WorldWideScience

Sample records for crystal plastic deformation

  1. Plastic deformation modelling of tempered martensite steel block structure by a nonlocal crystal plasticity model

    Directory of Open Access Journals (Sweden)

    Martin Boeff

    2014-01-01

    Full Text Available The plastic deformations of tempered martensite steel representative volume elements with different martensite block structures have been investigated by using a nonlocal crystal plasticity model which considers isotropic and kinematic hardening produced by plastic strain gradients. It was found that pronounced strain gradients occur in the grain boundary region even under homogeneous loading. The isotropic hardening of strain gradients strongly influences the global stress–strain diagram while the kinematic hardening of strain gradients influences the local deformation behaviour. It is found that the additional strain gradient hardening is not only dependent on the block width but also on the misorientations or the deformation incompatibilities in adjacent blocks.

  2. Plastic theory for the multi-crystal metals-From infinitesimal deformation to finite deformation

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    Multi-crystal metals have the property of volume conservation in the plastic state. In the infinitesimal deformation plasticity the strain tensor can be split into a deviator part and a volumetric part. The vanishing of the first variant of the strain tensor is equivalent to the volume conservation. Furthermore, the split of the strain into an elastic part and a plastic part is also adopted widely. The flow rule is thus established. These two splits are not confirmed in the finite deformation plasticity. The plasticity criterion and the flow rule are thus facing great challenge. There are various definitions of strain measures in the finite deformation theory. Though the choosing of strain measure is arbitrary in the elastic problem, it is strongly restricted in the plastic problem. By theoretical and experimental studies, it is shown that the logarithmic strain is the only suitable strain measure in the metal forming problem.

  3. Plastic deformation of tubular crystals by dislocation glide

    Science.gov (United States)

    Beller, Daniel A.; Nelson, David R.

    2016-09-01

    Tubular crystals, two-dimensional lattices wrapped into cylindrical topologies, arise in many contexts, including botany and biofilaments, and in physical systems such as carbon nanotubes. The geometrical principles of botanical phyllotaxis, describing the spiral packings on cylinders commonly found in nature, have found application in all these systems. Several recent studies have examined defects in tubular crystals associated with crystalline packings that must accommodate a fixed tube radius. Here we study the mechanics of tubular crystals with variable tube radius, with dislocations interposed between regions of different phyllotactic packings. Unbinding and separation of dislocation pairs with equal and opposite Burgers vectors allow the growth of one phyllotactic domain at the expense of another. In particular, glide separation of dislocations offers a low-energy mode for plastic deformations of solid tubes in response to external stresses, reconfiguring the lattice step by step. Through theory and simulation, we examine how the tube's radius and helicity affects, and is in turn altered by, the mechanics of dislocation glide. We also discuss how a sufficiently strong bending rigidity can alter or arrest the deformations of tubes with small radii.

  4. Plastic deformation of tubular crystals by dislocation glide.

    Science.gov (United States)

    Beller, Daniel A; Nelson, David R

    2016-09-01

    Tubular crystals, two-dimensional lattices wrapped into cylindrical topologies, arise in many contexts, including botany and biofilaments, and in physical systems such as carbon nanotubes. The geometrical principles of botanical phyllotaxis, describing the spiral packings on cylinders commonly found in nature, have found application in all these systems. Several recent studies have examined defects in tubular crystals associated with crystalline packings that must accommodate a fixed tube radius. Here we study the mechanics of tubular crystals with variable tube radius, with dislocations interposed between regions of different phyllotactic packings. Unbinding and separation of dislocation pairs with equal and opposite Burgers vectors allow the growth of one phyllotactic domain at the expense of another. In particular, glide separation of dislocations offers a low-energy mode for plastic deformations of solid tubes in response to external stresses, reconfiguring the lattice step by step. Through theory and simulation, we examine how the tube's radius and helicity affects, and is in turn altered by, the mechanics of dislocation glide. We also discuss how a sufficiently strong bending rigidity can alter or arrest the deformations of tubes with small radii.

  5. Phase field crystal study of deformation and plasticity in nanocrystalline materials.

    Science.gov (United States)

    Stefanovic, Peter; Haataja, Mikko; Provatas, Nikolas

    2009-10-01

    We introduce a modified phase field crystal (MPFC) technique that self-consistently incorporates rapid strain relaxation alongside the usual plastic deformation and multiple crystal orientations featured by the traditional phase field crystal (PFC) technique. Our MPFC formalism can be used to study a host of important phase transformation phenomena in material processing that require rapid strain relaxation. We apply the MPFC model to study elastic and plastic deformations in nanocrystalline materials, focusing on the "reverse" Hall-Petch effect. Finally, we introduce a multigrid algorithm for efficient numerical simulations of the MPFC model.

  6. A finite deformation theory of higher-order gradient crystal plasticity

    DEFF Research Database (Denmark)

    Kuroda, Mitsutoshi; Tvergaard, Viggo

    2008-01-01

    crystal plasticity that is based on an assumption of the existence of higher-order stresses. Furthermore, a boundary-value problem for simple shear of a constrained thin strip is studied numerically, and some characteristic features of finite deformation are demonstrated through a comparison to a solution......For higher-order gradient crystal plasticity, a finite deformation formulation is presented. The theory does not deviate much from the conventional crystal plasticity theory. Only a back stress effect and additional differential equations for evolution of the geometrically necessary dislocation...... (GND) densities supplement the conventional theory within a non-work-conjugate framework in which there is no need to introduce higher-order microscopic stresses that would be work-conjugate to slip rate gradients. We discuss its connection to a work-conjugate type of finite deformation gradient...

  7. Cathodoluminescence study of e-irradiated and plastically deformed ZnO crystals

    Energy Technology Data Exchange (ETDEWEB)

    Avella, M.; Hortelano, V.; Martinez, O.; Jimenez, J. [GdS Optronlab., Univ. de Valladolid, Paseo de Belen 1, 47011 Valladolid (Spain); Mass, J. [Grupo de Fisica Aplicada, Universidad del Norte, km 5, Via Pto. Colombia, Barranquilla (Colombia); Wang, B. [Solid State Scientific Corp., 27-2 Wright Rd., Hollis, NH 03049 (United States); Drevinsky, P.; Bliss, D. [Air Force Research Laboratory, Sensors Directorate, Hanscom AFB, MA 01731 (United States)

    2012-07-15

    Intrinsic defects are generated by e-irrradiation, and plastic deformation in ZnO crystals. Spectrally resolved cathodoluminescence (CL) experiments permit the analysis of the optical signature of those defects. We present herein a CL analysis of ZnO crystals irradiated with high energy electrons, and plastically deformed by Vickers indentation. Spectral changes around 3.3 eV and in the deep level emission are observed in the irradiated samples. These changes are compared to those observed around the extended defects introduced by Vickers indentation, which present a similar signature to the e-irradiated samples, suggesting relation between the defects generated by plastic deformation and e-irradiation. Zn vacancies seem to be the dominant defects generated in both processes (copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  8. Semantic modeling of the structural and process entities during plastic deformation of crystals and rocks

    Science.gov (United States)

    Babaie, Hassan; Davarpanah, Armita

    2016-04-01

    We are semantically modeling the structural and dynamic process components of the plastic deformation of minerals and rocks in the Plastic Deformation Ontology (PDO). Applying the Ontology of Physics in Biology, the PDO classifies the spatial entities that participate in the diverse processes of plastic deformation into the Physical_Plastic_Deformation_Entity and Nonphysical_Plastic_Deformation_Entity classes. The Material_Physical_Plastic_Deformation_Entity class includes things such as microstructures, lattice defects, atoms, liquid, and grain boundaries, and the Immaterial_Physical_Plastic_Deformation_Entity class includes vacancies in crystals and voids along mineral grain boundaries. The objects under the many subclasses of these classes (e.g., crystal, lattice defect, layering) have spatial parts that are related to each other through taxonomic (e.g., Line_Defect isA Lattice_Defect), structural (mereological, e.g., Twin_Plane partOf Twin), spatial-topological (e.g., Vacancy adjacentTo Atom, Fluid locatedAlong Grain_Boundary), and domain specific (e.g., displaces, Fluid crystallizes Dissolved_Ion, Void existsAlong Grain_Boundary) relationships. The dynamic aspect of the plastic deformation is modeled under the dynamical Process_Entity class that subsumes classes such as Recrystallization and Pressure_Solution that define the flow of energy amongst the physical entities. The values of the dynamical state properties of the physical entities (e.g., Chemical_Potential, Temperature, Particle_Velocity) change while they take part in the deformational processes such as Diffusion and Dislocation_Glide. The process entities have temporal parts (phases) that are related to each other through temporal relations such as precedes, isSubprocessOf, and overlaps. The properties of the physical entities, defined under the Physical_Property class, change as they participate in the plastic deformational processes. The properties are categorized into dynamical, constitutive

  9. Effects of microscopic boundary conditions on plastic deformations of small-sized single crystals

    DEFF Research Database (Denmark)

    Kuroda, Mitsutoshi; Tvergaard, Viggo

    2009-01-01

    The finite deformation version of the higher-order gradient crystal plasticity model proposed by the authors is applied to solve plane strain boundary value problems, in order to obtain an understanding of the effect of the higher-order boundary conditions. Numerical solutions are carried out...... effect of higher-order boundary conditions on the overall deformation mode of the block is observed. The bent foil has free surfaces through which dislocations can go out of the material, and we observe a strong size-dependent mechanical response resulting from the surface condition assumed....

  10. Crystal plasticity modeling of β phase deformation in Ti-6Al-4V

    Science.gov (United States)

    Moore, John A.; Barton, Nathan R.; Florando, Jeff; Mulay, Rupalee; Kumar, Mukul

    2017-10-01

    Ti-6Al-4V is an alloy of titanium that dominates titanium usage in applications ranging from mass-produced consumer goods to high-end aerospace parts. The material’s structure on a microscale is known to affect its mechanical properties but these effects are not fully understood. Specifically, this work will address the effects of low volume fraction intergranular β phase on Ti-6Al-4V’s mechanical response during the transition from elastic to plastic deformation. A crystal plasticity-based finite element model is used to fully resolve the deformation of the β phase for the first time. This high fidelity model captures mechanisms difficult to access via experiments or lower fidelity models. The results are used to assess lower fidelity modeling assumptions and identify phenomena that have ramifications for failure of the material.

  11. Crystal plasticity finite element analysis of deformation behaviour in SAC305 solder joint

    Science.gov (United States)

    Darbandi, Payam

    Due to the awareness of the potential health hazards associated with the toxicity of lead (Pb), actions have been taken to eliminate or reduce the use of Pb in consumer products. Among those, tin (Sn) solders have been used for the assembly of electronic systems. Anisotropy is of significant importance in all structural metals, but this characteristic is unusually strong in Sn, making Sn based solder joints one of the best examples of the influence of anisotropy. The effect of anisotropy arising from the crystal structure of tin and large grain microstructure on the microstructure and the evolution of constitutive responses of microscale SAC305 solder joints is investigated. Insights into the effects of key microstructural features and dominant plastic deformation mechanisms influencing the measured relative activity of slip systems in SAC305 are obtained from a combination of optical microscopy, orientation imaging microscopy (OIM), slip plane trace analysis and crystal plasticity finite element (CPFE) modeling. Package level SAC305 specimens were subjected to shear deformation in sequential steps and characterized using optical microscopy and OIM to identify the activity of slip systems. X-ray micro Laue diffraction and high energy monochromatic X-ray beam were employed to characterize the joint scale tensile samples to provide necessary information to be able to compare and validate the CPFE model. A CPFE model was developed that can account for relative ease of activating slip systems in SAC305 solder based upon the statistical estimation based on correlation between the critical resolved shear stress and the probability of activating various slip systems. The results from simulations show that the CPFE model developed using the statistical analysis of activity of slip system not only can satisfy the requirements associated with kinematic of plastic deformation in crystal coordinate systems (activity of slip systems) and global coordinate system (shape changes

  12. A Study of Hardening Behavior Based on a Finite-Deformation Gradient Crystal-Plasticity Model

    CERN Document Server

    Pouriayevali, Habib

    2016-01-01

    A systematic study on the different roles of the governing components of a well-defined finite-deformation gradient crystal-plasticity model proposed by (Gurtin, 2008b) is carried out, in order to visualize the capability of the model in the prediction of a wide range of hardening behaviors as well as rate-dependent, scale-variation and Bauschinger-like responses in a single crystal. A function of accumulation rates of dislocations is employed and viewed as a measure of formation of short-range interactions which impede dislocation movements within a crystal. The model is first represented in the reference configuration for the purpose of numerical implementation, and then implemented in the FEM software ABAQUS via a user-defined subroutine (UEL). Our simulation results reveal that the dissipative gradient-strengthening is also identified as a source of isotropic-hardening behavior, which represents the effect of cold work introduced by (Gurtin and Ohno, 2011). Moreover, plastic flows in predefined slip syste...

  13. Computational strain gradient crystal plasticity

    DEFF Research Database (Denmark)

    Niordson, Christian Frithiof; Kysar, Jeffrey W.

    2014-01-01

    of plane crystal plasticity are studied: pure shear of a single crystal between rigid platens as well as plastic deformation around cylindrical voids in hexagonal close packed and face centered cubic crystals. Effective in-plane constitutive slip parameters for plane strain deformation of specifically...

  14. The effect of crystal-plastic deformation on Ti concentration in quartz

    Science.gov (United States)

    Nachlas, W. O.; Hirth, G.; Whitney, D. L.; Teyssier, C. P.

    2013-12-01

    Quartz is a dominant phase controlling crustal rheology and strain localization, and the sensitivity of its recrystallization mechanisms to variations in temperature, pressure, and fluid activity make evaluation of these parameters crucial to reconstructing the deformation history of quartz-bearing rocks in the lithosphere. The advent of Ti in quartz thermobarometry provides a technique with potentially powerful applications for understanding the conditions at which rocks deform plastically in the crust. However, it is unclear how ductile deformation, specifically dislocation creep, affects Ti substitution in quartz and whether the Ti concentration in quartz accurately records the conditions at which quartz recrystallized. This study addresses these questions through a series of high P-T rock deformation experiments on precisely synthesized Ti-doped quartz aggregates to investigate the influence of strain and dynamic recrystallization on the concentration of Ti in quartz. Laboratory rock deformation experiments provide an ideal opportunity to study Ti solubility in deformed quartz because they allow for recrystallization to occur in a controlled environment; deformation experiments are conducted under isothermal and isobaric conditions at constant strain rate for increasing intervals of time to isolate the effect of strain on Ti chemistry of quartz. This study employs a novel doping synthesis method to produce a quartz aggregate consisting of a large population of quartz crystals doped with a precise Ti concentration where each individual crystal has a uniform dopant distribution. Deformation of a homogeneous starting material enables simulation of a retrograde solubility path, in which a sample with an initially high, uniform concentration is modified during deformation at conditions where the solubility is substantially lower. This enables observations to be made of the mechanisms responsible for mobilizing Ti through diffusion and exsolution to adjust to the

  15. Micro-Structural Evolution and Size-Effects in Plastically Deformed Single Crystals: Strain Gradient Continuum Modeling

    DEFF Research Database (Denmark)

    El-Naaman, Salim Abdallah

    , to focus on their ability to capture realistic micro-structural evolution. This challenge is the main focus of the present thesis, which takes as starting point a non-work conjugate type back stress based higher order crystal plasticity theory. Within this framework, several possibilities for the back......An extensive amount of research has been devoted to the development of micro-mechanics based gradient plasticity continuum theories, which are necessary for modeling micron-scale plasticity when large spatial gradients of plastic strain appear. While many models have proven successful in capturing...... the macroscopic effects related to strain gradients, most predict smooth micro-structures. The evolution of dislocation micro-structures, during plastic straining of ductile crystalline materials, is highly complex and nonuniform. Published experimental measurements on deformed metal crystals show distinct...

  16. A defect density-based constitutive crystal plasticity framework for modeling the plastic deformation of Fe-Cr-Al cladding alloys subsequent to irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Patra, Anirban [Los Alamos National Laboratory; Wen, Wei [Los Alamos National Laboratory; Martinez Saez, Enrique [Los Alamos National Laboratory; Tome, Carlos [Los Alamos National Laboratory

    2016-02-05

    It is essential to understand the deformation behavior of these Fe-Cr-Al alloys, in order to be able to develop models for predicting their mechanical response under varied loading conditions. Interaction of dislocations with the radiation-induced defects governs the crystallographic deformation mechanisms. A crystal plasticity framework is employed to model these mechanisms in Fe-Cr-Al alloys. This work builds on a previously developed defect density-based crystal plasticity model for bcc metals and alloys, with necessary modifications made to account for the defect substructure observed in Fe-Cr-Al alloys. The model is implemented in a Visco-Plastic Self Consistent (VPSC) framework, to predict the mechanical behavior under quasi-static loading.

  17. Plastic deformation of submicron-sized crystals studied by in-situ Kikuchi diffraction and dislocation imaging

    DEFF Research Database (Denmark)

    Zhang, Xiaodan; Godfrey, Andrew; Winther, Grethe

    2012-01-01

    The plastic deformation of submicron-size copper single crystals in the form of pillars has been characterized during in-situ compression in the transmission electron microscope up to strains of 28–33% using a state-of-the-art holder (PI-95 PicoIndenter). The dimensions of the crystals used were...... approx. 500×250×200 nm3 with the compression axis oriented 1.6° from [110]. Local crystallographic orientations have been determined with high accuracy using a Kikuchi diffraction method and glide of dislocations over a pillar has also been observed directly by dark field imaging. The variation...

  18. Localization of plastic deformation

    Energy Technology Data Exchange (ETDEWEB)

    Rice, J R

    1976-04-01

    The localization of plastic deformation into a shear band is discussed as an instability of plastic flow and a precursor to rupture. Experimental observations are reviewed, a general theoretical framework is presented, and specific calculations of critical conditions are carried out for a variety of material models. The interplay between features of inelastic constitutive description, especially deviations from normality and vertex-like yielding, and the onset of localization is emphasized.

  19. Three-Dimensional Crystal Plasticity Finite Element Simulation of Hot Compressive Deformation Behaviors of 7075 Al Alloy

    Science.gov (United States)

    Li, Lei-Ting; Lin, Y. C.; Li, Ling; Shen, Lu-Ming; Wen, Dong-Xu

    2015-03-01

    Three-dimensional crystal plasticity finite element (CPFE) method is used to investigate the hot compressive deformation behaviors of 7075 aluminum alloy. Based on the grain morphology and crystallographic texture of 7075 aluminum alloy, the microstructure-based representative volume element (RVE) model was established by the pole figure inversion approach. In order to study the macroscopic stress-strain response and microstructural evolution, the CPFE simulations are performed on the established microstructure-based RVE model. It is found that the simulated stress-strain curves and deformation texture well agree with the measured results of 7075 aluminum alloy. With the increasing deformation degree, the remained initial weak Goss texture component tends to be strong and stable, which may result in the steady flow stress. The grain orientation and grain misorientation have significant effects on the deformation heterogeneity during hot compressive deformation. In the rolling-normal plane, the continuity of strain and misorientation can maintain across the low-angle grain boundaries, while the discontinuity of strain and misorientation is observed at the high-angle grain boundaries. The simulated results demonstrate that the developed CPFE model can well describe the hot compressive deformation behaviors of 7075 aluminum alloy under elevated temperatures.

  20. A quantitative evaluation of the deformation texture predictions for aluminium alloys from crystal plasticity finite element method

    Science.gov (United States)

    Li, Saiyi; Van Houtte, Paul; Kalidindi, Surya R.

    2004-09-01

    Crystal plasticity finite element (CPFE) models are useful tools in modelling the anisotropic stress-strain responses in large deformation of polycrystalline metals. In this study, a CPFE model is applied to simulate the evolution of crystallographic textures during cold rolling of hot-rolled aluminium plates and during uniaxial tensile, uniaxial compression and simple shear tests of annealed aluminium sheets. The performance of the model is critically evaluated through quantitative comparisons of the simulated textures with those predicted by the full constraints (FC) Taylor model and the experimentally measured textures. It is shown that the CPFE model performs better than the FC Taylor model in all the cases. However, the quality of the texture predictions deteriorates with increasing strain values. The CPFE model gives better texture predictions in the moderately deformed tensile and compression samples (~20% strain), compared to the more heavily deformed simple shear (0.85-0.95 shear strain) and cold-rolled (40-98% thickness reduction) samples. It is also shown that the CPFE predictions for cold rolling can be improved with finer discretization, i.e. by assigning multiple elements per grain instead of one element per grain in the finite element model. The improvement is mainly reflected in an improved prediction of the copper component and, in some cases, an improved prediction of the brass component. Inspection of the local deformation gradients reveals that these texture changes can be attributed to the increase of shear relaxations in the RD-ND and RD-TD planes.

  1. Size effects in crystal plasticity

    DEFF Research Database (Denmark)

    Borg, Ulrik

    2007-01-01

    Numerical analyses of plasticity size effects have been carried out for different problems using a developed strain gradient crystal plasticiy theory. The theory employs higher order stresses as work conjugates to slip gradients and uses higher order boundary conditions. Problems on localization...... of plastic flow in a single crystal, grain boundary effects in a bicrystal, and grain size effects in a polycrystal are studied. Single crystals containing micro-scale voids have also been analyzed at different loading conditions with focus on the stress and deformation fields around the voids, on void...... growth and interaction between neighboring voids, and on a comparison between the developed strain gradient crystal plasticity theory and a discrete dislocation plasticity theory. Furthermore, voids and rigid inclusions in isotropic materials have been studied using a strain gradient plasticity theory...

  2. Mapping mesoscale heterogeneity in the plastic deformation of a copper single crystal

    Energy Technology Data Exchange (ETDEWEB)

    Magid, K. R.; Florando, J.N.; Lassila, D.H.; Leblanc, M.M.; Tamura, N.; Morris Jr, J. W.

    2008-10-01

    The work reported here is part of a 'multiscale characterization' study of heterogeneous deformation patterns in metals. A copper single crystal was oriented for single slip in the (111)[{bar 1}01] slip system and tested to {approx}10% strain in roughly uniaxial compression. The macroscopic strain field was monitored during the test by optical 'image correlation'. The strain field was measured on orthogonal surfaces, one of which (the x-face) was oriented perpendicular to [1{bar 2}1] and contained the [{bar 1}01] direction of the preferred slip system. The macroscopic strain developed in an inhomogeneous pattern of broad, crossed shear bands in the x-face. One, the primary band, lay parallel to (111). The second, the 'conjugate' band, was oriented perpendicular to (111) with an overall ({bar 1}01) habit that contains no common slip plane of the fcc crystal. The mesoscopic deformation pattern was explored with selected area diffraction, using a focused synchrotron radiation polychromatic beam with a resolution of 1-3 {micro}m. Areas within the primary, conjugate and mixed (primary + conjugate) strain regions of the x-face were identified and mapped for their orientation, excess defect density and shear stress. The mesoscopic defect structure was concentrated in broad, somewhat irregular primary bands that lay nominally parallel to (111) in an almost periodic distribution with a period of about 30 {micro}m. These primary bands were dominant even in the region of conjugate strain. There were also broad conjugate defect bands, almost precisely perpendicular to the primary bands, that tended to bridge primary bands and terminate at them. The residual shear stresses were large (ranging to well above 500 MPa) and strongly correlated with the primary shear bands; interband stresses were small. The maximum resolved shear stresses within the primary bands were oriented out of the plane of the bands, and, hence, could not recover the dislocation

  3. Deformations of crystal frameworks

    CERN Document Server

    Borcea, Ciprian S

    2011-01-01

    We apply our deformation theory of periodic bar-and-joint frameworks to tetrahedral crystal structures. The deformation space is investigated in detail for frameworks modelled on quartz, cristobalite and tridymite.

  4. A facility for plastic deformation of germanium single-crystal wafers

    DEFF Research Database (Denmark)

    Lebech, B.; Theodor, K.; Breiting, B.

    1998-01-01

    . All movements and temperature changes are done by a robot via a PLC-control system. Two nine-crystal focusing monochromators (54 x 116 and 70 x 116 mm(2)) made from 100 wafers with average mosaicity similar to 13' have been constructed. Summaries of the test results are presented. (C) 1998 Elsevier...

  5. About the Nature of Electroluminescence Centers in Plastically Deformed Crystals of p-type Silicon

    Directory of Open Access Journals (Sweden)

    B.V. Pavlyk

    2015-10-01

    Full Text Available The paper describes research of dislocation electroluminescence of single crystal p-type silicon with a high concentration of dislocations on the surface (111. It is shown the reaction of the luminescence spectra and capacitive-modulation spectra of samples after high-temperature annealing in an atmosphere of flowing oxygen. The analysis of the results lets us to establish the nature of recombination centers and their reorganization under high-temperature annealing. It is shown that deposition of Al film on the substrate p-Si leads to the formation of strain capacity and the localization of defects in the surface layer that corresponds to luminescence centers.

  6. Irradiation-initiated plastic deformation in prestrained single-crystal copper

    Energy Technology Data Exchange (ETDEWEB)

    Li, Bo [Department of Modern Mechanics, University of Science and Technology of China, Hefei, Anhui 230027 (China); The Peac Institute of Multiscale Sciences, Chengdu, Sichuan 610031 (China); Wang, Liang [The Peac Institute of Multiscale Sciences, Chengdu, Sichuan 610031 (China); Key Laboratory of Advanced Technologies of Materials, Ministry of Education, Southwest Jiaotong University, Chengdu, Sichuan 610031 (China); Jian, Wu-Rong [The Peac Institute of Multiscale Sciences, Chengdu, Sichuan 610031 (China); Department of Engineering Mechanics, South China University of Technology, Guangzhou, Guangdong 510640 (China); E, Jun-Cheng [The Peac Institute of Multiscale Sciences, Chengdu, Sichuan 610031 (China); Key Laboratory of Advanced Technologies of Materials, Ministry of Education, Southwest Jiaotong University, Chengdu, Sichuan 610031 (China); Ma, Hong-Hao, E-mail: hhma@ustc.edu.cn [Department of Modern Mechanics, University of Science and Technology of China, Hefei, Anhui 230027 (China); Luo, Sheng-Nian, E-mail: sluo@pims.ac.cn [The Peac Institute of Multiscale Sciences, Chengdu, Sichuan 610031 (China); Key Laboratory of Advanced Technologies of Materials, Ministry of Education, Southwest Jiaotong University, Chengdu, Sichuan 610031 (China)

    2016-02-01

    With large-scale molecular dynamics simulations, we investigate the response of elastically prestrained single-crystal Cu to irradiation as regards the effects of prestrain magnitude and direction, as well as PKA (primary knock-on atom) energy. Under uniaxial tension, irradiation induces such defects as Frenkel pairs, stacking faults, twins, dislocations, and voids. Given the high dislocation concentration, twins and quad-stacking faults form through overlapping of different stacking faults. Voids nucleate via liquid cavitation, and dislocations around void play a lesser role in the void nucleation and growth. Dislocation density increases with increasing prestrain and PKA energy. At a given prestrain, there exists a critical PKA energy for dislocation activation, which decreases with increasing prestrain and depends on crystallographic direction of the applied prestrain.

  7. The microstructural record of porphyroclasts and matrix of serpentinite mylonites – from brittle and crystal-plastic deformation to dissolution-precipitation creep

    Directory of Open Access Journals (Sweden)

    J. Bial

    2013-04-01

    Full Text Available We examine the microfabric development in high-pressure, low-temperature metamorphic serpentinite mylonites exposed in the Erro-Tobbio Unit (Voltri Massif, Italy using polarization microscopy and electron microscopy (SEM/EBSD, EMP. The mylonites are derived from mantle peridotites, were serpentinized at the ocean floor and underwent high pressure metamorphism during Alpine subduction. They contain diopside and olivine porphyroclasts embedded in a fine-grained matrix essentially consisting of antigorite. The porphyroclasts record brittle and crystal-plastic deformation of the original peridotites in the upper mantle at stresses of a few hundred MPa. After the peridotites became serpentinized, deformation occurred mainly by dissolution-precipitation creep resulting in a foliation with flattened olivine grains at phase boundaries with antigorite, crenulation cleavages and olivine and antigorite aggregates in strain shadows next to porphyroclasts. It is suggested that the fluid was provided by dehydration reactions of antigorite forming olivine and enstatite during subduction and prograde metamorphism. At sites of stress concentration around porphyroclasts antigorite reveals an associated SPO and CPO, characteristically varying grain sizes and sutured grain boundaries, indicating deformation by dislocation creep. Stresses were probably below a few tens of MPa in the serpentinites, which was not sufficiently high to allow for crystal-plastic deformation of olivine at conditions at which antigorite is stable. Accordingly, any intragranular deformation features of the newly precipitated olivine in strain shadows are absent. The porphyroclast microstructures are not associated with the microstructures of the mylonitic matrix, but are inherited from an independent earlier deformation. The porphyroclasts record a high-stress deformation in the upper mantle of the oceanic lithosphere probably related to rifting processes, whereas the antigorite matrix

  8. Glassy features of crystal plasticity

    Science.gov (United States)

    Lehtinen, Arttu; Costantini, Giulio; Alava, Mikko J.; Zapperi, Stefano; Laurson, Lasse

    2016-08-01

    Crystal plasticity occurs by deformation bursts due to the avalanchelike motion of dislocations. Here we perform extensive numerical simulations of a three-dimensional dislocation dynamics model under quasistatic stress-controlled loading. Our results show that avalanches are power-law distributed and display peculiar stress and sample size dependence: The average avalanche size grows exponentially with the applied stress, and the amount of slip increases with the system size. These results suggest that intermittent deformation processes in crystalline materials exhibit an extended critical-like phase in analogy to glassy systems instead of originating from a nonequilibrium phase transition critical point.

  9. Computational Strain Gradient Crystal Plasticity

    DEFF Research Database (Denmark)

    Niordson, Christian Frithiof; Kysar, Jeffrey W.

    2011-01-01

    A model for strain gradient crystal visco-plasticity is formulated along the lines proposed by Fleck andWillis (2009) for isotropic plasticity. Size-effects are included in the model due to the addition of gradient terms in both the free energy as well as through a dissipation potential. A finite...... element solution method is presented, which delivers the slip-rate field and the velocity-field based on two minimum principles. Some plane deformation problems relevant for certain specific orientations of a face centered cubic crystal under plane loading conditions are studied, and effective in......-plane parameters are developed based on the crystallographic properties of the material. The problem of cyclic shear of a single crystal between rigid platens is studied as well as void growth of a cylindrical void....

  10. Crystal plasticity in presence of great deformations and damages; Plasticite cristalline en presence de grandes deformations et d'endommagement

    Energy Technology Data Exchange (ETDEWEB)

    Musienko, A

    2005-03-15

    This work addresses several problems in the framework of crystal plasticity. Its main motivation is the development of a coupled approach able to account for the interaction between environment, inelastic deformation and damage in a zircaloy alloy used for the cladding tubes in nuclear power plants. A first study was previously made by O. Diard on the same subject, and a preliminary numerical procedure was developed for performing the simulation. Our purpose was to improve this first attempt, and to reach a quantitative agreement with the experimental data. The main modification to the initial model is a new geometrical representation of the 'grain boundary'. In fact, instead of having a special material for the grain boundary, we introduce a specific zone in each grain near the grain boundary. In this area, we still have the normal slip systems, corresponding to the grain it belongs to, but also specific systems to allow the boundary to slip and open. The resulting model (DOS) successfully represents damage, opening and sliding, and can be calibrated using experimental information on tubes submitted to complex load histories. A finite strain formulation is also provided. Finally, a model describing cleavage is in competition with intergranular damage, so that we are able to predict the transition from intergranular to transgranular cracking. These new features are implemented using a robust integration algorithm in the finite element code Zebulon. A simulation of stress corrosion cracking of Zircaloy tubes in iodine environment (which appears as a result of pellet-cladding interaction in the core of nuclear pressurized-water reactors) is proposed. The predictions of the model are in good agreement with the experimental data describing the crack propagation rate. The following points are obtained as sub-products of the study: 1)Elasticity, J2 plasticity, crystal plasticity, and the DOS model are successively studied, in the framework of small perturbation

  11. Plastic Deformation of Metal Surfaces

    DEFF Research Database (Denmark)

    Hansen, Niels; Zhang, Xiaodan; Huang, Xiaoxu

    2013-01-01

    parameters by TEM and EBSD and apply strength-structural relationships established for the bulk metal deformed to high strains. This technique has been applied to steel deformed by high energy shot peening and a calculated stress gradient at or near the surface has been successfully validated by hardness......Plastic deformation of metal surfaces by sliding and abrasion between moving parts can be detrimental. However, when the plastic deformation is controlled for example by applying different peening techniques hard surfaces can be produced which can increase the fracture resistance and fatigue life...... of metal components. An optimization of processes and material parameters must be based on a quantification of stress and strain gradients at the surface and in near surface layer where the structural scale can reach few tens of nanometers. For such fine structures it is suggested to quantify structural...

  12. Effect of plastic deformation on the optical and electrical properties in Cd0.96Zn0.04Te single crystals

    Science.gov (United States)

    Lmai, F.; Moubah, R.; Amiri, A. El.; Boudali, A.; Hlil, E. K.; Lassri, H.

    2017-01-01

    Using UV-visible, photoluminescence, electrical measurements and ab-initio calculations, we study the effect of introduced dislocations on the optical and electrical properties in Cd0.96Zn0.04Te crystals. To generate dislocations, a plastic deformation on the Cd(111) and Te (1 bar 1 bar 1 bar) faces was induced. It is shown that the plastic deformation results in: i) a decrease in Zn concentration in the deformed regions, which is higher on the Cd face, ii) decrease in the band gap energy, iii) an increase of acceptor concentration, and iv) the leakage current is higher on the Te face. Calculation of barrier height has led to identify the dominant defect, which is the complex Cd vacancies, acceptor center [VCd, ACd] on the Cd face and VTe on the Te side, respectively. Electronic structure calculations based on full potential linearized augmented plane waves (FPLAPW) method were performed as well and have shown that the optical band gap energy decrease upon deformation can be understood by the decrease in Zn content in the deformed regions.

  13. Microstructure, Slip Systems and Yield Stress Anisotropy in Plastic Deformation

    DEFF Research Database (Denmark)

    Winther, Grethe; You, Ze Sheng; Lu, Lei

    The highly anisotropic microstructures in nanotwinned copper produced by electrodeposition provide an excellent opportunity to evaluate models for microstructurally induced mechanical anisotropy. A crystal plasticity model originally developed for the integration of deformation induced dislocation...

  14. Plastic deformation of nanocrystalline nickel

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    A high-resolution electron microscopy study has uncovered the plastic behavior of accommodating large strains in nanocrystalline (NC) Ni subject to cold rolling at liquid nitrogen temperature. The activation of grain-boundary-mediated-plasticity is evidenced in NC-Ni, including twinning and formation of stacking fault via partial dislocation slips from the grain boundary. The formation and storage of 60? full dislocations are observed inside NC-grains. The grain/twin boundaries act as the barriers of dislocation slips, leading to dislocation pile-up, severe lattice distortion, and formation of sub-grain boundary. The vicinity of grain/twin boundary is where defects preferentially accumulate and likely the favorable place for onset of plastic deformation. The present results indicate the heterogeneous and multiple natures of accommodating plastic strains in NC-grains.

  15. Plastic deformation of nanocrystalline nickel

    Institute of Scientific and Technical Information of China (English)

    WU XiaoLei

    2009-01-01

    A high-resolution electron microscopy study has uncovered the plastic behavior of accommodating large strains in nanocrystalline(NC)Ni subject to cold rolling at liquid nitrogen temperature.The acti vation of grain-boundary-mediated-plasticity is evidenced in NC-Ni,including twinning and formation of stacking fault via partial dislocation slips from the grain boundary.The formation and storage of 60° full dislocations are observed inside NC-grains.The grain/twin boundaries act as the barriers of dislocation slips,leading to dislocation pile-up,severe lattice distortion,and formation of sub-grain boundary.The vicinity of grain/twin boundary is where defects preferentially accumulate and likely the favorable place for onset of plastic deformation.The present results indicate the heterogeneous and multiple natures of accommodating plastic strains in NC-grains.

  16. Deformation Heterogeneity and Texture Evolution of NiTiFe Shape Memory Alloy Under Uniaxial Compression Based on Crystal Plasticity Finite Element Method

    Science.gov (United States)

    Liang, Yulong; Jiang, Shuyong; Zhang, Yanqiu; Zhao, Yanan; Sun, Dong; Zhao, Chengzhi

    2017-04-01

    Crystal plastic finite element method (CPFEM) is used to simulate microstructural evolution, texture evolution and macroscopic stress-strain response of polycrystalline NiTiFe shape memory alloy (SMA) with B2 austenite phase during compression deformation. A novel two-dimensional polycrystalline finite element model based on electron back-scattered diffraction (EBSD) experiment data is developed to represent virtual grain structures of polycrystalline NiTiFe SMA. In the present study, CPFEM plays a significant role in predicting texture evolution and macroscopic stress-strain response of NiTiFe SMA during compression deformation. The simulated results are in good agreement with the experimental ones. It can be concluded that intragranular and intergranular strain heterogeneities are of great importance in guaranteeing plastic deformation compatibility of NiTiFe SMA. CPFEM is able to capture the evolution of grain boundaries with various misorientation angles for NiTiFe SMA subjected to the various compression deformation degrees. During uniaxial compression of NiTiFe SMA, the microstructure evolves into high-energy substructure and consequently the well-defined subgrains are formed. Furthermore, the grain boundaries and the subgrain boundaries are approximately aligned with the direction in which metal flows.

  17. Effect of Hafnium and Zirconium to Glass Forming Ability, Thermal Stability, Plasticity Deformation and Crystallization of Ni-Free Pentabasic Ti-Based Bulk Metallic Glasses

    Directory of Open Access Journals (Sweden)

    Oak J.J.

    2017-06-01

    Full Text Available The newly designed Ti-based bulk metallic glass (BMG in which case of fracture behavior was observed 1990MPa to compressive strength with a wide plastic deformation around 7% after process of elastic deformation. This phenomenon can be compared with those of Ti-based alloys and other Ti-based BMGs and indicates high potential to be applied in use. It was evaluated the Ti-based BMG for thermal stability that the reduced glass parameters, ΔTx, Trg and γ, are 79K, 0.50 and 0.38, respectively. In addition, it reveals high activation energies for crystallization in which are estimated to Ex1 = 291.77 ±9.71 kJ/mol, Ex2 = 588.77 ±28.88 kJ/mol and Ex3 = 330.26 ±3.61 kJ/mol on kissinger plotting in this study.

  18. Deformation mechanisms of plasticized starch materials.

    Science.gov (United States)

    Mikus, P-Y; Alix, S; Soulestin, J; Lacrampe, M F; Krawczak, P; Coqueret, X; Dole, P

    2014-12-19

    The aim of this paper is to understand the influence of plasticizer and plasticizer amount on the mechanical and deformation behaviors of plasticized starch. Glycerol, sorbitol and mannitol have been used as plasticizers. After extrusion of the various samples, dynamic mechanical analyses and video-controlled tensile tests have been performed. It was found that the nature of plasticizer, its amount as well as the aging of the material has an impact on the involved deformation mechanism. The variations of volume deformation could be explained by an antiplasticization effect (low plasticizer amount), a phase-separation phenomenon (excess of plasticizer) and/or by the retrogradation of starch.

  19. Cyclic Plastic Deformation and Welding Simulation

    NARCIS (Netherlands)

    Ten Horn, C.H.L.J.

    2003-01-01

    One of the concerns of a fitness for purpose analysis is the quantification of the relevant material properties. It is known from experiments that the mechanical properties of a material can change due to a monotonic plastic deformation or a cyclic plastic deformation. For a fitness for purpose anal

  20. Crystal plasticity and grain crushing in high-porosity rocks

    Science.gov (United States)

    Rahmani, H.; Tjioe, M.; Borja, R. I.

    2012-12-01

    Previous studies show the significance of considering microstructure of individual crystals in modeling the inelastic behavior of high-porosity rocks. Plastic deformation of high-porosity crystalline rocks, exemplified by limestone, is mainly attributed to crystal plasticity and cataclastic flow. Crystal plasticity is defined as the plastic deformation along potential slip systems within the crystal lattice. In the context of continuum mechanics this micro-mechanism is modeled by a nonlinear relationship between stresses and strains. Two types of nonlinearity characterize the inelastic behavior of the crystal grains: material nonlinearity and geometric nonlinearity. Material nonlinearity defines the changes in stiffness matrix due to plastic slip along slip systems. Geometric nonlinearity contributes to the changes in stiffness matrix due to changes in the geometry of the crystal grains. Geometric nonlinearity is modeled using theory of finite deformation, which assumes the geometry of slip systems to be a function of crystal deformation. This type of nonlinearity is very important in modeling crystal deformation mainly because of plastic spin induced by anisotropy in the crystal structure. However, considering the geometry of slip systems as a function of crystal slip makes the equations highly nonlinear. As a result, many studies either ignore geometric nonlinearity or make other assumptions to simplify the equations. Cataclastic flow, on the other hand, is characterized by pervasive grain crushing in which larger grains are converted into smaller ones. We model cataclastic flow as strong discontinuity in the grain scale via an assumed enhanced strain method formulated within the context of nonlinear finite elements. The method allows the individual finite elements, identified to be in critical condition, to break into two pieces along a plane identified by theory of bifurcation. We show that modeling cataclastic flow combined with finite deformation crystal

  1. Demonstration of finite element simulations in MOOSE using crystallographic models of irradiation hardening and plastic deformation

    Energy Technology Data Exchange (ETDEWEB)

    Patra, Anirban [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Wen, Wei [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Martinez Saez, Enrique [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Tome, Carlos [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2016-05-31

    This report describes the implementation of a crystal plasticity framework (VPSC) for irradiation hardening and plastic deformation in the finite element code, MOOSE. Constitutive models for irradiation hardening and the crystal plasticity framework are described in a previous report [1]. Here we describe these models briefly and then describe an algorithm for interfacing VPSC with finite elements. Example applications of tensile deformation of a dog bone specimen and a 3D pre-irradiated bar specimen performed using MOOSE are demonstrated.

  2. Oxygen gettering at defects introduced by plastic deformation in silicon

    Energy Technology Data Exchange (ETDEWEB)

    Yarykin, N. [Institute of Microelectronics Technology, RAS, Chernogolovka (Russian Federation); Hieckmann, E. [Institute for Applied Physics/Semiconductor Physics, TU Dresden (Germany); Vdovin, V.I. [Institute for Chemical Problems of Microelectronics, Moscow (Russian Federation)

    2007-07-01

    Decay of the supersaturated oxygen solid solution during annealing at 500-800 C is studied in plastically deformed silicon crystals. The plastic deformation up to 4-5% is found to significantly increase the rate of the decay. In the samples deformed at 700 C the decay is governed by the oxygen diffusion not to dislocations but to other defects created during deformation. These defects are recovered due to the short annealing at 1150 C. In the annealed samples the decay of oxygen solution is determined by the oxygen diffusion to dislocations. In both cases the activation energy of oxygen transport in the temperature range (500-700) C is about 1.5 eV. (copyright 2007 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  3. Formation and subdivision of deformation structures during plastic deformation

    DEFF Research Database (Denmark)

    Jakobsen, B.; Poulsen, H.F.; Lienert, U.;

    2006-01-01

    During plastic deformation of metals and alloys, dislocations arrange in ordered patterns. How and when these self-organization processes take place have remained elusive, because in situ observations have not been feasible. We present an x-ray diffraction method that provided data on the dynamics...... of individual, deeply embedded dislocation structures. During tensile deformation of pure copper, dislocation-free regions were identified. They showed an unexpected intermittent dynamics, for example, appearing and disappearing with proceeding deformation and even displaying transient splitting behavior....... Insight into these processes is relevant for an understanding of the strength and work-hardening of deformed materials....

  4. Intermittent dislocation density fluctuations in crystal plasticity from a phase-field crystal model

    DEFF Research Database (Denmark)

    Tarp, Jens M.; Angheluta, Luiza; Mathiesen, Joachim;

    2014-01-01

    Plastic deformation mediated by collective dislocation dynamics is investigated in the two-dimensional phase-field crystal model of sheared single crystals. We find that intermittent fluctuations in the dislocation population number accompany bursts in the plastic strain-rate fluctuations. Disloc...

  5. Structural Transformations in Metallic Materials During Plastic Deformation

    Science.gov (United States)

    Zasimchuk, E.; Turchak, T.; Baskova, A.; Chausov, N.; Hutsaylyuk, V.

    2017-03-01

    In this paper, the structure formation during the plastic deformation of polycrystalline nickel and aluminum based alloy 2024-T3 is investigated. The possibility of the relaxation and synergetic structure formation is examined. It is shown the deformation softening to be due to the crystallization of the amorphous structure of hydrodynamics flow channels (synergetic structure) HC as micrograins and their subsequent growth. The possible mechanism of micrograins' growth is proposed. The deformation processes change the phase composition of the multiphase alloy 2024-T3. It is shown by the quantitative analysis of the structures which were deformed in different regimes of the alloy samples. A method for increasing of the fatigue life through a dynamic pre-deformation is suggested.

  6. Structural Transformations in Metallic Materials During Plastic Deformation

    Science.gov (United States)

    Zasimchuk, E.; Turchak, T.; Baskova, A.; Chausov, N.; Hutsaylyuk, V.

    2017-02-01

    In this paper, the structure formation during the plastic deformation of polycrystalline nickel and aluminum based alloy 2024-T3 is investigated. The possibility of the relaxation and synergetic structure formation is examined. It is shown the deformation softening to be due to the crystallization of the amorphous structure of hydrodynamics flow channels (synergetic structure) HC as micrograins and their subsequent growth. The possible mechanism of micrograins' growth is proposed. The deformation processes change the phase composition of the multiphase alloy 2024-T3. It is shown by the quantitative analysis of the structures which were deformed in different regimes of the alloy samples. A method for increasing of the fatigue life through a dynamic pre-deformation is suggested.

  7. Thermostatistical theory of plastic deformation in metals

    NARCIS (Netherlands)

    Galindo Nava, E.I.

    2013-01-01

    This work aims to describe plastic deformation and microstructure evolution of metals at various scales in terms of dislocation behaviour. The theory is based on statistical thermodynamics, where the entropy is proposed to incorporate the possible paths for dislocation motion. Other than estimating

  8. Cathodoluminescence of natural, plastically deformed pink diamonds.

    Science.gov (United States)

    Gaillou, E; Post, J E; Rose, T; Butler, J E

    2012-12-01

    The 49 type I natural pink diamonds examined exhibit color restricted to lamellae or bands oriented along {111} that are created by plastic deformation. Pink diamonds fall into two groups: (1) diamonds from Argyle in Australia and Santa Elena in Venezuela are heavily strained throughout and exhibit pink bands alternating with colorless areas, and (2) diamonds from other localities have strain localized near the discrete pink lamellae. Growth zones are highlighted by a blue cathodoluminescence (CL) and crosscut by the pink lamellae that emit yellowish-green CL that originates from the H3 center. This center probably forms by the recombination of nitrogen-related centers (A-aggregates) and vacancies mobilized by natural annealing in the Earth's mantle. Twinning is the most likely mechanism through which plastic deformation is accommodated for the two groups of diamonds. The plastic deformation creates new centers visible through spectroscopic methods, including the one responsible for the pink color, which remains unidentified. The differences in the plastic deformation features, and resulting CL properties, for the two groups might correlate to the particular geologic conditions under which the diamonds formed; those from Argyle and Santa Elena are deposits located within Proterozoic cratons, whereas most diamonds originate from Archean cratons.

  9. Influence Intensive Plastic Deformation on Phase Formation Process in Amorphous Alloys

    Directory of Open Access Journals (Sweden)

    V.I. Lysov

    2016-06-01

    Full Text Available The influence of intensive plastic deformation on structure and properties of amorphous alloys were investigated experimentally. Using highly sensitive dilatometer techniques shown that intensive plastic deformation of amorphous alloys leads to increased of thermal stability interval that can be explained by a shift of the phase equilibria in heterogeneous system: amorphous matrix - frozen crystallization centers. Thus there is a dissolution frozen crystallization centers present in the original sample that confirmed by electron researches.

  10. A Numerical Study of Localized Plastic Deformation in Polycrystals

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    A finite element formulation which derives constitutive responsefrom crystal plasticity theory was used to examine localized deformation in fcc polycrystals. The polycrystal model was an idealized planar array of 22 hexagonal grains. The constitutive description used is based on a finite strain kinematical theory that accounts for lattice rotations. Formation of shear bands was successfully modeled in both single crystal and polycrystals. Stress and strain distribution around triple junctions was also analyzed. Results show the distributions of stresses and strains are distinctly inhomogeneous. Stress and strain fields across grain boundaries are highly discontinuous.However, this discontinuity will be restrained when shear bands are fully developed.

  11. Theory of Lattice Strain for Materials Undergoing Plastic Deformation

    Science.gov (United States)

    Karato, S.

    2008-12-01

    Radial x-ray diffraction is used to probe physical properties of materials including elastic and plastic properties. The theory used behind such an practice is the one developed by Singh (1993) in which the relation between lattice strain and elastic constants and macroscopic stress is derived. In this theory, the variation of inferred stress with the crystallographic planes, (hkl), is due to the elastic anisotropy. However, recent experimental studies showed that in many cases, the variation of stress with (hkl) far exceeds the value expected from this theory. I have developed a modified theory to rectify this problem with Singh's theory. In Singh's theory, the stress distribution in a polycrystalline material is treated only either unrelaxed or relaxed state. The role of plastic deformation is included only to the extent that plastic flow influences this stress state. Such an assumption corresponds to a Voigt model behavior, which is not an appropriate model at high temperatures where continuing plastic flow occurs with concurrent microscopic equilibrium, elastic deformation. This is a Maxwell model type behavior, and my model provides a stress analysis in a Maxwell material with anisotropic and non-linear power-law rheology. In this theory, the lattice strain corresponding to an imposed macroscopic strain-rate is calculated by three steps: (i) conversion of macroscopic strain-rate to macroscopic stress, (ii) conversion of macroscopic stress to microscopic stress at individual grains, and (iii) calculation of microscopic strain due to microscopic stress. The first step involves anisotropy in macroscopic viscosity that depends on anisotropy in crystal plasticity and lattice-preferred orientation. The second step involves anisotropic crystal plasticity and finally the third step involves elastic crystal anisotropy. In most cases, the influence of LPO is weak and in such a case, the lattice strain depends on (hkl) due to the anisotropy in both elastic and plastic

  12. Evolution of dislocation cells during plastic deformation

    Institute of Scientific and Technical Information of China (English)

    ZHOU Zhi-min; SUN Yan-rui; ZHOU Hai-tao

    2005-01-01

    In recent years,materials with ultrafine grain size(UFG) have attracted much attention.By using severe plastic deformation(SPD) techniques,materials with fine grain size as small as 200-250 nm have been obtained.However,the nature of the grain boundaries has not been theoretically understood.It is still an unsolved question whether or not finer grain sizes down to 100 nm could be reached.A semi-quantitative model for the evolution of dislocation cells in plastic deformation was proposed.The linear stability analysis of this model leads to some interesting results,which facilitate the understanding of the formation of cell structures and of the factors determining the lower limit of the cell size of SPD materials.

  13. Knowledge representation of rock plastic deformation

    Science.gov (United States)

    Davarpanah, Armita; Babaie, Hassan

    2017-04-01

    The first iteration of the Rock Plastic Deformation (RPD) ontology models the semantics of the dynamic physical and chemical processes and mechanisms that occur during the deformation of the generally inhomogeneous polycrystalline rocks. The ontology represents the knowledge about the production, reconfiguration, displacement, and consumption of the structural components that participate in these processes. It also formalizes the properties that are known by the structural geology and metamorphic petrology communities to hold between the instances of the spatial components and the dynamic processes, the state and system variables, the empirical flow laws that relate the variables, and the laboratory testing conditions and procedures. The modeling of some of the complex physio-chemical, mathematical, and informational concepts and relations of the RPD ontology is based on the class and property structure of some well-established top-level ontologies. The flexible and extensible design of the initial version of the RPD ontology allows it to develop into a model that more fully represents the knowledge of plastic deformation of rocks under different spatial and temporal scales in the laboratory and in solid Earth. The ontology will be used to annotate the datasets related to the microstructures and physical-chemical processes that involve them. This will help the autonomous and globally distributed communities of experimental structural geologists and metamorphic petrologists to coherently and uniformly distribute, discover, access, share, and use their data through automated reasoning and enhanced data integration and software interoperability.

  14. Plastic Deformation of Copper-Based Alloy Reinforced with Incoherent Nanoparticles

    Science.gov (United States)

    Matvienko, O. V.; Daneiko, O. I.; Kovalevskaya, T. A.

    2017-06-01

    The paper deals with research carried out into plastic deformation of a heavy-wall pipe made of nanoparticle reinforced copper-based alloy. We present an original approach which combines methods of crystal plasticity and deformable solid mechanics, thereby allowing to study the stress-strain state of the heavy-wall pipe strengthened with incoherent nanoparticles using a homogeneous internal pressure. Dependences are constructed for the yielding area and the pressure, the limit of elasto-plastic resistance is obtained for the heavy-wall pipe and its deformation degree is described. It is shown that the particle size has an effect on strength properties of the material.

  15. Plastic deformation and contact area of an elastic-plastic contact of ellipsoid bodies after unloading

    NARCIS (Netherlands)

    Jamari, Jamari; Schipper, Dirk J.

    2007-01-01

    This paper presents theoretical and experimental results of the residual or plastic deformation and the plastic contact area of an elastic–plastic contact of ellipsoid bodies after unloading. There are three regime responses of the deformation and contact area: elastic, elastic–plastic and fully

  16. Strain gradient crystal plasticity effects on flow localization

    DEFF Research Database (Denmark)

    Borg, Ulrik

    2007-01-01

    In metal grains one of the most important failure mechanisms involves shear band localization. As the band width is small, the deformations are affected by material length scales. To study localization in single grains a rate-dependent crystal plasticity formulation for finite strains is presented...... in the absence of strain gradients. The model is used to study the effect of an internal material length scale on the localization of plastic flow in shear bands in a single crystal under plane strain tension. It is shown that the mesh sensitivity is removed when using the nonlocal material model considered...... for metals described by the reformulated Fleck-Hutchinson strain gradient plasticity theory. The theory is implemented numerically within a finite element framework using slip rate increments and displacement increments as state variables. The formulation reduces to the classical crystal plasticity theory...

  17. 典型晶格结构FCC/BCC钢的剧烈塑性变形研究现状%Research progress on severe plastic deformation of steels with BCC/FCC crystal structures

    Institute of Scientific and Technical Information of China (English)

    马明; 蔡明晖; 唐正友; 丁桦

    2015-01-01

    晶格结构(体心立方BCC、面心立方FCC及其复合形式)类型对金属材料剧烈塑性变形过程中的晶粒细化机制产生重要影响。本文以不同晶格结构的钢铁材料为对象,重点阐述和总结了不同晶格结构类型及其变形模式差异对剧烈塑性变形过程中晶粒细化理论、组织形貌和力学性能的影响规律,其结果有望为探索剧烈塑性变形工艺过程中的组织细化理论提供一个新途径。%The crystal-structure types of metallic materials such as face-centered cubic ( FCC) and body-centered cubic ( BCC) play a crucial role on ultra-grain refinement during severe plastic deformation ( SPD) . This work will focus on three different types of steels with BCC, FCC, and BCC/FCC crystal structures, and comprehensively discuss and summarize the influence of different crystal - structure types on deformation modes, ultra - grain refinement, microstructure and properties, which will provide a new route to apply and develop this theory to ultra - grain refinement of metallic materials through SPD processing.

  18. Microstructure Evolution of Grade X100 Pipeline under Plastic Deformation Condition

    Directory of Open Access Journals (Sweden)

    Lihua Qi

    2010-01-01

    Full Text Available The effects of plastic deformation on the microstructure evolution of grade X100 pipeline were investigated by SEM, TEM and EBSD tests. The result shows that quasipolygon ferrite deforms firstly under plastic strain initial stage, then both acicular ferrite and granular bainite change remarkably with the value of plastic strain increase. When the tension stress reaches the tensile strength, microcracks nucleate around the inclusion and M/A constitute, expand with the plastic deformation increases, and finally cracks connection causes the crack penetration until the expiration. Furthermore, the microscopic orientation concentrates in {110} 〈111〉 direction before the deformation, while crystal orientation in {110} and {112} direction enhanced after the deformation.

  19. Disorientations and work-hardening behaviour during severe plastic deformation

    DEFF Research Database (Denmark)

    Pantleon, Wolfgang

    2012-01-01

    Orientation differences develop during plastic deformation even in grains of originally uniform orientation. The evolution of these disorientations is modelled by dislocation dynamics taking into account different storage mechanisms. The predicted average disorientation angles across different...... types of boundaries are in agreement with experimental data for small and moderate plastic strains. At large plastic strains after severe plastic deformation, saturation of the measured average disorientation angle is observed. This saturation is explained as an immediate consequence of the restriction...

  20. Plastic deformation of a wedge by a sliding punch

    Science.gov (United States)

    Nepershin, R. I.

    2016-11-01

    We present a self-similar solution of the problem of deformation of an ideally plastic wedge by a sliding punch with regard to contact friction; such a solution generalizes the well-known solutions of the problem of wedge penetration into a plastic half-space and of compression of an ideally plastic wedge by a plane punch. The problem is of interest for modeling the processes of plastic deformation of rough surfaces of metal pieces by a rigid tool.

  1. Damage evolution of metallic materials during high temperature plastic deformation

    Institute of Scientific and Technical Information of China (English)

    汪凌云; 刘雪峰; 汤爱涛; 黄光杰

    2002-01-01

    The damage evolution of high temperature plastic deformation of metallic materials was studied by use of continuum damage mechanics (CDM) theory. Based on thermodynamics, on a damage variable D and Zener-Hollomon parameter Z, and on the effective stress concept, a damage evolution model of high temperature plastic deformation was derived and was used to analyze the damage evolution of 1420 Al-Li alloy during high temperature plastic deformation. The model that is verified by tests can also be applied to the materials that are loaded prorata or out of proportion during high temperature plastic deformation. It extends the applied scope of damage mechanics.

  2. Structural features of plastic deformation in bulk metallic glasses

    Energy Technology Data Exchange (ETDEWEB)

    Scudino, S., E-mail: s.scudino@ifw-dresden.de; Shakur Shahabi, H.; Stoica, M.; Kühn, U. [IFW Dresden, Institut für Komplexe Materialien, D-01069 Dresden (Germany); Kaban, I.; Escher, B.; Eckert, J. [IFW Dresden, Institut für Komplexe Materialien, D-01069 Dresden (Germany); TU Dresden, Institut für Werkstoffwissenschaft, D-01062 Dresden (Germany); Vaughan, G. B. M. [European Synchrotron Radiation Facilities ESRF, BP220, 38043 Grenoble (France)

    2015-01-19

    Spatially resolved strain maps of a plastically deformed bulk metallic glass (BMG) have been created by using high-energy X-ray diffraction. The results reveal that plastic deformation creates a spatially heterogeneous atomic arrangement, consisting of strong compressive and tensile strain fields. In addition, significant shear strain is introduced in the samples. The analysis of the eigenvalues and eigenvectors of the strain tensor indicates that considerable structural anisotropy occurs in both the magnitude and direction of the strain. These features are in contrast to the behavior observed in elastically deformed BMGs and represent a distinctive structural sign of plastic deformation in metallic glasses.

  3. Plasticity size effects in voided crystals

    DEFF Research Database (Denmark)

    Hussein, M. I.; Borg, Ulrik; Niordson, Christian Frithiof;

    The shear and equi-biaxial straining responses of periodic voided single crystals are analysed using discrete dislocation plasticity and a continuum strain gradient crystal plasticity theory. In the discrete dislocation formulation the dislocations are all of edge character and are modelled as line...... predictions of the two formulations for all crystal types and void volume fractions considered when the material length scale in the non-local plasticity model chosen to be $0.325\\mu m$ (around ten times the slip plane spacing in the discrete dislocation models)....

  4. FINITE DEFORMATION ELASTO-PLASTIC THEORY AND CONSISTENT ALGORITHM

    Institute of Scientific and Technical Information of China (English)

    Liu Xuejun; Li Mingrui; Huang Wenbin

    2001-01-01

    By using the logarithmic strain, the finite deformation plastic theory, corresponding to the infinitesimal plastic theory, is established successively. The plastic consistent algorithm with first order accuracy for the finite element method (FEM) is developed. Numerical examples are presented to illustrate the validity of the theory and effectiveness of the algorithm.

  5. Pixels Intensity Evolution to Describe the Plastic Films Deformation

    Directory of Open Access Journals (Sweden)

    Juan C. Briñez-De León

    2013-11-01

    Full Text Available This work proposes an approach for mechanical behavior description in the plastic film deformation using techniques for the images analysis, which are based on the intensities evolution of fixed pixels applied to an images sequence acquired through polarizing optical assembly implemented around the platform of the plastic film deformation. The pixels intensities evolution graphs, and mechanical behavior graphic of the deformation has dynamic behaviors zones which could be associated together.

  6. Advantages of formulating an evolution equation directly for elastic distortional deformation in finite deformation plasticity

    Science.gov (United States)

    Rubin, M. B.; Cardiff, P.

    2017-06-01

    Simo (Comput Methods Appl Mech Eng 66:199-219, 1988) proposed an evolution equation for elastic deformation together with a constitutive equation for inelastic deformation rate in plasticity. The numerical algorithm (Simo in Comput Methods Appl Mech Eng 68:1-31, 1988) for determining elastic distortional deformation was simple. However, the proposed inelastic deformation rate caused plastic compaction. The corrected formulation (Simo in Comput Methods Appl Mech Eng 99:61-112, 1992) preserves isochoric plasticity but the numerical integration algorithm is complicated and needs special methods for calculation of the exponential map of a tensor. Alternatively, an evolution equation for elastic distortional deformation can be proposed directly with a simplified constitutive equation for inelastic distortional deformation rate. This has the advantage that the physics of inelastic distortional deformation is separated from that of dilatation. The example of finite deformation J2 plasticity with linear isotropic hardening is used to demonstrate the simplicity of the numerical algorithm.

  7. Plasticity and beyond microstructures, crystal-plasticity and phase transitions

    CERN Document Server

    Hackl, Klaus

    2014-01-01

    The book presents the latest findings in experimental plasticity, crystal plasticity, phase transitions, advanced mathematical modeling of finite plasticity and multi-scale modeling. The associated algorithmic treatment is mainly based on finite element formulations for standard (local approach) as well as for non-standard (non-local approach) continua and for pure macroscopic as well as for directly coupled two-scale boundary value problems. Applications in the area of material design/processing are covered, ranging from grain boundary effects in polycrystals and phase transitions to deep-drawing of multiphase steels by directly taking into account random microstructures.

  8. Formation of disorientations in dislocation structures during plastic deformation

    DEFF Research Database (Denmark)

    Pantleon, W.

    2002-01-01

    Disorientations developing during plastic deformation in dislocation structures are investigated. Based on expected mechanisms for the formation of different types of dislocation boundaries (statistical trapping of dislocations or differently activated slip systems) the formation of the disorient...

  9. Prediction of the nonlinear creep deformation of plastic products

    OpenAIRE

    Spoormaker, Jan; Skrypnyk, Ihor; Heidweiller, Anton

    2015-01-01

    Based on an example of the non-linear creep deformations of an air inlet, thispaper demonstrates modern capabilities in the FEA modeling of complex 3D visco-elastic deformations in relation to the design of plastic products. The importance of such capabilities for designing complex plastic components is discussed. Because commercial FEA packages do not yet render these capabilities "off the shelf", the non-linear visco-elasticity model is incorporated through a user subroutine. The specifics ...

  10. Evolution of microstresses in plastically deformed duplex steel

    Energy Technology Data Exchange (ETDEWEB)

    Baczmanski, A.; Wierzbanowski, K. [Akademia Gorniczo-Hutnicza, Krakow (Poland). WFTJ; Braham, C. [LMMM, URA-CNRS 1219, Ecole Nationale Superieure d' Arts et Metiers, Paris (France); Lodini, A. [IFTS, Univ. de Reims Charleville-Mezieres (France)

    2000-07-01

    The X-ray diffraction method has been applied to determine the internal stresses in two phases austeno-ferritic steel during uniaxial tensile test. The elasto-plastic deformation model was used to predict internal stresses and critical resolved shear stress for the both phases. The model calculations were successfully compared with the information obtained from the shift and broadening of diffraction peak. Finally, the parameters characterising elasto-plastic deformation for duplex steel were determined. (orig.)

  11. Finite element modelling of manufacturing processes for plastic deformation

    Directory of Open Access Journals (Sweden)

    Fernando Mejía Umaña

    2010-04-01

    Full Text Available The object of the Mechanical and Electrical Engineering Departament's computational mechanics of solids section is to offer industry solutions to problems requiring deeper knowledge regarding the mechanincs of solids and how they can be numerically modelled. This article summarises the foundations of plastic deformation, together with the results obtained during the experimental phase and from modelling two applications of plastic deformation processes being studied as part of mechanical engineering students' undergraduate projects.

