WorldWideScience

Sample records for crystal microbalance eqcm

  1. In-situ monitoring of potential enhanced DNA related processes using electrochemical quartz crystal microbalance with dissipation (EQCM-D)

    DEFF Research Database (Denmark)

    Quan, Xueling; Heiskanen, Arto; Tenje, Maria

    2014-01-01

    The effect of applied potential pulses on DNA functionalization (thiolated single stranded DNA) and hybridization processes has been monitored in-situ on gold surfaces using electrochemical quartz crystal microbalance with dissipation (EQCM-D). The applied potentials were chosen with respect to t...

  2. Electrochemical quartz crystal microbalance (EQCM) study of ion dynamics in nanoporous carbons.

    Science.gov (United States)

    Tsai, Wan-Yu; Taberna, Pierre-Louis; Simon, Patrice

    2014-06-18

    Electrochemical quartz crystal microbalance (EQCM) and cyclic voltammetry (CV) measurements were used to characterize ion adsorption in carbide-derived carbon (CDC) with two different average pore sizes (1 and 0.65 nm), from neat and solvated 1-Ethyl-3-methylimidazolium bis(trifluoromethanesulfonyl)imide (EMI-TFSI) electrolytes. From the electrode mass change in neat EMI-TFSI, it was shown that one net charge stored corresponds almost to one single ion at high polarization; in that case, no ion-pairing or charge screening by co-ions were observed. In 2 M EMI-TFSI in acetonitrile electrolyte, experimental solvation numbers were estimated for EMI(+) cation, showing a partial desolvation when cations were adsorbed in confined carbon pores. The extent of desolvation increased when decreasing the carbon pore size (from 1 down to 0.65 nm). The results also suggest that EMI(+) cation owns higher mobility than TFSI(-) anion in these electrolytes.

  3. Electrochemical characterization of electrolytes and electrodes for lithium-ion batteries. Development of a new measuring method for electrochemical investigations on electrodes with the electrochemical quartz crystal microbalance (EQCM); Elektrochemische Charakterisierung von Elektrolyten und Elektroden fuer Lithium-Ionen-Batterien. Entwicklung einer neuen Messmethode fuer elektrochemische Untersuchungen an Elektroden mit der EQCM

    Energy Technology Data Exchange (ETDEWEB)

    Moosbauer, Dominik Johann

    2010-11-09

    In this work the conductivities of four different lithium salts, LiPF6, LiBF4, LiDFOB, and LiBOB in the solvent mixture EC/DEC (3/7) were investigated. Furthermore, the influence of eight ionic liquids (ILs) as additives on the conductivity and electrochemical stability of lithium salt-based electrolytes was studied. The investigated salts were the well-known lithium LiPF6 and LiDFOB. Conductivity studies were performed over the temperature range (238.15 to 333.15) K. The electrochemical stabilities of the solutions were determined at aluminum electrodes. The salt solubility of LiBF4 and LiDFOB in EC/DEC (3/7) was measured with the quartz crystal microbalance (QCM), a method developed in our group. Moreover, a method to investigate interactions between the electrolyte and electrode components with the electrochemical quartz crystal microbalance (EQCM) was developed. First, investigations of corrosion and passivation effects on aluminum with different lithium salts were performed and masses of deposited products estimated. Therefore, the quartzes were specially prepared with foils. Active materials of cathodes, in this work lithium iron phosphate (LiFePO4), were also investigated with the EQCM by a new method. [German] In dieser Arbeit wurden die Leitfaehigkeiten von vier unterschiedlichen Salzen, LiPF6, LiBF4, LiDFOB und LiBOB in dem Loesemittelgemisch EC/DEC (3/7) untersucht. Des Weiteren wurde der Einfluss von acht Ionischen Fluessigkeiten (ILs) als Additive fuer Lithium-Elektrolyte auf die elektrochemische Stabilitaet und die Leitfaehigkeit studiert. Die untersuchten Salze waren LiPF6 und LiDFOB. Die Leitfaehigkeitsmessungen wurden in einem Temperaturbereich von (238,15 bis 333,15) K durchgefuehrt. Die elektrochemischen Stabilitaeten der Elektrolyte fanden an Aluminium statt. Mit einer an der Arbeitsgruppe entwickelten neuen Methode wurden zudem die Salzloeslichkeiten von LiBF4 und LiDFOB in EC/DEC (3/7) mit der Quarzmikrowaage (QCM) bestimmt. Weiterhin wurden

  4. Performances and limits of a parallel oscillator for electrochemical quartz crystal microbalances.

    Science.gov (United States)

    Ehahoun, Hervé; Gabrielli, Claude; Keddam, Michel; Perrot, Hubert; Rousseau, Philippe

    2002-03-01

    This paper describes a driving circuit for an electrochemical quartz crystal microbalance (EQCM) adapted to a wide range of applications. The oscillator is a Miller-type parallel oscillator using an operational transconductance amplifier (OTA). A theoretical study of the oscillating circuit led to the analytical expression of the microbalance frequency as well as to an overestimation of the error on the mass measurement. The reliability of the EQCM was then experimentally verified through electrochemical copper deposition and dissolution. The limit of operation of the EQCM was also investigated, both analytically and experimentally. This work shows that parallel oscillators using few electronic components allow a very reliable EQCM to be obtained for mass measurements on metallic films, even if they are highly damped.

  5. Quartz Crystal Microbalance Data

    Energy Technology Data Exchange (ETDEWEB)

    Baxamusa, S H

    2011-11-16

    We are using a Qpod quartz crystal microbalance (manufactured by Inficon) for use as a low-volume non-volatile residue analysis tool. Inficon has agreed to help troubleshoot some of our measurements and are requesting to view some sample data, which are attached. The basic principle of an NVR analysis is to evaporate a known volume of solvent, and weigh the remaining residue to determine the purity of the solvent. A typical NVR analysis uses 60 g of solvent and can measure residue with an accuracy of +/- 0.01 mg. The detection limit is thus (0.01 mg)/(60 g) = 0.17 ppm. We are attempting to use a quartz crystal microbalance (QCM) to make a similar measurement. The attached data show the response of the QCM as a 5-20 mg drop of solvent evaporates on its surface. The change in mass registered by the QCM after the drop evaporates is the residue that deposits on the crystal. On some measurements, the change in mass in less than zero, which is aphysical since the drop will leave behind {>=}0 mass of residue. The vendor, Inficon, has agreed to look at these data as a means to help troubleshoot the cause.

  6. Electrochemical Quartz Crystal Microbalance Monitoring of the Cyclic Voltammetric Deposition of Polyaniline

    Science.gov (United States)

    Xie, Qingji; Li, Zhili; Deng, Chunyan; Liu, Meiling; Zhang, Youyu; Ma, Ming; Xia, Shaoxi; Xiao, Xiaoming; Yin, Dulin; Yao, Shouzhuo

    2007-01-01

    A real-time, labeled-free and nanogram-sensitive mass sensor, electrochemical quartz crystal microbalance (EQCM) is used to monitor a cyclic voltammetric deposition of polyaniline (PANI). The results determined that the efficiency for PANI deposition and the anion-doping ratio is calculated in one single cyclic voltammetric.

  7. Data Acquisition System for Quartz Crystal Microbalances

    Directory of Open Access Journals (Sweden)

    Kleber Romero Felizardo

    2006-02-01

    Full Text Available This work presents a data acquisition system used in a mass sensor: quartz crystal microbalance. This system reads the frequency of this sensor along the time and sends the collected data to the computer through a serial interface.

  8. Frequency Behavior of a Quartz Crystal Microbalance (Qcm in Contact with Selected Solutions

    Directory of Open Access Journals (Sweden)

    Z. A. Talib

    2006-01-01

    Full Text Available A device was constructed to monitor viscosity of solutions using fundamental frequency of 9 MHz and 10 MHz quartz crystal. Piezoelectric quartz crystals with gold electrodes were mounted by O-ring in between liquid flow cell. Only one side of the crystal was exposed to the solutions which were pumped through silicon tube by a peristaltic pump. The measured frequency shift was observed in order to investigate the interfacial behavior of some selected solution in contact with one surface of Quartz Crystal Microbalance (QCM. An analysis of the interaction between an AT-cut quartz crystal microbalance and various liquid system of analytical interest is presented. The analysis which includes piezoelectric effects and other influences; liquid properties, experimental conditions and the characteristic of the solution are reported. Oscillation in distilled water is taken as a reference. The frequency change caused by the density (ρ, gcm-3 and viscosity (η gcm-1s-1 were found to be proportional to the square root of the product, (ρ η. The result suggested that analysis of small frequency shifts during EQCM studies needs to account for changes in ρ and η of the solution. Generally, all the liquid tested showed an increment of the frequency shift with increasing content of solutes. For each solution, the frequency was recorded as the concentration increases from distilled water to a very concentrated solution. The frequency measurements carried out for saccharide solution produces the maximum changes of frequency shift compared with other solutions.

  9. Arsenic species interactions with a porous carbon electrode as determined with an electrochemical quartz crystal microbalance

    Science.gov (United States)

    Morallón, Emilia; Arias-Pardilla, Joaquín; Calo, J.M.; Cazorla-Amorós, D.

    2009-01-01

    The interactions of arsenic species with platinum and porous carbon electrodes were investigated with an electrochemical quartz crystal microbalance (EQCM) and cyclic voltammetry in alkaline solutions. It is shown that the redox reactions in arsenic-containing solutions, due to arsenic reduction/deposition, oxidation/desorption, and electrocatalyzed oxidation by Pt can be readily distinguished with the EQCM. This approach was used to show that the arsenic redox reactions on the carbon electrode are mechanistically similar to that on the bare Pt electrode. This could not be concluded with just classical cyclic voltammetry alone due to the obfuscation of the faradaic features by the large capacitative effects of the carbon double layer. For the porous carbon electrode, a continual mass loss was always observed during potential cycling, with or without arsenic in the solution. This was attributed to electrogasification of the carbon. The apparent mass loss per cycle was observed to decrease with increasing arsenic concentration due to a net mass increase in adsorbed arsenic per cycle that increased with arsenic concentration, offsetting the carbon mass loss. Additional carbon adsorption sites involved in arsenic species interactions are created during electrogasification, thereby augmenting the net uptake of arsenic per cycle. It is demonstrated that EQCM, and in particular the information given by the behavior of the time derivative of the mass vs. potential, or massogram, is very useful for distinguishing arsenic species interactions with carbon electrodes. It may also prove to be effective for investigating redox/adsorption/desorption behavior of other species in solution with carbon materials as well. PMID:20161369

  10. Arsenic species interactions with a porous carbon electrode as determined with an electrochemical quartz crystal microbalance.

    Science.gov (United States)

    Morallón, Emilia; Arias-Pardilla, Joaquín; Calo, J M; Cazorla-Amorós, D

    2009-06-30

    The interactions of arsenic species with platinum and porous carbon electrodes were investigated with an electrochemical quartz crystal microbalance (EQCM) and cyclic voltammetry in alkaline solutions. It is shown that the redox reactions in arsenic-containing solutions, due to arsenic reduction/deposition, oxidation/desorption, and electrocatalyzed oxidation by Pt can be readily distinguished with the EQCM. This approach was used to show that the arsenic redox reactions on the carbon electrode are mechanistically similar to that on the bare Pt electrode. This could not be concluded with just classical cyclic voltammetry alone due to the obfuscation of the faradaic features by the large capacitative effects of the carbon double layer.For the porous carbon electrode, a continual mass loss was always observed during potential cycling, with or without arsenic in the solution. This was attributed to electrogasification of the carbon. The apparent mass loss per cycle was observed to decrease with increasing arsenic concentration due to a net mass increase in adsorbed arsenic per cycle that increased with arsenic concentration, offsetting the carbon mass loss. Additional carbon adsorption sites involved in arsenic species interactions are created during electrogasification, thereby augmenting the net uptake of arsenic per cycle.It is demonstrated that EQCM, and in particular the information given by the behavior of the time derivative of the mass vs. potential, or massogram, is very useful for distinguishing arsenic species interactions with carbon electrodes. It may also prove to be effective for investigating redox/adsorption/desorption behavior of other species in solution with carbon materials as well.

  11. Electrochemical quartz crystal microbalance study on Au-supported Pt adlayers for electrocatalytic oxidation of methanol in alkaline solution

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    Underpotential deposition(UPD) of Cu on an Au electrode followed by redox replacement reaction(RRR) of CuUPD with a Pt source(H2PtCl6 or K2PtCl4) yielded Au-supported Pt adlayers(for short,Pt(CuUPD-Pt4+)n/Au for H2PtCl6,or Pt(CuUPD-Pt2+)n/Au for K2PtCl4,where n denotes the number of UPD-redox replacement cycles).The electrochemical quartz crystal microbalance(EQCM) technique was used for the first time to quantitatively study the fabricated electrodes and estimate their mass-normalized specific electrocatalytic activity(SECA) for methanol oxidation in alkaline solution.In comparison with Pt(CuUPD-Pt2+)n/Au,Pt(CuUPD-Pt4+)n/Au exhibited a higher electrocatalytic activity,and the maximum SECA was obtained to be as high as 35.7 mA ?g?1 at Pt(CuUPD-Pt4+)3/Au.The layer-by-layer architecture of Pt atoms on Au is briefly discussed based on the EQCM-revealed redox replacement efficiency,and the calculated distribution percentages of bare Au sites agree with the experimental results deduced from the charge under the AuOx-reduction peaks.The EQCM is highly recommended as an efficient technique to quantitatively examine various electrode-supported catalyst adlayers,and the highly efficient catalyst adlayers of noble metals are promising in electrocatalysis relevant to biological,energy and environmental sciences and technologies.

  12. Electrochemical quartz crystal microbalance study on the two-electrode-system cyclic voltammetric behavior of Prussian blue films

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    A two-channel electrochemical quartz crystal microbalance (EQCM) was used to investigate the cyclic voltammetric behavior of two Prussian blue (PB) film-modified Au electrodes in a two-electrode con-figuration in aqueous solution. The redox peaks observed in the two-electrode cyclic voltammogram (CV) are assigned to the intrinsic redox transitions among the Everitt’s salt, PB, and Prussian yellow for the film itself, the redox process of the Au substrate and the redox process of small-quantity ferri-/ferrocyanide impurities entrapped in the PB film, as also supported by ultraviolet-visible (UV-Vis) spectroelectrochemical data. The profile of the two-electrode solid-state CV for the PB powder sand-wiched between two gold-coated indium-tin oxide (ITO) electrodes is similar to that for two PB-modified Au electrodes in aqueous solution, implying similar origins for the corresponding redox peaks. The two-channel EQCM method is expected to become a highly effective technique for the studies of the two-electrode electrochemical behaviors of many other species/materials.

  13. Electrochemical quartz crystal microbalance study of the electrodeposition of Co, Pt and Pt-Co alloy

    Energy Technology Data Exchange (ETDEWEB)

    Martin, A.J.; Chaparro, A.M. [CIEMAT, Avda. Complutense, 22, 28040 Madrid (Spain); Daza, L. [CIEMAT, Avda. Complutense, 22, 28040 Madrid (Spain); Instituto de Catalisis y Petroleoquimica (CSIC), C/Marie Curie 2, Campus Cantoblanco, 28049 Madrid (Spain)

    2007-06-10

    The electrochemical deposition of Co, Pt and Pt-Co alloy are studied with the electrochemical quartz crystal microbalance (EQCM) on a gold substrate. Co is deposited from acidic sulphate bath containing boric acid. Different processes are identified in this bath. Electrodeposition of Co on Au substrate is observed at potentials above redox potential, underpotential deposition, most probably due to formation of a Co-Au alloy. At more cathodic potentials, below -0.5 V, metallic Co is formed. The film is completely dissolved at positive potentials during the anodic scan, probably mediated by Co(OH){sub 2}. The electrodeposition of platinum from acidic PtCl{sub 6}{sup 2-} bath occurs below the thermodynamic potential (0.74 V) with almost 100% efficiency. At potentials negative from 0.0 V the efficiency decreases due to parallel water reduction. The codeposition of Co and Pt is also studied in acidic bath. Here, the decrease of pH due to water reduction on Pt deposits gives rise to precipitation of Co(OH){sub 2}, together with the deposition of metallic Pt and Co. The films contain as major component the Pt{sub 3}Co alloy. (author)

  14. Electrochemical quartz crystal microbalance study of the electrodeposition of Co, Pt and Pt-Co alloy

    Science.gov (United States)

    Martín, A. J.; Chaparro, A. M.; Daza, L.

    The electrochemical deposition of Co, Pt and Pt-Co alloy are studied with the electrochemical quartz crystal microbalance (EQCM) on a gold substrate. Co is deposited from acidic sulphate bath containing boric acid. Different processes are identified in this bath. Electrodeposition of Co on Au substrate is observed at potentials above redox potential, underpotential deposition, most probably due to formation of a Co-Au alloy. At more cathodic potentials, below -0.5 V, metallic Co is formed. The film is completely dissolved at positive potentials during the anodic scan, probably mediated by Co(OH) 2. The electrodeposition of platinum from acidic PtCl 6 2- bath occurs below the thermodynamic potential (0.74 V) with almost 100% efficiency. At potentials negative from 0.0 V the efficiency decreases due to parallel water reduction. The codeposition of Co and Pt is also studied in acidic bath. Here, the decrease of pH due to water reduction on Pt deposits gives rise to precipitation of Co(OH) 2, together with the deposition of metallic Pt and Co. The films contain as major component the Pt 3Co alloy.

  15. Coating Characterization with the Quartz Crystal Microbalance

    Science.gov (United States)

    Sturdy, Lauren F.

    The quartz crystal microbalance is a sensitive tool that can be used to measure the mass, modulus and phase angle of films of appropriate thicknesses. It is can be applied to systems with very varied properties, from liquid to solid, and under many different conditions. In this thesis its capabilities have been used to study the properties of several different systems of relevance to the coatings, art conservation, and rubber communities, in the process of which new techniques and tools were developed to analyze data and improve QCM data collection and experimental design. Alkyd resins, which have been used in artists' paints since the twentieth century, are the subject of the first studies. Alkyds are oil-modified polyesters. These resins are of interest because of their relatively recent use in art and how little is known of the mechanical properties in the early stages of cure. The QCM was shown to be sensitive to the curing process, changes in temperature, and mass change due to exposure to water. Kinetic studies during the first days of curing showed that the curing process can be divided into three regions. The first is dominated by solvent evaporation. In the second, oxygen absorption dominates and the mechanical properties change rapidly. The final stage extends from when the film is touch dry after about a day to years and is characterized by mass loss and continued increases in the modulus. Studying the curing at different temperatures revealed that the reactions do proceed much more rapidly at higher temperatures and an overall energy of activation was calculated for the curing process. The mechanical properties of alkyd resins containing zinc oxide, a white pigment, were studied with the QCM, nanoindentation and dynamic mechanical analysis. These measurements showed increases in the modulus with the inclusion of zinc oxide, and the QCM data showed that the second region started at earlier times as the pigment concentration was increased. Linseed oil is

  16. Application of quartz crystal microbalance technology in tribological investigation

    Science.gov (United States)

    The last fifteen years have seen considerable growth in the application of quartz crystal microbalance (QCM) to explore the tribological characteristics of materials. This article reviews some of the advances made in characterizing frictional properties of materials using the QCM, especially with di...

  17. Characterization of the SEI on a carbon film electrode by combinedEQCM and spectroscopic ellipsometry

    Energy Technology Data Exchange (ETDEWEB)

    evans@socrates.berkeley.edu

    2002-01-01

    The electrochemical quartz crystal microbalance (EQCM) andcyclic voltammetry have been applied simultaneously to characterizeelectron-beam deposited carbon film electrodes in LiClO4 orLiPF6-containing mixed electrolytes of ethylene carbonate (EC) anddimethyl carbonate (DMC). The structure of the carbon electrode was foundto be amorphous/disordered using Raman spectroscopy. Cyclic voltammetryin LiClO4 / EC+DMC demonstrated features typical of Liintercalation/deintercalation into/from the disordered carbon electrode,and EQCM showed a corresponding mass increase/decrease. Contrary to thecase of LiClO4 / EC+DMC electrolyte, LiPF6/EC+DMC electrolyte showed noLi deintercalation out of the thin-film carbon electrode. Combined EQCMand spectroscopic ellipsometry data were compared, and the solidelectrolyte interphase density after the first cycle in LiClO4 /EC+DMCwas estimated to be 1.3 g/cm3.

  18. Quartz Crystal Microbalance Operation and In Situ Calibration

    Science.gov (United States)

    Albyn, K. C.

    2004-01-01

    Quartz crystal microbalances (QCMs) are commonly used to measure the rate of deposition of molecular species on a surface. The measurement is often used to select materials with a low outgassing rate for applications where the material has a line of sight to a contamination-sensitive surface. A quantitative, in situ calibration of the balance, or balances, using a pure material for which the enthalpy of sublimation is known, is described in this Technical Memorandum. Supporting calculations for surface dwell times of deposited materials and the effusion cell Clausing factor are presented along with examples of multiple QCM measurements of outgassing from a common source.

  19. Electrochemical quartz crystal microbalance studies on enzymatic specific activity and direct electrochemistry of immobilized glucose oxidase in the presence of sodium dodecyl benzene sulfonate and multiwalled carbon nanotubes.

    Science.gov (United States)

    Su, Yuhua; Xie, Qingji; Chen, Chao; Zhang, Qingfang; Ma, Ming; Yao, Shouzhuo

    2008-01-01

    The electrochemical quartz crystal microbalance (EQCM) technique was utilized to monitor in situ the adsorption of glucose oxidase (GOD) and the mixture of GOD and sodium dodecyl benzene sulfonate (SDBS) onto Au electrodes with and without modification of multiwalled carbon nanotubes (MWCNTs) or SDBS/MWCNTs composite, and the relationship between enzymatic specific activity (ESA) and direct electrochemistry of the immobilized GOD was quantitatively evaluated for the first time. Compared with the bare gold electrode at which a little GOD was adsorbed and the direct electrochemistry of the adsorbed GOD was negligible, the amount and electroactivity of adsorbed GOD were greatly enhanced when the GOD was mixed with SDBS and then adsorbed onto the SDBS/MWCNTs modified Au electrode. However, the ESA of the adsorbed GOD was fiercely decreased to only 16.1% of the value obtained on the bare gold electrode, and the portion of adsorbed GOD showing electrochemical activity exhibited very low enzymatic activity, demonstrating that the electroactivity and ESA of immobilized GOD responded oppositely to the presence of MWCNTs and SDBS. The ESA results obtained from the EQCM method were well supported by conventional UV-vis spectrophotometry. The direct electrochemistry of redox proteins including enzymes as a function of their biological activities is an important concern in biotechnology, and this work may have presented a new and useful protocol to quantitatively evaluate both the electroactivity and ESA of trace immobilized enzymes, which is expected to find wider applications in biocatalysis and biosensing fields.

  20. EQCM Immunoassay for Phosphorylated Acetylcholinesterase as a Biomarker for Organophosphate Exposures Based on Selective Zirconia Adsorption and Enzyme-Catalytic Precipitation

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Hua; Wang, Jun; Choi, Daiwon; Tang, Zhiwen; Wu, Hong; Lin, Yuehe

    2009-03-01

    A zirconia (ZrO2) adsorption-based immunoassay by electrochemical quartz crystal microbalance (EQCM) has been initially developed, aiming at the detection of phosphorylated acetylcholinesterase (AChE) as a potential biomarker for bio-monitoring exposures to organophosphate (OP) pesticides and chemical warfare agents. Hydroxyl-derivatized monolayer was preferably chosen to modify the crystal serving as the template for directing the electro-deposition of ZrO2 film with uniform nanostructures. The resulting ZrO2 film was utilized to selectively capture phosphorylated AChE from the sample media. Horseradish peroxidase (HRP)-labeled anti-AChE antibodies were further employed to recognize the captured phosphorylated protein. Enzyme-catalytic oxidation of the benzidine substrate resulted in the accumulation of insoluble product on the functionalized crystal. Ultrasensitive EQCM quantification by mass-amplified frequency responses as well as rapid qualification by visual color changes of product could be thus achieved. Moreover, 4-chloro-1-naphthol (CN) was comparably studied as an ideal chromogenic substrate for the enzyme-catalytic precipitation. Experimental results show that the developed EQCM technique can allow for the detection of phosphorylated AChE in human plasma. Such an EQCM immunosensing format opens a new door towards the development of simple, sensitive, and field-applicable biosensor for biologically monitoring low-level OP exposures.

  1. Respiratory Monitoring by Porphyrin Modified Quartz Crystal Microbalance Sensors

    Directory of Open Access Journals (Sweden)

    Seung-Woo Lee

    2011-01-01

    Full Text Available A respiratory monitoring system based on a quartz crystal microbalance (QCM sensor with a functional film was designed and investigated. Porphyrins 5,10,15,20-tetrakis-(4-sulfophenyl-21H,23H-porphine (TSPP and 5,10,15,20-tetrakis-(4-sulfophenyl-21H, 23H-porphine manganese (III chloride (MnTSPP used as sensitive elements were assembled with a poly(diallyldimethyl ammonium chloride (PDDA. Films were deposited on the QCM resonators using layer-by-layer method in order to develop the sensor. The developed system, in which the sensor response reflects lung movements, was able to track human respiration providing respiratory rate (RR and respiratory pattern (RP. The sensor system was tested on healthy volunteers to compare RPs and calculate RRs. The operation principle of the proposed system is based on the fast adsorption/desorption behavior of water originated from human breath into the sensor films deposited on the QCM electrode.

  2. Quartz crystal microbalance and photoacoustic measurements in dental photocuring

    Science.gov (United States)

    Lima, Marcenilda A.; Bastos, Ivan N.; Cella, Norberto

    2016-09-01

    Photocured dental resins are used extensively in restorative procedures in dentistry. Inadequate curing reduces the lifetime of the dental restoration, and consequently it is essential to precisely measure the polymerisation kinetics. In this study, two techniques, Quartz Crystal Microbalance (QCM) and Photoacoustic Spectroscopy (PAS), were used to monitor the real-time cure and to obtain the optical absorption spectra of resins, respectively. From the PAS measurements, the precise peaks of absorption were identified, and were used as the appropriate wavelength of the photocuring light in the QCM monitoring. The combined use of these techniques allows reliable determination of the duration of the phases of physical and chemical changes that occur during photocuring. Two commercial dental resins were tested, and the results confirmed the advantages of using PAS and QCM to study polymerisation kinetics.

  3. Characterization of Self-assembled Monolayers on Gold Electrode Using Electrochemical Quartz Crystal Microbalance

    Institute of Scientific and Technical Information of China (English)

    Yonggui Dong

    2006-01-01

    The electrochemical quartz crystal microbatance (EQCM) is used to investigate the characteristics of the thiolated self-assembled monolayer(SAM) on gold surface. A 5MHz QCM element serves as both the mass-sensitive sensor and the working electrode of the electrochemical system. The 6-mecapto-1-hexanol and and the 16-mer oligonucleotide with a mercaptohexyl group at the 5'-phosphate end are utilized to form the SAM on the gold electrode. The frequency response of the QCM during cyclic voltammetry (CV) scanning and chronoamperometry are recorded together with the electrochemical current. The experimental results indicates that the frequency response is more sensitive to the surface coverage. Therefore, the response of the EQCM reveals more details of the SAM on gold electrode. It is especially useful for analysing the immobilization quality, such as probe orientation and coverage, of the SAM.

  4. The Quartz-Crystal Microbalance in an Undergraduate Laboratory Experiment: I. Fundamentals and Instrumentation

    Science.gov (United States)

    Tsionsky, Vladimir

    2007-01-01

    The fundamentals, as well as the instrumentation of the quartz-crystal microbalance (QCM) technique that is used in an undergraduate laboratory experiment are being described. The QCM response can be easily used to change the properties of any system.

  5. A combined nanoplasmonic and electrodeless quartz crystal microbalance setup

    Energy Technology Data Exchange (ETDEWEB)

    Larsson, Elin M.; Langhammer, Christoph; Zoric, Igor; Kasemo, Bengt [Department of Applied Physics, Chemical Physics Group, Chalmers University of Technology, SE-41296 Gothenburg (Sweden); Edvardsson, Malin E. M. [Department of Applied Physics, Biological Physics Group, Chalmers University of Technology, SE-41296 Gothenburg (Sweden)

    2009-12-15

    We have developed an instrument combining localized surface plasmon resonance (LSPR) sensing with electrodeless quartz crystal microbalance with dissipation monitoring (QCM-D). The two techniques can be run simultaneously, on the same sensor surface, and with the same time resolution and sensitivity as for the individual techniques. The electrodeless QCM eliminates the need to fabricate electrodes on the quartz crystal and gives a large flexibility in choosing the surface structure and coating for both QCM-D and LSPR. The performance is demonstrated for liquid phase measurements of lipid bilayer formation and biorecognition events, and for gas phase measurements of hydrogen uptake/release by palladium nanoparticles. Advantages of using the combined equipment for biomolecular adsorption studies include synchronized information about structural transformations and extraction of molecular (dry) mass and degree of hydration of the adlayer, which cannot be obtained with the individual techniques. In hydrogen storage studies the combined equipment, allows for synchronized measurements of uptake/release kinetics and quantification of stored hydrogen amounts in nanoparticles and films at practically interesting hydrogen pressures and temperatures.

  6. Molecular Imprinting Technology in Quartz Crystal Microbalance (QCM) Sensors.

    Science.gov (United States)

    Emir Diltemiz, Sibel; Keçili, Rüstem; Ersöz, Arzu; Say, Rıdvan

    2017-02-24

    Molecularly imprinted polymers (MIPs) as artificial antibodies have received considerable scientific attention in the past years in the field of (bio)sensors since they have unique features that distinguish them from natural antibodies such as robustness, multiple binding sites, low cost, facile preparation and high stability under extreme operation conditions (higher pH and temperature values, etc.). On the other hand, the Quartz Crystal Microbalance (QCM) is an analytical tool based on the measurement of small mass changes on the sensor surface. QCM sensors are practical and convenient monitoring tools because of their specificity, sensitivity, high accuracy, stability and reproducibility. QCM devices are highly suitable for converting the recognition process achieved using MIP-based memories into a sensor signal. Therefore, the combination of a QCM and MIPs as synthetic receptors enhances the sensitivity through MIP process-based multiplexed binding sites using size, 3D-shape and chemical function having molecular memories of the prepared sensor system toward the target compound to be detected. This review aims to highlight and summarize the recent progress and studies in the field of (bio)sensor systems based on QCMs combined with molecular imprinting technology.

  7. Molecular Imprinting Technology in Quartz Crystal Microbalance (QCM Sensors

    Directory of Open Access Journals (Sweden)

    Sibel Emir Diltemiz

    2017-02-01

    Full Text Available Molecularly imprinted polymers (MIPs as artificial antibodies have received considerable scientific attention in the past years in the field of (biosensors since they have unique features that distinguish them from natural antibodies such as robustness, multiple binding sites, low cost, facile preparation and high stability under extreme operation conditions (higher pH and temperature values, etc.. On the other hand, the Quartz Crystal Microbalance (QCM is an analytical tool based on the measurement of small mass changes on the sensor surface. QCM sensors are practical and convenient monitoring tools because of their specificity, sensitivity, high accuracy, stability and reproducibility. QCM devices are highly suitable for converting the recognition process achieved using MIP-based memories into a sensor signal. Therefore, the combination of a QCM and MIPs as synthetic receptors enhances the sensitivity through MIP process-based multiplexed binding sites using size, 3D-shape and chemical function having molecular memories of the prepared sensor system toward the target compound to be detected. This review aims to highlight and summarize the recent progress and studies in the field of (biosensor systems based on QCMs combined with molecular imprinting technology.

  8. On the electric double-layer structure at carbon electrode/organic electrolyte solution interface analyzed by ac impedance and electrochemical quartz-crystal microbalance responses

    Energy Technology Data Exchange (ETDEWEB)

    Kim, In-Tae; Egashira, Minato; Yoshimoto, Nobuko [Department of Applied Chemistry, Graduate School of Science and Engineering, Yamaguchi University, 2-16-1, Tokiwadai, Ube 755-8611 (Japan); Morita, Masayuki, E-mail: morita@yamaguchi-u.ac.jp [Department of Applied Chemistry, Graduate School of Science and Engineering, Yamaguchi University, 2-16-1, Tokiwadai, Ube 755-8611 (Japan)

    2011-08-30

    Highlights: {center_dot} We monitored resonance frequency change of smooth surface carbon electrode to determine mass changes during electrochemical polarization.{center_dot} This was done from viewpoints of ensuring the electric double-layer structure in organic electrolytes.{center_dot} Clear difference was observed in the mass changes among the electrolyte composition.{center_dot} It were related with differences in the double-layer capacitance at carbon. - Abstract: ac impedance and electrochemical quartz crystal microbalance (EQCM) techniques have been applied to analyze the structure of electric double-layer formed at carbon/organic electrolyte solution interface using a sputtered carbon electrode. The mass changes caused by electrochemical adsorption (accumulation) of ions have been estimated in the solutions of propylene carbonate (PC) dissolving tetrafluoroborate (BF{sub 4}{sup -}) salts of lithium (Li{sup +}), tetraethylammonium (TEA{sup +}) and tetra-n-butylammonium (TBA{sup +}) cations. The observed mass changes during the cathodic polarization in the solutions containing TEA{sup +} and TBA{sup +} were well consistent with those expected by the calculation based on mono-layer adsorption of the cations with giving the consideration to the surface roughness. On the other hand, the mass change observed in the solution containing Li{sup +} salt showed that the solvation of Li{sup +} with three or four molecules of PC would be the charge compensation species at the interface. Comparison of the quantity of the electricity passed during the EQCM measurements with that from theoretical calculation with simple Helmholtz-layer model revealed that the major part of the double-layer capacitance would be based on the electrostatic polarization of the solvent molecule directly adsorbed at the carbon surface.

  9. A Novel Signal-Amplified Immunoassay for the Detection of C-Reactive Protein Using HRP-Doped Magnetic Nanoparticles as Labels with the Electrochemical Quartz Crystal Microbalance as a Detector

    Directory of Open Access Journals (Sweden)

    Ning Gan

    2013-01-01

    Full Text Available A novel horseradish peroxidase- (HPR- doped magnetic core-shell Fe3O4@SiO2@Au nanocomposites (Fe-Au MNPs were employed on immunoassay for the determination of C-reactive protein (CRP based on a electrochemical quartz crystal microbalance detector (EQCM. Firstly, the secondary CRP antibody and HRP were both immobilized on the Fe-Au MNPs (Fe-Au MNPs-anti-CRP2/HRP as a signal tag. Secondly, the above tag and the primary antibody (anti-CRP1 in the bottom of 96-well microtiter plate were employed to conjugate with a serial of CRP concentrations to produce a sandwich immunocomplex. Thirdly, the immunocomplex solution was subsequently exposed to 3,3′-diaminobenzidine (DAB in the presence of H2O2, resulting in an insoluble product. When the precipitation solution was dripped on EQCM, it can achieve a decrease of frequency of crystal (Δf. The amount of Δf was proportional to (CRP from 0.003 to 200 ng mL−1 with a low detection limit of 1 pg mL−1. Compared with the enzyme-linked immunosorbent assay (ELISA, the immunoassay shows greatly improved sensitivity due to the significant amount of HRP labeled on signal tag. It also has good specificity and low sample consumption, which is expected to be a benefit for the CRP screening in early diagnosis of cardiovascular disease.

  10. An Electrochemical Quartz Crystal Microbalance Multisensor System Based on Phthalocyanine Nanostructured Films: Discrimination of Musts

    Directory of Open Access Journals (Sweden)

    Celia Garcia-Hernandez

    2015-11-01

    Full Text Available An array of electrochemical quartz crystal electrodes (EQCM modified with nanostructured films based on phthalocyanines was developed and used to discriminate musts prepared from different varieties of grapes. Nanostructured films of iron, nickel and copper phthalocyanines were deposited on Pt/quartz crystals through the Layer by Layer technique by alternating layers of the corresponding phthalocyanine and poly-allylamine hydrochloride. Simultaneous electrochemical and mass measurements were used to study the mass changes accompanying the oxidation of electroactive species present in must samples obtained from six Spanish varieties of grapes (Juan García, Prieto Picudo, Mencía Regadío, Cabernet Sauvignon, Garnacha and Tempranillo. The mass and voltammetric outputs were processed using three-way models. Parallel Factor Analysis (PARAFAC was successfully used to discriminate the must samples according to their variety. Multi-way partial least squares (N-PLS evidenced the correlations existing between the voltammetric data and the polyphenolic content measured by chemical methods. Similarly, N-PLS showed a correlation between mass outputs and parameters related to the sugar content. These results demonstrated that electronic tongues based on arrays of EQCM sensors can offer advantages over arrays of mass or voltammetric sensors used separately.

  11. The quartz crystal microbalance in soft matter research fundamentals and modeling

    CERN Document Server

    Johannsmann, Diethelm

    2014-01-01

    This book describes the physics of the second-generation quartz crystal microbalance (QCM), a fundamental method of analysis for soft matter at interfaces.From a device for measuring film thickness in vacuum, the quartz crystal microbalance (QCM) has in the past two decades evolved into a versatile instrument for analyzing soft matter at solid/liquid and solid/gas interfaces that found applications in diverse fields including the life sciences, material science, polymer research and electrochemistry. As a consequence of this success, the QCM is now being used by scientists with a wide variety

  12. Results from a Novel Method for Corrosion Studies of Electroplated Lithium Metal Based on Measurements with an Impedance Scanning Electrochemical Quartz Crystal Microbalance

    Directory of Open Access Journals (Sweden)

    Martin Winter

    2013-07-01

    Full Text Available A new approach to study the chemical stability of electrodeposited lithium on a copper metal substrate via measurements with a fast impedance scanning electrochemical quartz crystal microbalance is presented. The corrosion of electrochemically deposited lithium was compared in two different electrolytes, based on lithium difluoro(oxalato borate (LiDFOB and lithium hexafluorophosphate, both salts being dissolved in solvent blends of ethylene carbonate and diethyl carbonate. For a better understanding of the corrosion mechanisms, scanning electron microscopy images of electrodeposited lithium were also consulted. The results of the EQCM experiments were supported by AC impedance measurements and clearly showed two different corrosion mechanisms caused by the different salts and the formed SEIs. The observed mass decrease of the quartz sensor of the LiDFOB-based electrolyte is not smooth, but rather composed of a series of abrupt mass fluctuations in contrast to that of the lithium hexafluorophosphate-based electrolyte. After each slow decrease of mass a rather fast increase of mass is observed several times. The slow mass decrease can be attributed to a consolidation process of the SEI or to the partial dissolution of the SEI leaving finally lithium metal unprotected so that a fast film formation sets in entailing the observed fast mass increases.

  13. The Quartz-Crystal Microbalance in an Undergraduate Laboratory Experiment: Measuring Mass

    Science.gov (United States)

    Tsionsky, Vladimir

    2007-01-01

    The study explains the quartz-crystal microbalance (QCM) technique, which is often used as an undergraduate laboratory experiment for measuring the mass of a system. QCM can be used as a mass sensor only when the measured mass is rigidly attached to the surface.

  14. The Quartz-Crystal Microbalance in an Undergraduate Laboratory Experiment II: Measuring Viscosity

    Science.gov (United States)

    Tsionsky, Vladimir

    2007-01-01

    Various water-alcohol and alcohol-alcohol based experiments are used to demonstrate how the quartz-crystal microbalance (QCM) technique is used for measuring the viscosity of a system. The technique is very advantageous, as it is inexpensive and provides digital output.

  15. Ion effects in the adsorption of carboxylate on oxide surfaces, studied with quartz crystal microbalance

    NARCIS (Netherlands)

    Wang, Lei; Siretanu, Igor; Duits, Michel H.G.; Cohen Stuart, Martien A.; Mugele, Frieder

    2016-01-01

    We chose water-soluble sodium hexanoate as a model organic molecule to study the role of salt ions (Ca2+, Na+, Cl−) in the adsorption of carboxylates to mineral surfaces (silica, alumina, gibbsite) of variable surface charge and chemistry. Quartz crystal microbalance (QCM-D) measurements reveal a qu

  16. Rapid identification of spinal ventral and dorsal roots using a quartz crystal microbalance

    Institute of Scientific and Technical Information of China (English)

    Tao Sui; Jun Que; Dechao Kong; Hao Xie; Daode Wang; Kun Shi; Xiaojian Cao; Xiang Li

    2013-01-01

    The fast and accurate identification of nerve tracts is critical for successful nerve anastomosis. Taking advantage of differences in acetylcholinesterase content between the spinal ventral and dorsal roots, we developed a novel quartz crystal microbalance method to distinguish between these nerves based on acetylcholinesterase antibody reactivity. The acetylcholinesterase antibody was immobilized on the electrode surface of a quartz crystal microbalance and reacted with the acetylcholinesterase in sample solution. The formed antigen and antibody complexes added to the mass of the electrode inducing a change in frequency of the electrode. The spinal ventral and dorsal roots were distinguished by the change in frequency. The ventral and dorsal roots were cut into 1 to 2-mm long segments and then soaked in 250 μL PBS. Acetylcholinesterase antibody was immobilized on the quartz crystal microbalance gold electrode surface. The results revealed that in 10 minutes, both spinal ventral and dorsal roots induced a frequency change; however, the frequency change induced by the ventral roots was notably higher than that induced by the dorsal roots. No change was induced by bovine serum albumin or PBS. These results clearly demonstrate that a quartz crystal microbalance sensor can be used as a rapid, highly sensitive and accurate detection tool for the quick identification of spinal nerve roots intraoperatively.

  17. Quartz Crystal Microbalance Technique for in Situ Analysis of Supersaturation in Cooling Crystallization.

    Science.gov (United States)

    Liu, Li-Shang; Kim, Jong-Min; Kim, Woo-Sik

    2016-06-07

    A quartz crystal microbalance (QCM) is used as a novel in situ strategy for analyzing the supersaturation profile during cooling crystallization. The main concept is based on preventing any solid mass loading on the QCM sensor by modifying the sensor surface. As a result, the QCM responses only depend on the solution concentration changes during the crystallization. The proposed strategy is confirmed on the basis of an analysis of sulfamerazine (SMZ) crystallization. When the QCM sensor is modified using 11-amino-1-undecanethiol (AUT), crystal formation on the sensor is completely prevented due to a repulsive interaction between the -NH2 functional groups of the AUT and SMZ crystals. Thus, the QCM responses reflect only the property changes in the solution phase during the crystallization. The supersaturation in the solution is then estimated on the basis of the difference in the frequency shifts between the SMZ solution and a blank solution. The accuracy of the in situ QCM analysis of supersaturation is confirmed using an off-line gravimetric method.

  18. Ultrasensitive quartz crystal microbalance integrated with carbon nanotubes

    Science.gov (United States)

    Goyal, Abhijat

    In this thesis, an ultrasensitive Quartz Crystal Microbalance (QCM) which can be configured as a versatile (bio)chemical sensor is presented. The high sensitivity of the QCM was achieved via miniaturization using micromachining techniques. The absolute mass sensitivity of sensor was increased by decreasing the thickness and the area of the electrodes of the resonators. Through optimal design, microfabrication, and miniaturization the mass sensitivity of the sensors was increased by more than four orders of magnitude to less than 1 pg/Hz; as compared to 17 ng/Hz for commercially available 5 MHz bulk resonators. Miniaturization of the resonators enables their fabrication in an array format with each pixel of the array being individually addressed. This enables true spatial and temporal mass sensing capabilities. The fabricated resonators were tested for operation in air and water and high quality factors of 7500 and ˜2000 were obtained respectively. A dielectric etch process was developed to achieve the miniaturization of the sensors. The optimization of the dielectric etch process was achieved using statistical techniques such as Design of Experiment (DOE). An etch rate of 0.5 microm/min at rms surface roughness of less than 2 nm was achieved after the optimization process. The process parameters, namely the ICP power, the substrate power, the flow rate of gases, the operating pressure of the etch tool, distance of substrate holder from the source, and the temperature of substrate holder, were quantitatively related to the etch rate and rms surface roughness using least square fit to the etch data. The QCMs were integrated with carbon nanotubes using a simple spray-on technique. It was found that the addition of carbon nanotubes onto the electroded surface of the resonator increased its Q-factor by as much as 100%. It was proposed that the carbon nanotubes due to their high stiffness suppress the out-of-plane flexural vibrations in the QCMs thereby suppressing an

  19. Quartz Crystal Microbalance: A tool for analyzing loss of volatile compounds, gas sorption, and curing kinetics

    Energy Technology Data Exchange (ETDEWEB)

    Bajric, Sendin [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2017-03-16

    Los Alamos National Laboratory (LANL) has recently procured a quartz crystal microbalance (QCM). Current popular uses are biological sensors, surface chemistry, and vapor detection. LANL has projects related to analyzing curing kinetics, measuring gas sorption on polymers, and analyzing the loss of volatile compounds in polymer materials. The QCM has yet to be employed; however, this review will cover the use of the QCM in these applications and its potential.

  20. Specific Surface versus Electrochemically Active Area of the Carbon/Polypyrrole Capacitor: Correlation of Ion Dynamics Studied by an Electrochemical Quartz Crystal Microbalance with BET Surface.

    Science.gov (United States)

    Mosch, Heike L K S; Akintola, Oluseun; Plass, Winfried; Höppener, Stephanie; Schubert, Ulrich S; Ignaszak, Anna

    2016-05-10

    Carbon/polypyrrole (PPy) composites are promising electrode materials for energy storage applications such as lightweight capacitors. Although these materials are composed of relatively inexpensive components, there is a gap of knowledge regarding the correlation between surface, porosity, ion exchange dynamics, and the interplay of the double layer capacitance and pseudocapacitance. In this work we evaluate the specific surface area analyzed by the BET method and the area accessible for ions using electrochemical quartz-crystal microbalance (EQCM) for SWCNT/PPy and carbon black Vulcan XC72-R/PPy composites. The study revealed that the polymer has significant influence on the pore size of the composites. Although the BET surface is low for the polypyrrole, the electrode mass change and thus the electrochemical area are large for the polymer-containing electrodes. This indicates that multiple redox active centers in the charged polymer chain are good ion scavengers. Also, for the composite electrodes, the effective charge storage occurs at the polypyrrole-carbon junctions, which are easy to design/multiply by a proper carbon-to-polymer weight ratio. The specific BET surface and electrochemically accessible surface area are both important parameters in calculation of the electrode capacitance. SWCNTs/PPy showed the highest capacitances normalized to the BET and electrochemical surface as compared to the polymer-carbon black. TEM imaging revealed very homogeneous distribution of the nanosized polymer particles onto the CNTs, which facilitates the synergistic effect of the double layer capacitance (CNTs) and pseudocapacitance (polymer). The trend in the electrode mass change in correlation with the capacitance suggest additional effects such as a solvent co-insertion into the polymer and the contribution of the charge associated with the redox activity of oxygen-containing functional groups on the carbon surface.

  1. Deposition of selenium thin layers on gold surfaces from sulphuric acid media: Studies using electrochemical quartz crystal microbalance, cyclic voltammetry and AFM

    Energy Technology Data Exchange (ETDEWEB)

    Cabral, Murilo Feitosa [Instituto de Quimica de Sao Carlos, Universidade de Sao Paulo, C.P. 780, 13566-590 Sao Carlos, SP (Brazil); Pedrosa, Valber A., E-mail: vzp0002@auburn.ed [Department of Materials Engineering, Samuel Ginn College of Engineering, Auburn University, Auburn, AL 36849 (United States); Spinola Machado, Sergio Antonio [Instituto de Quimica de Sao Carlos, Universidade de Sao Paulo, C.P. 780, 13566-590 Sao Carlos, SP (Brazil)

    2010-01-01

    In this paper we report here new considerations about the relationship between the mass and charge variations (m/z relationship) in underpotential deposition (UPD), bulk deposition and also in the H{sub 2}Se formation reaction. Nanogravimetric experiments were able to show the adsorption of H{sub 2}SeO{sub 3} on the AuO surface prior to the voltammetric sweep and that, after the AuO reduction, 0.40 monolayer of H{sub 2}SeO{sub 3} remains adsorbed on the newly reduced Au surface, which was enough to gives rise to the UPD layer. The UPD results indicate that the maximum coverage with Se{sub ads} on polycrystalline gold surface corresponds to approximately 0.40 monolayer, in good agreement with charge density results. The cyclic voltammetry experiments demonstrated that the amount of bulk Se obtained during the potential scan to approximately 2 Se monolayers, which was further confirmed by electrochemical quartz crystal microbalance (EQCM) measurements that pointed out a mass variation corresponding of 3 monolayers of Se. In addition, the Se thin films were obtained by chronoamperometric experiments, where the Au electrode was polarized at +0.10 V during different times in 1.0 M H{sub 2}SO{sub 4} + 1.0 mM SeO{sub 2}. The topologic aspects of the electrodeposits were observed in Atomic Force Microscope (AFM) measurements. Finally, in highly negative potential polarizations, the H{sub 2}Se formation was analyzed by voltammetric and nanogravimetric measurements. These finding brings a new light on the selenium electrodeposition and point up to a proposed electrochemical model for molecule controlled surface engineering.

  2. Detection of sulfur dioxide using a piezoelectric quartz crystal microbalance

    Energy Technology Data Exchange (ETDEWEB)

    Guimaraes, O.M. [Instituto de Quimica de Sao Carlos (Brazil)

    1997-09-01

    Sulfur dioxide was detected and determined in air by a piezoelectric quartz crystal sensor coated with 4-aminoantipyrine/1-hydroxyetil-2-heptadecenyl imidazol (amine 220) solution (1:1 v/v in chloroform). The analytical response curve is linear over the concentration range from 0.70 to 5.0 ppm of SO{sub 2}. Good linearities (r = 0.9990, 0.9995 and 0.9968) and sensitivities (18.0, 33.4 and 50.7 Hz/ppm) were found, respectively for exposure times of 30, 60 and 90 seconds. The sensor can be used for more than six months without loss in sensitivity and presented good reversibility and reproducibility. Among some possible interferents tested, only nitrogen dioxide and moisture caused major frequency changes.

  3. A quartz-crystal-microbalance technique to investigate ion-induced erosion of fusion relevant surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Golczewski, A. [Institut fuer Allgemeine Physik, TU Wien, Wiedner Hauptstr. 8-10/E134, Association EURATOM-OAW, A-1040 Vienna (Austria)], E-mail: golczewski@iap.tuwien.ac.at; Dobes, K.; Wachter, G.; Schmid, M. [Institut fuer Allgemeine Physik, TU Wien, Wiedner Hauptstr. 8-10/E134, Association EURATOM-OAW, A-1040 Vienna (Austria); Aumayr, F. [Institut fuer Allgemeine Physik, TU Wien, Wiedner Hauptstr. 8-10/E134, Association EURATOM-OAW, A-1040 Vienna (Austria)], E-mail: aumayr@iap.tuwien.ac.at

    2009-02-15

    We describe a highly sensitive quartz-crystal-microbalance technique capable of determining erosion as well as implantation and retention rates for fusion relevant surfaces under ion bombardment. Total sputtering yields obtained with this technique for Ar ion impact on polycrystalline gold and tungsten surfaces are presented. The results compare well with existing experimental data as well as theoretical predictions and thus demonstrate the feasibility of the developed technique. Our setup is capable of detecting mass-changes as small as 10{sup -5} {mu}g/s, which corresponds to a removal of only 10{sup -4} W monolayers/s.

  4. Quartz crystal microbalance for the cardiac markers/antibodies binding kinetic measurements in the plasma samples

    Science.gov (United States)

    Agafonova, L. E.; Shumyantseva, V. V.; Archakov, A. I.

    2014-06-01

    The quartz crystal microbalance (QCM) was exploited for cardiac markers detection and kinetic studies of immunochemical reaction of cardiac troponin I (cTnI) and human heart fatty acid binding protein (H-FABP) with the corresponding monoclonal antibodies in undiluted plasma (serum) and standard solutions. The QCM technique allowed to dynamically monitor the kinetic differences in specific interactions and nonspecific sorption, without multiple labeling procedures and separation steps. The affinity binding process was characterized by the association (ka) and the dissociation (kd) kinetic constants and the equilibrium association (K) constant, all of which were obtained from experimental data.

  5. Combined optical second harmonic generation/quartz crystal microbalance study of underpotential deposition processes: copper electrodeposition on polycrystalline gold.

    Science.gov (United States)

    Lakkaraju, S; Bennahmias, M J; Borges, G L; Gordon Ii, J G; Lazaga, M; Stone, B M; Ashley, K

    1990-11-20

    Optical second harmonic generation and quartz crystal microbalance techniques are used as in situ probes of copper underpotential deposition on polycrystalline gold surfaces in sulfuric acid electrolyte. The second harmonic signal from a polished bulk gold substrate is observed to decrease by >60% as a result of copper underpotential deposition on gold. Also, the mass of an underpotentially deposited copper adlayer is monitored in situ by an oscillating quartz crystal microbalance, yielding an estimated coverage of ~8.0 x 10(-10) mol cm(-2) and an electrosorption valency of 1.5 for a copper adlayer on the surface of vapor-deposited polycrystalline gold.

  6. Electroacoustic polymer microchip as an alternative to quartz crystal microbalance for biosensor development.

    Science.gov (United States)

    Gamby, Jean; Lazerges, Mathieu; Girault, Hubert H; Deslouis, Claude; Gabrielli, Claude; Perrot, Hubert; Tribollet, Bernard

    2008-12-01

    Laser photoablation of poly(ethylene terephthalate) (PET), a flexible dielectric organic polymer, was used to design an acoustic miniaturized DNA biosensor. The microchip device includes a 100-microm-thick PET layer, with two microband electrodes patterned in photoablated microchannels on one side and a depressed photoablated disk decorated by gold sputtered layer on the other side. Upon application of an electric signal between the two electrodes, an electroacoustic resonance phenomenon at approximately 30 MHz was established through the microelectrodes/PET/ gold layer interface. The electroacoustic resonance response was fitted with a series RLC motional arm in parallel with a static Co arm of a Buttlerworth-Van Dyke equivalent circuit: admittance spectra recorded after successive cycles of DNA hybridization on the gold surface showed reproducible changes on R, L, and C parameters. The same hybridizations runs were performed concomitantly on a 27-MHz (9 MHz, third overtone) quartz crystal microbalance in order to validate the PET device developed for bioanalysis applications. The electroacoustic PET device, approximately 100 times smaller than a microbalance quartz crystal, is interesting for the large-scale integration of acoustic sensors in biochips.

  7. Measurement of Total Condensation on a Shrouded Cryogenic Surface using a Single Quart Crystal Microbalance

    Energy Technology Data Exchange (ETDEWEB)

    Haid, B J; Malsbury, T N; Gibson, C R; Warren, C T

    2008-06-10

    A single quartz crystal microbalance (QCM) is cooled to 18 K to measure condensation rates inside of a retractable ''shroud'' enclosure. The shroud is of a design intended to minimize condensate on fusion targets to be fielded at the National Ignition Facility (NIF). The shroud has a double-wall construction with an inner wall that may be cooled to 75-100 K. The QCM and the shroud system were mounted in a vacuum chamber and cooled using a cryocooler. Condensation rates were measured at various vacuum levels and compositions, and with the shroud open or closed. A technique for measuring total condensate during the cooldown of the system with an accuracy of better than 1.0 x 10{sup -6} g/cm{sup 2} was also demonstrated. The technique involved a separate measurement of the condensate-free crystal frequency as a function of temperature that was later applied to the measurement of interest.

  8. Quartz Crystal Microbalance with Dissipation (QCM-D) studies of the viscoelastic response from a continuously growing grafted polyelectrolyte layer

    DEFF Research Database (Denmark)

    Dunér, Gunnar; Thormann, Esben; Dedinaite, Andra

    2013-01-01

    Poly(acrylic acid) was grown from substrates by photopolymerization, and the grafting process was monitored in situ by Quartz Crystal Microbalance with Dissipation (QCM-D) measurements in a 1:1 v/v mixture of water/ethanol. The polymerization process was monitored into the thick film region, where...

  9. Quartz Crystal Microbalance Investigation of the Structure of Adsorbed Soybean Oil and Methyl Oleate onto Steel Surface

    Science.gov (United States)

    The adsorption of soybean oil (SBO) and methyl oleate (MO) onto steel was investigated using quartz crystal microbalance with dissipation monitoring (QCM-D). Adsorption of both SBO and MO increased with increasing concentrations. At full surface coverage, SBO and MO formed rigid thin films and ach...

  10. Quantitative determination of hydrogen absorption by Pd cluster-assembled films using a quartz crystal microbalance

    Energy Technology Data Exchange (ETDEWEB)

    El Far, R.; Diaz-Droguett, D.E.; Rojas, S.; Avila, J.I. [Laboratorio de Ciencia de Materiales, Facultad de Fisica, Pontificia Universidad Catolica de Chile, Santiago (Chile); Romero, C.P.; Lievens, P. [Laboratorium voor Vaste-Stoffysica en Magnetisme, KU Leuven, Celestijnenlaan 200D-bus 2414 B-3001 Leuven (Belgium); Cabrera, A.L., E-mail: acabrera@fis.puc.cl [Laboratorio de Ciencia de Materiales, Facultad de Fisica, Pontificia Universidad Catolica de Chile, Santiago (Chile)

    2012-11-01

    We have measured hydrogen absorption capacity for a series of Pd films grown by two deposition techniques: a) flat films made with e-beam evaporation of Pd and b) films made of assembled Pd clusters. The films range in thickness from 9.5 to 45 nm. The technique implemented for measuring the amount of hydrogen absorbed by the films was a quartz crystal microbalance. The Pd films were grown on the quartz crystals and the change of mass due to the hydrogen absorption was determined from the shifting of the resonance frequency. Minute amounts of hydrogen absorbed of the order of nanograms per square centimeter can be detected by this technique. Plots of H/Pd atom ratio for each Pd film as a function of hydrogen pressure were obtained. The Pd e-beam grown films displayed a saturation H/Pd atomic ratio around 0.6 which is similar to bulk Pd. The Pd cluster film with a thickness of 14 nm displayed a remarkable absorption capacity with a ratio H/(Pd) Almost-Equal-To 0.84. - Highlights: Black-Right-Pointing-Pointer Pd cluster assembled films with different thicknesses are made and characterized. Black-Right-Pointing-Pointer Quartz crystal microbalance is used to quantification the hydrogen amount absorbed. Black-Right-Pointing-Pointer Hydrogen absorption/adsorption by Pd film is explained. Black-Right-Pointing-Pointer Absorption expressed in H/Pd mass ratio is given for all Pd films. Black-Right-Pointing-Pointer This complements H{sub 2} absorption on metal cluster films using optical techniques.

  11. Functionalization of gold and graphene electrodes by p-maleimido-phenyl towards thiol-sensing systems investigated by EQCM and IR ellipsometric spectroscopy

    Science.gov (United States)

    Neubert, Tilmann Joachim; Rösicke, Felix; Sun, Guoguang; Janietz, Silvia; Gluba, Marc A.; Hinrichs, Karsten; Nickel, Norbert H.; Rappich, Jörg

    2017-01-01

    Electrografting of gold and graphene surfaces by functional p-(N-maleimido)phenyl groups was performed by reduction of p-(N-maleimido)phenyldiazonium tetrafluoroborate. The reduction was carried out using cyclo voltammetry coupled with micro-gravimetric measurements by means of electrochemical quartz crystal microbalance (EQCM). The overall deposited mass on gold was higher than on graphene. However, the Faradaic efficiency was lower on Au (14%) compared to graphene (22%) after the first potential scan. Subsequently, the maleimide functional groups have been tested for immobilization of terminal thiols using 2-(4-nitrobenzene)-ethane-thiol for the functionalized graphene surface and a cysteine-modified peptide for the functionalized gold surface. The functionalization by p-(N-maleimido)phenyl groups and the following thiol coupling of the particular surface was proven by infrared spectroscopic ellipsometry (IRSE). In addition, the interaction of the tetrabutylammonium and tetrafluoroborate ions present in the electrolyte with the Au and graphene electrodes was investigated by EQCM and revealed less electrostatic interaction of graphene with these ions in solution compared to the metal (Au) surface.

  12. Development of 170 MHz Electrodeless Quartz-Crystal Microbalance Immunosensor with Nonspecifically Immobilized Receptor Proteins

    Science.gov (United States)

    Ogi, Hirotsugu; Nagai, Hironao; Fukunishi, Yuji; Yanagida, Taiji; Hirao, Masahiko; Nishiyama, Masayoshi

    2010-07-01

    Staphylococcus aureus protein A (SPA) shows high nonspecific binding affinity on a naked quartz surface, and it can be used as the receptor protein for detecting immunoglobulin G (IgG), the most important immunoglobulin. The immunosensor ability, however, significantly depends on the immobilization procedure. In this work, the effect of the nonspecific immobilization procedure on the sensor sensitivity is studied using a home-built electrodeless quartz-crystal microbalance (QCM) biosensor. The pure-shear vibration of a 9.7-µm-thick AT-cut quartz plate is excited and detected in liquids by the line antenna located outside the flow channel. SPA molecules are immobilized on the quartz surfaces, and human IgG is injected to monitor the binding reaction between SPA and IgG. This study reveals that a long (nearly 24 h) immersion procedure is required for immobilizing SPA to achieve the tight biding with the quartz surfaces.

  13. Optimization of the hybrid bilayer membrane method for immobilization of avidin on quartz crystal microbalance.

    Science.gov (United States)

    Mun, Saem; Choi, Suk-Jung

    2009-04-15

    Hybrid bilayer membrane (HBM), comprising a lipid monolayer fused to a hydrophobic self-assembled monolayer (SAM), has a potential capability to provide a convenient tool for the preparation of functionalized sensor surfaces. In this work, the HBM approach was optimized for the preparation of avidin-containing quartz crystal microbalance (QCM) sensor chip which would be available for immobilization of biotinylated molecules. Lipid layer of HBM was composed of background lipid such as egg phosphatidyl choline and biotinylated lipid to which avidin was attached. Highest performance was obtained at 1:1 ratio of the biotinylated lipid and the background lipid, and sensitivity and stability of the resulting sensor chip was comparable to a sensor chip prepared by the conventional carbodiimide reaction. By utilizing the HBM method, construction of a stable avidin sensor chip was achieved within 40 min without any chemical steps. Thus the HBM method was proven to be a convenient and efficient way to immobilize avidin on sensor surfaces.

  14. Quartz Crystal Microbalances for quantitative picosecond laser-material-interaction investigations - Part I: Technical considerations

    Science.gov (United States)

    Gierse, N.; Schildt, T.; Esser, H. G.; Sergienko, G.; Brezinsek, S.; Freisinger, M.; Zhao, D.; Ding, H.; Terra, A.; Samm, U.; Linsmeier, Ch.

    2016-12-01

    In this work the technical suitability of Quartz Crystal Microbalances (QMBs) for in situ, pulse resolved mass removal measurements is demonstrated for picosecond laser ablation of magnetron sputtered coatings. The QMBs show a linear characteristic of the sensitivity for layer thickness of different metals up to several microns. Laser pulse resolved measurements of the mass ablated from the metal layer were performed. About 400 ng of chromium was ablated during the first laser pulse while in subsequent pulses ablation of the QMBs is found to be larger than for deposition, which is explained by the radial sensitivity of the QMBs. Future refinements of the setup and the benefits of the pulse resolved mass loss measurements for laser based methods like LIBS and LIAS are discussed and will be presented in part II currently in preparation.

  15. Separate density and viscosity measurements of unknown liquid using quartz crystal microbalance

    Directory of Open Access Journals (Sweden)

    Feng Tan

    2016-09-01

    Full Text Available Aqueous liquids have a wide range of applications in many fields. Basic physical properties like the density and the viscosity have great impacts on the functionalities of a given ionic liquid. For the millions kinds of existing liquids, only a few have been systematically measured with the density and the viscosity using traditional methods. However, these methods are limited to measure the density and the viscosity of an ionic liquid simultaneously especially in processing micro sample volumes. To meet this challenge, we present a new theoretical model and a novel method to separate density and viscosity measurements with single quartz crystal microbalance (QCM in this work. The agreement of experimental results and theocratical calculations shows that the QCM is capable to measure the density and the viscosity of ionic liquids.

  16. New Approach to a Practical Quartz Crystal Microbalance Sensor Utilizing an Inkjet Printing System

    Directory of Open Access Journals (Sweden)

    Yusuke Fuchiwaki

    2014-10-01

    Full Text Available The present work demonstrates a valuable approach to developing quartz crystal microbalance (QCM sensor units inexpensively for reliable determination of analytes. This QCM sensor unit is constructed by inkjet printing equipment utilizing background noise removal techniques. Inkjet printing equipment was chosen as an alternative to an injection pump in conventional flow-mode systems to facilitate the commercial applicability of these practical devices. The results demonstrate minimization of fluctuations from external influences, determination of antigen-antibody interactions in an inkjet deposition, and quantification of C-reactive protein in the range of 50–1000 ng∙mL−1. We thus demonstrate a marketable application of an inexpensive and easily available QCM sensor system.

