an acid exchanged montmorillonite as acid solid ecocatalyst. Maghnite-H+ is already used as catalyst for polymerization of many vinylic and heterocyclic monomers. The oxonium ion of tetrahydrofuran and carbonium ion of styrene propagated the reaction of copolymerization. The acetic anhydride is essential for the maintenance of the ring opening of tetrahydrofuran and the entry in copolymerization. The temperature was kept constant at 40°C in oil bath heating for 6 hours. A typical reaction product was analyzed by 1H-NMR, 13C-NMR and IR and the formation of the copolymer was confirmed. The reaction was proved by matched with analysis. The maghnite-H+ allowed us to obtain extremely pure copolymer in good yield by following a simples operational conditions. Copyright © 2012 by BCREC UNDIP. All rights reservedReceived: 29th October 2012; Revised: 29th November 2012; Accepted: 29th November 2012[How to Cite: S. Fouad, M.I. Ferrahi, M. Belbachir. (2012. Copolymerization of Carbon–carbon Double-bond Monomer (Styrene with Cyclic Monomer (Tetrahydrofuran. Bulletin of Chemical Reaction Engineering & Catalysis, 7(2: 165-171. (doi:10.9767/bcrec.7.2.4074.165-171][How to Link / DOI: http://dx.doi.org/10.9767/bcrec.7.2.4074.165-171 ] | View in 

  4. Other Polyesters from Biomass Derived Monomers

    NARCIS (Netherlands)

    Es, van D.S.; Klis, van der F.; Knoop, J.R.I.; Molenveld, K.; Sijtsma, L.; Haveren, van J.

    2013-01-01

    In the transition from a fossil-based to a bio-based economy the introduction of bio-based chemicals can be achieved via two distinctly different approaches. The first approach is based on the conversion of bio-mass into existing (petro)chemicals; the ‘drop-in’ approach. The main benefit of this

  5. Hyperbranched polyester polyol plasticized tapioca starch/low density polyethylene blends

    Energy Technology Data Exchange (ETDEWEB)

    Guzman, Manuel; Giraldo, Diego; Murillo, Edwin, E-mail: edwinalbertomurillo@gmail.com [Universidad de Antioquia, Medellin (Colombia); Universidad Francisco de Paula Santander, San Jose de Cucuta (Colombia)

    2017-01-15

    n this work, low density polyethylene (LDPE)/plasticised starch (TPS) blends were prepared. The TPS employed in this study was obtained by plasticization of tapioca starch with a hyperbranched polyester polyol. Differential scanning calorimetry analysis showed that the melting temperature increased with the TPS content. The opposite effect was exhibited in the crystallization temperature and additional changes were not observed during the heating. X-ray diffraction analysis showed a reduction in intensity of the peak at Bragg’s angle 17.5°, proving a diminution on A type crystallinity with the increasing amount of LDPE. Micrographs obtained by scanning electron microscopy exhibited starch granules without destructure. TPS acted as a filler to LDPE, since the mechanical properties (Young's modulus and tensile strength) improved ostensibly. The Young' modulus and tensile strength decreased with the amount of LDPE, however, the elongation at break exhibited an opposite behavior. (author)

  6. Hyperbranched polyester polyol plasticized tapioca starch/low density polyethylene blends

    Directory of Open Access Journals (Sweden)

    Manuel Guzmán

    Full Text Available Abstract In this work, low density polyethylene (LDPE/plasticized starch (TPS blends were prepared. The TPS employed in this study was obtained by plasticization of tapioca starch with a hyperbranched polyester polyol. Differential scanning calorimetry analysis showed that the melting temperature increased with the TPS content. The opposite effect was exhibited in the crystallization temperature and additional changes were not observed during the heating. X-ray diffraction analysis showed a reduction in intensity of the peak at Bragg’s angle 17.5°, proving a diminution on A type crystallinity with the increasing amount of LDPE. Micrographs obtained by scanning electron microscopy exhibited starch granules without destructure. TPS acted as a filler to LDPE, since the mechanical properties (Young’s modulus and tensile strength improved ostensibly. The Young’ modulus and tensile strength decreased with the amount of LDPE, however, the elongation at break exhibited an opposite behavior.

  7. Hyperbranched polyester polyol plasticized tapioca starch/low density polyethylene blends

    International Nuclear Information System (INIS)

    Guzman, Manuel; Giraldo, Diego; Murillo, Edwin

    2017-01-01

    n this work, low density polyethylene (LDPE)/plasticised starch (TPS) blends were prepared. The TPS employed in this study was obtained by plasticization of tapioca starch with a hyperbranched polyester polyol. Differential scanning calorimetry analysis showed that the melting temperature increased with the TPS content. The opposite effect was exhibited in the crystallization temperature and additional changes were not observed during the heating. X-ray diffraction analysis showed a reduction in intensity of the peak at Bragg’s angle 17.5°, proving a diminution on A type crystallinity with the increasing amount of LDPE. Micrographs obtained by scanning electron microscopy exhibited starch granules without destructure. TPS acted as a filler to LDPE, since the mechanical properties (Young's modulus and tensile strength) improved ostensibly. The Young' modulus and tensile strength decreased with the amount of LDPE, however, the elongation at break exhibited an opposite behavior. (author)

  8. 76 FR 58040 - Certain Polyester Staple Fiber From Korea and Taiwan

    Science.gov (United States)

    2011-09-19

    ... Polyester Staple Fiber From Korea and Taiwan Determination On the basis of the record \\1\\ developed in the... antidumping duty orders on certain polyester staple fiber from Korea and Taiwan would be likely to lead to continuation or recurrence of material injury to an industry in the United States within a reasonably...

  9. Effect of a Polymercaptan Material on the Electro-Optical Properties of Polymer-Dispersed Liquid Crystal Films

    Directory of Open Access Journals (Sweden)

    Yujian Sun

    2016-12-01

    Full Text Available Polymer-dispersed liquid crystal (PDLC films were prepared by the ultraviolet-light-induced polymerization of photopolymerizable monomers in nematic liquid crystal/chiral dopant/thiol-acrylate reaction monomer composites. The effects of the chiral dopant and crosslinking agents on the electro-optical properties of the PDLC films were systematically investigate. While added the chiral dopant S811 into the PDLC films, the initial off-state transmittance of the films was decreased. It was found that the weight ratio among acrylate monomers, thiol monomer PETMP and the polymercaptan Capcure 3-800 showed great influence on the properties of the fabricated PDLC films because of the existence of competition between thiol-acrylate reaction and acrylate monomer polymerization reaction. While adding polymercaptans curing agent Capcure 3-800 with appropriate concentration into the PDLC system, lower driven voltage and higher contrast ratio were achieved. This made the polymer network and electro-optical properties of the PDLC films easily tunable by the introduction of the thiol monomers.

  10. Effect of a Polymercaptan Material on the Electro-Optical Properties of Polymer-Dispersed Liquid Crystal Films.

    Science.gov (United States)

    Sun, Yujian; Zhang, Cuihong; Zhou, Le; Fang, Hua; Huang, Jianhua; Ma, Haipeng; Zhang, Yi; Yang, Jie; Zhang, Lan-Ying; Song, Ping; Gao, Yanzi; Xiao, Jiumei; Li, Fasheng; Li, Kexuan

    2016-12-30

    Polymer-dispersed liquid crystal (PDLC) films were prepared by the ultraviolet-light-induced polymerization of photopolymerizable monomers in nematic liquid crystal/chiral dopant/thiol-acrylate reaction monomer composites. The effects of the chiral dopant and crosslinking agents on the electro-optical properties of the PDLC films were systematically investigate. While added the chiral dopant S811 into the PDLC films, the initial off-state transmittance of the films was decreased. It was found that the weight ratio among acrylate monomers, thiol monomer PETMP and the polymercaptan Capcure 3-800 showed great influence on the properties of the fabricated PDLC films because of the existence of competition between thiol-acrylate reaction and acrylate monomer polymerization reaction. While adding polymercaptans curing agent Capcure 3-800 with appropriate concentration into the PDLC system, lower driven voltage and higher contrast ratio were achieved. This made the polymer network and electro-optical properties of the PDLC films easily tunable by the introduction of the thiol monomers.

  11. Enzymatic Synthesis of Amino Acids Endcapped Polycaprolactone: A Green Route Towards Functional Polyesters.

    Science.gov (United States)

    Duchiron, Stéphane W; Pollet, Eric; Givry, Sébastien; Avérous, Luc

    2018-01-30

    ε-caprolactone (CL) has been enzymatically polymerized using α-amino acids based on sulfur (methionine and cysteine) as (co-)initiators and immobilized lipase B of Candida antarctica (CALB) as biocatalyst. In-depth characterizations allowed determining the corresponding involved mechanisms and the polymers thermal properties. Two synthetic strategies were tested, a first one with direct polymerization of CL with the native amino acids and a second one involving the use of an amino acid with protected functional groups. The first route showed that mainly polycaprolactone (PCL) homopolymer could be obtained and highlighted the lack of reactivity of the unmodified amino acids due to poor solubility and affinity with the lipase active site. The second strategy based on protected cysteine showed higher monomer conversion, with the amino acids acting as (co-)initiators, but their insertion along the PCL chains remained limited to chain endcapping. These results thus showed the possibility to synthesize enzymatically polycaprolactone-based chains bearing amino acids units. Such cysteine endcapped PCL materials could then find application in the biomedical field. Indeed, subsequent functionalization of these polyesters with drugs or bioactive molecules can be obtained, by derivatization of the amino acids, after removal of the protecting group.

  12. Flame Retardance and Physical Properties of Novel Cured Blends of Unsaturated Polyester and Furan Resins

    Directory of Open Access Journals (Sweden)

    Baljinder Kaur Kandola

    2015-02-01

    Full Text Available Novel blends of two furan resins with an unsaturated polyester have been prepared and cured by parallel free radical (for the unsaturated polyester and acid-catalysed crosslinking (for the furan resin to give co-cured composite materials. Although these materials have inferior physical properties, such as low Tg and low storage modulus compared with those of unsaturated polyester and furan resins alone, they show markedly improved flame retardance compared with that of the normally highly flammable unsaturated polyester. This increased flame retardance arises from a condensed phase mechanism in which the furanic component forms a semi-protective char, reducing rates of thermal degradation and total heat release and heat of combustion. The blends also burn with reduced smoke output compared with that from unsaturated polyester alone.

  13. Light-induced circular birefringence in cyanoazobenzene side-chain liquid-crystalline polyester films

    DEFF Research Database (Denmark)

    Naydenova, I; Nikolova, L; Ramanujam, P.S.

    1999-01-01

    We report the inducement of large circular birefringence (optical activity) in films of a cyanoazobenzene side-chain liquid-crystalline polyester on illumination with circularly polarized light. The polyester has no chiral groups and is initially isotropic. The induced optical rotation is up to 5...

  14. Properties and performance of flax yarn/thermoplastic polyester composites

    DEFF Research Database (Denmark)

    Madsen, Bo; Mehmood, Shahid

    2012-01-01

    Aiming at demonstrating the potential of unidirectional natural fiber-reinforced thermoplastic composites in structural applications, textile flax yarn/thermoplastic polyester composites with variable fiber volume fractions have been manufactured by a filament-winding process followed by a vacuum......-assisted compression molding process. The microstructure of the composites shows that the flax fiber yarns are well impregnated by the polyester matrix, and this supports the measured low porosity content of the composites. The experimental tensile modulus and ultimate tensile stress of the composites in the axial...

  15. Thermodynamics of monomer partitioning in polymer latices: effect of molar volume of the monomers

    NARCIS (Netherlands)

    Schoonbrood, H.A.S.; German, A.L.

    1994-01-01

    A model of the thermodn. of partitioning of moderately water-sol. monomers in polymer latex systems is developed to show deviations that occur when the molar vols. of the monomers are not similar. The model, as well as expts. with Me acrylate and cyclohexyl methacrylate in polystyrene latex systems,

  16. High-resolution structure of a retroviral protease folded as a monomer

    International Nuclear Information System (INIS)

    Gilski, Miroslaw; Kazmierczyk, Maciej; Krzywda, Szymon; Zábranská, Helena; Cooper, Seth; Popović, Zoran; Khatib, Firas; DiMaio, Frank; Thompson, James; Baker, David; Pichová, Iva; Jaskolski, Mariusz

    2011-01-01

    The crystal structure of Mason–Pfizer monkey virus protease folded as a monomer has been solved by molecular replacement using a model generated by players of the online game Foldit. The structure shows at high resolution the details of a retroviral protease folded as a monomer which can guide rational design of protease dimerization inhibitors as retroviral drugs. Mason–Pfizer monkey virus (M-PMV), a D-type retrovirus assembling in the cytoplasm, causes simian acquired immunodeficiency syndrome (SAIDS) in rhesus monkeys. Its pepsin-like aspartic protease (retropepsin) is an integral part of the expressed retroviral polyproteins. As in all retroviral life cycles, release and dimerization of the protease (PR) is strictly required for polyprotein processing and virion maturation. Biophysical and NMR studies have indicated that in the absence of substrates or inhibitors M-PMV PR should fold into a stable monomer, but the crystal structure of this protein could not be solved by molecular replacement despite countless attempts. Ultimately, a solution was obtained in mr-rosetta using a model constructed by players of the online protein-folding game Foldit. The structure indeed shows a monomeric protein, with the N- and C-termini completely disordered. On the other hand, the flap loop, which normally gates access to the active site of homodimeric retropepsins, is clearly traceable in the electron density. The flap has an unusual curled shape and a different orientation from both the open and closed states known from dimeric retropepsins. The overall fold of the protein follows the retropepsin canon, but the C α deviations are large and the active-site ‘DTG’ loop (here NTG) deviates up to 2.7 Å from the standard conformation. This structure of a monomeric retropepsin determined at high resolution (1.6 Å) provides important extra information for the design of dimerization inhibitors that might be developed as drugs for the treatment of retroviral infections

  17. Polyester textile functionalization through incorporation of pH/thermo-responsive microgels. Part II: polyester functionalization and characterization

    NARCIS (Netherlands)

    Glampedaki, P.; Calvimontes, A.; Dutschk, Victoria; Warmoeskerken, Marinus

    2012-01-01

    A new approach to functionalize the surface of polyester textiles is described in this study. Functionalization was achieved by incorporating pH/temperature-responsive polyelectrolyte microgels into the textile surface layer using UV irradiation. The aim of functionalization was to regulate

  18. Polyester Polyols from Waste PET Bottles for Polyurethane Rigid Foams

    OpenAIRE

    Evtimova, Rozeta; Lozeva, Yordanka; Schmidt, Karl-Heinz; Wotzka, Michael; Wagner, Peter; Behrendt, Gerhard

    2003-01-01

    This paper describes a modified process to produce polyester polyols from PET wastes derived from the “bottle fraction residue” of the German Dual System (DSD) [11] employing a waste oligoester condensate of the polyesterification process with the addition of some glycols of longer chain and occasional modification with further dicarboxylic acids to produce polyester polyols of a broad range of properties which are further reacted to form polyurethane or polyisocyanurate rigid foams for insul...

  19. New UV-curable acrylated polyester prepolymers from palm oil based products

    International Nuclear Information System (INIS)

    Mohd Azam Ali; Ooi, T.L.; Salmiah Ahmad; Umaru, S.I.; Mohd Ishak, Z.A.

    1999-01-01

    Acrylated polyester prepolymers (PEPP-1 and PEPP-2) were synthesized from palm oil and its products. UV-curing and characteristic properties of UV-cured films of synthesized polyester resins were studied. The characteristic properties studied include pendulum hardness, gel content, FT-IR analysis, tensile strength and elongation at break. The materials have good potential for the production of radiation curable coating applications

  20. Composite Preparation of Wood Dust-Polyester-Coconut Choir Fiber Mixture for Particle Board

    International Nuclear Information System (INIS)

    Danu, Sugiarto; Darsono; Padmono; Betty, Angesti

    2002-01-01

    Experiment on the use of γ-ray of Co 60 radiation has been used for curing of composite which made of wood dust, unsaturated polyester resin and coconut coir mixture. Composite was prepared by mixing of wood dust, polyester and coconut coir at a various mixture composition. Concentration of polyesters were 50, 55 and 60 % by weight based on saw dust and polyester mixture. Irradiation was conducted using 27,6 kCi acti vity Co 60 at a dose rate of 5 kGy/hrs and dose of 8, 10 and 12 kGy. Composite was also prepared conventionally by using peroxide catalyst. Parameters observed were density, pencil hardness and compression strength Experimental results showed that optimum condition wus achieved at irradiation dose of 12 kGy, polyester concentration of 60 % and coconut coir fiber of 4 %. In this condition, the density, hardness and compression strength were 1,115 g/cm 3, 5 Hand 6,815 kN/cm2 respectively. Density, hardness of composite prepared by radiation were almost the same whereas the compression strength was higher than that of composite prepared by conventional method

  1. Water-thinnable polymers for durable coatings for different materials

    Energy Technology Data Exchange (ETDEWEB)

    Jankowski, Piotr, E-mail: piotr.jankowski@ichp.pl; Kijowska, Dorota, E-mail: piotr.jankowski@ichp.pl [Industrial Chemistry Research Institute, Department of Polyesters, Epoxides and Polyurethanes, 8 Rydygiera Str., 01-793 Warszawa (Poland)

    2014-05-15

    The methods of obtaining water-thinnable polymers - water-thinnable unsaturated polyester resins (WTUPR) - by polycondensation were elaborate and optimized. As hydrophilic monomers different types of sulfonate monomers were used. The monomers, with sulfonate groups and other reactive groups, were obtained by sulfonation of organic compounds with satisfactory yield. All products were analyzed by {sup 1}H NMR and {sup 13}C NMR spectra. WTUPR were used as polymeric binders for coatings applications. Coatings with relatively high pendulum hardness, good properties and durability, useful for practical applications, were obtained. Typical existing equipment for the production of unsaturated polyester resins can be applied for the industrial preparation of WTUPR.

  2. Nuclear magnetic resonance structure investigations on crosslinked polyesters

    International Nuclear Information System (INIS)

    Grobelny, J.

    1999-01-01

    Styrene-crosslinked mixed polyesters derived from maleic anhydride, 2,2-di(4-hydroxypropoxyphenyl)propane, oligo(propylene oxide) and 1,2-propylene glycol were investigated by high-resolution solid-state 13 C NMR spectroscopy. The structural modifications accompanying crosslinking were characterized in terms of spin-lattice relaxation times as a function of unsaturated polyester composition. Copolymerization and crosslinking effects were individually evaluated and the latter effect was related to variations in crosslinking density associated with the chemical structure of the unsaturated prepolymer. As the crosslinking effect is suppressed, the mechanical properties undergo expected changes, e.g., impact strength is increased and modulus of elasticity in tension is decreased. (author)

  3. Photoinduced Deformation of Azobenzene Polyester Films

    DEFF Research Database (Denmark)

    Bublitz, D.; Helgert, M.; Fleck, B.

    2000-01-01

    We investigate two types of azobenzene side-chain polyesters which have shown opposite behaviour in light-induced surface grating formation experiments. Thin films of these polymers prepared on a water surface undergo opposite changes of shape under the influence of polarized light. We propose...

  4. Micro-thermal analysis of polyester coatings

    NARCIS (Netherlands)

    Fischer, H.R.

    2010-01-01

    The application and suitability of micro-thermal analysis to detect changes in the chemical and physical properties of coating due to ageing and especially photo-degradation is demonstrated using a model polyester coating based on neopentyl glycol isophthalic acid. The changes in chemical structure

  5. Competition of the connectivity with the local and the global order in polymer melts and crystals

    Energy Technology Data Exchange (ETDEWEB)

    Bernini, S.; Puosi, F.; Barucco, M.; Leporini, D., E-mail: dino.leporini@df.unipi.it [Dipartimento di Fisica “Enrico Fermi,” Università di Pisa, Largo B.Pontecorvo 3, I-56127 Pisa (Italy)

    2013-11-14

    The competition between the connectivity and the local or global order in model fully flexible chain molecules is investigated by molecular-dynamics simulations. States with both missing (melts) and high (crystal) global order are considered. Local order is characterized within the first coordination shell (FCS) of a tagged monomer and found to be lower than in atomic systems in both melt and crystal. The role played by the bonds linking the tagged monomer to FCS monomers (radial bonds), and the bonds linking two FCS monomers (shell bonds) is investigated. The detailed analysis in terms of Steinhardt's orientation order parameters Q{sub l} (l = 2 − 10) reveals that increasing the number of shell bonds decreases the FCS order in both melt and crystal. Differently, the FCS arrangements organize the radial bonds. Even if the molecular chains are fully flexible, the distribution of the angle formed by adjacent radial bonds exhibits sharp contributions at the characteristic angles θ ≈ 70°, 122°, 180°. The fractions of adjacent radial bonds with θ ≈ 122°, 180° are enhanced by the global order of the crystal, whereas the fraction with 70° ≲ θ ≲ 110° is nearly unaffected by the crystallization. Kink defects, i.e., large lateral displacements of the chains, are evidenced in the crystalline state.

  6. Tensile strength of woven yarn kenaf fiber reinforced polyester composites

    OpenAIRE

    A.E. Ismail; M.A. Che Abdul Aziz

    2015-01-01

    This paper presents the tensile strength of woven kenaf fiber reinforced polyester composites. The as-received yarn kenaf fiber is weaved and then aligned into specific fiber orientations before it is hardened with polyester resin. The composite plates are shaped according to the standard geometry and uni-axially loaded in order to investigate the tensile responses. Two important parameters are studied such as fiber orientations and number of layers. According to the results, it is shown that...

  7. Synthesis of Cu/SiO2 Core-Shell Particles Using Hyperbranched Polyester as Template and Dispersant

    Science.gov (United States)

    Han, Wensong

    2017-07-01

    Third-generation hyperbranched polyester (HBPE3) was synthesized by stepwise polymerization with N, N-diethylol-3-amine methylpropionate as AB2 monomer and pentaerythritol as core molecule. Then, Cu particles were prepared by reduction of copper nitrate with ascorbic acid in aqueous solution using HBPE3 as template. Finally, Cu/SiO2 particles were prepared by coating silica on the surface of Cu particles. The structure and morphology of the samples were characterized by Fourier-transform infrared (FT-IR) spectrometry, x-ray diffraction (XRD) analysis, transmission electron microscopy (TEM), scanning electron microscopy (SEM), and thermogravimetric analysis (TGA). The results confirmed the formation of the silica coating on the surface of Cu and that the Cu/SiO2 particles had spherical shape with particle size in the range of 0.8 μm to 2 μm. Compared with pure Cu, the synthesized Cu/SiO2 core-shell particles exhibited better oxidation resistance at high temperature. Moreover, the oxidation resistance of the Cu/SiO2 particles increased significantly with increasing tetraethyl orthosilicate (TEOS) concentration.

  8. Eco-friendly surface modification on polyester fabrics by esterase treatment

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Jindan; Cai, Guoqiang; Liu, Jinqiang; Ge, Huayun; Wang, Jiping, E-mail: jipingwanghz@gmail.com

    2014-03-01

    Graphical abstract: - Highlights: • We used a simple and easy way to measure the enzyme activity. • We studied the mechanism by characterizing the chemical changes in the surface of fabric. • We studied the advantages in surface wettability, fiber integrity and mechanical performance of cutinase treated fabrics. • Cutinase pretreated fibers exhibited much improved fabric wicking and better fiber integrity comparing to alkali treated ones. • Cutinase pretreatment technology promotes energy conservation and emission reduction. - Abstract: Currently, traditional alkali deweighting technology is widely used to improve the hydrophilicity of polyester fabrics. However, the wastewater and heavy chemicals in the effluent cause enormous damage to the environment. Esterase treatment, which is feasible in mild conditions with high selectivity, can provide a clean and efficient way for polyester modification. Under the optimum conditions, the polyester fabric hydrolysis process of esterase had a linear kinetics. X-ray photoelectron spectrometry (XPS) results showed that hydroxyl and carboxyl groups were produced only on the surface of modified fiber without changing the chemical composition of the bulk. These fibers exhibited much improved fabric wicking, as well as greatly improved oily stain removal performance. Compared to the harsh alkali hydrolysis, the enzyme treatment led to smaller weight loss and better fiber integrity. The esterase treatment technology is promising to produce higher-quality polyester textiles with an environmental friendly approach.

  9. The axial crushes behaviour on foam-filled round Jute/Polyester composite tubes

    Science.gov (United States)

    Othman, A.; Ismail, A. E.

    2018-04-01

    The present paper investigates the effect of axial loading compression on jute fibre reinforced polyester composite round tubes. The specimen of composite tube was fabricated by hand lay-up method of 120 mm length with fix 50.8 mm inner diameter to determine the behaviour of energy absorption on number of layers of 450 angle fibre and internally reinforced with and without foam filler material. The foam filler material used in this studies were polyurethane (PU) and polystyrene (PE) with average of 40 and 45 kg/m3 densities on the axial crushing load against displacement relations and on the failure modes. The number of layers of on this study were two; three and four were selected to calculate the crush force efficiency (CFE) and the specific energy absorption (SEA) of the composite tubes. Result indicated that the four layers’ jute/polyester show significant value in term of crushing load compared to 2 and 3 layers higher 60% for 2 layer and 3% compared to 3 layers. It has been found that the specific energy absorption of the jute/polyester tubes with polystyrene foam-filled is found higher respectively 10% to 12% than empty and polyurethane (PU) foam tubes. The increase in the number of layers from two to four increases the mean axial load from 1.01 KN to 3.60 KN for empty jute/polyester and from 2.11 KN to 4.26 KN for the polyurethane (PU) foam-filled jute/polyester tubes as well as for 3.60 KN to 5.58 KN for the polystyrene (PE) foam-filled jute/polyester. The author’s found that the failure of mechanism influence the characteristic of curve load against displacement obtained and conclude that an increasing number of layers and introduce filler material enhance the capability of specific absorbed energy.

  10. Investigation of Mechanical Properties of Unidirectional Steel Fiber/Polyester Composites: Experiments and Micromechanical Predictions

    DEFF Research Database (Denmark)

    Raghavalu Thirumalai, Durai Prabhakaran; Løgstrup Andersen, Tom; Bech, Jakob Ilsted

    2016-01-01

    the role of material and process parameters on material properties. Two types of SFRP were studied: polyester resin reinforced by both steel fabric containing unidirectional fibers and steel fibers wound on a metal frame with 0° orientations. The effects of the fiber volume fraction and the role of polymer......The article introduces steel fiber reinforced polymer composites, which is considered new for composite product developments. These composites consist of steel fibers or filaments of 0.21 mm diameter embedded in a polyester resin. The goal of this investigation is to characterize the mechanical...... performance of steel fiber reinforced polyester composites at room temperature. The mechanical properties of unidirectional steel fiber reinforced polyester composites (SFRP) are evaluated experimentally and compared with the predicted values by micro-mechanical models. These predictions help to understand...

  11. Recent Advances in the Design of Water Based-Flame Retardant Coatings for Polyester and Polyester-Cotton Blends

    Directory of Open Access Journals (Sweden)

    Jenny Alongi

    2016-10-01

    Full Text Available Over the last ten years a new trend of research activities regarding the flame retardancy of polymeric materials has arisen. Indeed, the continuous search for new flame retardant systems able to replace the traditional approaches has encouraged alternative solutions, mainly centred on nanotechnology. In this context, the deposition of nanostructured coatings on fabrics appears to be the most appealing and performance suitable approach. To this aim, different strategies can be exploited: from the deposition of a single monolayer consisting of inorganic nanoparticles (single-step adsorption to the building-up of more complex architectures derived from layer by layer assembly (multi-step adsorption. The present paper aims to review the application of such systems in the field of polyester and polyester-cotton blend fabrics. The results collated by the authors are discussed and compared with those published in the literature on the basis of the different deposition methods adopted. A critical analysis of the advantages and disadvantages exhibited by these approaches is also presented.

  12. Effect of a Polymercaptan Material on the Electro-Optical Properties of Polymer-Dispersed Liquid Crystal Films

    OpenAIRE

    Yujian Sun; Cuihong Zhang; Le Zhou; Hua Fang; Jianhua Huang; Haipeng Ma; Yi Zhang; Jie Yang; Lan-Ying Zhang; Ping Song; Yanzi Gao; Jiumei Xiao; Fasheng Li; Kexuan Li

    2016-01-01

    Polymer-dispersed liquid crystal (PDLC) films were prepared by the ultraviolet-light-induced polymerization of photopolymerizable monomers in nematic liquid crystal/chiral dopant/thiol-acrylate reaction monomer composites. The effects of the chiral dopant and crosslinking agents on the electro-optical properties of the PDLC films were systematically investigate. While added the chiral dopant S811 into the PDLC films, the initial off-state transmittance of the films was decreased. It was found...

  13. Thermal studies of poly(esters) containing silicon or germanium in the main chain

    International Nuclear Information System (INIS)

    Tagle, L.H.; Terraza, C.; Valenzuela, P.; Leiva, A.; Urzua, M.

    2005-01-01

    The thermal properties of poly(esters) containing Si and/or Ge in the main chain derived from the acid dichlorides bis(4-chloroformyl-phenyl)-dimethyl-silane, bis(4-chloroformyl-phenyl)-dimethyl-germane, bis(4-chloroformyl-phenyl)-diphenyl-silane and bis(4-chloroformyl-phenyl)-diphenyl-silane, and the diphenols bis(4-hydroxyphenyl)-dimethyl-silane, bis(4-hydroxyphenyl)-dimethyl-germane, bis(4-hydroxyphenyl)-diphenyl-silane and bis(4-hydroxyphenyl)-diphenyl-germane were studied by differential scanning calorimetry and dynamic thermogravimetry. Poly(esters) with two Si atoms in the main chain showed higher values of T g than those with two Ge atoms, and the same was observed for poly(esters) with phenyl groups bonded to the heteroatoms, instead of those with methyl groups. Thermal decomposition temperatures were also higher for those poly(esters) with two Si atoms in the main chain and those in which the heteroatom is bonded to phenyl groups, due to the higher polarity of the Si-C bond in front of the Ge-C

  14. Polyester fabric coated with Ag/ZnO composite film by magnetron sputtering

    Energy Technology Data Exchange (ETDEWEB)

    Yuan, Xiaohong, E-mail: yxhong1981_2004@126.com [Key Laboratory of Eco-Textiles, Ministry of Education, Jiangnan University, Wuxi 214122, Jiangsu (China); Faculty of Clothing and Design, Minjiang University, Fuzhou 350121, Fujian (China); Xu, Wenzheng, E-mail: xwz8199@126.com [Key Laboratory of Eco-Textiles, Ministry of Education, Jiangnan University, Wuxi 214122, Jiangsu (China); Huang, Fenglin, E-mail: windhuang325@163.com [Key Laboratory of Eco-Textiles, Ministry of Education, Jiangnan University, Wuxi 214122, Jiangsu (China); Chen, Dongsheng, E-mail: mjuchen@126.com [Faculty of Clothing and Design, Minjiang University, Fuzhou 350121, Fujian (China); Wei, Qufu, E-mail: qfwei@jiangnan.edu.cn [Key Laboratory of Eco-Textiles, Ministry of Education, Jiangnan University, Wuxi 214122, Jiangsu (China)

    2016-12-30

    Highlights: • Ag/ZnO composite film was successfully deposited on polyester fabric by magnetron sputtering technique. • Ag film was easily oxidized into Ag{sub 2}O film in high vacuum oxygen environment. • The zinc film coated on the surface of Ag film before RF reactive sputtering could protect the silver film from oxidation. • Polyester fabric coated with Ag/ZnO composite film can obtained structural color. • The anti-ultraviolet and antistatic properties of polyester fabric coated with Ag/ZnO composite film all were good. - Abstract: Ag/ZnO composite film was successfully deposited on polyester fabric by using direct current (DC) magnetron sputtering and radio frequency (RF) magnetron reaction sputtering techniques with pure silver (Ag) and zinc (Zn) targets. X-ray photoelectron spectroscopy (XPS) and X-ray diffraction (XRD) were used to examine the deposited film on the fabric. It was found that the zinc film coated on Ag film before RF reactive sputtering could protect the silver film from oxidation. Anti-ultraviolet property and antistatic property of the coated samples using different magnetron sputtering methods were also investigated. The experimental results showed that Ag film was oxidized into in Ag{sub 2}O film in high vacuum oxygen environment. The deposition of Zn film on the surface of the fabric coated with Ag film before RF reactive sputtering, could successfully obtained Ag/ZnO composite film, and also generated structural color on the polyester fabric.

  15. Evaluation of secondary crystallization effect in poly hydroxybutyrate and silanized coir dust composites

    International Nuclear Information System (INIS)

    Mello, Carolina C. de; Costa, Marysilvia F. da; Thire, Rossana M.S.M.

    2011-01-01

    Polyhydroxybutyrate is a natural and biodegradable polyester, susceptible to secondary crystallization when it is stored at environment temperature. Coir dust is an agroindustrial waste which has good prospects for use as filler in composites. In this context, PHB-coir dust composites were produced. The compatibilization was made by coir dust silanization. The secondary crystallization evolution on materials was evaluated by x-ray diffraction. Its effect was verified by tension tests which presented that elastic modulus increases when crystallinity increases. (author)

  16. Preparation of supramolecular polymers by copolymerization of monomers containing quadruple hydrogen bonding units with regular monomers

    NARCIS (Netherlands)

    2004-01-01

    The invention relates to the synthesis of polymers containing self-complementary quadruple hydrogen groups by copolymerizing monomers containing a quadruple hydrogen bonding group with one or more monomers of choice. The resulting polymers show unique new characteristics due to the presence of

  17. A study on effect of ATH on Euphorbia coagulum modified polyester banana fiber composite

    Science.gov (United States)

    Kumari, Sanju; Rai, Bhuvneshwar; Kumar, Gulshan

    2018-02-01

    Fiber reinforced polymer composites are used for building and structural applications due to their high strength. In conventional composites both the binder and the reinforcing fibers are synthetic or either one of the material is natural. In the present study coagulum of Euphorbia royleana has been used for replacing polyester resinas binder in polyester banana composite. Euphorbia coagulum (driedlatex) is rich in resinous mass (60-80%), which are terpenes and polyisoprene (10-20%). Effect of varying percentage of coagulum content on various physico-mechanical properties of polyester-banana composites has been studied. Since banana fiber is sensitive to water due to presence of polar group, banana composite undergoes delamination and deterioration under humid condition. Alkali treated banana fiber along with coagulum content has improved overall mechanical properties and reduction in water absorption. The best physico-mechanical properties have been achieved on replacing 40% of polyester resin by coagulum. An increase of 50% in bending strength, 30% bending modulus and 45% impact strength as well as 68% decrease in water absorption was observed. Incorporation of 20% ATH as flame retardant in coagulum modified banana polyester composite enhanced limiting oxygen index from 20.6 to 26.8% and smoke density reduced up to 40%. This study presents the possibility of utilization of renewable materials for environmental friendly composite development as well as to find out alternative feedstock for petroleum products. Developed Euphorbia latex modified banana polyester composites can have potential utility in hardboard, partition panel, plywood and automotive etc.

  18. Neutron shielding performance of water-extended polyester

    International Nuclear Information System (INIS)

    Vega Carrillo, H.R.; Manzanares-Acuna, E.; Hernandez-Davila, V.M.; Vega Carrillo, H.R.; Hernandez-Davila, V.M.; Gallego, E.; Lorente, A.

    2006-01-01

    A Monte Carlo study to determine the shielding features to neutrons of water-extended polyester (WEP) was carried out. Materials with low atomic number are predominantly used for neutron shielding because these materials effectively attenuate neutrons, mainly through elastic and inelastic collisions. In addition to neutron attenuation properties, other desirable properties for neutron shielding materials include mechanical strength, stability, low cost, and ease of handling. During the selection of materials to design a neutron shield, prompt gamma production as well as radionuclide induced by neutron activation must be considered. In this investigation the Monte Carlo method (MCNP code) was used to evaluate the performance of a water-extended polyester shield designed for the transportation, storage, and use of a 252 Cf isotopic neutron source, for comparison the calculations were extended to water shielding, the bare source in vacuum and in air. (authors)

  19. Neutron shielding performance of water-extended polyester

    Energy Technology Data Exchange (ETDEWEB)

    Vega Carrillo, H.R.; Manzanares-Acuna, E.; Hernandez-Davila, V.M. [Zacatecas Univ. Autonoma, Nuclear Studies (Mexico); Vega Carrillo, H.R.; Hernandez-Davila, V.M. [Zacatecas Univ. Autonoma, Electric Engineering Academic Units (Mexico); Gallego, E.; Lorente, A. [Madrid Univ. Politecnica, cNuclear Engineering Department (Mexico)

    2006-07-01

    A Monte Carlo study to determine the shielding features to neutrons of water-extended polyester (WEP) was carried out. Materials with low atomic number are predominantly used for neutron shielding because these materials effectively attenuate neutrons, mainly through elastic and inelastic collisions. In addition to neutron attenuation properties, other desirable properties for neutron shielding materials include mechanical strength, stability, low cost, and ease of handling. During the selection of materials to design a neutron shield, prompt gamma production as well as radionuclide induced by neutron activation must be considered. In this investigation the Monte Carlo method (MCNP code) was used to evaluate the performance of a water-extended polyester shield designed for the transportation, storage, and use of a {sup 252}Cf isotopic neutron source, for comparison the calculations were extended to water shielding, the bare source in vacuum and in air. (authors)

  20. Azobenzene side-chain liquid crystalline polyesters with outstanding optical storage properties

    DEFF Research Database (Denmark)

    Hvilsted, Søren; Pedersen, M; Holme, NCR

    1998-01-01

    A flexible azobenzene side-chain liquid crystalline (SCLC) polyester architecture employed for reversible optical storage is described. The modular design allows four structural parameters to be individually modified. These parameters: i- the methylene side-chain spacer length, ii- the substituent......,000 are routinely obtained by melt transesterification of the novel diols and selected diacid precursors (parameter iii). Prominent storage features include no prealignment of thin SCLC polyester films prior to the writing process, and sensitivity in a broad laser wavelength window (415-532 nm). Additionally...... sign of fatigue. The non-destructive read out is performed with red light (600-750 nm). Finally, erasing the information can be achieved by heating the polyester film to 80 degrees C or irradiating it briefly with UV-light. In the latter case at least 10,000 write, read and erase cycles are possible...

  1. Effect of Argon Plasma Treatment Variables on Wettability and Antibacterial Properties of Polyester Fabrics

    Science.gov (United States)

    Senthilkumar, Pandurangan; Karthik, Thangavelu

    2016-04-01

    In this research work, the effect of argon plasma treatment variables on the comfort and antibacterial properties of polyester fabric has been investigated. The SEM micrographs and FTIR analysis confirms the modification of fabric surface. The Box-Behnken design was used for the optimization of plasma process variables and to evaluate the effects and interactions of the process variables, i.e. operating power, treatment time and distance between the electrodes on the characteristics of polyester fabrics. The optimum conditions of operating power 600 W, treatment time 30 s, and the distance between the electrodes of 2.8 mm was arrived using numerical prediction tool in Design-Expert software. The plasma treated polyester fabrics showed better fabric characteristics particularly in terms of water vapour permeability, wickability and antibacterial activity compared to untreated fabrics, which confirms that the modified structure of polyester fabric.

  2. Dipeptide-based polyphosphazene and polyester blends for bone tissue engineering.

    Science.gov (United States)

    Deng, Meng; Nair, Lakshmi S; Nukavarapu, Syam P; Jiang, Tao; Kanner, William A; Li, Xudong; Kumbar, Sangamesh G; Weikel, Arlin L; Krogman, Nicholas R; Allcock, Harry R; Laurencin, Cato T

    2010-06-01

    Polyphosphazene-polyester blends are attractive materials for bone tissue engineering applications due to their controllable degradation pattern with non-toxic and neutral pH degradation products. In our ongoing quest for an ideal completely miscible polyphosphazene-polyester blend system, we report synthesis and characterization of a mixed-substituent biodegradable polyphosphazene poly[(glycine ethyl glycinato)(1)(phenyl phenoxy)(1)phosphazene] (PNGEG/PhPh) and its blends with a polyester. Two dipeptide-based blends namely 25:75 (Matrix1) and 50:50 (Matrix2) were produced at two different weight ratios of PNGEG/PhPh to poly(lactic acid-glycolic acid) (PLAGA). Blend miscibility was confirmed by differential scanning calorimetry, Fourier transform infrared spectroscopy, and scanning electron microscopy. Both blends resulted in higher tensile modulus and strength than the polyester. The blends showed a degradation rate in the order of Matrix2PLAGA in phosphate buffered saline at 37 degrees C over 12 weeks. Significantly higher pH values of degradation media were observed for blends compared to PLAGA confirming the neutralization of PLAGA acidic degradation by polyphosphazene hydrolysis products. The blend components PLAGA and polyphosphazene exhibited a similar degradation pattern as characterized by the molecular weight loss. Furthermore, blends demonstrated significantly higher osteoblast growth rates compared to PLAGA while maintaining osteoblast phenotype over a 21-day culture. Both blends demonstrated improved biocompatibility in a rat subcutaneous implantation model compared to PLAGA over 12 weeks. (c) 2010 Elsevier Ltd. All rights reserved.

  3. Synthesis and characterization of saturated polyester and ...

    Indian Academy of Sciences (India)

    but which can actually be used for processes, which pro- duce interesting ... ing the synthesis of saturated polyester (from GPET waste). This has been done for the .... The solid product obtained from the glycolysis of PET was bis(hydroxy ethyl ...

  4. Enzymatic Synthesis of Amino Acids Endcapped Polycaprolactone: A Green Route Towards Functional Polyesters

    Directory of Open Access Journals (Sweden)

    Stéphane W. Duchiron

    2018-01-01

    Full Text Available ε-caprolactone (CL has been enzymatically polymerized using α-amino acids based on sulfur (methionine and cysteine as (co-initiators and immobilized lipase B of Candida antarctica (CALB as biocatalyst. In-depth characterizations allowed determining the corresponding involved mechanisms and the polymers thermal properties. Two synthetic strategies were tested, a first one with direct polymerization of CL with the native amino acids and a second one involving the use of an amino acid with protected functional groups. The first route showed that mainly polycaprolactone (PCL homopolymer could be obtained and highlighted the lack of reactivity of the unmodified amino acids due to poor solubility and affinity with the lipase active site. The second strategy based on protected cysteine showed higher monomer conversion, with the amino acids acting as (co-initiators, but their insertion along the PCL chains remained limited to chain endcapping. These results thus showed the possibility to synthesize enzymatically polycaprolactone-based chains bearing amino acids units. Such cysteine endcapped PCL materials could then find application in the biomedical field. Indeed, subsequent functionalization of these polyesters with drugs or bioactive molecules can be obtained, by derivatization of the amino acids, after removal of the protecting group.

  5. Inclusion polymerization of vinyl chloride monomer in deoxycholic acid host via {gamma}-ray irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Chirachanchai, S.; Kumkrong, A. [The Petroleum and Petrochemical College, Chulalongkorn University, Bangkok (Thailand); Ishida, Hatsuo [Department of Macromolecular Science, Case Western Reserve University, Cleveland, OH (United States)

    2000-03-01

    Inclusion polymerization of vinyl chloride monomer (VCM) was studied in the system of 3{alpha}, 12{alpha} -dihydroxy-5{beta}-cholan-24-oic acid (deoxycholic acid, DCA). DCA-VCM inclusion compound system was originally prepared by guest intercalation technique in DCA guest free crystal. The inclusion polymerization of DCA-VCM by {gamma}-irradiation at total dose 2 Mrad, gives a syndiotactic rich polyvinyl chloride (PVC) as can be confirmed by FT-IR and FT-NMR. (author)

  6. Inclusion polymerization of vinyl chloride monomer in deoxycholic acid host via γ-ray irradiation

    International Nuclear Information System (INIS)

    Chirachanchai, S.; Kumkrong, A.; Ishida, Hatsuo

    2000-01-01

    Inclusion polymerization of vinyl chloride monomer (VCM) was studied in the system of 3α, 12α -dihydroxy-5β-cholan-24-oic acid (deoxycholic acid, DCA). DCA-VCM inclusion compound system was originally prepared by guest intercalation technique in DCA guest free crystal. The inclusion polymerization of DCA-VCM by γ-irradiation at total dose 2 Mrad, gives a syndiotactic rich polyvinyl chloride (PVC) as can be confirmed by FT-IR and FT-NMR. (author)

  7. Preparation of supramolecular polymers by copolymerization of monomers containing quadruple hydrogen bonding units with regular monomers

    NARCIS (Netherlands)

    2004-01-01

    The invention relates to the synthesis of polymers contg. self-complementary quadruple H groups by copolymg. monomers contg. a quadruple H bonding group with ³1 monomers of choice. The resulting polymers show unique new characteristics due to the presence of addnl. phys. interactions between the

  8. Influence of fibre treatments on mechanical properties of short Sansevieria cylindrica/polyester composites

    International Nuclear Information System (INIS)

    Sreenivasan, V.S.; Ravindran, D.; Manikandan, V.; Narayanasamy, R.

    2012-01-01

    Highlights: ► Fibre treatments were performed to improve interfacial bond between SCF and matrix. ► Mechanical properties of treated SCFP composites are greater than USCFP composites. ► PSCFP composites show maximum mechanical properties among treated SCFP composites. ► SEM analysis revealed that the wetting of PSCFs by the polyester resin was good. ► KMnO 4 treatment is ideal treatment for SCFs to get optimum mechanical properties. -- Abstract: In the present study, to improve the interfacial bond between Sansevieria cylindrica fibres (SCFs) and polyester matrix, chemical surface treatments have been performed on the fibres. Treatments including alkali, benzoyl peroxide, potassium permanganate and stearic acid were carried out to modify the fibre surface. Raw and each type of treated SCF samples were utilised separately for fabricating the composites. The mechanical properties of composites prepared from the chemically treated SCFs are found to be much better than those of the untreated ones. Potassium-permanganate-treated S. cylindrica fibre/polyester (PSCFP) composites showed optimum mechanical properties among the treated S. cylindrica fibre/polyester (SCFP) composites. The surface morphologies of fracture surfaces of composites were recorded using scanning electron microscopy (SEM). The SEM micrographs reveal that interfacial bonding between potassium-permanganate-treated SCF (PSCF) and polyester matrix has significantly improved, suggesting that better dispersion of PSCF into the matrix has occurred upon potassium permanganate treatment of SCF.

  9. Determination of structure and properties of molecular crystals from first principles.

    Science.gov (United States)

    Szalewicz, Krzysztof

    2014-11-18

    CONSPECTUS: Until recently, it had been impossible to predict structures of molecular crystals just from the knowledge of the chemical formula for the constituent molecule(s). A solution of this problem has been achieved using intermolecular force fields computed from first principles. These fields were developed by calculating interaction energies of molecular dimers and trimers using an ab initio method called symmetry-adapted perturbation theory (SAPT) based on density-functional theory (DFT) description of monomers [SAPT(DFT)]. For clusters containing up to a dozen or so atoms, interaction energies computed using SAPT(DFT) are comparable in accuracy to the results of the best wave function-based methods, whereas the former approach can be applied to systems an order of magnitude larger than the latter. In fact, for monomers with a couple dozen atoms, SAPT(DFT) is about equally time-consuming as the supermolecular DFT approach. To develop a force field, SAPT(DFT) calculations are performed for a large number of dimer and possibly also trimer configurations (grid points in intermolecular coordinates), and the interaction energies are then fitted by analytic functions. The resulting force fields can be used to determine crystal structures and properties by applying them in molecular packing, lattice energy minimization, and molecular dynamics calculations. In this way, some of the first successful determinations of crystal structures were achieved from first principles, with crystal densities and lattice parameters agreeing with experimental values to within about 1%. Crystal properties obtained using similar procedures but empirical force fields fitted to crystal data have typical errors of several percent due to low sensitivity of empirical fits to interactions beyond those of the nearest neighbors. The first-principles approach has additional advantages over the empirical approach for notional crystals and cocrystals since empirical force fields can only be

  10. Neutron shielding performance of water-extended polyester

    International Nuclear Information System (INIS)

    Vega Carrillo, H.R.; Manzanares-Acuna, E.; Hernandez-Davila, V.M.; Vega Carrillo, H.R.; Gallegoc, E.; Lorentec, A.; Hernandez-Davila, V.M.