  12. Finite lattice distortion patterns in plastically deformed zircon grains

    Directory of Open Access Journals (Sweden)

    E. Kovaleva

    2014-07-01

    Full Text Available This study examines finite deformation patterns of zircon grains from high-temperature natural shear zones. Various zircon-bearing rocks were collected in the Western Tauern Window, Eastern Alps, where they were deformed under amphibolite facies conditions, and in the Ivrea-Verbano Zone (IVZ, Southern Alps, where deformation is related with granulite-facies metamorphism. Among the sampled rocks are: granitic orthogneisses, meta-lamprophyres and paragneisses, all of which are highly deformed. The investigated zircon grains ranging from 10 to 50 microns were studied in situ using a combination of scanning electron microscope (SEM techniques, including secondary electron (SE, backscattered electron (BSE, forward scattered electron (FSE, cathodoluminescence (CL imaging, and crystallographic orientation mapping by electron backscatter diffraction analysis (EBSD, as well as micro-Raman spectroscopy. Energy-dispersive X-ray spectrometry (EDS was applied to host phases. Microstructural analysis of crystal-plastically deformed zircon grains was based on high-resolution EBSD maps. Three general types of finite lattice distortion patterns were detected: Type (I is defined by gradual bending of the zircon lattice with orientation changes of about 0.6° to 1.4° per μm without subgrain boundary formation. Type (II represents local gradual bending of the crystal lattice coupled with the formation of subgrain boundaries that have concentric semicircular shapes in 2-D sections. Cumulative grain-internal orientation variations range from 7° to 40° within single grains. Type (III is characterized by formation of subgrains separated by a well-defined subgrain boundary network, where subgrain boundaries show a characteristic angular closed contour in 2-D sections. The cumulative orientation variation within a single grain ranges from 3° to 10°. Types (I and (II predominate in granulite facies rocks, whereas type (III is restricted to the amphibolite facies

  13. Microstructural evolution in deformed austenitic TWinning Induced Plasticity steels

    NARCIS (Netherlands)

    Van Tol, R.T.

    2014-01-01

    This thesis studies the effect of plastic deformation on the stability of the austenitic microstructure against martensitic transformation and diffusional decomposition and its role in the phenomenon of delayed fracture in austenitic manganese (Mn)-based TWinning Induced Plasticity (TWIP) steels. Th

  14. Plastic mechanism of deformation of garnet-- Water weakening

    Institute of Scientific and Technical Information of China (English)

    SU; Wen(苏文); CONG; Bolin(从柏林); YOU; Zhendong(游振东); ZHONG; Zengqiu(钟增球); CHEN; Daizhang(陈代章)

    2002-01-01

    The strongly deformed eclogites are well developed in ultra-high pressure jadeite-quartzite zone of the Dabie Mountains, Eastern China, and garnets had been deformed strongly. Observations by transmission electron microscopy identified not only structure of plastic deformation occurring as free dislocation, dislocation loops and dislocation walls, but also clusters of water molecules present in the deformed garnet. Using infrared spectroscopy, two types of hydrous components are identified as the hydroxyl and free-water in the garnet. Based on analysis of microstructure mechanism of deformation in garnets, and experimental data of petrology, the clusters of water molecules were considered to lead strong plastic deformation of garnet by dislocations because of mechanical weakening.

  15. Quantifying Damage Accumulation During Ductile Plastic Deformation Using Synchrotron Radiation

    Energy Technology Data Exchange (ETDEWEB)

    Suter, Robert M. [Carnegie Mellon Univ., Pittsburgh, PA (United States); Rollett, Anthony D. [Carnegie Mellon Univ., Pittsburgh, PA (United States)

    2015-08-15

    Under this grant, we have developed and demonstrated the ability of near-field High Energy Diffraction Microscopy (nf-HEDM) to map crystal orientation fields over three dimensions in deformed polycrystalline materials. Experimental work was performed at the Advanced Photon Source (APS) at beamline 1-ID. Applications of this new capability to ductile deformation of copper and zirconium samples were demonstrated as was the comparison of the experimental observations to computational plasticity models using a fast Fourier transform based algorithm that is able to handle the large experimental data sets. No such spatially resolved, direct comparison between measured and computed microstructure evolutions had previously been possible. The impact of this work is reflected in numerous publications and presentations as well as in the investments by DOE and DOD laboratories of millions of dollars in applying the technique, developing sophisticated new hardware that allows the technique to be applied to a wide variety of materials and materials problems, and in the use of the technique by other researchers. In essence, the grant facilitated the development of a new form of three dimensional microscopy and its application to technologically critical states of polycrystalline materials that are used throughout the U.S. and world economies. On-going collaborative work is further optimizing experimental and computational facilities at the APS and is pursuing expanded facilities.

  16. ANALYSIS OF SIMPLE SHEAR ENDOCHRONIC EQUATIONS FOR FINITE PLASTIC DEFORMATION

    Institute of Scientific and Technical Information of China (English)

    江五贵; 黄明挥

    2005-01-01

    Jaumann rate, generalized Jaumann rate, Fu rate and Wu rate were incorporated into endochronic equations forfinite plastic deformation to analyze simple shear finite deformation. The results show that an oscillatory shear stress and normal stress response to a monotonically increasing shear strain occurs when Jaumann rate objective model is adopted for hypoelastic or endochronic materials. The oscillatory response is dependent on objective rate adopted, independent on elastoplastic models. Normal stress is unequal to zero during simple shear finite deformation.

  17. Stored Energy of Plastic Deformation in Tube Bending Processes

    Science.gov (United States)

    Śloderbach, Z.; Pająk, J.

    2013-03-01

    The paper presents an aproximate analytic method for determination of the stored energy of plastic deformation during cold bending of metal tubes at bending machines. Calculations were performed for outer points of the tube layers subjected to tension and compression (the points of maximum strains). The percentage of stored energy related to the plastic strain work was determined and the results were presented in graphs. The influence and importance of the stored energy of plastic deformation on the service life of pipeline bends are discussed.

  18. Strong crystal size effect on deformation twinning

    DEFF Research Database (Denmark)

    Yu, Qian; Shan, Zhi-Wei; Li, Ju

    2010-01-01

    find that the stress required for deformation twinning increases drastically with decreasing sample size of a titanium alloy single crystal7, 8, until the sample size is reduced to one micrometre, below which the deformation twinning is entirely replaced by less correlated, ordinary dislocation....... The sample size in transition is relatively large and easily accessible in experiments, making our understanding of size dependence11, 12, 13, 14, 15, 16, 17 relevant for applications....

  19. Water weakening in experimentally deformed milky quartz single crystals

    Science.gov (United States)

    Stunitz, H.; Thust, A.; Kilian, R.; Heilbronner, R.; Behrens, H.; Tarantola, A.; Fitz Gerald, J. D.

    2015-12-01

    Natural single crystals of quartz have been experimentally deformed in two orientations: (1) normal to one prism-plane, (2) In O+ orientation at temperatures of 900 and 1000°C, pressures of 1.0 and 1.5 GPa, and strain rates of ~1 x 10-6s-1. The starting material is milky quartz, consisting of dry quartz (H2O contents of recycling of H2O between FI´s, dislocation generation at very small fluid inclusions, incorporation of structurally bound H into dislocation cores, and release of H2O from dislocations back into FI´s during recovery. Cracking and crack healing play an important role in the recycling process and imply a close interrelationship between brittle and crystal plastic deformation. The H2O weakening by this process is of a disequilibrium nature and thus depends on the amount of H2O available.

  20. The stress statistics of the first pop-in or discrete plastic event in crystal plasticity

    Science.gov (United States)

    Derlet, P. M.; Maaß, R.

    2016-12-01

    The stress at which the first discrete plastic event occurs is investigated using extreme value statistics. It is found that the average of this critical stress is inversely related to the deforming volume, via an exponentially truncated power-law. This is demonstrated for the first pop-in event observed in experimental nano-indentation data as a function of the indenter volume, and for the first discrete plastic event seen in a dislocation dynamics simulation. When the underlying master distribution of critical stresses is assumed to be a power-law, it becomes possible to extract the density of discrete plastic events available to the crystal, and to understand the exponential truncation as a break-down of the asymptotic Weibull limit.

  1. Large deformation behavior of fat crystal networks

    NARCIS (Netherlands)

    Kloek, W.; Vliet, van T.; Walstra, P.

    2005-01-01

    Compression and wire-cutting experiments on dispersions of fully hydrogenated palm oil in sunflower oil with varying fraction solid fat were carried out to establish which parameters are important for the large deformation behavior of fat crystal networks. Compression experiments showed that the app

  2. Liquid Crystal Research Shows Deformation By Drying

    Science.gov (United States)

    2003-01-01

    These images, from David Weitz's liquid crystal research, show ordered uniform sized droplets (upper left) before they are dried from their solution. After the droplets are dried (upper right), they are viewed with crossed polarizers that show the deformation caused by drying, a process that orients the bipolar structure of the liquid crystal within the droplets. When an electric field is applied to the dried droplets (lower left), and then increased (lower right), the liquid crystal within the droplets switches its alignment, thereby reducing the amount of light that can be scattered by the droplets when a beam is shone through them.

  3. Simulation of texture evolution during plastic deformation of FCC, BCC and HCP structured crystals with crystal plasticity based finite element method%基于耦合有限元的晶体塑性力学模型的FCC,BCC和HCP晶体织构演化的模拟

    Institute of Scientific and Technical Information of China (English)

    黄诗尧; 张少睿; 李大永; 彭颖红

    2011-01-01

    介绍单晶体模型的2种实现方法,并通过对有限元软件ABAQUS/Explicit的用户材料接口VUMAT做二次开发,实现2种单晶体模型构架和显式有限元方法的耦合.采取实体单元来存储材料信息,每个单元代表一个晶粒,在每个增量步中读取并更新晶粒取向.采用切线系数法来计算每个增量步中不同变形系统的塑性应变增量,通过硬化模型来描述硬化响应.利用编制的2种用户子程序模拟铜(FCC)单向拉伸过程、IF铁(BCC)冷轧过程和AZ31镁合金(HCP)单向压缩过程中的织构演化,模拟结果和试验结果吻合较好.%Two alternative formulations of single crystal plasticity model were introduced respectively and two schemes were implemented in the explicit FE code with software ABAQUS/Explicit by writing the user subroutine VUMAT.Meshes containing material data were created with solid elements.Each element represented an individual grain,and the grain orientations were explicitly stored and updated at each increment.Tangential modulus method was employed to calculate the plastic shear strain increment of deformation systems in combination with a hardening law to describe the hardening responses.Both two developed subroutines were applied to simulate the texture evolution during the uniaxial tension of copper (FCC),cold rolling of IF steel (BCC) and uniaxial compression of AZ31 magnesium alloy (HCP).The predicted texture distributions are in qualitative agreement with the experimental results.

  4. A Crystalline Plasticity Finite Element Method for Simulation of the Plastic Deformation of AZ31 Magnesium Alloys

    Science.gov (United States)

    Li, Dayong; Zhang, Shaorui; Tang, Weiqin; Huang, Shiyao; Peng, Yinghong

    2010-06-01

    In this paper, a constitutive framework based on a crystalline plasticity model is employed to simulate the plastic deformation of AZ31 magnesium alloy, which posses the hexagonal close packed (HCP) crystal structure. Dislocation slip and mechanical twinning are taken into account in the model. The successive integration method is used to determine the active slip systems, and the contribution of twinning to the grain reorientation is treated by the PTR method. The FE model is introduced into ABAQUS/Explicit through a user material subroutine (VUMAT). Three deformation processes of AZ31 magnesium alloy, including tension, compression and a stamping process, are simulated with the present method. The simulation results are compared with experiment and those presented in the literature.

  5. Non-uniform plastic deformation of micron scale objects

    DEFF Research Database (Denmark)

    Niordson, Christian Frithiof; Hutchinson, J. W.

    2003-01-01

    Significant increases in apparent flow strength are observed when non-uniform plastic deformation of metals occurs at the scale ranging from roughly one to ten microns. Several basic plane strain problems are analyzed numerically in this paper based on a new formulation of strain gradient plastic...... in the numerical analysis of the higher order gradient theory will be discussed and related to prior formulations having some of the same features....

  6. Plastic Deformation Influence on Intrinsic Magnetic Field of Austenitic Biomaterials

    Science.gov (United States)

    Smetana, Milan; Čápová, Klára; Chudáčik, Vladimír; Palček, Peter; Oravcová, Monika

    2016-12-01

    This article deals with non-destructive evaluation of austenitic stainless steels, which are used as the biomaterials in medical practice. Intrinsic magnetic field is investigated using the fluxgate sensor, after the applied plastic deformation. The three austenitic steel types are studied under the same conditions, while several values of the deformation are applied, respectively. The obtained results are presented and discussed in the paper.

  7. Nanocrystalline Metal Hydrides Obtained by Severe Plastic Deformations

    Directory of Open Access Journals (Sweden)

    Jacques Huot

    2012-01-01

    Full Text Available It has recently been shown that Severe Plastic Deformation (SPD techniques could be used to obtain nanostructured metal hydrides with enhanced hydrogen sorption properties. In this paper we review the different SPD techniques used on metal hydrides and present some specific cases of the effect of cold rolling on the hydrogen storage properties and crystal structure of various types of metal hydrides such as magnesium-based alloys and body centered cubic (BCC alloys. Results show that generally cold rolling is as effective as ball milling to enhance hydrogen sorption kinetics. However, for some alloys such as TiV0.9Mn1.1 alloy ball milling and cold rolling have detrimental effect on hydrogen capacity. The exact mechanism responsible for the change in hydrogenation properties may not be the same for ball milling and cold rolling. Nevertheless, particle size reduction and texture seems to play a leading role in the hydrogen sorption enhancement of cold rolled metal hydrides.

  8. EFFECT OF UNEQUAL DEFORMATION IN DEVELOPMENT OF ADVANCED PLASTIC PROCESSING TECHNOLOGIES

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    An effect of unequal deformation in development of advanced plastic processing technologies is researched by studying an in-plane bending process of strip metal under unequal compressing. The research results show the following: If appropriately controlled, unequal plastic deformation can play an important role not only in the improvement of quality of parts obtained by plastic processing technologies, but also in the development of new processes for advanced plastic working technologies. A coordinated growth of unequal plastic deformation can develop the deformation potentiality of material to the full. The degree of unequal plastic deformation can be used as bases for optimization design of processes and dies of plastic forming.

  9. An experimental study of plastic deformation of materials

    DEFF Research Database (Denmark)

    Knudsen, Tine

    in the investigated hot deformed samples (lnZ= 27.5 to 32) in general are cell block structures, and that the alignment of the cell block boundaries at low strain depends on the grain orientation, often in the same manner as in cold deformation. Part II investigates the energy stored in the dislocation structure...... after cold deformation by calorimetry and by analysis of the dislocation structure. The stored energy measured by calorimetry is found to be larger than that determined from the dislocation structure by a factor between 1.9 and 2.7, and this factor decreases with the plastic strain. Part III aimed...

  10. SOME MISUNDERSTANDINGS ON ROTATION OF CRYSTALS AND REASONABLE PLASTIC STRAIN RATE

    Institute of Scientific and Technical Information of China (English)

    赵祖武

    2001-01-01

    It is pointed out that crystals are discrete but not continuous materials. Hence the rotation R in decomposition F = RU and spin W in F F-1 are not correct. Errors will arise in plastic deformation rate if it is directly expressed with amounts of velocity of slips in glide systems such as γv n . The geometrical figure of crystal lattices does not change after slips and based on this idea a simple way in mechanics of continuous media to get the plastic deformations rate induced by slips is proposed. Constitutive equations are recommended.

  11. Calculation of elastic-plastic deformations by FEM

    Science.gov (United States)

    Sultanov, L. U.

    2016-11-01

    The article is devoted to elasto-plastic analysis for finite deformations, large displacements and rotations. An incremental method is used. The stressed state is represented by Cauchy stress and objective Jaumann rate of Cauchy stress. The von Mises yield criterion and radial return method are applied.

  12. Recrystallization kinetics of nanostructured copper processed by dynamic plastic deformation

    DEFF Research Database (Denmark)

    Lin, Fengxiang; Zhang, Yubin; Pantleon, Wolfgang;

    2012-01-01

    The recrystallization kinetics of nanostructured copper samples processed by dynamic plastic deformation was investigated by electron backscatter diffraction. It was found that the evolution of the recrystallized volume fraction as a function of annealing time has a very low slope (n=0.37) when...

  13. Anisotropic plastic deformation by viscous flow in ion tracks

    NARCIS (Netherlands)

    van Dillen, T; Polman, A; Onck, PR; van der Giessen, E

    2005-01-01

    A model describing the origin of ion beam-induced anisotropic plastic deformation is derived and discussed. It is based on a viscoelastic thermal spike model for viscous flow in single ion tracks derived by Trinkaus and Ryazanov. Deviatoric (shear) stresses, brought about by the rapid thermal expans

  14. Recrystallization of deformed single crystals of iridium

    Energy Technology Data Exchange (ETDEWEB)

    Ermakov, A.V.; Klotsman, S.M.; Pushin, V.G.; Timofeev, A.N.; Kaigorodov, V.N.; Panfilov, P.Y.; Yurchenko, L.I.

    1999-12-31

    The X-ray diffractometric method was used to analyze crystalline textures that appear during rolling of pure single-Ir and annealing of the said crystals in ultrahigh vacuum (UHV) at successively elevating temperatures. Observing alteration of the texture of the deformed pure single-Ir after UHV annealing, the primary recrystallization temperature T{sub 1recr} of pure Ir was found not to exceed 670 K (0.25 T{sub m}).

  15. Multiscale simulation and nanoindentation experimental study of initial plasticity of Fe single crystal

    Institute of Scientific and Technical Information of China (English)

    YUAN Lin; SHAN De-bin; GUO Bin

    2009-01-01

    It is very important to understand the initial plastic behavior of metals at microscale. In order to research the initial plasticity of body centered cubic metals in micro-/nano-scale, the multiscale simulation method and experimental study were used to study the nanoindentation process of Fe single crystal. The results show that the first abruption of load-displacement curve in nanoindentation of Fe single crystal can be attributed to the first transition from elastic to plastic deformation characterized by the dislocation emission.

  16. Crystal Plasticity Modeling of Microstructure Evolution and Mechanical Fields During Processing of Metals Using Spectral Databases

    Science.gov (United States)

    Knezevic, Marko; Kalidindi, Surya R.

    2017-05-01

    This article reviews the advances made in the development and implementation of a novel approach to speeding up crystal plasticity simulations of metal processing by one to three orders of magnitude when compared with the conventional approaches, depending on the specific details of implementation. This is mainly accomplished through the use of spectral crystal plasticity (SCP) databases grounded in the compact representation of the functions central to crystal plasticity computations. A key benefit of the databases is that they allow for a noniterative retrieval of constitutive solutions for any arbitrary plastic stretching tensor (i.e., deformation mode) imposed on a crystal of arbitrary orientation. The article emphasizes the latest developments in terms of embedding SCP databases within implicit finite elements. To illustrate the potential of these novel implementations, the results from several process modeling applications including equichannel angular extrusion and rolling are presented and compared with experimental measurements and predictions from other models.

  17. Mechanisms of plastic deformation for powder materials in cold working

    Institute of Scientific and Technical Information of China (English)

    张连洪; 李双义

    2003-01-01

    To deal with the discontinuity of particulate media and subsequent uncertainty of stress, based on the probability theory for mechanics of particulate media, Mohr-Coulomb yield criterion of particulate media, and the theory of crystal deformation, we put forward the statistical mechanisms of deformation of powder materials in cold working and mechanism of texture development of the high temperature superconducting wire/tape. A new yield criterion of powder materials is proposed.

  18. Plastic Deformation of Metal Tubes Subjected to Lateral Blast Loads

    Directory of Open Access Journals (Sweden)

    Kejian Song

    2014-01-01

    Full Text Available When subjected to the dynamic load, the behavior of the structures is complex and makes it difficult to describe the process of the deformation. In the paper, an analytical model is presented to analyze the plastic deformation of the steel circular tubes. The aim of the research is to calculate the deflection and the deformation angle of the tubes. A series of assumptions are made to achieve the objective. During the research, we build a mathematical model for simply supported thin-walled metal tubes with finite length. At a specified distance above the tube, a TNT charge explodes and generates a plastic shock wave. The wave can be seen as uniformly distributed over the upper semicircle of the cross-section. The simplified Tresca yield domain can be used to describe the plastic flow of the circular tube. The yield domain together with the plastic flow law and other assumptions can finally lead to the solving of the deflection. In the end, tubes with different dimensions subjected to blast wave induced by the TNT charge are observed in experiments. Comparison shows that the numerical results agree well with experiment observations.

  19. Relationship between burgers vectors of dislocations and plastic strain localization patterns in compression-strained alkali halide crystals

    Science.gov (United States)

    Barannikova, S. A.; Nadezhkin, M. V.; Zuev, L. B.

    2011-08-01

    Plastic strain localization patterns in compression-strained alkali halide (NaCl, KCl, and LiF) crystals have been studied using a double-exposure speckle photography technique. The main parameters of strain localization autowaves at the linear stages of deformation hardening in alkali halide crystals have been determined. A quantitative relationship between the macroscopic parameters of plastic flow localization and microscopic parameters of strained alkali halide crystals has been established.

  20. Tensile plastic strain localization in single crystals of austenite steel electrolytically saturated with hydrogen

    Science.gov (United States)

    Barannikova, S. A.; Nadezhkin, M. V.; Mel'Nichuk, V. A.; Zuev, L. B.

    2011-09-01

    The effect of interstitial hydrogen atoms on the mechanical properties and plastic strain localization patterns in tensile tested Fe-18Cr-12Ni-2Mo single crystals of austenite steel with low stacking-fault energy has been studied using a double-exposure speckle photography technique. The main parameters of plastic-flow localization at various stages of the deformation hardening of crystals have been determined in single crystals of steel electrolytically saturated with hydrogen in a three-electrode electrochemical cell at a controlled constant cathode potential.

  1. Superlocalization and Formation of Grain Structure in Ni3ge Single Crystals with Different Orientations of Deformation Axes

    Science.gov (United States)

    Solov'eva, Yu. V.; Lipatnikova, Ya. D.; Starenchenko, S. V.; Solov'ev, A. N.; Starenchenko, V. A.

    2017-09-01

    The paper describes the influence of orientation of Ni3Ge single crystal deformation axes on the high-temperature superlocalization of plastic deformation. Mechanical properties of single crystals with different orientations are studied in this paper as well as the slip traces and the evolution of the dislocation structure. Based on these investigations, the observing conditions are described for the superlocalization bands and the formation of the grain structure in local areas of the original single crystal.

  2. Directionally tunable and mechanically deformable ferroelectric crystals from rotating polar globular ionic molecules

    Science.gov (United States)

    Harada, Jun; Shimojo, Takafumi; Oyamaguchi, Hideaki; Hasegawa, Hiroyuki; Takahashi, Yukihiro; Satomi, Koichiro; Suzuki, Yasutaka; Kawamata, Jun; Inabe, Tamotsu

    2016-10-01

    Ferroelectrics are used in a wide range of applications, including memory elements, capacitors and sensors. Recently, molecular ferroelectric crystals have attracted interest as viable alternatives to conventional ceramic ferroelectrics because of their solution processability and lack of toxicity. Here we show that a class of molecular compounds—known as plastic crystals—can exhibit ferroelectricity if the constituents are judiciously chosen from polar ionic molecules. The intrinsic features of plastic crystals, for example, the rotational motion of molecules and phase transitions with lattice-symmetry changes, provide the crystals with unique ferroelectric properties relative to those of conventional molecular crystals. This allows a flexible alteration of the polarization axis direction in a grown crystal by applying an electric field. Owing to the tunable nature of the crystal orientation, together with mechanical deformability, this type of molecular crystal represents an attractive functional material that could find use in a diverse range of applications.

  3. Single crystal plasticity by modeling dislocation density rate behavior

    Energy Technology Data Exchange (ETDEWEB)

    Hansen, Benjamin L [Los Alamos National Laboratory; Bronkhorst, Curt [Los Alamos National Laboratory; Beyerlein, Irene [Los Alamos National Laboratory; Cerreta, E. K. [Los Alamos National Laboratory; Dennis-Koller, Darcie [Los Alamos National Laboratory

    2010-12-23

    The goal of this work is to formulate a constitutive model for the deformation of metals over a wide range of strain rates. Damage and failure of materials frequently occurs at a variety of deformation rates within the same sample. The present state of the art in single crystal constitutive models relies on thermally-activated models which are believed to become less reliable for problems exceeding strain rates of 10{sup 4} s{sup -1}. This talk presents work in which we extend the applicability of the single crystal model to the strain rate region where dislocation drag is believed to dominate. The elastic model includes effects from volumetric change and pressure sensitive moduli. The plastic model transitions from the low-rate thermally-activated regime to the high-rate drag dominated regime. The direct use of dislocation density as a state parameter gives a measurable physical mechanism to strain hardening. Dislocation densities are separated according to type and given a systematic set of interactions rates adaptable by type. The form of the constitutive model is motivated by previously published dislocation dynamics work which articulated important behaviors unique to high-rate response in fcc systems. The proposed material model incorporates thermal coupling. The hardening model tracks the varying dislocation population with respect to each slip plane and computes the slip resistance based on those values. Comparisons can be made between the responses of single crystals and polycrystals at a variety of strain rates. The material model is fit to copper.

  4. Evolution of dislocation structure and modelling of deformation resistance in CaF2 single crystals

    OpenAIRE

    Sadrabadi, Peiman

    2007-01-01

    he evolution of dislocation structure during plastic deformation in pure 111}-oriented CaF2 single crystals was investigated at constant strain rate (10−5 s−1) and constant stress (1 < / MPa < 22) in the temperature range of 0.5 < T/Tm < 0.8. The steady state and transient deformation behavior of the material is described by the composite model on the basis of microstructural data. In the following sections the important conclusions are briefly summarized. Microstructure evolution...

  5. Plasticity size effects in voided crystals

    DEFF Research Database (Denmark)

    Hussein, M. I.; Borg, Ulrik; Niordson, Christian Frithiof

    singularities in an elastic material. The lattice resistance to dislocation motion, dislocation nucleation, dislocation interaction with obstacles and annihilation are incorporated through a set of constitutive rules. Over the range of length scales investigated, both the discrete dislocation and strain...... predictions of the two formulations for all crystal types and void volume fractions considered when the material length scale in the non-local plasticity model chosen to be $0.325\\mu m$ (around ten times the slip plane spacing in the discrete dislocation models)....

  6. Plasticity size effects in voided crystals

    DEFF Research Database (Denmark)

    Hussein, M.I.; Borg, Ulrik; Niordson, Christian Frithiof

    2008-01-01

    as line singularities in an elastic material. The lattice resistance to dislocation motion, dislocation nucleation, dislocation interaction with obstacles and annihilation are incorporated through a set of constitutive rules. Over the range of length scales investigated, both the discrete dislocation...... between predictions of the two formulations for all crystal types and void volume fractions considered when the material length scale in the non-local plasticity model is chosen to be 0.325 mu m (about 10 times the slip plane spacing in the discrete dislocation models)....

  7. Investigations of a nanostructured FeMnSi shape memory alloy produced via severe plastic deformation

    Institute of Scientific and Technical Information of China (English)

    Gheorghe Gurau; Carmela Gurau; Vedamanickam Sampath; Leandru Gheorghe Bujoreanu

    2016-01-01

    Low-costiron-based shape memory alloys (SMAs) show great potential for engineering applications. The developments of new processing techniques have recently enabled the production of nanocrystalline materials with improved properties. These developments have opened avenues for newer applications for SMAs. The influence of severe plastic deformation induced by the high-speed high-pressure tor-sion (HSHPT) process on the microstructural evolution of an Fe–Mn–Si–Cr alloy was investigated. Transmission electron microscopic analysis of the alloy revealed the existence of nanoscale grains with an abundance of stacking faults. The high density of dislocations charac-teristic of severe plastic deformation was not observed in this alloy. X-ray diffraction studies revealed the presence ofε-martensite with an HCP crystal structure andγ-phase with an FCC structure.

  8. Investigations of a nanostructured FeMnSi shape memory alloy produced via severe plastic deformation

    Science.gov (United States)

    Gurau, Gheorghe; Gurau, Carmela; Sampath, Vedamanickam; Bujoreanu, Leandru Gheorghe

    2016-11-01

    Low-cost iron-based shape memory alloys (SMAs) show great potential for engineering applications. The developments of new processing techniques have recently enabled the production of nanocrystalline materials with improved properties. These developments have opened avenues for newer applications for SMAs. The influence of severe plastic deformation induced by the high-speed high-pressure torsion (HSHPT) process on the microstructural evolution of an Fe-Mn-Si-Cr alloy was investigated. Transmission electron microscopic analysis of the alloy revealed the existence of nanoscale grains with an abundance of stacking faults. The high density of dislocations characteristic of severe plastic deformation was not observed in this alloy. X-ray diffraction studies revealed the presence of ɛ-martensite with an HCP crystal structure and γ-phase with an FCC structure.

  9. Microstructure and Plastic Deformation of the As-Welded Invar Fusion Zones

    Science.gov (United States)

    Yao, D. J.; Zhou, D. R.; Xu, P. Q.; Lu, F. G.

    2017-02-01

    The as-welded Invar fusion zones were fabricated between cemented carbides and carbon steel using a Fe-Ni Invar interlayer and laser welding method. Three regions in the as-welded Invar fusion zones were defined to compare microstructures, and these were characterized and confirmed by scanning electron microscopy and X-ray diffractometry. The structure and plastic deformation mechanism for initial Invar Fe-Ni alloys and the as-welded Invar fusion zones are discussed. (1) After undergoing high-temperature thermal cycles, the microstructure of the as-welded Invar fusion zones contains γ-(Fe, Ni) solid solution (nickel dissolving in γ-Fe) with a face-centered cubic (fcc) crystal structure and mixed carbides (eutectic colonies, mixed carbides between two adjacent grains). The mixed carbides exhibited larger, coarser eutectic microstructures with a decrease in welding speed and an increase in heat input. (2) The structure of the initial Invar and the as-welded Invar is face-centered cubic γ-(Fe, Ni). (3) The as-welded Invar has a larger plastic deformation than initial Invar with an increase in local strain field and dislocation density. Slip deformation is propagated along the (111) plane. This finding helps us to understand microstructure and the formation of dislocation and plastic deformation when the Invar Fe-Ni alloy undergoes a high-temperature process.

  10. Characterization of residual stresses generated during inhomogeneous plastic deformation

    DEFF Research Database (Denmark)

    Lorentzen, T.; Faurholdt, T.; Clausen, B.;

    1998-01-01

    Residual stresses generated by macroscopic inhomogeneous plastic deformation are predicted by an explicit finite element (FE) technique. The numerical predictions are evaluated by characterizing the residual elastic strains by neutron diffraction using two different (hkl) reflections. Intergranular...... residual elastic strains between subsets of grains are predicted numerically and verified by neutron diffraction. Subsequently, the measured residual strain profiles in the test samples are modified by the intergranular strains and compared to the engineering predictions of the FE technique. Results...

  11. Mechanical behaviour of nanoparticles: Elasticity and plastic deformation mechanisms

    Indian Academy of Sciences (India)

    Celine Gerard; Laurent Pizzagalli

    2015-06-01

    Nano-objects often exhibit drastically different properties compared to their bulk counterpart, opening avenues for new applications in many fields, such as in advanced composite materials, nanomanufacturing, nanoelectromechanical systems etc. As such, related research topics have become increasingly prominent in recent years. In this review on the mechanical behaviour of nanoparticles, the main investigation approaches are first briefly presented. The main results in terms of elasticity and plastic deformation mechanisms are then reported and discussed.

  12. Study of an athermal quasi static plastic deformation in a 2D granular material

    Science.gov (United States)

    Zhang, Jie; Zheng, Jie

    2016-11-01

    In crystalline materials, the plasticity has been well understood in terms of dynamics of dislocation, i.e. flow defects in the crystals where the flow defects can be directly visualized under a microscope. In a contrast, the plasticity in amorphous materials, i.e. glass, is still poorly understood due to the disordered nature of the materials. In this talk, I will discuss the recent results we have obtained in our ongoing research of the plasticity of a 2D glass in the athermal quasi static limit where the 2D glass is made of bi-disperse granular disks with very low friction. Starting from a densely packed homogeneous and isotropic initial state, we apply pure shear deformation to the system. For a sufficiently small strain, the response of the system is linear and elastic like; when the strain is large enough, the plasticity of the system gradually develops and eventually the shear bands are fully developed. In this study, we are particularly interested in how to relate the local plastic deformation to the macroscopic response of the system and also in the development of the shear bands.

  13. Detailing of deformation processes in polymeric crystals

    Science.gov (United States)

    Slutsker, A. I.; Vettegren', V. I.; Kulik, V. B.; Hilarov, V. L.; Polikarpov, Yu. I.; Karov, D. D.

    2015-11-01

    Structural changes in polymer crystals (polyethylene, polyimide, and others) have been studied using the X-ray diffraction and Raman spectroscopy methods under different influences: tensile loading along the chain molecule axis and heating from 90 to 350 K. An increase in the molecule axial length under loading and a decrease in the molecule axial length upon heating have been identified and measured using X-ray diffraction. A decrease in the skeletal vibration frequency during loading and heating has been identified and measured using Raman spectroscopy, which indicates an increase in the molecule contour length in both cases. A technique for determining the change in the polyethylene molecule contour length in the crystal from the measured change in the skeletal vibration frequency has been justified. The contributions of two components, namely, skeletal (carbon-carbon) bond stretching and the change (an increase during stretching and a decrease during heating) in the angle between skeletal bonds, to the longitudinal deformation of polyethylene crystals, have been quantitatively estimated. It has been shown that the negative thermal expansion (contraction) of the polymer crystal is caused by the dominant contribution of the decrease in the bond angle.

  14. On plastic flow in notched hexagonal close packed single crystals

    Science.gov (United States)

    Selvarajou, Balaji; Kondori, Babak; Benzerga, A. Amine; Joshi, Shailendra P.

    2016-09-01

    The micromechanics of anisotropic plastic flow by combined slip and twinning is investigated computationally in single crystal notched specimens. Constitutive relations for hexagonal close packed materials are used which take into account elastic anisotropy, thirty potential deformation systems, various hardening mechanisms and rate-sensitivity. The specimens are loaded perpendicular to the c-axis but the presence of a notch generates three-dimensional triaxial stress states. The study is motivated by recent experiments on a polycrystalline magnesium alloy. To enable comparisons with these where appropriate, three sets of activation thresholds for the various deformation systems are used. For the conditions that most closely mimic the alloy material, attention is focused on the relative roles of pyramidal and prismatic slip, as well as on the emergence of {1012bar}[101bar1] extension twinning at sufficiently high triaxiality. In all cases, the spatial variations of stress triaxiality and plastic strain, inclusive of various system activities, are quantified along with their evolution upon straining. The implications of these findings in fundamental understanding of ductile failure of HCP alloys in general and Mg alloys in particular are discussed.

  15. Simulation of cylindrical cup drawing of AZ31 sheet metal with crystal plasticity finite element method

    Science.gov (United States)

    Tang, Weiqin; Li, Dayong; Zhang, Shaorui; Peng, Yinghong

    2013-12-01

    As a light-weight structural material, magnesium alloys show good potential in improving the fuel efficiency of vehicles and reducing CO2 emissions. However, it is well known that polycrystalline Mg alloys develop pronounced crystallographic texture and plastic anisotropy during rolling, which leads to earing phenomenon during deep drawing of the rolled sheets. It is vital to predict this phenomenon accurately for application of magnesium sheet metals. In the present study, a crystal plasticity model for AZ31 magnesium alloy that incorporates both slip and twinning is established. Then the crystal plasticity model is implemented in the commercial finite element software ABAQUS/Explicit through secondary development interface (VUMAT). Finally, the stamping process of a cylindrical cup is simulated using the developed crystal plasticity finite element model, and the predicting method is verified by comparing with experimental results from both earing profile and deformation texture.

  16. International Engineering Foundation Conference on the Plastic Deformation of Ceramics

    CERN Document Server

    Brookes, Chris; Routbort, Jules

    1995-01-01

    This proceedings volume, "Plastic Deformation of Ceramics," constitutes the papers of an international symposium held at Snowbird, Utah from August 7-12, 1994. It was attended by nearly 100 scientists and engineers from more than a dozen countries representing academia, national laboratories, and industry. Two previous conferences on this topic were held at The Pennsylvania State University in 1974 and 1983. Therefore, the last major international conference focusing on the deformation of ceramic materials was held more than a decade ago. Since the early 1980s, ceramic materials have progressed through an evolutionary period of development and advancement. They are now under consideration for applications in engineering structures. The contents of the previous conferences indicate that considerable effort was directed towards a basic understanding of deformation processes in covalently bonded or simple oxide ceramics. However, now, more than a decade later, the focus has completely shifted. In particular, the...

  17. Microstructural evolution at multiple scales during plastic deformation

    DEFF Research Database (Denmark)

    Winther, Grethe

    During plastic deformation metals develop microstructures which may be analysed on several scales, e.g. bulk textures, the scale of individual grains, intragranular phenomena in the form of orientation spreads as well as dislocation patterning by formation of dislocation boundaries in metals....... More specifically the origin of both inter- and intragranular orientation spread is analysed for a specific example from tensile deformed interstitial-free steel [Oddershede et al. 2015]. A universal framework for the patterns consisting of dislocation boundaries is presented for both fcc and bcc...... materials in several deformation modes, demonstrating a clear grain orientation dependence [Huang & Winther, 2007]. This dependence has its origin in a dependence on the slip systems [Winther & Huang, 2007]. This further implies that the dislocations in the boundaries come from the active slip systems...

  18. Texture developed during deformation of Transformation Induced Plasticity (TRIP) steels

    Science.gov (United States)

    Bhargava, M.; Shanta, C.; Asim, T.; Sushil, M.

    2015-04-01

    Automotive industry is currently focusing on using advanced high strength steels (AHSS) due to its high strength and formability for closure applications. Transformation Induced Plasticity (TRIP) steel is promising material for this application among other AHSS. The present work is focused on the microstructure development during deformation of TRIP steel sheets. To mimic complex strain path condition during forming of automotive body, Limit Dome Height (LDH) tests were conducted and samples were deformed in servo hydraulic press to find the different strain path. FEM Simulations were done to predict different strain path diagrams and compared with experimental results. There is a significant difference between experimental and simulation results as the existing material models are not applicable for TRIP steels. Micro texture studies were performed on the samples using EBSD and X-RD techniques. It was observed that austenite is transformed to martensite and texture developed during deformation had strong impact on limit strain and strain path.

  19. On the localization of plastic strain under compression of LiF crystals

    Science.gov (United States)

    Barannikova, S. A.; Nadezhkin, M. V.; Zuev, L. B.

    2010-07-01

    The plastic flow localization patterns for alkali halide LiF crystals under compression have been investigated. The main spatiotemporal regularities of the strain localization at different stages of deformation hardening in the single crystals have been established. The relation has been traced between the orientation of localized strain zones and the crystallography of slip systems of the test specimens studied simultaneously by the double-exposure speckle photography and photoelasticity methods.

  20. Low-Temperature Plasticity of Naturally Deformed Calcite Rocks

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    Optical, cathodoluminescence and transmission electron microscope (TEM) analyses were conducted onfour groups of calcite fault rocks, a cataclastic limestone, cataclastic coarse-grained marbles from two fault zones, and afractured mylonite. These fault rocks show similar microstructural characteristics and give clues to similar processes ofrock deformation. They are characterized by the structural contrast between macroscopic cataclastic (brittle) andmicroscopic mylonitic (ductile) microstructures. Intragranular deformation microstructures (i.e. deformation twins, kinkbands and microfractures) are well preserved in the deformed grains in clasts or in primary rocks. The matrix materials areof extremely fine grains with diffusive features. Dislocation microstructures for co-existing brittle deformation andcrystalline plasticity were revealed using TEM. Tangled dislocations are often preserved at the cores of highly deformedclasts, while dislocation walls form in the transitions to the fine-grained matrix materials and free dislocations, dislocationloops and dislocation dipoles are observed both in the deformed clasts and in the fine-grained matrix materials. Dynamicrecrystallization grains from subgrain rotation recrystallization and subsequent grain boundary migration constitute themajor parts of the matrix materials. Statistical measurements of densities of free dislocations, grain sizes of subgrains anddynamically recrystallized grains suggest an unsteady state of the rock deformation. Microstructural andcathodoluminescence analyses prove that fluid activity is one of the major parts of faulting processes. Low-temperatureplasticity, and thereby induced co-existence of macroscopic brittle and microscopic ductile microstmctures are attributedto hydrolytic weakening due to the involvement of fluid phases in deformation and subsequent variation of rock rheology.During hydrolytic weakening, fluid phases, e.g. water, enhance the rate of dislocation slip and climb, and

  1. ON PLASTIC ANISOTROPY OF CONSTITUTIVE MODEL FOR RATE-DEPENDENT SINGLE CRYSTAL

    Institute of Scientific and Technical Information of China (English)

    张光; 张克实; 冯露

    2005-01-01

    An algorithm for single crystals was developed and implemented to simulate plastic anisotropy using a rate-dependent slip model. The proposed procedure was a slightly modified form of single crystal constitutive model of Sarma and Zacharia. Modified Euler method, together with Newton-Raphson method was used to integrate this equation which was stable and efficient. The model together with the developed algorithm was used to study three problems. First, plastic anisotropy was examined by simulating the crystal deformation in tension and plane strain compression, respectively. Secondly, the orientation effect of some material parameters in the model and applied strain rate on plastic anisotropy for single crystal also is investigated. Thirdly, the influence of loading direction on the active slip system was discussed.

  2. A crystal plasticity smooth-particle hydrodynamics approach and its application to equal-channel angular pressing simulation

    Science.gov (United States)

    Ma, Anxin; Hartmaier, Alexander

    2016-12-01

    A crystal plasticity (CP) modelling approach based on smooth-particle hydrodynamics (SPH) has been developed to study severe plastic deformation of crystalline materials. The method has been implemented and validated by comparing the stress distribution and stress evolution of several SPH and FEM simulations for an anisotropic elastic material. The findings show that the SPH method produces an efficient and numerically robust solution for solid-mechanics boundary value problems. Furthermore, the approach has been extended to incorporate a CP model and employed to simulate FCC polycrystals under the equal-channel angular pressing (ECAP) condition. It was found that the polycrystal contains four distinct regions with different deformation mechanisms. For the case that friction between deformable particles and boundary particles was neglected, more than one half of the grains suffered severe plastic deformation. The CP-SPH developed here thus is demonstrated to be a powerful tool to study grain refinement under severe plastic deformation.

  3. Modeling Of Microstructure Evolution Of BCC Metals Subjected To Severe Plastic Deformation

    Science.gov (United States)

    Svyetlichnyy, Dmytro; Majta, Janusz; Muszka, Krzysztof; Łach, Łukasz

    2011-01-01

    Prediction of microstructure evolution and properties of ultrafine-grained materials is one of the most significant, current problems in materials science. Several advanced methods of analysis can be applied for this issue: vertex models, phase field models, Monte Carlo Potts, finite element method (FEM) discrete element method (DEM) and finally cellular automata (CA). The main asset of the CA is ability for a close correlation of the microstructure with the mechanical properties in micro- and meso-scale simulation. Joining CA with the DEM undoubtedly improves accuracy of modeling of coupled phenomena during the innovative forming processes in both micro- and macro-scale. Deformation in micro-scale shows anisotropy, which connected with that the polycrystalline material contains grains with different crystallographic orientation, and grain deformation is depended from configuration of directions of main stresses and axis of grain. Then, CA and DEM must be joint solutions of crystal plasticity theory. In the present model, deformation in macro-scale is transferred to meso-sale, where a block contains several, score or hundreds grains, and then is applied in micro-scale to each grain. Creation of low-angle boundaries and their development into high-angle boundaries are simulated by the cellular automata on the base of calculations using finite element method and crystal plasticity theory. The idea proposed in this study and particular solutions are discussed for the case of ultrafine-grained low-carbon steel.

  4. The Cyclic Deformation Behavior of Severe Plastic Deformation (SPD Metals and the Influential Factors

    Directory of Open Access Journals (Sweden)

    Charles C. F. Kwan

    2012-02-01

    Full Text Available A deeper understanding of the mechanical behavior of ultra-fine (UF and nanocrystalline (NC grained metals is necessary with the growing interest in using UF and NC grained metals for structural applications. The cyclic deformation response and behavior of UF and NC grained metals is one aspect that has been gaining momentum as a major research topic for the past ten years. Severe Plastic Deformation (SPD materials are often in the spotlight for cyclic deformation studies as they are usually in the form of bulk work pieces and have UF and NC grains. Some well known techniques in the category of SPD processing are High Pressure Torsion (HPT, Equal Channel Angular Pressing (ECAP, and Accumulative Roll-Bonding (ARB. In this report, the literature on the cyclic deformation response and behavior of SPDed metals will be reviewed. The cyclic response of such materials is found to range from cyclic hardening to cyclic softening depending on various factors. Specifically, for SPDed UF grained metals, their behavior has often been associated with the observation of grain coarsening during cycling. Consequently, the many factors that affect the cyclic deformation response of SPDed metals can be summarized into three major aspects: (1 the microstructure stability; (2 the limitation of the cyclic lifespan; and lastly (3 the imposed plastic strain amplitude.

  5. Plastic Deformation of Micromachined Silicon Diaphragms with a Sealed Cavity at High Temperatures

    Directory of Open Access Journals (Sweden)

    Juan Ren

    2016-02-01

    Full Text Available Single crystal silicon (SCS diaphragms are widely used as pressure sensitive elements in micromachined pressure sensors. However, for harsh environments applications, pure silicon diaphragms are hardly used because of the deterioration of SCS in both electrical and mechanical properties. To survive at the elevated temperature, the silicon structures must work in combination with other advanced materials, such as silicon carbide (SiC or silicon on insulator (SOI, for improved performance and reduced cost. Hence, in order to extend the operating temperatures of existing SCS microstructures, this work investigates the mechanical behavior of pressurized SCS diaphragms at high temperatures. A model was developed to predict the plastic deformation of SCS diaphragms and was verified by the experiments. The evolution of the deformation was obtained by studying the surface profiles at different anneal stages. The slow continuous deformation was considered as creep for the diaphragms with a radius of 2.5 mm at 600 °C. The occurrence of plastic deformation was successfully predicted by the model and was observed at the operating temperature of 800 °C and 900 °C, respectively.

  6. Decay of oxygen solid solution in plastically deformed silicon

    Energy Technology Data Exchange (ETDEWEB)

    Yarykin, N. [Institute of Microelectronics Technology RAS, Chernogolovka (Russian Federation); Vdovin, V.I. [Institute for Chemical Problems of Microelectronics, Moscow (Russian Federation)

    2005-04-01

    Decay of the oxygen solid solution in silicon during annealing at 550-700 C is studied by the IR absorption technique in the single crystalline samples subjected to the plastic deformation to a high dislocation density at 680 C. The deformation is shown to significantly enhance the rate of the decay in the whole temperature range studied. Based on the simple model, which assumes the heterogeneous oxygen aggregation at dislocations, the effective oxygen diffusivity is calculated from the experimental data. The activation energy of oxygen diffusion in this temperature range is found to be about 1.6 eV, which is essentially lower than that for the isolated interstitial oxygen atom. (copyright 2005 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  7. Stochastically forced dislocation density distribution in plastic deformation

    CERN Document Server

    Chattopadhyay, Amit K

    2016-01-01

    The dynamical evolution of dislocations in plastically deformed metals is controlled by both deterministic factors arising out of applied loads and stochastic effects appearing due to fluctuations of internal stress. Such type of stochastic dislocation processes and the associated spatially inhomogeneous modes lead to randomness in the observed deformation structure. Previous studies have analyzed the role of randomness in such textural evolution but none of these models have considered the impact of a finite decay time (all previous models assumed instantaneous relaxation which is "unphysical") of the stochastic perturbations in the overall dynamics of the system. The present article bridges this knowledge gap by introducing a colored noise in the form of an Ornstein-Uhlenbeck noise in the analysis of a class of linear and nonlinear Wiener and Ornstein-Uhlenbeck processes that these structural dislocation dynamics could be mapped on to. Based on an analysis of the relevant Fokker-Planck model, our results sh...

  8. Crystal Plasticity Analysis on Compressive Loading of Magnesium with Suppression of Twinning

    Science.gov (United States)

    Mayama, Tsuyoshi; Ohashi, Tetsuya; Higashida, Kenji; Kawamura, Yoshihito

    The compressive loading behavior of single crystals and bicrystals of magnesium without consideration of deformation twinning has been investigated by crystal plasticity finite element analysis with the aim of fundamental understanding of kink band formation in magnesium alloys with long period stacking ordered structure (LPSO) phase. The basal plane of the single crystal model is set to be parallel to the compressive direction. The result of the compressive loading analysis of single crystals indicates the significant influence of suppression of twinning on the activation of nonbasal slip systems and stress-strain behavior. The compressive analysis of symmetric bicrystal is also performed to clarify the influence of the angle between basal plane and the loading axis. The influence of the introduction of grain boundary and the slight change of crystal orientation is discussed in terms of activated deformation modes.

  9. ELASTIC-PLASTIC TRANSVERSE BENDING OF A ROD DURING LIMITED PLASTIC DEFORMATION

    Directory of Open Access Journals (Sweden)

    S.V.Bakushev

    2015-02-01

    Full Text Available Issue No1(25,2015ISSN 2075-081175UDC539.373Penza State University of Architecture and ConstructionD.Sc.in Engineering, Prof. of Dept. of Mechanics S.V.BakushevRussia, Penza, tel.: (841248-27-37;e-mail: tim-graf_penza@rambler.ruS.V.BakushevELASTIC-PLASTIC TRANSVERSE BENDING OF A ROD DURING LIMITED PLASTIC DEFORMATIONStatement of the problem. Theproblem of calculating bending of a rod in the state of flat trans-verse elastoplastic bend during limited plastic deformation is discussed. The transverse section of a rod with two axes of symmetry has a form of a fifty-fifty beam with two shelves: external and in-ternal. A complex form of cross section explains practically unsolved difficulties in terms of its analytical solution. It leads to the use of math software and programming and math support, par-ticularly MathCAD. In the first case we take as external loading a point force applied in the middle of the flange; in the second case it is an evenly distributed loading acting along the whole rod.Results.As a result the bearing ability of the rod during limited plasticity is determined as well as the boundary of plastic and elastic deformations; residual stress in the rod following its complete unloading; deflected rod axe and residual deflection in the rod following its complete unloading.Conclusions. The calculation shows that the use of modern information technologies, particularly software and math support of PC allow one to deal with difficult and laborious problems, in terms of the design of the analytical solution of mechanics of a deformed solid body.

  10. Control of Cellular Arrangement by Surface Topography Induced by Plastic Deformation

    Directory of Open Access Journals (Sweden)

    Aira Matsugaki

    2016-06-01

    Full Text Available The anisotropic microstructure of bone tissue is crucial for appropriate mechanical and biological functions of bone. We recently revealed that the construction of oriented bone matrix is established by osteoblast alignment; there is a quite unique correlation between cell alignment and cell-produced bone matrix orientation governed by the molecular interactions between material surface and cells. Titanium and its alloys are one of the most attractive materials for biomedical applications. We previously succeeded in controlling cellular arrangement using the dislocations of a crystallographic slip system in titanium single crystals with hexagonal close-packing (hcp crystal lattice. Here, we induced a specific surface topography by deformation twinning and dislocation motion to control cell orientation. Dislocation and deformation twinning were introduced into α-titanium polycrystals in compression, inducing a characteristic surface structure involving nanometer-scale highly concentrated twinning traces. The plastic deformation-induced surface topography strongly influenced osteoblast orientation, causing them to align preferentially along the slip and twinning traces. This surface morphology, exhibiting a characteristic grating structure, controlled the localization of focal adhesions and subsequent elongation of stress fibers in osteoblasts. These results indicate that cellular responses against dislocation and deformation twinning are useful for controlling osteoblast alignment and the resulting bone matrix anisotropy.

  11. Transformation from slip to plastic flow deformation mechanism during tensile deformation of zirconium nanocontacts

    Science.gov (United States)

    Yamada, Kohei; Kizuka, Tokushi

    2017-01-01

    Various types of nanometer-sized structures have been applied to advanced functional and structural devices. Inherent structures, thermal stability, and properties of such nanostructures are emphasized when their size is decreased to several nanometers, especially, to several atoms. In this study, we observed the atomistic tensile deformation process of zirconium nanocontacts, which are typical nanostructures used in connection of nanometer-sized wires, transistors, and diodes, memory devices, and sensors, by in situ transmission electron microscopy. It was found that the contact was deformed via a plastic flow mechanism, which differs from the slip on lattice planes frequently observed in metals, and that the crystallinity became disordered. The various irregular relaxed structures formed during the deformation process affected the conductance. PMID:28218244

  12. Grain Refinement and Deformation Mechanisms in Room Temperature Severe Plastic Deformed Mg-AZ31

    Directory of Open Access Journals (Sweden)

    Ludwig Schultz

    2013-07-01

    Full Text Available A Ti-AZ31 composite was severely plastically deformed by rotary swaging at room temperature up to a logarithmic deformation strain of 2.98. A value far beyond the forming limit of pure AZ31 when being equivalently deformed. It is observed, that the microstructure evolution in Mg-AZ31 is strongly influenced by twinning. At low strains the {̅1011} (10̅12 and the {̅1012} (10̅11 twin systems lead to fragmentation of the initial grains. Inside the primary twins, grain refinement takes place by dynamic recrystallization, dynamic recovery and twinning. These mechanisms lead to a final grain size of ≈1 μm, while a strong centered ring fibre texture is evolved.

  13. Transformation from slip to plastic flow deformation mechanism during tensile deformation of zirconium nanocontacts

    Science.gov (United States)

    Yamada, Kohei; Kizuka, Tokushi

    2017-02-01

    Various types of nanometer-sized structures have been applied to advanced functional and structural devices. Inherent structures, thermal stability, and properties of such nanostructures are emphasized when their size is decreased to several nanometers, especially, to several atoms. In this study, we observed the atomistic tensile deformation process of zirconium nanocontacts, which are typical nanostructures used in connection of nanometer-sized wires, transistors, and diodes, memory devices, and sensors, by in situ transmission electron microscopy. It was found that the contact was deformed via a plastic flow mechanism, which differs from the slip on lattice planes frequently observed in metals, and that the crystallinity became disordered. The various irregular relaxed structures formed during the deformation process affected the conductance.

  14. Relation between icosahedral short-range ordering and plastic deformation in Zr-Nb-Cu-Ni-Al bulk metallic glasses

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, Z.W. [Institute for Materials Research, Tohoku University, Sendai 980-8577 (Japan); Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016 (China); Gu, L. [WPI, Advance Institute for Materials Research, Tohoku University, Sendai 980-8577 (Japan); Xie, G.Q. [Institute for Materials Research, Tohoku University, Sendai 980-8577 (Japan); Zhang, W., E-mail: wzhang@imr.tohoku.ac.jp [Institute for Materials Research, Tohoku University, Sendai 980-8577 (Japan); Inoue, A. [WPI, Advance Institute for Materials Research, Tohoku University, Sendai 980-8577 (Japan); Zhang, H.F., E-mail: hfzhang@imr.ac.cn [Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016 (China); Hu, Z.Q. [Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016 (China)

    2011-04-15

    The relation between icosahedral short-range ordering (ISRO) and plastic deformation was investigated in Zr{sub 70-x}Nb{sub x}Cu{sub 13.5}Ni{sub 8.5}Al{sub 8} (at.%, x = 0, 2, 4, 6, 7, 8, 10) bulk metallic glasses (BMG). The formation of icosahedral quasicrystal (I-phase) during the annealing process implies that ISRO widely exists in these materials. The degree of ISRO is thermodynamically evaluated to show that ISRO increases with increasing Nb content. Compression tests indicate that BMG with 0-7 at.% Nb possess similar unusual plastic deformability, which is attributed to ISRO-mediated local distribution of free volume (FV) and ISRO prompted deformation-induced crystallization. A proposed core-shell model coupled with transmission electron microscopy analysis demonstrates that the FV is distributed more heterogeneously with increasing ISRO, which is beneficial for multiplying the shear bands. Deformation-induced crystallization is facilitated, owing to the low interfacial energy of the nucleation and growth of the crystals attributed to ISRO in the amorphous matrix, which improves plasticity by consuming energy and the product altering the stress field in the amorphous matrix. Design of new ductile BMG is discussed in these strategies.

  15. Microstructural Characterization Of Quenched And Plastically Deformed Two-Phase α+β Titanium Alloys

    Directory of Open Access Journals (Sweden)

    Motyka M.

    2015-09-01

    Full Text Available Development of microstructure in two-phase α+β titanium alloys is realized by thermomechanical processing – sequence of heat treatment and plastic working operations. Analysis of achieved results indicates that hot plastic deformation – depending on deformation degree – causes significant elongation of α phase grains. Following heat treatment and plastic deformation processes lead to their fragmentation and spheroidization. Characterization of microstructure morphology changes during thermomechanical processing of quenched Ti-6Al-4V and Ti-6Al-2Mo-2Cr alloys is presented in the paper. The effect of martensitic phase α’(α” on microstructure development in plastic deformation process was confirmed.

  16. Plastic deformation of a magnesium oxide 001-plane surface produced by cavitation

    Science.gov (United States)

    Hattori, S.; Miyoshi, K.; Buckley, D. H.; Okada, T.

    1986-01-01

    An investigation was conducted to examine plastic deformation of a cleaved single-crystal magnesium oxide 001-plane surface exposed to cavitation. Cavitation damage experiments were carried out in distilled water at 25 C by using a magnetostrictive oscillator in close proximity (2 mm) to the surface of the cleaved specimen. The dislocation-etch-pit patterns induced by cavitation were examined and compared with that of microhardness indentations. The results revealed that dislocation-etch-pit patterns around hardness indentations contain both screw and edge dislocations, while the etch-pit patterns on the surface exposed to cavitation contain only screw dislocations. During cavitation, deformation occurred in a thin surface layer, accompanied by work-hardening of the ceramic. The row of screw dislocations underwent a stable growth, which was analyzed crystallographically.

  17. Plastic Deformation of Transition Zone Minerals: Effect of Temperature on Dislocation Mobility

    Science.gov (United States)

    Ritterbex, S.; Carrez, P.; Gouriet, K.; Cordier, P.

    2014-12-01

    Mantle convection is the fundamental process by which the Earth expels its internal heat. It is controlled at the microscopic scale by the motion of crystal defects responsable for plastic deformation at high temperature and pressure conditions of the deep Earth. In this study we focus on dislocations which are usually considered as the most efficient defects contributing to intracrystalline deformation. The influence of temperature is a key parameter in determining the behaviour of dislocations. We propose a model to describe the temperature-dependent mobility of dislocations based on a computational materials science approach, connecting the atomic to the grain scale. This provides elementary knowledge to both interpret seismic anisotropy and to improve geodynamic modelling. Here we focus on plastic deformation of the transition zone minerals wadsleyite and ringwoodite, dominating the boundary separating the upper from the lower mantle, a region over which the viscosity is thought to increase rapidly. Using the Peierls-Nabarro-Galerkin model enabled us to select potential glide planes, to predict the dislocation core structures and fundamental properties of both Mg2SiO4 high-pressure polymorphs integrating the non-elastic nature of dislocations from atomic scale based calculations. Macroscopic deformation results from the mobility of these distinct dislocations. High finite mantle temperatures activates unstable double-kink configurations on the dislocation line which allow the dislocation to move under stress. The original contribution of the present work is the formulation of a mobility law for dissociated dislocations as they occur in wadsleyite and ringwoodite. This permits us to predict the critical activation enthalpy required to overcome lattice friction associated to the onset of glide. From this, the effective glide velocities can be derived as a function of stress and temperature leading to the first lower bound estimates of transition zone viscosities

  18. Deformation twinning in small-sized face-centred cubic single crystals: Experiments and modelling

    Science.gov (United States)

    Liang, Z. Y.; Huang, M. X.

    2015-12-01

    Small-sized crystals generally show deformation behaviour distinct from their bulk counterparts. In addition to dislocation slip, deformation twinning in small-sized face-centred cubic (FCC) single crystals has been reported to follow a different mechanism which involves coherent emission of partial dislocations on successive { 111 } planes from free surface. The present work employed a twinning-induced plasticity (TWIP) steel with a low stacking fault energy to systematically investigate the twin evolution in small-sized FCC single crystals. Micrometre-sized single crystal pillars of TWIP steel were fabricated by focus ion beam and then strained to different levels by compression experiments. Detailed transmission electron microscopy characterization was carried out to obtain a quantitative evaluation of the deformation twins, which contribute to most of the plastic strain. Emissions of partial dislocations from free surface (surface sources) and pre-existing perfect dislocations inside the pillar (inner sources) are found as the essential processes for the formation of deformation twins. Accordingly, a physically-based model, which integrates source introduction methods and source activation criterions for partial dislocation emission, is developed to quantitatively predict the twin evolution. The model is able to reproduce the experimental twin evolution, in terms of the total twin formation, the twin morphology and the occurrence of twinning burst.

  19. Plastic Collapse Localisation in Simple Shearing and Coaxial Deformations

    Science.gov (United States)

    Hobbs, B. E.; Ord, A.

    2011-12-01

    We explore, numerically, the evolution of localisation due to plastic collapse in both coaxial shortening and simple shearing deformations. These localisation features arise from plastic behaviour and hence differ from the formation of anticracks modelled by linear elastic behaviour (Fletcher and Pollard, 1990). The behaviour is close to that discussed by Rudnicki (2004) and Chemenda (2009) in that localisation consists of zones of plastic collapse separated by elastically unloaded regions. The constitutive behaviour assumed here comprises a Tresca yield with both strain-softening of the yield stress and of a cap that models plastic volumetric collapse during phase transformations, such as the olivine-spinel transition, with ΔVI., 2009. The formation of tabular compaction-band arrays: Theoretical and numerical analysis. J. Mech. Phys. Solids, 57, 851-868. Detournay, C., Cundall. P., & Parra. J. 2003. A study of compaction band formation with the double-yield model. FLAC and Numerical Modeling in Geomechanics-2003 Proceedings of the 3rd International FLAC Symposium, Sudbury, Ontario, Canada, October 2003. R. Brummer (Ed), Balkema, 27-33. Fletcher, R.C., Pollard, D.D., 1990. Anticrack model for pressure solution surfaces. Geology 9, 419- 424. Green, H.W., Burnley, P.C., 1989. A new self-organizing mechanism for deep-focus earthquakes. Nature, 341, 733- 737. Issen, K.A., Rudnicki, J.W., 2000. Conditions for compaction bands in porous rocks. J. Geophys. Res. 105, 21,529-21,536. Rudnicki, J. W. 2004. Shear and compaction band formation on an elliptic yield cap. J. Geophys. Res., 109, B03402. Veveakis, E., Alevizos, S., & Vardoulakis, I. 2010. Chemical reaction capping of thermal instabilities during shear of frictional faults. Journal of the Mechanics and Physics of Solids. 58, 1175-1194.

  20. An acoustic emission study of plastic deformation in polycrystalline aluminium

    Science.gov (United States)

    Bill, R. C.; Frederick, J. R.; Felbeck, D. K.

    1979-01-01

    Acoustic emission experiments were performed on polycrystalline and single crystal 99.99% aluminum while undergoing tensile deformation. It was found that acoustic emission counts as a function of grain size showed a maximum value at a particular grain size. Furthermore, the slip area associated with this particular grain size corresponded to the threshold level of detectability of single dislocation slip events. The rate of decline in acoustic emission activity as grain size is increased beyond the peak value suggests that grain boundary associated dislocation sources are giving rise to the bulk of the detected acoustic emissions.

  1. Angular Distribution of Photons in Coherent Bremsstrahlung in Deformed Crystals

    CERN Document Server

    Parazian, V V

    2010-01-01

    We investigate the angular distribution of photons in the coherent bremsstrahlung process by high-energy electrons in a periodically deformed single crystal with a complex base. The formula for the corresponding differential cross-section is derived for an arbitrary deformation field. The case is considered in detail when the electron enters into the crystal at small angles with respect to a crystallographic axis. The results of the numerical calculations are presented for SiO2 single crystal and Moliere parameterization of the screened atomic potentials in the case of the deformation field generated by the acoustic wave of S -type.