  17. A highly sensitive humidity sensor based on a nanofibrous membrane coated quartz crystal microbalance

    Energy Technology Data Exchange (ETDEWEB)

    Wang Xianfeng; Ding Bin [State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620 (China); Yu Jianyong [Nanomaterials Research Center, Modern Textile Institute, Donghua University, Shanghai 200051 (China); Wang, Moran [Los Alamos National Laboratory, Los Alamos, NM 87545 (United States); Pan Fukui, E-mail: binding@dhu.edu.cn [College of Textiles and Fashion, Qingdao University, Qingdao 266071 (China)

    2010-02-05

    A novel humidity sensor was fabricated by electrospinning deposition of nanofibrous polyelectrolyte membranes as sensitive coatings on a quartz crystal microbalance (QCM). The results of sensing experiments indicated that the response of the sensors increased by more than two orders of magnitude with increasing relative humidity (RH) from 6 to 95% at room temperature, exhibiting high sensitivity, and that, in the range of 20-95% RH, the Log({Delta}f) showed good linearity. The sensitivity of fibrous composite polyacrylic acid (PAA)/poly(vinyl alcohol) (PVA) membranes was two times higher than that of the corresponding flat films at 95% RH. Compared with fibrous PAA/PVA membranes, the nanofibrous PAA membranes exhibited remarkably enhanced humidity sensitivity due to their high PAA content and large specific surface area caused by the formation of ultrathin nanowebs among electrospun fibers. Additionally, the resultant sensors exhibited a good reversible behavior and good long term stability.

  18. A highly sensitive humidity sensor based on a nanofibrous membrane coated quartz crystal microbalance

    Science.gov (United States)

    Wang, Xianfeng; Ding, Bin; Yu, Jianyong; Wang, Moran; Pan, Fukui

    2010-02-01

    A novel humidity sensor was fabricated by electrospinning deposition of nanofibrous polyelectrolyte membranes as sensitive coatings on a quartz crystal microbalance (QCM). The results of sensing experiments indicated that the response of the sensors increased by more than two orders of magnitude with increasing relative humidity (RH) from 6 to 95% at room temperature, exhibiting high sensitivity, and that, in the range of 20-95% RH, the Log(Δf) showed good linearity. The sensitivity of fibrous composite polyacrylic acid (PAA)/poly(vinyl alcohol) (PVA) membranes was two times higher than that of the corresponding flat films at 95% RH. Compared with fibrous PAA/PVA membranes, the nanofibrous PAA membranes exhibited remarkably enhanced humidity sensitivity due to their high PAA content and large specific surface area caused by the formation of ultrathin nanowebs among electrospun fibers. Additionally, the resultant sensors exhibited a good reversible behavior and good long term stability.

  19. Quartz-Crystal Microbalance (QCM) for Public Health: An Overview of Its Applications.

    Science.gov (United States)

    Bragazzi, Nicola Luigi; Amicizia, Daniela; Panatto, Donatella; Tramalloni, Daniela; Valle, Ivana; Gasparini, Roberto

    2015-01-01

    Nanobiotechnologies, from the convergence of nanotechnology and molecular biology and postgenomics medicine, play a major role in the field of public health. This overview summarizes the potentiality of piezoelectric sensors, and in particular, of quartz-crystal microbalance (QCM), a physical nanogram-sensitive device. QCM enables the rapid, real time, on-site detection of pathogens with an enormous burden in public health, such as influenza and other respiratory viruses, hepatitis B virus (HBV), and drug-resistant bacteria, among others. Further, it allows to detect food allergens, food-borne pathogens, such as Escherichia coli and Salmonella typhimurium, and food chemical contaminants, as well as water-borne microorganisms and environmental contaminants. Moreover, QCM holds promises in early cancer detection and screening of new antiblastic drugs. Applications for monitoring biohazards, for assuring homeland security, and preventing bioterrorism are also discussed.

  20. Development of a Quartz Crystal Microbalance Biosensor with Aptamers as Bio-recognition Element

    Directory of Open Access Journals (Sweden)

    Chunyan Yao

    2010-06-01

    Full Text Available The ultimate goal in any biosensor development project is its use for actual sample detection. Recently, there has been an interest in biosensors with aptamers as bio-recognition elements, but reported examples all deal with standards, not human serum. In order to verify the differences of aptamer-based biosensor and antibody-based biosensor in clinical detection, a comparison of the performance of aptamer-based and antibody-based quartz crystal microbalance (QCM biosensors for the detection of immunoglobulin E (IgE in human serum was carried out. Aptamers (or antibodies specific to IgE were immobilized on the gold surface of a quartz crystal. The frequency shifts of the QCM were measured. The linear range with the antibody (10–240 μg/L compared to that of the aptamer (2.5–200 μg/L, but a lower detection limit could be observed in the aptamer-based biosensor. The reproducibility of the two biosensors was comparable. The aptamers were equivalent or superior to antibodies in terms of specificity and sensitivity. In addition, the aptamer receptors could tolerate repeated affine layer regeneration after ligand binding and recycling of the biosensor with little loss of sensitivity. When stored for three weeks, the frequency shifts of the aptamer-coated crystals were all greater than 90% of those on the response at the first day.

  1. Low-cost scalable quartz crystal microbalance array for environmental sensing

    Energy Technology Data Exchange (ETDEWEB)

    Anazagasty, Cristain [University of Puerto Rico; Hianik, Tibor [Comenius University, Bratislava, Slovakia; Ivanov, Ilia N [ORNL

    2016-01-01

    Proliferation of environmental sensors for internet of things (IoT) applications has increased the need for low-cost platforms capable of accommodating multiple sensors. Quartz crystal microbalance (QCM) crystals coated with nanometer-thin sensor films are suitable for use in high-resolution (~1 ng) selective gas sensor applications. We demonstrate a scalable array for measuring frequency response of six QCM sensors controlled by low-cost Arduino microcontrollers and a USB multiplexer. Gas pulses and data acquisition were controlled by a LabVIEW user interface. We test the sensor array by measuring the frequency shift of crystals coated with different compositions of polymer composites based on poly(3,4-ethylenedioxythiophene):polystyrene sulfonate (PEDOT:PSS) while films are exposed to water vapor and oxygen inside a controlled environmental chamber. Our sensor array exhibits comparable performance to that of a commercial QCM system, while enabling high-throughput 6 QCM testing for under $1,000. We use deep neural network structures to process sensor response and demonstrate that the QCM array is suitable for gas sensing, environmental monitoring, and electronic-nose applications.

  2. Low-cost scalable quartz crystal microbalance array for environmental sensing

    Science.gov (United States)

    Muckley, Eric S.; Anazagasty, Cristain; Jacobs, Christopher B.; Hianik, Tibor; Ivanov, Ilia N.

    2016-09-01

    Proliferation of environmental sensors for internet of things (IoT) applications has increased the need for low-cost platforms capable of accommodating multiple sensors. Quartz crystal microbalance (QCM) crystals coated with nanometer-thin sensor films are suitable for use in high-resolution ( 1 ng) selective gas sensor applications. We demonstrate a scalable array for measuring frequency response of six QCM sensors controlled by low-cost Arduino microcontrollers and a USB multiplexer. Gas pulses and data acquisition were controlled by a LabVIEW user interface. We test the sensor array by measuring the frequency shift of crystals coated with different compositions of polymer composites based on poly(3,4-ethylenedioxythiophene):polystyrene sulfonate (PEDOT:PSS) while films are exposed to water vapor and oxygen inside a controlled environmental chamber. Our sensor array exhibits comparable performance to that of a commercial QCM system, while enabling high-throughput 6 QCM testing for under $1,000. We use deep neural network structures to process sensor response and demonstrate that the QCM array is suitable for gas sensing, environmental monitoring, and electronic-nose applications.

  3. In-Line Measurement of Water Content in Ethanol Using a PVA-Coated Quartz Crystal Microbalance

    Directory of Open Access Journals (Sweden)

    Byoung Chul Kim

    2014-01-01

    Full Text Available An in-line device for measuring the water content in ethanol was developed using a polyvinyl alcohol (PVA-coated quartz crystal microbalance. Bio-ethanol is widely used as the replacement of gasoline, and its water content is a key component of its specifications. When the PVA-coated quartz crystal microbalance is contacted with ethanol containing a small amount of water, the water is absorbed into the PVA increasing the load on the microbalance surface to cause a frequency drop. The determination performance of the PVA-coated microbalance is examined by measuring the frequency decreases in ethanol containing 2% to 10% water while the ethanol flows through the measurement device. The measurements indicates that the higher water content is the more the frequency reduction is, though some deviation in the measurements is observed. This indicates that the frequency measurement of an unknown concentration of water in ethanol can be used to determine the water content in ethanol. The PVA coating is examined by microscopy and FTIR (Fourier transform infrared spectroscopy.

  4. In-line measurement of water content in ethanol using a PVA-coated quartz crystal microbalance.

    Science.gov (United States)

    Kim, Byoung Chul; Yamamoto, Takuji; Kim, Young Han

    2014-01-16

    An in-line device for measuring the water content in ethanol was developed using a polyvinyl alcohol (PVA)-coated quartz crystal microbalance. Bio-ethanol is widely used as the replacement of gasoline, and its water content is a key component of its specifications. When the PVA-coated quartz crystal microbalance is contacted with ethanol containing a small amount of water, the water is absorbed into the PVA increasing the load on the microbalance surface to cause a frequency drop. The determination performance of the PVA-coated microbalance is examined by measuring the frequency decreases in ethanol containing 2% to 10% water while the ethanol flows through the measurement device. The measurements indicates that the higher water content is the more the frequency reduction is, though some deviation in the measurements is observed. This indicates that the frequency measurement of an unknown concentration of water in ethanol can be used to determine the water content in ethanol. The PVA coating is examined by microscopy and FTIR (Fourier transform infrared) spectroscopy.

  5. Use of the quartz crystal microbalance to determine the monomeric friction coefficient of polyimides

    Science.gov (United States)

    Bechtold, Mary M.

    1995-01-01

    When a thin film of polymer is coated on to a quartz crystal microbalance (QCM), the QCM can be used to detect the rate of increase in weight of the polymer film as the volatile penetrant diffuses into the polymer. From this rate information the diffusion coefficient of the penetrant into the polymer can be computed. Calculations requiring this diffusion coefficient lead to values which approximate the monomeric friction coefficient of the polymer. This project has been concerned with the trial of crystal oscillating circuits suitable for driving polymer coated crystals in an atmosphere of penetrant. For these studies done at room temperature, natural rubber was used as an easily applied polymer that is readily penetrated by toluene vapors, qualities anticipated with polyimides when they are tested at T(g) in the presence of toluene. Three quartz crystal oscillator circuits were tested. The simplest circuit used +/- 5 volt dc and had a transistor to transistor logic (TTL) inverter chip that provides a 180 deg phase shift via a feed back loop. This oscillator circuit was stable but would not drive the crystal when the crystal was coated with polymer and subjected to toluene vapors. Removal of a variable resistor from this circuit increased stability but did not otherwise increase performance. Another driver circuit tested contained a two stage differential input, differential output, wide band video amplifier and also contain a feed back loop. The circuit voltage could not be varied and operated at +/- 5 volts dc; this circuit was also stable but failed to oscillate the polymer coated crystal in an atmosphere saturated with toluene vapors. The third oscillator circuit was of similar construction and relied on the same video amplifier but allowed operation with variable voltage. This circuit would drive the crystal when the crystal was submerged in liquid toluene and when the crystal was coated with polymer and immersed in toluene vapors. The frequency readings

  6. Detection of label-free cancer biomarkers using nickel nanoislands and quartz crystal microbalance

    Directory of Open Access Journals (Sweden)

    Adrián Martínez-Rivas

    2010-09-01

    Full Text Available Adrián Martínez-Rivas1,2, Patrick Chinestra3,4, Gilles Favre3,4, Sébastien Pinaud1, Childérick Séverac1,2, Jean-Charles Faye3,4, Christophe Vieu1,21LAAS-CNRS; Université de Toulouse, Toulouse, France; 2Université de Toulouse, UPS, INSA, INP, ISAE; LAAS; Toulouse, France; 3INSERM U563, Université de Toulouse, CPTP, “Signalisation Cellulaire, GTPase Rho et cancers”, Toulouse, France; 4Institut Claudius Regaud, Biology Department, Toulouse, FranceAbstract: We present a technique for the label-free detection and recognition of cancer biomarkers using metal nanoislands intended to be integrated in a novel type of nanobiosensor. His-tagged (scFv-F7N1N2 is the antibody fragment which is directly immobilized, by coordinative bonds, onto ~5 nm nickel islands, then deposited on the surface of a quartz crystal of a quartz crystal microbalance (QCM to validate the technique. Biomarker GTPase RhoA was investigated because it has been found to be overexpressed in various tumors and because we have recently isolated and characterized a new conformational scFv which selectively recognizes the active form of RhoA. We implemented a surface chemistry involving an antibiofouling coating of polyethylene glycol silane (PEG-silane (<2 nm thick and Ni nanoislands to reach a label-free detection of the active antigen conformation of RhoA, at various concentrations. The methodology proposed here proves the viability of the concept by using Ni nanoislands as an anchoring surface layer enabling the detection of a specific conformation of a protein, identified as a potential cancer biomarker. Hence, this novel methodology can be transferred to a nanobiosensor to detect, at lower time consumption and with high sensitivity, specific biomolecules.Keywords: nickel nanoislands, cancer biomarkers, quartz crystal microbalance, PEG-silane, RhoA protein, nanobiosensor

  7. Lectin typing of Campylobacter jejuni using a novel quartz crystal microbalance technique

    Energy Technology Data Exchange (ETDEWEB)

    Yakovleva, Maria E., E-mail: maria.yakovleva@gmail.com [Department of Infectious Diseases and Medical Microbiology, Lund University, 223 62 Lund (Sweden); Moran, Anthony P. [Department of Microbiology, School of Natural Sciences, National University of Ireland, Galway (Ireland); Safina, Gulnara R. [Department of Analytical and Marine Chemistry, University of Gothenburg, 412 96 Gothenburg (Sweden); Wadstroem, Torkel [Department of Infectious Diseases and Medical Microbiology, Lund University, 223 62 Lund (Sweden); Danielsson, Bengt [Acromed Invest AB, Magistratsvaegen 10, 226 43 Lund (Sweden)

    2011-05-23

    Seven Campylobacter jejuni strains were characterised by a lectin typing assay. The typing system was based on a quartz crystal microbalance technique (QCM) with four commercially available lectins (wheat germ agglutinin, Maackia amurensis lectin, Lens culinaris agglutinin, and Concanavalin A), which were chosen for their differing carbohydrate specificities. Initially, the gold surfaces of the quartz crystals were modified with 11-mercaptoundecanoic acid followed by lectin immobilisation using a conventional amine-coupling technique. Bacterial cells were applied for lectin typing without preliminary treatment, and resonant frequency and dissipation responses were recorded. The adhesion of microorganisms on lectin surfaces was confirmed by atomic force microscopy. Scanning was performed in the tapping mode and the presence of bacteria on lectin-coated surfaces was successfully demonstrated. A significant difference in the dissipation response was observed for different C. jejuni strains which made it possible to use this parameter for discriminating between bacterial strains. In summary, the QCM technique proved a powerful tool for the recognition and discrimination of C. jejuni strains. The approach may also prove applicable to strain discrimination of other bacterial species, particularly pathogens.

  8. Detection of label-free cancer biomarkers using nickel nanoislands and quartz crystal microbalance.

    Science.gov (United States)

    Martínez-Rivas, Adrián; Chinestra, Patrick; Favre, Gilles; Pinaud, Sébastien; Séverac, Childérick; Faye, Jean-Charles; Vieu, Christophe

    2010-09-07

    We present a technique for the label-free detection and recognition of cancer biomarkers using metal nanoislands intended to be integrated in a novel type of nanobiosensor. His-tagged (scFv)-F7N1N2 is the antibody fragment which is directly immobilized, by coordinative bonds, onto ~5 nm nickel islands, then deposited on the surface of a quartz crystal of a quartz crystal microbalance (QCM) to validate the technique. Biomarker GTPase RhoA was investigated because it has been found to be overexpressed in various tumors and because we have recently isolated and characterized a new conformational scFv which selectively recognizes the active form of RhoA. We implemented a surface chemistry involving an antibiofouling coating of polyethylene glycol silane (PEG-silane) (<2 nm thick) and Ni nanoislands to reach a label-free detection of the active antigen conformation of RhoA, at various concentrations. The methodology proposed here proves the viability of the concept by using Ni nanoislands as an anchoring surface layer enabling the detection of a specific conformation of a protein, identified as a potential cancer biomarker. Hence, this novel methodology can be transferred to a nanobiosensor to detect, at lower time consumption and with high sensitivity, specific biomolecules.

  9. A quartz crystal microbalance sensor based on mussel-inspired molecularly imprinted polymer.

    Science.gov (United States)

    Zhou, Wen-Hui; Tang, Shui-Fen; Yao, Qiu-Hong; Chen, Fa-Rong; Yang, Huang-Hao; Wang, Xiao-Ru

    2010-10-15

    In this work, we describe a simple, inexpensive and fast method for the generation of molecularly imprinted polymer (MIP) film on quartz crystal microbalance (QCM) crystals using mussel-inspired polymer. Commonly known as a neurotransmitter, dopamine is also a small-molecule mimic of the adhesive proteins of mussels. Polymerization of dopamine in the presence of template molecule (1,3,5-pentanetricarboxylic acid, an analogue of domoic acid, in this case) could produce an adherent molecularly imprinted polydopamine film coating on QCM crystals. Advantages, such as high hydrophilicity, high biocompatibility and controllable thickness, make this molecularly imprinted polydopamine film an attractive recognition element for sensors. Selective rebinding of domoic acid on mussel-inspired molecularly imprinted polymer (m-MIP) coated crystal was observed as a frequency shift quantified by piezoelectric microgravimetry with the QCM system. The decreasing frequency shows a good linear relationship with the concentration of domoic acid. The quantitation limit of domoic acid was 5 ppb with the linear range of 0-100 ppb. The QCM sensor has high selectivity and was able to distinguish domoic acid from its analogous p-phthalic acid and o-phthalic acid owing to the molecular imprinting effect. In addition, the practical analytical performance of the sensor was examined by evaluating the detection of domoic acid in mussel extracts with satisfactory results. It is envisaged that m-MIP could be suitable as recognition element for sensors and the proposed m-MIP QCM sensor could be employed to detect analyte of interest in complex matrices. Copyright © 2010 Elsevier B.V. All rights reserved.

  10. Rancang Bangun Sistem Pencacah Frekuensi Untuk Sensor Gas Quartz Crystal Microbalance

    Directory of Open Access Journals (Sweden)

    Brilianda Adi Wicaksono

    2014-03-01

    Full Text Available Dalam suatu sistem identifikasi gas menggunakan sensor Quartz Crystal Microbalance (QCM diperlukan sebuah pencacah frekuensi yang digunakan untuk menghitung perubahan frekuensi dari sensor. Sistem ini digunakan untuk menghasilkan output berupa perubahan frekuensi yang akan diproses untuk identifikasi gas. Metode ini menggunakan selisih antara frekuensi sensor QCM dan frekuensi referensi. Hasil dari selisih tersebut dibagi dan digunakan untuk mengaktifkan pencacah frekuensi. Semakin besar bilangan pembagi, maka sistem pencacah frekuensi ini semakin stabil dan akurat. Penelitian ini menggunakan kristal referensi 20MHz dengan pencacah frekuensi 24 bit. Data hasil pencacahan diakuisisi oleh mikrokontroler dan dikirim ke komputer untuk proses identifikasi menggunakan neural network. Output dari neural network ini merupakan hasil dari proses identifikasi gas. Dengan metode yang digunakan, perubahan frekuensi yang dapat dideteksi mencapai 0,068 Hz. Dalam pengujian keseluruhan sistem digunakan 3 bahan uji, yaitu alkohol, amoniak, dan asam asetat (cuka.Untuk sistem identifikasi gas telah dapat mengenali gas uji dengan keberhasilan 90%. Secara keseluruhan, metode ini diharapkan menjadi metode yang baik untuk sistem identifikasi gas.

  11. Development of a Flow Injection Based High Frequency Dual Channel Quartz Crystal Microbalance.

    Science.gov (United States)

    Liang, Jinxing; Zhang, Jing; Zhou, Wenxiang; Ueda, Toshitsugu

    2017-05-16

    When the quartz crystal microbalance (QCM) is used in liquid for adsorption or desorption monitoring based bio- or chemical sensing applications, the frequency shift is not only determined by the surface mass change, but also by the change of liquid characteristics, such as density and viscosity, which are greatly affected by the liquid environmental temperature. A monolithic dual-channel QCM is designed and fabricated by arranging two QCM resonators on one single chip for cancelling the fluctuation induced by environmental factors. In actual applications, one QCM works as a specific sensor by modifying with functional membranes and the other acts as a reference, only measuring the liquid property. The dual-channel QCM is designed with an inverted-mesa structure, aiming to realize a high frequency miniaturized chip and suppress the frequency interference between the neighbored QCM resonators. The key problem of dual-channel QCMs is the interference between two channels, which is influenced by the distance of adjacent resonators. The diameter of the reference electrode has been designed into several values in order to find the optimal parameter. Experimental results demonstrated that the two QCMs could vibrate individually and the output frequency stability and drift can be greatly improved with the aid of the reference QCM.

  12. Biomimetic Receptors for Bioanalyte Detection by Quartz Crystal Microbalances — From Molecules to Cells

    Directory of Open Access Journals (Sweden)

    Usman Latif

    2014-12-01

    Full Text Available A universal label-free detection of bioanalytes can be performed with biomimetic quartz crystal microbalance (QCM coatings prepared by imprinting strategies. Bulk imprinting was used to detect the endocrine disrupting chemicals (EDCs known as estradiols. The estrogen 17β-estradiol is one of the most potent EDCs, even at very low concentrations. A highly sensitive, selective and robust QCM sensor was fabricated for real time monitoring of 17β-estradiol in water samples by using molecular imprinted polyurethane. Optimization of porogen (pyrene and cross-linker (phloroglucinol levels leads to improved sensitivity, selectivity and response time of the estradiol sensor. Surface imprinting of polyurethane as sensor coating also allowed us to generate interaction sites for the selective recognition of bacteria, even in a very complex mixture of interfering compounds, while they were growing from their spores in nutrient solution. A double molecular imprinting approach was followed to transfer the geometrical features of natural bacteria onto the synthetic polymer to generate biomimetic bacteria. The use of biomimetic bacteria as template makes it possible to prepare multiple sensor coatings with similar sensitivity and selectivity. Thus, cell typing, e.g., differentiation of bacteria strains, bacteria growth profile and extent of their nutrition, can be monitored by biomimetic mass sensors. Obviously, this leads to controlled cell growth in bioreactors.

  13. Hydrolysis of model cellulose films by cellulosomes: Extension of quartz crystal microbalance technique to multienzymatic complexes.

    Science.gov (United States)

    Zhou, Shanshan; Li, Hsin-Fen; Garlapalli, Ravinder; Nokes, Sue E; Flythe, Michael; Rankin, Stephen E; Knutson, Barbara L

    2017-01-10

    Bacterial cellulosomes contain highly efficient complexed cellulases and have been studied extensively for the production of lignocellulosic biofuels and bioproducts. A surface measurement technique, quartz crystal microbalance with dissipation (QCM-D), was extended for the investigation of real-time binding and hydrolysis of model cellulose surfaces from free fungal cellulases to the cellulosomes of Clostridium thermocellum (Ruminiclostridium thermocellum). In differentiating the activities of cell-free and cell-bound cellulosomes, greater than 68% of the cellulosomes in the crude cell broth were found to exist unattached to the cell across multiple growth stages. The initial hydrolysis rate of crude cell broth measured by QCM was greater than that of cell-free cellulosomes, but the corresponding frequency drop (a direct measure of the mass of enzyme adsorbed to the film) of crude cell broth was less than that of the cell-free cellulosomes, consistent with the underestimation of the cell mass adsorbed using QCM. Inhibition of hydrolysis by cellobiose (0-10g/L), which is similar for crude cell broth and cell-free cellulosomes, demonstrates the sensitivity of the QCM to environmental perturbations of multienzymatic complexes. QCM measurements using multienzymatic complexes may be used to screen and optimize hydrolysis conditions and to develop mechanistic, surface-based models of enzymatic cellulose deconstruction. Copyright © 2016 Elsevier B.V. All rights reserved.

  14. Protein Adsorption to Titanium and Zirconia Using a Quartz Crystal Microbalance Method

    Directory of Open Access Journals (Sweden)

    You Kusakawa

    2017-01-01

    Full Text Available Protein adsorption onto titanium (Ti or zirconia (ZrO2 was evaluated using a 27 MHz quartz crystal microbalance (QCM. As proteins, fibronectin (Fn, a cell adhesive protein, and albumin (Alb, a cell adhesion-inhibiting protein, were evaluated. The Ti and ZrO2 sensors for QCM were characterized by atomic force microscopy and electron probe microanalysis observation, measurement of contact angle against water, and surface roughness. The amounts of Fn and Alb adsorbed onto the Ti and ZrO2 sensors and apparent reaction rate were obtained using QCM measurements. Ti sensor showed greater adsorption of Fn and Alb than the ZrO2 sensor. In addition, amount of Fn adsorbed onto the Ti or ZrO2 sensors was higher than that of Alb. The surface roughness and hydrophilicity of Ti or ZrO2 may influence the adsorption of Fn or Alb. With regard to the adsorption rate, Alb adsorbed more rapidly than Fn onto Ti. Comparing Ti and ZrO2, Alb adsorption rate to Ti was faster than that to ZrO2. Fn adsorption will be effective for cell activities, but Alb adsorption will not. QCM method could simulate in vivo Fn and Alb adsorption to Ti or ZrO2.

  15. Protein Adsorption to Titanium and Zirconia Using a Quartz Crystal Microbalance Method

    Science.gov (United States)

    Kusakawa, You

    2017-01-01

    Protein adsorption onto titanium (Ti) or zirconia (ZrO2) was evaluated using a 27 MHz quartz crystal microbalance (QCM). As proteins, fibronectin (Fn), a cell adhesive protein, and albumin (Alb), a cell adhesion-inhibiting protein, were evaluated. The Ti and ZrO2 sensors for QCM were characterized by atomic force microscopy and electron probe microanalysis observation, measurement of contact angle against water, and surface roughness. The amounts of Fn and Alb adsorbed onto the Ti and ZrO2 sensors and apparent reaction rate were obtained using QCM measurements. Ti sensor showed greater adsorption of Fn and Alb than the ZrO2 sensor. In addition, amount of Fn adsorbed onto the Ti or ZrO2 sensors was higher than that of Alb. The surface roughness and hydrophilicity of Ti or ZrO2 may influence the adsorption of Fn or Alb. With regard to the adsorption rate, Alb adsorbed more rapidly than Fn onto Ti. Comparing Ti and ZrO2, Alb adsorption rate to Ti was faster than that to ZrO2. Fn adsorption will be effective for cell activities, but Alb adsorption will not. QCM method could simulate in vivo Fn and Alb adsorption to Ti or ZrO2. PMID:28246591

  16. A novel assay for detecting canine parvovirus using a quartz crystal microbalance biosensor.

    Science.gov (United States)

    Kim, Yong Kwan; Lim, Seong-In; Choi, Sarah; Cho, In-Soo; Park, Eun-Hye; An, Dong-Jun

    2015-07-01

    Rapid and accurate diagnosis is crucial to reduce both the shedding and clinical signs of canine parvovirus (CPV). The quartz crystal microbalance (QCM) is a new tool for measuring frequency changes associated with antigen-antibody interactions. In this study, the QCM biosensor and ProLinker™ B were used to rapidly diagnosis CPV infection. ProLinker™ B enables antibodies to be attached to a gold-coated quartz surface in a regular pattern and in the correct orientation for antigen binding. Receiver operating characteristics (ROC) curves were used to set a cut-off value using reference CPVs (two groups: one CPV-positive and one CPV-negative). The ROC curves overlapped and the point of intersection was used as the cut-off value. A QCM biosensor with a cut-off value of -205 Hz showed 95.4% (104/109) sensitivity and 98.0% (149/152) specificity when used to test 261 field fecal samples compared to PCR. In conclusion, the QCM biosensor described herein is eminently suitable for the rapid diagnosis of CPV infection with high sensitivity and specificity. Therefore, it is a promising analytical tool that will be useful for clinical diagnosis, which requires rapid and reliable analyses.

  17. Effect of a Non-Newtonian Load on Signature S2 for Quartz Crystal Microbalance Measurements

    Directory of Open Access Journals (Sweden)

    Jae-Hyeok Choi

    2014-01-01

    Full Text Available The quartz crystal microbalance (QCM is increasingly used for monitoring the interfacial interaction between surfaces and macromolecules such as biomaterials, polymers, and metals. Recent QCM applications deal with several types of liquids with various viscous macromolecule compounds, which behave differently from Newtonian liquids. To properly monitor such interactions, it is crucial to understand the influence of the non-Newtonian fluid on the QCM measurement response. As a quantitative indicator of non-Newtonian behavior, we used the quartz resonator signature, S2, of the QCM measurement response, which has a consistent value for Newtonian fluids. We then modified De Kee’s non-Newtonian three-parameter model to apply it to our prediction of S2 values for non-Newtonian liquids. As a model, we chose polyethylene glycol (PEG400 with the titration of its volume concentration in deionized water. As the volume concentration of PEG400 increased, the S2 value decreased, confirming that the modified De Kee’s three-parameter model can predict the change in S2 value. Collectively, the findings presented herein enable the application of the quartz resonator signature, S2, to verify QCM measurement analysis in relation to a wide range of experimental subjects that may exhibit non-Newtonian behavior, including polymers and biomaterials.

  18. Quartz Crystal Microbalance Studies of Multilayer Glucagon Fibrillation at the Solid-Liquid Interface

    Science.gov (United States)

    Hovgaard, Mads Bruun; Dong, Mingdong; Otzen, Daniel Erik; Besenbacher, Flemming

    2007-01-01

    We have used a quartz crystal microbalance with dissipation (QCM-D) to monitor the changes in layer thickness and viscoelastic properties accompanying multilayer amyloid deposition in situ for the first time. By means of atomic force microscope imaging, an unequivocal correlation is established between the interfacial nucleation and growth of glucagon fibrils and the QCM-D response. The combination of the two techniques allows us to study the temporal evolution of the interfacial fibrillation process. We have modeled the QCM-D data using an extension to the Kelvin-Voigt viscoelastic model. Three phases were observed in the fibrillation process: 1), a rigid multilayer of glucagon monomers forms and slowly rearranges; 2), this multilayer subsequently evolves into a dramatically more viscoelastic layer, containing a polymorphic network of micrometer-long fibrils growing from multiple nucleation sites; and 3), the fibrillar formation effectively stops as a result of the depletion of bulk-phase monomers, although the process can be continued without a lag phase by subsequent addition of fresh monomers. The robustness of the QCM-D technique, consolidated by complementary atomic force microscope studies, should make it possible to combine different components thought to be involved in the plaque formation process and thus build up realistic models of amyloid plaque formation in vitro. PMID:17513349

  19. Quartz crystal microbalance studies of multilayer glucagon fibrillation at the solid-liquid interface.

    Science.gov (United States)

    Hovgaard, Mads Bruun; Dong, Mingdong; Otzen, Daniel Erik; Besenbacher, Flemming

    2007-09-15

    We have used a quartz crystal microbalance with dissipation (QCM-D) to monitor the changes in layer thickness and viscoelastic properties accompanying multilayer amyloid deposition in situ for the first time. By means of atomic force microscope imaging, an unequivocal correlation is established between the interfacial nucleation and growth of glucagon fibrils and the QCM-D response. The combination of the two techniques allows us to study the temporal evolution of the interfacial fibrillation process. We have modeled the QCM-D data using an extension to the Kelvin-Voigt viscoelastic model. Three phases were observed in the fibrillation process: 1), a rigid multilayer of glucagon monomers forms and slowly rearranges; 2), this multilayer subsequently evolves into a dramatically more viscoelastic layer, containing a polymorphic network of micrometer-long fibrils growing from multiple nucleation sites; and 3), the fibrillar formation effectively stops as a result of the depletion of bulk-phase monomers, although the process can be continued without a lag phase by subsequent addition of fresh monomers. The robustness of the QCM-D technique, consolidated by complementary atomic force microscope studies, should make it possible to combine different components thought to be involved in the plaque formation process and thus build up realistic models of amyloid plaque formation in vitro.

  20. A Label-Free Immunosensor for Ultrasensitive Detection of Ketamine Based on Quartz Crystal Microbalance

    Directory of Open Access Journals (Sweden)

    Ya Yang

    2015-04-01

    Full Text Available In this study, we have developed a label-free immunosensor with the variation of resonance frequency (Δf of a quartz crystal microbalance (QCM as readout signal for ultrasensitive detection of Ketamine (KT. An optimized strategy for immobilization of KT antibody on the surface of the QCM chip was implemented via the self-assembly modification of 3-mercaptopropionic acid, and then activated with 1-ethyl-3- (3-dimethylaminoprophl carbodiimide and n-hydroxysuccinimide. The specific affinity between the antibody and the antigen ensured a selective response toward KT. The Δf linearly related to the concentration of KT in the range of 1 to 40 pg/mL, with a detection limit of 0.86 pg/mL (S/N = 3. The obtained immunosensor was applied to detect the KT in spiked human urine without any pretreatment but dilution with recoveries from 91.8% to 108%. The developed sensor is promising to perform the portable or on-spot KT detection in clinic or forensic cases.

  1. Protein Adsorption to Titanium and Zirconia Using a Quartz Crystal Microbalance Method.

    Science.gov (United States)

    Kusakawa, You; Yoshida, Eiji; Hayakawa, Tohru

    2017-01-01

    Protein adsorption onto titanium (Ti) or zirconia (ZrO2) was evaluated using a 27 MHz quartz crystal microbalance (QCM). As proteins, fibronectin (Fn), a cell adhesive protein, and albumin (Alb), a cell adhesion-inhibiting protein, were evaluated. The Ti and ZrO2 sensors for QCM were characterized by atomic force microscopy and electron probe microanalysis observation, measurement of contact angle against water, and surface roughness. The amounts of Fn and Alb adsorbed onto the Ti and ZrO2 sensors and apparent reaction rate were obtained using QCM measurements. Ti sensor showed greater adsorption of Fn and Alb than the ZrO2 sensor. In addition, amount of Fn adsorbed onto the Ti or ZrO2 sensors was higher than that of Alb. The surface roughness and hydrophilicity of Ti or ZrO2 may influence the adsorption of Fn or Alb. With regard to the adsorption rate, Alb adsorbed more rapidly than Fn onto Ti. Comparing Ti and ZrO2, Alb adsorption rate to Ti was faster than that to ZrO2. Fn adsorption will be effective for cell activities, but Alb adsorption will not. QCM method could simulate in vivo Fn and Alb adsorption to Ti or ZrO2.

  2. Exploiting Solvate Ionic Liquids for Amine Gas Analysis on a Quartz Crystal Microbalance.

    Science.gov (United States)

    Li, Hsin-Yi; Chu, Yen-Ho

    2017-05-16

    We demonstrated in this work the usefulness of solvate ionic liquids SIL 3 and SIL 4 for chemoselective detection of amine gases on a quartz crystal microbalance. This detection of gaseous amines was achieved by nucleophilic aromatic addition reactions with super electrophilic SIL 3 or SIL 4 thin-coated on quartz chips. Starting with inexpensive reagents, functional SIL 3 and SIL 4 could be readily synthesized in two short steps with high isolated yield (81 and 77%, respectively). The QCM platform developed in this work is readily applicable and highly sensitive to low molecular weight amine gases: for propylamine gas at 10 Hz decrease in resonance frequency, the sensitivity of detection using SIL 4 was 5.4 ppb. This simple and convenient assembly of neutral ligands (e.g., 1a and 1b) with Li(+) ion to afford room temperature ionic liquids should be of great importance for a myriad of applications. To the best of our knowledge, no example to date of reports based on nucleophilic aromatic addition reactions demonstrating sensitive amine gas detection in solvate ionic liquids on a QCM has been reported. Furthermore, because of the high color intensity of the Meisenheimer complexes formed, our preliminary result showed that SIL 4 loaded on copier paper can be used not only as a portable amine gas sensor but also as a potential invisible ink that is only revealed by amine vapor.

  3. Probing the interaction between nanoparticles and lipid membranes by quartz crystal microbalance with dissipation monitoring

    Science.gov (United States)

    Yousefi, Nariman; Tufenkji, Nathalie

    2016-12-01

    There is increasing interest in using quartz crystal microbalance with dissipation monitoring (QCM-D) to investigate the interaction of nanoparticles (NPs) with model surfaces. The high sensitivity, ease of use and the ability to monitor interactions in real-time has made it a popular technique for colloid chemists, biologists, bioengineers and biophysicists. QCM-D has been recently used to probe the interaction of NPs with supported lipid bilayers (SLBs) as model cell membranes. The interaction of NPs with SLBs is highly influenced by the quality of the lipid bilayers. Unlike many surface sensitive techniques, using QCM-D, the quality of SLBs can be assessed in real-time, hence QCM-D studies on SLB-NP interactions are less prone to the artefacts arising from bilayers that are not well formed. The ease of use and commercial availability of a wide range of sensor surfaces also have made QCM-D a versatile tool for studying NP interactions with lipid bilayers. In this review, we summarize the state-of-the-art on QCM-D based techniques for probing the interactions of NPs with lipid bilayers.

  4. A Study of Drop-Microstructured Surface Interactions during Dropwise Condensation with Quartz Crystal Microbalance

    Science.gov (United States)

    Su, Junwei; Charmchi, Majid; Sun, Hongwei

    2016-10-01

    Dropwise condensation (DWC) on hydrophobic surfaces is attracting attention for its great potential in many industrial applications, such as steam power plants, water desalination, and de-icing of aerodynamic surfaces, to list a few. The direct dynamic characterization of liquid/solid interaction can significantly accelerate the progress toward a full understanding of the thermal and mass transport mechanisms during DWC processes. This work reports a novel Quartz Crystal Microbalance (QCM) based method that can quantitatively analyze the interaction between water droplets and micropillar surfaces during different condensation states such as filmwise, Wenzel, and partial Cassie states. A combined nanoimprinting lithography and chemical surface treatment approach was utilized to fabricate the micropillar based superhydrophobic and superhydrophilic surfaces on the QCM substrates. The normalized frequency shift of the QCM device together with the microscopic observation of the corresponding drop motion revealed the droplets growth and their coalescence processes and clearly demonstrated the differences between the three aforementioned condensation states. In addition, the transition between Cassie and Wenzel states was successfully captured by this method. The newly developed QCM system provides a valuable tool for the dynamic characterization of different condensation processes.

  5. A hybrid humidity sensor using optical waveguides on a quartz crystal microbalance

    Energy Technology Data Exchange (ETDEWEB)

    Shinbo, Kazunari, E-mail: kshinbo@eng.niigata-u.ac.j [Graduate School of Science and Technology, Niigata University, 2-8050 Ikarashi, Nishi-ku, Niigata City, Niigata 950-2181 (Japan); Center for Transdisciplinary Research, Niigata University, 2-8050 Ikarashi, Nishi-ku, Niigata City, Niigata 950-2181 (Japan); Otuki, Shunya; Kanbayashi, Yuichi [Graduate School of Science and Technology, Niigata University, 2-8050 Ikarashi, Nishi-ku, Niigata City, Niigata 950-2181 (Japan); Ohdaira, Yasuo [Graduate School of Science and Technology, Niigata University, 2-8050 Ikarashi, Nishi-ku, Niigata City, Niigata 950-2181 (Japan); Center for Transdisciplinary Research, Niigata University, 2-8050 Ikarashi, Nishi-ku, Niigata City, Niigata 950-2181 (Japan); Baba, Akira [Center for Transdisciplinary Research, Niigata University, 2-8050 Ikarashi, Nishi-ku, Niigata City, Niigata 950-2181 (Japan); Kato, Keizo; Kaneko, Futao [Graduate School of Science and Technology, Niigata University, 2-8050 Ikarashi, Nishi-ku, Niigata City, Niigata 950-2181 (Japan); Center for Transdisciplinary Research, Niigata University, 2-8050 Ikarashi, Nishi-ku, Niigata City, Niigata 950-2181 (Japan); Miyadera, Nobuo [Hitachi Chemical Co., Ltd., 48 Wadai, Tsukuba City, Ibaraki 300-4247 (Japan)

    2009-11-30

    In this study, slab and ridge optical waveguides (OWGs) made of fluorinated polyimides were deposited on a quartz crystal microbalance (QCM), and hybrid sensors using OWG spectroscopy and the QCM technique were prepared. Polyvinyl alcohol (PVA) film with CoCl{sub 2} was deposited on the OWGs, and the characteristics of humidity sensing were investigated. A prism coupler was used to enter a He-Ne laser beam ({lambda} = 632.8 nm) to the slab OWG. The output light intensity markedly changed due to chromism of the CoCl{sub 2} as a result of humidity sorption, and this change was dependent on the incident angle of the laser beam to the slab OWG. During the measurement of output light, the QCM frequency was simultaneously monitored. The humidity dependence of the sensor with the slab OWG was also investigated in the range from 15 to 85%. For the sensor with the ridge OWG, white light was entered by butt-coupling, and the characteristics of humidity sensing were investigated by observing the output light spectrum and the QCM frequency.

  6. Quartz crystal microbalance (QCM) affinity biosensor for genetically modified organisms (GMOs) detection.

    Science.gov (United States)

    Mannelli, Ilaria; Minunni, Maria; Tombelli, Sara; Mascini, Marco

    2003-03-01

    A DNA piezoelectric sensor has been developed for the detection of genetically modified organisms (GMOs). Single stranded DNA (ssDNA) probes were immobilised on the sensor surface of a quartz crystal microbalance (QCM) device and the hybridisation between the immobilised probe and the target complementary sequence in solution was monitored. The probe sequences were internal to the sequence of the 35S promoter (P) and Nos terminator (T), which are inserted sequences in the genome of GMOs regulating the transgene expression. Two different probe immobilisation procedures were applied: (a) a thiol-dextran procedure and (b) a thiol-derivatised probe and blocking thiol procedure. The system has been optimised using synthetic oligonucleotides, which were then applied to samples of plasmidic and genomic DNA isolated from the pBI121 plasmid, certified reference materials (CRM), and real samples amplified by the polymerase chain reaction (PCR). The analytical parameters of the sensor have been investigated (sensitivity, reproducibility, lifetime etc.). The results obtained showed that both immobilisation procedures enabled sensitive and specific detection of GMOs, providing a useful tool for screening analysis in food samples.

  7. Frequency-shift vs phase-shift characterization of in-liquid quartz crystal microbalance applications

    Energy Technology Data Exchange (ETDEWEB)

    Montagut, Y. J.; Garcia, J. V.; Jimenez, Y.; Arnau, A. [Grupo de Fenomenos Ondulatorios, Departamento de Ingenieria Electronica, Universitat Politecnica de Valencia (Spain); March, C.; Montoya, A. [Instituto Interuniversitario de Investigacion en Bioingenieria y Tecnologia Orientada al Ser Humano, Universitat Politecnica de Valencia (Spain)

    2011-06-15

    The improvement of sensitivity in quartz crystal microbalance (QCM) applications has been addressed in the last decades by increasing the sensor fundamental frequency, following the increment of the frequency/mass sensitivity with the square of frequency predicted by Sauerbrey. However, this sensitivity improvement has not been completely transferred in terms of resolution. The decrease of frequency stability due to the increase of the phase noise, particularly in oscillators, made impossible to reach the expected resolution. A new concept of sensor characterization at constant frequency has been recently proposed. The validation of the new concept is presented in this work. An immunosensor application for the detection of a low molecular weight contaminant, the insecticide carbaryl, has been chosen for the validation. An, in principle, improved version of a balanced-bridge oscillator is validated for its use in liquids, and applied for the frequency shift characterization of the QCM immunosensor application. The classical frequency shift characterization is compared with the new phase-shift characterization concept and system proposed.

  8. Effects of interface slip and viscoelasticity on the dynamic response of droplet quartz crystal microbalances.

    Science.gov (United States)

    Zhuang, Han; Lu, Pin; Lim, Siak Piang; Lee, Heow Pueh

    2008-10-01

    In the present paper we first present a derivation based on the time-dependent perturbation theory to develop the dynamical equations which can be applied to model the response of a droplet quartz crystal microbalance (QCM) in contact with a single viscoelastic media. Moreover, the no-slip boundary condition across the device-viscoelastic media interface has been relaxed in the present model by using the Ellis-Hayward slip length approach. The model is then used to illustrate the characteristic changes in the frequency and attenuation of the QCM with and without the boundary slippage due to the changes in viscoelasticity as the coated media varies from Newtonian liquid to solid. To complement the theory, experiments have been conducted with microliter droplets of aqueous glycerol solutions and silicone oils with a viscosity in the range of 50 approximately 10,000 cS. The results have confirmed the Newtonian characteristics of the glycerol solutions. In contrast, the acoustic properties of the silicones oils as reflected in the impedance analysis are different from the glycerol solutions. More importantly, it was found that for the silicone oils the frequency steadily increased for several hours and even exceeded the initial value of the unloaded crystal as reflected in the positive frequency shift. Collaborative effects of interfacial slippage and viscoelasticity have been introduced to qualitatively interpret the measured frequency up-shifts for the silicone oils. The present work shows the potential importance of the combined effects of viscoelasticity and interfacial slippage when using the droplet QCM to investigate the rheological behavior of more complex fluids.

  9. A Review of Interface Electronic Systems for AT-cut Quartz Crystal Microbalance Applications in Liquids

    Directory of Open Access Journals (Sweden)

    Antonio Arnau

    2008-01-01

    Full Text Available From the first applications of AT-cut quartz crystals as sensors in solutionsmore than 20 years ago, the so-called quartz crystal microbalance (QCM sensor isbecoming into a good alternative analytical method in a great deal of applications such asbiosensors, analysis of biomolecular interactions, study of bacterial adhesion at specificinterfaces, pathogen and microorganism detection, study of polymer film-biomolecule orcell-substrate interactions, immunosensors and an extensive use in fluids and polymercharacterization and electrochemical applications among others. The appropriateevaluation of this analytical method requires recognizing the different steps involved andto be conscious of their importance and limitations. The first step involved in a QCMsystem is the accurate and appropriate characterization of the sensor in relation to thespecific application. The use of the piezoelectric sensor in contact with solutions stronglyaffects its behavior and appropriate electronic interfaces must be used for an adequatesensor characterization. Systems based on different principles and techniques have beenimplemented during the last 25 years. The interface selection for the specific application isimportant and its limitations must be known to be conscious of its suitability, and foravoiding the possible error propagation in the interpretation of results. This article presentsa comprehensive overview of the different techniques used for AT-cut quartz crystalmicrobalance in in-solution applications, which are based on the following principles:network or impedance analyzers, decay methods, oscillators and lock-in techniques. Theelectronic interfaces based on oscillators and phase-locked techniques are treated in detail,with the description of different configurations, since these techniques are the most used inapplications for detection of analytes in solutions, and in those where a fast sensorresponse is necessary.

  10. Application of an Electrochemical Quartz Crystal Microbalance to the study of electrocatalytic films

    Energy Technology Data Exchange (ETDEWEB)

    Gordon, J.S. Jr.

    1993-09-01

    The EQCM was used to study the deposition and composition of electrodeposited pure PbO{sub 2} and Bi-doped PbO{sub 2} active toward anodic oxygen-transfer reactions. Within the doped films, Bi is incorporated as Bi{sup +5} in the form of BiO{sub 2}A, where A is ClO{sub 4}{sup {minus}} or NO{sub 3}{sup {minus}}. For deposition of these 2 materials, changes in hydration between the Au oxide and the depositing film resulted in higher mass-to-charge ratios. XRD and XPS were used to study the films; the rutile structure of PbO{sub 2} is retained even with the Bi doping. The EQCM was also used to study the formation and dissolution of Au oxide and preoxide structures formed on the Au substrate electrodes in acidic media. The preoxide structures were AuOH and increased the surface mass. For the formation of stable Au films on quartz wafers, Ti interlayers between Au and quartz was found to be very effective.

  11. Effect on aluminum corrosion of LiBF{sub 4} addition into lithium imide electrolyte; a study using the EQCM

    Energy Technology Data Exchange (ETDEWEB)

    Song, Seung-Wan; Richardson, Thomas J.; Zhuang, Guorong V.; Devine, Thomas M.; Evans, James W

    2004-04-15

    A study of the corrosion of Al, used as a current collector for the cathode of rechargeable lithium batteries, has been carried out using the electrochemical quartz crystal microbalance (EQCM). An aluminum film was highly corroded in 1 M LiTFSI (lithium trifluorosulfonimide (LiTFSI), LiN(SO{sub 2}CF{sub 3}){sub 2})/EC+DMC electrolyte at 2-5 V versus Li/Li{sup +} with the formation of large pits, while the corrosion was clearly suppressed by adding LiBF{sub 4} salt into the imide electrolyte. Depression of corrosion on adding LiBF{sub 4} was attributed to the formation of a stable passive layer on the surface of aluminum due to the reaction of aluminum with electrolyte and the decomposition of electrolyte solvent at high potentials. The resulting data may help clarify the corrosion mechanism of aluminum metal in imide electrolyte and give insight into enhancing the performance of lithium ion batteries.

  12. Electrodeposition of Al in 1-butyl-1-methylpyrrolidinium bis(trifluoromethylsulfonyl)amide and 1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)amide ionic liquids: in situ STM and EQCM studies.

    Science.gov (United States)

    Moustafa, E M; El Abedin, S Zein; Shkurankov, A; Zschippang, E; Saad, A Y; Bund, A; Endres, F

    2007-05-10

    In the present paper, the electrodeposition of Al on flame-annealed Au(111) and polycrystalline Au substrates in two air- and water-stable ionic liquids namely, 1-butyl-1-methyl-pyrrolidinium bis(trifluoromethylsulfonyl)amide, [Py(1,4)]Tf(2)N, and 1-ethyl-3-methyl-imidazolium bis(trifluoromethylsulfonyl)amide, [EMIm]Tf(2)N, has been investigated by in situ scanning tunneling microscopy (STM), electrochemical quartz crystal microbalance (EQCM), and cyclic voltammetry. The cyclic voltammogram of aluminum deposition and stripping on Au(111) in the upper phase of the biphasic mixture of AlCl(3)/[EMIm]Tf(2)N at room temperature (25 degrees C) shows that the electrodeposition process is completely reversible as also evidenced by in situ STM and EQCM studies. Additionally, a cathodic peak at an electrode potential of about 0.55 V vs Al/Al(III) is correlated to the aluminum UPD process that was evidenced by in situ STM. A surface alloying of Al with Au at the early stage of deposition occurs. It has been found that the Au(111) surface is subject to a restructuring/reconstruction in the upper phase of the biphasic mixture of AlCl(3)/[Py(1,4)]Tf(2)N at room temperature (25 degrees C) and that the deposition is not fully reversible. Furthermore, the underpotential deposition of Al in [Py(1,4)]Tf(2)N is not as clear as in [EMIm]Tf(2)N. The frequency shift in the EQCM experiments in [Py(1,4)]Tf(2)N shows a surprising result as an increase in frequency and a decrease in damping with bulk aluminum deposition at potentials more negative than -1.8 V was observed at room temperature. However, at 100 degrees C there is a frequency decrease with ongoing Al deposition. At -2.0 V vs Al/Al(III), a bulk aluminum deposition sets in.

  13. Towards vibrational spectroscopy on surface-attached colloids performed with a quartz crystal microbalance

    Directory of Open Access Journals (Sweden)

    Diethelm Johannsmann

    2016-12-01

    Full Text Available Colloidal spheres attached to a quartz crystal microbalance (QCM produce the so-called “coupled resonances”. They are resonators of their own, characterized by a particle resonance frequency, a resonance bandwidth, and a modal mass. When the frequency of the main resonator comes close to the frequency of the coupled resonance, the bandwidth goes through a maximum. A coupled resonance can be viewed as an absorption line in acoustic shear-wave spectroscopy. The known concepts from spectroscopy apply. This includes the mode assignment problem, selection rules, and the oscillator strength. In this work, the mode assignment problem was addressed with Finite Element calculations. These reveal that a rigid sphere in contact with a QCM displays two modes of vibration, termed “slipping” and “rocking”. In the slipping mode, the sphere rotates about its center; it exerts a tangential force onto the resonator surface at the point of contact. In the rocking mode, the sphere rotates about the point of contact; it exerts a torque onto the substrate. In liquids, both axes of rotation are slightly displaced from their ideal positions. Characteristic for spectroscopy, the two modes do not couple to the mechanical excitation equally well. The degree of coupling is quantified by an oscillator strength. Because the rocking mode mostly exerts a torque (rather than a tangential force, its coupling to the resonator's tangential motion is weak; the oscillator strength consequently is small. Recent experiments on surface-adsorbed colloidal spheres can be explained by the mode of vibration being of the rocking type.

  14. Quartz crystal microbalance and spectroscopy measurements for acid doping in polyaniline films

    Directory of Open Access Journals (Sweden)

    Mohamad M Ayad and Eman A Zaki

    2008-01-01

    Full Text Available We investigated the doping of thin polyaniline (PANI films, prepared by the chemical oxidation of aniline, with different acids. The initial step in the investigation is the preparation of PANI films from aqueous hydrochloric acid solution. This is followed by dedoping with ammonia to obtain a PANI base, which is subsequently doped with strong acids (e.g. hydrochloric, sulfuric, phosphoric and trichloroacetic acids and with a weak acid (acetic acid. The dopant weight fraction (w, which is connected with the gain of mass during the doping of PANI, was determined in situ using a quartz crystal microbalance (QCM. The behavior of PANI upon doping with different anions derived from strong acids indicates that both proton and the anion uptake into the polymer chains occur sharply, rapidly, completely, and reversibly. However the uptake in the case in acetic acid is characterized by slow diffusion. The doping was studied at different concentrations of acetic acid. A second cycle of dedoping–redoping was also performed. The kinetics of the doping reaction is dominated by Fickian diffusion kinetics. The diffusion coefficients (D of the dopant ions into the PANI chains were determined using the QCM and by UV–Vis absorption spectroscopy in the range of (0.076–1.64× 10−15 cm2 s−1. It was found that D in the second cycle of doping is larger than that evaluated from the first cycle of doping for high concentrations of acetic acid. D for the diffusion and for the dopant ion expulsion from the PANI chains was also determined during the redoping process. It was found that D for acetic acid ions in the doping process is larger than that calculated for the dedoping process.

  15. Measuring Enthalpy of Sublimation of Volatiles by Means of Piezoelectric Crystal Microbalances

    Science.gov (United States)

    Dirri, Fabrizio; Palomba, Ernesto; Longobardo, Andrea; Zampetti, Emiliano

    2016-09-01

    Piezoelectric Crystal Microbalances (PCM's) are widely used to study the chemical processes involving volatile compounds in any environment, such as condensation process. Since PCM's are miniaturized sensor, they are very suitable for planetary in situ missions, where can be used to detect and to measure the mass amount of astrobiologically significant compounds, such as water and organics. This work focuses on the realization and testing of a new experimental setup, able to characterize volatiles which can be found in a planetary environment. In particular the enthalpy of sublimation of some dicarboxylic acids has been measured. The importance of dicarboxylic acids in planetology and astrobiology is due to the fact that they have been detected in carbonaceous chondritic material (e.g. Murchinson), among the most pristine material present in our Solar System. In this work, a sample of acid was heated in an effusion cell up to its sublimation. For a set of temperatures (from 30 °C to 75 °C), the deposition rate on the PCM surface has been measured. From these measurements, it has been possible to infer the enthalpy of sublimation of Adipic acid, i.e. ΔH = 141.6 ± 0.8 kJ/mol and Succinic acid, i.e. ΔH = 113.3 ± 1.3 kJ/mol. This technique has so demonstrated to be a good choice to recognise a single compound or a mixture (with an analysis upstream) even if some improvements concerning the thermal stabilization of the system will be implemented in order to enhance the results' accuracy. The experiment has been performed in support of the VISTA (Volatile In Situ Thermogravimetry Analyzer) project, which is included in the scientific payload of the ESA MarcoPolo-R mission study.

  16. Quartz crystal microbalance study of the kinetics of surface initiated polymerization

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    Surface initiated polymerization (SIP) is a valuable tool in synthesizing functional polymer brushes,yet the kinetic understanding of SIP lags behind the development of its application. We apply quartz crystal microbalance (QCM) to address two issues that are not fully addressed yet play a central role in the rational design of functional polymer brushes,namely quantitative determination of the kinetics and the initiator efficiency (IE) of SIP. SIP are monitored online using QCM. Two quantitative frequencythickness (f-T) relations make the direct determination and comparison of the rate of polymerization possible even for different monomers. Based on the bi-termination model,the kinetics of SIP is simply described by two variables,which are related to two polymerization constants,namely a = 1/(kp,s,app-[M][R·]0) and b = kt,s,app/(kp,s,app[M]). Factors that could alter the kinetics of SIP are studied,including (i) the molecular weight of monomers,(ii) the solvent used,(iii) the initial density of the initiator,(iv) the concentration of monomer,[M],and (v) the catalyst system (ratio among the ingredients,metal,ligands,and additives). The dynamic nature of IE is also described by these two variables,IE = a/(a + bt). Instead of the molecular weight and the polydispersity,we suggest that film thickness,the two kinetic parameters (a and b),and the initial density of the initiator and IE be the parameters that characterize ultrathin polymer brushes. Besides the kinetics study of SIP,the reported method has many other applications,for example,in the fast screening of catalyst system for SIP and other polymerization systems.

  17. Weak antibody-cyclodextrin interactions determined by quartz crystal microbalance and dynamic/static light scattering.

    Science.gov (United States)

    Härtl, Elisabeth; Dixit, Nitin; Besheer, Ahmed; Kalonia, Devendra; Winter, Gerhard

    2013-11-01

    In a quest to elucidate the mechanism by which hydroxypropyl β-cyclodextrin (HPβCD) stabilizes antibodies against shaking stress, two heavily debated hypotheses exist, namely that stabilization is due to HPβCD's surface activity, or due to specific interactions with proteins. In a previous study by Serno et al. (Pharm. Res. 30 (2013) 117), we could refute the first hypothesis by proving that, although HPβCD is slightly surface active, it does not displace the antibody at the air-water interface, and accordingly, its surface activity is not the underlying stabilizing mechanism. In the present study, we investigated the possibility of interactions between HPβCD and monoclonal antibodies as the potential stabilization mechanism using quartz crystal microbalance (QCM) and static as well as dynamic light scattering. In the presence of HPβCD, the adsorption of IgG antibodies in the native state (IgG A) and the unfolded state (IgG A and IgG B) on gold-coated quartz crystals was studied by QCM. Results show that HPβCD causes a reduction in protein adsorption in both the folded and the unfolded states, probably due to an interaction between the protein and the cyclodextrin, leading to a reduced hydrophobicity of the protein and consequently a lower extent of adsorption. These results were supported by investigation of the interaction between the native protein and HPβCD using static and dynamic light scattering experiments, which provide the protein-protein interaction parameters, B22 and kD, respectively. Both B22 and kD showed an increase in magnitude with increasing HPβCD-concentrations, indicating a rise in net repulsive forces between the protein molecules. This is further evidence for the presence of interactions between HPβCD and the studied antibodies, since an association of HPβCD on the protein surface leads to a change in the intermolecular forces between the protein molecules. In conclusion, this study provides evidence that the previously observed

  18. Detection of Glypican-3 Proteins for Hepatocellular Carcinoma Marker Using Wireless-Electrodeless Quartz-Crystal Microbalance

    Science.gov (United States)

    Ogi, Hirotsugu; Omori, Toshinobu; Hatanaka, Kenichi; Hirao, Masahiko; Nishiyama, Masayoshi

    2008-05-01

    Pure shear-wave resonances were excited and detected in 18- and 30-µm-thick electrodeless AT-cut quartz plates in liquids using line antennas contactlessly, achieving high-frequency quartz-crystal microbalances (QCMs). Their fundamental resonance frequencies (85 and 54 MHz) were monitored to study interactions in real time between human glypican-3 and an anti-glypican-3 antibody: glypican-3 is a prospective protein marker for hepatocellular carcinoma. Their affinity was determined by the Langmuir kinetics. This study demonstrates the high ability of the wireless-electrodeless QCM for detection of the protein markers and development of drugs for disorders.

  19. Improved electronic interfaces for AT-cut quartz crystal microbalance sensors under variable damping and parallel capacitance conditions.

    Science.gov (United States)

    Arnau, A; García, J V; Jimenez, Y; Ferrari, V; Ferrari, M

    2008-07-01

    A new configuration of automatic capacitance compensation (ACC) technique based on an oscillatorlike working interface, which permits the tracking of the series resonant frequency and the monitoring of the motional resistance and the parallel capacitance of a thickness-shear mode quartz crystal microbalance sensor, is introduced. The new configuration permits an easier calibration of the system which, in principle, improves the accuracy. Experimental results are reported with 9 and 10 MHz crystals in liquids with different parallel capacitances which demonstrate the effectiveness of the capacitance compensation. Some frequency deviations from the exact series resonant frequency, measured by an impedance analyzer, are explained by the specific nonideal behavior of the circuit components. A tentative approach is proposed to solve this problem that is also common to previous ACC systems.

  20. Fully automatic spray-LBL machine with monitoring the real time growth of multilayer films using Quartz Crystal Microbalance

    Directory of Open Access Journals (Sweden)

    Shiratori S.

    2013-08-01

    Full Text Available A fully automatic spray-LBL machine with monitoring the real time growth of multilayer films using Quartz Crystal Microbalance (QCM techniques was newly developed. We established fully automatic spray layer-by-layer method by precisely controlling air pressure, solution flow, and spray pattern. The movement pattern towards the substrate during solution spraying allowed fabrication of a nano-scale, flat, thin film over a wide area. Optimization of spray conditions permitted fabrication of the flat film with high and low refractive indexes, and they were piled up alternatively to constitute a one-dimensional photonic crystal with near-infrared reflection characteristics. The heat shield effect of the near-infrared reflective film was also confirmed under natural sunlight. It was demonstrated that the fabrication using the automatic spray-LBL machine and real-time QCM monitoring allows the fabrication of optical quality thin films with precise thickness.

  1. Mass flux response comparisons of a 200-MHz surface acoustic wave (SAW) resonator microbalance to a 15-MHz thermoelectric quartz crystal microbalance (TQCM) in a high-vacuum environment

    Science.gov (United States)

    Wallace, Donald A.; Bowers, William D.

    1994-10-01

    Using a 200 MHz Surface Acoustic Wave (SAW) resonator device as a high-vacuum molecular deposition microbalance, similar to a bulk quartz crystal microbalance (QCM), and an often-used 15 MHz thermoelectric QCM (TQCM), a comparison of various parameters was made during a high-vacuum outgassing experiment. The source of molecular outgassing was a bright aluminum foil which was cooled to liquid nitrogen temperature and alternately, to ambient temperature. The two sensors, the SAW QCM and the TQCM were placed next to each other and viewed only the aluminum foil. In this high-vacuum environment, a comparison between various parameters, i.e., mass sensitivity, long term drift rate, stability, thermal effects and dynamic range of the SAW and the TQCM, was obtained.

  2. Soybean oil and methyl oleate adsorption onto a steel surface investigated using a quartz crystal microbalance with dissipation monitoring and atomic force microscopy**1

    Science.gov (United States)

    The United States’ 2010 annual production of soybean oil exceeded 8 million metric tons, making a significant vegetable oil surplus available for new uses, particularly as a lubricant. Investigation of soybean oil and methyl oleate adsorption onto steel using a quartz crystal microbalance with diss...

  3. Lipid phase behavior studied with a quartz crystal microbalance: A technique for biophysical studies with applications in screening

    Science.gov (United States)

    Peschel, Astrid; Langhoff, Arne; Uhl, Eva; Dathathreyan, Aruna; Haindl, Susanne; Johannsmann, Diethelm; Reviakine, Ilya

    2016-11-01

    Quartz crystal microbalance (QCM) is emerging as a versatile tool for studying lipid phase behavior. The technique is attractive for fundamental biophysical studies as well applications because of its simplicity, flexibility, and ability to work with very small amounts of material crucial for biomedical studies. Further progress hinges on the understanding of the mechanism, by which a surface-acoustic technique such as QCM, senses lipid phase changes. Here, we use a custom-built instrument with improved sensitivity to investigate phase behavior in solid-supported lipid systems of different geometries (adsorbed liposomes and bilayers). We show that we can detect a model anesthetic (ethanol) through its effect on the lipid phase behavior. Further, through the analysis of the overtone dependence of the phase transition parameters, we show that hydrodynamic effects are important in the case of adsorbed liposomes, and viscoelasticity is significant in supported bilayers, while layer thickness changes make up the strongest contribution in both systems.