    2006-01-01

    A Monte Carlo study to determine the shielding features to neutrons of water-extended polyester was carried out. Materials with low atomic number are predominantly used for neutron shielding because these materials effectively attenuate neutrons, mainly through elastic and inelastic collisions. In addition to neutron attenuation properties, other desirable properties for neutron shielding materials include mechanical strength, stability, low cost, and ease of handling. During the selection of materials to design a neutron shield, prompt gamma production as well as radionuclide induced by neutron activation must be considered. In this investigation the Monte Carlo method (M.C.N.P. code) was used to evaluate the performance of a water-extended polyester shield designed for the transportation, storage, and use of a 252 Cf isotopic neutron source, for comparison the calculations were extended to water shielding, the bare source in vacuum and in air. (authors)

  11. Mechanical Characterization of Cotton Fiber/Polyester Composite Material

    Directory of Open Access Journals (Sweden)

    Altaf Hussain Rajper

    2014-04-01

    Full Text Available Development of composite from natural fiber for lower structural application is growing for long-term sustainable perspective. Cotton fiber composite material has the added advantages of high specific strength, corrosion resistance, low cost and low weight compared to glass fiber on the expense of internal components of IC engines. The primary aim of the research study is to examine the effect of the cotton fiber on mechanical properties of lower structural applications when added with the polyester resin. In this paper composite material sample has been prepared by hand Lay-Up process. A mould is locally developed in the laboratory for test sample preparation. Initially samples of polyester resin with appropriate ratio of the hardener were developed and tested. At the second stage yarns of cotton fiber were mixed with the polyester resin and sample specimens were developed and tested. Relative effect of the cotton as reinforcing agent was examined and observed that developed composite specimen possess significant improvement in mechanical properties such as tensile strength was improved as 19.78 % and modulus of elasticity was increased up to 24.81%. Through this research it was also observed that developed composite material was of ductile nature and its density decreases up to 2.6%. Results from this study were compared with relevant available advanced composite materials and found improved mechanical properties of developed composite material

  12. Interference of functional monomers with polymerization efficiency of adhesives.

    Science.gov (United States)

    Hanabusa, Masao; Yoshihara, Kumiko; Yoshida, Yasuhiro; Okihara, Takumi; Yamamoto, Takatsugu; Momoi, Yasuko; Van Meerbeek, Bart

    2016-04-01

    The degree of conversion (DC) of camphorquinone/amine-based adhesives is affected by acidic functional monomers as a result of inactivation of the amine co-initiator through an acid-base reaction. During bonding, functional monomers of self-etch adhesives chemically interact with hydroxyapatite (HAp). Here, we tested in how far the latter interaction of functional monomers with HAp counteracts the expected reduction in DC of camphorquinone/amine-based adhesives. The DC of three experimental adhesive formulations, containing either of the two functional monomers [10-methacryloyloxydecyl dihydrogen phosphate (10-MDP) or 4-methacryloxyethyl trimellitic acid anhydride (4-META)] or no functional monomer (no-FM; control), was measured with and without HAp powder added to the adhesive formulations. Both the variables 'functional monomer' and 'HAp' were found to be significant, with the functional monomer reducing the DC and HAp counteracting this effect. It is concluded that the functional monomers 10-MDP and 4-META interfere with the polymerization efficiency of adhesives. This interference is less prominent in the presence of HAp, which would clinically correspond to when these two functional monomers of the adhesive simultaneously interact with HAp in tooth tissue. © 2016 Eur J Oral Sci.

  13. Ionic Liquid Epoxy Resin Monomers

    Science.gov (United States)

    Paley, Mark S. (Inventor)

    2013-01-01

    Ionic liquid epoxide monomers capable of reacting with cross-linking agents to form polymers with high tensile and adhesive strengths. Ionic liquid epoxide monomers comprising at least one bis(glycidyl) N-substituted nitrogen heterocyclic cation are made from nitrogen heterocycles corresponding to the bis(glycidyl) N-substituted nitrogen heterocyclic cations by a method involving a non-nucleophilic anion, an alkali metal cation, epichlorohydrin, and a strong base.

  14. Oligonucleotides with 1,4-dioxane-based nucleotide monomers

    DEFF Research Database (Denmark)

    Madsen, Andreas S; Wengel, Jesper

    2012-01-01

    An epimeric mixture of H-phosphonates 5R and 5S has been synthesized in three steps from known secouridine 1. Separation of the epimers has been accomplished by RP-HPLC, allowing full characterization and incorporation of monomers X and Y into 9-mer oligonucleotides using H-phosphonates building...... blocks 5R and 5S, respectively. A single incorporation of either monomer X or monomer Y in the central position of a DNA 9-mer results in decreased thermal affinity toward both DNA and RNA complements (ΔT(m) = -3.5 °C/-3.5 °C for monomer X and ΔT(m) = -11.0 °C/-6.5 °C for monomer Y). CD measurements do...

  15. Acetalised Galactarate Polyesters: Interplay between Chemical Structure and Polymerisation Kinetics

    Directory of Open Access Journals (Sweden)

    Ionela Gavrila

    2018-02-01

    Full Text Available In spite of the progress that has made so far in the recent years regarding the synthesis of bio-based polymers and in particular polyesters, only few references address the optimisation of these new reactions with respect to conversion and reaction time. Related to this aspect, we here describe the transesterification reaction of two different acetalised galactarate esters with a model aliphatic diol, 1,6-hexanediol. The kinetics of these two apparently similar reactions is compared, with a focus on the conversion while varying the concentration of a di-butyltin oxide catalyst (DBTO, respectively, the used N2 flow-rate. During the first stage of polymerisation, the molecular weight of the end-products is more than doubled when using a 250 mL/min flow as opposed to an almost static N2 pressure. Additionally, the resulted pre-polymers are subjected to further polycondensation and the comparison between the obtained polyesters is extended to their thermal, mechanical and dielectrical characterisation. The influence of the acetal groups on the stability of the polyesters in acidic conditions concludes the study.

  16. Surface active monomers synthesis, properties, and application

    CERN Document Server

    Borzenkov, Mykola

    2014-01-01

    This brief includes information on the background?of and development of synthesis of various types of surface active monomers. The authors explain the importance of utilization of surface active monomers for creation of surface active polymers? and the various biomedical applications of such compounds . This brief introduces techniques for the synthesis of novel types of surface active monomers, their colloidal and polymerizable properties and application for needs of medicine and biology.

  17. Effect of structural parameters on burning behavior of polyester fabrics having flame retardancy property

    Science.gov (United States)

    Çeven, E. K.; Günaydın, G. K.

    2017-10-01

    The aim of this study is filling the gap in the literature about investigating the effect of yarn and fabric structural parameters on burning behavior of polyester fabrics. According to the experimental design three different fabric types, three different weft densities and two different weave types were selected and a total of eighteen different polyester drapery fabrics were produced. All statistical procedures were conducted using the SPSS Statistical software package. The results of the Analysis of Variance (ANOVA) tests indicated that; there were statistically significant (5% significance level) differences between the mass loss ratios (%) in weft and mass loss ratios (%) in warp direction of different fabrics calculated after the flammability test. The Student-Newman-Keuls (SNK) results for mass loss ratios (%) both in weft and warp directions revealed that the mass loss ratios (%) of fabrics containing Trevira CS type polyester were lower than the mass loss ratios of polyester fabrics subjected to washing treatment and flame retardancy treatment.

  18. Crystallization of calcium carbonate on radiation-grafted polyethylene films

    International Nuclear Information System (INIS)

    Hou Zhengchi; Zhang Fengying; Deng Bo; Yang Haijun; Chen Shuang; Sheng Kanglong

    2006-01-01

    In biomineralization processes, nucleation and growth of inorganic crystals can be regulated by organic template molecules. This has inspired great interest in studying mimic biomineralization. In our study, growing CaCO 3 crystals on PE films functionalized through radiation-induced grafting was attempted. PE films grafted with different functional groups of different distributions and densities were used as substrates for CaCO 3 nucleation and crystal growth from Ca(HCO 3 ) 2 supersaturated solution under different environmental conditions (e.g. additives and temperature) to study the effects and mechanisms. The grafted PE films were analyzed by ATR-FTIR and AFM, and the evolution of CaCO 3 crystal formation on the grafted PE film was characterized by SEM, FTIR, and XRD. The results indicated that heterogeneous nucleation of CaCO 3 crystals was significantly facilitated by the functional groups grafted on the surface of PE films, that the morphology of CaCO 3 crystals could be controlled by distribution and density of the grafted functional groups, and that polymorphism of CaCO 3 crystal could be regulated by selection of grafting functional groups. We believe that studying the effects of chemical structures on inorganic crystallization is of great importance since radiation-induced grafting is an effective method to graft desirable functional groups onto different polymers by selected monomers, in the endeavor of developing advanced organic/inorganic composites with high performance, with a wide availability of polymers, monomers and inorganic solutions. (authors)

  19. Polyesters production from the mixture of phthalic acid, terephthalic and glycerol

    International Nuclear Information System (INIS)

    Carvalho, A.L.S.; Oliveira, J.C.; Miranda, C.S.; Boaventura, J.S.; Jose, N.M.; Carvalho, R.F.

    2010-01-01

    Glycerin, a byproduct of biodiesel is currently an environmental and economic problem for producers of this renewable fuel in Brazil and in others parts of the world. In order to offer new proposals for recovery, it is used for the manufacture of polyesters used in applications in diverse areas such as construction and automobile industry. This work reports the production of polymer from the mixture of terephthalic and phthalic acid in three different proportions. The polyesters showed good thermal stability, analyzed by TGA and DSC, with an increase proportional to the terephthalic acid content. The X-ray diffraction patterns show that the samples are semi crystalline polymers. The micrographs indicated the presence of a smoother surface in the polyester that has a larger amount of phthalic acid, as reported in the literature. Therefore, the materials showed good thermal properties and morphological characteristics, so it consists in a new alternative to use glycerin. (author)

  20. The Quest for Converting Biorenewable Bifunctional α-Methylene-γ-butyrolactone into Degradable and Recyclable Polyester: Controlling Vinyl-Addition/Ring-Opening/Cross-Linking Pathways

    KAUST Repository

    Tang, Xiaoyan

    2016-10-04

    α-Methylene-γ-butyrolactone (MBL), a naturally occurring and biomass-sourced bifunctional monomer, contains both a highly reactive exocyclic C═C bond and a highly stable five-membered γ-butyrolactone ring. Thus, all previous work led to exclusive vinyl-addition polymerization (VAP) product P(MBL)VAP. Now, this work reverses this conventional chemoselectivity to enable the first ring-opening polymerization (ROP) of MBL, thereby producing exclusively unsaturated polyester P(MBL)ROP with Mn up to 21.0 kg/mol. This elusive goal was achieved through uncovering the thermodynamic, catalytic, and processing conditions. A third reaction pathway has also been discovered, which is a crossover propagation between VAP and ROP processes, thus affording cross-linked polymer P(MBL)CLP. The formation of the three types of polymers, P(MBL)VAP, P(MBL)CLP, and P(MBL)ROP, can be readily controlled by adjusting the catalyst (La)/initiator (ROH) ratio, which is determined by the unique chemoselectivity of the La–X (X = OR, NR2, R) group. The resulting P(MBL)ROP is degradable and can be readily postfunctionalized into cross-linked or thiolated materials but, more remarkably, can also be fully recycled back to its monomer thermochemically. Computational studies provided the theoretical basis for, and a mechanistic understanding of, the three different polymerization processes and the origin of the chemoselectivity.

  1. The Quest for Converting Biorenewable Bifunctional α-Methylene-γ-butyrolactone into Degradable and Recyclable Polyester: Controlling Vinyl-Addition/Ring-Opening/Cross-Linking Pathways

    KAUST Repository

    Tang, Xiaoyan; Hong, Miao; Falivene, Laura; Caporaso, Lucia; Cavallo, Luigi; Chen, Eugene Y X

    2016-01-01

    α-Methylene-γ-butyrolactone (MBL), a naturally occurring and biomass-sourced bifunctional monomer, contains both a highly reactive exocyclic C═C bond and a highly stable five-membered γ-butyrolactone ring. Thus, all previous work led to exclusive vinyl-addition polymerization (VAP) product P(MBL)VAP. Now, this work reverses this conventional chemoselectivity to enable the first ring-opening polymerization (ROP) of MBL, thereby producing exclusively unsaturated polyester P(MBL)ROP with Mn up to 21.0 kg/mol. This elusive goal was achieved through uncovering the thermodynamic, catalytic, and processing conditions. A third reaction pathway has also been discovered, which is a crossover propagation between VAP and ROP processes, thus affording cross-linked polymer P(MBL)CLP. The formation of the three types of polymers, P(MBL)VAP, P(MBL)CLP, and P(MBL)ROP, can be readily controlled by adjusting the catalyst (La)/initiator (ROH) ratio, which is determined by the unique chemoselectivity of the La–X (X = OR, NR2, R) group. The resulting P(MBL)ROP is degradable and can be readily postfunctionalized into cross-linked or thiolated materials but, more remarkably, can also be fully recycled back to its monomer thermochemically. Computational studies provided the theoretical basis for, and a mechanistic understanding of, the three different polymerization processes and the origin of the chemoselectivity.

  2. Development of a readily recyclable sound insulation material made of polyester fibers. Application of the PET fibers from plastic bottles; Recycle kanona jidoshayo polyester sei kyuon zairyo no kaihatsu. Shiyozumi pet bottle zai no insulator zai eno tekiyo

    Energy Technology Data Exchange (ETDEWEB)

    Nemoto, K; Watanabe, K; Sugawara, H; Minemura, Y [Nissan Motor Co. Ltd., Tokyo (Japan)

    1997-10-01

    We have developed new polyester sound-absorbing materials made of fine and modified-cross-section polyester fabric. They provide noticeably higher sound-absorbing performance than traditional materials. Another feature of the new materials is their excellent recyclability since they are made of polyester. Application of the new materials to the dash silencer and the floor carpeting produced a great improvement in sound-insulation performance with less weight. 2 refs., 7 figs.

  3. Effect of Structure Change on Radiation Crosslinking of Unsaturated Polyesters

    International Nuclear Information System (INIS)

    Ranogajec, F.

    2006-01-01

    During the course of crosslinking of unsaturated polyesters reacting system, that was liquid prior to reaction, gels, and becomes solid. Crosslinking reaction begins to be controlled by the change of the physical state of the system at an early stage of reaction. The kinetics can not be studied by the usual kinetical methods. In-source 60 C o gamma rays induced crosslinking of unsaturated polyester with styrene was followed directly and continuously by measuring electrical conductivity change. The results of extraction analysis proved good correlation between the change of electrical conductivity and the extent of curing. The gel content was inversely proportional to conductivity and free styrene content directly proportional to conductivity. DC-electrical conductivity has shown high sensitivity toward structural changes and enabled us to detect liquid-liquid transitions in unsaturated polyester. The upper liquid-liquid transition (T l ρ) is less known transition caused by a stepwise decrease of intramolecular short-range local order that remains above the glass and lower liquid-liquid transitions. The local order is based on secondary valent interactions and is enhanced by hydrogen bonding. The linear temperature dependence of the viscosity and dc electrical conductivity of unsaturated polyesters showed a change of slope caused by the (T l ρ). Those changes were the result of the diminishing of the local order (which includes several bond lengths) caused by breaking of the intramolecular interactions. The intramolecular nature of the (T l ρ) in the polyesters under consideration was proved by its insensitivity to crosslinking and dilution with solvents. In the corresponding temperature range, DSC thermograms shoved expected endothermic changes. The structure changes related to the (T l ρ) in the investigated polyesters were determined by 1 H NMR and NIR spectroscopy. The proton NMR indicated that the stepwise change in hydrogen bonding occurred in the

  4. Synthesis of Improved Polyester Resins.

    Science.gov (United States)

    1979-07-05

    of this page) 21. No. of Pages 22. Price* Unclassified Unclassified 83 For sale by the National Technical Information Service, Springfield. Virginia...low sensitivity .... ........... 68 B2B C-scan of carbon fiber reinforced polyester Laminate #2 at high sensitivity ..... .......... 68 B3A C-scan of...right corner, but it is obscured by the delamination. Figure B2B shows the same composite at a 12 decibel increase in sensitivity. The image now shows

  5. Synergetic interaction between neighbouring platinum monomers in CO2 hydrogenation

    Science.gov (United States)

    Li, Hongliang; Wang, Liangbing; Dai, Yizhou; Pu, Zhengtian; Lao, Zhuohan; Chen, Yawei; Wang, Menglin; Zheng, Xusheng; Zhu, Junfa; Zhang, Wenhua; Si, Rui; Ma, Chao; Zeng, Jie

    2018-05-01

    Exploring the interaction between two neighbouring monomers has great potential to significantly raise the performance and deepen the mechanistic understanding of heterogeneous catalysis. Herein, we demonstrate that the synergetic interaction between neighbouring Pt monomers on MoS2 greatly enhanced the CO2 hydrogenation catalytic activity and reduced the activation energy relative to isolated monomers. Neighbouring Pt monomers were achieved by increasing the Pt mass loading up to 7.5% while maintaining the atomic dispersion of Pt. Mechanistic studies reveal that neighbouring Pt monomers not only worked in synergy to vary the reaction barrier, but also underwent distinct reaction paths compared with isolated monomers. Isolated Pt monomers favour the conversion of CO2 into methanol without the formation of formic acid, whereas CO2 is hydrogenated stepwise into formic acid and methanol for neighbouring Pt monomers. The discovery of the synergetic interaction between neighbouring monomers may create a new path for manipulating catalytic properties.

  6. Photoinduced anisotropy in a family of amorphous azobenzene polyesters for optical storage

    DEFF Research Database (Denmark)

    Nedelchev, Lian; Matharu, Avtar S.; Hvilsted, Søren

    2003-01-01

    of E1aX polymers characterized by two-ring aromatic substituent in the main chain is a good candidate for optical data storage media. A recording energy of approximately 2 J/cm(2) is sufficient to induce high refractive-index modulations of Deltan = 0.13 in these materials, which is retained even......We investigate parameters associated with optical data storage in a variety of amorphous side-chain azobenzene-containing polyesters denoted as E1aX. The polyesters possess a common cyano-substituted azobenzene chromophore as a side chain, but differ in their main-chain polyester composition....... Seventeen different polymers from the E1aX family divided into four classes, depending on the type of the main-chain substituent (one-, two-, and three-ring aromatic or alicyclic) have been thoroughly investigated. Various parameters characterizing the photoinduced birefringence in these materials...

  7. Simulation on the Performance of a Driven Fan Made by Polyester/Epoxy interpenetrate polymer network (IPN)

    Science.gov (United States)

    Fahrul Hassan, Mohd; Jamri, Azmil; Nawawi, Azli; Zaini Yunos, Muhamad; Fauzi Ahmad, Md; Adzila, Sharifah; Nasrull Abdol Rahman, Mohd

    2017-08-01

    The main purpose of this study is to investigate the performance of a driven fan design made by Polyester/Epoxy interpenetrate polymer network (IPN) material that specifically used for turbocharger compressor. Polyester/Epoxy IPN is polymer plastics that was used as replacements for traditional polymers and has been widely used in a variety of applications because of their limitless conformations. Simulation based on several parameters which are air pressure, air velocity and air temperature have been carried out for a driven fan design performance of two different materials, aluminum alloy (existing driven fan design) and Polyester/Epoxy IPN using SolidWorks Flow Simulation software. Results from both simulations were analyzed and compared where both materials show similar performance in terms of air pressure and air velocity due to similar geometric and dimension, but Polyester/Epoxy IPN produces lower air temperature than aluminum alloy. This study shows a preliminary result of the potential Polyester/Epoxy IPN to be used as a driven fan design material. In the future, further studies will be conducted on detail simulation and experimental analysis.

  8. Study of the properties and biodegradability of polyester/starch blends submitted to microbial attack

    International Nuclear Information System (INIS)

    Vinhas, Gloria M.; Almeida, Yeda M.B. de; Lima, Maria Alice Gomes de Andrade; Santos, Livia Almeida

    2007-01-01

    This work deals with the biodegradation of blends of poly(beta-hydroxybutyrate)/starch and poly(beta-hydroxybutyrate-cohydroxyvalerate)/ starch. The blends were obtained by evaporation of the solvent in the mixture of the polymers in chloroform. Tests were carried out in presence of micro-organisms which acted as biodegradation agents. The blends were consumed as carbon substrate and the production of CO 2 was evaluated in the process. In addition, the polyesters' mechanical properties were reduced by the incorporation of starch in its structure. ( 1 H) NMR and infrared spectroscopy detected some characteristic polyester degradation groups in the polyesters' chemical structure, thus confirming the alteration suffered by it. (author)

  9. 21 CFR 888.4220 - Cement monomer vapor evacuator.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Cement monomer vapor evacuator. 888.4220 Section... (CONTINUED) MEDICAL DEVICES ORTHOPEDIC DEVICES Surgical Devices § 888.4220 Cement monomer vapor evacuator. (a) Identification. A cement monomer vapor evacuator is a device intended for use during surgery to contain or remove...

  10. X-ray crystal structure and small-angle X-ray scattering of sheep liver sorbitol dehydrogenase

    DEFF Research Database (Denmark)

    Yennawar, Hemant; Møller, Magda; Gillilan, Richard

    2011-01-01

    The X-ray crystal structure of sheep liver sorbitol dehydrogenase (slSDH) has been determined using the crystal structure of human sorbitol dehydrogenase (hSDH) as a molecular-replacement model. slSDH crystallized in space group I222 with one monomer in the asymmetric unit. A conserved tetramer...

  11. Clinical outcomes after parastomal hernia repair with a polyester monofilament composite mesh

    DEFF Research Database (Denmark)

    Oma, E; Pilsgaard, B; Jorgensen, L N

    2018-01-01

    with intraperitoneal placement of a polyester monofilament macroporous composite mesh. METHODS: Data on all patients undergoing parastomal hernia repair with Parietex™ Composite Parastomal Mesh at our institution during a 4-year period were examined. Patients with urostomy were excluded. A team of three experienced...... chronic pain. CONCLUSION: In this study, we found low rates of recurrence and chronic pain following parastomal hernia repair using intraperitoneal reinforcement with a polyester monofilament composite mesh....

  12. Polyester-Based (Bio)degradable Polymers as Environmentally Friendly Materials for Sustainable Development

    Science.gov (United States)

    Rydz, Joanna; Sikorska, Wanda; Kyulavska, Mariya; Christova, Darinka

    2014-01-01

    This review focuses on the polyesters such as polylactide and polyhydroxyalkonoates, as well as polyamides produced from renewable resources, which are currently among the most promising (bio)degradable polymers. Synthetic pathways, favourable properties and utilisation (most important applications) of these attractive polymer families are outlined. Environmental impact and in particular (bio)degradation of aliphatic polyesters, polyamides and related copolymer structures are described in view of the potential applications in various fields. PMID:25551604

  13. The Degradation of Mechanical Properties in Halloysite Nanoclay-Polyester Nanocomposites Exposed in Seawater Environment

    Directory of Open Access Journals (Sweden)

    Mohd Shahneel Saharudin

    2016-01-01

    Full Text Available Polyester based polymers are extensively used in aggressive marine environments; however, inadequate data is available on the effects of the seawater on the polyester based nanocomposites mechanical properties. This paper reports the effect of seawater absorption on the mechanical properties degradation of halloysite nanoclay-polyester nanocomposites. Results confirmed that the addition of halloysite nanoclay into polyester matrix was found to increase seawater uptake and reduce mechanical properties compared to monolithic polyester. The maximum decreases in microhardness, tensile and flexural properties, and impact toughness were observed in case of 1 wt% nanoclay. The microhardness decreased from 107 HV to 41.7 HV (61% decrease. Young’s modulus decreased from 0.6 GPa to 0.4 GPa (33% decrease. The flexural modulus decreased from 0.6 GPa to 0.34 GPa (43% decrease. The impact toughness dropped from 0.71 kJ/m2 to 0.48 kJ/m2 (32% decrease. Interestingly, the fracture toughness KIC increased with the addition of halloysite nanoclay due to the plasticization effect of the resin matrix. SEM images revealed the significant reduction in mechanical properties in case of 1 wt% reinforcement which is attributed to the degradation of the nanoclay-matrix interface influenced by seawater absorption and agglomeration of halloysite nanoclay.

  14. Highly Efficient Synthesis of Allopurinol Locked Nucleic Acid Monomer by C6 Deamination of 8-Aza-7-bromo-7-deazaadenine Locked Nucleic Acid Monomer

    DEFF Research Database (Denmark)

    Kosbar, Tamer Reda El-Saeed; Sofan, M.; Abou-Zeid, L.

    2013-01-01

    An allopurinol locked nucleic acid (LNA) monomer was prepared by a novel strategy through C6 deamination of the corresponding 8-aza-7-bromo-7-deazaadenine LNA monomer with aqueous sodium hydroxide. An 8-aza-7-deazaadenine LNA monomer was also synthesized by a modification of the new synthetic...... the required LNA monomers....

  15. Catalyst Influence on Undesired Side Reactions in the Polycondensation of Fully Bio-Based Polyester Itaconates

    Directory of Open Access Journals (Sweden)

    Ina Schoon

    2017-12-01

    Full Text Available Bio-based unsaturated polyester resins derived from itaconic acid can be an alternative to established resins of this type in the field of radical-curing resins. However, one of the challenges of these polyester itaconates is the somewhat more elaborate synthetic process, especially under polycondensation conditions used on an industrial scale. The α,β-unsaturated double bond of the itaconic acid is prone to side reactions that can lead to the gelation of the polyester resin under standard conditions. This is especially true when bio-based diols such as 1,3-propanediol or 1,4-butanediol are used to obtain resins that are 100% derived from renewable resources. It was observed in earlier studies that high amounts of these aliphatic diols in the polyester lead to low conversion and gelation of the resins. In this work, a catalytic study using different diols was performed in order to elucidate the reasons for this behavior. It was shown that the choice of catalyst has a crucial influence on the side reactions occurring during the polycondensation reactions. In addition, the side reactions taking place were identified and suppressed. These results will allow for the synthesis of polyester itaconates on a larger scale, setting the stage for their industrial application.

  16. Influence of the substituent on azobenzene side-chain polyester optical storage materials

    DEFF Research Database (Denmark)

    Pedersen, M; Hvilsted, Søren; Holme, NCR

    1999-01-01

    , chloro, and bromo. C-13 NMR spectroscopic and molecular mass investigations substantiate good film forming characteristics. The optical storage performance of thin polyester films are investigated through polarization holography. The resulting diffraction efficiency is mapped and discussed as a function...... of irradiation power and exposure time. Polytetradecanedioates with cyano-, nitro-, methyl-, fluoro-, or trinuoromethyl-azobenzene reach more than 50% diffraction efficiency. Investigations of anisotropy induced at different temperatures reveal that the polyesters are only photosensitive in a narrow temperature...

  17. Micro-thermal analysis of polyester coatings

    Science.gov (United States)

    Fischer, Hartmut R.

    2010-04-01

    The application and suitability of micro-thermal analysis to detect changes in the chemical and physical properties of coating due to ageing and especially photo-degradation is demonstrated using a model polyester coating based on neopentyl glycol isophthalic acid. The changes in chemical structure like chain scission and cross-linking are manifested by a shift of the LTA detectable Tg and by a change of the slope of the part of the LTA graph responsible for the penetration of the hot sensor into the material after passing the glass transition temperature. As such LTA is a valuable tool to have a quick look into coating surfaces and especially their ageing. The photo-degradation of polyester in air leads to the formation of a cross-linked network at a surface layer of about 3-4 μm coupled with an increase in hardness and of the glass transition temperature by ˜90 K, the effect is less drastic for a photo-degradation in a nitrogen environment. Moreover, the presence of a non-equilibrium dense surface layer with a higher Tg formed during the drying of the coating formulation and the film solidification can be shown.

  18. Study on Energy Absorption Capacity of Steel-Polyester Hybrid Fiber Reinforced Concrete Under Uni-axial Compression

    Science.gov (United States)

    Chella Gifta, C.; Prabavathy, S.

    2018-05-01

    This work presents the energy absorption capacity of hybrid fiber reinforced concrete made with hooked end steel fibers (0.5 and 0.75%) and straight polyester fibers (0.5, 0.8, 1.0 and 2.0%). Compressive toughness (energy absorption capacity) under uni-axial compression was evaluated on 100 × 200 mm size cylindrical specimens with varying steel and polyester fiber content. Efficiency of the hybrid fiber reinforcement is studied with respect to fiber type, size and volume fractions in this investigation. The vertical displacement under uni-axial compression was measured under the applied loads and the load-deformation curves were plotted. From these curves the toughness values were calculated and the results were compared with steel and polyester as individual fibers. The hybridization of 0.5% steel + 0.5% polyester performed well in post peak region due to the addition of polyester fibers with steel fibers and the energy absorption value was 23% greater than 0.5% steel FRC. Peak stress values were also higher in hybrid series than single fiber and based on the results it is concluded that hybrid fiber reinforcement improves the toughness characteristics of concrete without affecting workability.

  19. Nano-biocomposites based on synthetic aliphatic polyesters and nanoclay

    CSIR Research Space (South Africa)

    Ojijo, Vincent O

    2014-05-01

    Full Text Available This article gives an overview of the recent developments in the preparation, characterisation, properties, crystallisation behaviour, and melt rheology of clay-containing composites of biodegradable synthetic aliphatic polyesters such as poly...

  20. Radioluminescence of polyester resin modified with acrylic acid and its salts

    Science.gov (United States)

    Szalińska, H.; Wypych, M.; Pietrzak, M.; Szadkowska-Nicze, M.

    Polimal-109 polyester resin and its compounds containing acrylic acid and its salts such as: sodium, potassium, magnesium, calcium, barium, iron, cobalt, copper and manganese acrylates were studied by the radioluminescence method, including isothermal luminescence (ITL) at a radiation temperature of 77 K, thermoluminescence (RTL) and spectral distributions of isothermal luminescence. Measurements of optical absorption at 77 K before and after irradiation of the investigated samples were also carried out. The results obtained have shown that metal ions play a significant part in the processes taking place in the polyester matrix under the influence of γ 60Co radiation.

  1. Radioluminescence of polyester resin modified with acrylic acid and its salts

    International Nuclear Information System (INIS)

    Szalinska, H.; Wypych, M.; Pietrzak, M.; Szadkowska-Nicze, M.

    1987-01-01

    Polimal-109 polyester resin and its compounds containing acrylic acid and its salts such as: sodium, potassium, magnesium, calcium, barium, iron, cobalt, copper and manganese acrylates were studied by the radioluminescence method, including isothermal luminescence (ITL) at a radiation temperature of 77 K, thermoluminescence (RTL) and spectral distributions of isothermal luminescence. Measurements of optical absorption at 77K before and after irradiation of the investigated samples were also carried out. The results obtained have shown that metal ions play a significant part in the processes taking place in the polyester matrix under the influence of γ 60 Co radiation. (author)

  2. Antifungal activity of fabrics knitted by metalized Silver/Polyester composite yarn

    Science.gov (United States)

    Özkan, İ.; Duru Baykal, P.

    2017-10-01

    In this study, antifungal properties of fabric knitted from metalized silver/polyester composite yarn were investigated. Intermingling is an alternative technique for yarn blending process. Yarns having different features can be combined by feeding the same intermingling jet. This process is defined as commingling. In the study, intermingling process was used to produce metalized silver/polyester composite yarn. Commingled yarns were knitted to single jersey fabrics by IPM brand sample type circular knitting machine. Antifungal activity test was applied to samples against Aspergillus Niger according to AATCC 30 test procedure. It has been identified that the application provides antifungal activity to fabric.

  3. Crystallization and preliminary X-ray characterization of a ferritin from the hyperthermophilic archaeon and anaerobe Pyrococcus furiosus

    International Nuclear Information System (INIS)

    Matias, Pedro M.; Tatur, Jana; Carrondo, Maria Arménia; Hagen, Wilfred R.

    2005-01-01

    Ferritin from P. furiosus crystallizes in space group C222 1 , with unit-cell parameters a = 258.1, b = 340.1, c = 266.5 Å and 36 monomers in the asymmetric unit, corresponding to one and a half 24-mers. Crystals of the title protein have been produced and preliminary structural analysis has been carried out. The crystals belong to the orthorhombic space group C222 1 , with unit-cell parameters a = 258.1, b = 340.1, c = 266.5 Å. The protein forms a 24-mer of 20 kDa subunits, which assemble with 432 non-crystallographic symmetry. A total of 36 monomers are found in the asymmetric unit, corresponding to one and a half 24-mers

  4. Crystal structures of the all-cysteinyl-coordinated D14C variant of Pyrococcus furiosus ferredoxin: [4Fe–4S] ↔ [3Fe–4S] cluster conversion

    DEFF Research Database (Denmark)

    Løvgreen, Monika Nøhr; Martic, Maja; Windahl, Michael S.

    2011-01-01

    The structure of the all-cysteinyl-coordinated D14C variant of [4Fe–4S] ferredoxin from the hyperthermophilic archaeon Pyrococcus furiosus has been determined to 1.7 Å resolution from a crystal belonging to space group C2221 with two types of molecules, A and B, in the asymmetric unit. A and B...... molecules have different crystal packing and intramolecular disulfide bond conformation. The crystal packing reveals a β-sheet interaction between A molecules in adjacent asymmetric units, whereas B molecules are packed as monomers in a less rigid position next to the A–A extended β-sheet dimers...... and purification are carried out at pH 5.8, only the monomer is obtained. The crystal structure of D14C [3Fe–4S] P. furiosus ferredoxin monomer was determined to 2.8 Å resolution from a crystal belonging to space group P212121 with two molecules in the asymmetric unit. The molecules resemble molecule A of D14C [4...

  5. Photoinduced Circular Anisotropy in Side-Chain Azobenzene Polyesters

    DEFF Research Database (Denmark)

    Nikolova, L.; Todorov, T.; Ivanov, M.

    1997-01-01

    We report for the first time the inducing of large circular anisotropy in previously unoriented films of side-chain azobenzene polyesters on illumination with circularly polarized light at a wavelength of 488 nm. The circular dichroism and optical activity are measured simultaneously in real time...

  6. Step growth of two flexible ABf monomers

    DEFF Research Database (Denmark)

    Cameron, Colin; Fawcett, Allan H.; Hetherington, Cecil R.

    2000-01-01

    A three-dimensional lattice model was used to simulate the competition between the growth of hyperbranched structures and cycle formation that occurs when flexible ABf monomers undergo step growth. The monomers in the model are mapped onto several lattice sites. The effect of functionality...

  7. Thermodynamics of swelling of latex particles with two monomers

    NARCIS (Netherlands)

    Maxwell, I.A.; Kurja, J.; van Doremaele, G.H.J.; German, A.L.

    1992-01-01

    The partitioning of 2 monomers between the latex particle, monomer droplet, and aq. phases of an emulsion polymer latex are measured at satn. swelling of the latex particle phase (corresponding to intervals I and II of an emulsion polymn.). The monomer (Me acrylate, Bu acrylate, styrene) and polymer

  8. Prevention of primary vascular graft infection with silver-coated polyester graft in a porcine model

    DEFF Research Database (Denmark)

    Gao, H; Sandermann, J; Prag, J

    2010-01-01

    To evaluate the efficacy of a silver-coated vascular polyester graft in the prevention of graft infection after inoculation with Staphylococcus aureus in a porcine model.......To evaluate the efficacy of a silver-coated vascular polyester graft in the prevention of graft infection after inoculation with Staphylococcus aureus in a porcine model....

  9. Phormidium phycoerythrin forms hexamers in crystals: a crystallographic study

    Science.gov (United States)

    Sonani, Ravi Raghav; Sharma, Mahima; Gupta, Gagan Deep; Kumar, Vinay; Madamwar, Datta

    2015-01-01

    The crystallographic analysis of a marine cyanobacterium (Phormidium sp. A09DM) phycoerythrin (PE) that shows distinct sequence features compared with known PE structures from cyanobacteria and red algae is reported. Phormidium PE was crystallized using the sitting-drop vapour-diffusion method with ammonium sulfate as a precipitant. Diffraction data were collected on the protein crystallography beamline at the Indus-2 synchrotron. The crystals diffracted to about 2.1 Å resolution at 100 K. The crystals, with an apparent hexagonal morphology, belonged to space group P1, with unit-cell parameters a = 108.3, b = 108.4 Å, c = 116.6 Å, α = 78.94, β = 82.50, γ = 60.34°. The molecular-replacement solution confirmed the presence of 12 αβ monomers in the P1 cell. The Phormidium PE elutes as an (αβ)3 trimer of αβ monomers from a molecular-sieve column and exists as [(αβ)3]2 hexamers in the crystal lattice. Unlike red algal PE proteins, the hexamers of Phormidium PE do not form higher-order structures in the crystals. The existence of only one characteristic visual absorption band at 564 nm suggests the presence of phycoerythrobilin chromophores, and the absence of any other types of bilins, in the Phormidium PE assembly. PMID:26249689

  10. Crystallization and preliminary crystallographic analysis of molybdenum-cofactor biosynthesis protein C from Thermus thermophilus

    International Nuclear Information System (INIS)

    Kanaujia, Shankar Prasad; Ranjani, Chellamuthu Vasuki; Jeyakanthan, Jeyaraman; Baba, Seiki; Chen, Lirong; Liu, Zhi-Jie; Wang, Bi-Cheng; Nishida, Masami; Ebihara, Akio; Shinkai, Akeo; Kuramitsu, Seiki; Shiro, Yoshitsugu; Sekar, Kanagaraj; Yokoyama, Shigeyuki

    2006-01-01

    The molybdenum-cofactor biosynthesis protein C from T. thermophilus has been crystallized in two different space groups, P2 1 and R32; the crystals diffracted to 1.9 and 1.75 Å resolution, respectively. The Gram-negative aerobic eubacterium Thermus thermophilus is an extremely important thermophilic microorganism that was originally isolated from a thermal vent environment in Japan. The molybdenum cofactor in this organism is considered to be an essential component required by enzymes that catalyze diverse key reactions in the global metabolism of carbon, nitrogen and sulfur. The molybdenum-cofactor biosynthesis protein C derived from T. thermophilus was crystallized in two different space groups. Crystals obtained using the first crystallization condition belong to the monoclinic space group P2 1 , with unit-cell parameters a = 64.81, b = 109.84, c = 115.19 Å, β = 104.9°; the crystal diffracted to a resolution of 1.9 Å. The other crystal form belonged to space group R32, with unit-cell parameters a = b = 106.57, c = 59.25 Å, and diffracted to 1.75 Å resolution. Preliminary calculations reveal that the asymmetric unit contains 12 monomers and one monomer for the crystals belonging to space group P2 1 and R32, respectively

  11. Crystal structure of Cryptosporidium parvum pyruvate kinase.

    Directory of Open Access Journals (Sweden)

    William J Cook

    Full Text Available Pyruvate kinase plays a critical role in cellular metabolism of glucose by serving as a major regulator of glycolysis. This tetrameric enzyme is allosterically regulated by different effector molecules, mainly phosphosugars. In response to binding of effector molecules and substrates, significant structural changes have been identified in various pyruvate kinase structures. Pyruvate kinase of Cryptosporidium parvum is exceptional among known enzymes of protozoan origin in that it exhibits no allosteric property in the presence of commonly known effector molecules. The crystal structure of pyruvate kinase from C. parvum has been solved by molecular replacement techniques and refined to 2.5 Å resolution. In the active site a glycerol molecule is located near the γ-phosphate site of ATP, and the protein structure displays a partially closed active site. However, unlike other structures where the active site is closed, the α6' helix in C. parvum pyruvate kinase unwinds and assumes an extended conformation. In the crystal structure a sulfate ion is found at a site that is occupied by a phosphate of the effector molecule in many pyruvate kinase structures. A new feature of the C. parvum pyruvate kinase structure is the presence of a disulfide bond cross-linking the two monomers in the asymmetric unit. The disulfide bond is formed between cysteine residue 26 in the short N-helix of one monomer with cysteine residue 312 in a long helix (residues 303-320 of the second monomer at the interface of these monomers. Both cysteine residues are unique to C. parvum, and the disulfide bond remained intact in a reduced environment. However, the significance of this bond, if any, remains unknown at this time.

  12. Protoenzymes: the case of hyperbranched polyesters

    Science.gov (United States)

    Mamajanov, Irena; Cody, George D.

    2017-11-01

    Enzymes are biopolymeric complexes that catalyse biochemical reactions and shape metabolic pathways. Enzymes usually work with small molecule cofactors that actively participate in reaction mechanisms and complex, usually globular, polymeric structures capable of specific substrate binding, encapsulation and orientation. Moreover, the globular structures of enzymes possess cavities with modulated microenvironments, facilitating the progression of reaction(s). The globular structure is ensured by long folded protein or RNA strands. Synthesis of such elaborate complexes has proven difficult under prebiotically plausible conditions. We explore here that catalysis may have been performed by alternative polymeric structures, namely hyperbranched polymers. Hyperbranched polymers are relatively complex structures that can be synthesized under prebiotically plausible conditions; their globular structure is ensured by virtue of their architecture rather than folding. In this study, we probe the ability of tertiary amine-bearing hyperbranched polyesters to form hydrophobic pockets as a reaction-promoting medium for the Kemp elimination reaction. Our results show that polyesters formed upon reaction between glycerol, triethanolamine and organic acid containing hydrophobic groups, i.e. adipic and methylsuccinic acid, are capable of increasing the rate of Kemp elimination by a factor of up to 3 over monomeric triethanolamine. This article is part of the themed issue 'Reconceptualizing the origins of life'.

  13. Reactive modification of polyesters and their blends

    Science.gov (United States)

    Wan, Chen

    2004-12-01

    As part of a broader research effort to investigate the chemical modification of polyesters by reactive processing a low molecular weight (MW) unsaturated polyester (UP) and a higher MW saturated polyester, polyethylene terephthalate (PET), alone or blended with polypropylene (PP) were melt processed in a batch mixer and continuous twin screw extruders. Modification was monitored by on-line rheology and the products were characterized primarily by off-line rheology, morphology and thermal analysis. Efforts were made to establish processing/property relationships and provide an insight of the accompanying structural changes. The overall response of the reactively modified systems was found to be strongly dependent on the component characteristics, blend composition, type and concentrations of reactive additives and processing conditions. The work concluded that UP can be effectively modified through reactive melt processing. Its melt viscosity and MW can be increased through chemical reactions between organic peroxides (POX) and chain unsaturation or between MgO and carboxyl/hydroxyl end groups. Reactive blending of PP/UP blends through peroxide modification gave finer and more uniform morphology than unreacted blends and at a given PP/UP weight ratio more thermoplastic elastomers-like rheological behavior. This is due to the continuously decreasing viscosity ratio of PP/UP towards unity by the competing reactions between POX and the blend components and formation of PP-UP copolymers which serve as in-situ compatibilizers to promote better interfacial adhesion. Kinetics of the competing reactions were analyzed through a developed model. In addition to POX concentration and mixing efficiency, rheology and morphology of UP/PP bends were significantly affected by the addition of inorganic and organic coagents. Addition of coagents such as a difunctional maleimide, MgO and/or an anhydride functionalized PP during reactive blending offers effective means for tailoring

  14. Quasi-static axial crushes on woven jute/polyester AA6063T52 composite tubes

    Science.gov (United States)

    Othman, A.; Ismail, AE

    2018-04-01

    Quasi-static axial loading have been studied in this paper to determine the behaviour of jute/polyester wrapped on aluminium alloy 6063T52. The filler material also was include into crush box specimen, which is polyurethane (PU) and polystyrene (PE) rigid foam at ranging 40 and 45 kg/m3 densities. All specimen profile was fabricated using hand layup techniques and the length of each specimen were fixed at 100 mm as well as diameter and width of the tube at 50.8 mm. The two types of tubular cross-section were studied of round and square thin-walled profiles and the angle of fibre at 450 were analysed for four layers. Thin walled of aluminium was 1.9 mm and end frontal of each specimen of composite were chamfered at 450 to prevent catastrophic failure mode. The specific absorbed energy (SEA) and crush force efficiency (CFE) were analyses for each specimen to see the behaviour on jute/polyester wrapped on metallic structure can give influence the energy management for automotive application. Result show that the four layers’ jute/polyester with filler material show significant value in term of specific absorbed energy compared empty and polyurethane profiles higher 26.66% for empty and 15.19% compared to polyurethane profiles. It has been found that the thin walled square profile of the jute/polyester tubes with polystyrene foam-filled is found higher respectively 27.42% to 13.13% than empty and polyurethane (PU) foam tubes. An introduce filler material onto thin walled composite profiles gave major advantage increases the mean axial load of 31.87% from 32.94 kN to 48.35 kN from empty to polystyrene thin walled round jute/polyester profiles and 31.7% from 23.11 KN to 33.84 kN from empty to polystyrene thin walled square jute/polyester profiles. Failure mechanisms of the axially loaded composite tubes were also observed and discussed.

  15. Effect of nanomodified polyester resin on hybrid sandwich laminates

    International Nuclear Information System (INIS)

    Anbusagar, NRR.; Giridharan, P.K.; Palanikumar, K.

    2014-01-01

    Highlights: • Effect of nanomodified polyester resin on hybrid sandwich laminates is evaluated. • The hybrid sandwich laminates are fabricated with varying wt% of nanoclay. • Flexural, impact and moisture absorbtion properties are evaluated for hybrid composites. • Scanning electron microscopy is utilized to analyze the dispersion of clay and fractured surfaces of the nanocomposites. - Abstract: Effect of nanoclay modified polyester resin on flexural, impact, hardness and water absorption properties of untreated woven jute and glass fabric hybrid sandwich laminates have been investigated experimentally. The hybrid sandwich laminates are prepared by hand lay-up manufacturing technique (HL) for investigation. All hybrid sandwich laminates are fabricated with a total of 10 layers, by varying the extreme layers and wt% of nanoclay in polyester resin so as to obtain four different combinations of hybrid sandwich laminates. For comparison of the composite with hybrid composite, jute fiber reinforced composite laminate also fabricated. X-ray diffraction (XRD) results obtained from samples with nanoclay indicated that intergallery spacing of the layered clay increases with matrix. Scanning electron microscopy (SEM) gave a morphological picture of the cross-sections and energy dispersive X-ray spectroscopy (EDS) allowed investigating the elemental composition of matrix in composites. The testing results indicated that the flexural properties are greatly increased at 4% of nanoclay loading while impact, hardness and water absorption properties are increased at 6% of nanoclay loading. A plausible explanation for high increase of properties has also been discussed

  16. New monomers for high performance polymers

    Science.gov (United States)

    Gratz, Roy F.

    1993-01-01

    This laboratory has been concerned with the development of new polymeric materials with high thermo-oxidative stability for use in the aerospace and electronics industries. Currently, there is special emphasis on developing matrix resins and composites for the high speed civil transport (HSCT) program. This application requires polymers that have service lifetimes of 60,000 hr at 350 F (177 C) and that are readily processible into void-free composites, preferably by melt-flow or powder techniques that avoid the use of high boiling solvents. Recent work has focused on copolymers which have thermally stable imide groups separated by flexible arylene ether linkages, some with trifluoromethyl groups attached to the aromatic rings. The presence of trifluoromethyl groups in monomers and polymers often improves their solubility and processibility. The goal of this research was to synthesize several new monomers containing pendant trifluoromethyl groups and to incorporate these monomers into new imide/arylene ether copolymers. Initially, work was begun on the synthesis of three target compounds. The first two, 3,5-dihydroxybenzo trifluoride and 3-amino 5-hydroxybenzo trifluoride, are intermediates in the synthesis of more complex monomers. The third, 3,5-bis (3-amino-phenoxy) benzotrifluoride, is an interesting diamine that could be incorporated into a polyimide directly.