  2. A Rate-Dependent Crystal Plasticity Analysis of Orientation Stability in Biaxial Tension of Magnesium

    Institute of Scientific and Technical Information of China (English)

    Donghong Zhang; Saiyi Li

    2011-01-01

    The development of texture during plastic deformation plays an important role in determining the stretch formability of magnesium alloy sheets. In this study, the orientation stability during equibiaxial tension of magnesium was analyzed based on three dimensional lattice rotations calculated by using a rate-dependent crystal plasticity model and assuming five different combinations of slip modes. The results show that no orientations can satisfy the stability criteria with both zero rotation velocity and convergent orientation flow in all dimensions. However, relatively stable orientations with zero rotation velocity and an overall convergence are found. They are featured by characteristic alignments of specific crystallographic directions in the macroscopic axis of contraction, depending on the slip modes involved in the deformation. It is also shown that the orientation stability varies significantly with the deviation of deformation mode from equibiaxial tension. The simulation results are briefly discussed in comparison with pre-existing experiments.

  3. Tribological effects of polymer surface modification through plastic deformation

    Indian Academy of Sciences (India)

    K O Low; K J Wong

    2011-12-01

    The efficacy of using polymers in cylindrical applications depends closely on its surface friction and wear characteristics. In this regard, a surface modification technique through plastic deformation has been implemented. Roller burnishing is commonly used to improve the surface quality of non-ferrous surfaces, but no work showed concern about roller burnishing as a polymer surface treatment process. The objective of the present work is to investigate the influence of burnishing force and burnishing speed on the friction and wear performance of acetal homopolymer and polyurethane under dry and lubricated sliding conditions. The results reveal that the coefficient of friction and wear rate decreased to a minimum value and then increased as higher burnishing force and speed were applied. It was shown that roller burnishing had favourable prospective to be utilized as a valuable polymer surface treatment technique.

  4. On the Modeling of Plastic Deformation of Magnesium Alloys

    Science.gov (United States)

    Ertürk, S.; Steglich, D.; Bohlen, J.; Letzig, D.; Brocks, W.

    2007-05-01

    Magnesium alloys are promising materials due to their low density and therefore high specific strength. However, the industrial application is not well established so far, especially for wrought products such as sheets or profiles. Due to its hexagonal crystallographic structure, deformation mechanisms observed in magnesium alloys are rather different from those in face centered cubic metals such as aluminum alloys. This leads not only to a mechanical anisotropy, but also to a tension-compression asymmetry, i.e. unequal compressive and tensile yield strength. The resulting complexity in the yielding behavior of such materials cannot be captured by conventional models of J2 plasticity. Cazacu and Barlat, therefore, proposed a phenomenological yield potential which accounts for the respective phenomena by introducing the third invariant of the stress tensor. Simulations based on this model are performed with ABAQUS/Explicit and a user defined routine VUMAT for validating the respective implementation. The application aims at simulating the extrusion process of magnesium alloys.

  5. Coherent pair production in deformed crystals with a complex base

    CERN Document Server

    Mkrtchyan, A R; Saharian, A A

    2006-01-01

    We investigate the coherent electron-positron pair creation by high-energy photons in a periodically deformed single crystal with a complex base. The formula for the corresponding differential cross-section is derived for an arbitrary deformation field. The conditions are specified under which the influence of the deformation is considerable. The case is considered in detail when the photon enters into the crystal at small angles with respect to a crystallographic axis. The results of the numerical calculations are presented for $\\mathrm{SiO}_{2}$ single crystal and Moliere parametrization of the screened atomic potentials in the case of the deformation field generated by the acoustic wave of $S$ type. In dependence of the parameters, the presence of deformation can either enhance or reduce the pair creation cross-section. This can be used to control the parameters of the positron sources for storage rings and colliders.

  6. Plastic incompatibility stresses and stored elastic energy in plastically deformed copper

    Energy Technology Data Exchange (ETDEWEB)

    Baczmanski, A. [Faculty of Physics and Applied Computer Science, AGH-University of Science and Technology, al. Mickiewicza 30, 30-059 Krakow (Poland)], E-mail: baczman@ftj.agh.edu.pl; Hfaiedh, N.; Francois, M. [LASMIS, Universite de Technologie de Troyes, 11 rue Marie Curie, B.P. 2060, 10010 Troyes (France); Wierzbanowski, K. [Faculty of Physics and Applied Computer Science, AGH-University of Science and Technology, al. Mickiewicza 30, 30-059 Krakow (Poland)

    2009-02-15

    The X-ray diffraction method and theoretical model of elastoplastic deformation were used to examine the residual stresses in polycrystalline copper. To this end, the {l_brace}2 2 0{r_brace} strain pole figures were determined for samples subjected to different magnitudes of tensile deformation. Using diffraction data and the self-consistent model, the tensor of plastic incompatibility stress was found for each orientation of a polycrystalline grain. Crystallographic textures, macroscopic and second-order residual stresses were considered in the analysis. As a result, the distributions of elastic stored energy and von Mises equivalent stress were presented in Euler space and correlated with the preferred orientations of grains. Moreover, using the model prediction, the variation of the critical resolved shear stress with grain orientation was determined.

  7. Influence of Plastic Deformation on Low Temperature Surface Hardening of Austenitic Stainless Steel by Gaseous Nitriding

    DEFF Research Database (Denmark)

    Bottoli, Federico; Winther, Grethe; Christiansen, Thomas Lundin;

    2015-01-01

    This article addresses an investigation of the influence of plastic deformation on low temperature surface hardening by gaseous nitriding of two commercial austenitic stainless steels: AISI 304 and EN 1.4369. The materials were plastically deformed to different equivalent strains by uniaxial...

  8. Elastic-plastic deformation of sandwich rod on elastic basis

    Institute of Scientific and Technical Information of China (English)

    GU Yu

    2008-01-01

    Sandwich composite material possesses advantages of both light weight and high strength.Although the mechanical behaviors of sandwich composite material with the influence of single external environment have been intensively studied,little work has been done in the study of mechanical property,in view of the nonlinear behavior of sandwich composites in the complicated external environments.In this paper,the problem about the bending of the three-layer elastic-plastic rod located on the elastic base,with a compressibly physical nonlinear core,has been studied.The mechanical response of the designed three-layer elements consisting of two bearing layers and a core has been examined.The complicated problem about curving of the three-layer rod located on the elastic base has been solved.The convergence of the proposed method of elastic solutions is examined to convince that the solution is acceptable.The calculated results indicate that the plasticity and physical nonlinearity of materials have a great influence on the deformation of the sandwich rod on the elastic basis.

  9. Plastic deformation wear in modified medium manganese steel

    Directory of Open Access Journals (Sweden)

    YUAN Hai-lun

    2007-08-01

    Full Text Available A medium manganese steel with high wear-resistance, strength and toughness has been produced with addition of a complex modifier (or refining agent containing Nb, N, RE and Si-Ca. The results showed that the wear resistance, strength and toughness of the modified medium manganese steel are respectively 1.92 times, 1.45 times and 3.63 times as high as that of the referenced unmodified medium manganese steel. The plastic deformation characteristic involved in the wear mechanism of the modified medium manganese steel was investigated by means of plastic-elasticity calculation and TEM electro-microscopy. The relationship between wear resistance and yield strength of the steel was established. Since the wear volume W is proportional to the square of the loading and to the numbers of the abrasives, and inversely proportional to the square of the yield strength of the materials, the wear resistance can be substantially improved by the enhancement of yield strength of the materials. The calculation results generally agreed with the experimental results.

  10. Plastic deformation wear in modified medium manganese steel

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    A medium manganese steel with high wear-resistance, strength and toughness has been produced with addition of a complex modifier (or refining agent) containing Nb, N, RE and Si-Ca. The results showed that the wear resistance, strength and toughness of the modified medium manganese steel are respectively 1.92 times, 1.45times and 3.63 times as high as that of the referenced unmodified medium manganese steel. The plastic deformation characteristic involved in the wear mechanism of the modified medium manganese steel was investigated by means of plastic-elasticity calculation and TEM electro-microscopy. The relationship between wear resistance and yield strength of the steel was established. Since the wear volume W is proportional to the square of the loading and to the numbers of the abrasives, and inversely proportional to the square of the yield strength of the materials, the wear resistance can be substantially improved by the enhancement of yield strength of the materials. The calculation results generally agreed with the experimental results.

  11. Study on Damage of High Temperature Plastic Deformation for Al-Li Alloy

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    The security of use for Al-Li alloy will be greatly influenced by the damage degree of plastic deformation within it at high temperature . Based on continuum damage mechanics theory, the damage evolution of Al-5.44Mg-2.15Li-0.12Zr alloy during plastic deforming at high temperature is simulated by using the damage evolution model of high temperature plastic deformation. The changing rule of its inner damage with deformation temperature, strain rate and strain is gained in this paper. The equation of damage evolution for high temperature plastic deformation is developed, providing an academic basis for the technology of plastic process of Al-Li alloys.

  12. Modeling texture development during cold rolling of IF steel by crystal plasticity finite element method

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    With the consideration of slip deformation mechanism and various slip systems of body centered cubic (BCC) metals,Taylor-type and finite element polycrystai models were embedded into the commercial finite element code ABAQUS to realize crystal plasticity finte element modeling,based on the rate dependent crystal constitutive equations.Initial orientations measured by electron backscatter diffraction (EBSD) were directly input into the crystal plasticity finite element model to simulate the development of rolling texture of interstitial-flee steel (IF steel) at various reductions.The modeled results show a good agreement with the experimental results.With increasing reduction,the predicted and experimental rolling textures tend to sharper,and the results simulated by the Taylor-type model are stronger than those simulated by finite element model.Conclusions are obtained that rolling textures calculated with 48 {110}+{ 112}+{123} slip systems are more approximate to EBSD results.

  13. A High-Rate, Single-Crystal Model including Phase Transformations, Plastic Slip, and Twinning

    Energy Technology Data Exchange (ETDEWEB)

    Addessio, Francis L. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States). Theoretical Division; Bronkhorst, Curt Allan [Los Alamos National Lab. (LANL), Los Alamos, NM (United States). Theoretical Division; Bolme, Cynthia Anne [Los Alamos National Lab. (LANL), Los Alamos, NM (United States). Explosive Science and Shock Physics Division; Brown, Donald William [Los Alamos National Lab. (LANL), Los Alamos, NM (United States). Materials Science and Technology Division; Cerreta, Ellen Kathleen [Los Alamos National Lab. (LANL), Los Alamos, NM (United States). Materials Science and Technology Division; Lebensohn, Ricardo A. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States). Materials Science and Technology Division; Lookman, Turab [Los Alamos National Lab. (LANL), Los Alamos, NM (United States). Theoretical Division; Luscher, Darby Jon [Los Alamos National Lab. (LANL), Los Alamos, NM (United States). Theoretical Division; Mayeur, Jason Rhea [Los Alamos National Lab. (LANL), Los Alamos, NM (United States). Theoretical Division; Morrow, Benjamin M. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States). Materials Science and Technology Division; Rigg, Paulo A. [Washington State Univ., Pullman, WA (United States). Dept. of Physics. Inst. for Shock Physics

    2016-08-09

    An anisotropic, rate-­dependent, single-­crystal approach for modeling materials under the conditions of high strain rates and pressures is provided. The model includes the effects of large deformations, nonlinear elasticity, phase transformations, and plastic slip and twinning. It is envisioned that the model may be used to examine these coupled effects on the local deformation of materials that are subjected to ballistic impact or explosive loading. The model is formulated using a multiplicative decomposition of the deformation gradient. A plate impact experiment on a multi-­crystal sample of titanium was conducted. The particle velocities at the back surface of three crystal orientations relative to the direction of impact were measured. Molecular dynamics simulations were conducted to investigate the details of the high-­rate deformation and pursue issues related to the phase transformation for titanium. Simulations using the single crystal model were conducted and compared to the high-­rate experimental data for the impact loaded single crystals. The model was found to capture the features of the experiments.

  14. Inelastic deformation in crystalline rocks

    Science.gov (United States)

    Rahmani, H.; Borja, R. I.

    2011-12-01

    The elasto-plastic behavior of crystalline rocks, such as evaporites, igneous rocks, or metamorphic rocks, is highly dependent on the behavior of their individual crystals. Previous studies indicate that crystal plasticity can be one of the dominant micro mechanisms in the plastic deformation of crystal aggregates. Deformation bands and pore collapse are examples of plastic deformation in crystalline rocks. In these cases twinning within the grains illustrate plastic deformation of crystal lattice. Crystal plasticity is governed by the plastic deformation along potential slip systems of crystals. Linear dependency of the crystal slip systems causes singularity in the system of equations solving for the plastic slip of each slip system. As a result, taking the micro-structure properties into account, while studying the overall behavior of crystalline materials, is quite challenging. To model the plastic deformation of single crystals we use the so called `ultimate algorithm' by Borja and Wren (1993) implemented in a 3D finite element framework to solve boundary value problems. The major advantage of this model is that it avoids the singularity problem by solving for the plastic slip explicitly in sub steps over which the stress strain relationship is linear. Comparing the results of the examples to available models such as Von Mises we show the significance of considering the micro-structure of crystals in modeling the overall elasto-plastic deformation of crystal aggregates.

  15. Microstructure transformation during plastic deformation of the austempered ductile iron

    Directory of Open Access Journals (Sweden)

    D. Myszka

    2009-01-01

    Full Text Available Excellent properties of ADI (Austempered Ductile Iron are widely praised by the world technical literature. These properties depend onthe cast iron microstructure formed during the heat treatment process of a specific type. The matrix of ADI is a mixture of lamellar ferrite and high-carbon austenite. It seems, however, that it is the austenite that is responsible for the high strength and ductility of this material, although investigations and analyses have proved that it is not homogeneous. Various types of austenite found in the ADI matrix include unreacted austenite, stable austenite, and metastable austenite which will be transferred into martensite during machining of castings.In this study an attempt has been made to determine the fraction of metastable austenite and to evaluate its effect on ADI properties.The heat treatment enabled manufacturing ADI characterised by the following properties: T.S.>1000MPa, El.>10%, Y.S.>600MPa. As anext step, the controlled process of plastic deformation of the samples was carried out. Applying the new method it has been established that due to 15% cold work, the structure of the examined ADI contains 9% of martensite; this volume fraction goes up to 17% after 25% cold work. The results of the investigations were cofirmed by X-ray diffraction pattern analysis and magnetic measurements.Consequently, it has been proved that ADI characterised by properties satisfying the criteria of an international standard developed for this particular material contains a large amount of metastable austenite subject to the TRIP (Transformation Induced Plasticity effect.

  16. FINITE ELEMENT ANALYSIS OF SUBSTRATE LOCAL PLASTIC DEFORMATION INDUCED BY CRACKED THIN HARD FILM

    Institute of Scientific and Technical Information of China (English)

    Zhu Youli; Ro(z)niatowski K; Kurzydlowski K; Huang Yuanlin; Xu Binshi

    2004-01-01

    It has been postulated that, with tensile loading conditions, micro-cracks on thin hard film act as stress concentrators enhancing plastic deformation of the substrate material in their vicinity. Under favorable conditions the localized plastic flow near the cracks may turn into macroscopic plastic strain thus affects the plasticity behaviors of the substrate. This phenomenon is analyzed quantitatively with finite element method with special attention focused on the analysis and discussion of the effects of plastic work hardening rate, film thickness and crack depth on maximum plastic strain, critical loading stress and the size of the local plastic deformation zone. Results show that micro-cracks on thin hard film have unnegligible effects on the plasticity behaviors of the substrate material under tensile loading.

  17. Changes in mobility of plastic crystal ethanol during its transformation into the monoclinic crystal state

    Energy Technology Data Exchange (ETDEWEB)

    Sanz, Alejandro, E-mail: alejandro.sanz@csic.es; Nogales, Aurora; Ezquerra, Tiberio A. [Instituto de Estructura de la Materia, IEM-CSIC, Serrano 121, 28006 Madrid (Spain); Puente-Orench, Inés [Institut Laue-Langevin, BP 156, 38042 Grenoble Cedex 9 (France); Instituto de Ciencia de Materiales de Aragón, ICMA-CSIC, Pedro Cerbuna 12, 50009 Zaragoza (Spain); Jiménez-Ruiz, Mónica [Institut Laue-Langevin, BP 156, 38042 Grenoble Cedex 9 (France)

    2014-02-07

    Transformation of deuterated ethanol from the plastic crystal phase into the monoclinic one is investigated by means of a singular setup combining simultaneously dielectric spectroscopy with neutron diffraction. We postulate that a dynamic transition from plastic crystal to supercooled liquid-like configuration through a deep reorganization of the hydrogen-bonding network must take place as a previous step of the crystallization process. Once these precursor regions are formed, subsequent crystalline nucleation and growth develop with time.

  18. Mixed brittle-plastic deformation behaviour in a slate belt. Examples from the High-Ardenne slate belt (Belgium, Germany)

    Science.gov (United States)

    Sintubin, Manuel; van Baelen, Hervé; van Noten, Koen; Muchez, Philippe

    2010-05-01

    In the High-Ardenne slate belt, part of the Rhenohercynian external fold-and-thrust belt at the northern extremity of the Late Palaeozoic Variscan orogen (Belgium, Germany, France), particular quartz vein occurrences can be observed in predominantly fine-grained siliciclastic metasediments. Detailed structural, petrographical and geochemical studies has revealed that these vein occurrences can be related to a mixed brittle-plastic deformation behaviour in a low-grade metamorphic mid-crustal environment. The first type of quartz veins are bedding-perpendicular, lens-shaped extension veins that are confined to the sandstone layers within the multilayer sequence. Fluid inclusion studies demonstrate high fluid pressures suggesting that the individual sandstone bodies acted as isolated high-pressure compartments in an overpressured basin. Hydraulic fracturing occurred during the tectonic inversion (from extension to compression) in the earliest stages of the Variscan orogeny. The vein fill shows a blocky character indicating crystal growth in open cavities. Both the typical lens shape of the veins and the subsequent cuspate-lobate folding of the bed interfaces in between the quartz veins suggest plastic deformation of cohesionless fluid-filled fissures. Metamorphic grade of the host rock and fluid temperature and pressure clearly indicates mid-crustal conditions below the brittle-plastic transition. This first type of quartz veins exemplifies mixed brittle-plastic deformation behaviour, possibly related to a transient deepening of the brittle-plastic transition. This is in contrast with contemporaneous bedding-perpendicular crack-seal veins observed in higher - upper-crustal - structural levels in the slate belt, reflecting pure brittle deformation behaviour. The second type are discordant quartz veins confined to extensional low-angle detachment shear zones. These very irregular veins transect a pre-existing pervasive cleavage fabric. They show no matching walls and

  19. Calculating minimum perforating depth with consideration of plastic deformation around well-hole

    Institute of Scientific and Technical Information of China (English)

    LUO Yong

    2007-01-01

    In order to obtain the perforation depth, the three zones with different permeability because of plastic deformation and fluid invasion were studied based on related theories. The study shows that the calculation of perforation depth should take account of not only damaged zone, but also plastic zone, because the plastic zone has much lower permeability. The required minimum perforation depth was obtained by making the solution of elastic/plastic equations, and the factors affecting perforation depth were analyzed accordingly.

  20. Thermal image analysis of plastic deformation and fracture behavior by a thermo-video measurement system

    Science.gov (United States)

    Ohbuchi, Yoshifumi; Sakamoto, Hidetoshi; Nagatomo, Nobuaki

    2016-12-01

    The visualization of the plastic region and the measurement of its size are necessary and indispensable to evaluate the deformation and fracture behavior of a material. In order to evaluate the plastic deformation and fracture behavior in a structural member with some flaws, the authors paid attention to the surface temperature which is generated by plastic strain energy. The visualization of the plastic deformation was developed by analyzing the relationship between the extension of the plastic deformation range and the surface temperature distribution, which was obtained by an infrared thermo-video system. Furthermore, FEM elasto-plastic analysis was carried out with the experiment, and the effectiveness of this non-contact measurement system of the plastic deformation and fracture process by a thermography system was discussed. The evaluation method using an infrared imaging device proposed in this research has a feature which does not exist in the current evaluation method, i.e. the heat distribution on the surface of the material has been measured widely by noncontact at 2D at high speed. The new measuring technique proposed here can measure the macroscopic plastic deformation distribution on the material surface widely and precisely as a 2D image, and at high speed, by calculation from the heat generation and the heat propagation distribution.

  1. Deformation patterns and surface morphology in a minimal model of amorphous plasticity

    Science.gov (United States)

    Sandfeld, Stefan; Zaiser, Michael

    2014-03-01

    We investigate a minimal model of the plastic deformation of amorphous materials. The material elements are assumed to exhibit ideally plastic behavior (J2 plasticity). Structural disorder is considered in terms of random variations of the local yield stresses. Using a finite element implementation of this simple model, we simulate the plane strain deformation of long thin rods loaded in tension. The resulting strain patterns are statistically characterized in terms of their spatial correlation functions. Studies of the corresponding surface morphology reveal a non-trivial Hurst exponent H ≈ 0.8, indicating the presence of long-range correlations in the deformation patterns. The simulated deformation patterns and surface morphology exhibit persistent features which emerge already at the very onset of plastic deformation, while subsequent evolution is characterized by growth in amplitude without major morphology changes. The findings are compared to experimental observations.

  2. Towards simulation of elasto-plastic deformation: An investigation

    Indian Academy of Sciences (India)

    Arun R Rao; U Shrinivasa

    2002-06-01

    Can the deformation of a solid body during plastic flow be assumed to be similar to that of fluids? Here we investigate the possibility of using a modified Navier-Stokes equation as the governing differential equation by including elastic resistance. We adopt the microscopic point of view to explain the material behaviour by laying special emphasis on strain localisation and tension instabilities. A spring and damper model is constructed to obtain approximate simulation of the material behaviour. Based upon the understanding developed from simulating simple tests, we re-formulate the field equation using resistances to change in volume and shape. The new field equation reduces to the Navier-Stokes equation in the fluid limit and Cauchy’s equation in the solid limit. The viscosity and second viscosity of fluids are clearly defined. Bulk and shear modulii and solid damping determine the solid behaviour. Pressure disappears from the field equation and so there is no need to invoke the continuity equation. The four material parameters are determinable from simple measurments. This paper tries to capture the various steps of the investigation which lead to the final result.

  3. Soft phononic crystals with deformation-independent band gaps

    Science.gov (United States)

    2017-01-01

    Soft phononic crystals have the advantages over their stiff counterparts of being flexible and reconfigurable. Normally, the band gaps of soft phononic crystals will be modified after deformation due to both geometric and constitutive nonlinearity. Indeed these are important properties that can be exploited to tune the dynamic properties of the material. However, in some instances, it may be that one wishes to deform the medium while retaining the band gap structure. A special class of soft phononic crystals is described here with band gaps that are independent or almost-independent of the imposed mechanical deformation, which enables the design of phononic crystals with robust performance. This remarkable behaviour originates from transformation elasticity theory, which leaves the wave equation and the eigenfrequencies invariant after deformation. The necessary condition to achieve such a property is that the Lagrangian elasticity tensor of the hyperelastic material should be constant, i.e. independent of deformation. It is demonstrated that incompressible neo-Hookean materials exhibit such a unique property. Semilinear materials also possess this property under special loading conditions. Phononic crystals composed of these two materials are studied theoretically and the predictions of invariance, or the manner in which the response deviates from invariance, are confirmed via numerical simulation. PMID:28484331

  4. Coupled Simulations of Mechanical Deformation and Microstructural Evolution Using Polycrystal Plasticity and Monte Carlo Potts Models

    Energy Technology Data Exchange (ETDEWEB)

    Battaile, C.C.; Buchheit, T.E.; Holm, E.A.; Neilsen, M.K.; Wellman, G.W.

    1999-01-12

    The microstructural evolution of heavily deformed polycrystalline Cu is simulated by coupling a constitutive model for polycrystal plasticity with the Monte Carlo Potts model for grain growth. The effects of deformation on boundary topology and grain growth kinetics are presented. Heavy deformation leads to dramatic strain-induced boundary migration and subsequent grain fragmentation. Grain growth is accelerated in heavily deformed microstructures. The implications of these results for the thermomechanical fatigue failure of eutectic solder joints are discussed.

  5. Computational procedures for finite deformation rate-independent plasticity and viscoplasticity based on overstress

    Science.gov (United States)

    Gomaa, Said Taha Khalil

    2000-10-01

    This thesis is dedicated to developing the computational procedures required in implementing the finite element method for finite deformation, rate-independent plasticity and finite deformation viscoplasticity theory based on overstress. The classical rate-independent, von Mises plasticity is formulated using both hypoelastic-plastic model and hyperelastic-plastic model. In the hypoelastic-plastic model, a relationship between an objective rate of Kirchhoff stress, based on a new recently proposed logarithmic spin [13], and the elastic part of rate of deformation tensor is postulated. In the hyperelastic-plastic model, the deformation gradient is decomposed into elastic and plastic deformations, a relationship between Kirchhoff stress and the logarithm of the elastic left stretch tensor is used. Numerical procedures for the integration of both models are developed. The isotropic, viscoplasticity theory based on overstress consisting of a flow law and two tensor valued and one scalar valued stress-like state variables is extended to finite deformation. To this end the Cauchy stress rate and the rates of the two tensor-valued state variables are interpreted as Eulerian tensors. The rate of deformation is equal to the sum of the elastic (the rate form of Hooke's law) and the inelastic rate of deformation, which depends on the overstress. The model does not contain a strain like quantity. Two integration schemes are considered: (i) a one step time integration scheme based on the forward gradient approximation and (ii) unconditionally stable implicit integration scheme based on backward Euler. The finite deformation, anisotropic, viscoplasticity theory based on overstress is formulated. A hypoelastic relation between the Lagrangian, rotated, logarithmic Cauchy stress rate and the rotated rate of deformation is used. The deformation induced anisotropy is modeled using a compliance tensor that allowed to grow according to Armstrong-Frederick law for fourth order tensors

  6. Plastic Fibula Bone Deformity with Ipsilateral Fracture of Tibiain Adults: A Case Report

    OpenAIRE

    Abbas Abdoli Tafti; Sanazsadat Sajadi; Maryam Shahmoradi

    2015-01-01

    Plastic bowing is a constant deformation of long bones occurring after a long standing force to bone. This type of fracture is seen in children and is uncommon in the adults. In this paper we report a case of fibular plastic deformity with ipsilateral tibia fracture in a 20 years old man that occurred after a direct hit. At the initial examination vital signs were stable and radiography of tibia and fibula fracture with plastic deformation were clear. In order to treat him we performed fib...

  7. Direct observation of plasticity and quantitative hardness measurements in single crystal cyclotrimethylene trinitramine by nanoindention

    Energy Technology Data Exchange (ETDEWEB)

    Ramos, Kyle J [Los Alamos National Laboratory; Hooks, David E [Los Alamos National Laboratory; Bahr, David F [WSU

    2008-01-01

    Investigation of deformation beginning with elasticity and continuing through the elastic-plastic transition to incipient cracking has been conducted for (210), (021), and (001) oriented single crystals of the explosive cyclotrimethylene trinitramine, commonly known as 'RDX' Instrumented indentation was performed with a conical tip over a range of loads. The resulting load-depth data exhibited distinct, reproducible, orientation dependent load excursions demonstrating elastic-plastic transitions. Indent impressions were imaged by scanning probe microscopy. Impressions on the (210) and (001) planes showed deformation pileup features associated with zone axes of slip planes. Clearly discernable slip traces were evident on the (210) plane. The (021) indentations produced significant material pile-up surrounding the impression, but did not contain discrete features associable with specific zone axes. All of the orientations exhibited cracking thresholds at very low loads. The reduced moduli were anisotropic and the hardness's were isotropic indicating limited plasticity. Maximum shear stresses estimated from a Hertzian model, at load excursions, were within a factor of 10 of published shear moduli indicating deformation initiated near the theoretical yield strength presumably by homogeneous nucleation of dislocations. The material strength parameters and apparent deformation pathways inferred from this work are compared to historical microhardness testing and interpretation of anisotropic hardness in which ambiguity of results can be attributed to the effects of cracking and simultaneous slip on multiple systems.

  8. Infrared absorption band in deformed qtz crystals analyzed by combining different microstructural methods

    Science.gov (United States)

    Stunitz, Holger; Thust, Anja; Behrens, Harald; Heilbronner, Renee; Kilian, Ruediger

    2016-04-01

    Natural single crystals of quartz have been experimentally deformed in two orientations: (1) normal to one prism-plane, (2) In O+ orientation at temperatures of 900 and 1000°C, pressures of 1.0 and 1.5 GPa, and strain rates of ~1 x 10-6s-1. The starting material is milky quartz, consisting of dry quartz (H2O contents of recycling of H2O between FÍs, dislocation generation at very small fluid inclusions, incorporation of structurally bound H into dislocation cores, and release of H2O from dislocations back into FÍs during recovery. Cracking and crack healing play an important role in the recycling process and imply a close interrelationship between brittle and crystal plastic deformation. The H2O weakening by this process is of a disequilibrium nature and thus depends on the amount of H2O available.

  9. Design Features of Hardening Turners with Outstripping Plastic Deformation

    Directory of Open Access Journals (Sweden)

    V. M. Yaroslavtsev

    2014-01-01

    Full Text Available An efficiency of the cutting method with outstripping plastic deformation (OPD in lathe works is defined in many respects by design features of the add-on devices for mechanical hardening of a cut-off layer material in the course of cutting. Applied on lathes, deforming OPD devices can have differing dimensions, placement on the lathe, drive type (manual, electric, hydraulic, pneumatic, pneumohydraulic, electromagnetic, and autonomy degree towards the metalcutting equipment and industrial equipment.At the same time there are a number of inherent design features of work-hardening devices the modernized lathes with OPD use for machining. Now the OPD standard devices implement two principle construction options: loading device is placed on the machine or on the OPD slide support separate of the tool, or it is structurally aligned with the cutting tool. In the latter case the OPD device for turning is called a tool mandrel, which is mounted in a tool post of the machine or, at large dimensions, such a mandrel is mounted on the machine instead of the tool mandrel.When designing the OPD devices, is important to take into consideration production requirements and recommendations for the technological equipment, developed in the course of creation, working off and introduction of such installations for mechanical hardening of material. In compliance with it, OPD devices, their placement on the machine, and working displacements shouldn't limit technological capabilities of the applied metal-cutting equipment. OPD stresses have to be smoothly regulated, with maximum loads being limited to admissible values for the machine model to be modernized. It is necessary to ensure synchronized longitudinal and cross displacements of the cutting tool and OPD hardener with respect to the axis of billet rotation to enable regulation and readjustment of the hardener and tool placement. It ought to foresee the increased mobile components rigidity and manufacturing

  10. Yielding and deformation behavior of the single crystal superalloy PWA 1480

    Science.gov (United States)

    Milligan, Walter W.; Antolovich, Stephen D.

    1987-01-01

    Interrupted tensile tests were conducted to fixed plastic strain levels in 100 ordered single crystals of the nickel based superalloy PWA 1480. Testing was done in the range of 20 to 1093 C, at strain rate of 0.5 and 50 percent/min. The yield strength was constant from 20 to 760 C, above which the strength dropped rapidly and became a strong function of strain rate. The high temperature data were represented very well by an Arrhenius type equation, which resulted in three distinct temperature regimes. The deformation substructures were grouped in the same three regimes, indicating that there was a fundamental relationship between the deformation mechanisms and activation energies. Models of the yielding process were considered, and it was found that no currently available model was fully applicable to this alloy. It was also demonstrated that the initial deformation mechanism (during yielding) was frequently different from that which would be inferred by examining specimens which were tested to failure.

  11. MAGNETO-ABRASIVE MACHINING OF SURFACES FORMED BY ELECTROMAGNET SURFACING WITH PLASTIC DEFORMATION

    Directory of Open Access Journals (Sweden)

    Zh. A. Mrochek

    2011-01-01

    Full Text Available The paper presents investigation results pertaining to magneto-abrasive machining of product surfaces formed by electromagnet surfacing with a plastic deformation of P6M5K5 powder. 

  12. GRINDING OF SURFACES WITH COATINGS FORMED BY ELECTROMAGNETIC FACING WITH SURFACE PLASTIC DEFORMATION

    Directory of Open Access Journals (Sweden)

    Zh. A. Mrochek

    2011-01-01

    Full Text Available The paper presents investigation results on machining of surfaces having a coating formed by electromagnetic facing with surface plastic deformation and using abrasive and diamond wheels having a porous metal binder with orientated drains.

  13. The acoustoelastic effect on Rayleigh waves in elastic-plastic deformed layered rocks

    Institute of Scientific and Technical Information of China (English)

    Liu Jin-Xia; Cui Zhi-Wen; Wang Ke-Xie

    2007-01-01

    On the basis of the acoustoelastic theory for elastic-plastic materials, the influence of statically deformed states including both the elastic and plastic deformations induced by applied uniaxial stresses on the Rayleigh wave in layered rocks is investigated by using a transfer matrix method. The acoustoelastic effects of elastic-plastic strains in rocks caused by static deformations, are discussed in detail. The Rayleigh-type and Sezawa modes exhibit similar trends in acoustoelastic effect: the acoustoelastic effect increasing rapidly with the frequency-thickness product and the phase velocity change approaching a constant value for thick layer and high frequency limit. Elastic-plastic deformations in the Castlegate layered rock obviously modify the phase velocity of the Rayleigh wave and the cutoff points for the Sezawa modes. The investigation may be useful for seismic exploration, geotechnical engineering and ultrasonic detection.

  14. Finite-element formulations for problems of large elastic-plastic deformation

    Science.gov (United States)

    Mcmeeking, R. M.; Rice, J. R.

    1975-01-01

    An Eulerian finite element formulation is presented for problems of large elastic-plastic flow. The method is based on Hill's variational principle for incremental deformations, and is ideally suited to isotropically hardening Prandtl-Reuss materials. Further, the formulation is given in a manner which allows any conventional finite element program, for 'small strain' elastic-plastic analysis, to be simply and rigorously adapted to problems involving arbitrary amounts of deformation and arbitrary levels of stress in comparison to plastic deformation moduli. The method is applied to a necking bifurcation analysis of a bar in plane-strain tension. The paper closes with a unified general formulation of finite element equations, both Lagrangian and Eulerian, for large deformations, with arbitrary choice of the conjugate stress and strain measures. Further, a discussion is given of other proposed formulations for elastic-plastic finite element analysis at large strain, and the inadequacies of some of these are commented upon.

  15. A non-linear elastic constitutive framework for replicating plastic deformation in solids.

    Energy Technology Data Exchange (ETDEWEB)

    Roberts, Scott Alan; Schunk, Peter Randall

    2014-02-01

    Ductile metals and other materials typically deform plastically under large applied loads; a behavior most often modeled using plastic deformation constitutive models. However, it is possible to capture some of the key behaviors of plastic deformation using only the framework for nonlinear elastic mechanics. In this paper, we develop a phenomenological, hysteretic, nonlinear elastic constitutive model that captures many of the features expected of a plastic deformation model. This model is based on calculating a secant modulus directly from a materials stress-strain curve. Scalar stress and strain values are obtained in three dimensions by using the von Mises invariants. Hysteresis is incorporated by tracking an additional history variable and assuming an elastic unloading response. This model is demonstrated in both single- and multi-element simulations under varying strain conditions.

  16. Synergistic Effects of Nucleating Agents and Plasticizers on the Crystallization Behavior of Poly(lactic acid

    Directory of Open Access Journals (Sweden)

    Xuetao Shi

    2015-01-01

    Full Text Available The synergistic effect of nucleating agents and plasticizers on the thermal and mechanical performance of PLA nanocomposites was investigated with the objective of increasing the crystallinity and balancing the stiffness and toughness of PLA mechanical properties. Calcium carbonate, halloysite nanotubes, talc and LAK (sulfates were compared with each other as heterogeneous nucleating agents. Both the DSC isothermal and non-isothermal studies indicated that talc and LAK were the more effective nucleating agents among the selected fillers. Poly(D-lactic acid (PDLA acted also as a nucleating agent due to the formation of the PLA stereocomplex. The half crystallization time was reduced by the addition of talc to about 2 min from 37.5 min of pure PLA by the isothermal crystallization study. The dynamic mechanical thermal study (DMTA indicated that nanofillers acted as both reinforcement fillers and nucleating agents in relation to the higher storage modulus. The plasticized PLA studied by DMTA indicated a decreasing glass transition temperature with the increasing of the PEG content. The addition of nanofiller increased the Young’s modulus. PEG had the plasticization effect of increasing the break deformation, while sharply decreasing the stiffness and strength of PLA. The synergistic effect of nanofillers and plasticizer achieved the balance between stiffness and toughness with well-controlled crystallization.

  17. Neutron-diffraction measurement of the evolution of strain for non-uniform plastic deformation

    CERN Document Server

    Rogge, R B; Boyce, D

    2002-01-01

    Neutrons are particularly adept for the validation of modeling predictions of stress and strain. In recent years, there has been a significant effort to model the evolution of both the macroscopic stresses and the intergranular stress during plastic deformation. These have had broad implications with regard to understanding the evolution of residual stress and to diffraction-based measurements of strain. Generally the modeling and associated measurements have been performed for simple uniaxial tension, leaving questions with regard to plastic deformation under multi-axial stress and non-uniform stress. Extensive measurements of the strain profile across a plastic hinge for each of a series of loading and unloading cycles to progressively higher degrees of plastic deformation are presented. These measurements are used to assess multiple-length-scale finite-element modeling (FEM) of the plastic hinge, in which the elements will range in size from single crystallites (as used in successful simulations of uniaxia...

  18. Weakly faceted cellular patterns versus growth-induced plastic deformation in thin-sample directional solidification of monoclinic biphenyl.

    Science.gov (United States)

    Börzsönyi, Tamás; Akamatsu, Silvère; Faivre, Gabriel

    2009-11-01

    We present an experimental study of thin-sample directional solidification (T-DS) in impure biphenyl. The platelike growth shape of the monoclinic biphenyl crystals includes two low-mobility (001) facets and four high-mobility {110} facets. Upon T-DS, biphenyl plates oriented with (001) facets parallel to the sample plane can exhibit either a strong growth-induced plastic deformation (GID), or deformation-free weakly faceted (WF) growth patterns. We determine the respective conditions of appearance of these phenomena. GID is shown to be a long-range thermal-stress effect, which disappears when the growth front has a cellular structure. An early triggering of the cellular instability allowed us to avoid GID and study the dynamics of WF patterns as a function of the orientation of the crystal.

  19. Continuous Severe Plastic Deformation Processing of Aluminum Alloys

    Energy Technology Data Exchange (ETDEWEB)

    Raghavan Srinivasan (PI); Prabir K. Chaudhury; Balakrishna Cherukuri; Qingyou Han; David Swenson; Percy Gros

    2006-06-30

    Metals with grain sizes smaller than 1-micrometer have received much attention in the past decade. These materials have been classified as ultra fine grain (UFG) materials (grain sizes in the range of 100 to 1000-nm) and nano-materials (grain size <100-nm) depending on the grain size. This report addresses the production of bulk UFG metals through the use of severe plastic deformation processing, and their subsequent use as stock material for further thermomechanical processing, such as forging. A number of severe plastic deformation (SPD) methods for producing bulk UFG metals have been developed since the early 1990s. The most promising of these processes for producing large size stock that is suitable for forging is the equal channel angular extrusion or pressing (ECAE/P) process. This process involves introducing large shear strain in the work-piece by pushing it through a die that consists of two channels with the same cross-sectional shape that meet at an angle to each other. Since the cross-sections of the two channels are the same, the extruded product can be re-inserted into the entrance channel and pushed again through the die. Repeated extrusion through the ECAE/P die accumulates sufficient strain to breakdown the microstructure and produce ultra fine grain size. It is well known that metals with very fine grain sizes (< 10-micrometer) have higher strain rate sensitivity and greater elongation to failure at elevated temperature, exhibiting superplastic behavior. However, this superplastic behavior is usually manifest at high temperature (> half the melting temperature on the absolute scale) and very low strain rates (< 0.0001/s). UFG metals have been shown to exhibit superplastic characteristics at lower temperature and higher strain rates, making this phenomenon more practical for manufacturing. This enables part unitization and forging more complex and net shape parts. Laboratory studies have shown that this is particularly true for UFG metals produced

  20. Continuous Severe Plastic Deformation Processing of Aluminum Alloys

    Energy Technology Data Exchange (ETDEWEB)

    Raghavan Srinivasan (PI); Prabir K. Chaudhury; Balakrishna Cherukuri; Qingyou Han; David Swenson; Percy Gros

    2006-06-30

    Metals with grain sizes smaller than 1-micrometer have received much attention in the past decade. These materials have been classified as ultra fine grain (UFG) materials (grain sizes in the range of 100 to 1000-nm) and nano-materials (grain size <100-nm) depending on the grain size. This report addresses the production of bulk UFG metals through the use of severe plastic deformation processing, and their subsequent use as stock material for further thermomechanical processing, such as forging. A number of severe plastic deformation (SPD) methods for producing bulk UFG metals have been developed since the early 1990s. The most promising of these processes for producing large size stock that is suitable for forging is the equal channel angular extrusion or pressing (ECAE/P) process. This process involves introducing large shear strain in the work-piece by pushing it through a die that consists of two channels with the same cross-sectional shape that meet at an angle to each other. Since the cross-sections of the two channels are the same, the extruded product can be re-inserted into the entrance channel and pushed again through the die. Repeated extrusion through the ECAE/P die accumulates sufficient strain to breakdown the microstructure and produce ultra fine grain size. It is well known that metals with very fine grain sizes (< 10-micrometer) have higher strain rate sensitivity and greater elongation to failure at elevated temperature, exhibiting superplastic behavior. However, this superplastic behavior is usually manifest at high temperature (> half the melting temperature on the absolute scale) and very low strain rates (< 0.0001/s). UFG metals have been shown to exhibit superplastic characteristics at lower temperature and higher strain rates, making this phenomenon more practical for manufacturing. This enables part unitization and forging more complex and net shape parts. Laboratory studies have shown that this is particularly true for UFG metals produced

  1. Microstructural Characteristics of High Rate Plastic Deformation in Elektron (trademark) WE43 Magnesium Alloy

    Science.gov (United States)

    2012-04-01

    Microstructural Characteristics of High Rate Plastic Deformation in Elektron ™ WE43 Magnesium Alloy by Joseph Hamilton, Sarah T. Brennan...Ground, MD 21005-5069 ARL-RP-363 April 2012 Microstructural Characteristics of High Rate Plastic Deformation in Elektron ™ WE43 Magnesium...Alloy Joseph Hamilton, Sara T. Brennan, and Yongho Sohn University of Central Florida Bruce Davis and Rick DeLorme Magnesium Elektron North

  2. Effect of Plastic Deformation on Magnetic Properties of Fe-40%Ni-2%Mn Austenitic Alloy

    Institute of Scientific and Technical Information of China (English)

    Selva Büyükakkas; H Aktas; S Akturk

    2007-01-01

    The effects of plastic deformation on the magnetic properties of austenite structure in an Fe-40%Ni-2%Mn alloy is investigated by using Mssbauer spectroscopy and Differential Scanning Calorimetry (DSC) techniques The morphology of the alloy has been obtained by using Scanning Electron Microscopy (SEM). The magnetic behaviour of austenite state is ferromagnetic. After plastic deformation, a mixed magnetic structure including both paramagnetic and ferromagnetic states has been obtained at the room temperature. The volume fraction changes, the effective hyperfine fields of the ferromagnetic austenite phase and isomery shift values have also been determined by Mssbauer spectroscopy. The Curie point (TC) and the Neel temperature (TN) have been investigated by means of DSC system for non-deformed and deformed Fe-Ni-Mn alloy. The plastic deformation of the alloy reduces the TN and enhances the paramagnetic character of austenitic Fe-Ni-Mn alloy.

  3. Enhanced diffusion of Uranium and Thorium linked to crystal plasticity in zircon

    Directory of Open Access Journals (Sweden)

    Reddy Steven M

    2006-12-01

    Full Text Available Abstract The effects of crystal-plasticity on the U-Th-Pb system in zircon is studied by quantitative microstructural and microchemical analysis of a large zircon grain collected from pyroxenite of the Lewisian Complex, Scotland. Electron backscatter diffraction (EBSD mapping reveals a c.18° variation in crystallographic orientation that comprises both a gradual change in orientation and a series of discrete low-angle (207Pb/206Pb ages for individual analyses show no significant variation across the grain, and define a concordant, combined mean age of 2451 ± 14 Ma. This indicates that the grain was deformed shortly after initial crystallization, most probably during retrograde Inverian metamorphism at amphibolite facies conditions. The elevated Th over U and consistent 207Pb/206Pb ages indicates that deformation most likely occurred in the presence of a late-stage magmatic fluid that drove an increase in the Th/U during deformation. The relative enrichment of Th over U implies that Th/U ratio may not always be a robust indicator of crystallization environment. This study provides the first evidence of deformation-related modification of the U-Th system in zircon and has fundamental implications for the application and interpretation of zircon trace element data.

  4. Experimental Validation of Two-dimensional Finite Element Method for Simulating Constitutive Response of Polycrystals During High Temperature Plastic Deformation

    Science.gov (United States)

    Agarwal, Sumit; Briant, Clyde L.; Krajewski, Paul E.; Bower, Allan F.; Taleff, Eric M.

    2007-04-01

    A finite element method was recently designed to model the mechanisms that cause superplastic deformation (A.F. Bower and E. Wininger, A Two-Dimensional Finite Element Method for Simulating the Constitutive Response and Microstructure of Polycrystals during High-Temperature Plastic Deformation, J. Mech. Phys. Solids, 2004, 52, p 1289-1317). The computations idealize the solid as a collection of two-dimensional grains, separated by sharp grain boundaries. The grains may deform plastically by thermally activated dislocation motion, which is modeled using a conventional crystal plasticity law. The solid may also deform by sliding on the grain boundaries, or by stress-driven diffusion of atoms along grain boundaries. The governing equations are solved using a finite element method, which includes a front-tracking procedure to monitor the evolution of the grain boundaries and surfaces in the solid. The goal of this article is to validate these computations by systematically comparing numerical predictions to experimental measurements of the elevated-temperature response of aluminum alloy AA5083 (M.-A. Kulas, W.P. Green, E.M. Taleff, P.E. Krajewski, and T.R. McNelley, Deformation Mechanisms in Superplastic AA5083 materials. Metall. Mater. Trans. A, 2005, 36(5), p 1249-1261). The experimental work revealed that a transition occurs from grain-boundary sliding to dislocation (solute-drag) creep at approximately 0.001/s for temperatures between 425 and 500 °C. In addition, increasing the grain size from 7 to 10 μm decreased the transition to significantly lower strain rates. Predictions from the finite element method accurately predict the effect of grain size on the transition in deformation mechanisms.

  5. Energetic materials: crystallization, characterization and insensitive plastic bonded explosives

    NARCIS (Netherlands)

    Heijden, A.E.D.M. van der; Creyghton, Y.L.M.; Marino, E.; Bouma, R.H.B.; Scholtes, G.J.H.G.; Duvalois, W.; Roelands, C.P.M.

    2008-01-01

    The product quality of energetic materials is predominantly determined by the crystallization process applied to produce these materials. It has been demonstrated in the past that the higher the product quality of the solid energetic ingredients, the less sensitive a plastic bonded explosive contain

  6. Energetic materials: crystallization, characterization and insensitive plastic bonded explosives

    NARCIS (Netherlands)

    Heijden, A.E.D.M. van der; Creyghton, Y.L.M.; Marino, E.; Bouma, R.H.B.; Scholtes, G.J.H.G.; Duvalois, W.; Roelands, C.P.M.

    2008-01-01

    The product quality of energetic materials is predominantly determined by the crystallization process applied to produce these materials. It has been demonstrated in the past that the higher the product quality of the solid energetic ingredients, the less sensitive a plastic bonded explosive

  7. Regularities of Macroscopic Localization of Plastic Deformation in the Stretching of a Low-Carbon Steel

    Science.gov (United States)

    Barannikova, S. A.; Kosinov, D. A.; Nadezhkin, M. V.; Lunev, A. G.; Gorbatenko, V. V.; Zuev, L. B.; Gromov, V. E.

    2014-07-01

    The special features of plastic deformation localization in the stretching of polycrystals of low-carbon steel 08 ss after hot rolling and electrolytic saturation with hydrogen are investigated. The main types and parameters of plastic flow localization in different stages of strain hardening are determined by the method of double-exposure speckle photography.

  8. Late radial head dislocation with radial head fracture and ulnar plastic deformation

    NARCIS (Netherlands)

    Heinrich, Stephen D.; Butler, R. Allen

    Type 11 Monteggia lesion equivalents produced by plastic deformation of the ulna are rare. Radial head fractures in skeletally immature patients are also uncommon. We report a late presentation of a Type 11 Monteggia equivalent injury with a fracture of the radial head and neck and plastic

  9. Mechanisms operating during plastic deformation of metals under concurrent production of cascades and dislocations

    DEFF Research Database (Denmark)

    Trinkaus, H.; Singh, Bachu Narain

    Recent in-reactor tensile tests (IRTs) on pure copper have revealed a deformation behaviour which is significantly different from that observed in post-irradiation tensile tests (PITs). In IRTs, the material deforms uniformly and homogeneously without yield drop and plastic instability as commonly...

  10. Theoretical Studies of Laws Nanostructuring and Heterogeneous Hardening of Steel Samples by Wave Intensive Plastic Deformation

    Directory of Open Access Journals (Sweden)

    A.V. Kirichek

    2015-12-01

    Full Text Available Theoretical studies and calculations, allowing to define the required parameters of the wave deformation hardening, are performed in order to obtain heterogeneous hardened surface layer in steel samples. The conditions for the effective use of impact energy for elastic-plastic deformation of the processed material and the establishment of a deep hardened surface layer are revealed.

  11. The Compositional Variation of Microindentation Induced Densified and Plastic Deformation Volumes in Simple Silicate Glasses

    DEFF Research Database (Denmark)

    Hermansen, Christian; Matsuoka, Jun; Yoshida, Satoshi

    2012-01-01

    The densification and plastic deformation occurring in glass subjected to microindentation are established as two independent deformation mechanisms, and thought to be intimately linked to the concept of hardness and crack nucleation (quantified by the load at which radial cracks nucleate at half...

  12. Syndeformation Chrome Spinels Inclusions in the Plastically Deformed Olivine Aggregates (Kraka Ophiolites, the Southern Urals

    Directory of Open Access Journals (Sweden)

    D. E. Saveliev

    2015-12-01

    Full Text Available This article presents the results of structural, petrographic, mineralogical and chemical studies of dunite veinlets in spinel peridotite from the Kraka ophiolites. It is demonstrated that plastic deformation of polycrystalline olivine, which form dunite, was accompanied by precipitation of impurities (aluminum and chrome as newly formed chrome spinels. The thinnest acicular inclusions of 0.3-0.5 micron thick are aligned in olivine grains along [010] axis. Bigger elongated irregular chrome spinel grains usually occur along grain and sub-grain olivine boundaries, and, occasionally, inside the grains along [100] axis. Alteration from the fine xenomorphic grains of chrome spinels to the bigger idiomorphic crystals was observed. Analogically to dynamic ageing (dispersion hardening in metals, the structural and chemical alterations in dunites are interpreted as deformation induced segregation of impurities. It is suggested that the euhedral chrome spinel grains typical for ophiolitic dunites were formed by coalescence and spheroidization. This process may be a key factor in the formation of ophiolitic chrome ore deposits.

  13. Polycrystal deformation and single crystal deformation: Dislocation structure and flow stress in copper

    DEFF Research Database (Denmark)

    Huang, X.; Borrego, A.; Pantleon, W.

    2001-01-01

    of microstructures have been identified. A correlation is found between microstructure and grain orientation, which agrees well with earlier observations in tensile deformed aluminum polycrystals and copper single crystals. The stress–strain curve of the copper polycrystal is calculated with good accuracy from...... single crystal data, which are weighted according to the volume fractions of the three different types based on a quantitative texture measurement of the polycrystal....

  14. METHODS FOR LOCAL CHANGES IN THE PLASTIC DEFORMATION DIAGNOSTICS ON THE WORK FUNCTION

    Directory of Open Access Journals (Sweden)

    K. V. Panteleyev

    2015-01-01

    Full Text Available The paper describes the electronic work function measurements by the contact potential difference technique, and experimental demonstration of the possibility of these methods application for the stress-strain state of the surface layer of the metals and alloys. The techniques end examples of their application of localization of plastic deformation studies using the Kelvin probe are developed and present. The study topology of work function the deformed surface possible to determine the type of deformation and dynamics of

  15. Compression Deformation Mechanisms at the Nanoscale in Magnesium Single Crystal

    Institute of Scientific and Technical Information of China (English)

    Yafang GUO; Xiaozhi TANG; Yuesheng WANG; Zhengdao WANG; Sidney YIP

    2013-01-01

    The dominant deformation mode at low temperatures for magnesium and its alloys is generally regarded to be twinning because of the hcp crystal structure.More recently,the phenomenon of a "loss" of the twins has been reported in microcompression experiments of the magnesium single crystals.Molecular dynamics simulation of compression deformation shows that the pyramidal slip dominates compression behavior at the nanoscale.No compression twins are observed at different temperatures at different loadings and boundary conditions.This is explained by the analyses,that is,the {10(1-)2} and {101-1} twins can be activated under c-axis tension,while compression twins will not occur when the c/a ratio of the hcp metal is below (/)3.Our theoretical and simulation results are consistent with recent microcompression experiments of the magnesium (0001) single crystals.

  16. Plastic deformation effect of the corrosion resistance in case of austenitic stainless steel

    Science.gov (United States)

    Haraszti, F.; Kovacs, T.

    2017-02-01

    The corrosion forms are different in case of the austenitic steel than in case of carbon steels. Corrosion is very dangerous process, because that corrosion form is the intergranular corrosion. The austenitic stainless steel shows high corrosion resistance level. It knows that plastic deformation and the heat treating decrease it’s resistance. The corrosion form in case of this steel is very special and the corrosion tests are difficult. We tested the selected steel about its corrosion behaviour after high rate deformation. We wanted to find a relationship between the corrosion resistance decreasing and the rate of the plastic deformation. We wanted to show this behaviour from mechanical and electrical changing.

  17. An evolution model of dislocation patterns in plastic deformation and its applications

    Institute of Scientific and Technical Information of China (English)

    高维林; 白光润; 周志敏

    1995-01-01

    By combining the classic dislocation theory with the principle of dissipative structure and synergetics, an evolution model of dislocation patterns has been developed. Using this model, the evolution of dislocation patterns and the corresponding mechanical behavior have been analyzed, discussed and simulated under different deformation conditions of constant strain rate, creep and static recovery. As one of the most essential problems in the plastic deformation, the evolution of dislocation patterns has been dealt with by using non-linear methods. Results show that various problems in plastic deformation may be solved in a unified theoretical framework.

  18. Suppressed plastic deformation at blunt crack tips due to strain gradient effects

    DEFF Research Database (Denmark)

    Mikkelsen, Lars Pilgaard; Goutianos, Stergios

    2009-01-01

    Large deformation gradients occur near a crack-tip and strain gradient dependent crack-tip deformation and stress fields are expected. Nevertheless, for material length scales much smaller than the scale of the deformation gradients, a conventional elastic-plastic solution is obtained. On the other...... hand, for significant large material length scales, a conventional elastic solution is obtained. This transition in behaviour is investigated based on a finite strain version of the Fleck-Hutchinson strain gradient plasticity model from 2001. The predictions show that for a wide range of material...

  19. Influence of plastic deformation on low temperature surface hardening of stainless steel by gaseous nitriding

    DEFF Research Database (Denmark)

    Bottoli, Federico; Winther, Grethe; Christiansen, Thomas Lundin

    2015-01-01

    This article addresses an investigation of the influence of plastic deformation on low temperature surface hardening by gaseous nitriding of three commercial austenitic stainless steels: AISI 304, EN 1.4369 and Sandvik Nanoflex® with various degrees of austenite stability. The materials were...... plastically deformed to different equivalent strains by uniaxial tension. Gaseous nitriding of the strained material was performed in ammonia at atmospheric pressure in the temperature range 693-703 K. Microstructural characterization of the as-deformed states and the nitrided case included X-ray diffraction...

  20. Size effect in plastically deformed passivated thin films

    Institute of Scientific and Technical Information of China (English)

    HWANG; Keh-Chih

    2009-01-01

    The flow theory of mechanism-based strain gradient plasticity theory (MSG) developed by Qiu et al. (2003) is extended for incompressible material. The MSG flow theory is used to predict the increase of plastic work hardening for plane strain tension of surface-passivated Cu thin film. The theoretical predictions agree well with experiments for suitably chosen material parameters.

  1. Microstructure and low-temperature plastic deformation of Al-Li alloy

    Science.gov (United States)

    Isaev, N. V.; Zabrodin, P. A.; Spuskanyuk, V. Z.; Davydenko, A. A.; Pustovalov, V. V.; Fomenko, V. S.; Braude, I. S.

    2012-01-01

    Features of the plastic deformation of solid Al-Li solutions with microstructures formed by direct and angular hydroextrusion are studied under tension at temperatures of 4.2-350 K. It is found that the grain size reductions, increases in the average density of defects, and changes in the orientational textures during combined hydroextrusion lead to increased strength and reduced plasticity of the microcrystalline alloy relative to initially large-grained samples. The high yield stress of the microcrystalline alloy is explained by a higher grain density and the evolution of an orientational texture. The strong temperature dependence of the yield stress is typical of thermally activated interactions between dislocations and local obstacles in the form of deformation defects produced during hydroextrusion. The low plasticity of the microcrystalline alloy, which already shows up as a localization of plastic deformation with small deformations, is caused by a low rate of work hardening owing to enhanced dynamic recovery of fine grains even at low temperatures. The rate of dynamic recovery decreases, while uniform deformation increases, at temperatures of 77 K and below. Based on data on the high stress rate sensitivity at temperatures above 77 K and the low activation volume for plastic deformation of microcrystalline Al-Li, it is proposed that high-angle grain boundaries may serve as highly efficient sources and sinks of mobile dislocations.

  2. Inelastic deformation of metal matrix composites: Plasticity and damage mechanisms, part 2

    Science.gov (United States)

    Majumdar, B. S.; Newaz, G. M.

    1992-01-01

    The inelastic deformation mechanisms for the SiC (SCS-6)/Ti-15-3 system were studied at 538 C (1000 F) using a combination of mechanical measurements and detailed microstructural examinations. The objectives were to evaluate the contributions of plasticity and damage to the overall MMC response, and to compare the room temperature and elevated temperature deformation behaviors. Four different laminates were studied: (0)8, (90)8,(+ or -45)2s, and (0/90)2s, with the primary emphasis on the unidirectional (0)8, and (90)8 systems. The elevated temperature responses were similar to those at room temperature, involving a two-stage elastic-plastic type of response for the (0)8 system, and a characteristic three-stage deformation response for the (90)8 and (+ or -45)2s systems. The primary effects of elevated temperatures included: (1) reduction in the 'yield' and failure strengths; (2) plasticity through diffused slip rather than concentrated planar slip (which occurred at room temperature); and (3) time-dependent deformation. The inelastic deformation mechanism for the (0)8 MMC was dominated by plasticity at both temperatures. For the (90)8 and (+ or -45)2s MMCs, a combination of damage and plasticity contributed to the deformation at both temperatures.

  3. Characteristics of materials and thermal treatments applied to gearwheels obtained by plastic deformation

    Science.gov (United States)

    Bostan, I.; Dulgheru, V.; Trifan, N.

    2016-08-01

    A variety of materials are used in the manufacture of gearwheels. These materials satisfy various working conditions for gears. Such gears are made of metallic materials - ferrous, non-ferrous and from plastic materials. Among ferrous materials the following are used: irons; cast, forged and rolled steels; among non-ferrous materials the following are used: bronze, aluminium alloys, brass, etc., and of plastics the following are used: textolite, polyamide, polyacetal. In the practice of exploitation and in the process of special research it was established that the permissible load, according to teeth contact resistance, is generally determined by the hardness of the material. The highest hardness and respectively, the smallest sizes and reduced mass of the transmission can be obtained in the manufacture of steel gears via thermal treatment. It is obvious that by plastic deformation at cold it cannot be obtained gearwheels with complicated configuration as deformed plastic metal will form cracks caused by low plasticity. To improve processability by plastic deformation the mouldings for gearwheels are heated. With increasing the heating temperature, plasticity increases and resistance to deformation decreases.

  4. Finite element formulations for problems of large elastic-plastic deformation

    Science.gov (United States)

    Mcmeeking, R. M.; Rice, J. R.

    1974-01-01

    An Eulerian finite element formulation is presented for problems of large elastic-plastic flow. The method is based on Hill's variational principle for incremental deformations, and is suited to isotropically hardening Prandtl-Reuss materials. The formulation is given in a manner which allows any conventional finite element program, for "small strain" elasticplastic analysis, to be simply and rigorously adapted to problems involving arbitrary amounts of deformation and arbitrary levels of stress in comparison to plastic deformation moduli. The method is applied to a necking bifurcation analysis of a bar in plane-strain tension. A unified general formulation of finite element equations, both Lagrangian and Eulerian, for large deformations, with arbitrary choice of the conjugate stress and strain measures, and a discussion is given of other proposed formulations for elastic-plastic finite element analysis at large strain.

  5. Evolution of Dislocation Subsystem Components During Plastic Deformation Depending on Parameters of Strengthening Phase with L12 Superstructure

    Science.gov (United States)

    Daneyko, O. I.; Kovalevskaya, T. A.; Kulaeva, N. A.; Kolupaeva, S. N.; Shalygina, T. A.

    2017-09-01

    The paper presents results of mathematical modelling of plastic deformation in dispersion-hardened materials with FCC crystal system and L12 superstructure particles. Research results show that the size and the distance between particles of the strengthening phase affect the strain hardening and the evolution of the dislocation subsystem of the FCC alloy hardened with coherent L12 superstructure particles. It is found that increased size of ordered particles or decreased distance between them enhances the abnormal growth in the flow stress and the density of the dislocation subsystem components. Investigations show that prismatic dislocation loops predominate in the dislocation subsystem of materials having a nano-dispersion strengthening phase.

  6. UTILIZATION OF STEREOLOGY FOR QUANTITATIVE ANALYSIS OF PLASTIC DEFORMATION OF FORMING PIECES

    Directory of Open Access Journals (Sweden)

    Maroš Martinkovič

    2012-01-01

    Full Text Available Mechanical working leads to final properties of forming pieces, which are affected by conditions of production technology. Utilization of stereology leads to the detail analysis of three-dimensional plastic deformed material structure by different forming technologies, e.g. forging, extruding, upsetting, metal spinning, drawing etc. The microstructure of cold drawing wires was analyzed. Grain boundaries orientation was measured on the parallel section of wire with a different degree of deformation and direct axis plastic deformation was evaluated in bulk formed part. The strain of probes on their sections was obtained using stereology by measurement of degree of grain boundary orientation which was converted to deformation using model of conversion of grain boundary orientation degree to deformation.

  7. PLASTIC DEFORMATION BEHAVIOR OF ELECTROFORMED COPPER LINER OF SHAPED CHARGE AT DIFFERENT STRAIN RATES

    Institute of Scientific and Technical Information of China (English)

    H.Y. Gao; W.H. Tian; A.L. Fan; Q. Sun

    2003-01-01

    The paper deals with different plastic deformation behavior of electroformed copperliner of shaped charge, deformed at high strain rate (about 1×107 s-1) and normalstrain rate (4×10-4 s-1). The crystallographic orientation distribution of grains inrecovered slugs which had undergone high-strain-rate plastic deformation during ex-plosive detonation was investigated by electron backscattering Kikuchi pattern tech-nique. Cellular structures formed by tangled dislocations and sub-grain boundariesconsisting of dislocation arrays were detected in the recovered slugs. Some twins andslip dislocations were observed in specimen deformed at normal strain rate. It wasfound that dynamic recovery and recrystallization take place during high-strain-ratedeformation due to the temperature rising, whereas the conventional slip mechanismoperates during deformation at normal strain rate.

  8. PLASTIC DEFORMATION BEHAVIOR OF ELECTROFORMED COPPER LINER OF SHAPED CHARGE AT DIFFERENT STRAIN RATES

    Institute of Scientific and Technical Information of China (English)

    H.Y.Gao; Q.Sun

    2003-01-01

    The paper deals with different plastic deformation behavior of electroformed copper liner of shaped charge,depormed at high strain rate(about 1×107s-1) and normal strain rate (4×10-4s-1).The crystallographic orientation distribution of grains in recovered slugs which had undergone high-strain-rate plastic deformation during ex-plosive detonation was investigated by electron backscattering Kikuchi pattern tech-nique.Cellualar structures formed by tangled disocations and sub-grain boundaries consisting of dislocation arrays were detected in the recovered slugs.Some twins and slip dislocations were observed in specimen deformed at normal strain rate.It was found that dynamic recovery and recrystallization take place during high-strain-rate deformation due to the temperature rising,whereas the conventional slip mechanism operates during deformation at normal strain rate.