  4. Detecting cells on the surface of a silver electrode quartz crystal microbalance using plasma treatment and graft polymerization.

    Science.gov (United States)

    Chou, Hung-Che; Yan, Tsong-Rong; Chen, Ko-Shao

    2009-10-15

    This paper utilizes a silver electrode quartz crystal microbalance (QCM) mass sensor to detect the physiology of cells. This study also investigates the plasma surface modification of silver electrode QCMs through deposition of hexamethyldisilazane (HMDSZ) films as a protection film. To improve the cell growth, this paper also performs post-treatments by surface-grafting acrylic acid (AAc), acrylamide (AAm), and oxygen plasma treatment onto the QCM electrodes. Experimental results indicate that plasma deposition is a useful technique to protect the surface of silver electrodes. This technique extends the unpeeling time of silver electrodes from 1 to 7 days. The hydrophilic silver electrode QCM surface modified by AAm exhibited a better storage time effect than other post-treatments.

  5. Development of a mass sensitive quartz crystal microbalance (QCM)-based DNA biosensor using a 50 MHz electronic oscillator circuit.

    Science.gov (United States)

    García-Martinez, Gonzalo; Bustabad, Enrique Alonso; Perrot, Hubert; Gabrielli, Claude; Bucur, Bogdan; Lazerges, Mathieu; Rose, Daniel; Rodriguez-Pardo, Loreto; Fariña, Jose; Compère, Chantal; Vives, Antonio Arnau

    2011-01-01

    This work deals with the design of a high sensitivity DNA sequence detector using a 50 MHz quartz crystal microbalance (QCM) electronic oscillator circuit. The oscillator circuitry is based on Miller topology, which is able to work in damping media. Calibration and experimental study of frequency noise are carried out, finding that the designed sensor has a resolution of 7.1 ng/cm(2) in dynamic conditions (with circulation of liquid). Then the oscillator is proved as DNA biosensor. Results show that the system is able to detect the presence of complementary target DNAs in a solution with high selectivity and sensitivity. DNA target concentrations higher of 50 ng/mL can be detected.

  6. Development of a Mass Sensitive Quartz Crystal Microbalance (QCM-Based DNA Biosensor Using a 50 MHz Electronic Oscillator Circuit

    Directory of Open Access Journals (Sweden)

    Claude Gabrielli

    2011-08-01

    Full Text Available This work deals with the design of a high sensitivity DNA sequence detector using a 50 MHz quartz crystal microbalance (QCM electronic oscillator circuit. The oscillator circuitry is based on Miller topology, which is able to work in damping media. Calibration and experimental study of frequency noise are carried out, finding that the designed sensor has a resolution of 7.1 ng/cm2 in dynamic conditions (with circulation of liquid. Then the oscillator is proved as DNA biosensor. Results show that the system is able to detect the presence of complementary target DNAs in a solution with high selectivity and sensitivity. DNA target concentrations higher of 50 ng/mL can be detected.

  7. Determination of isoelectric points and the role of pH for common quartz crystal microbalance sensors.

    Science.gov (United States)

    Cuddy, Michael F; Poda, Aimee R; Brantley, Lauren N

    2013-05-01

    Isoelectric points (IEPs) were determined by the method of contact angle titration for five common quartz crystal microbalance (QCM) sensors. The isoelectric points range from mildly basic in the case of Al2O3 sensors (IEP = 8.7) to moderately acidic for Au (5.2) and SiO2 (3.9), to acidic for Ag (3.2) and Ti (2.9). In general, the values reported here are indicative of inherent surface oxides. A demonstration of the effect of the surface isoelectric point on the packing efficiency of thin mucin films is provided for gold and silica QCM sensors. It is determined that mucin layers on both substrates achieve a maximum and equal layer density of ∼3500 kg/m(3) at the corresponding IEP of either QCM sensor. This implies that mucin film packing is dependent upon short-range electrostatic interactions at the sensor surface.

  8. Determination of thermodynamic parameters for enolization reaction of malonic and metylmalonic acids by using quartz crystal microbalance

    Directory of Open Access Journals (Sweden)

    Minoru Yoshimoto

    2016-06-01

    Full Text Available We investigated the process of a bromination reaction of malonic acid and methylmalonic acid in the Belousov-Zhabotinsky reaction by using a quartz crystal microbalance (QCM. The process involves an enolization reaction as a rate-determining step. We found that, in the step, the variation of Br2 concentration induced an exactly quantitative shift of a resonant frequency of the QCM, based on the change of the surface mass on the QCM and the solution viscosity and density. This new finding enabled us to estimate the reaction rate constants and the thermodynamic parameters of the enolization reaction due to a QCM measurement. The values measured by the QCM were in good agreement with those measured by a UV-spectrophotometer. As a result, we succeeded to develop a new measurement method of a nonlinear chemical reaction.

  9. Sugar nanowires based on cyclodextrin on quartz crystal microbalance for gas sensing with ultra-high sensitivity

    Science.gov (United States)

    Asano, Atsushi; Maeyoshi, Yuta; Watanabe, Shogo; Saeki, Akinori; Sugimoto, Masaki; Yoshikawa, Masahito; Nanto, Hidehito; Tsukuda, Satoshi; Tanaka, Shun-Ichiro; Seki, Shu

    2013-03-01

    Cyclodextrins (CDs), hosting selectively a wide range of guest molecules in their hydrophobic cavity, were directly fabricated into 1-dimensional nanostructures with extremely wide surface area by single particle nanofabrication technique in the present paper. The copolymers of acrylamide and mono(6-allyl)-β-CD were synthesized, and the crosslinking reaction of the polymer alloys with poly(4-bromostyrene) (PBrS) in SPNT gave nanowires on the quarts substrate with high number density of 5×109 cm-2. Quartz crystal microbalance (QCM) measurement suggested 320 fold high sensitivity for formic acid vapor adsorption in the nanowire fabricated surfaces compared with that in the thin solid film of PBrS, due to the incorporation of CD units and extremely wide surface area of the nanowires.

  10. Equilibrium Water Contents of Cellulose Films Determined via Solvent Exchange and Quartz Crystal Microbalance with Dissipation Monitoring

    Energy Technology Data Exchange (ETDEWEB)

    Kittle, Joshua D; Du, Xiaosong; Jiang, Feng; Qian, Chen; Heinze, Thomas; Roman, Maren; Esker, Alan R

    2011-08-08

    Model cellulose surfaces have attracted increasing attention for studying interactions with cell wall matrix polymers and as substrates for enzymatic degradation studies. Quartz crystal microbalance with dissipation monitoring (QCM-D) solvent exchange studies showed that the water content of regenerated cellulose (RC) films was proportional to the film thickness (d) and was consistent with about five water molecules per anhydroglucose unit. Sulfated nanocrystalline cellulose (SNC) and desulfated nanocrystalline cellulose (DNC) films had comparable water contents and contained about five times more water than RC films. A cellulase mixture served as a probe for studies of substrate accessibility and degradation. Cellulase adsorption onto RC films was independent of d, whereas degradation times increased with d. However, adsorption onto SNC and DNC films increased with d, whereas cellulase degradation times for DNC films were independent of studied d. Enhanced access to guest molecules for SNC and DNC films revealed they are more porous than RC films.

  11. Equilibrium water contents of cellulose films determined via solvent exchange and quartz crystal microbalance with dissipation monitoring.

    Science.gov (United States)

    Kittle, Joshua D; Du, Xiaosong; Jiang, Feng; Qian, Chen; Heinze, Thomas; Roman, Maren; Esker, Alan R

    2011-08-08

    Model cellulose surfaces have attracted increasing attention for studying interactions with cell wall matrix polymers and as substrates for enzymatic degradation studies. Quartz crystal microbalance with dissipation monitoring (QCM-D) solvent exchange studies showed that the water content of regenerated cellulose (RC) films was proportional to the film thickness (d) and was consistent with about five water molecules per anhydroglucose unit. Sulfated nanocrystalline cellulose (SNC) and desulfated nanocrystalline cellulose (DNC) films had comparable water contents and contained about five times more water than RC films. A cellulase mixture served as a probe for studies of substrate accessibility and degradation. Cellulase adsorption onto RC films was independent of d, whereas degradation times increased with d. However, adsorption onto SNC and DNC films increased with d, whereas cellulase degradation times for DNC films were independent of studied d. Enhanced access to guest molecules for SNC and DNC films revealed they are more porous than RC films.

  12. In-Line Measurement of Water Contents in Ethanol Using a Zeolite-Coated Quartz Crystal Microbalance

    Directory of Open Access Journals (Sweden)

    Byoung Chul Kim

    2015-10-01

    Full Text Available A quartz crystal microbalance (QCM was utilized to measure the water content in ethanol. For the improvement of measurement sensitivity, the QCM was modified by applying zeolite particles on the surface with poly(methyl methacrylate (PMMA binder. The measurement performance was examined with ethanol of 1% to 5% water content in circulation. The experimental results showed that the frequency drop of the QCM was related with the water content though there was some deviation. The sensitivity of the zeolite-coated QCM was sufficient to be implemented in water content determination, and a higher ratio of silicon to aluminum in the molecular structure of the zeolite gave better performance. The coated surface was inspected by microscopy to show the distribution of zeolite particles and PMMA spread.

  13. Effective antibodies immobilization and functionalized nanoparticles in a quartz-crystal microbalance-based immunosensor for the detection of parathion

    Science.gov (United States)

    Della Ventura, Bartolomeo; Iannaccone, Marco; Funari, Riccardo; Pica Ciamarra, Massimo; Altucci, Carlo; Capparelli, Rosanna; Roperto, Sante; Velotta, Raffaele

    2017-01-01

    Background Biosensor-based detection provides a rapid and low-cost alternative to conventional analytical methods for revealing the presence of the contaminants in water as well as solid matrices. Although important to be detected, small analytes (few hundreds of Daltons) are an issue in biosensing since the signal they induce in the transducer, and specifically in a Quartz-Crystal Microbalance, is undetectable. A pesticide like parathion (M = 292 Da) is a typical example of contaminant for which a signal amplification procedure is desirable. Methods/Findings The ballasting of the analyte by gold nanoparticles has been already applied to heavy target as proteins or bacteria to improve the limit of detection. In this paper, we extend the application of such a method to small analytes by showing that once the working surface of a Quartz-Crystal Microbalance (QCM) has been properly functionalized, a limit of detection lower than 1 ppb is reached for parathion. The effective surface functionalization is achieved by immobilizing antibodies upright oriented on the QCM gold surface by a simple photochemical technique (Photonic Immobilization Technique, PIT) based on the UV irradiation of the antibodies, whereas a simple protocol provided by the manufacturer is applied to functionalize the gold nanoparticles. Thus, in a non-competitive approach, the small analyte is made detectable by weighing it down through a “sandwich protocol” with a second antibody tethered to heavy gold nanoparticles. The immunosensor has been proved to be effective against the parathion while showing no cross reaction when a mixture of compounds very similar to parathion is analyzed. Conclusion/Significance The immunosensor described in this paper can be easily applied to any small molecule for which polyclonal antibodies are available since both the functionalization procedure of the QCM probe surface and gold nanoparticle can be applied to any IgG, thereby making our device of general

  14. The use of quartz crystal microbalance with dissipation (QCM-D for studying nanoparticle-induced platelet aggregation

    Directory of Open Access Journals (Sweden)

    Santos-Martinez MJ

    2012-01-01

    Full Text Available Maria Jose Santos-Martinez1–3, Iwona Inkielewicz-Stepniak1,4, Carlos Medina1, Kamil Rahme5,6, Deirdre M D'Arcy1, Daniel Fox3, Justin D Holmes3,5, Hongzhou Zhang3, Marek Witold Radomski3,51School of Pharmacy and Pharmaceutical Sciences, 2School of Medicine, 3Center for Research on Adaptive Nanostructures and Nanodevices, Trinity College Dublin, Dublin, Ireland; 4Department of Medicinal Chemistry, Medical University of Gdansk, Gdansk, Poland; 5Materials and Supercritical Fluids Group, Department of Chemistry and the Tyndall National Institute, University College Cork, Cork, Ireland; 6Department of Sciences, Faculty of Natural and Applied Science, Notre Dame University, Zouk Mosbeh, LebanonAbstract: Interactions between blood platelets and nanoparticles have both pharmacological and toxicological significance and may lead to platelet activation and aggregation. Platelet aggregation is usually studied using light aggregometer that neither mimics the conditions found in human microvasculature nor detects microaggregates. A new method for the measurement of platelet microaggregation under flow conditions using a commercially available quartz crystal microbalance with dissipation (QCM-D has recently been developed. The aim of the current study was to investigate if QCM-D could be used for the measurement of nanoparticle-platelet interactions. Silica, polystyrene, and gold nanoparticles were tested. The interactions were also studied using light aggregometry and flow cytometry, which measured surface abundance of platelet receptors. Platelet activation was imaged using phase contrast and scanning helium ion microscopy. QCM-D was able to measure nanoparticle-induced platelet microaggregation for all nanoparticles tested at concentrations that were undetectable by light aggregometry and flow cytometry. Microaggregates were measured by changes in frequency and dissipation, and the presence of platelets on the sensor surface was confirmed and imaged by

  15. Pharmacological characterization of nanoparticle-induced platelet microaggregation using quartz crystal microbalance with dissipation: comparison with light aggregometry

    Science.gov (United States)

    Santos-Martinez, Maria J; Tomaszewski, Krzysztof A; Medina, Carlos; Bazou, Despina; Gilmer, John F; Radomski, Marek W

    2015-01-01

    Background Engineered nanoparticles (NPs) can induce platelet activation and aggregation, but the mechanisms underlying these interactions are not well understood. This could be due in part to use of devices that study platelet function under quasi-static conditions with low sensitivity to measure platelet microaggregation. Therefore, in this study we investigated the pharmacological pathways and regulators of NP-induced platelet microaggregation under flow conditions at nanoscale using quartz crystal microbalance with dissipation (QCM-D) and compared the data thus obtained with those generated by light aggregometry. Methods Blood was collected from healthy volunteers, and platelet-rich plasma was obtained. Thrombin receptor-activating peptide, a potent stimulator of platelet function, and pharmacological inhibitors were used to modulate platelet microaggregation in the presence/absence of silica (10 nm and 50 nm) and polystyrene (23 nm) NPs. Light aggregometry was used to study platelet aggregation in macroscale. Optical, immunofluorescence, and scanning electron microscopy were also used to visualize platelet aggregates. Results Platelet microaggregation was enhanced by thrombin receptor-activating peptide, whereas prostacyclin, nitric oxide donors, acetylsalicylic acid, and phenanthroline, but not adenosine diphosphate (ADP) blockers, were able to inhibit platelet microaggregation. NPs caused platelet microaggregation, an effect not detectable by light aggregometry. NP-induced microaggregation was attenuated by platelet inhibitors. Conclusion NP-induced platelet microaggregation appears to involve classical proaggregatory pathways (thromboxane A2-mediated and matrix metalloproteinase-2-mediated) and can be regulated by endogenous (prostacyclin) and pharmacological (acetylsalicylic acid, phenanthroline, and nitric oxide donors) inhibitors of platelet function. Quartz crystal microbalance with dissipation, but not light aggregometry, is an appropriate method for

  16. Preparation of new molecularly imprinted quartz crystal microbalance hybride sensor system for 8-hydroxy-2'-deoxyguanosine determination.

    Science.gov (United States)

    Say, Ridvan; Gültekin, Aytaç; Ozcan, Ayça Atilir; Denizli, Adil; Ersöz, Arzu

    2009-04-27

    The routine measurement of 8-hydroxy-2'-deoxyguanosine (8-OHdG) in biological samples is a difficult analytical problem due to the low levels of the analyte and complex matrix. A new 8-OHdG imprinted quartz crystal microbalance (QCM) sensor has been developed for selective determination of 8-OHdG in serum samples. To fulfil the desired results, we have used methacryloyl aminoantipyrine-Fe(III) [MAAP-Fe(III)] and methacryloyl histidine-Pt(II) [MAH-Pt(II)] as metal-chelating monomers via double metal coordination-chelation interactions for the preparation of additional selective molecular imprinted polymers (MIP). The study includes the measurement of binding interaction of 8-OHdG imprinted quartz crystal microbalance (QCM) sensor, selectivity experiments and analytical performance of QCM chip. The obtained results have showed that the application of double metal-chelate monomer systems has been more effective than single metal-chelate monomer systems. In this study, the detection limit and the linear working range were found to be 0.0075 and 0.0100-3.5 microM, respectively. The affinity constant (K(affinity)) was found to be 1.54x10(5) M(-1) for 8-OHdG using MAH-Pt-8-OHdG-MAAP-Fe based thin film. Also, selectivity of prepared QCM sensor was found as being very high in the presence of competitive species. At the last step of this procedure, 8-OHdG level in blood serum which belongs to a intestinal cancer patient was determined by the prepared QCM sensor.

  17. Lubricity of gold nanocrystals on graphene measured using quartz crystal microbalance

    Science.gov (United States)

    Lodge, M. S.; Tang, C.; Blue, B. T.; Hubbard, W. A.; Martini, A.; Dawson, B. D.; Ishigami, M.

    2016-08-01

    In order to test recently predicted ballistic nanofriction (ultra-low drag and enhanced lubricity) of gold nanocrystals on graphite at high surface speeds, we use the quartz microbalance technique to measure the impact of deposition of gold nanocrystals on graphene. We analyze our measurements of changes in frequency and dissipation induced by nanocrystals using a framework developed for friction of adatoms on various surfaces. We find the lubricity of gold nanocrystals on graphene to be even higher than that predicted for the ballistic nanofriction, confirming the enhanced lubricity predicted at high surface speeds. Our complementary molecular dynamics simulations indicate that such high lubricity is due to the interaction strength between gold nanocrystals and graphene being lower than previously assumed for gold nanocrystals and graphite.

  18. Small organic molecules detection based on aptamer-modified gold nanoparticles-enhanced quartz crystal microbalance with dissipation biosensor.

    Science.gov (United States)

    Zheng, Bin; Cheng, Sheng; Liu, Wei; Lam, Michael Hon-Wah; Liang, Haojun

    2013-07-15

    Small molecules are difficult to detect by the conventional quartz crystal microbalance with dissipation (QCM-D) technique directly because the changes in frequency resulting from the binding processes of small biomolecules are often small. In the current study, an aptamer-based gold nanoparticles (AuNPs)-enhanced sensing strategy for detection of small molecules was developed. The QCM crystal was first modified with a layer of thiolated linker DNA, which can be partly base-paired with the detection part containing the adenosine aptamer sequence. In the presence of adenosine, the aptamer bound with adenosine and folded to the complex structure, which precluded the reporter part carrying AuNPs to combine with the random coiled detection part. Therefore, the lower the concentration of adenosine, the more AuNPs combined to the crystal. The resulting aptasensor showed a linear response to the increase of the adenosine concentration in the range of 0-2 μM with a linear correlation of r=0.99148 and a detection limit of 65 nM. Moreover, the aptasensor exhibited several excellent characteristics such as high sensitivity, selectivity, good stability, and reproducibility.

  19. Pathogen detection in complex samples by quartz crystal microbalance sensor coupled to aptamer functionalized core-shell type magnetic separation.

    Science.gov (United States)

    Ozalp, Veli C; Bayramoglu, Gulay; Erdem, Zehra; Arica, M Yakup

    2015-01-01

    A quartz crystal microbalance sensor (QCM) was developed for sensitive and specific detection of Salmonella enterica serovar typhimurium cells in food samples by integrating a magnetic bead purification system. Although many sensor formats based on bioaffinity agents have been developed for sensitive and specific detection of bacterial cells, the development of robust sensor applications for food samples remained a challenging issue. A viable strategy would be to integrate QCM to a pre-purification system. Here, we report a novel and sensitive high throughput strategy which combines an aptamer-based magnetic separation system for rapid enrichment of target pathogens and a QCM analysis for specific and real-time monitoring. As a proof-of-concept study, the integration of Salmonella binding aptamer immobilized magnetic beads to the aptamer-based QCM system was reported in order to develop a method for selective detection of Salmonella. Since our magnetic separation system can efficiently capture cells in a relatively short processing time (less than 10 min), feeding captured bacteria to a QCM flow cell system showed specific detection of Salmonella cells at 100 CFU mL(-1) from model food sample (i.e., milk). Subsequent treatment of the QCM crystal surface with NaOH solution regenerated the aptamer-sensor allowing each crystal to be used several times.

  20. Adsorption Device Based on a Langatate Crystal Microbalance for High Temperature High Pressure Gas Adsorption in Zeolite H-ZSM-5.

    Science.gov (United States)

    Ding, Wenjin; Baracchini, Giulia; Klumpp, Michael; Schwieger, Wilhelm; Dittmeyer, Roland

    2016-08-25

    We present a high-temperature and high-pressure gas adsorption measurement device based on a high-frequency oscillating microbalance (5 MHz langatate crystal microbalance, LCM) and its use for gas adsorption measurements in zeolite H-ZSM-5. Prior to the adsorption measurements, zeolite H-ZSM-5 crystals were synthesized on the gold electrode in the center of the LCM, without covering the connection points of the gold electrodes to the oscillator, by the steam-assisted crystallization (SAC) method, so that the zeolite crystals remain attached to the oscillating microbalance while keeping good electroconductivity of the LCM during the adsorption measurements. Compared to a conventional quartz crystal microbalance (QCM) which is limited to temperatures below 80 °C, the LCM can realize the adsorption measurements in principle at temperatures as high as 200-300 °C (i.e., at or close to the reaction temperature of the target application of one-stage DME synthesis from the synthesis gas), owing to the absence of crystalline-phase transitions up to its melting point (1,470 °C). The system was applied to investigate the adsorption of CO2, H2O, methanol and dimethyl ether (DME), each in the gas phase, on zeolite H-ZSM-5 in the temperature and pressure range of 50-150 °C and 0-18 bar, respectively. The results showed that the adsorption isotherms of these gases in H-ZSM-5 can be well fitted by Langmuir-type adsorption isotherms. Furthermore, the determined adsorption parameters, i.e., adsorption capacities, adsorption enthalpies, and adsorption entropies, compare well to literature data. In this work, the results for CO2 are shown as an example.

  1. Superior environment resistance of quartz crystal microbalance with anatase TiO{sub 2}/ZnO nanorod composite films

    Energy Technology Data Exchange (ETDEWEB)

    Qiang, Wei, E-mail: weiqiang.tju@163.com [Tianjin Key Laboratory of Composite and Functional Materials, School of Materials Science and Engineering, Tianjin University, 92 Weijin Road, Tianjin (China); Wei, Li; Shaodan, Wang [Tianjin Key Laboratory of Composite and Functional Materials, School of Materials Science and Engineering, Tianjin University, 92 Weijin Road, Tianjin (China); Yu, Bai [Beijing Institute of Spacecrafts Environment Engineering, Beijing 100094 (China)

    2015-08-30

    Graphical abstract: ZnO nanorod array being prepared by an in situ method on the QCM coated with Au film via hydrothermal process and surface modification with coated TiO{sub 2} by sol–gel methods to form a superhydrophobic TiO{sub 2}/ZnO composite film the anatase TiO{sub 2}/ZnO nanorod composite film with a sharp, pencil-like structure exhibiting excellent superhydrophobicity (water contact angle of 155°), non-sticking water properties, and an autonomous cleaning property under UV irradiation. The anatase TiO{sub 2}/ZnO nanorod composite film facilitates the precise measurement and extended lifetime of the QCM for the detection of organic gas molecules. - Highlights: • This work combines, for the first time, the advantage of the TiO{sub 2}/ZnO composite film on photocatalysis and reversible super-hydrophobic and super-hydrophilic transition, and puts forward a solution to satisfy weatherability of quartz crystal microbalance in long-term application. • The anatase TiO{sub 2}/ZnO nanorod composite film with pencil structure exhibit excellent super-hydrophobicity (water contact angle can reach 155°), no-sticking water properties and self-cleaning property under UV irradiation. • The photocatalysis and reversible super-hydrophobic and super-hydrophilic transition of the TiO{sub 2}/ZnO nanorod composite film is stable in long-term application. - Abstract: The precise measurement of quartz crystal microbalance (QCM) in the detection and weighing of organic gas molecules is achieved due to excellent superhydrophobicity of a deposited film composite. Photocatalysis is utilized as a method for the self-cleaning of organic molecules on the QCM for extended long-term stability in the precision of the instrument. In this paper, ZnO nanorod array is prepared via in situ methods on the QCM coated with Au film via hydrothermal process. Subsequently, a TiO{sub 2}/ZnO composite film is synthesized by surface modification with TiO{sub 2} via sol–gel methods. Results

  2. A novel dendritic surfactant for enhanced microcystin-LR detection by double amplification in a quartz crystal microbalance biosensor.

    Science.gov (United States)

    Xia, Yuetong; Zhang, Jianping; Jiang, Long

    2011-08-01

    Enhanced sensitivity for the hepatotoxin microcystin-LR (MC-LR) was achieved in a quartz crystal microbalance (QCM) system via double amplification. For primary amplification, an innovative interface on the QCM was obtained as a matrix by the vesicle layer formed by our synthetic dendritic surfactant, bis (amidoethyl-carbamoylethyl) octadecylamine (C18N3). The vesicle matrix was then functionalised by an optimised concentration of monoclonal antibodies against MC-LR (anti-MC-LR) to detect the analyte. The results showed that a detection limit of 100 ng/mL was achieved by primary amplification. To achieve higher sensitivity, secondary amplification was implemented with anti-MC-LR gold nanoparticle (AuNPs) conjugates as probes, which lowered the detection limit for MC-LR to 1 ng/mL (the maximum concentration recommended by the World Health Organization [WHO] in drinking water for humans). The QCM immunosensor reported here has advantages such as high sensitivity, portability, simplicity, and cost-effectiveness for MC-LR detection. It would be uniquely superior compared with current MC-LR detection techniques for on-the-spot water detection. Furthermore, the methodology described here is also potentially significant in many fields for the routine monitoring of environmental and food safety.

  3. Adsorption Analysis of Lactoferrin to Titanium, Stainless Steel, Zirconia, and Polymethyl Methacrylate Using the Quartz Crystal Microbalance Method

    Directory of Open Access Journals (Sweden)

    Eiji Yoshida

    2016-01-01

    Full Text Available It is postulated that biofilm formation in the oral cavity causes some oral diseases. Lactoferrin is an antibacterial protein in saliva and an important defense factor against biofilm development. We analyzed the adsorbed amount of lactoferrin and the dissociation constant (Kd of lactoferrin to the surface of different dental materials using an equilibrium analysis technique in a 27 MHz quartz crystal microbalance (QCM measurement. Four different materials, titanium (Ti, stainless steel (SUS, zirconia (ZrO2 and polymethyl methacrylate (PMMA, were evaluated. These materials were coated onto QCM sensors and the surfaces characterized by atomic force microscopic observation, measurements of surface roughness, contact angles of water, and zeta potential. QCM measurements revealed that Ti and SUS showed a greater amount of lactoferrin adsorption than ZrO2 and PMMA. Surface roughness and zeta potential influenced the lactoferrin adsorption. On the contrary, the Kd value analysis indicated that the adsorbed lactoferrin bound less tightly to the Ti and SUS surfaces than to the ZrO2 and PMMA surfaces. The hydrophobic interaction between lactoferrin and ZrO2 and PMMA is presumed to participate in better binding of lactoferrin to ZrO2 and PMMA surfaces. It was revealed that lactoferrin adsorption behavior was influenced by the characteristics of the material surface.

  4. Biomolecular interactions and tools for their recognition: focus on the quartz crystal microbalance and its diverse surface chemistries and applications.

    Science.gov (United States)

    Cheng, Cathy I; Chang, Yi-Pin; Chu, Yen-Ho

    2012-03-07

    Interactions between molecules are ubiquitous and occur in our bodies, the food we eat, the air we breathe, and myriad additional contexts. Although numerous tools are available for the recognition of biomolecular interactions, such tools are often limited in their sensitivity, expensive, and difficult to modify for various uses. In contrast, the quartz crystal microbalance (QCM) has sub-nanogram detection capabilities, is label-free, is inexpensive to create, and can be readily modified with a number of diverse surface chemistries to detect and characterize diverse interactions. To maximize the versatility of the QCM, scientists need to know available methods by which QCM surfaces can be modified. Therefore, in addition to summarizing the various tools currently used for biomolecular recognition, explicating the fundamental principles of the QCM as a tool for biomolecular recognition, and comparing the QCM with other acoustic sensors, we systematically review the numerous types of surface chemistries-including hydrophobic bonds, ionic bonds, hydrogen bonds, self-assembled monolayers, plasma-polymerized films, photochemistry, and sensing ionic liquids-used to functionalize QCMs for various purposes. We also review the QCM's diverse applications, which include the detection of gaseous species, detection of carbohydrates, detection of nucleic acids, detection of non-enzymatic proteins, characterization of enzymatic activity, detection of antigens and antibodies, detection of cells, and detection of drugs. Finally, we discuss the ultimate goals of and potential barriers to the development of future QCMs.

  5. Colloidal Stability and Magnetic Field-Induced Ordering of Magnetorheological Fluids Studied with a Quartz Crystal Microbalance

    Directory of Open Access Journals (Sweden)

    Jaime Rodriguez-López

    2015-12-01

    Full Text Available This work proposes the use of quartz crystal microbalances (QCMs as a method to analyze and characterize magnetorheological (MR fluids. QCM devices are sensitive to changes in mass, surface interactions, and viscoelastic properties of the medium contacting its surface. These features make the QCM suitable to study MR fluids and their response to variable environmental conditions. MR fluids change their structure and viscoelastic properties under the action of an external magnetic field, this change being determined by the particle volume fraction, the magnetic field strength, and the presence of thixotropic agents among other factors. In this work, the measurement of the resonance parameters (resonance frequency and dissipation factor of a QCM are used to analyze the behavior of MR fluids in static conditions (that is, in the absence of external mechanical stresses. The influence of sedimentation under gravity and the application of magnetic fields on the shifts of resonance frequency and dissipation factor were measured and discussed in the frame of the coupled resonance produced by particles touching the QCM surface. Furthermore, the MR-fluid/QCM system has a great potential for the study of high-frequency contact mechanics because the translational and rotational stiffness of the link between the surface and the particles can be tuned by the magnetic field.

  6. Real-time monitoring of peptic and tryptic digestions of bovine {beta}-casein using quartz crystal microbalance

    Energy Technology Data Exchange (ETDEWEB)

    Huenerbein, Andreas [Institute of Pharmaceutics and Biopharmaceutics, Martin Luther University Halle-Wittenberg, Wolfgang-Langenbeck-Str. 4, 06120 Halle (Saale) (Germany)]. E-mail: andreas.huenerbein@pharmazie.uni-halle.de; Schmelzer, Christian E.H. [Institute of Pharmaceutics and Biopharmaceutics, Martin Luther University Halle-Wittenberg, Wolfgang-Langenbeck-Str. 4, 06120 Halle (Saale) (Germany); Neubert, Reinhard H.H. [Institute of Pharmaceutics and Biopharmaceutics, Martin Luther University Halle-Wittenberg, Wolfgang-Langenbeck-Str. 4, 06120 Halle (Saale) (Germany)

    2007-02-12

    In this study peptic and tryptic digestions of bovine {beta}-casein were investigated using quartz crystal microbalance (QCM). {beta}-Casein, which was used as a model protein, was immobilized on the surface of the QCM sensor where its degradation caused shifts in the resonant frequency. Atomic force microscopy was applied for the characterization of the protein layer. Different pH-values for peptic or tryptic digestions were chosen to visualize their effect on enzyme activity. Lower frequency shifts were observed at pH-values deviating from those at the maximum enzyme activity. In the case of the peptic digestion the frequency shift at pH 4 was more than 10 times smaller than those at pH 2. The frequency shifts for tryptic digestions at pH 5.4 and pH 6.4 were about two thirds compared to that obtained for the digestion at pH 7.4. The identification of peptides using MALDI-ToF mass spectrometry was used for verification of the proteolyses of the immobilized protein. Furthermore, it was shown that the QCM technique allows close observation of the effect of different pH-values on the immobilized casein layer. All in all, QCM facilitates the monitoring of the progress of enzymatic reactions in real-time.

  7. Peptide-membrane interactions of arginine-tryptophan peptides probed using quartz crystal microbalance with dissipation monitoring.

    Science.gov (United States)

    Rydberg, Hanna A; Kunze, Angelika; Carlsson, Nils; Altgärde, Noomi; Svedhem, Sofia; Nordén, Bengt

    2014-07-01

    Membrane-active peptides include peptides that can cross cellular membranes and deliver macromolecular cargo as well as peptides that inhibit bacterial growth. Some of these peptides can act as both transporters and antibacterial agents. It is desirable to combine the knowledge from these two different fields of membrane-active peptides into design of new peptides with tailored actions, as transporters of cargo or as antibacterial substances, targeting specific membranes. We have previously shown that the position of the amino acid tryptophan in the peptide sequence of three arginine-tryptophan peptides affects their uptake and intracellular localization in live mammalian cells, as well as their ability to inhibit bacterial growth. Here, we use quartz crystal microbalance with dissipation monitoring to assess the induced changes caused by binding of the three peptides to supported model membranes composed of POPC, POPC/POPG, POPC/POPG/cholesterol or POPC/lactosyl PE. Our results indicate that the tryptophan position in the peptide sequence affects the way these peptides interact with the different model membranes and that the presence of cholesterol in particular seems to affect the membrane interaction of the peptide with an even distribution of tryptophans in the peptide sequence. These results give mechanistic insight into the function of these peptides and may aid in the design of membrane-active peptides with specified cellular targets and actions.

  8. Determination of functionalized gold nanoparticles incorporated in hydrophilic and hydrophobic microenvironments by surface modification of quartz crystal microbalance

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Tsui-Hsun [Institute of Biomedical Engineering, College of Engineering, College of Medicine, National Taiwan University, Taipei, Taiwan, ROC (China); Institute of Medical Mechatronics, Chang Gung University, Tao-Yuan, Taiwan, ROC (China); Liao, Shu-Chuan [Center of Thin Film Technologies and Applications, Mingchi University of Technology, Taipei, Taiwan, ROC (China); Chen, Ying-Fang [Department of Dentistry, Yun-Lin Branch, National Taiwan University Hospital, Dou-Liu, Yun-Lin, Taiwan, ROC (China); Huang, Yi-You [Institute of Biomedical Engineering, College of Engineering, College of Medicine, National Taiwan University, Taipei, Taiwan, ROC (China); Wei, Yi-Syuan [Department of Materials Engineering, Tatung University, 40 Zhongshan North Road, 3rd Section, Taipei 104, Taiwan, ROC (China); Tu, Shu-Ju, E-mail: sjt@cgu.edu.tw [Department of Medical Imaging and Radiological Sciences, Chang Gung University, 259 Wen-Hwa, 1st Road, Kwei-Shan, Tao-Yuan 133, Taiwan, ROC (China); Chen, Ko-Shao, E-mail: kschen@ttu.edu.tw [Department of Materials Engineering, Tatung University, 40 Zhongshan North Road, 3rd Section, Taipei 104, Taiwan, ROC (China)

    2013-06-01

    In this study, plasma deposition methods were used to immobilize Au electrode of a quartz crystal microbalance (QCM) to create different microenvironments for mass measurement of various modified Au nanoparticles (AuNPs). AuNPs were modified by 11-mercaptoundecanoic acid (MUA) and 1-decanethiol (DCT) for potential applications to drug release, protective coatings, and immunosensors. We aimed to develop a highly sensitive and reliable method to quantify the mass of various modified AuNPs. The surface of AuNPs and Au electrode was coated with polymer films, as determined by Fourier transform infrared spectroscopy and atomic force microscopy. Measurements obtained for various AuNPs and the plasma-treated surface of the Au electrode were compared with those obtained for an untreated Au electrode. According to the resonant frequency shift of QCM, a linear relationship was observed that significantly differed for AuNPs, MUA-AuNPs, and DCT-AuNPs (R{sup 2} range, 0.94–0.965, 0.934–0.972, and 0.874–0.9514, respectively). Compared to inductively coupled plasma and micro-computerized tomography, the QCM method with plasma treatment has advantages of real-time monitoring, greater sensitivity, and lower cost. Our results demonstrate that surface modifications measured by a QCM system for various modified AuNPs were reliable.

  9. Functionalized biocompatible polyelectrolyte multilayers for drug delivery: In situ investigation of mechanical properties by dissipative quartz crystal microbalance

    Energy Technology Data Exchange (ETDEWEB)

    Habibi, Neda [Department of Informatics, Bioengineering, Robotics and Systems Engineering, University of Genova, Genova (Italy); Nanotechnology and Advanced Material Institute, Isfahan University of Technology, Isfahan (Iran, Islamic Republic of); Pastorino, Laura, E-mail: laura.pastorino@unige.it [Department of Informatics, Bioengineering, Robotics and Systems Engineering, University of Genova, Genova (Italy); Ruggiero, Carmelina [Department of Informatics, Bioengineering, Robotics and Systems Engineering, University of Genova, Genova (Italy)

    2014-02-01

    Nanostructured polymeric capsules have been applied in different fields, and specifically are regarded as promising for smart drug delivery applications. The physical–chemical and mechanical properties, and thus the permeability of the polyelectrolyte multilayer shell, play an important role in efficient delivery. Quartz crystal microbalance working in liquid has been used for the characterization of the buildup process and of the viscoelastic properties of biocompatible multilayers and of their functionalization by S-layer proteins. Optical and scanning electron microscopy have been used for the morphological characterization of nanostructured capsules obtained at physiological conditions by the assembly of the characterized multilayers onto spherical cores and by their subsequent removal. The proposed functionalized biocompatible capsules can be regarded as promising candidates for smart drug delivery applications. - Graphical abstract: SEM image of nanostructured polymeric capsules made by 4 bilayers of collagen/alginate at pH 7.4. - Highlights: • Build-up of biocompatible multilayers and functionalization by S-layer proteins • Characterization of multilayer growth and mechanical properties by QCM • Fabrication of S-layer functionalized biocompatible capsules.

  10. Interaction between Heparin and Fibronectin:Using Quartz Crystal Microbalance with Dissipation, Immunochemistry and Isothermal Titration Calorimetry

    Institute of Scientific and Technical Information of China (English)

    LI Guicai; WANG Caiping; YANG Ping; ZHOU Jie; ZHU Pingchuan

    2015-01-01

    The adsorption behavior of heparin and ifbronectin was studied by quartz crystal microbalance with dissipation (QCM-D), and the interaction between heparin and fibronectin was evaluated using immunochemistry and isothermal titration calorimetry (ITC) measurement. The results showed that there was competitive adsorption between heparin and fibronectin, and the preadsorption of fibronectin could prevent subsequent heparin adsorption to some extent, and the adsorbed Hep/Fn complex on the surface was in a rigid form. The bioactivity of heparin and ifbronectin could be affected by the bulk concentration of each, and both heparin and ifbronectin in Hep/Fn complex formed under pH 4 condition displayed larger bioactivity than that formed under pH 7 condition. Moreover, the ifbronectin showed more exposed cell-binding sites at the pH value lower than physiological condition. The results of ITC further suggested that the interaction between heparin and ifbronectin under pH 4 was stronger than under pH 7, and the complex was also more stable. The study brings forth the detailed interaction between heparin and ifbronectin, which will be helpful for better understanding the interaction mechanism of the two biomolecules. The results may be potentially useful for the development of new generation of cardiovascular biomaterials.

  11. The use of quartz crystal microbalance with dissipation (QCM-D) for studying nanoparticle-induced platelet aggregation

    Science.gov (United States)

    Santos-Martinez, Maria Jose; Inkielewicz-Stepniak, Iwona; Medina, Carlos; Rahme, Kamil; D’Arcy, Deirdre M; Fox, Daniel; Holmes, Justin D; Zhang, Hongzhou; Radomski, Marek Witold

    2012-01-01

    Interactions between blood platelets and nanoparticles have both pharmacological and toxicological significance and may lead to platelet activation and aggregation. Platelet aggregation is usually studied using light aggregometer that neither mimics the conditions found in human microvasculature nor detects microaggregates. A new method for the measurement of platelet microaggregation under flow conditions using a commercially available quartz crystal microbalance with dissipation (QCM-D) has recently been developed. The aim of the current study was to investigate if QCM-D could be used for the measurement of nanoparticle-platelet interactions. Silica, polystyrene, and gold nanoparticles were tested. The interactions were also studied using light aggregometry and flow cytometry, which measured surface abundance of platelet receptors. Platelet activation was imaged using phase contrast and scanning helium ion microscopy. QCM-D was able to measure nanoparticle-induced platelet microaggregation for all nanoparticles tested at concentrations that were undetectable by light aggregometry and flow cytometry. Microaggregates were measured by changes in frequency and dissipation, and the presence of platelets on the sensor surface was confirmed and imaged by phase contrast and scanning helium ion microscopy. PMID:22275839

  12. Detection of NH{sub 3} by quartz crystal microbalance coated with TiO{sub 2}

    Energy Technology Data Exchange (ETDEWEB)

    Georgieva, V; Spassov, L; Gadjanova, V [Georgi Nadjakov Institute of Solid State Physics, Bulgarian Academy of Sciences, 72 Tzarigradsko Chaussee, 1784 Sofia (Bulgaria); Donkov, N; Petkov, P [Institute of Electronics, Bulgarian Academy of Sciences, 72 Tzarigradsko Chausee, 1784 Sofia (Bulgaria)], E-mail: nikolaidd@abv.bg

    2008-05-01

    A quartz resonator with a thin TiO{sub 2} film is investigated in view of possible applications as a sensor for detecting the presence of ammonia in the ambient. A study of the sorption properties of thin TiO{sub 2} films to NH{sub 3} vapors is also presented. The films are deposited using electron beam evaporation. In order to determine the sorption ability of TiO{sub 2} to NH{sub 3}, a quartz crystal microbalance (QCM) with a thin TiO{sub 2} film is used, the latter serving as a receptor for the NH{sub 3} gas. The AT-cut 16-MHz quartz resonator allows conversion of the additional mass load that occurs as a result of sorption into a frequency shift. The experiments are carried out by measuring the QCM resonant frequency shift due to the absorption of vapors from an aqueous solution of NH{sub 3} with different concentration ranging from 100 to 1000 ppm. The experimental results obtained indicate that the variation of the resonant frequency is a function of the ammonia concentration. This demonstrates that a QCM covered with a thin TiO{sub 2} layer is sensitive to ammonia vapors at room temperature and is capable of detecting NH{sub 3} concentrations in the range investigated (100-1000 ppm)

  13. Study of the Interaction of Trastuzumab and SKOV3 Epithelial Cancer Cells Using a Quartz Crystal Microbalance Sensor

    Directory of Open Access Journals (Sweden)

    Louise Elmlund

    2015-03-01

    Full Text Available Analytical methods founded upon whole cell-based assays are of importance in early stage drug development and in fundamental studies of biomolecular recognition. Here we have studied the binding of the monoclonal antibody trastuzumab to human epidermal growth factor receptor 2 (HER2 on human ovary adenocarcinoma epithelial cancer cells (SKOV3 using quartz crystal microbalance (QCM technology. An optimized procedure for immobilizing the cells on the chip surface was established with respect to fixation procedure and seeding density. Trastuzumab binding to the cell decorated sensor surface was studied, revealing a mean dissociation constant, KD, value of 7 ± 1 nM (standard error of the mean. This study provides a new perspective on the affinity of the antibody-receptor complex presented a more natural context compared to purified receptors. These results demonstrate the potential for using whole cell-based QCM assay in drug development, the screening of HER2 selective antibody-based drug candidates, and for the study of biomolecular recognition. This real time, label free approach for studying interactions with target receptors present in their natural environment afforded sensitive and detailed kinetic information about the binding of the analyte to the target.

  14. Humidity scanning quartz crystal microbalance with dissipation monitoring setup for determination of sorption-desorption isotherms and rheological changes

    Energy Technology Data Exchange (ETDEWEB)

    Björklund, Sebastian, E-mail: sebastianbjorklund@gmail.com; Kocherbitov, Vitaly [Department of Biomedical Science, Faculty of Health and Society, Malmö University, Malmö (Sweden); Biofilms—Research Center for Biointerfaces, Malmö University, Malmö (Sweden)

    2015-05-15

    A new method to determine water sorption-desorption isotherms with high resolution in the complete range of water activities (relative humidities) is presented. The method is based on quartz crystal microbalance with dissipation monitoring (QCM-D). The QCM-D is equipped with a humidity module in which the sample film is kept in air with controlled humidity. The experimental setup allows for continuous scanning of the relative humidity from either dry to humid conditions or vice versa. The amount of water sorbed or desorbed from the sample is determined from the resonance frequencies of the coated quartz sensor, via analysis of the overtone dependence. In addition, the method allows for characterization of hydration induced changes of the rheological properties from the dissipation data, which is closely connected to the viscoelasticity of the film. The accuracy of the humidity scanning setup is confirmed in control experiments. Sorption-desorption isotherms of pig gastric mucin and lysozyme, obtained by the new method, show good agreement with previous results. Finally, we show that the deposition technique used to coat the quartz sensor influences the QCM-D data and how this issue can be used to obtain further information on the effect of hydration. In particular, we demonstrate that spin-coating represents an attractive alternative to obtain sorption-desorption isotherms, while drop-coating provides additional information on changes of the rheological properties during hydration.

  15. Plasma proteins adsorption mechanism on polyethylene-grafted poly(ethylene glycol) surface by quartz crystal microbalance with dissipation.

    Science.gov (United States)

    Jin, Jing; Jiang, Wei; Yin, Jinghua; Ji, Xiangling; Stagnaro, Paola

    2013-06-04

    Protein adsorption has a vital role in biomaterial surface science because it is directly related to the hemocompatibility of blood-contacting materials. In this study, monomethoxy poly(ethylene glycol) (mPEG) with two different molecular weights was grafted on polyethylene as a model to elucidate the adsorption mechanisms of plasma protein through quartz crystal microbalance with dissipation (QCM-D). Combined with data from platelet adhesion, whole blood clotting time, and hemolysis rate, the blood compatibility of PE-g-mPEG film was found to have significantly improved. Two adsorption schemes were developed for real-time monitoring of protein adsorption. Results showed that the preadsorbed bovine serum albumin (BSA) on the surfaces of PE-g-mPEG films could effectively inhibit subsequent adsorption of fibrinogen (Fib). Nonspecific protein adsorption of BSA was determined by surface coverage, not by the chain length of PEG. Dense PEG brush could release more trapped water molecules to resist BSA adsorption. Moreover, the preadsorbed Fib could be gradually displaced by high-concentration BSA. However, the adsorption and displacement of Fib was determined by surface hydrophilicity.

  16. Microscopic insight into role of protein flexibility during ion exchange chromatography by nuclear magnetic resonance and quartz crystal microbalance approaches.

    Science.gov (United States)

    Hao, Dongxia; Ge, Jia; Huang, Yongdong; Zhao, Lan; Ma, Guanghui; Su, Zhiguo

    2016-03-18

    Driven by the prevalent use of ion exchange chromatography (IEC) for polishing therapeutic proteins, many rules have been formulated to summarize the different dependencies between chromatographic data and various operational parameters of interest based on statically determined interactions. However, the effects of the unfolding of protein structures and conformational stability are not as well understood. This study focuses on how the flexibility of proteins perturbs retention behavior at the molecular scale using microscopic characterization approaches, including hydrogen-deuterium (H/D) exchange detected by NMR and a quartz crystal microbalance (QCM). The results showed that a series of chromatographic retention parameters depended significantly on the adiabatic compressibility and structural flexibility of the protein. That is, softer proteins with higher flexibility tended to have longer retention times and stronger affinities on SP Sepharose adsorbents. Tracing the underlying molecular mechanism using NMR and QCM indicated that an easily unfolded flexible protein with a more compact adsorption layer might contribute to the longer retention time on adsorbents. The use of NMR and QCM provided a previously unreported approach for elucidating the effect of protein structural flexibility on binding in IEC systems.

  17. Detection of Staphylococcus epidermidis by a Quartz Crystal Microbalance Nucleic Acid Biosensor Array Using Au Nanoparticle Signal Amplification

    Directory of Open Access Journals (Sweden)

    Weiling Fu

    2008-10-01

    Full Text Available Staphylococcus epidermidis is a critical pathogen of nosocomial blood infections, resulting in significant morbidity and mortality. A piezoelectric quartz crystal microbalance (QCM nucleic acid biosensor array using Au nanoparticle signal amplification was developed to rapidly detect S. epidermidis in clinical samples. The synthesized thiolated probes specific targeting S. epidermidis 16S rRNA gene were immobilized on the surface of QCM nucleic acid biosensor arrays. Hybridization was induced by exposing the immobilized probes to the PCR amplified fragments of S. epidermidis, resulting in a mass change and a consequent frequency shift of the QCM biosensor. To further enhance frequency shift results from above described hybridizations, streptavidin coated Au nanoparticles were conjugated to the PCR amplified fragments. The results showed that the lowest detection limit of current QCM system was 1.3×103 CFU/mL. A linear correlation was found when the concentration of S. epidermidis varied from 1.3×103 to 1.3×107 CFU/mL. In addition, 55 clinical samples were detected with both current QCM biosensor system and conventional clinical microbiological method, and the sensitivity and specificity of current QCM biosensor system were 97.14% and 100%, respectively. In conclusion, the current QCM system is a rapid, low-cost and sensitive method that can be used to identify infection of S. epidermidis in clinical samples.

  18. A combined experimental and theoretical study on the immunoassay of human immunoglobulin using a quartz crystal microbalance.

    Science.gov (United States)

    Liao, Po-Jen; Chang, Jeng-Shian; Chao, Sheng D; Chang, Hung-Chi; Huang, Kuan-Rong; Wu, Kuang-Chong; Wung, Tzong-Shyan

    2010-01-01

    We investigate a immunoassay biosensor that employs a Quartz Crystal Microbalance (QCM) to detect the specific binding reaction of the (Human IgG1)-(Anti-Human IgG1) protein pair under physiological conditions. In addition to experiments, a three dimensional time domain finite element method (FEM) was used to perform simulations for the biomolecular binding reaction in microfluidic channels. In particular, we discuss the unsteady convective diffusion in the transportation tube, which conveys the buffer solution containing the analyte molecules into the micro-channel where the QCM sensor lies. It is found that the distribution of the analyte concentration in the tube is strongly affected by the flow field, yielding large discrepancies between the simulations and experimental results. Our analysis shows that the conventional assumption of the analyte concentration in the inlet of the micro-channel being uniform and constant in time is inadequate. In addition, we also show that the commonly used procedure in kinetic analysis for estimating binding rate constants from the experimental data would underestimate these rate constants due to neglected diffusion processes from the inlet to the reaction surface. A calibration procedure is proposed to supplement the basic kinetic analysis, thus yielding better consistency with experiments.

  19. A Combined Experimental and Theoretical Study on the Immunoassay of Human Immunoglobulin Using a Quartz Crystal Microbalance

    Directory of Open Access Journals (Sweden)

    Jeng-Shian Chang

    2010-12-01

    Full Text Available We investigate a immunoassay biosensor that employs a Quartz Crystal Microbalance (QCM to detect the specific binding reaction of the (Human IgG1-(Anti-Human IgG1 protein pair under physiological conditions. In addition to experiments, a three dimensional time domain finite element method (FEM was used to perform simulations for the biomolecular binding reaction in microfluidic channels. In particular, we discuss the unsteady convective diffusion in the transportation tube, which conveys the buffer solution containing the analyte molecules into the micro-channel where the QCM sensor lies. It is found that the distribution of the analyte concentration in the tube is strongly affected by the flow field, yielding large discrepancies between the simulations and experimental results. Our analysis shows that the conventional assumption of the analyte concentration in the inlet of the micro-channel being uniform and constant in time is inadequate. In addition, we also show that the commonly used procedure in kinetic analysis for estimating binding rate constants from the experimental data would underestimate these rate constants due to neglected diffusion processes from the inlet to the reaction surface. A calibration procedure is proposed to supplement the basic kinetic analysis, thus yielding better consistency with experiments.

  20. Monitoring the effects of fibrinogen concentration on blood coagulation using quartz crystal microbalance (QCM) and its comparison with thromboelastography

    Science.gov (United States)

    Lakshmanan, Ramji S.; Efremov, Vitaly; Cullen, Sinéad; Byrne, Barry; Killard, Anthony J.

    2013-05-01

    Fibrinogen has been identified as a major risk factor in cardiovascular disorders. Fibrinogen (340 kDa) is a soluble dimeric glycoprotein found in plasma and is a major component of the coagulation cascade. It has been identified as a major risk factor in cardiovascular disorders. The time taken for its conversion to fibrin is usually used as an "endpoint" in most clot-based assays, without any information on dynamic changes in physical properties or kinetics of a forming clot. A global coagulation profile as measured by Thromboelastography® (TEG®) provides information on both the time and kinetics of changes in physical property of the forming clot. In this work, Quartz crystal microbalance (QCM), which is a piezoelectric resonator has been used to study coagulation of plasma and compared with TEG. The changes in resonant frequency (Δf) and half width at half maximum (HWHM or ΔΓ) were used to evaluate effect of fibrinogen concentration. It has been shown that TEG is less sensitive to low concentrations of fibrinogen and dilution while QCM is able to monitor clot formation in both the circumstances.

  1. Ultra-sensitive detection of zinc oxide nanowires using a quartz crystal microbalance and phosphoric acid DNA

    Science.gov (United States)

    Jang, Kuewhan; You, Juneseok; Park, Chanhoo; Park, Hyunjun; Choi, Jaeyeong; Choi, Chang-Hwan; Park, Jinsung; Lee, Howon; Na, Sungsoo

    2016-09-01

    Recent advancements of nanomaterials have inspired numerous scientific and industrial applications. Zinc oxide nanowires (ZnO NWs) is one of the most important nanomaterials due to their extraordinary properties. However, studies performed over the past decade have reported toxicity of ZnO NWs. Therefore, there has been increasing demand for effective detection of ZnO NWs. In this study, we propose a method for the detection of ZnO NW using a quartz crystal microbalance (QCM) and DNA probes. The detection method is based on the covalent interaction between ZnO NWs and the phosphoric acid group of single-stranded DNA (i.e., linker DNA), and DNA hybridization between the linker DNA and the probe DNA strand on the QCM electrode. Rapid, high sensitivity, in situ detection of ZnO NWs was demonstrated for the first time. The limit of detection was 10-4 μg ml-1 in deionized water, which represents a sensitivity that is 100000 times higher than the toxic ZnO NW concentration level. Moreover, the selectivity of the ZnO NW detection method was demonstrated by comparison with other types of nanowires and the method was able to detect ZnO NWs in tap water sensitively even after stored for 14 d in a refrigerator. The performance of our proposed method was sufficient to achieve detection of ZnO NW in the ‘real-world’ environment.

  2. Combined Bacteria Microarray and Quartz Crystal Microbalance Approach for Exploring Glycosignatures of Nontypeable Haemophilus influenzae and Recognition by Host Lectins.

    Science.gov (United States)

    Kalograiaki, Ioanna; Euba, Begoña; Proverbio, Davide; Campanero-Rhodes, María A; Aastrup, Teodor; Garmendia, Junkal; Solís, Dolores

    2016-06-01

    Recognition of bacterial surface epitopes by host receptors plays an important role in the infectious process and is intimately associated with bacterial virulence. Delineation of bacteria-host interactions commonly relies on the detection of binding events between purified bacteria- and host-target molecules. In this work, we describe a combined microarray and quartz crystal microbalance (QCM) approach for the analysis of carbohydrate-mediated interactions directly on the bacterial surface, thus preserving the native environment of the bacterial targets. Nontypeable Haemophilus influenzae (NTHi) was selected as a model pathogenic species not displaying a polysaccharide capsule or O-antigen-containing lipopolysaccharide, a trait commonly found in several important respiratory pathogens. Here, we demonstrate the usefulness of NTHi microarrays for exploring the presence of carbohydrate structures on the bacterial surface. Furthermore, the microarray approach is shown to be efficient for detecting strain-selective binding of three innate immune lectins, namely, surfactant protein D, human galectin-8, and Siglec-14, to different NTHi clinical isolates. In parallel, QCM bacteria-chips were developed for the analysis of lectin-binding kinetics and affinity. This novel QCM approach involves capture of NTHi on lectin-derivatized chips followed by formaldehyde fixation, rendering the bacteria an integrated part of the sensor chip, and subsequent binding assays with label-free lectins. The binding parameters obtained for selected NTHi-lectin pairs provide further insights into the interactions occurring at the bacterial surface.

  3. Peptide-membrane interactions of arginine-tryptophan peptides probed using quartz crystal microbalance with dissipation monitoring.

    KAUST Repository

    Rydberg, Hanna A

    2014-04-18

    Membrane-active peptides include peptides that can cross cellular membranes and deliver macromolecular cargo as well as peptides that inhibit bacterial growth. Some of these peptides can act as both transporters and antibacterial agents. It is desirable to combine the knowledge from these two different fields of membrane-active peptides into design of new peptides with tailored actions, as transporters of cargo or as antibacterial substances, targeting specific membranes. We have previously shown that the position of the amino acid tryptophan in the peptide sequence of three arginine-tryptophan peptides affects their uptake and intracellular localization in live mammalian cells, as well as their ability to inhibit bacterial growth. Here, we use quartz crystal microbalance with dissipation monitoring to assess the induced changes caused by binding of the three peptides to supported model membranes composed of POPC, POPC/POPG, POPC/POPG/cholesterol or POPC/lactosyl PE. Our results indicate that the tryptophan position in the peptide sequence affects the way these peptides interact with the different model membranes and that the presence of cholesterol in particular seems to affect the membrane interaction of the peptide with an even distribution of tryptophans in the peptide sequence. These results give mechanistic insight into the function of these peptides and may aid in the design of membrane-active peptides with specified cellular targets and actions.

  4. In situ NMR and electrochemical quartz crystal microbalance techniques reveal the structure of the electrical double layer in supercapacitors.

    Science.gov (United States)

    Griffin, John M; Forse, Alexander C; Tsai, Wan-Yu; Taberna, Pierre-Louis; Simon, Patrice; Grey, Clare P

    2015-08-01

    Supercapacitors store charge through the electrosorption of ions on microporous electrodes. Despite major efforts to understand this phenomenon, a molecular-level picture of the electrical double layer in working devices is still lacking as few techniques can selectively observe the ionic species at the electrode/electrolyte interface. Here, we use in situ NMR to directly quantify the populations of anionic and cationic species within a working microporous carbon supercapacitor electrode. Our results show that charge storage mechanisms are different for positively and negatively polarized electrodes for the electrolyte tetraethylphosphonium tetrafluoroborate in acetonitrile; for positive polarization charging proceeds by exchange of the cations for anions, whereas for negative polarization, cation adsorption dominates. In situ electrochemical quartz crystal microbalance measurements support the NMR results and indicate that adsorbed ions are only partially solvated. These results provide new molecular-level insight, with the methodology offering exciting possibilities for the study of pore/ion size, desolvation and other effects on charge storage in supercapacitors.

  5. Sequential adsorption of bovine mucin and lactoperoxidase to various substrates studied with quartz crystal microbalance with dissipation.

    Science.gov (United States)

    Halthur, Tobias J; Arnebrant, Thomas; Macakova, Lubica; Feiler, Adam

    2010-04-01

    Mucin and lactoperoxidase are both natively present in the human saliva. Mucin provides lubricating and antiadhesive function, while lactoperoxidase has antimicrobial activity. We propose that combined films of the two proteins can be used as a strategy for surface modification in biomedical applications such as implants or biosensors. In order to design and ultilize mixed protein films, it is necessary to understand the variation in adsorption behavior of the proteins onto different surfaces and how it affects their interaction. The quartz crystal microbalance with dissipation (QCM-D) technique has been used to extract information of the adsorption properties of bovine mucin (BSM) and lactoperoxidase (LPO) to gold, silica, and hydrophobized silica surfaces. The information has further been used to retrieve information of the viscoelastic properties of the adsorbed film. The adsorption and compaction of BSM were found to vary depending on the nature of the underlying bare surface, adsorbing as a thick highly hydrated film with loops and tails extending out in the bulk on gold and as a thinner film with much lower adsorbed amount on silica; and on hydrophobic surfaces, BSM adsorbs as a flat and much more compact layer. On gold and silica, the highly hydrated BSM film is cross-linked and compacted by the addition of LPO, whereas the compaction is not as pronounced on the already more compact film formed on hydrophobic surfaces. The adsorption of LPO to bare surfaces also varied depending on the type of surface. The adsorption profile of BSM onto LPO-coated surfaces mimicked the adsorption to the underlying surface, implying little interaction between the LPO and BSM. The interaction between the protein layers was interpreted as a combination of electrostatic and hydrophobic interactions, which was in turn influenced by the interaction of the proteins with the different substrates.

  6. Label-free real-time acoustic sensing of microvesicle release from prostate cancer (PC3) cells using a Quartz Crystal Microbalance

    Energy Technology Data Exchange (ETDEWEB)

    Stratton, Dan [Cellular and Molecular Immunology Research Centre, School of Human Sciences, London Metropolitan University, London (United Kingdom); Lange, Sigrun [University College London School of Pharmacy, 29-39 Brunswick Square, London WC1N 1AX (United Kingdom); Kholia, Sharad; Jorfi, Samireh; Antwi-Baffour, Samuel [Cellular and Molecular Immunology Research Centre, School of Human Sciences, London Metropolitan University, London (United Kingdom); Inal, Jameel, E-mail: j.inal@londonmet.ac.uk [Cellular and Molecular Immunology Research Centre, School of Human Sciences, London Metropolitan University, London (United Kingdom)

    2014-10-24

    Highlights: • Microvesiculating cells record loss of mass on a Quartz Crystal Microbalance. • Using the Quartz Crystal Microbalance microvesicles are measured at 0.24 pg. • The QCM-D reveals loss in viscoelastic properties in microvesiculating cells. - Abstract: Using a Quartz Crystal Microbalance with dissipation monitoring, QCM-D (label-free system) measuring changes in resonant frequency (Δf) that equate to mass deposited on a sensor, we showed the attachment, over a 60 min period, of a monolayer of PC3 cells to the gold electrodes of the quartz crystal sensor, which had been rendered hydrophilic. That MVs were released upon BzATP stimulation of cells was confirmed by NTA analysis (average 250 nm diameter), flow cytometry, showing high phosphatidylserine exposition and by fluorescent (Annexin V Alexa Fluor® 488-positive) and electron microscopy. Over a period of 1000s (16.7 min) during which early apoptosis increased from 4% plateauing at 10% and late apoptosis rose to 2%, the Δf increased 20 Hz, thereupon remaining constant for the last 1000s of the experiment. Using the Sauerbrey equation, the loss in mass, which corresponded to the release of 2.36 × 10{sup 6} MVs, was calculated to be 23 ng. We therefore estimated the mass of an MV to be 0.24 pg. With the deposition on the QCM-D of 3.5 × 10{sup 7} MVs over 200s, the decrease in Δf (Hz) gave an estimate of 0.235 pg per MV.

  7. Aerosol effective density measurement using scanning mobility particle sizer and quartz crystal microbalance with the estimation of involved uncertainty

    Directory of Open Access Journals (Sweden)

    B. Sarangi

    2015-12-01

    Full Text Available In this work, we have used scanning mobility particle sizer (SMPS and quartz crystal microbalance (QCM to estimate the effective density of aerosol particles. This approach is tested for aerosolized particles generated from the solution of standard materials of known density, i.e. ammonium sulfate (AS, ammonium nitrate (AN and sodium chloride (SC, and also applied for ambient measurement in New Delhi. We also discuss uncertainty involved in the measurement. In this method, dried particles are introduced in to a differential mobility analyzer (DMA, where size segregation was done based on particle electrical mobility. At the downstream of DMA, the aerosol stream is subdivided into two parts. One is sent to a condensation particle counter (CPC to measure particle number concentration, whereas other one is sent to QCM to measure the particle mass concentration simultaneously. Based on particle volume derived from size distribution data of SMPS and mass concentration data obtained from QCM, the mean effective density (ρeff with uncertainty of inorganic salt particles (for particle count mean diameter (CMD over a size range 10 to 478 nm, i.e. AS, SC and AN is estimated to be 1.76 ± 0.24, 2.08 ± 0.19 and 1.69 ± 0.28 g cm−3, which are comparable with the material density (ρ values, 1.77, 2.17 and 1.72 g cm−3, respectively. Among individual uncertainty components, repeatability of particle mass obtained by QCM, QCM crystal frequency, CPC counting efficiency, and equivalence of CPC and QCM derived volume are the major contributors to the expanded uncertainty (at k = 2 in comparison to other components, e.g. diffusion correction, charge correction, etc. Effective density for ambient particles at the beginning of winter period in New Delhi is measured to be 1.28 ± 0.12 g cm−3. It was found that in general, mid-day effective density of ambient aerosols increases with increase in CMD of particle size measurement but particle photochemistry is an

  8. Measuring water adsorption on mineral surfaces in air, CO2, and supercritical CO2 with a quartz-crystal microbalance

    Science.gov (United States)

    Bryan, C. R.; Wells, R. K.; Burton, P. D.; Heath, J. E.; Dewers, T. A.; Wang, Y.