  17. Monitoring structural transformations in crystals. 5. A topotactic [2 + 2]-photodimerization reaction.

    Science.gov (United States)

    Turowska-Tyrk, Ilona

    2003-10-01

    The structural changes in a crystal of 5-benzylidene-2-(4-chlorobenzyl)cyclopentanone during [2 + 2]-photodimerization were monitored by means of X-ray diffraction. It was observed that the monomers moved gradually from the position occupied in the crystal at the initial stage of the photoreaction and the dimers moved towards the position assumed at the final step. The movements of the molecules possess a rotational component. Moreover, with the progress of the phototransformation the monomers in the reacting pair gradually move closer and change their relative orientation to resemble more the product molecule. The behaviour of the molecules and also the variation of the cell constants for the studied compound were compared with data for 5-benzylidene-2-benzylcyclopentanone.

  18. Corona Glow Discharge Plasma Treatment for Hidrophylicity Improvement of Polyester and Cotton Fabrics

    Science.gov (United States)

    Susan, A. I.; Widodo, M.; Nur, M.

    2017-07-01

    The effects of irradiation by a corona glow discharge plasma on hidrophylicity properties of polyester and cotton fabrics were investigated. We used a corona glow discharge plasma reactor with multiple points to plane electrodes, which was generated by a high voltage DC. Factors that affect the hidrophylicity properties were identified and evaluated as functions of irradiation parameters, which include duration of treatment, distance between electrodes, and bias voltage. It was readily observed from SEM examinations that plasma changed the surface morphology of both polyester and cotton fibers, giving result to an increased roughness to both of them. Results also showed that the hidrophylicityof polyester and cotton fabrics improved by the treatment, which is proportional to the time of treatment and voltage, but inversely proportional to the distance between electrodes. Time of treatment that provided the optimum enhancement of hidrophylicity for cotton is 15 minutes which improved the wetting time from 8.16 seconds to 1.26 seconds. For polyester, it took 15 minutes of irradiation time to improve the wetting time from 7340 seconds to 2905 seconds. The optimum distance between electrodes for both fabrics in this study was found to be 2 cm. Further analysis showed that the improved hidrophylicity properties is due to the creation of surface radicals by free radicals in the plasma leading to the formation of new water-attracting functional groups on the fiber surface.

  19. Sulfonation of polyester fabrics by gaseous sulfur oxide activated by UV irradiation

    International Nuclear Information System (INIS)

    Kordoghli, Bessem; Khiari, Ramzi; Mhenni, Mohamed Farouk; Sakli, Faouzi; Belgacem, Mohamed Naceur

    2012-01-01

    Highlights: ► In this paper, an original technique was present to improve the hydrophilic properties of polyester fibres. ► The modification of PET fabric was carried out using gaseous sulfur trioxide activated by UV irradiations. ► We fully characterized the modified and untreated fabrics. - Abstract: This paper describes an original technique aiming to improve the hydrophilic properties of polyester fibres. In this method, the sulfonation of the aromatic rings is carried out using gaseous sulfur trioxide activated by UV irradiations. Thus, exposing the polyester textile fabric to the UVC light (wavelength around 254 nm) under a stream of sulfur trioxide leads to the fixation of -SO 3 H groups. The amounts of the fixed sulfonate groups depended on the reaction conditions. Evidence of grafting deduced from the measurements of hygroscopic properties was carried out by contact angle measurement, moisture regain as well as by measuring the rate of retention. SEM and FT-IR analysis, DSC and DTA/TGA thermograms showed that no significant modifications have occurred in the bulk of the treated PET fabrics.

  20. Soil-release behaviour of polyester fabrics after chemical modification with polyethylene glycol

    Science.gov (United States)

    Miranda, T. M. R.; Santos, J.; Soares, G. M. B.

    2017-10-01

    The fibres cleanability depends, among other characteristics, on their hydrophilicity. Hydrophilic fibres are easy-wash materials but hydrophobic fibres are difficult to clean due to their higher water-repellent surfaces. This type of surfaces, like polyester (PET), produce an accumulation of electrostatic charges, which favors adsorption and retention of dirt. Thus, the polyester soil-release properties can be increased by finishing processes that improve fiber hydrophilicity. In present study, PET fabric modification was described by using poly(ethylene glycol) (PEG) and N,N´-dimethylol-4,5-dihydroxyethylene urea (DMDHEU) chemically modified resin. Briefly, the modification process was carried out in two steps, one to hydrolyse the polyester and create hydroxyl and carboxylic acid groups on the surface and other to crosslink the PEG chains. The resulting materials were characterized by contact angle, DSC and FTIR-ATR methods. Additionally, the soil release behavior and the mechanical properties of modified PET were evaluated. For the best process conditions, the treated PET presented 0° contact angle, grade 5 stain release and acceptable mechanical performance.

  1. Thread angle dependency on flame spread shape over kenaf/polyester combined fabric

    Science.gov (United States)

    Azahari Razali, Mohd; Sapit, Azwan; Nizam Mohammed, Akmal; Nor Anuar Mohamad, Md; Nordin, Normayati; Sadikin, Azmahani; Faisal Hushim, Mohd; Jaat, Norrizam; Khalid, Amir

    2017-09-01

    Understanding flame spread behavior is crucial to Fire Safety Engineering. It is noted that the natural fiber exhibits different flame spread behavior than the one of the synthetic fiber. This different may influences the flame spread behavior over combined fabric. There is a research has been done to examined the flame spread behavior over kenaf/polyester fabric. It is seen that the flame spread shape is dependent on the thread angle dependency. However, the explanation of this phenomenon is not described in detail in that research. In this study, explanation about this phenomenon is given in detail. Results show that the flame spread shape is dependent on the position of synthetic thread. For thread angle, θ = 0°, the polyester thread is breaking when the flame approach to the thread and the kenaf thread tends to move to the breaking direction. This behavior produces flame to be ‘V’ shape. However, for thread angle, θ = 90°, the polyester thread melts while the kenaf thread decomposed and burned. At this angle, the distance between kenaf threads remains constant as flame approaches.

  2. Dsc cure kinetics of an unsaturated polyester resin using empirical kinetic model

    International Nuclear Information System (INIS)

    Abdullah, I.

    2015-01-01

    In this paper, the kinetics of curing of unsaturated polyester resin initiated with benzoyl peroxide was studied. In case of unsaturated polyester (UP) resin, isothermal test alone could not predict correctly the curing time of UP resin. Therefore, isothermal kinetic analysis through isoconventional adjustment was used to correctly predict the curing time and temperature of UP resin. Isothermal kinetic analysis through isoconversional adjustment indicated that 97% of UP resin cures in 33 min at 120 degree C. Curing of UP resin through microwaves was also studied and found that 67% of UP resin cures in 1 min at 120 degree C. The crosslinking reaction of UP resin is so fast at 120 degree C that it becomes impossible to predict correctly the curing time of UP resin using isothermal test and the burial of C=C bonds in microgels makes it impossible to be fully cured by microwaves at 120 degree C. The rheological behaviour of unsaturated polyester resin was also studied to observe the change in viscosity with respect to time and temperature. (author)

  3. Crystallization and Preliminary X-ray Analysis of Bacteriophasge T4 UvsY Recombination Mediator Protein

    International Nuclear Information System (INIS)

    Xu, H.; Beernink, H.; Rould, M.; Morrical, S.

    2006-01-01

    Bacteriophage T4 UvsY protein is considered to be the prototype of recombination mediator proteins, a class of proteins which assist in the loading of recombinases onto DNA. Wild-type and Se-substituted UvsY protein have been expressed and purified and crystallized by hanging-drop vapor diffusion. The crystals diffract to 2.4 (angstrom) using in-house facilities and to 2.2 (angstrom) at NSLS, Brookhaven National Laboratory. The crystals belong to space group P422, P4 2 22, P42 1 2 or P4 2 2 1 2, the ambiguity arising from pseudo-centering, with unit-cell parameters a = b = 76.93, c = 269.8 (angstrom). Previous biophysical characterization of UvsY indicates that it exists primarily as a hexamer in solution. Along with the absence of a crystallographic threefold, this suggests that the asymmetric unit of these crystals is likely to contain either three monomers, giving a solvent content of 71%, or six monomers, giving a solvent content of 41%

  4. Abaca/polyester nonwoven fabric functionalization for metal ion adsorbent synthesis via electron beam-induced emulsion grafting

    Science.gov (United States)

    Madrid, Jordan F.; Ueki, Yuji; Seko, Noriaki

    2013-09-01

    A metal ion adsorbent was developed from a nonwoven fabric trunk material composed of both natural and synthetic polymers. A pre-irradiation technique was used for emulsion grafting of glycidyl methacrylate (GMA) onto an electron beam irradiated abaca/polyester nonwoven fabric (APNWF). The dependence of degree of grafting (Dg), calculated from the weight of APNWF before and after grafting, on absorbed dose, reaction time and monomer concentration were evaluated. After 50 kGy irradiation with 2 MeV electron beam and subsequent 3 h reaction with an emulsion consisting of 5% GMA and 0.5% polyoxyethylene sorbitan monolaurate (Tween 20) surfactant in deionized water at 40 °C, a grafted APNWF with a Dg greater than 150% was obtained. The GMA-grafted APNWF was further modified by reaction with ethylenediamine (EDA) in isopropyl alcohol at 60 °C to introduce amine functional groups. After a 3 h reaction with 50% EDA, an amine group density of 2.7 mmole/gram adsorbent was achieved based from elemental analysis. Batch adsorption experiments were performed using Cu2+ and Ni2+ ions in aqueous solutions with initial pH of 5 at 30 °C. Results show that the adsorption capacity of the grafted adsorbent for Cu2+ is four times higher than Ni2+ ions.

  5. Polyester synthesis for application in PEMFC type fuel cells; Sintese de poliester para aplicacao em celulas a combustivel do tipo PEM

    Energy Technology Data Exchange (ETDEWEB)

    Fiuza, R.P.; Souza, D.R. de; Fiuza, R.A.; Jose, N.M.; Boaventura, J.S. [Universidade Federal da Bahia (UFBA), Salvador, BA (Brazil). Inst. de Quimica], e-mail: raigenis@gmail.com

    2006-07-01

    The PEMFC (Proton Exchange Membrane Fuel Cell), along the SOFC (Solid Oxide Fuel Cell), is the most important technology, among the various types of fuels cell. The PEMFC shows a large versatility of applications, both for stationary and mobile use. However the PEMFC presents high manufacture cost, directly impacting in the cost of the produced energy. This work contemplates the previews sulfonation of phtalic acid and its subsequent polymerization with glycerol, using as catalytic tin dibutyl-dilaurate. The obtained material has been characterized by DSC, TGA, FTIR, MEV, DRX and XRF. The gotten results indicated that phtalic acid was sulfonated and the increase of the sulfonation degree significantly increased the crystallinity of the sulfonated ftalico acid. Furthermore, the polymer produced from the sulfonated monomer presented adequate thermal resistance and a high content of conducting groups, necessary conditions for application as electrolyte in PEMFC. All these characteristics, particularly the low cost of the reagents and the ease of production process, make the sulfonated polyester membrane a promising candidate as fuel cell electrolyte. (author)

  6. The Degradation of Mechanical Properties in Halloysite Nano clay-Polyester Nano composites Exposed in Seawater Environment

    International Nuclear Information System (INIS)

    Saharudin, M.S.; Saharudin, M. Sh.; Wei, J.; Shyha, I.; Inam, F.

    2016-01-01

    Polyester based polymers are extensively used in aggressive marine environments; however, inadequate data is available on the effects of the seawater on the polyester based nano composites mechanical properties. This paper reports the effect of seawater absorption on the mechanical properties degradation of halloysite nano clay-polyester nano composites. Results confirmed that the addition of halloysite nano clay into polyester matrix was found to increase seawater uptake and reduce mechanical properties compared to monolithic polyester. The maximum decreases in microhardness, tensile and flexural properties, and impact toughness were observed in case of 1 wt% nano clay. The microhardness decreased from 107 HV to 41.7 HV (61% decrease). Young s modulus decreased from 0.6 GPa to 0.4 GPa (33% decrease). The flexural modulus decreased from 0.6 GPa to 0.34 GPa (43% decrease). The impact toughness dropped from 0.71 kJ/m"2 to 0.48 kJ/m"2 (32% decrease). Interestingly, the fracture toughnessκ_1C increased with the addition of halloysite nano clay due to the plasticization effect of the resin matrix. SEM images revealed the significant reduction in mechanical properties in case of 1 wt% reinforcement which is attributed to the degradation of the nano clay-matrix interface influenced by seawater absorption and agglomeration of halloysite nano clay.

  7. Surface modification of polyester fabrics by atmospheric-pressure air/He plasma for color strength and adhesion enhancement

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Chunming, E-mail: zcm1229@126.com [College of Textiles and Clothing, Qingdao University, Qingdao 266071 (China); Sunvim Grp Co Ltd, Gaomi 261500 (China); Zhao, Meihua; Wang, Libing; Qu, Lijun [College of Textiles and Clothing, Qingdao University, Qingdao 266071 (China); Men, Yajing [Sunvim Grp Co Ltd, Gaomi 261500 (China)

    2017-04-01

    Highlights: • Air/He plasma gave hydrophilicity on polyester surface and decreased contact angle to 18°. • The roughness of polyester increased and pit-like structures appeared on the surface after plasma treatment. • XPS confirmed the generation of new functional groups on polyester fabric. • The improved pigment color yield and anti-bleeding performance were contributed by the alteration of pigment adhesion. • The air/He plasma was more effective than air plasma at the same treatment time. - Abstract: Surface properties of water-based pigmented inks for ink-jet printed polyester fabrics were modified with atmospheric-pressure air/He plasma to improve the color strength and pigment adhesion of the treated surfaces. The influence of various parameters, including the surface morphology, chemical compositions, surface energy and dynamic contact angles of the control and plasma treated samples was studied. Color strength and edge definition were used to evaluate the ink-jet printing performance of fabrics. The change in pigment adhesion to polyester fibers was analyzed by SEM (scanning electron microscopy). AFM (Atomic force microscope) and XPS (X-ray photoelectron spectroscopy) analyses indicated the increase in surface roughness and the oxygen-containing polar groups(C=O, C−OH and COOH) reinforced the fixation of pigments on the fiber surface. The result from this study suggested that the improved pigment color yield was clearly affected by alteration of pigment adhesion enhanced by plasma surface modification. Polyester fabrics exhibited better surface property and ink-jet printing performance after the air/He mixture plasma treatment comparing with those after air plasma treatment.

  8. Surface modification of polyester fabrics by atmospheric-pressure air/He plasma for color strength and adhesion enhancement

    International Nuclear Information System (INIS)

    Zhang, Chunming; Zhao, Meihua; Wang, Libing; Qu, Lijun; Men, Yajing

    2017-01-01

    Highlights: • Air/He plasma gave hydrophilicity on polyester surface and decreased contact angle to 18°. • The roughness of polyester increased and pit-like structures appeared on the surface after plasma treatment. • XPS confirmed the generation of new functional groups on polyester fabric. • The improved pigment color yield and anti-bleeding performance were contributed by the alteration of pigment adhesion. • The air/He plasma was more effective than air plasma at the same treatment time. - Abstract: Surface properties of water-based pigmented inks for ink-jet printed polyester fabrics were modified with atmospheric-pressure air/He plasma to improve the color strength and pigment adhesion of the treated surfaces. The influence of various parameters, including the surface morphology, chemical compositions, surface energy and dynamic contact angles of the control and plasma treated samples was studied. Color strength and edge definition were used to evaluate the ink-jet printing performance of fabrics. The change in pigment adhesion to polyester fibers was analyzed by SEM (scanning electron microscopy). AFM (Atomic force microscope) and XPS (X-ray photoelectron spectroscopy) analyses indicated the increase in surface roughness and the oxygen-containing polar groups(C=O, C−OH and COOH) reinforced the fixation of pigments on the fiber surface. The result from this study suggested that the improved pigment color yield was clearly affected by alteration of pigment adhesion enhanced by plasma surface modification. Polyester fabrics exhibited better surface property and ink-jet printing performance after the air/He mixture plasma treatment comparing with those after air plasma treatment.

  9. In-vitro transdentinal diffusion of monomers from adhesives.

    Science.gov (United States)

    Putzeys, Eveline; Duca, Radu Corneliu; Coppens, Lieve; Vanoirbeek, Jeroen; Godderis, Lode; Van Meerbeek, Bart; Van Landuyt, Kirsten L

    2018-06-01

    Biocompatibility of adhesives is important since adhesives may be applied on dentin near the pulp. Accurate knowledge of the quantity of monomers reaching the pulp is important to determine potential side effects. The aim of this study was to assess the transdentinal diffusion of residual monomers from dental adhesive systems using an in-vitro pulp chamber model. Dentin disks with a thickness of 300 µm were produced from human third molars. These disks were fixed between two open-ended glass tubes, representing an in-vitro pulp chamber. The etch-and-rinse adhesive OptiBond FL and the self-etch adhesive Clearfil SE Bond were applied to the dentin side of the disks, while on in the pulpal side, the glass tube was filled with 600 µL water. The transdentinal diffusion of different monomers was quantified using ultra-performance liquid chromatography-tandem mass spectrometry. The monomers HEMA, CQ, BisGMA, GPDM, 10-MDP and UDMA eluted from the dental materials and were able to diffuse through the dentin disks to a certain extent. Compounds with a lower molecular weight (uncured group: HEMA 7850 nmol and CQ 78.2 nmol) were more likely to elute and diffuse compared to monomers with a higher molecular weight (uncured group: BisGMA 0.42 nmol). When the adhesives were left uncured, diffusion was up to 10 times higher compared to the cured conditions. This in-vitro research resulted in the quantification of various monomers able to diffuse through dentin and therefore contributes to a more detailed understanding about the potential exposure of the dental pulp to monomers from dental adhesives. Biocompatibility of adhesives is important since adhesives may be applied on dentin near the pulp, where tubular density and diameter are greatest. Copyright © 2018. Published by Elsevier Ltd.

  10. The effect of monomer molecular weight on grafting reaction

    International Nuclear Information System (INIS)

    Wu Minghong; Ding Zhongli; Ma Zueteh

    1995-01-01

    In this paper, some condensed ethylene glycol acrylate monomers with different molecular weight being grafted to the PE film by means of pre-irradiation is reported. The effect of molecular weight of monomer on grafting reaction and the hydrophilicity of grafting sample have been discussed. The experimental results show: molar degrees of grafting decreased non-linearly with the increasement of molecular weight of monomer, the grafting reaction of polymer is greater effected by the swelling degree of PE film, the greater the swelling degree of grafting material, the higher the grating degree grafting is, the initial rate of grafting reaction decreased with the increasement of molecular weight of monomer. (author)

  11. Dyeing of Polyester with Disperse Dyes: Part 2. Synthesis and Dyeing Characteristics of Some Azo Disperse Dyes for Polyester Fabrics

    Directory of Open Access Journals (Sweden)

    Alya M. Al-Etaibi

    2016-06-01

    Full Text Available The goal of this study was to utilize carrier for accelerating the rate of dyeing not only to enhance dyeing of polyester fabrics dyed with disperse dyes 3a,b, but also to save energy. Both the color strength expressed as dye uptake and the fastness properties of the dyed fabrics were evaluated.

  12. Electrochemistry of Hemin on Single-Crystal Au(111)-electrode Surfaces

    DEFF Research Database (Denmark)

    Zhang, Ling; Ulstrup, Jens; Zhang, Jingdong

    adsorption on well-defined single-crystal Au(111)-electrode surfaces using electrochemistry combined with scanning tunnelling microscopy under electrochemical control. Hemin gives two voltammetric peaks assigned to adsorbed monomers and dimmers (Fig. 1B). In situ STM shows that hemin self...

  13. Study of the chain conformation of thermotropic nematic main chain polyesters

    Science.gov (United States)

    Li, M. H.; Brûlet, A.; Cotton, J. P.; Davidson, P.; Strazielle, C.; Keller, P.

    1994-10-01

    The conformation of main chain mesomorphic polyesters is studied by small angle neutron scattering (SANS) in the isotropic and in the nematic phases, by using mixtures of deuterated and undeuterated polymers. Particular attention is given to neglect the transesterification effects occurring mainly at high temperature for these LC polymers. In the isotropic phase, despite the presence of long rigid mesogenic groups, the LC polyester chains have a Gaussian conformation shown by the variation of the radius of gyration as a function of the molecular weight. This result is confirmed from the scattering variation in the intermediate range of the scattering vector. In the nematic phase, the SANS data are well fitted to a model of cylinder, in which the main chain polymer is confined. In the unoriented phase, the measurements in the intermediate range give the values of the radii of cylinders : they lie in between 10 Å and 19 Å depending on the degree of polymerization of chains. In the oriented nematic phase, the scattering patterns are highly anisotropic : they correspond to very long, thin and well-oriented cylinders. We have calculated the fully extended chain lengths using for the monomer length that measured in situ by X-ray diffraction. Then the comparison of this length with the measured height of the cylinders gives the existence of hairpins and their number per chain. For the short chain, the conformation is almost completely elongated in the nematic direction, whereas hairpin defects appear in longer chains. Their number decreases slightly with decreasing temperature. The orientational fluctuations of cylinders relatively to the nematic director are weak as shown from the high values of their order parameter (P_2 > 0.9). These results are discussed for two spacer lengths as a function of the molecular weight and of the temperature. La conformation de polyesters linéaires mésomorphes est étudiée par diffusion de neutrons aux petits angles (DNPA) dans les

  14. Photopolymerizable silicone monomers, oligomers, and resins

    International Nuclear Information System (INIS)

    Jacobine, A.F.; Nakos, S.T.

    1992-01-01

    The purpose of this chapter is to acquaint the general photopolymer researcher with the historical development of the chemistry and technology of photopolymerizable silicone monomers, fluids, and resins. The current status of research in these areas is assessed. The focus of this chapter is not only on the polymer chemistry and application of this technology, but also on important aspects of the synthetic chemistry involved in the preparation of UV-curable silicone monomers, oligomers, and resins. 236 refs., 6 tabs

  15. Dynamic conformations of nucleophosmin (NPM1 at a key monomer-monomer interface affect oligomer stability and interactions with granzyme B.

    Directory of Open Access Journals (Sweden)

    Wei D Duan-Porter

    Full Text Available Nucleophosmin (NPM1 is an abundant, nucleolar tumor antigen with important roles in cell proliferation and putative contributions to oncogenesis. Wild-type NPM1 forms pentameric oligomers through interactions at the amino-terminal core domain. A truncated form of NPM1 found in some hepatocellular carcinoma tissue formed an unusually stable oligomer and showed increased susceptibility to cleavage by granzyme B. Initiation of translation at the seventh methionine generated a protein (M7-NPM that shared all these properties. We used deuterium exchange mass spectrometry (DXMS to perform a detailed structural analysis of wild-type NPM1 and M7-NPM, and found dynamic conformational shifts or local "unfolding" at a specific monomer-monomer interface which included the β-hairpin "latch." We tested the importance of interactions at the β-hairpin "latch" by replacing a conserved tyrosine in the middle of the β-hairpin loop with glutamic acid, generating Y67E-NPM. Y67E-NPM did not form stable oligomers and further, prevented wild-type NPM1 oligomerization in a dominant-negative fashion, supporting the critical role of the β-hairpin "latch" in monomer-monomer interactions. Also, we show preferential cleavage by granzyme B at one of two available aspartates (either D161 or D122 in M7-NPM and Y67E-NPM, whereas wild-type NPM1 was cleaved at both sites. Thus, we observed a correlation between the propensity to form oligomers and granzyme B cleavage site selection in nucleophosmin proteins, suggesting that a small change at an important monomer-monomer interface can affect conformational shifts and impact protein-protein interactions.

  16. Modification of unsaturated polyester resins using nano-size core ...

    African Journals Online (AJOL)

    Modification of unsaturated polyester resins using nano-size core-shell particles. MO Munyati, PA Lovell. Abstract. No Abstract Available Journal of Science and Technology Special Edition 2004: 24-31. Full Text: EMAIL FULL TEXT EMAIL FULL TEXT · DOWNLOAD FULL TEXT DOWNLOAD FULL TEXT.

  17. Polymerization of impregnated monomer in wood by microwave irradiation

    International Nuclear Information System (INIS)

    Kawase, Kaoru; Hayakawa, Kiyoshi

    1976-01-01

    The manufacturing of a wood-plastic combination (WPC) by irradiation of microwave (2,450 and 915 +- 50 MHz) or gamma-ray was carried out. After the impregnation of dry woods (Hinoki: Chamaecyparis obtusa Endl., Buna: Acer mono Maxim., and Kaede: Fagus crenata Blume) with the mixture of the vinyl monomers and chemical reagents, the monomer in wood was polymerized by irradiation. In case of polymerization with microwave (2,450 MHz) the effect of oxygen was not recognized, but in the case of gamma-ray the rate of polymerization remarkably decreased in the presence of oxygen. The polymerization of various monomers was carried out also in the air, and the conversions of styrene, methyl-, ethyl-, n-propyl-, and n-butyl-methacrylate were 51.8 -- 89.1%, but that of vinyl acetate was lower (4.3 -- 8.2%). The conversion of monomers with irradiation of 915 MHz microwave was very low (2.6 -- 33.5%). The conversion of monomers increased when toluylene diisocyanate was added in the monomers. The percentage of extraction with hot benzene of WPC (chip) decreased by the addition of toluylene diisocyanate. It was concluded from C.H.N. analyses that the reaction took place among the wood, toluylene diisocyanate and methyl methacrylate. (auth.)

  18. Influence of template/functional monomer/cross‐linking monomer ratio on particle size and binding properties of molecularly imprinted nanoparticles

    DEFF Research Database (Denmark)

    Yoshimatsu, Keiichi; Yamazaki, Tomohiko; Chronakis, Ioannis S.

    2012-01-01

    A series of molecularly imprinted polymer nanoparticles have been synthesized employing various template/functional monomer/crosslinking monomer ratio and characterized in detail to elucidate the correlation between the synthetic conditions used and the properties (e.g., particle size and templat...... tuning of particle size and binding properties are required to fit practical applications. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2012...

  19. The catalytic microwave synthesis of biodegradable polyester polyols based on castor oil and l-lactide

    Science.gov (United States)

    Kojić, D.; Erceg, T.; Vukić, N.; Teofilović, V.; Ristić, I.; Budinski-Simendić, J.; Aleksić, V.

    2017-01-01

    Various strategies for achieving a functional poly(lactic acid) (PLA) have been developed such as ring-opening copolymerization with a functional monomer, the use of functional initiator and various post polymerization modifications. It is possible to obtain the star shaped polymer using natural oil with at least three OH groups as an initiator. It was estimated that despite of low-molecular mass of star-shaped PLA, the hydrophobic castor oil central core influenced the slow degradation rate in the case of injectable biomedical application. The star-shaped polymers with low-molecular-mass have a lower melt viscosity correlated with linear counterparts. In soft tissue reparation the polymer viscosity increases with fluid body contact and the solid implant can be formed. To ensure liquid state at injection temperature the low molar mass polymer is favorable. There is a particular size for each macromolecular chains at which chain entanglement occurs. In this work the influence of the l-lactide (LA) and the castor oil (CO) contents on the size of biodegradable branched polyester polyols was studied. The average molecular masses of synthesized polymers were estimated by GPC procedure. In sample formulations the [LA]/[CO] ratios were from to 113 to 533. Mn values for obtained polymers were from 5000 to 20000 Da. The molecular mass distribution for the resulting polymers was between 1.09 and 1.37.

  20. Partial swelling of latex particles by two monomers

    NARCIS (Netherlands)

    Noel, E.F.J.; Maxwell, I.A.; German, A.L.

    1993-01-01

    The swelling of polymeric latex particles with solvent and monomer is of great importance for the emulsion polymn. process in regard to compn. drift and rate of polymn. For the monomer combination, Me acrylate-vinyl acetate, both satn. and partial swelling were detd. exptl. Theories for satn.

  1. Sulfonation of polyester fabrics by gaseous sulfur oxide activated by UV irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Kordoghli, Bessem [Laboratory of Applied Chemical and Environment (UR-CAE) - University of Monastir (Tunisia); Textile Research Laboratory (LRT) - ISET Kasr Hellal, University of Monastir (Tunisia); Khiari, Ramzi, E-mail: khiari_ramzi2000@yahoo.fr [Laboratory of Applied Chemical and Environment (UR-CAE) - University of Monastir (Tunisia); LGP2 - Laboratory of Pulp and Paper Science, 461, Rue de la Papeterie - BP 65, 38402 Saint Martin d' Heres Cedex (France); Mhenni, Mohamed Farouk [Laboratory of Applied Chemical and Environment (UR-CAE) - University of Monastir (Tunisia); Sakli, Faouzi [Textile Research Laboratory (LRT) - ISET Kasr Hellal, University of Monastir (Tunisia); Belgacem, Mohamed Naceur [LGP2 - Laboratory of Pulp and Paper Science, 461, Rue de la Papeterie - BP 65, 38402 Saint Martin d' Heres Cedex (France)

    2012-10-01

    Highlights: Black-Right-Pointing-Pointer In this paper, an original technique was present to improve the hydrophilic properties of polyester fibres. Black-Right-Pointing-Pointer The modification of PET fabric was carried out using gaseous sulfur trioxide activated by UV irradiations. Black-Right-Pointing-Pointer We fully characterized the modified and untreated fabrics. - Abstract: This paper describes an original technique aiming to improve the hydrophilic properties of polyester fibres. In this method, the sulfonation of the aromatic rings is carried out using gaseous sulfur trioxide activated by UV irradiations. Thus, exposing the polyester textile fabric to the UVC light (wavelength around 254 nm) under a stream of sulfur trioxide leads to the fixation of -SO{sub 3}H groups. The amounts of the fixed sulfonate groups depended on the reaction conditions. Evidence of grafting deduced from the measurements of hygroscopic properties was carried out by contact angle measurement, moisture regain as well as by measuring the rate of retention. SEM and FT-IR analysis, DSC and DTA/TGA thermograms showed that no significant modifications have occurred in the bulk of the treated PET fabrics.

  2. A novel polyester composite nanofiltration membrane formed by interfacial polymerization of pentaerythritol (PE) and trimesoyl chloride (TMC)

    Science.gov (United States)

    Cheng, Jun; Shi, Wenxin; Zhang, Lanhe; Zhang, Ruijun

    2017-09-01

    A novel polyester thin film composite nanofiltration (NF) membrane was prepared by interfacial polymerization of pentaerythritol (PE) and trimesoyl chloride (TMC) on polyethersulfone (PES) supporting membrane. The performance of the polyester composite NF membrane was optimized by regulating the preparation parameters, including reaction time, pH of the aqueous phase solution, pentaerythritol concentration and TMC concentration. A series of characterization, including permeation experiments, attenuated total reflectance-fourier transform infrared spectroscopy (ATR-FTIR), scanning electron microscope (SEM), atomic force microscopy (AFM), zeta potential analyzer and chlorine resistance experiments, were employed to study the properties of the optimized membrane. The results showed that the optimized polyester composite NF membrane exhibited very high rejection of Na2SO4 (98.1%), but the water flux is relatively low (6.1 L/m2 h, 0.5 MPa, 25 °C). The order of salt rejections is Na2SO4 > MgSO4 > MgCl2 > NaCl, which indicated the membrane was negatively charged, just consistent with the membrane zeta potential results. After treating by NaClO solutions with different concentrations (100 ppm, 500 ppm, 1000 ppm, 2000 ppm, 3000 ppm) for 48 h, the results demonstrated that the polyester NF membrane had good chlorine resistance. Additionally, the polyester TFC NF membrane exhibits good long-term stability.

  3. Purification and Properties of a Polyester Polyurethane-Degrading Enzyme from Comamonas acidovorans TB-35

    OpenAIRE

    Akutsu, Yukie; Nakajima-Kambe, Toshiaki; Nomura, Nobuhiko; Nakahara, Tadaatsu

    1998-01-01

    A polyester polyurethane (PUR)-degrading enzyme, PUR esterase, derived from Comamonas acidovorans TB-35, a bacterium that utilizes polyester PUR as the sole carbon source, was purified until it showed a single band in sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE). This enzyme was bound to the cell surface and was extracted by addition of 0.2% N,N-bis(3-d-gluconamidopropyl)deoxycholamide (deoxy-BIGCHAP). The results of gel filtration and SDS-PAGE showed that the PUR este...

  4. Impact behaviour of Napier/polyester composites under different energy levels

    Energy Technology Data Exchange (ETDEWEB)

    Fahmi, I., E-mail: fahmi-unimap@yahoo.com; Majid, M. S. Abdul, E-mail: shukry@unimap.edu.my; Afendi, M., E-mail: afendirojan@unimap.edu.my; Haameem, J. M.A., E-mail: mhaameem@gmail.com [School of Mechatronic Engineering, Universiti Malaysia Perlis, Arau (Malaysia); Haslan, M., E-mail: haslan@sirim.my; Helmi, E. A., E-mail: hilmi@sirim.my [Advanced Material Research Centre (AMREC), SIRIM Berhad, Kulim (Malaysia)

    2016-07-19

    The effects of different energy levels on the impact behaviour of Napier fibre/polyester reinforced composites were investigated. Napier fibre was extracted using traditional water retting process to be utilized as reinforcing materials in polyester composite laminates. 25% fibre loading composite laminates were prepared and impacted at three different energy levels; 2.5,5 and 7.5 J using an instrumented drop weight impact testing machine (IMATEK IM10). The outcomes show that peak force and contact time increase with increased impact load. The energy absorption was then calculated from the force displacement curve. The results indicated that the energy absorption decreases with increasing energy levels of the impact. Impacted specimens were observed visually for fragmentation fracture using an optical camera to identify the failure mechanisms. Fracture fragmentation pattern from permanent dent to perforation with radial and circumferential was observed.

  5. Tensile strength of woven yarn kenaf fiber reinforced polyester composites

    Directory of Open Access Journals (Sweden)

    A.E. Ismail

    2015-12-01

    Full Text Available This paper presents the tensile strength of woven kenaf fiber reinforced polyester composites. The as-received yarn kenaf fiber is weaved and then aligned into specific fiber orientations before it is hardened with polyester resin. The composite plates are shaped according to the standard geometry and uni-axially loaded in order to investigate the tensile responses. Two important parameters are studied such as fiber orientations and number of layers. According to the results, it is shown that fiber orientations greatly affected the ultimate tensile strength but it is not for modulus of elasticity for both types of layers. It is estimated that the reductions of both ultimate tensile strength and Young’s modulus are in the range of 27.7-30.9% and 2.4-3.7% respectively, if the inclined fibers are used with respect to the principal axis.

  6. Fabrication of narrow surface relief features in a side-chain azobenzene polyester with a scanning near-field microscope

    DEFF Research Database (Denmark)

    Ramanujam, P.S.; Holme, N. C. R.; Pedersen, M.

    2001-01-01

    We show that it is possible to fabricate topographic submicron features in a side-chain azobenzene polyester with a scanning near-field optical microscope, Through irradiation at a wavelength of 488 run at intensity levels of 12 W/cm(2), topographic features as narrow as 240 nm and as high as 6 nm...... have been reproducibly recorded in a thin film of the polyester. These observations are consistent with the fact that at low intensities peaks are produced evolving into formation of trenches at high intensities in the case of amorphous side-chain azobenzene polyesters. This may find applications...

  7. Development auxiliaries for dyeing polyester with disperse dyes at low temperatures

    Science.gov (United States)

    Carrion-Fite, F. J.; Radei, S.

    2017-10-01

    High-molecular weight organic compounds known as carriers are widely used to expedite polyester dyeing at atmospheric pressure at 100 °C. However, carriers are usually poorly biodegradable and can partially plasticize fibres. Also, dyeing at temperatures above 100 °C in the absence of a carrier entails using expensive equipment. In this work, we developed an alternative method for dyeing polyester at temperatures below 100 °C that reduces energy expenses, dispenses with the need to invest in new equipment and avoids the undesirable effects of non-biodegradable carriers. The method uses disperse dyes in a microemulsion containing a low proportion of a non-toxic organic solvent and either of two alternative development auxiliaries (coumarin and o-vanillin) that is prepared with the aid of ultrasound.

  8. Influence of Immersion Conditions on The Tensile Strength of Recycled Kevlar®/Polyester/Low-Melting-Point Polyester Nonwoven Geotextiles through Applying Statistical Analyses

    Directory of Open Access Journals (Sweden)

    Jing-Chzi Hsieh

    2016-05-01

    Full Text Available The recycled Kevlar®/polyester/low-melting-point polyester (recycled Kevlar®/PET/LPET nonwoven geotextiles are immersed in neutral, strong acid, and strong alkali solutions, respectively, at different temperatures for four months. Their tensile strength is then tested according to various immersion periods at various temperatures, in order to determine their durability to chemicals. For the purpose of analyzing the possible factors that influence mechanical properties of geotextiles under diverse environmental conditions, the experimental results and statistical analyses are incorporated in this study. Therefore, influences of the content of recycled Kevlar® fibers, implementation of thermal treatment, and immersion periods on the tensile strength of recycled Kevlar®/PET/LPET nonwoven geotextiles are examined, after which their influential levels are statistically determined by performing multiple regression analyses. According to the results, the tensile strength of nonwoven geotextiles can be enhanced by adding recycled Kevlar® fibers and thermal treatment.

  9. Effective Interfacially Polymerized Polyester Solvent Resistant Nanofiltration Membrane from Bioderived Materials

    KAUST Repository

    Abdellah, Mohamed H.; Perez Manriquez, Liliana; Puspasari, Tiara; Scholes, Colin A.; Kentish, Sandra E.; Peinemann, Klaus-Viktor

    2018-01-01

    Utilization of sustainable and environmentally friendly solvents for the preparation of membranes has attracted growing interest in recent years. In this work, a polyester thin film composite solvent resistant nanofiltration (SRNF) membrane

  10. Measurement of salivary cortisol--effects of replacing polyester with cotton and switching antibody

    DEFF Research Database (Denmark)

    Hansen, Ase Marie; Garde, Anne Helene; Persson, Roger

    2008-01-01

    measurements in our laboratory were affected by: 1) changes in the tampon material and 2) changes in the antibody of the analytical kit. In study 1, saliva from healthy subjects (n = 19) was split and spiked to Salivette polyester and cotton tampons, respectively, and treated as ordinary samples before being...... analysed for cortisol using a Spectria RIA kit for cortisol. In study 2, 68 anonymous saliva samples were analysed with the Spectria Cortisol RIA kit both before and after the manufacturer changed the antibody. The change from polyester to cotton tampons reduced the measured concentration of salivary...

  11. A model of insulin fibrils derived from the x-ray crystal structure of a monomeric insulin (despentapeptide insulin).

    Science.gov (United States)

    Brange, J; Dodson, G G; Edwards, D J; Holden, P H; Whittingham, J L

    1997-04-01

    The crystal structure of despentapeptide insulin, a monomeric insulin, has been refined at 1.3 A spacing and subsequently used to predict and model the organization in the insulin fibril. The model makes use of the contacts in the densely packed despentapeptide insulin crystal, and takes into account other experimental evidence, including binding studies with Congo red. The dimensions of this model fibril correspond well with those measured experimentally, and the monomer-monomer contacts within the fibril are in accordance with the known physical chemistry of insulin fibrils. Using this model, it may be possible to predict mutations in insulin that might alleviate problems associated with fibril formation during insulin therapy.

  12. Plasma treatment of polyester fabric to impart the water repellency ...

    Indian Academy of Sciences (India)

    test method 39 (1971). ... pilot production line [7]. It is found that prior .... experiment was set up for testing the absorbancy of modified polyester fabric as in case of .... New Delhi for providing the research grant under TAPTEC scheme. We are ...

  13. Mechanical properties of water hyacinth fibers – polyester composites before and after immersion in water

    International Nuclear Information System (INIS)

    Abral, H.; Kadriadi, D.; Rodianus, A.; Mastariyanto, P.; Ilhamdi; Arief, S.; Sapuan, S.M.; Ishak, M.R.

    2014-01-01

    Highlights: • Moisture absorption of water hyacinth (WH) fibers was measured. • WH fibers polyester composites immersed in water decreased mechanical properties. • Improvement fibers fraction in polyester increases mechanical properties. - Abstract: This study reported moisture absorption of untreated and treated individual water hyacinth (WH) fibers as well as comparison the mechanical properties of WH fibers – unsaturated polyester (UPR) matrix composites after and before immersion in water. The result shows that the individual WH fibers treated with various alkali concentration did not exhibit significantly decreases of their moisture absorption. SEM photograph in cross section of the treated WH fibers shows swollen cell wall containing more nano and micro hollows. Tensile and flexure strength of the wet composite samples are lower than that of dried ones. However, increases volume fraction of the WH fibers in UPR matrix affected slightly on enhancement mechanical properties of the composite samples

  14. Sup(1)H n.m.r. relaxation of radiation induced crosslinking in polyester-styrene systems

    International Nuclear Information System (INIS)

    Andreis, M.; Veksli, Z.; Ranogajec, F.; Hedvig, P.

    1989-01-01

    The structure and dynamics of a network formed by radiation induced crosslinking of polyesters based on 1,6-hexane diol and 1,2-propylene glycol and maleic anhydride (HDF and PGF, respectively) with styrene is studied by proton pulsed n.m.r. spectroscopy. The dependence of spin-lattice, T 1 , and spin-spin, T 2 , relaxation times on the structure of polyester chain, molar ratios of styrene to polyester unsaturations and the radiation doses are analysed in terms of network formation and structure, and their effect on molecular motion. Above the gel point, at temperatures above the glass transition, the presence of two T 2 components reflects the heterogeneity of the network structure in both resins. Parallel with the n.m.r. relaxation measurements the crosslink density was determined from the extracted gel phase or double bonds (fumaric and styrene) participating in the crosslinking process. (author)

  15. Study of compounds emitted during thermo-oxidative decomposition of polyester fabrics

    Directory of Open Access Journals (Sweden)

    Dzięcioł Małgorzata

    2016-03-01

    Full Text Available Compounds emitted during thermo-oxidative decomposition of three commercial polyester fabrics for indoor outfit and decorations (upholstery, curtains were studied. The experiments were carried out in a flow tubular furnace at 600°C in an air atmosphere. During decomposition process the complex mixtures of volatile and solid compounds were emitted. The main volatile products were carbon oxides, benzene, acetaldehyde, vinyl benzoate and acetophe-none. The emitted solid compounds consisted mainly of aromatic carboxylic acids and its derivatives, among which the greatest part took terephthalic acid, monovinyl terephthalate and benzoic acid. The small amounts of polycyclic aromatic hydrocarbons were also emitted. The emission profiles of the tested polyester fabrics were similar. The presence of toxic compounds indicates the possibility of serious hazard for people during fire.

  16. First liquid single crystal elastomer containing lactic acid derivative as chiral co-monomer: synthesis and properties

    Czech Academy of Sciences Publication Activity Database

    Bubnov, Alexej; Domenici, V.; Hamplová, Věra; Kašpar, Miroslav; Zalar, B.

    2011-01-01

    Roč. 52, č. 20 (2011), s. 4490-4497 ISSN 0032-3861 R&D Projects: GA AV ČR IAA100100911; GA AV ČR(CZ) GA202/09/0047; GA MŠk(CZ) OC10006; GA ČR(CZ) GAP204/11/0723 Grant - others:German Czech bilateral program(XE) D4-CZ5/2010-2011; RFASI(RU) 02.740.11.5166 Institutional research plan: CEZ:AV0Z10100520 Keywords : liquid crystalline elastomer * ferroelectric liquid crystalline monomer * smectic A phase * X-ray diffraction * lactate chiral group * monodomain * polymer Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 3.438, year: 2011

  17. Radiation-initiated emulsion copolymerization of styrene and carboxylic acid monomers

    International Nuclear Information System (INIS)

    Egusa, S.; Makuuchi, K.

    1982-01-01

    The emulsion copolymerization of styrene and carboxylic acid monomers such as acrylic, methacrylic, and itaconic acids (AAc, MAAc, IAc) was studied by using 60 Co γ-rays as initiator and sodium dodecylsulfate as emulsifier. The polymerization behavior of these acid monomers was followed by simultaneous conductometric and potentiometric titrations for a latex sample taken in polymerization. The polymerization rate of these acid monomers increases in the following order of hydrophobicity: IAc < AAc < MAAc; this suggests that their polymerization sites are mainly the surface and/or subsurface regions of latex particles. The copolymerization rate of styrene and acid monomer increases with an increase in the acid monomer content for AAc and MAAc, whereas for IAc the rate decreases. The particle sizes determined by the stopped-flow method reveal that this variation of copolymerization rate cannot be explained by the number of growing particles and should be attributed to another factor; for instance, the transfer rate of styrene molecules from oil droplets to growing particles

  18. 3D printing of new biobased unsaturated polyesters by microstereo-thermal-lithography

    International Nuclear Information System (INIS)

    Gonçalves, Filipa A M M; Costa, Cátia S M F; Fabela, Inês G P; Simões, Pedro N; Serra, Arménio C; Coelho, Jorge F J; Farinha, Dina; Faneca, Henrique; Bártolo, Paulo J

    2014-01-01

    New micro three-dimensional (3D) scaffolds using biobased unsaturated polyesters (UPs) were prepared by microstereo-thermal-lithography (μSTLG). This advanced processing technique offers indubitable advantages over traditional printing methods. The accuracy and roughness of the 3D structures were evaluated by scanning electron microscopy and infinite focus microscopy, revealing a suitable roughness for cell attachment. UPs were synthesized by bulk polycondensation between biobased aliphatic diacids (succinic, adipic and sebacic acid) and two different glycols (propylene glycol and diethylene glycol) using fumaric acid as the source of double bonds. The chemical structures of the new oligomers were confirmed by proton nuclear magnetic resonance spectra, attenuated total reflectance Fourier transform infrared spectroscopy and matrix assisted laser desorption/ionization-time of flight mass spectrometry. The thermal and mechanical properties of the UPs were evaluated to determine the influence of the diacid/glycol ratio and the type of diacid in the polyester’s properties. In addition an extensive thermal characterization of the polyesters is reported. The data presented in this work opens the possibility for the use of biobased polyesters in additive manufacturing technologies as a route to prepare biodegradable tailor made scaffolds that have potential applications in a tissue engineering area. (paper)

  19. Development of sugar palm yarn/glass fibre reinforced unsaturated polyester hybrid composites

    Science.gov (United States)

    Nurazzi, N. Mohd; Khalina, A.; Sapuan, S. Mohd; Rahmah, M.

    2018-04-01

    This study investigates the effect of fibre hybridization for sugar palm yarn fibre with glass fibre reinforced with unsaturated polyester composites. In this work, unsaturated polyester resin are reinforced with fibre at a ratio of 70:30 wt% and 60:40 wt%. The hybrid composites were characterized in terms of physical (density and water absorption), mechanical (tensile, flexural and compression) and thermal properties through thermal gravimetry analysis (TGA). Density determination showed that density increased with higher wt% of glass fibre. The inherently higher density of glass fibre increased the density of hybrid composite. Resistance to water absorption is improved upon the incorporation of glass fibre and the hybrid composites were found to reach equilibrium absorption at days 4 and 5. As for mechanical performance, the highest tensile strength, tensile modulus, flexural strength, flexural modulus and compression strength were obtained from 40 wt% of fibres reinforcement with ratio of 50:50 wt% of sugar palm yarn fibre and glass fibre reinforced unsaturated polyester composites. The increase of glass fibre loading had a synergistic effect on the mechanical properties to the composites structure due to its superior strength and modulus. The thermal stability of hybrid composites was improved by the increase of onset temperature and the reduction of residues upon increase in temperature.