  9. Evolution of oxide nanoparticles during dynamic plastic deformation of ODS steel

    DEFF Research Database (Denmark)

    Zhang, Zhenbo; Mishin, Oleg; Tao, Nairong;

    2014-01-01

    The microstructure as well as the deformation behavior of oxide nanoparticles has been analyzed in the ferritic ODS steel PM2000 after compression by dynamic plastic deformation (DPD) to different strains. A dislocation cell structure forms after deformation to a strain of 1.0. DPD to a strain of 2.......1 results in nanoscale lamellae with an average lamellar spacing of approximately 70 nm. During DPD oxide nanoparticles, identified as yttrium aluminum perovskite YAlO3, are found to deform differently depending on their size. Whereas particles with a size of less than 15 nm change their shape and aspect...

  10. Numerical implementation of a crystal plasticity model with dislocation transport for high strain rate applications

    Science.gov (United States)

    Mayeur, Jason R.; Mourad, Hashem M.; Luscher, Darby J.; Hunter, Abigail; Kenamond, Mark A.

    2016-05-01

    This paper details a numerical implementation of a single crystal plasticity model with dislocation transport for high strain rate applications. Our primary motivation for developing the model is to study the influence of dislocation transport and conservation on the mesoscale response of metallic crystals under extreme thermo-mechanical loading conditions (e.g. shocks). To this end we have developed a single crystal plasticity theory (Luscher et al (2015)) that incorporates finite deformation kinematics, internal stress fields caused by the presence of geometrically necessary dislocation gradients, advection equations to model dislocation density transport and conservation, and constitutive equations appropriate for shock loading (equation of state, drag-limited dislocation velocity, etc). In the following, we outline a coupled finite element-finite volume framework for implementing the model physics, and demonstrate its capabilities in simulating the response of a [1 0 0] copper single crystal during a plate impact test. Additionally, we explore the effect of varying certain model parameters (e.g. mesh density, finite volume update scheme) on the simulation results. Our results demonstrate that the model performs as intended and establishes a baseline of understanding that can be leveraged as we extend the model to incorporate additional and/or refined physics and move toward a multi-dimensional implementation.

  11. An Alternative Three-Term Decomposition for Single Crystal Deformation Motivated by Non-Linear Elastic Dislocation Solutions

    Science.gov (United States)

    2014-04-01

    irreversible deformation, the three-term model allows for residual elastic strains— including dilatation observed in experiments and atomic simulations...residual elastic strains—including dilatation observed in experiments and atomic simulations—not addressed by conventional two-term crystal plasticity...gradient for an element of crystalline material. For simplicity, thermal effects are omitted, gliding dislocations are the only kind of defect considered

  12. Elevated Temperature Creep Deformation in Solid Solution NiAL-3.6Ti Single Crystals

    Science.gov (United States)

    Whittenberger, J. Daniel; Noebe, Ronald D.; Darolia, Ram

    2003-01-01

    The 1100 to 1500 K slow plastic strain rate compressive properties of oriented NiAl-3.6Ti single crystals have been measured, and the results suggests that two deformation processes exist. While the intermediate temperature/faster strain rate mechanism is uncertain, plastic flow at elevated temperature/slower strain rates in NiAl-3.6Ti appears to be controlled by solute drag as described by the Cottrell-Jaswon solute drag model for gliding b = a(sub 0) dislocations. While the calculated activation energy of deformation is much higher (approximately 480 kJ/mol) than the activation energy for diffusion (approximately 290 kJ/mol) used in the Cottrell-Jaswon creep model, a forced temperature compensated - power law fit using the activation energy for diffusion was able to adequately (greater than 90%) predict the observed creep properties. Thus we conclude that the rejection of a diffusion controlled mechanism can not be simply based on a large numerical difference between the activation energies for deformation and diffusion.

  13. Effect of the cooling rate on plastic deformability of a Zr-based bulk metallic glass

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    The present work found the plastic deformability of Zr65Cu17.5Ni10Al7.5 BMG dependent on the cooling rate during the formation from the molten state alloy. The deformation behavior in the compression test of φ 2 mm Zr65Cu17.5Ni10Al7.5 BMGs as-cast or lathed from different sizes as-cast samples was characterized, and they exhibited different plastic strains. The compressive plastic strain increases with the decreasing diameter of the as-cast specimens, i.e. with increasing the cooling rate. It is suggested that free volume content in the BMGs, which is related to the cooling rate during the rapid solidification, could play an important role in the deformation process of the BMGs.

  14. Effect of plastic deformation on diffusion-rolling bonding of steel sandwich plates

    Institute of Scientific and Technical Information of China (English)

    Hong Li; Jingtao Han

    2006-01-01

    Diffusion bonding is one of the most important techniques for composite materials, while bonding temperature, holding time,and rolling reduction are the key parameters that affect the bonding strength of sandwich plates. To study the effect of plastic deformation on the bonding strength, laboratory experiments were carried on a Gleeble Thermal Simulator to imitate the diffusion-rolling bonding under different reductions for steel sandwich plates. The bonding strength and interlayer film thickness were measured, and the element diffusion was analyzed using line scanning. The relationship between the bonding strength and "diffused interlayer" thickness was investigated. It has been found that the bonding strength increases with reduction, whereas the interlayer film thickness decreases gradually as the reduction increases. The diffusion under plastic deformation is obviously enhanced in comparison with that of nil reduction. The mechanism of plastic deformation effect on the diffusion bonding and related models have been discussed.

  15. Lifetime Reliability Estimate and Extreme Permanent Deformations of Randomly Excited Elasto-Plastic Structures

    DEFF Research Database (Denmark)

    Nielsen, Søren R.K.; Sørensen, John Dalsgaard; Thoft-Christensen, Palle

    1983-01-01

    A method is presented for life-time reliability' estimates of randomly excited yielding systems, assuming the structure to be safe, when the plastic deformations are confined below certain limits. The accumulated plastic deformations during any single significant loading history are considered...... to be the outcome of identically distributed, independent stochastic variables,for which a model is suggested. Further assuming the interarrival times of the elementary loading histories to be specified by a Poisson process, and the duration of these to be small compared to the designed life-time, the accumulated...... plastic deformation during several loadings can be modelled as a filtered Poisson process. Using the Markov property of this quantity the considered first-passage problem as well as the related extreme distribution problems are then solved numerically, and the results are compared to simulation studies....

  16. Healing behavior of preexisting hydrogen micropores in aluminum alloys during plastic deformation

    Energy Technology Data Exchange (ETDEWEB)

    Toda, H., E-mail: toda@pse.tut.ac.jp [Department of Production Systems Engineering, Toyohashi University of Technology, Toyohashi, Aichi 441-8580 (Japan); Minami, K. [Department of Production Systems Engineering, Toyohashi University of Technology, Toyohashi, Aichi 441-8580 (Japan); Koyama, K.; Ichitani, K. [Furukawa-Sky Aluminum Corp., 1351, Uwanodai, Fukaya, Saitama 366-8511 (Japan); Kobayashi, M. [Department of Production Systems Engineering, Toyohashi University of Technology, Toyohashi, Aichi 441-8580 (Japan); Uesugi, K.; Suzuki, Y. [Japan Synchrotron Radiation Research Institute, Mikazuki-cho, Sayo-gun, Hyogo 679-5198 (Japan)

    2009-09-15

    Synchrotron X-ray microtomography was used to observe the shrinkage and annihilation behaviors of hydrogen micropores in three dimensions during hot and cold plastic deformation of an Al-Mg alloy. Whether complete healing of micropores is achieved after plastic deformation was examined by exposing the material to a high temperature after plastic deformation. Although micropores generally show a pattern of shrinking and closing, closer inspection of a single specimen revealed a variety of geometrically variable behaviors. It is noteworthy that some of the micropores are reinitiated in positions identical to those before their annihilation, even after an 8-22% macroscopic strain has been further applied after annihilation. We attribute local variations such as these to significant local strain variation, which we measured in a series of tomographic volumes by tracking the microstructural features.

  17. Revealing homogeneous plastic deformation in dendrite-reinforced Ti-based metallic glass composites under tension

    Science.gov (United States)

    Wu, F. F.; Wei, J. S.; Chan, K. C.; Chen, S. H.; Zhao, R. D.; Zhang, G. A.; Wu, X. F.

    2017-01-01

    The tensile plastic deformation of dendrite-reinforced Ti-based metallic glass composites (MGCs) was investigated. It was found that there is a critical normalized strain-hardening rate (NSHR) that determines the plastic stability of MGCs: if the NSHR is larger than the critical value, the plastic deformation of the MGCs will be stable, i.e. the necking and strain localization can be effectively suppressed, resulting in homogeneous plastic elongation. In addition, dendrite-reinforce MGCs are verified as being intrinsically ductile, and can be used as good coatings for improving the surface properties of pure titanium or titanium alloys. These findings are helpful in designing, producing, and using MGCs with improved performance properties. PMID:28195216

  18. Dynamic recrystallization of electroformed copper liners of shaped charges in high—strain—rate plastic deformation

    Institute of Scientific and Technical Information of China (English)

    WenhuaiTian; QiSun; 等

    2002-01-01

    The microstructures in the electroformed copper liners of shaped charges after high-strain-rate plastic deformation were in vestigated by transmission microscopy(TEM).Meanwhile,the orientation distribution of the grains in the recovered slug was examined by the electron backscattering Kikuchi pattern(EBSP) technique.EBSP analysis illustrated that unlike the as-formed electroformed copper liners of shaped charges the grain orientations in the recovered slug are distributed along randomly all the directions after undergoing heavily strain deformation at high-strain rate.Optical microscopy shows a typical recrystallization structure,and TEM examination reveals dislocation cells existed in the thin foil specimen.These results indicate that dynamic recovery and recrystallization occur during this plastic deformation process,and the associated deformation temperature is considered to be higher than 0.6 times the melting point of copper.

  19. Dynamic recrystallization of electroformed copper liners of shaped charges in high-strain-rate plastic deformation

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    The microstructures in the electroformed copper liners of shaped charges after high-strain-rate plastic deformation were investigated by transmission electron microscopy (TEM). Meanwhile, the orientation distribution of the grains in the recovered slug was examined by the electron backscattering Kikuchi pattern (EBSP) technique. EBSP analysis illustrated that unlike the as-formed electroformed copper linersof shaped charges the grain orientations in the recovered slug are distributed along randomly all the directions after undergoing heavily strain deformation at high-strain rate. Optical microscopy shows a typical recrystallization structure, and TEM examination reveals dislocation cells existed in the thin foil specimen. These results indicate that dynamic recovery and recrystallization occur during this plastic deformation process, and the associated deformation temperature is considered to be higher than 0.6 times the melting point of copper.

  20. Analysis of plastic properties of titanium alloys under severe deformation conditions in machining

    Directory of Open Access Journals (Sweden)

    Alexander I. Khaimovich

    2014-10-01

    Full Text Available The present paper presents a method of analysis of titanium alloys plastic properties under severe deformation conditions during milling with registration of the cutting force components Fx, Fy, Fz in real time using a special stand. The obtained constitutive relations in the form the Johnson-Cook law for stresses and dependence for a friction coefficient describing the titanium alloy VT9 plastic properties under simulate operating conditions.

  1. Elastic-plastic deformation of fiber composites with a tetragonal structure

    Energy Technology Data Exchange (ETDEWEB)

    Makarova, E.IU.; Svistkova, L.A. (Permskii Politekhnicheskii Institut, Perm (USSR))

    1991-02-01

    Results of numerical solutions are presented for elastic-plastic problems concerning arbitrary loading of unidirectional composites in the transverse plane. The nucleation and evolution of microplastic zones in the matrix and the effect of this process on the macroscopic characteristics of the composite are discussed. Attention is also given to the effect of the fiber shape on the elastic-plastic deformation of the matrix and to deformation paths realized in simple microdeformation processes. The discussion is illustrated by results obtained for a composite consisting of a VT1-0 titanium alloy matrix reinforced by Ti-Mo fibers.

  2. Dynamic Plastic Deformation (DPD): A Novel Technique for Synthesizing Bulk Nanostructured Metals

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    While some superior properties of nanostructured materials (with structural scales below 100 nm) have attracted numerous interests of material scientists, technique development for synthesizing nanostructured metals and alloys in 3-dimensional (3D) bulk forms is still challenging despite of extensive investigations over decades.Here we report a novel synthesis technique for bulk nanostructured metals based on plastic deformation at high Zener-Hollomon parameters (high strain rates or low temperatures), i.e., dynamic plastic deformation (DPD).The basic concept behind this approach will be addressed together with a few examples to demonstrate the capability and characteristics of this method. Perspectives and future developments of this technique will be highlighted.

  3. Thermal Recovery of Plastic Deformation in Dissimilar Metal Weld

    Energy Technology Data Exchange (ETDEWEB)

    Qiao, Dongxiao [Tsinghua Univ., Beijing (China); Yu, Xinghua [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Zhang, Wei [The Ohio State Univ., Columbus, OH (United States); Crooker, Paul [Electric Power Research Inst. (EPRI), Palo Alto, CA (United States); David, Stan A. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Feng, Zhili [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2014-05-23

    Stainless steel has been widely used in challenging environments typical to nuclear power plant structures, due its excellent corrosion resistance. Nickel filler metals containing high chromium concentration, including Alloy 82/182, are used for joining stainless steel to carbon steel components to achieve similar high resistance to stress corrosion cracking. However, the joint usually experience weld metal stress corrosion cracking (SCC), which affects the safety and structural integrity of light water nuclear reactor systems. A primary driving force for SCC is the high tensile residual stress in these welds. Due to large dimension of pressure vessel and limitations in the field, non-destructive residual stress measurement is difficult. As a result, finite element modeling has been the de facto method to evaluate the weld residual stresses. Recent studies on this subject from researchers worldwide report different residual stress value in the weldments [5]. The discrepancy is due to the fact that most of investigations ignore or underestimate the thermal recovery in the heat-affect zone or reheated region in the weld. In this paper, the effect of heat treatment on thermal recovery and microhardness is investigated for materials used in dissimilar metal joint. It is found that high equivalent plastic strains are predominately accumulated in the buttering layer, the root pass, and the heat affected zone, which experience multiple welding thermal cycles. The final cap passes, experiencing only one or two welding thermal cycles, exhibit less plastic strain accumulation. Moreover, the experimental residual plastic strains are compared with those predicted using an existing weld thermo-mechanical model with two different strain hardening rules. The importance of considering the dynamic strain hardening recovery due to high temperature exposure in welding is discussed for the accurate simulation of weld residual stresses and plastic strains. In conclsuion, the

  4. Mechanisms of plastic deformation in AZ31 magnesium alloy investigated by acoustic emission and transmission electron microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Janecek, Milos [Charles University, Faculty of Mathematics and Physics, Ke Karlovu 5, CZ-121 16 Prague 2 (Czech Republic)], E-mail: janecek@met.mff.cuni.cz; Kral, Robert [Charles University, Faculty of Mathematics and Physics, Ke Karlovu 5, CZ-121 16 Prague 2 (Czech Republic); Dobron, Patrik [Charles University, Faculty of Mathematics and Physics, Ke Karlovu 5, CZ-121 16 Prague 2 (Czech Republic); Chmelik, Frantisek [Charles University, Faculty of Mathematics and Physics, Ke Karlovu 5, CZ-121 16 Prague 2 (Czech Republic); Supik, Vladimir [Department of Physical Metallurgy and Materials Technology, Technical University of Brandenburg at Cottbus, D-03010 Cottbus (Germany); Hollaender, Frank [Department of Physical Metallurgy and Materials Technology, Technical University of Brandenburg at Cottbus, D-03010 Cottbus (Germany)

    2007-07-25

    The effect of deformation conditions on plastic deformation and acoustic emission (AE) in hot-rolled magnesium alloy AZ31 has been investigated in the temperature range of 20-200 deg. C by constant strain rate tensile tests. Two sets of samples differing in the preheating temperature before individual passes of hot rolling have been studied. Both the yield stress and the tensile strength decrease with increasing temperature of deformation. The ductility was found to increase significantly with increasing temperature of deformation in both specimens. Unstable plastic deformation (Portevin-Le Chatelier effect) has been observed for all used strain rates both at room and elevated temperatures. Plastic instabilities were accompanied by a pronounced AE activity. The AE bursts were correlated with the individual regions of plastic instabilities on the deformation curve. Mechanisms controlling plastic instabilities are suggested respecting the microstructure evolution as observed by optical and transmission electron microscopy.

  5. Numerical Investigation of Plastic Deformation in Two-turn Equal Channel Angular Extrusion

    Directory of Open Access Journals (Sweden)

    A. Mitsak

    2014-12-01

    Full Text Available There has been a number of investigations in recent years reporting on the structure and properties of materials deformed to super plastic deformation (SPD. During SPD new textures can be formed and abnormal characteristics are displayed, attracting a growing research interest.¶ Equal channel angular extrusion (ECAE is a method often used to obtain large plastic strains. However, according to experimental results, there is a large tensile stress in the sample during deformation, which may lead in some cases, to cracking in metallic alloys and large curvature in polymeric materials. In order to overcome these drawbacks, the ECAE process can be conducted at high temperatures. But this contributes significantly to a decreased level of plastic deformation induced in the sample. Hence, a tool with multi-pass seems to be a very appropriate solution. In this paper, a new geometry die composed of two elbows has been simulated by finite element method aiming to provide an insight into the mechanisms of deformation and to determine the optimum geometry of the tool. The numerical results show that the length and the section of the second channel play a significant role on the homogeneity of the plastic strain distribution. It has been found that good homogeneity was obtained when the second channel has the same section as that of the entrance and the exit channels and with a length equal to three times of its width.

  6. EBSD analysis of plastic deformation of copper foils by flexible pad laser shock forming

    Energy Technology Data Exchange (ETDEWEB)

    Nagarajan, Balasubramanian; Castagne, Sylvie [Nanyang Technological University, SIMTech-NTU Joint Laboratory (Precision Machining), Singapore (Singapore); Nanyang Technological University, School of Mechanical and Aerospace Engineering, Singapore (Singapore); Wang, Zhongke; Zheng, H.Y. [Nanyang Technological University, SIMTech-NTU Joint Laboratory (Precision Machining), Singapore (Singapore); Singapore Institute of Manufacturing Technology, Machining Technology Group, Singapore (Singapore)

    2015-11-15

    Flexible pad laser shock forming (FPLSF) is a new mold-free microforming process that induces high-strain-rate plastic deformation in thin metallic foils using laser-induced shock pressure and a hyperelastic flexible pad. This paper studies the plastic deformation behavior of copper foils formed through FPLSF by investigating surface hardness and microstructure. The microstructure of the foil surface before and after FPLSF is analyzed by electron backscatter diffraction technique using grain size distribution and grain boundary misorientation angle as analysis parameters. The surface hardness of the craters experienced a significant improvement after FPLSF; the top crater surface being harder than the bottom surface. The microstructure of the copper foil surface after FPLSF was found to be dominated by grain elongation, along with minor occurrences of subgrain formation, grain refinement, and high dislocation density regions. The results indicate that the prominent plastic deformation mechanism in FPLSF is strain hardening behavior rather than the typical adiabatic softening effect known to be occurring at high-strain-rates for processes such as electromagnetic forming, explosive forming, and laser shock forming. This significant difference in FPLSF is attributed to the concurrent reduction in plastic strain, strain rate, and the inertia effects, resulting from the FPLSF process configuration. Correspondingly, different deformation behaviors are experienced at top and bottom surfaces of the deformation craters, inducing the change in surface hardness and microstructure profiles. (orig.)

  7. Inelastic Deformation of Metal Matrix Composites. Part 1; Plasticity and Damage Mechanisms

    Science.gov (United States)

    Majumdar, B. S.; Newaz, G. M.

    1992-01-01

    The deformation mechanisms of a Ti 15-3/SCS6 (SiC fiber) metal matrix composite (MMC) were investigated using a combination of mechanical measurements and microstructural analysis. The objectives were to evaluate the contributions of plasticity and damage to the overall inelastic response, and to confirm the mechanisms by rigorous microstructural evaluations. The results of room temperature experiments performed on 0 degree and 90 degree systems primarily are reported in this report. Results of experiments performed on other laminate systems and at high temperatures will be provided in a forthcoming report. Inelastic deformation of the 0 degree MMC (fibers parallel to load direction) was dominated by the plasticity of the matrix. In contrast, inelastic deformations of the 90 degree composite (fibers perpendicular to loading direction) occurred by both damage and plasticity. The predictions of a continuum elastic plastic model were compared with experimental data. The model was adequate for predicting the 0 degree response; however, it was inadequate for predicting the 90 degree response largely because it neglected damage. The importance of validating constitutive models using a combination of mechanical measurements and microstructural analysis is pointed out. The deformation mechanisms, and the likely sequence of events associated with the inelastic deformation of MMCs, are indicated in this paper.

  8. Effect of plastic deformation on deuterium retention and release in tungsten

    Energy Technology Data Exchange (ETDEWEB)

    Terentyev, D., E-mail: dterenty@sckcen.be; Lambrinou, K.; Minov, B. [SCK-CEN, Nuclear Materials Science Institute, Boeretang 200, 2400 Mol (Belgium); De Temmerman, G. [ITER Organization, Route de Vinon-sur-Verdon - CS 90 046 - 13067 St. Paul Lez Durance Cedex (France); Morgan, T. W. [FOM Institute DIFFER, Edisonbaan 14, 3439 MN, Nieuwegein (Netherlands); Zayachuk, Y.; Bystrov, K. [Department of Materials, University of Oxford, Parks Road, Oxford OX1 3PH (United Kingdom); Dubinko, A. [SCK-CEN, Nuclear Materials Science Institute, Boeretang 200, 2400 Mol (Belgium); Department of Applied Physics, Ghent University, St. Pietersnieuwstraat 41, 9000 Ghent (Belgium); Van Oost, G. [Department of Applied Physics, Ghent University, St. Pietersnieuwstraat 41, 9000 Ghent (Belgium)

    2015-02-28

    The effect of severe plastic deformation on the deuterium retention in tungsten exposed to high-flux low-energy plasma (flux ∼ 10{sup 24 }D/m{sup 2}/s, energy ∼ 50 eV, and fluence up to 3 × 10{sup 26 }D/m{sup 2}) at the plasma generator Pilot-PSI was studied by thermal desorption spectroscopy and scanning electron microscopy. The desorption spectra in both reference and plastically deformed samples were deconvolved into three contributions attributed to the detrapping from dislocations, deuterium-vacancy clusters, and pores, respectively. The plastically induced deformation, resulting in high dislocation density, does not change the positions of the three peaks, but alters their amplitudes as compared to the reference material. The appearance of blisters detected by scanning electron microscopy and the desorption peak attributed to the release from pores (i.e., deuterium bubbles) were suppressed in the plastically deformed samples but only up to a certain fluence. Beyond 5 × 10{sup 25 }D/m{sup 2}, the release from the bubbles in the deformed material is essentially higher than in the reference material. Based on the presented results, we suggest that a dense dislocation network increases the incubation dose needed for the appearance of blisters, associated with deuterium bubbles, by offering numerous nucleation sites for deuterium clusters eventually transforming into deuterium-vacancy clusters by punching out jogs on dislocation lines.

  9. Effects of Severe Plastic Deformation and Heat Treatment on Transformation Behavior of Explosively Welded Duplex TiNi-TiNi

    Institute of Scientific and Technical Information of China (English)

    Li Juntao; Zheng Yanjun; Cui Lishan

    2007-01-01

    The effects of severe plastic deformation and heat treatment on the transformation behavior of explosively welded duplex TiNi-TiNi shape memory alloys (SMAs) were investigated by differential scanning calorimeter (DSC) measurements. The explosively welded duplex TiNi-TiNi plate of 0.7 mm thickness was cold-rolled at room temperature to a 60% reduction in thickness and then annealed at different temperatures for different durations. The results showed that low temperature (623-723K) heat-treatment led to the crystallization of the amorphous region, and re-crystallization occurred in the specimens annealed at higher temperatures (over 873 K). Research indicated that the change of martensitic transformation temperature is due to the change of internal stresses with increasing heat treatment temperature. The change of annealing time also led to a change in martensitic transformation temperature, which was associated with the precipitation and decomposition of Ti3Ni4 in TiNi-1.

  10. Finite Element Surface Layer Inheritable Condition Residual Stresses Model in Surface Plastic Deformation Processes

    Science.gov (United States)

    Mahalov, M. S.; Blumenstein, V. Yu

    2016-04-01

    The residual stresses (RS) research and computational algorithms creation in complex types of loading on the product lifecycle stages relevance is shown. The RS forming finite element model at surface plastic deformation strengthening machining, including technological inheritance effect, is presented. A model feature is the production previous stages obtained transformation properties consideration, as well as these properties evolution during metal particles displacement through the deformation space in the present loading step.

  11. Accommodation of Plastic Deformation by Ultrasound-Induced Grain Rotation

    NARCIS (Netherlands)

    Dutta, R.K.; Petrov, R.H.; Hermans, M.J.M.; Richardson, I.M.

    2015-01-01

    Electron backscatter diffraction was used to investigate the softening effect in low-carbon steel [Fe-0.051C-0.002Si-0.224Mn-0.045Al (wt pct)] during tensile deformation with in situ ultrasonic treatment. A bimodal grain size distribution is observed with relatively small equiaxed grains with an

  12. Microstructural characterization of nickel subjected to dynamic plastic deformation

    DEFF Research Database (Denmark)

    Luo, Z.P.; Mishin, Oleg; Zhang, Yubin;

    2012-01-01

    Average microstructural parameters and the extent of microstructural heterogeneity in nickel deformed at a high strain rate have been characterized quantitatively and compared to those after compression at a quasi-static strain rate. The microstructure in the high strain rate sample was found...

  13. Microstructural characterization of nickel subjected to dynamic plastic deformation

    DEFF Research Database (Denmark)

    Luo, Z.P.; Mishin, Oleg; Zhang, Yubin

    2012-01-01

    Average microstructural parameters and the extent of microstructural heterogeneity in nickel deformed at a high strain rate have been characterized quantitatively and compared to those after compression at a quasi-static strain rate. The microstructure in the high strain rate sample was found to ...

  14. Accommodation of Plastic Deformation by Ultrasound-Induced Grain Rotation

    NARCIS (Netherlands)

    Dutta, R.K.; Petrov, R.H.; Hermans, M.J.M.; Richardson, I.M.

    2015-01-01

    Electron backscatter diffraction was used to investigate the softening effect in low-carbon steel [Fe-0.051C-0.002Si-0.224Mn-0.045Al (wt pct)] during tensile deformation with in situ ultrasonic treatment. A bimodal grain size distribution is observed with relatively small equiaxed grains with an ave

  15. Plastic Deformation and Morphological Evolution of Precise Acid Copolymers

    Science.gov (United States)

    Middleton, L. Robert; Azoulay, Jason; Murtagh, Dustin; Cordaro, Joseph; Winey, Karen

    2014-03-01

    Acid- and ion-containing polymers have specific interactions that produce complex and hierarchical morphologies that provide remarkable mechanical properties. Historically, correlating the hierarchical structure and the mechanical properties of these polymers has been challenging due to the random arrangements of the polar groups along the backbone, ex situ characterization and the difficulty in deconvolution the effects of crystalline and amorphous regions along with secondary interactions between polymer chains. We address these challenges through in situ deformation of precise acid copolymers and relate the structural evolution to bulk properties by considering a series of copolymers with 9, 15 or 21 carbons between acid groups. Simultaneous synchrotron X-ray scattering and room temperature uniaxial tensile experiments of these precise acid copolymers were conducted. The different deformation mechanisms are compared and the microstructural evolution during deformation is discussed. For example, the liquid-like distribution of acid aggregates within the bulk copolymer transitions into a layered structure concurrent to a dramatic increase in tensile strength. Overall, we evaluate the effect and control of introducing acid groups on mechanical deformation of the bulk copolymers.

  16. Microstructure and properties of plastic deformed martensite induced by laser shock processing

    Institute of Scientific and Technical Information of China (English)

    Jichang Yang(杨继昌); Yinqun Hua(花银群); Ruifang Chen(陈瑞芳); Lan Cai(蔡兰); Yongkang Zhang(张永康); Hong Yan(颜红)

    2004-01-01

    Firstly, 45# steel was quenched by the NEL-2500A rapidly axial flow CO2 laser. The experimental parameters were the laser power of 750 W, the laser beam diameter of 4 mm, the scanning velocity of 7 mm/s.The thickness of coating layer was 0.1 mm and the width was 8 mm. Secondly, the martensite induced by laser quench was shocked by Nd:YAG laser. The parameters of laser shock processing were the wavelength of 1.06 μm, the pulse duration of 23 ns, and the output energy of 16-20 J. The laser was focused on a spot of φ7 mm. K9 optical glass was used as confinement. The sample was coated with black paint 86-1 (the thickness is about 0.025 mm). By testing and analysis of samples which were treated by laser quench and laser quench+shock with transmission electron microscope (TEM), it was discovered that the surface layer of martensite was deformed plastically by laser shock processing. In the secondary hardened zones,there were a lot of slender secondary twin crystal martensites, dislocation tangles, and cellular dislocations.Compared with that of the hardened zones through laser quench only, the residual stress and mechanical properties of the secondary hardened zones were improved and increased through laser compound method.

  17. Plastic Flowlike Deformation and Its Relation to Aperiodic Peaks in Conductance Histograms of Molybdenum Nanocontacts

    Science.gov (United States)

    Yamada, Kohei; Kizuka, Tokushi

    2016-10-01

    We observed the tensile deformation of molybdenum (Mo) nanocontacts (NCs) and simultaneously measured their conductance by in situ transmission electron microscopy. During deformation, the contact width decreased from several nanometers to a single-atom size. Mo NCs were thinned via a plastic flowlike deformation process. The process differs from the slip on lattice planes, which is frequently observed in NCs made of noble metals. We plotted histograms of the time-conductance traces measured during the tensile deformation of Mo NCs. In the conductance histograms, we observed peaks at 1.8G0 (G0 = 2e2/h, where e is the electron charge and h is Planck's constant), 3.6G0, and 4.4G0. When the minimum conductance (1.8G0) was measured, the minimum cross-sectional widths of the NCs were 3-7 atoms. These NCs exhibited relaxed structures that formed irregularly after the plastic flowlike deformation occurred in the final stage of the tensile process. We inferred that the aperiodic peaks observed in the conductance histograms originated from irregular variations in the contact areas and atomic configurations of the NCs during the plastic flowlike deformation. Moreover, the conductance value of the single-atom contacts was less than 0.1G0.

  18. An exploration of plastic deformation dependence of cell viability and adhesion in metallic implant materials.

    Science.gov (United States)

    Uzer, B; Toker, S M; Cingoz, A; Bagci-Onder, T; Gerstein, G; Maier, H J; Canadinc, D

    2016-07-01

    The relationship between cell viability and adhesion behavior, and micro-deformation mechanisms was investigated on austenitic 316L stainless steel samples, which were subjected to different amounts of plastic strains (5%, 15%, 25%, 35% and 60%) to promote a variety in the slip and twin activities in the microstructure. Confocal laser scanning microscopy (CLSM) and field emission scanning electron microscopy (FESEM) revealed that cells most favored the samples with the largest plastic deformation, such that they spread more and formed significant filopodial extensions. Specifically, brain tumor cells seeded on the 35% deformed samples exhibited the best adhesion performance, where a significant slip activity was prevalent, accompanied by considerable slip-twin interactions. Furthermore, maximum viability was exhibited by the cells seeded on the 60% deformed samples, which were particularly designed in a specific geometry that could endure greater strain values. Overall, the current findings open a new venue for the production of metallic implants with enhanced biocompatibility, such that the adhesion and viability of the cells surrounding an implant can be optimized by tailoring the surface relief of the material, which is dictated by the micro-deformation mechanism activities facilitated by plastic deformation imposed by machining.

  19. Cell resolved, multiparticle model of plastic tissue deformations and morphogenesis

    CERN Document Server

    Czirok, Andras

    2014-01-01

    We propose a three dimensional mechanical model of embryonic tissue dynamics. Mechanically coupled adherent cells are represented as particles interconnected with elastic beams which can exert non-central forces and torques. Tissue plasticity is modeled by a stochastic process consisting of a connectivity change (addition or removal of a single link) followed by a complete relaxation to mechanical equilibrium. In particular, we assume that (i) two non-connected, but adjacent particles can form a new link; and (ii) the lifetime of links is reduced by tensile forces. We demonstrate that the proposed model yields a realistic macroscopic elasto-plastic behavior and we establish how microscopic model parameters affect the material properties at the macroscopic scale. Based on these results, microscopic parameter values can be inferred from tissue thickness, macroscopic elastic modulus and the magnitude and dynamics of intercellular adhesion forces. In addition to their mechanical role, model particles can also act...

  20. Shear bands in a bulk metallic glass after large plastic deformation

    Energy Technology Data Exchange (ETDEWEB)

    Qu, D.D.; Wang, Y.B.; Liao, X.Z.; Shen, J. (Harbin); (Sydney)

    2012-10-23

    A transmission electron microscopy investigation is conducted to trace shear bands in a Zr{sub 53}Cu{sub 18.7}Ni{sub 12}Al{sub 16.3} bulk metallic glass after experiencing 4% plastic deformation. Shear band initiation, secondary shear band interactions, mature shear band broadening and the interactions of shear bands with shear-induced nanocrystals are captured. Results suggest that the plasticity of the bulk metallic glass is enhanced by complex shear bands and their interactions which accommodate large plastic strain and prevent catastrophic shear band propagation.

  1. The healing of damage after the plastic deformation of metals

    Directory of Open Access Journals (Sweden)

    S.V. Smirnov

    2013-04-01

    Full Text Available The general regularities of damage healing during the annealing after cold deformation of metal materials are presented in this paper. In categories of damage mechanics the kinetic equations of damage healing during recovery and recrystallization are formulated. Diagrams of damage healing for some metal alloys are presented. The example of use of investigation results for optimization of industrial technology of pipes drawing is presented.

  2. Application of the video-extensometry for the comparison of the plastic deformation welded sheets

    Directory of Open Access Journals (Sweden)

    M. Mihalikova

    2008-07-01

    Full Text Available This paper presents the results obtained from the experimental study conducted in relation with the research focused to the plastic deformation development and its localisation during the static tensile test and test of the notch toughness on the welded steel sheets. The aim of experiments was to determine the possibilities of obtaining the data for the estimation of the welds toughness applying the video-extensometry scanning of the deformation distribution, to estimate deformations within the individual sections of the weld and to compare them with the notch toughness. Based of the results obtained it can qunatitied the relation between the strain and toughness of thich sheets.

  3. Orientation-dependent recrystallization in an oxide dispersion strengthened steel after dynamic plastic deformation

    DEFF Research Database (Denmark)

    Zhang, Zhenbo; Tao, N.R.; Mishin, Oleg V.

    2015-01-01

    dynamic plastic deformation. Different boundary spacings and different stored energy densities for regions belonging to either of the two fibre texture components result in a quite heterogeneous deformation microstructure. Upon annealing, preferential recovery and preferential nucleation...... of recrystallization are found in the 〈111〉- oriented lamellae, which had a higher stored energy density in the as-deformed condition. In the course of recrystallization, the initial duplex fibre texture is replaced by a strong 〈111〉 fibre recrystallization texture....

  4. Effects of heterogeneity on recrystallization kinetics of nanocrystalline copper prepared by dynamic plastic deformation

    DEFF Research Database (Denmark)

    Lin, Fengxiang; Zhang, Yubin; Tao, Nairong;

    2014-01-01

    Recrystallization and mechanical behavior of nanocrystalline copper prepared by dynamic plastic deformation (DPD) and DPD with additional cold-rolling (DPD+CR) were investigated, with an emphasis on the effects of heterogeneity within the deformation microstructure. The DPD sample was found...... than 1, which is explained using a two-stage kinetics model incorporating the heterogeneity. The heterogeneity of the DPD sample is largely reduced by applying additional rolling. This change in deformation path leads to a more random distribution of the recrystallized grains and more conventional...

  5. Conformal mapping modeling of metal plastic deformation and die cavity in special-shaped extrusion

    Institute of Scientific and Technical Information of China (English)

    齐红元; 朱衡君; 杜凤山; 刘才

    2002-01-01

    With the help of Complex Function Mapping studied results, the analysis function of Conformal Mapping is set up. Since the complicated three dimension's deformation problems are transferred into two dimension problems, both the stream function and strain ratio field are analyzed in the metal plastic deformation. Using the upper-bound principles, the theory of metal deformation and die cavity optimized modeling is established for random special-shaped product extrusion. As a result, this enables the realization of intelligent technique target in the die cavity of CAD/CAM integration.

  6. Size effects in single crystal thin films : nonlocal crystal plasticity simulations

    NARCIS (Netherlands)

    Yefimov, S; van der Giessen, E

    2005-01-01

    Stress relaxation in single crystalline thin films on substrates subjected to thermal loading is studied using a recently proposed nonlocal continuum crystal plasticity theory. The theory is founded on a statistical-mechanics description of the collective behaviour of dislocations in multiple slip,

  7. Effect of dynamic plastic deformation on microstructure and annealing behaviour of modified 9Cr-1Mo steel

    DEFF Research Database (Denmark)

    Zhang, Zhenbo; Mishin, Oleg V.; Tao, N. R.;

    2015-01-01

    The effect of dynamic plastic deformation on the microstructure of a modified 9Cr - 1Mo steel has been investigated in comparison with the effect of quasi- static compression. It is found that the boundary spacing after dynamic plastic deformation is smaller and the hardness is higher than those ...

  8. Influence of Plastic Deformation on Low-Temperature Surface Hardening of Austenitic Stainless Steel by Gaseous Nitriding

    DEFF Research Database (Denmark)

    Bottoli, Federico; Winther, Grethe; Christiansen, Thomas Lundin

    2015-01-01

    This article addresses an investigation of the influence of plastic deformation on low-temperature surface hardening by gaseous nitriding of two commercial stainless steels: EN 1.4369 and AISI 304. The materials were plastically deformed to several levels of equivalent strain by conventional...

  9. A study of the heterogeneity of plastic deformation in IF steel by EBSD

    Energy Technology Data Exchange (ETDEWEB)

    Allain-Bonasso, Nathalie, E-mail: allain-b@univ-metz.fr [LEM3, CNRS-UMR 7239, Universite Paul Verlaine - Metz, Ile du Saulcy, 57045 Metz-Cedex (France); Wagner, Francis, E-mail: francis.wagner@univ-metz.fr [LEM3, CNRS-UMR 7239, Universite Paul Verlaine - Metz, Ile du Saulcy, 57045 Metz-Cedex (France); Berbenni, Stephane, E-mail: stephane.berbenni@ensam.eu [LEM3, CNRS-UMR 7239, Universite Paul Verlaine - Metz, Ile du Saulcy, 57045 Metz-Cedex (France); Field, David P., E-mail: dfield@wsu.edu [School of Mechanical and Materials Engineering, Washington State University (United States)

    2012-06-30

    The objective of this experimental study is to recognize the roles of several quantities like grain size and orientation distributions on the development of plastic heterogeneities. The measurements are performed on an interstitial free (IF) steel by Electron Back Scattered Diffraction (EBSD) at different states of deformation (from 0% to 17% tensile deformation). For each level of deformation, EBSD maps are performed before and after the deformation on exactly the same area. Several parameters as the Grain Orientation Spread (GOS), the Grain Orientation Spread over the grain Diameter (GOS/D) and the Geometrically Necessary Dislocation (GND) densities can thus be determined for different subpopulations of grains ranked as a function of individual grains sizes to follow the evolution of the deformed-induced microstructure. It appears that none of these grain scale measures are deciding and that grain neighborhood interactions play an important role.

  10. Self-positioning of polymer membranes driven by thermomechanically induced plastic deformation

    DEFF Research Database (Denmark)

    Häfliger, Daniel; Hansen, Ole; Boisen, Anja

    2006-01-01

    Stress in polymeric resins is tailored by a thermomechanical process. It allows for controlled self-positioning of membranes in microdevices (see Figure). The process makes specific use of plastic deformation that results from the low viscosity of the polymer. This demonstrates that polymers offe...

  11. Modelling plastic deformation of metals over a wide range of strain rates using irreversible thermodynamics

    NARCIS (Netherlands)

    Huang, M.; Rivera-Diaz-del-Castillo, P.E.J.; Bouaziz, O.; Van der Zwaag, S.

    2009-01-01

    Based on the theory of irreversible thermodynamics, the present work proposes a dislocation-based model to describe the plastic deformation of FCC metals over wide ranges of strain rates. The stress-strain behaviour and the evolution of the average dislocation density are derived. It is found that t

  12. Influence of Plastic Deformation Process on the Structure and Properties of Alloy WE43

    Directory of Open Access Journals (Sweden)

    Bednarczyk I.

    2016-03-01

    Full Text Available The paper describes the results of structure and properties tests of flat bars made of alloy WE43 obtained in the process of extrusion with the use of KOBO method. An analysis of structure changes was conducted both in initial state and after plastic deformation.

  13. A Fully-Coupled Approach for Modelling Plastic Deformation and Liquid Lubrication in Metal Forming

    DEFF Research Database (Denmark)

    Üstünyagiz, Esmeray; Christiansen, Peter; Nielsen, Chris V.;

    2016-01-01

    This paper presents a new approach for combined modelling of plastic deformation andliquid lubrication in the contact interfaces between material and tooling in metal forming includingsituations where the lubricant is functioning as a pressure carrier. The approach is an alternative toconventiona...... and numerical fundamentals of the proposedapproach and includes selected examples in order to illustrate its advantages and limitations....

  14. Tailoring dislocation structures and mechanical properties of nanostructured metals produced by plastic deformation

    DEFF Research Database (Denmark)

    Huang, Xiaoxu

    2009-01-01

    The presence of a dislocation structure associated with low-angle dislocation boundaries and interior dislocations is a common and characteristic feature in nanostructured metals produced by plastic deformation, and plays an important role in determining both the strength and ductility of the nan...

  15. Monoclinic deformation of calcite crystals at ambient conditions

    Science.gov (United States)

    Przeniosło, R.; Fabrykiewicz, P.; Sosnowska, I.

    2016-09-01

    High resolution synchrotron radiation powder diffraction shows that the average crystal structure of calcite at ambient conditions is described with the trigonal space group R 3 bar c but there is a systematic hkl-dependent Bragg peak broadening. A modelling of this anisotropic peak broadening with the microstrain model from Stephens (1999) [15] is presented. The observed lattice parameters' correlations can be described by assuming a monoclinic-type deformation of calcite crystallites. A quantitative model of this monoclinic deformation observed at ambient conditions is described with the space group C 2 / c . The monoclinic unit cell suggested at ambient conditions is related with the monoclinic unit cell reported in calcite at high pressure (Merrill and Bassett (1975) [10]).

  16. Cell resolved, multiparticle model of plastic tissue deformations and morphogenesis

    Science.gov (United States)

    Czirok, Andras; Isai, Dona Greta

    2015-02-01

    We propose a three-dimensional mechanical model of embryonic tissue dynamics. Mechanically coupled adherent cells are represented as particles interconnected with elastic beams which can exert non-central forces and torques. Tissue plasticity is modeled by a stochastic process consisting of a connectivity change (addition or removal of a single link) followed by a complete relaxation to mechanical equilibrium. In particular, we assume that (i) two non-connected, but adjacent particles can form a new link; and (ii) the lifetime of links is reduced by tensile forces. We demonstrate that the proposed model yields a realistic macroscopic elasto-plastic behavior and we establish how microscopic model parameters determine material properties at the macroscopic scale. Based on these results, microscopic parameter values can be inferred from tissue thickness, macroscopic elastic modulus and the magnitude and dynamics of intercellular adhesion forces. In addition to their mechanical role, model particles can also act as simulation agents and actively modulate their connectivity according to specific rules. As an example, anisotropic link insertion and removal probabilities can give rise to local cell intercalation and large scale convergent extension movements. The proposed stochastic simulation of cell activities yields fluctuating tissue movements which exhibit the same autocorrelation properties as empirical data from avian embryos.

  17. Infrared thermography coupled with digital image correlation in studying plastic deformation on the mesoscale level

    Science.gov (United States)

    Wang, Xiaogang; Witz, Jean-François; El Bartali, Ahmed; Jiang, Chao

    2016-11-01

    This paper focuses on a study of plastic deformation on the mesoscale level by infrared thermography coupled with digital image correlation. First, a novel technique for fully-coupled thermal and kinematic measurements was developed, and the common problem of spatial coupling in the multifield measurement was solved successfully using an image registration method. Then the developed technique was applied to investigate the plastic deformation of a pure aluminium oligocrystal specimen in a tensile test. The deformed specimen manifested high strains of type out-of-plane, which were found closely associated with the crystallographic structure. From a metrological point of view, the out-of-plane effect on the thermographic measurement was analyzed, and the pertinent radiometric artifacts were estimated. The source of errors was verified through a correlation analysis between the estimated artifacts and specimen surface profile. Moreover, the out-of-plane effect on the kinematic measurement was investigated, and the relevant errors were analyzed via the correlation residual. The analysis highlighted the role of the microstructure that played in the plastic deformation and showed that grain boundary was crucial in shaping the heterogeneous deformation patterns for aluminium oligocrystals.

  18. Influence of Cumulative Plastic Deformation on Microstructure of the Fe-Al Intermetallic Phase Base Alloy

    Directory of Open Access Journals (Sweden)

    Bednarczyk I.

    2014-10-01

    Full Text Available This article is part of the research on the microstructural phenomena that take place during hot deformation of intermetallic phase-based alloy. The research aims at design an effective thermo - mechanical processing technology for the investigated intermetallic alloy. The iron aluminides FeAl have been among the most widely studied intermetallics because their low cost, low density, good wear resistance, easy of fabrication and resistance to oxidation and corrosion. There advantages create wide prospects for their industrial applications for components of machines working at a high temperature and in corrosive environment. The problem restricting their application is their low plasticity and their brittle cracking susceptibility, hampers their development as construction materials. Consequently, the research of intermetallic-phase-based alloys focuses on improvement their plasticity by hot working proceses. The study addresses the influence of deformation parameters on the structure of an Fe-38% at. Al alloy with Zr, B Mo and C microadditions, using multi – axis deformation simulator. The influence of deformation parameters on microstructure and substructure was determined. It was revealed that application of cumulative plastic deformation method causes intensive reduction of grain size in FeAl phase base alloy.

  19. Microstructures and Crystallographic Misorientation in Experimentally Deformed Natural Quartz Single Crystals

    Science.gov (United States)

    Thust, Anja; Heilbronner, Renée.; Stünitz, Holger

    2010-05-01

    Samples of natural milky quartz were deformed in a Griggs deformation apparatus at different confining pressures (700 MPa, 1000 MPa, 1500 MPa), with constant displacement rates of 1 * 10-6s-1, axial strains of 3 - 19%, and at a temperature of 900° C. The single crystal starting material contains a large number of H2O-rich fluid inclusions. Directly adjacent to the fluid inclusions the crystal is essentially dry (50-150H/106Si, determined by FTIR). The samples were cored from a narrow zone of constant 'milkyness' (i.e. same density of fluid inclusions) in a large single crystal in two different orientations (1) normal to one of the prism planes (⊥{m} orientation) and (2) 45° to and to (O+ orientation).During attaining of the experimental P and T conditions, numerous fluid inclusions decrepitate by cracking. Rapid crack healing produces regions of very small fluid inclusions ('wet' quartz domains). Only these regions are subsequently deformed by dislocation glide, dry quartz domains without cracking and decrepitation of fluid inclusions remain undeformed. Sample strain is not sufficient to cause recrystallization, so that deformation is restricted to dislocation glide. In experiments at lower temperatures (800, 700° C) or at lower strain rate (10-5s-1) there is abundant cracking and semi-brittle deformation, indicating that 900° C, (10-6s-1) represents the lower temperature end of crystal plastic deformation in these single crystals. Peak strengths (at 900° C) range between 150 and 250 MPa for most samples of both orientations. There is a trend of decreasing strength with increasing confining pressure, as described by Kronenberg and Tullis (1984) for quartzites, but the large variation in strength due to inhomogeneous sample strain precludes a definite analysis of the strength/pressure dependence in our single crystals. In the deformed samples, we can distinguish a number of microstructures and inferred different slip systems. In both orientations, deformation

  20. On Slip Transmission Criteria in Experiments and Crystal Plasticity Models

    CERN Document Server

    Bayerschen, E; Reddy, B D; Böhlke, T

    2015-01-01

    A comprehensive overview is given on the slip transmission criteria for grain boundaries in the experimental literature, with a focus on slip system and grain boundary orientation. The use of these geometric criteria in continuum crystal plasticity models is briefly discussed. Perspectives on additional experimentally motivated criteria used in computational simulations are given. The theoretical framework of Gurtin (2008, J. Mech. Phys. Solids 56, p. 640) is reviewed for the single slip case with the aim of showing explicitly the connections to the experimentally developed criteria for slip transmission that are not discussed in the work itself.

  1. Deformable two-dimensional photonic crystal slab for cavity optomechanics

    CERN Document Server

    Antoni, T; Briant, T; Cohadon, P -F; Heidmann, A; Braive, R; Beveratos, A; Abram, I; Gatiet, L Le; Sagnes, I; Robert-Philip, I

    2011-01-01

    We have designed photonic crystal suspended membranes with optimized optical and mechanical properties for cavity optomechanics. Such resonators sustain vibration modes in the megahertz range with quality factors of a few thousand. Thanks to a two-dimensional square lattice of holes, their reflectivity at normal incidence at 1064 nm reaches values as high as 95%. These two features, combined with the very low mass of the membrane, open the way to the use of such periodic structures as deformable end-mirrors in Fabry-Perot cavities for the investigation of cavity optomechanical effects

  2. Evaluation of cutting ability and plastic deformation of reciprocating files

    Directory of Open Access Journals (Sweden)

    Alexandre KOWALCZUCK

    2016-01-01

    Full Text Available Abstract This in vitro study evaluated the cutting ability of reciprocating files and the deformations caused by their multiple use. Five Reciproc® R25 files were divided into five groups for 10 simulated root canal preparations each. The resin blocks were weighed and photographed (12.5X and 20X before and after preparation. The canals were prepared according to the manufacturer’s instructions. Enlargement of the root canals was evaluated by comparison of pre- and post-preparation images using a computer software. The preoperative and postoperative weight differences determined the cutting ability of repeatedly used instruments. The data were analyzed using Lilliefors and Friedman statistical tests. The cutting ability and enlargement of the canals gradually decreased after each use, with significant differences observed at the 8th and 9th repetitions, respectively. There was no evidence of file deformation. The cutting ability and enlargement of the simulated canals gradually decreased when a reciprocating file was used up to 10 times.

  3. Rolling-contact deformation of MgO single crystals

    Science.gov (United States)

    Dufrane, K. F.; Glaeser, W. A.

    1976-01-01

    Magnesium oxide single crystals were used as a model bearing material and deformed by rolling contact with a steel ball 0.64 cm in diameter. A dependence of depth of slip on rolling velocity which persisted with increasing numbers of rolling-contact cycles was discovered. The track width, track hardness and dislocation interactions as observed by transmission electron microscopy all increased in a consistent manner with increasing cycles. The rolling-contact state of stress produces a high density of dislocations in a localized zone. Dislocation interaction in this zone produces cleavage-type cracks after a large number of rolling-contact cycles. The orientation of the crystal influences the character of dislocation accumulation.

  4. Relationship between electromagnetic and acoustic emissions during plastic deformation of gamma-irradiated LiF monocrystals

    Energy Technology Data Exchange (ETDEWEB)

    Hadjicontis, V.; Mavromatou, C.; Mastrogiannis, D. [Department of Solid State Physics, University of Athens, Panepistimiopolis, Zografos, TK 157 84, Athens (Greece); Antsygina, T. N.; Chishko, K. A. [B. Verkin Institute for Low Temperature Physics and Engineering, 47 Lenin Ave., 61103 Kharkov (Ukraine)

    2011-07-15

    Simultaneous measurements of acoustic emissions (AE) and electromagnetic emissions (EME) during plastic deformation and destruction under uniaxial compression along <001> direction are made on LiF monocrystals after gamma irradiation by {sup 60}Co source. The irradiation doses are 1, 2, and 10 Mrad. The EME measurements in the radio-frequency range are carried out using two types of electromagnetic sensors: (i) a simple electrical stub antenna and (ii) a toroidal inductance coil. Two checking experiments on unirradiated crystals are performed as the starting point to discover the effect of gamma irradiation on acoustic and electromagnetic emissive ability of plastically deformed ionic crystals. Unirradiated LiF monocrystals demonstrate high-intensive EME at easy glide and work hardening stages, as well as at the fracture during destruction of the sample. At radiation doses more than {approx}1 Mrad, in the active loading stage the EME of LiF monocrystals vanishes, except few individual electromagnetic pulses (only at 1 and 2 Mrad doses), which are time correlated with well-defined drop-jumps on the loading diagram and therefore can be associated with macroscopic crack openings. Moderate electromagnetic activity in irradiated crystals occurs only in the final stage of deformation at the complete fracture of the sample. Thus, after gamma irradiation the formation of polarization currents due to dynamic interaction between charged vacancies and moving dislocations is suppressed, and only EME connected with the redistribution of the free charge on the crack branches is observed. Acoustic emission diagrams of low-irradiated LiF are typical for the work hardening stage in crystals containing a great amount of strong point stoppers. At larger irradiation doses the AE diagram displays quite different behavior at low- and high-loading regions with a sharp boundary between them. The low-loading region shows poor AE activity, which changes sharply into high-active burst

  5. Ultrafine-grained low carbon steels by severe plastic deformation

    Directory of Open Access Journals (Sweden)

    S. Dobatkin

    2008-07-01

    Full Text Available The structure and properties of 0,14% C and 0,1% C - B low-carbon steels taken in two initial states, martensitic and ferritic-pearlitic, were studied after cold equal-channel angular (ECA pressing. ECA pressing leads to the formation of only partially submicrocrystalline structure with a grain size of 150 – 300 nm, depending on the steel alloying and initial state. The finest structure with the elements of 190 nm in size is obtained in the 0,1% C - B steel microalloyed with boron. The strength of the 0,1% C - B steel after cold ECA pressing (Rm = 805-1235 MPa meets the specifications of fasteners of the R80 - R120 strength grade. The strength of the deformed 0,14% C steel is close to the R80 strength grade.

  6. Microstructural stability after severe plastic deformation of AZ31 Magnesium

    Science.gov (United States)

    Young, J. P.; Askari, H.; Hovanski, Y.; Heiden, M. J.; Field, D. P.

    2014-08-01

    Friction stir processing (FSP) and equal channel angular pressing (ECAP) were used to modify the microstructure of twin roll cast (TRC) AZ31 magnesium. The influence of these processes on the microstructural properties of the material was investigated. It was found that both processes produced microstructures with an average grain size of less than 10 pm, suggesting that they have the potential for superplastic deformation. Heat treatments were performed on the TRC, ECAP and FSP materials to assess their microstructural stability. Both the ECAP and TRC material were found to be fairly stable, showing normal grain growth while the FSP material grew substantially at temperatures above 200°C. The activation energy of grain boundary motion of the TRC material was calculated to be 167 kJ/mol.

  7. Recrystallization and texture evolution during hot rolling of copper, studied by a multiscale model combining crystal plasticity and vertex models

    Science.gov (United States)

    Mellbin, Y.; Hallberg, H.; Ristinmaa, M.

    2016-10-01

    A multiscale modeling framework, combining a graph-based vertex model of microstructure evolution with a GPU-parallelized crystal plasticity model, was recently proposed by the authors. Considering hot rolling of copper, the full capabilities of the model are demonstrated in the present work. The polycrystal plasticity model captures the plastic response and the texture evolution during materials processing while the vertex model provides central features of grain structure evolution through dynamic recrystallization, such as nucleation and growth of individual crystals. The multiscale model makes it possible to obtain information regarding grain size and texture development throughout the workpiece, capturing the effects of recrystallization and heterogeneous microstructure evolution. Recognizing that recrystallization is a highly temperature dependent phenomenon, simulations are performed at different process temperatures. The results show that the proposed modeling framework is capable of simultaneously capturing central aspects of material behavior at both the meso- and macrolevel. Detailed investigation of the evolution of texture, grain size distribution and plastic deformation during the different processing conditions are performed, using the proposed model. The results show a strong texture development, but almost no recrystallization, for the lower of the investigated temperatures, while at higher temperatures an increased recrystallization is shown to weaken the development of a typical rolling texture. The simulations also show the influence of the shear deformation close to the rolling surface on both texture development and recrystallization.

  8. Magnetar activity mediated by plastic deformations of neutron star crust

    CERN Document Server

    Lyutikov, Maxim

    2014-01-01

    We advance a "Solar flare" model of magnetar activity, whereas a slow evolution of the magnetic field in the upper crust, driven by electron MHD (EMHD) flows, twists the external magnetic flux tubes, producing persistent emission, bursts and flares. At the same time the neutron star crust plastically relieves the imposed magnetic field stress, limiting the strain $ \\epsilon_t $ to values well below the critical strain $ \\epsilon_{crit}$ of a brittle fracture, $ \\epsilon_t \\sim 10^{-2}\\epsilon_{crit} $. Magnetar-like behavior, occurring near the magnetic equator, takes place in all neutron stars, but to a different extent. The persistent luminosity is proportional to cubic power of the magnetic field (at a given age), and hence is hardly observable in most rotationally powered neutron stars. Giant flares can occur only if the magnetic field exceeds some threshold value, while smaller bursts and flares may take place in relatively small magnetic fields. Bursts and flares are magnetospheric reconnection events t...

  9. Plastic deformation and hysteresis for hydrogen storage in Pd–Rh alloys

    Energy Technology Data Exchange (ETDEWEB)

    Cappillino, P.J., E-mail: pcappil@sandia.gov [Sandia National Laboratories, PO Box 969, Mail Stop 9292, Livermore, CA 94551 (United States); Lavernia, E.J. [Department of Chemical Engineering and Materials Science, University of California, Davis, CA 95616 (United States); Ong, M.D. [Department of Physics, Whitworth University, Spokane, WA 99251 (United States); Wolfer, W.G.; Yang, N.Y. [Sandia National Laboratories, PO Box 969, Mail Stop 9292, Livermore, CA 94551 (United States)

    2014-02-15

    Highlights: • Experimental evidence of plastic work resulting from hydriding of palladium is presented. • A model of this plastic work was generated and correlated to hysteresis losses. • This hysteresis is thought to be important to the lifetime of hydrogen storage materials. • Yield strength values predicted by this model agree with measured hardness. -- Abstract: The hysteresis observed when reversibly absorbing and desorbing hydrogen in metals is currently not fully understood. In general, a hysteresis represents energy that is dissipated during a cycle, but the underlying mechanism of dissipation is still uncertain. It has been suggested that the hysteresis arises either from plastic work, or from elastic strains associated with the accommodation of the hydride phase, or from both. We present here experimental evidence that implicates plastic deformation as the cause of the hysteresis in a Pd–Rh alloy. The plastic work is evident from the increased dislocation density, from the accumulation of surface steps from slip bands, from line broadening of X-ray diffraction peaks, and from an increase in hardness with the number of hydriding cycles. A model of this plastic work is developed that depends on an effective yield strength. When this model is correlated with the measured hysteresis losses, two values are found for the effective yield strength. The lower value is shown to agree with yield strength values derived from Vickers hardness measurements. The hysteresis areas for repeated cycles of absorption and desorption decrease little with the number of cycles which is reminiscent of the plastic deformation hysteresis during low-cycle fatigue of metals. This similarity further confirms the plastic nature of the hydriding hysteresis.

  10. Determination of microstructural changes by severely plastically deformed copper-aluminum alloy: Optical study

    Directory of Open Access Journals (Sweden)

    Romčević N.

    2014-01-01

    Full Text Available Our work deals with the problem of producing a complex metal-ceramic composite using the processes of internal oxidation (IO and severe plastic deformation. For this purpose, Cu-Al alloy with 0.4wt.% of Al was used. IO of sample serves in the first step of the processing as a means for attaining a fine dispersion of nanosized oxide particles in the metal matrix. Production technology continues with repeated application of severe plastic deformation (SPD of the resulting metalmatrix composite to produce the bulk nanoscaled structural material. SPD was carried out with equal channel angular pressing (ECAP, which allowed that the material could be subjected to an intense plastic strain through simple shear. Microstructural characteristics of one phase and multiphase material was studied on internally oxidized Cu with 0.4wt.% of Al sample composed of one phase copper-aluminum solid solution in the core and fine dispersed oxide particles in the same matrix in the mantle region. In this manner AFM, X-ray diffraction and Raman spectroscopy were used. Local structures in plastically deformed samples reflect presence of Cu, CuO, Cu2O, Cu4O3 or Al2O3 structural characteristics, depending on type of sample. [Projekat Ministarstva nauke Republike Srbije, br. III45003

  11. Interfacial diffusion in high-temperature deformation of composites: A discrete dislocation plasticity investigation

    Science.gov (United States)

    Shishvan, Siamak S.; Pollock, Tresa M.; McMeeking, Robert M.; Deshpande, Vikram S.

    2017-01-01

    We present a discrete dislocation plasticity (DDP) framework to analyse the high temperature deformation of multi-phase materials (composites) comprising a matrix and inclusions. Deformation of the phases is by climb-assisted glide of the dislocations while the particles can also deform due to stress-driven interfacial diffusion. The general framework is used to analyse the uniaxial tensile deformation of a composite comprising elastic particles with dislocation plasticity only present in the matrix phase. When dislocation motion is restricted to only glide within the matrix a strong size effect of the composite strength is predicted with the strength increasing with decreasing unit cell size due to dislocations forming pile-ups against the matrix/particle interface. Interfacial diffusion decreases the composite strength as it enhances the elongation of the elastic particles along the loading direction. When dislocation motion occurs by climb-assisted glide within the matrix the size effect of the strength is reduced as dislocations no longer arrange high energy pile-up structures but rather form lower energy dislocation cell networks. While interfacial diffusion again reduces the composite strength, in contrast to continuum plasticity predictions, the elongation of the particles is almost independent of the interfacial diffusion constant. Rather, in DDP the reduction in composite strength due to interfacial diffusion is a result of changes in the dislocation structures within the matrix and the associated enhanced dislocation climb rates in the matrix.

  12. The Microstructure Evolution of Dual-Phase Pipeline Steel with Plastic Deformation at Different Strain Rates

    Science.gov (United States)

    Ji, L. K.; Xu, T.; Zhang, J. M.; Wang, H. T.; Tong, M. X.; Zhu, R. H.; Zhou, G. S.

    2017-07-01

    Tensile properties of the high-deformability dual-phase ferrite-bainite X70 pipeline steel have been investigated at room temperature under the strain rates of 2.5 × 10-5, 1.25 × 10-4, 2.5 × 10-3, and 1.25 × 10-2 s-1. The microstructures at different amount of plastic deformation were examined by using scanning and transmission electron microscopy. Generally, the ductility of typical body-centered cubic steels is reduced when its stain rate increases. However, we observed a different ductility dependence on strain rates in the dual-phase X70 pipeline steel. The uniform elongation (UEL%) and elongation to fracture (EL%) at the strain rate of 2.5 × 10-3 s-1 increase about 54 and 74%, respectively, compared to those at 2.5 × 10-5 s-1. The UEL% and EL% reach to their maximum at the strain rate of 2.5 × 10-3 s-1. This phenomenon was explained by the observed grain structures and dislocation configurations. Whether or not the ductility can be enhanced with increasing strain rates depends on the competition between the homogenization of plastic deformation among the microconstituents (ultra-fine ferrite grains, relatively coarse ferrite grains as well as bainite) and the progress of cracks formed as a consequence of localized inconsistent plastic deformation.

  13. Crystal plasticity finite element modeling of discrete twin evolution in polycrystalline magnesium

    Science.gov (United States)

    Cheng, Jiahao; Ghosh, Somnath

    2017-02-01

    This paper develops an advanced, image-based crystal plasticity finite element (CPFE) model, for predicting explicit twin formation and associated heterogeneous deformation in single crystal and polycrystalline microstructures of hexagonal close-packed or hcp materials, such as magnesium. Twin formation is responsible for premature failure of many hcp materials. The physics of nucleation, propagation and growth of explicit twins are considered in the CPFE formulation. The twin nucleation model is based on dissociation of sessile dislocations into stable twin loops, while propagation is assumed by atoms shearing on twin planes and shuffling to reduce the thermal activation energy barrier. The explicit twin evolution model however has intrinsic issues of low computational efficiency. Very fine simulation time steps with enormous computation costs are required to simulate the fast propagating twin bands and associated strain localization. To improve the computational efficiency, a multi-time scale subcycling algorithm is developed. It decomposes the computational domain into sub-domains of localized twins requiring very fine time-steps and complementary domains of relatively low resolution. Each sub-domain updates the stress and the deformation-dependent variables in different rates, followed by a coupling at the end of every coarse time step to satisfy global equilibrium. A 6-fold increase in computing speed is obtained for a polycrystalline Mg microstructure simulation in this paper. CPFE simulations of high purity Mg microstructures are compared with experiments with very good agreement in stress-strain response as well as heterogeneous twin formation with strain localization.