    2011-12-01

    Carbon sequestration via underground storage in geologic formations is a proposed approach for reducing industrial CO2 emissions. However, current models for carbon injection and long-term storage of supercritical CO2 (scCO2) do not consider the development and stability of adsorbed water films at the scCO2-hydrophilic mineral interface. The thickness and properties of the water films control the surface tension and wettability of the mineral surface, and on the core scale, affect rock permeability, saturation, and capillary properties. The film thickness is strongly dependent upon the activity of water in the supercritical fluid, which will change as initially anhydrous scCO2 absorbs water from formation brine. As described in a companion paper by the coauthors, the thickness of the adsorbed water layer is controlled by the disjoining pressure; structural and van der Waals components dominate at low water activity, while electrostatic forces become more important with increasing film thickness (higher water activities). As scCO2 water activity and water layer thickness increase, concomitant changes in mineral surface properties and reservoir/caprock hydrologic properties will affect the mobility of the aqueous phase and of scCO2. Moreover, the development of a water layer may be critical to mineral dissolution reactions in scCO2. Here, we describe the use of a quartz-crystal microbalance (QCM) to monitor adsorption of water by mineral surfaces. QCMs utilize a piezoelectrically-stimulated quartz wafer to measure adsorbed or deposited mass via changes in vibrational frequency. When used to measure the mass of adsorbed liquid films, the frequency response of the crystal must be corrected for the viscoelastic, rather than elastic, response of the adsorbed layer. Results are presented for adsorption to silica in N2 and CO2 at one bar, and in scCO2. Additional data are presented for water uptake by clays deposited on a QCM wafer. In this case, water uptake occurs by the

  9. Aerosol effective density measurement using scanning mobility particle sizer and quartz crystal microbalance with the estimation of involved uncertainty

    Science.gov (United States)

    Sarangi, Bighnaraj; Aggarwal, Shankar G.; Sinha, Deepak; Gupta, Prabhat K.

    2016-03-01

    In this work, we have used a scanning mobility particle sizer (SMPS) and a quartz crystal microbalance (QCM) to estimate the effective density of aerosol particles. This approach is tested for aerosolized particles generated from the solution of standard materials of known density, i.e. ammonium sulfate (AS), ammonium nitrate (AN) and sodium chloride (SC), and also applied for ambient measurement in New Delhi. We also discuss uncertainty involved in the measurement. In this method, dried particles are introduced in to a differential mobility analyser (DMA), where size segregation is done based on particle electrical mobility. Downstream of the DMA, the aerosol stream is subdivided into two parts. One is sent to a condensation particle counter (CPC) to measure particle number concentration, whereas the other one is sent to the QCM to measure the particle mass concentration simultaneously. Based on particle volume derived from size distribution data of the SMPS and mass concentration data obtained from the QCM, the mean effective density (ρeff) with uncertainty of inorganic salt particles (for particle count mean diameter (CMD) over a size range 10-478 nm), i.e. AS, SC and AN, is estimated to be 1.76 ± 0.24, 2.08 ± 0.19 and 1.69 ± 0.28 g cm-3, values which are comparable with the material density (ρ) values, 1.77, 2.17 and 1.72 g cm-3, respectively. Using this technique, the percentage contribution of error in the measurement of effective density is calculated to be in the range of 9-17 %. Among the individual uncertainty components, repeatability of particle mass obtained by the QCM, the QCM crystal frequency, CPC counting efficiency, and the equivalence of CPC- and QCM-derived volume are the major contributors to the expanded uncertainty (at k = 2) in comparison to other components, e.g. diffusion correction, charge correction, etc. Effective density for ambient particles at the beginning of the winter period in New Delhi was measured to be 1.28 ± 0.12 g cm-3

  10. Long Memory from Sauerbrey Equation: A Case in Coated Quartz Crystal Microbalance in terms of Ammonia

    Directory of Open Access Journals (Sweden)

    Xiaohua Wang

    2011-01-01

    Full Text Available The Sauerbrey equation is a useful empirical model in material science to represent the dynamics of frequency change denoted by Δf in an area, denoted by A, of the electrode in terms of the increment of the mass, which is denoted by Δm, loaded on the surface of the crystal under a certain resonant frequency f0. For the purpose of studying Δf from the point of view of time series, we first propose two types of the modified representations of the Sauerbrey equation by taking time as an argument to represent Δf as a function expressed by x(t,f0,A,Δm, where t is time. Usually, Δf is studied experimentally for the performance evaluation of the tested quartz used in ammonia sensors. Its properties in time series, however, are rarely reported. This paper presents the fractal properties of Δf. We will show that Δf is long range dependent (LRD. Consequently, it is heavy tailed according to the Taqqu's theorem. The Hurst parameter (H of Δf approaches one, implying its strong long memory, providing a new explanation of the repeatability of the experiments and novel point of view of the dynamics of Δf relating to the Sauerbrey equation in material science.

  11. Adsorption of cobalt ferrite nanoparticles within layer-by-layer films: a kinetic study carried out using quartz crystal microbalance.

    Science.gov (United States)

    Alcantara, Gustavo B; Paterno, Leonardo G; Afonso, André S; Faria, Ronaldo C; Pereira-da-Silva, Marcelo A; Morais, Paulo C; Soler, Maria A G

    2011-12-28

    The paper reports on the successful use of the quartz crystal microbalance technique to assess accurate kinetics and equilibrium parameters regarding the investigation of in situ adsorption of nanosized cobalt ferrite particles (CoFe(2)O(4)--10.5 nm-diameter) onto two different surfaces. Firstly, a single layer of nanoparticles was deposited onto the surface provided by the gold-coated quartz resonator functionalized with sodium 3-mercapto propanesulfonate (3-MPS). Secondly, the layer-by-layer (LbL) technique was used to build multilayers in which the CoFe(2)O(4) nanoparticle-based layer alternates with the sodium sulfonated polystyrene (PSS) layer. The adsorption experiments were conducted by modulating the number of adsorbed CoFe(2)O(4)/PSS bilayers (n) and/or by changing the CoFe(2)O(4) nanoparticle concentration while suspended as a stable colloidal dispersion. Adsorption of CoFe(2)O(4) nanoparticles onto the 3-MPS-functionalized surface follows perfectly a first order kinetic process in a wide range (two orders of magnitude) of nanoparticle concentrations. These data were used to assess the equilibrium constant and the adsorption free energy. Alternatively, the Langmuir adsorption constant was obtained while analyzing the isotherm data at the equilibrium. Adsorption of CoFe(2)O(4) nanoparticles while growing multilayers of CoFe(2)O(4)/PSS was conducted using colloidal suspensions with CoFe(2)O(4) concentration in the range of 10(-8) to 10(-6) (moles of cobalt ferrite per litre) and for different numbers of cycles n = 1, 3, 5, and 10. We found the adsorption of CoFe(2)O(4) nanoparticles within the CoFe(2)O(4)/PSS bilayers perfectly following a first order kinetic process, with the characteristic rate constant growing with the increase of CoFe(2)O(4) nanoparticle concentration and decreasing with the rise of the number of LbL cycles (n). Additionally, atomic force microscopy was employed for assessing the LbL film roughness and thickness. We found the film

  12. Mercury Sorption and Desorption on Gold: A Comparative Analysis of Surface Acoustic Wave and Quartz Crystal Microbalance-Based Sensors.

    Science.gov (United States)

    Kabir, K M Mohibul; Sabri, Ylias M; Esmaielzadeh Kandjani, Ahmad; Matthews, Glenn I; Field, Matthew; Jones, Lathe A; Nafady, Ayman; Ippolito, Samuel J; Bhargava, Suresh K

    2015-08-04

    Microelectromechanical sensors based on surface acoustic wave (SAW) and quartz crystal microbalance (QCM) transducers possess substantial potential as online elemental mercury (Hg(0)) vapor detectors in industrial stack effluents. In this study, a comparison of SAW- and QCM-based sensors is performed for the detection of low concentrations of Hg(0) vapor (ranging from 24 to 365 ppbv). Experimental measurements and finite element method (FEM) simulations allow the comparison of these sensors with regard to their sensitivity, sorption and desorption characteristics, and response time following Hg(0) vapor exposure at various operating temperatures ranging from 35 to 75 °C. Both of the sensors were fabricated on quartz substrates (ST and AT cut quartz for SAW and QCM devices, respectively) and employed thin gold (Au) layers as the electrodes. The SAW-based sensor exhibited up to ∼111 and ∼39 times higher response magnitudes than did the QCM-based sensor at 35 and 55 °C, respectively, when exposed to Hg(0) vapor concentrations ranging from 24 to 365 ppbv. The Hg(0) sorption and desorption calibration curves of both sensors were found to fit well with the Langmuir extension isotherm at different operating temperatures. Furthermore, the Hg(0) sorption and desorption rate demonstrated by the SAW-based sensor was found to decrease as the operating temperature increased, while the opposite trend was observed for the QCM-based sensor. However, the SAW-based sensor reached the maximum Hg(0) sorption rate faster than the QCM-based sensor regardless of operating temperature, whereas both sensors showed similar response times (t90) at various temperatures. Additionally, the sorption rate data was utilized in this study in order to obtain a faster response time from the sensor upon exposure to Hg(0) vapor. Furthermore, comparative analysis of the developed sensors' selectivity showed that the SAW-based sensor had a higher overall selectivity (90%) than did the QCM

  13. Investigation of Bovine Serum Albumin (BSA Attachment onto Self-Assembled Monolayers (SAMs Using Combinatorial Quartz Crystal Microbalance with Dissipation (QCM-D and Spectroscopic Ellipsometry (SE.

    Directory of Open Access Journals (Sweden)

    Hanh T M Phan

    Full Text Available Understanding protein adsorption kinetics to surfaces is of importance for various environmental and biomedical applications. Adsorption of bovine serum albumin to various self-assembled monolayer surfaces including neutral and charged hydrophilic and hydrophobic surfaces was investigated using in-situ combinatorial quartz crystal microbalance with dissipation and spectroscopic ellipsometry. Adsorption of bovine serum albumin varied as a function of surface properties, bovine serum albumin concentration and pH value. Charged surfaces exhibited a greater quantity of bovine serum albumin adsorption, a larger bovine serum albumin layer thickness, and increased density of bovine serum albumin protein compared to neutral surfaces at neutral pH value. The quantity of adsorbed bovine serum albumin protein increased with increasing bovine serum albumin concentration. After equilibrium sorption was reached at pH 7.0, desorption of bovine serum albumin occurred when pH was lowered to 2.0, which is below the isoelectric point of bovine serum albumin. Our data provide further evidence that combinatorial quartz crystal microbalance with dissipation and spectroscopic ellipsometry is a sensitive analytical tool to evaluate attachment and detachment of adsorbed proteins in systems with environmental implications.

  14. Measurement of deposition rate and ion energy distribution in a pulsed dc magnetron sputtering system using a retarding field analyzer with embedded quartz crystal microbalance

    Energy Technology Data Exchange (ETDEWEB)

    Sharma, Shailesh, E-mail: shailesh.sharma6@mail.dcu.ie [Dublin City University, Glasnevin, Dublin 9 (Ireland); Impedans Limited, Chase House, City Junction Business Park, Northern Cross, D17 AK63, Dublin 17 (Ireland); Gahan, David, E-mail: david.gahan@impedans.com; Scullin, Paul; Doyle, James; Lennon, Jj; Hopkins, M. B. [Impedans Limited, Chase House, City Junction Business Park, Northern Cross, D17 AK63, Dublin 17 (Ireland); Vijayaraghavan, Rajani K.; Daniels, Stephen [Dublin City University, Glasnevin, Dublin 9 (Ireland)

    2016-04-15

    A compact retarding field analyzer with embedded quartz crystal microbalance has been developed to measure deposition rate, ionized flux fraction, and ion energy distribution arriving at the substrate location. The sensor can be placed on grounded, electrically floating, or radio frequency (rf) biased electrodes. A calibration method is presented to compensate for temperature effects in the quartz crystal. The metal deposition rate, metal ionization fraction, and energy distribution of the ions arriving at the substrate location are investigated in an asymmetric bipolar pulsed dc magnetron sputtering reactor under grounded, floating, and rf biased conditions. The diagnostic presented in this research work does not suffer from complications caused by water cooling arrangements to maintain constant temperature and is an attractive technique for characterizing a thin film deposition system.

  15. Measurement of deposition rate and ion energy distribution in a pulsed dc magnetron sputtering system using a retarding field analyzer with embedded quartz crystal microbalance.

    Science.gov (United States)

    Sharma, Shailesh; Gahan, David; Scullin, Paul; Doyle, James; Lennon, Jj; Vijayaraghavan, Rajani K; Daniels, Stephen; Hopkins, M B

    2016-04-01

    A compact retarding field analyzer with embedded quartz crystal microbalance has been developed to measure deposition rate, ionized flux fraction, and ion energy distribution arriving at the substrate location. The sensor can be placed on grounded, electrically floating, or radio frequency (rf) biased electrodes. A calibration method is presented to compensate for temperature effects in the quartz crystal. The metal deposition rate, metal ionization fraction, and energy distribution of the ions arriving at the substrate location are investigated in an asymmetric bipolar pulsed dc magnetron sputtering reactor under grounded, floating, and rf biased conditions. The diagnostic presented in this research work does not suffer from complications caused by water cooling arrangements to maintain constant temperature and is an attractive technique for characterizing a thin film deposition system.

  16. On the lipid-bacterial protein interaction studied by quartz crystal microbalance with dissipation, transmission electron microscopy and atomic force microscopy

    CERN Document Server

    Delcea, Mihaela; Pum, Dietmar; Sleytr, Uwe Bernd; Toca-Herrera, Jose Luis

    2009-01-01

    The interaction between the bacterial S-protein SbpA on different types of lipid membranes has been studied using atomic force microscopy, transmission electron microscopy, and quartz crystal microbalance with dissipation. On one hand, It has been found that the bacterial forms two dimensional nanocrystals on zwitterionic DOPC bilayers and negatively charged DMPG vesicles adsorbed on mica, on zwitterionic DPPC and charged DPPC/DMPG (1:1) monolayers adsorbed on carbon grids. On the other hand, SbpA protein adsorption took place on zwitterionic DOPC bilayers and DOPC/DOPS (4:1) bilayers, previously adsorbed on silicon supports. SbpA adsorption also took place on DPPC/DOPS (1:1) monolayers adsorbed on carbon grids. Finally, neither SbpA adsorption, nor recrystallization was observed on zwitterionic DMPC vesicles (previously adsorbed on polyelectrolyte multilayers), and on DPPC vesicles supported on silicon.

  17. Development and application of quartz crystal microbalance sensor based on novel molecularly imprinted sol-gel polymer for rapid detection of histamine in foods.

    Science.gov (United States)

    Dai, Jie; Zhang, Yan; Pan, Mingfei; Kong, Lingjie; Wang, Shuo

    2014-06-11

    To rapidly detect histamine (HA) in foods, a novel material for HA-specific recognition was synthesized by a sol-gel process and coated on a quartz crystal microbalance (QCM) sensor. The Scatchard model was used to evaluate the adsorption performance of the material; high affinity for HA was demonstrated. Based on QCM frequency change, the sensor exhibited linear behavior for HA concentrations of 0.11 × 10(-2) to 4.45 × 10(-2) mg L(-1), a detection limit of 7.49 × 10(-4) mg kg(-1) (S/N = 3), high selectivity for HA (selectivity coefficient >4) compared with structural analogues, good reproducibility, and long-term stability. The sensor was used to determine the concentration of HA in spiked fish products; the recovery values were satisfactory (93.2-100.4%) and compared well with those obtained by high-performance liquid chromatography (correlation coefficient, r(2) = 0.9965).

  18. Determination of flux ionization fraction using a quartz crystal microbalance and a gridded energy analyzer in an ionized magnetron sputtering system

    Science.gov (United States)

    Green, K. M.; Hayden, D. B.; Juliano, D. R.; Ruzic, D. N.

    1997-12-01

    A diagnostic which combines a quartz crystal microbalance (QCM) and a gridded energy analyzer has been developed to measure the metal flux ionization fraction in a modified commercial dc magnetron sputtering device. The sensor is mounted on a linear motion feedthrough and embedded in a slot in the substrate plane to allow for measuring the uniformity in deposition and ionization throughout the plane of the wafer. Radio-frequency (rf) power is introduced through a coil to ionize the Al atoms. The metal flux ionization fraction at the QCM is determined by comparing the total deposition rate with and without a bias that screens out the ions, but that leaves the plasma undisturbed. By varying the voltage applied to the grids, the plasma potential is determined. At a pressure of 35 mTorr, a magnetron power of 2 kW, and a net rf power of 310±5 W, 78±5% ionization was found.

  19. Broadband 120 MHz Impedance Quartz Crystal Microbalance (QCM with Calibrated Resistance and Quantitative Dissipation for Biosensing Measurements at Higher Harmonic Frequencies

    Directory of Open Access Journals (Sweden)

    Manuel Kasper

    2016-05-01

    Full Text Available We developed an impedance quartz crystal microbalance (QCM approach with the ability to simultaneously record mass changes and calibrated energy dissipation with high sensitivity using an impedance analyzer. This impedance QCM measures frequency shifts and resistance changes of sensing quartz crystals very stable, accurately, and calibrated, thus yielding quantitative information on mass changes and dissipation. Resistance changes below 0.3 Ω were measured with corresponding dissipation values of 0.01 µU (micro dissipation units. The broadband impedance capabilities allow measurements between 20 Hz and 120 MHz including higher harmonic modes of up to 11th order for a 10 MHz fundamental resonance frequency quartz crystal. We demonstrate the adsorbed mass, calibrated resistance, and quantitative dissipation measurements on two biological systems including the high affinity based avidin-biotin interaction and nano-assemblies of polyelectrolyte layers. The binding affinity of a protein-antibody interaction was determined. The impedance QCM is a versatile and simple method for accurate and calibrated resistance and dissipation measurements with broadband measurement capabilities for higher harmonics measurements.

  20. Use of quartz crystal microbalance to study the effect of chloride, sulphate and magnesium ions on the scaling rate; Apport de la microbalance a quartz dans l'etude de l'influence des ions sulfate, chlorure et magnesium sur la cinetique d'entartrage

    Energy Technology Data Exchange (ETDEWEB)

    Ben Amor, Y.; Triki, E. [Ecole Nationale d' Ingenieurs de Tunis, Unite de Recherche Corrosion et Protection des Metalliques (Tunisia); Bousselmi, I. [Institut National de Recherche Scientifique et Technologique, Lab. des Eaux et Environnement, Hammam-Lif (Tunisia); Sutter, E.; Labbe, J.P.; Fiaud, C. [Universite Pierre et Marie Curie, Lab. de Genie des Procedes Plasmas et Traitements de Surface, 75 - Paris (France)

    2004-07-01

    In this work, an electrochemical quartz crystal microbalance was used to study the effect of chloride, sulphate and magnesium ions on the scaling rate of gold in synthesized water. The chrono-electro-gravimetric results allow the evaluation of the nucleation and crystal growth steps. Infrared analysis of deposits was used to interpret the kinetic data, particularly in SO{sub 4}{sup 2-} and Mg{sup 2+} containing. Threshold effects were identified in each situation and essentially attributed to adsorption phenomena of ions on the metal and/or on the scale layers, as indicated by the influence of electrode potential and concentration of ions in solutions. (authors)

  1. Nucleation and growth of hydroxyapatite on arc-deposited TiO{sub 2} surfaces studied by quartz crystal microbalance with dissipation

    Energy Technology Data Exchange (ETDEWEB)

    Lilja, Mirjam [Division for Nanotechnology and Functional Materials, Department of Engineering Sciences, The Ångström Laboratory, Uppsala University, Box 534, 75121 Uppsala (Sweden); Sandvik Coromant Sverige AB, Lerkrogsvägen 19, 12680 Stockholm (Sweden); Butt, Umer [Sandvik Coromant Sverige AB, Lerkrogsvägen 19, 12680 Stockholm (Sweden); Berzelii Centre EXSELENT on Porous Materials and Department of Materials and Environmental Chemistry, Arrhenius Laboratory, Stockholm University, 114 18 Stockholm (Sweden); Shen, Zhijian [Berzelii Centre EXSELENT on Porous Materials and Department of Materials and Environmental Chemistry, Arrhenius Laboratory, Stockholm University, 114 18 Stockholm (Sweden); Bjöörn, Dorota, E-mail: dorota.bjoorn@sandvik.com [Sandvik Coromant Sverige AB, Lerkrogsvägen 19, 12680 Stockholm (Sweden)

    2013-11-01

    Understanding of nucleation and growth kinetics of biomimetically deposited hydroxyapatite (HA) on crystalline TiO{sub 2} surfaces is important with respect to the application and performance of HA as functional implant coatings. Arc-evaporation was used to deposit TiO{sub 2} coatings dominated by anatase phase, rutile phase or their mixtures. Subsequent formation of HA from phosphate buffered saline solution (PBS) was investigated in real-time using in situ quartz crystal microbalance with dissipation technique (QCM-D). Scanning electron microscopy (SEM) and X-ray diffraction (XRD) were employed to characterize the presence, morphology and crystal structure of TiO{sub 2} coatings and the formed HA. Increasing temperature of the PBS, increasing flow rate and applying a higher ion concentration in solution were found to accelerate HA nucleation process and hence affect growth kinetics. Lower PBS temperature resulted in the formation of HA coatings with flake-like morphology and increasing HA porosity. All TiO{sub 2} coatings under study enabled HA formation at body temperature, while in contrast Ti reference surfaces only supported HA nucleation and growth at elevated temperatures. QCM-D technique is a powerful tool for studying the impact of process parameters during biomimetic coating deposition on coating structure evolution in real time and provides valuable information for understanding, optimizing as well as tailoring the biomimetic HA growth processes.

  2. Label-free real-time acoustic sensing of microvesicle release from prostate cancer (PC3) cells using a Quartz Crystal Microbalance.

    Science.gov (United States)

    Stratton, Dan; Lange, Sigrun; Kholia, Sharad; Jorfi, Samireh; Antwi-Baffour, Samuel; Inal, Jameel

    2014-10-24

    Using a Quartz Crystal Microbalance with dissipation monitoring, QCM-D (label-free system) measuring changes in resonant frequency (Δf) that equate to mass deposited on a sensor, we showed the attachment, over a 60min period, of a monolayer of PC3 cells to the gold electrodes of the quartz crystal sensor, which had been rendered hydrophilic. That MVs were released upon BzATP stimulation of cells was confirmed by NTA analysis (average 250nm diameter), flow cytometry, showing high phosphatidylserine exposition and by fluorescent (Annexin V Alexa Fluor® 488-positive) and electron microscopy. Over a period of 1000s (16.7min) during which early apoptosis increased from 4% plateauing at 10% and late apoptosis rose to 2%, the Δf increased 20Hz, thereupon remaining constant for the last 1000s of the experiment. Using the Sauerbrey equation, the loss in mass, which corresponded to the release of 2.36×10(6)MVs, was calculated to be 23ng. We therefore estimated the mass of an MV to be 0.24pg. With the deposition on the QCM-D of 3.5×10(7)MVs over 200s, the decrease in Δf (Hz) gave an estimate of 0.235pg per MV.

  3. An Eletrochemical Quatrz Crystal Microbalance Study on Electrochemical Behavior of As(Ⅲ)at Au/Au and Pt/Au Electrodes%电镀铂/金的金电极上As(Ⅲ)电化学行为的电化学石英晶体微天平研究

    Institute of Scientific and Technical Information of China (English)

    黄素清; 黄钊; 谷铁安; 谢青季; 姚守拙

    2011-01-01

    Electrochemical behavior of As(Ⅲ)at Au/Au and Pt/Au electrodes was investigated with an electrochemical quartz crystal microbalance (EQCM) in Britton-Robinson ( B-R, pH = 1. 8 - 11. 2)buffer solutions and in 0. 1 or 0. 5 mol/L aqueous H2SO4. Through real-time process monitoring of the EQCM parameters (frequency etc. ) and enhancement of the electrode-response signals by pre-electrodeposition of As (0) , the electrodeposition of As (0) , the electrod-esurface-adsorption characteristics of As(Ⅲ) and As(Ⅴ) , and the pH-dependence of the electrochemistry of As species were investigated. The following main conclusions are reached: (1) electrodeposition of As(0) can occur on both electrodes, but electrodeposition of As(0) on Pt/Au is more significant, and the electrooxidation of As(0) electrodeposited on Pt/Au at sufficient quantity can exhibit two current peaks for oxidation of outer-layer As(0) followed by inner-layer As(0); (2) As(Ⅲ) can strongly adsorb on Pt/Au but its oxidation product as As(Ⅴ) can desorb from the electrode surface , and the adsorption of both As(Ⅲ) and As(Ⅴ) is very weak on Au/Au; (3) the electrooxidation current of As(Ⅲ) on Pt/Au tends to be the maximum in pH = 1. 8 B-R buffer solution and in 0.1 mol/L aqueous H2SO4. Based on the pre-adsorption of As(Ⅲ) on Pt/Au and its catalyzed electrooxidation stripping, we proposed a new linear sweep voltammetric electroanalysis method for the determination of As (Ⅲ) , by which the detection sensitivity for As(Ⅲ) can be 40-fold enhanced over the pre-adsorption-free case%采用电化学石英晶体微天平(EQCM)技术研究了Britton-Robinson(B-R,pH=1.8~11.2)缓冲溶液和H2SO4介质中电镀铂淦的金电极上As(Ⅲ)的循环伏安行为.通过实时监测EQCM频率等参数的变化过程并利用预电沉积As(O)放大电极响应信号,考察了两电极上As.(O)的电沉积、AsⅢ皿和AsⅤ助组分的吸附特性以及As组分电化学行为的pH依赖性.主要结论如

  4. Protein adsorption behaviors on chitosan/poly(ε-caprolactone) blend films studied by quartz crystal microbalance with dissipation monitoring(QCM-D)

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    Chitosan/poly(ε-caprolactone) (PCL) blend films in different mass ratios were prepared using the chitosan/PCL mixture solutions in 80 vol.-% acetic acid by spin coating. Their surface micromorphologies were assessed by atomic force microscopy (AFM). It was found that the micromorphology of chitosan/PCL blend films was in large extent related to the mass ratio of chitosan. 25 wt% chitosan/PCL blend film presented microphase separation. The protein adsorption of bovine serum albumin (BSA) onto chitosan/PCL blend films was investigated by using quartz crystal microbalance with dissipation monitoring (QCM-D) in real time. The results suggested that the amount of adsorbed BSA on the chitosan/PCL blend films decreased with the addition of chitosan, but the structure and viscoelastic properties of the adsorbed BSA layers were greatly affected by the surface micromorphology of chitosan/PCL blend films. BSA absorbed on the 25 wt% chitosan/PCL blend film with microphase separa- tion showed larger adsorption reversibility, and preferred to form a loose, dissipative layer in comparison with those on other chitosan/PCL blend films without microphase separation.

  5. Investigation of photoelectrochemical oxidation of Fe{sup 2+} ions on porous nanocrystalline TiO{sub 2} electrodes using electrochemical quartz crystal microbalance

    Energy Technology Data Exchange (ETDEWEB)

    Si Shihui; Huang Kelong; Wang Xiaoguang; Huang Mingzhi; Chen Hanfang

    2002-12-20

    The photoelectrochemical oxidation of Fe{sup 2+} ions on porous nanocrystalline TiO{sub 2} electrodes was investigated using in situ electrochemical quartz crystal microbalance (QCM). It was found that the adsorption of Fe{sup 2+} ions at the surface of TiO{sub 2} electrodes strongly depended on the pH of the solution, and that the saturated amount of adsorbed Fe{sup 2+} ions was approximately 4.4 ions nm{sup -2} at pH 4. The protons produced in photochemical reactions could cause the release of adsorbed Fe{sup 2+} ions from TiO{sub 2} surface, therefore, the frequency of QCM increased at the initial stage of illumination, during which the direct oxidation of adsorbed Fe{sup 2+} ions by photogenerated holes was dominant. When the frequency decreased, the major reaction was the photoelectrochemical deposition of Fe{sub 2}O{sub 3} from the bulk solution via a hydroxyl radical-mediated oxidation pathway, whose efficiency depended on the Fe{sup 2+} ion concentration.

  6. A quick responding quartz crystal microbalance sensor array based on molecular imprinted polyacrylic acids coating for selective identification of aldehydes in body odor.

    Science.gov (United States)

    Jha, Sunil K; Hayashi, Kenshi

    2015-03-01

    In present work, a novel quartz crystal microbalance (QCM) sensor array has been developed for prompt identification of primary aldehydes in human body odor. Molecularly imprinted polymers (MIP) are prepared using the polyacrylic acid (PAA) polymer matrix and three organic acids (propenoic acid, hexanoic acid and octanoic acid) as template molecules, and utilized as QCM surface coating layer. The performance of MIP films is characterized by 4-element QCM sensor array (three coated with MIP layers and one with pure PAA for reference) dynamic and static responses to target aldehydes: hexanal, heptanal, and nonanal in single, binary, and tertiary mixtures at distinct concentrations. The target aldehydes were selected subsequent to characterization of body odor samples with solid phase-micro extraction gas chromatography mass spectrometer (SPME-GC-MS). The hexanoic acid and octanoic acid imprinted PAA exhibit fast response, and better sensitivity, selectivity and reproducibility than the propenoic acid, and non-imprinted PAA in array. The response time and recovery time for hexanoic acid imprinted PAA are obtained as 5 s and 12 s respectively to typical concentrations of binary and tertiary mixtures of aldehydes using the static response. Dynamic sensor array response matrix has been processed with principal component analysis (PCA) for visual, and support vector machine (SVM) classifier for quantitative identification of target odors. Aldehyde odors were identified successfully in principal component (PC) space. SVM classifier results maximum recognition rate 79% for three classes of binary odors and 83% including single, binary, and tertiary odor classes in 3-fold cross validation.

  7. Protein adsorption behaviors on chitosan/poly(ε-caprolactone)blend films studied by quartz crystal microbalance with dissipation monitoring (QCM-D)

    Institute of Scientific and Technical Information of China (English)

    ZENG Rong; ZHANG Yi; LIANG ZhiHong; TU Mei; ZHOU ChangRen

    2009-01-01

    Chitosan/poly(ε-caprolactone)(PCL)blend films in different mass ratios were prepared using the chitosan/PCL mixture solutions in 80 vol.-% acetic acid by spin coating.Their surface micromorphologies were assessed by atomic force microscopy(AFM).It was found that the micromorphology of chitosan/PCL blend films was in large extent related to the mass ratio of chitosan.25 wt% chitosan/PCL blend film presented microphase separation.The protein adsorption of bovine serum albumin(BSA)onto chitosan/PCL blend films was investigated by using quartz crystal microbalance with dissipation monitoring(QCM-D)in real time.The results suggested that the amount of adsorbed BSA on the chitosan/PCL blend films decreased with the addition of chitosan,but the structure and viscoelastic properties of the adsorbed BSA layers were greatly affected by the surface micromorphology of chitosan/PCL blend films.BSA absorbed on the 25 wt% chitosan/PCL blend film with microphase separation showed larger adsorption reversibility,and preferred to form a loose,dissipative layer in comparison with those on other chitosan/PCL blend films without microphase separation.

  8. Assessment of DNA binding to human Rad51 protein by using quartz crystal microbalance and atomic force microscopy: effects of ADP and BRC4-28 peptide inhibitor.

    Science.gov (United States)

    Esnault, Charles; Renodon-Cornière, Axelle; Takahashi, Masayuki; Casse, Nathalie; Delorme, Nicolas; Louarn, Guy; Fleury, Fabrice; Pilard, Jean-François; Chénais, Benoît

    2014-12-01

    The interaction of human Rad51 protein (HsRad51) with single-stranded deoxyribonucleic acid (ssDNA) was investigated by using quartz crystal microbalance (QCM) monitoring and atomic force microscopy (AFM) visualization. Gold surfaces for QCM and AFM were modified by electrografting of the in situ generated aryldiazonium salt from the sulfanilic acid to obtain the organic layer Au-ArSO3 H. The Au-ArSO3 H layer was activated by using a solution of PCl5 in CH2 Cl2 to give a Au-ArSO2 Cl layer. The modified surface was then used to immobilize long ssDNA molecules. The results obtained showed that the presence of adenosine diphosphate promotes the protein autoassociation rather than nucleation around DNA. In addition, when the BRC4-28 peptide inhibitor was used, both QCM and AFM confirmed the inhibitory effect of BRC4-28 toward HsRad51 autoassociation. Altogether these results show the suitability of this modified surface to investigate the kinetics and structure of DNA-protein interactions and for the screening of inhibitors.

  9. Adsorption kinetics of laponite and ludox silica nanoparticles onto a deposited poly(diallyldimethylammonium chloride) layer measured by a quartz crystal microbalance and optical reflectometry.

    Science.gov (United States)

    Xu, Dan; Hodges, Chris; Ding, Yulong; Biggs, Simon; Brooker, Anju; York, David

    2010-12-07

    A quartz crystal microbalance with dissipation (QCM-D) and an optical reflectometer (OR) have been used to investigate the adsorption behavior of Laponite and Ludox silica nanoparticles at the solid-liquid interface. The adsorption of both Laponite and Ludox silica onto poly(diallyldimethylammonium chloride) (PDADMAC)-coated surfaces over the first few seconds were studied by OR. Both types of nanoparticles adsorbed rapidly and obtained a stable adsorbed amount after only a few minutes. The rate of adsorption for both nanoparticle types was concentration dependent. The maximum adsorption rate of Ludox nanoparticles was found to be approximately five times faster than that for Laponite nanoparticles. The QCM data for the Laponite remained stable after the initial adsorption period at each concentration tested. The observed plateau values for the frequency shifts increased with increasing Laponite particle concentration. The QCM data for the Ludox nanoparticles had a more complex long-time behavior. In particular, the dissipation data at 3 ppm and 10 ppm Ludox increased slowly with time, never obtaining a stable value within the duration of the experiment. We postulate here that this is caused by slow structural rearrangements of the particles and the PDADMAC within the surface adsorbed layer. Furthermore, the QCM dissipation values were significantly smaller for Laponite when compared with those for Ludox for all nanoparticle concentrations, suggesting that the Laponite adsorbed layer is more compact and more rigidly bound than the Ludox adsorbed layer.

  10. Quartz crystal microbalance with dissipation and microscale thermophoresis as tools for investigation of protein complex formation between thymidylate synthesis cycle enzymes.

    Science.gov (United States)

    Antosiewicz, Anna; Senkara, Elżbieta; Cieśla, Joanna

    2015-02-15

    Thymidylate synthase (TS) and dihydrofolate reductase (DHFR) play essential role in DNA synthesis, repair and cell division by catalyzing two subsequent reactions in thymidylate biosynthesis cycle. The lack of either enzyme leads to thymineless death of the cell, therefore inhibition of the enzyme activity is a common and successful tool in cancer chemotherapy and treatment of other diseases. However, the detailed mechanism of thymidylate synthesis cycle, especially the interactions between cycle enzymes and its role remain unknown. In this paper we are the first to show that human TS and DHFR enzymes form a strong complex which might be essential for DNA synthesis. Using two unique biosensor techniques, both highly sensitive to biomolecular interactions, namely quartz crystal microbalance with dissipation monitoring (QCM-D) and microscale thermophoresis (MST) we have been able to determine DHFR-TS binding kinetic parameters such as the Kd value being below 10 µM (both methods), k(on) = 0.46 × 10(4) M(-1) s(-1) and k(off) = 0.024 s(-1) (QCM-D). We also calculated Gibbs free energy as in the order of -30 kJ/mol and DHFR/TS molar ratio pointing to binding of 6 DHFR monomers per 1 TS dimer (both methods). Moreover, our data from MST analysis have pointed to positive binding cooperativity in TS-DHFR complex formation. The results obtained with both methods are comparable and complementary.

  11. Particle Characterization for a Protein Drug Product Stored in Pre-Filled Syringes Using Micro-Flow Imaging, Archimedes, and Quartz Crystal Microbalance with Dissipation.

    Science.gov (United States)

    Zheng, Songyan; Puri, Aastha; Li, Jinjiang; Jaiswal, Archana; Adams, Monica

    2017-01-01

    Micro-flow imaging (MFI) has been used for formulation development for analyzing sub-visible particles. Archimedes, a novel technique for analyzing sub-micron particles, has been considered as an orthogonal method to currently existing techniques. This study utilized these two techniques to investigate the effectiveness of polysorbate (PS-80) in mitigating the particle formation of a therapeutic protein formulation stored in silicone oil-coated pre-filled syringes. The results indicated that PS-80 prevented the formation of both protein and silicone oil particles. In the case of protein particles, PS-80 might involve in the interactions with the hydrophobic patches of protein, air bubbles, and the stressed surfaces of silicone oil-coated pre-filled syringes. Such interactions played a role in mitigating the formation of protein particles. Subsequently, quartz crystal microbalance with dissipation (QCM-D) was utilized to characterize the interactions associated with silicone oil, protein, and PS-80 in the solutions. Based on QCM-D results, we proposed that PS-80 likely formed a layer on the interior surfaces of syringes. As a result, the adsorbed PS-80 might block the leakage of silicone oil from the surfaces to solution so that the silicone oil particles were mitigated at the presence of PS-80. Overall, this study demonstrated the necessary of utilizing these three techniques cooperatively in order to better understand the interfacial role of PS-80 in mitigating the formation of protein and silicone oil particles.

  12. Mucoadhesion vs mucus permeability of thiolated chitosan polymers and their resulting nanoparticles using a quartz crystal microbalance with dissipation (QCM-D).

    Science.gov (United States)

    Oh, Sejin; Borrós, Salvador

    2016-11-01

    The aim of this present study was to evaluate the combination properties between mucoadhesion/mucus permeability of thiolated chitosans (TC) and their resulting nanoparticles using a quartz crystal microbalance with dissipation (QCM-D). The QCM-D experiments were conducted at pH 4 or 6.8 to assess the interaction between thiolated polymers, with low (TCL), medium (TCM) and high (TCH) contents of free thiol groups, and native porcine gastric mucin (NPGM). TCL was chosen for further carriers as it showed higher permeability into the NPGM layer compared to TCM and TCH. In this study, we describe a formulation of a novel carrier comprised by positively charged TCL, negatively charged DNA and degradable oligopeptide-modified poly(β-amino ester)s (PBAEs), which were employed in order to approach for tuning particle size and surface charge of complexes. TCL/PBAE complexes with or without DNA were characterized using dynamic light scattering. Mechanism of adsorption or permeation of the TCL/PBAE/DNA complexes into the NPGM barrier was investigated with QCM-D, which is a highly sensitive technique for studying nanomechanical (viscoelastic) changes of the substrates. This work might provide that the QCM-D technique would be a promising method to monitor the dynamic behaviour between complexes and NPGM.

  13. Application of a quartz crystal microbalance to the study of copper corrosion in acid solution inhibited by triazole-iodide protective films

    Energy Technology Data Exchange (ETDEWEB)

    Jope, D.; Sell, J.; Pickering, H.W.; Weil, K.G. [Pennsylvania State Univ., University Park, PA (United States). Dept. of Materials Science and Engineering

    1995-07-01

    When one uses one side of a quartz crystal microbalance as the working electrode in electrochemical experiments, mass changes can be monitored continuously with a sensitivity of a few nanograms per square centimeter. In this study the working electrode consisted of electrolytically deposited copper, exposed to 0.1M sodium sulfate at pH 3, open to the atmosphere and in some cases containing H{sub 2}O{sub 2}. Upon addition of one of the inhibitors, benzotriazole (BTA), tolyltriazole (TTA), carboxy-benzotriazole (CBT), or these inhibitors plus potassium iodide, the rate of frequency change decreases markedly. After removal of the inhibitors from the corrosive medium by fast solution exchange there is a marked continuing protective effect of the inhibitor films in the cases of BTA + KI and TTA + KI with the latter being the most stable and protective of all of the films. The results were qualitatively the same in the more corrosive solution containing H{sub 2}O{sub 2}.

  14. Characterization of the native and denatured herceptin by enzyme linked immunosorbent assay and quartz crystal microbalance using a high-affinity single chain fragment variable recombinant antibody.

    Science.gov (United States)

    Shang, Yuqin; Mernaugh, Ray; Zeng, Xiangqun

    2012-10-02

    Herceptin/Trastuzumab is a humanized IgG1κ light chain antibody used to treat some forms of breast cancer. A phage-displayed recombinant antibody library was used to obtain a single chain fragment variable (scFv, designated 2B4) to a linear synthetic peptide representing Herceptin's heavy chain CDR3. Enzyme linked immunosorbent assays (ELISAs) and piezoimmunosensor/quartz crystal microbalance (QCM) assays were used to characterize 2B4-binding activity to both native and heat denatured Herceptin. The 2B4 scFv specifically bound to heat denatured Herceptin in a concentration dependent manner over a wide (35-220.5 nM) dynamic range. Herceptin denatures and forms significant amounts of aggregates when heated. UV-vis characterization confirms that Herceptin forms aggregates as the temperature used to heat Herceptin increases. QCM affinity assay shows that binding stoichiometry between 2B4 scFv and Herceptin follows a 1:2 relationship proving that 2B4 scFv binds strongly to the dimers of heat denatured Herceptin aggregates and exhibits an affinity constant of 7.17 × 10(13) M(-2). The 2B4-based QCM assay was more sensitive than the corresponding ELISA. Combining QCM with ELISA can be used to more fully characterize nonspecific binding events in assays. The potential theoretical and clinical implications of these results and the advantages of the use of QCM to characterize human therapeutic antibodies in samples are also discussed.

  15. Electrochemistry, surface plasmon resonance, and quartz crystal microbalance: an associative study on cytochrome c adsorption on pyridine tail-group monolayers on gold.

    Science.gov (United States)

    Paulo, Tércio de F; de Sousa, Ticyano P; de Abreu, Dieric S; Felício, Nathalie H; Bernhardt, Paul V; Lopes, Luiz G de F; Sousa, Eduardo H S; Diógenes, Izaura C N

    2013-07-25

    Quartz crystal microbalance (QCM), surface plasmon resonance (SPR), and electrochemistry techniques were used to study the electron-transfer (ET) reaction of cytochrome c (Cyt c) on gold surfaces modified with thionicotinamide, thioisonicotinamide, 4-mercaptopyridine, 5-(4-pyridyl)-1,3,4-oxadiazole-2-thiol, 5-phenyl-1,3,4-oxadiazole-2-thiol, 4,4'-bipyridine, and 4,4'-dithiopyridine. The electrochemical results showed that the ET process is complex, being chiefly diffusional with steps depending on the orientation of the pyridine or phenyl tail group of the modifiers. The correlation between the electrochemical results and those acquired by SPR and QCM indicated the presence of an adlayer of Cyt c adsorbed on the thiolate SAMs. This adlayer, although being not electroactive, is essential to assess the ET reaction of Cyt c in solution. The results presented in this work are consistent with the statement (Feng, Z. Q.; Imabayashi, S.; Kakiuchi, T.; Niki, K. J. Electroanal. Chem. 1995, 394, 149-154) that the ET reaction of Cyt c can be explained in terms of the through-bond tunneling mechanism.

  16. Quartz crystal microbalance study of ionic strength and pH-dependent polymer conformation and protein adsorption/desorption on PAA, PEO, and mixed PEO/PAA brushes.

    Science.gov (United States)

    Delcroix, M F; Demoustier-Champagne, S; Dupont-Gillain, C C

    2014-01-14

    The conformation of polymer chains grafted on a substrate influences protein adsorption. In a previous study, adsorption/desorption of albumin was demonstrated on mixed poly(ethylene oxide) (PEO)/poly(acrylic acid) (PAA) brushes, triggered by solutions of adequate pH and ionic strength (I). In the present work, homolayers of PEO or PAA are submitted to saline solutions with pH from 3 to 9 and I from 10(-5) to 10(-1) M, and their conformation is evaluated in real time using quartz crystal microbalance with dissipation monitoring (QCM-D). Shrinkage/swelling of PAA chains and hydration and salt condensation in the brush are evidenced. The adsorption of human serum albumin (HSA) onto such brushes is also monitored in these different saline solutions, leading to a deep understanding of the influence of polymer chain conformation, modulated by pH and I, on protein adsorption. A detailed model of the conformation of PEO/PAA mixed brushes depending on pH and I is then proposed, providing a rationale for the identification of conditions for the successive adsorption and desorption of proteins on such mixed brushes. The adsorption/desorption of albumin on PEO/PAA is demonstrated using QCM-D.

  17. Separate measurement of the density and viscosity of a liquid using a quartz crystal microbalance based on admittance analysis (QCM-A)

    Science.gov (United States)

    Itoh, Atsushi; Ichihashi, Motoko

    2011-01-01

    We previously used a quartz crystal microbalance (QCM) to identify a frequency f2 that allows measurement of the mass load without being affected by the viscous load of a liquid in the liquid phase. Here, we determined that frequency in order to separately measure the density and viscosity of a Newtonian liquid. Martin et al separately measured the density and viscosity of a liquid by immersing two quartz resonators, i.e. a smooth-surface resonator and a textured-surface resonator, in the liquid. We used a QCM based on admittance analysis (QCM-A) in the current study to separately measure the viscosity and density of a liquid using only a textured-surface resonator. In the current experiments, we measured the density and viscosity of 500 µl of 10%, 30%, and 50% aqueous glycerol solutions and compared the measured values to reference values. The density obtained had an error of ±1.5% of reference values and the viscosity had an error of about ±5% of reference values. Similar results were obtained with 500 µl of 10%, 30%, and 50% ethanol solutions. Measurement was possible with a quartz resonator, so measurements were made with even smaller samples. The density and viscosity of a liquid were successfully determined with an extremely small amount of liquid, i.e. 10 µl, with almost the same precision as when using 500 µl of the liquid.

  18. Detection of Cry2A Protein Based on Quartz Crystal Microbalance Technique%Cry2A蛋白的石英晶体微天平检测

    Institute of Scientific and Technical Information of China (English)

    杜方; 黄新; 纪淑娟

    2014-01-01

    目的:建立检测苏云金芽孢杆菌Cry2A蛋白的石英晶体微天平(quartz crystal microbalance,QCM)传感方法.方法:根据抗原抗体相互作用原理,利用QCM技术,在金片表面修饰抗原所对应的单克隆抗体,对苏云金芽孢杆菌Cry2A蛋白进行检测研究.结果:该方法灵敏度达到1μg/mL,特异性好、重复性高.结论:该方法有利于为苏云金芽孢杆菌蛋白检测提供新思路,可以应用到实际样品的检测,在农产品转基因检测和进出口检验检疫中具有很好的应用前景.

  19. 1-Butyl-3-Methylimidazolium Tetrafluoroborate Film as a Highly Selective Sensing Material for Non-Invasive Detection of Acetone Using a Quartz Crystal Microbalance

    Directory of Open Access Journals (Sweden)

    Wenyan Tao

    2017-01-01

    Full Text Available Breath acetone serves as a biomarker for diabetes. This article reports 1-butyl-3-methylimidazolium tetrafluoroborate ([bmim][BF4], a type of room temperature ionic liquid (RTIL, as a selective sensing material for acetone. The RTIL sensing layer was coated on a quartz crystal microbalance (QCM for detection. The sensing mechanism is based on a decrease in viscosity and density of the [bmim][BF4] film due to the solubilization of acetone leading to a positive frequency shift in the QCM. Acetone was detected with a linear range from 7.05 to 750 ppmv. Sensitivity and limit of detection were found to be 3.49 Hz/ppmv and 5.0 ppmv, respectively. The [bmim][BF4]-modified QCM sensor demonstrated anti-interference ability to commonly found volatile organic compounds in breath, e.g., isoprene, 1,2-pentadiene, d-limonene, and dl-limonene. This technology is useful for applications in non-invasive early diabetic diagnosis.

  20. Quantification of the viscoelasticity of the bond of biotic and abiotic particles adhering to solid-liquid interfaces using a window-equipped quartz crystal microbalance with dissipation.

    Science.gov (United States)

    van der Westen, Rebecca; van der Mei, Henny C; De Raedt, Hans; Olsson, Adam L J; Busscher, Henk J; Sharma, Prashant K

    2016-12-01

    The quartz-crystal-microbalance-with-dissipation (QCM-D) has become a powerful tool for studying the bond viscoelasticity of biotic and abiotic colloidal particles adhering to substratum surfaces. A window-equipped QCM-D allows high-throughput analysis of the average bond viscoelasticity, measuring over 10(6) particles simultaneously in one single experiment. Other techniques require laborious analyses of individual particles. In this protocol, the quantitative derivation of the spring-constant and drag-coefficient of the bond between adhering colloidal particles and substratum surfaces using QCM-D is explained for bacteria and silica particles, using the particle-mass derived for validation. Bond viscoelasticity is calculated using a coupled resonator model, paying special attention to the protocol for mathematical fitting needed to obtain reliable quantitative output. Knowledge of the viscoelasticity of the bond between colloidal particles and substratum surfaces facilitates development of new strategies to detach adhering particles from or retain them on a surface. Copyright © 2016 Elsevier B.V. All rights reserved.

  1. 1-Butyl-3-Methylimidazolium Tetrafluoroborate Film as a Highly Selective Sensing Material for Non-Invasive Detection of Acetone Using a Quartz Crystal Microbalance

    Science.gov (United States)

    Tao, Wenyan; Lin, Peng; Liu, Sili; Xie, Qingji; Ke, Shanming; Zeng, Xierong

    2017-01-01

    Breath acetone serves as a biomarker for diabetes. This article reports 1-butyl-3-methylimidazolium tetrafluoroborate ([bmim][BF4]), a type of room temperature ionic liquid (RTIL), as a selective sensing material for acetone. The RTIL sensing layer was coated on a quartz crystal microbalance (QCM) for detection. The sensing mechanism is based on a decrease in viscosity and density of the [bmim][BF4] film due to the solubilization of acetone leading to a positive frequency shift in the QCM. Acetone was detected with a linear range from 7.05 to 750 ppmv. Sensitivity and limit of detection were found to be 3.49 Hz/ppmv and 5.0 ppmv, respectively. The [bmim][BF4]-modified QCM sensor demonstrated anti-interference ability to commonly found volatile organic compounds in breath, e.g., isoprene, 1,2-pentadiene, d-limonene, and dl-limonene. This technology is useful for applications in non-invasive early diabetic diagnosis. PMID:28117697

  2. Decoupling mass adsorption from fluid viscosity and density in quartz crystal microbalance measurements using normalized conductance modeling

    Science.gov (United States)

    Parlak, Z.; Biet, C.; Zauscher, S.

    2013-08-01

    We describe the physical understanding of a method which differentiates between the frequency shift caused by fluid viscosity and density from that caused by mass adsorption in the resonance of a quartz crystal resonator. This method uses the normalized conductance of the crystal to determine a critical frequency at which the fluid mass and fluid loss compensate each other. Tracking the shift in this critical frequency allows us to determine purely mass adsorption on the crystal. We extended this method to Maxwellian fluids for understanding the mass adsorption in non-Newtonian fluids. We validate our approach by real-time mass adsorption measurements using glycerol and albumin solutions.

  3. An erosion sensor based on a quartz crystal microbalance for quantitative determination of the cleaning efficiency in an ultrasonic vessel.

    Science.gov (United States)

    Jüschke, M; Koch, C; Dreyer, T

    2014-09-01

    The efficiency of ultrasonic cleaning vessels cannot be measured directly in an easy way. In the presented work, a sensor is developed which quantitatively measures the ablation of a test layer. The sensor element is a quartz crystal which is coated with a sacrificial layer. Small changes in mass of this layer can be measured by a frequency shift of the crystal oscillation. For measurements, a 10 MHz AT-cut quartz crystal was used in a cleaning vessel working at 44.9 kHz. To determine the frequency shift by the ablation of the test layer, the quartz crystal was driven by a frequency generator sweeping the frequency in the range of the resonance frequency and a characteristic frequency was determined. The test layer which was applied to the quartz crystal consisted of silica microparticles suspended in varnish. In a preliminary experiment using a commercial cleaner it could be shown that significant changes in resonance frequency by cavitation effect could be detected. The initial frequency shift of the sacrificial layer is reproducible within 10%. The test layer can be adapted to the conditions of the cleaning vessel. By changing the electrical input power of the vessel, a threshold in the cavitation erosion was found.

  4. Quartz Crystal Microbalance Coated with Sol-gel-derived Thin Films as Gas Sensor for NO Detection

    Directory of Open Access Journals (Sweden)

    S. J. O’Shea

    2003-10-01

    Full Text Available This paper presents the possibilities and properties of Indium tin oxide (ITO-covered quartz crystal as a NOx toxic gas-sensor. The starting sol-gel solution was prepared by mixing indium chloride dissolved in acetylacetone and tin chloride dissolved in ethanol (0-20% by weight. The ITO thin films were deposited on the gold electrodes of quartz crystal by spin-coating technique and subsequently followed a standard photolithography to pattern the derived films to ensure all sensors with the same sensing areas. All heat treatment processes were controlled below 500°C in order to avoid the piezoelectric characteristics degradation of quartz crystal (Quartz will lose its piezoelectricity at ~573°C due to the phase change from α to β. The electrical and structural properties of ITO thin films were characterized with Hall analysis system, TG/DTA, XRD, XPS, SEM and etc. The gas sensor had featured with ITO thin films of ~100nm as the receptor to sense the toxic gas NO and quartz crystal with frequency of 10MHz as the transducer to transfer the surface reactions (mass loading, etc into the frequency shift. A homemade setup had been employed to measure the sensor response under the static mode. The experimental results had indicated that the ITO-coated QCM had a good sensitivity for NO gas, ~12Hz/100ppm within 5mins. These results prove that the ITO-covered quartz crystals are usable as a gas sensor and as an analytical device.

  5. A living cell quartz crystal microbalance biosensor for continuous monitoring of cytotoxic responses of macrophages to single-walled carbon nanotubes

    Directory of Open Access Journals (Sweden)

    Marx Kenneth A

    2011-01-01

    Full Text Available Abstract Background Numerous engineered nanomaterials (ENMs exist and new ENMs are being developed. A challenge to nanotoxicology and environmental health and safety is evaluating toxicity of ENMs before they become widely utilized. Cellular assays remain the predominant test platform yet these methods are limited by using discrete time endpoints and reliance on organic dyes, vulnerable to interference from ENMs. Label-free, continuous, rapid response systems with biologically meaningful endpoints are needed. We have developed a device to detect and monitor in real time responses of living cells to ENMs. The device, a living cell quartz crystal microbalance biosensor (QCMB, uses macrophages adherent to a quartz crystal. The communal response of macrophages to treatments is monitored continuously as changes in crystal oscillation frequency (Δf. We report the ability of this QCMB to distinguish benign from toxic exposures and reveal unique kinetic information about cellular responses to varying doses of single-walled carbon nanotubes (SWCNTs. Results We analyzed macrophage responses to additions of Zymosan A, polystyrene beads (PBs (benign substances or SWCNT (3-150 μg/ml in the QCMB over 18 hrs. In parallel, toxicity was monitored over 24/48 hrs using conventional viability assays and histological stains to detect apoptosis. In the QCMB, a stable unchanging oscillation frequency occurred when cells alone, Zymosan A alone, PBs alone or SWCNTs without cells at the highest dose alone were used. With living cells in the QCMB, when Zymosan A, PBs or SWCNTs were added, a significant decrease in frequency occurred from 1-6 hrs. For SWCNTs, this Δf was dose-dependent. From 6-18 hrs, benign substances or low dose SWCNT (3-30 μg/ml treatments showed a reversal of the decrease of oscillation frequency, returning to or exceeding pre-treatment levels. Cell recovery was confirmed in conventional assays. The lag time to see the Δf reversal in QCMB plots

  6. Nanoassembled thin film gas sensors. III. Sensitive detection of amine odors using TiO2/poly(acrylic acid) ultrathin film quartz crystal microbalance sensors.

    Science.gov (United States)

    Lee, Seung-Woo; Takahara, Naoki; Korposh, Sergiy; Yang, Do-Hyeon; Toko, Kiyoshi; Kunitake, Toyoki

    2010-03-15

    Quartz crystal microbalance (QCM) gas sensors based on the alternate adsorption of TiO(2) and polyacrilic acid (PAA) were developed for the sensitive detection of amine odors. Individual TiO(2) gel layers could be regularly assembled with a thickness of approximately 0.3 nm by the gas-phase surface sol-gel process (GSSG). The thickness of the poly(acrylic acid) (PAA) layer is dependent on its molecular weight, showing different thicknesses of approximately 0.4 nm for PAA(25) (Mw 250,000) and 0.6-0.8 nm for PAA(400) (Mw 4,000,000). The QCM sensors showed a linear response to ammonia in the concentration range 0.3-15 ppm, depending on the deposition cycle of the alternate TiO(2)/PAA layer. The ammonia binding is based on the acid-base interaction to the free carboxylic acid groups of PAA and the limit of detection (LOD) of the 20-cycle TiO(2)/PAA(400) film was estimated to be 0.1 ppm when exposed to ammonia. The sensor response was very fast and stable in a wide relative humidity (rH) range of 30-70%, showing almost the same frequency changes at a given concentration of ammonia. Sensitivity to n-butylamine and ammonia was higher than to pyridine, which is owing to the difference of molecular weight and basicity of the amine analytes. The alternate TiO(2)/PAA(400) films have a highly effective ability to capture amine odors, and the ambient ammonia concentration of 15 ppm could be condensed up to approximately 20,000 ppm inside the films.

  7. Evaluating the Effect of Surface Roughness on Titanium Dioxide Nanoparticle Deposition using a Combined Quartz Crystal Microbalance with Dissipation (QCM-D) and Generalized Ellipsometry (GE) Technique

    Science.gov (United States)

    Kananizadeh, N.; Lee, J.; Rodenhausen, K. B.; Sekora, D.; Schubert, M.; Schubert, E.; Bartelt-Hunt, S.; Li, Y.

    2016-12-01

    Quantification and characterization of nanoparticles in soils and sediments are very challenging because they will interact not only with soil-water chemistry but also with highly heterogeneous soil and sediment surfaces. In this work, we measured the interaction of Titanium dioxide nanoparticles (nTiO2), the most extensively manufactured engineered materials, with engineered rough surfaces under varied ionic strength conditions. Innovative three-dimensional Silicon nanostructured surfaces, referred to here as slanted columnar thin films (SCTFs), were used to generate surface roughness with controlled heights of 50nm, 100nm, and 200nm. Using atomic layer deposition technique (ALD), surfaces of SCTF were coated with either silicon dioxide or aluminum oxides to represent the most abundant silica aquifer materials and metal oxide impurities, respectively. The interaction between nTiO2 and model rough surfaces was measured using quartz crystal microbalance with dissipation monitoring (QCM-D). The data were analyzed using a model that couples the viscoelastic effect with the surface roughness effect. No nTiO2 deposition was observed on neither flat nor rough silicon dioxide surfaces under ionic strength ranged from 0 to 100 mM NaCl. On the other hand, the deposition of nTiO2 on the aluminum oxides coated surfaces increased as the height of roughness increased. In parallel with QCM-D, a Generalized Ellipsometry (GE) was used to measure the mass of deposited nTiO2. The combination of QCM-D and GE revealed that the properties (i.e. porosity and rigidness) of attached nTiO2 layer on the QCM-D surfaces were dependent on ionic strength and surface roughness.

  8. A method of layer-by-layer gold nanoparticle hybridization in a quartz crystal microbalance DNA sensing system used to detect dengue virus

    Science.gov (United States)

    Chen, Sz-Hau; Chuang, Yao-Chen; Lu, Yi-Chen; Lin, Hsiu-Chao; Yang, Yun-Liang; Lin, Chih-Sheng

    2009-05-01

    Dengue virus (DENV) is nowadays the most important arthropod-spread virus affecting humans existing in more than 100 countries worldwide. A rapid and sensitive detection method for the early diagnosis of infectious dengue virus urgently needs to be developed. In the present study, a circulating-flow quartz crystal microbalance (QCM) biosensing method combining oligonucleotide-functionalized gold nanoparticles (i.e. AuNP probes) used to detect DENV has been established. In the DNA-QCM method, two kinds of specific AuNP probes were linked by the target sequences onto the QCM chip to amplify the detection signal, i.e. oscillatory frequency change (ΔF) of the QCM sensor. The target sequences amplified from the DENV genome act as a bridge for the layer-by-layer AuNP probes' hybridization in the method. Besides being amplifiers of the detection signal, the specific AuNP probes used in the DNA-QCM method also play the role of verifiers to specifically recognize their target sequences in the detection. The effect of four AuNP sizes on the layer-by-layer hybridization has been evaluated and it is found that 13 nm AuNPs collocated with 13 nm AuNPs showed the best hybridization efficiency. According to the nanoparticle application, the DNA-QCM biosensing method was able to detect dengue viral RNA in virus-contaminated serum as plaque titers being 2 PFU ml-1 and a linear correlation (R2 = 0.987) of ΔF versus virus titration from 2 × 100 to 2 × 106 PFU ml-1 was found. The sensitivity and specificity of the present DNA-QCM method with nanoparticle technology showed it to be comparable to the fluorescent real-time PCR methods. Moreover, the method described herein was shown to not require expensive equipment, was label-free and highly sensitive.

  9. Potential-dependent adsorption/desorption behavior of perfluorosulfonated ionomer on a gold electrode surface studied by cyclic voltammetry, electrochemical quartz microbalance, and electrochemical atomic force microscopy.

    Science.gov (United States)

    Masuda, Takuya; Ikeda, Kota; Uosaki, Kohei

    2013-02-19

    Potential-dependent adsorption/desorption behavior of perfluorosulfonated ionomer (PFSI) on a gold electrode was investigated by cyclic voltammetry (CV), electrochemical quartz crystal microbalance (EQCM), and electrochemical atomic force microscopy (EC-AFM) in a Nafion (i.e., PFSI) dispersed aqueous solution without any other electrolyte. It was found that PFSI serves as an electrolyte and that electrochemical measurements can be performed in this solution without any significant IR drop. PFSI molecules were adsorbed on the Au surface in the lying-down configuration in the potential range between 0 and 0.45 V, the amount of adsorbed PFSI increased when the potential was made more positive than 0.75 V, and the adsorbed PFSI fully desorbed from the surface at potentials more positive than 1.4 V where gold oxide was formed. Once the gold oxide had been reduced, PFSI readsorbed on the surface, albeit slowly. PFSI desorbed from the surface as the potential was made more negative than 0 V. These processes took place reversibly.

  10. Quartz crystal microbalance: a useful tool for studying thin polymer films and complex biomolecular systems at the solution-surface interface.