  20. Thermal Aging of Unsaturated Polyester Composite Reinforced with E-Glass Nonwoven Mat

    Directory of Open Access Journals (Sweden)

    Hossain Milon

    2017-12-01

    Full Text Available An experiment was carried out using glass fiber (GF as reinforcing materials with unsaturated polyester matrix to fabricate composite by hand layup technique. Four layers of GF were impregnated by polyester resin and pressed under a load of 5 kg for 20 hours. The prepared composite samples were treated by prolonged exposure to heat for 1 hour at 60-150°C and compared with untreated GF-polyester composite. Different mechanical test of the fabricated composite were investigated. The experiment depicted significant improvement in the mechanical properties of the fabricated composite resulted from the heat treatment. The maximum tensile strength of 200.6 MPa is found for 90°C heat-treated sample. The mechanical properties of the composite do seem to be very affected negatively above 100°C. Water uptake of the composite was carried out and thermal stability of the composite was investigated by thermogravimetric analysis, and it was found that the composite is stable up to 600°C. Fourier transform infrared spectroscopy shows the characteristic bond in the composite. Finally, the excellent elevated heat resistant capacity of glass-fiber-reinforced polymeric composite shows the suitability of its application to heat exposure areas such as kitchen furniture materials, marine, and electric board.

  1. The effect of mechanical loads on the degradation of aliphatic biodegradable polyesters.

    Science.gov (United States)

    Li, Ying; Chu, Zhaowei; Li, Xiaoming; Ding, Xili; Guo, Meng; Zhao, Haoran; Yao, Jie; Wang, Lizhen; Cai, Qiang; Fan, Yubo

    2017-06-01

    Aliphatic biodegradable polyesters have been the most widely used synthetic polymers for developing biodegradable devices as alternatives for the currently used permanent medical devices. The performances during biodegradation process play crucial roles for final realization of their functions. Because physiological and biochemical environment in vivo significantly affects biodegradation process, large numbers of studies on effects of mechanical loads on the degradation of aliphatic biodegradable polyesters have been launched during last decades. In this review article, we discussed the mechanism of biodegradation and several different mechanical loads that have been reported to affect the biodegradation process. Other physiological and biochemical factors related to mechanical loads were also discussed. The mechanical load could change the conformational strain energy and morphology to weaken the stability of the polymer. Besides, the load and pattern could accelerate the loss of intrinsic mechanical properties of polymers. This indicated that investigations into effects of mechanical loads on the degradation should be indispensable. More combination condition of mechanical loads and multiple factors should be considered in order to keep the degradation rate controllable and evaluate the degradation process in vivo accurately. Only then can the degradable devise achieve the desired effects and further expand the special applications of aliphatic biodegradable polyesters.

  2. Use of Monomer Fraction Data in the Parametrization of Association Theories

    DEFF Research Database (Denmark)

    Kontogeorgis, Georgios; Tsivintzelis, Ioannis; von Solms, Nicolas

    2010-01-01

    the monomer fraction of hydrogen bonding compounds and their mixtures. Monomer fraction data are obtained from spectroscopic measurements and they are available for a few compounds such as pure water and alcohols as well as for some alcohol–alkane and similar mixtures. These data are useful...... “improved” model parameters can be obtained if monomer fraction data are included in the parameter estimation together with vapor pressures and liquid densities. The expression “improved” implies parameters which can represent several pure compound properties as well as monomer fraction data for pure......, liquid densities and monomer fractions of water and alcohols. The 4C scheme is the best choice for water, while for methanol there is small difference between the 2B and 3B association schemes....

  3. A facile fabrication of multifunctional knit polyester fabric based on chitosan and polyaniline polymer nanocomposite

    Energy Technology Data Exchange (ETDEWEB)

    Tang, Xiaoning [College of Textiles, Qingdao University, Qingdao, Shandong 266071 (China); Laboratory of New Fiber Materials and Modern Textile, The Growing Base for State Key Laboratory, Qingdao University, Qingdao, Shandong 266071 (China); Tian, Mingwei [College of Textiles, Qingdao University, Qingdao, Shandong 266071 (China); Laboratory of New Fiber Materials and Modern Textile, The Growing Base for State Key Laboratory, Qingdao University, Qingdao, Shandong 266071 (China); Collaborative Innovation Center for Marine Biomass Fibers, Materials and Textiles of Shandong Province, Qingdao University, Qingdao, Shandong 266071 (China); Qu, Lijun, E-mail: lijunqu@126.com [College of Textiles, Qingdao University, Qingdao, Shandong 266071 (China); Laboratory of New Fiber Materials and Modern Textile, The Growing Base for State Key Laboratory, Qingdao University, Qingdao, Shandong 266071 (China); Collaborative Innovation Center for Marine Biomass Fibers, Materials and Textiles of Shandong Province, Qingdao University, Qingdao, Shandong 266071 (China); Zhu, Shifeng [College of Textiles, Qingdao University, Qingdao, Shandong 266071 (China); Laboratory of New Fiber Materials and Modern Textile, The Growing Base for State Key Laboratory, Qingdao University, Qingdao, Shandong 266071 (China); Guo, Xiaoqing [College of Textiles, Qingdao University, Qingdao, Shandong 266071 (China); Laboratory of New Fiber Materials and Modern Textile, The Growing Base for State Key Laboratory, Qingdao University, Qingdao, Shandong 266071 (China); Collaborative Innovation Center for Marine Biomass Fibers, Materials and Textiles of Shandong Province, Qingdao University, Qingdao, Shandong 266071 (China); Han, Guangting [Laboratory of New Fiber Materials and Modern Textile, The Growing Base for State Key Laboratory, Qingdao University, Qingdao, Shandong 266071 (China); Collaborative Innovation Center for Marine Biomass Fibers, Materials and Textiles of Shandong Province, Qingdao University, Qingdao, Shandong 266071 (China); and others

    2014-10-30

    Highlights: • Multifunctional knit polyester fabric was facile fabricated by the combination of pad-dry-cure process and in situ chemical polymerization route. • High electrical conductivity and efficient water-repellent properties were endowed to the polymer nanocomposite coated fabric. • The polymer nanocomposite coated fabric also performed efficient and durable photocatalytic activities under the illumination of ultraviolet light. - Abstract: Knit polyester fabric was successively modified and decorated with chitosan layer and polyaniline polymer nanocomposite layer in this paper. The fabric was firstly treated with chitosan to form a stable layer through the pad-dry-cure process, and then the polyaniline polymer nanocomposite layer was established on the outer layer by in situ chemical polymerization method using ammonium persulfate as oxidant and chlorhydric acid as dopant. The surface morphology of coated fabric was characterized by scanning electron microscopy (SEM), and the co-existence of chitosan layer and granular polyaniline polymer nanocomposite was confirmed and well dispersed on the fabric surface. The resultant fabric was endowed with remarkable electrical conductivity properties and efficient water-repellent capability, which also have been found stable after water laundering. In addition, the photocatalytic decomposition activity for reactive red dye was observed when the multifunctional knit polyester fabric was exposed to the illumination of ultraviolet lamp. These results indicated that chitosan and polyaniline polymer nanocomposite could form ideal multifunctional coatings on the surface of knit polyester fabric.

  4. A facile fabrication of multifunctional knit polyester fabric based on chitosan and polyaniline polymer nanocomposite

    International Nuclear Information System (INIS)

    Tang, Xiaoning; Tian, Mingwei; Qu, Lijun; Zhu, Shifeng; Guo, Xiaoqing; Han, Guangting

    2014-01-01

    Highlights: • Multifunctional knit polyester fabric was facile fabricated by the combination of pad-dry-cure process and in situ chemical polymerization route. • High electrical conductivity and efficient water-repellent properties were endowed to the polymer nanocomposite coated fabric. • The polymer nanocomposite coated fabric also performed efficient and durable photocatalytic activities under the illumination of ultraviolet light. - Abstract: Knit polyester fabric was successively modified and decorated with chitosan layer and polyaniline polymer nanocomposite layer in this paper. The fabric was firstly treated with chitosan to form a stable layer through the pad-dry-cure process, and then the polyaniline polymer nanocomposite layer was established on the outer layer by in situ chemical polymerization method using ammonium persulfate as oxidant and chlorhydric acid as dopant. The surface morphology of coated fabric was characterized by scanning electron microscopy (SEM), and the co-existence of chitosan layer and granular polyaniline polymer nanocomposite was confirmed and well dispersed on the fabric surface. The resultant fabric was endowed with remarkable electrical conductivity properties and efficient water-repellent capability, which also have been found stable after water laundering. In addition, the photocatalytic decomposition activity for reactive red dye was observed when the multifunctional knit polyester fabric was exposed to the illumination of ultraviolet lamp. These results indicated that chitosan and polyaniline polymer nanocomposite could form ideal multifunctional coatings on the surface of knit polyester fabric

  5. Cationization and gamma irradiation effects on the dyeability of polyester fabric towards disperse dyes

    Energy Technology Data Exchange (ETDEWEB)

    Zohdy, Maged H. [Department of Radiation Chemistry, National Center for Radiation Research and Technology, P.O. Box 29, Nasr City, Cairo (Egypt)]. E-mail: mhzohdy@yahoo.com

    2005-06-01

    The effect of hydrazine hydrate (HZH) treatment and/or gamma irradiation on the dyeing, mechanical and thermal properties of polyester fabrics (PET) was studied. The different factors that may affect the dyeing performance, such as concentrations of HZH, benzyl alcohol and pH values, were investigated. In this regard, the colour strength of untreated polyester fabrics dyed with the dyestuffs Dispersol blue BR, Dispersol orange B2R and Dispersol red B2B was found to be 10.34, 10.76 and 10.12 compared to 24.61, 24.90 and 23.00 in the case of irradiated and HZH-treated polyester fabrics, respectively. These colour strength values were achieved by preirradiation at a dose of 75kGy followed by treatment with 15mll-1 of HZH. Thermogravimetric analysis (TGA) showed that the thermal decomposition stability was improved by using gamma irradiation and the treatment with HZH as indicated by the calculated activation energies. FT-IR spectroscopy showed that the treatment with HZH acts as cationizer prior to dyeing with disperse dyes.

  6. Cationization and gamma irradiation effects on the dyeability of polyester fabric towards disperse dyes

    International Nuclear Information System (INIS)

    Zohdy, Maged H.

    2005-01-01

    The effect of hydrazine hydrate (HZH) treatment and/or gamma irradiation on the dyeing, mechanical and thermal properties of polyester fabrics (PET) was studied. The different factors that may affect the dyeing performance, such as concentrations of HZH, benzyl alcohol and pH values, were investigated. In this regard, the colour strength of untreated polyester fabrics dyed with the dyestuffs Dispersol blue BR, Dispersol orange B2R and Dispersol red B2B was found to be 10.34, 10.76 and 10.12 compared to 24.61, 24.90 and 23.00 in the case of irradiated and HZH-treated polyester fabrics, respectively. These colour strength values were achieved by preirradiation at a dose of 75kGy followed by treatment with 15mll-1 of HZH. Thermogravimetric analysis (TGA) showed that the thermal decomposition stability was improved by using gamma irradiation and the treatment with HZH as indicated by the calculated activation energies. FT-IR spectroscopy showed that the treatment with HZH acts as cationizer prior to dyeing with disperse dyes

  7. Preparation and properties of aromatic polyester/TiO{sub 2} nanocomposites from polyethylene terephthalate

    Energy Technology Data Exchange (ETDEWEB)

    Santos, Leonardo Moreira dos; Carone, Carlos Leonardo Pandolfo; Einloft, Sandra Mara Oliveira; Ligabue, Rosane Angelica, E-mail: rligabue@pucrs.br [Pontificia Universidade Catolica do Rio Grande do Sul (PUCRS), Porto Alegre, RS (Brazil). Programa de Graduacao em Engenharia e Tecnologia de Materiais

    2016-01-15

    The development of polyester based materials with enhanced properties as well as the use of post- consumer plastics as raw material has been an increasing market demand. This work aims the synthesis and characterization of aromatic polyesters/titanium dioxide nanocomposites from PET and using TiO{sub 2} (0, 1, 3 and 5% w/w) as filler by in situ polymerization. The results obtained by DSC, XRD and FTIR analyzes evidenced an interaction between the OH groups on the TiO{sub 2} surface with the ester groups of the polymer leading to decrease of the polymer crystallinity and of hydrophilicity. By SEM images was possible to note a homogeneous distribution of the filler into polymer matrix with 1%w/w TiO{sub 2} (average particle size of 199 nm), however for larger amounts of filler (3 and 5% TiO{sub 2}) revealed the aggregates formation. The results showed an improvement of thermal properties and hardness of the nanocomposites containing TiO{sub 2} nanoparticles compared to pristine polyester. (author)

  8. Construction of 2D transparent micromodels in polyester resin with porosity similar to carrots

    Directory of Open Access Journals (Sweden)

    Rodrigo Emilio Díaz

    2011-12-01

    Full Text Available Microscopic visualization, especially in transparent micromodels, can provide valuable information to understand the transport phenomena at pore scale in different process occurring in porous materials (food, timber, soils, etc.. Micromodels studies focus mainly on the observation of multi-phase flow, which presents a greater proximity to reality. The aim of this study was to study the process of flexography and its application in the manufacture of polyester resin transparent micromodels and its application to carrots. Materials used to implement a flexo station for micromodels construction were thermoregulated water bath, exposure chamber to UV light, photosensitive substance (photopolymer, RTV silicone polyester resin, and glass plates. In this paper, data on size distribution of a particular kind of carrot we used, and a transparent micromodel with square cross-section as well as a Log-normal pore size distribution with pore radii ranging from 10 to 110 µm (average of 22 µm and micromodel size of 10 × 10 cm were built. Finally, it stresses that it has successfully implemented the protocol processing 2D polyester resin transparent micromodels.

  9. Chemical structures and thermal properties of polyesters obtained from different samples of bio diesel epoxidized

    International Nuclear Information System (INIS)

    Samios, Dimitrios; Reiznautt, Quelen B.; Nicolau, Aline; Martini, Denise D.; Chagas, Arthur L. das

    2009-01-01

    In this work new structures from oligo esters and polyesters from different oils (olive oil, sunflower oil and linseed oil) were synthesized and characterized. Oligo esters and polyesters were synthesized from the reaction of fatty acid methyl epoxy-esters, obtained from different oils, with cis-1,2-cyclohexanedicarboxylic anhydride in the presence of triethylamine (TEA). Different amounts of the resin 1,4-butanediol diglycidyl ether (BDGE) were added in order to increase the capacity of crosslinking. The molar ratio of BDGE used in system was between 0 and 0.066. The intermediate structures, as well as the oligo esters and polyesters produced, were analyzed by using Fourier Transform Infrared Spectroscopy and Nuclear Magnetic Resonance ( 1 H - NMR). The thermal behavior of the products was realized through differential scanning calorimetry and Thermogravimetric analyses. The presence of BDGE in the materials chains increases the bonding capacity resulting in a higher molecular weight material which presents good thermal stability. (author)

  10. Comparison of Cashew Nut Shell Liquid (CNS) Resin with Polyester ...

    African Journals Online (AJOL)

    Akorede

    cobalt amine (accelerator), methyl ethyl ketone peroxide (catalyst) to develop two sets of ... shell liquid (CNSL) resin were comparable to those developed with polyester resin. ... permit diffusion of water, this function is often not adequately ... When designed ... blades in gas turbine engines, wing leading edges and flaps.

  11. Studies on curing effect of phosphite monomer by EB radiation in the air

    International Nuclear Information System (INIS)

    Xiao, B.; Zhou, Y.; Li, S.; Luo, M.; Wang, X.; Zhao, P.

    2000-01-01

    A new type phosphite active monomer was synthesized. The resisting oxygen inhibition effect of this monomer and the effects of irradiation dose and concentration of phosphite active monomer on curing were studied. At the same time, curing results were analysed, through gel content and IR spectrum. The excellent resisting oxygen inhibition result of this phosphite active monomer was shown by experiments. EB radiation curing in the air was successfully carried out by the phosphite active monomer. (author)

  12. Characterization of material composite marble-polyester

    Directory of Open Access Journals (Sweden)

    Corpas, F. A.

    2002-12-01

    Full Text Available In this work we characterize a new material composite, formed with a polyester and crushed white marble mixture. The final purpose is double: to obtain a material for applications sufficiently competitive after an economic viability study, increasing the yield of the main commodity, using waste marble and improving the jobs in the quarries area. From the results obtained, we deduce then that this material could be used to inside and outside adornment.

    En este trabajo, caracterizamos un nuevo material compuesto, formado con una mezcla de poliéster y de mármol blanco triturado. El propósito final es doble: por un lado obtener un material para aplicaciones lo suficientemente competitivas como para que se pueda iniciar un estudio económico de viabilidad, aumentando el rendimiento de la materia prima y mejorando las salidas laborales de las comarcas extractoras. Para la caracterización del material se ha determinado el porcentaje adecuado de poliéster. Así como las propiedades mecánicas (flexión, compresión y dureza, químicas, fatiga térmica y su influencia a la exposición solar In order to characterized of material, we have determined the suitable porcentage of polyester Also we have carried out a study of the mechanical (stretching, resistance to traction, hardeness and thermal fatigue chemicals properties and solar radiation influence. De los resultados obtenidos, este material podría ser utilizado para ornamentación tanto de interior como de exterior.

  13. Análise de peças anatômicas preservadas com resina de poliester para estudo em anatomia humana Analysis of anatomical pieces preservation with polyester resin for human anatomy study

    Directory of Open Access Journals (Sweden)

    Ítalo Martins de Oliveira

    2013-02-01

    Full Text Available OBJETIVO: avaliar o uso da resina de poliéster na preservação de peças anatômicas para estudo da anatomia humana. MÉTODOS: foram utilizadas 150 peças anatômicas, sendo as mesmas não fixadas (frescas, fixadas em formol a 10% e moldes vasculares de órgãos injetados com acetato de vinil e a resina de poliéster. A solução utilizada foi composta de resina de poliéster com seu diluente monômero de estireno e catalisador (peroxol. Foram obtidos, após a inclusão nesta solução, modelos em resina transparente, que permitiam a plena observação das estruturas e conservação da peça utilizada. RESULTADOS: na avaliação das peças, foi observado grau de extrema transparência, promovendo uma completa visualização das estruturas com a perfeita preservação da anatomia. A duração média para a completa finalização da inclusão foi 48 horas. Apenas 14 peças (9,3% foram inutilizadas durante o preparo. CONCLUSÃO: a resina de poliéster pode ser utilizada para a preservação de peças anatômicas para o ensino da anatomia humana, de maneira prática, estética e duradoura.OBJECTIVE: To evaluate the use of polyester resin in preserving anatomical specimens for the study of human anatomy. METHODS: We used 150 anatomical specimens, comprised of unfixed (fresh, fixed in 10% formalin and vascular casts of organs injected with vinyl acetate and polyester resin. The solution used consisted of polyester resin with the diluent styrene monomer and catalyst (peroxol. After embedding in this solution, models in transparent resin were obtained, allowing full observation of structures and conservation of the specimens used. RESULTS: upon evaluation of the specimens, we observed a high degree of transparency, which promoted a complete visualization of structures with perfect preservation of the anatomy. The average time for the completion of the embedding was 48 hours. Only 14 specimens (9.3% were lost during the preparation. CONCLUSION

  14. Crystallization and preliminary X-ray crystallographic analysis of a new crystal form of hydroxylamine oxidoreductase from Nitrosomonas europaea

    International Nuclear Information System (INIS)

    Cedervall, Peder E.; Hooper, Alan B.; Wilmot, Carrie M.

    2009-01-01

    A new crystal form of N. europaea hydroxylamine oxidoreductase (space group P2 1 2 1 2) diffracted to 2.25 Å resolution at a third-generation synchrotron X-ray source. Hydroxylamine oxidoreductase (HAO) from Nitrosomonas europaea is a homotrimeric protein that catalyzes the oxidation of hydroxylamine to nitrite. Each monomer, with a molecular weight of 67.1 kDa, contains seven c-type hemes and one heme P460, the porphyrin ring of which is covalently linked to a tyrosine residue from an adjacent subunit. HAO was first crystallized and structurally characterized at a resolution of 2.8 Å in 1997. The structure was solved in space group P6 3 and suffered from merohedral twinning. Here, a crystallization procedure is presented that yielded untwinned crystals belonging to space group P2 1 2 1 2, which diffracted to 2.25 Å resolution and contained one trimer in the asymmetric unit. The unit-cell parameters were a = 140.7, b = 142.6, c = 107.4 Å

  15. The identification of cutin synthase: formation of the plant polyester cutin

    DEFF Research Database (Denmark)

    Yeats, Trevor H.; Martin, Laetitia B. B.; Viart, Helene Marie-France

    2012-01-01

    A hydrophobic cuticle consisting of waxes and the polyester cutin covers the aerial epidermis of all land plants, providing essential protection from desiccation and other stresses. We have determined the enzymatic basis of cutin polymerization through characterization of a tomato extracellular...

  16. Synthetic scaffolds based on biodegradable, functionalized polyesters for tissue engineering applications

    NARCIS (Netherlands)

    Seyednejad, S.H.

    2012-01-01

    The aim of this thesis was to investigate the possibility of using a novel hydroxyl-functionalized polyester [poly(hydroxymethylglycolide-co-ε-caprolactone), pHMGCL] (Fig.9) to fabricate scaffolds for tissue engineering applications. Degradable polymers that are frequently used for tissue

  17. High Throughput Screening of Valganciclovir in Acidic Microenvironments of Polyester Thin Films

    Directory of Open Access Journals (Sweden)

    Teilo Schaller

    2015-04-01

    Full Text Available Ganciclovir and valganciclor are antiviral agents used for the treatment of cytomegalovirus retinitis. The conventional method for administering ganciclovir in cytomegalovirus retinitis patients is repeated intravitreal injections. In order to obviate the possible detrimental effects of repeated intraocular injections, to improve compliance and to eliminate systemic side-effects, we investigated the tuning of the ganciclovir pro-drug valganciclovir and the release from thin films of poly(lactic-co-glycolic acid (PLGA, polycaprolactone (PCL, or mixtures of both, as a step towards prototyping periocular valganciclovir implants. To investigate the drug release, we established and evaluated a high throughput fluorescence-based quantification screening assay for the detection of valganciclovir. Our protocol allows quantifying as little as 20 ng of valganciclovir in 96-well polypropylene plates and a 50× faster analysis compared to traditional HPLC measurements. This improvement can hence be extrapolated to other polyester matrix thin film formulations using a high-throughput approach. The acidic microenvironment within the polyester matrix was found to protect valganciclovir from degradation with resultant increases in the half-life of the drug in the periocular implant to 100 days. Linear release profiles were obtained using the pure polyester polymers for 10 days and 60 days formulations; however, gross phase separations of PCL and acid-terminated PLGA prevented tuning within these timeframes due to the phase separation of the polymer, valganciclovir, or both.

  18. In situ polymerization of monomers for polyphenylquinoxaline-graphite fiber composites

    Science.gov (United States)

    Serafini, T. T.; Delvigs, P.; Vannucci, R. D.

    1974-01-01

    In situ polymerization of monomers was used to prepare graphite-fiber-reinforced polyphenylquinoxaline composites. Six different monomer combinations were investigated. Composite mechanical property retention characteristics were determined at 316 C (600 F) over an extended time period.

  19. Deuteron NMR resolved mesogen vs. crosslinker molecular order and reorientational exchange in liquid single crystal elastomers

    Czech Academy of Sciences Publication Activity Database

    Milavec, J.; Domenici, V.; Zupančič, B.; Rešetič, A.; Bubnov, Alexej; Zalar, B.

    2016-01-01

    Roč. 18, č. 5 (2016), s. 4071-4077 ISSN 1463-9076 R&D Projects: GA ČR GA15-02843S; GA MŠk(CZ) LD14007 Grant - others:EU - ICT(XE) COST Action IC1208 Institutional support: RVO:68378271 Keywords : liquid single crystal elastomer * NMR * liquid crystal * molecular order * monomers Subject RIV: JJ - Other Materials Impact factor: 4.123, year: 2016

  20. Tandem mass spectrometry characteristics of polyester anions and cations formed by electrospray ionization.

    Science.gov (United States)

    Arnould, Mark A; Buehner, Rita W; Wesdemiotis, Chrys; Vargas, Rafael

    2005-01-01

    Electrospray ionization of polyesters composed of isophthalic acid and neopentyl glycol produces carboxylate anions in negative mode and mainly sodium ion adducts in positive mode. A tandem mass spectrometry (MS/MS) study of these ions in a quadrupole ion trap shows that the collisionally activated dissociation pathways of the anions are simpler than those of the corresponding cations. Charge-remote fragmentations predominate in both cases, but the spectra obtained in negative mode are devoid of the complicating cation exchange observed in positive mode. MS/MS of the Na(+) adducts gives rise to a greater number of fragments but not necessarily more structural information. In either positive or negative mode, polyester oligomers with different end groups fragment by similar mechanisms. The observed fragments are consistent with rearrangements initiated by the end groups. Single-stage ESI mass spectra also are more complex in positive mode because of extensive H/Na substitutions; this is also true for matrix-assisted laser desorption ionization (MALDI) mass spectra. Hence, formation and analysis of anions might be the method of choice for determining block length, end group structure and copolymer sequence, provided the polyester contains at least one carboxylic acid end group that is ionizable to anions.

  1. Polyurethane coating from prepolymers and Crambe oil polyesters in oxygenates and green solvents

    International Nuclear Information System (INIS)

    Pinto, Elaine R.P.; Messaddeq, Younes; Polito, Wagner Luiz; Matinelli, Marcia

    2015-01-01

    The PU coatings are extremely used in areas that require high-performance. For several applications PU resin, the solvent base is commonly used, the problem is the solvents with high content of volatile organic compounds (VCO) like: toluene, xylene, benzene, etc.. In this work, we were synthesized and characterized four kinds of prepolymers with low-VCO from renewable sources such as castor oil and crambe oil with oxygenate and green solvents. The PU prepolymers had been synthesized in the proportions NCO/OH 2:1 and 3:1. The curing process was carried out with atmospheric moisture in the films. Characterization was made from prepolymers, oligomers and polyesters and PU films by FTIR, TGA / DTA, NMR, GPC and GC-FID, besides this the coatings were applied on aluminum and glass plates and, subjected to analysis chamber saline, hardness and adhesion. The results indicated that the reaction occurred between the prepolymers with oligomers or polyesters, because disappearance of the NCO band at 2270 cm"-"1. The PU films showed good thermal stability (> 270 °C), high tensile strength and deformation. Surround the formulations, the PU films with HDI prepolymers showed the best results with polyesters from crambe oil (PEC 02 and PEC 03). (author)

  2. Material characterization of a polyester resin system for the pultrusion process

    DEFF Research Database (Denmark)

    Baran, Ismet; Akkerman, Remko; Hattel, Jesper Henri

    2014-01-01

    In the present work, the chemo-rheology of an industrial ‘‘orthophthalic’’ polyester system specifically prepared for a pultrusion process is characterized. The curing behaviour is first characterized using the differential scanning calorimetry (DSC). Isothermal and dynamic scans are performed...

  3. Effect of particle size and concentration on the mechanical properties of polyester/date palm seed particulate composites

    Directory of Open Access Journals (Sweden)

    Alewo Opuada AMEH

    2015-05-01

    Full Text Available The use of cellulosic materials as reinforcement in composites can greatly enhance their properties. The thrust of this study was to investigate the effect of date palm seed particle on the properties of reinforced polyester. Unsaturated polyester resin was reinforced with date palm seed particles of 0.5, 2.0 and 2.8mm particle sizes using variable particle loadings of 5, 10, 15, 20 and 25wt%. The composites obtained were subjected to various types of mechanical and physical tests in order to assess their performance. The optimum tensile strength of 16.7619N/mm2 and elastic modulus of 343.8N/mm2 were attained at 15wt% and 10wt% loading (using 0.5mm particles respectively and percent water absorption was found to be least for 0.5mm particle size. The hardness was enhanced to the maximum of 74 HRF (Rockwell Hardness Factor by 2mm particle size at 25wt% loading. Pure unsaturated polyester resin recorded tensile strength of 17.5959N/mm2, elastic modulus of 316.7N/mm2 and hardness of 33.5 HRF. The results indicated that the use of date palm seed particles as reinforcement can enhance the properties of polyester composites.

  4. Kinetics of the monomer-dimer reaction of yeast hexokinase PI.

    Science.gov (United States)

    Hoggett, J G; Kellett, G L

    1992-10-15

    Kinetic studies of the glucose-dependent monomer-dimer reaction of yeast hexokinase PI at pH 8.0 in the presence of 0.1 M-KCl have been carried out using the fluorescence temperature-jump technique. A slow-relaxation effect was observed which was attributed from its dependence on enzyme concentration to the monomer-dimer reaction; the reciprocal relaxation times tau-1 varied from 3 s-1 at low concentrations of glucose to 42 s-1 at saturating concentrations. Rate constants for association (kass.) and dissociation (kdiss.) were determined as a function of glucose concentration using values of the equilibrium association constant of the monomer-dimer reaction derived from sedimentation ultracentrifugation studies under similar conditions, and also from the dependence of tau-2 on enzyme concentration. kass. was almost independent of glucose concentration and its value (2 x 10(5) M-1.s-1) was close to that expected for a diffusion-controlled process. The influence of glucose on the monomer-dimer reaction is entirely due to effects on kdiss., which increases from 0.21 s-1 in the absence of glucose to 25 s-1 at saturating concentrations. The monomer and dimer forms of hexokinase have different affinities and Km values for glucose, and the results reported here imply that there may be a significant lag in the response of the monomer-dimer reaction to changes in glucose concentrations in vivo with consequent hysteretic effects on the hexokinase activity.

  5. Ultra-fast solid state electro-optical modulator based on liquid crystal polymer and liquid crystal composites

    Energy Technology Data Exchange (ETDEWEB)

    Ouskova, Elena; Sio, Luciano De, E-mail: luciano@beamco.com; Vergara, Rafael; Tabiryan, Nelson [Beam Engineering for Advanced Measurements Company, Winter Park, Florida 32789 (United States); White, Timothy J.; Bunning, Timothy J. [Air Force Research Laboratory, Wright-Patterson Air Force Base, Ohio 45433-7707 (United States)

    2014-12-08

    A different generation of polymer-dispersed liquid crystals (PDLCs) based on a liquid crystalline polymer host is reported wherein the fluid behavior of the reactive mesogenic monomer is an enabler to concentration windows (liquid crystal polymer/liquid crystal) (and subsequent morphologies) not previously explored. These liquid crystal (LC) polymer/LC composites, LCPDLCs, exhibit excellent optical and electro-optical properties with negligible scattering losses in both the ON and OFF states. These systems thus have application in systems where fast phase modulation of optical signal instead of amplitude control is needed. Polarized optical microscopy and high resolution scanning electron microscopy confirm a bicontinuous morphology composed of aligned LC polymer coexisting with a phase separated LC fluid. Operating voltages, switching times, and spectra of LCPDLCs compare favourably to conventional PDLC films. The LCPDLCs exhibit a low switching voltage (4–5 V/μm), symmetric and submillisecond (200 μs) on/off response times, and high transmission in both the as formed and switched state in a phase modulation geometry.

  6. The LOMOsup(R) process: a solution for residual monomers

    International Nuclear Information System (INIS)

    Derbyshire, R.L.

    1979-01-01

    Regulatory activity over the last several years has addressed the potential problems associated with the migration of residual monomers from a number of commodity food packages. Regardless of the outcome of current debates, it will always be desirable to reduce monomer levels to as low a level as economically practicable so that they do not become indirect additives. The LOMO process is a body of technology inclusive of an ionizing radiation treatment which can result in sharp reduction of residual monomer levels in commodity plastic resins. The process may be applicable to factory intermediates, raw resins, or finished articles. Depending upon the individual system and its monomers, LOMO treatment can result in reductions to levels which press today's analytical test capability. Industrial radiation processing is normally accomplished with electron beam accelerators. Electron beam processing continues to gain in understanding and acceptance as one of the very few basic methods by which energy can be imparted to an industrial process system. Typically, whole factories are constructed around one accelerator. (author)

  7. Crystallization and preliminary X-ray crystallographic analysis of two vascular apoptosis-inducing proteins (VAPs) from Crotalus atrox venom

    International Nuclear Information System (INIS)

    Igarashi, Tomoko; Oishi, Yuko; Araki, Satohiko; Mori, Hidezo; Takeda, Soichi

    2006-01-01

    Vascular apoptosis-inducing protein 1 (VAP1) and VAP2 from C. atrox venom were crystallized in variety of different crystal forms. Diffraction data sets were obtained to 2.5 and 2.15 Å resolution for VAP1 and VAP2, respectively. VAPs are haemorrhagic snake-venom toxins belonging to the reprolysin family of zinc metalloproteinases. In vitro, VAPs induce apoptosis specifically in cultured vascular endothelial cells. VAPs have a modular structure that bears structural homology to mammalian ADAMs (a disintegrin and metalloproteinases). VAP1 is a homodimer with a MW of 110 kDa in which the monomers are connected by a single disulfide bridge. VAP2 is homologous to VAP1 and exists as a monomer with a MW of 55 kDa. In the current study, several crystal forms of VAP1 and VAP2 were obtained using the vapour-diffusion method and diffraction data sets were collected using SPring-8 beamlines. The best crystals of VAP1 and VAP2 generated data sets to 2.5 and 2.15 Å resolution, respectively

  8. Mechanical characterization of glass fiber (woven roving/chopped strand mat E-glass fiber) reinforced polyester composites

    Science.gov (United States)

    Bhaskar, V. Vijaya; Srinivas, Kolla

    2017-07-01

    Polymer reinforced composites have been replacing most of the engineering material and their applications become more and more day by day. Polymer composites have been analyzing from past thirty five years for their betterment for adapting more applications. This paper aims at the mechanical properties of polyester reinforced with glass fiber composites. The glass fiber is reinforced with polyester in two forms viz Woven Rovings (WRG) and Chopped Strand Mat (CSMG) E-glass fibers. The composites are fabricated by hand lay-up technique and the composites are cut as per ASTM Standard sizes for corresponding tests like flexural, compression and impact tests, so that flexural strength, compression strength, impact strength and inter laminar shear stress(ILSS) of polymer matrix composites are analyzed. From the tests and further calculations, the polyester composites reinforced with Chopped Strand Mat glass fiber have shown better performance against flexural load, compression load and impact load than that of Woven Roving glass fiber.

  9. Enzymatic Synthesis of Biobased Polyesters and Polyamides

    Directory of Open Access Journals (Sweden)

    Yi Jiang

    2016-06-01

    Full Text Available Nowadays, “green” is a hot topic almost everywhere, from retailers to universities to industries; and achieving a green status has become a universal aim. However, polymers are commonly considered not to be “green”, being associated with massive energy consumption and severe pollution problems (for example, the “Plastic Soup” as a public stereotype. To achieve green polymers, three elements should be entailed: (1 green raw materials, catalysts and solvents; (2 eco-friendly synthesis processes; and (3 sustainable polymers with a low carbon footprint, for example, (biodegradable polymers or polymers which can be recycled or disposed with a gentle environmental impact. By utilizing biobased monomers in enzymatic polymerizations, many advantageous green aspects can be fulfilled. For example, biobased monomers and enzyme catalysts are renewable materials that are derived from biomass feedstocks; enzymatic polymerizations are clean and energy saving processes; and no toxic residuals contaminate the final products. Therefore, synthesis of renewable polymers via enzymatic polymerizations of biobased monomers provides an opportunity for achieving green polymers and a future sustainable polymer industry, which will eventually play an essential role for realizing and maintaining a biobased and sustainable society.

  10. A facile fabrication of multifunctional knit polyester fabric based on chitosan and polyaniline polymer nanocomposite

    Science.gov (United States)

    Tang, Xiaoning; Tian, Mingwei; Qu, Lijun; Zhu, Shifeng; Guo, Xiaoqing; Han, Guangting; Sun, Kaikai; Hu, Xili; Wang, Yujiao; Xu, Xiaoqi

    2014-10-01

    Knit polyester fabric was successively modified and decorated with chitosan layer and polyaniline polymer nanocomposite layer in this paper. The fabric was firstly treated with chitosan to form a stable layer through the pad-dry-cure process, and then the polyaniline polymer nanocomposite layer was established on the outer layer by in situ chemical polymerization method using ammonium persulfate as oxidant and chlorhydric acid as dopant. The surface morphology of coated fabric was characterized by scanning electron microscopy (SEM), and the co-existence of chitosan layer and granular polyaniline polymer nanocomposite was confirmed and well dispersed on the fabric surface. The resultant fabric was endowed with remarkable electrical conductivity properties and efficient water-repellent capability, which also have been found stable after water laundering. In addition, the photocatalytic decomposition activity for reactive red dye was observed when the multifunctional knit polyester fabric was exposed to the illumination of ultraviolet lamp. These results indicated that chitosan and polyaniline polymer nanocomposite could form ideal multifunctional coatings on the surface of knit polyester fabric.

  11. Functional organic materials based on polymerized liquid-crystal monomers: supramolecular hydrogen-bonded systems

    NARCIS (Netherlands)

    Broer, D.J.; Bastiaansen, C.W.M.; Debije, M.G.; Schenning, A.P.H.J.

    2012-01-01

    Functional organic materials are of great interest for a variety of applications. To obtain precise functional properties, well-defined hierarchically ordered supramolecular materials are crucial. The self-assembly of liquid crystals has proven to be an extremely useful tool in the development of

  12. High Efficiency Particulate Air (HEPA) filters from polyester and polypropylene fibre nonwovens

    CSIR Research Space (South Africa)

    Boguslavsky, L

    2010-10-01

    Full Text Available filtration efficiency. Glass fibres are more harmful to human, compared to polypropylene and polyester fibre which are chemically inert. Hydroentanglement and chemical bonding techniques were utilised in manufacturing nonwovens for dry filtration. Acrylic...

  13. Solubility of mixed monomers of tetrafluoroethylene and propylene in water and latex

    International Nuclear Information System (INIS)

    Watanabe, Hiromasa; Okamoto, Jiro

    1978-03-01

    For kinetical analysis of the emulsion copolymerization of tetrafluoroethylene with propylene and selection of the optimum reaction conditions, the monomer concentrations and composition of the polymer particle were measured and the relations with reaction conditions were determined. Solubilities of tetrafluoroethylene and propylene in water increase with pressure. solubility of propylene is larger than that of tetrafluoroethylene. Solubility of the mixed monomers in water and latex increases with pressure and propylene concentration and decreases with temperature. Propylene concentration in the dissolved monomers is dependent on its concentration in the gas phase and independent of pressure and temperature. The monomer concentrations and the composition were estimated from measurements. Under propylene concentration in the gas phase of 0 to 40 wt % at 30 Kg/cm 2 G and 40 0 C, the monomer concentration and propylene fraction of the polymer particle are 17 -- 27% and 0 -- 62% respectively. The amount of propylene in the particle increases with its fraction in the gas phase, but the amount of tetrafluoroethylene is independent of its fraction in the gas phase. Monomer composition of the polymer particle is dependent on monomer composition of the gas phase and independent of temperature and pressure. The concentration in the polymer particle is 17% at propylene concentration 10 mole % in the gas phase. (auth.)

  14. Novel biphotonic holographic storage in a side-chain liquid crystalline polyester

    DEFF Research Database (Denmark)

    Ramanujam, P.S.; Hvilsted, S.; Andruzzi, F.

    1993-01-01

    We report novel biphotonic holographic storage of text and gratings on unoriented films of a side-chain liquid crystalline polyester capable of high density storage and complete erasure. The holograms have a typical size of 1 mm. The recording utilizes unusual photochemistry involving azo dye...

  15. Thermodynamics of swelling of latex particles with two monomers: a sensitivity analysis

    NARCIS (Netherlands)

    Maxwell, I.A.; Noel, E.F.J.; Schoonbrood, H.A.S.; German, A.L.

    1993-01-01

    A sensitivity anal. is performed to det. at what conditions the simplified model for swelling of latex particles by two monomers or two solvents is valid. This model proposes that, inter alia, the fractions of two monomers in the latex particles and in the monomer droplets are equal. The model is a

  16. Mechanical Properties Analysis Of Composite Magnetic Base On hexa ferrite And Polyester Or Epoxy Matrix With Silane Additive Addition

    International Nuclear Information System (INIS)

    Sudirman; Ridwan; Mujamilah; K K, Aloma; Rembulan, Marisa; Fitriyanti

    2003-01-01

    Application of composite magnetic especially hexa ferrite magnet for industry and home industry in Indonesia has been used. Research purposes were making composite magnetic by mixing hexa ferrite powder with polyester or epoxy and studying the effect of coupling agent 3-aminopropyltriethoxysilane (3-APE) addition on mechanical properties of composite magnetic. The coupling agent may increase bonding properties between magnetic powder and matrix polymer, so that tensile strength of magnetic composite will increase without decreasing the magnetic properties. Magnetic powder (SrM or BaM) wich be coated by coupling agent were added to matrix polyester and mekpo or epoxy and versamid, mixed until homogen then pressing into to the dumbbell form molding. For epoxy matrix, pressing was done in hot press at 70 deg. C and 150 kg/cm 2 following by cooling in cold press, while for polyester matrix pressing was done in hydraulic press and following by curing at 70 deg. C in an oven for 1 hour. The composition of magnetic powder were varied to 30, 40 and 50% volume fraction and coupling agent were varied to 5, 10 and 15 ml for every volume fraction. The result showed that 10 ml added of coupling agent was give best mechanical properties both polyester and epoxy matrix. However generally, increasing of magnetic powder content decreased the tensile strength of magnetic composite. The properties of magnetic composite SrM was better than BaM either in polyester or epoxy matrix

  17. A solvent induced crystallisation method to imbue bioactive ingredients of neem oil into the compact structure of poly (ethylene terephthalate) polyester

    Energy Technology Data Exchange (ETDEWEB)

    Ali, Wazed [Department of Textile Technology, Indian Institute of Technology, Hauz Khas, New Delhi 110016 (India); Sultana, Parveen [Department of Physics, Jadavpur University, Kolkata 700032 (India); Joshi, Mangala [Department of Textile Technology, Indian Institute of Technology, Hauz Khas, New Delhi 110016 (India); Rajendran, Subbiyan, E-mail: sr2@bolton.ac.uk [Institute for Materials Research and Innovation, The University of Bolton, Bolton BL3 5AB (United Kingdom)

    2016-07-01

    Neem oil, a natural antibacterial agent from neem tree (Azadarichtaindica) has been used to impart antibacterial activity to polyester fabrics. Solvent induced polymer modification method was used and that facilitated the easy entry of neem molecules into the compact structure of polyethylene terephthalate (PET) polyester. The polyester fabric was treated with trichloroacetic acid-methylene chloride (TCAMC) solvent system at room temperature prior to treatment with neem oil. The concentration of TCAMC and the treatment time were optimised. XRD and SEM results showed that the TCAMC treatment causes polymer modification and morphological changes in the PET polyester. Antibacterial activity of TCAMC pre-treated and neem-oil-treated polyester fabric was tested using AATCC qualitative and quantitative methods. Both Gram-positive and Gram-negative organisms were used to determine the antimicrobial activity. It was observed that the treated fabric registers substantial antimicrobial activity against both the Staphylococcus aureus (Gram-positive) and the Escherichia coli (Gram-negative) and the effect increases with the increase in concentration of TCAMC treatment. The antibacterial effect remains substantial even after 25 launderings. A kinetic growth study involving the effect of antibacterial activity at various incubation times was carried out. - Highlights: • A novel technique whereby the antibacterial components of neem oil are imbued into the compact structure of PET polyester • Trichloroacetic acid-Methylene Chloride treatment facilitated the easy entry of neem ingredients into the PET structure • Neem oil treated PET registered substantial antibacterial efficacy • Antibacterial effect is retained even after multiple use-wash cycles.

  18. Electron beam curing of coatings

    International Nuclear Information System (INIS)

    Schmidt, J.; Mai, H.

    1986-01-01

    Modern low-energy electron beam processors offer the possibility for high-speed curing of coatings on paper, plastics, wood and metal. Today the electron beam curing gets more importance due to the increasing environmental problems and the rising cost of energy. For an effective curing process low-energy electron beam processors as well as very reactive binders are necessary. Generally such binders consist of acrylic-modified unsaturated polyester resins, polyacrylates, urethane acrylates or epoxy acrylates and vinyl monomers, mostly multifunctional acrylates. First results on the production of EBC binders on the base of polyester resins and vinyl monomers are presented. The aim of our investigations is to obtain binders with curing doses ≤ 50 kGy. In order to reduce the curing dose we studied mixtures of resins and acrylates. (author)

  19. Study of the properties of poly(ester urethanes) following ionizing irradiation

    International Nuclear Information System (INIS)

    Kornacka, A.M.; Przybytniak, G.

    2006-01-01

    Copolymers of polyurethanes and polyesters were found unsuitable for long-term implants because of fast hydrolysis of the ester soft segments. On the other hand, such properties make them valuable as gradually degradable biomaterial that might be used as scaffolds for tissue engineering. The elastomeric polyurethanes are known to be radiation stable materials in sterilizing dose. Nevertheless, if additional components appear in the system, e.g. segments of polyesters, then the influence of irradiation is poorly recognized. In presented paper it has been shown that ionizing radiation induces solid state reorganization of the segmented domains, leading to migration of soft segments towards the surface and to grow of hydrophobic properties. Obtained results confirmed that the urethane segments were more resistant towards ionizing irradiation and the presence of ester units facilitated generation of free radicals. It was also found that in poly(ε-caprolactane)diol (PCL) segments ionizing radiation induces radicals that are able to introduce cross-linking in macromolecules, and consequently reduce ability to biodegradation

  20. Azobenzene Polyesters Used as Gate‐Like Scaffolds in Nanoscopic Hybrid Systems

    DEFF Research Database (Denmark)

    Bernardos, Andrea; Mondragón, Laura; Javakhishvili, Irakli

    2012-01-01

    inside the mesopores. Two solid materials, Rh‐PAzo8‐S and Rh‐PAzo6‐S, containing two closely related polymers, PAzo8 and PAzo6, in the pore outlets have been prepared. Materials Rh‐PAzo8‐S and Rh‐PAzo6‐S showed an almost zero release in water due to steric hindrance imposed by the presence of anchored...... bulky polyesters, whereas a large delivery of the cargo was observed in the presence of an esterase enzyme due to the progressive hydrolysis of polyester chains. Moreover, nanoparticles Rh‐PAzo8‐S and Rh‐PAzo6‐S were used to study the controlled release of the dye in intracellular media. Nanoparticles...... were not toxic for HeLa cells and endocytosis‐mediated cell internalisation was confirmed by confocal microscopy. Furthermore, the possible use of capped materials as a drug‐delivery system was demonstrated by the preparation of a new mesoporous silica nanoparticle functionalised with PAzo6 and loaded...

  1. Three-Dimentional Structures of Autophosphorylation Complexes in Crystals of Protein Kinases

    KAUST Repository

    Dumbrack, Roland

    2016-01-26

    Protein kinase autophosphorylation is a common regulatory mechanism in cell signaling pathways. Several autophosphorylation complexes have been identified in crystals of protein kinases, with a known serine, threonine, or tyrosine autophosphorylation site of one kinase monomer sitting in the active site of another monomer of the same protein in the crystal. We utilized a structural bioinformatics method to identify all such autophosphorylation complexes in X-ray crystallographic structures in the Protein Data Bank (PDB) by generating all unique kinase/kinase interfaces within and between asymmetric units of each crystal and measuring the distance between the hydroxyl oxygen of potential autophosphorylation sites and the oxygen atoms of the active site aspartic acid residue side chain. We have identified 15 unique autophosphorylation complexes in the PDB, of which 5 complexes have not previously been described in the relevant publications on the crystal structures (N-terminal juxtamembrane regions of CSF1R and EPHA2, activation loop tyrosines of LCK and IGF1R, and a serine in a nuclear localization signal region of CLK2. Mutation of residues in the autophosphorylation complex interface of LCK either severely impaired autophosphorylation or increased it. Taking the autophosphorylation complexes as a whole and comparing them with peptide-substrate/kinase complexes, we observe a number of important features among them. The novel and previously observed autophosphorylation sites are conserved in many kinases, indicating that by homology we can extend the relevance of these complexes to many other clinically relevant drug targets.