  14. Strain gradient crystal plasticity analysis of a single crystal containing a cylindrical void

    DEFF Research Database (Denmark)

    Borg, Ulrik; Kysar, J.W.

    2007-01-01

    The effects of void size and hardening in a hexagonal close-packed single crystal containing a cylindrical void loaded by a far-field equibiaxial tensile stress under plane strain conditions are studied. The crystal has three in-plane slip systems oriented at the angle 60 degrees with respect...... to one another. Finite element simulations are performed using a strain gradient crystal plasticity formulation with an intrinsic length scale parameter in a non-local strain gradient constitutive framework. For a vanishing length scale parameter the non-local formulation reduces to a local crystal...... to three times higher for smaller void sizes than for larger void sizes in the non-local material....

  15. Comprehensive Deformation Analysis of a Newly Designed Ni-Free Duplex Stainless Steel with Enhanced Plasticity by Optimizing Austenite Stability

    DEFF Research Database (Denmark)

    Moallemi, Mohammad; Zarei-Hanzaki, Abbas; Eskandari, Mostafa

    2017-01-01

    phase measurements, X-ray diffraction (XRD) and electron backscattered diffraction were employed to study the plastic deformation behavior and to identify the operating plasticity mechanisms. The results obtained show that the newly designed duplex alloy exhibits some extraordinary mechanical properties......, including an ultimate tensile strength of ~900 MPa and elongation to fracture of ~94 pct due to the synergistic effects of transformation-induced plasticity and twinning-induced plasticity. The deformation mechanism of austenite is complex and includes deformation banding, strain-induced martensite...... formation, and deformation-induced twinning, while the ferrite phase mainly deforms by dislocation slip. Texture analysis indicates that the Copper and Rotated Brass textures in austenite (FCC phase) and {001}〈110〉 texture in ferrite and martensite (BCC phases) are the main active components during...

  16. The effect of hydrogen on the parameters of plastic deformation localization in low carbon steel

    Energy Technology Data Exchange (ETDEWEB)

    Lunev, Aleksey G., E-mail: agl@ispms.tsc.ru, E-mail: nadjozhkin@ispms.tsc.ru; Nadezhkin, Mikhail V., E-mail: agl@ispms.tsc.ru, E-mail: nadjozhkin@ispms.tsc.ru [Institute of Strength Physics and Materials Science SB RAS, Tomsk, 634055, Russia and National Research Tomsk Polytechnic University, Tomsk, 634050 (Russian Federation); Shlyakhova, Galina V., E-mail: shgv@ispms.tsc.ru [Institute of Strength Physics and Materials Science SB RAS, Tomsk, 634055, Russia and Seversk State Technological Institute (National Research Nuclear University MEPhI), Seversk, 636036 (Russian Federation); Barannikova, Svetlana A., E-mail: bsa@ispms.tsc.ru [Institute of Strength Physics and Materials Science SB RAS, Tomsk, 634055 (Russian Federation); National Research Tomsk State University, Tomsk, 634050 (Russian Federation); Tomsk State University of Architecture and Building, Tomsk, 634003 (Russian Federation); Zuev, Lev B., E-mail: lbz@ispms.tsc.ru [Institute of Strength Physics and Materials Science SB RAS, Tomsk, 634055 (Russian Federation); National Research Tomsk State University, Tomsk, 634050 (Russian Federation)

    2014-11-14

    In the present study, the effect of interstitial hydrogen atoms on the mechanical properties and plastic strain localization patterns in tensile tested polycrystals of low-carbon steel Fe-0.07%C has been studied using double exposure speckle photography technique. The main parameters of plastic flow localization at various stages of deformation hardening have been determined in polycrystals of steel electrolytically saturated with hydrogen in a three-electrode electrochemical cell at a controlled constant cathode potential. Also, the effect of hydrogen on changing of microstructure by using optical microscopy has been demonstrated.

  17. Interrogation of the microstructure and residual stress of a nickel-base alloy subjected to surface severe plastic deformation

    Energy Technology Data Exchange (ETDEWEB)

    Ortiz, A.L. [Departamento de Ingenieria Mecanica, Energetica y de los Materiales, Universidad de Extremadura, 06071 Badajoz (Spain); Tian, J.W. [Department of Materials Science and Engineering, University of Tennessee, Knoxville, TN (United States); Villegas, J.C. [Intel Corporation, Chandler, AZ (United States); Shaw, L.L. [Department of Chemical, Materials and Biomolecular Engineering, University of Connecticut, Storrs, CT (United States)], E-mail: Leon.Shaw@Uconn.Edu; Liaw, P.K. [Department of Materials Science and Engineering, University of Tennessee, Knoxville, TN (United States)

    2008-02-15

    A low stacking-fault energy nickel-base, single-phase, face-centered-cubic (fcc) alloy has been subjected to surface severe plastic deformation (S{sup 2}PD) to introduce nano-grains and grain size gradients to the surface region of the alloy. The simultaneous microstructural and stress state changes induced by S{sup 2}PD have been investigated via the X-ray diffraction (XRD) analysis that includes evaluation of annealing and deformation twins, deformation faults, in-plane lattice parameters and elastic strains of the crystal lattice, macroscopic residual in-plane stresses, crystallite sizes, internal strains, dislocation densities, and crystallographic texture as a function of the depth measured from the processed surface. Microstructural changes have also been characterized using optical and electron microscopy in order to corroborate the findings from the XRD analysis. The results from the XRD analysis are in excellent agreement with those derived from the microscopy analysis. This is the first systematic and comprehensive study using XRD to quantify depth-profile changes in a wide range of microstructural features and stress states in a fcc material resulting from the S{sup 2}PD process.

  18. Deformation effect on plastic and elastic stress components in grains with different bending

    Science.gov (United States)

    Kozlov, Eduard; Kiseleva, Svetlana; Popova, Natalya; Koneva, Nina

    2016-11-01

    The paper presents the investigations of deformation processes in polycrystal. Austenitic steel of the type 1.1C-13Mn-Fe is subjected to tensile deformation on a test machine at a rate of 3.4×10-4 s-1 and room temperature. The suggested experimental methodology implies the recovery of internal stresses using the parameters of the bend extinction contours observed on TEM images of the deformed polycrystal structure. The contribution of plastic and elastic stress components is determined in this paper. The analysis of these components is given for grains with different bending in deformed austenitic steel specimens. TEM images are obtained for a single polycrystal grain at different goniometer inclinations. The experimental findings are given for different degrees of steel deformation resulting in its rupture. It is shown that in the vicinity of the material rupture (ɛ = 36%), the plastic component mostly contributes to the internal stresses, while the contribution of elastic component is considerably reduced. The obtained results are compared to the defective structure of austenitic steel specimens.

  19. Crystal plasticity extend FEM implementation of thermal-tensile aluminum alloy

    Directory of Open Access Journals (Sweden)

    Liu Yang

    2016-01-01

    Full Text Available Multi-level approach has been used to simulate the thermal deformation of aluminium alloy at different temperature and strain rate. The crystal plasticity model is extended in the finite element method and the thermal behaviour is integrated in the constitutive equations. Moreover, the damage evolution is also reflected in the simulation using continuum damage mechanics model. Thus, the void evolution and thermal effect could both be shown in the simulation. A new shear strain rate model is constructed with the thermal activated mechanism to describe the rate dependent behaviours during tensile test. The thermal parameters are determined in a fitting test of representative volume element to compare with the experimental data. The results prove that the mechanical tensile behaviour of 5052 aluminium alloy could be well described at different temperatures. The damage evolution process is expressed by the stress concentration and strain concentration in the finite element simulation, which are also confirmed by the experiments.

  20. Fundamental microstructural issues associated with severe plastic deformation: Applications of transmission electron microscopy

    Science.gov (United States)

    Esquivel, Erika Vanessa

    This study deals with the microstructural response of several metals and alloys to severe plastic deformation (SPD) in the form of shock wave loading, impact cratering, explosive welding, and ballistic penetration. Microstructural issues that will be addressed include dynamic recrystallization, adiabatic shear bands, and microbands and microtwins. Other relevant issues are stacking fault free energy (SFE), shock wave geometry and grain boundary contributions to the deformation response. The study focuses mainly on the deformation behavior correlated from the microstructural response of nickel and 304 stainless steel, but the behavior of other metals and alloys such as aluminum, copper, brass, tungsten-tantalum and steel are also discussed. These metals cover a wide range of SFE in the face centered cubic systems (FCC) as well as body centered cubic (BCC) structures. There is an emphasis on the microstructure as seen through the transmission electron microscope (TEM) but this is complemented by light microscopy to provide a more global microscopic context. Observations revealed that microtwins will form in planar shock wave treatment of FCC metals and alloys above a critical shock twinning pressure, which is itself a function of SFE. In hypervelocity impact craters, microbands will form for higher SFE materials such as Al, Ni, and Cu, whereas microtwins form exclusively in lower SFE material such as brass, and a combination of both microbands and microtwins will form in materials of intermediate SFE. Both SFE and shock wave geometry influence the material behavior in response to such dynamic processes such that SFE dictates the feasibility of cross-slip and the shock wave geometry, being planar promotes slip along primary slip planes while a spherical shock wave encourages cross-slip. In ballistic penetration it has been observed that overlapping shear bands, associated with dynamic recovery and recrystallization structures allow the penetrator to 'flow.' In all

  1. Magnetic properties of cementite and the coercive force of carbon steels after plastic deformation and annealing

    Science.gov (United States)

    Ul'Yanov, A. I.; Chulkina, A. A.

    2009-05-01

    Magnetic hysteresis properties of cementite obtained by the method of mechanical alloying have been studied. It is shown that the strongly deformed cementite is in a low-coercivity state, and the cementite annealed at 500°C is in a high-coercivity state. The need to allow for the contribution of the coercivity of cementite to the coercive force of high-carbon steel is shown. Taking into account this point of view, the behavior of the coercive force depending on the degree of cold plastic deformation by drawing is explained for a number of carbon steels with a structure of fine platelike and globular cementite.

  2. Multiscale investigation of inhomogeneous plastic deformation of NiTi shape memory alloy based on local canning compression

    Energy Technology Data Exchange (ETDEWEB)

    Jiang, Shuyong, E-mail: jiangshy@sina.com [Industrial Training Centre, Harbin Engineering University, Harbin 150001 (China); Hu, Li [College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin 150001 (China); Zhao, Yanan; Zhang, Yanqiu [Industrial Training Centre, Harbin Engineering University, Harbin 150001 (China); Liang, Yulong [College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin 150001 (China)

    2013-05-01

    As a severe plastic deformation (SPD) technique, local canning compression provides a novel approach to produce bulk amorphous and nanocrystalline nickel–titanium shape memory alloy (NiTi SMA). From the macroscale, mesoscale and microscale viewpoint, physical mechanism of inhomogeneous plastic deformation of NiTi alloy under local canning compression is investigated by means of optical microscopy, transmission electron microscopy (TEM) and high-resolution transmission electron microscopy (HRTEM). Inhomogeneous plastic deformation of NiTi alloy leads to coexistence of amorphous phase, nanocrystalline phase, B2 austenite and B19′ martensite. The interaction between the dislocations and the grain boundaries lays the profound foundation for guaranteeing the continuity and the compatibility between the grains in a polycrystalline NiTi sample subjected to inhomogeneous plastic deformation. Deformation twinning and dislocation slip are the two important deformation modes in plastic deformation of NiTi alloy under local canning compression. Based on the statistically stored dislocation and the geometrically necessary dislocation, the mechanism of the critical dislocation density plays a predominant role in the occurrence of the amorphous phase in the deformed NiTi sample. When the deformation temperature is higher than a critical temperature, the amorphous phase is not able to occur in the NiTi sample subjected to SPD.

  3. A Fully-Coupled Approach for Modelling Plastic Deformation and Liquid Lubrication in Metal Forming

    DEFF Research Database (Denmark)

    Üstünyagiz, Esmeray; Christiansen, Peter; Nielsen, Chris Valentin

    2016-01-01

    This paper presents a new approach for combined modelling of plastic deformation andliquid lubrication in the contact interfaces between material and tooling in metal forming includingsituations where the lubricant is functioning as a pressure carrier. The approach is an alternative toconventional...... elements with fictitious small stiffness to physical modelling based on a fullycoupled procedure in which the lubricant flow and the plastic deformation of the metallic materialare solved simultaneously. The approach takes advantage of the intrinsic velocity-pressurecharacteristics of the finite element...... flow formulation which stands on the border line between fluidand solid mechanics and allows treating the lubricants as viscous incompressible (or nearlyincompressible) fluid and the metallic materials as non-Newtonian, high viscous, incompressiblefluids. The presentation is focused on the theoretical...

  4. Ipsilateral Plastic Deformation Monteggia and Galeazzi-Type Fracture in a Child: A Case Report.

    Science.gov (United States)

    Greer, Andrew; Lowry, Christopher John; Ramlakhan, Shammi

    2017-05-01

    A 7-year-old boy attended the emergency department after falling from a climbing frame onto his outstretched left wrist. On examination, there was mild swelling to the left elbow and tenderness to the antecubital fossa. There was also tenderness diffusely to the distal ulnar and radius. There was no neurovascular deficit. Radiographs revealed a plastic deformation fracture of the left radius and ulna, with dislocations of the ipsilateral radiocapitellar joint and distal radioulnar joint. A diagnosis of combined Monteggia and Galeazzi-type fractures of the left forearm was made. It is rare to find cases of combined Monteggia and Galeazzi fractures to the same forearm. Furthermore, to our knowledge, ipsilateral plastic deformation Monteggia and Galeazzi-type fractures in children have not been reported in the literature. Copyright © 2016 American College of Emergency Physicians. Published by Elsevier Inc. All rights reserved.

  5. Nanocrystalline Ti Produced by Cryomilling and Consolidation by Severe Plastic Deformation

    Directory of Open Access Journals (Sweden)

    Irina Semenova

    2015-02-01

    Full Text Available We report on a study of the nanocrystalline structure in Ti, which was produced by cryogenic milling followed by subsequent consolidation via severe plastic deformation using high pressure torsion. The mechanisms that are believed to be responsible for the formation of grains smaller than 40 nm are discussed and the influence of structural characteristics, such as nanometric grains and oxide nanoparticles, on Ti hardening is established.

  6. Influencing factors on elastic-plastic deformation of multi-layered surfaces under sliding contact

    Institute of Scientific and Technical Information of China (English)

    YAN Li; PAN Xin-xiang; XU Jiu-jun; CHENG Dong

    2004-01-01

    Stress distribution in the gradient multi-layered surface under a sliding contact was investigated using finite element method(FEM). The main structure parameters of layered surface discussed are total layer thickness,layer number and elastic modulus ratio of layer to the substrate. A model of multi-layered surface contact with rough slider was studied. The effect of the surface structure parameters on the elastic-plastic deformation was analyzed.

  7. Suppression of dislocations at high strain rate deformation in a twinning-induced plasticity steel

    Energy Technology Data Exchange (ETDEWEB)

    Liang, Z.Y. [Shenzhen Institute of Research and Innovation, The University of Hong Kong, Shenzhen (China); Department of Mechanical Engineering, The University of Hong Kong, Hong Kong (China); Huang, W., E-mail: whuang@szu.edu.cn [Department of Civil Engineering, Shenzhen University, Shenzhen (China); Huang, M.X., E-mail: mxhuang@hku.hk [Shenzhen Institute of Research and Innovation, The University of Hong Kong, Shenzhen (China); Department of Mechanical Engineering, The University of Hong Kong, Hong Kong (China)

    2015-03-25

    The increase of strain rate generally enhances dislocation evolution in face-centred cubic (FCC) metals. However, by synchrotron X-ray diffraction experiments, the present work demonstrates for the first time that a higher strain rate leads to a lower dislocation density in a twinning-induced plasticity steel with an FCC structure. This unexpected suppression of dislocation evolution has been attributed to the temperature increase due to dissipative heating at high strain rate deformation.

  8. Crystal Plasticity Model of Reactor Pressure Vessel Embrittlement in GRIZZLY

    Energy Technology Data Exchange (ETDEWEB)

    Chakraborty, Pritam [Idaho National Laboratory (INL), Idaho Falls, ID (United States); Biner, Suleyman Bulent [Idaho National Laboratory (INL), Idaho Falls, ID (United States); Zhang, Yongfeng [Idaho National Laboratory (INL), Idaho Falls, ID (United States); Spencer, Benjamin Whiting [Idaho National Laboratory (INL), Idaho Falls, ID (United States)

    2015-07-01

    The integrity of reactor pressure vessels (RPVs) is of utmost importance to ensure safe operation of nuclear reactors under extended lifetime. Microstructure-scale models at various length and time scales, coupled concurrently or through homogenization methods, can play a crucial role in understanding and quantifying irradiation-induced defect production, growth and their influence on mechanical behavior of RPV steels. A multi-scale approach, involving atomistic, meso- and engineering-scale models, is currently being pursued within the GRIZZLY project to understand and quantify irradiation-induced embrittlement of RPV steels. Within this framework, a dislocation-density based crystal plasticity model has been developed in GRIZZLY that captures the effect of irradiation-induced defects on the flow stress behavior and is presented in this report. The present formulation accounts for the interaction between self-interstitial loops and matrix dislocations. The model predictions have been validated with experiments and dislocation dynamics simulation.

  9. A thermomechanical crystal plasticity constitutive model for ultrasonic consolidation

    KAUST Repository

    Siddiq, Amir

    2012-01-01

    We present a micromechanics-based thermomechanical constitutive model to simulate the ultrasonic consolidation process. Model parameters are calibrated using an inverse modeling approach. A comparison of the simulated response and experimental results for uniaxial tests validate and verify the appropriateness of the proposed model. Moreover, simulation results of polycrystalline aluminum using the identified crystal plasticity based material parameters are compared qualitatively with the electron back scattering diffraction (EBSD) results reported in the literature. The validated constitutive model is then used to simulate the ultrasonic consolidation process at sub-micron scale where an effort is exerted to quantify the underlying micromechanisms involved during the ultrasonic consolidation process. © 2011 Elsevier B.V. All rights reserved.

  10. Reduction of Large Seismic Deformations using Elasto-plastic Passive Energy Dissipaters

    Directory of Open Access Journals (Sweden)

    K. Sathish Kumar

    2003-01-01

    Full Text Available The design of supporting systems for pipelines carrying highly toxic or radioactive liquids at very high temperature, is an important issue in the safety aspect for a nuclear power installation. These pipeline systems are normally designed to be held rigid by conventional snubber supports for protection from earthquake. The pipeline system design must balance the seismic deformations and other deformations due to thermal effect. A rigid pipeline system using conventional snubber supports always leads to an increase in thermal stresses, hence a rational seismic design for pipeline supporting systems becomes essential. Contrary to this rigid design, it is possible to design a flexible pipeline system and to decrease the seismic response by increasing the damping using passive energy absorbing (PEA element, which dissipates vibration energy. An X-shaped or a hourglass-shaped metal element is a classic example of elasto-plastic passive energy absorber of metallic yielding type. The inherent ductile property of metals like steel, which undergoes stable energy dissipation in the plastic region, is made use of in achieving energy loss. This paper presents the experimental and analytical studies carried out on yielding-type elasto-plastic PEA elements to be used in a passive energy dissipating device for the control of large seismic deformations of pipelines subjected to earthquake loading.

  11. Ultrasound Velocity Measurements in High-Chromium Steel Under Plastic Deformation

    Science.gov (United States)

    Lunev, Aleksey; Bochkareva, Anna; Barannikova, Svetlana; Zuev, Lev

    2016-04-01

    In the present study, the variation of the propagation velocity of ultrasound in the plastic deformation of corrosion-resistant high-chromium steel 40X13 with ferrite-carbide (delivery status), martensitic (quenched) and sorbitol (after high-temperature tempering) structures have beem studied/ It is found that each state shows its view of the loading curve. In the delivery state diagram loading is substantially parabolic throughout, while in the martensitic state contains only linear strain hardening step and in the sorbitol state the plastic flow curve is three-step. The velocity of ultrasonic surface waves (Rayleigh waves) was measured simultaneously with the registration of the loading curve in the investigated steel in tension. It is shown that the dependence of the velocity of ultrasound in active loading is determined by the law of plastic flow, that is, the staging of the corresponding diagram of loading. Structural state of the investigated steel is not only changing the type of the deformation curve under uniaxial tension, but also changes the nature of ultrasound speed of deformation.

  12. Plastic Deformation and Rupture of Ring-Stiffened Cylinders under Localized Pressure Pulse Loading

    Directory of Open Access Journals (Sweden)

    Michelle S. Hoo Fatt

    1994-01-01

    Full Text Available An analytical solution for the dynamic plastic deformation of a ring-stiffened cylindrical shell subject to high intensity pressure pulse loading is presented. By using an analogy between a cylindrical shell that undergoes large plastic deformation and a rigid-plastic string resting on a rigid-plastic foundation, one derives closed-form solutions for the transient and final deflection profiles and fracture initiation of the shell. Discrete masses' and springs are used to describe the ring stiffeners in the stiffened shell. The problem of finding the transient deflection profile of the central bay is reduced to solving an inhomogeneous wave equation with inhomogeneous boundary conditions using the method of eigenfunction expansion. The overall deflection profile consists of both global (stiffener and local (bay components. This division of the shell deflection profile reveals a complex interplay between the motions of the stiffener and the bay. Furthermore, a parametric study on a ring-stiffened shell damaged by a succession of underwater explosions shows that the string-on-foundation model with ring stiffeners described by lumped masses and springs is a promising method of analyzing the structure.

  13. Influence of Niobium on the Beginning of the Plastic Flow of Material during Cold Deformation

    Directory of Open Access Journals (Sweden)

    Stoja Rešković

    2013-01-01

    Full Text Available Investigations were conducted on low-carbon steel and the steel with same chemical composition with addition of microalloying element niobium. While tensile testing was carried out, the thermographic measurement was tacking place simultaneously. A specific behavior of niobium microalloyed steel was noticed. Test results have shown that, in the elastic deformation region, thermoelastic effect occurs, which is more pronounced in niobium microalloyed steel. Start of plastic flow in steel which is not microalloyed with niobium begins later in comparison to the microalloyed steel, and it is conducted so that, at the point of maximum stress, deformation zone is formed within which stresses grow. In steel microalloyed with niobium after proportionality limit, comes the occurrence of the localized increase in temperature and the occurrence of Lüders band, which propagate along the sample forming a deformation zone.

  14. Fitting the flow curve of a plastically deformed silicon steel for the prediction of magnetic properties

    Energy Technology Data Exchange (ETDEWEB)

    Sablik, M.J. [Southwest Research Institute, 6220 Culebra Rd, San Antonio, TX 78238-5166 (United States)]. E-mail: msablik@swri.org; Landgraf, F.J.G. [Metallurgy and Mat. Sci. Dept., Escola Politecnica da USP, 05508-970, Sao Paulo, SP (Brazil); Magnabosco, R. [UNIFEI, Sao Bernardo de Campo, SP (Brazil); Fukuhara, M. [Instituto Nacional de Metrologia INMETRO, Duque de Caxias, RJ (Brazil); Campos, M.F. de [Instituto Nacional de Metrologia INMETRO, Duque de Caxias, RJ (Brazil); Machado, R. [Instituto Nacional de Metrologia INMETRO, Duque de Caxias, RJ (Brazil); Missell, F.P. [Universidade de Caxias do Sul, Caxias do Sul, RS (Brazil)

    2006-09-15

    We report measurements and modelling of magnetic effects due to plastic deformation in 2.2% Si steel, emphasizing new tensile deformation data. The modelling approach is to take the Ludwik law for the strain-hardening stress and use it to compute the dislocation density, which is then used in the computation of magnetic hysteresis. A nonlinear extrapolation is used across the discontinuous yield region to obtain the value of stress at the yield point that is used in fitting Ludwik's law to the mechanical data. The computed magnetic hysteresis exhibits sharp shearing of the loops at small deformation, in agreement with experimental behavior. Magnetic hysteresis loss is shown to follow a Ludwik-like dependence on the residual strain, but with a smaller Ludwik exponent than applies for the mechanical behavior.

  15. Influence of niobium on the beginning of the plastic flow of material during cold deformation.

    Science.gov (United States)

    Rešković, Stoja; Jandrlić, Ivan

    2013-01-01

    Investigations were conducted on low-carbon steel and the steel with same chemical composition with addition of microalloying element niobium. While tensile testing was carried out, the thermographic measurement was tacking place simultaneously. A specific behavior of niobium microalloyed steel was noticed. Test results have shown that, in the elastic deformation region, thermoelastic effect occurs, which is more pronounced in niobium microalloyed steel. Start of plastic flow in steel which is not microalloyed with niobium begins later in comparison to the microalloyed steel, and it is conducted so that, at the point of maximum stress, deformation zone is formed within which stresses grow. In steel microalloyed with niobium after proportionality limit, comes the occurrence of the localized increase in temperature and the occurrence of Lüders band, which propagate along the sample forming a deformation zone.

  16. Severe plastic deformation through adiabatic shear banding in Fe-C steels

    Energy Technology Data Exchange (ETDEWEB)

    Lesuer, D; Syn, C; Sherby, O

    2004-12-01

    Severe plastic deformation is observed within adiabatic shear bands in iron-carbon steels. These shear bands form under high strain rate conditions, in excess of 1000 s{sup -1}, and strains in the order 5 or greater are commonly observed. Studies on shear band formation in a ultrahigh carbon steel (1.3%C) are described in the pearlitic condition. A hardness of 11.5 GPa (4600 MPa) is obtained within the band. A mechanism is described to explain the high strength based on phase transformation to austenite from adiabatic heating resulting from severe deformation. Rapid re-transformation leads to an ultra-fine ferrite grain size containing carbon principally in the form of nanosize carbides. It is proposed that the same mechanism explains the ultrahigh strength of iron-carbon steels observed in ball-milling, ball drop tests and in severely deformed wires.

  17. Altering strength and plastic deformation behavior via alloying and laminated structure in nanocrystalline metals

    Energy Technology Data Exchange (ETDEWEB)

    Gu, C. [State Key Laboratory for Mechanical Behavior of Material, Xi' an Jiaotong University, Xi' an 710049 (China); Wang, F., E-mail: wangfei@mail.xjtu.edu.cn [State Key Laboratory for Strength and Vibration of Mechanical Structures, Xi' an Jiaotong University, Xi' an 710049 (China); Huang, P., E-mail: huangping@mail.xjtu.edu.cn [State Key Laboratory for Mechanical Behavior of Material, Xi' an Jiaotong University, Xi' an 710049 (China); Lu, T.J. [State Key Laboratory for Strength and Vibration of Mechanical Structures, Xi' an Jiaotong University, Xi' an 710049 (China); MOE Key Laboratory for Multifunctional Materials and Structures, Xi' an Jiaotong University, Xi' an 710049 (China); Xu, K.W. [State Key Laboratory for Mechanical Behavior of Material, Xi' an Jiaotong University, Xi' an 710049 (China)

    2015-07-29

    Nanoindentation and electron microscope techniques have been performed on sputtering deposited monolayered nanocrystalline CuNb and multilayered CuNb/Cu thin films. Microstructural features, hardness and surface morphologies of residual indentation have been evaluated to identify the effects of alloying and laminated structure on strength and plastic deformation behavior of nanocrystalline metals. By altering the content of Nb in CuNb alloy and adding crystalline Cu layers into CuNb alloy, the volume fraction of amorphous phase in CuNb alloy and interface structures changed dramatically, resulting in various trends that are related to hardness, indentation induced pileup and shear banding deformation. Based on the experimental results, the dominant deformation mechanisms of the CuNb and CuNb/Cu thin films with various Nb contents were proposed and extended to be discussed.

  18. Fluid inclusions and microstructures in experimentally deformed quartz single crystals

    Science.gov (United States)

    Thust, A.; Tarantola, A.; Heilbronner, R.; Stünitz, H.

    2009-04-01

    The "H2O-weakening" effect that reduces the strength of quartz dramatically (e.g. Griggs & Blacic 1965) is still not understood. For example, Kronenberg & Tullis (1984) conclude that the weakening effect is pressure dependent while Paterson (1989) infers a glide and recovery control of water. Obviously, the spatial distribution and transport of H2O are important factors (Kronenberg et al. 1986, FitzGerald et al. 1991). We have carried out experiments on milky quartz in a Griggs deformation apparatus. Cylinders (6.5 mm in diameter, 12-13 mm in length) from a milky zone of a natural quartz single crystal have been cored in orientations (1) normal to one of the prism planes and (2) 45˚ to and 45˚ to (O+orientation). At 1 GPa confining pressure, 900˚ C and 10-6s-1, the flow strength is 150 MPa for samples with orientation (1). Further experiments are needed to establish the flow strength for orientation (2). FTIR measurements on double-polished thick sections (200-500 μm) in the undeformed quartz material yield an average H2O content of approximately 100 H/106Si. The water is heterogeneously distributed in the sample. Direct measurements on fluid inclusions yield a H2O content of more than 25 000 H/106Si. Thus, the H2O in the undeformed material is predominantly present in fluid inclusions of size from tens to hundred microns. Micro-thermometric measurements at low temperature indicate the presence of different salts in the fluid inclusions. The ice melting temperature, between -6.9 and -7.4˚ C, indicate an average salinity of 10.5 wt% NaCl. After deformation the distribution of H2O is more homogeneous throughout the sample. The majority of the big inclusions have disappeared and very small inclusions of several microns to sub-micron size have formed. FTIR measurements in zones of undulatory extinction and shear bands show an average H2O content of approximately 3000 H/106Si. Moreover, the larger fluid inclusions are characterized by a higher salinity (12 wt%) due

  19. Cyclic deformation of NI/sub 3/(Al,Nb) single crystals at ambient and elevated temperatures

    Energy Technology Data Exchange (ETDEWEB)

    Bonda, N.R.

    1985-01-01

    Cyclic tests were performed on Ni/sub 3/(Al,Nb) (..gamma..' phase) single crystals by using a servo-hydraulic machine under fully reversed plastic strain control at a frequency of 0.1-0.2 Hz at room temperature, 400/sup 0/C and 700/sup 0/C. Since the monotonic behavior is orientation dependent, three orientations were studied. Asymmetry in tensile and compressive stresses was observed in the cyclic hardening curves of specimens tested at these temperatures and they were discussed with regard to the model suggested by Paider et al for monotonic behavior. The stress levels in the cyclic stress-strain curves (CSSC) at room temperature depended on orientation and cyclic history. No CSSCs were established at 400/sup 0/C and 700/sup 0/C. The deformation in cyclic tests at small plastic strain amplitudes was found to be different from that in monotonic tests in the microplastic regions in which the deformation is believed to be carried by a small density of edge dislocations. But in cyclic deformation, to and from motion of dislocations trap the edge dislocations into dipoles and therefore screw dislocations will be forced to participate in the deformation. Cracks on the surfaces of specimens tested at room temperature and 400/sup 0/C were found to be of stage I type, whereas at 700/sup 0/C, they were of stage II type.

  20. Large Deformation Mechanisms, Plasticity, and Failure of an Individual Collagen Fibril With Different Mineral Content.

    Science.gov (United States)

    Depalle, Baptiste; Qin, Zhao; Shefelbine, Sandra J; Buehler, Markus J

    2016-02-01

    Mineralized collagen fibrils are composed of tropocollagen molecules and mineral crystals derived from hydroxyapatite to form a composite material that combines optimal properties of both constituents and exhibits incredible strength and toughness. Their complex hierarchical structure allows collagen fibrils to sustain large deformation without breaking. In this study, we report a mesoscale model of a single mineralized collagen fibril using a bottom-up approach. By conserving the three-dimensional structure and the entanglement of the molecules, we were able to construct finite-size fibril models that allowed us to explore the deformation mechanisms which govern their mechanical behavior under large deformation. We investigated the tensile behavior of a single collagen fibril with various intrafibrillar mineral content and found that a mineralized collagen fibril can present up to five different deformation mechanisms to dissipate energy. These mechanisms include molecular uncoiling, molecular stretching, mineral/collagen sliding, molecular slippage, and crystal dissociation. By multiplying its sources of energy dissipation and deformation mechanisms, a collagen fibril can reach impressive strength and toughness. Adding mineral into the collagen fibril can increase its strength up to 10 times and its toughness up to 35 times. Combining crosslinks with mineral makes the fibril stiffer but more brittle. We also found that a mineralized fibril reaches its maximum toughness to density and strength to density ratios for a mineral density of around 30%. This result, in good agreement with experimental observations, attests that bone tissue is optimized mechanically to remain lightweight but maintain strength and toughness.

  1. The relation between severe plastic deformation microstructure and corrosion behavior of AZ31 magnesium alloy

    Energy Technology Data Exchange (ETDEWEB)

    Ben Hamu, G. [Department of Materials Engineering, Ben-Gurion University of the Negev, Beer-Sheva 84105 (Israel); Eliezer, D. [Department of Materials Engineering, Ben-Gurion University of the Negev, Beer-Sheva 84105 (Israel); Institute of Materials Science and Engineering, TU Clausthal (Germany)], E-mail: deliezer@bgu.ac.il; Wagner, L. [Institute of Materials Science and Engineering, TU Clausthal (Germany)

    2009-01-22

    The quest for ever, higher performance in structural applications has resulted in the outgoing development of new or improved materials with novel crystallographic textures, microstructures, and compositions. However, commercial applicability of such materials depends heavily on the development of economical and robust manufacturing methods. Due to the promise of excellent properties, such as superplasticity, high strength, good ductility, enhanced high cycle fatigue life, and good corrosion resistance, interest has grown in nanostructure bulk materials. Those materials are defined most often as materials exhibiting nanocrystalline grain structures and particle sizes below 100 nm in at least one dimension. In recent years, bulk nanostructure materials processed by methods of severe plastic deformation (SPD) such as equal channel angular extrusion (ECAE) have attracted the growing interest of specialists in materials science. The main object of this research is to compare the microstructural changing and corrosion behavior of magnesium alloy AZ31 after extrusion and severe plastic deformation by ECAE process. The ECAE process can produce intense and uniform deformation by simple shear and provides a convenient procedure for introducing an ultra fine grain size into a material. The samples were prepared by using hot extrusion methods. Hardness and AC and DC polarization tests were carried out on the extruded rods, and the microstructure was examined using optical, electron microscopy (SEM, TEM) and EDS. The results showed that the severe plastic deformation process affected both the microstructure and the corrosion behavior of AZ31 Mg alloy. These results can be explained by the effects of the process on microstructure of AZ31 Mg alloy such as grain size and dislocation density caused by the change in recrystallization behavior.

  2. Elastic stresses and plastic deformations in 'Santa Clara' tomato fruits caused by package dependent compression

    Directory of Open Access Journals (Sweden)

    PEREIRA ADRIANA VARGAS

    2000-01-01

    Full Text Available The objective of this work was to study the fruit compression behavior aiming to develop new tomato packages. Deformations caused by compression forces were observed inside packages and in individual 'Santa Clara' tomato fruit. The forces applied by a transparent acrylic lever to the fruit surface caused pericarp deformation and the flattened area was proportional to the force magnitude. The deformation was associated to the reduction in the gas volume (Vg, caused by expulsion of the air from the loculus cavity and reduction in the intercellular air volume of the pericarp. As ripening advanced, smaller fractions of the Vg reduced by the compressive force were restored after the stress was relieved. The lack of complete Vg restoration was an indication of permanent plastic deformations of the stressed cells. Vg regeneration (elastic recovery was larger in green fruits than in the red ones. The ratio between the applied force and the flattened area (flattening pressure, which depends on cell turgidity, decreased during ripening. Fruit movements associated with its depth in the container were observed during storage in a transparent glass container (495 x 355 x 220 mm. The downward movement of the fruits was larger in the top layers because these movements seem to be driven by a summation of the deformation of many fruits in all layers.

  3. Mechanism of plasticity development for ceramic dough (5). Influence of the deformability of buffer domain on plasticity; Seramikku nendo no kasakusei hatsugen mekanizumu (5). Kanshoryoiki no henkeino no kasakusei eno eikyo

    Energy Technology Data Exchange (ETDEWEB)

    Kawai, S. [Wet Forming of Ceramics Technology Research Association, Aichi (Japan); Ishida, H. [INAX Corporation, Aichi (Japan). Space Design Research Center; Shibasaki, Y; Oda, K. [National Industrial Research Institute of Nagoya, Aichi (Japan)

    1999-11-01

    Plasticity of ceramic dough is determined by the deformation of the buffer domain that consists of aggregate or gel. Effect of the deformability of each buffer domain on the plasticity of alumina dough, in presence of various additives, was investigated. Those additives were konjak, agar, curdlan and super-absorbent polymer. Moderately deformable additives such as konjak and agar worked as buffer domains, and plasticity was generated. However, soft and brittle additives such as curdlan and super-absorbent polymer could not improve plasticity because of their lower ability in generating the buffer domains. It was clarified that the deformability of buffer domain directly influences plasticity. (author)

  4. Continuum Multiscale Modeling of Finite Deformation Plasticity and Anisotropic Damage in Polycrystals

    Science.gov (United States)

    2006-09-01

    neighboring grains cannot be spa- tially resolved. 3.5. Homogenization of damage Effects from mechanisms modeled individually— elastoplasticity within each...crystal plasticity routines are available, as the damage computations are effectively uncoupled from the constitutive update of the elastoplastic response... elastoplasticity and damage : multiscale kinematics, Int. J. Solids Struct. 40 (2003) 5669–5688. [17] C. Teodosiu, F. Sidoroff, A finite theory of

  5. Micropillar compression technique applied to micron-scale mudstone elasto-plastic deformation.

    Energy Technology Data Exchange (ETDEWEB)

    Michael, Joseph Richard; Chidsey, Thomas (Utah Geological Survey, Salt Lake City, UT); Heath, Jason E.; Dewers, Thomas A.; Boyce, Brad Lee; Buchheit, Thomas Edward

    2010-12-01

    Mudstone mechanical testing is often limited by poor core recovery and sample size, preservation and preparation issues, which can lead to sampling bias, damage, and time-dependent effects. A micropillar compression technique, originally developed by Uchic et al. 2004, here is applied to elasto-plastic deformation of small volumes of mudstone, in the range of cubic microns. This study examines behavior of the Gothic shale, the basal unit of the Ismay zone of the Pennsylvanian Paradox Formation and potential shale gas play in southeastern Utah, USA. Precision manufacture of micropillars 5 microns in diameter and 10 microns in length are prepared using an ion-milling method. Characterization of samples is carried out using: dual focused ion - scanning electron beam imaging of nano-scaled pores and distribution of matrix clay and quartz, as well as pore-filling organics; laser scanning confocal (LSCM) 3D imaging of natural fractures; and gas permeability, among other techniques. Compression testing of micropillars under load control is performed using two different nanoindenter techniques. Deformation of 0.5 cm in diameter by 1 cm in length cores is carried out and visualized by a microscope loading stage and laser scanning confocal microscopy. Axisymmetric multistage compression testing and multi-stress path testing is carried out using 2.54 cm plugs. Discussion of results addresses size of representative elementary volumes applicable to continuum-scale mudstone deformation, anisotropy, and size-scale plasticity effects. Other issues include fabrication-induced damage, alignment, and influence of substrate.

  6. Plastic deformation mechanism of polycrystalline copper foil shocked with femtosecond laser

    Energy Technology Data Exchange (ETDEWEB)

    Ye, Y.X., E-mail: yeyunxia@mail.ujs.edu.cn [School of Mechanical Engineering, Jiangsu University, Zhenjiang 21203 (China); Jiangsu Provincial Key Laboratory for Science and Technology of Photon Manufacturing, Jiangsu University, Zhenjiang 212013 (China); Feng, Y.Y.; Lian, Z.C.; Hua, Y.Q. [School of Mechanical Engineering, Jiangsu University, Zhenjiang 21203 (China)

    2014-08-01

    Plastic deformation mechanism of polycrystalline copper foil shocked with femtosecond (fs) laser has been characterized through optical microscopy (OM), scanning electron microscopy (SEM) and transmission electron microscopy (TEM). Experiments of ns laser shocking copper (Cu) and fs laser shocking aluminum (Al) were also conducted for comparison. Dislocations arranged in multiple forms, profuse twins and stacking faults (SFs) coexist in the fs laser shocked copper. At small strain condition, dislocation slip is the dominant deformation mode and small amount of SFs act as complementary mechanism. With strain increasing, profuse twins and SFs form to accommodate the plastic deformation. Furthermore, new formed SFs incline to locate around the old ones because the dislocation densities there are more higher. So there is a high probability for new SFs overlapping on old ones to form twins, or connecting old ones to lengthen them, which eventually produce the phenomena that twins connect with each other or twins connect with SFs. Strain greatly influences the dislocation density. Twins and SFs are more dependent on strain rate and shock pressure. Medium stacking fault energy (SFE) of copper helps to extend partial dislocations and provides sources for forming SFs and twins.

  7. Surface severe plastic deformation of AISI 304 via conventional shot peening, severe shot peening and repeening

    Energy Technology Data Exchange (ETDEWEB)

    Unal, Okan, E-mail: unalokan78@gmail.com [Mechanical Engineering Department, Bartın University, Bartın 74100 (Turkey); Varol, Remzi [Mechanical Engineering Department, Suleyman Demirel University, Isparta 32200 (Turkey)

    2015-10-01

    Highlights: • CSP and SSP treatments transform austenite to metastable martensite structure. • Nanograin layer thickness after CSP and SSP is 8 μm and 22 μm, respectively. • Shot peening leads to carbon segregation from coarse to nano grain layer. • Repeening is an effective way to reduce surface roughness. - Abstract: Air blast conventional shot peening (CSP), severe shot peening (SSP) and repeening (RP) as a severe plastic deformation applications on AISI 304 austenitic stainless steel is addressed. Shot peened specimens are investigated based on optical, FESEM and digital microscope. The investigations present the austenite transformation to metastable martensite via mechanical twinning due to plastic deformation with high strain rates. It is found that SSP induces thicker nanograin layer with compared to CSP. In XRD studies, the austenite peaks broaden by means of severe shot peening and FWHM increase reveals the grain size reduction below 25 nm regimes on the surface. In EDAX line analysis of CSP specimen, carbon content increase has been detected from deformed layer through the nanocrystalline layer then the content reduces. The carbon segregation takes place due to the energy level distinction between dislocations and Fe−C bonds. 3d contour digital microscope studies and roughness investigations reveal that SSP has deleterious side effect on the surface roughness and surface flatness. However, RP is an effective way to reduce the surface roughness to reasonable values.

  8. Correlation between deformation bleaching and mechanoluminescence in coloured alkali halide crystals

    Indian Academy of Sciences (India)

    B P Chandra; M Ramrakhiani; P Sahu; A M Rastogi

    2000-02-01

    The present paper reports the correlation between deformation bleaching of coloration and mechanoluminescence (ML) in coloured alkali halide crystals. When the -centre electrons captured by moving dislocations are picked up by holes, deep traps and other compatible traps, then deformation bleaching occurs. At the same time, radiative recombination of dislocation captured electrons with the holes gives rise to the mechanoluminescence. Expressions are derived for the strain dependence of the density of colour centres in deformed crystals and also for the number of colour centres bleached. So far as strain, temperature, density of colour centres, a and volume dependence are concerned, there exists a correlation between the deformation bleaching and ML in coloured alkali halide crystals. From the strain dependence of the density of colour centres in deformed crystals, the value of coefficient of deformation bleaching is determined and it is found to be 1.93 and 2.00 for KCl and KBr crystals, respectively. The value of $(D + \\mathcal{X})$ is determined from the strain dependence of the ML intensity and it is found to be 2.6 and 3.7 for KCl and KBr crystals, respectively. This gives the value of coefficient of deformation generated compatible traps $\\mathcal{X}$ to be 0.67 and 1.7 for KCl and KBr crystals, respectively.

  9. Influence of Plastic Deformation on Low Temperature Surface Hardening of Austenitic and Precipitation Hardening Stainless Steels by Gaseous Nitriding

    DEFF Research Database (Denmark)

    Bottoli, Federico; Winther, Grethe; Christiansen, Thomas Lundin

    2015-01-01

    This article addresses an investigation of the influence of plastic deformation on low temperature surface hardening by gaseous nitriding of three commercial austenitic stainless steels: AISI 304, EN 1.4369 and Sandvik Nanoflex® with various degrees of austenite stability. The materials were...... plastically deformed to different equivalent strains by uniaxial tension. Gaseous nitriding of the strained material was performed in ammonia gas at atmospheric pressure at 703 K (430 °C) and 693 K (420 °C) depending on the material. Microstructural characterization of the as-deformed states and the nitrided...

  10. Effects of vitamin E blending on plastic deformation mechanisms of highly crosslinked ultrahigh molecular weight polyethylene (HXL-UHMWPE) in total hip arthroplasty.

    Science.gov (United States)

    Takahashi, Yasuhito; Yamamoto, Kengo; Pezzotti, Giuseppe

    2015-03-01

    The molecular mobility and crystalline texture development in highly crosslinked ultrahigh molecular weight polyethylene (HXL-UHMWPE) blended with antioxidant vitamin E (VE, dl-α-tocopherol) were studied via uniaxial compression at room temperature by means of confocal/polarized Raman spectroscopy. The results were compared to morphological analyses under the same compression conditions performed on HXL-UHMWPE prepared in exactly the same way but blending VE into the polyethylene resin (VE-free HXL-UHMWPE). These comparative analyses allow us to evaluate the physical role of VE in morphological alterations of HXL-UHMWPE induced by compression deformation, which can greatly affect its micromechanical behavior. Molecular rearrangement and phase transitions in crystalline and non-crystalline phase, i.e. amorphous and intermediate (third) phase, were found to be part of a reconstruction process after plastic deformation in the samples. Although VE-blended HXL-UHMWPE exhibited more pronounced molecular mobility, as evidenced by its significant deformation-induced texturing, crystallinity change was totally inhibited by the presence of VE during deformation. On the other hand, amorphous-to-intermediate phase transition was confirmed. VE-free HXL-UHMWPE also presented significant crystallization after deformation, but its surface texture evolution occurred to a much lesser extent. This study suggests that the addition of VE induced earlier activation of compression deformation modes in crystalline and non-crystalline phases (e.g. chain slip, interlamellar shear and rotation) due to an increase in polyethylene chain mobility.

  11. Material characterization and finite element modelling of cyclic plasticity behavior for 304 stainless steel using a crystal plasticity model

    OpenAIRE

    Lu, Jiawa; Sun, Wei; Becker, Adib A.

    2016-01-01

    Low cycle fatigue tests were carried out for a 304 stainless steel at room temperature. A series of experimental characterisations, including SEM, TEM, and XRD were conducted for the 304 stainless steel to facilitate the understanding of the mechanical responses and microstructural behaviour of the material under cyclic loading including nanostructure, crystal structure and the fractured surface. The crystal plasticity finite element method (CPFEM) is a powerful tool for studying the microstr...

  12. Finite element analysis of planar twist channel angular extrusion (PTCAE) as a novel severe plastic deformation method

    Energy Technology Data Exchange (ETDEWEB)

    Shokuhfar, Ali; Shamsborhan, Mahmoud [K. N. Toosi University of Technology, Tehran (Iran, Islamic Republic of)

    2014-05-15

    A new severe plastic deformation (SPD) method based on equal channel angular pressing (ECAP) is introduced for producing ultrafine grains in bulk alloys, entitled as 'Planar twist channel angular extrusion (PTCAE)'. In PTCAE method, there is additional angle, α, (plus φ and ψ angles in ECAP method) which represents angle associated with the lateral reversal arc of curvature in deformation zone. Three dimensional finite element method (FEM) simulations of both ECAP and PTCAE processes were performed in order to investigate the plastic deformation state of processed samples and, moreover, the effect of different die geometry (in terms of variation of planar twist angle) on plastic strain distribution and magnitude. Results revealed that PTCAE process related with ECAP process can impose higher strain values in different shear planes simultaneously in one deformation zone. Therefore, PTCAE can produce UFG or nanostructured materials better than ECAP method which has simpler design and significantly higher efficiency compared with other new SPD processes.

  13. Wireless Measurement of Elastic and Plastic Deformation by a Metamaterial-Based Sensor

    Science.gov (United States)

    Ozbey, Burak; Demir, Hilmi Volkan; Kurc, Ozgur; Erturk, Vakur B.; Altintas, Ayhan

    2014-01-01

    We report remote strain and displacement measurement during elastic and plastic deformation using a metamaterial-based wireless and passive sensor. The sensor is made of a comb-like nested split ring resonator (NSRR) probe operating in the near-field of an antenna, which functions as both the transmitter and the receiver. The NSRR probe is fixed on a standard steel reinforcing bar (rebar), and its frequency response is monitored telemetrically by a network analyzer connected to the antenna across the whole stress-strain curve. This wireless measurement includes both the elastic and plastic region deformation together for the first time, where wired technologies, like strain gauges, typically fail to capture. The experiments are further repeated in the presence of a concrete block between the antenna and the probe, and it is shown that the sensing system is capable of functioning through the concrete. The comparison of the wireless sensor measurement with those undertaken using strain gauges and extensometers reveals that the sensor is able to measure both the average strain and the relative displacement on the rebar as a result of the applied force in a considerably accurate way. The performance of the sensor is tested for different types of misalignments that can possibly occur due to the acting force. These results indicate that the metamaterial-based sensor holds great promise for its accurate, robust and wireless measurement of the elastic and plastic deformation of a rebar, providing beneficial information for remote structural health monitoring and post-earthquake damage assessment. PMID:25333292

  14. Plastic deformation of FeSi at high pressures: implications for planetary cores

    Science.gov (United States)

    Kupenko, Ilya; Merkel, Sébastien; Achorner, Melissa; Plückthun, Christian; Liermann, Hanns-Peter; Sanchez-Valle, Carmen

    2017-04-01

    The cores of terrestrial planets is mostly comprised of a Fe-Ni alloy, but it should additionally contain some light element(s) in order to explain the observed core density. Silicon has long been considered as a likely candidate because of geochemical and cosmochemical arguments: the Mg/Si and Fe/Si ratios of the Earth does not match those of the chondrites. Since silicon preferentially partition into iron-nickel metal, having 'missing' silicon in the core would solve this problem. Moreover, the evidence of present (e.g. Mercury) or ancient (e.g. Mars) magnetic fields on the terrestrial planets is a good indicator of (at least partially) liquid cores. The estimated temperature profiles of these planets, however, lay below iron melting curve. The addition of light elements in their metal cores could allow reducing their core-alloy melting temperature and, hence, the generation of a magnetic field. Although the effect of light elements on the stability and elasticity of Fe-Ni alloys has been widely investigated, their effect on the plasticity of core materials remains largely unknown. Yet, this information is crucial for understanding how planetary cores deform. Here we investigate the plastic deformation of ɛ-FeSi up to 50 GPa at room temperature employing a technique of radial x-ray diffraction in diamond anvil cells. Stoichiometric FeSi endmember is a good first-order approximation of the Fe-FeSi system and a good starting material to develop new experimental perspectives. In this work, we focused on the low-pressure polymorph of FeSi that would be the stable phase in the cores of small terrestrial planets. We will present the analysis of measured data and discuss their potential application to constrain plastic deformation in planetary cores.

  15. Wireless Measurement of Elastic and Plastic Deformation by a Metamaterial-Based Sensor

    Directory of Open Access Journals (Sweden)

    Burak Ozbey

    2014-10-01

    Full Text Available We report remote strain and displacement measurement during elastic and plastic deformation using a metamaterial-based wireless and passive sensor. The sensor is made of a comb-like nested split ring resonator (NSRR probe operating in the near-field of an antenna, which functions as both the transmitter and the receiver. The NSRR probe is fixed on a standard steel reinforcing bar (rebar, and its frequency response is monitored telemetrically by a network analyzer connected to the antenna across the whole stress-strain curve. This wireless measurement includes both the elastic and plastic region deformation together for the first time, where wired technologies, like strain gauges, typically fail to capture. The experiments are further repeated in the presence of a concrete block between the antenna and the probe, and it is shown that the sensing system is capable of functioning through the concrete. The comparison of the wireless sensor measurement with those undertaken using strain gauges and extensometers reveals that the sensor is able to measure both the average strain and the relative displacement on the rebar as a result of the applied force in a considerably accurate way. The performance of the sensor is tested for different types of misalignments that can possibly occur due to the acting force. These results indicate that the metamaterial-based sensor holds great promise for its accurate, robust and wireless measurement of the elastic and plastic deformation of a rebar, providing beneficial information for remote structural health monitoring and post-earthquake damage assessment.

  16. Effect of plastic deformation on the acoustoelastic response of some materials

    Science.gov (United States)

    Daami, T.; Touratier, M.; Castex, L.

    1987-12-01

    Acoustoelastic birefringence is measured with the acoustic polarimeter by transmitting ultrasonic shear waves at two perpendicular polarizations through the thickness of several uniaxial test specimens. The results are available for the following materials: SAE 1010 and SAE 4118 steel, pure titanium, 2024 aluminum and 60-40 brass, but are only presented here for SAE 4118 steel and pure titanium. The uniaxial test specimens have been subjected to plastic deformation followed by complete unloading. It is shown that the assumption that the plastic flow leading to the residual-stress state does not change the acoustic response of the material, does not hold for all materials and that further characterization development is required for general quantitative residual-stress determination.

  17. Angular distribution of positrons in coherent pair production in deformed crystals

    CERN Document Server

    Parazian, V V

    2008-01-01

    We investigate the angular distribution of positrons in the coherent process electron-positron pair creation process by high-energy photons in a periodically deformed single crystal with a complex base. The formula for the corresponding differential cross-section is derived for an arbitrary deformation field. The case is considered in detail when the photon enters into the crystal at small angles with respect to a crystallographic axis. The results of the numerical calculations are presented for ${\\mathrm{SiO}}_{2}$ single crystal and Moliere parameterization of the screened atomic potentials in the case of the deformation field generated by the acoustic wave of S -type.

  18. Angular distribution of positrons in coherent pair production in deformed crystals.

    Science.gov (United States)

    Parazian, V V

    2009-05-01

    We investigate the angular distribution of positrons in the coherent process electron-positron pair creation process by high-energy photons in a periodically deformed single crystal with a complex base. The formula for the corresponding differential cross section is derived for an arbitrary deformation field. The case is considered in detail when the photon enters into the crystal at small angles with respect to a crystallographic axis. The results of the numerical calculations are presented for SiO(2) and diamond single crystals and Moliere parameterization of the screened atomic potentials in the case of the deformation field generated by an acoustic wave of S-type.

  19. Modelling plastic deformation of metals over a wide range of strain rates using irreversible thermodynamics

    Energy Technology Data Exchange (ETDEWEB)

    Huang Mingxin; Rivera-Diaz-del-Castillo, Pedro E J; Zwaag, Sybrand van der [Faculty of Aerospace Engineering, Delft University of Technology, Kluyverweg 1, 2629 HS, Delft (Netherlands); Bouaziz, Olivier, E-mail: mingxin.huang@arcelormittal.com [ArcelorMittal Maizieres, Research and Development, Voie Romaine-BP30320, 57283 Maizieres-les-Metz Cedex (France)

    2009-07-15

    Based on the theory of irreversible thermodynamics, the present work proposes a dislocation-based model to describe the plastic deformation of FCC metals over wide ranges of strain rates. The stress-strain behaviour and the evolution of the average dislocation density are derived. It is found that there is a transitional strain rate ({approx} 10{sup 4} s{sup -1}) over which the phonon drag effects appear, resulting in a significant increase in the flow stress and the average dislocation density. The model is applied to pure Cu deformed at room temperature and at strain rates ranging from 10{sup -5} to 10{sup 6} s{sup -1} showing good agreement with experimental results.

  20. Microstructure evolution of a multiphase superalloy processed by severe plastic deformation

    Science.gov (United States)

    Sauvage, Xavier; Mukhtarov, Shamil

    2014-08-01

    This paper presents an overview and some original results about the microstructure evolution of an Ultra Fine Grained (UFG) nickel-iron based alloy INCONEL 718 processed by Severe Plastic Deformation (SPD). The ultrafine grain structure of this alloy that contains a high density of γ" and γ' precipitates was characterized by Scanning Transmission Electron Microscopy (STEM). We propose a comparison between two SPD processes, High Pressure Torsion (HPT) and Multiple Forging (MF). The grain refinement is much more pronounced by HPT but intermetallic particles are partly dissolved during SPD. The UFG structure after MF is obviously very different and exhibits a much better thermal stability especially because second phase particles do not reprecipitate during post-deformation annealing.

  1. Plastic deformation mechanisms in polyimide resins and their semi-interpenetrating networks

    Science.gov (United States)

    Jang, Bor Z.

    1990-01-01

    High-performance thermoset resins and composites are critical to the future growth of space, aircraft, and defense industries in the USA. However, the processing-structure-property relationships in these materials remain poorly understood. In the present ASEE/NASA Summer Research Program, the plastic deformation modes and toughening mechanisms in single-phase and multiphase thermoset resins were investigated. Both thermoplastic and thermoset polyimide resins and their interpenetrating networks (IPNs and semi-IPNs) were included. The fundamental tendency to undergo strain localization (crazing and shear banding) as opposed to a more diffuse (or homogeneous) deformation in these polymers were evaluated. Other possible toughening mechanisms in multiphase thermoset resins were also examined. The topological features of network chain configuration/conformation and the multiplicity of phase morphology in INPs and semi-IPNs provide unprecedented opportunities for studying the toughening mechanisms in multiphase thermoset polymers and their fiber composites.

  2. ELASTO-PLASTIC DEFORMATION OF COMPOSITE POWDERS WITH LAYERED CARBON AND CARBIDE-FORMING ELEMENT COATING

    Directory of Open Access Journals (Sweden)

    V. Kovalevsky

    2012-01-01

    Full Text Available Coating structure formation under magnetron spraying of titanium and carbon cathodes and combined cathodes, namely cobalt (EP 131 – nickel, tungsten – carbon have been investigated under conditions of carbide separate synthesis within the temperature range of 650–1200 °C. Usage of cobalt and nickel particles as matrix material leads to their rapid thermal expansion under heating during sintering process in the dilatometer. Subsequent plastic deformation of sintered samples provides obtaining a composite powder material that is a composite with framing structure of cobalt, titanium and tungsten carbides in the coatings.

  3. Nanostructures in a ferritic and an oxide dispersion strengthened steel induced by dynamic plastic deformation

    DEFF Research Database (Denmark)

    Zhang, Zhenbo

    fission and fusion reactors. In this study, two candidate steels for nuclear reactors, namely a ferritic/martensitic steel (modified 9Cr-1Mo steel) and an oxide dispersion strengthened (ODS) ferritic steel (PM2000), were nanostructured by dynamic plastic deformation (DPD). The resulting microstructure...... place, when both steels after DPD are annealed. Both oriented nucleation and oriented growth of oriented lamellae are demonstrated to account for such an orientation dependence. The underlying mechanisms are discussed, including the differences in stored energy, structural variation, and recovery...

  4. On the effectiveness of surface severe plastic deformation by shot peening at cryogenic temperature

    Science.gov (United States)

    Novelli, M.; Fundenberger, J.-J.; Bocher, P.; Grosdidier, T.

    2016-12-01

    The effect of cryogenic temperature (CT) on the graded microstructures obtained by severe shot peening using surface mechanical attrition treatment (SMAT) was investigated for two austenitic steels that used different mechanisms for assisting plastic deformation. For the metastable 304L steel, the depth of the hardened region increases because CT promotes the formation of strain induced martensite. Comparatively, for the 310S steel that remained austenitic, the size of the subsurface affected region decreases because of the improved strength of the material at CT but the fine twinned nanostructures results in significant top surface hardening.

  5. Martensitic transformation in nanostructured TiNi shape memory alloy formed via severe plastic deformation

    Energy Technology Data Exchange (ETDEWEB)

    Tsuchiya, K. [Department of Production Systems Engineering, Toyohashi University of Technology (Japan)]. E-mail: tsuchiya@pse.tut.ac.jp; Inuzuka, M. [Department of Production Systems Engineering, Toyohashi University of Technology (Japan); Tomus, D. [Department of Production Systems Engineering, Toyohashi University of Technology (Japan); Hosokawa, A. [Department of Production Systems Engineering, Toyohashi University of Technology (Japan); Nakayama, H. [Department of Mechanical Engineering, University of Washington (United States); Morii, K. [Research and Development Laboratory, Daido Steel, Co., Ltd. (Japan); Todaka, Y. [Department of Production Systems Engineering, Toyohashi University of Technology (Japan); Umemoto, M. [Department of Production Systems Engineering, Toyohashi University of Technology (Japan)

    2006-11-25

    Martensitic transformation and mechanical behavior was investigated on TiNi shape memory alloy subjected to severe plastic deformation by cold rolling. Transmission electron microscopy revealed the sample to be a mixture of nanocrystalline and amorphous material after 40% cold rolling. Diffrential scaning calorimetry measurements and X-ray diffractometry suggested that the martensitic transformation was suppressed when the thickness reduction was over 25%. The pseudoelastic stress-strain curves of nanocrystalline/amorphous TiNi are characterized by the absence of a stress-plateau and by small hysteresis.

  6. High-rate Plastic Deformation of Nanocrystalline Tantalum to Large Strains: Molecular Dynamics Simulation

    Energy Technology Data Exchange (ETDEWEB)

    Rudd, R E

    2009-02-05

    Recent advances in the ability to generate extremes of pressure and temperature in dynamic experiments and to probe the response of materials has motivated the need for special materials optimized for those conditions as well as a need for a much deeper understanding of the behavior of materials subjected to high pressure and/or temperature. Of particular importance is the understanding of rate effects at the extremely high rates encountered in those experiments, especially with the next generation of laser drives such as at the National Ignition Facility. Here we use large-scale molecular dynamics (MD) simulations of the high-rate deformation of nanocrystalline tantalum to investigate the processes associated with plastic deformation for strains up to 100%. We use initial atomic configurations that were produced through simulations of solidification in the work of Streitz et al [Phys. Rev. Lett. 96, (2006) 225701]. These 3D polycrystalline systems have typical grain sizes of 10-20 nm. We also study a rapidly quenched liquid (amorphous solid) tantalum. We apply a constant volume (isochoric), constant temperature (isothermal) shear deformation over a range of strain rates, and compute the resulting stress-strain curves to large strains for both uniaxial and biaxial compression. We study the rate dependence and identify plastic deformation mechanisms. The identification of the mechanisms is facilitated through a novel technique that computes the local grain orientation, returning it as a quaternion for each atom. This analysis technique is robust and fast, and has been used to compute the orientations on the fly during our parallel MD simulations on supercomputers. We find both dislocation and twinning processes are important, and they interact in the weak strain hardening in these extremely fine-grained microstructures.

  7. Engineering of surface microstructure transformations using high rate severe plastic deformation in machining

    Science.gov (United States)

    Abolghasem, Sepideh

    Engineering surface structures especially at the nanometer length-scales can enable fundamentally new multifunctional property combinations, including tunable physical, mechanical, electrochemical and biological responses. Emerging manufacturing paradigms involving Severe Plastic Deformation (SPD), for manipulating final microstructure of the surfaces are unfortunately limited by poorly elucidated process-structure-performance linkages, which are characterized by three central variables of plasticity: strain, strain-rate and temperature that determine the resulting Ultrafine Grained (UFG) microstructure. The challenge of UFG surface engineering, design and manufacturing can be overcome if and only if the mappings between the central variables and the final microstructure are delineated. The objective of the proposed document is to first envision a phase-space, whose axes are parameterized in terms of the central variables of SPD. Then, each point can correspond to a unique microstructure, characterized by its location on this map. If the parametrization and the population of the datasets are accurately defined, then the mapping is bijective where: i) realizing microstructure designs can be reduced to simply one of tuning process parameters falling within the map s desired subspaces. And, inversely, ii) microstructure prediction is directly possible by merely relating the measured/calculated thermomechanics at each point in the deformation zone to the corresponding spot on the maps. However, the analytic approach to establish this map first requires extensive datasets, where the microstructures are accurately measured for a known set of strain, strain-rate and temperature of applied SPD. Although such datasets do not exist, even after the empirical data is accumulated, there is a lack of formalized statistical outlines in relating microstructural characteristic to the process parameters in order to build the mapping framework. Addressing these gaps has led to this

  8. A deformation mechanism map for polycrystals modeled using strain gradient plasticity and interfaces that slide and separate

    DEFF Research Database (Denmark)

    Dahlberg, Carl F.O.; Faleskog, Jonas; Niordson, Christian Frithiof

    2013-01-01

    Small scale strain gradient plasticity is coupled with a model of grain boundaries that take into account the energetic state of a plastically strained boundary and the slip and separation between neighboring grains. A microstructure of hexagonal grains is investigated using a plane strain finite...... element model. The results show that three different microstructural deformation mechanisms can be identified. The standard plasticity case in which the material behaves as expected from coarse grained experiments, the nonlocal plasticity region where size of the microstructure compared to some intrinsic...