    Science.gov (United States)

    Marx, Kenneth A

    2003-01-01

    The quartz crystal microbalance (QCM) is a simple, cost effective, high-resolution mass sensing technique, based upon the piezoelectric effect. As a methodology, the QCM evolved a solution measurement capability in largely analytical chemistry and electrochemistry applications due to its sensitive solution-surface interface measurement capability. The technique possesses a wide detection range. At the low mass end, it can detect monolayer surface coverage by small molecules or polymer films. At the upper end, it is capable of detecting much larger masses bound to the surface. These can be complex arrays of biopolymers and biomacromolecules, even whole cells. In addition, the QCM can provide information about the energy dissipating properties of the bound surface mass. Another important and unique feature of the technique is the ability to measure mass and energy dissipation properties of films while simultaneously carrying out electrochemistry on solution species or upon film systems bound to the upper electrode on the oscillating quartz crystal surface. These measurements can describe the course of electropolymerization of a film or can reveal ion or solute transport within a film during changes in the film environment or state, including the oxidation state for an electroactive film driven by the underlying surface potential. The past decade has witnessed an explosive growth in the application of the QCM technique to the study of a wide range of molecular systems at the solution-surface interface, in particular, biopolymer and biochemical systems. In this report, we start with a brief historical and technical overview. Then we discuss the application of the QCM technique to measurements involving micellar systems, self-assembling monolayers and their phase transition behavior, molecularly imprinted polymers, chemical sensors, films formed using the layer-by-layer assembly technique, and biopolymer films and point out the utility of the electrochemical

  11. The impact of water and hydrocarbon concentration on the sensitivity of a polymer-based quartz crystal microbalance sensor for organic compounds

    Energy Technology Data Exchange (ETDEWEB)

    Pejcic, Bobby, E-mail: Bobby.Pejcic@csiro.au [CSIRO, Earth Science and Resource Engineering, PO Box 1130, Bentley, WA 6102 (Australia); Crooke, Emma [CSIRO, Earth Science and Resource Engineering, PO Box 1130, Bentley, WA 6102 (Australia); Doherty, Cara M.; Hill, Anita J. [CSIRO, Materials Science and Engineering, Locked Bag 33, Clayton Sth MDC, Vic 3169 (Australia); Myers, Matthew [CSIRO, Earth Science and Resource Engineering, PO Box 1130, Bentley, WA 6102 (Australia); University of Western Australia, School of Biomedical, Biomolecular and Chemical Sciences, Crawley, WA 6009 (Australia); Qi, Xiubin; Ross, Andrew [CSIRO, Earth Science and Resource Engineering, PO Box 1130, Bentley, WA 6102 (Australia)

    2011-10-03

    Highlights: {yields} The response of a polymer coated QCM sensor is affected by water soaking time. {yields} Polymer-water interfacial processes influence the QCM sensitivity for hydrocarbons. {yields} The QCM sensitivity of high Tg polymer films is affected by plasticization processes. - Abstract: Long-term environmental monitoring of organic compounds in natural waters requires sensors that respond reproducibly and linearly over a wide concentration range, and do not degrade with time. Although polymer coated piezoelectric based sensors have been widely used to detect hydrocarbons in aqueous solution, very little information exists regarding their stability and suitability over extended periods in water. In this investigation, the influence of water aging on the response of various polymer membranes [polybutadiene (PB), polyisobutylene (PIB), polystyrene (PS), polystyrene-co-butadiene (PSB)] was studied using the quartz crystal microbalance (QCM). QCM measurements revealed a modest increase in sensitivity towards toluene for PB and PIB membranes at concentrations above 90 ppm after aging in water for 4 days. In contrast, the sensitivity of PS and PSB coated QCM sensors depended significantly on the toluene concentration and increased considerably at concentrations above 90 ppm after aging in water for 4 days. Attenuated total reflectance Fourier transform infrared spectroscopy (ATR-FTIR) showed that there is a change in the sorption mechanism at higher toluene levels for PS and PSB. Positron annihilation lifetime spectroscopy (PALS) studies were performed to investigate the free volume properties of all polymers and to monitor any changes in the free volume size and distribution due to water and toluene exposure. The PALS did not detect any considerable variation in the free volume properties of the polymer films as a function of solution composition and soaking time, implying that viscoelastic and/or interfacial processes (i.e. surface area changes) are probably

  12. A method of layer-by-layer gold nanoparticle hybridization in a quartz crystal microbalance DNA sensing system used to detect dengue virus

    Energy Technology Data Exchange (ETDEWEB)

    Chen, S-H; Chuang, Y-C; Lu, Y-C; Lin, H-C; Yang, Y-L; Lin, C-S [Department of Biological Science and Technology, National Chiao Tung University, Hsinchu 30068, Taiwan (China)], E-mail: lincs@mail.nctu.edu.tw

    2009-05-27

    Dengue virus (DENV) is nowadays the most important arthropod-spread virus affecting humans existing in more than 100 countries worldwide. A rapid and sensitive detection method for the early diagnosis of infectious dengue virus urgently needs to be developed. In the present study, a circulating-flow quartz crystal microbalance (QCM) biosensing method combining oligonucleotide-functionalized gold nanoparticles (i.e. AuNP probes) used to detect DENV has been established. In the DNA-QCM method, two kinds of specific AuNP probes were linked by the target sequences onto the QCM chip to amplify the detection signal, i.e. oscillatory frequency change ({delta}F) of the QCM sensor. The target sequences amplified from the DENV genome act as a bridge for the layer-by-layer AuNP probes' hybridization in the method. Besides being amplifiers of the detection signal, the specific AuNP probes used in the DNA-QCM method also play the role of verifiers to specifically recognize their target sequences in the detection. The effect of four AuNP sizes on the layer-by-layer hybridization has been evaluated and it is found that 13 nm AuNPs collocated with 13 nm AuNPs showed the best hybridization efficiency. According to the nanoparticle application, the DNA-QCM biosensing method was able to detect dengue viral RNA in virus-contaminated serum as plaque titers being 2 PFU ml{sup -1} and a linear correlation (R{sup 2} = 0.987) of {delta}F versus virus titration from 2 x 10{sup 0} to 2 x 10{sup 6} PFU ml{sup -1} was found. The sensitivity and specificity of the present DNA-QCM method with nanoparticle technology showed it to be comparable to the fluorescent real-time PCR methods. Moreover, the method described herein was shown to not require expensive equipment, was label-free and highly sensitive.

  13. Electrochemical Quartz Crystal Nanobalance

    Science.gov (United States)

    Inzelt, György

    The method of piezoelectric microgravimetry (nanogravimetry) using an electrochemical quartz crystal microbalance (EQCM) or nanobalance (EQCN) can be considered as a novel and much more sensitive version of electrogravimetry. The EQCN technique has become a widely used technique in several areas of electrochemistry, electroanalytical chemistry, bioelectrochemistry, etc. [1-10]. Obviously, mass changes occurring during adsorption, sorption, electrosorption, electrodeposition, or spontaneous deposition can be followed, which is very helpful for the elucidation of reaction mechanism via identification of the species accumulated on the surface. These investigations include metal and alloy deposition, underpotential deposition, electroplating, synthesis of conducting polymers by electropolymerization, adsorption of biologically active materials, and analytical determination of small ions and biomolecules. Of course, the opposite processes, i.e., spontaneous dissolution, electrodissolution, corrosion, can also be studied. Electrochemical oscillations, in which the formation and oxidation of chemisorbed molecular fragments play a determining role, have been studied, too. The majority of the investigations have been devoted to ion and solvent transport associated with the redox transformations of electrochemically active polymers. Similar studies have been carried out regarding polynuclear surface layers such as metal hexacyanometalates as well as inorganic and organic microcrystals of different compositions.

  14. EQCM with air-gap excitation electrode. Calibration tests with copper and oxygen coatings

    Energy Technology Data Exchange (ETDEWEB)

    Bucur, R.V.; Mecea, V.M.; Carlsson, J.-O

    2003-10-15

    A holder for a quartz resonator with an adjustable air-gap excitation electrode (range: 0-300 {mu}m) is described, able to be used in an EQCM that is provided either with a metallic-film or a glued metallic-foil working electrode. An AT-cut plano-convex quartz crystal of 1.8 MHz and Pt-foil of 3 {mu}m thickness were used. Both the frequency shift and the quality factor of the quartz resonator were recorded during the calibration tests. Calibration data by electro-deposition of copper (in 0.1 M CuSO{sub 4}-solution) and oxygen (in both acid and basic solutions) on Pt-foil and Au-film electrodes, and at various air-gap widths, are presented. The frequency shifts for the Cu-calibration fit the Sauerbrey model at any air-gap width of the excitation electrode, while those for O-calibration fit only at relatively large values of the air-gap, >75 {mu}m. At small air-gap widths (<25 {mu}m), the O-calibration data deviate from the Sauerbrey model and yield an enhanced mass-sensitivity, up to 15 times higher. The different effects the air-gap width has on the response of the quartz resonator, as to the respective mass-variation of copper and oxygen layers deposited onto its surface, are ascribed to the difference in their features. Oxygen appears as a weakly bound, mono-atomic layer, while copper forms a rigid, strongly bound bulk layer.

  15. EQCM Study of Influence of Anion Nature on Electrochemical Reduction of Bismuth Sulfide in Nickel Plating Solution

    OpenAIRE

    Loreta TAMAŠAUSKAITĖ-TAMAŠIŪNAITĖ; Leonas NARUŠKEVIČIUS; Žielienė, Albina; Birutė ŠIMKŪNAITĖ-STANYNIENĖ; Genovaitė VALIULIENĖ; Aloyzas SUDAVIČIUS

    2011-01-01

    The influence of anion nature on the reduction of bismuth sulfide film deposited on gold using the successive ionic layer adsorption and reaction method in solutions containing Ni2+ ions has been investigated by electrochemical quartz crystal microbalance combined with cyclic voltammetry and X-ray photoelectron spectroscopy. It has been determined that the reduction of bismuth sulfide film in the nickel plating solution depends on the anion nature: larger cathodic current and mass changes (Dƒ...

  16. Impact of the electrochemical porosity and chemical composition on the lithium ion exchange behavior of polypyrroles (ClO4-, TOS-, TFSI-) prepared electrochemically in propylene carbonate. comparative EQCM, EIS and CV studies.

    Science.gov (United States)

    Dziewoński, Paweł Marek; Grzeszczuk, Maria

    2010-06-03

    the as grown PPy film occurs at initial cycles of the cation uptake causing irreversible swelling of the polymer phase. Mechanisms of the redox process and accompanying mass transport involving PPy films were investigated using comparatively three techniques: cyclic voltammetry (CV), electrochemical impedance spectroscopy (EIS) and electrochemical quartz crystal microbalance (EQCM).

  17. A New Quartz Crystal Microbalance Measuring Method with Expansive Frequency Range and Broadband Adaptive Response Capacity%新型宽频自适应石英晶体微天平测量方法

    Institute of Scientific and Technical Information of China (English)

    周俊鹏; 包宇; 林青; 逄仁山; 王连明; 牛利

    2014-01-01

    In order to solve the problems of present quartz crystal microbalance ( QCM ) measuring instruments, such as high demand for crystal cutting technology and uncomprehensive measurements for crystal parameters, a modified quadrature demodulation-based method was proposed with broadband adaptive response capacity and high frequency resolution. Moreover, it is also capable of measuring both resonant frequencies and dissipation factor D synchronously and continuously. Experimental results at room temperature indicated that the adaptive frequency range was 1-9 MHz while the frequency resolution was less than 1 Hz, measured resonance frequency shifts of crystals in the range scale linearly with the equal thickness increments of poly acrylic acid ( PAA) membrane on the working electrode, and with the volatilization of different solvent factor D is measured continuously and effectively along the time axis. To sum up, compared with traditional ones, this new method has lower material cost and more obtained parameters.%针对目前石英晶体微天平( Quartz crystal microbalance,QCM)仪器所存在的对晶体切割工艺要求过高,测量参数不够全面等问题,在正交解调法的基础上,提出了一种在较宽频率范围内具有自适应功能,测量频率分辨率高,并且可同时连续获取谐振频率和耗散因子D的测试方法。实验表明:室温下,频率测量自适应范围在1~9 MHz且频率分辨率小于1 Hz;随着工作电极聚丙烯酸( Poly acrylic acid,PAA)膜厚度的均匀叠加,测得范围内各晶体频率偏移呈线性变化;随着不同溶剂挥发,D因子测量结果在时间轴上连续有效。与传统方法相比,本方法具有耗材成本低,获取参数丰富等优点。

  18. Nucleation-fibrillation dynamics of Aβ1-40 peptides on liquid-solid surface studied by total-internal-reflection fluorescence microscopy coupled with quartz-crystal microbalance biosensor

    Science.gov (United States)

    Hamada, Hiroki; Ogi, Hirotsugu; Noi, Kentaro; Yagi, Hisashi; Goto, Yuji; Hirao, Masahiko

    2015-07-01

    We have successfully developed the total-internal-reflection-fluorescence microscopy combined with a quartz-crystal microbalance (TIRFM-QCM) biosensor, and monitored the nucleation-fibrillation phenomenon of amyloid β1-40 peptide on the naked quartz surface. The cross-β-sheet structures were visualized with the TIRFM using the thioflavin-T (Th-T) label, and other unlabeled aggregates were detected through the frequency change of the 58-MHz wireless-electrodeless QCM throughout the aggregation reaction. The QCM response indicates significant adsorption of the peptides on the quartz surface at the early stage, which is followed by fibrillation. The non-cross-β-sheet oligomers are first formed, and nuclei appear in the oligomer region, from which fibrils originate and elongate. The two-color TIRFM observation was performed after the aggregation reaction with the Nile-red label as well as the ThT label for identifying nucleation from non-β-sheet regions. An aggregation model is proposed.

  19. In-situ etch rate study of Hf{sub x}La{sub y}O{sub z} in Cl{sub 2}/BCl{sub 3} plasmas using the quartz crystal microbalance

    Energy Technology Data Exchange (ETDEWEB)

    Marchack, Nathan; Kim, Taeseung; Chang, Jane P., E-mail: jpchang@seas.ucla.edu [Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, California 90095 (United States); Blom, Hans-Olof [Ångström Laboratory, Uppsala University, P.O. Box 534, SE-751 21 Uppsala (Sweden)

    2015-05-15

    The etch rate of Hf{sub x}La{sub y}O{sub z} films in Cl{sub 2}/BCl{sub 3} plasmas was measured in-situ in an inductively coupled plasma reactor using a quartz crystal microbalance and corroborated by cross-sectional SEM measurements. The etch rate depended on the ion energy as well as the plasma chemistry. In contrast to other Hf-based ternary oxides, the etch rate of Hf{sub x}La{sub y}O{sub z} films was higher in Cl{sub 2} than in BCl{sub 3}. In the etching of Hf{sub 0.25}La{sub 0.12}O{sub 0.63}, Hf appeared to be preferentially removed in Cl{sub 2} plasmas, per surface compositional analysis by x-ray photoelectron spectroscopy and the detection of HfCl{sub 3} generation in mass spectroscopy. These findings were consistent with the higher etch rate of Hf{sub 0.25}La{sub 0.12}O{sub 0.63} than that of La{sub 2}O{sub 3}.

  20. APPLICATION OF QUARTZ CRYSTAL MICROBALANCE IN ATMOSPHERIC CORROSION INVESTIGATION%石英晶体微天平(QCM)在大气腐蚀研究中的应用

    Institute of Scientific and Technical Information of China (English)

    严川伟; 曹楚南; 林海潮

    2001-01-01

    石英晶体微天平(QCM)作为一种高灵敏度的质量检测手段,已经用于金属材料大气腐蚀动力学及其环境因素和缓蚀剂存在的影响规律的研究,对QCM在大气腐蚀研究中的应用进行了综述.%The application of quartz crystal microbalance (QCM) in the study of atmospheric corrosion is reviewed. QCM is available to measure mass changes of a nanngram order and has widely been used for in-situ investigations of atmospheric corrosion. The effects of environmental factors,corrosive gas constituents and gas-phase inhibitors on the atmospheric corrosion mechanism of metal materials have been studied with QCM. In the recent years, the atmospheric corrosivity probe based on QCM techniques has been developed. The characteristics and developing trend of QCM for atmospheric corrosion investigation and monitoring are analyzed and discussed

  1. pH- and Electro-Responsive Properties of Poly(acrylic acid) and Poly(acrylic acid)-block-poly(acrylic acid-grad-styrene) Brushes Studied by Quartz Crystal Microbalance with Dissipation Monitoring.

    Science.gov (United States)

    Borisova, O V; Billon, L; Richter, R P; Reimhult, E; Borisov, O V

    2015-07-14

    We report on the synthesis of novel pH- and electro-responsive polyelectrolyte brushes from a gold substrate by direct one-step nitroxide-mediated polymerization of acrylic acid (AA) or copolymerization of AA and styrene (S). In the latter case, amphiphilic brushes of block-gradient copolymers PAA-b-(PAA-grad-PS) comprising one PAA block and one block with the gradient sequence of AA and S were obtained. The block-gradient copolymers are initiated from the surface by the start of the PAA block. The brushes were characterized by XPS and ellipsometry. (1)H NMR confirmed the gradient sequence of the PAA-grad-PS copolymer block. The pH- and electro-responsive properties of the brushes were studied by quartz crystal microbalance with dissipation monitoring (QCM-D) in combination with electrochemistry. This method provides evidence of swelling of the PAA brushes proportional to the contour length of the chains at elevated pH, whereas the response functions of the block-gradient copolymers are more complex and point to intermolecular aggregation in the brush at low pH. Monitoring of the changes in resonance frequency and dissipation of the QCM-D also demonstrates that application of negative voltage to the substrate leads to swelling of the brush; application of a positive voltage provokes only a transient collapse of the brush in proportion to the applied voltage.

  2. In Situ Adsorption Studies at the Solid/Liquid Interface:Characterization of Biological Surfaces and Interfaces Using SumFrequency Generation Vibrational Spectroscopy, Atomic Force Microscopy,and Quartz Crystal Microbalance

    Energy Technology Data Exchange (ETDEWEB)

    Phillips, Diana Christine [Univ. of California, Berkeley, CA (United States)

    2006-01-01

    Sum frequency generation (SFG) vibrational spectroscopy, atomic force microscopy (AFM), and quartz crystal microbalance (QCM) have been used to study the molecular surface structure, surface topography and mechanical properties, and quantitative adsorbed amount of biological molecules at the solid-liquid interface. The molecular-level behavior of designed peptides adsorbed on hydrophobic polystyrene and hydrophilic silica substrates has been examined as a model of protein adsorption on polymeric biomaterial surfaces. Proteins are such large and complex molecules that it is difficult to identify the features in their structure that lead to adsorption and interaction with solid surfaces. Designed peptides which possess secondary structure provide simple model systems for understanding protein adsorption. Depending on the amino acid sequence of a peptide, different secondary structures (α-helix and β-sheet) can be induced at apolar (air/liquid or air/solid) interfaces. Having a well-defined secondary structure allows experiments to be carried out under controlled conditions, where it is possible to investigate the affects of peptide amino acid sequence and chain length, concentration, buffering effects, etc. on adsorbed peptide structure. The experiments presented in this dissertation demonstrate that SFG vibrational spectroscopy can be used to directly probe the interaction of adsorbing biomolecules with a surface or interface. The use of well designed model systems aided in isolation of the SFG signal of the adsorbing species, and showed that surface functional groups of the substrate are sensitive to surface adsorbates. The complementary techniques of AFM and QCM allowed for deconvolution of the effects of surface topography and coverage from the observed SFG spectra. Initial studies of biologically relevant surfaces are also presented: SFG spectroscopy was used to study the surface composition of common soil bacteria for use in bioremediation of nuclear waste.

  3. “固化水层”模型拓展石英晶体微天平的应用%Applications of Quartz Crystal Microbalance with Solidified Liquid Layer Model

    Institute of Scientific and Technical Information of China (English)

    顾莉娟; 汪杰; 马宏伟

    2013-01-01

    Quartz crystal microbalance (QCM) has many advantages in research,but the data interpretation has hindered its applications in many research fields,especially for application in liquid.Recently,we proposed'solidified liquid layer' (SLL) model to simplify the data analysis.In this article,some missing evidences are provided to demonstrate the SLL model.The thickness result from ellipsometry accords with the result from the SLL model.The SLL model predicts that 1 Hz signal respond to a 0.18-nm change of TSLL,which greatly improve the resolution of QCMs in liquid.These researches effectively improve our understanding in the nature of Au—S bond breakage and its breakage process.Our results show that the SLL model will improve the applications of QCM in many fields.%石英晶体微天平(QCM)在液态环境下的应用一直由于数据分析复杂而受到限制.最近,我们提出了“固化水层”模型(SLL)以简化QCM数据分析过程.本文进一步提供了SLL模型的有关数据.根据SLL模型,1 Hz QCM频率信号对应于0.18 nm SLL层厚度的变化,而大多数商业的QCM均可以达到该精度.因此,根据SLL模型设计的检测方案将具有很高的灵敏度.QCM作为生物传感器的应用也得以拓展,可以相信SLL模型将大大增强QCM的分析能力.

  4. Development of a rubber elongation factor, surface-imprinted polymer-quartz crystal microbalance sensor, for quantitative determination of Hev b1 rubber latex allergens present in natural rubber latex products.

    Science.gov (United States)

    Sontimuang, Chonlatid; Suedee, Roongnapa; Canyuk, Bhutorn; Phadoongsombut, Narubodee; Dickert, Franz L

    2011-02-21

    Molecularly imprinted polymers (MIPs) for screening to detect rubber latex allergens (Hev b1) in natural rubber based products were designed as artificial recognition polymeric materials coated onto a quartz crystal microbalance (QCM). The polymers were prepared using a stamp imprinting procedure after mixing optimum amounts of methacrylic acid-vinylpyrrolidone-dihydroxyethylene bisacrylamide and Hev b1 latex allergen proteins, obtained from rubber gloves. QCM measurements showed that the resulting polymer layers after removal of the proteins used in their preparation could incorporate structures and features down to nanometer scale of protein templates into the imprinted polymer much better than a non-specific control polymer under controlled sensor conditions and an optimized polymerization process. This selective polymer but not the non-selective polymer clearly distinguished between the latex allergen Hev b1 and proteins such as lysozyme, ovalbumin and bovine serum albumin, with a selectivity factor of from 2 to 4, and the response of the rubber elongation factors by an astonishing factor of 12. The imprinted cavities recognized specific binding sites and could distinguish among related hevein latex allergenic proteins isolated from fresh natural rubber latex; Hev b1, Hev b2, and Hev b3 with a selectivity factor of from 4 to 6. The different QCM measurements obtained presumably reflected slightly different conformations and affinities to the MIP binding sites. The sensor layers selectively adsorbed Hev b1 within minutes in amounts ranging from 10 to 1500 μg L⁻¹ and with a detection limit of 1 μg L⁻¹. This work has demonstrated that this new sensor provides a fast and reliable response to natural rubber latex protein, even after being extracted from the matrix of rubber gloves.

  5. Ion Movement in Polypyrrole/Dodecylbenzenesulphonate Films in aqueous and non-aqueous electrolytes

    DEFF Research Database (Denmark)

    Vidanapathirana, K.; Careem, M.A.; Skaarup, Steen

    2002-01-01

    The electrochemical characteristics during the redox process of polypyrrole (PPy) films, prepared using dodecylbenzenesulphonate (DBS-) dopant species, have been investigated using a combination of cyclic voltammetry and Electrochemical Quartz Crystal Microbalance (EQCM) measurements...

  6. Quartz Crystal Microbalance with Dissipation Monitoring

    Science.gov (United States)

    2014-11-06

    immobilized onto the gold sensor in citric buffer (pH = 4), rinsed and washed subsequently in cycles of citric buffer (pH = 4) and PBS buffer (pH...dissipation (tougher) at acidic pH, with excellent reversibility up to five cycles . At pH = 7.4, a higher dissipation was observed in the triblock...CcE20Cc (Figure 2) was engineered with a long glutamic acid (Glu)-abundant E20 block (red, containing 40 mol % of Glu) in the middle and joined at

  7. Electrodeposition of uranium in dimethyl sulfoxide and its inhibition by acetylacetone as studied by EQCM

    Energy Technology Data Exchange (ETDEWEB)

    Shirasaki, K. [Institute for Materials Research, Tohoku University, Sendai, Miyagi 980-8577 (Japan)]. E-mail: kshira@imr.tohoku.ac.jp; Yamamura, T. [Institute for Materials Research, Tohoku University, Sendai, Miyagi 980-8577 (Japan); Herai, T. [Institute for Materials Research, Tohoku University, Sendai, Miyagi 980-8577 (Japan); Shiokawa, Y. [Institute for Materials Research, Tohoku University, Sendai, Miyagi 980-8577 (Japan)

    2006-07-20

    In the study of the all-uranium redox-flow battery with a high efficiency, electrochemical investigations of the negative electrode reaction, i.e. U(IV)/U(III) of uranium {beta}-diketone complexes, is necessary in aprotic solvents. In our recent studies, the uranium(IV) acelylacetonate, known to show the simplest voltammograms due to a quasi-reversible U(IV)/U(III) reaction at -2.6 V versus Fc/Fc{sup +} in the solvent with the small donor number, shows more complicated voltammograms in the solvents with the larger donor numbers such as dimethyl sulfoxide (DMSO). For U{sup 4+} ion without acetylacetone in such solvents, several researchers reported an electrodeposition at around -1.6 to -2 V versus Fc/Fc{sup +}, whereas its details have not known at all. Therefore in this study, the electrode reactions of the U(IV)/U(III) and the U(III)/U(0) reaction of U(dmso){sub 8}(ClO{sub 4}){sub 4} were investigated by direct monitoring of weight changes of a Au electrode during potential sweeps by using the EQCM, as well as the HMDE. Also, an inhibition of the uranium electrodeposition by an addition of the acetylacetone was investigated.

  8. EQCM Study of Influence of Anion Nature on Electrochemical Reduction of Bismuth Sulfide in Nickel Plating Solution

    Directory of Open Access Journals (Sweden)

    Loreta TAMAŠAUSKAITĖ-TAMAŠIŪNAITĖ

    2011-03-01

    Full Text Available The influence of anion nature on the reduction of bismuth sulfide film deposited on gold using the successive ionic layer adsorption and reaction method in solutions containing Ni2+ ions has been investigated by electrochemical quartz crystal microbalance combined with cyclic voltammetry and X-ray photoelectron spectroscopy. It has been determined that the reduction of bismuth sulfide film in the nickel plating solution depends on the anion nature: larger cathodic current and mass changes (Dƒ are observed in the solution containing acetate anion as compared to those in the solution containing sulfate anion. As the reduction of bismuth sulfide film in the background solutions depends on the nature of anion, it influences the cathodic reduction of Ni2+ ions prior to OPD of Ni. A greater current and mass change (Dƒ is conditioned by simultaneously occurring reduction of bismuth sulfide film when the film is reduced in the acetate nickel plating electrolyte in contrast to that in the sulfate one.http://dx.doi.org/10.5755/j01.ms.17.1.244

  9. EQCM Study of Influence of Anion Nature on Electrochemical Reduction of Bismuth Sulfide in Nickel Plating Solution

    Directory of Open Access Journals (Sweden)

    Loreta TAMAŠAUSKAITĖ-TAMAŠIŪNAITĖ

    2011-03-01

    Full Text Available The influence of anion nature on the reduction of bismuth sulfide film deposited on gold using the successive ionic layer adsorption and reaction method in solutions containing Ni2+ ions has been investigated by electrochemical quartz crystal microbalance combined with cyclic voltammetry and X-ray photoelectron spectroscopy. It has been determined that the reduction of bismuth sulfide film in the nickel plating solution depends on the anion nature: larger cathodic current and mass changes (Dƒ are observed in the solution containing acetate anion as compared to those in the solution containing sulfate anion. As the reduction of bismuth sulfide film in the background solutions depends on the nature of anion, it influences the cathodic reduction of Ni2+ ions prior to OPD of Ni. A greater current and mass change (Dƒ is conditioned by simultaneously occurring reduction of bismuth sulfide film when the film is reduced in the acetate nickel plating electrolyte in contrast to that in the sulfate one.http://dx.doi.org/10.5755/j01.ms.17.1.244

  10. Gyroscopic Inertial Micro-Balance Azimuth Locator (GIMBAL) Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Research Support Instruments, Inc. (RSI) proposes the Gyroscopic Inertial Micro-Balance Azimuth Locator (GIMBAL) program to use an innovative encapsulated spinning...

  11. Analysis Of The Underpotential Deposition Of Cadmium On Copper

    OpenAIRE

    Kowalik R.

    2015-01-01

    In this study the process of deposition of cadmium on polycrystalline copper electrode in sulfate solution was investigated. The process of underpotential and bulk deposition was analyzed by classical electrochemical method: cyclic voltammetry(CV), anodic stripping voltammetry(ASV) and electrochemical quartz crystal microbalance(EQCM). The obtained results were compared with electrochemical impedance spectroscopy(EIS) measurements. CV, EQCM and EIS results suggest that the UPD of cadmium star...

  12. Quartz Crystal Microbalance Studies of Electrochemical Growth of Conducting Polymers

    Science.gov (United States)

    1989-06-15

    National Meeting of the Electrochemical Society , Hollywood, Florida, 1989 Corrosion Research Center Department of Chemical Engineering and Materials Science...176th Meeting of the Electrochemical Society , Extended Abstracts, October 1989 17COSATI CODES 18 SUBJECT TERMS (Continue an reverse it necesi4iy anid

  13. Molecularly Imprinted Quartz Crystal Microbalance Sensor (QCM for Bilirubin Detection

    Directory of Open Access Journals (Sweden)

    Çiğdem Çiçek

    2016-11-01

    Full Text Available This study aims the preparation of a QCM sensor for the detection of bilirubin in human plasma. Bilirubin-imprinted poly-(2-hydroxyethyl methacrylate-N-methacryloyl-l-tryptophan methyl ester (PHEMATrp nanofilm (MIP on the gold surface of a QCM chip was synthesized by the molecular imprinting technique. Meanwhile, the non-imprinted PHEMATrp (NIP nanofilm was synthesized by the same experimental technique to examine the imprinting effect. Characterization of MIP and NIP nanofilms on the QCM chip surface was achieved by atomic force microscopy (AFM, ellipsometry, Fourier transform infrared spectrophotometry-attenuated total reflectance (FTIR-ATR and contact angle measurements (CA. The observations indicated that the nanofilm was almost in a monolayer. Thereinafter, the imprinted and the non-imprinted QCM chips were connected to the QCM system to investigate kinetic and affinity properties. In order to examine the selectivity of the MIP-PHEMATrp nanofilm, competitive adsorption of bilirubin with cholesterol and estradiol was performed. Limit of detection (LOD and limit of quantitation (LOQ values were calculated as 0.45 μg/mL and 0.9 μg/mL, respectively.

  14. Electrodeposition of bismuth telluride thermoelectric films from a nonaqueous electrolyte using ethylene glycol

    NARCIS (Netherlands)

    Nguyen, H.P.; Wu, M.; Su, J.; Vullers, R.J.M.; Vereecken, P.M.; Fransaer, J.

    2012-01-01

    Ethylene glycol was studied as an electrolyte for the electrodeposition of thermoelectric bismuth telluride films by cyclic voltammetry, rotating ring disk electrode and electrochemical quartz crystal microbalance (EQCM). The reduction of both Bi3+ and Te4+ ions proceeds in one step without the form

  15. Microball lens integrated fiber probe for optical frequency domain imaging

    Institute of Scientific and Technical Information of China (English)

    Jae-Ho Han; J.U.Kang

    2011-01-01

    An integrated microball lens fiber catheter probe is demonstrated, which has better lateral resolution and longer working distance than a corresponding bare fiber probe with diverging beam for Fourier domain optical coherence tomography (FDOCT). Simulation results are shown to gain the effect of the distance between the microball lens and the bare fiber to the focusing plane and beam width. The freedom of modifying the working distance and lateral resolution is shown. This is achieved by changing the gap distance between the single-mode fiber and the microball lens within the packaged surgical needle catheter without using an additional beam expander having a fixed length. The probe successfully acquired cross-sectional images of ocular tissues from an animal sample with the proposed miniaturized imaging probe.%@@ An integrated microball lens fiber catheter probe is demonstrated,which has better lateral resolution and longer working distance than a corresponding bare fiber probe with diverging beam for Fourier domain optical coherence tomography(FDOCT).Simulation results are shown to gain the effect of the distance between the microball lens and the bare fiber to the focusing plane and beam width.The freedom of modifying the working distance and lateral resolution is shown.This is achieved by changing the gap distance between the single-mode fiber and the microball lens within the packaged surgical needle catheter without using an additional beam expander having a fixed length.The probe successfully acquired crosssectional images of ocular tissues from an animal sample with the proposed miniaturized imaging probe.

  16. Quartz Crystal Microbalance and Atomic Force Microscopy for Study of Carbohydrate-sensitive Multilayers Composed of Pheylboronic Acid Polymers%石英晶体微天平和原子力显微镜识别糖类化合物的苯硼酸接枝聚合物多层薄膜

    Institute of Scientific and Technical Information of China (English)

    袁文静; 钟彤; 闫晶; 薛中原; 齐伟; 王桦

    2015-01-01

    硼酸受体识别体系近年来被广泛用于糖的分子识别研究,硼酸在一定酸度条件下,可特异性结合含顺式邻位多羟基的物质(如二醇、糖等)。本实验利用EDC/NHS化学交联,3-氨基苯硼酸( APBA)与聚丙烯酸( PAA)反应,制得苯硼酸接枝的聚合物PAA-PBA,进而将此聚合物进行层层组装,获得苯硼酸功能化薄膜。利用石英晶体微天平( QCM)和原子力显微镜( AFM)分别从宏观和微观的角度监测分析了此薄膜表面对糖类化合物的识别性质。结果表明此类薄膜对一定浓度(>50μg/mL)的糖类化合物均能表现出明显识别,其中,对果糖识别最为明显。此体系抗干扰性好,可重复使用,长期保存后仍能较好保持性能。微观表面形貌观察发现糖类化合物在薄膜表面识别均匀,识别后薄膜表面粗糙度发生明显变化。本研究成果可望用于开发高选择性、高灵敏度的糖识别体系。%Boronic acids and their derivatives have been widely used in carbohydrate-sensitive materials because they can selectively bind 1,2-and 1,3-diol compounds, including sugars, to form cyclic boronate esters. In this work, pheylboronic acid ( PBA) moieties were grafted onto the backbone of poly( acrylic acid) ( PAA) through the condensation reaction between aminopheyl-boronic acid and carboxylic acid group of PAA in the presence of EDC/NHS, designed as PAA-PBA. Then the resulting PAA-PBA were assembled with poly ( ethyleneimine) ( PEI) to form PAA-PBA multilayer films. The sensing performance of the PEI/PAA-PBA film to carbohydrate (> 50 μg/mL ) , including glucose, fructose, mannose and galactose, has been investigated by combination of the complementary techniques of quartz crystal microbalance ( QCM ) and atomic force microscopy ( AFM) . It was demonstrated that the multilayer showed higher sensitivity to fructose than glucose, mannose and galactose. The interferences of ascorbic acid, uric acid and dopamine to the

  17. 40 CFR 92.110 - Weighing chamber and micro-balance.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 20 2010-07-01 2010-07-01 false Weighing chamber and micro-balance. 92... Weighing chamber and micro-balance. (a) Ambient conditions—(1) Temperature. The temperature of the chamber.... (b) Weighing balance specifications. The microbalance used to determine the weights of all...

  18. Drinking-Straw Microbalance and Seesaw: Stability and Instability

    Science.gov (United States)

    Chapman, Peter; Glasser, Leslie

    2015-01-01

    The mechanics of a beam balance are little appreciated and seldom understood. We here consider the conditions that result in a stable balance, with center of gravity below the fulcrum (pivot point), while an unstable balance results when the center of gravity is above the fulcrum. The highly sensitive drinking-straw microbalance, which uses a…

  19. Electrochemical quartz crystal microbalance study on Au-supported Pt adlayers for electrocatalytic oxidation of methanol in alkaline solution%电化学石英晶体微天平研究碱性介质中单层级铂原子修饰的金电极上甲醇的电催化氧化

    Institute of Scientific and Technical Information of China (English)

    黄钊; 贾学恩; 谢青季; 谭月明; 黄素清; 黄金花; 孟越; 姚守拙

    2010-01-01

    通过在Au电极表面欠电位沉积(UPD)Cu、再与Pt 源(H2PtCl6或K2PtCl4)进行置换反应,制得单层级Pt原子修饰的金电极(对H2PtCl6或K2PtCl4,所制电极分别记为(CuUPD-Pt(4+)n/AU或Pt(CuUPD-Pt(2+)n)/AU,n表示欠电位沉积一置换过程的重复次数).用电化学石英晶体微天平((EQCM)技术定量研究了所制电极,评估了其在碱性环境中催化甲醇氧化的质量比活性((SECA).结果表明,以H2PtCl.为Pt源所制电极Pt(CuUPD-Pt(4+)s)/Au)的活性更高,最大SECA高达35.7 mAμg '.根据EQCM结果计算了置换效率,籍此讨论了Pt原子在Au电极表面的层层组装结构,发现所制电极表面的裸Au位点分布百分数与实验结果(由Au0x还原峰电量测算)吻合.我们认为,EQCM技术是一种定量研究电极支撑的超薄催化剂的有效手段,这种高效的单层级贵金属催化剂有望在生物、能源、环境相关的电催化研究中进一步应用.

  20. The microball and Gammasphere: Research highlights and future directions

    Energy Technology Data Exchange (ETDEWEB)

    Devlin, M.; Sarantites, D.G.; LaFosse, D.R.; Lerma, F. [Washington Univ., Saint Louis, MO (United States)

    1996-12-31

    The Microball, a compact, 4{pi} charged-particle detector array, has been used in conjunction with Gammasphere for numerous physics experiments, and more are planned in the near future. A summary of this research program is presented, and the device and its capabilities are described. An example of its use in the study of the population and entry state excitation energy distributions of normal and superdeformed bands in {sup 82}Sr is presented.

  1. Crystal growth of pure and impurity-doped lead chloride single crystals from the melt

    NARCIS (Netherlands)

    Willemsen, B.

    An account is given of the purification and the crystal growing of lead chloride. Difficulties observed are blackening of the material and the formation of oxides. It is evident that oxygen should be avoided. The influence of water vapour is studied with mass spectroscopy, crystal microbalance

  2. Crystal growth of pure and impurity-doped lead chloride single crystals from the melt

    NARCIS (Netherlands)

    Willemsen, B.

    1971-01-01

    An account is given of the purification and the crystal growing of lead chloride. Difficulties observed are blackening of the material and the formation of oxides. It is evident that oxygen should be avoided. The influence of water vapour is studied with mass spectroscopy, crystal microbalance measu

  3. An asymmetric resonant coupling wireless power transmission link for Micro-Ball Endoscopy.

    Science.gov (United States)

    Sun, Tianjia; Xie, Xiang; Li, Guolin; Gu, Yingke; Deng, Yangdong; Wang, Ziqiang; Wang, Zhihua

    2010-01-01

    This paper investigates the design and optimization of a wireless power transmission link targeting Micro-Ball Endoscopy applications. A novel asymmetric resonant coupling structure is proposed to deliver power to an endoscopic Micro-Ball system for image read-out after it is excreted. Such a technology enables many key medical applications with stringent requirements for small system volume and high power delivery efficiency. A prototyping power transmission sub-system of the Micro-Ball system was implemented. It consists of primary coil, middle resonant coil, and cube-like full-direction secondary receiving coils. Our experimental results proved that 200mW of power can be successfully delivered. Such a wireless power transmission capability could satisfy the requirements of the Micro-Ball based endoscopy application. The transmission efficiency is in the range of 41% (worst working condition) to 53% (best working condition). Comparing to conventional structures, Asymmetric Resonant Coupling Structure improves power efficiency by 13%.

  4. Micro-Ball Lens Array Fabrication in Photoresist Using Ptfe Hydrophobic Effect

    CERN Document Server

    Shyu Ruey Fang; Tsai Wen Ren; Tsai Jhy Cherng

    2007-01-01

    This paper presents a simple method to fabricate micro-ball lens and its array. The key technology is to use the hydrophobic characteristics of polyterafluoroethylene (PTFE) substrate. High contact angle between melted photoresist pattern and PTFE can generate micro-ball lens and its array. PTFE thin film was spun onto a silicon wafer and dried in oven. Photoresist AZ4620 was used to pattern micro-columns with different diameters 60, 70 and 80 $\\mu$m. A thermal reflow process then was applied to melt these micro-column patterns resulted in micro-ball lens array. The achieved micro-ball lens array with diameter 98 $\\mu$m was fabricated using 80 $\\mu$m in diameter patterns. This method provides a simple fabrication process and low material cost.

  5. A Study on Tannic Acid-doped Polypyrrole Films on Gold Electrodes for Selective Electrochemical Detection of Dopamine

    OpenAIRE

    Shouzhuo Yao; Yunlong Li; Zhili Li; Qingji Xie; Ling Jiang

    2005-01-01

    Tannic acid-doped polypyrrole (PPY/TA) films have been grown on gold electrodes for selective electrochemical detection of dopamine (DA). Electrochemical quartz crystal microbalance (EQCM) studies revealed that, in vivid contrast to perchlorate-doped polypyrrole films (PPY/ClO4 -), the redox switching of PPY/TA films in aqueous solutions involved only cation transport if the solution pH was greater than 3∼4. The PPY/TA Au electrodes also exhibited attractive permselectivity for electroactive ...

  6. An Application of Real-time Error Compensation to a NC Twin-spindle Lathe

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    The processes of adsorption and oxidation of glycerol on Pt, Pt/Sbad and Pt/Sad electrodes were studied by using Cyclic voltammetry and electrochemical quartz crystal microbalance (EQCM). The results demonstrated that the oxidation of glycerol depended strongly on oxidation states of electrode surface. Sb adatoms on Pt surface can adsorb oxygen at relatively low potentials, and exhibit catalytic effects for glycerol oxidation. In contrast to Pt electrodes, the oxidation peak potential of glycerol on Pt surf...

  7. Quartz Microbalance Sensor for the Detection of Acrylamide

    Directory of Open Access Journals (Sweden)

    Christoph A. Schalley

    2004-10-01

    Full Text Available Abstract: Several macrocycles of the Hunter-Vögtle type have been identified as superior host compounds for the detection of small amounts of acrylamide. When coated onto the surface of a quartz microbalance, these compounds serve as highly sensitive and selective sensor-active layers for their use in electronic noses. In this study, differently substituted macrocycles were investigated including an open-chain analogue and a catenane. Their structure and functional groups are correlated with their observed affinities to acrylamide and related acids and amides. The much smaller response of the open-chain compound and the almost absent sensor response of the catenane suggest that binding occurs within the cavity of the macrocycle. Theoretical calculations agree well with the experimental data even though they do not yet take into account the arrangement of the macrocycles in the sensor-active layer. The lower detection limit of acrylamide is 10 parts per billion (ppb, which is impressively low for this type of sensor. Other related compounds such as acrylic acid, propionamide, or propionic acid show no or significantly lower affinities to the macrocycles in these concentration ranges.

  8. An Exploration of the Metal Dependent Selectivity of a Metalloporphyrins Coated Quartz Microbalances Array

    Directory of Open Access Journals (Sweden)

    Alexandro Catini

    2016-10-01

    Full Text Available Several studies in the last two decades have demonstrated that metalloporphyrins coated quartz microbalances can be fruitfully used in many diverse applications, spanning from medical diagnosis to environmental control. This large versatility is due to the combination of the flexibility of metalloporphyrins molecular design with the independence of the quartz microbalance signal from the interaction mechanisms. The nature of the metal atom in the metalloporphyrins is often indicated as one of the most effective tools to design differently selective sensors. However, the properties of sensors are also strongly affected by the characteristics of the transducer. In this paper, the role of the metal atom is investigated studying the response, to various volatile compounds, of six quartz microbalance sensors that are based on the same porphyrin but with different metals. Results show that, since quartz microbalances (QMB transducers can sense all the interactions between porphyrin and volatile compounds, the metal ion does not completely determine the sensor behaviour. Rather, the sensors based on the same molecular ring but with different metal ions show a non-negligible common behaviour. However, even if limited, the different metals still confer peculiar properties to the sensors and might drive the sensor array identification of the pool of tested volatile compounds.

  9. An Exploration of the Metal Dependent Selectivity of a Metalloporphyrins Coated Quartz Microbalances Array

    Science.gov (United States)

    Catini, Alexandro; Kumar, Raj; Capuano, Rosamaria; Martinelli, Eugenio; Paolesse, Roberto; di Natale, Corrado

    2016-01-01

    Several studies in the last two decades have demonstrated that metalloporphyrins coated quartz microbalances can be fruitfully used in many diverse applications, spanning from medical diagnosis to environmental control. This large versatility is due to the combination of the flexibility of metalloporphyrins molecular design with the independence of the quartz microbalance signal from the interaction mechanisms. The nature of the metal atom in the metalloporphyrins is often indicated as one of the most effective tools to design differently selective sensors. However, the properties of sensors are also strongly affected by the characteristics of the transducer. In this paper, the role of the metal atom is investigated studying the response, to various volatile compounds, of six quartz microbalance sensors that are based on the same porphyrin but with different metals. Results show that, since quartz microbalances (QMB) transducers can sense all the interactions between porphyrin and volatile compounds, the metal ion does not completely determine the sensor behaviour. Rather, the sensors based on the same molecular ring but with different metal ions show a non negligible common behaviour. However, even if limited, the different metals still confer peculiar properties to the sensors and might drive the sensor array identification of the pool of tested volatile compounds. PMID:27782032

  10. Development of a high-pressure microbalance for hydrogen storage materials

    DEFF Research Database (Denmark)

    Vestbø, Andreas Peter; Jensen, Jens Oluf; Bjerrum, Niels

    2007-01-01

    Pressure-composition isotherms (PCI's) help to determine thermodynamic properties related to hydrogen uptake of materials. PCI's are normally obtained volumetrically with a Sieverts type apparatus or gravimetrically with a microbalance. A potential problem with the gravimetric technique is that t...

  11. Compositional analysis of electrodeposited bismuth telluride thermoelectric thin films using combined electrochemical quartz crystal microgravimetry--stripping voltammetry.

    Science.gov (United States)

    Ham, Sunyoung; Jeon, Soyeon; Lee, Ungki; Park, Minsoon; Paeng, Ki-Jung; Myung, Noseung; Rajeshwar, Krishnan

    2008-09-01

    Bismuth telluride (Bi 2Te 3 ) is a benchmark material for thermoelectric power generation and cooling applications. Electrodeposition is a versatile technique for preparing thin films of this material; however, it affords films of variable composition depending on the preparation history. A simple and rapid assay of electrodeposited films, therefore, has both fundamental and practical importance. In this study, a new protocol for the electroanalysis of Bi 2Te 3 thin films is presented by combining the two powerful and complementary techniques of electrochemical quartz crystal microgravimetry (EQCM) and stripping voltammetry. First, any free (and excess) tellurium in the electrodeposited film was reduced to soluble Te ( 2- ) species by scanning to negative potentials in a 0.1 M Na 2SO 4 electrolyte, and the accompanying frequency increase (mass loss) was used to determine the content of free tellurium. The film was again subjected to cathodic stripping in the same medium (to generate Bi (0) and soluble Te (2-) from the Bi 2 Te 3 film component of interest), and the EQCM frequency change was used to determine the content of chemically bound Te in the Bi 2Te 3 thin film and thereby the compound stoichiometry. Finally, the EQCM frequency change during Bi oxidation to Bi (3+) and the difference between total Bi and Bi in Bi 2Te 3 resulted in the assay of free (excess) Bi in the electrodeposited film. Problems associated with the chemical/electrochemical stability of the free Bi species were circumvented by a flow electroanalysis approach. Data are also presented on the sensitivity of electrodeposited Bi 2Te 3 film composition to the electrodeposition potential. This newly developed method can be used for the compositional analysis of other thermoelectric thin-film material candidates in general.

  12. Chemically Selective Coated Quartz Crystal Microbalance (QCM) Array for Detection of Volatile Organic Chemicals

    Energy Technology Data Exchange (ETDEWEB)

    Bohuszewicz, T.V.; Frye-Mason, G.C.; Martin, S.J.; Osbourn, G.C. Bartholomew, J.W.; Schneider, T.W.; Spates, J.J.

    1998-11-04

    Liquid flow cells have been fabricated to prepare an array of QCMS operating simultaneously for detection and identification of VOCS in water. TWO signals, a tlequency response and a damping voltage response, were obtained per resonator. A blank QCM was used as a reference to account for changes in liquid density and viscosity. Nine different polymer coatings applied using a spin coat technique have been examined for VOC response under liquid flow conditions. A matrix of three classes of VOCS were examined for each coating with four chemicals in each class. The three classes of VOCS are polar, nonpolar and chlorinated. A pattern recognition technique, called visually empirical region of influence (VERI), was used to cluster the responses in n-dimensional space. Chemicals within a class varying by only one methyl group (e.g., toluene and xylene) are easily discriminated using only two different coatings with three different QCM responses. All chemicak were easily separated and detected with a total of 5 films and 6 responses with >99% accuracy.

  13. Capacitive Behavior in Conducting Polymers: AC Impedance and Quartz Crystal Microbalance Studies

    Science.gov (United States)

    1989-06-15

    Extended Abstracts, 175th National Meeting of the Electrochemical Society , Los Angeles, California, 1989 Corrosion Research Center Department of Chemical...114. DATE OF REPORT (Vear,Montha) 15PAGE COUNT Technical I Rom 7/88 TO 619I 89/06/15I 16. SUPPLEMENTARY NOTATION 175th Meeting of the Electrochemical ... Society , Extended Abstracts, May 1989 17 COSATI CODES IS. SUBJECT TERMS (Continue in reverie if necessary and identify by block number) FIELD GROUP

  14. Hydrolysis of model cellulose films by cellulosomes: Extension of quartz crystal microbalance techniques to multienzymatic complexes

    Science.gov (United States)

    Clostridium thermocellum, a well-studied cellulolytic bacterium, produces highly active cellulases in the form of cellulosomes. The ability of the cellulose binding module within the cellulosome to adhere C. thermocellum cells to the cellulosic substrate is considered to contribute to its high cellu...

  15. The Laser Ablation of Gold Films at the Electrode Surface of a Quartz Crystal Microbalance

    Science.gov (United States)

    1993-05-01

    to the QCM was controlled via a manual shutter. The laser beam was focussed onto the electrode surface of the QCM with a 150 mm f.l. lens. Fluence...A. Cross, H, Dallaporta, S. Lazare, H. Hiraoka, N. Merk and W. Marine, Appl. Surf Sci. 54 (1992) 278. 12. S. Lazare and V. Granier, J. App/. Phys. 63

  16. Chemically selective coated quartz-crystal-microbalance (QCM) array for detection of volatile organic chemicals

    Science.gov (United States)

    Schneider, Thomas W.; Frye-Mason, Gregory C.; Martin, Stephen J.; Spates, James J.; Bohuszewicz, Teresa V.; Osbourn, Gordon C.; Bartholomew, John W.

    1998-12-01

    Liquid flow cells have been fabricated to prepare an array of QCMs operating simultaneously for detection and identification of VOCs in water. Two signals, a frequency response and a damping voltage response, were obtained per resonator. A blank QCM was used as a reference to account for changes in liquid density and viscosity. Nine different polymer coatings applied using a spin coat technique have been examined for VOC response under liquid flow conditions. A matrix of three classes of VOCs were examined for each coating with four chemicals in each class. The three classes of VOCs are polar, nonpolar and chlorinated. A pattern recognition technique, called visually empirical region of influence, was used to cluster the responses in n- dimensional space. Chemicals within a class varying by only one methyl group (e.g., toluene and xylene) are easily discriminated using only two different coatings with three different QCM responses. All chemicals were easily separated and detected with a total of 5 films and 6 responses with >99% accuracy.

  17. Exploring silver ionic liquids for reaction-based gas sensing on a quartz crystal microbalance.

    Science.gov (United States)

    Li, Hsin-Yi; Hsu, Tzu-Hsuan; Chen, Chien-Yuan; Tseng, Ming-Chung; Chu, Yen-Ho

    2015-09-21

    Reaction-based, sensitive sensing of aldehyde and ketone gases in real time was effectively achieved on QCM chips thin-coated with silver ionic liquids and , respectively. The method platform developed in this work involves straightforward synthesis of functional silver ionic liquids in water, and is label-free and highly chemoselective with superior gas reactivity for and and, most significantly, totally insensitive to moisture.

  18. Reaction-based azide gas sensing with tailored ionic liquids measured by quartz crystal microbalance.

    Science.gov (United States)

    Tseng, Ming-Chung; Chu, Yen-Ho

    2014-02-18

    On the basis of the strain-promoted [3 + 2] cycloaddition reaction performed at ambient temperature, a label-free, online, and chemospecific gas-phase measurement of organic azides in real time was efficiently achieved on QCM chips thin-coated with tailored ionic liquid TIL 1.

  19. Quartz Crystal Microbalance Studies Of Dimethyl Methylphosphonate Sorption Into Trisilanolphenyl-Poss Films

    Science.gov (United States)

    2006-11-06

    VX. GB and GD dissolve in water and, at pH values PO OH F P O F O C H H H P O F O C H H H + Sarin (GB) Methylphosphono- fluoridic acid Propylene 5...quantitatively determined the amount of DMMP adsorbed onto an alumina-supported iron and cerium oxide surface using FTIR.18,19 At 25 °C, the alumina...LB-film. This value is actually larger than the degradation capacity of alumina-supported iron and cerium oxide surfaces, reported to be 510 µmol of

  20. Estudio de la biodegradación hidrolítica de recubrimientos de biopolímeros/cerámico mediante EQCM./

    Directory of Open Access Journals (Sweden)

    Luisa Ardila

    2011-12-01

    Full Text Available El presente trabajo incluye el estudio de la biodegradación hidrolítica de recubrimientos de ácido poliláctico, ácido poliglicólico e hidrxiapatita, obtenidos en forma de películas delgadas electrodepositadas catódicamente sobre cristales de cuarzo piezoeléctricos, empleando un electrolito de diferentes realaciones de cada polímero/cerámico a un volumen de solvente, tiempo y voltaje definidos previamente. Posteriormente, los cristales recubiertos, fueron sumergidos durante 1, 3, 5, 7 y 10 días en fluido corporal simulado a temperatura y pH constantes. Los recubrimientos fueron analizados por EIS y QCM para encontrar una correlación entre los cambios de frecuencia con la carga total transferida.This work includes the study of the hydrolytic biodegradation of coatings based on polylactic acid, polyglycolic acid and hydroxyapatite. These coatings were obtained by cathodic electrodeposition over piezoelectric quartz crystals, using an electrolyte with different polymer/ceramic ratios but with a fixed time, voltage and volume of solvent. The films obtained were immersed into a simulated body fluid (SBF during 1, 3, 5, 7 and 10 days at constant temperature and pH. The coatings were analyzed by EIS and QCM to find a correlation between frequency changes and the total transferred mass.

  1. Identity of Passive Film Formed on Aluminum in Li-ion BatteryElectrolytes with LiPF6

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Xueyuan; Devine, T.M.

    2006-09-01

    The passive film that forms on aluminum in 1:1 ethylene carbonate + ethylmethyl carbonate with 1.2M LiPF{sub 6} and 1:1 ethylene carbonate + dimethyl carbonate with 1.0M LiPF{sub 6} was investigated by a combination of electrochemical quartz crystal microbalance measurements (EQCM), electrochemical impedance spectroscopy (EIS), and x-ray photoelectron spectroscopy. During anodic polarization of aluminum a film of AlF{sub 3} forms on top of the air-formed oxide, creating a duplex, or two-layered film. The thickness of the AlF{sub 3} increases with the applied potential. Independent measurements of film thickness by EQCM and EIS indicate that at a potential of 5.5V vs. Li/Li{sup +}, the thickness of the AlF{sub 3} is approximately 1 nm.

  2. Analysis Of The Underpotential Deposition Of Cadmium On Copper

    Directory of Open Access Journals (Sweden)

    Kowalik R.

    2015-09-01

    Full Text Available In this study the process of deposition of cadmium on polycrystalline copper electrode in sulfate solution was investigated. The process of underpotential and bulk deposition was analyzed by classical electrochemical method: cyclic voltammetry(CV, anodic stripping voltammetry(ASV and electrochemical quartz crystal microbalance(EQCM. The obtained results were compared with electrochemical impedance spectroscopy(EIS measurements. CV, EQCM and EIS results suggest that the UPD of cadmium starts below potential −0.4 V vs Ag/AgCl. Additionally the stripping analysis indicates the formation of cadmium monolayer with different density of deposited atoms depending on the applied potential. The transition from UPD to bulk deposition occurs below potential −0,7 V.

  3. Ammonia sorption by Dawson acid studied by IR spectroscopy and microbalance

    Science.gov (United States)

    Micek-Ilnicka, A.; Gil, B.; Lalik, E.

    2005-04-01

    Using in-situ microbalance and infrared spectroscopy techniques the double ammonia proton complexation was traced. The results confirm the formation of N 2H 7+ dimer in solid Dawson acid H 6P 2W 18O 62, previously reported only for N 2H 7I and for (N 2H 7) 4SiW 12O 40. The formation of such dimers was evidenced by the microbalance results, the molar ratio of ammonia to proton was measured as 2:1 at 10.7 kPa and 298 K. The formation of NH 4+ monomer (band at 1410 cm -1) and N 2H 7+ dimer (1460 cm -1) was revealed by IR spectroscopy. Enthalpy of ammonia sorption on Dawson structure was calculated to be -127.9 kJ mol -1, indicating the lower acid strength of Dawson-type compared to that of the Keggin-type heteropolyacids, like H 4SiW 12O 40.

  4. Electrochemical characterization of electrolytes for lithium-ion batteries based on lithium difluoromono(oxalato)borate

    Energy Technology Data Exchange (ETDEWEB)

    Zugmann, Sandra; Moosbauer, Dominik; Amereller, Marius; Schreiner, Christian; Wudy, Franz; Gores, Heiner Jakob [Workgroup ' ' Electrochemistry and Electrolytes' ' , Institute of Physical and Theoretical Chemistry, University of Regensburg, Universtaetsstr. 31, D-93040 Regensburg, Bavaria (Germany); Schmitz, Rene; Schmitz, Raphael; Isken, Philipp; Dippel, Christian; Mueller, Romek; Kunze, Miriam; Lex-Balducci, Alexandra; Winter, Martin [Institute of Physical Chemistry, Westfaelische Wilhelms-University Muenster, Corrensstrasse 28/30, 48149 Muenster (Germany)

    2011-02-01

    The salt lithium difluoromono(oxalato)borate (LiDFOB) showed some promising results for lithium-ion-cells. It was synthesized via a new synthetic route that avoids chloride impurities. Here we report the properties of its solutions solvent blend ethylene carbonate/diethyl carbonate (3:7, mass ratio), including its conductivity, cationic transference number, hydrolysis, Al-current collector corrosion-protection ability and its cycling performance with some electrode materials. Some Al-corrosion studies were also performed with the help of our recently developed computer controlled impedance scanning electrochemical quartz crystal microbalance (EQCM) that proofed to be a useful tool for battery material investigations. (author)

  5. Electrochemical characterization of electrolytes for lithium-ion batteries based on lithium difluoromono(oxalato)borate

    Science.gov (United States)

    Zugmann, Sandra; Moosbauer, Dominik; Amereller, Marius; Schreiner, Christian; Wudy, Franz; Schmitz, René; Schmitz, Raphael; Isken, Philipp; Dippel, Christian; Müller, Romek; Kunze, Miriam; Lex-Balducci, Alexandra; Winter, Martin; Gores, Heiner Jakob

    The salt lithium difluoromono(oxalato)borate (LiDFOB) showed some promising results for lithium-ion-cells. It was synthesized via a new synthetic route that avoids chloride impurities. Here we report the properties of its solutions (solvent blend ethylene carbonate/diethyl carbonate (3:7, mass ratio), including its conductivity, cationic transference number, hydrolysis, Al-current collector corrosion-protection ability and its cycling performance with some electrode materials. Some Al-corrosion studies were also performed with the help of our recently developed computer controlled impedance scanning electrochemical quartz crystal microbalance (EQCM) that proofed to be a useful tool for battery material investigations.

  6. Note: A miniature oscillating microbalance for sampling ice and volcanic ash from a small airborne platform.

    Science.gov (United States)

    Airey, M W; Harrison, R G; Nicoll, K A; Williams, P D; Marlton, G J

    2017-08-01

    A lightweight and low power oscillating microbalance for in situ sampling of atmospheric ice and volcanic ash is described for airborne platforms. Using a freely exposed collecting wire fixed at only one end to a piezo transducer, the instrument collects airborne materials. Accumulated mass is determined from the change in natural frequency of the wire. The piezo transducer is used in a dual mode to both drive and detect the oscillation. Three independent frequency measurement techniques are implemented with an on-board microcontroller: a frequency sweep, a Fourier spectral method, and a phase-locked loop. These showed agreement to ±0.3 Hz for a 0.5 mm diameter collecting wire of 120 mm long, flown to 19 km altitude on a weather balloon. The instrument is well suited to disposable use with meteorological radiosondes, to provide high resolution vertical profiles of mass concentration.

  7. Quartz Microbalance Study of 400-angstrom Thick Films near the lambda Point

    Science.gov (United States)

    Chan, Moses H. W.

    2003-01-01

    In a recent measurement we observed the thinning of an adsorbed helium film induced by the confinement of critical fluctuations a few millikelvin below the lambda point. A capacitor set-up was used to measure this Casimir effect. In this poster we will present our measurement of an adsorbed helium film of 400 angstroms near the lambda point with a quartz microbalance. For films this thick, we must take into account the non-linear dynamics of the shear waves in the fluid. In spite of the added complications, we were able to confirm the thinning of the film due to the Casimir effect and the onset of the superfluid transition. In addition, we observe a sharp anomaly at the bulk lambda point, most likely related to critical dissipation of the first sound. This work is carried out in collaboration with Rafael Garcia, Stephen Jordon and John Lazzaretti. This work is funded by NASA's Office of Biological and Physical Research under grant.

  8. Note: A miniature oscillating microbalance for sampling ice and volcanic ash from a small airborne platform

    Science.gov (United States)

    Airey, M. W.; Harrison, R. G.; Nicoll, K. A.; Williams, P. D.; Marlton, G. J.

    2017-08-01

    A lightweight and low power oscillating microbalance for in situ sampling of atmospheric ice and volcanic ash is described for airborne platforms. Using a freely exposed collecting wire fixed at only one end to a piezo transducer, the instrument collects airborne materials. Accumulated mass is determined from the change in natural frequency of the wire. The piezo transducer is used in a dual mode to both drive and detect the oscillation. Three independent frequency measurement techniques are implemented with an on-board microcontroller: a frequency sweep, a Fourier spectral method, and a phase-locked loop. These showed agreement to ±0.3 Hz for a 0.5 mm diameter collecting wire of 120 mm long, flown to 19 km altitude on a weather balloon. The instrument is well suited to disposable use with meteorological radiosondes, to provide high resolution vertical profiles of mass concentration.

  9. Research on 2D representation method of wireless Micro-Ball endoscopic images.

    Science.gov (United States)

    Wang, Dan; Xie, Xiang; Li, Guolin; Gu, Yingke; Yin, Zheng; Wang, Zhihua

    2012-01-01

    Nowadays the interpretation of the images acquired by wireless endoscopy system is a tedious job for doctors. A viable solution is to construct a map, which is the 2D representation of gastrointestinal (GI) tract to reduce the redundancy of images and improve the understandability of them. The work reported in this paper addresses the problem of the 2D representation of GI tract based on a new wireless Micro-Ball endoscopy system with multiple image sensors. This paper firstly models the problem of constructing the map, and then discusses mainly on the issues of perspective distortion correction, image preprocessing and image registration, which lie in the whole problem. The perspective distortion correction algorithm is realized based on attitude angles, while the image registration is based on phase correlation method (PCM) and scale invariant feature transform (SIFT) combined with particular image preprocessing methods. Based on R channels of images, the algorithm can deal with 26.3% to 100% of image registration when the ratio of overlap varies from 25% to 80%. The performance and effectiveness of the algorithms are verified by experiments.

  10. Adsorption of Pluronic F-127 on Surfaces with Different Hydrophobicities Probed by Quartz Crystal Microbalance with Dissipation

    NARCIS (Netherlands)

    Nejadnik, M.R.; Olsson, A.L.J.; Sharma, P.K.; Mei, van der H.C.; Norde, W.; Busscher, H.J.

    2009-01-01

    Triblock copolymers of polyethylene oxide (PEO) and polypropylene oxide (PPO), that is, PEOn-PPOm-PEOn, better known as Pluronic can adsorb to surfaces in either a pancake or a brushlike configuration. The brushlike configuration is advantageous in numerous applications, since it constitutes a

  11. Charge Transport Processes of Immobilized Heteropolyanions at Self-assembled Monolayer Modified Gold Electrode by Electrochemical Quartz Crystal Microbalance Measurement

    Institute of Scientific and Technical Information of China (English)

    BU Xin-yuan; JIAO Lian-sheng; HAN Dong-xue; YANG Gui-fu

    2009-01-01

    ions in a 1 mol/L H2SO4 solution and played a key role in the abnormal change of the resonant fequency. Such a change was attributed to different packing densities derived by means of differently immobilized methods.

  12. Adsorption of Saliva Related Protein on Denture Materials: An X-Ray Photoelectron Spectroscopy and Quartz Crystal Microbalance Study

    Directory of Open Access Journals (Sweden)

    Akiko Miyake

    2016-01-01

    Full Text Available The aim of this study was to evaluate the difference in the adsorption behavior of different types of bovine salivary proteins on the PMMA and Ti QCM sensors are fabricated by spin-coating and sputtering onto bare QCM sensors by using QCM and X-ray photoelectron spectroscopy (XPS. SPM, XPS, and contact angle investigations were carried out to determine the chemical composition and surface wettability of the QCM surface. We discuss the quality of each sensor and evaluate the potential of the high-frequency QCM sensors by investigating the binding between the QCM sensor and the proteins albumin and mucin (a salivary-related protein. The SPM image showed a relatively homogeneous surface with nano-order roughness. The XPS survey spectra of the thin films coated on the sensors were similar to the binding energy of the characteristic spectra of PMMA and Ti. Additionally, the amount of salivary-related protein on the PMMA QCM sensor was higher than those on the Ti and Au QCM sensors. The difference of protein adsorption is proposed to be related to the wettability of each material. The PMMA and Ti QCM sensors are useful tools to study the adsorption and desorption of albumin and mucin on denture surfaces.