  2. Preparation of pinewood/polymer/composites using gamma irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Ajji, Zaki [Polymer Technology Division, Department of Radiation Technology, Atomic Energy Commission, P.O. Box 6091, Damascus (Syrian Arab Republic)]. E-mail: atomic@aec.org.sy

    2006-09-15

    Wood/polymer composites (WPC) have been prepared from pinewood with different compounds using gamma irradiation: butyl acrylate, butyl methacrylate, styrene, acrylamide, acrylonitrile, and unsaturated polyester styrene resin. The polymer loading was determined with respect to the compound concentration and the irradiation dose. The polymer loading increases generally with increase in the monomer or polymer concentration. Tensile and compression strength have been improved in the four cases, but no improvement was observed using unsaturated polyester styrene resin or acrylamide.

  3. Evaluation of level of impregnation monomers in hydrotalcite

    International Nuclear Information System (INIS)

    Carmo, Danieli M. do; Machado, Jacson S.C.; Oliveira, Marcelo F.L.; Oliveira, Marcia G.; Soares, Bluma G.

    2011-01-01

    To evaluate the impregnation degree of 1,6-hexamethylene diisocyanate and 1,4-butanediol monomers in hydrotalcite clays it was prepared dispersions with mixing ratio 1:100 (clay/monomer), using the Ultraturrax and Ultrasound. Subsequently the samples were characterized by Fourier Transform Infrared Spectroscopy and X-ray Diffraction. Swelling tests and Tyndall effect were used to illustrate the different dispersions. The results indicated a strong interaction between the hydrotalcite with 1,6-hexamethylene diisocyanate, favoring the formation of intercalated structures. (author)

  4. Ultrasound enhanced plasma treatment of glass-fibre-reinforced polyester in atmospheric pressure air for adhesion improvement

    DEFF Research Database (Denmark)

    Kusano, Yukihiro; Singh, Shailendra Vikram; Norrman, Kion

    2011-01-01

    A glass-fibre-reinforced polyester (GFRP) plate was treated with dielectric barrier discharge (DBD) at atmospheric pressure in air for adhesion improvement. The effects of ultrasonic irradiation using a high-power gas-jet generator during the treatment were investigated. The optical emission...... damage of the GFRP plates. The polar component of the surface energy of the polyester plate was 21 mJ/m2 before the treatment, increased markedly to 52 mJ/m2 after 2-s plasma treatment without ultrasonic irradiation, and further increased slightly after longer treatments. In addition, the polar component...

  5. The Off-rate of Monomers Dissociating from Amyloid-β Protofibrils*

    Science.gov (United States)

    Grüning, Clara S. R.; Klinker, Stefan; Wolff, Martin; Schneider, Mario; Toksöz, Küpra; Klein, Antonia N.; Nagel-Steger, Luitgard; Willbold, Dieter; Hoyer, Wolfgang

    2013-01-01

    The interconversion of monomers, oligomers, and amyloid fibrils of the amyloid-β peptide (Aβ) has been implicated in the pathogenesis of Alzheimer disease. The determination of the kinetics of the individual association and dissociation reactions is hampered by the fact that forward and reverse reactions to/from different aggregation states occur simultaneously. Here, we report the kinetics of dissociation of Aβ monomers from protofibrils, prefibrillar high molecular weight oligomers previously shown to possess pronounced neurotoxicity. An engineered binding protein sequestering specifically monomeric Aβ was employed to follow protofibril dissociation by tryptophan fluorescence, precluding confounding effects of reverse or competing reactions. Aβ protofibril dissociation into monomers follows exponential decay kinetics with a time constant of ∼2 h at 25 °C and an activation energy of 80 kJ/mol, values typical for high affinity biomolecular interactions. This study demonstrates the high kinetic stability of Aβ protofibrils toward dissociation into monomers and supports the delineation of the Aβ folding and assembly energy landscape. PMID:24247242

  6. Step growth of an AB2 monomer, with cycle formation

    DEFF Research Database (Denmark)

    Cameron, Colin; Fawcett, Allan H.; Hetherington, Cecil R.

    1998-01-01

    A computer-based lattice model of the step growth reaction of an AB2 monomer, the next elaborate system after an AB monomer, has been devised that allows the simultaneous and explicit occurrence of inter- and intramolecular reactions of A and B groups of the flexible and moving molecules according...... with fractal characteristics. Growth stops when each molecule contains a cycle. For the model explored, in which six lattice sites are used for each monomer, the limiting value of the number average degree of polymerization, 〈x〉n,∞, is 14.6(±0.3) (after infinite time). The occurrence within the system of rings...... of m residues (m=1,2,3,...) is found to depend upon m and the extent of reaction of the A groups, pa, according to Rm=C0pm am-2.71, the constant C0 reflecting the structure of the lattice and the monomer, and being shown to determine the final degree of polymerization. The exponent of the integers m...

  7. 46 CFR 151.50-34 - Vinyl chloride (vinyl chloride monomer).

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 5 2010-10-01 2010-10-01 false Vinyl chloride (vinyl chloride monomer). 151.50-34... chloride (vinyl chloride monomer). (a) Copper, aluminum, magnesium, mercury, silver, and their alloys shall... equipment that may come in contact with vinyl chloride liquid or vapor. (b) Valves, flanges, and pipe...

  8. Filler Fraction Effect on Creep Response of Crosslinked Polyester Matrix with Mineral Filler

    Czech Academy of Sciences Publication Activity Database

    Hristova, J.; Minster, Jiří

    Vol. 89, - (2003), s. 3329-3335 ISSN 0021-8995 Institutional research plan: CEZ:AV0Z2071913 Keywords : polyester composites * creep * ageing Subject RIV: JI - Composite Materials Impact factor: 1.017, year: 2003

  9. Highly Branched Bio-Based Unsaturated Polyesters by Enzymatic Polymerization

    DEFF Research Database (Denmark)

    Nguyen, Hiep Dinh; Löf, David; Hvilsted, Søren

    2016-01-01

    A one-pot, enzyme-catalyzed bulk polymerization method for direct production of highly branched polyesters has been developed as an alternative to currently used industrial procedures. Bio-based feed components in the form of glycerol, pentaerythritol, azelaic acid, and tall oil fatty acid (TOFA)...... stability, very high water contact angles of up to 141° and a glass transition temperature that could be controlled through the feed composition....

  10. Side-chain liquid-crystalline polyesters for optical information storage

    DEFF Research Database (Denmark)

    Hvilsted, Søren; Andruzzi, F.; Ramanujam, P.S.

    1992-01-01

    We report erasable holographic recording with a resolution of at least 2500 lines/mm on unoriented films of side-chain liquid-crystalline polyesters. Recording energies of approximately 1 J/cm2 have been used. We have obtained a diffraction efficiency of approximately 30% with polarization record...... recording of holograms. The holograms can be erased by heating them to approximately 80-degrees-C for approximately 2 min and are available for rerecording....

  11. The EIS investigation of powder polyester coatings on phosphated low carbon steel: The effect of NaNO2 in the phosphating bath

    International Nuclear Information System (INIS)

    Jegdic, B.V.; Bajat, J.B.; Popic, J.P.; Stevanovic, S.I.; Miskovic-Stankovic, V.B.

    2011-01-01

    Highlights: → The effect of NaNO 2 on surface morphology of iron-phosphate coatings were determined. → Better corrosion stability of polyester coating on phosphated steel without NaNO 2 . → EIS results and microscopic examinations correlate well with adhesion measurements. - Abstract: The effect of different type of iron-phosphate coatings on corrosion stability and adhesion characteristic of top powder polyester coating on steel was investigated. Iron-phosphate coatings were deposited on steel in the novel phosphating bath with or without NaNO 2 as an accelerator. The corrosion stability of the powder polyester coating was evaluated by electrochemical impedance spectroscopy (EIS), adhesion by pull-off and NMP test, while surface morphology of phosphate coatings were investigated by atomic force microscopy (AFM). The adhesion and corrosion stability of powder polyester coatings were improved with pretreatment based on iron-phosphate coating deposited from NaNO 2 -free bath.

  12. Effect of polyester fiber reinforcement on the mechanical properties of interim fixed partial dentures

    Directory of Open Access Journals (Sweden)

    N. Gopichander

    2015-10-01

    Conclusion: Within the limitations of this study, polyester fiber reinforcements improved the mechanical properties of heat-polymerized PMMA, cold-polymerized PMMA, and bis-acrylic provisional FPD materials.

  13. Synthesis of electro-optically active polymer composite of poly[2,2'-bis(3,4-ethylenedioxythiophene-alt-fluorene]/hydroxypropyl cellulose showing liquid crystal structure

    Directory of Open Access Journals (Sweden)

    N. Eguchi

    2017-10-01

    Full Text Available Electrochemical preparation of a composite consisting of poly[2,2′-bis(3,4-ethylenedioxythiophene-alt-fluorene] and hydroxypropyl cellulose (PEFE/HPC was carried out. We conducted electrochemical polymerization of poly[2,2′-bis(3,4-ethylenedioxythiophene-alt-fluorene] (EFE as a monomer in a lyotropic liquid crystal of HPC. We used an organic solvent instead of water for lyotropic liquid crystal medium to expand the possibility of the range of monomers, although water is usually employed as a solvent for HPC for showing liquid crystallinity. Here, we employed N,N-dimethylformamide (DMF as a solvent for HPC. Electrochemical polymerization in the polymer liquid crystal was carried out to obtain a polymer film with liquid crystal order. The polymer film thus prepared exhibited optical activity. Fourier transfer infrared (FT-IR absorption spectroscopy reveals that the film is a composite consisting of HPC and polymer. The composite PEFE/HPC thus prepared in HPC/DMF system showed electrochromism.

  14. Synthesis and characterization of novel organotin carboxylate maleimide monomers and copolymers

    Directory of Open Access Journals (Sweden)

    2009-06-01

    Full Text Available Two novel tributyltin carboxylate maleimide monomers, tributyltin(maleimidoacetate and tributyltin(4-maleimidobenzoate, were synthesized by condensation reaction of maleimidoacetic acid or 4-maleimidobenzoic acid with bis(tributyltin oxide. Copolymerization of these monomers with styrene was carried in dioxane at 70°C using asobisisobutyronitrile as free radical initiator. The structures of monomers and copolymers were confirmed by FT-IR (Fourier Transform Infrared, 1H and 13C NMR (nuclear magnetic resonance spectroscopy and elemental analysis. The copolymers were characterized by solubility and thermal analysis.

  15. Diffraction from polarization holographic gratings with surface relief in side-chain azobenzene polyesters

    DEFF Research Database (Denmark)

    Naydenova, I; Nikolova, L; Todorov, T

    1998-01-01

    We investigate the polarization properties of holographic gratings in side-chain azobenzene polyesters in which an anisotropic grating that is due to photoinduced linear and circular birefringence is recorded in the volume of the material and a relief grating appears on the surface. A theoretical...... model is proposed to explain the experimental results, making it possible to understand the influence of the different photoinduced effects. It is shown that at low intensity the polarization properties of the diffraction at these gratings are determined by the interaction of the linear and circular...... photobirefringences, and at larger intensity the influence of the surface relief dominates the effect of the circular anisotropy. Owing to the high recording efficiency of the polyesters, the +/-1-order diffracted waves change the polarization interference pattern during the holographic recording, resulting...

  16. Expression, purification, crystallization and preliminary crystallographic study of isolated modules of the mouse coactivator-associated arginine methyltransferase 1

    Energy Technology Data Exchange (ETDEWEB)

    Troffer-Charlier, Nathalie; Cura, Vincent; Hassenboehler, Pierre; Moras, Dino; Cavarelli, Jean, E-mail: cava@igbmc.u-strasbg.fr [IGBMC (Institut de Génétique et de Biologie Moléculaire et Cellulaire), Département de Biologie et Génomique Structurales, 1 Rue Laurent Fries, Illkirch, F-67404 (France); INSERM, U596, Illkirch, F-67400 (France); CNRS, UMR7104, Illkirch, F-67400 (France); Université Louis Pasteur, Faculté des Sciences de la Vie, Strasbourg, F-67000 (France)

    2007-04-01

    Isolated modules of mouse coactivator-associated arginine methyltransferase 1 encompassing the protein arginine N-methyltransferase catalytic domain have been overexpressed, purified and crystallized. X-ray diffraction data have been collected and have enabled determination of the structures by multiple isomorphous replacement using anomalous scattering. Coactivator-associated arginine methyltransferase 1 (CARM1) plays a crucial role in gene expression as a coactivator of several nuclear hormone receptors and also of non-nuclear receptor systems. Its recruitment by the transcriptional machinery induces protein methylation, leading to chromatin remodelling and gene activation. CARM1{sub 28–507} and two structural states of CARM1{sub 140–480} were expressed, purified and crystallized. Crystals of CARM1{sub 28–507} belong to space group P6{sub 2}22, with unit-cell parameters a = b = 136.0, c = 125.3 Å; they diffract to beyond 2.5 Å resolution using synchrotron radiation and contain one monomer in the asymmetric unit. The structure of CARM1{sub 28–507} was solved by multiple isomorphous replacement and anomalous scattering methods. Crystals of apo CARM1{sub 140–480} belong to space group I222, with unit-cell parameters a = 74.6, b = 99.0, c = 207.4 Å; they diffract to beyond 2.7 Å resolution and contain two monomers in the asymmetric unit. Crystals of CARM1{sub 140–480} in complex with S-adenosyl-l-homocysteine belong to space P2{sub 1}2{sub 1}2, with unit-cell parameters a = 74.6, b = 98.65, c = 206.08 Å; they diffract to beyond 2.6 Å resolution and contain four monomers in the asymmetric unit. The structures of apo and holo CARM1{sub 140–480} were solved by molecular-replacement techniques from the structure of CARM1{sub 28–507}.

  17. Investigation on physical behavior of styrene wood-polymer in different concentrations of monomer

    Directory of Open Access Journals (Sweden)

    maryam ghorbani

    2016-09-01

    Full Text Available This research was conducted to study the effect of different concentrations of styrene lumen monomer on the physical properties of beech wood. Physical test samples were prepared according to ASTM-D1037 standard and treated with vacuum-pressure method at five concentration levels; 0, 40, 60, 80 and 100 percent of soluble monomer. For polymerization, treated samples were heated in oven for two 24-hour period at 90 and 103ºC respectively. Monomer and polymer absorption, density variation, water absorption, swelling and anti-swelling efficiency (ASE were determined. According to the results, Monomer and polymer absorption were increment by monomer concentration increase, and they were reported 38.2% and 26% in highest level. With polymer absorption enhancement, density of wood increased from 0/63g/cm³ in control to 0/91g/cm³ in the highest monomer concentration level that reduces pores in wood-polymer structure. Absorbed polymer enhancement decreased hydrophilicity and dimensional changes of treated samples, so that water absorption and swelling volume of the samples saturated with 100% concentration of monomer were decreased 64% and 45.3% after the longest immersion time. Highest Anti-swelling efficiency of Styrene-saturated samples was determined 56.15% in the maximum concentration level of treatment.

  18. Binding interactions between suberin monomer components and pesticides

    Energy Technology Data Exchange (ETDEWEB)

    Olivella, M.À., E-mail: angels.olivella@udg.edu [Department of Chemical Engineering, Escola Politècnica Superior, Universitat de Girona, Maria Aurèlia Capmany, 61, 17071 Girona (Spain); Bazzicalupi, C.; Bianchi, A. [Department of Chemistry “Ugo Schiff”, University of Florence, Via della Lastruccia, 3, 50019 Sesto Fiorentino (Italy); Río, J.C. del [Instituto de Recursos Naturales y Agrobiología de Sevilla, Consejo Superior de Investigaciones Científicas, P.O. Box 1052, 41080 Seville (Spain); Fiol, N.; Villaescusa, I. [Department of Chemical Engineering, Escola Politècnica Superior, Universitat de Girona, Maria Aurèlia Capmany, 61, 17071 Girona (Spain)

    2015-09-15

    Understanding the role of biomacromolecules and their interactions with pollutants is a key for elucidating the sorption mechanisms and making an accurate assessment of the environmental fate of pollutants. The knowledge of the sorption properties of the different constituents of these biomacromolecules may furnish a significant contribution to this purpose. Suberin is a very abundant biopolymer in higher plants. In this study, suberin monomers isolated from cork were analyzed by thermally-assisted methylation with tetramethylammonium hydroxide (TMAH) in a pyrolysis unit coupled to gas chromatography–mass spectrometry (GC/MS). The isolated monomer mixture was used to study the sorption of three pesticides (isoproturon, methomyl and oxamyl). The modes of pesticide–sorbent interactions were analyzed by means of two modeling calculations, the first one representing only the mixture of suberin monomers used in the sorption study, and the second one including glycerol to the mixture of suberin monomers, as a building block of the suberin molecule. The results indicated that the highest sorption capacity exhibited by the sorbent was for isoproturon (33%) being methomyl and oxamyl sorbed by the main suberin components to a lesser extent (3% and < 1%, respectively). In addition to van der Waals interactions with the apolar region of sorbent and isoproturon, modeling calculations evidenced the formation of a hydrogen bond between the isoproturon NH group and a carboxylic oxygen atom of a suberin monomer. In the case of methomyl and oxamyl only weak van der Waals interactions stabilize the pesticide–sorbent adducts. The presence of glycerol in the model provoked significant changes in the interactions with isoproturon and methomyl. - Highlights: • Suberin has low affinity to retain pesticides of aliphatic character. • Suberin has a moderate affinity to adsorb isoproturon. • Modeling calculations show that apolar portion of suberin interacts with isoproturon.

  19. Binding interactions between suberin monomer components and pesticides

    International Nuclear Information System (INIS)

    Olivella, M.À.; Bazzicalupi, C.; Bianchi, A.; Río, J.C. del; Fiol, N.; Villaescusa, I.

    2015-01-01

    Understanding the role of biomacromolecules and their interactions with pollutants is a key for elucidating the sorption mechanisms and making an accurate assessment of the environmental fate of pollutants. The knowledge of the sorption properties of the different constituents of these biomacromolecules may furnish a significant contribution to this purpose. Suberin is a very abundant biopolymer in higher plants. In this study, suberin monomers isolated from cork were analyzed by thermally-assisted methylation with tetramethylammonium hydroxide (TMAH) in a pyrolysis unit coupled to gas chromatography–mass spectrometry (GC/MS). The isolated monomer mixture was used to study the sorption of three pesticides (isoproturon, methomyl and oxamyl). The modes of pesticide–sorbent interactions were analyzed by means of two modeling calculations, the first one representing only the mixture of suberin monomers used in the sorption study, and the second one including glycerol to the mixture of suberin monomers, as a building block of the suberin molecule. The results indicated that the highest sorption capacity exhibited by the sorbent was for isoproturon (33%) being methomyl and oxamyl sorbed by the main suberin components to a lesser extent (3% and < 1%, respectively). In addition to van der Waals interactions with the apolar region of sorbent and isoproturon, modeling calculations evidenced the formation of a hydrogen bond between the isoproturon NH group and a carboxylic oxygen atom of a suberin monomer. In the case of methomyl and oxamyl only weak van der Waals interactions stabilize the pesticide–sorbent adducts. The presence of glycerol in the model provoked significant changes in the interactions with isoproturon and methomyl. - Highlights: • Suberin has low affinity to retain pesticides of aliphatic character. • Suberin has a moderate affinity to adsorb isoproturon. • Modeling calculations show that apolar portion of suberin interacts with isoproturon.

  20. Absorbable Polydioxanone (PDS) suture provides fewer wound complications than polyester (ethibond) suture in acute Tendo-Achilles rupture repair

    LENUS (Irish Health Repository)

    Baig, M N

    2017-05-01

    We prospectively studied acute Achilles tendon rupture in patients over a two 2-year period and reviewed the causes, outcome and complications. There were 53 patients included with acute Achilles rupture with minimum follow up period of 6 months. We compared the outcomes including infection rate and Boyden score between the two groups repaired by Polydioxanone and Polyester respectively. All infected cases had a suture repair using the polyester suture. The difference in the infection rate was highly significant between the 2 groups (p=0.001). All 34 patients (100%) in the PDS group had good \\/ excellent results based on the Boyden clinical assessment. Conversely, only 16 patients 9(68.4%) had good or excellent results IN Polyester repair group. Patients treated with a non- absorbable suture (ethibond) material for repair had a higher incidence infection and worse Boyden scores than the absorbable PDS group.

  1. UV-irradiation effects on polyester nuclear track detector

    International Nuclear Information System (INIS)

    Agarwal, Chhavi; Kalsi, P.C.

    2010-01-01

    The effects of UV irradiation (λ=254 nm) on polyester nuclear track detector have been investigated employing bulk-etch technique, UV-visible spectrophotometry and infra-red spectrometry (FTIR). The activation energy values for bulk-etching were found to decrease with the UV-irradiation time indicating the scission of the polymer. Not much shift in the absorption edge due to UV irradiation was seen in the UV-visible spectra. FTIR studies also indicate the scission of the chemical bonds, thereby further validating the bulk-etch rate results.

  2. Method of solidifying radioactive wastes

    International Nuclear Information System (INIS)

    Tomita, Toshihide; Minami, Yuji; Matsuura, Hiroyuki; Kageyama, Hisashi; Kobori, Junzo.

    1984-01-01

    Purpose: To perform the curing sufficiently even when copper hydroxide that interferes the curing reaction is contained in radioactive wastes. Method: Solidification of radioactive wastes containing copper hydroxide using thermoset resins is carried out under the presence of an alkaline material. The thermoset resin used herein is an polyester resin comprising unsaturated polyester and a polymerizable monomer. The alkaline substance usable herein can include powder or an aqueous solution of hydroxides or oxides of sodium, magnesium, calcium or the like. (Yoshino, Y.)

  3. Plasma Surface Modification of Glass-Fibre-Reinforced Polyester Enhanced by Ultrasonic Irradiation

    DEFF Research Database (Denmark)

    Kusano, Yukihiro; Singh, Shailendra Vikram; Bardenshtein, Alexander

    2010-01-01

    treatment can be highly enhanced by simultaneous high-power ultrasonic irradiation of the treating surface, because the delivered acoustic energy can reduce the thickness of the boundary gas layer. Here surfaces of glass-fibre-reinforced polyester (GFRP) plates were treated using an atmospheric pressure...

  4. Thermoplastic poly(urethane urea)s from novel, bio-based amorphous polyester diols

    NARCIS (Netherlands)

    Tang, D.; Noordover, B.A.J.; Sablong, R.J.; Koning, C.E.

    2012-01-01

    In this study, two novel, bio-based, amorphous polyester diols, namely poly(1,2-dimethylethylene adipate) (PDMEA) and poly(1,2-dimethylethylene succinate) (PDMES) are used to prepare thermoplastic poly(urethane urea)s (TPUUs). Interestingly, the TPUUs based on PDMEA show similar thermal and

  5. Experimental Investigation on Mechanical Properties of Hemp/E-Glass Fabric Reinforced Polyester Hybrid Composites

    Directory of Open Access Journals (Sweden)

    M R SANJAY

    2016-09-01

    Full Text Available This research work has been focusing on Hemp fibers has an alternative reinforcement for fiber reinforced polymer composites due to its eco-friendly and biodegradable characteristics. This work has been carried out to evaluate the mechanical properties of hemp/E-glass fabrics reinforced polyester hybrid composites. Vacuum bagging method was used for the preparation of six different kinds of hemp/glass fabrics reinforced polyester composite laminates as per layering sequences. The tensile, flexural, impact and water absorption tests of these hybrid composites were carried out experimentally according to ASTM standards. It reveals that an addition of E-glass fabrics with hemp fabrics can increase the mechanical properties of composites and decrease the water absorption of the hybrid composites.

  6. Synthesis and evaluation of novel siloxane-methacrylate monomers used as dentin adhesives.

    Science.gov (United States)

    Ge, Xueping; Ye, Qiang; Song, Linyong; Misra, Anil; Spencer, Paulette

    2014-09-01

    The objectives of this study were to synthesize two new siloxane-methacrylate (SM) monomers for application in dentin adhesives and to investigate the influence of different functionality of the siloxane-containing monomers on the adhesive photopolymerization, water sorption, and mechanical properties. Two siloxane-methacrylate monomers (SM1 and SM2) with four and eight methacrylate groups were synthesized. Dentin adhesives containing BisGMA, HEMA and the siloxane-methacrylate monomers were photo-polymerized. The experimental adhesives were compared with the control adhesive (HEMA/BisGMA, 45/55, w/w) and characterized with regard to degree of conversion (DC), water miscibility of the liquid resin, water sorption and dynamic mechanical analysis (DMA). The experimental adhesives exhibited improved water miscibility as compared to the control. When cured in the presence of 12 wt% water to simulate the wet environment of the mouth, the SM-containing adhesives showed DC comparable to the control. The experimental adhesives showed higher rubbery modulus than the control under dry conditions. Under wet conditions, the mechanical properties of the formulations containing SM monomer with increased functionality were comparable with the control, even with more water sorption. The concentration and functionality of the newly synthesized siloxane-methacrylate monomers affected the water miscibility, water sorption and mechanical properties of the adhesives. The experimental adhesives show improved water compatibility compared with the control. The mechanical properties were enhanced with an increase of the functionality of the siloxane-containing monomers. The results provide critical structure/property relationships and important information for future development of durable, versatile siloxane-containing dentin adhesives. Published by Elsevier Ltd.

  7. Radiation-induced changes affecting polyester based polyurethane binder

    Science.gov (United States)

    Pierpoint, Sujita Basi

    The application of thermoplastic polyurethane elastomers as binders in the high energy explosives particularly when used in weapons presents a significantly complex and challenging problem due to the impact of the aging of this polymer on the useful service life of the explosive. In this work, the effects of radiation on the aging of the polyester based polyurethane were investigated using both electron beam and gamma irradiation at various dose rates in the presence and absence of oxygen. It was found by means of GPC that, in the presence and absence of oxygen, the poly (ester urethane) primarily undergoes cross-linking, by means of a carbon-centered secondary alkyl radical. It was also concluded that the polymer partially undergoes scission of the backbone of the main chain at C-O, N-C, and C-C bonds. Substantial changes in the conditions of irradiation and in dose levels did not affect the cross-linking and scission yields. Experiments were also performed with EPR spectroscopy for the purpose of identifying the initial carbon-centered free radicals and for studying the decay mechanisms of these radicals. It was found that the carbon-centered radical which is produced via C-C scission (primary alkyl radical) is rapidly converted to a long-lived allylic species at higher temperatures; more than 80% radicals are converted to allyl species in 2.5 hours. In the presence of oxygen, the allyl radical undergoes a fast reaction to produce a peroxyl radical; this radical decays with a 1.7 hour half-life by pseudo first-order kinetics to negligible levels in 13 hours. FTIR measurements were conducted to identify the radiation-induced changes to the functional groups in the polyester polyurethane. These measurements show an increase in carbonyl, amine and carboxylic groups as a result of reaction of H atoms with R-C-O·, ·NH-R and R-COO·. The FTIR results also demonstrate the production of the unsaturation resulting from hydrogen atom transfer during intrachain conversion

  8. Unsaturated polyester resin composition curable with ionizing radiations

    International Nuclear Information System (INIS)

    Maruyama, Tsutomu; Murata, Koichiro.

    1971-01-01

    An unsaturated polyester resin composition curable with ionizing radiations and excellent in weather resistance is provided. The composition is obtained by reacting 10-12 moles of a polyhydric alcohol (e.g. ethylene glycol) with 10 moles of an acid mixture (25.45% by mole of endo-cis-bicyclo (2,2,1)-5-heptene-2-3-dicarboxylic acid (A), 20-40% of unsaturated dibasic acid and 15-55% of saturated dibasic acid) so that the acid value reaches 4-11. The composition is useful as coating, laminating and molding materials. As a coating material it is excellent in surface hardening property. The ionizing radiation used is preferably β-, α-rays or electron beams. In one example, and unsaturated polyester was prepared by reacting 3 moles of fumaric acid, 2 moles of phthalic anhydride, 3 moles of adipic acid 3, moles of (A), 10 moles of neopentyl glycol and 1 mole of trimethylolpropane. The resin was dissolved into a mixture of styrene, methyl methacrylate and butyl acrylate (50:8:42) and incorporated with titanium white. An ABS plate was coated with the enamel thus obtained and irradiated with electron beams (12 Mrad). In exposure test at 60 0 C, luster of the film was 92 before exposure and 83 after 30 months. In a comparative run in which (A) was not used, luster of the film decreased from 90 to 45 in 30 months. (Sakaichi, S.)

  9. Liquid Crystals in Tribology

    Directory of Open Access Journals (Sweden)

    María-Dolores Bermúdez

    2009-09-01

    Full Text Available Two decades ago, the literature dealing with the possible applications of low molar mass liquid crystals, also called monomer liquid crystals (MLCs, only included about 50 references. Today, thousands of papers, conference reports, books or book chapters and patents refer to the study and applications of MLCs as lubricants and lubricant additives and efforts are made to develop new commercial applications. The development of more efficient lubricants is of paramount technological and economic relevance as it is estimated that half the energy consumption is dissipated as friction. MLCs have shown their ability to form ordered boundary layers with good load-carrying capacity and to lower the friction coefficients, wear rates and contact temperature of sliding surfaces, thus contributing to increase the components service life and to save energy. This review includes the use of MLCs in lubrication, and dispersions of MLCs in conventional polymers (PDMLCs. Finally, new lubricating system composed of MLC blends with surfactants, ionic liquids or nanophases are considered.

  10. Liquid crystals in tribology.

    Science.gov (United States)

    Carrión, Francisco-José; Martínez-Nicolás, Ginés; Iglesias, Patricia; Sanes, José; Bermúdez, María-Dolores

    2009-09-18

    Two decades ago, the literature dealing with the possible applications of low molar mass liquid crystals, also called monomer liquid crystals (MLCs), only included about 50 references. Today, thousands of papers, conference reports, books or book chapters and patents refer to the study and applications of MLCs as lubricants and lubricant additives and efforts are made to develop new commercial applications. The development of more efficient lubricants is of paramount technological and economic relevance as it is estimated that half the energy consumption is dissipated as friction. MLCs have shown their ability to form ordered boundary layers with good load-carrying capacity and to lower the friction coefficients, wear rates and contact temperature of sliding surfaces, thus contributing to increase the components service life and to save energy. This review includes the use of MLCs in lubrication, and dispersions of MLCs in conventional polymers (PDMLCs). Finally, new lubricating system composed of MLC blends with surfactants, ionic liquids or nanophases are considered.

  11. Modelling of polyester fabric dyeing in the presence of ultrasonic waves

    Directory of Open Access Journals (Sweden)

    Kodrić Marija

    2017-01-01

    Full Text Available In this paper, modelling of dyeing, i.e. adsorptive behaviour of disperse dyes on polyester fibres (dyeing, under the influence of ultrasound has been considered with the aim of getting the data about mechanisms of binding the dyes and defining the conditions of dyeing process of this synthetic fibres along with additional energy source without the use of carriers, compounds that increase permeability of the fibres and help dyeing. Dyeing - adsorption is conducted under different conditions, and the concentration of dyes, mass of the substrate, recipes and time of dyeing were being varied. It has been established that ultrasound allows dyeing without carriers and the efficiency of dyeing depends on the time of contact, initial concentration of the dye and the amount of absorbent - material. There is the continuity of growth of the amount of bound dye to the mass of the absorbent. Characteristic graphs, obtained from Langmuir isotherm, have confirmed that this model ensures precise description of polyester dyeing by disperse dye. Kinetic of dyeing has been remarkably interpreted by pseudo second-order in regards to the high functionality.

  12. Structural and Functional Studies of A. oryzae Cutinase: Enhanced Thermostability and Hydrolytic Activity of Synthetic Ester and Polyester Degradation

    OpenAIRE

    Liu, Zhiqiang; Gosser, Yuying; Baker, Peter James; Ravee, Yaniv; Lu, Ziying; Alemu, Girum; Li, Huiguang; Butterfoss, Glenn L.; Kong, Xiang-Peng; Gross, Richard; Montclare, Jin Kim

    2009-01-01

    Cutinases are responsible for hydrolysis of the protective cutin lipid polyester matrix in plants and thus have been exploited for hydrolysis of small molecule esters and polyesters. Here we explore the reactivity, stability, and structure of Aspergillus oryzae cutinase and compare it to the well-studied enzyme from Fusarium solani. Two critical differences are highlighted in the crystallographic analysis of the A. oryzae structure: (i) an additional disulfide bond and (ii) a topologically fa...

  13. Self-assembly of actin monomers into long filaments: Brownian Dynamics simulations

    DEFF Research Database (Denmark)

    Shillcock, Julian C.

    2009-01-01

    Brownian dynamics simulations are used to study the dynamical process of self-assembly of actin monomers into long filaments containing up to 1000 actin protomers. In order to overcome the large separation of time scales between the diffusive motion of the freemonomers and the relatively slow....../detachment events. When a single filament is allowed to grow in a bath of constant concentration of free ADP-actin monomers, its growth rate increases linearly with the free monomer concentration in quantitative agreement with in vitro experiments. Theresults also show that the waiting time is governed by...

  14. Electromagnetic shielding mechanisms using soft magnetic stainless steel fiber enabled polyester textiles

    Science.gov (United States)

    Shyr, Tien-Wei; Shie, Jing-Wen

    2012-11-01

    This work studied the effects of conductivity, magnetic loss, and complex permittivity when using blended textiles (SSF/PET) of polyester fibers (PET) with stainless steel fibers (SSF) on electromagnetic wave shielding mechanisms at electromagnetic wave frequencies ranging from 30 MHz to 1500 MHz. The 316L stainless steel fiber used in this study had 38 vol% γ austenite and 62 vol% α' martensite crystalline phases, which was characterized by an x-ray diffractometer. Due to the magnetic and dielectric loss of soft metallic magnetic stainless steel fiber enabled polyester textiles, the relationship between the reflection/absorption/transmission behaviors of the electromagnetic wave and the electrical/magnetic/dielectric properties of the SSF and SSF/PET fabrics was analyzed. Our results showed that the electromagnetic interference shielding of the SSF/PET textiles show an absorption-dominant mechanism, which attributed to the dielectric loss and the magnetic loss at a lower frequency and attributed to the magnetic loss at a higher frequency, respectively.

  15. Controlled grafting of vinylic monomers on polyolefins: a robust mathematical modeling approach.

    Science.gov (United States)

    Saeb, Mohammad Reza; Rezaee, Babak; Shadman, Alireza; Formela, Krzysztof; Ahmadi, Zahed; Hemmati, Farkhondeh; Kermaniyan, Tayebeh Sadat; Mohammadi, Yousef

    2017-01-01

    Experimental and mathematical modeling analyses were used for controlling melt free-radical grafting of vinylic monomers on polyolefins and, thereby, reducing the disturbance of undesired cross-linking of polyolefins. Response surface, desirability function, and artificial intelligence methodologies were blended to modeling/optimization of grafting reaction in terms of vinylic monomer content, peroxide initiator concentration, and melt-processing time. An in-house code was developed based on artificial neural network that learns and mimics processing torque and grafting of glycidyl methacrylate (GMA) typical vinylic monomer on high-density polyethylene (HDPE). Application of response surface and desirability function enabled concurrent optimization of processing torque and GMA grafting on HDPE, through which we quantified for the first time competition between parallel reactions taking place during melt processing: (i) desirable grafting of GMA on HDPE; (ii) undesirable cross-linking of HDPE. The proposed robust mathematical modeling approach can precisely learn the behavior of grafting reaction of vinylic monomers on polyolefins and be placed into practice in finding exact operating condition needed for efficient grafting of reactive monomers on polyolefins.

  16. A study on influence of borax to polyester insulators

    OpenAIRE

    ERSOY, Aysel; KUNTMAN, Ayten

    2014-01-01

    In this study the effect of borax on polyester insulators is investigated by evaluating the tracking and erosion resistance using the inclined plane test. The test procedure follows the ASTM D2303 standard. During the test, 50 Hz current was acquired from the ground electrode allowing a sampling rate of 48000 samples per second. The effect of borax concentration on the glass transition and the degradation temperature is studied by employing differential scanning calorimetry (DSC) an...

  17. Monomers, dimers, and trimers of [Au(CN2]− in a Ba(diaza-18-crown-62+ coordination polymer

    Directory of Open Access Journals (Sweden)

    2009-03-01

    Full Text Available The structure of the title compound, poly[triaquatetra-μ-cyanido-tetracyanidobis(1,4,10,13-tetraoxa-7,16-diazacyclooctadecanedibarium(IItetragold(I], [Au4Ba2(CN8(C12H26N2O42(H2O3]n, displays O—H...N hydrogen bonding between water molecules and cyano ligands and an unusual pattern of aurophilic interactions that yields a monomer, dimer, and trimer of [Au(CN2]− within the same crystal structure. In two of the five Au positions, the atom resides on a center of inversion. The overall arrangement is that of a coordination polymer assisted by aurophilic and hydrogen-bonded interactions.

  18. Co-polymerization of methyl methacrylate and styrene via surfactant-free emulsion polymerization, as a potential material for photonic crystal application

    Science.gov (United States)

    Kassim, Syara; Zahari, Siti Balqis; Tahrin, Rabiatul Addawiyah Azwa; Harun, Noor Aniza

    2017-09-01

    Photonic crystals are being the great interest of researcher to studies due to a variety of potential application for the interaction of light including the solar cells, optical sensors and paints. In order to evaluate the fabrication of photonic crystals thin film, a free-emulsifier emulsion copolymerization of styrene and methyl methacrylate was carried out. By using the self -assembly approach, this method offers the opportunity to produce crystalline polymer sphere in more ease operation, low cost and environmental friendly. The influences of the mixing ratio of monomer and amount of initiators were studied. In advance, the presence of styrene as co-monomer had improved the thermal degradation of polymer methyl methacrylate. While in changing the mixing ratio of styrene and methyl methacrylate resulted in particle size of the sphere. The size of polymer particles slightly increased on increasing volume of styrene monomer ratio. This occurred because the properties of styrene in water where it sparingly soluble and lead to coagulation of particles. This simple, yet effective method for preparing functional complex 3D structures has the potential to be used generically to fabricate a variety of functional porous 3D structures that could find application not only in new or improved photonic crystal (PC) devices but also in areas such as catalysis, solar cell, separation, fuel cells technology, microelectronics and optoelectronics.

  19. Preparation and characterization of metal complex hydrogels crosslinked with hyperbranched polyester

    Czech Academy of Sciences Publication Activity Database

    Haroun, A. A.; Hakeim, O. A.; Trhlíková, Olga; Šlouf, Miroslav; Netopilík, Miloš

    2017-01-01

    Roč. 60, č. 5 (2017), s. 849-856 ISSN 0449-2285 R&D Projects: GA ČR(CZ) GC17-04258J Grant - others:AV ČR(CZ) ASRT-16-02 Program:Bilaterální spolupráce Institutional support: RVO:61389013 Keywords : hyperbranched polyester * chitosan * miniemulsion Subject RIV: CD - Macromolecular Chemistry OBOR OECD: Polymer science

  20. Photokopolimerisasi monomer akrilat degan kulit kras sapi

    Directory of Open Access Journals (Sweden)

    Dwi Wahini Nurhajati

    1997-06-01

    Full Text Available The research on photocopolymerization of acrylate monomer with cow crust hide had object to observe the resulted copolymer onto cow crust hide. Crust hides, saturated with aqueous emulsions containing 25 wt % of n-butyl acrylate (n-BA or tripropylene glycol diacrylate (TPGDA were irradiated by cobalt – 60 gamma rays with doses ranges from 5 to 25 kGy. The irradiated hides were washed with water, dried in air and extracted in soxhlet apparatus for 48 hours to remove homopolymer. The highest yield of photocopolymerization of n – butyl acrylate monomer with crust hides was found 17,7878% at dose 25 kGy, and for photocopolymerization of tripropylene glycol diacrylate with crust hides was found 39,4245% at dose 20 kGy.

  1. Gliding arc discharge — Application for adhesion improvement of fibre reinforced polyester composites

    DEFF Research Database (Denmark)

    Kusano, Yukihiro; Teodoru, Steluta; Leipold, Frank

    2008-01-01

    production, and surface treatment. However, the application for adhesion improvement of structural materials has been rarely reported. In the present work, glass fibre reinforced polyester plates were treated using atmospheric pressure gliding arcs with high speed air flow for adhesion improvement...

  2. Dynamic mechanical and dielectric behavior of banana–glass hybrid fiber reinforced polyester composites.

    CSIR Research Space (South Africa)

    Pothan, LA

    2009-01-01

    Full Text Available Hybrid composites of glass and banana fiber (obtained from the pseudo stem of Musa sapientum) in polyester matrix, are subjected to dynamic mechanical analysis over a range of temperature and three different frequencies. The effect of temperature...

  3. Radical copolymerization in homogenous medium and emulsion system monomers acrylonitrile/styrene

    Directory of Open Access Journals (Sweden)

    Boussehel H.

    2013-09-01

    Full Text Available This study examines the radical copolymerization in homogeneous and emulsion of the monomer system acrylonitrile/styrene. These copolymers are of great interest to the plastics industry, because they combine the good mechanical properties and implementation provided by the styrene units in the very high solvent resistance and extreme gas impermeability provided by the acrylonitrile units. The properties of a copolymer are directly related to its composition and distribution of monomer units in its macromolecular chains. Based on the reports of the couple reactivity's of monomers (AN/S found in the literature, the objective of the work is to provide theoretical simulation (by analytical and numerical integration of the equation of copolymerization: The kinetics of the reaction copolymerization of AN/S in a homogeneous medium and emulsion (drift composition, azeotropic and the microstructure (distribution of monomer sequences and the glass transition property of the macromolecular chains instant formed throughout the copolymerization reaction.

  4. Transport behavior of n-alkane penetrants into castor oil based polyurethane-polyester nonwoven fabric composites

    International Nuclear Information System (INIS)

    Satheesh Kumar, M.N.; Manjula, K.S.; Siddaramaiah

    2007-01-01

    Castor oil based polyurethane (PU)-polyester nonwoven fabric composites were fabricated by impregnating the polyester nonwoven fabric in a composition containing castor oil and diisocyanate. Composites were fabricated with two different isocyanates such as toluene-2,4-diisocyanate (TDI) and hexamethylene diisocyanate (HMDI). Transport behavior of n-alkane penetrants (pentane, hexane and heptane) into both PUs and PU-polyester nonwoven fabric composites were studied. Sorption studies were carried out at different temperatures. From the sorption results, the diffusion (D) and permeation (P) coefficients of penetrants have been calculated. Significant increase in the diffusion and permeation coefficients was observed with increase in the temperature of sorption experiments. Drastical reduction in diffusion and permeation coefficients was noticed in the composites compared to neat PUs. Attempts were made to estimate the empirical parameters like n, which suggests the mode of transport and K is a constant depends on the structural characteristics of the composite in addition to its interaction with penetrants. The temperature dependence of the transport coefficients has been used to estimate the activation energy parameter for diffusion (E D ) and permeation (E P ) processes from Arrhenius plots. Furthermore, the sorption results have been interpreted in terms of the thermodynamic parameters such as enthalpy (ΔH) and entropy (ΔS)

  5. On-line measurement of residual monomer during polymerisation of acrylamide using ultrasonics

    International Nuclear Information System (INIS)

    Ponraju, D.; Sebastian, Letha; Viswanathan, S.; Natarajan, A.; Palanichamy, P.; Jayakumar, T.; Baldev Raj

    1996-01-01

    An ultrasonic technique for the estimation of residual acrylamide monomer during the polymerization of aqueous acrylamide solution has been investigated. Polyacrylamide gel medium serves as a sensitive medium for detection and dosimetry of fast and thermal neutrons. This technique is based on the fact that the velocity of ultrasonic wave increases with the increase in elasticity due to polymerization. The percentage of residual acrylamide monomer is estimated using ultraviolet spectrophotometric analysis. The ultrasonic velocity is correlated with the residual monomer concentration

  6. Expression, purification, crystallization and preliminary phasing of the heteromerization domain of the tRNA-export and aminoacylation cofactor Arc1p from yeast

    International Nuclear Information System (INIS)

    Simader, Hannes; Suck, Dietrich

    2006-01-01

    The heteromerization domain of an aminoacyl-tRNA synthetase cofactor from yeast was crystallized, complete selenomethionine MAD data were collected to 2.8 Å resolution and preliminary phasing reveals the presence of 20 monomers in the asymmetric unit. Eukaryotic aminoacyl-tRNA synthetases (aaRSs) must be integrated into an efficient tRNA-export and shuttling machinery. This is reflected by the presence of additional protein–protein interaction domains and a correspondingly higher degree of complex formation in eukaryotic aaRSs. However, the structural basis of interaction between eukaryotic aaRSs and associated protein cofactors has remained elusive. The N-terminal heteromerization domain of the tRNA aminoacylation and export cofactor Arc1p has been cloned from yeast, expressed and purified. Crystals have been obtained belonging to space group C2, with unit-cell parameters a = 222.32, b = 89.46, c = 126.79 Å, β = 99.39°. Calculated Matthews coefficients are compatible with the presence of 10–25 monomers in the asymmetric unit. A complete multiple-wavelength anomalous dispersion data set has been collected from a selenomethionine-substituted crystal at 2.8 Å resolution. Preliminary phasing reveals the presence of 20 monomers organized in five tetramers per asymmetric unit

  7. Direct measurement of colloidal interactions between polyaniline surfaces in a uv-curable coating formulation

    DEFF Research Database (Denmark)

    Jafarzadeh, Shadi; Claesson, Per M.; Pan, Jinshan

    2014-01-01

    cantilever and a pressed pellet of either hydrophilic or hydrophobic polyaniline powders, in resins of various polymer:monomer ratios. A short-range purely repulsive interaction was observed between hydrophilic polyaniline (doped with phosphoric acid) surfaces in polyester acrylate resin. In contrast...

  8. Synthesis of 1, 4-Dioxan-2-one from 1, 3-Dioxolane and Carbon Monoxide over Cation-exchange Resin Catalyst

    OpenAIRE

    Takagi, Hiroyuki; Oumi, Yasunori; Uozumi, Toshiya; Masuda, Takashi; Sano, Tsuneji

    2001-01-01

    The possibility of the synthesis of 1, 4-dioxan-2-one (p-dioxanon) by carbonylation of 1, 3-dioxolane (cyclic ether) over Nafion® NR-50 cation-exchange resin catalyst was investigated. 1, 4-Dioxan-2-one, one of the cyclic esterethers used as a monomer of polyester, was obtained by depolymerization of polyester oligomers. The maximum yield (40%) of 1, 4-dioxan-2-one was achieved under reaction conditions of 25MPa initial PCO, 120°C reaction temperature and 4h reaction time.