  9. Strain gradient crystal plasticity: A continuum mechanics approach to modeling micro-structural evolution

    DEFF Research Database (Denmark)

    El-Naaman, Salim Abdallah; Nielsen, Kim Lau; Niordson, Christian Frithiof

    2015-01-01

    In agreement with dislocation theory, recent experiments show, both quantitatively and qualitatively, how geometrically necessary dislocations (GNDs) distribute in dislocation wall and cell structures. Hence, GND density fields are highly localized with large gradients and discontinuities occurring...... between the cells. This behavior is not typical for strain gradient crystal plasticity models. The present study employs a higher order extension of conventional crystal plasticity theory in which the viscous slip rate is influenced by the gradients of GND densities through a back stress...

  10. Strain gradient crystal plasticity: A continuum mechanics approach to modeling micro-structural evolution

    DEFF Research Database (Denmark)

    El-Naaman, Salim Abdallah; Nielsen, Kim Lau; Niordson, Christian Frithiof

    2015-01-01

    In agreement with dislocation theory, recent experiments show, both quantitatively and qualitatively, how geometrically necessary dislocations (GNDs) distribute in dislocation wall and cell structures. Hence, GND density fields are highly localized with large gradients and discontinuities occurring...... between the cells. This behavior is not typical for strain gradient crystal plasticity models. The present study employs a higher order extension of conventional crystal plasticity theory in which the viscous slip rate is influenced by the gradients of GND densities through a back stress...

  11. An incremental flow theory for crystal plasticity incorporating strain gradient effects

    DEFF Research Database (Denmark)

    Nellemann, Christopher; Niordson, Christian Frithiof; Nielsen, Kim Lau

    2017-01-01

    The present work investigates a new approach to formulating a rate-independent strain gradient theory for crystal plasticity. The approach takes as offset recent discussions published in the literature for isotropic plasticity, and a key ingredient of the present work is the manner in which a gra...

  12. Single Crystal Piezoelectric Deformable Mirrors with High Actuator Density and Large Stroke Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Single crystal piezoelectric deformable mirrors with high actuator density, fine pitch, large stroke and no floating wires will be developed for future NASA science...

  13. Effect Of Severe Plastic Deformation On Microstructure Evolution Of Pure Aluminium

    Directory of Open Access Journals (Sweden)

    Leszczyńska-Madej B.

    2015-06-01

    Full Text Available Processes of severe plastic deformation (SPD are defined as a group of metalworking techniques in which a very large plastic strain is imposed on a bulk material in order to make an ultra-fine grained metal. The present study attempts to apply Equal-Channel Angular Pressing (ECAP, Hydrostatic Extrusion (HE and combination of ECAP and HE to 99.5% pure aluminium. ECAP process was realized at room temperature for 16 passes through route Bc using a die having an angle of 90°. Hydrostatic extrusion process was performed with cumulative strain of 2.68 to attain finally wire diameter of d = 3 mm. The microstructure of the samples was investigated by means of transmission and scanning electron microscopy. Additionally, the microhardness was measured and statistical analysis of the grains and subgrains was performed. Based on Kikuchi diffraction patterns misorientation was determined. The measured grain/subgrain size show, that regardless the mode of deformation process (ECAP, HE or combination of ECAP and HE processes, grain size is maintained at a similar level – equal to d = 0.55-0.59 μm. A combination of ECAP and HE has achieved better properties than either single process and show to be a promising procedure for manufacturing bulk UFG aluminium.

  14. Formation of nanocrystalline layers by surface severe plastic deformation and pulsed plasma electrolytic carburizing.

    Science.gov (United States)

    Aliofkhazraei, M; Rouhaghdam, A Sabour

    2010-07-01

    Surfaces of various kinds of metallic materials spheres were treated by nanocrystalline surface severe plastic deformation and then pulsed nanocrystalline plasma electrolytic carburizing to study nanocrystalline substrate effect on formation and nano-hardness of hard nanocrystalline layer. The surface layers of the metallic materials developed by the nanocrystalline surface severe plastic deformation were characterized by means of high resolution scanning electron microscope. Nearly equiaxed nanocrystals with grain sizes ranging from 15 to 90 nm were observed in the near surface regions of all metallic materials, which are low carbon steel and commercially pure titanium. The effect of substrate nanocrystallization on growth kinetics and hardness of formed nanocrystalline carbide layer was studied with the means of figure analysis and nanohardness tests. Figure analysis show the length to diameter ratio and distribution curve of nanocrystals and it has been found that the achieved properties of hard layer (growth rate, nano-hardness, nanostructure...) are related to these factors. It was also clarified that these techniques and surface nanocrystallization can be easily achieved in most of metallic materials. Results indicate that the resultant hardened carburized layers exhibited excellent hardness profile. Investigation of the layer characteristics showed strong dependence followed from the treatment experimental parameters as well as the shape of nanocrystals.

  15. Influence of severe plastic deformation on the structure and properties of ultrahigh carbon steel wire

    Energy Technology Data Exchange (ETDEWEB)

    Leseur, D R; Sherby, O D; Syn, C K

    1999-07-01

    Ultrahigh-carbon steel wire can achieve very high strength after severe plastic deformation, because of the fine, stable substructures produce. Tensile strengths approaching 6000 MPa are predicted for UHCS containing 1.8%C. This paper discusses the microstructural evolution during drawing of UHCS wire, the resulting strength produced and the factors influencing fracture. Drawing produces considerable alignment of the pearlite plates. Dislocation cells develop within the ferrite plates and, with increasing strain, the size normal to the axis ({lambda}) decreases. These dislocation cells resist dynamic recovery during wire drawing and thus extremely fine substructures can be developed ({lambda} < 10 nm). Increasing the carbon content reduces the mean free ferrite path in the as-patented wire and the cell size developed during drawing. For UHCS, the strength varies as {lambda}{sup {minus}5}. Fracture of these steels was found to be a function of carbide size and composition. The influence of processing and composition on achieving high strength in these wires during severe plastic deformation is discussed.

  16. Development of Bake Hardening Effect by Plastic Deformation and Annealing Conditions

    Directory of Open Access Journals (Sweden)

    Kvačkaj, T.

    2006-01-01

    Full Text Available The paper deals with the classification of steel sheets for automotives industry on the basis of strength and structural characteristics. Experimental works were aimed to obtain the best possible strengthening parameters as well as work hardening and solid solution ferrite hardening, which are the result of thermal activation of interstitial carbon atoms during paint-baking of auto body. Hardening process coming from interstitial atoms is realized as two-step process. The first step is BH (bake hardening effect achieved by interaction of interstitial atoms with dislocations. The Cottrels atmosphere is obtained. The second step of BH effect is to produced the hardening from precipitation of the carbon atoms in e-carbides, or formation of Fe32C4 carbides. WH (work hardening effect is obtained as dislocation hardening from plastic deformations during sheet deep drawing. Experimental works were aimed at as to achieve such plastic material properties after cold rolling, annealing and skin-pass rolling, which would be able to classify the material ZStE220BH into the drawing categories at the level of DQ – DDQ. As resulting from the experimental results, the optimal treatment conditions for the maximal sum (WH+BH = 86 MPa are as follows: total cold rolling deformation ecold = 65 %, annealing temperature Tanneal. = 700 °C.

  17. Modeling plastic deformation of post-irradiated copper micro-pillars

    Energy Technology Data Exchange (ETDEWEB)

    Crosby, Tamer, E-mail: tcrosby@ucla.edu; Po, Giacomo, E-mail: gpo@ucla.edu; Ghoniem, Nasr M., E-mail: ghoniem@ucla.edu

    2014-12-15

    We present here an application of a fundamentally new theoretical framework for description of the simultaneous evolution of radiation damage and plasticity that can describe both in situ and ex situ deformation of structural materials [1]. The theory is based on the variational principle of maximum entropy production rate; with constraints on dislocation climb motion that are imposed by point defect fluxes as a result of irradiation. The developed theory is implemented in a new computational code that facilitates the simulation of irradiated and unirradiated materials alike in a consistent fashion [2]. Discrete Dislocation Dynamics (DDD) computer simulations are presented here for irradiated fcc metals that address the phenomenon of dislocation channel formation in post-irradiated copper. The focus of the simulations is on the role of micro-pillar boundaries and the statistics of dislocation pinning by stacking-fault tetrahedra (SFTs) on the onset of dislocation channel and incipient surface crack formation. The simulations show that the spatial heterogeneity in the distribution of SFTs naturally leads to localized plastic deformation and incipient surface fracture of micro-pillars.

  18. The development of strain anisotropy during plastic deformation of an aluminium polycrystal

    Energy Technology Data Exchange (ETDEWEB)

    Korsunsky, A.M. [Oxford Univ. (United Kingdom). Dept. of Engineering Science; Daymond, M.R. [ISIS Facility, Rutherford Appleton Lab., Chilton, Oxon (United Kingdom); Wells, K.E. [Dept. of Mechanical, Materials and Mfg. Engineering, Univ. of Newcastle (United Kingdom)

    2000-07-01

    To measure internal strains in an Al MMC, time-of-flight (TOF) neutron diffraction was used on the ENGIN instrument at ISIS, RAL, in Oxfordshire, and a monochromated X-ray beam was employed on the BM16 beamline at the ESRF in Grenoble. The development of intergranular stresses between groups of grains possessing certain crystallographic orientations was studied using diffraction of penetrating radiation. Due to aluminium's highly isotropic elastic modulus, the variation of measured strains in the alloy matrix with orientation can be attributed to the anisotropy of the crystal yield surface and plastic flow parameters. A simple illustrative model is presented which explains the observed correlation between the amount of plastic strain (PS) and the measured anisotropy strain (AS) values. In particular, the model explains why a linear relationship is observed between AS and PS for low strain values, and how saturation of AS sets in at higher imposed PS levels. (orig.)

  19. Variation of low temperature internal friction of microplastic deformation of high purity molybdenum single crystals

    Energy Technology Data Exchange (ETDEWEB)

    Pal-Val, P.P. (AN Ukrainskoj SSR, Kharkov. Fiziko-Tekhnicheskij Inst. Nizkikh Temperatur); Kaufmann, H.J. (Akademie der Wissenschaften der DDR, Berlin)

    1984-08-01

    Amplitude and temperature spectra of ultrasound absorption in weakly deformed high purity molybdenum single crystals of different orientations were measured. The results were discussed in terms of parameter changes related to quasiparticle or dislocation oscillations, respectively, dislocation point defect interactions as well as defect generation at microplastic deformation.

  20. Micropillar Compression Technique Applied to Micron-Scale Mudstone Elasto-Plastic Deformation

    Science.gov (United States)

    Dewers, T. A.; Boyce, B.; Buchheit, T.; Heath, J. E.; Chidsey, T.; Michael, J.

    2010-12-01

    Mudstone mechanical testing is often limited by poor core recovery and sample size, preservation and preparation issues, which can lead to sampling bias, damage, and time-dependent effects. A micropillar compression technique, originally developed by Uchic et al. 2004, here is applied to elasto-plastic deformation of small volumes of mudstone, in the range of cubic microns. This study examines behavior of the Gothic shale, the basal unit of the Ismay zone of the Pennsylvanian Paradox Formation and potential shale gas play in southeastern Utah, USA. Precision manufacture of micropillars 5 microns in diameter and 10 microns in length are prepared using an ion-milling method. Characterization of samples is carried out using: dual focused ion - scanning electron beam imaging of nano-scaled pores and distribution of matrix clay and quartz, as well as pore-filling organics; laser scanning confocal (LSCM) 3D imaging of natural fractures; and gas permeability, among other techniques. Compression testing of micropillars under load control is performed using two different nanoindenter techniques. Deformation of 0.5 cm in diameter by 1 cm in length cores is carried out and visualized by a microscope loading stage and laser scanning confocal microscopy. Axisymmetric multistage compression testing and multi-stress path testing is carried out using 2.54 cm plugs. Discussion of results addresses size of representative elementary volumes applicable to continuum-scale mudstone deformation, anisotropy, and size-scale plasticity effects. Other issues include fabrication-induced damage, alignment, and influence of substrate. This work is funded by the US Department of Energy, Office of Basic Energy Sciences. Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States Department of Energy’s National Nuclear Security Administration under contract DE-AC04-94AL85000.

  1. Multiscale Modeling of Structurally-Graded Materials Using Discrete Dislocation Plasticity Models and Continuum Crystal Plasticity Models

    Science.gov (United States)

    Saether, Erik; Hochhalter, Jacob D.; Glaessgen, Edward H.

    2012-01-01

    A multiscale modeling methodology that combines the predictive capability of discrete dislocation plasticity and the computational efficiency of continuum crystal plasticity is developed. Single crystal configurations of different grain sizes modeled with periodic boundary conditions are analyzed using discrete dislocation plasticity (DD) to obtain grain size-dependent stress-strain predictions. These relationships are mapped into crystal plasticity parameters to develop a multiscale DD/CP model for continuum level simulations. A polycrystal model of a structurally-graded microstructure is developed, analyzed and used as a benchmark for comparison between the multiscale DD/CP model and the DD predictions. The multiscale DD/CP model follows the DD predictions closely up to an initial peak stress and then follows a strain hardening path that is parallel but somewhat offset from the DD predictions. The difference is believed to be from a combination of the strain rate in the DD simulation and the inability of the DD/CP model to represent non-monotonic material response.

  2. Effect of grain refinement by severe plastic deformation on the next-neighbor misorientation distribution

    Energy Technology Data Exchange (ETDEWEB)

    Toth, L.S., E-mail: toth@univ-metz.fr [Laboratoire d' Etude des Microstructures et de Mecanique des Materiaux (LEM3), Universite Paul Verlaine - Metz/CNRS, 57045 Metz (France); Beausir, B. [Institut fuer Strukturphysik, Technische Universitaet Dresden, D-01062 Dresden (Germany); Gu, C.F. [Department of Materials Engineering, Monash University, Clayton, VIC 3800 (Australia); Estrin, Y. [Department of Materials Engineering, Monash University, Clayton, VIC 3800 (Australia); CSIRO Division of Process Science and Engineering, Clayton, VIC (Australia); Scheerbaum, N. [Institut fuer Strukturphysik, Technische Universitaet Dresden, D-01062 Dresden (Germany); Davies, C.H.J. [Department of Materials Engineering, Monash University, Clayton, VIC 3800 (Australia)

    2010-12-15

    Next-neighbor misorientation distributions (NNMD) in severely deformed polycrystalline materials are commonly measured by orientation imaging. A procedure is proposed which enables the separation of NNMD of ultrafine-grained materials into two parts: the distribution of misorientations between newly emerged grains within the original ('parent') grain interior ('internal daughter grains') and the distribution of misorientations between grains adjacent to an original grain boundary on its opposite sides ('grain boundary daughter grains'). The procedure is based on electron backscatter diffraction orientation map analyses carried out on different planes of deformed samples considering the evolution of the grain size and shape during severe plastic deformation. It was applied to copper processed by up to three passes of equal-channel angular pressing. A characteristic feature of the measured NNMD is the occurrence of a double peak, which is clearly due to the differences between the NNMD of the two distinct populations of new grains defined above. The peak at low angles represents mainly the continual grain subdivision process in the interior of a parent grain (and is associated with internal daughter grains), while the peak at large angles is due to the high angle misorientations of the grain boundary daughter grains.

  3. Microstructural evolution in copper subjected to severe plastic deformation: Experiments and analysis

    Energy Technology Data Exchange (ETDEWEB)

    Mishra, A. [Department of Mechanical and Aerospace Engineering, Materials Science and Engineering Program, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0411 (United States); Kad, B.K. [Department of Structural Engineering, University of California, San Diego, La Jolla, CA (United States); Gregori, F. [Laboratoire des Proprietes Mecaniques et Thermodynamiques des Materiaux (CNRS), Universite de Paris 13 (France); Meyers, M.A. [Department of Mechanical and Aerospace Engineering, Materials Science and Engineering Program, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0411 (United States)]. E-mail: mameyers@mae.ucsd.edu

    2007-01-15

    The evolution of microstructure and the mechanical response of copper subjected to severe plastic deformation using equal channel angular pressing (ECAP) was investigated. Samples were subjected to ECAP under three different processing routes: B{sub C}, A and C. The microstructural refinement was dependent on processing with route B{sub C} being the most effective. The mechanical response is modeled by an equation containing two dislocation evolution terms: one for the cells/subgrain interiors and one for the cells/subgrain walls. The deformation structure evolves from elongated dislocation cells to subgrains to equiaxed grains with diameters of {approx}200-500 nm. The misorientation between adjacent regions, measured by electron backscatter diffraction, gradually increases. The mechanical response is well represented by a Voce equation with a saturation stress of 450 MPa. Interestingly, the microstructures produced through adiabatic shear localization during high strain rate deformation and ECAP are very similar, leading to the same grain size. It is shown that both processes have very close Zener-Hollomon parameters (ln Z {approx} 25). Calculations show that grain boundaries with size of 200 nm can rotate by {approx}30 deg. during ECAP, thereby generating and retaining a steady-state equiaxed structure. This is confirmed by a grain-boundary mobility calculation which shows that their velocity is 40 nm/s for a 200 nm grain size at 350 K, which is typical of an ECAP process. This can lead to the grain-boundary movement necessary to retain an equiaxed structure.

  4. The effect of crystal plasticity and mineral stability on the rheological properties of magma during spine extrusion at Unzen, Japan

    Science.gov (United States)

    Wallace, Paul A.; Kendrick, Jackie E.; Lavallée, Yan; Ashworth, James D.; Mariani, Elisabetta; von Aulock, Felix W.; Coats, Rebecca; Miwa, Takahiro

    2016-04-01

    The presence of crystals in silicic magmas is known to have a significant effect on the rheological properties inducing a non-Newtonian response. Plastic deformation of the crystalline phase in magmatic suspensions is believed to be partially responsible for this characteristic behaviour via accommodating strain, but little has been investigated on its role in volcanic processes. The spine extrusion following the final stages of endogenous growth of the 1991-95 lava dome eruption at Unzen volcano, Japan, has provided a unique opportunity to investigate the contribution of the different deformation mechanisms and varying petrological phenomena associated with magma ascent. The spine forms a shear zone consisting of four structurally discrete units over a 6 m transect including: gouge (1), a heavily sheared zone (2) to a moderately sheared zone (3), and an undeformed magmatic core (4). Here we report the first systematic study of the microstructures, mineralogy, crystal stability, geochemistry and crystal size distribution across this shear zone. The spine samples are porphyritic dacites with varying abundance of phenocrysts (20-30 vol.%), dominantly plagioclase, hornblende and biotite with minor quartz. The groundmass contains the same mineralogy plus pyroxene, magnetite and ilmenite. The microlites (35 vol.%) show a strong trachytic texture in areas of high shear, providing evidence of strain localisation. Brittle deformation is evident across the spine, with the higher sheared samples showing more crystal size reduction of the phenocrysts. By performing high-temperature (900° C) uniaxial compressive strength tests at constant strain rates (10-5 and 10-3 s-1), it can be inferred that crystals play a key role in the rheological properties, by forming a rigid but weak network that serves to partition stress and thus localise strain within the flowing melt. Electron backscatter diffraction (EBSD) enables the identification of crystal plasticity in both phenocrysts

  5. Effects of Plastic Deformation and Stresses on Dilatation during the Martensitic Transformation in a B-bearing Steel

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    To provide data for improved modelling of the behaviour of steelcomponents in a simultaneous forming and quenching process, the effects of plastic deformation and stresses on dilatation during the martensitic transformation in a B-bearing steel were investigated. It was found that plastic deformation of austenite at high temperatures enhances ferrite formation significantly,and consequently, the dilatation decreases markedly even at a cooling rate of 280℃/s. The created ferritic-martensitic microstructure possesses clearly lower hardness and strength than the martensitic structure. Elastic stresses cause the preferred orientation in martensite to be formed so that diametric dilatation can increase by nearly 200% under axial compression.

  6. Crystallization of acetaminophen form II by plastic-ball-assisted ultrasonic irradiation

    Science.gov (United States)

    Mori, Yoichiro; Maruyama, Mihoko; Takahashi, Yoshinori; Yoshikawa, Hiroshi Y.; Okada, Shino; Adachi, Hiroaki; Sugiyama, Shigeru; Takano, Kazufumi; Murakami, Satoshi; Matsumura, Hiroyoshi; Inoue, Tsuyoshi; Yoshimura, Masashi; Mori, Yusuke

    2017-02-01

    We report a novel method for crystallizing the metastable polymorph form II of acetaminophen by using a plastic ball during ultrasonic irradiation. The presence of a plastic ball during ultrasonic irradiation of aqueous acetaminophen solution effectively increased the probability and reduced the induction time of form II crystallization. This method facilitated both laboratory- and large-scale production of form II crystals. Our method has significant advantages for practical application of form II because it can reduce the time to production and enable large-scale production.

  7. Features of energy impact on a billet material when cutting with outstripping plastic deformation

    Directory of Open Access Journals (Sweden)

    V. M. Yaroslavtsev

    2014-01-01

    Full Text Available In the last decades the so-called combined machining methods based on parallel, serial or parallelserial combination of different types of energy impacts on the billet are designed and developed. Combination of two or more sources of external energy in one method of machining can be directed to the solution of different technological tasks, such as: improvement of a basic method to enhance technicaland-economic and technological indicators of machining, expansion of technological capabilities of the method, increase of reliability and stability of technological process to produce details, etc. Besides, the combined methods of machining are considered as one of the means, which enables reducing the number of operations in technological process, allows the growth of workforce productivity.When developing the combined technologies, one of the main scientific tasks is to define the general regularities of interaction and mutual influence of the energy fluxes brought to the zone of machining. The result of such mutual influence becomes apparent from the forming technological parameters of machining and determines the most rational operating conditions of technological process.In the context of conducted in BMSTU researches on the combined cutting method with outstripping plastic deformation (OPD the mutual influence of the energetic components of machining has been quantitatively assessed. The paper shows a direct relationship between the rational ratio of the two types of the mechanical energy brought in the machining zone, the machining conditions, and the optimum operating conditions.The paper offers a physical model of chip formation when machining with OPD. The essence of model is that specific works spent on material deformation of a cut-off layer are quantitatively compared at usual cutting and at cutting with OPD. It is experimentally confirmed that the final strain-deformed material states of a cut-off layer, essentially, coincide in both

  8. Modeling of elastic and plastic waves for HCP single crystals in a 3D formulation based on zinc single crystal

    Science.gov (United States)

    Krivosheina, Marina; Kobenko, Sergey; Tuch, Elena; Kozlova, Maria

    2016-11-01

    This paper investigates elastic and plastic waves in HCP single crystals through the numerical simulation of strain processes in anisotropic materials based on a zinc single crystal. Velocity profiles for compression waves in the back surfaces of single-crystal zinc plates with impact loading oriented in 0001 and 10 1 ¯0 are presented in this work as a part of results obtained in numerical simulations. The mathematical model implemented in this study reflects the following characteristics of the mechanical properties inherent in anisotropic (transtropic) materials: varying degree of anisotropy of elastic and plastic properties, which includes reverse anisotropy, dependence of distribution of all types of waves on the velocity orientation, and the anisotropy of compressibility. Another feature of elastic and plastic waves in HCP single crystals is that the shock wave does not split into an elastic precursor and "plastic" compression shock wave, which is inherent in zinc single crystals with loading oriented in 0001. The study compares numerical results obtained in a three-dimensional formulation with the results of velocity profiles from the back surfaces of target plates obtained in real experiments. These results demonstrate that the mathematical model is capable of describing the properties of the above-mentioned anisotropic (transtropic) materials.

  9. Local melting to design strong and plastically deformable bulk metallic glass composites

    Science.gov (United States)

    Qin, Yue-Sheng; Han, Xiao-Liang; Song, Kai-Kai; Tian, Yu-Hao; Peng, Chuan-Xiao; Wang, Li; Sun, Bao-An; Wang, Gang; Kaban, Ivan; Eckert, Jürgen

    2017-02-01

    Recently, CuZr-based bulk metallic glass (BMG) composites reinforced by the TRIP (transformation-induced plasticity) effect have been explored in attempt to accomplish an optimal of trade-off between strength and ductility. However, the design of such BMG composites with advanced mechanical properties still remains a big challenge for materials engineering. In this work, we proposed a technique of instantaneously and locally arc-melting BMG plate to artificially induce the precipitation of B2 crystals in the glassy matrix and then to tune mechanical properties. Through adjusting local melting process parameters (i.e. input powers, local melting positions, and distances between the electrode and amorphous plate), the size, volume fraction, and distribution of B2 crystals were well tailored and the corresponding formation mechanism was clearly clarified. The resultant BMG composites exhibit large compressive plasticity and high strength together with obvious work-hardening ability. This compelling approach could be of great significance for the steady development of metastable CuZr-based alloys with excellent mechanical properties.

  10. Electron microscopic investigation of crystal lattice bending-torsion and internal stresses in deformed polycrystalline alloys

    Energy Technology Data Exchange (ETDEWEB)

    Koneva, N. A., E-mail: koneva@tsuab.ru; Kozlov, E. V. [Tomsk State University of Architecture and Building, 634003, Tomsk, Solyanaya Sq., 2 (Russian Federation)

    2016-01-15

    Generalization of the results of electron microscopy investigations of the crystal lattice bending-torsion (χ) and the internal stresses (IS) was conducted. The deformed polycrystalline alloys and steels were investigated. The sources of χ and IS origin were established. The regularities of their change with the distance from the sources and the evolution with deformation were revealed. The contribution of IS into the deformation resistance was determined. The nature of formation of two sequences of dislocation substructure transformations during deformation of alloys was established.

  11. Effects of Slight Plastic Deformation on Magnetic Properties and Giant Magnetoimpedance of FeCoCrSiB Amorphous Ribbons

    Institute of Scientific and Technical Information of China (English)

    S.O.Volchkov; M.A.Cerdeira; V.V.Gubernatorov; E.I.Duhan; A.P.Potapov; V.A.Lukshina

    2007-01-01

    Slight plastic deformation of 0 to 1% by cold rolling is proposed as a treatment which may modify the responses of magnetoimpedance (MI) sensor with an amorphous ribbon used as a sensitive element. The dependence of the magnetic properties of melt spun Fe3Co67Cr3Si15B12 amorphous ribbons and their MI responses in the initial state and after slight plastic deformation on the value of the deformation were comparatively analysed. The shape of the hysteresis loops shows a clear correlation with the value of the deformation. The variations of the total impedance, the real and the imaginary components, are measured for the current intensity of 1.5mA for the frequency of 10 MHz. Slight plastic deformation affects both real and imaginary components and allows a control of the shape of the MI curves in a small Geld in a range usually used in biomedical applications. The proposed deformation treatments can be useful for the construction of the MI sensitive elements with a new type of the responses.

  12. Single Crystal Bimorph Array (SCBA) Driven Deformable Mirror (DM) Project

    Data.gov (United States)

    National Aeronautics and Space Administration — This Small Business Innovation Research (SBIR) Phase II project will research a novel deformable mirror design for NASA adaptive optics telescope applications. The...

  13. Single Crystal Bimorph Array Driven Deformable Mirrors Project

    Data.gov (United States)

    National Aeronautics and Space Administration — This Small Business Innovation Research (SBIR) Phase I project will research a novel deformable mirror design for NASA adaptive optics telescope applications . The...

  14. Microstructure and properties of ceramics and composites joined by plastic deformation.

    Energy Technology Data Exchange (ETDEWEB)

    Goretta, K. C.; Singh, D.; Chen, N.; Gutierrez-Mora, F.; Lorenzo-Martin, M. de la, Cinta; Dominguez-Rodriguez, A.; Routbort, J. L.; Energy Systems; Univ. of Seville

    2008-12-01

    A review is presented of the design of suitable materials systems for joining by high-temperature plastic deformation, details of the joining techniques, microstructures and properties of the resulting composite bodies, and prospects and limitation for this type of joining technology. Joining parameters and resulting forms are discussed for Al{sub 2}O{sub 3}/mullite particulate composites, Y{sub 2}O{sub 3}-stabilized ZrO{sub 2} particulate/Al{sub 2}O{sub 3} particulate and whisker-reinforced composites, hydroxyapatite bioceramics, La{sub 0.85}Sr{sub 0.15}MnO{sub 3} electronic ceramics, MgF{sub 2} optical ceramics, and Ni{sub 3}Al intermetallics. Results are contrasted with those obtained by other methods of joining brittle, high-temperature materials, with special focus on durability and mechanical properties.

  15. Microstructure and properties of ceramics and composites joined by plastic deformation

    Energy Technology Data Exchange (ETDEWEB)

    Goretta, K.C. [Argonne National Laboratory, Argonne, IL 60439-4838 (United States)], E-mail: ken.goretta@aoard.af.mil; Singh, D.; Chen Nan [Argonne National Laboratory, Argonne, IL 60439-4838 (United States); Gutierrez-Mora, F.; Cinta Lorenzo-Martin, M. de la [Argonne National Laboratory, Argonne, IL 60439-4838 (United States); University of Seville, Seville 41080 (Spain); Dominguez-Rodriguez, A. [University of Seville, Seville 41080 (Spain); Routbort, J.L. [Argonne National Laboratory, Argonne, IL 60439-4838 (United States)

    2008-12-20

    A review is presented of the design of suitable materials systems for joining by high-temperature plastic deformation, details of the joining techniques, microstructures and properties of the resulting composite bodies, and prospects and limitation for this type of joining technology. Joining parameters and resulting forms are discussed for Al{sub 2}O{sub 3}/mullite particulate composites, Y{sub 2}O{sub 3}-stabilized ZrO{sub 2} particulate/Al{sub 2}O{sub 3} particulate and whisker-reinforced composites, hydroxyapatite bioceramics, La{sub 0.85}Sr{sub 0.15}MnO{sub 3} electronic ceramics, MgF{sub 2} optical ceramics, and Ni{sub 3}Al intermetallics. Results are contrasted with those obtained by other methods of joining brittle, high-temperature materials, with special focus on durability and mechanical properties.

  16. Plastic deformation analysis and forming quality prediction of tube NC bending

    Institute of Scientific and Technical Information of China (English)

    Lu Shiqiang; Fang Jun; Wang Kelu

    2016-01-01

    Plane strain assumption and exponent hardening law are used to investigate the plastic deformation in tube bending. Some theoretical formulae including stress, curvature radius of neu-tral layer, angle of neutral layer deviation, bending moment, wall thickness variation and cross-section distortion, are developed to explain the phenomena in tube bending and their magnitudes are also determined. During unloading process, the springback angle is deduced using the virtual work principle, and springback radius is also given according to the length of the neutral layer which remains unchanged before and after springback. The theoretical formulae are validated by the experimental results or the validated simulation results in literature, which can be used to quickly predict the forming quality of tube numerical control (NC) bending.

  17. Sintering boron carbide ceramics without grain growth by plastic deformation as the dominant densification mechanism

    Science.gov (United States)

    Ji, Wei; Rehman, Sahibzada Shakir; Wang, Weimin; Wang, Hao; Wang, Yucheng; Zhang, Jinyong; Zhang, Fan; Fu, Zhengyi

    2015-10-01

    A new ceramic sintering approach employing plastic deformation as the dominant mechanism is proposed, at low temperature close to the onset point of grain growth and under high pressure. Based on this route, fully dense boron carbide without grain growth can be prepared at 1,675-1,700 °C and under pressure of (≥) 80 MPa in 5 minutes. The dense boron carbide shows excellent mechanical properties, including Vickers hardness of 37.8 GPa, flexural strength of 445.3 MPa and fracture toughness of 4.7 MPa•m0.5. Such a process should also facilitate the cost-effective preparation of other advanced ceramics for practical applications.

  18. Tensile properties of a nickel-base alloy subjected to surface severe plastic deformation

    Energy Technology Data Exchange (ETDEWEB)

    Tian, J.W. [Department of Materials Science and Engineering, University of Tennessee, Knoxville, TN (United States); Dai, K. [Quality Engineering and Software Technology, East Hartford, CT 06108 (United States); Villegas, J.C. [Intel Corporation, Chandler, AZ (United States); Shaw, L. [Department of Chemical, Materials and Biomolecular Engineering, University of Connecticut, Storrs, CT (United States)], E-mail: leon.shaw@uconn.edu; Liaw, P.K. [Department of Materials Science and Engineering, University of Tennessee, Knoxville, TN (United States); Klarstrom, D.L. [Haynes International, Inc., Kokomo, IN (United States); Ortiz, A.L. [Departamento de Ingenieria Mecanica, Energetica y de los Materiales, Universidad de Extremadura, 06071 Badajoz (Spain)

    2008-10-15

    A surface severe plastic deformation (S{sup 2}PD) method has been applied to bulk specimens of HASTELLOY C-2000 alloy, a nickel-base alloy. The mechanical properties of the processed C-2000 alloy were determined via tensile tests and Vickers hardness measurements, whereas the microstructure was characterized using scanning electron microscopy, transmission electron microscopy, and X-ray diffractometry. The improved tensile strength was related to the nanostructure at the surface region, the residual compressive stresses, and the work-hardened surface layer, all of which resulted from the S{sup 2}PD process. To understand the contributions of these three factors, finite element modeling was performed. It was found that the improved tensile strength could be interpreted based on the contributions of nano-grains, residual stresses, and work hardening.

  19. Plastic deformation analysis and forming quality prediction of tube NC bending

    Directory of Open Access Journals (Sweden)

    Lu Shiqiang

    2016-10-01

    Full Text Available Plane strain assumption and exponent hardening law are used to investigate the plastic deformation in tube bending. Some theoretical formulae including stress, curvature radius of neutral layer, angle of neutral layer deviation, bending moment, wall thickness variation and cross-section distortion, are developed to explain the phenomena in tube bending and their magnitudes are also determined. During unloading process, the springback angle is deduced using the virtual work principle, and springback radius is also given according to the length of the neutral layer which remains unchanged before and after springback. The theoretical formulae are validated by the experimental results or the validated simulation results in literature, which can be used to quickly predict the forming quality of tube numerical control (NC bending.

  20. Sintering boron carbide ceramics without grain growth by plastic deformation as the dominant densification mechanism.

    Science.gov (United States)

    Ji, Wei; Rehman, Sahibzada Shakir; Wang, Weimin; Wang, Hao; Wang, Yucheng; Zhang, Jinyong; Zhang, Fan; Fu, Zhengyi

    2015-10-27

    A new ceramic sintering approach employing plastic deformation as the dominant mechanism is proposed, at low temperature close to the onset point of grain growth and under high pressure. Based on this route, fully dense boron carbide without grain growth can be prepared at 1,675-1,700 °C and under pressure of (≥) 80 MPa in 5 minutes. The dense boron carbide shows excellent mechanical properties, including Vickers hardness of 37.8 GPa, flexural strength of 445.3 MPa and fracture toughness of 4.7 MPa•m(0.5). Such a process should also facilitate the cost-effective preparation of other advanced ceramics for practical applications.

  1. Application of Severe Plastic Deformation Techniques to Magnesium for Enhanced Hydrogen Sorption Properties

    Directory of Open Access Journals (Sweden)

    Daniel Fruchart

    2012-08-01

    Full Text Available In this paper we review the latest developments in the use of severe plastic deformation (SPD techniques for enhancement of hydrogen sorption properties of magnesium and magnesium alloys. Main focus will be on two techniques: Equal Channel Angular Pressing (ECAP and Cold Rolling (CR. After a brief description of these two techniques we will discuss their effects on the texture and hydrogen sorption properties of magnesium alloys. In particular, the effect of the processing temperature in ECAP on texture will be demonstrated. We also show that ECAP and CR have produced different textures. Despite the scarcity of experimental results, the investigations up to now indicate that SPD techniques produce metal hydrides with enhanced hydrogen storage properties.

  2. Microstructure and annealing behavior of a modified 9Cr-1Mo steel after dynamic plastic deformation to different strains

    DEFF Research Database (Denmark)

    Zhang, Zhenbo; Mishin, Oleg; Tao, N.R.;

    2015-01-01

    The microstructure, hardness and tensile properties of a modified 9Cr-1Mo steel processed by dynamic plastic deformation (DPD) to different strains (0.5 and 2.3) have been investigated in the as-deformed and annealed conditions. It is found that significant structural refinement and a high level...... of strength can be achieved by DPD to a strain of 2.3, and that the microstructure at this strain contains a large fraction of high angle boundaries. The ductility of the DPD processed steel is however low. Considerable structural coarsening of the deformed microstructure without pronounced recrystallization...

  3. Differing effects of water fugacity deformation of quartzites and milky quartz single crystals

    Science.gov (United States)

    Holyoke, C. W.; Kronenberg, A. K.

    2010-12-01

    Previous studies of quartzite deformation by dislocation creep have documented a strong dependence of mechanical properties on pressure, which has been interpreted as a relationship between strain rate and water fugacity (Kronenberg and Tullis, 1984; Kohlstedt et al., 1995; Chernak et al. 2009). However, natural milky quartz single crystals deformed by basal slip can be water-weakened over a wide range of pressure (and water fugacities), with strengths that appear to depend on total water content at a fixed water fugacity. The difference of behavior between these two is perplexing since infrared spectra collected from quartzites and milky quartz single crystals indicate that they have the same forms of intragranular water and microstructures indicate the same slip system is activated. The only difference between these materials is that quartzites include populations of grains of all orientations, separated by grain boundaries. In order to resolve this discrepancy we have performed deformation experiments on a natural quartzite (Black Hills quartzite) and natural milky quartz single crystals oriented for easy slip on the basal slip system at identical conditions (800°C, strain rate = 10-6/s) with no added water. During each experiment cores of each material, which have a fixed water content, were subjected to pressure stepping; an initial deformation step was performed at 1.5 GPa, then the sample was unloaded and one or more deformation steps were performed at lower pressures (as low as 0.6 GPa) prior to returning to 1.5 GPa for a final deformation step. The strength of quartzite increases dramatically at lower pressure and lower water fugacity, but strength decreases again returning to high pressure during the final deformation step. The strength of milky quartz single crystals increases as well, but by far less than observed for quartzites. The water fugacity exponents (m) of the quartzite and single crystals are 1.9 and 0.8, respectively, (assuming power law

  4. Damage and Plastic Deformation Modeling of Beishan Granite Under Compressive Stress Conditions

    Science.gov (United States)

    Chen, L.; Wang, C. P.; Liu, J. F.; Liu, J.; Wang, J.; Jia, Y.; Shao, J. F.

    2015-07-01

    Based on experimental investigations, we propose a coupled elastoplastic damage model to simulate the mechanical behavior of granite under compressive stress conditions. The granite is taken from the Beishan area, a preferable region for China's high-level radioactive waste repository. Using a 3D acoustic emission monitoring system in mechanical tests, we focus on the cracking process and its influence on the macroscopic mechanical behavior of the granite samples. It is verified that the crack propagation coupled with fractional sliding along the cracks is the principal mechanism controlling the failure process and nonlinear mechanical behavior of granite under compressive stress conditions. Based on this understanding, the coupled elastoplastic damage model is formulated in the framework of the thermodynamics theory. In the model, the coupling between damage and plastic deformation is simulated by introducing the independent damage variable in the plastic yield surface. As a preliminary validation of the model, a series of numerical simulations are performed for compressive tests conducted under different confining pressures. Comparisons between the numerical and simulated results show that the proposed model can reproduce the main features of the mechanical behavior of Beishan granite, particularly the damage evolution under compressive stress conditions.

  5. Effect of Severe Plastic Deformation on Structure and Properties of Al-Sc-Ta and Al-Sc-Ti Alloys.

    Science.gov (United States)

    Berezina, Alla; Monastyrska, Tetiana; Davydenko, Olexandr; Molebny, Oleh; Polishchuk, Sergey

    2017-12-01

    The comparative analysis of the effect of monotonous and non-monotonous severe plastic deformations (SPD) on the structure and properties of aluminum alloys has been carried out. Conventional hydrostatic extrusion (HE) with a constant deformation direction and equal-channel angular hydroextrusion (ECAH) with an abrupt change in the deformation direction were chosen for the cases of monotonous and non-monotonous SPD, respectively. Model cast hypoeutectic Al-0.3%Sc alloys and hypereutectic Al-0.6%Sc alloys with Ta and Ti additives were chosen for studying. It was demonstrated that SPD of the alloys resulted in the segregation of the material into active and inactive zones which formed a banded structure. The active zones were shown to be bands of localized plastic deformation. The distance between zones was found to be independent of the accumulated strain degree and was in the range of 0.6-1 μm. Dynamic recrystallization in the active zones was observed using TEM. The dynamic recrystallization was accompanied by the formation of disclinations, deformation bands, low-angle, and high-angle boundaries, i.e., rotational deformation modes developed. The dynamic recrystallization was more intense during the non-monotonous deformation as compared with the monotonous one, which was confirmed by the reduction of texture degree in the materials after ECAH.

  6. Polymer-stabilized ferroelectric liquid crystal for flexible displays using plastic substrates

    Science.gov (United States)

    Fujikake, Hideo; Murashige, Takeshi; Sato, Hiroto; Iino, Yoshiki; Kikuchi, Hiroshi; Kawakita, Masahiro; Tsuchiya, Yuzuru

    2001-12-01

    We have developed a ferroelectric liquid crystal device with a novel structure containing a polymer fiber network for flexible lightweight displays using thin plastic substrates. The aligned polymer fibers of sub-micrometers -diameter were formed under ultraviolet light irradiation in a heated nematic- phase solution consisting of liquid crystal and monofunctional acrylate monomer. The rigid polymer network was found to adhere to the two plastic substrates, and the uniform liquid crystal alignment provided a contrast ratio of 100:1 for a monomer concentration of 20 wt%. This device achieves a continuous grayscale capability as a result of change in the spatial distribution of small liquid crystal domains, and also exhibits a fast response time of 80 microsecond(s) due to high-purity separation of polymer and liquid crystal materials. It therefore has attractive features for flexible moving-image display applications.

  7. Study of deformed quasi-periodic Fibonacci two dimensional photonic crystals

    Science.gov (United States)

    Ben Abdelaziz, K.; Bouazzi, Y.; Kanzari, M.

    2015-09-01

    Quasi-periodic photonic crystals are not periodic structures. These structures are generally obtained by the arrangement of layers according to a recursive rule. Properties of these structures make more attention the researchers especially in the case when applying defects. So, photonic crystals with defects present localized modes in the band gap leading to many potential applications such light localization. The objective of this work is to study by simulation the effect of the global deformation introduced in 2D quasiperiodic photonic crystals. Deformation was introduced by applying a power law, so that the coordinates y of the deformed object were determined through the coordinates x of the non-deformed structure in accordance with the following rule: y = x1+k. Here k is the coefficient defining the deformation. Therefore, the objective is to study the effect of this deformation on the optical properties of 2D quasiperiodic photonic crystals, constructed by Fibonacci generation. An omnidirectional mirror was obtained for optimization Fibonacci iteration in a part of visible spectra.

  8. Dislocation-Governed Plastic Deformation and Fracture Toughness of Nanotwinned Magnesium

    Directory of Open Access Journals (Sweden)

    Lei Zhou

    2015-08-01

    Full Text Available In this work, the plastic deformation mechanisms responsible for mechanical properties and fracture toughness in  nanotwinned (NT magnesium is studied by molecular dynamics (MD simulation. The influence of twin boundary (TBs spacing and crack position on deformation behaviors are investigated. The microstructure evolution at the crack tip are not exactly the same for the left edge crack (LEC and the right edge crack (REC models according to calculations of the energy release rate for dislocation nucleation at the crack tip. The LEC growth initiates in a ductile pattern and then turns into a brittle cleavage. In the REC model, the atomic decohesion occurs at the crack tip to create a new free surface which directly induces a brittle cleavage. A ductile to brittle transition is observed which mainly depends on the competition between dislocation motion and crack growth. This competition mechanism is found to be correlated with the TB spacing. The critical values are 10 nm and 13.5 nm for this transition in LEC and REC models, respectively. Essentially, the dislocation densities affected by the TB spacing play a crucial role in the ductile to brittle transition.

  9. Formation of nanocrystalline surface layers in various metallic materials by near surface severe plastic deformation

    Directory of Open Access Journals (Sweden)

    Masahide Sato, Nobuhiro Tsuji, Yoritoshi Minamino and Yuichiro Koizumi

    2004-01-01

    Full Text Available The surface of the various kinds of metallic materials sheets were severely deformed by wire-brushing at ambient temperature to achieve nanocrystalline surface layer. The surface layers of the metallic materials developed by the near surface severe plastic deformation (NS-SPD were characterized by means of TEM. Nearly equiaxed nanocrystals with grain sizes ranging from 30 to 200 nm were observed in the near surface regions of all the severely scratched metallic materials, which are Ti-added ultra-low carbon interstitial free steel, austenitic stainless steel (SUS304, 99.99 wt.%Al, commercial purity aluminum (A1050 and A1100, Al–Mg alloy (A5083, Al-4 wt.%Cu alloy, OFHC-Cu (C1020, Cu–Zn alloy (C2600 and Pb-1.5%Sn alloy. In case of the 1050-H24 aluminum, the depth of the surface nanocrystalline layer was about 15 μm. It was clarified that wire-brushing is an effective way of NS-SPD, and surface nanocrystallization can be easily achieved in most of metallic materials.

  10. Microstructure characterization of high-purity aluminum processed by dynamic severe plastic deformation

    Energy Technology Data Exchange (ETDEWEB)

    Dirras, Guy; Chauveau, Thierry; Ramtani, Salah; Bui, Quang-Hien [LPMTM, CNRS, UPR 9001, Universite Paris 13, 99 avenue J. B. Clement, 93430 Villetaneuse (France); Abdul-Latif, Akrum [Laboratoire d' Ingenierie des Systemes Mecaniques et des Materiaux, 3 rue Fernand Hainaut, 93407 St Ouen Cedex (France)

    2010-10-15

    Fine-grained aluminum (700-1000 nm) was processed by dynamic severe plastic deformation of coarse-grained (3 mm) pure aluminum (99.999 wt.%). The resulting microstructure was characterized by transmission electron microscopy (TEM) and X-ray profile analyses. It is observed that the grain size determined by TEM departs from measurements made by X-ray profile analysis. In the latter case, the average crystallite size determined over the global crystallographic or on the deformation-induced texture components, namely {l_brace}123{r_brace} left angle 751 right angle, {l_brace}100{r_brace} left angle 011 right angle, and {l_brace}223{r_brace} left angle 154 right angle, yields similar values ({proportional_to}225 nm). By contrast, the dislocation density determined on these texture components is about two times higher than the one measured on the global texture. The difference might be related to the specificities of the induced crystallographic texture. (Abstract Copyright [2010], Wiley Periodicals, Inc.)

  11. High purity ultrafine-grained nickel processed by dynamic plastic deformation: microstructure and mechanical properties

    Energy Technology Data Exchange (ETDEWEB)

    Farbaniec, Lukasz; Dirras, Guy [Universite Paris 13, Sorbonne Paris Cite LSPM-CNRS, 99, Avenue J. B. Clement, 93430 Villetaneuse (France); Abdul-Latif, Akrum [Laboratoire d' Ingenierie des Systemes Mecaniques et des Materiaux 3, Rue Fernand Hainaut, 93407 St. Ouen Cedex (France); Gubicza, Jeno [Department of Materials Physics, Eoetvoes Lorand University Budapest, P.O. Box 32, H-1518 (Hungary)

    2012-11-15

    Bulk ultrafine-grained samples are processed by dynamic plastic deformation at an average strain rate of 3.3 x 10{sup 2} s{sup -1} from bulk coarse-grained nickel with purity higher than 98.4 wt.%. The obtained microstructure is investigated by electron backscattering diffraction, transmission electron microscopy and X-ray line profile analysis. After dynamic deformation the microstructure evolves into submicron-size lamellar and subgrain structures. Evaluation of average grain size shows a heterogeneous microstructure along both the diameter and the thickness of the sample. X-ray line profile analysis reveals high dislocation density of about 13 {+-} 2 x 10{sup 14} m{sup -2} in the impacted material. The mechanical properties are investigated by means of uniaxial quasi-static compression tests conducted at room temperature. The stress-strain behavior of the impacted Ni depends on the location in the impacted disk and on the orientation of the compression axis relative to the impact direction. (Copyright copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  12. DLTS Study of plastically deformed copper-doped n-type germanium

    Energy Technology Data Exchange (ETDEWEB)

    Shevchenko, S. A., E-mail: shevchen@issp.ac.ru; Kolyubakin, A. I. [Russian Academy of Sciences, Institute of Solid State Physics (Russian Federation)

    2013-06-15

    Classical deep level transient spectroscopy (DLTS) and its modification are used to study the time constants of electron capture by substitutional Cu{sub s}{sup 2-} atoms and thermal electron emission from Cu{sub s}{sup 3-} atoms in plastically deformed Cu-doped n-type germanium. The activation energy E{sub {sigma}}, the electron capture cross-section, the energy E{sub 3} of the third acceptor level of Cu{sub s/3-} atoms, and the ionization entropy are determined. The lack of E{sub 3}-level broadening, the exponential capture kinetics for a filling-pulse duration of t{sub p} Less-Than-Or-Equivalent-To 1 ms, the fact that the Cu{sub s/2-/3-}-atom recombination parameters are independent of the dislocation density, and the low concentration of Cu{sub s/2-/3-} atoms in the deformed samples suggest that the DLTS spectra are due to Cu{sub s/2-/3-} atoms located outside the Read cylinders.

  13. Shaped silicon wafers obtained by hot plastic deformation: performance evaluation for future astronomical x-ray telescopes.

    Science.gov (United States)

    Ezoe, Yuichiro; Shirata, Takayuki; Mitsuishi, Ikuyuki; Ishida, Manabu; Mitsuda, Kazuhisa; Morishita, Kohei; Nakajima, Kazuo

    2009-07-01

    In order to develop lightweight and high angular resolution x-ray mirrors, we have investigated hot plastic deformation of 4 in. silicon (111) wafers. A sample wafer was deformed using hemispherical dies with a curvature radius of 1000 mm. The measured radius of the deformed wafer was 1030 mm, suggesting that further conditioning is indispensable for better shaping. For the first time to our knowledge, x-ray reflection on a deformed wafer was detected at Al K(alpha) 1.49 keV. An estimated surface roughness of <1 nm from the x-ray reflection profile was comparable to that of a bare silicon wafer without deformation. Hence, no significant degradation of the microroughness was seen.

  14. Size-dependent ion-beam-induced anisotropic plastic deformation at the nanoscale by nonhydrostatic capillary stresses

    NARCIS (Netherlands)

    van Dillen, T.; van der Giessen, E.; Onck, P. R.; Polman, A.

    2006-01-01

    We develop a phenomenological model for size-dependent anisotropic plastic deformation of colloidal nanoparticles under ion irradiation. We show that, at the nanoscale, nonhydrostatic capillary stresses drive radiation-induced Newtonian viscous flow, counteracting the stress state that initiates the

  15. Structural modifications induced by compressive plastic deformation in single-step and sequentially irradiated UHMWPE for hip joint components.

    Science.gov (United States)

    Puppulin, Leonardo; Sugano, Nobuhiko; Zhu, Wenliang; Pezzotti, Giuseppe

    2014-03-01

    Structural modifications were studied at the molecular scale in two highly crosslinked UHMWPE materials for hip-joint acetabular components, as induced upon application of (uniaxial) compressive strain to the as-manufactured microstructures. The two materials, quite different in their starting resins and belonging to different manufacturing generations, were a single-step irradiated and a sequentially irradiated polyethylene. The latter material represents the most recently launched gamma-ray-irradiated polyethylene material in the global hip implant market. Confocal/polarized Raman spectroscopy was systematically applied to characterize the initial microstructures and the microstructural response of the materials to plastic deformation. Crystallinity fractions and preferential orientation of molecular chains have been followed up during in vitro deformation tests on unused cups and correlated to plastic strain magnitude and to the recovery capacity of the material. Moreover, analyses of the in vivo deformation behavior of two short-term retrieved hip cups are also presented. Trends of preferential orientation of molecular chains as a function of residual strain were similar for both materials, but distinctly different in their extents. The sequentially irradiated material was more resistant to plastic deformation and, for the same magnitude of residual plastic strain, possessed a higher capacity of recovery as compared to the single-step irradiated one.

  16. Plastic deformation of high-purity a-titanium: model development and validation using the Taylor cylinder impact test

    Science.gov (United States)

    Chandola, Nitin; Revil-Baudard, Benoit; Cazacu, Oana

    2016-08-01

    Results of an experimental study on the quasi-static and high-rate plastic deformation due to impact of a high-purity, polycrystalline, a-titanium material are presented. To quantify the plastic anisotropy and tension-compression asymmetry of the material, first monotonic uniaxial compression and tension tests were carried out at room temperature under quasi-static conditions. It was found that the material is transversely isotropic and displays strong strength differential effects. To characterize the material's strain rate sensitivity, Split Hopkinson Pressure Bar tests in tension and compression were also conducted. Taylor impact tests were performed for impact velocity of 196 m/s. Plastic deformation extended to 64% of the length of the deformed specimen, with little radial spreading. To model simultaneously the observed anisotropy, strain-rate sensitivity, and tension-compression asymmetry of the material, a three-dimensional constitutive model was developed. Key in the formulation is a macroscopic yield function [1] that incorporates the specificities of the plastic flow, namely the combined effects of anisotropy and tension-compression asymmetry. Comparison between model predictions and data show the capabilities of the model to describe with accuracy the plastic behavior of the a-Ti material for both quasi-static and dynamic loadings, in particular, a very good agreement was obtained between the simulated and experimental post-test Taylor specimen geometries.

  17. Evolution of plastic deformation and its effect on mechanical properties of laser additive repaired Ti64ELI titanium alloy

    Science.gov (United States)

    Zhao, Zhuang; Chen, Jing; Tan, Hua; Lin, Xin; Huang, Weidong

    2017-07-01

    In this paper, laser additive manufacturing (LAM) technology with powder feeding has been employed to fabricate 50%LAMed specimens (i.e. the volume fraction of the laser deposited zone was set to 50%). With aid of the 3D-DIC technique, the tensile deformation behavior of 50%LAMed Ti64ELI titanium alloy was investigated. The 50%LAMed specimen exhibits a significant characteristic of strength mismatch due to the heterogeneous microstructure. The tensile fracture of 50%LAMed specimen occurs in WSZ (wrought substrate zone), but the tensile strength is slightly higher and the plastic elongation is significantly lower than that of the wrought specimen. The 3D-DIC results shows that the 50%LAMed specimen exhibits a characteristic of dramatic plastic strain heterogeneity and the maximal strain is invariably concentrated in WSZ. The ABAQUS simulation indicates that, the LDZ (laser deposited zone) can constrain the plastic deformation of the WSZ and biaxial stresses develop at the interface after yielding.

  18. Dislocation-density-based modeling of the plastic behavior of 4H-SiC single crystals using the Alexander-Haasen model

    Science.gov (United States)

    Gao, B.; Kakimoto, K.

    2014-01-01

    To dynamically model the plastic deformation of 4H-SiC single crystals during physical vapor transport (PVT) growth, the Alexander-Haasen model, originally proposed for the elemental semiconductor, is extended into IV-IV compound semiconductors. By fitting the model parameters to the experimental data, we show that the Alexander-Haasen model can describe the plastic deformation of 4H-SiC single crystals if the activation of the carbon-core partial dislocation is modeled in the high-temperature region (above 1000 °C) and the silicon-core partial dislocation is modeled in the low-temperature region (below 1000 °C). We then apply the same model to the dynamical deformation process of a 4H-SiC single crystal during PVT growth. The time evolution of the dislocation density is shown, and the effects of the cooling time on the final dislocation density, residual stress and stacking faults are also examined.

  19. Modeling Finite Deformations in Trigonal Ceramic Crystals with Lattice Defects

    Science.gov (United States)

    2010-02-08

    plasticity and fracture in high density polycrystals: constitutive modeling and numerical simulation. J. Mech. Phys. Solids 53, 261– 301 . Clayton, J.D...Horstemeyer, M.F., Korellis, J.S., Grishabar, R.B., Mosher, D., 1998. High temperature sensitivity of notched AISI 304L stainless steel tests. Theor

  20. Features of plastic strain localization at the yield plateau in Hadfield steel single crystals

    Science.gov (United States)

    Barannikova, S. A.; Zuev, L. B.

    2008-07-01

    Spatiotemporal distributions of local components of the plastic distortion tensor in Hadfield steel single crystals oriented for single twinning have been studied under active tensile straining conditions using the double-exposure speckle photography technique. Features of the macroscopically inhomogeneous strain localization at the yield plateau are considered. Relations between local components of the plastic distortion tensor in the zone of strain localization are analyzed.

  1. The notion of a plastic material spin in atomistic simulations

    Science.gov (United States)

    Dickel, D.; Tenev, T. G.; Gullett, P.; Horstemeyer, M. F.

    2016-12-01

    A kinematic algorithm is proposed to extend existing constructions of strain tensors from atomistic data to decouple elastic and plastic contributions to the strain. Elastic and plastic deformation and ultimately the plastic spin, useful quantities in continuum mechanics and finite element simulations, are computed from the full, discrete deformation gradient and an algorithm for the local elastic deformation gradient. This elastic deformation gradient algorithm identifies a crystal type using bond angle analysis (Ackland and Jones 2006 Phys. Rev. B 73 054104) and further exploits the relationship between bond angles to determine the local deformation from an ideal crystal lattice. Full definitions of plastic deformation follow directly using a multiplicative decomposition of the deformation gradient. The results of molecular dynamics simulations of copper in simple shear and torsion are presented to demonstrate the ability of these new discrete measures to describe plastic material spin in atomistic simulation and to compare them with continuum theory.

  2. Effect of severe plastic deformation on the specific heat and magnetic properties of cold rolled Gd sheets

    Science.gov (United States)

    Taskaev, S.; Skokov, K.; Khovaylo, V.; Buchelnikov, V.; Pellenen, A.; Karpenkov, D.; Ulyanov, M.; Bataev, D.; Usenko, A.; Lyange, M.; Gutfleisch, O.

    2015-03-01

    We report on specific heat and magnetic properties of thin Gd sheets obtained by means of a cold rolling technique. At temperatures well below Curie temperature TC, the cold rolling has a minor impact on the specific heat Cp. However, a well defined λ-type anomaly of Cp seen in the vicinity of TC in a polycrystalline Gd sample is markedly suppressed in the severely deformed samples. Depression of the λ peak is due to a large decrease of magnetization that presumably originates in a local magnetic anisotropy induced by the severe plastic deformation. Results of calculation of magnetocaloric effect from the Cp and magnetization data indicate that the magnetocaloric effect gradually decreases as the degree of plastic deformation increases. This trend is further confirmed by the direct measurements of the adiabatic temperature change ΔTad.

  3. Static-transmission-error vibratory-excitation contributions from plastically deformed gear teeth caused by tooth bending-fatigue damage

    Science.gov (United States)

    Mark, W. D.; Reagor, C. P.

    2007-02-01

    To assess gear health and detect gear-tooth damage, the vibratory response from meshing gear-pair excitations is commonly monitored by accelerometers. In an earlier paper, strong evidence was presented suggesting that, in the case of tooth bending-fatigue damage, the principal source of detectable damage is whole-tooth plastic deformation; i.e. yielding, rather than changes in tooth stiffness caused by tooth-root cracks. Such plastic deformations are geometric deviation contributions to the "static-transmission-error" (STE) vibratory excitation caused by meshing gear pairs. The STE contributions caused by two likely occurring forms of such plastic deformations on a single tooth are derived, and displayed in the time domain as a function of involute "roll distance." Example calculations are provided for transverse contact ratios of Qt=1.4 and 1.8, for spur gears and for helical-gear axial contact ratios ranging from Qa=1.2 to Qa=3.6. Low-pass- and band-pass-filtered versions of these same STE contributions also are computed and displayed in the time domain. Several calculations, consisting of superposition of the computed STE tooth-meshing fundamental harmonic contribution and the band-pass STE contribution caused by a plastically deformed tooth, exhibit the amplitude and frequency or phase modulation character commonly observed in accelerometer-response waveforms caused by damaged teeth. General formulas are provided that enable computation of these STE vibratory-excitation contributions for any form of plastic deformation on any number of teeth for spur and helical gears with any contact ratios.

  4. Mechanisms operating during plastic deformation of metals under concurrent production of cascades and dislocations

    Energy Technology Data Exchange (ETDEWEB)

    Trinkaus, H. [Institut fuer Festkoerperforschung, Forschungszentrum Juelich (Germany); Singh, B.N. [Technical Univ. of Denmark, Risoe National Laboratory for Sustainable Energy, Materials Research Dept., Roskilde (Denmark)

    2008-04-15

    Recent in-reactor tensile tests (IRTs) on pure copper have revealed a deformation behaviour which is significantly different from that observed in post-irradiation tensile tests (PITs). In IRTs, the material deforms uniformly and homogeneously without yield drop and plastic instability as commonly observed in PITs. An increase in the pre-yield dose results in an increase in the level of hardening over the whole test periods and a decrease in the uniform elongation suggesting that the materials 'remember' the impact of the pre-yield damage level. These features are modelled in terms of the decoration of dislocations with glissile dislocation loops. During pre-yield irradiation, dislocation decoration is due to the one-dimensional (1D) diffusion of cascade induced self-interstitial (SIA) clusters and their trapping in the stress field of the static grown-in dislocations. During post-yield irradiation and deformation, moving dislocations are decorated by the sweeping of matrix loops. The interaction of dislocations with loops and between loops is discussed as a function of the relevant parameters. On this basis, the kinetics of decoration is treated in terms of fluxes of loops to and reactions with each other in a conceived 2D space of decoration. In this space, loop coalescence, alignment and mutual blocking reactions are characterised by appropriate reaction cross sections. In the kinetic equations for 'dynamic decoration' under deformation, the evolution of the dislocation density is taken into account. Simple solutions of the kinetic equations are discussed. The apparent memory of the system for the pre-yield dose is identified as the result of simultaneous and closely parallel transient evolutions of the cascade damage and the dislocations up to the end of the IRTs. The contributions of dislocation decoration to yield and flow stresses are attributed to the interaction of dislocations with aligned loops temporarily or permanently immobilized

  5. Crystallization and X-ray diffraction of crystals formed in water-plasticized amorphous lactose.

    Science.gov (United States)

    Jouppila, K; Kansikas, J; Roos, Y H

    1998-01-01

    Effects of storage time and relative humidity on crystallization and crystal forms produced from amorphous lactose were investigated. Crystallization was observed from time-dependent loss of sorbed water and increasing intensities of peaks in X-ray diffraction patterns. The rate of crystallization increased with increasing storage relative humidity. Lactose crystallized mainly as alpha-lactose monohydrate and anhydrous crystals with alpha- and beta-lactose in a molar ratio of 5:3. The results suggested that the crystal form was defined by the early nucleation process. The crystallization data are important in modeling of crystallization phenomena and prediction of stability of lactose-containing food and pharmaceutical materials.

  6. Micromechanics of plastic deformation and phase transformation in a three-phase TRIP-assisted advanced high strength steel: Experiments and modeling

    Science.gov (United States)

    Srivastava, Ankit; Ghassemi-Armaki, Hassan; Sung, Hyokyung; Chen, Peng; Kumar, Sharvan; Bower, Allan F.

    2015-05-01

    The micromechanics of plastic deformation and phase transformation in a three-phase advanced high strength steel are analyzed both experimentally and by microstructure-based simulations. The steel examined is a three-phase (ferrite, martensite and retained austenite) quenched and partitioned sheet steel with a tensile strength of ~980 MPa. The macroscopic flow behavior and the volume fraction of martensite resulting from the austenite-martensite transformation during deformation were measured. In addition, micropillar compression specimens were extracted from the individual ferrite grains and the martensite particles, and using a flat-punch nanoindenter, stress-strain curves were obtained. Finite element simulations idealize the microstructure as a composite that contains ferrite, martensite and retained austenite. All three phases are discretely modeled using appropriate crystal plasticity based constitutive relations. Material parameters for ferrite and martensite are determined by fitting numerical predictions to the micropillar data. The constitutive relation for retained austenite takes into account contributions to the strain rate from the austenite-martensite transformation, as well as slip in both the untransformed austenite and product martensite. Parameters for the retained austenite are then determined by fitting the predicted flow stress and transformed austenite volume fraction in a 3D microstructure to experimental measurements. Simulations are used to probe the role of the retained austenite in controlling the strain hardening behavior as well as internal stress and strain distributions in the microstructure.

  7. Equation of state for charge-doping-induced deformation and hardening in cubic crystals

    Science.gov (United States)

    Li, Yao; Liu, Xiaofei; Guo, Wanlin

    2017-08-01

    Charge doping would inevitably induce strain, which can significantly influence device performance but cannot be directly predicted by classical mechanical laws. Here we present a set of equations of states for deformable cubic crystals subjected to charge doping by introducing the quantum electronic stress at fixed lattice as equivalent mechanical pressure into the classical hydrostatic pressure-vs-deformation equations. The equations are proved to be efficient for all the cubic crystals considered in this work (diamond, Si, Ge, GaAs, Al, and ZrO2) by first-principles calculations. The proposed method and presented equations should pave a convenient way to predict doping effects on device performance.