  13. Electrochemical polypyrrole formation from pyrrole 'adlayer'.

    Science.gov (United States)

    Plausinaitis, Deivis; Sinkevicius, Linas; Mikoliunaite, Lina; Plausinaitiene, Valentina; Ramanaviciene, Almira; Ramanavicius, Arunas

    2017-01-04

    In this research study, we investigated the morphology of polypyrrole nanostructures, which were formed during the electrochemical deposition of conducting polymer. An electrochemical quartz crystal microbalance (EQCM) cell equipped with a flow-through system was employed to exchange solutions of different compositions within the EQCM cell. When bare PBS buffer in the EQCM cell was exchanged with PBS buffer with pyrrole we observed a distinct increase in the resonance frequency Δf. This change in the resonance frequency and electrical capacitance, which was calculated from electrochemical impedance spectroscopy (EIS) data, illustrate that pyrrole on the surface of the gold electrode formed an adsorbed layer (adlayer). The formation of a pyrrole adlayer before the potential pulse that induced polymerization was investigated by QCM-based measurements. The electrochemical polymerization of this adlayer was induced by a single potential pulse and a nanostructured layer, which consisted of adsorbed polypyrrole (Ppy) nanoparticles with a diameter of 50 nm, was formed. QCM and EIS data revealed that by the next cycle of the electrochemical formation of Ppy, which was investigated after flow-through-based exchange of solutions, the initially formed Ppy surface was covered by the adlayer of pyrrole. This adlayer was desorbed when pyrrole was removed from the solution. When electrochemical polymerization was performed using 50 potential pulses, a Ppy layer, which had more complex morphology, was formed on the EQCM crystal. Scanning electron microscopy showed that the conductivity of this layer was unequally distributed. We observed that the polypyrrole layer formed by electrochemical deposition, which was performed using potential pulses, was formed out of aggregated spherical Ppy particles with a diameter of 50 nm.

  14. Application of the TEOM reactor for adsorption, diffusion and kinetic studies[TEOM=Tapered Element Oscillating Microbalance

    Energy Technology Data Exchange (ETDEWEB)

    Rebo, Hans Petter

    1999-07-01

    In Norway, the limited offshore oil resources, the abundance of natural gas and the need to recover associated gas from the crude oil production have made the utilisation of natural gas the focus of increased attention. Most products from refineries and chemical industry are formed by gas phase reactions over solid materials like metals, metal oxides and zeolites. Heterogeneous catalysts are in addition frequently used for environmental purposes and energy production. In the work described in this thesis, an experimental set-up was built and used to study some typical processes in heterogeneous catalysis. The set-up included a tapered element oscillating microbalance (TEOM) for measuring mass changes. The following properties of the TEOM were found particularly useful: (1) Frequent frequency counting makes the TEOM suitable for recording transient uptake curves, (2) High sensitivity of the microbalance makes it possible to work with low catalyst loading and still obtain high signal to noise ratio, and (3) Reliable kinetic data are obtained due to the fixed bed characteristics of the TEOM. Adsorption and diffusion of o-xylene and toluene in a commercial HZSM-5 zeolite were studied at 30, 100 and 200 {sup o}C and at partial pressures in the range of 0.002-0.1 bar. The effect of coke on the adsorption and diffusion properties were studied by adsorption experiments at 30 {sup o}C of ethane, toluene and n-hexane before and after coke formation during ethene oligomerisation at 475 {sup o}C and at P(ethene)=0.8 bar. The oligomerisation of ethene over HZSM-5 was used as a model reaction for comparing coke formation in a gravimetric microbalance and in the TEOM. The work also includes a study of coke formation and the effect of coke on the kinetics of propene dehydrogenation over Pt-Sn/Al{sub 2}O{sub 3} catalysts at 500-580 {sup o}C.

  15. Direct measurement of gas solubility and diffusivity in poly(vinylidene fluoride) with a high-pressure microbalance

    DEFF Research Database (Denmark)

    von Solms, Nicolas; Zecchin, Nicoletta; Rubin, Adam

    2005-01-01

    We present solubility and diffusion data for the gases methane and carbon dioxide in the polymer poly(vinylidene fluoride). The polymer was cut from extruded piping intended for use in offshore oil and gas applications. Measurements were carried out using a purpose-built high-pressure microbalance....... These properties were determined in the temperature range 80-120degreesC and in the pressure range 50-150bar for methane and 20-40bar for carbon dioxide. In general, good agreement was obtained for similar measurements reported in the literature. Solubility follows a Henry's law (linear) dependence with pressure...

  16. The sublimation kinetics of GeSe single crystals

    Science.gov (United States)

    Irene, E. A.; Wiedemeier, H.

    1975-01-01

    The sublimation kinetics of (001) oriented GeSe single crystal platelets was studied by high-temperature mass spectroscopy, quantitative vacuum microbalance techniques, and hot stage optical microscopy. For a mean experimental temperature of 563 K, the activation enthalpy and entropy are found to equal 32.3 kcal/mole and 19.1 eu, respectively. The vaporization coefficient is less than unity for the range of test temperatures, and decreases with increasing temperature. The combined experimental data are correlated by means of a multistep surface adsorption mechanism.

  17. Oscillatory Changes of the Heterogeneous Reactive Layer Detected with the Motional Resistance during the Galvanostatic Deposition of Copper in Sulfuric Solution.

    Science.gov (United States)

    Cuenca, Alejandro; Agrisuelas, Jerónimo; García-Jareño, José J; Vicente, Francisco

    2015-11-24

    Metallic copper was galvanostatically deposited on quartz|gold resonant electrodes by applying a constant current in a 0.5 M CuSO4/0.1 M H2SO4 aqueous solution. Galvanostatic copper deposition is one of the best methodologies to calibrate the electrochemical quartz crystal microbalances (EQCM), a gravimetric sensor to evaluate changes in mass during the electrochemical reactions through the Sauerbrey equation. The simultaneous measurement of mass, current density, and motional resistance by an EQCM with motional resistance monitoring allows us to characterize the processes occurring on the electrode surface and at the interfacial regions with unprecedented detail. During the galvanostatic copper deposition, Cu(H2O)4(OH)2 is accumulated close to the copper surface, generating a passive layer. This passive layer can act as Cu(2+) reservoir for the Cu(2+) → Cu process since the copper deposition is not affected. The analysis of motional resistance evolution in different experimental conditions reveals that the passive layer is formed by the reaction of oxidizing agents generated at the counter electrode with the metallic copper surface. The simplistic Cu(2+) → Cu process is completed with a more detailed mechanism, which includes the passive layer formation/dissolution and the transport of species from the counter electrode surface (Pt) to the working electrode surface. The results further support the calibration procedure of EQCM by the galvanostatic deposition of copper in sulfuric solutions. However, we suggest applying high current densities, separating the counter electrode and quartz|gold resonant electrode about 0.5 cm, and keeping oxygen in solution for the EQCM calibration. Moreover, the better interval time to calculate the Sauerbrey's constant from charge and resonant frequency data is between 150 and 300 s.

  18. The Adsorption and Oxidation of Isopropanol at Platinum Electrode in Alkaline Media%碱性介质中异丙醇在铂电极表面的吸附和电化学氧化

    Institute of Scientific and Technical Information of China (English)

    林珩; 陈国良; 郑子山; 周建章; 陈声培; 林仲华

    2005-01-01

    运用电化学循环伏安、原位FTIR反射光谱和石英晶体微天平(EQCM)等方法研究了碱性介质中异丙醇在Pt电极表面吸附和氧化行为.结果表明:碱性介质中异丙醇电氧化过程不存在自毒化现象.虽然电化学原位FTIR反射光谱未能检测到CO等毒性物种,但EQCM结果证明异丙醇或其解离产物吸附于铂电极上.在实验条件下,碱性介质中异丙醇在铂电极上氧化的最终产物只有丙酮,预示着碱性介质中异丙醇通过脱氢步骤氧化成丙酮.EQCM研究还从电极表面质量定量变化的角度提供了异丙醇吸附和电氧化反应机理的新数据.%The adsorption and oxidation of isopropanol in alkaline media at platinum electrode have been investigated by using electrochemical quartz crystal microbalance (EQCM) and in situ FTIR spectroscopy. The results show thatthere is no self-poisoning in the electrooxidation of isopropanol in alkaline media. Though no poison species, such as CO, are evidenced by in situ FTIR spectroscopy, the adsorption of isopropanol or its dissociative products on Pt surface is suggested by EQCM data. The final product of isopropanol oxidation is only acetone under experimental condition, which suggests that the oxidation of isopropanol into acetone takes place via dehydrogenation step. The EQCM studies provide quantitative results of surface mass variation and have thrown new light in the elucidating isopropanol oxidation.

  19. Note: Accurate determination of thickness of multiple layers of thin film deposited on a piezoelectric quartz crystal.

    Science.gov (United States)

    Wajid, Abdul

    2013-10-01

    Modern day piezoelectric quartz crystal microbalances for thin film deposition control are based on Z-match equation, which is mathematically valid for deposition of a single material on a given quartz crystal. When multiple layers are deposited, thickness and deposition rate errors accumulate due to mismatch of acoustic impedance of different materials. Here we present a novel method, based on the acoustic transfer matrix formalism, for accurate determination of thickness of an arbitrary number of layers of dissimilar materials deposited on a quartz crystal. Laboratory data show excellent accuracy of the method compared to conventional Z-match equation.

  20. Graphene–Selenium Hybrid Microballs as Cathode Materials for High-performance Lithium–Selenium Secondary Battery Applications

    Science.gov (United States)

    Youn, Hee-Chang; Jeong, Jun Hui; Roh, Kwang Chul; Kim, Kwang-Bum

    2016-08-01

    In this study, graphene–selenium hybrid microballs (G–SeHMs) are prepared in one step by aerosol microdroplet drying using a commercial spray dryer, which represents a simple, scalable continuous process, and the potential of the G–SeHMs thus prepared is investigated for use as cathode material in applications of lithium–selenium secondary batteries. These morphologically unique graphene microballs filled with Se particles exhibited good electrochemical properties, such as high initial specific capacity (642 mA h g‑1 at 0.1 C, corresponding to Se electrochemical utilisation as high as 95.1%), good cycling stability (544 mA h g‑1 after 100 cycles at 0.1 C 84.5% retention) and high rate capability (specific capacity of 301 mA h g‑1 at 5 C). These electrochemical properties are attributed to the fact that the G–SeHM structure acts as a confinement matrix for suppressing the dissolution of polyselenides in the organic electrolyte, as well as an electron conduction path for increasing the transport rate of electrons for electrochemical reactions. Notably, based on the weight of hybrid materials, electrochemical performance is considerably better than that of previously reported Se-based cathode materials, attributed to the high Se loading content (80 wt%) in hybrid materials.

  1. Monitoring the Growth Rate of HAp Crystal on the Surface of Ti/TiO_2 in SCS by a Quartz Crystal Microbalance

    Institute of Scientific and Technical Information of China (English)

    2005-01-01

    1 IntroductionCommercially pure titanium and some titanium alloys including Ti6Al4V have been widely used in the manufacture of dental and orthopaedic implants. Although bulk properties dictate the mechanical properties of biomaterials, tissue-biomaterial processes are surface phenomena and they are governed by surface properties. Moreover, bioactivity of titanium surfaces is not high enough to induce the direct growth of the bone tissue and good bone fixation takes several months. The application of hydrox...

  2. Crystals in crystals

    DEFF Research Database (Denmark)

    Christensen, Claus H.; Schmidt, I.; Carlsson, A.;

    2005-01-01

    A major factor governing the performance of catalytically active particles supported on a zeolite carrier is the degree of dispersion. It is shown that the introduction of noncrystallographic mesopores into zeolite single crystals (silicalite-1, ZSM-5) may increase the degree of particle dispersion...... of the zeolite particles, particularly after thermal treatment. When using mesoporous zeolites, the particles were evenly distributed throughout the mesopore system of the zeolitic support, even after calcination, leading to nanocrystals within mesoporous zeolite single crystals....

  3. Crystal science fundamentals

    OpenAIRE

    Ramachandran, V.; Halfpenny, PJ; Roberts, KJ

    2017-01-01

    The fundamentals of crystal science notably crystallography, crystal chemistry, crystal defects, crystal morphology and the surface chemistry of crystals are introduced with particular emphasis on organic crystals.

  4. Femtosecond Laser Fabrication of Cavity Microball Lens (CMBL) inside a PMMA Substrate for Super-Wide Angle Imaging.

    Science.gov (United States)

    Zheng, Chong; Hu, Anming; Kihm, Kenneth D; Ma, Qian; Li, Ruozhou; Chen, Tao; Duley, W W

    2015-07-01

    Since microlenses have to date been fabricated primarily by surface manufacturing, they are highly susceptible to surface damage, and their microscale size makes it cumbersome to handle. Thus, cavity lenses are preferred, as they alleviate these difficulties associated with the surface-manufactured microlenses. Here, it is shown that a high repetition femtosecond laser can effectively fabricate cavity microball lenses (CMBLs) inside a polymethyl methacrylate slice. Optimal CMBL fabrication conditions are determined by examining the pertinent parameters, including the laser processing time, the average irradiation power, and the pulse repetition rates. In addition, a heat diffusion modeling is developed to better understand the formation of the spherical cavity and the slightly compressed affected zone surrounding the cavity. A micro-telescope consisting of a microscope objective and a CMBL demonstrates a super-wide field-of-view imaging capability. Finally, detailed optical characterizations of CMBLs are elaborated to account for the refractive index variations of the affected zone. The results presented in the current study demonstrate that a femtosecond laser-fabricated CMBL can be used for robust and super-wide viewing micro imaging applications.

  5. Voltammetric and electrochemical gravimetric selective detection of interactions between Tl(I) and guanine and the influence on activity of DNA drug-intercalators.

    Science.gov (United States)

    Nowicka, Anna M; Mackiewicz, Marcin; Matysiak, Edyta; Krasnodebska-Ostrega, Beata; Stojek, Zbigniew

    2013-03-15

    The interactions of Tl(I), a well known toxic species, with selected oligonucleotides were examined. The oligonucleotide sequences selected for the investigation were taken from gene hOGG1 responsible for repairing of DNA damage. Cyclic voltammetry was particularly useful, since nitrogen N-7 in guanine can be electrooxidized while its binding with Tl(I) leads to the loss of electroactivity. So, this selected interaction could be quantitatively used in drawing Scatchard's plot and calculating the binding constants and the number of active sites in guanine molecules occupied by one metal ion. Further, we have shown that the presence of Tl(I) leads to a decrease in activity of doxorubicin (DOX), a popular anticancer drug, vs. DNA. The obtained circular dichroism (CD) spectra and the measurements with an electrochemical quartz crystal microbalance (EQCM) led to a conclusion that in the presence of monovalent thallium cations the DNA double helix was neither damaged/oxidized nor its conformation changed substantially.

  6. Activity and Stability of RuOx Based Electrocatalysts for the Oxygen Evolution Reaction

    DEFF Research Database (Denmark)

    Paoli, Elisa Antares

    . By coupling Electrochemical Quartz Crystal Microbalance (EQCM) measurements with Inductively Coupled Plasma – Mass Spectrometry (ICP-MS) analyses of the electrolyte, we emphasize the importance of monitoring the mass loss. Finally, the thesis focuses on improving the stability of ruthenium dioxide under OER......The focus of this Ph.D. thesis is on the electrocatalytic oxygen evolution reaction (OER) in acidic media for Proton Exchange Membrane (PEM) Electrolyser applications. This technology is an attractive alternative for storage of renewable energy, such as from solar and wind power, in small scale...... and stable OER catalysts. To contain costs and precious metals supply, the mass activity should be maximized. However, in order to define the properties of a catalyst, knowing the distinction between geometric and electronic effects is fundamental. It is not trivial to determine the intrinsic catalytic...

  7. Electrochemically Controlled Ion-exchange Property of Carbon Nanotubes/Polypyrrole Nanocomposite in Various Electrolyte Solutions

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Daiwon [Pacific Northwest National Laboratory, 902 Battelle Boulevard P.O. Box 999 Richland WA 99352 USA; Zhu, Chengzhou [School of Mechanical and Materials Engineering, Washington State University, Pullman, Washington 99164-2920 United States; Fu, Shaofang [School of Mechanical and Materials Engineering, Washington State University, Pullman, Washington 99164-2920 United States; Du, Dan [School of Mechanical and Materials Engineering, Washington State University, Pullman, Washington 99164-2920 United States; Engelhard, Mark H. [Pacific Northwest National Laboratory, 902 Battelle Boulevard P.O. Box 999 Richland WA 99352 USA; Lin, Yuehe [Pacific Northwest National Laboratory, 902 Battelle Boulevard P.O. Box 999 Richland WA 99352 USA; School of Mechanical and Materials Engineering, Washington State University, Pullman, Washington 99164-2920 United States

    2016-09-15

    The electrochemically controlled ion-exchange properties of multi-wall carbon nanotube (MWNT)/electronically conductive polypyrrole (PPy) polymer composite in the various electrolyte solutions have been investigated. The ion-exchange behavior, rate and capacity of the electrochemically deposited polypyrrole with and without carbon nanotube (CNT) were compared and characterized using cyclic voltammetry (CV), chronoamperometry (CA), electrochemical quartz crystal microbalance (EQCM), X-ray photoelectron spectroscopy (XPS) and scanning electron microscopy (SEM). It has been found that the presence of carbon nanotube backbone resulted in improvement in ion-exchange rate, stability of polypyrrole, and higher anion loading capacity per PPy due to higher surface area, electronic conductivity, porous structure of thin film, and thinner film thickness providing shorter diffusion path. Chronoamperometric studies show that electrically switched anion exchange could be completed more than 10 times faster than pure PPy thin film. The anion selectivity of CNT/PPy film is demonstrated using X-ray photoelectron spectroscopy (XPS).

  8. Transporte de carga em compósitos de polianilina/V2O5 Charge transportation in polyaniline/V2O5 composites

    Directory of Open Access Journals (Sweden)

    Fritz Huguenin

    2004-06-01

    Full Text Available In this work, composites formed from a mixture of V2O5 and polyaniline (PANI were investigated, for applications as cathode materials for secondary lithium batteries. Electrochemical quartz crystal microbalance (EQCM data show that charge compensation in the [PANI]0.3V2O5 nanocomposite is achieved predominantly by Li+ migration. However, the charge compensation in the [PANI]V2O5 microcomposite occurs by Li+ and ClO4- transport. Electrochemical Impedance Spectroscopy (EIS measurements reveal several benefits of nanohybrid formation, including the achievement of shorter ionic diffusion pathways, the higher diffusion rate of the lithium ion and also the higher electronic conductivity, which are responsible for a synergetic effect of the energy storage properties.

  9. Charge transportation in polyaniline/V2O5 composites; Transporte de carga em compositos de polianilina/V{sub 2}O{sub 5}

    Energy Technology Data Exchange (ETDEWEB)

    Huguenin, Fritz [Sao Paulo Univ., Sao Carlos, SP (Brazil). Inst. de Quimica; Torresi, Roberto M. [Sao Paulo Univ., SP (Brazil). Inst. de Quimica]. E-mail: huguenin@iqsc.usp.br

    2004-06-01

    In this work, composites formed from a mixture of V{sub 2}O{sub 5} and polyaniline (PANI) were investigated, for applications as cathode materials for secondary lithium batteries. Electrochemical quartz crystal microbalance (EQCM) data show that charge compensation in the [PANI]{sub 0.3}V{sub 2}O{sub 5} nanocomposite is achieved predominantly by Li{sup +} migration. However, the charge compensation in the [PANI]V{sub 2}O{sub 5} microcomposite occurs by Li{sup +} and Cl{sub O}{sup 4}- transport. Electrochemical Impedance Spectroscopy (EIS) measurements reveal several benefits of nanohybrid formation, including the achievement of shorter ionic diffusion pathways, the higher diffusion rate of the lithium ion and also the higher electronic conductivity, which are responsible for a synergetic effect of the energy storage properties. (author)

  10. Mechanism of the electrochemical deposition of samarium-based coatings

    Energy Technology Data Exchange (ETDEWEB)

    Ruiz, Edgar J. [Electrochemistry Department, Centro de Investigacion y Desarrollo Tecnologico en Electroquimica, Parque Tecnologico Queretaro Sanfandila, P.O. Box 064, Pedro Escobedo, 76700 Queretaro (Mexico); Ortega-Borges, Raul [Electrochemistry Department, Centro de Investigacion y Desarrollo Tecnologico en Electroquimica, Parque Tecnologico Queretaro Sanfandila, P.O. Box 064, Pedro Escobedo, 76700 Queretaro (Mexico); Godinez, Luis A. [Electrochemistry Department, Centro de Investigacion y Desarrollo Tecnologico en Electroquimica, Parque Tecnologico Queretaro Sanfandila, P.O. Box 064, Pedro Escobedo, 76700 Queretaro (Mexico); Chapman, Thomas W. [Electrochemistry Department, Centro de Investigacion y Desarrollo Tecnologico en Electroquimica, Parque Tecnologico Queretaro Sanfandila, P.O. Box 064, Pedro Escobedo, 76700 Queretaro (Mexico); Meas-Vong, Yunny [Electrochemistry Department, Centro de Investigacion y Desarrollo Tecnologico en Electroquimica, Parque Tecnologico Queretaro Sanfandila, P.O. Box 064, Pedro Escobedo, 76700 Queretaro (Mexico)]. E-mail: yunnymeas@cideteq.mx

    2006-11-12

    Samarium-based films have been shown to form from aqueous solutions on the surfaces of metallic substrates such as steel or aluminum, and their presence has been reported to decrease substantially the corresponding corrosion rate of the underlying metallic substrate. Based on previous reports on the deposition of oxides or hydroxides of the closely related element cerium, this work demonstrates that samarium films are formed following a similar mechanism, which involves as the fundamental step an increase in interfacial pH resulting from cathodic oxygen-reduction or hydrogen-evolution reactions. With cyclic voltammetry (CV), electrochemical quartz-crystal microbalance (EQCM) measurements, rotating-disk electrode (RDE) tests, and surface characterization techniques, namely, scanning electron microscopy (SEM) and X-ray surface microanalysis (EDX), the postulated mechanism was verified, and the surface morphology of the resulting films was correlated with the nature of the reduction reaction that triggers film formation.

  11. Axion Crystals

    CERN Document Server

    Ozaki, Sho

    2016-01-01

    The low-energy effective theories for gapped insulators are classified by three parameters: permittivity $\\epsilon$, permeability $\\mu$, and theta angle $\\theta$. Crystals with periodic $\\epsilon$ are known as photonic crystals. We here study the band structure of photons in a new type of crystals with periodic $\\theta$ (modulo $2\\pi$) in space, which we call the axion crystals. We find that the axion crystals have a number of new properties that the usual photonic crystals do not possess, such as the helicity-dependent photonic band gaps and the nonrelativistic gapless dispersion relation at small momentum. We briefly discuss possible realizations of axion crystals in condensed matter systems as well as high-energy physics.

  12. Investigation of fluoroethylene carbonate effects on tin-based lithium-ion battery electrodes.

    Science.gov (United States)

    Yang, Zhenzhen; Gewirth, Andrew A; Trahey, Lynn

    2015-04-01

    Electroless plating of tin on copper foil (2-D) and foams (3-D) was used to create carbon- and binder-free thin films for solid electrolyte interphase (SEI) property investigation. When electrochemically cycled vs lithium metal in coin cells, the foam electrodes exhibited better cycling performance than the planar electrodes due to electrode curvature. The effect of the additive/cosolvent fluoroethylene carbonate (FEC) was found to drastically improve the capacity retention and Coulombic efficiency of the cells. The additive amount of 2% FEC is enough to derive the benefits in the cells at a slow (C/9) cycling rate. The interfacial properties of Sn thin film electrodes in electrolyte with/without FEC additive were investigated using in situ electrochemical quartz crystal microbalance with dissipation (EQCM-D). The processes of the decomposition of the electrolyte on the electrode surface and Li alloying/dealloying with Sn were characterized quantitatively by surface mass change at the molecular level. FEC-containing electrolytes deposited less than electrolyte without FEC on the initial reduction sweep, yet increased the overall thickness/mass of SEI after several cyclic voltammetry cycles. EQCM-D studies demonstrate that the mass accumulated per mole of electrons (mpe) was varied in different voltage ranges, which reveals that the reduction products of the electrolyte with/without FEC are different.

  13. Controlling Solution-Mediated Reaction Mechanisms of Oxygen Reduction Using Potential and Solvent for Aprotic Lithium-Oxygen Batteries.

    Science.gov (United States)

    Kwabi, David G; Tułodziecki, Michał; Pour, Nir; Itkis, Daniil M; Thompson, Carl V; Shao-Horn, Yang

    2016-04-07

    Fundamental understanding of growth mechanisms of Li2O2 in Li-O2 cells is critical for implementing batteries with high gravimetric energies. Li2O2 growth can occur first by 1e(-) transfer to O2, forming Li(+)-O2(-) and then either chemical disproportionation of Li(+)-O2(-), or a second electron transfer to Li(+)-O2(-). We demonstrate that Li2O2 growth is governed primarily by disproportionation of Li(+)-O2(-) at low overpotential, and surface-mediated electron transfer at high overpotential. We obtain evidence supporting this trend using the rotating ring disk electrode (RRDE) technique, which shows that the fraction of oxygen reduction reaction charge attributable to soluble Li(+)-O2(-)-based intermediates increases as the discharge overpotential reduces. Electrochemical quartz crystal microbalance (EQCM) measurements of oxygen reduction support this picture, and show that the dependence of the reaction mechanism on the applied potential explains the difference in Li2O2 morphologies observed at different discharge overpotentials: formation of large (∼250 nm-1 μm) toroids, and conformal coatings (<50 nm) at higher overpotentials. These results highlight that RRDE and EQCM can be used as complementary tools to gain new insights into the role of soluble and solid reaction intermediates in the growth of reaction products in metal-O2 batteries.

  14. High performance nano-Ni/Graphite electrode for electro-oxidation in direct alkaline ethanol fuel cells

    Science.gov (United States)

    Soliman, Ahmed B.; Abdel-Samad, Hesham S.; Abdel Rehim, Sayed S.; Ahmed, Mohamed A.; Hassan, Hamdy H.

    2016-09-01

    Ni/Graphite electrocatalysts (Ni/G) are successfully prepared through electrodeposition of Ni from acidic (pH = 0.8) and feebly acidic (pH = 5.5) aqueous Ni (II) baths. The efficiencies of such electrodes are investigated as anodes for direct alkaline ethanol fuel cells through their ethanol electrooxidation cyclic voltammetric (CV) response in alkaline medium. A direct proportionality between the amount of the electrodeposited Ni and its CV response is found. The amounts of the deposited Ni from the two baths are recorded using the Electrochemical Quartz Crystal Microbalance (eQCM). The Ni/G electrodes prepared from the feebly acidic bath show a higher electrocatalytic response than those prepared from the acidic bath. Surface morphology of the Ni particles electrodeposited from feebly acidic bath appears in a nano-scale dimension. Various electrochemical experiments are conducted to confirm that the Ni/G ethanol electrooxidation CV response greatly depends on the pH rather than nickel ion concentration of the deposition bath. The eQCM technique is used to detect the crystalline phases of nickel as α-Ni(OH)2/γ-NiOOH and β-Ni(OH)2/β-NiOOH and their in-situ inter-transformations during the potentiodynamic polarization.

  15. RNA Crystallization

    Science.gov (United States)

    Golden, Barbara L.; Kundrot, Craig E.

    2003-01-01

    RNA molecules may be crystallized using variations of the methods developed for protein crystallography. As the technology has become available to syntheisize and purify RNA molecules in the quantities and with the quality that is required for crystallography, the field of RNA structure has exploded. The first consideration when crystallizing an RNA is the sequence, which may be varied in a rational way to enhance crystallizability or prevent formation of alternate structures. Once a sequence has been designed, the RNA may be synthesized chemically by solid-state synthesis, or it may be produced enzymatically using RNA polymerase and an appropriate DNA template. Purification of milligram quantities of RNA can be accomplished by HPLC or gel electrophoresis. As with proteins, crystallization of RNA is usually accomplished by vapor diffusion techniques. There are several considerations that are either unique to RNA crystallization or more important for RNA crystallization. Techniques for design, synthesis, purification, and crystallization of RNAs will be reviewed here.

  16. Protein Crystallization

    Science.gov (United States)

    Chernov, Alexander A.

    2005-01-01

    Nucleation, growth and perfection of protein crystals will be overviewed along with crystal mechanical properties. The knowledge is based on experiments using optical and force crystals behave similar to inorganic crystals, though with a difference in orders of magnitude in growing parameters. For example, the low incorporation rate of large biomolecules requires up to 100 times larger supersaturation to grow protein, rather than inorganic crystals. Nucleation is often poorly reproducible, partly because of turbulence accompanying the mixing of precipitant with protein solution. Light scattering reveals fluctuations of molecular cluster size, its growth, surface energies and increased clustering as protein ages. Growth most often occurs layer-by-layer resulting in faceted crystals. New molecular layer on crystal face is terminated by a step where molecular incorporation occurs. Quantitative data on the incorporation rate will be discussed. Rounded crystals with molecularly disordered interfaces will be explained. Defects in crystals compromise the x-ray diffraction resolution crucially needed to find the 3D atomic structure of biomolecules. The defects are immobile so that birth defects stay forever. All lattice defects known for inorganics are revealed in protein crystals. Contribution of molecular conformations to lattice disorder is important, but not studied. This contribution may be enhanced by stress field from other defects. Homologous impurities (e.g., dimers, acetylated molecules) are trapped more willingly by a growing crystal than foreign protein impurities. The trapped impurities induce internal stress eliminated in crystals exceeding a critical size (part of mni for ferritin, lysozyme). Lesser impurities are trapped from stagnant, as compared to the flowing, solution. Freezing may induce much more defects unless quickly amorphysizing intracrystalline water.

  17. Computational crystallization.

    Science.gov (United States)

    Altan, Irem; Charbonneau, Patrick; Snell, Edward H

    2016-07-15

    Crystallization is a key step in macromolecular structure determination by crystallography. While a robust theoretical treatment of the process is available, due to the complexity of the system, the experimental process is still largely one of trial and error. In this article, efforts in the field are discussed together with a theoretical underpinning using a solubility phase diagram. Prior knowledge has been used to develop tools that computationally predict the crystallization outcome and define mutational approaches that enhance the likelihood of crystallization. For the most part these tools are based on binary outcomes (crystal or no crystal), and the full information contained in an assembly of crystallization screening experiments is lost. The potential of this additional information is illustrated by examples where new biological knowledge can be obtained and where a target can be sub-categorized to predict which class of reagents provides the crystallization driving force. Computational analysis of crystallization requires complete and correctly formatted data. While massive crystallization screening efforts are under way, the data available from many of these studies are sparse. The potential for this data and the steps needed to realize this potential are discussed.

  18. An oscillating microbalance for meteorological measurements of ice and volcanic ash accumulation from a weather balloon platform

    Science.gov (United States)

    Airey, Martin; Harrison, Giles; Nicoll, Keri; Williams, Paul; Marlton, Graeme

    2017-04-01

    A new, low cost, instrument has been developed for meteorological measurements of the accumulation of ice and volcanic ash that can be readily deployed using commercial radiosondes and weather balloons. It is based on principles used by [1], an instrument originally developed to measure supercooled liquid water profiles in clouds. This new instrument introduces numerous improvements in terms of reduced complexity and cost. It uses the oscillating microbalance principle, whereby a wire vibrating at its natural frequency is subjected to increased loading of the property to be measured. The increase in mass modifies the wire properties such that its natural frequency of oscillation changes. By measuring this frequency, the increase in mass can be inferred and transmitted to a ground base station through the radiosonde's UHF antenna via the PANDORA interface [2], which has been previously developed to provide power and connection to the radiosonde telemetry. The device consists of a simple circuit board controlled by an ATMEGA microcontroller. For calibration, the controller is capable of driving the wire at specified frequencies via excitation by a piezo sounder upon which the wire is mounted. The same piezo sounder is also used during active operation to measure the frequency of the wire in its non-driven state in order to infer the mass change on the wire. A phase-locked loop implemented on the board identifies when resonance occurs and the measured frequency is stable, prompting the microcontroller to send the measurement through the data interface. The device may be used for any application that requires the measurement of incremental mass variation e.g. ice accumulation, frosting, or particle accumulation such as dust and volcanic ash. For the solid particle accumulation, a low temperature, high-tack, adhesive may be applied to the wire prior to deployment to collect the material. In addition, the same instrument may be used for ground-based applications, such as

  19. Crystal Data

    Science.gov (United States)

    SRD 3 NIST Crystal Data (PC database for purchase)   NIST Crystal Data contains chemical, physical, and crystallographic information useful to characterize more than 237,671 inorganic and organic crystalline materials. The data include the standard cell parameters, cell volume, space group number and symbol, calculated density, chemical formula, chemical name, and classification by chemical type.

  20. Drug-Protein Interactions for Clinical Research by Nucleic Acid Programmable Protein Arrays-Quartz Crystal Microbalance with Dissipation Factor Monitoring Nanoconductometric Assay

    Directory of Open Access Journals (Sweden)

    Claudio Nicolini

    2014-01-01

    Full Text Available Conductometric monitoring of drug-gene and drug-protein interactions is of fundamental importance in the field of molecular pharmacology. Here, we present our main findings and characterizations of an important antiblastic used in neuro-oncology (Temozolomide, interacting with selected proteins that represent predictive biomarkers of the rate survival of the patients, of the outcome of chemotherapy and resistance to drug itself (namely, BRIP1 and MLH1. We use our previously introduced two genes along with previously described Nucleic Acid Programmable Protein Arrays (NAPPA-based nanoconductometric sensor. We performed a positive control (Temozolomide plus MLH1 protein, a negative control (Temozolomide plus BRIP1 protein and a multi-gene experiment (Temozolomide plus BRIP1&MLH1 being co-expressed, showing that we are able to properly perform pharmacoproteomics tasks, discriminating each protein and drug unique conductance curve as well as their interactions, even in the presence of multi-proteins being immobilized. Moreover, in the last part of our paper, we used a multiple regression model in order to predict the behavior of Temozolomide when exposed to BRIP1&MLH1 co-expressed and we showed that we are able to predict the drug-protein interaction profile with a good regression coefficient.

  1. In situ investigation of dye adsorption on TiO2 films using a quartz crystal microbalance with a dissipation technique

    KAUST Repository

    Harms, Hauke A.

    2012-01-01

    Dye adsorption plays a crucial role in dye-sensitized solar cells. Herein, we demonstrate an in situ liquid-phase analytical technique to quantify in real time adsorption of dye and coadsorbates on flat and mesoporous TiO 2 films. For the first time, a molar ratio of co-adsorbed Y123 and chenodeoxycholic acid has been measured. © 2012 the Owner Societies.

  2. Surfactant softening of plant leaf cuticle model wax--a Differential Scanning Calorimetry (DSC) and Quartz Crystal Microbalance with Dissipation (QCM-D) study.

    Science.gov (United States)

    Fagerström, Anton; Kocherbitov, Vitaly; Westbye, Peter; Bergström, Karin; Arnebrant, Thomas; Engblom, Johan

    2014-07-15

    The aim was to quantify the softening effect that two surfactants (C10EO7 and C8G1.6) have on a plant leaf cuticle model wax. Effects on the thermotropic phase behavior and fluidity of the wax (C22H45OH/C32H66/H2O) were determined. The model wax is crystalline at ambient conditions, yet it is clearly softened by the surfactants. Both surfactants decreased the transition temperatures in the wax and the G″/G' ratio of the wax film increased in irreversible steps following surfactant exposure. C10EO7 has a stronger fluidizing effect than C8G1.6 due to stronger interaction with the hydrophobic waxes. Intracuticular waxes (IW) comprise both crystalline and amorphous domains and it has previously been proposed that the fluidizing effects of surfactants are due to interactions with the amorphous parts. New data suggests that this may be a simplification. Surfactants may also absorb in crevices between crystalline domains. This causes an irreversible effect and a softer cuticle wax.

  3. Macromolecular crystallization and crystal perfection

    CERN Document Server

    Chayen, Naomi E; Snell, Edward H

    2010-01-01

    Structural biology is key to our understanding of the mechanisms of biological processes. This text describes current methods and future frontiers in crystal growth and use of X-ray and neutron crystallography, in the context of automation of crystallization and generation of synchrotron X-ray and neutron beams.

  4. Liquid crystal tunable photonic crystal dye laser

    DEFF Research Database (Denmark)

    Buss, Thomas; Christiansen, Mads Brøkner; Smith, Cameron

    2010-01-01

    We present a dye-doped liquid crystal laser using a photonic crystal cavity. An applied electric field to the liquid crystal provides wavelength tunability. The photonic crystal enhances resonant interaction with the gain medium....

  5. Crystal Dislocations

    Directory of Open Access Journals (Sweden)

    Ronald W. Armstrong

    2016-01-01

    Full Text Available Crystal dislocations were invisible until the mid-20th century although their presence had been inferred; the atomic and molecular scale dimensions had prevented earlier discovery. Now they are normally known to be just about everywhere, for example, in the softest molecularly-bonded crystals as well as within the hardest covalently-bonded diamonds. The advent of advanced techniques of atomic-scale probing has facilitated modern observations of dislocations in every crystal structure-type, particularly by X-ray diffraction topography and transmission electron microscopy. The present Special Issue provides a flavor of their ubiquitous presences, their characterizations and, especially, their influence on mechanical and electrical properties.

  6. A dibutyl phthalate sensor based on a nanofiber polyaniline coated quartz crystal monitor.

    Science.gov (United States)

    Wang, You; Ding, Pengfei; Hu, Ruifen; Zhang, Jianming; Ma, Xingfa; Luo, Zhiyuan; Li, Guang

    2013-03-18

    Dibutyl phthalate (DBP) is a commonly used plasticizer and additive to adhesives, printing inks and nail polishes. Because it has been found to be a powerful reproductive and developmental toxicant, a sensor to monitor DBP in some working spaces and the environment is required. In this work polyaniline nanofibers were deposited on the electrode of a quartz crystal oscillator to form a Quartz Crystal Microbalance gas sensor. The coated quartz crystal and a non-coated quartz crystal were mounted in a sealed chamber, and their frequency difference was monitored. When DBP vapor was injected into the chamber, gas adsorption decreased the frequency of the coated quartz crystal oscillator and thereby caused an increase in the frequency difference between the two crystals. The change of the frequency difference was recorded as the sensor response. The sensor was extremely sensitive to DBP and could be easily recovered by N2 purging. A low measurement limit of 20 ppb was achieved. The morphologies of the polyaniline films prepared by different approaches have been studied by SEM and BET. How the nanofiber-structure can improve the sensitivity and stability is discussed, while its selectivity and long-term stability were investigated.

  7. Liquid Crystals

    Science.gov (United States)

    1990-01-01

    Thermochromic liquid crystals, or TLCs, are a type of liquid crystals that react to changes in temperature by changing color. The Hallcrest/NASA collaboration involved development of a new way to visualize boundary layer transition in flight and in wind tunnel testing of aircraft wing and body surfaces. TLCs offered a new and potentially better method of visualizing the boundary layer transition in flight. Hallcrest provided a liquid crystal formulation technique that afforded great control over the sensitivity of the liquid crystals to varying conditions. Method is of great use to industry, government and universities for aerodynamic and hydrodynamic testing. Company's principal line is temperature indicating devices for industrial use, such as non-destructive testing and flaw detection in electric/electronic systems, medical application, such as diagnostic systems, for retail sale, such as room, refrigerator, baby bath and aquarium thermometers, and for advertising and promotion specials. Additionally, Hallcrest manufactures TLC mixtures for cosmetic applications, and liquid crystal battery tester for Duracell batteries.

  8. Photonic crystals

    CERN Document Server

    Busch, Kurt; Wehrspohn, Ralf B; Föll, Helmut

    2006-01-01

    The majority of the contributions in this topically edited book stems from the priority program SPP 1113 ""Photonische Kristalle"" run by the Deutsche Forschungsgemeinschaft (DFG), resulting in a survey of the current state of photonic crystal research in Germany. The first part of the book describes methods for the theoretical analysis of their optical properties as well as the results. The main part is dedicated to the fabrication, characterization and modeling of two- and three-dimensional photonic crystals, while the final section presents a wide spectrum of applications: gas sensors, micr

  9. Ribbon Crystals

    DEFF Research Database (Denmark)

    Bohr, Jakob; Markvorsen, Steen

    2013-01-01

    A repetitive crystal-like pattern is spontaneously formed upon the twisting of straight ribbons. The pattern is akin to a tessellation with isosceles triangles, and it can easily be demonstrated with ribbons cut from an overhead transparency. We give a general description of developable ribbons...

  10. Therapeutic Crystals

    Science.gov (United States)

    Bond, Charles S.

    2014-01-01

    Some readers might not fully know what the difference is between crystallography, and the "new age" practice of dangling crystals around the body to capitalise on their healing energy. The latter is often considered to be superstition, while ironically, the former has actually resulted in real rationally-based healing of human diseases…

  11. Photonic crystals principles and applications

    CERN Document Server

    Gong, Qihuang

    2013-01-01

    IntroductionPrimary Properties of Photonic CrystalsFabrication of Photonic CrystalsPhotonic Crystal All-Optical SwitchingTunable Photonic Crystal FilterPhotonic Crystal LaserPhotonic Crystal Logic DevicesPhotonic Crystal Sensors

  12. Cobaltocenium-functionalized poly(propylene imine) dendrimers: redox and electromicrogravimetric studies and AFM imaging.

    Science.gov (United States)

    Takada, K; Díaz, D J; Abruña, H D; Cuadrado, I; González, B; Casado, C M; Alonso, B; Morán, M; Losada, J

    2001-03-02

    The first four generations of cobaltocenium-functionalized, diaminobutane-based poly(propylene imine) dendrimers DAB-dend-Cb,(PFb)x (x = 4, 8, 16, and 32; Cb=[Co(eta5-C5H4CONH)(eta5-C5H5)] (1-4) have been synthesized and characterized. The redox activity of the cobaltocenium centers in 1-4 has been characterized by using cyclic voltammetry and the electrochemical quartz-crystal microbalance (EQCM). All of the dendrimers exhibit reversible redox chemistry associated with the cobaltocenium/cobaltocene redox couple. Upon reduction. the dendrimers exhibit a tendency to electrodeposit onto the electrode surface, which is more pronounced for the higher generations. Pt and glassy carbon electrodes could be modified with films derived from 1-4,exhibiting a well-defined and persistent electrochemical response. EQCM measurements show that the dendrimers adsorb, at open circuit, onto platinum surfaces at monolayer or submonolayer coverage. Cathodic potential scanning past -0.75 V at which the cobaltocenium sites are reduced, gave rise to the electrodeposition of multilayer equivalents of the dendrimers. The additional material gradually desorbs upon re-oxidation so that only a monolayer equivalent remains on the electrode surface. Changes in film morphology as a function of dendrimer generation and surface coverage were studied by using admittance measurements of the quartz-crystal resonator on the basis of its electrical equivalent circuit, especially in terms of its resistance parameter. In general, we find that films of the lower dendrimer generation 1 behave rigidly, whereas those of the higher generation 4 exhibit viscoelastic behavior with an intermediate behavior being exhibited by 2 and 3. Using tapping-mode atomic force microscopy (AFM). we have been able to obtain molecularly resolved images of dendrimer 4 adsorbed on a Pt(111) electrode.

  13. Biological Macromolecule Crystallization Database

    Science.gov (United States)

    SRD 21 Biological Macromolecule Crystallization Database (Web, free access)   The Biological Macromolecule Crystallization Database and NASA Archive for Protein Crystal Growth Data (BMCD) contains the conditions reported for the crystallization of proteins and nucleic acids used in X-ray structure determinations and archives the results of microgravity macromolecule crystallization studies.

  14. Ribbon crystals.

    Directory of Open Access Journals (Sweden)

    Jakob Bohr

    Full Text Available A repetitive crystal-like pattern is spontaneously formed upon the twisting of straight ribbons. The pattern is akin to a tessellation with isosceles triangles, and it can easily be demonstrated with ribbons cut from an overhead transparency. We give a general description of developable ribbons using a ruled procedure where ribbons are uniquely described by two generating functions. This construction defines a differentiable frame, the ribbon frame, which does not have singular points, whereby we avoid the shortcomings of the Frenet-Serret frame. The observed spontaneous pattern is modeled using planar triangles and cylindrical arcs, and the ribbon structure is shown to arise from a maximization of the end-to-end length of the ribbon, i.e. from an optimal use of ribbon length. The phenomenon is discussed in the perspectives of incompatible intrinsic geometries and of the emergence of long-range order.

  15. Crystallization process

    Science.gov (United States)

    Adler, Robert J.; Brown, William R.; Auyang, Lun; Liu, Yin-Chang; Cook, W. Jeffrey

    1986-01-01

    An improved crystallization process is disclosed for separating a crystallizable material and an excluded material which is at least partially excluded from the solid phase of the crystallizable material obtained upon freezing a liquid phase of the materials. The solid phase is more dense than the liquid phase, and it is separated therefrom by relative movement with the formation of a packed bed of solid phase. The packed bed is continuously formed adjacent its lower end and passed from the liquid phase into a countercurrent flow of backwash liquid. The packed bed extends through the level of the backwash liquid to provide a drained bed of solid phase adjacent its upper end which is melted by a condensing vapor.

  16. Binary colloidal crystals

    NARCIS (Netherlands)

    Christova-Zdravkova, C.G.

    2005-01-01

    Binary crystals are crystals composed of two types of particles having different properties like size, mass density, charge etc. In this thesis several new approaches to make binary crystals of colloidal particles that differ in size, material and charge are reported We found a variety of crystal st

  17. Mixed crystal organic scintillators

    Science.gov (United States)

    Zaitseva, Natalia P; Carman, M Leslie; Glenn, Andrew M; Hamel, Sebastien; Hatarik, Robert; Payne, Stephen A; Stoeffl, Wolfgang

    2014-09-16

    A mixed organic crystal according to one embodiment includes a single mixed crystal having two compounds with different bandgap energies, the organic crystal having a physical property of exhibiting a signal response signature for neutrons from a radioactive source, wherein the signal response signature does not include a significantly-delayed luminescence characteristic of neutrons interacting with the organic crystal relative to a luminescence characteristic of gamma rays interacting with the organic crystal. According to one embodiment, an organic crystal includes bibenzyl and stilbene or a stilbene derivative, the organic crystal having a physical property of exhibiting a signal response signature for neutrons from a radioactive source.

  18. A comparative electrochemical and quantum chemical calculation study of BTAH and BTAOH as copper corrosion inhibitors in near neutral chloride solution

    Energy Technology Data Exchange (ETDEWEB)

    Finsgar, Matjaz; Lesar, Antonija; Kokalj, Anton [Jozef Stefan Institute, Department of Physical and Organic Chemistry, Jamova cesta 39, SI-1000 Ljubljana (Slovenia); Milosev, Ingrid [Jozef Stefan Institute, Department of Physical and Organic Chemistry, Jamova cesta 39, SI-1000 Ljubljana (Slovenia); Valdoltra Orthopaedic Hospital, Jadranska c. 31, SI-6280 Ankaran (Slovenia)], E-mail: ingrid.milosev@ijs.si

    2008-11-30

    The inhibition of copper corrosion in 3% NaCl solution was studied by using a well-known inhibitor, benzotriazole (BTAH), and its not so extensively explored derivative, 1-hydroxybenzotriazole (BTAOH). Electrochemical methods, i.e., linear polarization, Tafel and potentiodynamic curve measurements and electrochemical quartz crystal microbalance (EQCM) measurements were used. Corrosion parameters and inhibition effectiveness were determined. Experimental results showed that benzotriazole is a more effective inhibitor of the corrosion of copper in chloride media than 1-hydroxybenzotriazole. Whereas in the presence of BTAH a protective Cu-BTA layer is formed on the Cu surface, in the presence of BTAOH a thick, poorly protective layer is formed, which readily dissolves in chloride solution. Kinetic parameters were calculated based on EQCM results. Adsorption of BTAOH follows a linear growth law, in contrast to BTAH, whose film growth can be best represented at first by a parabolic, and later by logarithmic, growth law. Different mechanisms of growth imply different mechanisms of inhibition and account for the different inhibition effectiveness. Density functional theory calculations were performed to characterize certain features of the molecular structures, including the electronic parameters related to the inhibition effectiveness of these inhibitors. Introduction of the -OH group into the benzotriazole molecules does not change their electronic parameters significantly neither in gas phase nor in the presence of water solvent. Other parameters, therefore, affect the inhibition effectiveness of these corrosion inhibitors. In particular, superior inhibition effectiveness of BTAH is attributed to interplay of planar molecular structure, physisorption and intermolecular H-bonding, which cooperatively may result in formation of thin and protective film on the surface.

  19. Pressure cryocooling protein crystals

    Science.gov (United States)

    Kim, Chae Un; Gruner, Sol M.

    2011-10-04

    Preparation of cryocooled protein crystal is provided by use of helium pressurizing and cryocooling to obtain cryocooled protein crystal allowing collection of high resolution data and by heavier noble gas (krypton or xenon) binding followed by helium pressurizing and cryocooling to obtain cryocooled protein crystal for collection of high resolution data and SAD phasing simultaneously. The helium pressurizing is carried out on crystal coated to prevent dehydration or on crystal grown in aqueous solution in a capillary.

  20. CRYSTALLIZATION IN MULTICOMPONENT GLASSES

    Energy Technology Data Exchange (ETDEWEB)

    KRUGER AA; HRMA PR

    2009-10-08

    In glass processing situations involving glass crystallization, various crystalline forms nucleate, grow, and dissolve, typically in a nonuniform temperature field of molten glass subjected to convection. Nuclear waste glasses are remarkable examples of multicomponent vitrified mixtures involving partial crystallization. In the glass melter, crystals form and dissolve during batch-to-glass conversion, melter processing, and product cooling. Crystals often agglomerate and sink, and they may settle at the melter bottom. Within the body of cooling glass, multiple phases crystallize in a non-uniform time-dependent temperature field. Self-organizing periodic distribution (the Liesegnang effect) is common. Various crystallization phenomena that occur in glass making are reviewed.

  1. Crystal structure and prediction.

    Science.gov (United States)

    Thakur, Tejender S; Dubey, Ritesh; Desiraju, Gautam R

    2015-04-01

    The notion of structure is central to the subject of chemistry. This review traces the development of the idea of crystal structure since the time when a crystal structure could be determined from a three-dimensional diffraction pattern and assesses the feasibility of computationally predicting an unknown crystal structure of a given molecule. Crystal structure prediction is of considerable fundamental and applied importance, and its successful execution is by no means a solved problem. The ease of crystal structure determination today has resulted in the availability of large numbers of crystal structures of higher-energy polymorphs and pseudopolymorphs. These structural libraries lead to the concept of a crystal structure landscape. A crystal structure of a compound may accordingly be taken as a data point in such a landscape.

  2. Growth of dopamine crystals

    Energy Technology Data Exchange (ETDEWEB)

    Patil, Vidya, E-mail: vidya.patil@ruparel.edu; Patki, Mugdha, E-mail: mugdha.patki@ruparel.edu [D. G. Ruparel College, Senapati Bapat Marg, Mahim, Mumbai – 400 016 (India)

    2016-05-06

    Many nonlinear optical (NLO) crystals have been identified as potential candidates in optical and electro-optical devices. Use of NLO organic crystals is expected in photonic applications. Hence organic nonlinear optical materials have been intensely investigated due to their potentially high nonlinearities, and rapid response in electro-optic effect compared to inorganic NLO materials. There are many methods to grow organic crystals such as vapor growth method, melt growth method and solution growth method. Out of these methods, solution growth method is useful in providing constraint free crystal. Single crystals of Dopamine have been grown by evaporating the solvents from aqueous solution. Crystals obtained were of the size of orders of mm. The crystal structure of dopamine was determined using XRD technique. Images of crystals were obtained using FEG SEM Quanta Series under high vacuum and low KV.

  3. Growth of dopamine crystals

    Science.gov (United States)

    Patil, Vidya; Patki, Mugdha

    2016-05-01

    Many nonlinear optical (NLO) crystals have been identified as potential candidates in optical and electro-optical devices. Use of NLO organic crystals is expected in photonic applications. Hence organic nonlinear optical materials have been intensely investigated due to their potentially high nonlinearities, and rapid response in electro-optic effect compared to inorganic NLO materials. There are many methods to grow organic crystals such as vapor growth method, melt growth method and solution growth method. Out of these methods, solution growth method is useful in providing constraint free crystal. Single crystals of Dopamine have been grown by evaporating the solvents from aqueous solution. Crystals obtained were of the size of orders of mm. The crystal structure of dopamine was determined using XRD technique. Images of crystals were obtained using FEG SEM Quanta Series under high vacuum and low KV.

  4. ALICE photon spectrometer crystals

    CERN Multimedia

    Maximilien Brice

    2006-01-01

    Members of the mechanical assembly team insert the last few crystals into the first module of ALICE's photon spectrometer. These crystals are made from lead-tungstate, a crystal as clear as glass but with nearly four times the density. When a high-energy particle passes through one of these crystals it will scintillate, emitting a flash of light allowing the energy of photons, electrons and positrons to be measured.

  5. Crystallization from Gels

    Science.gov (United States)

    Narayana Kalkura, S.; Natarajan, Subramanian

    Among the various crystallization techniques, crystallization in gels has found wide applications in the fields of biomineralization and macromolecular crystallization in addition to crystallizing materials having nonlinear optical, ferroelectric, ferromagnetic, and other properties. Furthermore, by using this method it is possible to grow single crystals with very high perfection that are difficult to grow by other techniques. The gel method of crystallization provides an ideal technique to study crystal deposition diseases, which could lead to better understanding of their etiology. This chapter focuses on crystallization in gels of compounds that are responsible for crystal deposition diseases. The introduction is followed by a description of the various gels used, the mechanism of gelling, and the fascinating phenomenon of Liesegang ring formation, along with various gel growth techniques. The importance and scope of study on crystal deposition diseases and the need for crystal growth experiments using gel media are stressed. The various crystal deposition diseases, viz. (1) urolithiasis, (2) gout or arthritis, (3) cholelithiasis and atherosclerosis, and (4) pancreatitis and details regarding the constituents of the crystal deposits responsible for the pathological mineralization are discussed. Brief accounts of the theories of the formation of urinary stones and gallstones and the role of trace elements in urinary stone formation are also given. The crystallization in gels of (1) the urinary stone constituents, viz. calcium oxalate, calcium phosphates, uric acid, cystine, etc., (2) the constituents of the gallstones, viz. cholesterol, calcium carbonate, etc., (3) the major constituent of the pancreatic calculi, viz., calcium carbonate, and (4) cholic acid, a steroidal hormone are presented. The effect of various organic and inorganic ions, trace elements, and extracts from cereals, herbs, and fruits on the crystallization of major urinary stone and gallstone

  6. CRYSTAL FILTER TEST SET

    Science.gov (United States)

    CRYSTAL FILTERS, *HIGH FREQUENCY, *RADIOFREQUENCY FILTERS, AMPLIFIERS, ELECTRIC POTENTIAL, FREQUENCY, IMPEDANCE MATCHING , INSTRUMENTATION, RADIOFREQUENCY, RADIOFREQUENCY AMPLIFIERS, TEST EQUIPMENT, TEST METHODS

  7. Artistic Crystal Creations

    Science.gov (United States)

    Lange, Catherine

    2008-01-01

    In this inquiry-based, integrative art and science activity, Grade 5-8 students use multicolored Epsom salt (magnesium sulfate) crystallizing solutions to reveal beautiful, cylindrical, 3-dimensional, needle-shaped structures. Through observations of the crystal art, students analyze factors that contribute to crystal size and formation, compare…

  8. Protein Crystal Based Nanomaterials

    Science.gov (United States)

    Bell, Jeffrey A.; VanRoey, Patrick

    2001-01-01

    This is the final report on a NASA Grant. It concerns a description of work done, which includes: (1) Protein crystals cross-linked to form fibers; (2) Engineering of protein to favor crystallization; (3) Better knowledge-based potentials for protein-protein contacts; (4) Simulation of protein crystallization.

  9. Analysis of liquid crystal properties for photonic crystal fiber devices

    DEFF Research Database (Denmark)

    Weirich, Johannes; Lægsgaard, Jesper; Wei, Lei

    2009-01-01

    We analyze the bandgap structure of Liquid Crystal infiltrated Photonic Crystal Fibers depending on the parameters of the Liquid Crystals by means of finite element simulations. For a biased Liquid Crystal Photonic Crystal Fiber, we show how the tunability of the bandgap position depends...... on the Liquid Crystal parameters....

  10. Protein crystallization with paper

    Science.gov (United States)

    Matsuoka, Miki; Kakinouchi, Keisuke; Adachi, Hiroaki; Maruyama, Mihoko; Sugiyama, Shigeru; Sano, Satoshi; Yoshikawa, Hiroshi Y.; Takahashi, Yoshinori; Yoshimura, Masashi; Matsumura, Hiroyoshi; Murakami, Satoshi; Inoue, Tsuyoshi; Mori, Yusuke; Takano, Kazufumi

    2016-05-01

    We developed a new protein crystallization method that incorporates paper. A small piece of paper, such as facial tissue or KimWipes, was added to a drop of protein solution in the traditional sitting drop vapor diffusion technique, and protein crystals grew by incorporating paper. By this method, we achieved the growth of protein crystals with reducing osmotic shock. Because the technique is very simple and the materials are easy to obtain, this method will come into wide use for protein crystallization. In the future, it could be applied to nanoliter-scale crystallization screening on a paper sheet such as in inkjet printing.

  11. Macromolecular Crystallization in Microgravity

    Science.gov (United States)

    Snell, Edward H.; Helliwell, John R.

    2004-01-01

    The key concepts that attracted crystal growers, macromolecular or solid state, to microgravity research is that density difference fluid flows and sedimentation of the growing crystals are greatly reduced. Thus, defects and flaws in the crystals can be reduced, even eliminated, and crystal volume can be increased. Macromolecular crystallography differs from the field of crystalline semiconductors. For the latter, crystals are harnessed for their electrical behaviors. A crystal of a biological macromolecule is used instead for diffraction experiments (X-ray or neutron) to determine the three-dimensional structure of the macromolecule. The better the internal order of the crystal of a biological macromolecule then the more molecular structure detail that can be extracted. This structural information that enables an understanding of how the molecule functions. This knowledge is changing the biological and chemical sciences with major potential in understanding disease pathologies. Macromolecular structural crystallography in general is a remarkable field where physics, biology, chemistry, and mathematics meet to enable insight to the basic fundamentals of life. In this review, we examine the use of microgravity as an environment to grow macromolecular crystals. We describe the crystallization procedures used on the ground, how the resulting crystals are studied and the knowledge obtained from those crystals. We address the features desired in an ordered crystal and the techniques used to evaluate those features in detail. We then introduce the microgravity environment, the techniques to access that environment, and the theory and evidence behind the use of microgravity for crystallization experiments. We describe how ground-based laboratory techniques have been adapted to microgravity flights and look at some of the methods used to analyze the resulting data. Several case studies illustrate the physical crystal quality improvements and the macromolecular structural

  12. 内嵌式微球透镜的光纤飞秒激光加工技术及应用%Fabrication and Application of Embedded Microball Lens Fabricated With Femtosecond Fiber Laser

    Institute of Scientific and Technical Information of China (English)

    郑崇; 胡安明; 陈涛

    2015-01-01

    利用聚焦的高重复频率飞秒脉冲在聚甲基丙烯酸甲酯薄片内部制作了具有优良光学性能的微球凸透镜及微球凹透镜. 微球凸透镜的加工原理是基于飞秒激光诱致折射率变化机制,而微球凹透镜的制作是基于多光子效应及高重频激光脉冲序列的热积累效应. 以微球凹透镜为例,对比了不同聚焦条件下制作微球透镜的加工效率及效果,讨论了选择聚焦透镜所需综合考虑的因素. 提出了采用本方法可针对特定的应用需求设计并精确制作微光学系统. 最后,讨论了内嵌式微透镜在微流控器件中增强荧光信号收集能力与成像能力的潜在应用价值,以及单步制作功能集成的微流控芯片的可能性.%Two types of embedded microball lenses namely convex microball lens ( VMBL) and concave microball lens ( CMBL ) with outstanding optical properties were successfully fabricated inside a polymethethyl methacrylate ( PMMA) substrate by utilizing a high repetition rate femtosecond fiber laser. The fabricating mechanism of the VMBL was refractive index change induced by femtosecond laser, and the CMBL was fabricated due to the multiphoton absorption and the heat accumulation effect of the successive laser pulses irradiation at a high repetition rate. As an example, the CMBL fabrication efficiency with 20 × and 50 × microscopic objectives was compared. The principles for choosing a proper objective when fabricating customized embedded lens were also discussed. Additionally, these lenses can be used as powerful tools in constructing specific micro-optic systems towards various applications. This technology also allows the direct fabrication of microlens inside microfluidic devices to enhance the ability of gathering fluorescence signals and optical imaging. It is very possible to fabricate a function-integrated microfluidic chip in one-step by utilizing this technology in the near future.

  13. Highly crystallized nanometer-sized zeolite a with large Cs adsorption capability for the decontamination of water.

    Science.gov (United States)

    Torad, Nagy L; Naito, Masanobu; Tatami, Junichi; Endo, Akira; Leo, Sin-Yen; Ishihara, Shinsuke; Wu, Kevin C-W; Wakihara, Toru; Yamauchi, Yusuke

    2014-03-01

    Nanometer-sized zeolite A with a large cesium (Cs) uptake capability is prepared through a simple post-milling recrystallization method. This method is suitable for producing nanometer-sized zeolite in large scale, as additional organic compounds are not needed to control zeolite nucleation and crystal growth. Herein, we perform a quartz crystal microbalance (QCM) study to evaluate the uptake ability of Cs ions by zeolite, to the best of our knowledge, for the first time. In comparison to micrometer-sized zeolite A, nanometer-sized zeolite A can rapidly accommodate a larger amount of Cs ions into the zeolite crystal structure, owing to its high external surface area. Nanometer-sized zeolite is a promising candidate for the removal of radioactive Cs ions from polluted water. Our QCM study on Cs adsorption uptake behavior provides the information of adsorption kinetics (e.g., adsorption amounts and rates). This technique is applicable to other zeolites, which will be highly valuable for further consideration of radioactive Cs removal in the future.

  14. Polymer semiconductor crystals

    Directory of Open Access Journals (Sweden)

    Jung Ah Lim

    2010-05-01

    Full Text Available One of the long-standing challenges in the field of polymer semiconductors is to figure out how long interpenetrating and entangled polymer chains self-assemble into single crystals from the solution phase or melt. The ability to produce these crystalline solids has fascinated scientists from a broad range of backgrounds including physicists, chemists, and engineers. Scientists are still on the hunt for determining the mechanism of crystallization in these information-rich materials. Understanding the theory and concept of crystallization of polymer semiconductors will undoubtedly transform this area from an art to an area that will host a bandwagon of scientists and engineers. In this article we describe the basic concept of crystallization and highlight some of the advances in polymer crystallization from crystals to nanocrystalline fibers.

  15. CMS lead tungstate crystals

    CERN Multimedia

    Laurent Guiraud

    2000-01-01

    These crystals are made from lead tungstate, a crystal that is as clear as glass yet with nearly four times the density. They have been produced in Russia to be used as scintillators in the electromagnetic calorimeter on the CMS experiment, part of the LHC project at CERN. When an electron, positron or photon passes through the calorimeter it will cause a cascade of particles that will then be absorbed by these scintillating crystals, allowing the particle's energy to be measured.

  16. Macromolecular crystallization in microgravity

    Energy Technology Data Exchange (ETDEWEB)

    Snell, Edward H [Biophysics Group, NASA Marshall Space Flight Center, Code XD42, Huntsville, AL 35812 (United States); Helliwell, John R [Department of Chemistry, The University of Manchester, Manchester, M13 9PL (United Kingdom)

    2005-04-01

    Density difference fluid flows and sedimentation of growing crystals are greatly reduced when crystallization takes place in a reduced gravity environment. In the case of macromolecular crystallography a crystal of a biological macromolecule is used for diffraction experiments (x-ray or neutron) so as to determine the three-dimensional structure of the macromolecule. The better the internal order of the crystal then the greater the molecular structure detail that can be extracted. It is this structural information that enables an understanding of how the molecule functions. This knowledge is changing the biological and chemical sciences, with major potential in understanding disease pathologies. In this review, we examine the use of microgravity as an environment to grow macromolecular crystals. We describe the crystallization procedures used on the ground, how the resulting crystals are studied and the knowledge obtained from those crystals. We address the features desired in an ordered crystal and the techniques used to evaluate those features in detail. We then introduce the microgravity environment, the techniques to access that environment and the theory and evidence behind the use of microgravity for crystallization experiments. We describe how ground-based laboratory techniques have been adapted to microgravity flights and look at some of the methods used to analyse the resulting data. Several case studies illustrate the physical crystal quality improvements and the macromolecular structural advances. Finally, limitations and alternatives to microgravity and future directions for this research are covered. Macromolecular structural crystallography in general is a remarkable field where physics, biology, chemistry and mathematics meet to enable insight to the fundamentals of life. As the reader will see, there is a great deal of physics involved when the microgravity environment is applied to crystallization, some of it known, and undoubtedly much yet to

  17. Analysis of liquid crystal properties for photonic crystal fiber devices

    DEFF Research Database (Denmark)

    Weirich, Johannes; Lægsgaard, Jesper; Wei, Lei;

    2009-01-01

    We analyze the bandgap structure of Liquid Crystal infiltrated Photonic Crystal Fibers depending on the parameters of the Liquid Crystals by means of finite element simulations. For a biased Liquid Crystal Photonic Crystal Fiber, we show how the tunability of the bandgap position depends on the L...