  9. Thin aligned organic polymer films for liquid crystal devices

    International Nuclear Information System (INIS)

    Foster, Kathryn Ellen

    1997-01-01

    This project was designed to investigate the possibility of producing alignment layers for liquid crystal devices by cross-linking thin films containing anisotropic polymer bound chromophores via irradiation with polarised ultraviolet light. Photocross-linkable polymers find use in microelectronics, liquid crystal displays, printing and UV curable lacquers and inks; so there is an increasing incentive for the development of new varieties of photopolymers in general. The synthesis and characterisation of two new photopolymers that are suitable as potential alignment layers for liquid crystal devices are reported in this thesis. The first polymer contains the anthracene chromophore attached via a spacer unit to a methacrylate backbone and the second used a similarly attached aryl azide group. Copolymers of the new monomers with methyl methacrylate were investigated to establish reactivity ratios in order to understand composition drift during polymerisation. (author)

  10. Obtaining polyester from glycerin for synthesis of polyurethanes; Obtencao de poliester a partir da glicerina para sintese de poliuretanas

    Energy Technology Data Exchange (ETDEWEB)

    Breves, Rodolfo A.; Ghesti, Grace F.; Sales, Maria J.A., E-mail: eu_sou_o_rodolfo@hotmail.com [Universidade de Brasilia (LabPol/UnB), DF (Brazil). Laboratorio de Pesquisa em Polimeros; Silva, Jessica S.; Coelho, Paulo V.M.; Lopes, Roseany V.V. [Universidade de Brasilia (UnB), DF (Brazil). Faculdade do Gama; Brioude, Michel M. [Freiburg University (Germany)

    2014-07-01

    The use of renewable resources has been increasing, due to the development of materials that have viable applications that are environmentally friendly. In this paper, a polyester was synthesized from glycerin, with the addition of adipic acid in a molar ratio of 1: 1.5, with dilauryl tin catalyst, which was added in proportions of 1 to 3% obtained PUs from castor oil (Ricinus communis) and MDI (diphenyl methane diisocyanate). The materials were characterized by infrared spectroscopy (FTIR), nuclear magnetic resonance {sup 1}H NMR, thermogravimetry (TG) and derivative thermogravimetry (DTG). The reaction for obtaining the polyester was confirmed by FTIR, the absorption band between 1708-1730 cm{sup -1} and {sup 1}H NMR, in the region 1.4 to 1.8 ppm and 2.2 to 2.6 ppm. The thermal decomposition of polyester occurred with temperature above 300 ° C. PUs showed similar thermal stability. (author)

  11. The radiation grafting of vinyl monomers to cotton fabrics

    International Nuclear Information System (INIS)

    Shiraishi, N.; Williams, J.L.; Stannett, V.

    1982-01-01

    Cobalt 60 γ and electron beam radiation were used to graft diethylphosphatoethyl methacrylate, pure and in 90:10 methanol solution, to cotton cloth. This monomer, with an 11.64% phosphorus content, was especially developed by the Scott Paper Co. to develop fire retardancy. A simple pad and squeeze application followed by direct irradiation under a nitrogen atmosphere was used. Although excess monomer could be removed by washing with water, no solvent for the polymer was found so only the total 'add-ons' could be measured. With 60 Co irradiation, total polymerization was obtained with more than 1 Mrad but with electron beam irradiation only about 50% conversion was obtained even with 10 Mrad. No acceleration in the rates could be achieved with the viscous pure monomer as opposed to in solution. Yields adequate to impart reasonable fire retardancy could, however, be obtained with about 3 Mrad with electrons. No noticeable degradation of the polymer occurred at the doses used. (author)

  12. Elution of Monomers from Provisional Composite Materials

    Directory of Open Access Journals (Sweden)

    Simon Daniel Schulz

    2015-01-01

    Full Text Available The aim of this study was to evaluate the elution of substances from different materials used for the manufacturing of temporary indirect restorations, after storage in saliva and ethanol 75%. 10 samples of three chemically cured materials (Protemp 3 Garant, Systemp.c&b, and Trim and one light-cured material (Clip F were stored in saliva and ethanol 75% for 24 h, 7, and days 28 days. From the storage media at each time period, samples were prepared and analysed by LC-MS/MS, in order to access the elution of monomers. The results differed among the materials (P ≤ 0.05. No monomers were detected in the samples of Protemp 3 Garant and Clip F. Substances were detected only in ethanol samples of Systemp.c&b and Trim. The amount of BisGMA, TEGDMA, and UDMA 2 released from Systemp.c&b was higher compared to Trim. Storage time affected the release of substances (P ≤ 0.05. The highest release was observed within the first 24 h. It can be concluded that provisional resin composite materials do not show high release of monomers and this release is material dependent. However, the detection of additional peaks during the analysis, suggesting the formation of by-products of the eluted substances, may not be in favour of these materials with respect to their toxicity.

  13. Radiation curing of mixtures of diallylphthalate prepolymer and vinyl monomer, 9

    International Nuclear Information System (INIS)

    Gotoda, Masao; Kitada, Yoshinori.

    1975-01-01

    Radiation curing, mainly by electron beams was studied with mixtures of low molecular weight diallylphthalate prepolymer (DAPsub(p).L) and vinyl monomers with special reference to their workability. Among the vinyl monomers, acrylonitrile gave a solution of low viscosity and methyl acrylate gave a solution of low dose curing. Radiation curing of DAPsub(p).L/vinyl monomer mixtures impregnated in wood was also tried. To obtain uniform wood-polymer composites, γ-irradiation after impregnation at 10 kg/cm 2 was found to be required for thick plate (110 mm), while electron beam irradiation after impregnation at normal pressure was sufficient for thin plate. (author)

  14. Effect of monomer composition on the properties of high temperature polymer concretes

    Energy Technology Data Exchange (ETDEWEB)

    Zeldin, A.; Kukacka, L.E.; Carciello, N.

    1980-01-01

    The effects of organic monomer composition on the thermomechanical properties of polymer concrete (PC) containing sand-cement mixtures as an agregate filler were investigated. The effects of various monomer mixtures on compressive strength and hydrolytic stability are discussed. Composites were fabricated in the same way as ordinary concrete, with monomer solutions of various compositions and concentrations used to bind the sand-cement mixture. The compressive strengths of th composites before and after exposure to air and to brine solutions at 240/sup 0/C are discussed.

  15. Synthesis of a novel polyester building block from pentoses by tin-containing silicates

    DEFF Research Database (Denmark)

    Elliot, Samuel Gilbert; Andersen, Christian; Tolborg, Søren

    2017-01-01

    a product containing functional groups originating from trans-2,5-dihydroxy-3-pentenoic acid methyl ester in the polyester backbone. The reactivity of the incorporated olefin and hydroxyl moieties was investigated using trifluoroacetic anhydride and thiol-ene chemisitry, thus illustrating the potential...

  16. Development of a model for the synthesis of unsaturated polyester by reactive distillation

    NARCIS (Netherlands)

    Shah, M.R.; Zondervan, E.; Oudshoorn, M.L.; Haan, de A.B.; Haan, de A.B.; Kooijman, H.; Górak, A.

    2010-01-01

    Traditionally polyester production is done in a batch reactor equipped with a separation column for batch distillation. A promising alternative for the intensification of this process is reactive distillation. In this paper, a reactive distillation model is developed for the synthesis of an

  17. Polyester composites reinforced with corona-treated fibers from pine, eucalyptus and sugarcane bagasse

    Science.gov (United States)

    This study aims to evaluate plant fibers that were surface activated with NaOH and corona discharge before incorporating in ortho unsaturated polyester-based fiber composites. It demonstrates the potential use of lignocellulosic particles, especially eucalyptus that presented the higher values for a...

  18. Reduction in the body content of DDE in the Mongolian gerbil treated with sucrose polyester and caloric restriction

    International Nuclear Information System (INIS)

    Mutter, L.C.; Blanke, R.V.; Jandacek, R.J.; Guzelian, P.S.

    1988-01-01

    It has previously been shown that oral administration to rats of sucrose polyester (SPE4), a nonabsorbable lipophilic binding agent, greatly stimulates the fecal excretion of coorally administered DDT5. To determine whether this agent would stimulate the excretion of persistent metabolites of DDT stored in body tissues, we treated a group of gerbils with [ 14 C]-DDT and monitored the fecal excretion of radioactivity for several months until a terminal, log-linear phase of excretion was observed. At this point, when greater than 75% of the fecal radioactivity was identified as [ 14 C]DDE, we fed the animals diets containing up to 10% sucrose polyester and found that the rate of excretion of radioactivity in the stool promptly increased two to three times as compared to the rate in the preceding control period. Some rats were subjected to a 25-50% restriction in total food allotment, but this produced no significant change in fecal excretion of total radioactivity. However, when food restriction was combined with administration of sucrose polyester, there was a dramatic, eightfold average increase in excretion of fecal radioactivity. This synergistic effect was reversed (within 24 hr) when the animals were transferred to a normal diet. Measurement of total body radioactivity confirmed that food restriction plus sucrose polyester treatment reduced the body content of the pesticide. We conclude that stimulation of intestinal excretion may offer a new approach to treatment of patients exposed to lipophilic environmental contaminants

  19. Two-photon polymerization of metal ions doped acrylate monomers and oligomers for three-dimensional structure fabrication

    International Nuclear Information System (INIS)

    Duan Xuanming; Sun Hongbo; Kaneko, Koshiro; Kawata, Satoshi

    2004-01-01

    We have investigated two-photon polymerization of metal ions doped acrylate monomers and oligomers which is applied for three-dimensional (3D) micro/nano-structure fabrication. Titanium (IV) ions doped urethane acrylate photopolymerizable resins were synthesized, and their optical and polymerization properties were investigated. The resolution of two-photon polymerization for micro/nanofabrication was evaluated. Titanium dioxide (TiO 2 ) nanoparticles were generated in the polymer matrix of micron-sized polymer structures. A 3D diamond photonic crystal structure, which consisted of polymer composite materials of TiO 2 nanoparticles, was successfully fabricated by direct laser writing and its photonic bandgap was confirmed. This work would give us a new solution for producing 3D micro/nanodevices of functional polymer composite materials

  20. Perturbation of the Monomer-Monomer Interfaces of the Benzoylformate Decarboxylase Tetramer

    Energy Technology Data Exchange (ETDEWEB)

    Andrews, Forest H.; Rogers, Megan P.; Paul, Lake N.; McLeish, Michael J. [IUPUI; (Purdue)

    2014-08-14

    The X-ray structure of benzoylformate decarboxylase (BFDC) from Pseudomonas putida ATCC 12633 shows it to be a tetramer. This was believed to be typical of all thiamin diphosphate-dependent decarboxylases until recently when the structure of KdcA, a branched-chain 2-keto acid decarboxylase from Lactococcus lactis, showed it to be a homodimer. This lent credence to earlier unfolding experiments on pyruvate decarboxylase from Saccharomyces cerevisiae that indicated that it might be active as a dimer. To investigate this possibility in BFDC, we sought to shift the equilibrium toward dimer formation. Point mutations were made in the noncatalytic monomer–monomer interfaces, but these had a minimal effect on both tetramer formation and catalytic activity. Subsequently, the R141E/Y288A/A306F variant was shown by analytical ultracentrifugation to be partially dimeric. It was also found to be catalytically inactive. Further experiments revealed that just two mutations, R141E and A306F, were sufficient to markedly alter the dimer–tetramer equilibrium and to provide an ~450-fold decrease in kcat. Equilibrium denaturation studies suggested that the residual activity was possibly due to the presence of residual tetramer. The structures of the R141E and A306F variants, determined to <1.5 Å resolution, hinted that disruption of the monomer interfaces will be accompanied by movement of a loop containing Leu109 and Leu110. As these residues contribute to the hydrophobicity of the active site and the correct positioning of the substrate, it seems that tetramer formation may well be critical to the catalytic activity of BFDC.

  1. Cloning, purification, crystallization and preliminary X-ray studies of flagellar hook scaffolding protein FlgD from Pseudomonas aeruginosa PAO1

    International Nuclear Information System (INIS)

    Luo, Miao; Niu, Siqiang; Yin, Yibing; Huang, Ailong; Wang, Deqiang

    2009-01-01

    In order to better elucidate the functions of FlgD in flagellar hook biosynthesis, the three-dimensional structure of FlgD is being determined by X-ray crystallography. Here, the expression, purification, crystallization and preliminary crystallographic analysis of FlgD from P. aeruginosa are reported. FlgD regulates the assembly of the hook cap structure to prevent leakage of hook monomers into the medium and hook monomer polymerization and also plays a role in determination of the correct hook length, with the help of the FliK protein. In order to better elucidate the functions of FlgD in flagellar hook biosynthesis, the three-dimensional structure of FlgD is being determined by X-ray crystallography. Here, the expression, purification, crystallization and preliminary crystallographic analysis of FlgD from P. aeruginosa are reported. The crystal belonged to space group I222 and diffracted to a resolution of 2.5 Å, with unit-cell parameters a = 116.47, b = 118.71, c = 118.85 Å. The crystals are most likely to contain three molecules in the asymmetric unit, with a V M value of 2.73 Å 3 Da −1

  2. Expression, purification, crystallization and preliminary X-ray analysis of Aeromonas hydrophilia metallo-[beta]-lactamase

    Energy Technology Data Exchange (ETDEWEB)

    Sharma, N.; Toney, J.H.; Fitzgerald, P.M.D. (Merck)

    2010-07-20

    The CphA metallo-{beta}-lactamase from Aeromonas hydrophilia has been expressed, purified and crystallized by the hanging-drop vapor-diffusion method using ammonium sulfate as the precipitant. The crystals exhibit orthorhombic symmetry (P2{sub 1}2{sub 1}2), with unit-cell parameters a = 40.75, b = 42.05, c = 128.88 {angstrom}. There is one monomer in the asymmetric unit and the solvent content is estimated to be 44% by volume. A data set extending to 1.8 {angstrom} has been measured.

  3. Engineering and Characterizing Light-Matter Interactions in Photonic Crystals

    Science.gov (United States)

    2010-01-01

    SU8 monomer has, on average, eight epoxy groups, that under go a ring-opening polymerization in the presence of an acid catalyst. SU8 falls into...copper oxide [49] into colloidal and SU8 polymer photonic crystal templates, respectively. 1.5.2 Gas-Phase Infilling Gas-phase deposition typically...resist using direct laser writing. 78 Figure 2. Scanning electron micrograph of an over- polymerized woodpile structure fabricated in SU8 photo-resist

  4. In situ polymerization of monomers for polyphenylquinoxaline/graphite

    Science.gov (United States)

    Serafini, T. T.; Delvigs, P.; Vannucci, R. D.

    1973-01-01

    Methods currently used to prepare fiber reinforced, high temperature resistant polyphenylquinoxaline (PPQ) composites employ extremely viscous, low solids content solutions of high molecular weight PPQ polymers. An improved approach, described in this report, consists of impregnating the fiber with a solution of the appropriate monomers instead of a solution of previously synthesized high molecular weight polymer. Polymerization of the monomers occurs in situ on the fiber during the solvent removal and curing stages. The in situ polymerization approach greatly simplifies the fabrication of PPQ graphite fiber composites. The use of low viscosity monomeric type solutions facilitates fiber wetting, permits a high solids content, and eliminates the need for prior polymer synthesis.

  5. Comparative study of structural and thermal behavior of aromatic polyester;Estudo comparativo do comportamento termico e estrutral de poliesteres aromaticos

    Energy Technology Data Exchange (ETDEWEB)

    Santos, Diego K.M., E-mail: diego_keller_1984@yahoo.com.b; Guimaraes, Danilo H.; Medeiros, Marina O. de A.; Jose, Nadia M. [Universidade Federal da Bahia (UFBA), Salvador, BA (Brazil). Inst. de Quimica; Prado, Luis A.S. de A. [Technische Universitaet Hamburg (TUHH), Harburg (Germany). Inst. of Polymer and Composites

    2009-07-01

    Aromatic polyesters have been currently used for the production of PET bottles and polymer fibers. Currently, thermodynamic study is necessary for production of polymers with mechanical properties, thermal degradation and satisfactory. Many thermodynamic properties of polymer solutions, such as solubility, swelling, and balance of the properties Colligative can be expressed in terms of interaction parameter of polymer-solvent {chi}. The present work presents the objective synthesize, characterize and assess the degree of swelling of aromatic polyesters. The polyester formed from the reaction of glycerol and terephthalic acid/phthalic, using varying molar ratios to the glycerolterephthalic acid/phthalic acid (1,0-1,0, 1,0-1,5, 1,0 -- 2.0), by mixing with mechanical agitation and by use of tin catalyst. We studied the thermal and structural behavior through techniques: FTIR, TGA, DSC, XRD, SEM and swelling test. (author)

  6. A comment on water’s structure using monomer fraction data and theories

    DEFF Research Database (Denmark)

    Liang, Xiaodong; Maribo-Mogensen, Bjørn; Tsivintzelis, Ioannis

    2016-01-01

    Monomer fraction data for water (and other compounds) can provide useful information about their structure and can be used in “advanced” equations of state, which account explicitly for association phenomena. Recent findings about the performance of association theories in representing the monomer...... fraction of water are reviewed. Three such theories are considered and all of them perform qualitatively similar. They can all represent phase equilibria for water solutions qualitatively well but with parameters which are not in good agreement with Luck’s famous monomer fraction data. While this could set...... the theoretical basis of these theories in doubt, we also show in this work that the findings with these association models are in agreement with a recently presented theory which links monomer fraction to dielectric constants. This new theory, like the three thermodynamic models, predicts more hydrogen bonding...

  7. Preparation of dual-layer coated polyester membranes with nuclear tracks and their wave-absorbing property

    International Nuclear Information System (INIS)

    Liu Cunxiong; Hu Lian; Ni Bangfa; Tian Weizhi; Fan Qiwen; Xiao Caijin; Nie Peng; Wang Pingsheng; Zhang Guiying; Huang Donghui

    2010-01-01

    Nanometer materials are of importance in developing electromagnetic-wave-absorbing materials. In this work, 16 μm thick polyester membranes were bombarded by 140 MeV 32 S ions from the HI-13 tandem accelerator to produce latent tracks. The bombarded samples were sensitized by DMF and UV light at 360 nm wavelength, before chemical etching by NaOH solution to develop latent tracks into pores in sizes of nanometers or micrometers in full depth of the membrane. The samples were coated with thin layers of barium ferrite and magnesium fluoride by vacuum evaporation. The reflectivity indices were measured at 2-18 GHz. The results indicate that the modified polyester membrane can effectively absorb 8-18 GHz radar waves.(authors)

  8. Glass fibres reinforced polyester composites degradation monitoring by surface analysis

    Energy Technology Data Exchange (ETDEWEB)

    Croitoru, Catalin [“Transilvania” University of Brasov, Materials Engineering and Welding Department, Eroilor 29 Str., 500036 Brasov (Romania); Patachia, Silvia, E-mail: st.patachia@unitbv.ro [“Transilvania” University of Brasov, Product Design Environment and Mechatronics Department, Eroilor 29 Str., 500036 Brasov (Romania); Papancea, Adina [“Transilvania” University of Brasov, Product Design Environment and Mechatronics Department, Eroilor 29 Str., 500036 Brasov (Romania); Baltes, Liana; Tierean, Mircea [“Transilvania” University of Brasov, Materials Engineering and Welding Department, Eroilor 29 Str., 500036 Brasov (Romania)

    2015-12-15

    Highlights: • Glass fibre-reinforced polyester composites surface analysis by photographic method. • The composites are submitted to accelerated ageing by UV irradiation at 254 nm. • The UV irradiation promotes differences in the surface chemistry of the composites. • MB dye is differently adsorbed on surfaces with different degradation degrees. • Good correlation between the colouring degree and surface chemistry. - Abstract: The paper presents a novel method for quantification of the modifications that occur on the surface of different types of gel-coated glass fibre-reinforced polyester composites under artificial UV-ageing at 254 nm. The method implies the adsorption of an ionic dye, namely methylene blue, on the UV-aged composite, and computing the CIELab colour space parameters from the photographic image of the coloured composite's surface. The method significantly enhances the colour differences between the irradiated composites and the reference, in contrast with the non-coloured ones. The colour modifications that occur represent a good indicative of the surface degradation, alteration of surface hydrophily and roughness of the composite and are in good correlation with the ATR-FTIR spectroscopy and optical microscopy results. The proposed method is easier, faster and cheaper than the traditional ones.

  9. Gliding arc surface treatment of glass-fiber-reinforced polyester enhanced by ultrasonic irradiation

    DEFF Research Database (Denmark)

    Kusano, Yukihiro; Norrman, Kion; Drews, Joanna Maria

    2011-01-01

    . The efficiency of such a plasma treatment at atmospheric pressure can be further improved by ultrasonic irradiation onto the surface during the treatment. In the present work glass fiber reinforced polyester (GFRP) plates are treated using an atmospheric pressure gliding arc with and without ultrasonic...

  10. The difference of acrylic resin residual monomer levels with various polymerization method

    Directory of Open Access Journals (Sweden)

    Sherman Salim

    2011-12-01

    Full Text Available Background: After polymerization process, heat cured acrylic resin denture base actually still contains residual monomers that can become potential irritants later in oral cavity. Polymerization process is essential to obtain acrylic resin which can meet the requirements of the biocompatible and good physical properties. To meet the requirements, there are several methods of polymerization process used. Purpose: The purpose of this study was to determine the differences of the residual monomer levels of acrylic resin processed by various polymerization methods. Methods: Acrylic resin powder and liquid were mixed based on the rules of factory, and sample was made with size of 30 mm × 50 mm × 3 mm and then polymerized by using microwave at 70° C for 24 hours based on the methods of Japan Industrial Standard (JIS. Each group of samples was cut with weight of ± 0.2 g, dissolved in 5 ml of methyl ethyl ketone in test tubes, and then stored at ± 5° C for four days. Residual monomer level was conducted by using gas chromatograph mass spectrometer. Data obtained were then analyzed by using One-Way ANOVA test with p < 0.05. Results: After the level of polymerizing residual monomer with JIS method was compared to that at 70° C for 24 hours using microwave, it is known that there were significant differences (p < 0.05. Conclusion: The highest level of residual monomer of acrylic resin was that polymerized at 70° C for 24 hours.Latar belakang: Basis gigi tiruan yang berbahan dasar resin akrilik jenis heat cured setelah proses polimerisasi selesai masih mengandung monomer sisa yang berpotensi sebagai bahan iritan dalam rongga mulut. Proses polimerisasi sangat penting untuk mendapatkan resin akrilik yang memenuhi persyaratan biokompatibilitas dan fisik yang baik. Untuk persyaratan tersebut digunakan berbagai macam proses polimerisasi. Tujuan: Penelitian ini bertujuan untuk menentukan kadar monomer sisa resin akrilik yang diproses dengan metode

  11. The mutual diffusion coefficient for (meth)acrylate monomers as determined with a nuclear microprobe

    International Nuclear Information System (INIS)

    Leewis, Christian M.; Mutsaers, Peter H.A.; Jong, Arthur M. de; Ijzendoorn, Leo J. van; Voigt, Martien J.A. de; Ren, Min Q.; Watt, Frank; Broer, Dirk J.

    2004-01-01

    The value of the mutual diffusion coefficient D V of two acrylic monomers is determined with nuclear microprobe measurements on a set of polymer films. These films have been prepared by allowing the monomers to diffuse into each other for a certain time and subsequently applying fast ultraviolet photo-polymerization, which freezes the concentration profile. The monomer diffusion profiles are studied with a scanning 2.1 MeV proton microprobe. Each monomer contains a marker element, e.g., Cl and Si, which are easily detected with proton induced x-ray emission. From the diffusion profiles, it is possible to determine the mutual diffusion coefficient. The mutual diffusion coefficient is dependent of concentration, which is concluded from the asymmetry in the Cl- and Si-profiles. A linear dependence of the mutual diffusion coefficient on the composition is used as a first order approximation. The best fits are obtained for a value of b=(0.38±0.15), which is the ratio of the diffusion coefficient of 1,3-bis(3-methacryloxypropyl)-1, 1,3,3-tetramethyldisiloxane in pure 2-chloroethyl acrylate and the diffusion coefficient of 2-chloroethyl acrylate in pure 1,3-bis(3-methacryloxypropyl)-1,1,3,3-tetramethyldisiloxane. Under the assumption of a linear dependence of the mutual diffusion coefficient D V on monomer composition, it follows that D V =(2.9±0.6)·10 -10 m 2 /s at a 1:1 monomer ratio. With Flory-Huggins expressions for the monomer chemical potentials, one can derive approximate values for the individual monomer diffusion coefficients

  12. Effect of food simulating liquids on release of monomers from two dental resin composites

    Directory of Open Access Journals (Sweden)

    Ghavam M

    2010-06-01

    Full Text Available "nBackground and Aims: The elution of residual monomers from cured dental composites to oral cavity has a harmful effect on human health and can affect their clinical durability. The purpose of this study was to evaluate the amount of eluted monomers (Bis-GMA, TEGDMA, UDMA from two types of composites (Gradia and P60 after exposure to food simulating liquids such as ethanol (25, 50, 75 % and heptane 50 % for 24 hours and 7 days. "nMaterials and Methods: Forty specimens of each composite were prepared. Equal numbers of each composite were immersed in tubes containing 2cc volumes of 25, 50, 75 % ethanole and 50 % heptane. The amount of eluted monomers in standard condition such as Bis-GMA, TEGDMA and UDMA was measured by GC/MS (Gas Chromatography/Mass Spectroscopy and results were statistically analysed by three way and one way ANOVA. P<0.05 was considered as the level of significancy. "nResults: The results showed that Gradia released more TEGDMA than P60. In assessing the effect of environment, the result showed that ethanol caused releasing monomers more than heptane and the concentration rate of 75 % ethanole resulted in most releasing of monomers. In assessing the effect of time, the observation showed that more monomers were released 7 days compared to 24 hours. Bis-GMA and UDMA were not detected in any solutions in these conditions. "nConclusion: Ethanole caused more release of monomers than heptane and 75 % ethanole released the most amount of monomers. Gradia released more amount of TEGDMA than P60.

  13. I222 crystal form of despentapeptide (B26-B30) insulin provides new insights into the properties of monomeric insulin

    Czech Academy of Sciences Publication Activity Database

    Whittingham, J. L.; Youshang, Z.; Žáková, Lenka; Dodson, E. J.; Turkenburg, J. P.; Brange, J.; Dodson, G. G.

    2006-01-01

    Roč. 62, č. 5 (2006), s. 505-511 ISSN 0907-4449 Institutional research plan: CEZ:AV0Z40550506 Keywords : insulin * crystal structure * monomer * despentapeptid Subject RIV: CE - Biochemistry Impact factor: 1.687, year: 2006

  14. Valve seat pores sealed with thermosetting monomer

    Science.gov (United States)

    Olmore, A. B.

    1966-01-01

    Hard anodic coating provides a smooth wear resistant value seating surface on a cast aluminum alloy valve body. Vacuum impregnation with a thermosetting monomer, diallyl phthalate, seals the pores on the coating to prevent galvanic corrosion.

  15. Accumulation of a poly(hydroxyalkanoate) copolymer containing primarily 3-hydroxyvalerate from simple carbohydrate substrates by Rhodococcus sp. NCIMB 40126.

    Science.gov (United States)

    Haywood, G W; Anderson, A J; Williams, D R; Dawes, E A; Ewing, D F

    1991-04-01

    A number of taxonomically-related bacteria have been identified which accumulate poly(hydroxyalkanoate) (PHA) copolymers containing primarily 3-hydroxyvalerate (3HV) monomer units from a range of unrelated single carbon sources. One of these, Rhodococcus sp. NCIMB 40126, was further investigated and shown to produce a copolymer containing 75 mol% 3HV and 25 mol% 3-hydroxybutyrate (3HB) from glucose as sole carbon source. Polyesters containing both 3HV and 3HB monomer units, together with 4-hydroxybutyrate (4HB), 5-hydroxyvalerate (5HV) or 3-hydroxyhexanoate (3HHx), were also produced by this organism from certain accumulation substrates. With valeric acid as substrate, almost pure (99 mol% 3HV) poly(3-hydroxyvalerate) was produced. N.m.r. analysis confirmed the composition of these polyesters. The thermal properties and molecular weight of the copolymer produced from glucose were comparable to those of PHB produced by Alcaligenes eutrophus.

  16. Crystal structure of human importin-α1 (Rch1, revealing a potential autoinhibition mode involving homodimerization.

    Directory of Open Access Journals (Sweden)

    Hideyuki Miyatake

    Full Text Available In this study, we determined the crystal structure of N-terminal importin-β-binding domain (IBB-truncated human importin-α1 (ΔIBB-h-importin-α1 at 2.63 Å resolution. The crystal structure of ΔIBB-h-importin-α1 reveals a novel closed homodimer. The homodimer exists in an autoinhibited state in which both the major and minor nuclear localization signal (NLS binding sites are completely buried in the homodimerization interface, an arrangement that restricts NLS binding. Analytical ultracentrifugation studies revealed that ΔIBB-h-importin-α1 is in equilibrium between monomers and dimers and that NLS peptides shifted the equilibrium toward the monomer side. This finding suggests that the NLS binding sites are also involved in the dimer interface in solution. These results show that when the IBB domain dissociates from the internal NLS binding sites, e.g., by binding to importin-β, homodimerization possibly occurs as an autoinhibition state.

  17. Test procedures for polyester immobilized salt-containing surrogate mixed wastes

    International Nuclear Information System (INIS)

    Biyani, R.K.; Hendrickson, D.W.

    1997-01-01

    These test procedures are written to meet the procedural needs of the Test Plan for immobilization of salt containing surrogate mixed waste using polymer resins, HNF-SD-RE-TP-026 and to ensure adequacy of conduct and collection of samples and data. This testing will demonstrate the use of four different polyester vinyl ester resins in the solidification of surrogate liquid and dry wastes, similar to some mixed wastes generated by DOE operations

  18. Polymeric blends from post-consumer PET and polyester becoming of glycerol and phthalic acid

    International Nuclear Information System (INIS)

    Miranda, C.S.; Brioude, M.; Fiuza, R.P.; Luporini, S.; Carvalho, R.F.; Jose, N.M.

    2010-01-01

    Preparation of physical mixture or polymer blends is a very important method to obtain a final product with excellent balance of properties, where one component can compensate for the poor property of another, and is often a modified low cost compared to development and synthesis of a new polymer. PET has become a major waste of post-consumer plastics and aiming to remedy this problem, this work aims to obtain blends from recycled PET and polyesters derived from glycerol and phthalic acid. The material with higher proportion of PET showed better thermal properties, observed by TGA and DSC, with a similar profile of pure PET. In XRD analysis showed a semicrystalline, while the SEM is a smooth surface on all materials, characteristic of pure polyester. The ratio of 50% its surface showed a probable immiscibility of polymers. (author)

  19. Manufacturing of kevlar/polyester composite by resin transfer moulding using conventional and microwave heating

    International Nuclear Information System (INIS)

    Abdullah, I.

    2015-01-01

    Microwave heating was incorporated into the resin transfer moulding technique. Polytetrafluoroethylene (PTFE) mould was used to cure the composite panel. Through the use of microwave heating, the mechanical and physical properties of produced Kevlar fibre/polyester composites were compared to those manufactured by conventional resin transfer moulding. The flexural modulus and flexural strength of 6-ply conventionally cured composites was 45% and 9% higher than the flexural modulus and flexural strength of 6-ply microwaved cured composites, respectively. However, 19% increase in interlaminar shear strength (ILSS) and 2% increase in compressive strength was observed in 6-ply microwave cured composites. This enhancement in ILSS and compressive strength is attributed to the better interfacial bonding of polyester resin with Kevlar fibres in microwaved cured composite, which was also confirmed via electron microscopy scanning. Furthermore, the microwave cured composite yielded maximum void contents (3%). (author)

  20. Effective Interfacially Polymerized Polyester Solvent Resistant Nanofiltration Membrane from Bioderived Materials

    KAUST Repository

    Abdellah, Mohamed H.

    2018-05-18

    Utilization of sustainable and environmentally friendly solvents for the preparation of membranes has attracted growing interest in recent years. In this work, a polyester thin film composite solvent resistant nanofiltration (SRNF) membrane is prepared by interfacial polymerization on a cellulose support. The cellulose support is prepared by nonsolvent‐induced phase separation from a dope solution containing an ionic liquid as an environmentally friendly solvent (negligible vapor pressure). The polyester film is formed via the interfacial reaction between quercetin, a plant‐derived polyphenol, and terephthaloyl chloride. Alpha‐pinene is used as a green alternative solvent to dissolve terephthaloyl chloride (TPC) while quercetin is dissolved in a 0.2 m NaOH solution. The interfacial polymerization reaction is successfully confirmed by Fourier transform infrared and X‐ray photoelectron spectroscopy while scanning electron and atomic force microscopy are used to characterize the membrane structure. The composite membrane shows an outstanding performance with a molecular weight cut‐off around 330 Da combined with a dimethylformamide (DMF) permeance up to 2.8 L m−2 bar−1 h−1. The membrane is stable in strong aprotic solvents such as DMF offering potential application in the pharmaceutical and petrochemical industries.

  1. Broadband reflection of polymer-stabilized chiral nematic liquid crystals induced by a chiral azobenzene compound.

    Science.gov (United States)

    Chen, Xingwu; Wang, Ling; Chen, Yinjie; Li, Chenyue; Hou, Guoyan; Liu, Xin; Zhang, Xiaoguang; He, Wanli; Yang, Huai

    2014-01-21

    A chiral nematic liquid crystal-photopolymerizable monomer-chiral azobenzene compound composite was prepared and then polymerized under UV irradiation. The reflection wavelength of the composite can be extended to cover the 1000-2400 nm range and also be adjusted to the visible light region by controlling the concentration of chiral compounds.

  2. Karakterstik Serapan Suara Komposit Polyester Berpenguat Serat Tapis Kelapa

    OpenAIRE

    Astika, I Made; Dwijana, I Gusti Komang

    2016-01-01

    The purpose of this study is to investigate of sound absorption of coconut filter fiber composites. The research material made with coconut filter fiber as reinforcement and matrix resin unsaturated polyester (UPRs) type Yukalac BQTN 157 with 1% hardener types MEKPO (Methyl Ethyl Ketone Peroxide) and fiber treatment by  0,5% KMnO4. Production methods is poltrusion and the variations of fiber volume fraction are 20, 25 and 30% and fiber length are 5, 10 and 15 mm. Testing of sound absorpt...

  3. Damage of polyesters by the atmospheric free radical oxidant NO3 •: a product study involving model systems

    Science.gov (United States)

    Goeschen, Catrin

    2013-01-01

    Summary Manufactured polymer materials are used in increasingly demanding applications, but their lifetime is strongly influenced by environmental conditions. In particular, weathering and ageing leads to dramatic changes in the properties of the polymers, which results in decreased service life and limited usage. Despite the heavy reliance of our society on polymers, the mechanism of their degradation upon exposure to environmental oxidants is barely understood. In this work, model systems of important structural motifs in commercial high-performing polyesters were used to study the reaction with the night-time free radical oxidant NO3 • in the absence and presence of other radical and non-radical oxidants. Identification of the products revealed ‘hot spots’ in polyesters that are particularly vulnerable to attack by NO3 • and insight into the mechanism of oxidative damage by this environmentally important radical. It is suggested that both intermediates as well as products of these reactions are potentially capable of promoting further degradation processes in polyesters under environmental conditions. PMID:24204400

  4. Adhesion improvement of glass-fibre-reinforced polyester composites by gliding arc discharge treatment

    DEFF Research Database (Denmark)

    Kusano, Yukihiro; Sørensen, Bent F.; Løgstrup Andersen, Tom

    2013-01-01

    A gliding arc is a plasma that can be operated at atmospheric pressure and applied for plasma surface treatment for adhesion improvement. In the present work, glass-fibre-reinforced polyester plates were treated using an atmospheric pressure gliding arc discharge with an air flow to improve...

  5. Effect OF NaOH Treatment on Bending Strength Of The Polyester Composite Reinforce By Sugar Palm Fibers

    Science.gov (United States)

    Arif Irfai, Mochamad; Wulandari, Diah; Sutriyono; Marsyahyo, Eko

    2018-04-01

    The objective of this research is to investigate the effect of NaOH treatment on bending strength of lamina composite reinforced by sugar palm fiber. To know of mechanism fracture can be done with visual inspection of the fracture surface. The Materials used are random sugar palm fibers that have been in the treatment of NaOH, polyester resin and hardener. Sugar palm fibers after washed and dried then soaked NaOH with a long time soaking 0, 2, 4, 6 and 8 hours. The bending test specimens were produced according to ASTM D 790. All specimens were post cured at 62°C for 4 hours. The Bending test was carried out on a universal testing machine. The SEM analysis has conducted to provide the analysis on interface adhesion between the surfaces of fiber with the matrix. The result shows that polyester composite reinforced by sugar palm fiber has highest bending stress 176.77 N/mm2 for 2 hours of a long time soaking NaOH, the highest flexural strain 0.27 mm for 2 hours of a long time soaking NaOH, elongation 24.05% for 2 hours of a long time soaking NaOH and the highest bending modulus 1.267 GPa for 2 hours of a long time soaking NaOH. Based on the results, it can be concluded that the polyester composite reinforced by sugar palm fiber has the optimum bending properties for a long time soaking 2 hours. The fracture surface shows that the polyester composite reinforced by sugar palm fiber pull out that indicate weakens the bond between fiber and matrix.

  6. Multiwalled carbon nanotube coated polyester fabric as textile based flexible counter electrode for dye sensitized solar cell.

    Science.gov (United States)

    Arbab, Alvira Ayoub; Sun, Kyung Chul; Sahito, Iftikhar Ali; Qadir, Muhammad Bilal; Jeong, Sung Hoon

    2015-05-21

    Textile wearable electronics offers the combined advantages of both electronics and textile characteristics. The essential properties of these flexible electronics such as lightweight, stretchable, and wearable power sources are in strong demand. Here, we have developed a facile route to fabricate multi walled carbon nanotube (MWCNT) coated polyester fabric as a flexible counter electrode (CE) for dye sensitized solar cells (DSSCs). A variety of MWCNT and enzymes with different structures were used to generate individual enzyme-dispersed MWCNT (E-MWCNT) suspensions by non-covalent functionalization. A highly concentrated colloidal suspension of E-MWCNT was deposited on polyester fabric via a simple tape casting method using an air drying technique. In view of the E-MWCNT coating, the surface structure is represented by topologically randomly assembled tubular graphene units. This surface morphology has a high density of colloidal edge states and oxygen-containing surface groups which execute multiple catalytic sites for iodide reduction. A highly conductive E-MWCNT coated fabric electrode with a surface resistance of 15 Ω sq(-1) demonstrated 5.69% power conversion efficiency (PCE) when used as a flexible CE for DSSCs. High photo voltaic performance of our suggested system of E-MWCNT fabric-based DSSCs is associated with high sheet conductivity, low charge transfer resistance (RCT), and excellent electro catalytic activity (ECA). Such a conductive fabric demonstrated stable conductivity against bending cycles and strong mechanical adhesion of E-MWCNT on polyester fabric. Moreover, the polyester fabric is hydrophobic and, therefore, has good sealing capacity and retains the polymer gel electrolyte without seepage. This facile E-MWCNT fabric CE configuration provides a concrete fundamental background towards the development of textile-integrated solar cells.

  7. About the activity and selectivity of less well-known metathesis catalysts during ADMET polymerizations

    Directory of Open Access Journals (Sweden)

    Hatice Mutlu

    2010-12-01

    Full Text Available We report on the catalytic activity of commercially available Ru-indenylidene and “boomerang” complexes C1, C2 and C3 in acyclic diene metathesis (ADMET polymerization of a fully renewable α,ω-diene. A high activity of these catalysts was observed for the synthesis of the desired renewable polyesters with molecular weights of up to 17000 Da, which is considerably higher than molecular weights obtained using the same monomer with previously studied catalysts. Moreover, olefin isomerization side reactions that occur during the ADMET polymerizations were studied in detail. The isomerization reactions were investigated by degradation of the prepared polyesters via transesterification with methanol, yielding diesters. These diesters, representing the repeat units of the polyesters, were then quantified by GC-MS.

  8. Do CAD/CAM dentures really release less monomer than conventional dentures?

    Science.gov (United States)

    Steinmassl, Patricia-Anca; Wiedemair, Verena; Huck, Christian; Klaunzer, Florian; Steinmassl, Otto; Grunert, Ingrid; Dumfahrt, Herbert

    2017-06-01

    Computer-aided design (CAD)/computer-aided manufacturing (CAM) dentures are assumed to have more favourable material properties than conventionally fabricated dentures, among them a lower methacrylate monomer release. The aim of this study was to test this hypothesis. CAD/CAM dentures were generated from ten different master casts by using four different CAD/CAM systems. Conventional, heat-polymerised dentures served as control group. Denture weight and volume were measured; the density was calculated, and the denture surface area was assessed digitally. The monomer release after 7 days of water storage was measured by high-performance liquid chromatography. Whole You Nexteeth and Wieland Digital Dentures had significantly lower mean volume and weight than conventional dentures. Baltic Denture System and Whole You Nexteeth had a significantly increased density. Baltic Denture System had a significantly smaller surface area. None of the CAD/CAM dentures released significantly less monomer than the control group. All tested dentures released very low amounts of methacrylate monomer, but not significantly less than conventional dentures. A statistically significant difference might nevertheless exist in comparison to other, less recommendable denture base materials, such as the frequently used autopolymerising resins. CAD/CAM denture fabrication has numerous advantages. It enables the fabrication of dentures with lower resin volume and lower denture weight. Both could increase the patient comfort. Dentures with higher density might exhibit more favourable mechanical properties. The hypothesis that CAD/CAM dentures release less monomer than conventional dentures could, however, not be verified.

  9. Surface modification of polyester synthetic leather with tetramethylsilane by atmospheric pressure plasma

    Energy Technology Data Exchange (ETDEWEB)

    Kan, C.W., E-mail: tccwk@polyu.edu.hk [Institute of Textiles and Clothing, The Hong Kong Polytechnic University, Hung Hom, Kowloon (Hong Kong); Kwong, C.H. [Institute of Textiles and Clothing, The Hong Kong Polytechnic University, Hung Hom, Kowloon (Hong Kong); Ng, S.P. [Hong Kong Community College, The Hong Kong Polytechnic University (Hong Kong)

    2015-08-15

    Highlights: • Atmospheric pressure plasma treatment improved surface performance of polyester synthetic leather with tetramethylsilane. • XPS and FTIR confirmed the deposition of organosilanes on the sample's surface. • Contact angle increases to 138° after plasma treatment. - Abstract: Much works have been done on synthetic materials but scarcely on synthetic leather owing to its surface structures in terms of porosity and roughness. This paper examines the use of atmospheric pressure plasma (APP) treatment for improving the surface performance of polyester synthetic leather by use of a precursor, tetramethylsilane (TMS). Plasma deposition is regarded as an effective, simple and single-step method with low pollution. Scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS) and Fourier transform infrared spectroscopy (FTIR) confirm the deposition of organosilanes on the sample's surface. The results showed that under a particular combination of treatment parameters, a hydrophobic surface was achieved on the APP treated sample with sessile drop static contact angle of 138°. The hydrophobic surface is stable without hydrophilic recovery 30 days after plasma treatment.

  10. Compressive fatigue tests on a unidirectional glass/polyester composite at cryogenic temperatures

    International Nuclear Information System (INIS)

    Stone, E.L.; El-Marazki, L.O.; Young, W.C.

    1979-01-01

    The fatigue testing of a unidirectional glass-reinforced polyester composite at cryogenic temperatures to simulate the cyclic compressive loads of the magnet support struts in a superconductive magnetic energy storage unit is reported. Right circular cylindrical specimens were tested at 77, 4.2 K and room temperature at different stress levels using a 1-Hz haversine waveform imposed upon a constant baseload in a load-controlled closed-loop electrohydraulic test machine. Two failure modes, uniform mushrooming near one end and a 45 deg fracture line through the middle of the specimen, are observed, with no systematic difference in fatigue life between the modes. Fatigue lives obtained at 77 and 4.2 K are found to be similar, with fatigue failure at 100,000 cycles occurring at stress levels of 70 and 75% of the ultimate compressive strengths of specimens at room temperature and 77 K, respectively. The room temperature fatigue lives of the glass/polyester specimens are found to be intermediate between those reported for glass/epoxy composites with different glass contents costing over twice as much

  11. Surface modification of polyester synthetic leather with tetramethylsilane by atmospheric pressure plasma

    International Nuclear Information System (INIS)

    Kan, C.W.; Kwong, C.H.; Ng, S.P.

    2015-01-01

    Highlights: • Atmospheric pressure plasma treatment improved surface performance of polyester synthetic leather with tetramethylsilane. • XPS and FTIR confirmed the deposition of organosilanes on the sample's surface. • Contact angle increases to 138° after plasma treatment. - Abstract: Much works have been done on synthetic materials but scarcely on synthetic leather owing to its surface structures in terms of porosity and roughness. This paper examines the use of atmospheric pressure plasma (APP) treatment for improving the surface performance of polyester synthetic leather by use of a precursor, tetramethylsilane (TMS). Plasma deposition is regarded as an effective, simple and single-step method with low pollution. Scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS) and Fourier transform infrared spectroscopy (FTIR) confirm the deposition of organosilanes on the sample's surface. The results showed that under a particular combination of treatment parameters, a hydrophobic surface was achieved on the APP treated sample with sessile drop static contact angle of 138°. The hydrophobic surface is stable without hydrophilic recovery 30 days after plasma treatment

  12. Fabrication of polyester microchannel with functional surface for electro-chromatography - Incorporation of detection devices into the microchip -

    International Nuclear Information System (INIS)

    Uchiyama, Katsumi; Qiu, Jing Miao; Hobo, Toshiyuki

    2001-01-01

    In recent years, new analytical techniques using microchip devise have been extensively studied (micro-TAS). One of the most successful examples is capillary electrophoresis (CE) with glass plate fabricated by photolithography followed by the chemical or physical etching process. Micro CE one of the most excellent separation techniques, performs separations in microchannel formed in appreciate substrate material. We developed a fabrication method for polyester micro channels with aikene alcohol inside the wall of the channel and demonstrated the usefulness of the polymer microchip. Although many researchers have been studying microchannel or micro-devices for analytical use, miniaturization of the total system including sample introduction, separation, detection and data treatment is still under development. Especially, the miniaturization of the detection system will be a hard bar to be overcome. Our method, based upon the in situ polymerization of polyester resin on an appreciate template, can be exported to let some parts incorporated directly into the microchip during the polymerization process. In this paper, we will describe the incorporation of detection components (light emitting diode and optical fiber) into polyester microchip and the application of the microchip to the analysis of amino acids separated by electrophoresis.

  13. Comparison of post-operative wound infection after inguinal hernia repair with polypropylene mesh and polyester mesh

    International Nuclear Information System (INIS)

    Mughal, M.A.; Ahmed, M.; Sajid, M.T.; Mustafa, Q.U.A.; Shukr, I.; Ahsan, J.

    2012-01-01

    Objective: To compare post operative wound infection frequency after inguinal hernia repair with polypropylene and polyester mesh using standard Lichtenstein hernioplasty technique. Study Design: Randomized controlled trial. Place and Duration: This study was conducted at general surgery department CMH/MH Rawalpindi from 8th April 2007 to 1st Jan 2008 over a period of 09 months. Patients and Materials: Sixty patients received through outpatient department with diagnosis of inguinal hernia satisfying inclusion/exclusion criteria were included. Patients were divided into two groups randomly. Group 1 included those patients in whom polypropylene mesh was used while group II patients were implanted with polyester mesh. Demographic as well as data concerning post operative wound infection was collected and analyzed. Results: Fifty seven patients (95%) were males while remaining (05%) were females. Mean age in group I was 41.17+-9.99 years while in group II was 41.47+-9.79 years (p=0.907). One patient (3.3%) in each group developed wound infection diagnosed by clinical evidence of pain at wound site, redness, induration and purulent discharge. Conclusion: There is no difference in post operative wound infection rate after inguinal Lichtenstein hernioplasty using either polypropylene or polyester mesh. (author)

  14. The binding of glucose to yeast hexokinase monomers is independent of ionic strength.

    Science.gov (United States)

    Mayes, E L; Hoggett, J G; Kellett, G L

    1982-05-01

    Hoggett & Kellett [Eur. J. Biochem. 66, 65-77 (1976)] have reported that the binding of glucose to the monomer of hexokinase PII isoenzyme is independent of ionic strength, in contrast to the subsequent claim of Feldman & Kramp [Biochemistry 17, 1541-1547 (1978)] that the binding is strongly dependent on ionic strength. Since measurements with native hexokinase P forms are complicated by the fact that the enzyme exists in a monomer-dimer association-dissociation equilibrium, we have now studied the binding of glucose to the proteolytically-modified S forms which are monomeric. At pH 8.5, the affinity of glucose for both SI and SII monomers is independent of salt concentration over the range of KCl concentrations 0-1.0 mol . dm-3 and is in good agreement with that of the corresponding P forms in both low and high salt. These observations confirm that the binding of glucose to hexokinase P monomers is independent of ionic strength and that the affinity of glucose for the hexokinase PII monomer is about an order of magnitude greater than that for the dimer.