  8. Facilitating protein crystal cryoprotection in thick-walled plastic capillaries by high-pressure cryocooling.

    Science.gov (United States)

    Chen, Yi-Fan; Tate, Mark W; Gruner, Sol M

    2009-06-01

    Many steps in the X-ray crystallographic solution of protein structures have been automated. However, the harvesting and cryocooling of crystals still rely primarily on manual handling, frequently with consequent mechanical damage. An attractive alternative is to grow crystals directly inside robust plastic capillaries that may be cryocooled and mounted on the beamline goniometer. In this case, it is still desirable to devise a way to cryoprotect the crystals, which is difficult owing to the poor thermal conductivity of thick plastic capillary walls and the large thermal mass of the capillary and internal mother liquor. A method is described to circumvent these difficulties. It is shown that high-pressure cryocooling substantially reduced the minimal concentrations of cryoprotectants required to cryocool water inside capillaries without formation of ice crystals. The minimal concentrations of PEG 200, PEG 400 and glycerol necessary for complete vitrification under pressure cryocooling were determined.

  9. The effect of high temperature plastic deformation on the thermal stability and microstructure of Zr{sub 55}Cu{sub 30}Ni{sub 5}Al{sub 10} bulk metallic glass

    Energy Technology Data Exchange (ETDEWEB)

    Liu, L. [State Key Lab of Die and Mould Technology, Huazhong University of Science and Technology, 430074 Wuhan (China)], E-Mail: lliu2000@public.wh.hb.cn; Chen, Q. [State Key Lab of Die and Mould Technology, Huazhong University of Science and Technology, 430074 Wuhan (China); Chan, K.C. [Department of Industrial and Systems Engineering, Hong Kong Polytechnic University, Hong Kong (China); Wang, J.F. [State Key Lab of Die and Mould Technology, Huazhong University of Science and Technology, 430074 Wuhan (China); Pang, G.K.H. [Department of Applied Physics, The Hong Kong Polytechnic University, Hong Kong (China)

    2007-03-25

    The plastic deformation of Zr{sub 55}Cu{sub 30}Al{sub 10}Ni{sub 5} (numbers indicate at.%) bulk metallic glass (BMG) was conducted in the supercooled liquid region under uniaxial tension with various strain rates ranging from 8.3 x 10{sup -4} to 2 x 10{sup -2} s{sup -1}. It was found that the deformation behavior of the BMG is strongly dependent on strain rate. Thermal and structural investigations revealed that the plastic deformation reduced the thermal stability of Zr{sub 55}Cu{sub 30}Al{sub 10}Ni{sub 5} BMG and promoted crystallization or reordering of the amorphous structure. To clarify the correlation between strain and structure of the BMG, the sample that was deformed at a high strain rate and exhibited significant necking was selected for a detailed investigation of its structure in different parts (e.g., the tip, middle and end parts) by conventional and high-resolution transmission electron microscopy. It was found that a band crystalline structure with a strongly crystallographic orientation was formed at the tip part, while inhomogeneous nanocrystallization occurred in the middle parts, and the amorphous structure remained almost unchanged in the end part. The different structures observed in different parts of the deformed sample are attributed to the inhomogeneous deformation of the BMG at high strain rates.

  10. Deformation microstructure and orientation of F.C.C. crystals

    DEFF Research Database (Denmark)

    Liu, Q.; Hansen, N.

    1995-01-01

    The effect of crystallographic orientation on the microstructural evolution in f.c.c. metals with medium to high stacking fault energy is analyzed. This analysis is based on a literature review of the behaviour of single crystals and polycrystals supplemented with an experimental study of cold...

  11. Evaluation of impacts of stress triaxiality on plastic deformability of RAFM steel using various types of tensile specimen

    Energy Technology Data Exchange (ETDEWEB)

    Kato, Taichiro, E-mail: kato.taichiro@jaea.go.jp [Japan Atomic Energy Agency, 2-166, Obuchi-omotedate, Rokkasho, Aomori 039-3212 (Japan); Ohata, Mitsuru [Osaka University, 2-1, Yamada-Oka, Suita, Osaka 565-0871 (Japan); Nogami, Shuhei [Tohoku University, 6-6-01-2, Aramaki-aza-Aoba, Aoba-ku, Sendai, Miyagi 980-8579 (Japan); Tanigawa, Hiroyasu [Japan Atomic Energy Agency, 2-166, Obuchi-omotedate, Rokkasho, Aomori 039-3212 (Japan)

    2016-11-01

    Highlights: • The fracture ductility is lower as the stress triaxiality is higher. • Voids of the interrupted RB1 specimen were observed along grain boundaries and expanded parallel to the tensile axis. • Voids of interrupted R0.2 specimen were rounded shape than those of RB1. • The fracture surface of specimens were observed the elongated and the equiaxed dimples. • The decrease of plastic deformability of the notched specimen was caused by the process of voids formation and crack growth due to the effect of plastic constraint of the notch. - Abstract: A case study on a fusion blanket design such as DEMO indicated that there could be some sections with high stress triaxiality, a parameter to evaluate the magnitude of plastic constraint, in the case of plasma disruption or coolant loss accident. Therefore, it is necessary to accurately understand the ductility loss limit of structural material in order to conduct the structural design assessment of the irradiated and embrittled fusion reactor blanket. Tensile tests were conducted by using three kinds of tensile specimen shapes to investigate of the plastic deformability of F82H. From the results, the fracture ductility is lower as the stress triaxiality is higher. Voids of the interrupted RB1 specimen were observed along grain boundaries and expanded parallel to the tensile axis. That of interrupted R0.2 specimen was rounded shape compared with those of RB1. The fracture surface of RB1 and R0.2 specimens were observed the elongated dimples and the equiaxed dimples without so much elongation, respectively. It is considered that the decrease of plastic deformability for the notched specimen was caused by the process of voids formation and crack growth due to the effect of plastic constraint of the notch.

  12. Crystal plasticity modeling of through-thickness texture heterogeneity in heavily rolled aluminum

    DEFF Research Database (Denmark)

    Delannay, Laurent; Mishin, Oleg V.

    2013-01-01

    The textures measured at different depths inside a cold rolled aluminium sheet are compared to results obtained by crystal plasticity predictions. Different assumptions about the micro-to-macro scale transitions are considered. The input texture reveals a through-thickness gradient that originate...

  13. Deformations of charge-density wave crystals under electric field

    Energy Technology Data Exchange (ETDEWEB)

    Pokrovskii, V.Ya. [Kotel' nikov Institute of Radioengineering and Electronics of RAS, Mokhovaya 11, 125009 Moscow (Russian Federation)], E-mail: pok@cplire.ru; Zybtsev, S.G.; Loginov, V.B. [Kotel' nikov Institute of Radioengineering and Electronics of RAS, Mokhovaya 11, 125009 Moscow (Russian Federation); Timofeev, V.N. [Baikov Institute of Metallurgy of RAS, Leninsky prosp. 49, 119991 Moscow (Russian Federation); Kolesov, D.V.; Yaminsky, I.V. [Advanced Technologies Center, Department of Physics, Moscow State University, Leninskie Gori, 119991 Moscow (Russian Federation); Gorlova, I.G. [Kotel' nikov Institute of Radioengineering and Electronics of RAS, Mokhovaya 11, 125009 Moscow (Russian Federation)

    2009-03-01

    We report the effects of electric field induced deformations of quasi one-dimensional conductors with charge-density wave (CDW). The most pronounced sort of deformation is torsional strain (TS). The TS is found to comprise two contributions. The features of the 1st-the larger one-are threshold hysteretic dependence on electric field and high relaxation time {tau}: For o-TaS{sub 3}{tau}{approx}10{sup -2} s at T=80 K and falls as exp(900 K/T) with increasing T. The 2nd contribution is linear in electric field and does not drop with frequency increase. The amplitude of this contribution falls abruptly with T approaching the Peierls transition temperature T{sub P} from below. Similar features of TS are demonstrated for other CDW compounds: (TaSe{sub 4}){sub 2}I, K{sub 0.3}MoO{sub 3} and NbS{sub 3} type II, for which T{sub P}{approx}360 K. We attribute the 1st and the 2nd contributions to large (hysteretic) and small (near-equilibrium) CDW deformations, respectively, likely-shear at the surface. The TS is observed also above T{sub P}: For TaS{sub 3} and (TaSe{sub 4}){sub 2}I typical torsional amplitude is 10{sup -1} deg./V in the resonance regimes, corresponding to the piezomodulus {approx}10{sup -9} m/V. A separate study of TS was performed at room temperature with AFM technique. Apart from this ('intrinsic') effect, we observe electrostatic contribution to the TS. In contrast to the intrinsic response, the electrostatic one is proportional to the potential either over the sample, or over an additional electrode ('gate') placed nearby, but not to the difference of potentials between the sample ends. It is typically 2 orders of magnitude less. The intrinsic TS reveals a new electromechanical effect at room temperature, presumably associated with the excitations of the pinned mode of the CDW fluctuations. Its observation opens prospects for application of quasi one-dimensional conductors as micro- and nano-actuators. Basing on the electrostatic

  14. Numerical simulation of strain localization and damage evolution in large plastic deformation using mixed finite element method

    Institute of Scientific and Technical Information of China (English)

    Zhanghua Chen; Jiajian Jin; Jiumei Xiao

    2004-01-01

    An investigation of computer simulation is presented to analyze the effects of strain localization and damage evolution in large plastic deformation. The simulation is carried out by using an elastic-plastic-damage coupling finite element program that is developed based on the concept of mixed interpolation of displacement/pressure. This program has been incorporated into a damage mechanics model as well as the corresponding damage criterion. To illustrate the performance of the proposed approach, a typical strain localization problem has been simulated. The results show that the proposed approach is of good capability to capture strain localization and predict the damage evolution.

  15. A positron study on the microstructural evolution of Al-Li based alloys in the early stages of plastic deformation

    Energy Technology Data Exchange (ETDEWEB)

    Diego, N. de; Rio, J. del [Univ. Complutense, Madrid (Spain). Dept. de Fisica de Materiales; Romero, R.; Somoza, A. [Univ. Nacional del Centro de la Provincia de Buenos Aires, Tandil (Argentina). Inst. de Fisica de Materiales]|[Comision de Investigaciones Cientificas de la Provincia de Buenos Aires (Argentina)

    1997-11-01

    The formation of voids by coalescence of microvoids initiated at precipitates has been proposed to explain the fracture mechanisms in alloys containing a large number of second phase particles whereas in binary Al-Li alloys with shearable particles the brittleness could be linked with the grain boundary fracture. Most of the microstructure studies of Al-Li alloys have been performed by deforming to fracture; however, little is known about the processes and mechanisms involved in the early stages of plastic deformation. Butler et al. have studied a quaternary Al-Li alloy and have found that there is a critical effective strain to cause voiding, which is about 0.06 and 0.1% for the aged and for the solution treated material respectively. It is very well established that positrons are very sensitive to vacancy-like defects. With the aim of clarifying the behavior of Al-Li based alloys in the very early stages of deformation, and detecting the eventual formation of microvoids, the authors have studied the response of the positron lifetime parameters to the degrees of deformation in age-hardenable Al-Li based alloys plastically deformed under tensile stress.

  16. Crystal plasticity finite element modelling of the extrusion texture of a magnesium alloy

    Science.gov (United States)

    Shao, Yichuan; Tang, Tao; Li, Dayong; Tang, Weiqin; Peng, Yinghong

    2015-07-01

    In this paper, a crystal plasticity finite-element model (CPFEM) is developed to simulate the hot extrusion texture of the magnesium alloy AZ31. The crystal plasticity model is implemented in ABAQUS™ via user interface VUMAT subroutine. The elasto-plastic self-consistent (EPSC) model is used as the basic polycrystal framework to simulate the slip and twinning during the extrusion. Furthermore, this framework is extended to account for the effects of the dynamically recrystallized (DRX) grains on the extrusion textures. Good agreement is found between the experimentally measured and simulated textures. The simulation results show that the presence of a secondary texture component around || extrusion direction (ED) can be attributed to the lattice rotation around the c-axis during the formation of the DRX grains. In addition, the shear strain imposed on the extruded material affects the resulting texture by enhancing the basal slip mode as the material passes through the extrusion opening.

  17. Circular Functions Based Comprehensive Analysis of Plastic Creep Deformations in the Fiber Reinforced Composites

    Science.gov (United States)

    Monfared, Vahid

    2016-06-01

    Analytically based model is presented for behavioral analysis of the plastic deformations in the reinforced materials using the circular (trigonometric) functions. The analytical method is proposed to predict creep behavior of the fibrous composites based on basic and constitutive equations under a tensile axial stress. New insight of the work is to predict some important behaviors of the creeping matrix. In the present model, the prediction of the behaviors is simpler than the available methods. Principal creep strain rate behaviors are very noteworthy for designing the fibrous composites in the creeping composites. Analysis of the mentioned parameter behavior in the reinforced materials is necessary to analyze failure, fracture, and fatigue studies in the creep of the short fiber composites. Shuttles, spaceships, turbine blades and discs, and nozzle guide vanes are commonly subjected to the creep effects. Also, predicting the creep behavior is significant to design the optoelectronic and photonic advanced composites with optical fibers. As a result, the uniform behavior with constant gradient is seen in the principal creep strain rate behavior, and also creep rupture may happen at the fiber end. Finally, good agreements are found through comparing the obtained analytical and FEM results.

  18. Circular Functions Based Comprehensive Analysis of Plastic Creep Deformations in the Fiber Reinforced Composites

    Science.gov (United States)

    Monfared, Vahid

    2016-12-01

    Analytically based model is presented for behavioral analysis of the plastic deformations in the reinforced materials using the circular (trigonometric) functions. The analytical method is proposed to predict creep behavior of the fibrous composites based on basic and constitutive equations under a tensile axial stress. New insight of the work is to predict some important behaviors of the creeping matrix. In the present model, the prediction of the behaviors is simpler than the available methods. Principal creep strain rate behaviors are very noteworthy for designing the fibrous composites in the creeping composites. Analysis of the mentioned parameter behavior in the reinforced materials is necessary to analyze failure, fracture, and fatigue studies in the creep of the short fiber composites. Shuttles, spaceships, turbine blades and discs, and nozzle guide vanes are commonly subjected to the creep effects. Also, predicting the creep behavior is significant to design the optoelectronic and photonic advanced composites with optical fibers. As a result, the uniform behavior with constant gradient is seen in the principal creep strain rate behavior, and also creep rupture may happen at the fiber end. Finally, good agreements are found through comparing the obtained analytical and FEM results.

  19. Influence of stress path change on the resistance to plastic deformation of cold rolled sheets

    Institute of Scientific and Technical Information of China (English)

    Zonghai Ding; Pavel Huml

    2005-01-01

    Flat workpieces have been tested in order to investigate the influence of stress path change (loading mode) while keeping strain path unchanged. These investigations are pertinent to the testing of cold rolled strips and to subsequent forming. The workpieces which first compressed by plane strain compression in thickness direction were then tested in perpendicular direction in order to measure the influence of strain and stress path. The tension workpieces came from flat die compression test at different deformation histories. Two different materials were investigated: 18/8 Ti stainless steel and AW-1050 aluminium. The results show that the plastic flow by tension in lengthwise direction after pre-strain by compression in thickness direction will begin at an appreciably lower stress than that of the workpieces unloaded after pre-compression. Comparing with two materials, it can be seen that both 18/8Ti stainless steel and AW-1050 aluminium behave similarly. The drop in yield stress is lower for AW-1050 aluminium than that for 18/8 Ti stainless steel. However, reloading in different directions than in the precious step results in significantly higher strain hardening.

  20. The External Periodic Influence Effect on the Kinetics of Metals Fragmentationduring the Severe Plastic Deformation

    Directory of Open Access Journals (Sweden)

    A.V. Khomenko

    2015-03-01

    Full Text Available Using the Landau theory of phase transitions, the solids fragmentation during the process of severe plastic deformation is studied. The density of grain boundaries, dislocations and entropy are introduced for describing the defect structures appearing. This allows us to take into account the two channels of energy dissipation (thermal one and defects formation. The phase diagram that establishes the domains of realization of different limiting structures types is obtained. The interaction of several defect types on the formation of limiting structure in terms of internal energy is studied. The formation conditions for two limiting structures are found. They correspond to the mode, in which there is a mixture of different grain sizes. The kinetics of setting in the steady-state values of the defects density is investigated within the scope of the adiabatic approximation, at which the dislocations density change follows the evolution of the grain boundaries density. The external periodic influence is also analyzed. It is shown that frequency and amplitude of external influence change the system behavior.

  1. Influence of cooling rate on cracking and plastic deformation during impact and indentation of borosilicate glasses.

    Science.gov (United States)

    Zehnder, Christoffer; Bruns, Sebastian; Peltzer, Jan-Niklas; Durst, Karsten; Korte-Kerzel, Sandra; Möncke, Doris

    2017-03-01

    The influence of a changing glass topology on local mechanical properties was studied in a multi-technique nanomechanical approach. The glass response against sharp contacts can result in structural densification, plastic flow or crack initiation. Using instrumented indentation testing, the mechanical response was studied in different strain rate regimes for a sodium-boro-silicate glass (NBS) exhibiting altering structures due to varying processing conditions. Comparison with data from former studies as well as with literature data on other glass structures helped to elucidate the role of the borate and silicate sub-networks and to understand the overall mechanical properties of the mixed glass systems. A peculiarity of some of the NBS glasses tested in this study is the fact that the connectivity of the borate and silicate entities depends on the sample’s thermal history. While the influence on macroscopic material properties such as E and H is minor, the onset of cracking indeed is influenced by those structural changes within the glass. Rapidly quenched glass shows an improved crack resistance, which is even more pronounced at high strain rates. Studies on various processing conditions further indicate that this transition is closely related to the cooling rate around Tg. The strain rate dependence of cracking is discussed in terms of the occurrence of shear deformation and densification.

  2. Plastic deformation behavior of Fe–Co–B–Si–Nb–Cr bulk metallic glasses under nanoindentation

    Energy Technology Data Exchange (ETDEWEB)

    Kim, J.T.; Hong, S.H.; Lee, C.H. [HMC, Faculty of Nanotechnology and Advanced Materials Engineering, Sejong University, 98 Gunja-dong, Gwangjin-gu, Seoul 143-747 (Korea, Republic of); Park, J.M., E-mail: jinman_park@hotmail.com [Materials Research Center, Samsung Advanced Institute of Technology (SAIT), San 14-1, Nongseo-dong, Giheung-gu, Yongin-si, Gyeonggi-do 446-712 (Korea, Republic of); Kim, T.W.; Lee, W.H. [HMC, Faculty of Nanotechnology and Advanced Materials Engineering, Sejong University, 98 Gunja-dong, Gwangjin-gu, Seoul 143-747 (Korea, Republic of); Yim, H.I. [Department of Physics, Sookmyung Women’s University, Hyochangwongil 52, Yongsan-ku, Seoul 140-742 (Korea, Republic of); Kim, K.B., E-mail: kbkim@sejong.ac.kr [HMC, Faculty of Nanotechnology and Advanced Materials Engineering, Sejong University, 98 Gunja-dong, Gwangjin-gu, Seoul 143-747 (Korea, Republic of)

    2014-02-25

    Highlights: • Additional Cr modulation of atomic structure of Fe-Co-B-Si-Nb BMGs. • An amount of free volume characterized by a combination of nanoindentation and AFM. • Free volume determined by height measurement of AFM after nanoindentation. -- Abstract: In this work, we investigate the effect of Cr addition on thermal properties and indentation behavior of Fe{sub 52}Co{sub 20−x}B{sub 20}Si{sub 4}Nb{sub 4}Cr{sub x} alloys with x = 0, 1, 3 and 5 at.%, respectively. Among all studied alloys, the Fe{sub 52}Co{sub 17}B{sub 20}Si{sub 4}Nb{sub 4}Cr{sub 3} bulk metallic glass (BMG) exhibits the highest thermal stability with large supercooled liquid region of 40 K and the pronounced plastic deformation features which is serrated flow (pop-in event) and significant pile-up of materials around indents. This demonstrates that the appropriate addition of Cr in Fe-based BMG can induce the internal atomic structure modulation and promote the mechanical softening, which are discussed in terms of free volume concept.

  3. Analytical and Experimental Investigation of Process Loads on Incremental Severe Plastic Deformation

    Science.gov (United States)

    Okan Görtan, Mehmet

    2017-05-01

    From the processing point of view, friction is a major problem in the severe plastic deformation (SPD) using equal channel angular pressing (ECAP) process. Incremental ECAP can be used in order to optimize frictional effects during SPD. A new incremental ECAP has been proposed recently. This new process called as equal channel angular swaging (ECAS) combines the conventional ECAP and the incremental bulk metal forming method rotary swaging. ECAS tool system consists of two dies with an angled channel that contains two shear zones. During ECAS process, two forming tool halves, which are concentrically arranged around the workpiece, perform high frequency radial movements with short strokes, while samples are pushed through these. The oscillation direction nearly coincides with the shearing direction in the workpiece. The most important advantages in comparison to conventional ECAP are a significant reduction in the forces in material feeding direction plus the potential to be extended to continuous processing. In the current study, the mechanics of the ECAS process is investigated using slip line field approach. An analytical model is developed to predict process loads. The proposed model is validated using experiments and FE simulations.

  4. Surface nanocrystallization of 7A04 aluminium alloy induced by circulation rolling plastic deformation

    Institute of Scientific and Technical Information of China (English)

    YE Hui-qiong; FAN Xin-min

    2006-01-01

    The surface nanocrystalline microstructures of 7A04 aluminium alloy was obtained by means of circulation rolling plastic deformation(CRPD),the grain refinement behavior and the hardness variation were examined. X-ray diffraction(XRD) and transmission electron microscopy(TEM) were applied to characterize the microstructure of the surface layer. The experimental evidences show that,after the CRPD treatment,the mean grain size in the surface layer is about 50 nm. The microhardness of the nanostructured surface layers is enhanced significantly after CRPD compared with that of the matrix,which can be attributed primarily to the grain refinement. The microhardness at the top surface can reach about HV0.05335,while the value of the matrix is HV0.05160 or so. The surface hardening effect is obtained obviously. Besides,the thermal stability of nanocrystalline layer was investigated. The results of the XRD analysis and the microhardness measurement show that the nanocrystalline layer has better thermal-stability than the matrix. And the DSC measurement shows that the synthesis of nanostructured surface layer has influence on the phase transformation of 7A04 aluminum alloy.

  5. Research of Tool Durability in Surface Plastic Deformation Processing by Burnishing of Steel Without Metalworking Fluids

    Science.gov (United States)

    Grigoriev, S. N.; Bobrovskij, N. M.; Melnikov, P. A.; Bobrovskij, I. N.

    2017-05-01

    Modern vector of development of machining technologies aimed at the transition to environmentally safe technologies - “green” technologies. The concept of “green technology” includes a set of signs of knowledge intended for practical use (“technology”). One of the ways to improve the quality of production is the use of surface plastic deformation (SPD) processing methods. The advantage of the SPD is a capability to combine effects of finishing and strengthening treatment. The SPD processing can replace operations: fine turning, grinding or polishing. The SPD is a forceful contact impact of indentor on workpiece’s surface in condition of their relative motion. It is difficult to implement the core technology of the SPD (burnishing, roller burnishing, etc.) while maintaining core technological advantages without the use of lubricating and cooling technology (metalworking fluids, MWF). The “green” SPD technology was developed by the authors for dry processing and has not such shortcomings. When processing with SPD without use of MWF requirements for tool’s durability is most significant, especially in the conditions of mass production. It is important to determine the period of durability of tool at the design stage of the technological process with the purpose of wastage preventing. This paper represents the results of durability research of natural and synthetic diamonds (polycrystalline diamond - ASPK) as well as precision of polycrystalline superabrasive tools made of dense boron nitride (DBN) during SPD processing without application of MWF.

  6. Mechanical Properties and Atomic Explanation of Plastic Deformation for Diamond-Like BC2

    Directory of Open Access Journals (Sweden)

    Baobing Zheng

    2016-06-01

    Full Text Available Motivated by a recently predicted structure of diamond-like BC2 with a high claimed hardness of 56 GPa (J. Phys. Chem. C 2010, 114, 22688–22690, we focus on whether this tetragonal BC2 (t-BC2 is superhard or not in spite of such an ultrahigh theoretical hardness. The mechanical properties of t-BC2 were thus further extended by using the first principles in the framework of density functional theory. Our results suggest that the Young’s and shear moduli of t-BC2 exhibit a high degree of anisotropy. For the weakest shear direction, t-BC2 undergoes an electronic instability and structural collapse upon a shear strain of about 0.11, with its theoretically ideal strength of only 36.2 GPa. Specifically, the plastic deformation under shear strain along the (110[001] direction can be attributed to the breaking of d1 B–C bonds.

  7. Texture Evolution in a Ti-Ta-Nb Alloy Processed by Severe Plastic Deformation

    Science.gov (United States)

    Cojocaru, Vasile-Danut; Raducanu, Doina; Gloriant, Thierry; Cinca, Ion

    2012-05-01

    Titanium alloys are extensively used in a variety of applications because of their good mechanical properties, high biocompatibility, and corrosion resistance. Recently, β-type Ti alloys containing Ta and Nb have received much attention because they feature not only high specific strength but also biocorrosion resistance, no allergic problems, and biocompatibility. A Ti-25Ta-25Nb β-type titanium alloy was subjected to severe plastic deformation (SPD) processing by accumulative roll bonding and investigated with the aim to observe the texture developed during SPD processing. Texture data expressed by pole figures, inverse pole figures, and orientation distribution functions for the (110), (200), and (211) β-Ti peaks were obtained by XRD investigations. The results showed that it is possible to obtain high-intensity share texture modes ({001}) and well-developed α and γ-fibers; the most important fiber is the α-fiber ({001} to {114} to {112} ). High-intensity texture along certain crystallographic directions represents a way to obtain materials with high anisotropic properties.

  8. Evaluation of the Mechanical Properties of AA 6063 Processed by Severe Plastic Deformation

    Science.gov (United States)

    Jafarlou, Davoud Mashhadi; Zalnezhad, Erfan; Hamouda, Abdelmagid Salem; Faraji, Ghader; Mardi, Noor Azizi Bin; Hassan Mohamed, Mohsen Abdelnaeim

    2015-05-01

    In this study, the mechanical properties, including surface hardness, tensile strength, fatigue, and fretting fatigue behavior of AA 6063 processed by equal channel angular pressing as the most efficient severe shear plastic deformation (SPD) technique, were investigated. Following the SPD process, samples were subjected to heat treatment (HT), hard anodizing (HA), and a combination of HT and HA. Rotating-bending fretting fatigue tests were performed to explore the samples' response to the fretting condition. From the experimental fatigue and fretting fatigue tests, it was apparent that the SPD treatment had a positive effect on enhancing the fatigue and fretting fatigue lives of the samples at low and high-cyclic loads compared with the HT technique by 78 and 67 pct, and 131 and 154 pct respectively. The results also indicate that the SPD + HT technique significantly increased the fatigue and fretting fatigue lives of the samples at high and low cycles by 15.56 and 8.33 pct, and 14.4 and 5.1 pct respectively, compared with the SPD method. HA of AA6063 increased the fatigue and fretting fatigue lives of SPD + HT-processed samples at low cycle by 15.5 and 18.4 pct respectively; however, at high cycle, HA had reverse effects, whereby the fatigue and fretting fatigue lives of SPD + HT-processed samples decreased by 16.7 and 30 pct, respectively.

  9. Finite deformation analysis of continuum structures with time dependent anisotropic elastic plastic material behavior (LWBR/AWBA Development Program)

    Energy Technology Data Exchange (ETDEWEB)

    Hutula, D.N.

    1980-03-01

    A finite element procedure is presented for finite deformation analysis of continuum structures with time-dependent anisotropic elastic-plastic material behavior. An updated Lagrangian formulation is used to describe the kinematics of deformation. Anisotropic constitutive relations are referred, at each material point, to a set of three mutually orthogonal axes which rotate as a unit with an angular velocity equal to the spin at the point. The time-history of the solution is generated by using a linear incremental procedure with residual force correction, along with an automatic time step control algorithm which chooses time step sizes to control the accuracy and numerical stability of the solution.

  10. Light-induced deformation of photoresponsive liquid crystals on a water surface.

    Science.gov (United States)

    Okano, Kunihiko; Shinohara, Masato; Yamashita, Takashi

    2009-01-01

    Photodeformation: Azobenzene derivatives showing a room-temperature liquid crystal (LC) phase exhibit photoinduced deformation on a water surface. While a droplet of a LC sample floating on the surface expands upon UV irradiation, a LC sample containing a solvent is condensed towards the center of the illuminated regions (see figure).

  11. Avalanches, plasticity, and ordering in colloidal crystals under compression.

    Science.gov (United States)

    McDermott, D; Reichhardt, C J Olson; Reichhardt, C

    2016-06-01

    Using numerical simulations we examine colloids with a long-range Coulomb interaction confined in a two-dimensional trough potential undergoing dynamical compression. As the depth of the confining well is increased, the colloids move via elastic distortions interspersed with intermittent bursts or avalanches of plastic motion. In these avalanches, the colloids rearrange to minimize their colloid-colloid repulsive interaction energy by adopting an average lattice constant that is isotropic despite the anisotropic nature of the compression. The avalanches take the form of shear banding events that decrease or increase the structural order of the system. At larger compression, the avalanches are associated with a reduction of the number of rows of colloids that fit within the confining potential, and between avalanches the colloids can exhibit partially crystalline or anisotropic ordering. The colloid velocity distributions during the avalanches have a non-Gaussian form with power-law tails and exponents that are consistent with those found for the velocity distributions of gliding dislocations. We observe similar behavior when we subsequently decompress the system, and find a partially hysteretic response reflecting the irreversibility of the plastic events.

  12. Deformation in nanocrystalline metals

    OpenAIRE

    Helena Van Swygenhoven; Julia R. Weertman

    2006-01-01

    It is now possible to synthesize polycrystalline metals made up of grains that average less than 100 nm in size. Such nanocrystalline metals contain a significant volume fraction of interfacial regions separated by nearly perfect crystals. The small sizes involved limit the conventional operation of dislocation sources and thus a fundamental question arises: how do these materials deform plastically? We review the current views on deformation mechanisms in nanocrystalline, face-centered cubic...

  13. Studies on electron-beam irradiation and plastic deformation of medical-grade ultra-high molecular weight polyethylene

    Energy Technology Data Exchange (ETDEWEB)

    Czaja, Krystyna, E-mail: krystyna.czaja@uni.opole.p [Opole University, Faculty of Chemistry, Oleska 48, 45-052 Opole (Poland); SudoL, Marek [Opole University, Faculty of Chemistry, Oleska 48, 45-052 Opole (Poland)

    2011-03-15

    Separated and combined electron-beam irradiation and plastic deformation effects on the structures of ultra-high molecular weight polyethylene (UHMWPE) were studied. It was found that the concentration of carbonyl (ketones, esters and peresters), hydroxyl and vinyl groups increases with the growing dose of adsorbed electrons. It also tends to exhibit a slight increase in the melting point and crystallinity of the samples. A mechanical stress in the polymer was found to accelerate radiation-induced degradation. It was concluded that each of the factors studied (i.e. electron beam sterilization and plastic deformation) had a different impact on the polymer structure. The change in the sequence of action of these factors can dramatically influence the process of UHMWPE destruction. Some effects may be limited or enhanced by the action of other factors. Therefore, the resulting effects of destructive factors depend qualitatively and quantitatively on their intensity and order.

  14. Influence of thermal treatments and plastic deformation on the atomic mobility in Zr{sub 50.7}Cu{sub 28}Ni{sub 9}Al{sub 12.3} bulk metallic glass

    Energy Technology Data Exchange (ETDEWEB)

    Qiao, J.C.; Pelletier, J.M., E-mail: jean-marc.pelletier@insa-lyon.fr

    2014-12-05

    Highlights: • Atomic mobility in Zr-based metallic glass were evaluated by DMA and nanoindentation. • Atomic mobility is reduced by physical aging while increased by plastic deformation. • The atomic mobility in metallic glasses are related to concentration of “defects”. • Value of the Kohlrausch exponent β{sub KWW} in the Zr-based metallic glass is around 0.5. - Abstract: The atomic mobility in Zr{sub 50.7}Cu{sub 28}Ni{sub 9}Al{sub 12.3} bulk metallic glass has been evaluated as a function of temperature and the influence of different treatments (thermal annealing, plastic deformation) has been investigated using mechanical spectroscopy and nanoindentation technique. In particular the loss factor has been measured. This parameter is connected to the energy loss during the application of a periodic stress and therefore is sensitive to atomic movements. Master curves can be obtained, confirming the validity of the time–temperature superposition principle. The atomic mobility is reduced during physical aging (also called structural relaxation) but increased after a plastic deformation (a rejuvenation of the material is then induced). In the framework of the nanoindentation tests and mechanical spectroscopy, the concentration of “defects” in metallic glasses increases by deformation (i.e. cold-rolling) while decreases after structural relaxation and crystallization. These results are discussed using the concept of quasi-point defects, which assist the atomic movements.

  15. Partial cordierite breakdown during post-seismic recovery: the significance of plastic deformation for cation diffusion and metamorphic equilibrium

    Science.gov (United States)

    Büttner, Steffen; Costin, Gelu

    2010-05-01

    Brittle intra-crystal fracturing occurred during a microseismic event in migmatites of the Ordovician Sierras Pampeanas (NW Argentina), forming micro-shear zones and brittle fragments in cordierite. The seismic event occurred at amphibolite facies P-T conditions under high strain rates (≥ 10-7 s-1). During post-seismic recovery and coarsening of crystal fragments, primary cordierite (XMg=0.65) underwent partial breakdown along the deformation zone, forming a secondary mineral assemblage in an alteration zone along grain boundaries of coarsened crystal fragments. The secondary assemblage is restricted to the recovery zone. The breakdown of primary cordierite (CrdP) is accompanied by the formation of secondary sillimanite, magnetite, staurolite (XMg=0.24, ~0.5 wt% ZnO), quartz, and secondary cordierite (CrdS; XMg=0.70-0.80). CrdS, volumetrically the most important secondary phase, forms by diffusion of Mg and Fe, altering CrdP by Fe loss and uptake of Mg. All other secondary phases form by nucleation. Two simultaneous cordierite breakdown reactions have been balanced using CSpace 1.01: 100 CrdP (XMg 0.65) = 21.8 Sil +12.8 Mag + 33.5 Qtz + 5.6 H2O + 89.1 CrdS (XMg 0.75) 100 CrdP (XMg0.65) = 8.1 Mag + 53.6 Qtz + 4.5 H2O + 8.1 St (XMg0.24) + 83.3 CrdS (XMg 0.75) The bulk chemical major element composition of the alteration zone is nearly identical to the composition of primary cordierite, suggesting that elemental exchange between the alteration zone and the cordierite matrix is limited. However, minor fluid influx, supplying Zn, K, Si, and O is indicated by the composition of staurolite, minor formation of biotite and quartz, and by the oxidation of Fe2+ within the alteration zone. The modal composition of the alteration zone has been determined by point counting, which yields similar results like CSpace results (converted into vol%), and MODAN calculations, which calculates modes based on the average alteration zone composition, and the compositions of secondary

  16. Influence of the Repetitive Corrugation on the Mechanism Occuring During Plastic Deformation of CuSn6 Alloy

    OpenAIRE

    Nuckowski P. M.; Kwaśny W.; Rdzawski Z.; Głuchowski W.; Pawlyta M.

    2016-01-01

    This paper presents the research results of CuSn6 alloy strip at semi-hard state, plastically deformed in the process of repetitive corrugation. The influence of process parameters on the mechanical properties and structure of examined alloy were investigated. Examination in high-resolution transmission electron microscopy (HRTEM) confirmed the impact of the repetitive corrugation to obtain the nano-scale structures. It has been found, that the application of repetitive corrugation increases ...

  17. Severe plastic deformation using friction stir processing, and the characterization of microstructure and mechanical behavior using neutron diffraction

    Science.gov (United States)

    Woo, Wanchuck

    Friction-stir welding (FSW) is a solid-state joining process, which utilizes a cylindrical rotating tool consisting of a concentric threaded tool pin and tool shoulder. The strong metallurgical bonding during the FSW is accomplished through: (1) the severe plastic deformation caused by the rotation of the tool pin that plunges into the material and travels along the joining line; and (2) the frictional heat generated mainly from the pressing tool shoulder. Recently, a number of variations of the FSW have been applied to modify the microstructure, for example, grain refinements and homogenization of precipitate particles, namely friction-stir processing (FSP). Applications of the FSP/FSW are widespread for the transportation industries. The microstructure and mechanical behavior of light-weight materials subjected to the FSW/FSP are being studied extensively. However, separating the effect of the frictional heat and severe plastic deformation on the residual stress and texture has been a standing problem for the fundamental understanding of FSW/FSP. The fundamental issues are: (i) the heat- and plastic-deformation-induced internal stresses that may be detrimental to the integrity and performance of components; (ii) the frictional heating that causes a microstructural softening due to the dissolution or growth of the precipitates in precipitation-hardenable Al alloys during the process; and (iii) the crystallographic texture can be significantly altered from the original texture, which could affect the physical and mechanical properties. The understanding of the influences of the de-convoluted sources (e.g. frictional heat, severe plastic deformation, or their combination) on the residual stress, microstructural softening, and texture variations during FSW can be used for a physicsvi based optimization of the processing parameters and new tool designs. Furthermore, the analyses and characterization of the natural aging behavior and the aging kinetics can be

  18. A study of the plasticity in the vortex matter across the second magnetization peak in a YBCO crystal via measurements of minor hysteresis loops

    Indian Academy of Sciences (India)

    D Pal; S Ramakrishnan; A K Grover; D Dasgupta; Bimal K Sarma

    2002-05-01

    Results of an investigation of the path dependence of the critical current density c due to the plastic deformation of the flux line lattice in a weakly pinned YBa2Cu3O7- (YBCO) crystal for $H||c$ are reported. The procedure of minor hysteresis loops has been used to explore the path dependence of c and the metastability effects. Contrary to the behavior observed in low c systems, in YBCO it is found that at low temperatures, the multivaluedness in c() could persist beyond the notional peak field p at which the anomalous variation in c() reaches its maximum value.

  19. Interaction of heat production, strain rate and stress power in a plastically deforming body under tensile test

    Science.gov (United States)

    Paglietti, A.

    1982-01-01

    At high strain rates the heat produced by plastic deformation can give rise to a rate dependent response even if the material has rate independent constitutive equations. This effect has to be evaluated when interpreting a material test, or else it could erroneously be ascribed to viscosity. A general thermodynamic theory of tensile testing of elastic-plastic materials is given in this paper; it is valid for large strain at finite strain rates. It enables discovery of the parameters governing the thermodynamic strain rate effect, provides a method for proper interpretation of the results of the tests of dynamic plasticity, and suggests a way of planning experiments in order to detect the real contribution of viscosity.

  20. Interaction of heat production, strain rate and stress power in a plastically deforming body under tensile test

    Science.gov (United States)

    Paglietti, A.

    1982-01-01

    At high strain rates the heat produced by plastic deformation can give rise to a rate dependent response even if the material has rate independent constitutive equations. This effect has to be evaluated when interpreting a material test, or else it could erroneously be ascribed to viscosity. A general thermodynamic theory of tensile testing of elastic-plastic materials is given in this paper; it is valid for large strain at finite strain rates. It enables discovery of the parameters governing the thermodynamic strain rate effect, provides a method for proper interpretation of the results of the tests of dynamic plasticity, and suggests a way of planning experiments in order to detect the real contribution of viscosity.

  1. An all-solid-state electrochemical double-layer capacitor based on a plastic crystal electrolyte

    Directory of Open Access Journals (Sweden)

    Ali eaabouimrane

    2015-08-01

    Full Text Available A plastic crystal, solid electrolyte was prepared by mixing tetrabutylammonium hexafluorophosphate salt, (C4H94NPF6, (10 molar % with succinonitrile, SCN, (N C−CH2−CH2−C N, [SCN-10%TBA-PF6]. The resultant waxy material shows a plastic crystalline phase that extend from -36 °C up to its melting at 23 °C. It shows a high ionic conductivity reaching 4 × 10−5 S/cm in the plastic crystal phase (15 °C and ~ 3 × 10−3 S/cm in the molten state (25 °C. These properties along with the high electrochemical stability rendered the use of this material as an electrolyte in an electrochemical double-layer capacitor (EDLC. The EDLC was assembled and its performance was tested by cyclic voltammetry, AC impedance spectroscopy and galvanostatic charge-discharge methods. Specific capacitance values in the range of 4-7 F/g. (of electrode active material were obtained in the plastic crystal phase at 15 °C, that although compare well with those reported for some polymer electrolytes, can be still enhanced with further development of the device and its components, and only demonstrate their great potential use for capacitors as a new application.

  2. Mechanical Response of DNA–Nanoparticle Crystals to Controlled Deformation

    Science.gov (United States)

    2016-01-01

    The self-assembly of DNA-conjugated nanoparticles represents a promising avenue toward the design of engineered hierarchical materials. By using DNA to encode nanoscale interactions, macroscale crystals can be formed with mechanical properties that can, at least in principle, be tuned. Here we present in silico evidence that the mechanical response of these assemblies can indeed be controlled, and that subtle modifications of the linking DNA sequences can change the Young’s modulus from 97 kPa to 2.1 MPa. We rely on a detailed molecular model to quantify the energetics of DNA–nanoparticle assembly and demonstrate that the mechanical response is governed by entropic, rather than enthalpic, contributions and that the response of the entire network can be estimated from the elastic properties of an individual nanoparticle. The results here provide a first step toward the mechanical characterization of DNA–nanoparticle assemblies, and suggest the possibility of mechanical metamaterials constructed using DNA. PMID:27725959

  3. Non-equilibrium grain boundaries in titanium nanostructured by severe plastic deformation: Computational study of sources of material strengthening

    DEFF Research Database (Denmark)

    Liu, Hongsheng; Mishnaevsky, Leon; Pantleon, Wolfgang

    2014-01-01

    A computational model of ultrafine grained (UFG) or nanostructured titanium (Ti), based on a finite element (FE) unit cell model of the material and a dislocation density based model of plastic deformation has been developed. FE simulations of tensile deformation of UFG Ti with different fractions...... and properties of the grain boundary (GB) phase have been carried out. The effect of different degrees of deviation from the equilibrium state of the grain boundaries (GBs) on the mechanical behaviour of nanostructured Ti have been investigated using the combined composite/dislocation dynamics based model....... In particular, the effects of different diffusion coefficients in the GB phase, of a high initial dislocation density in the grain boundaries, as well as of atomic scale precipitates are investigated for affecting the deformation behaviour of UFG or nanostructured Ti. © 2013 Elsevier B.V. All rights reserved....

  4. Atomic-scale analysis of plastic deformation in thin-film forms of electronic materials

    Science.gov (United States)

    Kolluri, Kedarnath

    Nanometer-scale-thick films of metals and semiconductor heterostructures are used increasingly in modern technologies, from microelectronics to various areas of nanofabrication. Processing of such ultrathin-film materials generates structural defects, including voids and cracks, and may induce structural transformations. Furthermore, the mechanical behavior of these small-volume structures is very different from that of bulk materials. Improvement of the reliability, functionality, and performance of nano-scale devices requires a fundamental understanding of the atomistic mechanisms that govern the thin-film response to mechanical loading in order to establish links between the films' structural evolution and their mechanical behavior. Toward this end, a significant part of this study is focused on the analysis of atomic-scale mechanisms of plastic deformation in freestanding, ultrathin films of face-centered cubic (fcc) copper (Cu) that are subjected to biaxial tensile strain. The analysis is based on large-scale molecular-dynamics simulations. Elementary mechanisms of dislocation nucleation are studied and several problems involving the structural evolution of the thin films due to the glide of and interactions between dislocations are addressed. These problems include void nucleation, martensitic transformation, and the role of stacking faults in facilitating dislocation depletion in ultrathin films and other small-volume structures of fcc metals. Void nucleation is analyzed as a mechanism of strain relaxation in Cu thin films. The glide of multiple dislocations causes shearing of atomic planes and leads to formation of surface pits, while vacancies are generated due to the glide motion of jogged dislocations. Coalescence of vacancy clusters with surface pits leads to formation of voids. In addition, the phase transformation of fcc Cu films to hexagonal-close packed (hcp) ones is studied. The resulting martensite phase nucleates at the film's free surface and

  5. Nanostructured severe plastic deformation processed titanium for orthodontic mini-implants.

    Science.gov (United States)

    Serra, Glaucio; Morais, Liliane; Elias, Carlos Nelson; Semenova, Irina P; Valiev, Ruslan; Salimgareeva, Gulnaz; Pithon, Matheus; Lacerda, Rogério

    2013-10-01

    Titanium mini-implants have been successfully used as anchorage devices in Orthodontics. Commercially pure titanium (cpTi) was recently replaced by Ti-6Al-4V alloy as the mini-implant material base due to the higher strength properties of the alloy. However, the lower corrosion resistance and the lower biocompatibility have been lowering the success rate of Ti-6Al-4V mini-implants. Nanostructured titanium (nTi) is commercially pure titanium that was nanostructured by a specific technique of severe plastic deformation. It is bioinert, does not contain potentially toxic or allergic additives, and has higher specific strength properties than any other titanium applied in medical implants. The higher strength properties associated to the higher biocompatibility make nTi potentially useful for orthodontic mini-implant applications, theoretically overcoming cpTi and Ti-6Al-4V mini-implants. The purposes of the this work were to process nTi, to mechanically compare cpTi, Ti-6Al-4V, and nTi mini-implants by torque test, and to evaluate both the surface morphology and the fracture surface characteristics of them by SEM. Torque test results showed significant increase in the maximum torque resistance of nTi mini-implants when compared to cpTi mini-implants, and no statistical difference between Ti-6Al-4V and nTi mini-implants. SEM analysis demonstrated smooth surface morphology and transgranular fracture aspect for nTi mini-implants. Since nanostructured titanium mini-implants have mechanical properties comparable to titanium alloy mini-implants, and biocompatibility comparable to commercially pure titanium mini-implants, it is suggestive that nanostructured titanium can replace Ti-6Al-4V alloy as the material base for mini-implants.

  6. Microstructural evolution and deformation behavior of twinning-induced plasticity (TWIP) steel during wire drawing

    Energy Technology Data Exchange (ETDEWEB)

    Hwang, Joong-Ki [Graduate Institute of Ferrous Technology, POSTECH, Pohang 790-784 (Korea, Republic of); Steel Products Research Group, Technical Research Laboratories, POSCO, Pohang 790-785 (Korea, Republic of); Yi, Il-Cheol [Graduate Institute of Ferrous Technology, POSTECH, Pohang 790-784 (Korea, Republic of); Son, Il-Heon; Yoo, Jang-Yong [Steel Products Research Group, Technical Research Laboratories, POSCO, Pohang 790-785 (Korea, Republic of); Kim, Byoungkoo [Materials Technology Development Team, DHIC, Changwon 642-792 (Korea, Republic of); Zargaran, A. [Graduate Institute of Ferrous Technology, POSTECH, Pohang 790-784 (Korea, Republic of); Kim, Nack J., E-mail: njkim@postech.ac.kr [Graduate Institute of Ferrous Technology, POSTECH, Pohang 790-784 (Korea, Republic of)

    2015-09-17

    The effect of wire drawing on the microstructural evolution and deformation behavior of Fe–Mn–Al–C twinning-induced plasticity (TWIP) steel has been investigated. The inhomogeneities of the stress state, texture, microstructure, and mechanical properties were clarified over the cross section of drawn wire with the aid of numerical simulation, Schmid factor analysis, and electron backscatter diffraction (EBSD) techniques. The analysis of texture in drawn wire shows that a mixture of <111> and <100> fiber texture was developed with strain; however, the distribution of <111> and <100> fibers was inhomogeneous along the radial direction of wire due to uneven strain distribution and different stress state along the radial direction. It has also been shown that the morphology, volume fraction, and variant system of twins as well as twinning rate were dependent on the imposed stress state. The surface area was subjected to larger strain and more complex stress state involving compression, shear, and tension than the center area, resulting in a larger twin volume fraction and more twin variants in the former than in the latter at all the strain levels. While the surface area was saturated with twins at an early stage of drawing, the center area was not saturated with twins even at fracture, implying that the fracture of wire were initiated at the surface area because of the exhaustion of ductility due to twinning. Based on these results, it is suggested that imposing a uniform strain distribution along the radial direction of wire by the control of processing conditions such as die angle and amount of reduction per pass is necessary to increase the drawing limit of TWIP steel.

  7. The role of dissipation and defect energy in variational formulations of problems in strain-gradient plasticity. Part 2: single-crystal plasticity

    Science.gov (United States)

    Reddy, B. D.

    2011-11-01

    Variational formulations are constructed for rate-independent problems in small-deformation single-crystal strain-gradient plasticity. The framework, based on that of Gurtin (J Mech Phys Solids 50: 5-32, 2002), makes use of the flow rule expressed in terms of the dissipation function. Provision is made for energetic and dissipative microstresses. Both recoverable and non-recoverable defect energies are incorporated into the variational framework. The recoverable energies include those that depend smoothly on the slip gradients, the Burgers tensor, or on the dislocation densities (Gurtin et al. J Mech Phys Solids 55:1853-1878, 2007), as well as an energy proposed by Ohno and Okumura (J Mech Phys Solids 55:1879-1898, 2007), which leads to excellent agreement with experimental results, and which is positively homogeneous and therefore not differentiable at zero slip gradient. Furthermore, the variational formulation accommodates a non-recoverable energy due to Ohno et al. (Int J Mod Phys B 22:5937-5942, 2008), which is also positively homogeneous, and a function of the accumulated dislocation density. Conditions for the existence and uniqueness of solutions are established for the various examples of defect energy, with or without the presence of hardening or slip resistance.

  8. The Influence of Grain Size and Crystal Content on Rheology and Deformation of Pyroclastic Material

    Science.gov (United States)

    Paquereau-Lebti, P.; Robert, G.; Grunder, A. L.; Russell, K. J.

    2007-12-01

    Pyroclastic deposits undergo variable degrees of sintering, viscous deformation of particles and loss of pore space, which combine to produce the dramatic textural variations that define welded facies. We here investigate the effects of grain size and crystal content on the rheology and welding of pyroclastic material.Uniaxial deformation experiments were conducted using sintered cores of natural rhyolite ash under conditions consistent with welding. Experiments were done in the University of British Columbia Volcanology Deformation Rig (VDR). This apparatus is designed to run experiments relevant to volcanology, by supporting low-load, high temperature, deformation experiments (Quane et al., 2004). We ran experiments at constant displacement rate (2.5.10-6 m.s-1), under ambient water pressure ("Dry"), at temperatures of 850 and 900°C and to maximal strain of 50%. Grain-size effect was investigated using sintered cores from three different sieving fractions of Rattlesnake Tuff (RST, Eastern Oregon, USA) ash: fine ash (grain size 15% crystal content inhibited sintering in a sample that welded under the same experimental conditions when phenocryst depleted (phenocryst content around 1% in whole Rattlesnake Tuff ash). Reference: Quane, S.L., Russell, J.K., and Kennedy, L.A. (2004). A low-load, high-temperature deformation apparatus for volcanological studies. American mineralogist, 89, 873-877.

  9. Roles of nanoclusters in shear banding and plastic deformation of bulk metallic glasses

    Energy Technology Data Exchange (ETDEWEB)

    Nieh, T G

    2012-07-31

    During the course of this research we published 33 papers in various physics/material journals. We select four representing papers in this report and their results are summarized as follows. I. To study shear banding process, it is pertinent to know the intrinsic shear strain rate within a propagating shear band. To this aim, we used nanoindentation technique to probe the mechanical response of a Au49Ag5.5Pd2.3Cu26.9Si16.3 bulk metallic glass in locality and found notable pop-in events associated with shear band emission. Using a free volume model and under the situation when temperature and stress/hardness are fixed result in an equation, which predicts that hardness serration caused by pop-in decreases exponentially with the strain rate. Our data are in good agreement with the prediction. The result also predicts that, when strain rate is higher than a critical strain rate of 1700 s^-1, there will be no hardness serration, thereby no pop-in. In other words, multiple shear bandings will take place and material will flow homogeneously. The critical strain rate of 1700 s^-1 can be treated as the intrinsic strain rate within a shear band. We subsequently carried out a simulation study and showed that, if the imposed strain rate was over , the shear band spacing would become so small that the entire sample would virtually behave like one major shear band. Using the datum strain rate =1700 s^-1 and based on a shear band nucleation model proposed by us, the size of a shear-band nucleus in Au-BMG was estimated to be 3 10^6 atoms, or a sphere of ~30 nm in diameter. II. Inspired by the peculiar result published in a Science article Super Plastic Bulk Metallic Glasses at Room Temperature, we synthesized the Zr-based bulk metallic glass with a composition identical to that in the paper (Zr64.13Cu15.75Ni10.12Al10) and, subsequently, tested in compression at the same slow strain rate (~10^-4 s^-1). We found that the dominant deformation mode is always single shear. The stress

  10. Achieving large macroscopic compressive plastic deformation and work-hardening-like behavior in a monolithic bulk metallic glass by tailoring stress distribution

    Science.gov (United States)

    Chen, L. Y.; Ge, Q.; Qu, S.; Jiang, Q. K.; Nie, X. P.; Jiang, J. Z.

    2008-05-01

    The limited plastic deformation and lack of work hardening seriously restrict the applications of bulk metallic glasses (BMGs). Here, large macroscopic compressive plastic deformation (over 15%) and work-hardening-like behavior were achieved in a monolithic BMG through tailoring loading stress distribution experimentally. Numerical analysis was also carried out to investigate the stress distribution under the same mechanical condition. It is shown that loading induced stress gradient is responsible for the achievement mentioned above.

  11. Mechanical Properties and Fracture Behavior of Cu-Co-Be Alloy after Plastic Deformation and Heat Treatment

    Institute of Scientific and Technical Information of China (English)

    Yan-jun ZHOU; Ke-xing SONG; Jian-dong XING; Zhou LI; Xiu-hua GUO

    2016-01-01

    Mechanical properties and fracture behavior of Cu-0.84Co-0.23Be alloy after plastic deformation and heat treatment were comparatively investigated.Severe plastic deformation by hot extrusion and cold drawing was adopted to induce large plastic strain of Cu-0.84Co-0.23Be alloy.The tensile strength and elongation are up to 476.6 MPa and 1 8%,respectively.The fractured surface consists of deep dimples and micro-voids.Due to the formation of su-persaturated solid solution on the Cu matrix by solution treatment at 950 ℃ for 1 h,the tensile strength decreased to 271.9 MPa,while the elongation increased to 42%.The fracture morphology is parabolic dimple.Furthermore,the tensile strength increased significantly to 580.2 MPa after aging at 480 ℃ for 4 h.During the aging process,a large number of precipitates formed and distributed on the Cu matrix.The fracture feature of aged specimens with low elongation (4.6%)exhibits an obvious brittle intergranular fracture.It is confirmed that the mechanical properties and fracture behavior are dominated by the microstructure characteristics of Cu-0.84Co-0.23Be alloy after plastic de-formation and heat treatment.In addition,the fracture behavior at 450 ℃ of aged Cu-0.84Co-0.23Be alloy was also studied.The tensile strength and elongation are 383.6 MPa and 11.2%,respectively.The fractured morphologies are mainly candy-shaped with partial parabolic dimples and equiaxed dimples.The fracture mode is multi-mixed mechanism that brittle intergranular fracture plays a dominant role and ductile fracture is secondary.

  12. Fundamental display properties of flexible devices containing polymer-stabilized ferroelectric liquid crystal between plastic substrates

    Science.gov (United States)

    Fujikake, Hideo; Murashige, Takeshi; Sato, Hiroto; Iino, Yoshiki; Kawakita, Masahiro; Kikuchi, Hiroshi

    2002-09-01

    We describe several fundamental display properties of a flexible ferroelectric liquid crystal device containing polymer fibers between thin plastic substrates. The composite film of liquid crystal and polymer was created from a solution of liquid crystal and monomer materials between the plastic substrates under ultraviolet light irradiation. The dynamic electrooptic response to analog voltage pulses was examined with an incidence of laser beam light, and its light modulation property exhibited good linearity in continuous gray-scale capability. The excellent spatial uniformity of liquid crystal alignment formed between the flexible substrates resulted in high-contrast light modulation, although slight spontaneous bending of liquid crystal alignment in the device plane was recognized. When the laser light beam was obliquely incident on the flexible display device, the measured transmittance revealed that the device has a wide viewing angle of more than 100 deg without contrast reversal. This is considered to be caused by the molecular switching in the device plane and the thin electrooptic layer in the display device.

  13. Creating physically-based three-dimensional microstructures: Bridging phase-field and crystal plasticity models.

    Energy Technology Data Exchange (ETDEWEB)

    Lim, Hojun [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Owen, Steven J. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Abdeljawad, Fadi F. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Hanks, Byron [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Battaile, Corbett Chandler [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2015-09-01

    In order to better incorporate microstructures in continuum scale models, we use a novel finite element (FE) meshing technique to generate three-dimensional polycrystalline aggregates from a phase field grain growth model of grain microstructures. The proposed meshing technique creates hexahedral FE meshes that capture smooth interfaces between adjacent grains. Three dimensional realizations of grain microstructures from the phase field model are used in crystal plasticity-finite element (CP-FE) simulations of polycrystalline a -iron. We show that the interface conformal meshes significantly reduce artificial stress localizations in voxelated meshes that exhibit the so-called "wedding cake" interfaces. This framework provides a direct link between two mesoscale models - phase field and crystal plasticity - and for the first time allows mechanics simulations of polycrystalline materials using three-dimensional hexahedral finite element meshes with realistic topological features.

  14. Crystal Plasticity Model Validation Using Combined High-Energy Diffraction Microscopy Data for a Ti-7Al Specimen

    Science.gov (United States)

    Turner, Todd J.; Shade, Paul A.; Bernier, Joel V.; Li, Shiu Fai; Schuren, Jay C.; Kenesei, Peter; Suter, Robert M.; Almer, Jonathan

    2017-02-01

    High-Energy Diffraction Microscopy (HEDM) is a 3-d X-ray characterization method that is uniquely suited to measuring the evolving micro-mechanical state and microstructure of polycrystalline materials during in situ processing. The near-field and far-field configurations provide complementary information; orientation maps computed from the near-field measurements provide grain morphologies, while the high angular resolution of the far-field measurements provides intergranular strain tensors. The ability to measure these data during deformation in situ makes HEDM an ideal tool for validating micro-mechanical deformation models that make their predictions at the scale of individual grains. Crystal Plasticity Finite Element Models (CPFEM) are one such class of micro-mechanical models. While there have been extensive studies validating homogenized CPFEM response at a macroscopic level, a lack of detailed data measured at the level of the microstructure has hindered more stringent model validation efforts. We utilize an HEDM dataset from an alpha-titanium alloy (Ti-7Al), collected at the Advanced Photon Source, Argonne National Laboratory, under in situ tensile deformation. The initial microstructure of the central slab of the gage section, measured via near-field HEDM, is used to inform a CPFEM model. The predicted intergranular stresses for 39 internal grains are then directly compared to data from 4 far-field measurements taken between 4 and 80 pct of the macroscopic yield strength. The evolution of the elastic strain state from the CPFEM model and far-field HEDM measurements up to incipient yield are shown to be in good agreement, while residual stress at the individual grain level is found to influence the intergranular stress state even upon loading. Implications for application of such an integrated computational/experimental approach to phenomena such as fatigue are discussed.

  15. Development of plastic deformations in 12Kh18N10T steel under cyclic symmetrical bending of specimens of various length

    Energy Technology Data Exchange (ETDEWEB)

    Pisarenko, G.S.; Leonets, V.A.; Bega, N.D. (AN Ukrainskoj SSR, Kiev. Inst. Problem Prochnosti)

    1983-08-01

    Effect of specimen length on intensity of plastic deformation development and cyclic strength is studied for annealed 12Kh18N10T steel under cyclic symmetrical bending. The intensity of microplastic deformations and cyclic strength of annealed 12Kh18N10T steel in the considered case is due to self-heating.

  16. Validation of a crystal plasticity model using high energy diffraction microscopy

    Science.gov (United States)

    Beaudoin, A. J.; Obstalecki, M.; Storer, R.; Tayon, W.; Mach, J.; Kenesei, P.; Lienert, U.

    2012-03-01

    High energy diffraction microscopy is used to measure the crystallographic orientation and evolution of lattice strain in an Al-Li alloy. The relative spatial arrangement of the several pancake-shaped grains in a tensile sample is determined through in situ and ex situ techniques. A model for crystal plasticity with continuity of lattice spin is posed, where grains are represented by layers in a finite element mesh following the arrangement indicated by experiment. Comparison is drawn between experiment and simulation.

  17. Validation of a Crystal Plasticity Model Using High Energy Diffraction Microscopy

    Science.gov (United States)

    Beaudoin, A. J.; Obstalecki, M.; Storer, R.; Tayon, W.; Mach, J.; Kenesei, P.; Lienert, U.

    2012-01-01

    High energy diffraction microscopy is used to measure the crystallographic orientation and evolution of lattice strain in an Al Li alloy. The relative spatial arrangement of the several pancake-shaped grains in a tensile sample is determined through in situ and ex situ techniques. A model for crystal plasticity with continuity of lattice spin is posed, where grains are represented by layers in a finite element mesh following the arrangement indicated by experiment. Comparison is drawn between experiment and simulation.

  18. Comparison of Lithium Gadolinium Borate Crystal Shards in Scintillating and Nonscintillating Plastic Matrices

    CERN Document Server

    Kazkaz, Kareem; Pedretti, Marisa

    2011-01-01

    We present a method for detecting neutrons using scintillating lithium gadolinium borate crystal shards in a plastic matrix while maintaining high gamma rejection. We have procured two cylindrical detectors, 5"\\times5", containing 1% crystal by mass. Crystal shards have a typical dimension of 1 mm. One detector was made with scintillating plastic, and one with nonscintillating plastic. Pulse shape analysis was used to reject gamma ray backgrounds. The scintillating detector was measured to have an intrinsic fast fission neutron efficiency of 0.4% and a gamma sensitivity of less than 2.3 \\times 10-9, while the nonscintillating detector had a neutron efficiency of 0.7% and gamma sensitivity of (4.75\\pm3.94)\\times10-9. We determine that increasing the neutron detection efficiency by a factor of 2 will make the detector competitive with moderated 3He tubes, and we discuss several simple and straightforward methods for obtaining or surpassing such an improvement. We end with a discussion of possible applications, ...

  19. Correlation between crystallization behaviour and interfacial interactions in plasticized PLA/POSS nanocomposites

    Science.gov (United States)

    Kodal, Mehmet; Şirin, Hümeyra; Özkoç, Güralp

    2016-03-01

    In this study, the correlation between crystallization behavior and surface chemistry of polyhedral oligomeric silsesquioxanes (POSS) for plasticized poly(lactic acid) (PLA)/POSS nanocomposites was investigated. Four different kinds of POSS particles having different chemical structures were used. Poly(ethylene glycol) (PEG, 8000 g/mol) was utilized as the plasticiser. The nanocomposites were melt-compounded in an Xplore Instruments 15 cc twin screw microcompounder at 180°C barrel temperature and 100 rpm screw speed. Non-isothermal crystallization behaviour of PLA/PEG/POSS nanocomposites were evaluated from common kinetic models such as Avrami and Avrami-Ozawa and Kissinger by using the thermal data obtained from differantial scanning calorimetry (DSC). A polarized optical microscope (POM) equipped with a hot-stage was used to examine the morphology during the crystal growth. In order to investigate the interfacial interactions between POSS particles and plasticized PLA, thermodynamic work of adhesion approach was adopted using the experimentally determined surface energies. A strong correlation was obtained between interfacial chemistry and the nucleation rate in plasticized PLA/POSS nanocomposites. It was found that the polar interactions were the dominating factor which determines the nucleation activity of the POSS particles.