  18. Phononic crystal devices

    Science.gov (United States)

    El-Kady, Ihab F.; Olsson, Roy H.

    2012-01-10

    Phononic crystals that have the ability to modify and control the thermal black body phonon distribution and the phonon component of heat transport in a solid. In particular, the thermal conductivity and heat capacity can be modified by altering the phonon density of states in a phononic crystal. The present invention is directed to phononic crystal devices and materials such as radio frequency (RF) tags powered from ambient heat, dielectrics with extremely low thermal conductivity, thermoelectric materials with a higher ratio of electrical-to-thermal conductivity, materials with phononically engineered heat capacity, phononic crystal waveguides that enable accelerated cooling, and a variety of low temperature application devices.

  19. Heroin crystal nephropathy.

    Science.gov (United States)

    Bautista, Josef Edrik Keith; Merhi, Basma; Gregory, Oliver; Hu, Susie; Henriksen, Kammi; Gohh, Reginald

    2015-06-01

    In this paper we present an interesting case of acute kidney injury and severe metabolic alkalosis in a patient with a history of heavy heroin abuse. Urine microscopy showed numerous broomstick-like crystals. These crystals are also identified in light and electron microscopy. We hypothesize that heroin crystalizes in an alkaline pH, resulting in tubular obstruction and acute kidney injury. Management is mainly supportive as there is no known specific therapy for this condition. This paper highlights the utility of urine microscopy in diagnosing the etiology of acute kidney injury and proposes a novel disease called heroin crystal nephropathy.

  20. Geometric and unipotent crystals

    OpenAIRE

    Berenstein, Arkady; Kazhdan, David

    1999-01-01

    In this paper we introduce geometric crystals and unipotent crystals which are algebro-geometric analogues of Kashiwara's crystal bases. Given a reductive group G, let I be the set of vertices of the Dynkin diagram of G and T be the maximal torus of G. The structure of a geometric G-crystal on an algebraic variety X consists of a rational morphism \\gamma:X-->T and a compatible family e_i:G_m\\times X-->X, i\\in I of rational actions of the multiplicative group G_m satisfying certain braid-like ...

  1. Automation in biological crystallization

    Science.gov (United States)

    Shaw Stewart, Patrick; Mueller-Dieckmann, Jochen

    2014-01-01

    Crystallization remains the bottleneck in the crystallographic process leading from a gene to a three-dimensional model of the encoded protein or RNA. Automation of the individual steps of a crystallization experiment, from the preparation of crystallization cocktails for initial or optimization screens to the imaging of the experiments, has been the response to address this issue. Today, large high-throughput crystallization facilities, many of them open to the general user community, are capable of setting up thousands of crystallization trials per day. It is thus possible to test multiple constructs of each target for their ability to form crystals on a production-line basis. This has improved success rates and made crystallization much more convenient. High-throughput crystallization, however, cannot relieve users of the task of producing samples of high quality. Moreover, the time gained from eliminating manual preparations must now be invested in the careful evaluation of the increased number of experiments. The latter requires a sophisticated data and laboratory information-management system. A review of the current state of automation at the individual steps of crystallization with specific attention to the automation of optimization is given. PMID:24915074

  2. Tunable plasmonic crystal

    Science.gov (United States)

    Dyer, Gregory Conrad; Shaner, Eric A.; Reno, John L.; Aizin, Gregory

    2015-08-11

    A tunable plasmonic crystal comprises several periods in a two-dimensional electron or hole gas plasmonic medium that is both extremely subwavelength (.about..lamda./100) and tunable through the application of voltages to metal electrodes. Tuning of the plasmonic crystal band edges can be realized in materials such as semiconductors and graphene to actively control the plasmonic crystal dispersion in the terahertz and infrared spectral regions. The tunable plasmonic crystal provides a useful degree of freedom for applications in slow light devices, voltage-tunable waveguides, filters, ultra-sensitive direct and heterodyne THz detectors, and THz oscillators.

  3. Automation in biological crystallization.

    Science.gov (United States)

    Stewart, Patrick Shaw; Mueller-Dieckmann, Jochen

    2014-06-01

    Crystallization remains the bottleneck in the crystallographic process leading from a gene to a three-dimensional model of the encoded protein or RNA. Automation of the individual steps of a crystallization experiment, from the preparation of crystallization cocktails for initial or optimization screens to the imaging of the experiments, has been the response to address this issue. Today, large high-throughput crystallization facilities, many of them open to the general user community, are capable of setting up thousands of crystallization trials per day. It is thus possible to test multiple constructs of each target for their ability to form crystals on a production-line basis. This has improved success rates and made crystallization much more convenient. High-throughput crystallization, however, cannot relieve users of the task of producing samples of high quality. Moreover, the time gained from eliminating manual preparations must now be invested in the careful evaluation of the increased number of experiments. The latter requires a sophisticated data and laboratory information-management system. A review of the current state of automation at the individual steps of crystallization with specific attention to the automation of optimization is given.

  4. Crystallization Formulation Lab

    Data.gov (United States)

    Federal Laboratory Consortium — The Crystallization Formulation Lab fills a critical need in the process development and optimization of current and new explosives and energetic formulations. The...

  5. Tunable plasmonic crystal

    Energy Technology Data Exchange (ETDEWEB)

    Dyer, Gregory Conrad; Shaner, Eric A.; Reno, John L.; Aizin, Gregory

    2015-08-11

    A tunable plasmonic crystal comprises several periods in a two-dimensional electron or hole gas plasmonic medium that is both extremely subwavelength (.about..lamda./100) and tunable through the application of voltages to metal electrodes. Tuning of the plasmonic crystal band edges can be realized in materials such as semiconductors and graphene to actively control the plasmonic crystal dispersion in the terahertz and infrared spectral regions. The tunable plasmonic crystal provides a useful degree of freedom for applications in slow light devices, voltage-tunable waveguides, filters, ultra-sensitive direct and heterodyne THz detectors, and THz oscillators.

  6. A crystal barrel

    CERN Multimedia

    2007-01-01

    The production of crystals for the barrel of the CMS electromagnetic calorimeter has been completed. This is an important milestone for the experiment, which received the last of its 62,960 crystals on 9 March. The members of the team responsible for the crystal acceptance testing at CERN display the last crystal for the CMS electromagnetic calorimeter barrel. From left to right: Igor Tarasov, Etiennette Auffray and Hervé Cornet.One of the six machines specially developed to measure 67 different parameters on each crystal. Igor Tarasov is seen inserting the last batch of crystals into the machine. The last of the 62,960 CMS barrel crystals arrived at CERN on 9 March. Once removed from its polystyrene protection, this delicate crystal, like thousands of its predecessors, will be inserted into the last of the 36 supermodules of the barrel electromagnetic calorimeter in a few days' time. This marks the end of an important chapter in an almost 15-year-long journey by the CMS crystals team, some of whose member...

  7. Advanced Protein Crystallization Facility (APCF)

    Science.gov (United States)

    1998-01-01

    This section of the Life and Microgravity Spacelab (LMS) publication contains articles entitled: (1) Crystallization of EGFR-EGF; (2) Crystallization of Apocrustacyanin C1; (3) Crystallization and X-ray Analysis of 5S rRNA and the 5S rRNA Domain A; (4) Growth of Lysozyme Crystals at Low Nucleation Density; (5) Comparative Analysis of Aspartyl tRNA-synthetase and Thaumatin Crystals Grown on Earth and In Microgravity; (6) Lysosome Crystal Growth in the Advanced Protein Crystallization Facility Monitored via Mach-Zehnder Interferometry and CCD Video; (7) Analysis of Thaumatin Crystals Grown on Earth and in Microgravity; (8) Crystallization of the Nucleosome Core Particle; (9) Crystallization of Photosystem I; (10) Mechanism of Membrane Protein Crystal Growth: Bacteriorhodopsin-mixed Micelle Packing at the Consolution Boundary, Stabilized in Microgravity; (11) Crystallization in a Microgravity Environment of CcdB, a Protein Involved in the Control of Cell Death; and (12) Crystallization of Sulfolobus Solfataricus

  8. Photonic crystal fibers

    DEFF Research Database (Denmark)

    Lægsgaard, Jesper; Hansen, K P; Nielsen, M D;

    2003-01-01

    Photonic crystal fibers having a complex microstructure in the transverse plane constitute a new and promising class of optical fibers. Such fibers can either guide light through total internal reflection or the photonic bandgap effect, In this paper, we review the different types and applications...... of photonic crystal fibers with particular emphasis on recent advances in the field....

  9. Demonstration of Crystal Structure.

    Science.gov (United States)

    Neville, Joseph P.

    1985-01-01

    Describes an experiment where equal parts of copper and aluminum are heated then cooled to show extremely large crystals. Suggestions are given for changing the orientation of crystals by varying cooling rates. Students are more receptive to concepts of microstructure after seeing this experiment. (DH)

  10. Walkout in Crystal City

    Science.gov (United States)

    Barrios, Greg

    2009-01-01

    When students take action, they create change that extends far beyond the classroom. In this article, the author, who was a former teacher from Crystal City, Texas, remembers the student walkout that helped launch the Latino civil rights movement 40 years ago. The Crystal City student walkout remains a high point in the history of student activism…

  11. Manipulation of colloidal crystallization

    NARCIS (Netherlands)

    Vermolen, E.C.M.

    2008-01-01

    Colloidal particles (approximately a micrometer in diameter) that are dispersed in a fluid, behave thermodynamically similar to atoms and molecules: at low concentrations they form a fluid, while at high concentrations they can crystallize into a colloidal crystal to gain entropy. The analogy with m

  12. Crystal growth and crystallography

    Science.gov (United States)

    Chernov, A. A.

    1998-01-01

    Selected topics that may be of interest for both crystal-structure and crystal-growth communities are overviewed. The growth of protein crystals, along with that of some other compounds, is one of the topics, and recent insights into related phenomena are considered as examples of applications of general principles. The relationship between crystal growth shape and structure is reviewed and an attempt to introduce semiquantitative characterization of binding for proteins is made. The concept of kinks for complex structures is briefly discussed. Even at sufficiently low supersaturations, the fluctuation of steps may not be sufficient to implement the Gibbs-Thomson law if the kink density is low enough. Subsurface ordering of liquids and growth of rough interfaces from melts is discussed. Crystals growing in microgravity from solution should be more perfect if they preferentially trap stress-inducing impurities, thus creating an impurity-depleted zone around themselves. Evidently, such a zone is developed only around the crystals growing in the absence of convection. Under terrestrial conditions, the self-purified depleted zone is destroyed by convection, the crystal traps more impurity and grows stressed. The stress relief causes mosaicity. In systems containing stress-inducing but poorly trapped impurities, the crystals grown in the absence of convection should be worse than those of their terrestrial counterparts.

  13. Crystals in the LHC

    CERN Multimedia

    Antonella Del Rosso

    2012-01-01

    Bent crystals can be used to deflect charged particle beams. Their use in high-energy accelerators has been investigated for almost 40 years. Recently, a bent crystal was irradiated for the first time in the HiRadMat facility with an extreme particle flux, which crystals would have to withstand in the LHC. The results were very encouraging and confirmed that this technology could play a major role in increasing the beam collimation performance in future upgrades of the machine.   UA9 bent crystal tested with a laser. Charged particles interacting with a bent crystal can be trapped in channelling states and deflected by the atomic planes of the crystal lattice (see box). The use of bent crystals for beam manipulation in particle accelerators is a concept that has been well-assessed. Over the last three decades, a large number of experimental findings have contributed to furthering our knowledge and improving our ability to control crystal-particle interactions. In modern hadron colliders, su...

  14. Photonic Crystal Fiber Attenuator

    Institute of Scientific and Technical Information of China (English)

    Joo; Beom; Eom; Hokyung; Kim; Jinchae; Kim; Un-Chul; Paek; Byeong; Ha; Lee

    2003-01-01

    We propose a novel fiber attenuator based on photonic crystal fibers. The difference in the modal field diameters of a conventional single mode fiber and a photonic crystal fiber was used. A variable optical attenuator was also achieved by applying macro-bending on the PCF part of the proposed attenuator

  15. Active Photonic Crystal Waveguides

    DEFF Research Database (Denmark)

    Ek, Sara

    This thesis deals with the fabrication and characterization of active photonic crystal waveguides, realized in III-V semiconductor material with embedded active layers. The platform offering active photonic crystal waveguides has many potential applications. One of these is a compact photonic...... crystal semiconductor optical amplier. As a step towards such a component, photonic crystal waveguides with a single quantum well, 10 quantum wells and three layers of quantum dots are fabricated and characterized. An experimental study of the amplied spontaneous emission and a implied transmission...... are presented in this thesis. A variation of photonic crystal design parameters are used leading to a spectral shift of the dispersion, it is veried that the observed effects shift accordingly. An enhancement of the amplified spontaneous emission was observed close to the band edge, where light is slowed down...

  16. Function Photonic Crystals

    CERN Document Server

    Wu, Xiang-Yao; Yang, Jing-Hai; Liu, Xiao-Jing; Ba, Nuo; Wu, Yi-Heng; Wang, Qing-Cai; Li, Jing-Wu

    2010-01-01

    In the paper, we present a new kind of function photonic crystals, which refractive index is a function of space position. Unlike conventional PCs, which structure grow from two materials, A and B, with different dielectric constants $\\epsilon_{A}$ and $\\epsilon_{B}$. By Fermat principle, we give the motion equations of light in one-dimensional, two-dimensional and three-dimensional function photonic crystals. For one-dimensional function photonic crystals, we study the dispersion relation, band gap structure and transmissivity, and compare them with conventional photonic crystals. By choosing various refractive index distribution function $n(z)$, we can obtain more width or more narrow band gap structure than conventional photonic crystals.

  17. Progress on photonic crystals

    CERN Document Server

    Lecoq, P; Gundacker, S; Hillemanns, H; Jarron, P; Knapitsch, A; Leclercq, J L; Letartre, X; Meyer, T; Pauwels, K; Powolny, F; Seassal, C

    2010-01-01

    The renewal of interest for Time of Flight Positron Emission Tomography (TOF PET) has highlighted the need for increasing the light output of scintillating crystals and in particular for improving the light extraction from materials with a high index of refraction. One possible solution to overcome the problem of total internal reflection and light losses resulting from multiple bouncing within the crystal is to improve the light extraction efficiency at the crystal/photodetector interface by means of photonic crystals, i.e. media with a periodic modulation of the dielectric constant at the wavelength scale. After a short reminder of the underlying principles this contribution proposes to present the very encouraging results we have recently obtained on LYSO pixels and the perspectives on other crystals such as BGO, LuYAP and LuAG. These results confirm the impressive predictions from our previously published Monte Carlo simulations. A detailed description of the sample preparation procedure is given as well ...

  18. Optically Anomalous Crystals

    CERN Document Server

    Shtukenberg, Alexander; Kahr, Bart

    2007-01-01

    Optical anomalies in crystals are puzzles that collectively constituted the greatest unsolved problems in crystallography in the 19th Century. The most common anomaly is a discrepancy between a crystal’s symmetry as determined by its shape or by X-ray analysis, and that determined by monitoring the polarization state of traversing light. These discrepancies were perceived as a great impediment to the development of the sciences of crystals on the basis of Curie’s Symmetry Principle, the grand organizing idea in the physical sciences to emerge in the latter half of the 19th Century. Optically Anomalous Crystals begins with an historical introduction covering the contributions of Brewster, Biot, Mallard, Brauns, Tamman, and many other distinguished crystallographers. From this follows a tutorial in crystal optics. Further chapters discuss the two main mechanisms of optical dissymmetry: 1. the piezo-optic effect, and 2. the kinetic ordering of atoms. The text then tackles complex, inhomogeneous crystals, and...

  19. A Study on Detection of the CP4-EPSPs Protein with Quartz Crystal Microbalance Technology%石英晶体微天平对CP4-EPSPs草甘膦抗性蛋白检测研究

    Institute of Scientific and Technical Information of China (English)

    蔡淼; 岳喜庆; 黄新

    2014-01-01

    为建立5-烯醇式丙酮酸-3-磷酸合酶(CP4-EPSPs)蛋白的石英晶体微天平(QCM)传感检测方法,采用在金片表面修饰抗原所对应的单克隆抗体的方法,利用QCM技术,对CP4-EPSPs蛋白进行检测研究.结果表明:该方法灵敏度达到500ng·mL-1,特异性好,重复性高,检测转基因玉米含量检出限为0.1%.该方法不足之处在于检测仪器不方便携带,在未来研究中考虑研发便携式QCM检测装置.

  20. Crystallization phenomena of isotactic polystyrene

    NARCIS (Netherlands)

    Lemstra, Peter Jan

    1975-01-01

    In this thesis the crystallization behavior of isotactic polystyrene has been described. The kinetics of the crystallization process and the crystalline structure were studied both for crystallization in the bulk and from dilute solutions. ... Zie Summary

  1. Shaped Crystal Growth

    Science.gov (United States)

    Tatartchenko, Vitali A.

    Crystals of specified shape and size (shaped crystals) with controlled crystal growth (SCG) defect and impurity structure have to be grown for the successful development of modern engineering. Since the 1950s many hundreds of papers and patents concerned with shaped growth have been published. In this chapter, we do not try to enumerate the successful applications of shaped growth to different materials but rather to carry out a fundamental physical and mathematical analysis of shaping as well as the peculiarities of shaped crystal structures. Four main techniques, based on which the lateral surface can be shaped without contact with the container walls, are analyzed: the Czochralski technique (CZT), the Verneuil technique (VT), the floating zone technique (FZT), and technique of pulling from shaper (TPS). Modifications of these techniques are analyzed as well. In all these techniques the shape of the melt meniscus is controlled by surface tension forces, i.e., capillary forces, and here they are classified as capillary shaping techniques (CST). We look for conditions under which the crystal growth process in each CST is dynamically stable. Only in this case are all perturbations attenuated and a crystal of constant cross section shaping technique (CST) grown without any special regulation. The dynamic stability theory of the crystal growth process for all CST is developed on the basis of Lyapunov's dynamic stability theory. Lyapunov's equations for the crystal growth processes follow from fundamental laws. The results of the theory allow the choice of stable regimes for crystal growth by all CST as well as special designs of shapers in TPS. SCG experiments by CZT, VT, and FZT are discussed but the main consideration is given to TPS. Shapers not only allow crystal of very complicated cross section to be grown but provide a special distribution of impurities. A history of TPS is provided later in the chapter, because it can only be described after explanation of the

  2. The effect of anions on the electrochemical properties of polyaniline for supercapacitors.

    Science.gov (United States)

    Xing, Ji; Liao, Maoying; Zhang, Chi; Yin, Min; Li, Dongdong; Song, Ye

    2017-05-31

    To investigate the effect of anions on the electrochemical properties of polyaniline (PANI) for supercapacitors, electrochemical performance tests of PANI with different dopant anions were carried out in the corresponding acid solutions by cyclic voltammetry (CV) and galvanostatic charge-discharge (GCD) methods. In particular, ionic fluxes and solvent molecules involved in redox processes can be analyzed by the electrochemical quartz crystal microbalance (EQCM) technique and discriminated by simultaneously recording cyclic voltammograms and mass changes during redox switching. The emeraldine base (EB) form of PANI prepared in a protonic acid with bigger anions can be easily doped by a protonic acid with smaller anions, and conversely, PANI-EB is hard to be doped. The anodic reversal potential of potentiodynamic cycling heavily influences the electrochemical stability of PANI. High anodic potentials result in PANI degradation. Its supercapacitive properties including specific capacitance, power density and cycling stability are strongly dependent upon the type of dopant anion. PANI with the dopant anions of oxalic acid has the highest specific capacitance and the best cycling stability among the used acids. The diffusion coefficient of anions plays a key role in determining power density. PANI films with organic dopant anions exhibit better cycling stability than their inorganic counterparts. It is believed that the hydrolysis of PANI facilitated by the additional water molecules accompanied by dopant anions into and out of the PANI matrix is a key factor responsible for the cycling instability.

  3. Experimental and theoretical studies on electropolymerization of polar amino acids on platinum electrode

    Energy Technology Data Exchange (ETDEWEB)

    Alhedabi, Taleb [Nanomedicine Lab EA4662, Bat. E, Université de Bourgogne Franche-Comté, UFR Sciences & Techniques, 16 route de Gray, 25030 Besançon Cedex (France); Department of Chemistry, College of Science, University of Thi-qar, Thi-qar (Iraq); Cattey, Hélène [Institut ICMUB - CNRS 6302, Université de Bourgogne Franche-Comté, UFR Sciences et Techniques Mirande, 9 Avenue Alain Savary, 21000 Dijon (France); Roussel, Christophe [Ecole Polytechnique Fédérale de Lausanne, Section of Chemistry and Chemical Engineering, Station 6, CH-1015 Lausanne (Switzerland); Blondeau-Patissier, Virginie [Institut FEMTO-ST, UMR CNRS 6174, Department Time-Frequency, 26, Chemin de l' épitaphe, 25030 Besançon Cedex (France); Gharbi, Tijani [Nanomedicine Lab EA4662, Bat. E, Université de Bourgogne Franche-Comté, UFR Sciences & Techniques, 16 route de Gray, 25030 Besançon Cedex (France); Herlem, Guillaume, E-mail: guillaume.herlem@univ-fcomte.fr [Nanomedicine Lab EA4662, Bat. E, Université de Bourgogne Franche-Comté, UFR Sciences & Techniques, 16 route de Gray, 25030 Besançon Cedex (France)

    2017-01-01

    The anodic oxidation of polar amino acids (L-serine, L-threonine, L-asparagine, and L-glutamine) in aqueous electrolyte on smooth platinum electrode was carried out by cyclic voltammetry coupled to electrochemical quartz crystal microbalance (EQCM). pH (zwitterion, acidic and alkaline) effects on their electrochemical behavior were examined. The maximum current values are measured for zwitterion species. In addition, the current increases with increasing of concentration and scan rate, and decreases with increasing pH. The resulting passivation was studied by spectroscopic analysis such as attenuated total reflection FT infrared spectroscopy (ATR-FTIR), X-ray photoelectron spectroscopy (XPS) and mass spectroscopy (MALDI-TOF). From thin film coatings observed on the electrode surface, peptide bonds are found, and are in favor of electropolymerization of these polar amino acids into poly-L-amino acids in an irreversible way. Scanning electronic microscopy was also used to study the morphology of these electrodeposited L-amino acids. The electrodeposited poly-L-amino acids on Pt electrode were tested as bioinspired transducer for pH sensing purposes. - Highlights: • Anodic oxidation of polar amino acids with uncharged R group on platinum electrode. • Polypeptide bonds revealed by ATR-IR and XPS spectroscopies. • The film growth depends on the chemistry of the polar amino acid.

  4. In Situ Measurement of Voltage-Induced Stress in Conducting Polymers with Redox-Active Dopants.

    Science.gov (United States)

    Sen, Sujat; Kim, Sung Yeol; Palmore, Lia R; Jin, Shenghua; Jadhav, Nitin; Chason, Eric; Palmore, G Tayhas R

    2016-09-14

    Minimization of stress-induced mechanical rupture and delamination of conducting polymer (CP) films is desirable to prevent failure of devices based on these materials. Thus, precise in situ measurement of voltage-induced stress within these films should provide insight into the cause of these failure mechanisms. The evolution of stress in films of polypyrrole (pPy), doped with indigo carmine (IC), was measured in different electrochemical environments using the multibeam optical stress sensor (MOSS) technique. The stress in these films gradually increases to a constant value during voltage cycling, revealing an initial break-in period for CP films. The nature of the ions involved in charge compensation of pPy[IC] during voltage cycling was determined from electrochemical quartz crystal microbalance (EQCM) data. The magnitude of the voltage-induced stress within pPy[IC] at neutral pH correlated with the radius of the hydrated mobile ion in the order Li(+) > Na(+) > K(+). At acidic pH, the IC dopant in pPy[IC] undergoes reversible oxidation and reduction within the range of potentials investigated, providing a secondary contribution to the observed voltage-induced stress. We report on the novel stress response of these polymers due to the presence of pH-dependent redox-active dopants and how it can affect material performance.

  5. Direct measurement of the adsorption kinetics of 2-Mercaptobenzothiazole on a microcrystalline copper surface

    Energy Technology Data Exchange (ETDEWEB)

    Ramirez-Cano, J. A.; Veleva, L.

    2016-05-01

    The adsorption on copper of 2-Mercaptobenzothiazole (2-MBT), a heterocyclic compound member of the tiazole family, has been investigated at different concentrations (1x10{sup -}1 to 1x10{sup -}6 M) in water, employing the Electrochemical Quartz Crystal Microbalance (EQCM). The frequency response over time was obtained for each concentration, showing a defined exponential behavior at higher concentrations (1x10{sup -}1, 1x10{sup -}2 and 1x10{sup -}3 M), which was filed to the Langmuir adsorption isotherm with a good correlation coefficients (R{sup 2}=0.91 to 0.98) Surface coverage (θ) was calculated and found to be in the order of 0.50 to 0.01 for 2-MBT high concentrations. The free energy of adsorption was ΔG{sub a}ds=-5.59 kJ mol{sup -}1, corresponding to physisorption process, probably of electrostatic nature of the interaction between 2-MBT and copper surface in aqueous solution. (Author)

  6. Preparation, characterization and electrocatalytic behavior of zinc oxide/zinchexacyanoferrate and ruthenium oxide hexacyanoferrate hybrid film-modified electrodes

    Energy Technology Data Exchange (ETDEWEB)

    Chu, H.-W.; Thangamuthu, R. [Department of Chemical Engineering and Biotechnology, National Taipei University of Technology, No. 1, Section 3, Chung-Hsiao East Road, Taipei 106, Taiwan (China); Chen, S.-M. [Department of Chemical Engineering and Biotechnology, National Taipei University of Technology, No. 1, Section 3, Chung-Hsiao East Road, Taipei 106, Taiwan (China)], E-mail: smchen78@ms15.hinet.net

    2008-02-15

    Polynuclear mixed-valent hybrid films of zinc oxide/zinchexacyanoferrate and ruthenium oxide hexacyanoferrate (ZnO/ZnHCF-RuOHCF) have been deposited on electrode surfaces from H{sub 2}SO{sub 4} solution containing Zn(NO{sub 3}){sub 2}, RuCl{sub 3} and K{sub 3}[Fe(CN){sub 6}] by potentiodynamic cycling method. Simultaneous cyclic voltammetry and electrochemical quartz crystal microbalance (EQCM) measurements demonstrate the steady growth of hybrid film. Surface morphology of hybrid film was investigated using scanning electron microscopy (SEM). Energy dispersive spectrometer (EDS) data confirm existence of zinc oxide and ruthenium oxide hexacyanoferrate (RuOHCF) in the hybrid film. The effect of type of monovalent cations on the redox behavior of hybrid film was investigated. In pure supporting electrolyte, electrochemical responses of Ru{sup II/III} redox transition occurring at negative potential region resemble with that of a surface immobilized redox couple. The electrocatalytic activity of ZnO/ZnHCF-RuOHCF hybrid film was investigated towards oxidation of epinephrine, dopamine and L-cysteine, and reduction of S{sub 2}O{sub 8}{sup 2-} and SO{sub 5}{sup 2-} as well as IO{sub 3}{sup -} using cyclic voltammetry and rotating ring disc electrode (RRDE) techniques.

  7. Compatibility between pipeline anti-corrosion coating and thermal insulator in the presence of cathodic protection

    Energy Technology Data Exchange (ETDEWEB)

    Papavinasam, S.; Doiron, A.

    2008-09-15

    Standard tests were conducted to evaluate and qualify materials used for the development of oil and gas pipeline insulators operating at elevated temperatures. The aim of the study was to demonstrate the efficacy of a modified cathodic disbondment methodology for evaluating the compatibility between anti-corrosion coatings and insulators in the presence of cathodic protection (CP). The surface of the coated panels were maintained at an external surface temperature of a pipeline operating at an internal temperature of 150 degrees C. The panels were also isolated from each other as well as from the heated pipes to ensure that the cathodic disbondment tests could be conducted simultaneously. Chemical and electrochemical changes were monitored using pH, electrochemical quartz crystal microbalance (EQCM) and electrochemical impedance spectroscopy (EIS). Samples with anti-corrosion coatings and insulators of varying thickness were tested with and without an outer polyethylene jacket. Results of the tests will be presented to industry stakeholders in order to obtain further feedback. 9 refs., 1 tab., 4 appendices.

  8. Use of a small overpotential approximation to analyze Geobacter sulfurreducens biofilm impedance

    Science.gov (United States)

    Babauta, Jerome T.; Beyenal, Haluk

    2017-07-01

    The electrochemical impedance of Geobacter sulfurreducens biofilms reflects the extracellular electron transfer mechanisms determining the rate of current output. Binned into two characteristic parameters, conductance and capacitance, biofilm impedance has received significant attention. The goal of this study was to evaluate a small overpotential approximation for extracellular electron transfer in G. sulfurreducens biofilms. Our motivation was to determine whether conductance over biofilm growth behaved linearly with respect to limiting current. Biofilm impedance was tracked during growth using electrochemical impedance spectroscopy (EIS) and electrochemical quartz crystal microbalance (eQCM). We showed that normalization of the biofilm impedance is useful for characterizing the changes during growth. When the conductance and capacitance were compared to the biofilm current, we found that: 1) conductance had a linear response and 2) constant phase elements (CPE) had a saturating response that coincided with the limiting current. We provided a framework using a simple iV relationship that predicted the conductance-current slope to be 9.57 V-1. CPEs showed more variability across biofilm replicates than conductance values. Although G. sulfurreducens biofilms were used here, other electrochemically active biofilms exhibiting catalytic waves could be studied using the same methods.

  9. Square wave anodic stripping voltammetric determination of Cd²⁺ and Pb²⁺ at bismuth-film electrode modified with electroreduced graphene oxide-supported thiolated thionine.

    Science.gov (United States)

    Li, Zou; Chen, Li; He, Fang; Bu, Lijuan; Qin, Xiaoli; Xie, Qingji; Yao, Shouzhuo; Tu, Xinman; Luo, Xubiao; Luo, Shenglian

    2014-05-01

    Graphene oxide (GO)-thionine (TH) nanocomposite was prepared by π-π stacking. The nanocomposite was cast-coated on a glassy carbon electrode (GCE) to prepare an electroreduced GO (ERGO)-TH/GCE, then 2-mercaptoethanesulfonate (MES) was covalently tethered to ERGO-TH by potentiostatic anodization to form an ERGO-TH-MES/GCE. The thiolation reaction was monitored by electrochemical quartz crystal microbalance (EQCM). Square wave anodic stripping voltammetry (SWASV) was used to determine Cd(2+) and Pb(2+) at the ERGO-TH-MES/GCE further modified with Nafion and Bi. Under the optimal conditions, the linear calibration curves for Cd(2+) and Pb(2+) are from 1 to 40 μg L(-1), with limits of detection (S/N=3) of 0.1 μg L(-1) for Cd(2+) and 0.05 μg L(-1) for Pb(2+), respectively. The electrode was used for the simultaneous analysis of Cd(2+) and Pb(2+) in water samples with satisfactory recovery.

  10. Trace analysis of cefotaxime at carbon paste electrode modified with novel Schiff base Zn(II) complex.

    Science.gov (United States)

    Nigam, Preeti; Mohan, Swati; Kundu, Subir; Prakash, Rajiv

    2009-02-15

    Cefotaxime a third generation cephalosporin drug estimation in nanomolar concentration range is demonstrated for the first time in aqueous and human blood samples using novel Schiff base octahedral Zn(II) complex. The cefotaxime electrochemistry is studied over graphite paste and Zn(II) complex modified graphite paste capillary electrodes in H(2)SO(4) (pH 2.3) using cyclic voltammetry and differential pulse voltammetry. Cefotaxime enrichment is observed over Zn(II) complex modified graphite paste electrode probably due to interaction of functional groups of cefotaxime with Zn(II) complex. Possible interactions between metal complex and cefotaxime drug is examined by UV-vis and electrochemical quartz crystal microbalance (EQCM) techniques and further supported by voltammetric analysis. Differential pulse voltammetry (DPV) with modified electrode is applied for the determination of cefotaxime in acidified aqueous and blood samples. Cefotaxime estimation is successfully demonstrated in the range of 1-500 nM for aqueous samples and 0.1-100 microM in human blood samples. Reproducibility, accuracy and repeatability of the method are checked by triplicate reading for large number of samples. The variation in the measurements is obtained less than 10% without any interference of electrolyte or blood constituents.

  11. [Spherical crystallization in pharmaceutical technology].

    Science.gov (United States)

    Szabóné, R P; Pintyéné, H K; Kása, P; Erös, I; Hasznosné, N M; Farkas, B

    1998-03-01

    Physical properties of crystals, such as size, crystal size distribution and morphology, may predetermine the usefulness of crystalline materials in many pharmaceutical application. The above properties can be regulated with the crystallization process. The spherical crystals are suitable for direct tablet-making because of their better flowability and compressibility properties. These crystals can be used in the filling of the capsule. In this work, the spherical crystals such as "single crystal", "poly-crystals" and agglomerates with other excipients are collected from the literature and the experimental results of the authors. A close cooperation between chemists and the pharmaceutical technologists can help for doing steps in this field.

  12. Quartz crystal growth

    Science.gov (United States)

    Baughman, Richard J.

    1992-01-01

    A process for growing single crystals from an amorphous substance that can undergo phase transformation to the crystalline state in an appropriate solvent. The process is carried out in an autoclave having a lower dissolution zone and an upper crystallization zone between which a temperature differential (.DELTA.T) is maintained at all times. The apparatus loaded with the substance, solvent, and seed crystals is heated slowly maintaining a very low .DELTA.T between the warmer lower zone and cooler upper zone until the amorphous substance is transformed to the crystalline state in the lower zone. The heating rate is then increased to maintain a large .DELTA.T sufficient to increase material transport between the zones and rapid crystallization. .alpha.-Quartz single crystal can thus be made from fused quartz in caustic solvent by heating to 350.degree. C. stepwise with a .DELTA.T of 0.25.degree.-3.degree. C., increasing the .DELTA.T to about 50.degree. C. after the fused quartz has crystallized, and maintaining these conditions until crystal growth in the upper zone is completed.

  13. Crystals in light.

    Science.gov (United States)

    Kahr, Bart; Freudenthal, John; Gunn, Erica

    2010-05-18

    We have made images of crystals illuminated with polarized light for almost two decades. Early on, we abandoned photosensitive chemicals in favor of digital electrophotometry with all of the attendant advantages of quantitative intensity data. Accurate intensities are a boon because they can be used to analytically discriminate small effects in the presence of larger ones. The change in the form of our data followed camera technology that transformed picture taking the world over. Ironically, exposures in early photographs were presumed to correlate simply with light intensity, raising the hope that photography would replace sensorial interpretation with mechanical objectivity and supplant the art of visual photometry. This was only true in part. Quantitative imaging accurate enough to render the separation of crystalloptical quantities had to await the invention of the solid-state camera. Many pioneers in crystal optics were also major figures in the early history of photography. We draw out the union of optical crystallography and photography because the tree that connects the inventors of photography is a structure unmatched for organizing our work during the past 20 years, not to mention that silver halide crystallites used in chemical photography are among the most consequential "crystals in light", underscoring our title. We emphasize crystals that have acquired optical properties such as linear birefringence, linear dichroism, circular birefringence, and circular dichroism, during growth from solution. Other crystalloptical effects were discovered that are unique to curiously dissymmetric crystals containing embedded oscillators. In the aggregate, dyed crystals constitute a generalization of single crystal matrix isolation. Simple crystals provided kinetic stability to include guests such as proteins or molecules in excited states. Molecular lifetimes were extended for the preparation of laser gain media and for the study of the photodynamics of single

  14. Time Crystals: a review.

    Science.gov (United States)

    Sacha, Krzysztof; Zakrzewski, Jakub

    2017-09-08

    Time crystals are time-periodic self-organized structures postulated by Frank Wilczek in 2012. While the original concept was strongly criticized, it stimulated at the same time an intensive research leading to propositions and experimental verifications of discrete (or Floquet) time crystals -- the structures that appear in the time domain due to spontaneous breaking of discrete time translation symmetry. The struggle to observe discrete time crystals is reviewed here together with propositions that generalize this concept introducing condensed matter like physics in the time domain. We shall also revisit the original Wilczek's idea and review strategies aimed at spontaneous breaking of continuous time translation symmetry. . © 2017 IOP Publishing Ltd.

  15. Raman scattering in crystals

    Energy Technology Data Exchange (ETDEWEB)

    Edwards, D.F.

    1988-09-30

    A tutorial presentation is given of Raman scattering in crystals. The physical concepts are emphasized rather than the detailed mathematical formalism. Starting with an introduction to the concepts of phonons and conservation laws, the effects of photon-phonon interactions are presented. This interaction concept is shown for a simple cubic crystal and is extended to a uniaxial crystal. The correlation table method is used for determining the number and symmetry of the Raman active modes. Finally, examples are given to illustrate the relative ease of using this group theoretical method and the predictions are compared with measured Raman spectra. 37 refs., 17 figs., 6 tabs.

  16. Crystallization on prestructured seeds.

    Science.gov (United States)

    Jungblut, Swetlana; Dellago, Christoph

    2013-01-01

    The crystallization transition of an undercooled monodisperse Lennard-Jones fluid in the presence of small prestructured seeds is studied with transition path sampling combined with molecular dynamics simulations. Compared to the homogeneous crystallization, clusters of a few particles arranged into a face- and body-centered cubic structure enhance the crystallization, while icosahedrally ordered seeds do not change the reaction rate. We identify two distinct nucleation regimes-close to the seed and in the bulk. Crystallites form close to the face- and body-centered structures and tend to stay away from the icosahedrally ordered seeds.

  17. Molecules in crystals

    Science.gov (United States)

    Spackman, Mark A.

    2013-04-01

    Hirshfeld surface analysis has developed from the serendipitous discovery of a novel partitioning of the crystal electron density into discrete molecular fragments, to a suite of computational tools used widely for the identification, analysis and discussion of intermolecular interactions in molecular crystals. The relationship between the Hirshfeld surface and very early ideas on the internal structure of crystals is outlined, and applications of Hirshfeld surface analysis are presented for three molecules of historical importance in the development of modern x-ray crystallography: hexamethylbenzene, hexamethylenetetramine and diketopiperazine.

  18. Hypersonic phononic crystals.

    Science.gov (United States)

    Gorishnyy, T; Ullal, C K; Maldovan, M; Fytas, G; Thomas, E L

    2005-03-25

    In this Letter we propose the use of hypersonic phononic crystals to control the emission and propagation of high frequency phonons. We report the fabrication of high quality, single crystalline hypersonic crystals using interference lithography and show that direct measurement of their phononic band structure is possible with Brillouin light scattering. Numerical calculations are employed to explain the nature of the observed propagation modes. This work lays the foundation for experimental studies of hypersonic crystals and, more generally, phonon-dependent processes in nanostructures.

  19. The Crystal Hotel: A Microfluidic Approach to Biomimetic Crystallization.

    Science.gov (United States)

    Gong, Xiuqing; Wang, Yun-Wei; Ihli, Johannes; Kim, Yi-Yeoun; Li, Shunbo; Walshaw, Richard; Chen, Li; Meldrum, Fiona C

    2015-12-02

    A "crystal hotel" microfluidic device that allows crystal growth in confined volumes to be studied in situ is used to produce large calcite single crystals with predefined crystallographic orientation, microstructure, and shape by control of the detailed physical environment, flow, and surface chemistry. This general approach can be extended to form technologically important, nanopatterned single crystals.

  20. α-Amylase sensor based on the degradation of oligosaccharide hydrogel films monitored with a quartz crystal sensor.

    Science.gov (United States)

    Gibbs, Martin John; Biela, Anna; Krause, Steffi

    2015-05-15

    α-Amylase hydrolyses starch molecules to produce smaller oligosaccharides and sugars. Amylases are of great importance in biotechnology and find application in fermentation, detergents, food and the paper industry. The measurement of α-amylase activity in serum and urine has been used in the diagnosis of acute pancreatitis. Salivary amylase has also been shown to be a stress indicator. Sensor coatings suitable for the detection of α-amylase activity have been developed. Oligosaccharides such as glycogen and amylopectin were spin-coated onto gold coated quartz crystals with a base frequency of 10 MHz. The films were subsequently cross-linked with hexamethylene diisocyanate. Film degradation was monitored with a quartz crystal microbalance (QCM) and electrochemical impedance measurements. The films were shown to be stable in phosphate buffered saline (PBS). Addition of α-amylase to the solution resulted in the rapid degradation of the films. The maximum rate of degradation was found to be strongly dependent on the amylase activity in the range typically found in serum when diagnosing pancreatitis (0.08-8 U/ml). Sensor responses in serum were found to be very similar to those obtained in buffer indicating the absence of non-specific binding. Copyright © 2014 Elsevier B.V. All rights reserved.

  1. Crystallization Growth of Single Crystal Cu by ContinuousCasting

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    Crystallization growth of single-crystal Cu by continuous casting has been investigated using selfdesigned horizontal continuous casting equipment and XRD. Experimental results showed that the crystallization plane of (311), (220) and (111) were eliminated sequentially in evolutionary process. The final growth plane of crystal was (200), the direction of crystallization was [100],the growth direction of both sides of the rod inclined to axis, and the degree of deviation of direction [100] from the crystal axis was less than 10. In order to produce high quality single crystal, the solid-liquid interface morphology must be smooth, even be planar.

  2. Deformations of crystal frameworks

    CERN Document Server

    Borcea, Ciprian S

    2011-01-01

    We apply our deformation theory of periodic bar-and-joint frameworks to tetrahedral crystal structures. The deformation space is investigated in detail for frameworks modelled on quartz, cristobalite and tridymite.

  3. Crystal Electrostatic Energy

    CERN Document Server

    Ivanchin, Alexander

    2010-01-01

    It has been shown that to calculate the parameters of the electrostatic field of the ion crystal lattice it sufficient to take into account ions located at a distance of 1-2 lattice spacings. More distant ions make insignificant contribution. As a result, the electrostatic energy of the ion lattice in the alkaline halide crystal produced by both positive and negative ions is in good agreement with experiment when the melting temperature and the shear modulus are calculated. For fcc and bcc metals the ion lattice electrostatic energy is not sufficient to obtain the observed values of these parameters. It is possible to resolve the contradiction if one assumes that the electron density is strongly localized and has a crystal structure described by the lattice delta - function. As a result, positive charges alternate with negative ones as in the alkaline halide crystal. Such delta-like localization of the electron density is known as a model of nearly free electrons.

  4. Shaping Crystals using Electrophoresis

    Science.gov (United States)

    Palacci, Jeremie; Mackiewicz, Kristian

    2016-11-01

    Electrophoresis is size and shape independent as stressed by Morrison in his seminal paper. Here we present an original approach to reshape colloidal crystals using an electric field as a carving tool.

  5. Inclusions in DKDP crystal

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    The shape and the size of inclusions in DKDP crystal have been observed and measured microscopically.Three kinds of inclusions were found and the components of the inclusions were measured. The formation mechanisms were proposed and discussed.``

  6. Liquid Crystal Airborne Display

    Science.gov (United States)

    1977-08-01

    81/2X 11- 10 -9 .8 display using a large advertising alphanimeric ( TCI ) has been added to the front of the optical box used in the F-4 aircraft for HUD...properties over a wide range of tempera - tures, including normal room temperature. What are Liquid Crystals? Liquid crystals have been classified in three...natic fanctions and to present data needed for the semi- automatic and manual control of system functions. Existing aircraft using CRT display

  7. Crystal Structures of Furazanes

    OpenAIRE

    Klapötke, Thomas; Schmid, Philipp; Stierstorfer, Jörg

    2015-01-01

    Several nitrogen-rich salts of 3-nitramino-4-nitrofurazane and dinitraminoazoxyfurazane were synthesized and characterized by various spectroscopic methods. The crystal structures were determined by low temperature single crystal X-ray diffraction. Moreover the sensitivities toward thermal and mechanical stimuli were determined by differential thermal analysis (DTA) and BAM (Bundesanstalt für Materialforschung und -prüfung) methods. The standard enthalpies of formation were calculated for all...

  8. SINGLE CRYSTAL NEUTRON DIFFRACTION.

    Energy Technology Data Exchange (ETDEWEB)

    KOETZLE,T.F.

    2001-03-13

    Single-crystal neutron diffraction measures the elastic Bragg reflection intensities from crystals of a material, the structure of which is the subject of investigation. A single crystal is placed in a beam of neutrons produced at a nuclear reactor or at a proton accelerator-based spallation source. Single-crystal diffraction measurements are commonly made at thermal neutron beam energies, which correspond to neutron wavelengths in the neighborhood of 1 Angstrom. For high-resolution studies requiring shorter wavelengths (ca. 0.3-0.8 Angstroms), a pulsed spallation source or a high-temperature moderator (a ''hot source'') at a reactor may be used. When complex structures with large unit-cell repeats are under investigation, as is the case in structural biology, a cryogenic-temperature moderator (a ''cold source'') may be employed to obtain longer neutron wavelengths (ca. 4-10 Angstroms). A single-crystal neutron diffraction analysis will determine the crystal structure of the material, typically including its unit cell and space group, the positions of the atomic nuclei and their mean-square displacements, and relevant site occupancies. Because the neutron possesses a magnetic moment, the magnetic structure of the material can be determined as well, from the magnetic contribution to the Bragg intensities. This latter aspect falls beyond the scope of the present unit; for information on magnetic scattering of neutrons see Unit 14.3. Instruments for single-crystal diffraction (single-crystal diffractometers or SCDs) are generally available at the major neutron scattering center facilities. Beam time on many of these instruments is available through a proposal mechanism. A listing of neutron SCD instruments and their corresponding facility contacts is included in an appendix accompanying this unit.

  9. Building a crystal palace

    CERN Multimedia

    2007-01-01

    The end-caps of the CMS electromagnetic calorimeter (ECAL) take shape as the first quadrant was completed on Wednesday 3 October. 1831 crystals, organised into five by five blocks named ‘supercrystals’, make up the first quadrant of Dee 1.With the 61,200-crystal barrel of its electromagnetic calorimeter (ECAL) complete, CMS is now building the endcaps, on the tenth anniversary of their initial design. Crystals for the endcaps were the last to be made, so the race is now on to have them all in place and ready for the turn-on of the LHC next year. Assembly of the first of eight quadrants began in June and crystal mounting was completed on Wednesday 3 October. Each crystal is transparent, has a volume just larger than a CERN coffee cup yet weighs a huge 1.5kg. 1831 of these lead tungstate crystals went into the first quadrant from a total 14,648 in the endcaps. The lead and tungsten account for 86% of each crystal’s weight, but as project leader Dave Cockerill expl...

  10. High-throughput crystallization screening.

    Science.gov (United States)

    Skarina, Tatiana; Xu, Xiaohui; Evdokimova, Elena; Savchenko, Alexei

    2014-01-01

    Protein structure determination by X-ray crystallography is dependent on obtaining a single protein crystal suitable for diffraction data collection. Due to this requirement, protein crystallization represents a key step in protein structure determination. The conditions for protein crystallization have to be determined empirically for each protein, making this step also a bottleneck in the structure determination process. Typical protein crystallization practice involves parallel setup and monitoring of a considerable number of individual protein crystallization experiments (also called crystallization trials). In these trials the aliquots of purified protein are mixed with a range of solutions composed of a precipitating agent, buffer, and sometimes an additive that have been previously successful in prompting protein crystallization. The individual chemical conditions in which a particular protein shows signs of crystallization are used as a starting point for further crystallization experiments. The goal is optimizing the formation of individual protein crystals of sufficient size and quality to make them suitable for diffraction data collection. Thus the composition of the primary crystallization screen is critical for successful crystallization.Systematic analysis of crystallization experiments carried out on several hundred proteins as part of large-scale structural genomics efforts allowed the optimization of the protein crystallization protocol and identification of a minimal set of 96 crystallization solutions (the "TRAP" screen) that, in our experience, led to crystallization of the maximum number of proteins.

  11. Advanced Crystal Growth Technology

    Energy Technology Data Exchange (ETDEWEB)

    Land, T A; Hawley-Fedder, R A

    2005-03-01

    Although the fundamental mechanism of crystal growth has received and continues to receive deserved attention as a research activity, similar research efforts addressing the need for advanced materials and processing technology required to grow future high quality crystals has been sorely lacking. The purpose of this research effort is to develop advanced rapid growth processing technologies and materials suitable for providing the quality of products needed for advanced laser and photonics applications. In particular we are interested in developing a methodology for growing high quality KDP crystals based on an understanding of the fundamental mechanisms affecting growth. One problem in particular is the issue of control of impurities during the growth process. Many unwanted impurities are derived from the growth system containers and can adversely affect the optical quality and aspect ratio (shape) of the crystals. Previous studies have shown that even trace concentrations ({approx}10{sup -9} M) of impurities affect growth and even 'insignificant' species can have a large impact. It is also known that impurities affect the two growth faces of KDP very differently. Traces of trivalent metal impurities such as Fe{sup 3+}, Cr{sup 3+}, and Al{sup 3+} in solution are known to inhibit growth of the prismatic {l_brace}100{r_brace} faces of KDP while having little effect on the growth of the pyramidal {l_brace}101{r_brace} faces. This differentiation opens the possibility of intentionally adding select ions to control the aspect ratio of the crystal to obtain a more advantageous shape. This document summarizes our research efforts to improve KDP crystal growth. The first step was to control unwanted impurity addition from the growth vessel by developing an FEP liner to act as a barrier to the glass container. The other focus to develop an understanding of select impurities on growth rates in order to be able to use them to control the habit or shape of the

  12. Introduction to protein crystallization.

    Science.gov (United States)

    McPherson, Alexander; Gavira, Jose A

    2014-01-01

    Protein crystallization was discovered by chance about 150 years ago and was developed in the late 19th century as a powerful purification tool and as a demonstration of chemical purity. The crystallization of proteins, nucleic acids and large biological complexes, such as viruses, depends on the creation of a solution that is supersaturated in the macromolecule but exhibits conditions that do not significantly perturb its natural state. Supersaturation is produced through the addition of mild precipitating agents such as neutral salts or polymers, and by the manipulation of various parameters that include temperature, ionic strength and pH. Also important in the crystallization process are factors that can affect the structural state of the macromolecule, such as metal ions, inhibitors, cofactors or other conventional small molecules. A variety of approaches have been developed that combine the spectrum of factors that effect and promote crystallization, and among the most widely used are vapor diffusion, dialysis, batch and liquid-liquid diffusion. Successes in macromolecular crystallization have multiplied rapidly in recent years owing to the advent of practical, easy-to-use screening kits and the application of laboratory robotics. A brief review will be given here of the most popular methods, some guiding principles and an overview of current technologies.

  13. Crystal Ball Functional Model

    Science.gov (United States)

    Plotnick, David

    2016-09-01

    The A2 collaboration of the MAinz MIkrotron is dedicated to studying meson production and nucleon structure and behavior via photon scattering. The photons are made via bremsstrahlung process and energy-tagged using the Glasgow Photon tagger. The photon beam then interacts in a variety of targets: cryogenic, polarized or solid state, and scattered particles deposit their energy within the NaI crystals. Scintillators are able to give results on particles energy and time. Events are reconstructed by combining information from the Tagging spectrometer, the Crystal Ball detector, the TAPS forward wall spectrometer, a Cherenkov detector, and multi-wire proportional chambers. To better understand the detector and experimental events, a live display was built to show energies deposited in crystals in real-time. In order to show a range of energies and particles, addressable LEDs that are individually programmable were used. To best replicate the Crystal Ball, 3D printing technology was employed to build a similar highly segmented icosahedron that can hold each LED, creating a 3D representation of what photons see during experiments. The LEDs were controlled via Arduino microcontroller. Finally, we implemented the Experimental Physics and Industrial Control System to grab live event data, and a simple program converts this data in to color and crystal number data that is able to communicate with the Arduino. Using these simple parts, we can better visualize and understand the tools used in nuclear physics. This material is based upon work supported by the National Science Foundation Grant No. IIA-1358175.

  14. Flexible ferroelectric organic crystals

    Science.gov (United States)

    Owczarek, Magdalena; Hujsak, Karl A.; Ferris, Daniel P.; Prokofjevs, Aleksandrs; Majerz, Irena; Szklarz, Przemysław; Zhang, Huacheng; Sarjeant, Amy A.; Stern, Charlotte L.; Jakubas, Ryszard; Hong, Seungbum; Dravid, Vinayak P.; Stoddart, J. Fraser

    2016-10-01

    Flexible organic materials possessing useful electrical properties, such as ferroelectricity, are of crucial importance in the engineering of electronic devices. Up until now, however, only ferroelectric polymers have intrinsically met this flexibility requirement, leaving small-molecule organic ferroelectrics with room for improvement. Since both flexibility and ferroelectricity are rare properties on their own, combining them in one crystalline organic material is challenging. Herein, we report that trisubstituted haloimidazoles not only display ferroelectricity and piezoelectricity--the properties that originate from their non-centrosymmetric crystal lattice--but also lend their crystalline mechanical properties to fine-tuning in a controllable manner by disrupting the weak halogen bonds between the molecules. This element of control makes it possible to deliver another unique and highly desirable property, namely crystal flexibility. Moreover, the electrical properties are maintained in the flexible crystals.

  15. Flexible ferroelectric organic crystals

    Science.gov (United States)

    Owczarek, Magdalena; Hujsak, Karl A.; Ferris, Daniel P.; Prokofjevs, Aleksandrs; Majerz, Irena; Szklarz, Przemysław; Zhang, Huacheng; Sarjeant, Amy A.; Stern, Charlotte L.; Jakubas, Ryszard; Hong, Seungbum; Dravid, Vinayak P.; Stoddart, J. Fraser

    2016-01-01

    Flexible organic materials possessing useful electrical properties, such as ferroelectricity, are of crucial importance in the engineering of electronic devices. Up until now, however, only ferroelectric polymers have intrinsically met this flexibility requirement, leaving small-molecule organic ferroelectrics with room for improvement. Since both flexibility and ferroelectricity are rare properties on their own, combining them in one crystalline organic material is challenging. Herein, we report that trisubstituted haloimidazoles not only display ferroelectricity and piezoelectricity—the properties that originate from their non-centrosymmetric crystal lattice—but also lend their crystalline mechanical properties to fine-tuning in a controllable manner by disrupting the weak halogen bonds between the molecules. This element of control makes it possible to deliver another unique and highly desirable property, namely crystal flexibility. Moreover, the electrical properties are maintained in the flexible crystals. PMID:27734829

  16. Frequency doubling crystals

    Science.gov (United States)

    Wang, Francis; Velsko, Stephan P.

    1989-01-01

    A systematic approach to the production of frequency conversion crystals is described in which a chiral molecule has attached to it a "harmonic generating unit" which contributes to the noncentrosymmetry of the molecule. Certain preferred embodiments of such harmonic generating units include carboxylate, guanadyly and imidazolyl units. Certain preferred crystals include L-arginine fluoride, deuterated L-arginine fluoride, L-arginine chloride monohydrate, L-arginine acetate, dithallium tartrate, ammonium N-acetyl valine, N-acetyl tyrosine and N-acetyl hydroxyproline. Chemical modifications of the chiral molecule, such as deuteration, halogenation and controlled counterion substitution are available to adapt the dispersive properties of a crystal in a particular wavelength region.

  17. Photonic Crystal Microchip Laser

    Science.gov (United States)

    Gailevicius, Darius; Koliadenko, Volodymyr; Purlys, Vytautas; Peckus, Martynas; Taranenko, Victor; Staliunas, Kestutis

    2016-09-01

    The microchip lasers, being very compact and efficient sources of coherent light, suffer from one serious drawback: low spatial quality of the beam strongly reducing the brightness of emitted radiation. Attempts to improve the beam quality, such as pump-beam guiding, external feedback, either strongly reduce the emission power, or drastically increase the size and complexity of the lasers. Here it is proposed that specially designed photonic crystal in the cavity of a microchip laser, can significantly improve the beam quality. Experiments show that a microchip laser, due to spatial filtering functionality of intracavity photonic crystal, improves the beam quality factor M2 reducing it by a factor of 2, and increase the brightness of radiation by a factor of 3. This comprises a new kind of laser, the “photonic crystal microchip laser”, a very compact and efficient light source emitting high spatial quality high brightness radiation.

  18. Photonic Crystal Fibres

    DEFF Research Database (Denmark)

    Bjarklev, Anders Overgaard; Broeng, Jes; Sanchez Bjarklev, Araceli

    Photonic crystal fibres represent one of the most active research areas today in the field of optics. The diversity of applications that may be addressed by these fibres and their fundamental appeal, by opening up the possibility of guiding light in a radically new way compared to conventional...... optical fibres, have spun an interest from almost all areas of optics and photonics. The aim of this book is to provide an understanding of the different types of photonic crystal fibres and to outline some of the many new and exciting applications that these fibres offer. The book is intended for both...... readers with a general interest in photonic crystals, as well as for scientists who are entering the field and desire a broad overview as well as a solid starting point for further specialized stuides. Teh book, therefore, covers bothe general aspects such as the link from classical optics to photonic...

  19. Photonic Crystal Fibres

    DEFF Research Database (Denmark)

    Bjarklev, Anders Overgaard; Broeng, Jes; Sanchez Bjarklev, Araceli

    Photonic crystal fibres represent one of the most active research areas today in the field of optics. The diversity of applications that may be addressed by these fibres and their fundamental appeal, by opening up the possibility of guiding light in a radically new way compared to conventional...... optical fibres, have spun an interest from almost all areas of optics and photonics. The aim of this book is to provide an understanding of the different types of photonic crystal fibres and to outline some of the many new and exciting applications that these fibres offer. The book is intended for both...... readers with a general interest in photonic crystals, as well as for scientists who are entering the field and desire a broad overview as well as a solid starting point for further specialized stuides. Teh book, therefore, covers bothe general aspects such as the link from classical optics to photonic...

  20. Photonic crystals as metamaterials

    Science.gov (United States)

    Foteinopoulou, S.

    2012-10-01

    The visionary work of Veselago had inspired intensive research efforts over the last decade, towards the realization of man-made structures with unprecedented electromagnetic (EM) properties. These structures, known as metamaterials, are typically periodic metallic-based resonant structures demonstrating effective constitutive parameters beyond the possibilities of natural material. For example they can exhibit optical magnetism or simultaneously negative effective permeability and permittivity which implies the existence of a negative refractive index. However, also periodic dielectric and polar material, known as photonic crystals, can exhibit EM capabilities beyond natural materials. This paper reviews the conditions and manifestations of metamaterial capabilities of photonic crystal systems.

  1. Crystal Structures of Furazanes

    Directory of Open Access Journals (Sweden)

    Thomas M. Klapötke

    2015-09-01

    Full Text Available Several nitrogen-rich salts of 3-nitramino-4-nitrofurazane and dinitraminoazoxyfurazane were synthesized and characterized by various spectroscopic methods. The crystal structures were determined by low temperature single crystal X-ray diffraction. Moreover the sensitivities toward thermal and mechanical stimuli were determined by differential thermal analysis (DTA and BAM (Bundesanstalt für Materialforschung und -prüfung methods. The standard enthalpies of formation were calculated for all compounds at the CBS-4M level of theory, and the energetic performance was predicted with the EXPLO5 V6.02 computer code.

  2. Liquid crystals fundamentals

    CERN Document Server

    Singh, Shri

    2001-01-01

    Liquid crystals are partially ordered systems without a rigid, long-range structure. The study of these materials covers a wide area: chemical structure, physical properties and technical applications. Due to their dual nature - anisotropic physical properties of solids and rheological behavior of liquids - and easy response to externally applied electric, magnetic, optical and surface fields liquid crystals are of greatest potential for scientific and technological applications. The subject has come of age and has achieved the status of being a very exciting interdisciplinary field of scienti

  3. Cirrus Crystal Terminal Velocities.

    Science.gov (United States)

    Heymsfield, Andrew J.; Iaquinta, Jean

    2000-04-01

    Cirrus crystal terminal velocities are of primary importance in determining the rate of transport of condensate from upper- to middle-tropospheric levels and profoundly influence the earth's radiation balance through their effect on the rate of buildup or decay of cirrus clouds. In this study, laboratory and field-based cirrus crystal drag coefficient data, as well as analytical descriptions of cirrus crystal shapes, are used to derive more physically based expressions for the velocities of cirrus crystals than have been available in the past.Polycrystals-often bullet rosettes-are shown to be the dominant crystal types in synoptically generated cirrus, with columns present in varying but relatively large percentages, depending on the cloud. The two critical parameters needed to calculate terminal velocity are the drag coefficient and the ratio of mass to cross-sectional area normal to their fall direction. Using measurements and calculations, it is shown that drag coefficients from theory and laboratory studies are applicable to crystals of the types found in cirrus. The ratio of the mass to area, which is shown to be relatively independent of the number of bullets in the rosette, is derived from an analytic model that represents bullet rosettes containing one to eight bullets in 19 primary geometric configurations. The ratio is also derived for columns. Using this information, a general set of equations is developed to calculate the terminal velocities and masses in terms of the aspect ratio (width divided by length), ice density, and rosette maximum dimension. Simple expressions for terminal velocity and mass as a function of bullet rosette maximum dimension are developed by incorporating new information on bullet aspect ratios.The general terminal velocity and mass relations are then applied to a case from the First International Satellite Cloud Climatology Project (ISCCP) Research Experiment (FIRE) 2, when size spectra from a balloon-borne ice crystal

  4. High Birefringence Liquid Crystals

    Directory of Open Access Journals (Sweden)

    Jakub Herman

    2013-09-01

    Full Text Available Liquid crystals, compounds and mixtures with positive dielectric anisotropies are reviewed. The mesogenic properties and physical chemical properties (viscosity, birefringence, refractive indices, dielectric anisotropy and elastic constants of compounds being cyano, fluoro, isothiocyanato derivatives of biphenyl, terphenyl, quaterphenyl, tolane, phenyl tolane, phenyl ethynyl tolane, and biphenyl tolane are compared. The question of how to obtain liquid crystal with a broad range of nematic phases is discussed in detail. Influence of lateral substituent of different kinds of mesogenic and physicochemical properties is presented (demonstrated. Examples of mixtures with birefringence ∆n in the range of 0.2–0.5 are given.

  5. Functionalizing Designer DNA Crystals

    Science.gov (United States)

    Chandrasekaran, Arun Richard

    Three-dimensional crystals have been self-assembled from a DNA tensegrity triangle via sticky end interaction. The tensegrity triangle is a rigid DNA motif containing three double helical edges connected pair-wise by three four-arm junctions. The symmetric triangle contains 3 unique strands combined in a 3:3:1 ratio: 3 crossover, 3 helical and 1 central. The length of the sticky end reported previously was two nucleotides (nt) (GA:TC) and the motif with 2-helical turns of DNA per edge diffracted to 4.9 A at beam line NSLS-X25 and to 4 A at beam line ID19 at APS. The purpose of these self-assembled DNA crystals is that they can be used as a framework for hosting external guests for use in crystallographic structure solving or the periodic positioning of molecules for nanoelectronics. This thesis describes strategies to improve the resolution and to incorporate guests into the 3D lattice. The first chapter describes the effect of varying sticky end lengths and the influence of 5'-phosphate addition on crystal formation and resolution. X-ray diffraction data from beam line NSLS-X25 revealed that the crystal resolution for 1-nt (G:C) sticky end was 3.4 A. Motifs with every possible combination of 1-nt and 2-nt sticky-ended phosphorylated strands were crystallized and X-ray data were collected. The position of the 5'-phosphate on either the crossover (strand 1), helical (strand 2), or central strand (3) had an impact on the resolution of the self-assembled crystals with the 1-nt 1P-2-3 system diffracting to 2.62 A at APS and 3.1 A at NSLS-X25. The second chapter describes the sequence-specific recognition of DNA motifs with triplex-forming oligonucleotides (TFOs). This study examined the feasibility of using TFOs to bind to specific locations within a 3-turn DNA tensegrity triangle motif. The TFO 5'-TTCTTTCTTCTCT was used to target the tensegrity motif containing an appropriately embedded oligopurine.oligopyrimidine binding site. As triplex formation involving cytidine

  6. REFINEMENT OF THE CRYSTAL STRUCTURE OF GUANIDINIUM ALUMINUM SULFATE HEXAHYDRATE.

    Science.gov (United States)

    FERROELECTRIC CRYSTALS, * CRYSTAL STRUCTURE ), (*GUANIDINES, CRYSTAL STRUCTURE ), (*ALUMINUM COMPOUNDS, CRYSTAL STRUCTURE ), SULFATES, HYDRATES, X RAY DIFFRACTION, CHROMIUM COMPOUNDS, CRYSTAL LATTICES, CHEMICAL BONDS

  7. Electrospray crystallization for high-quality submicron-sized crystals

    NARCIS (Netherlands)

    Radacsi, N.; Stankiewicz, A.I.; Creyghton, Y.L.M.; Heijden, A.E.D.M. van der; Horst, J.H. ter

    2011-01-01

    Nano- and submicron-sized crystals are too small to contain inclusions and are, therefore, expected to have a higher internal quality compared to conventionally sized particles (several tens to hundreds of microns). Using electrospray crystallization, nano- and submicron-sized crystals can be easily

  8. Liquid crystal colloids

    Directory of Open Access Journals (Sweden)

    2010-01-01

    Full Text Available This special issue of "Condensed Matter Physics" focuses on the most recent developments in the study of a fascinating soft matter system, representing colloidal particles in a liquid crystalline environment. Furthermore, some articles address pioneering steps in the discovery of liquid crystals going back to 1861 paper by Julius Planer.