  15. UV curing of teak veneers for decorative panel

    International Nuclear Information System (INIS)

    Gatot Trimulyadi Rekso; Darsono

    1999-01-01

    The radiation curing of surface coating of teak veneers for decorative panels has been conducted by using ultra violet (UV) as radiation source. In this experiment teak wood veneer was use as a substrate. Epoxy acrylate (import product,) and unsaturated polyester (locally product) were used as coating materials after being added with difunctional monomer TPGDA, and photo-initiator darocur 1173 or irgacure 184. Irradiation was conducted using 80 watt/cm LTV source at conveyor speed of 3,0 m/min. Parameters observed were viscosity of coating materials, hardness, adhesion, appearance, abrasion and chemical resistance of cured films. In general the results showed that viscosity of the formulations based on epoxy acrylate and unsaturated polyester resin were effected by the storage. Film cured by LTV made of epoxy acrylate and unsaturated polyester on the teak veneer wood have the same adhesion and abrasion resistant properties but the hardness and chemical resistant of epoxy acrylate are better than unsaturated polyester. From the experiment result it can be concluded the unsaturated polyester (locally product) can be used as radiation curable material for coating teak veneer panels

  16. Preparation of Acetylated Guar Gum – Unsaturated Polyester Composites & Effect of Water on Their Properties

    Directory of Open Access Journals (Sweden)

    David D’Melo

    2012-07-01

    Full Text Available Guar gum has seen extensive use in blends, however, its application as a filler in thermoset composites has as yet not been investigated. The effect of the addition of guar gum and its acetyl derivatives on the kinetics of water diffusion in unsaturated polyester composites was studied. The effect of water on the mechanical properties of the composites was studied with respect to the nature of filler, filler concentration and time of immersion. All the mechanical properties were observed to decrease on exposure to water. Further, it was observed that acetylated guar gum, with a degree of substitution of 0.21, showed the best mechanical properties, surpassing the other filled composites and that of the pure unsaturated polyester. Thus, acetylated guar gum showed promise as eco-friendly filler in composite formulation.

  17. pKa value and buffering capacity of acidic monomers commonly used in self-etching primers.

    Science.gov (United States)

    Salz, Ulrich; Mücke, Angela; Zimmermann, Jörg; Tay, Franklin R; Pashley, David H

    2006-06-01

    The aim of this investigation was to characterize acidic monomers used in self-etching primers/adhesives by determination of their pKa values and by calculation of their calcium dissolving capacity in comparison with phosphoric and hydrochloric acid. The following acidic monomers were included in this study: 4-methacryloyloxyethyl trimellitate anhydride (4-META), 10-methacryloyloxydecyl dihydrogen phosphate (MDP), dimethacryloyloxyethyl hydrogen phosphate (di-HEMA-phosphate), ethyl 2-[4-(dihydroxyphosphoryl)-2-oxabutyl]acrylate (EAEPA), 2-[4-(dihydroxyphosphoryl)-2-ox-abutyl]acrylic acid (HAEPA), and 2,4,6 trimethylphenyl 2-[4-(dihydroxyphosphoryl)-2-oxabutyl]acrylate (MAEPA). The pKa values were obtained by titration with 0.1 mol/l NaOH in aqueous solution. The inflection points of the resulting potentiometric titration curve were determined as pKa values. In the case of the sparingly water-soluble acidic monomers MAEPA and 4-META, the co-solvent method using different water/ethanol ratios for MAEPA or water/acetone ratios for 4-META was used. The dissolving capacity of each acidic monomer is defined as the amount of hydroxyapatite (HA) dissolved by 1 g of acid. For each monomer, the HA dissolving capacity was calculated bythe corresponding pKa value and the molecular weight. To confirm the calculated dissolving capacities, increasing amounts of HA powder (100 mg portions) were slowly added to 15 mmol/l aqueous solutions of the monomers to determine how much HA could be dissolved in the acidic solutions. For all the investigated acidic monomers, pKal values between 1.7 to 2.5 were observed. The pKa2 values for the phosphate/phosphonate derivatives are between 7.0 and 7.3, and are comparable to phosphoric acid. For dicarboxylic acid derivatives, the pKa2 values are in the range of 4.2 to 4.5. Due to their comparable molecular weights and pKal values, the three tested acids di-HEMA phosphate, MDP and 4-META all possess comparable dissolving capacities for HA (ie, 0

  18. Redesign of the monomer-monomer interface of Cre recombinase yields an obligate heterotetrameric complex.

    Science.gov (United States)

    Zhang, Chi; Myers, Connie A; Qi, Zongtai; Mitra, Robi D; Corbo, Joseph C; Havranek, James J

    2015-10-15

    Cre recombinase catalyzes the cleavage and religation of DNA at loxP sites. The enzyme is a homotetramer in its functional state, and the symmetry of the protein complex enforces a pseudo-palindromic symmetry upon the loxP sequence. The Cre-lox system is a powerful tool for many researchers. However, broader application of the system is limited by the fixed sequence preferences of Cre, which are determined by both the direct DNA contacts and the homotetrameric arrangement of the Cre monomers. As a first step toward achieving recombination at arbitrary asymmetric target sites, we have broken the symmetry of the Cre tetramer assembly. Using a combination of computational and rational protein design, we have engineered an alternative interface between Cre monomers that is functional yet incompatible with the wild-type interface. Wild-type and engineered interface halves can be mixed to create two distinct Cre mutants, neither of which are functional in isolation, but which can form an active heterotetramer when combined. When these distinct mutants possess different DNA specificities, control over complex assembly directly discourages recombination at unwanted half-site combinations, enhancing the specificity of asymmetric site recombination. The engineered Cre mutants exhibit this assembly pattern in a variety of contexts, including mammalian cells. © The Author(s) 2015. Published by Oxford University Press on behalf of Nucleic Acids Research.

  19. Observation of hairpin defects in a nematic main-chain polyester

    Science.gov (United States)

    Li, M. H.; Brûlet, A.; Davidson, P.; Keller, P.; Cotton, J. P.

    1993-04-01

    The conformation of a main-chain liquid crystalline polyester in its oriented nematic phase has been determined by small-angle neutron scattering. The data are fitted by a model of rigid cylinder with orientational fluctuations. For a low degree of polymerization (~9) the chain is almost completely elongated in the direction of the nematic field. For a polymer 3 times longer, the existence of two hairpins is shown at high temperature; this number decreases with decreasing temperature.

  20. Influence of substitution on the optical properties of functionalized pentacene monomers and crystals: Experiment and theory

    KAUST Repository

    Saeed, Yasir

    2013-10-01

    The influence of solubilizing substitutional groups on the electronic structure of prototypical functionalized pentacene molecules and crystals is studied by a combined experimental and theoretical approach. We experimentally establish characteristic effects of substituents on the electronic structure and relate those to theoretical optical spectra in order to explain the experimental results and provide a comprehensive picture of the substitution effects. Bands associated to C/Si atoms connecting the functional side group to the pentacene in the (6,13)-positions are the main contributors to the optical transitions. The amplitude of the redshift between the crystals and molecules provides insight in the packing structure. © 2013 Elsevier B.V. All rights reserved.

  1. Thermal and mechanical behaviour of sub micron sized fly ash reinforced polyester resin composite

    Science.gov (United States)

    Nantha Kumar, P.; Rajadurai, A.; Muthuramalingam, T.

    2018-04-01

    The utilization of particles reinforced resin matrix composites is being increased owing to its lower density and high strength to weight ratio. In the present study, an attempt has been made to synthesize fly ash particles reinforced polyester resin composite for engine cowling application. The thermal stability and mechanical behaviours such as hardness and flexural strength of the composite with 2, 3 and 4 weight % of reinforcement is studied and analyzed. The thermo gravimetric analysis indicates that the higher addition of reinforcement increases the decomposition temperature due to its refractory nature. It is also observed that the hardness increases with higher filler addition owing to the resistance of FA particles towards penetration. The flexural strength is found to increase up to the addition of 3% of FA particles, whereas the polyester resin composite prepared with 4% FA particles addition is observed to have low flexural strength owing to agglomeration of particles.

  2. XPS utilization in the characterization of glycerol based polyesters; Utilizacao de XPS na caracterizacao de poliesteres a base de glicerol

    Energy Technology Data Exchange (ETDEWEB)

    Brioude, M.M.; Miranda, C.S.; Pereira, R.; Ohara, L.; Bargiela, P.; Rocha, M.G.M.C.; Jose, N.M., E-mail: mgcr@ufba.b [Universidade Federal da Bahia (UFBA), Salvador, BA (Brazil). Escola Politecnica. Inst. de Quimica

    2010-07-01

    X-ray photoelectron spectroscopy-XPS allows the determination of all elements of the periodical table, except hydrogen and helium, and is a very used technique for the polymers characterization, its spectra constitutes a 'fingerprint' of the material. Two samples of polymers were prepared from glycerol and fumaric acid and glycerol and terephthalic acid, with a molar ratio of 1:1 and 1:1.5. The general spectra show the presence of carbon and oxygen, the main components of the polymer. From the binding energies values of the C1s and O1s high resolution spectra it was possible to determine the carbon functional groups. Their concentration were determined and the presence of the aromatic carbon in the terephthalic polyesters was observed, and also similar proportions of aliphatic carbon and ester groups in the fumaric acid polyesters. For both polyesters, an amount of carboxyl group appears, indicating the terminal non-reacted groups. These results were confirmed qualitatively by FTIR. (author)

  3. MECHANICAL AND THERMAL PROPERTIES OF COMPOSITES FROM UNSATURATED POLYESTER FILLED WITH OIL PALM ASH

    Directory of Open Access Journals (Sweden)

    M.S. Ibrahim

    2012-06-01

    Full Text Available Oil palm ash (OPA is available in abundance, is renewable, can be obtained at no cost and shows good performance at high thermal conditions. Combinations of the unsaturated polyester with natural fillers have been reported to improve the mechanical and thermal properties of composites. Utilisation of oil palm ash as a filler in the manufacture of polymer composites can significantly reduce the requirement for other binders or matrixes of composite materials. This research uses oil palm ash as a filler to form composites through the investigation of the effect of different contents of filler on the properties of OPA-filled unsaturated polyester (UP/OPA composites. The effect of different volume fractions, i.e., 0, 10, 20 and 30 vol.% of oil palm ash introduced into 100, 90, 80 and 70 vol.% of an unsaturated polyester matrix on the composite mechanical properties, i.e., tensile and flexural, has been studied, together with thermal gravimetric analysis (TGA and differential scanning calorimetric (DSC. Specimens were prepared using compression moulding techniques based on the ASTM D790 and D5083 standards for flexural and tensile tests, respectively. The tensile and flexural mechanical properties of UP/OPA composites were improved in modulus by increasing the filler content. Thermal stability of the composites increased as the OPA filler content was increased, which was a logical consequence because of the high thermal stability of the silica compound of the OPA filler compared with that of the UP matrix. The results from the surface electron microscope (SEM analysis were the extension of mechanical and thermal tests.

  4. Cloning, expression, purification, crystallization and preliminary X-ray crystallographic study of DHNA synthetase from Geobacillus kaustophilus

    International Nuclear Information System (INIS)

    Kanaujia, Shankar Prasad; Ranjani, Chellamuthu Vasuki; Jeyakanthan, Jeyaraman; Baba, Seiki; Kuroishi, Chizu; Ebihara, Akio; Shinkai, Akeo; Kuramitsu, Seiki; Shiro, Yoshitsugu; Sekar, Kanagaraj; Yokoyama, Shigeyuki

    2007-01-01

    DHNA synthetase from G. kaustophilus has been cloned, expressed, purified and crystallized. The aerobic Gram-positive bacterium Geobacillus kaustophilus is a bacillus species that was isolated from deep-sea sediment from the Mariana Trench. 1,4-Dihydroxy-2-naphthoate (DHNA) synthetase plays a vital role in the biosynthesis of menaquinone (vitamin K 2 ) in this bacterium. DHNA synthetase from Geobacillus kaustophilus was crystallized in the orthorhombic space group C222 1 , with unit-cell parameters a = 77.01, b = 130.66, c = 131.69 Å. The crystal diffracted to a resolution of 2.2 Å. Preliminary studies and molecular-replacement calculations reveal the presence of three monomers in the asymmetric unit

  5. Copolymerization parameters of N-Methacryloyloxy tetrabromophthalimide with different vinyl monomers

    International Nuclear Information System (INIS)

    Mahmoud, A.A.

    2005-01-01

    N-Methacryloyloxytetrabromophthalimide (NMTP) was synthesized by the reaction of N-hydroxytetrabromophthalimide with either methacryloyl chloride or methacrylic acid in the presence of triethylamine or N, Ndicyclohexylcarbodiimide respectively. Binary copolymerization reactions of the prepared monomer with ethyl acrylate (EA), n-butyl methacrylate (n.BMA), tertiary butylacrylate (t.BA) and vinyl acetate (VA) were performed in methylene chloride at 65 degree C using 1 mol % azobisisobutylronitrile (AIBN) as initiator. The structure of the prepared monomer was investigated by IR and 1H NMR spectroscopy. The copolymer compositions were determined from bromine analysis. Copolymerization parameters for each system were calculated by the Fineman-Ross and Kelen-Tudos methods. The monomer reactivity ratios for the systems NMTP-EA, NMTP-n.BMA, NMTP-t.BA and NMTP-VA were found to be r1 0.180, r2 = 0.893, r1 = 0.025, r2 = 0.680, r1 0.014, r2 0.956 and r1 1.002, r2 1.004 respectively

  6. Improved i-motif thermal stability by insertion of anthraquinone monomers

    DEFF Research Database (Denmark)

    Gouda, Alaa S; Amine, Mahasen S.; Pedersen, Erik Bjerregaard

    2017-01-01

    In order to gain insight into how to improve thermal stability of i-motifs when used in the context of biomedical and nanotechnological applications, novel anthraquinone-modified i-motifs were synthesized by insertion of 1,8-, 1,4-, 1,5- and 2,6-disubstituted anthraquinone monomers into the TAA...... loops of a 22mer cytosine-rich human telomeric DNA sequence. The influence of the four anthraquinone linkers on the i-motif thermal stability was investigated at 295 nm and pH 5.5. Anthraquinone monomers modulate the i-motif stability in a position-depending manner and the modulation also depends...... unlocked nucleic acid monomers or twisted intercalating nucleic acid. The 2,6-disubstituted anthraquinone linker replacing T10 enabled a significant increase of i-motif thermal melting by 8.2 °C. A substantial increase of 5.0 °C in i-motif thermal melting was recorded when both A6 and T16 were modified...

  7. 78 FR 17637 - Polyester Staple Fiber From Taiwan: Preliminary Results of Antidumping Duty Administrative Review...

    Science.gov (United States)

    2013-03-22

    ... DEPARTMENT OF COMMERCE International Trade Administration [A-583-833] Polyester Staple Fiber From... Administration, International Trade Administration, Department of Commerce. SUMMARY: The Department of Commerce.../CVD Operations, Office 1, Import Administration, International Trade Administration, U.S. Department...

  8. Crystal Structure of Allophycocyanin from Marine Cyanobacterium Phormidium sp. A09DM.

    Directory of Open Access Journals (Sweden)

    Ravi Raghav Sonani

    Full Text Available Isolated phycobilisome (PBS sub-assemblies have been widely subjected to X-ray crystallography analysis to obtain greater insights into the structure-function relationship of this light harvesting complex. Allophycocyanin (APC is the phycobiliprotein always found in the PBS core complex. Phycocyanobilin (PCB chromophores, covalently bound to conserved Cys residues of α- and β- subunits of APC, are responsible for solar energy absorption from phycocyanin and for transfer to photosynthetic apparatus. In the known APC structures, heterodimers of α- and β- subunits (known as αβ monomers assemble as trimer or hexamer. We here for the first time report the crystal structure of APC isolated from a marine cyanobacterium (Phormidium sp. A09DM. The crystal structure has been refined against all the observed data to the resolution of 2.51 Å to Rwork (Rfree of 0.158 (0.229 with good stereochemistry of the atomic model. The Phormidium protein exists as a trimer of αβ monomers in solution and in crystal lattice. The overall tertiary structures of α- and β- subunits, and trimeric quaternary fold of the Phormidium protein resemble the other known APC structures. Also, configuration and conformation of the two covalently bound PCB chromophores in the marine APC are same as those observed in fresh water cyanobacteria and marine red algae. More hydrophobic residues, however, constitute the environment of the chromophore bound to α-subunit of the Phormidium protein, owing mainly to amino acid substitutions in the marine protein.

  9. Poly(Neopentyl Glycol Furanoate): A Member of the Furan-Based Polyester Family with Smart Barrier Performances for Sustainable Food Packaging Applications

    OpenAIRE

    Laura Genovese; Nadia Lotti; Valentina Siracusa; Andrea Munari

    2017-01-01

    In the last decade, there has been an increased interest from the food packaging industry toward the development and application of bioplastics, to contribute to the sustainable economy and to reduce the huge environmental problem afflicting the planet. In the present work, we focus on a new furan-based polyester, poly(neopentyl glycol 2,5-furanoate) (PNF) to be used for sustainable food packaging applications. The aromatic polyester was successfully synthesized with high molecular weight, th...

  10. Guidelines To Select the N-Heterocyclic Carbene for the Organopolymerization of Monomers with a Polar Group

    KAUST Repository

    Falivene, Laura; Cavallo, Luigi

    2017-01-01

    be tuned by the hindrance of the NHC and the nature of the monomer. In addition to rationalize existing systems, the 45 NHC/monomer combinations we examined can be used as a guideline to predict the behavior of a new NHC/monomer combination.

  11. Ortho-substituted triptycene-based diamines, monomers, and polymers, methods of making and uses thereof

    KAUST Repository

    Ghanem, Bader Saleh

    2017-04-13

    Described herein are ortho-dimethyl-substituted and tetramethyi-substituted triptycene-containing diamine monomers and microporous triptycene-based poiyimides and poiyamides, and methods of making the monomers and polymers.

  12. Ortho-substituted triptycene-based diamines, monomers, and polymers, methods of making and uses thereof

    KAUST Repository

    Ghanem, Bader Saleh; Pinnau, Ingo

    2017-01-01

    Described herein are ortho-dimethyl-substituted and tetramethyi-substituted triptycene-containing diamine monomers and microporous triptycene-based poiyimides and poiyamides, and methods of making the monomers and polymers.

  13. Cloning, expression, purification, crystallization and preliminary X-ray analysis of the human RuvBL1–RuvBL2 complex

    International Nuclear Information System (INIS)

    Gorynia, Sabine; Matias, Pedro M.; Bandeiras, Tiago M.; Donner, Peter; Carrondo, Maria Arménia

    2008-01-01

    A truncated variant of the human RuvBL1–RuvBL2 complex was cloned, expressed, purified and crystallised. Synchrotron diffraction data to 4 Å resolution were used to carry out a preliminary crystallographic analysis of the complex. The complex of RuvBL1 and its homologue RuvBL2, two evolutionarily highly conserved eukaryotic proteins belonging to the AAA + (ATPase associated with diverse cellular activities) family of ATPases, was co-expressed in Escherichia coli. For crystallization purposes, the flexible domains II of RuvBL1 and RuvBL2 were truncated. The truncated RuvBL1–RuvBL2 complex was crystallized using the hanging-drop vapour-diffusion method at 293 K. The crystals were hexagonal-shaped plates and belonged to either the orthorhombic space group C222 1 , with unit-cell parameters a = 111.4, b = 188.0, c = 243.4 Å and six monomers in the asymmetric unit, or the monoclinic space group P2 1 , with unit-cell parameters a = 109.2, b = 243.4, c = 109.3 Å, β = 118.7° and 12 monomers in the asymmetric unit. The crystal structure could be solved by molecular replacement in both possible space groups and the solutions obtained showed that the complex forms a dodecamer

  14. Synthesis and characterization of sulfonated polyesters derived from glycerol; Sintese e caracterizacao de poliesteres sulfonados obtidos a partir do glicerol

    Energy Technology Data Exchange (ETDEWEB)

    Fiuza, R.A.; Jose, N.M.; Boaventura, J.S. [Universidade Federal da Bahia (IQ/UFBA), Salvador, BA (Brazil). Inst. de Quimica; Fiuza, R.P. [Universidade Federal da Bahia (EP/UFBA), Salvador, BA (Brazil). Escola Politecnica. Curso de Mestrado em Engenharia Quimica

    2010-07-01

    In this work were synthesized polyesters from glycerol and acid sulfonated phthalic previously. The materials were characterized by DSC, TGA, FTIR, SEM, XRD and XRF. The results showed effective sulfonation of phthalic acid. The presence of sulfonic groups promoted strong changes in the crystallinity of the new material makes the lens. The polyesters made from phthalic acid sulfonated combine characteristics such as heat resistance and groups that drivers potentiate the electrolyte for application in fuel cells proton exchange membrane and also for gas separation. (author)

  15. Expression, purification, crystallization and preliminary X-ray analysis of tannase from Lactobacillus plantarum

    International Nuclear Information System (INIS)

    Wu, Mingbo; Peng, Xiaohong; Wen, Hua; Wang, Qin; Chen, Qianming; McKinstry, William J.; Ren, Bin

    2013-01-01

    A recombinant form of tannase from L. plantarum was purified and crystallized. A native data set has been collected to 1.65 Å resolution. Tannase catalyses the hydrolysis of the galloyl ester bond of tannins to release gallic acid. It belongs to the serine esterases and has wide applications in the food, feed, beverage, pharmaceutical and chemical industries. The tannase from Lactobacillus plantarum was cloned, expressed and purified. The protein was crystallized by the sitting-drop vapour-diffusion method with microseeding. The crystals belonged to space group P1, with unit-cell paramters a = 46.5, b = 62.8, c = 83.8 Å, α = 70.4, β = 86.0, γ = 79.4°. Although the enzyme exists mainly as a monomer in solution, it forms a dimer in the asymmetric unit of the crystal. The crystals diffracted to beyond 1.60 Å resolution using synchrotron radiation and a complete data set was collected to 1.65 Å resolution

  16. The application of FT-IR spectrum method in photocuring process for polyester acrylate

    International Nuclear Information System (INIS)

    Cao Jin; Lu Xianliang; Zhang Zhenli

    1995-01-01

    This paper describes that the UV curing process of polyester acrylate can be monitored by measuring the degree of double bonds conversion with FT-IR spectroscopy. The various factors effect the UV curing rate. The relation between the curing rate and the concentration of photoinitiator, crosslinking agent, UV light intensity was discussed. (author)

  17. Fixation of chiral smectic liquid crystal (S)-(+)-4-(2-methyl-1-butyloyloxy)phenyl 4-[1-(propenoyloxy) butiloxy] benzoate using UV curing techniques

    Energy Technology Data Exchange (ETDEWEB)

    Afrizal,, E-mail: rizalunj04@yahoo.com; Nurdelima,; Umeir [Faculty of Mathemathics and Natural Science, University of State Jakarta, Jakarta (Indonesia); Hikam, Muhammad; Soegiyono, Bambang [Department of Materials Science, University of Indonesia, Depok (Indonesia); Riswoko, Asep [Center for Material Technology, BPPT, Jl. MH.Thamrin 8 Jakarta (Indonesia)

    2014-03-24

    Chiral Smectic Liquid Crystal (S)-(+)-4-(2-methyl-1-butyloyloxy)phenyl 4-[1-(propenoyloxy) butiloxy] benzoate has been synthesized using method of steglich esterification at room temperature. The mesomorphic behavior of chiral smectic at 55°C that showed schlieren texture in POM analysis. Fixation of structure chiral smectic liquid crystal by means of photopolymerization of monomer (S)-(+)-4-(2-methyl-1-butyloyloxy)phenyl 4-[1-(propenoyloxy) butiloxy] benzoate under UV irradiation which called UV curing techniques. The curing process using UV 3 lamps 100 volt at 60°C for an hour. The product of photopolymerization could be seen by analysis of FTIR spectra both monomer and polymer. FTIR spectra of monomer, two peaks for ester carbonyl and C-C double bond groups appeared at 1729.09 cm-1and 3123.46 cm{sup −1}. After UV curing process, peak for the carbonyl group at 1729.09 cm{sup −1} decreased and a new peak at 1160.21 cm{sup −1} appeared due to the carbonyl group attached to a C-C bond group and then peak at 3123.46 cm{sup −1} for C-C double bond group was disappeared.

  18. Catalysis as an Enabling Science for Sustainable Polymers.

    Science.gov (United States)

    Zhang, Xiangyi; Fevre, Mareva; Jones, Gavin O; Waymouth, Robert M

    2018-01-24

    The replacement of current petroleum-based plastics with sustainable alternatives is a crucial but formidable challenge for the modern society. Catalysis presents an enabling tool to facilitate the development of sustainable polymers. This review provides a system-level analysis of sustainable polymers and outlines key criteria with respect to the feedstocks the polymers are derived from, the manner in which the polymers are generated, and the end-of-use options. Specifically, we define sustainable polymers as a class of materials that are derived from renewable feedstocks and exhibit closed-loop life cycles. Among potential candidates, aliphatic polyesters and polycarbonates are promising materials due to their renewable resources and excellent biodegradability. The development of renewable monomers, the versatile synthetic routes to convert these monomers to polyesters and polycarbonate, and the different end-of-use options for these polymers are critically reviewed, with a focus on recent advances in catalytic transformations that lower the technological barriers for developing more sustainable replacements for petroleum-based plastics.

  19. Mechanism for Controlling the Dimer-Monomer Switch and Coupling Dimerization to Catalysis of the Severe Acute Respiratory Syndrome Coronavirus 3C-Like Protease

    Energy Technology Data Exchange (ETDEWEB)

    Shi,J.; Sivaraman, J.; Song, J.

    2008-01-01

    Unlike 3C protease, the severe acute respiratory syndrome coronavirus (SARS-CoV) 3C-like protease (3CLpro) is only enzymatically active as a homodimer and its catalysis is under extensive regulation by the unique extra domain. Despite intense studies, two puzzles still remain: (i) how the dimer-monomer switch is controlled and (ii) why dimerization is absolutely required for catalysis. Here we report the monomeric crystal structure of the SARS-CoV 3CLpro mutant R298A at a resolution of 1.75 Angstroms . Detailed analysis reveals that Arg298 serves as a key component for maintaining dimerization, and consequently, its mutation will trigger a cooperative switch from a dimer to a monomer. The monomeric enzyme is irreversibly inactivated because its catalytic machinery is frozen in the collapsed state, characteristic of the formation of a short 310-helix from an active-site loop. Remarkably, dimerization appears to be coupled to catalysis in 3CLpro through the use of overlapped residues for two networks, one for dimerization and another for the catalysis.

  20. Determination of unreacted monomers in restorative dental resins based on dimethacrylate by NMR hydrogen

    International Nuclear Information System (INIS)

    Correa, Ivo Carlos; Miranda Junior, Walter G.; Tavares, Maria Ines B.

    2001-01-01

    The presence of unreacted monomers after photo-activation of dental composites causes mechanical and biological properties to decrease and could be detected by NMR analysis. The aim of this study was to evaluate the percentage of leachable monomers of light-cured composites under the effect of variations of exposure time of photo activation by nuclear magnetic resonance of hydrogen in solution (NMR 1 H). The composite resins tested Z250 and Fill Magic obtained similar values of unreacted monomers (%) at photo curing time suggested by the manufacturer and values were also lower than Durafill and A110 concentrations. From the NMR results, one day extractable time was efficient to quantify the amount of residual monomers in the dental composites tested, unless for Durafill composite. (author)

  1. Photopolymerizable phosphate acrylates as comonomers in dental adhesives with or without triclosan monomer units

    International Nuclear Information System (INIS)

    Melinte, Violeta; Buruiana, Tinca; Aldea, Horia; Matiut, Simona; Silion, Mihaela; Buruiana, Emil C.

    2014-01-01

    Phosphate diacrylates (CO-DAP, TMP-DAP) based on castor oil or trimethylolpropane were synthesized and evaluated in dental adhesive formulations in comparison with 3-acryloyloxy-2-hydroxypropyl methacrylate phosphate (AMP-P). In an attempt to promote antibacterial activity, another photopolymerizable monomer (TCS-UMA) containing 5-chloro-2-(2,4-dichlorophenoxy)phenol moiety (triclosan) was prepared and incorporated in adhesive resins. Each of these monomers had a molecular structure confirmed by spectral methods. The photopolymerization rates for monomers (0.063–0.088 s −1 ) were lower than those determined in the monomer combinations (0.116–0.158 s −1 ) incorporating phosphate diacrylate (11 wt.%), BisGMA (33 wt.%), TEGDMA (10 wt.%), UDMA (10 wt.%) and HEMA (15 wt.%), the degree of conversion varying between 63.4 and 74.5%. The formed copolymers showed high values for water sorption (18.65–57.02 μg/mm 3 ) and water solubility (3.51–13.38 μg/mm 3 ), and the contact angle was dependent on the presence of CO-DAP (θ F1 : 66.67°), TMP-DAP (θ F2 : 55.05°) or AMP-P (θ F3 : 52.90°) in the photocrosslinked specimens compared to the sample without phosphate monomer (θ F4 : 82.14°). The scanning electron microscopy image of the dentin–resin composite interface after applying our F1 formulation (pH: 4.1) and its light-curing for 20 s supports the evidence of the formation of the hybrid layer with the tooth structure created by self-etching approach, with no gaps or cracks in the adhesive. A comparative analysis of the adhesion achieved with commercial adhesive systems (Single Bond Universal, C-Bond) rather indicates similarities than differences between them. The addition of triclosan methacrylate (1 wt.%) into the formulation inhibited the bacterial growth of the Streptococcus mutans and Escherichia coli in the direct contact area due to the covalently linked antibacterial monomer. - Highlights: • Synthesis of photopolymerizable phosphate acrylate

  2. Oligodeoxynucleotides containing 2'-amino-LNA nucleotides as constrained morpholino phosphoramidate and phosphorodiamidate monomers

    DEFF Research Database (Denmark)

    Kristensen, Kim Vejlegaard; Paul, Sibasish; Kosbar, Tamer

    2017-01-01

    Incorporation in a 2'→5' direction of a phosphorodiamidite 2'-amino-LNA-T nucleotide as the morpholino phosphoramidate and N,N-dimethylamino phosphorodiamidate monomers into six oligonucleotides is reported. Thermal denaturation studies showed that the novel 2'-amino-LNA-based morpholino monomers...

  3. Influence of substitution on the optical properties of functionalized pentacene monomers and crystals: Experiment and theory

    KAUST Repository

    Saeed, Yasir; Zhao, Kui; Singh, Nirpendra; Li, Ruipeng; Anthony, John Edward; Amassian, Aram; Schwingenschlö gl, Udo

    2013-01-01

    The influence of solubilizing substitutional groups on the electronic structure of prototypical functionalized pentacene molecules and crystals is studied by a combined experimental and theoretical approach. We experimentally establish

  4. Monomer-Polymer Chemistry and the Impregnation Process

    Energy Technology Data Exchange (ETDEWEB)

    Stannett, V. [North Carolina State University, Raleigh, NC (United States)

    1968-10-15

    A brief outline of early polymerization techniques is followed by a description of polymerization process chemistry, impregnation and polymerization methods and criteria for the choice of monomer. General considerations, including the effects of polymerization inhibitors, swelling agents, radiation dose rate and sample thickness, are enumerated. (author)

  5. Ultrasound enhanced 50 Hz plasma treatment of glass-fiber-reinforced polyester at atmospheric pressure

    DEFF Research Database (Denmark)

    Kusano, Yukihiro; Norrman, Kion; Singh, Shailendra Vikram

    2013-01-01

    Glass-fiber-reinforced polyester (GFRP) plates are treated using a 50Hz dielectric barrier discharge at a peak-to-peak voltage of 30 kV in helium at atmospheric pressure with and without ultrasonic irradiation to study adhesion improvement. The ultrasonic waves at the fundamental frequency...

  6. The use of sterilised polyester mosquito net mesh for inguinal hernia repair in Ghana

    NARCIS (Netherlands)

    Clarke, M. G.; Oppong, C.; Simmermacher, R.; Park, K.; Kurzer, M.; Vanotoo, L.; Kingsnorth, A. N.

    The use of alloplastic mesh is now commonplace in hernia repair. However, in developing countries, cheaper alternatives to commercial mesh are required due to the high associated cost. Whilst nylon mosquito net mesh has been trialled previously, this study aimed to assess the use of polyester

  7. Synthesis of New Polyether Ether Ketone Derivatives with Silver Binding Site and Coordination Compounds of Their Monomers with Different Silver Salts

    Directory of Open Access Journals (Sweden)

    Jérôme Girard

    2016-05-01

    Full Text Available Polyether ether ketone (PEEK is a well-known polymer used for implants and devices, especially spinal ones. To overcome the biomaterial related infection risks, 4-4′-difluorobenzophenone, the famous PEEK monomer, was modified in order to introduce binding sites for silver ions, which are well known for their antimicrobial activity. The complexation of these new monomers with different silver salts was studied. Crystal structures of different intermediates were obtained with a linear coordination between two pyridine groups and the silver ions in all cases. The mechanical and thermal properties of different new polymers were characterized. The synthesized PEEKN5 polymers showed similar properties than the PEEK ones whereas the PEEKN7 polymers showed similar thermal properties but the mechanical properties are not as good as the ones of PEEK. To improve these properties, these polymers were complexed with silver nitrate in order to “cross-link” with silver ions. The presence of ionic silver in the polymer was then confirmed by thermogravimetric analysis (TGA and X-ray powder diffraction (XRPD. Finally, a silver-based antimicrobial compound was successfully coated on the surface of PEEKN5.

  8. Expression, purification, crystallization and preliminary X-ray analysis of a nucleoside kinase from the hyperthermophile Methanocaldococcus jannaschii

    International Nuclear Information System (INIS)

    Arnfors, Linda; Hansen, Thomas; Meining, Winfried; Schönheit, Peter; Ladenstein, Rudolf

    2005-01-01

    Nucleoside kinase from the hyperthermophilic archaeon M. jannaschii is a member of the PFK-B family which belongs to the ribokinase superfamily. Here, its expression, purification, crystallization and preliminary X-ray analysis are described. Methanocaldococcus jannaschii nucleoside kinase (MjNK) is an ATP-dependent non-allosteric phosphotransferase that shows high catalytic activity for guanosine, inosine and cytidine. MjNK is a member of the phosphofructokinase B family, but participates in the biosynthesis of nucleoside monophosphates rather than in glycolysis. MjNK was crystallized as the apoenzyme as well as in complex with an ATP analogue and Mg 2+ . The latter crystal form was also soaked with fructose-6-phosphate. Synchrotron-radiation data were collected to 1.70 Å for the apoenzyme crystals and 1.93 Å for the complex crystals. All crystals exhibit orthorhombic symmetry; however, the apoenzyme crystals contain one monomer per asymmetric unit whereas the complex crystals contain a dimer

  9. Mechanical and Physical Properties of Polyester Polymer Concrete Using Recycled Aggregates from Concrete Sleepers

    Directory of Open Access Journals (Sweden)

    Francisco Carrión

    2014-01-01

    Full Text Available Currently, reuse of solid waste from disused infrastructures is an important environmental issue to study. In this research, polymer concrete was developed by mixing orthophthalic unsaturated polyester resin, artificial microfillers (calcium carbonate, and waste aggregates (basalt and limestone coming from the recycling process of concrete sleepers. The variation of the mechanical and physical properties of the polymer concrete (compressive strength, flexural strength, modulus of elasticity, density, and water absorption was analyzed based on the modification of different variables: nature of the recycled aggregates, resin contents (11 wt%, 12 wt%, and 13 wt%, and particle-size distributions of microfillers used. The results show the influence of these variables on mechanical performance of polymer concrete. Compressive and flexural strength of recycled polymer concrete were improved by increasing amount of polyester resin and by optimizing the particle-size distribution of the microfillers. Besides, the results show the feasibility of developing a polymer concrete with excellent mechanical behavior.

  10. Mechanical and physical properties of polyester polymer concrete using recycled aggregates from concrete sleepers.

    Science.gov (United States)

    Carrión, Francisco; Montalbán, Laura; Real, Julia I; Real, Teresa

    2014-01-01

    Currently, reuse of solid waste from disused infrastructures is an important environmental issue to study. In this research, polymer concrete was developed by mixing orthophthalic unsaturated polyester resin, artificial microfillers (calcium carbonate), and waste aggregates (basalt and limestone) coming from the recycling process of concrete sleepers. The variation of the mechanical and physical properties of the polymer concrete (compressive strength, flexural strength, modulus of elasticity, density, and water absorption) was analyzed based on the modification of different variables: nature of the recycled aggregates, resin contents (11 wt%, 12 wt%, and 13 wt%), and particle-size distributions of microfillers used. The results show the influence of these variables on mechanical performance of polymer concrete. Compressive and flexural strength of recycled polymer concrete were improved by increasing amount of polyester resin and by optimizing the particle-size distribution of the microfillers. Besides, the results show the feasibility of developing a polymer concrete with excellent mechanical behavior.

  11. Performance of Plain Woven Jute Fabric-Reinforced Polyester Matrix Composite in Multilayered Ballistic System

    Directory of Open Access Journals (Sweden)

    Sergio Neves Monteiro

    2018-02-01

    Full Text Available The ballistic performance of plain woven jute fabric-reinforced polyester matrix composites was investigated as the second layer in a multilayered armor system (MAS. Volume fractions of jute fabric, up to 30 vol %, were mixed with orthophthalic polyester to fabricate laminate composites. Ballistic tests were conducted using high velocity 7.62 mm ammunition. The depth of penetration caused by the bullet in a block of clay witness, simulating a human body, was used to evaluate the MAS ballistic performance according to the international standard. The fractured materials after tests were analyzed by scanning electron microscopy (SEM. The results indicated that jute fabric composites present a performance similar to that of the much stronger Kevlar™, which is an aramid fabric laminate, as MAS second layer with the same thickness. The mechanism of this similar ballistic behavior as well as the comparative advantages of the jute fabric composites over the Kevlar™ are discussed.

  12. Radiation-induced graft polymerization of amphiphilic monomers with different polymerization characteristics onto hydrophobic polysilane

    Energy Technology Data Exchange (ETDEWEB)

    Tanaka, Hidenori; Iwasaki, Isao; Kunai, Yuichiro [Research Reactor Institute, Kyoto University, Asashironishi 2-1010, Kumatori-cho, Sennan-gun, Osaka 590-0494 (Japan); Sato, Nobuhiro, E-mail: sato-n@rri.kyoto-u.ac.j [Research Reactor Institute, Kyoto University, Asashironishi 2-1010, Kumatori-cho, Sennan-gun, Osaka 590-0494 (Japan); Matsuyama, Tomochika [Research Reactor Institute, Kyoto University, Asashironishi 2-1010, Kumatori-cho, Sennan-gun, Osaka 590-0494 (Japan)

    2011-08-15

    The structures of poly(methyl-n-propylsilane) (PMPrS) amphiphilically modified through {gamma}-ray-induced graft polymerization were investigated with {sup 1}H NMR measurement. By the use of methyl methacrylate (MMA) or diethyl fumarate (DEF) as monomers for the graft polymerization, grafting yield rose with increasing total absorption dose and monomer concentrations, but decreased with increasing dose rate. This result means that grafting yield of modified PMPrS can be controlled by changing irradiation conditions. However, the number of PMMA or PDEF graft chains per PMPrS chain was estimated to be less than 1.0 by analysis of {sup 1}H NMR spectra, and this value was lower than that we had expected. To improve graft density, maleic anhydride (MAH), which is known as a non-homopolymerizable monomer in radical polymerization, was used as a monomer for grafting. As a result, high density grafting (one MAH unit for 4.2 silicon atoms) was attained. It demonstrates that the structure of {gamma}-ray-modified polysilane strongly depends on the polymerization characteristics of grafted monomers.

  13. Complications of transvaginal silicone-coated polyester synthetic mesh sling.

    Science.gov (United States)

    Govier, F E; Kobashi, K C; Kuznetsov, D D; Comiter, C; Jones, P; Dakil, S E; James, R

    2005-10-01

    To report a premarket multicenter trial to test the feasibility of a transvaginal silicone-coated polyester synthetic mesh sling in women with anatomic incontinence. Fifty-one patients in four centers underwent transvaginal placement of a silicone-coated polyester synthetic mesh sling (American Medical Systems) during an 8-month period. Of the 51 patients, 31 were part of a prospective institutional review board-approved feasibility trial in three centers funded by American Medical Systems (group 1) and 20 underwent implantation by a single surgeon and their data were retrospectively reviewed (group 2). The studies were done concomitantly, and all slings were fixed transvaginally with bone anchors. All patients in group 1 were followed up at 4 weeks, 6 months, and 1 year (as applicable) with repeat questionnaires, physical examinations, and pad tests. In group 1, 20 patients completed 6 months of follow-up. Ten patients (32%) required a second surgical procedure at an average of 183 days (range 68 to 343) postoperatively. Eight patients (26%) had vaginal extrusion of the mesh, one (3%) required sling lysis, and one (3%) required sling removal because of infection. In group 2, 8 patients (40%) underwent sling removal for vaginal extrusion at a mean of 160 days (range 83 to 214). Transvaginally placed silicone-coated mesh slings used for the treatment of urinary incontinence demonstrated an unacceptably high vaginal extrusion rate in this study. Once identified, this study was immediately terminated, and this product was not marketed for this application in the United States.

  14. Dynamic mechanical properties of photopolymerizable poly(vinyl alcohol)-acrylate monomer blends

    International Nuclear Information System (INIS)

    Koshiba, M.; Yamaoka, T.; Tsunoda, T.

    1983-01-01

    Dynamic mechanical properties of photopolymerizable poly(vinyl alcohol) (PVA)-monoacrylate blends were investigated by measuring dynamic shear modulus G' and loss tangent, tan delta. The dynamic mechanical properties of the blends before being exposed to UV irradiation were governed by the weight percent of the monomers which act as plasticizers. On the other hand, the UV-irradiated blends seemed to be typical two-phase materials since they revealed two tan delta maxima whose positions were independent of the monomer content. Those two maxima were assigned to PVA and photopolymerized acrylates with reference to the dynamic mechanical data of PVA and a PVA-polyacrylamide polyblend. Those dynamic mechanical data suggested that insolubilization of the blend type photopolymers should be caused by a decrease in solubility due to graft polymerization of acrylate monomers onto PVA. 9 figures, 3 tables

  15. [A novel method based on Y-shaped cotton-polyester thread microfluidic channel].

    Science.gov (United States)

    Wang, Lu; Shi, Yan-ru; Yan, Hong-tao

    2014-08-01

    A novel method based on Y-shaped microfluidic channel was firstly proposed in this study. The microfluidic channel was made of two cotton-polyester threads based on the capillary effect of cotton-polyester threads for the determination solutions. A special device was developed to fix the Y-shaped microfluidic channel by ourselves, through which the length and the tilt angle of the channel can be adjusted as requested. The spectrophotometry was compared with Scan-Adobe Photoshop software processing method. The former had a lower detection limit while the latter showed advantages in both convenience and fast operations and lower amount of samples. The proposed method was applied to the determination of nitrite. The linear ranges and detection limits are 1.0-70 micromol x L(-1), 0.66 micromol x L(-1) (spectrophotometry) and 50-450 micromol x L(-1), 45.10 micromol x L(-1) (Scan-Adobe Photoshop software processing method) respectively. This method has been successfully used to the determination of nitrite in soil samples and moat water with recoveries between 96.7% and 104%. It was proved that the proposed method was a low-cost, rapid and convenient analytical method with extensive application prospect.

  16. Physicomechanical evaluation of polypropylene, polyester, and polytetrafluoroethylene meshes for inguinal hernia repair.

    Science.gov (United States)

    Deeken, Corey R; Abdo, Michael S; Frisella, Margaret M; Matthews, Brent D

    2011-01-01

    For meshes to be used effectively for hernia repair, it is imperative that engineers and surgeons standardize the terminology and techniques related to physicomechanical evaluation of these materials. The objectives of this study were to propose standard techniques, perform physicomechanical testing, and classify materials commonly used for inguinal hernia repair. Nine meshes were evaluated: 4 polypropylene, 1 polyester, 1 polytetrafluoroethylene, and 3 partially absorbable. Physical properties were determined through image analysis, laser micrometry, and density measurements. Biomechanical properties were determined through suture retention, tear resistance, uniaxial, and ball burst testing with specimens tested in 2 different orientations. A 1-way ANOVA with Tukey's post-test or a t-test were performed, with p INFINIT (WL Gore & Associates) did not resist tearing as effectively as the others. All meshes exhibited supraphysiologic burst strengths except INFINIT and ULTRAPRO. Significant differences exist between the physicomechanical properties of polypropylene, polyester, polytetrafluoroethylene, and partially absorbable mesh prostheses commonly used for inguinal hernia repair. Orientation of the mesh was also shown to be critical for the success of meshes, particularly those demonstrating anisotropy. Copyright © 2011 American College of Surgeons. Published by Elsevier Inc. All rights reserved.

  17. Macroradical initiated polymerisation of acrylic and methacrylic monomers.

    Science.gov (United States)

    Mijangos, Irene; Guerreiro, António; Piletska, Elena; Whitcombe, Michael J; Karim, Kal; Chianella, Iva; Piletsky, Sergey

    2009-10-01

    An approach has been developed for the grafting of monomers onto poly(trimethylolpropane trimethacrylate) (polyTRIM) particles using 2,2-diethyl dithiocarbamic acid benzyl ester (DDCABE) as an initiator. A set of polymers was prepared with this technique over different lengths of time and the kinetics of the reaction studied experimentally. It was found that the grafting of initiator to the polymeric support followed a second order reaction, while the subsequent addition of monomers from solution into the polyTRIM macroradicals followed a first order reaction. The living nature of the iniferter modified macroradicals permits easy consecutive grafting of multiple polymeric layers, allowing straightforward functionalisation of particles. However, the effectiveness of the grafted initiator decreased with each cycle of polymerisation. This technique can be used for a wide range of applications in analytical and biochemistry.

  18. Anisotropically Swelling Gels Attained through Axis-Dependent Crosslinking of MOF Crystals.

    Science.gov (United States)

    Ishiwata, Takumi; Kokado, Kenta; Sada, Kazuki

    2017-03-01

    Anisotropically deforming objects have attracted considerable interest for use in molecular machines and artificial muscles. Herein, we focus on a new approach based on the crystal crosslinking of organic ligands in a pillared-layer metal-organic framework (PLMOF). The approach involves the transformation from crosslinked PLMOF to polymer gels through hydrolysis of the coordination bonds between the organic ligands and metal ions, giving a network polymer that exhibits anisotropic swelling. The anisotropic monomer arrangement in the PLMOF underwent axis-dependent crosslinking to yield anisotropically swelling gels. Therefore, the crystal crosslinking of MOFs should be a useful method for creating actuators with designable deformation properties. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Residual monomer content determination in some acrylic denture base materials and possibilities of its reduction

    Directory of Open Access Journals (Sweden)

    Kostić Milena

    2009-01-01

    Full Text Available Background/Aim. Polymethyl methacrylate is used for producing a denture basis. It is a material made by the polymerization process of methyl methacrylate. Despite of the polymerization type, there is a certain amount of free methyl methacrylate (residual monomer incorporated in the denture, which can cause irritation of the oral mucosa. The aim of this study was to determine the amount of residual monomer in four different denture base acrylic resins by liquid chromatography and the possibility of its reduction. Methods. After the polymerization, a postpolymerization treatment was performed in three different ways: in boiling water for thirty minutes, with 500 W microwaves for three minutes and in steam bath at 22º C for one to thirty days. Results. The obtained results showed that the amount of residual monomer is significantly higher in cold polymerizing acrylates (9.1-11%. The amount of residual monomer after hot polymerization was in the tolerance range (0.59- 0.86%. Conclusion. The obtained results denote a low content of residual monomer in the samples which have undergone postpolymerization treatment. A lower percent of residual monomer is established in samples undergone a hot polymerization.