  20. A Plastic-Crystal Electrolyte Interphase for All-Solid-State Sodium Batteries.

    Science.gov (United States)

    Gao, Hongcai; Xue, Leigang; Xin, Sen; Park, Kyusung; Goodenough, John B

    2017-05-08

    The development of all-solid-state rechargeable batteries is plagued by a large interfacial resistance between a solid cathode and a solid electrolyte that increases with each charge-discharge cycle. The introduction of a plastic-crystal electrolyte interphase between a solid electrolyte and solid cathode particles reduces the interfacial resistance, increases the cycle life, and allows a high rate performance. Comparison of solid-state sodium cells with 1) solid electrolyte Na3 Zr2 (Si2 PO4 ) particles versus 2) plastic-crystal electrolyte in the cathode composites shows that the former suffers from a huge irreversible capacity loss on cycling whereas the latter exhibits a dramatically improved electrochemical performance with retention of capacity for over 100 cycles and cycling at 5 C rate. The application of a plastic-crystal electrolyte interphase between a solid electrolyte and a solid cathode may be extended to other all-solid-state battery cells. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. The effect of martensite plasticity on the cyclic deformation of super-elastic NiTi shape memory alloy

    Science.gov (United States)

    Song, Di; Kang, Guozheng; Kan, Qianhua; Yu, Chao; Zhang, Chuanzeng

    2014-01-01

    Based on stress-controlled cyclic tension-unloading experiments with different peak stresses, the effect of martensite plasticity on the cyclic deformation of super-elastic NiTi shape memory alloy micro-tubes is investigated and discussed. The experimental results show that the reverse transformation from the induced martensite phase to the austenite phase is gradually restricted by the plastic deformation of the induced martensite phase caused by an applied peak stress that is sufficiently high (higher than 900 MPa), and the extent of such restriction increases with further increasing the peak stress. The residual and peak strains of super-elastic NiTi shape memory alloy accumulate progressively, i.e., transformation ratchetting occurs during the cyclic tension-unloading with peak stresses from 600 to 900 MPa, and the transformation ratchetting strain increases with the increase of the peak stress. When the peak stress is higher than 900 MPa, the peak strain becomes almost unchanged, but the residual strain accumulates and the dissipation energy per cycle decreases very quickly with the increasing number of cycles due to the restricted reverse transformation by the martensite plasticity. Furthermore, a quantitative relationship between the applied stress and the stabilized residual strain is obtained to reasonably predict the evolution of the peak strain and the residual strain.

  2. The contrasting roles of creep and stress relaxation in the time-dependent deformation during in-situ cooling of a nickel-base single crystal superalloy.

    Science.gov (United States)

    Panwisawas, Chinnapat; D'Souza, Neil; Collins, David M; Bhowmik, Ayan

    2017-09-11

    Time dependent plastic deformation in a single crystal nickel-base superalloy during cooling from casting relevant temperatures has been studied using a combination of in-situ neutron diffraction, transmission electron microscopy and modelling. Visco-plastic deformation during cooling was found to be dependent on the stress and constraints imposed to component contraction during cooling, which mechanistically comprises creep and stress relaxation. Creep results in progressive work hardening with dislocations shearing the γ' precipitates, a high dislocation density in the γ channels and near the γ/γ' interface and precipitate shearing. When macroscopic contraction is restricted, relaxation dominates. This leads to work softening from a decreased dislocation density and the presence of long segment stacking faults in γ phase. Changes in lattice strains occur to a similar magnitude in both the γ and γ' phases during stress relaxation, while in creep there is no clear monotonic trend in lattice strain in the γ phase, but only a marginal increase in the γ' precipitates. Using a visco-plastic law derived from in-situ experiments, the experimentally measured and calculated stresses during cooling show a good agreement when creep predominates. However, when stress relaxation dominates accounting for the decrease in dislocation density during cooling is essential.

  3. Macroscopic inhomogeneous deformation behavior arising in single crystal Ni-Mn-Ga foils under tensile loading

    Science.gov (United States)

    Murasawa, Go; Yeduru, Srinivasa R.; Kohl, Manfred

    2016-12-01

    This study investigated macroscopic inhomogeneous deformation occurring in single-crystal Ni-Mn-Ga foils under uniaxial tensile loading. Two types of single-crystal Ni-Mn-Ga foil samples were examined as-received and after thermo-mechanical training. Local strain and the strain field were measured under tensile loading using laser speckle and digital image correlation. The as-received sample showed a strongly inhomogeneous strain field with intermittence under progressive deformation, but the trained sample result showed strain field homogeneity throughout the specimen surface. The as-received sample is a mainly polycrystalline-like state composed of the domain structure. The sample contains many domain boundaries and large domain structures in the body. Its structure would cause large local strain band nucleation with intermittence. However, the trained one is an ideal single-crystalline state with a transformation preferential orientation of variants after almost all domain boundary and large domain structures vanish during thermo-mechanical training. As a result, macroscopic homogeneous deformation occurs on the trained sample surface during deformation.

  4. A statistical analysis of the elastic distortion and dislocation density fields in deformed crystals

    KAUST Repository

    Mohamed, Mamdouh S.

    2015-05-18

    The statistical properties of the elastic distortion fields of dislocations in deforming crystals are investigated using the method of discrete dislocation dynamics to simulate dislocation structures and dislocation density evolution under tensile loading. Probability distribution functions (PDF) and pair correlation functions (PCF) of the simulated internal elastic strains and lattice rotations are generated for tensile strain levels up to 0.85%. The PDFs of simulated lattice rotation are compared with sub-micrometer resolution three-dimensional X-ray microscopy measurements of rotation magnitudes and deformation length scales in 1.0% and 2.3% compression strained Cu single crystals to explore the linkage between experiment and the theoretical analysis. The statistical properties of the deformation simulations are analyzed through determinations of the Nye and Kröner dislocation density tensors. The significance of the magnitudes and the length scales of the elastic strain and the rotation parts of dislocation density tensors are demonstrated, and their relevance to understanding the fundamental aspects of deformation is discussed.

  5. Plastic Deformation and Seismic Properties in Fore-arc Mantles: A Petrofabric Analysis of the Yushigou Harzburgites, North Qilian Suture Zone, NW China

    Science.gov (United States)

    Cao, Y.; Jung, H.; Song, S.; Park, M.; Jung, S.; Lee, J.

    2015-12-01

    The fore-arc mantle above a subducting slab is a unique site where complex partial melting, melt/fluid-rock interaction, and deformation of mantle rocks occur. To constrain these processes, we analyzed the deformation microstructures, crystal preferred orientations (CPO), and water content in natural harzburgites that occur as exhumed massifs in the North Qilian suture zone, NW China. These harzburgites are very fresh, and have mineral assemblages of olivine ( 81‒87 vol.%), orthopyroxene ( 11‒17 vol.%), clinopyroxene ( 1‒2 vol. %), and spinel ( 1 vol.%). Detailed analyses of mineral textures, CPO patterns, and rotation axis distributions suggested that the plastic deformation of olivine and pyroxene were accommodated by activating a series of slip systems of dislocation. The olivine (A-/D-type fabric) showed dominant (010)[100] and/or (001)[100] slip systems, as well as other minor [100]-glide, {0kl}[100], and [001]-glide slip systems. The orthopyroxene showed dominant (100)[001] and subordinate (010)[001] slip systems, with minor (100)[010], (100)[0vw] slip systems. The water content was extremely low in the orthopyroxene (38‒44 wt. ppm), equilibrated olivine (4‒7 wt. ppm), and bulk-rock samples (9‒14 wt. ppm). Integrated with the previously reported refractory mineral and whole-rock compositions (Song et al., 2009), as well as the estimated low pressure ( 1‒2 GPa), high temperature ( 1100‒1300 °C), low stress ( 1‒4 MPa), and water-poor conditions of deformation, it is concluded that these harzburgites represent a remnant of a fossil fore-arc lithospheric mantle which was probably both formed and deformed in a young and warm fore-arc mantle setting (i.e. infant subduction zone). Based on these results, a refined schematic model of olivine fabric distributions in subduction zones was proposed. In this model, the opposing polarizing directions of A-/D-type olivine fabrics (prevalent in the fore-arc lithospheric mantle) with other underlying

  6. Irradiation induced defects in deformed $Ni_{3}Ge$ and $Ni_{3}Al$ single crystals

    CERN Document Server

    Murakumo, T; Miyahara, A; Hannuki, T; Sato, A

    2000-01-01

    The effect of plastic deformation on the formation of point defects and defect clusters by electron irradiation has been studied in Ll /sub 2/ ordered Ni/sub 3/Ge and Ni/sub 3/Al by high voltage electron microscopy. It is found that defects are formed preferentially along the Burgers vector directions as linear lines and grow into linear chains of clusters by electron irradiation. This phenomenon is explained by preferential generation of the defects along the antiphase boundary (APE) tubes, in specimens deformed both below and above the peak temperature T/sub p/. Based on three-dimensional analyses of the defect distribution, the formation mechanism of the APE tubes is discussed with particular reference to superdislocation motion and the strengthening of the Ll/sub 2/ ordered compounds of Ni /sub 3/Ge and Ni/sub 3/Al. (44 refs).

  7. Evaluation of stiffness and plastic deformation of active ceramic self-ligating bracket clips after repetitive opening and closure movements

    Directory of Open Access Journals (Sweden)

    Grace Kelly Martins Carneiro

    2015-08-01

    Full Text Available OBJECTIVE: The aim of this study was to assess whether repetitive opening and closure of self-ligating bracket clips can cause plastic deformation of the clip.METHODS: Three types of active/interactive ceramic self-ligating brackets (n = 20 were tested: In-Ovation C, Quicklear and WOW. A standardized controlled device performed 500 cycles of opening and closure movements of the bracket clip with proper instruments and techniques adapted as recommended by the manufacturer of each bracket type. Two tensile tests, one before and one after the repetitive cycles, were performed to assess the stiffness of the clips. To this end, a custom-made stainless steel 0.40 x 0.40 mm wire was inserted into the bracket slot and adapted to the universal testing machine (EMIC DL2000, after which measurements were recorded. On the loading portion of the loading-unloading curve of clips, the slope fitted a first-degree equation curve to determine the stiffness/deflection rate of the clip.RESULTS: The results of plastic deformation showed no significant difference among bracket types before and after the 500 cycles of opening and closure (p = 0.811. There were significant differences on stiffness among the three types of brackets (p = 0.005. The WOW bracket had higher mean values, whereas Quicklear bracket had lower values, regardless of the opening/closure cycle.CONCLUSION: Repetitive controlled opening and closure movements of the clip did not alter stiffness or cause plastic deformation.

  8. Mechanical energy losses in plastically deformed and electron plus neutron irradiated high purity single crystalline molybdenum at elevated temperatures

    Energy Technology Data Exchange (ETDEWEB)

    Zelada, Griselda I. [Laboratorio de Materiales, Escuela de Ingenieria Electrica, Facultad de Ciencias Exactas, Ingenieria y Agrimensura, Universidad Nacional de Rosario, Avda. Pellegrini 250, 2000 Rosario (Argentina); Lambri, Osvaldo Agustin [Laboratorio de Materiales, Escuela de Ingenieria Electrica, Facultad de Ciencias Exactas, Ingenieria y Agrimensura, Universidad Nacional de Rosario, Avda. Pellegrini 250, 2000 Rosario (Argentina); Instituto de Fisica Rosario - CONICET, Member of the CONICET& #x27; s Research Staff, Avda. Pellegrini 250, 2000 Rosario (Argentina); Bozzano, Patricia B. [Laboratorio de Microscopia Electronica, Unidad de Actividad Materiales, Centro Atomico Constituyentes, Comision Nacional de Energia Atomica, Avda. Gral. Paz 1499, 1650 San Martin (Argentina); Garcia, Jose Angel [Departamento de Fisica Aplicada II, Facultad de Ciencias y Tecnologia, Universidad del Pais Vasco, Apdo. 644, 48080 Bilbao, Pais Vasco (Spain)

    2012-10-15

    Mechanical spectroscopy (MS) and transmission electron microscopy (TEM) studies have been performed in plastically deformed and electron plus neutron irradiated high purity single crystalline molybdenum, oriented for single slip, in order to study the dislocation dynamics in the temperature range within one third of the melting temperature. A damping peak related to the interaction of dislocation lines with both prismatic loops and tangles of dislocations was found. The peak temperature ranges between 900 and 1050 K, for an oscillating frequency of about 1 Hz. (Copyright copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  9. High-temperature plastic deformation of fine-grained Y-doped BaCeO{sub 3} polycrystals

    Energy Technology Data Exchange (ETDEWEB)

    Vaquero-Aguilar, C; Jimenez-Melendo, M [Departamento de Fisica de la Materia Condensada, Universidad de Sevilla. Aptdo. 1065. 41080 Sevilla (Spain); Real, C, E-mail: melendo@us.e [Instituto de Ciencia de Materiales de Sevilla, Centro Mixto CSIC-US, Av. Americo Vespucio 49. 41092 Sevilla (Spain)

    2010-07-01

    The high-temperature plastic deformation of BaCe{sub 0.95}Y{sub 0.05}O{sub 3-{delta}} polycrystals with average grain size of 0.50 {mu}m has been studied in compression between 1000 and 1250{sup 0}C in air at different initial strain rates. The stress-strain curves display yield drop at strains close to 5%, followed by steady state or strain-softening stages. Large ductilities were achieved at the higher temperatures, without appreciable changes in grain shape and size. Mechanical data and microstructural observations are consistent with a flow mechanism by grain boundary sliding.

  10. Effect of r-value and texture on plastic deformation and necking behavior in interstitial-free steel sheets

    Science.gov (United States)

    Oh, Gyu-Jin; Lee, Kye-Man; Huh, Moo-Young; Park, Jin Eon; Park, Soo Ho; Engler, Olaf

    2017-01-01

    Three initial tensile specimens having different textures and, in consequence, different r-values were cut from a sheet of an interstitial-free steel. Using these specimens, the effect of r-value and texture on plastic deformation and the necking behavior were studied by tackling the strain state and texture during tensile tests. A reduced decrease in work hardening rate of tensile specimens with higher r-values led to a slower onset of diffuse necking which offers an increased uniform elongation. A slower reduction in thickness of specimens with a higher r-value provided a favorable resistance against onset of failure by localized necking.

  11. Nanomechanics of silicon surfaces with atomic force microscopy: an insight to the first stages of plastic deformation.

    Science.gov (United States)

    Garcia-Manyes, Sergi; Güell, Aleix G; Gorostiza, Pau; Sanz, Fausto

    2005-09-15

    The use of stiff cantilevers with diamond tips allows us to perform nanoindentations on hard covalent materials such as silicon with atomic force microscopy. Thanks to the high sensitivity in the force measurements together with the high resolution upon imaging the surface, we can study nanomechanical properties. At this scale, the surface deforms, following a simple non-Hertzian spring model. The plastic onset can be assessed from a discontinuity in the force-distance curves. Hardness measurements with penetration depths as small as 1 nm yield H= approximately 25 GPa, thus showing a drastic increase with penetration depths below 5 nm.

  12. Formation of defects at high temperature plastic deformation of gallium arsenide

    Energy Technology Data Exchange (ETDEWEB)

    Mikhnovich, V.V.

    2006-03-14

    The purpose of the present thesis consists in acquiring more concrete information concerning the mechanism of the movement of dislocations and types of defects that appear during the process of dislocation motion on the basis of systematic experimental studies of the GaAs deformation. Experimental studies concerning the dependence of the stress of the samples from their deformation at different values of the deformation parameters (like temperature and deformation speed) were conducted in this paper. To determine the concentration of defects introduced in samples during the deformation process the positron annihilation spectroscopy (PAS) method was used. The second chapter of this paper deals with models of movement of dislocations and origination of defects during deformation of the samples. In the third chapter channels and models of positron annihilation in the GaAs samples are investigated. In the forth chapter the used experimental methods, preparation procedure of test samples and technical data of conducted experiments are described. The fifth chapter shows the results of deformation experiments. The sixth chapter shows the results of positron lifetime measurements by the PAS method. In the seventh chapter one can find analyses of the values of defects concentration that were introduced in samples during deformation. (orig.)

  13. Basic Strain Gradient Plasticity Theories with Application to Constrained Film Deformation

    DEFF Research Database (Denmark)

    Niordson, Christian Frithiof; Hutchinson, John W.

    2011-01-01

    with the deformation theory under proportional straining, analogous to the corresponding coincidence in the conventional J(2) theories. The generality of proportional straining is demonstrated for pure power-law materials, and the utility of power-law solutions is illustrated for the constrained deformation of thin...

  14. Individual phase constitutive properties of a TRIP-assisted QP980 steel from a combined synchrotron X-ray diffraction and crystal plasticity approach

    Energy Technology Data Exchange (ETDEWEB)

    Hu, X. H.; Sun, X.; Hector, L. G.; Ren, Y.

    2017-06-01

    Microstructure-based constitutive models for multiphase steels require accurate constitutive properties of the individual phases for component forming and performance simulations. We address this requirement with a combined experimental/theoretical methodology which determines the critical resolved shear stresses and hardening parameters of the constituent phases in QP980, a TRIP assisted steel subject to a two-step quenching and partitioning heat treatment. High energy X-Ray diffraction (HEXRD) from a synchrotron source provided the average lattice strains of the ferrite, martensite, and austenite phases from the measured volume during in situ tensile deformation. The HEXRD data was then input to a computationally efficient, elastic-plastic self-consistent (EPSC) crystal plasticity model which estimated the constitutive parameters of different slip systems for the three phases via a trial-and-error approach. The EPSC-estimated parameters are then input to a finite element crystal plasticity (CPFE) model representing the QP980 tensile sample. The predicted lattice strains and global stress versus strain curves are found to be 8% lower that the EPSC model predicted values and from the HEXRD measurements, respectively. This discrepancy, which is attributed to the stiff secant assumption in the EPSC formulation, is resolved with a second step in which CPFE is used to iteratively refine the EPSC-estimated parameters. Remarkably close agreement is obtained between the theoretically-predicted and experimentally derived flow curve for the QP980 material.

  15. Scaling properties of Arctic sea ice deformation in high-resolution viscous-plastic sea ice models and satellite observations

    Science.gov (United States)

    Hutter, Nils; Losch, Martin; Menemenlis, Dimitris

    2017-04-01

    Sea ice models with the traditional viscous-plastic (VP) rheology and very high grid resolution can resolve leads and deformation rates that are localised along Linear Kinematic Features (LKF). In a 1-km pan-Arctic sea ice-ocean simulation, the small scale sea-ice deformations in the Central Arctic are evaluated with a scaling analysis in relation to satellite observations of the Envisat Geophysical Processor System (EGPS). A new coupled scaling analysis for data on Eulerian grids determines the spatial and the temporal scaling as well as the coupling between temporal and spatial scales. The spatial scaling of the modelled sea ice deformation implies multi-fractality. The spatial scaling is also coupled to temporal scales and varies realistically by region and season. The agreement of the spatial scaling and its coupling to temporal scales with satellite observations and models with the modern elasto-brittle rheology challenges previous results with VP models at coarse resolution where no such scaling was found. The temporal scaling analysis, however, shows that the VP model does not fully resolve the intermittency of sea ice deformation that is observed in satellite data.

  16. Mechanisms of plastic deformation in highly cross-linked UHMWPE for total hip components--the molecular physics viewpoint.

    Science.gov (United States)

    Takahashi, Yasuhito; Shishido, Takaaki; Yamamoto, Kengo; Masaoka, Toshinori; Kubo, Kosuke; Tateiwa, Toshiyuki; Pezzotti, Giuseppe

    2015-02-01

    Plastic deformation is an unavoidable event in biomedical polymeric implants for load-bearing application during long-term in-vivo service life, which involves a mass transfer process, irreversible chain motion, and molecular reorganization. Deformation-induced microstructural alterations greatly affect mechanical properties and durability of implant devices. The present research focused on evaluating, from a molecular physics viewpoint, the impact of externally applied strain (or stress) in ultra-high molecular weight polyethylene (UHMWPE) prostheses, subjected to radiation cross-linking and subsequent remelting for application in total hip arthroplasty (THA). Two different types of commercial acetabular liners, which belong to the first-generation highly cross-linked UHMWPE (HXLPE), were investigated by means of confocal/polarized Raman microprobe spectroscopy. The amount of crystalline region and the spatial distribution of molecular chain orientation were quantitatively analyzed according to a combined theory including Raman selection rules for the polyethylene orthorhombic structure and the orientation distribution function (ODF) statistical approach. The structurally important finding was that pronounced recrystallization and molecular reorientation increasingly appeared in the near-surface regions of HXLPE liners with increasing the amount of plastic (compressive) deformation stored in the microstructure. Such molecular rearrangements, occurred in response to external strains, locally increase surface cross-shear (CS) stresses, which in turn trigger microscopic wear processes in HXLPE acetabular liners. Thus, on the basis of the results obtained at the molecular scale, we emphasize here the importance of minimizing the development of irrecoverable deformation strain in order to retain the pristine and intrinsically high wear performance of HXLPE components.

  17. Influence of external constraint and rolling geometry on deformation banding of copper single crystals with {123} orientation

    Institute of Scientific and Technical Information of China (English)

    Yanping Zeng; Jianxin Dong; Maicang Zhang; Xishan Xie; Weimin Mao; Zhensheng Li

    2003-01-01

    In order to further understand the similarity and difference between deformation mechanisms of single crystals and poly-crystalline materials, the influence of external constraint and rolling geometry on the deformation behaviour of copper single crystalswith {123} orientation was investigated by embedding them into metal frames of different strengths. The metal frames weremade of aluminum and mild steel, respectively. The results show that the deformation banding degree of the crystal increases withthe strength of metal frame and shear strain. For the crystals rolled under lower γg (γg is the ratio of the geometrical redundant shearstrain to the normal rolling strain), the deformation is homogeneous. For the crystals rolled under higher γg, the deformation is ex-tremely inhomogeneous. The deformation is more homogeneous in the crystals rolled in steel frames than that rolled in aluminumframes. The S-orientation is more stable in the crystals rolled under lower γg than that rolled under higher γg.

  18. Factors Affecting the Plasticity of Sodium Chloride, Lithium Fluoride, and Magnesium Oxide Single Crystals. 1

    Science.gov (United States)

    Stearns, Carl A.; Pack, Ann E.; Lad, Robert A.

    1959-01-01

    A study was made of the relative magnitude of the effects of various factors on the ductility of single crystals of sodium chloride (NaCl), lithium fluoride (LiF), and magnesium oxide (MgO). Specimen treatments included water-polishing, varying cleavage rate, annealing, quenching, X-irradiation, surface coating, aging, and combinations of some of these treatments. The mechanical behavior of the crystals was studied in flexure and in compression, the latter study being performed at both constant strain rate and constant load. Etch-pit studies were carried out to provide some pertinent information on the results of pretreatment on the dislocation concentration and distribution in the vicinity of the surface. The load deformation curves for these ionic single crystals show an initial region of very low slope which proved to be due to anelastic deformation. The extent of initial anelastic deformation is modified by specimen pretreatment in a way that suggests that this deformation is the result of expansion of cleaved-in dislocation loops, which can contract on the removal of the stress. The effects of the various pretreatments on the load and deflection at fracture are in accord with the prediction one might make with regard to their effect on the nucleation of fatal surface cracks. For NaCl, increases in ductility are always accompanied by increases in strength. The creep constants for NaCl are a function of treatments which affect the bulk structure but are not a function of treatments which only affect the surface.

  19. Analysis of localized shear deformation of ductile metal based on gradient-dependent plasticity

    Institute of Scientific and Technical Information of China (English)

    王学滨; 代树红; 海龙; 潘一山

    2003-01-01

    Shear localization in linear strain softening heterogeneous material under simple shear was investigated analytically.The closed-form solutions obtained based on gradient plasticity theory considering interactions and interplaying among microstructures due to heterogeneity of metal material show that in the normal direction of shear band,elastic shear displacement is linear; while plastic and total shear displacement are non-linear.Elastic shear strain in the band is uniform and the non-uniformity of total shear displacement stems from localized plastic shear displacement.In the center of the band,plastic and total shear displacement all reach their maximum values.In strain-softening process,elastic displacement decreases as flow shear stress decreases.Contrarily,plastic and total shear displacement increase and manifest shear localization occurs progressively.Under the same shear stress level,plastic and total shear displacement increase as strain softening modulus and elastic shear modulus decrease.The present analytical solutions were compared with many experimental results and the agreement is good.

  20. Numerical Analysis of Mold Deformation Including Plastic Melt Flow During Injection Molding

    Energy Technology Data Exchange (ETDEWEB)

    Jung, Joon Tae; Lee, Bong-Kee [Chonnam National University, Gwangju (Korea, Republic of)

    2014-07-15

    In the present study, a numerical analysis of an injection molding process was conducted for predicting the mold deformation considering non-Newtonian flow, heat transfer, and structural behavior. The accurate prediction of mold deformation during the filling stage is important to successfully design and manufacture a precision injection mold. While the local mold deformation can be caused by various factors, a pressure induced by the polymer melt is considered to be one of the most significant ones. In this regard, the numerical simulation considering both the melt filling and the mold deformation was carried out. A mold core for a 2D axisymmetric center-gated disk was used for the demonstration of the present study. The flow behavior inside the mold cavity and temperature distribution were analyzed along with the core displacement. Also, a Taguchi method was employed to investigate the influence of the relevant parameters including flow velocity, mold core temperature, and melt temperature.

  1. Stability and plasticizing and crystallization effects of vitamins in amorphous sugar systems.

    Science.gov (United States)

    Zhou, Yankun; Roos, Yrjö H

    2012-02-01

    Increased molecular mobility and structural changes resulting from water plasticization of glassy solids may lead to loss of the entrapped compounds from encapsulant systems. In the present study, the stability of water-soluble vitamins, vitamin B(1) (vB(1), thiamin hydrochloride) and vitamin C (vC, ascorbic acid), in freeze-dried lactose and trehalose at various water activities was studied. Water sorption of lactose-vB(1), lactose-vC, trehalose-vB(1), and trehalose-vC systems was determined gravimetrically. Glass transition and crystallization of anhydrous and plasticized sugar-vitamin systems were determined using thermal analysis. Critical water activity was calculated using water sorption and glass transition data. The retention of the vitamins was measured spectrophotometrically. The results showed that the amorphous structure protected the entrapped vitamins at low a(w). Crystallization of lactose accelerated vitamin degradation, whereas trehalose retained much higher amounts of the vitamins. Glass transition and critical water activity of solids and crystallization of component sugars should be considered in the stabilization of sensitive components.

  2. Experimental and numerical analyses of pure copper during ECFE process as a novel severe plastic deformation method

    Directory of Open Access Journals (Sweden)

    M. Ebrahimi

    2014-02-01

    Full Text Available In this paper, a new severe plastic deformation method called equal channel forward extrusion (ECFE process has been proposed and investigated by experimental and numerical approaches on the commercial pure copper billets. The experimental results indicated that the magnitudes of yield strength, ultimate tensile strength and Vickers micro-hardness have been markedly improved from 114 MPa, 204 MPa and 68 HV as the annealed condition to 269 MPa, 285 MPa and 126 HV after the fourth pass of ECFE process, respectively. In addition, scanning electron microscopy observation of the samples showed that the average grain size of the as-received state which is about 22 μm has been reduced to 1.4 μm after the final pass. The numerical investigation suggested that although one pass ECFE process fabricates material with the mean effective strain magnitude of about 1, the level of imposed effective plastic strain gradually diminishes from the circumference to the center of the deformed billet.

  3. Influence of the localized initial plastic deformation on the effective thermomechanical response of metal-matrix composites

    Energy Technology Data Exchange (ETDEWEB)

    Roatta, A.; Turner, P.A.; Bertinetti, M.A.; Bolmaro, R.E.

    1999-11-01

    A generalized Eshelby model, allowing interaction among reinforcing particles under a Mori-Tanaka-like scheme, is presented. Different inclusion aspect ratios are studied in the elastic and incipient elastoplastic regime for a model SiC-Al composite. The solution of the field equations is obtained via an explicit algorithm that yields the interaction field in terms of the stress and strain variables. The particles and fibers are taken as purely elastic, and the matrix is regarded as elastic-perfectly plastic. Coefficients of thermal expansion (CTE) are calculated both under the assumption of purely elastic response and at the onset of plastic localized deformation. The simulated stress-strain curves show the influence of interaction stresses on macroscopic yield stress for different inclusion aspect ratios, with no consideration of matrix hardening. The model allows a good simulation of the thermomechanical behavior of composite materials and contributes to the understanding of the elastoplastic transition in stress-strain curves. It can also simply explain some of the most distinctive features of the mechanical behavior of composites. The model presents the possibility of controlling many input variables and geometries and simultaneously considering three-dimensional deformation of interacting inclusion-reinforced materials with low computational effort. Comparisons to experimental CTE and residual stresses are provided.

  4. Electromagnetic emission in the development of macroscopically unstable plastic deformation of a metal

    Science.gov (United States)

    Shibkov, A. A.; Titov, S. A.; Zheltov, M. A.; Gasanov, M. F.; Zolotov, A. E.; Proskuryakov, K. A.; Zhigachev, A. O.

    2016-01-01

    Electromagnetic emission accompanying the serrated deformation of the aluminum‒magnesium alloy Al-6Mg has been revealed and studied experimentally. By means of high-speed video recording and a complex of methods for measuring the strain, load, and electric potential, it has been found that there is a relation between the electromagnetic emission signals and the dynamics of deformation bands. Possible mechanisms of the generation of electromagnetic signals have been discussed.

  5. Plastic vortex-creep in $YBa_{2}Cu_{3}O_{7-x}$ crystals

    CERN Document Server

    Abulafia, Y; Wolfus, Y; Prozorov, R; Burlachkov, L; Yeshurun, Y; Zeldov, D M E; Wühl, H; Geshkenbein, B V; Vinokur, V M

    1996-01-01

    Local magnetic relaxation measurements in YBa$_2$Cu$_3$O$_{7-x}$ crystals show evidence for plastic vortex-creep associated with the motion of dislocations in the vortex lattice. This creep mechanism governs the vortex dynamics in a wide range of temperatures and fields below the melting line and above the field corresponding to the peak in the ''fishtail'' magnetization. In this range the activation energy $U_{pl}$, which decreases with field, drops below the elastic (collective) creep activation energy, $U_{el}$, which increases with field. A crossover in flux dynamics from elastic to plastic creep is shown to be the origin of the fishtail in YBa$_2$Cu$_3$O$_{7-x}$.

  6. Enhanced Deformation of Azobenzene-Modified Liquid Crystal Polymers under Dual Wavelength Exposure: A Photophysical Model

    Science.gov (United States)

    Liu, Ling; Onck, Patrick R.

    2017-08-01

    Azobenzene-embedded liquid crystal polymers can undergo mechanical deformation in response to ultraviolet (UV) light. The natural rodlike trans state azobenzene absorbs UV light and isomerizes to a bentlike cis state, which disturbs the order of the polymer network, leading to an anisotropic deformation. The current consensus is that the magnitude of the photoinduced deformation is related to the statistical building up of molecules in the cis state. However, a recent experimental study [Liu and Broer, Nat. Commun. 6 8334 (2015)., 10.1038/ncomms9334] shows that a drastic (fourfold) increase of the photoinduced deformation can be generated by exposing the samples simultaneously to 365 nm (UV) and 455 nm (visible) light. To elucidate the physical mechanism that drives this increase, we develop a two-light attenuation model and an optomechanical constitutive relation that not only accounts for the statistical accumulation of cis azobenzenes, but also for the dynamic trans-cis-trans oscillatory isomerization process. Our experimentally calibrated model predicts that the optimal single-wavelength exposure is 395 nm light, a pronounced shift towards the visible spectrum. In addition, we identify a range of optimal combinations of two-wavelength lights that generate a favorable response for a given amount of injected energy. Our model provides mechanistic insight into the different (multi)wavelength exposures used in experiments and, at the same time, opens new avenues towards enhanced, multiwavelength optomechanical behavior.

  7. Influence of adsorbed fluids on the rolling contact deformation of MgO single crystals

    Science.gov (United States)

    Dufrane, K. F.

    1977-01-01

    Basic phenomena associated with rolling contact deformation were studied using MgO as a model bearing material. A hardened steel ball was rolled on MgO single crystals in slow-speed reciprocating motion and in high-speed circular motion. The resulting deformation was studied by dislocation etch-pit techniques. The presence of adsorbed fluids, such as silicone oil, white mineral oil, and toluene, with slow-speed sliding caused a dramatic change in slip mode and premature surface spalling compared with similar experiments in air or under water. In contrast, dimethyl formamide inhibited these slip processes. The results are consistent with the dependence of dislocation mobility on adsorbed species. High-speed hydrodynamic rolling with mineral oil lubrication produced a different slip phenomena entirely from the slow-speed rolling. The slip bands resembled those produced in tensile tests, and all slip apparently initiated at subsurface sites.

  8. Methods for determining deformation history for chocolate tablet boudinage with fibrous crystals

    Science.gov (United States)

    Casey, M.; Dietrich, D.; Ramsay, J. G.

    1983-02-01

    Chocolate tablet boudinage with fibrous crystal growths between the boudinaged plates from two localities were studied. In one, from Leytron, Valais, Switzerland, the deformation history was found to be a succession of plane strain increments with the shortening direction perpendicular to the boudinaged sheet and the extension direction showing a progressive change in orientation within the sheet. The incremental and finite strains were evaluated. The other specimen, from Parys Mountain, Anglesey Great Britain, was found to have a more complex history with diachronous break up of the competent layer and flattening strain increments. It was found that under these circumstances the direct graphical methods of determining finite and incremental strains gave inconsistent results. A numerical model was developed which allowed the simulation of chocolate tablet structure with a complex deformation history. The model was applied to the Anglesey specimen and three possible strain histories for this structure were tried.

  9. Design of a compact polarization beam splitter based on a deformed photonic crystal directional coupler

    Institute of Scientific and Technical Information of China (English)

    Ren Cang; Zheng Wan-Hua; Wang Ke; Du Xiao-Yu; Xing Ming-Xin; Chen Liang-Hui

    2008-01-01

    In this paper a compact polarization beam splitter based on a deformed photonic crystal directional coupler is designed and simulated. The transverse-electric (TE) guided mode and transverse-magnetic (TM) guided mode are split due to different guiding mechanisms. The effect of the shape deformation of the air holes on the coupler is studied. It discovered that the coupling strength of the coupled wavegnides is strongly enhanced by introducing elliptical airholes, which reduce the device length to less than 18.5μm. A finite-difference time-domain simulation is performed to evaluate the performance of the device, and the extinction ratios for both TE and TM polarized light are higher than 20 dB.

  10. Modeling of plastic zones before the crack's peak of given structure constructional materials

    Directory of Open Access Journals (Sweden)

    Т.І. Матченко

    2005-01-01

    Full Text Available  The basic kinds of deformation in plastic zones near top of a crack are determined.Zones are determined, in which the sliding in crystals ,between grains sliding and plastic deformation of a continuous body is typical.

  11. Microstructure and mechanical properties of an Al–Mg–Si tube processed by severe plastic deformation and subsequent annealing

    Energy Technology Data Exchange (ETDEWEB)

    Farshidi, M.H., E-mail: farshidi@um.ac.ir [Department of Materials Science and Metallurgical Engineering, Ferdowsi University of Mashhad, Azadi Square, Mashhad (Iran, Islamic Republic of); Kazeminezhad, M. [Department of Materials Science and Engineering, Sharif University of Technology, Azadi Avenue, Tehran (Iran, Islamic Republic of); Miyamoto, H. [Department of Mechanical Engineering, Doshisha University, Kyotanabe City, Kyoto (Japan)

    2015-07-29

    This study is aimed to realize evolution of microstructure and mechanical properties of aluminum 6061 alloy tube subjected to Severe Plastic Deformation (SPD) and subsequent annealing. For this purpose, the tube is initially processed by different passes of an SPD process called Tube Channel Pressing (TCP) and then subjected to a subsequent annealing at 473 °K for 2 h. Afterwards, tension test is used for the evaluation of mechanical properties while Electron Back-Scattered Diffraction (EBSD) equipped Scanning Electron Microscopy (SEM) and Transmission Electron Microscopy (TEM) are utilized for the microstructural characterizations. Results show that the Continuous Static Recrystallization (CSRX) is the main restoration phenomenon during annealing of aluminum 6061 alloy, even after imposing a moderate plastic strain. For instance, CSRX has been observed during annealing treatment after imposing an equivalent plastic strain as low as 1. However, the used annealing treatment causes different microstructural variations in specimens depending on the pass number of TCP. As an illustration, while the average grain size impressively decreases due to annealing of 1 pass TCPed specimen, it moderately increases after annealing of 5 passes TCPed specimen. This is due to development of a bimodal microstructure after 5 pass of TCP which leads to a different evolution of microstructure during successive annealing. It is also notable that TCPed and annealed specimens show higher strength and ductility compared with as TCPed specimens which is attributed to the occurrence of precipitation hardening besides restoration phenomenon during the annealing treatment.

  12. On the formulations of higher-order strain gradient crystal plasticity models

    DEFF Research Database (Denmark)

    Kuroda, M.; Tvergaard, Viggo

    2008-01-01

    Recently, several higher-order extensions to the crystal plasticity theory have been proposed to incorporate effects of material length scales that were missing links in the conventional continuum mechanics. The extended theories are classified into work-conjugate and non-work-conjugate types...... backgrounds and very unlike mathematical representations. Nevertheless, both types of theories predict the same kind of material length scale effects. We have recently shown that there exists some equivalency between the two approaches in the special situation of two-dimensional single slip under small...

  13. Multiscale Characterization of bcc Crystals Deformed to Large Extents of Strain

    Energy Technology Data Exchange (ETDEWEB)

    Florando, J; LeBlanc, M; Lassila, D; Bulatov, V; Rhee, M; Arsenlis, A; Becker, R; Jr., J M; Magid, K

    2007-02-20

    In an effort to help advance the predictive capability of LLNL's multiscale modeling program a new experimental technique has been developed to provide high fidelity data on metallic single crystals out to relatively large extents of strain. The technique uses a '6 Degrees of Freedom' testing apparatus in conjunction with a 3-D image correlation system. Utilizing this technique, a series of experiments have been performed that reveal unexpected behavior which cannot be explained using traditional crystal plasticity theory. In addition, analysis and characterization techniques have also been developed to help quantify the unexpected behavior. Interactions with multiscale modelers include the development of a possible mechanism that might explain the anomalous behavior, as well as the discovery of a new 4-node dislocation junction.

  14. Calculation of the Slip System Activity in Deformed Zinc Single Crystals Using Digital 3-D Image Correlation Data

    Energy Technology Data Exchange (ETDEWEB)

    Florando, J; Rhee, M; Arsenlis, A; LeBlanc, M; Lassila, D

    2006-02-21

    A 3-D image correlation system, which measures the full-field displacements in 3 dimensions, has been used to experimentally determine the full deformation gradient matrix for two zinc single crystals. Based on the image correlation data, the slip system activity for the two crystals has been calculated. The results of the calculation show that for one crystal, only the primary slip system is active, which is consistent with traditional theory. The other crystal however, shows appreciable deformation on slip systems other than the primary. An analysis has been conducted which confirms the experimental observation that these other slip system deform in such a manner that the net result is slip which is approximately one third the magnitude and directly orthogonal to the primary system.

  15. Aging Behaviour of Al-Mg-Si Alloys Subjected to Severe Plastic Deformation by ECAP and Cold Asymmetric Rolling

    Directory of Open Access Journals (Sweden)

    S. Farè

    2011-01-01

    Full Text Available A study was carried out on aging behaviour of a 6082 alloy processed by two different severe plastic deformation techniques: ECAP and asymmetric rolling. Both techniques were able to generate an ultrafine-grained structure in samples processed at room temperature. It was stated that severe straining promotes marked changes in the postdeformation aging kinetics. The peaks of β′′/β′ transition phases were anticipated and of progressively reduced intensity over the coarse grained alloy. A further peak accounting for onset of recrystallization also appeared in the most severely deformed samples. Full consistency in peak shape and position was found when comparing materials processed by ECAP and asymmetric rolling. Isothermal aging treatments performed at 180°C revealed that in the severely deformed samples, aging became so fast that the hardness curves continuously decreased due to overwhelming effects of structure restoration. On the contrary, aging at 130°C offers good opportunities for fully exploiting the precipitate hardening effects in the ultrafine-grained alloy.

  16. Microstructure and annealing behavior of a modified 9Cr-1Mo steel after dynamic plastic deformation to different strains

    Science.gov (United States)

    Zhang, Z. B.; Mishin, O. V.; Tao, N. R.; Pantleon, W.

    2015-03-01

    The microstructure, hardness and tensile properties of a modified 9Cr-1Mo steel processed by dynamic plastic deformation (DPD) to different strains (0.5 and 2.3) have been investigated in the as-deformed and annealed conditions. It is found that significant structural refinement and a high level of strength can be achieved by DPD to a strain of 2.3, and that the microstructure at this strain contains a large fraction of high angle boundaries. The ductility of the DPD processed steel is however low. Considerable structural coarsening of the deformed microstructure without pronounced recrystallization takes place during annealing of the low-strain and high-strain samples for 1 h at 650 °C and 600 °C, respectively. Both coarsening and partial recrystallization occur in the high-strain sample during annealing at 650 °C for 1 h. For this sample, it is found that whereas coarsening alone results in a loss of strength with only a small gain in ductility, coarsening combined with pronounced partial recrystallization enables a combination of appreciably increased ductility and comparatively high strength.

  17. Microstructure and annealing behavior of a modified 9Cr−1Mo steel after dynamic plastic deformation to different strains

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Z.B.; Mishin, O.V. [Danish-Chinese Center for Nanometals, Section for Materials Science and Advanced Characterization, Department of Wind Energy, Technical University of Denmark, Risø Campus, 4000 Roskilde (Denmark); Sino-Danish Center for Education and Research (China); Sino-Danish Center for Education and Research (Denmark); Tao, N.R. [Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Science, Shenyang 110016 (China); Sino-Danish Center for Education and Research (China); Sino-Danish Center for Education and Research (Denmark); Pantleon, W., E-mail: pawo@dtu.dk [Section for Materials and Surface Engineering, Department of Mechanical Engineering, Technical University of Denmark, 2800 Kgs. Lyngby (Denmark); Sino-Danish Center for Education and Research (China); Sino-Danish Center for Education and Research (Denmark)

    2015-03-15

    The microstructure, hardness and tensile properties of a modified 9Cr−1Mo steel processed by dynamic plastic deformation (DPD) to different strains (0.5 and 2.3) have been investigated in the as-deformed and annealed conditions. It is found that significant structural refinement and a high level of strength can be achieved by DPD to a strain of 2.3, and that the microstructure at this strain contains a large fraction of high angle boundaries. The ductility of the DPD processed steel is however low. Considerable structural coarsening of the deformed microstructure without pronounced recrystallization takes place during annealing of the low-strain and high-strain samples for 1 h at 650 °C and 600 °C, respectively. Both coarsening and partial recrystallization occur in the high-strain sample during annealing at 650 °C for 1 h. For this sample, it is found that whereas coarsening alone results in a loss of strength with only a small gain in ductility, coarsening combined with pronounced partial recrystallization enables a combination of appreciably increased ductility and comparatively high strength.

  18. Strength, corrosion resistance, and biocompatibility of ultrafine-grained Mg alloys after different modes of severe plastic deformation

    Science.gov (United States)

    Dobatkin, S. V.; Lukyanova, E. A.; Martynenko, N. S.; Anisimova, N. Yu; Kiselevskiy, M. V.; Gorshenkov, M. V.; Yurchenko, N. Yu; Raab, G. I.; Yusupov, V. S.; Birbilis, N.; Salishchev, G. A.; Estrin, Y. Z.

    2017-05-01

    The effect of severe plastic deformation on the structure, mechanical properties, corrosion resistance, and biocompatibility of the WE43 (Mg-Y-Nd-Zr) alloy earmarked for applications as bioresorbable material has been studied. The alloy was deformed by rotary swaging (RS), equal channel angular pressing (ECAP), and multiaxial deformation (MAD). The microstructure examination by transmission electron microscopy showed that all SPD modes lead to the formation of ultrafine-grained structure with a structural element size of 0.5-1 µm and the Mg12Nd phase particles 0.3 µm in size. The microstructure refinement by all three treatments resulted in strengthening of the alloy. ECAP and MAD also raised ductility to up to 12-17%, while RS increased the ultimate tensile strength to up to 415 MPa. The study of the corrosion properties showed that SPD does not affect the electrochemical corrosion of the alloy. Its biocompatibility in vitro was estimated after incubation of the samples with red blood cells (hemolysis study), white blood cells (cell viability assay), and mesenchymal stromal cells (cell proliferation analysis). The biodegradation rate in fetal bovine serum was also evaluated. ECAP and MAD were found to cause some deceleration of biodegradation by slowing down the gas formation in the biological fluid and, compared to MSC, to improve the biocompatibility of the WE43 alloy.

  19. Ratcheting deformation of advanced 316 steel under creep-plasticity condition

    Energy Technology Data Exchange (ETDEWEB)

    Kawashima, Fumiko; Ishikawa, Akiyoshi; Asada, Yasuhide [Tokai Univ., Tokyo (Japan). Dept. of Mechanical Engineering

    1998-11-01

    Tension-torsion biaxial ratcheting tests have been conducted with Advanced 316 Steel (316FR Steel) at 650 C under a cyclic strain rate of 10{sup -3} to 10{sup -5} s{sup -1}. Accumulation of ratcheting strain has been measured. Accumulated ratchet strain has shown to be much larger than predicted based on a usual method of the linear superposition of strains due to creep and plasticity. The result shows there observed the creep-plasticity interaction in the observation. (orig.)

  20. Photonic band structures of two-dimensional photonic crystals with deformed lattices

    Institute of Scientific and Technical Information of China (English)

    Cai Xiang-Hua; Zheng Wan-Hua; Ma Xiao-Tao; Ren Gang; Xia Jian-Bai

    2005-01-01

    Using the plane-wave expansion method, we have calculated and analysed the changes of photonic band structures arising from two kinds of deformed lattices, including the stretching and shrinking of lattices. The square lattice with square air holes and the triangular lattice with circular air holes are both studied. Calculated results show that the change of lattice size in some special ranges can enlarge the band gap, which depends strongly on the filling factor of air holes in photonic crystals; and besides, the asymmetric band edges will appear with the broken symmetry of lattices.

  1. Modulation of unpolarized light in planar aligned subwavelength-pitch deformed-helix ferroelectric liquid crystals

    CERN Document Server

    Kesaev, Vladimir V; Kiselev, Alexei D

    2016-01-01

    We study the electro-optic properties of subwavelength-pitch deformed-helix ferroelectric liquid crystals (DHFLC) illuminated with unpolarized light. In the experimental setup based on the Mach-Zehnder interferometer, it was observed that the reference and the sample beams being both unpolarized produce the interference pattern which is insensitive to rotation of in-plane optical axes of the DHFLC cell. We find that the field-induced shift of the interference fringes can be described in terms of the electrically dependent Pancharatnam relative phase determined by the averaged phase shift, whereas the visibility of the fringes is solely dictated by the phase retardation.

  2. Bendable high-frequency microwave switches formed with single-crystal silicon nanomembranes on plastic substrates

    Science.gov (United States)

    Yuan, Hao-Chih; Qin, Guoxuan; Celler, George K.; Ma, Zhenqiang

    2009-07-01

    This letter presents realization of bendable rf switches operating at microwave frequencies formed with single-crystal Si nanomembranes (SiNMs) on a plastic substrate. Selectively doped 200-nm-thick SiNM is lifted off from silicon-on-insulator and transferred to a polymer substrate to form lateral P-intrinsic-N (PIN) diodes with minimized parasitic resistances. A single-pole single-throw switch, consisting of two PIN diodes connected in a shunt-series configuration, demonstrated very low insertion loss and high isolation from dc up to 20 GHz. The level of performance indicates a promise of properly processed single-crystal semiconductor nanomembranes for high-frequency applications in a number of consumer and military systems.

  3. Flexible photodetectors on plastic substrates by use of printing transferred single-crystal germanium membranes

    Science.gov (United States)

    Yuan, Hao-Chih; Shin, Jonghyun; Qin, Guoxuan; Sun, Lei; Bhattacharya, Pallab; Lagally, Max G.; Celler, George K.; Ma, Zhenqiang

    2009-01-01

    This letter presents studies of multiwavelength flexible photodetectors on a plastic substrate by use of printing transferred single-crystal germanium (Ge) membranes. Ge membranes of 250nm thickness with selectively ion-implantation doped regions were released from a germanium-on-insulator substrate and integrated with a 175-μm-thick polyethylene terephthalate substrate via a dry printing technique. Photodiodes configured in lateral p-i-n configuration using the flexible Ge membranes with an intrinsic region width of 10μm exhibit an external quantum efficiency that varies from 5% at 411nm to 42% at 633nm under -1V bias condition. These results demonstrate the potential of utilizing single-crystal Ge-membrane photodiodes for imaging applications and as solar cells on objects with arbitrary curvatures and shapes.

  4. On the activity of deforming medium

    Science.gov (United States)

    Zuev, L. B.; Gorbatenko, V. V.

    2016-11-01

    A new approach to the problem of the plastic flow of solid crystals is proposed. This approach is based on studying the macroscopic localization patterns of plastic deformation, which can be considered as different types of autowave processes of defect self-organization. An unambiguous correspondence between the localization patterns and stages of plastic flow in metals is established. A new model is proposed to describe the development of plastic flow localization. A change-over in the patterns of autowave processes of plastic flow evolution and a transition to fracture are attributed to the specific features of the interaction between information and dynamic subsystems.

  5. The rate sensitivity and plastic deformation of nanocrystalline tantalum films at nanoscale

    Directory of Open Access Journals (Sweden)

    Huang Yongli

    2011-01-01

    Full Text Available Abstract Nanoindentation creep and loading rate change tests were employed to examine the rate sensitivity (m and hardness of nanocrystalline tetragonal Ta films. Experimental results suggested that the m increased with the decrease of feature scale, such as grain size and indent depth. The magnitude of m is much less than the corresponding grain boundary (GB sliding deformation with m of 0.5. Hardness softening behavior was observed for smaller grain size, which supports the GB sliding mechanism. The rate-controlling deformation was interpreted by the GB-mediated processes involving atomic diffusion and the generation of dislocation at GB.

  6. Macro-carriers of plastic deformation of steel surface layers detected by digital image correlation

    Energy Technology Data Exchange (ETDEWEB)

    Kopanitsa, D. G., E-mail: kopanitsa@mail.ru; Ustinov, A. M., E-mail: artemustinov@mail.ru [Tomsk State University of Architecture and Building, 2 Solyanaya Sq, Tomsk, 634003 (Russian Federation); Potekaev, A. I., E-mail: potekaev@spti.tsu.ru [National Research Tomsk State University, 36 Lenin Ave., Tomsk, 634050 (Russian Federation); Klopotov, A. A., E-mail: klopotovaa@tsuab.ru [Tomsk State University of Architecture and Building, 2 Solyanaya Sq, Tomsk, 634003 (Russian Federation); National Research Tomsk State University, 36 Lenin Ave., Tomsk, 634050 (Russian Federation); Kopanitsa, G. D., E-mail: georgy.kopanitsa@mail.com [National Research Tomsk Polytechnic University, 30 Lenin Ave., Tomsk, 634050 (Russian Federation)

    2016-01-15

    This paper presents a study of characteristics of an evolution of deformation fields in surface layers of medium-carbon low-alloy specimens under compression. The experiments were performed on the “Universal Testing Machine 4500” using a digital stereoscopic image processing system Vic-3D. A transition between stages is reflected as deformation redistribution on the near-surface layers. Electronic microscopy shows that the structure of the steel is a mixture of pearlite and ferrite grains. A proportion of pearlite is 40% and ferrite is 60%.

  7. Oxide dispersion-strengthened steel PM2000 after dynamic plastic deformation: nanostructure and annealing behaviour

    DEFF Research Database (Denmark)

    Zhang, Zhenbo; Tao, N. R.; Mishin, Oleg V.

    2016-01-01

    , which substantially increases the strength of the material, but decreases its thermal stability. In the as-deformed microstructure, the stored energy density is found to be higher in 〈111〉-oriented regions than in 〈100〉-oriented regions. Recovery during annealing at 715 °C reduces the energy stored...... in the deformed microstructure. This reduction is more pronounced in the 〈111〉-oriented regions. Orientation-dependent recrystallisation takes place in the recovered microstructure, leading to strengthening of the 〈111〉 fibre texture component at the expense of the 〈100〉 fibre texture component....

  8. Dynamic Measurements of Plastic Deformation in a Water-Filled Aluminum Tube in Response to Detonation of a Small Explosives Charge

    Directory of Open Access Journals (Sweden)

    Harold Sandusky

    1999-01-01

    Full Text Available Experiments have been conducted to benchmark computer code calculations for the dynamic interaction of explosions in water with structures. Aluminum cylinders with a length slightly more than twice their diameter were oriented vertically, sealed on the bottom by a thin plastic sheet, and filled with distilled water. An explosive charge suspended in the center of the tube plastically deformed but did not rupture the wall. Tube wall velocity, displacement, and strain were directly measured. The agreement among the three sets of dynamic data and the agreement of the terminal displacement measurements with the residual deformation were excellent.

  9. Use of intra-medullary stacked nailing in the reduction of proximal plastic deformity in a pediatric Monteggia fracture: a case report

    Directory of Open Access Journals (Sweden)

    Huntley James S

    2011-04-01

    Full Text Available Abstract Introduction In a Monteggia fracture dislocation, it is important to reduce the ulnar fracture completely. Extensive plastic deformation of the proximal ulna may make reduction by closed manipulation impossible. Case presentation We report the case of a four-year-old Caucasian boy in whom the plastic deformation of the proximal ulna was reduced, and this reduction was maintained, using intra-medullary stacked nailing. Conclusion The technique of stacked nailing is a useful addition to the armamentarium in the management of the potentially awkward Monteggia fracture.

  10. DESIGN AND FEM STATIC ANALYSIS OF AN INSTRUMENT FOR SURFACE PLASTIC DEFORMATION OF NON-PLANAR FUNCTIONAL SURFACES OF MACHINE PARTS

    Directory of Open Access Journals (Sweden)

    STOYAN SLAVOV

    2015-12-01

    Full Text Available The paper presents the design of a specialized instrument for formation different types of regular microshape roughness on functional surfaces of parts with non-planar macroshape by using the process, called “surface plastic deformation”. The elements of which it is constructed are explained and the results from carried out strength and deformation analysis, obtained by Finite Element Method, conducted using the Simulation module of the SolidWorks are also represented. On this basis some advantages and limitations of some of the surface plastic deformation process technological parameters are identified and recommendations for its implementation are given.

  11. Deformation, recrystallization, strength, and fracture of press-forged ceramic crystals.

    Science.gov (United States)

    Rice, R. W.

    1972-01-01

    Sapphire and ruby were very difficult to press-forge because they deformed without cracking only in a limited temperature range before they melted. Spinel crystals were somewhat easier and MgO, CaO, and TiC crystals much easier to forge. The degree of recrystallization that occurred during forging (which was related to the ease and type of slip intersections) varied from essentially zero in Al2O3 to complete (i.e., random polycrystalline bodies were produced) in CaO. Forging of bi- and polycrystalline bodies produced incoherent bodies as a result of grain-boundary sliding. Strengths of the forged crystals were comparable to those of dense polycrystalline bodies of similar grain size. However, forged and recrystallized CaO crystals were ductile at lower temperatures than dense hot-pressed CaO. This behavior is attributed to reduced grain-boundary impurities and porosity. Fracture origins could be located, indicating that fracture in the CaO occurs internally as a result of surface work hardening caused by machining.-

  12. INFLUENCE RESEARCH OF COLD PLASTIC DEFORMATION ON DIFFUSION SATURATION PROCESS BY CARBON AND BORON OF THE LOW-CARBON AND BORON-CONTAINING ALLOYS

    Directory of Open Access Journals (Sweden)

    N. Yu. Filonenko

    2010-06-01

    Full Text Available This work is devoted to the study of influence of cold prestrain with degree of deformation within the range 0…40 % on diffusion saturation with boron and carbon for low-carbon and boron steels. It is determined that the plastic prestrain with degree of deformation 20 % at temperature 750 °С for the low-carbon steel promote increasing of boron-cementation layer thickness by 25 % and microhardness of perlite layer by 20 %.

  13. Orientation dependence of the plastic slip near notches in ductile FCC single crystals

    Science.gov (United States)

    Crone, W. C.; Shield, T. W.; Creuziger, A.; Henneman, B.

    2004-01-01

    Results from experiments conducted on copper FCC single crystals are reported. Two symmetric crystallographic orientations and four nonsymmetric crystallographic orientations were tested. The slip line fields that form near a pre-existing notch in these specimens were observed. The changes in these patterns as the orientation of the notch in the crystal is rotated in an {101} plane are discussed. Sectors of similar slip line patterns are identified and the type of boundaries between these sectors are discussed. A type of sector boundary called mixed kink is identified. Specimen orientations that differ by 90° are found to have different slip line patterns, contrary to the predictions of perfectly plastic slip line theory. The locations of the first slip lines to form are compared to the predictions obtained using anisotropic linear elastic stress field solutions and the initial plane-strain yield surfaces. It is found that comparison of these surface slip line fields to plane strain crack tip solutions in the annular region between 350 and 750 μm is justified. The differences in anisotropic elastic solutions for orientations that are 90° apart explain the lack of agreement with perfectly plastic slip line theory.

  14. Terahertz Conductivity and Hindered Molecular Reorientation of Lithium Salt Doped Succinonitrile in its Plastic Crystal Phase

    Science.gov (United States)

    Nickel, Daniel V.; Bian, Hongtao; Zheng, Junrong; Mittleman, Daniel M.

    2014-09-01

    The terahertz complex permittivity of the molecular plastic crystal succinonitrile (SN) or 1,2 dicyanoethane (N≡C-CH2-CH2-C≡N), doped with the lithium salts LiBF4, LiPF6, LiTFSI, and LiClO4 to form solid-state plastic crystal electrolytes, is measured and compared using temperature-dependent terahertz time-domain spectroscopy (THz-TDS). In contrast to the trends at low frequency, SN's terahertz conductivity decreases slightly when doped with Li-salts. This indicates that at high frequencies the dielectric response is not dominated by ionic charge transport, but instead by relaxational processes which are hindered by the presence of the ionic dopants. Assuming a single Cole-Cole distribution of Debye-like processes dominates the measured spectra, the average relaxation times τ and Arrhenius activation energies E a are extracted for each electrolyte and are shown to increase significantly relative to undoped SN's τ and E a, indicating the relaxational processes are hindered by the presence of the ionic dopants.

  15. Structural recovery in plastic crystals by time-resolved non-linear dielectric spectroscopy.

    Science.gov (United States)

    Riechers, Birte; Samwer, Konrad; Richert, Ranko

    2015-04-21

    The dielectric relaxation of several different plastic crystals has been examined at high amplitudes of the ac electric fields, with the aim of exploring possible differences with respect to supercooled liquids. In all cases, the steady state high field loss spectrum appears to be widened, compared with its low field limit counterpart, whereas peak position and peak amplitude remain almost unchanged. This field induced change in the loss profile is explained on the basis of two distinct effects: an increased relaxation time due to reduced configurational entropy at high fields which affects the low frequency part of the spectrum, and accelerated dynamics at frequencies above the loss peak position resulting from the added energy that the sample absorbs from the external electric field. From the time-resolved assessment of the field induced changes in fictive temperatures at relatively high frequencies, we find that this structural recovery is slaved to the average rather than mode specific structural relaxation time. In other words, the very fast relaxation modes in the plastic crystal cannot adjust their fictive temperatures faster than the slower modes, the equivalent of time aging-time superposition. As a result, an explanation for this single fictive temperature must be consistent with positional order, i.e., translational motion or local density fluctuations do not govern the persistence time of local time constants.

  16. Study of effect of quenching and deformation on KCl: Gd3+ crystals by using conductivity measurements

    Indian Academy of Sciences (India)

    G Saibabu; A Ramachandra Reddy; D Srikanth

    2004-10-01

    The study of ionic conductivity vs reciprocal temperature of pure KCl and KCl crystal doped with 0.1, 0.3 and 0.5 mole% gadolinium has been carried out in as grown, quenched from elevated temperatures (100, 350 and 500°C) and annealed at various timings i.e. 2–3 h and deformed by different percentages. The plots exhibit three well-known regions, II, III and IV (extrinsic regions). The intrinsic region I was not observed in the plots as the conductivity measurements were taken up to 575°C. From the analysis of these plots, activation energies for the migration of cation vacancy and the association of gadolinium ion with cation vacancy in the lattice of KCl crystals are calculated. These values are compared with previously reported values. Further, an attempt is made to explain the existence of oxidation state of gadolinium ion in + 3 state rather than in + 2 state as reported earlier. The variation in conductivity with effect of concentration of impurity ion, quenching and annealing and deformation with various percentages are explained on the basis of formation of impurity vacancy dipoles, vacancy – vacancy pairs (which appear in the form of precipitation), storage of cation vacancies in the form of defects, introduction of fresh dislocations, etc.

  17. Modulating two-dimensional non-close-packed colloidal crystal arrays by deformable soft lithography.

    Science.gov (United States)

    Li, Xiao; Wang, Tieqiang; Zhang, Junhu; Yan, Xin; Zhang, Xuemin; Zhu, Difu; Li, Wei; Zhang, Xun; Yang, Bai

    2010-02-16

    We report a simple method to fabricate two-dimensional (2D) periodic non-close-packed (ncp) arrays of colloidal microspheres with controllable lattice spacing, lattice structure, and pattern arrangement. This method combines soft lithography technique with controlled deformation of polydimethylsiloxane (PDMS) elastomer to convert 2D hexagonal close-packed (hcp) silica microsphere arrays into ncp ones. Self-assembled 2D hcp microsphere arrays were transferred onto the surface of PDMS stamps using the lift-up technique, and then their lattice spacing and lattice structure could be adjusted by solvent swelling or mechanical stretching of the PDMS stamps. Followed by a modified microcontact printing (microcp) technique, the as-prepared 2D ncp microsphere arrays were transferred onto a flat substrate coated with a thin film of poly(vinyl alcohol) (PVA). After removing the PVA film by calcination, the ncp arrays that fell on the substrate without being disturbed could be lifted up, deformed, and transferred again by another PDMS stamp; therefore, the lattice feature could be changed step by step. Combining isotropic solvent swelling and anisotropic mechanical stretching, it is possible to change hcp colloidal arrays into full dimensional ncp ones in all five 2D Bravais lattices. This deformable soft lithography-based lift-up process can also generate patterned ncp arrays of colloidal crystals, including one-dimensional (1D) microsphere arrays with designed structures. This method affords opportunities and spaces for fabrication of novel and complex structures of 1D and 2D ncp colloidal crystal arrays, and these as-prepared structures can be used as molds for colloidal lithography or prototype models for optical materials.

  18. Application of Reproducing Kernel Particle Method in an Analysis of Elasto-plastic Deformation Under Taylor Impact

    Institute of Scientific and Technical Information of China (English)

    ZHAO Guang-ming; SONG Shun-cheng; MENG Xiang-rui

    2006-01-01

    The Reproducing Kernel Particle Method (RKPM) is one of several new meshless numerical methods developed internationally in recent years. The ideal elasto-plastic constitutive model of material under a Taylor impact is characterized by the Jaumann stress- and strain-rates. An updated Lagrangian format is used for the calculation in a numerical analysis. With the RKPM, this paper deals with the calculation model for the Taylor impact and deduces the control equation for the impact process. A program was developed to simulate numerically the Taylor impact of projectiles composed of several kinds of material. The simulation result is in good accordance with both the test results and the Taylor analysis outcome. Since the meshless method is not limited by meshes, it is believed to be widely applicable to such complicated processes as the Taylor impact, including large deformation and strain and to the study of the dynamic qualities of materials.

  19. Effect of the severe plastic deformation temperature on the diffusion properties of the grain boundaries in ultrafine-grained metals

    Science.gov (United States)

    Chuvil'deev, V. N.; Myshlyaev, M. M.; Nokhrin, A. V.; Kopylov, V. I.; Lopatin, Yu. G.; Pirozhnikova, O. E.; Piskunov, A. V.; Semenycheva, A. V.; Bobrov, A. A.

    2017-05-01

    A model is proposed to explain the effect of the severe plastic deformation (SPD) temperature on the diffusion properties of the grain boundaries in ultrafine-grained (UFG) metals and alloys. It is shown that an increase in the SPD temperature in UFG metals leads to an increase in the activation energy of grainboundary diffusion from (3-5) k B T m, which corresponds to the diffusion parameters of nonequilibrium grain boundaries, to (8-10) k B T m, which corresponds to the diffusion parameters of equilibrium grain boundaries ( k B is the Boltzmann constant, T m is the melting temperature). The dependence of the activation energy of grain-boundary diffusion on the SPD temperature is found to be determined by the kinetics of the competing processes of defect accumulation at grain boundaries and the diffusion accommodation of defects.

  20. Contactless electrical conductivity measurement of metallic submicron-grain material: Application to the study of aluminum with severe plastic deformation.

    Science.gov (United States)

    Mito, M; Matsui, H; Yoshida, T; Anami, T; Tsuruta, K; Deguchi, H; Iwamoto, T; Terada, D; Miyajima, Y; Tsuji, N

    2016-05-01

    We measured the electrical conductivity σ of aluminum specimen consisting of submicron-grains by observing the AC magnetic susceptibility resulting from the eddy current. By using a commercial platform for magnetic measurement, contactless measurement of the relative electrical conductivity σn of a nonmagnetic metal is possible over a wide temperature (T) range. By referring to σ at room temperature, obtained by the four-terminal method, σn(T) was transformed into σ(T). This approach is useful for cylinder specimens, in which the estimation of the radius and/or volume is difficult. An experiment in which aluminum underwent accumulative roll bonding, which is a severe plastic deformation process, validated this method of evaluating σ as a function of the fraction of high-angle grain boundaries.