  20. Guidelines To Select the N-Heterocyclic Carbene for the Organopolymerization of Monomers with a Polar Group

    KAUST Repository

    Falivene, Laura

    2017-02-13

    We report on the DFT stability of zwitterion and spirocycle adducts of five polar monomers with nine N-heterocyclic carbenes (NHC), covering the most typical classes of monomers and NHCs used in organopolymerization. Results indicate that the relative stability of the two adducts is dominated by the singlet-triplet energy gap of the free NHC, with low energy gaps favoring the spirocycle adduct, while high energy gaps favor the zwitterionic adduct. This basic structure/property relationship can be tuned by the hindrance of the NHC and the nature of the monomer. In addition to rationalize existing systems, the 45 NHC/monomer combinations we examined can be used as a guideline to predict the behavior of a new NHC/monomer combination.

  1. Reactivity of vinyl ethers and vinyl ribosides in UV-initiated free radical copolymerization with acceptor monomers.

    Science.gov (United States)

    Pichavant, Loic; Guillermain, Céline; Coqueret, Xavier

    2010-09-13

    The reactivity of various vinyl ethers and vinyloxy derivatives of ribose in the presence of diethyl fumarate or diethyl maleate was investigated for evaluating the potential of donor-acceptor-type copolymerization applied to unsaturated monomers derived from renewable feedstock. The photochemically induced polymerization of model monomer blends in the bulk state was monitored by infrared spectroscopy. The method allowed us to examine the influence of monomer pair structure on the kinetic profiles. The simultaneous consumption of both monomers was observed, supporting an alternating copolymerization mechanism. A lower reactivity of the blends containing maleates compared with fumarates was confirmed. The obtained kinetic data revealed a general correlation between the initial polymerization rate and the Hansen parameter δ(H) associated with the H-bonding aptitude of the donor monomer.

  2. Radiation cured and monomer modified silicon elastomers

    International Nuclear Information System (INIS)

    Eldred, R.J.

    1979-01-01

    A method is described for the production of a tear resistant silicone elastomer, which has improved elongation properties. This elastomer is the radiation induced reaction product of a noncured methyl vinyl silicone resin (VMQ) and uniformly dispersed therein a blend of a polyfunctional acrylic crosslinking monomer and a filler

  3. Softening and elution of monomers in ethanol

    DEFF Research Database (Denmark)

    Benetti, Ana Raquel; Asmussen, Erik; Munksgaard, E Christian

    2009-01-01

    The purpose of this study was to investigate the effect of light-curing protocol on softening and elution of monomers in ethanol as measured on a model polymer. It was a further aim to correlate the measured values with previously reported data on degree of conversion and glass transition...

  4. Method of stabilizing wood

    International Nuclear Information System (INIS)

    Pesek, M.; Jarkovsky, J.

    1973-01-01

    Wood is impregnated with a mixture of a vinyl or an allyl monomer (20 - 90 wt. %) and unsaturated polyester resins. The impregnated wood is then exposed to ionizing radiation at doses of 0.1 to 20 Mrad at a temperature of 60 to 180 degC. (B.S.)

  5. Kekuatan Lentur Komposit Polyester Berpenguat Serat Tapis Kelapa

    Directory of Open Access Journals (Sweden)

    I Made Astika

    2015-07-01

    Full Text Available Penelitian ini bertujuan untuk menyelidiki sifat mekanis yaitu kekuatan lentur dari kompositpolyester yang diperkuat dengan serat tapis kelapa. Di masa depan komposit ini dapatdigunakan untuk menggantikan kayu, bambu dan gipsun yang harganya mahal dan tidaktahan air. Komposit dibuat dengan memanfaatkan serat sabut kelapa dan matriks resinUnsaturated-Polyester (UPRs jenis Yucalac 157 BQTN, campuran 1% hardener jenis MEKPO(Methyl Ethyl Ketone Peroxide dan perendaman serat dalam larutan alkali KMnO4 0,5%.Metode produksi yang digunakan adalah press hand lay up dengan orientasi serat acak.Desain komposit dengan variasi fraksi volume serat 20, 25 dan 30% dan variasi panjang serat5, 10 dan 15 mm. Hasil penelitian menunjukkan bahwa semakin besar fraksi volume danpanjang serat dalam komposit maka kekuatan lentur semakin tinggi. Mode patahan yangteramati adalah patah getas, debonding, pullout dan crack deflection.Kata kunci: komposit, serat tapis kelapa, kekuatan lentur, mode patahan The purpose of this study is to investigate the mechanical properties i.e. flexural strength ofcomposites coconut filter fiber. In the future this material can be used to replace the wood,bamboo and gipsun which are high price and lower water resistance.The research material made with coconut filter fiber as reinforcement and matrix resinunsaturated polyester (UPRs type Yukalac BQTN 157, with 1% hardener types MEKPO(Methyl Ethyl Ketone Peroxide and fiber treatment by 0.5% KMnO4. Production methods arepress hand lay-up and the variations of fiber volume fraction are 20, 25 and 30% and fiberlength are 5, 10 and 15 mm. Testing of mechanical properties is flexural test (ASTM - D790The results of research show that the longer of fiber and the bigger of fiber volume fraction,the higher of flexural strength are obtained. The fracture mode are overload, debonding ,pullout and crack deflectionKeywords : composites, coconut filter fiber, flexural strength, fracture mode

  6. Crystallization and preliminary X-ray analysis of a family 19 glycosyl hydrolase from Carica papaya latex

    Energy Technology Data Exchange (ETDEWEB)

    Huet, Joëlle, E-mail: jhuet@ulb.ac.be [Laboratoire de Chimie Générale (CP 206/4), Institut de Pharmacie, Université Libre de Bruxelles (ULB), Campus de la Plaine, Boulevard du Triomphe, B-1050 Bruxelles (Belgium); Azarkan, Mohamed [Laboratoire de Chimie Générale (CP 609), Faculté de Médecine, Université Libre de Bruxelles (ULB), Campus Erasme, 808 Route de Lennik, B-1070 Bruxelles (Belgium); Looze, Yvan [Laboratoire de Chimie Générale (CP 206/4), Institut de Pharmacie, Université Libre de Bruxelles (ULB), Campus de la Plaine, Boulevard du Triomphe, B-1050 Bruxelles (Belgium); Villeret, Vincent [CNRS-UMR 8161, Institut de Biologie de Lille, Université de Lille 1-Université de Lille 2-Institut Pasteur de Lille, IFR142, 1 Rue du Professeur Calmette, F-59021 Lille (France); Wintjens, René, E-mail: jhuet@ulb.ac.be [Laboratoire de Chimie Générale (CP 206/4), Institut de Pharmacie, Université Libre de Bruxelles (ULB), Campus de la Plaine, Boulevard du Triomphe, B-1050 Bruxelles (Belgium)

    2008-05-01

    A chitinase isolated from the latex of the tropical species Carica papaya has been crystallized. The addition of N-acetyl-d-glucosamine to the crystallization solution has improved the diffraction quality resolution of the crystal to 1.8 Å resolution. A chitinase isolated from the latex of the tropical species Carica papaya has been purified to homogeneity and crystallized. This enzyme belongs to glycosyl hydrolase family 19 and exhibits exceptional resistance to proteolysis. The initially observed crystals, which diffracted to a resolution of 2.0 Å, were improved through modification of the crystallization protocol. Well ordered crystals were subsequently obtained using N-acetyl-d-glucosamine, the monomer resulting from the hydrolysis of chitin, as an additive to the crystallization solution. Here, the characterization of a chitinase crystal that belongs to the monoclinic space group P2{sub 1}, with unit-cell parameters a = 69.08, b = 44.79, c = 76.73 Å, β = 95.33° and two molecules per asymmetric unit, is reported. Diffraction data were collected to a resolution of 1.8 Å. Structure refinement is currently in progress.

  7. Hydrodynamic parameters of linear aromatic polyester of 3-phenylglutaric acid and bisphenol A

    Czech Academy of Sciences Publication Activity Database

    Netopilík, Miloš; Kratochvíl, Jaroslav; Schallausky, F.; Reichelt, S.; Lederer, A.

    2007-01-01

    Roč. 12, č. 4 (2007), s. 285-300 ISSN 1023-666X R&D Projects: GA ČR GA203/07/0659; GA AV ČR IAA400500703 Institutional research plan: CEZ:AV0Z40500505 Keywords : chain parameters * linear polyester * size exclusion chromatography Subject RIV: CD - Macromolecular Chemistry Impact factor: 0.386, year: 2007

  8. Expression, purification and crystallization of the Cmi immunity protein from Escherichia coli

    International Nuclear Information System (INIS)

    Römer, Christin; Patzer, Silke I.; Albrecht, Reinhard; Zeth, Kornelius; Braun, Volkmar

    2011-01-01

    The colicin M immunity protein Cmi protects E. coli cells against killing by colicin M. The Cmi protein was produced for structure determination and crystals were obtained which diffracted to high resolution. Many bacteria kill related bacteria by secretion of bacteriocins. In Escherichia coli, the colicin M protein kills E. coli after uptake into the periplasm. Self-protection from destruction is provided by the co-expressed immunity protein. The colicin M immunity protein (Cmi) was cloned, overexpressed and purified to homogeneity. The correct fold of purified Cmi was analyzed by activity tests and circular-dichroism spectroscopy. Crystallization trials yielded crystals, one of which diffracted to a resolution of 1.9 Å in the orthorhombic space group C222 1 . The crystal packing, with unit-cell parameters a = 66.02, b = 83.47, c = 38.30 Å, indicated the presence of one monomer in the asymmetric unit with a solvent content of 53%

  9. Self-assembly of gold nanoparticles as colloidal crystals induced by polymerization of amphiphilic monomers

    Czech Academy of Sciences Publication Activity Database

    Zucchi, I. A.; Hoppe, C. E.; Galante, M. J.; Williams, R. J. J.; López-Quintela, M. A.; Matějka, Libor; Šlouf, Miroslav; Pleštil, Josef

    2008-01-01

    Roč. 41, č. 13 (2008), s. 4895-4903 ISSN 0024-9297 R&D Projects: GA AV ČR IAA400500701 Grant - others:National Agency for the Promotion of Science and Technology(AR) PICT03-14738; Ministry of Science and Technology(ES) MAT2005-07554-C02-01 Institutional research plan: CEZ:AV0Z40500505 Keywords : self -assembly * gold nanoparticles * hierarchical structure * colloidal crystals Subject RIV: CD - Macromolecular Chemistry Impact factor: 4.407, year: 2008

  10. Polyfunctional monomers as additives for enhancing the radiation copolymerization of styrene with polyethylene, polypropylene, and PVC

    International Nuclear Information System (INIS)

    Ang, C.H.; Garnett, J.L.; Levot, R.; Long, M.A.

    1982-01-01

    Additives which can increase the yield in the radiation grafting of monomers to polymers are useful. The use of polyfunctional monomers as additives (approx. = 1% v/v) are shown to enhance significantly the copolymerization yields of styrene in methanol to films of polyethylene and polypropylene under certain radiation conditions. The results obtained when the polyolefins are replaced by PVC as backbone polymer in these accelerated grafting reactions are reported. Divinylbenzene (DVB) and trimethylolpropane triacrylate (TMPTA) were used as representative polyfunctional monomers for the enhancement effect. When polypropylene was used as backbone polymer, the inclusion of DVB significantly enhanced the radiation grafting of styrene in methanol at all monomer concentrations studied above 35%. At certain monomer concentrations (50% , 60%), the yield of graft copolymer was almost doubled by the addition of DVB. 3 tables. (DP)

  11. Technology change priorities influencing competition quality promotion: Case study of Iran Keaton Polyester Manufacturing Company

    Directory of Open Access Journals (Sweden)

    Pouria Nour

    2012-10-01

    Full Text Available In the changing world with various customers’ demands the businesses tend to improve their advantages to beat their rivals by means of better quality, lower prices and so. For Iranian polyester market quality is of crucial importance and is achieved through changing and updating technologies. According to highly regarded model of CAPTECH, which is recommended by UNIDO, technology parameters are defined in each phase and not generally as a whole. In the end the biggest gaps are defined. The main goal is to prioritize the main parameters affecting Iranian polyester company's quality. In order to fulfill our goal, 20 high and medium managers were questioned for this paper. The questions were gathered according to UNIDO samples. After a qualitative and quantitative test we concluded that the biggest gap is for supply chain(56.91 and the lowest gap is for combination phase(43.97.

  12. Sustainable Poly(Ionic Liquids) for CO2 Capture Based on Deep Eutectic Monomers

    KAUST Repository

    Isik, Mehmet; Zulfiqar, Sonia; Edhaim, Fatimah; Ruiperez, Fernando; Rothenberger, Alexander; Mecerreyes, David

    2016-01-01

    The design of high performance solid sorbent materials for CO2 capture is a technology which has been employed to mitigate global warming. However, the covalent incorporation of functionalities into polymeric supports usually involves multistep energy-intensive chemical processes. This fact makes the net CO2 balance of the materials negative even though they possess good properties as CO2 sorbents. Here we show a new family of polymers which are based on amines, amidoximes, and natural carboxylic acids and can be obtained using sustainable low energy processes. Thus, deep eutectic monomers based on natural carboxylic acids, amidoximes, and amines have been prepared by just mixing with cholinium type methacrylic ammonium monomer. The formation of deep eutectic monomers was confirmed by differential scanning calorimetry measurements. In all cases, the monomers displayed glass transition temperatures well below room temperature. Computational studies revealed that the formation of eutectic complexes lengthens the distance between the cation and the anion causing charge delocalization. The liquid nature of the resulting deep eutectic monomers (DEMs) made it possible to conduct a fast photopolymerization process to obtain the corresponding poly(ionic liquids). Materials were characterized by means of nuclear magnetic resonance, differential scanning calorimetry, thermogravimetric analysis, and X-ray diffraction to evaluate the properties of the polymers. The polymers were then used as solid sorbents for CO2 capture. It has been shown that the polymers prepared with citric acid displayed better performance both experimentally and computationally. The current endeavor showed that sustainable poly(ionic liquids) based on deep eutectic monomers can be easily prepared to produce low-energy-cost alternatives to the materials currently being researched for CO2 capture. © 2016 American Chemical Society.

  13. Sustainable Poly(Ionic Liquids) for CO2 Capture Based on Deep Eutectic Monomers

    KAUST Repository

    Isik, Mehmet

    2016-10-05

    The design of high performance solid sorbent materials for CO2 capture is a technology which has been employed to mitigate global warming. However, the covalent incorporation of functionalities into polymeric supports usually involves multistep energy-intensive chemical processes. This fact makes the net CO2 balance of the materials negative even though they possess good properties as CO2 sorbents. Here we show a new family of polymers which are based on amines, amidoximes, and natural carboxylic acids and can be obtained using sustainable low energy processes. Thus, deep eutectic monomers based on natural carboxylic acids, amidoximes, and amines have been prepared by just mixing with cholinium type methacrylic ammonium monomer. The formation of deep eutectic monomers was confirmed by differential scanning calorimetry measurements. In all cases, the monomers displayed glass transition temperatures well below room temperature. Computational studies revealed that the formation of eutectic complexes lengthens the distance between the cation and the anion causing charge delocalization. The liquid nature of the resulting deep eutectic monomers (DEMs) made it possible to conduct a fast photopolymerization process to obtain the corresponding poly(ionic liquids). Materials were characterized by means of nuclear magnetic resonance, differential scanning calorimetry, thermogravimetric analysis, and X-ray diffraction to evaluate the properties of the polymers. The polymers were then used as solid sorbents for CO2 capture. It has been shown that the polymers prepared with citric acid displayed better performance both experimentally and computationally. The current endeavor showed that sustainable poly(ionic liquids) based on deep eutectic monomers can be easily prepared to produce low-energy-cost alternatives to the materials currently being researched for CO2 capture. © 2016 American Chemical Society.

  14. Functionalized Nanoporous Polymer Membranes with Well-Defined Pore Architectures via Lyotropic Liquid-Crystalline Monomers

    National Research Council Canada - National Science Library

    Gin, Douglas

    1997-01-01

    .... Two lyotropic liquid-crystalline monomer platforms have been synthesized. The interchannel separations in the polymerizable materials can be varied in the 30-40 A range by the choice of counterion on the ionic headgroup of the monomers...

  15. Photopolymerizable phosphate acrylates as comonomers in dental adhesives with or without triclosan monomer units

    Energy Technology Data Exchange (ETDEWEB)

    Melinte, Violeta [Petru Poni Institute of Macromolecular Chemistry, 41 A Gr. Ghica Voda Alley, 700487 Iasi (Romania); Buruiana, Tinca, E-mail: tbur@icmpp.ro [Petru Poni Institute of Macromolecular Chemistry, 41 A Gr. Ghica Voda Alley, 700487 Iasi (Romania); Aldea, Horia [Gr. T. Popa University of Medicine and Pharmacy, Faculty of Dentistry, Iasi (Romania); Matiut, Simona [Praxis Medical Investigations, 33 Independence, 700102 Iasi (Romania); Silion, Mihaela; Buruiana, Emil C. [Petru Poni Institute of Macromolecular Chemistry, 41 A Gr. Ghica Voda Alley, 700487 Iasi (Romania)

    2014-01-01

    Phosphate diacrylates (CO-DAP, TMP-DAP) based on castor oil or trimethylolpropane were synthesized and evaluated in dental adhesive formulations in comparison with 3-acryloyloxy-2-hydroxypropyl methacrylate phosphate (AMP-P). In an attempt to promote antibacterial activity, another photopolymerizable monomer (TCS-UMA) containing 5-chloro-2-(2,4-dichlorophenoxy)phenol moiety (triclosan) was prepared and incorporated in adhesive resins. Each of these monomers had a molecular structure confirmed by spectral methods. The photopolymerization rates for monomers (0.063–0.088 s{sup −1}) were lower than those determined in the monomer combinations (0.116–0.158 s{sup −1}) incorporating phosphate diacrylate (11 wt.%), BisGMA (33 wt.%), TEGDMA (10 wt.%), UDMA (10 wt.%) and HEMA (15 wt.%), the degree of conversion varying between 63.4 and 74.5%. The formed copolymers showed high values for water sorption (18.65–57.02 μg/mm{sup 3}) and water solubility (3.51–13.38 μg/mm{sup 3}), and the contact angle was dependent on the presence of CO-DAP (θ{sub F1}: 66.67°), TMP-DAP (θ{sub F2}: 55.05°) or AMP-P (θ{sub F3}: 52.90°) in the photocrosslinked specimens compared to the sample without phosphate monomer (θ{sub F4}: 82.14°). The scanning electron microscopy image of the dentin–resin composite interface after applying our F1 formulation (pH: 4.1) and its light-curing for 20 s supports the evidence of the formation of the hybrid layer with the tooth structure created by self-etching approach, with no gaps or cracks in the adhesive. A comparative analysis of the adhesion achieved with commercial adhesive systems (Single Bond Universal, C-Bond) rather indicates similarities than differences between them. The addition of triclosan methacrylate (1 wt.%) into the formulation inhibited the bacterial growth of the Streptococcus mutans and Escherichia coli in the direct contact area due to the covalently linked antibacterial monomer. - Highlights: • Synthesis of

  16. Thermodynamically stable amyloid-β monomers have much lower membrane affinity than the small oligomers

    Directory of Open Access Journals (Sweden)

    Bidyut eSarkar

    2013-04-01

    Full Text Available Amyloid beta (Aβ is an extracellular 39-43 residue long peptide present in the mammalian cerebrospinal fluid, whose aggregation is associated with Alzheimer’s disease. Small oligomers of Aβ are currently thought to be the key to toxicity. However, it is not clear why the monomers of Aβ are non-toxic, and at what stage of aggregation toxicity emerges. Interactions of Aβ with cell membranes is thought to be the initiator of toxicity, but membrane-binding studies with different preparations of monomers and oligomers have not settled this issue. We have earlier found that thermodynamically stable Aβ monomers emerge spontaneously from oligomeric mixtures upon long term incubation in physiological solutions (Nag et al, JBC, 2011. Here we show that the membrane-affinity of these stable Aβ monomers is much lower than that of a mixture of small oligomers (containing dimers to decamers, providing a clue to the emergence of toxicity. Fluorescently labeled Aβ40 monomers show negligible binding to cell membranes of a neuronal cell line (RN46A at physiological concentrations (250 nM, while oligomers at the same concentrations show strong binding within 30 minutes of incubation. The increased affinity most likely does not require any specific neuronal receptor, since this difference in membrane-affinity was also observed in a somatic cell-line (HEK 293T. Similar results are also obtained for Aβ42 monomers and oligomers. Minimal amount of cell death is observed at these concentrations even after 36 hours of incubation. It is likely that membrane binding precedes subsequent slower toxic events induced by Aβ. Our results a provide an explanation for the non-toxic nature of Aβ monomers, b suggest that Aβ toxicity emerges at the initial oligomeric phase, and c provide a quick assay for monitoring the benign-to-toxic transformation of Aβ.

  17. Crystal structure of a C-terminal deletion mutant of human protein kinase CK2 catalytic subunit

    DEFF Research Database (Denmark)

    Ermakova, Inessa; Boldyreff, Brigitte; Issinger, Olaf-Georg

    2003-01-01

    structure of a C-terminal deletion mutant of human CK2alpha was solved and refined to 2.5A resolution. In the crystal the CK2alpha mutant exists as a monomer in agreement with the organization of the subunits in the CK2 holoenzyme. The refined structure shows the helix alphaC and the activation segment, two...

  18. Do the monomers release from the composite resins after artificial aging?

    Science.gov (United States)

    Tokay, Ugur; Koyuturk, Alp Erdin; Aksoy, Abdurrahman; Ozmen, Bilal

    2015-04-01

    The aim of this study is to measure the effect of thermal cycling on the amount of monomer released from three different composite materials by HPLC analysis method. Three different composite materials, inlay composite, posterior composite and micro-hybrid composite were used. Sixty cylinder specimens each with a dimension of approximately 1 cm width and 3 mm depth, were prepared before experiments were carried out. Inlay composite material was polymerized according to manufacturers' instructions. Thermal cycling device was used to simulate thermal differences which occur in the mouth media. Monomers were analyzed using HPLC technic after thermal cycling process. The amount of ethoxylated Bis-GMA and urethane dimethacrylate (UDMA) in inlay composite material, the amount of ethoxylated Bis-GMA in posterior composite material, the amount of ethoxylated Bis-GMA and triethyleneglycol dimethacrylate (TEGDMA) in micro-hybrid composite material were investigated. Monomer release of thermal cycles levels showed a linear increase in UDMA and TEGDMA (P < 0.05). In terms of thermal cycles levels, Bis-EMA released from posterior composite showed a cubic change (P < 0.001). It was observed that use of additional polymerization processes might have positive effect on the decrease of residual monomer. In the light of the results, we suggest that indirect composite resins have more outstanding features than direct composite resins in terms of biocompatibility. © 2015 Wiley Periodicals, Inc.

  19. Compositions de revêtement réticulables par bombardement électronique. Troisième partie : Résultats expérimentaux obtenus avec des systèmes à base d'oligo-uréthanes insaturés dérivés d'oxazolines Forming Crosslinkable Coatings by Electron Bombardement. Part Three. Experimental Results Obtained with Unsatured Oligo-Urethane-Base Systems Derived from Oxazolines

    Directory of Open Access Journals (Sweden)

    Miléo J. -C.

    2006-11-01

    Full Text Available La copolymérisation radiochimique d'oligo-uréthanes insaturés est étudiée. Des mélanges de ces prépolymères avec trois monomères vinyliques, acrylate de butyle, styrène et méthacrylate de méthyle, ont été irradiés par exposition à un faisceau d'électrons de 500 keV. Le degré de réticulation a été évalué en fonction de la composition, de la dose, du débit de dose, de la masse moléculaire du prépolymère et de l'atmosphère d'irradiation en mesurant, dans le mélange irradié, les taux de monomère volatil, de phase soluble et de gel. Une comparaison est établie avec les résultats reportés dans la littérature pour les polyesters insaturés. The radiochemical copolymerization of unsaturated oligourethanes is examined. Mixtures of such prepolymers with three vinylic monomers (butyl acrylate, styrene and methyl methacrylate were irradiated by exposure ta a 500-keV electron beam. The degree of crosslinking was evaluated as a fonction of composition, dose dose rate, prepolymer molecular mass and irradiation atmosphere by measuring the amounts of volatile monomer, soluble phase and gel in the irradiated mixture. A comparison is made with findings reported in the literature on unsaturated polyesters.

  20. Picosecond excitation energy transfer of allophycocyanin studied in solution and in crystals.

    Science.gov (United States)

    Ranjbar Choubeh, Reza; Sonani, Ravi R; Madamwar, Datta; Struik, Paul C; Bader, Arjen N; Robert, Bruno; van Amerongen, Herbert

    2018-03-01

    Cyanobacteria perform photosynthesis with the use of large light-harvesting antennae called phycobilisomes (PBSs). These hemispherical PBSs contain hundreds of open-chain tetrapyrrole chromophores bound to different peptides, providing an arrangement in which excitation energy is funnelled towards the PBS core from where it can be transferred to photosystem I and/or photosystem II. In the PBS core, many allophycocyanin (APC) trimers are present, red-light-absorbing phycobiliproteins that covalently bind phycocyanobilin (PCB) chromophores. APC trimers were amongst the first light-harvesting complexes to be crystallized. APC trimers have two spectrally different PCBs per monomer, a high- and a low-energy pigment. The crystal structure of the APC trimer reveals the close distance (~21 Å) between those two chromophores (the distance within one monomer is ~51 Å) and this explains the ultrafast (~1 ps) excitation energy transfer (EET) between them. Both chromophores adopt a somewhat different structure, which is held responsible for their spectral difference. Here we used spectrally resolved picosecond fluorescence to study EET in these APC trimers both in crystallized and in solubilized form. We found that not all closely spaced pigment couples consist of a low- and a high-energy pigment. In ~10% of the cases, a couple consists of two high-energy pigments. EET to a low-energy pigment, which can spectrally be resolved, occurs on a time scale of tens of picoseconds. This transfer turns out to be three times faster in the crystal than in the solution. The spectral characteristics and the time scale of this transfer component are similar to what have been observed in the whole cells of Synechocystis sp. PCC 6803, for which it was ascribed to EET from C-phycocyanin to APC. The present results thus demonstrate that part of this transfer should probably also be ascribed to EET within APC trimers.

  1. High diffraction efficiency polarization gratings recorded by biphotonic holography in an azobenzene liquid crystalline polyester

    DEFF Research Database (Denmark)

    Sánchez, C; Alcalá, R; Hvilsted, Søren

    2001-01-01

    High diffraction efficiencies have been achieved with polarization gratings recorded in thin films of an azobenzene side-chain liquid crystalline polyester by means of biphotonic processes. Efficiency values up to 30% have been reached after an induction period of 300 s and subsequent evolution...

  2. Inhibition of odontogenic differentiation of human dental pulp cells by dental resin monomers.

    Science.gov (United States)

    Kwon, Ji Hyun; Park, Hee Chul; Zhu, Tingting; Yang, Hyeong-Cheol

    2015-01-01

    Dental resin monomers that are leached from the resin matrix due to incomplete polymerization can affect the viability and various functions of oral tissues and cells. In this study, the effects of triethylene glycol dimethacrylate (TEGDMA) and 2-hydroxyethyl methacrylate (HEMA) on odontogenic differentiation of human dental pulp cells (HDPCs) were examined. To mimic clinical situations, dental pulp cells were treated with resin monomers for 24 h prior to the analysis of alkaline phosphatase (ALP) activity and mRNA expression of genes related to pulp cell differentiation. To elucidate the underlying signaling pathways, regulation of mitogen-activated protein (MAP) kinases by resin monomers was also investigated. The ALP activity of HDPCs was reduced by TEGDMA and HEMA at noncytotoxic concentrations. The mRNA expression of dentin sialophosphoprotein (DSPP), osteocalcin (OCN), and osteopontin (OPN) was also downregulated by resin monomers. However, DSPP expression was not affected by hydrogen peroxide (H2O2). Among the MAP kinases examined, ERK activation (ERK phosphorylation) was not affected by either resin monomers or H2O2, whereas JNK was phosphorylated by TEGDMA and HEMA. Phospho-p38 was upregulated by HEMA, while TEGDMA and H2O2 suppressed p38 phosphorylation. Exposure to TEGDMA and HEMA for a limited period suppresses differentiation of HDPCs via different signaling pathways.

  3. Synthesis of E7 peptide-modified biodegradable polyester with the improving affinity to mesenchymal stem cells

    International Nuclear Information System (INIS)

    Li, Qian; Xing, Dongming; Ma, Lie; Gao, Changyou

    2017-01-01

    As the most promising stem cell, bone marrow-derived mesenchymal stem cells (BMSCs) has attracted many attentions and applied widely in regenerative medicine. A biodegradable polyester with tunable affinity to BMSCs plays critical role in determining the properties of the BMSCs-based constructs. In this study, maleimide functionalized biodegradable polyester (P(MTMC-LA)) was synthesized through ring-opening copolymerization between L-lactide (LA) and furan-maleimide functionalized trimethylene carbonate (FMTMC) and a subsequent retro Diels-Alder reaction. P(MTMC-LA) was modified by different amounts of BMSCs specific affinity peptide (EPLQLKM, E7) through click-chemistry to investigate the effect on BMSCs. The E7 peptide modified P(MTMC-LA) was casted into films on glass slides and BMSCs were seeded onto the films. In vitro study showed that E7 peptide modified P(MTMC-LA) films supported BMSCs adhesion and proliferation compared to unmodified P(MTMC-LA) film. Besides, the adhesion and proliferation were enhanced by the increasing peptide grafting ratio. These results indicated that the novel biodegradable polyester can serve as a biomaterial with great potential application in tissue engineering and regenerative medicine. - Highlights: • P(MTMC-LA) was synthesized through ring-opening copolymerization and retro Diels-Alder reaction. • P(MTMC-LA) was modified by dBMSCs specific affinity peptide (EPLQLKM, E7) through click-chemistry. • E7 peptide modified P(MTMC-LA) films supported BMSCs adhesion and proliferation.

  4. Synthesis of E7 peptide-modified biodegradable polyester with the improving affinity to mesenchymal stem cells

    Energy Technology Data Exchange (ETDEWEB)

    Li, Qian; Xing, Dongming; Ma, Lie, E-mail: liema@zju.edu.cn; Gao, Changyou

    2017-04-01

    As the most promising stem cell, bone marrow-derived mesenchymal stem cells (BMSCs) has attracted many attentions and applied widely in regenerative medicine. A biodegradable polyester with tunable affinity to BMSCs plays critical role in determining the properties of the BMSCs-based constructs. In this study, maleimide functionalized biodegradable polyester (P(MTMC-LA)) was synthesized through ring-opening copolymerization between L-lactide (LA) and furan-maleimide functionalized trimethylene carbonate (FMTMC) and a subsequent retro Diels-Alder reaction. P(MTMC-LA) was modified by different amounts of BMSCs specific affinity peptide (EPLQLKM, E7) through click-chemistry to investigate the effect on BMSCs. The E7 peptide modified P(MTMC-LA) was casted into films on glass slides and BMSCs were seeded onto the films. In vitro study showed that E7 peptide modified P(MTMC-LA) films supported BMSCs adhesion and proliferation compared to unmodified P(MTMC-LA) film. Besides, the adhesion and proliferation were enhanced by the increasing peptide grafting ratio. These results indicated that the novel biodegradable polyester can serve as a biomaterial with great potential application in tissue engineering and regenerative medicine. - Highlights: • P(MTMC-LA) was synthesized through ring-opening copolymerization and retro Diels-Alder reaction. • P(MTMC-LA) was modified by dBMSCs specific affinity peptide (EPLQLKM, E7) through click-chemistry. • E7 peptide modified P(MTMC-LA) films supported BMSCs adhesion and proliferation.

  5. Atmospheric pressure H20 plasma treatment of polyester cord threads

    International Nuclear Information System (INIS)

    Simor, M.; Krump, H.; Hudec, I.; Rahel, J.; Brablec, A.; Cernak, M.

    2004-01-01

    Polyester cord threads, which are used as a reinforcing materials of rubber blend, have been treated in atmospheric-pressure H 2 0 plasma in order to enhance their adhesion to rubber. The atmospheric-pressure H 2 0 plasma was generated in an underwater diaphragm discharge. The plasma treatment resulted in approximately 100% improvement in the adhesion. Scanning electron microscopy investigation indicates that not only introduced surface polar groups but also increased surface area of the fibres due to a fibre surface roughening are responsible for the improved adhesive strength (Authors)

  6. Electro-optical properties of low viscosity driven holographic polymer dispersed liquid crystals

    Science.gov (United States)

    Moon, K. R.; Bae, S. Y.; Kim, B. K.

    2015-04-01

    Relative diffraction efficiency (RDE), operating voltage, and response times are most important performance characteristics of holographic polymer dispersed liquid crystals (HPDLC). Two types of triallyl isocyanurate (TI) having different structures were incorporated into the conventional transmission grating of HPDLC. Premix viscosity decreased by 13-18% with up to 3% TI, beyond which it increased. TI eliminated induction period and augmented initial grating formation rate at all contents. Saturation RDE increased over 200% while threshold voltage and rise time decreased to about half and 2/3, respectively up to 3% TI, beyond which the tendencies were reversed. Among the two TIs, low viscosity monomer (TA) showed high RDE, while high miscibility monomer (TE) low characteristic voltages and short response times. It is concluded that grating formation is largely favored by low viscosity, while interface tensions and electro-optical performances by miscibility at similar viscosities.

  7. Net expansion of dried demineralized dentin matrix produced by monomer/alcohol saturation and solvent evaporation.

    Science.gov (United States)

    Agee, Kelli A; Becker, Thomas D; Joyce, Anthony P; Rueggeberg, Frederick A; Borke, James L; Waller, Jennifer L; Tay, Franklin R; Pashley, David H

    2006-11-01

    The purpose of this work was to determine if nonaqueous methacrylate monomer/alcohol mixtures could expand dried collapsed demineralized dentin matrix. Thin disks (ca. 200 microm) of human dentin were demineralized and placed in wells beneath contact probes of linear variable differential transformers. The probes were placed on water-saturated expanded matrices to record the shrinkage associated with drying. Monomer mixtures containing hydroxyethyl methacrylate, 2,2-bis[4-(2-hydroxy-3 methacryloyloxy)propoxyphenyl] propane, or triethyleneglycol dimethacrylate were mixed with methanol or ethanol at alcohol/monomer mass fraction % of 90/10, 70/30, 50/50, or 30/70. They were randomly applied to the dried matrices to determine the rate and magnitude of expansion; then shrinkage was recorded during evaporation of the alcohols. The results indicated that matrix expansion was positively correlated with the Hoy's solubility parameters for hydrogen bonding forces (delta(h)) of the monomer/solvent mixtures (p methanol-containing than with ethanol-containing monomer mixtures. For the test solutions, triethyleneglycol dimethacrylate-containing mixtures produced the slowest rate of matrix expansion and hydroxyethyl methacrylate-containing mixtures the most rapid expansion. When the solvents were evaporated, the matrix shrank in proportion to the solvent content and the delta(h) of the monomer-solvent mixtures. The results indicate that expansion of dried, collapsed dentin matrices requires that the delta(h) of the mixtures be larger than 17 (J/cm(3))(1/2). The greater the delta(h) of the monomer solutions, the greater the rate and extent of expansion.

  8. Synthesis of phosphate monomers and bonding to dentin: esterification methods and use of phosphorus pentoxide.

    Science.gov (United States)

    Ogliari, Fabrício Aulo; da Silva, Eduardo de Oliveira; Lima, Giana da Silveira; Madruga, Francine Cardozo; Henn, Sandrina; Bueno, Márcia; Ceschi, Marco Antônio; Petzhold, Cesar Liberato; Piva, Evandro

    2008-03-01

    The aim of this study was to synthesize an acidic monomer using an alternative synthetic pathway and to evaluate the influence of the acidic monomer concentration on the microtensile bond strength to dentin. The intermediary 5-hydroxypentyl methacrylate (HPMA) was synthesized through methacrylic acid esterification with 1,5-pentanediol, catalyzed by p-toluenesulfonic acid. To displace the reaction balance, the water generated by esterification was removed by three different methods: anhydrous sodium sulfate; molecular sieves or azeotropic distillation. In the next step, a phosphorus pentoxide (4.82 mmol) slurry was formed in cold acetone and 29 mmol of HPMA was slowly added by funnel addition. After the reaction ended, solvent was evaporated and the product was characterized by 1HNMR and FTIR. The phosphate monomer was introduced in a self-etch primer at concentrations of 0, 15, 30, 50, 70 and 100 wt%. Clearfil SE Bond was used as commercial reference. Microtensile bond strength to dentin was evaluated 24h after the bonding procedures, followed by fracture analysis (n=20). Data was submitted to ANOVA and Tukey's post hoc test. The highest yield was obtained (62%) when azeotropic distillation was used, while the reaction with molecular sieves was not feasible. The phosphoric moiety attachment to the monomer was successfully performed with a quantitative yield that reached around 100%. The acidic monomer concentration significantly affected the bond strength and the highest mean (55.1+/-12.8 MPa) was obtained when 50% of acidic monomer was used. The synthesis pathways described in the present study appear to be a viable alternative for developing phosphate monomers.

  9. Mechanical properties of composites based on unsaturated polyester resins obtained by chemical recycling of poly(ethylene terephthalate

    Directory of Open Access Journals (Sweden)

    Marinković Aleksandar D.

    2013-01-01

    Full Text Available Composites based on unsaturated polyester (UPe resins and fumed silica AEROSIL® RY 50, NY 50, RX 50 and NAX 50, as well as graphite, TiO2 or organically modified clay CLOISITE 30B were prepared in order to investigate the influence of reinforcing agents on the mechanical properties of composites. Unsaturated polyester resins were synthesized from maleic anhydride and products of glycolysis, obtained by depolymerization of poly(ethylene terephthalate with dipropylene glycol (UPe1 resin and triethylene glycol (UPe2 resin in the presence of tetrabutyl titanate catalyst. The obtained unsaturated polyesters were characterized by FTIR spectroscopy, acid and hydroxyl values, and their mechanical properties were also examined. Significant increase of the tensile modulus, tensile strength and decrease of the elongation at break was observed for composites prepared after addition of 10 wt.% of graphite or 10 wt.% of TiO2 to the UPe resins, indicating strong interaction between matrix and filler particles. On the other hand, nanocomposites prepared using UPe2 and hydrophobically modified silica nanoparticles showed lower tensile strength and tensile modulus than polymer matrix. The presence of CLOISITE 30B had no significant influence on the mechanical properties of UPe1, while tensile strength and tensile modulus of UPe2 increased after adding 10 wt.% of clay. [Projekat Ministarstva nauke Republike Srbije, br. 172013

  10. Triptycene-based ladder monomers and polymers, methods of making each, and methods of use

    KAUST Repository

    Pinnau, Ingo; Ghanem, Bader; Swaidan, Raja

    2015-01-01

    Embodiments of the present disclosure provide for a triptycene-based A-B monomer, a method of making a triptycene-based A-B monomer, a triptycene-based ladder polymer, a method of making a triptycene-based ladder polymers, a method of using

  11. California State Implementation Plan; San Diego County Air Pollution Control District; VOC Emissions from Polyester Resin Operations

    Science.gov (United States)

    EPA is taking final action to approve revisions to the San Diego County Air Pollution Control District (SDCAPCD) portion of the California SIP concerning volatile organic compound (VOC) emissions from polyester resin operations.

  12. Mesorhizobium bacterial strains isolated from the legume Lotus corniculatus are an alternative source for the production of polyhydroxyalkanoates (PHAs) to obtain bioplastics.

    Science.gov (United States)

    Marcos-García, Marta; García-Fraile, Paula; Filipová, Alena; Menéndez, Esther; Mateos, Pedro F; Velázquez, Encarna; Cajthaml, Tomáš; Rivas, Raúl

    2017-07-01

    Polyhydroxyalkanoic acids (PHAs) are natural polyesters that can be used to produce bioplastics which are biodegradable. Numerous microorganisms accumulate PHAs as energy reserves. Combinations of different PHAs monomers lead to the production of bioplastics with very different properties. In the present work, we show the capability of strains belonging to various phylogenetic lineages within the genus Mesorhizobium, isolated from Lotus corniculatus nodules, to produce different PHA monomers. Among our strains, we found the production of 3-hydroxybutyrate, 3-hydroxyvalerate, 3-hydroxydodecanoate, and 3-hydroxyhexadecanoate. Most of the PHA-positive strains were phylogenetically related to the species M. jarvisii. However, our findings suggest that the ability to produce different monomers forming PHAs is strain-dependent.

  13. Synthesis and characterization of copolymers from hindered amines and vinyl monomers

    Directory of Open Access Journals (Sweden)

    Marcelo Aparecido Chinelatto

    2014-01-01

    Full Text Available New copolymers from hindered amines and vinyl monomers were synthesized by radical chain polymerization. To obtain polymeric HALS, acrylamide-(1ATP and acrylate-(4ATP monomers, derivatives from 2,2,6,6-tetramethylpiperidine and 2,2,6,6-tetramethyl-4-piperidinol were synthesized. The radical chain polymerization of 1ATP with styrene (Sty using 1-butanethiol (BTN resulted in a copolymer with 95 units of Sty and 15 units of 1ATP. The radical chain polymerization of 1ATP and vinyl acetate (VAc has produced only 1ATP homopolymer. In the chain polymerization of 4ATP with Sty or VAc, the hydrogen atom bonded to the nitrogen of 4ATP is labile enough to originate another radical at this site. The steric hindrance imposed by methyl groups on this bonding site hampers its reaction with other propagating species and the formation of a copolymer or network structure will be dependent on the size of the pendent group in the vinyl monomer.

  14. Testing of residual monomer content reduction possibility on acrilic resins quality

    Directory of Open Access Journals (Sweden)

    Kostić Milena

    2011-01-01

    Full Text Available Poly (methyl methacrylate (PMMA is material widely used in dentistry. Despite the various methods used to initiate the polymerization of acrylic resins, the conversion of monomer to polymer is not complete thus leaving some unreacted methyl methacrylate (MMA, known as residual monomer (RM, in denture structure. RM in dental acrylic resins has deleterious effects on their mechanical properties and their biocompatibility. The objective of the work was to test the residual monomer reduction possibility by applying the appropriate postpolymerization treatment as well as to determine the effects of this reduction on pressure yields stress and surface structure characteristics of the acrylic resins. Postpolymerization treatments and water storage induced reduction of RM amount in cold-polymerized acrylic resins improved their mechanical properties and the homogenized surface structure. After the polymerization of heat-polymerized acrylic resins the post-polymerization treatments for improving the quality of this material type are not necessary.

  15. The monomer-to-dimer transition and bimodal growth of Co-salen on NaCl(001): a high resolution atomic force microscopy study

    International Nuclear Information System (INIS)

    Fremy, S; Schwarz, A; Laemmle, K; Wiesendanger, R; Prosenc, M

    2009-01-01

    Molecules of Co-salen, a paramagnetic metal-organic Schiff base complex, self-assemble into two different well ordered morphologies on a NaCl(001) substrate: nanowires, which form networks, and compact nanocrystallites. Their growth can be controlled by adjusting the deposition parameters. It turns out that the nanowires are metastable. Molecular resolution images suggest that the packing in both morphologies is the same as in bulk Co-salen single crystals. Only the orientation of the c-axis with respect to the substrate is different. The origin of this intriguing bimodal growth is associated with a monomer-to-dimer transition, which probably takes place during initial nucleation at step edges.

  16. The monomer-to-dimer transition and bimodal growth of Co-salen on NaCl(001): a high resolution atomic force microscopy study

    Energy Technology Data Exchange (ETDEWEB)

    Fremy, S; Schwarz, A; Laemmle, K; Wiesendanger, R [Institute of Applied Physics and Microstructure Research Center, University of Hamburg, Jungiusstrasse 11, 20355 Hamburg (Germany); Prosenc, M, E-mail: aschwarz@physnet.uni-hamburg.d [Institute of Inorganic and Applied Chemistry, University of Hamburg, Martin-Luther-King Platz 6, 20146 Hamburg (Germany)

    2009-10-07

    Molecules of Co-salen, a paramagnetic metal-organic Schiff base complex, self-assemble into two different well ordered morphologies on a NaCl(001) substrate: nanowires, which form networks, and compact nanocrystallites. Their growth can be controlled by adjusting the deposition parameters. It turns out that the nanowires are metastable. Molecular resolution images suggest that the packing in both morphologies is the same as in bulk Co-salen single crystals. Only the orientation of the c-axis with respect to the substrate is different. The origin of this intriguing bimodal growth is associated with a monomer-to-dimer transition, which probably takes place during initial nucleation at step edges.

  17. Poly(1,4-cyclohexanedimethylene 2,6-naphthalate polyester with high melting point: Effect of different synthesis methods on molecular weight and properties

    Directory of Open Access Journals (Sweden)

    N. Kasmi

    2018-03-01

    Full Text Available In the current manuscript, a new approach for the synthesis of poly(1,4- cyclohexanedimethylene 2,6-naphthalate (PCHDMN derived from dimethyl 2,6-naphthalenedicarboxylate (2,6-DMN and 1,4-Cyclohexanedimethanol (CHDM via melt polycondensation method is introduced. The effect of three different synthesis pathways, polycondensation time and temperature on polyesters molecular weight increase has been investigated. All of the prepared samples were characterized measuring their intrinsic viscosity (IV, thermal properties and morphology with differential scanning calorimetry (DSC and wide-angle X-ray diffraction (WAXD, respectively. The results demonstrated the effectiveness of the synthesis pathway proposed for the preparation of PCHDMN, resulting in high molecular weight (IV value around 0.5 dL/g and much shorter reaction time. Melt polycondensation temperatures above melting point of polyester should be avoided to be used due to the decomposition of polyester. This was proved by thermogravimetric analysis (TGA and Pyrolysis-gas chromatography–mass spectroscopy analysis (Py-GC/MS.

  18. Preparation of ω-hydroxy pelargonic acid

    Science.gov (United States)

    Hadi, Siti Faieza Abd; Salimon, Jumat

    2018-04-01

    Utilization of plant oil as renewable raw material for monomers and polymers in bioplastic industry has a great potential to replace conventional petroleum-based plastic usage especially in packaging and adhesive applications. One of useful monomer is ω-hydroxy pelargonic acid that can be polymerizing as biodegradable polyester. In this study, the aim is to synthesis ω-hydroxy pelargonic acid from oleic acid based on oxidation/ esterification/ saponification and reduction methodology. The yield obtained after aqueous workup is 53% and the compound structure is determined by FT-IR and 1H and 13C NMR.

  19. Exploring the Substrate Scope of Baeyer–Villiger Monooxygenases with Branched Lactones as Entry towards Polyesters

    NARCIS (Netherlands)

    Delgove, Marie; Fürst, Maximilian; Fraaije, Marco; Bernaerts, Katrien; de Wildeman, Stefaan

    2018-01-01

    Baeyer–Villiger monooxygenases (BVMOs) are biocatalysts that are able to convert cyclic ketones into lactones by the insertion of oxygen. The aim of this study was to explore the substrate scope of several BVMOs with (biobased) cyclic ketones as precursors for the synthesis of branched polyesters.

  20. Exploring the substrate scope of Baeyer-Villiger monooxygenases with branched lactones as entry towards polyesters

    NARCIS (Netherlands)

    Delgove, Marie; Fürst, Maximilian; Fraaije, Marco; Bernaerts, Katrien; De Wildeman, Stefaan M A

    2018-01-01

    Baeyer-Villiger monooxygenases (BVMOs) are biocatalysts able to convert cyclic ketones to lactones by the insertion of oxygen. The aim of this study was to explore the substrate scope of several BVMOs with (biobased) cyclic ketones as precursors for the synthesis of branched polyesters.The product