  9. Crystal Ball Replica

    Science.gov (United States)

    Ajamian, John

    2016-09-01

    The A2 collaboration of the Institute for Nuclear Physics of Johannes Gutenberg University performs research on (multiple) meson photoproduction and nucleon structure and dynamics using a high energy polarized photon beam at specific targets. Particles scattered from the target are detected in the Crystal Ball, or CB. The CB is composed of 672 NaI crystals that surround the target and can analyze particle type and energy of ejected particles. Our project was to create a replica of the CB that could display what was happening in real time on a 3 Dimensional scale replica. Our replica was constructed to help explain the physics to the general public, be used as a tool when calibrating each of the 672 NaI crystals, and to better analyze the electron showering of particles coming from the target. This poster will focus on the hardware steps necessary to construct the replica and wire the 672 programmable LEDS in such a way that they can be mapped to correspond to the Crystal Ball elements. George Washington NSF Grant.

  10. Poet Lake Crystal Approval

    Science.gov (United States)

    This September 19, 2016 letter from EPA approves the petition from Poet Biorefining-Lake Crystal, regarding non-grandfathered ethanol produced through a dry mill process, qualifying under the Clean Air Act for renewable fuel (D-code 6) RINs under the RFS

  11. The Crystal Set

    Science.gov (United States)

    Greenslade, Thomas B., Jr.

    2014-01-01

    In past issues of this journal, the late H. R. Crane wrote a long series of articles under the running title of "How Things Work." In them, Dick dealt with many questions that physics teachers asked themselves, but did not have the time to answer. This article is my attempt to work through the physics of the crystal set, which I thought…

  12. Computer-assisted Crystallization.

    Science.gov (United States)

    Semeister, Joseph J., Jr.; Dowden, Edward

    1989-01-01

    To avoid a tedious task for recording temperature, a computer was used for calculating the heat of crystallization for the compound sodium thiosulfate. Described are the computer-interfacing procedures. Provides pictures of laboratory equipment and typical graphs from experiments. (YP)

  13. The CMS crystal calorimeter

    CERN Document Server

    Lustermann, W

    2004-01-01

    The measurement of the energy of electrons and photons with very high accuracy is of primary importance far the study of many physics processes at the Large Hadron Collider (LHC), in particular for the search of the Higgs Boson. The CMS experiment will use a crystal calorimeter with pointing geometry, almost covering 4p, as it offers a very good energy resolution. It is divided into a barrel composed of 61200 lead tungstate crystals, two end-caps with 14648 crystals and a pre-shower detector in front of the end-cap. The challenges of the calorimeter design arise from the high radiation environment, the 4 Tesla magnetic eld, the high bunch crossing rate of 40 MHz and the large dynamic range, requiring the development of fast, radiation hard crystals, photo-detectors and readout electronics. An overview of the construction and design of the calorimeter will be presented, with emphasis on some of the details required to meet the demanding performance goals. 19 Refs.

  14. The Crystal Set

    Science.gov (United States)

    Greenslade, Thomas B., Jr.

    2014-01-01

    In past issues of this journal, the late H. R. Crane wrote a long series of articles under the running title of "How Things Work." In them, Dick dealt with many questions that physics teachers asked themselves, but did not have the time to answer. This article is my attempt to work through the physics of the crystal set, which I thought…

  15. DIFFRACTION FROM MODEL CRYSTALS

    Science.gov (United States)

    Although calculating X-ray diffraction patterns from atomic coordinates of a crystal structure is a widely available capability, calculation from non-periodic arrays of atoms has not been widely applied to cellulose. Non-periodic arrays result from modeling studies that, even though started with at...

  16. Simulating polymer liquid crystals

    NARCIS (Netherlands)

    Bladon, P.; Frenkel, D.

    1996-01-01

    A model suitable for simulating lyotropic polymer liquid crystals (PLCs) is described. By varying the persistence length between infinity and 25, the effect of increasing flexibility on the nematic - smectic transition of a PLC with a length-to-width ratio L/D = 6 is investigated. It is found that

  17. Ultrafast photonic crystal optical switching

    Institute of Scientific and Technical Information of China (English)

    GONG Qi-huang; HU Xiao-yong

    2006-01-01

    Photonic crystal,a novel and artificial photonic material with periodic dielectric distribution,possesses photonic bandgap and can control the propagation states of photons.Photonic crystal has been considered to be a promising candidate for the future integrated photonic devices.The properties and the fabrication method of photonic crystal are expounded.The progresses of the study of ultrafast photonic crystal optical switching are discussed in detail.

  18. Subcutaneous crystal deposition in pseudogout.

    Science.gov (United States)

    Rothschild, B M; Round, M J

    1980-11-07

    Aspiration of inflamed periarticular tissues in seven patients suspected of having gout on clinical examination revealed positively birefringent calcium pyrophosphate crystals. The identification of calcium pyrophosphate crystals within articular structures and in the surrounding soft tissues and radiologic findings of chondrocalcinosis, in the absence of identifiable uric acid crystals, emphasize the importance of crystal identification in all cases of probable gout and stress the diagnostic role of soft-tissue aspiration in cases of soft-tissue inflammation, especially when arthrocentesis is unsuccessful.

  19. Intensified crystallization in complex media: heuristics for crystallization of platform chemicals

    NARCIS (Netherlands)

    Urbanus, J.; Roelands, C.P.M.; Verdoes, D.; Horst, J.H. ter

    2012-01-01

    This paper presents heuristics for the integration of fermentation with the appropriate crystallization based in-situ product recovery (ISPR) technique. Here techniques, such as co-crystallization (CC), evaporative crystallization (EC), template induced crystallization (TIC), cooling crystallization

  20. Intensified crystallization in complex media: heuristics for crystallization of platform chemicals

    NARCIS (Netherlands)

    Urbanus, J.; Roelands, C.P.M.; Verdoes, D.; Horst, J.H. ter

    2012-01-01

    This paper presents heuristics for the integration of fermentation with the appropriate crystallization based in-situ product recovery (ISPR) technique. Here techniques, such as co-crystallization (CC), evaporative crystallization (EC), template induced crystallization (TIC), cooling crystallization

  1. Optimization of photonic crystal cavities

    DEFF Research Database (Denmark)

    Wang, Fengwen; Sigmund, Ole

    2017-01-01

    We present optimization of photonic crystal cavities. The optimization problem is formulated to maximize the Purcell factor of a photonic crystal cavity. Both topology optimization and air-hole-based shape optimization are utilized for the design process. Numerical results demonstrate...... that the Purcell factor of the photonic crystal cavity can be significantly improved through optimization....

  2. Classical and quantum Coulomb crystals

    CERN Document Server

    Bonitz, M; Baumgartner, H; Henning, C; Filinov, A; Block, D; Arp, O; Piel, A; Kading, S; Ivanov, Y; Melzer, A; Fehske, H; Filinov, V

    2008-01-01

    Strong correlation effects in classical and quantum plasmas are discussed. In particular, Coulomb (Wigner) crystallization phenomena are reviewed focusing on one-component non-neutral plasmas in traps and on macroscopic two-component neutral plasmas. The conditions for crystal formation in terms of critical values of the coupling parameters and the distance fluctuations and the phase diagram of Coulomb crystals are discussed.

  3. Surface properties of HMX crystal

    Science.gov (United States)

    Yee, R. Y.; Adicoff, A.; Dibble, E. J.

    1980-01-01

    The surface properties of Beta-HMX crystals were studied. The surface energies of three principal crystal faces were obtained by measuring contact angles with several reference liquids. The surface energies and polarity of the three crystal faces are found to be different.

  4. Computational strain gradient crystal plasticity

    DEFF Research Database (Denmark)

    Niordson, Christian Frithiof; Kysar, Jeffrey W.

    2014-01-01

    of plane crystal plasticity are studied: pure shear of a single crystal between rigid platens as well as plastic deformation around cylindrical voids in hexagonal close packed and face centered cubic crystals. Effective in-plane constitutive slip parameters for plane strain deformation of specifically...

  5. A Few Good Crystals Please

    Science.gov (United States)

    Judge, Russell A.; Snell, Edward H.

    1999-01-01

    Part of the challenge of macromolecular crystal growth for structure determination is obtaining an appropriate number of crystals with a crystal volume suitable for X-ray analysis. In this respect an understanding of the effect of solution conditions on macromolecule nucleation rates is advantageous. This study investigated the effects of solution conditions on the nucleation rate and final crystal size of two crystal systems; tetragonal lysozyme and glucose isomerase. Batch crystallization plates were prepared at given solution concentration and incubated at set temperatures over one week. The number of crystals per well with their size and axial ratios were recorded and correlated with solution conditions. Duplicate experiments indicate the reproducibility of the technique. Results for each system showing the effect of supersaturation, incubation temperature and solution pH on nucleation rates will be presented and discussed. In the case of lysozyme, having optimized solution conditions to produce an appropriate number of crystals of a suitable size, a batch of crystals were prepared under exactly the same conditions. Fifty of these crystals were analyzed by x-ray techniques. The results indicate that even under the same crystallization conditions, a marked variation in crystal properties exists.

  6. Generation of Absolute Controlled Crystal Chirality by the Removal of Crystal Water from Achiral Crystal of Nucleobase Cytosine

    OpenAIRE

    Kawasaki, Tsuneomi; Hakoda, Yuko; Mineki, Hiroko; Suzuki, Kenta; Soai, Kenso

    2010-01-01

    The enantioselective formation of chiral crystal of achiral nucleobase cytosine was achieved mediated by the crystal direction selective dehydration of crystal water in the achiral crystal of cytosine monohydrate (P21/c). Heat transfer from the enantiotopic face of the single crystal of cytosine monohydrate afforded the enantiomorphous crystal of anhydrous cytosine.

  7. Crystallization-induced properties from morphology-controlled organic crystals.

    Science.gov (United States)

    Park, Chibeom; Park, Ji Eun; Choi, Hee Cheul

    2014-08-19

    During the past two decades, many materials chemists have focused on the development of organic molecules that can serve as the basis of cost-effective and flexible electronic, optical, and energy conversion devices. Among the potential candidate molecules, metal-free or metal-containing conjugated organic molecules offer high-order electronic conjugation levels that can directly support fast charge carrier transport, rapid optoelectric responses, and reliable exciton manipulation. Early studies of these molecules focused on the design and synthesis of organic unit molecules that exhibit active electrical and optical properties when produced in the form of thin film devices. Since then, researchers have worked to enhance the properties upon crystallization of the unit molecules as single crystals provide higher carrier mobilities and exciton recombination yields. Most recently, researchers have conducted in-depth studies to understand how crystallization induces property changes, especially those that depend on specific crystal surfaces. The different properties that depend on the crystal facets have been of particular interest. Most unit molecules have anisotropic structures, and therefore produce crystals with several unique crystal facets with dissimilar molecular arrangements. These structural differences would also lead to diverse electrical conductance, optical absorption/emission, and even chemical interaction properties depending on the crystal facet investigated. To study the effects of crystallization and crystal facet-dependent property changes, researchers must grow or synthesize crystals of highly conjugated molecules that have both a variety of morphologies and high crystallinity. Morphologically well-defined organic crystals, that form structures such as wires, rods, disks, and cubes, provide objects that researchers can use to evaluate these material properties. Such structures typically occur as single crystals with well-developed facets with

  8. Surrogate Seeds For Growth Of Crystals

    Science.gov (United States)

    Shlichta, Paul J.

    1989-01-01

    Larger crystals of higher quality grown. Alternative method for starting growth of crystal involves use of seed crystal of different material instead of same material as solution. Intended for growing single-crystal proteins for experiments but applicable in general to growth of crystals from solutions and to growth of semiconductor or other crystals from melts.

  9. Twisted aspirin crystals.

    Science.gov (United States)

    Cui, Xiaoyan; Rohl, Andrew L; Shtukenberg, Alexander; Kahr, Bart

    2013-03-06

    Banded spherulites of aspirin have been crystallized from the melt in the presence of salicylic acid either generated from aspirin decomposition or added deliberately (2.6-35.9 mol %). Scanning electron microscopy, X-ray diffraction analysis, and optical polarimetry show that the spherulites are composed of helicoidal crystallites twisted along the growth directions. Mueller matrix imaging reveals radial oscillations in not only linear birefringence, but also circular birefringence, whose origin is explained through slight (∼1.3°) but systematic splaying of individual lamellae in the film. Strain associated with the replacement of aspirin molecules by salicylic acid molecules in the crystal structure is computed to be large enough to work as the driving force for the twisting of crystallites.

  10. Nonlinear Photonic Crystal Fibers

    DEFF Research Database (Denmark)

    Hansen, Kim Per

    2004-01-01

    Despite the general recession in the global economy and the collapse of the optical telecommunication market, research within specialty fibers is thriving. This is, more than anything else, due to the technology transition from standard all-glass fibers to photonic crystal fibers, which, instead...... of doping, use a microstructure of air and glass to obtain a refractive index difference between the core and the cladding. This air/glass microstructure lends the photonic crystal fibers a range of unique and highly usable properties, which are very different from those found in solid standard fibers....... The freedom to design the dispersion profile of the fibers is much larger and it is possible to create fibers, which support only a single spatial mode, regardless of wavelength. In comparison, the standard dispersion-shifted fibers are limited by a much lower index-contrast between the core and the cladding...

  11. Nonlinear Photonic Crystal Fibers

    DEFF Research Database (Denmark)

    Hansen, Kim Per

    2004-01-01

    , leading to reduced mode confinement and dispersion flexibility. In this thesis, we treat the nonlinear photonic crystal fiber – a special sub-class of photonic crystal fibers, the core of which has a diameter comparable to the wavelength of the light guided in the fiber. The small core results in a large...... nonlinear coefficient and in various applications, it is therefore possible to reduce the required fiber lengths quite dramatically, leading to increased stability and efficiency. Furthermore, it is possible to design these fibers with zero-dispersion at previously unreachable wavelengths, paving the way...... for completely new applications, especially in and near the visible wavelength region. One such application is supercontinuum generation. Supercontinuum generation is extreme broadening of pulses in a nonlinear medium (in this case a small-core fiber), and depending on the dispersion of the fiber, it is possible...

  12. Liquid crystal dimers

    CERN Document Server

    Kumar Pal, Santanu

    2017-01-01

    This book covers in-depth discussion of design principles, synthesis and thermal behavior of all types of liquid crystal (LC) dimers. The text presents recent advances in the field of LC dimers consisting of different mesogenic units such as calamitic, discotic and bent-core molecules. It starts with a chapter on the introduction of liquid crystal dimers, including their odd-even behavior, basic classification of dimers and common mesophases in dimers. The text shows how the molecular architectures are being used to develop new materials to study a range of interesting phenomena such as the biaxial nematic phase containing rod-like and disc-like mesogenic units. Finally, the text presents perspectives related to technological relevance of these dimers such as dopants in LC display mixtures exhibiting faster relaxation time, strong flexoelectric coupling and others to effect control over the properties of these materials.

  13. Liquid crystal colloids

    CERN Document Server

    Muševič, Igor

    2017-01-01

    This book brings together the many concepts and discoveries in liquid crystal colloids contributed over the last twenty years and scattered across numerous articles and book chapters. It provides both a historical overview of the development of the field and a clear perspective on the future applications in photonics. The book covers all phenomena observed in liquid crystal colloids with an emphasis on experimental tools and applications of topology in condensed matter, as well as practical micro-photonics applications. It includes a number of spectacular manifestations of new topological phenomena not found or difficult to observe in other systems. Starting from the early works on nematic colloids, it explains the basics of topological defects in ordered media, charge and winding, and the elastic forces between colloidal particles in nematics. Following a detailed description of experimental methods, such as optical tweezing and particle tracking, the book eases the reader into the theoretical part, which de...

  14. Liquid crystals in tribology.

    Science.gov (United States)

    Carrión, Francisco-José; Martínez-Nicolás, Ginés; Iglesias, Patricia; Sanes, José; Bermúdez, María-Dolores

    2009-09-18

    Two decades ago, the literature dealing with the possible applications of low molar mass liquid crystals, also called monomer liquid crystals (MLCs), only included about 50 references. Today, thousands of papers, conference reports, books or book chapters and patents refer to the study and applications of MLCs as lubricants and lubricant additives and efforts are made to develop new commercial applications. The development of more efficient lubricants is of paramount technological and economic relevance as it is estimated that half the energy consumption is dissipated as friction. MLCs have shown their ability to form ordered boundary layers with good load-carrying capacity and to lower the friction coefficients, wear rates and contact temperature of sliding surfaces, thus contributing to increase the components service life and to save energy. This review includes the use of MLCs in lubrication, and dispersions of MLCs in conventional polymers (PDMLCs). Finally, new lubricating system composed of MLC blends with surfactants, ionic liquids or nanophases are considered.

  15. Liquid Crystal Motion Picture Projector①

    Institute of Scientific and Technical Information of China (English)

    SHIYongji

    1997-01-01

    A liquid crystal moving picture projector and method are described.Light incident on a liquid crystal display-type device is selectively scattered or transmitted by respective portions of liquid crystal display,and a projection mechanism projects an image formed by either such scattered light or such transmitted light.A liquid cystal moving picture projector includes a liquid crystal display for creating characteristics of an image,and projecttion optics for projecting images sequentially created by the display.The display includes a liquid crystal material capable of temporary storing information at respective areas.The temporary storage may be a function of charge storing directly on liquid crystal material.A method of projecting plural images in sequence includes:creating an image or characteristics of an image in a liquid crystal material,storing such image in such liquid crystal material,directing light at such liquid crystal material,projecting such image as a function of light transmitted through or scattered by such liquid crystal material,and creating a further image in such liquid crystal material for subsequent projection.

  16. Phononic crystals fundamentals and applications

    CERN Document Server

    Adibi, Ali

    2016-01-01

    This book provides an in-depth analysis as well as an overview of phononic crystals. This book discusses numerous techniques for the analysis of phononic crystals and covers, among other material, sonic and ultrasonic structures, hypersonic planar structures and their characterization, and novel applications of phononic crystals. This is an ideal book for those working with micro and nanotechnology, MEMS (microelectromechanical systems), and acoustic devices. This book also: Presents an introduction to the fundamentals and properties of phononic crystals Covers simulation techniques for the analysis of phononic crystals Discusses sonic and ultrasonic, hypersonic and planar, and three-dimensional phononic crystal structures Illustrates how phononic crystal structures are being deployed in communication systems and sensing systems.

  17. Modern trends in technical crystallization

    Science.gov (United States)

    Matz, G.

    1980-04-01

    Interesting and significant developments have occurred in the last decade in both crystallization equipment and in the theory of crystallization process. In the field of technical crystallization new crystallizers have been developed and computer modelling has become important in scaling up and in the achievement of increased performance. The DP-Kristaller developed by Escher-Wyss-Tsukishima, the Brodie purifier, the sieve tray column having dancing balls, the automated multiple crystallization process due to Mützenberg and Saxer and the double belt cooler, all of which represent technical developments, are described in the first section. The second part of the paper reviews computer modelling of the fluidized bed crystallizer, chemical precipitation, flaking and prilling. Finally, there is a brief discussion of the impact of technical crystallization processes on environmental protection.

  18. Crystallization of undercooled liquid fenofibrate.

    Science.gov (United States)

    Amstad, Esther; Spaepen, Frans; Weitz, David A

    2015-11-28

    Formulation of hydrophobic drugs as amorphous materials is highly advantageous as this increases their solubility in water and therefore their bioavailability. However, many drugs have a high propensity to crystallize during production and storage, limiting the usefulness of amorphous drugs. We study the crystallization of undercooled liquid fenofibrate, a model hydrophobic drug. Nucleation is the rate-limiting step; once seeded with a fenofibrate crystal, the crystal rapidly grows by consuming the undercooled liquid fenofibrate. Crystal growth is limited by the incorporation of molecules into its surface. As nucleation and growth both entail incorporation of molecules into the surface, this process likely also limits the formation of nuclei and thus the crystallization of undercooled liquid fenofibrate, contributing to the good stability of undercooled liquid fenofibrate against crystallization.

  19. Crystalizing the Spinon Basis

    OpenAIRE

    Nakayashiki, Atsushi; Yamada, Yasuhiko

    1995-01-01

    The quasi-particle structure of the higher spin XXZ model is studied. We obtained a new description of crystals associated with the level $k$ integrable highest weight $U_q(\\widehat{sl_2})$ modules in terms of the creation operators at $q=0$ (the crystaline spinon basis). The fermionic character formulas and the Yangian structure of those integrable modules naturally follow from this description. We have also derived the conjectural formulas for the multi quasi-particle states at $q=0$.

  20. Photonic crystal optical memory

    Science.gov (United States)

    Lima, A. Wirth; Sombra, A. S. B.

    2011-06-01

    After several decades pushing the technology and the development of the world, the electronics is giving space for technologies that use light. We propose and analyze an optical memory embedded in a nonlinear photonic crystal (PhC), whose system of writing and reading data is controlled by an external command signal. This optical memory is based on optical directional couplers connected to a shared optical ring. Such a device can work over the C-Band of ITU (International Telecommunication Union).

  1. Textures of liquid crystals

    CERN Document Server

    Dierking, Ingo

    2006-01-01

    A unique compendium of knowledge on all aspects of the texture of liquid crystals, providing not just detailed information on texture formation and determination, but also an in-depth discussion of different characterization methods. Experts as well as graduates entering the field will find all the information they need in this handbook, while the magnitude of the color images make it valuable hands-on-reference.

  2. Slotted photonic crystal biosensors

    Science.gov (United States)

    Scullion, Mark Gerard

    Optical biosensors are increasingly being considered for lab-on-a-chip applications due to their benefits such as small size, biocompatibility, passive behaviour and lack of the need for fluorescent labels. The light guiding mechanisms used by many of them result in poor overlap of the optical field with the target molecules, reducing the maximum sensitivity achievable. This thesis presents a new platform for optical biosensors, namely slotted photonic crystals, which engender higher sensitivities due to their ability to confine, spatially and temporally, the peak of optical mode within the analyte itself. Loss measurements showed values comparable to standard photonic crystals, confirming their ability to be used in real devices. A novel resonant coupler was designed, simulated, and experimentally tested, and was found to perform better than other solutions within the literature. Combining with cavities, microfluidics and biological functionalization allowed proof-of-principle demonstrations of protein binding to be carried out. High sensitivities were observed in smaller structures than most competing devices in the literature. Initial tests with cellular material for real applications was also performed, and shown to be of promise. In addition, groundwork to make an integrated device that includes the spectrometer function was also carried out showing that slotted photonic crystals themselves can be used for on-chip wavelength specific filtering and spectroscopy, whilst gas-free microvalves for automation were also developed. This body of work presents slotted photonic crystals as a realistic platform for complete on-chip biosensing; addressing key design, performance and application issues, whilst also opening up exciting new ideas for future study.

  3. Crystals against cancer

    CERN Multimedia

    2009-01-01

    This is a remarkable example of direct technology transfer from particle physics to medicine. Clinical trials have begun in Portugal on a new medical imaging system for the diagnosis of breast cancer, which uses positron emission tomography (PET). The system, developed by a Portuguese consortium in collaboration with CERN and laboratories participating in the Crystal Clear collaboration, will detect even the smallest tumours and thus help avoid unnecessary biopsies.

  4. Cholesterol crystal embolism (atheroembolism)

    Science.gov (United States)

    VENTURELLI, CHIARA; JEANNIN, GUIDO; SOTTINI, LAURA; DALLERA, NADIA; SCOLARI, FRANCESCO

    2006-01-01

    Cholesterol crystal embolism, known as atheroembolic disease, is caused by showers of cholesterol crystals from an atherosclerotic plaque that occludes small arteries. Embolization can occur spontaneously or as an iatrogenic complication from an invasive vascular procedure (angiography or vascular surgery) and after anticoagulant therapy. The atheroembolism can give rise to different degrees of renal impairment. Some patients show a moderate loss of renal function, others severe renal failure requiring dialysis. Renal outcome can be variable: some patients deteriorate or remain on dialysis, some improve and some remain with chronic renal impairment. Clinically, three types of atheroembolic renal disease have been described: acute, subacute or chronic. More frequently a progressive loss of renal function occurs over weeks. Atheroembolization can involve the skin, gastrointestinal system and central nervous system. The diagnosis is difficult and controversial for the protean extrarenal manifestations. In the past, the diagnosis was often made post-mortem. In the last 10 yrs, awareness of atheroembolic renal disease has improved. The correct diagnosis requires the clinician to be alert. The typical patient is a white male aged >60 yrs with a history of hypertension, smoking and arterial disease. The presence of a classic triad (precipitating event, renal failure and peripheral cholesterol crystal embolization) suggests the diagnosis. This can be confirmed by a biopsy of the target organs. A specific treatment is lacking; however, it is an important diagnosis to make because an aggressive therapeutic approach can be associated with a more favorable clinical outcome. PMID:21977265

  5. Slotted Photonic Crystal Sensors

    Science.gov (United States)

    Scullion, Mark G.; Krauss, Thomas F.; Di Falco, Andrea

    2013-01-01

    Optical biosensors are increasingly being considered for lab-on-a-chip applications due to their benefits such as small size, biocompatibility, passive behaviour and lack of the need for fluorescent labels. The light guiding mechanisms used by many of them results in poor overlap of the optical field with the target molecules, reducing the maximum sensitivity achievable. This review article presents a new platform for optical biosensors, namely slotted photonic crystals, which provide higher sensitivities due to their ability to confine, spatially and temporally, the optical mode peak within the analyte itself. Loss measurements showed values comparable to standard photonic crystals, confirming their ability to be used in real devices. A novel resonant coupler was designed, simulated, and experimentally tested, and was found to perform better than other solutions within the literature. Combining with cavities, microfluidics and biological functionalization allowed proof-of-principle demonstrations of protein binding to be carried out. Higher sensitivities were observed in smaller structures than possible with most competing devices reported in the literature. This body of work presents slotted photonic crystals as a realistic platform for complete on-chip biosensing; addressing key design, performance and application issues, whilst also opening up exciting new ideas for future study. PMID:23503295

  6. Slotted Photonic Crystal Sensors

    Directory of Open Access Journals (Sweden)

    Andrea Di Falco

    2013-03-01

    Full Text Available Optical biosensors are increasingly being considered for lab-on-a-chip applications due to their benefits such as small size, biocompatibility, passive behaviour and lack of the need for fluorescent labels. The light guiding mechanisms used by many of them results in poor overlap of the optical field with the target molecules, reducing the maximum sensitivity achievable. This review article presents a new platform for optical biosensors, namely slotted photonic crystals, which provide higher sensitivities due to their ability to confine, spatially and temporally, the optical mode peak within the analyte itself. Loss measurements showed values comparable to standard photonic crystals, confirming their ability to be used in real devices. A novel resonant coupler was designed, simulated, and experimentally tested, and was found to perform better than other solutions within the literature. Combining with cavities, microfluidics and biological functionalization allowed proof-of-principle demonstrations of protein binding to be carried out. Higher sensitivities were observed in smaller structures than possible with most competing devices reported in the literature. This body of work presents slotted photonic crystals as a realistic platform for complete on-chip biosensing; addressing key design, performance and application issues, whilst also opening up exciting new ideas for future study.

  7. Living liquid crystals

    Science.gov (United States)

    Zhou, Shuang; Sokolov, Andrey; Lavrentovich, Oleg D.; Aranson, Igor S.

    2014-01-01

    Collective motion of self-propelled organisms or synthetic particles, often termed “active fluid,” has attracted enormous attention in the broad scientific community because of its fundamentally nonequilibrium nature. Energy input and interactions among the moving units and the medium lead to complex dynamics. Here, we introduce a class of active matter––living liquid crystals (LLCs)––that combines living swimming bacteria with a lyotropic liquid crystal. The physical properties of LLCs can be controlled by the amount of oxygen available to bacteria, by concentration of ingredients, or by temperature. Our studies reveal a wealth of intriguing dynamic phenomena, caused by the coupling between the activity-triggered flow and long-range orientational order of the medium. Among these are (i) nonlinear trajectories of bacterial motion guided by nonuniform director, (ii) local melting of the liquid crystal caused by the bacteria-produced shear flows, (iii) activity-triggered transition from a nonflowing uniform state into a flowing one-dimensional periodic pattern and its evolution into a turbulent array of topological defects, and (iv) birefringence-enabled visualization of microflow generated by the nanometers-thick bacterial flagella. Unlike their isotropic counterpart, the LLCs show collective dynamic effects at very low volume fraction of bacteria, on the order of 0.2%. Our work suggests an unorthodox design concept to control and manipulate the dynamic behavior of soft active matter and opens the door for potential biosensing and biomedical applications. PMID:24474746

  8. Instabilities in liquid crystals

    CERN Document Server

    Barclay, G J

    1998-01-01

    and we examine the differences which occur for differing dielectric anisotropies. Finally, in Chapter 7 we study how a sample of smectic C liquid crystal behaves when it is subjected to a uniform shear flow within the smectic plane. We find travelling wave solutions for the behaviour of the c-director and adapt these solutions to incorporate the effects of an applied field. This thesis contains theoretical work dealing with the effects of magnetic and electric fields on samples of nematic, smectic A and smectic C liquid crystals. Some background material along with the continuum theory is introduced in Chapter 2. In Chapter 3 we consider the effect on the director within an infinite sample of nematic liquid crystal which is subjected to crossed electric and magnetic fields. In particular we examine the stability of the travelling waves which describe the director motion by considering the behaviour of the stable perturbations as time increases. The work of Chapter 4 examines a bounded sample of smectic A liqu...

  9. The fluid phenomena in the crystallization of the protein crystal

    Institute of Scientific and Technical Information of China (English)

    Duan Li; Kang Qi

    2008-01-01

    This paper reports that an optical diagnostic system consisting of Maeh-Zehnder interferometer with a phase shift device and image processor has been used for study of the kinetics of protein crystal growing process. The crystallization process of protein crystal by vapour diffusion is investigated. The interference fringes are observed in real time. The present experiment demonstrates that the diffusion and the sedimentation influence the crystallization of protein crystal which grows in solution, and the concentration capillary convection associated with surface tension occurs at the vicinity of free surface of the protein mother liquor, and directly affects on the outcome of protein crystallization. So far the detailed analysis and the important role of the fluid phenomena in protein crystallization have been discussed a little in both space- and ground-based crystal growth experiments. It is also found that these fluid phenomena affect theoutcome of protein crystallization, regular growth, and crystal quality. This may explain the fact that many results of space-based investigation do not show overall improvement.

  10. On dewetting of thin films due to crystallization (crystallization dewetting).

    Science.gov (United States)

    Habibi, Mehran; Rahimzadeh, Amin; Eslamian, Morteza

    2016-03-01

    Drying and crystallization of a thin liquid film of an ionic or a similar solution can cause dewetting in the resulting thin solid film. This paper aims at investigating this type of dewetting, herein termed "crystallization dewetting", using PbI2 dissolved in organic solvents as the model solution. PbI2 solid films are usually used in X-ray detection and lead halide perovskite solar cells. In this work, PbI2 films are fabricated using spin coating and the effect of major parameters influencing the crystallization dewetting, including the type of the solvent, solution concentration, drying temperature, spin speed, as well as imposed vibration on the substrate are studied on dewetting, surface profile and coverage, using confocal scanning laser microscopy. Simplified hydrodynamic governing equations of crystallization in thin films are presented and using a mathematical representation of the process, it is phenomenologically demonstrated that crystallization dewetting occurs due to the absorption and consumption of the solution surrounding a growing crystal. Among the results, it is found that a low spin speed (high thickness), a high solution concentration and a low drying temperature promote crystal growth, and therefore crystallization dewetting. It is also shown that imposed vibration on the substrate can affect the crystal size and crystallization dewetting.

  11. Discrete breathers in crystals

    Science.gov (United States)

    Dmitriev, S. V.; Korznikova, E. A.; Baimova, Yu A.; Velarde, M. G.

    2016-05-01

    It is well known that periodic discrete defect-containing systems, in addition to traveling waves, support vibrational defect-localized modes. It turned out that if a periodic discrete system is nonlinear, it can support spatially localized vibrational modes as exact solutions even in the absence of defects. Since the nodes of the system are all on equal footing, it is only through the special choice of initial conditions that a group of nodes can be found on which such a mode, called a discrete breather (DB), will be excited. The DB frequency must be outside the frequency range of the small-amplitude traveling waves. Not resonating with and expending no energy on the excitation of traveling waves, a DB can theoretically conserve its vibrational energy forever provided no thermal vibrations or other perturbations are present. Crystals are nonlinear discrete systems, and the discovery in them of DBs was only a matter of time. It is well known that periodic discrete defect-containing systems support both traveling waves and vibrational defect-localized modes. It turns out that if a periodic discrete system is nonlinear, it can support spatially localized vibrational modes as exact solutions even in the absence of defects. Because the nodes of the system are all on equal footing, only a special choice of the initial conditions allows selecting a group of nodes on which such a mode, called a discrete breather (DB), can be excited. The DB frequency must be outside the frequency range of small-amplitude traveling waves. Not resonating with and expending no energy on the excitation of traveling waves, a DB can theoretically preserve its vibrational energy forever if no thermal vibrations or other perturbations are present. Crystals are nonlinear discrete systems, and the discovery of DBs in them was only a matter of time. Experimental studies of DBs encounter major technical difficulties, leaving atomistic computer simulations as the primary investigation tool. Despite

  12. Additive manufacturing of micrometric crystallization vessels and single crystals

    Science.gov (United States)

    Halevi, Oded; Jiang, Hui; Kloc, Christian; Magdassi, Shlomo

    2016-11-01

    We present an all-additive manufacturing method that is performed at mild conditions, for the formation of organic single crystals at specific locations, without any photolithography prefabrication process. The method is composed of two steps; inkjet printing of a confinement frame, composed of a water soluble electrolyte. Then, an organic semiconductor solution is printed within the confinement to form a nucleus at a specific location, followed by additional printing, which led to the growth of a single crystal. The specific geometry of the confinement enables control of the specific locations of the single crystals, while separating the nucleation and crystal growth processes. By this method, we printed single crystals of perylene, which are suitable for the formation of OFETs. Moreover, since this method is based on a simple and controllable wet deposition process, it enables formation of arrays of single crystals at specific locations, which is a prerequisite for mass production of active organic elements on flexible substrates.

  13. Crystal growth in salt efflorescence

    Science.gov (United States)

    Zehnder, Konrad; Arnold, Andreas

    1989-09-01

    Salt efflorescences strongly affect wall paintings and other monuments. The external factors governing the crystal habits and aggregate forms are studied phenomenologically in laboratory experiments. As salt contaminated materials dry, slats crystallize forming distinct sequences of crystal habits and aggregate forms on and underneath the surfaces. Four phases may be distinguished: (1) Large individual crystals with equilibrium forms grow immersed in a thick solution film; (2) granular crusts of small isometric crystals grow covered by a thin solution film; (3) fibrous crusts of columnar crystals grow from a coherent but thin solution film so that the crystals are in contact with solution only at their base; (4) whiskers grow from isolated spots of very thin solution films into the air. The main factor governing these morphologies is the humidity of the substrate. A porous material cracks while granular crystals (approaching their equilibrium forms) grow within the large pores. As the fissures widen, the habits pass into columnar crystals and then into whiskers. Because this succession corresponds to the crystallization sequence on the substrate surface it can be traced back to the same growth conditions.

  14. DDA Computations of Porous Aggregates with Forsterite Crystals: Effects of Crystal Shape and Crystal Mass Fraction

    Science.gov (United States)

    Wooden, Diane H.; Lindsay, Sean S.; Harker, David; Woodward, Charles; Kelley, Michael S.; Kolokolova, Ludmilla

    2015-01-01

    Porous aggregate grains are commonly found in cometary dust samples and are needed to model cometary IR spectral energy distributions (SEDs). Models for thermal emissions from comets require two forms of silicates: amorphous and crystalline. The dominant crystal resonances observed in comet SEDs are from Forsterite (Mg2SiO4). The mass fractions that are crystalline span a large range from 0.0 25 AU at 1E6 yr) by inner disk materials (crystals) are challenged to yield the highend-range of cometary crystal mass fractions. However, in current thermal models, Forsterite crystals are not incorporated into larger aggregate grains but instead only are considered as discrete crystals. A complicating factor is that Forsterite crystals with rectangular shapes better fit the observed spectral resonances in wavelength (11.0-11.15 microns, 16, 19, 23.5, 27, and 33 microns), feature asymmetry and relative height (Lindley et al. 2013) than spherically or elliptically shaped crystals. We present DDA-DDSCAT computations of IR absorptivities (Qabs) of 3 micron-radii porous aggregates with 0.13 crystals. We can produce crystal resonances with similar appearance to the observed resonances of comet Hale- Bopp. Also, a lower mass fraction of crystals in aggregates can produce the same spectral contrast as a higher mass fraction of discrete crystals; the 11micron and 23 micron crystalline resonances appear amplified when crystals are incorporated into aggregates composed otherwise of spherically shaped amorphous Fe-Mg olivines and pyroxenes. We show that the optical properties of a porous aggregate is not linear combination of its monomers, so aggregates need to be computed. We discuss the consequence of lowering comet crystal mass fractions by modeling IR SEDs with aggregates with crystals, and the implications for radial transport models of our protoplanetary disk.

  15. Crystal growth and structural analysis of zirconium sulphoselenide single crystals

    Indian Academy of Sciences (India)

    K R Patel; R D Vaidya; M S Dave; S G Patel

    2008-08-01

    A series of zirconium sulphoselenide (ZrSSe3–, where = 0, 0.5, 1, 1.5, 2, 2.5, 3) single crystals have been grown by chemical vapour transport technique using iodine as a transporting agent. The optimum condition for the growth of these crystals is given. The stoichiometry of the grown crystals were confirmed on the basis of energy dispersive analysis by X-ray (EDAX) and the structural characterization was accomplished by X-ray diffraction (XRD) studies. The crystals are found to possess monoclinic structure. The lattice parameters, volume, particle size and X-ray density have been carried out for these crystals. The effect of sulphur proportion on the lattice parameter, unit cell volume and X-ray density in the series of ZrSSe3– single crystals have been studied and found to decrease in all these parameters with rise in sulphur proportion. The grown crystals were examined under optical zoom microscope for their surface topography study. Hall effect measurements were carried out on grown crystals at room temperature. The negative value of Hall coefficient implies that these crystals are -type in nature. The conductivity is found to decrease with increase of sulphur content in the ZrSSe3– series. The electrical resistivity parallel to c-axis as well as perpendicular to -axis have been carried out in the temperature range 303–423 K. The results obtained are discussed in detail.

  16. Adhesion of single crystals on modified surfaces in crystallization fouling

    Science.gov (United States)

    Mayer, Moriz; Augustin, Wolfgang; Scholl, Stephan

    2012-12-01

    In crystallization fouling it has been observed that during a certain initial phase the fouling is formed by a non-uniform layer consisting of a population of single crystals. These single crystals are frequently formed by inverse soluble salts such as CaCO3. During heterogeneous nucleation and heterogeneous growth an interfacial area between the crystal and the heat transfer surface occurs. The development of this interfacial area is the reason for the adhesion of each single crystal and of all individual crystals, once a uniform layer has been built up. The emerging interfacial area is intrinsic to the heterogeneous nucleation of crystals and can be explained by the thermodynamic principle of the minimum of the Gibbs free energy. In this study CaCO3 crystals were grown heterogeneously on untreated and on modified surfaces inside a flow channel. An untreated stainless steel (AISI 304) surface was used as a reference. Following surface modifications were investigated: enameled and electropolished stainless steel as well as diamond-like-carbon based coatings on stainless steel substrate. The adhesion was measured through a novel measurement technique using a micromanipulator to shear off single crystals from the substrate which was fixed to a spring table inside a SEM.

  17. Couette-Taylor crystallizer: Effective control of crystal size distribution and recovery of L-lysine in cooling crystallization

    Science.gov (United States)

    Nguyen, Anh-Tuan; Yu, Taekyung; Kim, Woo-Sik

    2017-07-01

    A Couette-Taylor crystallizer is developed to enhance the L-Lysine crystal size distribution and recovery in the case of continuous cooling crystallization. When using the proposed Couette-Taylor (CT) crystallizer, the size distribution and crystal product recovery were much narrower and higher, respectively, than those from a conventional stirred tank (ST) crystallizer. Here, the coefficient of the size distribution for the crystal product from the CT crystallizer was only 0.45, while it was 0.78 in the case of the conventional ST crystallizer at an agitation speed of 700 rpm, mean residence time of 20 min, and feed concentration of 900 (g/L). Furthermore, when using the CT crystallizer, the crystal product recovery was remarkably enhanced up to 100%wt with a mean residence time of only 20 min, while it required a mean residence time of at least 60 min when using the conventional ST crystallizer. This result indicates that the CT crystallizer was much more effective than the conventional ST crystallizer in terms of controlling a narrower size distribution and achieving a 100%wt L-lysine crystal product recovery from continuous cooling crystallization. The advantage of the CT crystallizer over the conventional ST crystallizer was explained based on the higher energy dissipation of the Taylor vortex flow and larger surface area for heat transfer of the CT crystallizer. Here, the energy dissipation of the Taylor vortex flow in the CT crystallizer was 13.6 times higher than that of the random fluid motion in the conventional ST crystallizer, while the surface area per unit volume for heat transfer of the CT crystallizer was 8.0 times higher than that of the conventional ST crystallizer. As a result, the mixing condition and heat transfer of the CT crystallizer were much more effective than those of the conventional ST crystallizer for the cooling crystallization of L-lysine, thereby enhancing the L-lysine crystal size distribution and product recovery.

  18. Dissipation by a crystallization process

    Science.gov (United States)

    Dorosz, Sven; Voigtmann, Thomas; Schilling, Tanja

    2016-01-01

    We discuss crystallization as a non-equilibrium process. In a system of hard spheres under compression at a constant rate, we quantify the amount of heat that is dissipated during the crystallization process. We interpret the dissipation as arising from the resistance of the system against phase transformation. An intrinsic compression rate is identified that separates a quasi-static regime from one of rapidly driven crystallization. In the latter regime the system crystallizes more easily, because new relaxation channels are opened, at the cost of forming a higher fraction of non-equilibrium crystal structures. We rationalize the change in the crystallization mechanism by analogy with shear thinning, in terms of a kinetic competition between near-equilibrium relaxation and external driving.

  19. Lasing from fluorescent protein crystals.

    Science.gov (United States)

    Oh, Heon Jeong; Gather, Malte C; Song, Ji-Joon; Yun, Seok Hyun

    2014-12-15

    We investigated fluorescent protein crystals for potential photonic applications, for the first time to our knowledge. Rod-shaped crystals of enhanced green fluorescent protein (EGFP) were synthesized, with diameters of 0.5-2 μm and lengths of 100-200 μm. The crystals exhibit minimal light scattering due to their ordered structure and generate substantially higher fluorescence intensity than EGFP or dye molecules in solutions. The magnitude of concentration quenching in EGFP crystals was measured to be about 7-10 dB. Upon optical pumping at 485 nm, individual EGFP crystals located between dichroic mirrors generated laser emission with a single-mode spectral line at 513 nm. Our results demonstrate the potential of protein crystals as novel optical elements for self-assembled, micro- or nano-lasers and amplifiers in aqueous environment.

  20. Photonic crystal optofluidic biolaser

    Science.gov (United States)

    Mozaffari, Mohammad Hazhir; Ebnali-Heidari, Majid; Abaeiani, Gholamreza; Moravvej-Farshi, Mohammad Kazem

    2017-09-01

    Optofluidic biolasers are recently being considered in bioanalytical applications due to their advantages over the conventional biosensing methods Exploiting a photonic crystal slab with selectively dye-infiltrated air holes, we propose a new optofluidic heterostructure biolaser, with a power conversion efficiency of 25% and the spectral linewidth of 0.24 nm. Simulations show that in addition to these satisfactory lasing characteristics, the proposed lab-on-a-chip biolaser is highly sensitive to the minute biological changes that may occur in its cavity and can detect a single virus with a radius as small as 13 nm.

  1. Hardness of metallic crystals

    Indian Academy of Sciences (India)

    Wuhui Li; Fengzhang Ren; Juanhua Su; Zhanhong Ma; Ke Cao; Baohong Tian

    2011-07-01

    This paper presents a new formula for calculating the hardness of metallic crystals, resulted from the research on the critical grain size with stable dislocations. The formula is = 6 /[(1 – )], where is the hardness, the coefficient, the shear modulus, the Poisson’s ratio, a function of the radius of an atom () and the electron density at the atom interface (). The formula will not only be used to testify the critical grain size with stable dislocations, but also play an important role in the understanding of mechanical properties of nanocrystalline metals.

  2. Crystal structure of cafenstrole

    Directory of Open Access Journals (Sweden)

    Gihaeng Kang

    2015-08-01

    Full Text Available The title compound (systematic name: N,N-diethyl-3-mesitylsulfonyl-1H-1,2,4-triazole-1-carboxamide, C16H22N4O3S, is a triazole herbicide. The dihedral angle between the planes of the triazole and benzene ring planes is 88.14 (10°. In the crystal, C—H...O hydrogen bonds and weak C—H...π interactions link adjacent molecules, forming one-dimensional chains along the a axis.

  3. Crystallization Behavior of Waxes

    OpenAIRE

    Jana, Sarbojeet

    2016-01-01

    Partially hydrogenated oil (PHO) has no longer GRAS status. However, PHO is one of the important ingredients in bakery and confectionary industry and therefore the food industry is seeking for an alternative fat to replace PHO. Waxes have shown promise to fulfill that demand because of its easy availability and cheap in price. Waxes with high melting points (> 40 °C) help in the crystallization process when mixed with low melting point oils. A crystalline network is formed in this wax/oil cry...

  4. Crystal structure of pseudoguainolide

    Directory of Open Access Journals (Sweden)

    Noureddine Beghidja

    2015-03-01

    Full Text Available The lactone ring in the title molecule, C15H22O3 (systematic name: 3,4a,8-trimethyldodecahydroazuleno[6,5-b]furan-2,5-dione, assumes an envelope conformation with the methine C atom adjacent to the the methine C atom carrying the methyl substituent being the flap atom. The other five-membered ring adopts a twisted conformation with the twist being about the methine–methylene C—C bond. The seven-membered ring is based on a twisted boat conformation. No specific interactions are noted in the the crystal packing.

  5. Inorganic Crystal Structure Database (ICSD)

    Science.gov (United States)

    SRD 84 FIZ/NIST Inorganic Crystal Structure Database (ICSD) (PC database for purchase)   The Inorganic Crystal Structure Database (ICSD) is produced cooperatively by the Fachinformationszentrum Karlsruhe(FIZ) and the National Institute of Standards and Technology (NIST). The ICSD is a comprehensive collection of crystal structure data of inorganic compounds containing more than 140,000 entries and covering the literature from 1915 to the present.

  6. Radiating dipoles in photonic crystals

    OpenAIRE

    Busch, Kurt; Vats, Nipun; John, Sajeev; Sanders, Barry C.

    2000-01-01

    The radiation dynamics of a dipole antenna embedded in a Photonic Crystal are modeled by an initially excited harmonic oscillator coupled to a non--Markovian bath of harmonic oscillators representing the colored electromagnetic vacuum within the crystal. Realistic coupling constants based on the natural modes of the Photonic Crystal, i.e., Bloch waves and their associated dispersion relation, are derived. For simple model systems, well-known results such as decay times and emission spectra ar...

  7. Negative refraction in photonic crystals

    OpenAIRE

    Baba, T.; Matsumoto, T.; Asatsuma, T.

    2008-01-01

    Photonic crystals are multidimensional periodic gratings, in which the light propagation is dominated by Bragg diffraction that appears to be refraction at the flat surfaces of the crystals. The refraction angle from positive to negative, perfectly or only partially obeying Snell’s law, can be tailored based on photonic band theory. Negative refraction enables novel prism, collimation, and lens effects. Because photonic crystals usually consist of two transparent media, these effects occur at...

  8. Photonic crystal fibers in biophotonics

    Science.gov (United States)

    Tuchin, Valery V.; Skibina, Julia S.; Malinin, Anton V.

    2011-12-01

    We observed recent experimental results in area of photonic crystal fibers appliance. Possibility of creation of fiberbased broadband light sources for high resolution optical coherence tomography is discussed. Using of femtosecond pulse laser allows for generation of optical radiation with large spectral width in highly nonlinear solid core photonic crystal fibers. Concept of exploitation of hollow core photonic crystal fibers in optical sensing is demonstrated. The use of photonic crystal fibers as "smart cuvette" gives rise to efficiency of modern optical biomedical analysis methods.

  9. Crystallization and Polymorphism of Felodipine

    DEFF Research Database (Denmark)

    Surov, A. O.; Solanko, K. A.; Bond, A. D.

    2012-01-01

    . The crystal structures of the new forms III and IV were determined using single-crystal X-ray diffraction. Forms I, II, and III were obtained in bulk form and characterized by a variety of analytical methods, including thermal analysis, solution calorimetry, intrinsic dissolution rate measurement......, and solubility measurement. Form IV could be obtained only as a few isolated single crystals, and its crystallization could not be reproduced. On the basis of the measured thermochemical data and solubility studies, form I appears to be the thermodynamically most stable phase at ambient conditions, although...

  10. Photonic Crystal Laser Accelerator Structures

    Energy Technology Data Exchange (ETDEWEB)

    Cowan, Benjamin M

    2003-05-21

    Photonic crystals have great potential for use as laser-driven accelerator structures. A photonic crystal is a dielectric structure arranged in a periodic geometry. Like a crystalline solid with its electronic band structure, the modes of a photonic crystal lie in a set of allowed photonic bands. Similarly, it is possible for a photonic crystal to exhibit one or more photonic band gaps, with frequencies in the gap unable to propagate in the crystal. Thus photonic crystals can confine an optical mode in an all-dielectric structure, eliminating the need for metals and their characteristic losses at optical frequencies. We discuss several geometries of photonic crystal accelerator structures. Photonic crystal fibers (PCFs) are optical fibers which can confine a speed-of-light optical mode in vacuum. Planar structures, both two- and three-dimensional, can also confine such a mode, and have the additional advantage that they can be manufactured using common microfabrication techniques such as those used for integrated circuits. This allows for a variety of possible materials, so that dielectrics with desirable optical and radiation-hardness properties can be chosen. We discuss examples of simulated photonic crystal structures to demonstrate the scaling laws and trade-offs involved, and touch on potential fabrication processes.

  11. Crystal engineering: A brief overview

    Indian Academy of Sciences (India)

    Gautam R Desiraju

    2010-09-01

    Crystal structures of organic and metal-organic compounds have been determined in enormous numbers over the past century, and at the time of writing this review, the Cambridge Structural Database has just crossed the half million mark. The possibility of designing a particular crystal packing is, however, of more recent origin and the subject of crystal engineering has addressed this possibility, more or less systematically, during the past 30 years. Crystal engineering demands a detailed and thorough knowledge of intermolecular interactions, which act as the supramolecular glue that binds molecules into crystals. It also requires systematic strategies for the design of a crystal, the architectural blueprint as it were. Finally, this enterprise needs to be geared towards a useful property in that the crystal that is being designed is a functional one. All these features of the subject are directly or indirectly connected with the fact that there is a very large database of known crystal structures that is available to the crystal engineer. This review attempts to briefly survey the current scenario in this expanding subject.

  12. Frustrated polymer crystal structures

    Science.gov (United States)

    Lotz, B.; Strasbourg, 67083

    1997-03-01

    Several crystal structures or polymorphs of chiral or achiral polymers and biopolymers with three fold conformation of the helix have been found to conform to a common and -with one exception(Puterman, M. et al, J. Pol. Sci., Pol. Phys. Ed., 15, 805 (1977))- hitherto unsuspected packing scheme. The trigonal unit-cell contains three isochiral helices; the azimuthal setting of one helix differs significantly from that of the other two, leading to a so-called frustrated packing scheme, in which the environment of conformationally identical helices differs. Two variants of the frustrated scheme are analyzed. Similarities with frustrated two dimensional magnetic systems are underlined. Various examples of frustration in polymer crystallography are illustrated via the elucidation or reinterpretation of crystal phases or polymorphs of polyolefins, polyesters, cellulose derivatives and polypeptides. Structural manifestations (including AFM evidence) and morphological consequences of frustration are presented, which help diagnose the existence of this original packing of polymers.(Work done with L. Cartier, D. Dorset, S. Kopp, T. Okihara, M. Schumacher, W. Stocker.)

  13. Tunable Topological Phononic Crystals

    KAUST Repository

    Chen, Ze-Guo

    2016-05-27

    Topological insulators first observed in electronic systems have inspired many analogues in photonic and phononic crystals in which remarkable one-way propagation edge states are supported by topologically nontrivial band gaps. Such band gaps can be achieved by breaking the time-reversal symmetry to lift the degeneracy associated with Dirac cones at the corners of the Brillouin zone. Here, we report on our construction of a phononic crystal exhibiting a Dirac-like cone in the Brillouin zone center. We demonstrate that simultaneously breaking the time-reversal symmetry and altering the geometric size of the unit cell result in a topological transition that we verify by the Chern number calculation and edge-mode analysis. We develop a complete model based on the tight binding to uncover the physical mechanisms of the topological transition. Both the model and numerical simulations show that the topology of the band gap is tunable by varying both the velocity field and the geometric size; such tunability may dramatically enrich the design and use of acoustic topological insulators.

  14. Crystal Compton Camera

    Energy Technology Data Exchange (ETDEWEB)

    Ziock, Klaus-Peter [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Braverman, Joshua B. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Harrison, Mark J. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Hornback, Donald Eric [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Fabris, Lorenzo [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Newby, Jason [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2013-09-26

    Stand-off detection is one of the most important radiation detection capabilities for arms control and the control of illicit nuclear materials. For long range passive detection one requires a large detector and a means of “seeing through” the naturally occurring and varying background radiation, i.e. imaging. Arguably, Compton imaging is the best approach over much of the emission band suitable for long range detection. It provides not only imaging, but more information about the direction of incidence of each detected gamma-ray than the alternate approach of coded-aperture imaging. The directional information allows one to reduce the background and hence improve the sensitivity of a measurement. However, to make an efficient Compton imager requires localizing and measuring the simultaneous energy depositions when gamma-rays Compton scatter and are subsequently captured within a single, large detector volume. This concept has been demonstrated in semi-conductor detectors (HPGe, CZT, Si) but at ~ $1k/cm3 these materials are too expensive to build the large systems needed for standoff detection. Scintillator detectors, such as NaI(Tl), are two orders of magnitude less expensive and possess the energy resolution required to make such an imager. However, they do not currently have the ability to localize closely spaced, simultaneous energy depositions in a single large crystal. In this project we are applying a new technique that should, for the first time ever, allow cubic-millimeter event localization in a bulk scintillator crystal.

  15. Electron spectroscopy of crystals

    CERN Document Server

    Nemoshkalenko, V V

    1979-01-01

    This book is conceived as a monograph, and represents an up-to-date collection of information concerning the use of the method of X-ray photoelectron spec­ troscopy in the study of the electron structure of crystals, as well as a personal interpretation of the subject by the authors. In a natural way, the book starts in Chapter 1 with a recapitulation of the fundamentals of the method, basic relations, principles of operation, and a com­ parative presentation of the characteristics and performances of the most com­ monly used ESCA instruments (from the classical ones-Varian, McPherson, Hewlett Packard, and IEEE-up to the latest model developed by Professor Siegbahn in Uppsala), and continues with a discussion of some of the difficult problems the experimentalist must face such as calibration of spectra, prepara­ tion of samples, and evaluation of the escape depth of electrons. The second chapter is devoted to the theory of photoemission from crystal­ line solids. A discussion of the methods of Hartree-Fo...

  16. Photonic Crystal Optical Tweezers

    CERN Document Server

    Wilson, Benjamin K; Bachar, Stephanie; Knouf, Emily; Bendoraite, Ausra; Tewari, Muneesh; Pun, Suzie H; Lin, Lih Y

    2009-01-01

    Non-invasive optical manipulation of particles has emerged as a powerful and versatile tool for biological study and nanotechnology. In particular, trapping and rotation of cells, cell nuclei and sub-micron particles enables unique functionality for various applications such as tissue engineering, cancer research and nanofabrication. We propose and demonstrate a purely optical approach to rotate and align particles using the interaction of polarized light with photonic crystal nanostructures to generate enhanced trapping force. With a weakly focused laser beam we observed efficient trapping and transportation of polystyrene beads with sizes ranging from 10 um down to 190 nm as well as cancer cell nuclei. In addition, we demonstrated alignment of non-spherical particles using a 1-D photonic crystal structure. Bacterial cells were trapped, rotated and aligned with optical intensity as low as 17 uW/um^2. Finite-difference time domain (FDTD) simulations of the optical near-field and far-field above the photonic c...

  17. Crystallization and crystal manipulation of the Pterocarpus angolensis seed lectin.

    Science.gov (United States)

    Loris, Remy; Garcia-Pino, Abel; Buts, Lieven; Bouckaert, Julie; Beeckmans, Sonia; De Greve, Henri; Wyns, Lode

    2005-06-01

    The Man/Glc-specific legume lectin from the seeds of the African bloodwood tree (Pterocarpus angolensis) was crystallized in the presence of the disaccharide ligand Man(alpha1-3)ManMe. Small crystals initially appeared from a preliminary screen, but proved difficult to reproduce. The initial crystals were used to prepare microseeds, leading to a reproducible crystallization protocol. All attempts to obtain crystals directly of the ligand-free protein or of other carbohydrate complexes failed. However, the Man(alpha1-3)ManMe co-crystals withstand soaking with ten other carbohydrates known to bind to the lectin. Soaking for 15 min in 100 mM carbohydrate typically resulted in complete replacement of Man(alpha1-3)ManMe by the desired carbohydrate despite the involvement of lattice contacts at the binding site. Transferring the crystals for two weeks in carbohydrate-free artificial mother liquor resulted in the complete removal of the sugar from one of the two monomers in the asymmetric unit. Additional treatment of these crystals with 100 mM EDTA for two weeks resulted in removal of the structural calcium and manganese ions, which is accompanied by significant structural rearrangements of the loops that constitute the carbohydrate-binding site.

  18. Handbook of nonlinear optical crystals

    CERN Document Server

    Dmitriev, Valentin G; Nikogosyan, David N

    1991-01-01

    This Handbook of Nonlinear Optical Crystals provides a complete description of the properties and applications of nonlinear crystals In addition, it presents the most important equations for calculating the main parameters of nonlinear frequency converters This comprehensive reference work will be of great value to all scientists and engineers working in nonlinear optics, quantum electronics and laser physics

  19. Czochralski crystal growth: Modeling study

    Science.gov (United States)

    Dudukovic, M. P.; Ramachandran, P. A.; Srivastava, R. K.; Dorsey, D.

    1986-01-01

    The modeling study of Czochralski (Cz) crystal growth is reported. The approach was to relate in a quantitative manner, using models based on first priniciples, crystal quality to operating conditions and geometric variables. The finite element method is used for all calculations.

  20. THEORY OF INCOMMENSURATE CRYSTAL FACETS

    NARCIS (Netherlands)

    VANSMAALEN, S

    1993-01-01

    The morphology of incommensurately modulated crystals is considered. A surface free energy model is constructed which interprets the stabilization of the incommensurate facets as due to surface pinning of the phase of the modulation wave. The stepped nature of the true crystal surface restricts the

  1. Protein Crystal Growth in Microgravity

    Institute of Scientific and Technical Information of China (English)

    毕汝昌; 桂璐璐; 师珂; 王耀萍; 陈世芝; 韩青; 胡永林; 沈福苓; 牛秀田; 华子谦; 卢光莹; 张健; 李松林; 龚为民; 牛立文; 黄其辰

    1994-01-01

    Protein crystal growth is quite important for the determination of protein structureswhich are essential to the understanding of life at molecular level as well as to the development of molecu-lar biotechnology.The microgravity environment of space is an ideal place to study the complicated pro-tein crystallization and to grow good-quality protein crystals.A number of crystal-growth experiments of10 different proteins were carried out in August,1992 on the Chinese re-entry satellite FSW-2 in spaceusing a tube crystallization equipment made in China.A total of 25 samples from 6 proteins producedcrystals,and the effects of microgravity on protein crystal growth were observed,especially for an acidicphospholipase A2 and henegg-white lysozyme which gave better crystals in space than earth-grown crys-tals in ground control experiments.The results have shown that the microgravity in space favors the im-provement of the size,perfection,morphology and internal order of the grown protein crytals.

  2. THEORY OF INCOMMENSURATE CRYSTAL FACETS

    NARCIS (Netherlands)

    VANSMAALEN, S

    1993-01-01

    The morphology of incommensurately modulated crystals is considered. A surface free energy model is constructed which interprets the stabilization of the incommensurate facets as due to surface pinning of the phase of the modulation wave. The stepped nature of the true crystal surface restricts the

  3. Photonic-crystal fibers gyroscope

    Directory of Open Access Journals (Sweden)

    Ali Muse Haider

    2015-01-01

    Full Text Available In this paper we proposed to use of a photonic crystal fiber with an inner hollow defect. The use of such fibers is not affected by a material medium on the propagation of optical radiation. Photonic crystal fibers present special properties and capabilities that lead to an outstanding potential for sensing applications

  4. Photoelastic sphenoscopic analysis of crystals

    Energy Technology Data Exchange (ETDEWEB)

    Montalto, L. [DIISM, Dip. Di Ingegneria Industriale e Scienze Matematiche—Università Politecnica delle Marche, Ancona (Italy); SIMAU, Dip. Di Scienze e Ingegneria della Materia, dell’ambiente ed Urbanistica—Università Politecnica delle Marche, Ancona (Italy); Rinaldi, D. [SIMAU, Dip. Di Scienze e Ingegneria della Materia, dell’ambiente ed Urbanistica—Università Politecnica delle Marche, Ancona (Italy); Scalise, L.; Paone, N. [DIISM, Dip. Di Ingegneria Industriale e Scienze Matematiche—Università Politecnica delle Marche, Ancona (Italy); Davì, F. [DICEA, Dip. Di Ingegneria Civile, Edile e Architettura—Università Politecnica delle Marche, Ancona (Italy)

    2016-01-15

    Birefringent crystals are at the basis of various devices used in many fields, from high energy physics to biomedical imaging for cancer detection. Since crystals are the main elements of those devices, a great attention is paid on their quality and properties. Here, we present a methodology for the photoelastic analysis of birefringent crystals, based on a modified polariscope. Polariscopes using conoscopic observation are used to evaluate crystals residual stresses in a precise but time consuming way; in our methodology, the light beam shape, which impinges on the crystal surface, has been changed from a solid cone (conoscopy) to a wedge (sphenoscopy). Since the polarized and coherent light is focused on a line rather than on a spot, this allows a faster analysis which leads to the observation, at a glance, of a spatial distribution of stress along a line. Three samples of lead tungstate crystals have been observed using this technique, and the obtained results are compared with the conoscopic observation. The samples have been tested both in unloaded condition and in a loaded configuration induced by means of a four points bending device, which allows to induce a known stress distribution in the crystal. The obtained results confirm, in a reliable manner, the sensitivity of the methodology to the crystal structure and stress.

  5. MyCrystals - a simple visual data management program for laboratory-scale crystallization experiments

    DEFF Research Database (Denmark)

    Løvgreen, Monika Nøhr; Løvgreen, Mikkel; Christensen, Hans Erik Mølager

    2009-01-01

    MyCrystals is designed as a user-friendly program to display crystal images and list crystallization conditions. The crystallization conditions entry fields can be customized to suit the experiments. MyCrystals is also able to sort the images by the entered crystallization conditions, which...

  6. Natural photonic crystals

    Energy Technology Data Exchange (ETDEWEB)

    Vigneron, Jean Pol, E-mail: jean-pol.vigneron@fundp.ac.be [Research Center in Physics of Matter and Radiation (PMR), University of Namur (FUNDP), rue de Bruxelles, 61, B-5000 Namur (Belgium); Simonis, Priscilla [Research Center in Physics of Matter and Radiation (PMR), University of Namur (FUNDP), rue de Bruxelles, 61, B-5000 Namur (Belgium)

    2012-10-15

    Photonic structures appeared in nature several hundred millions years ago. In the living world, color is used for communication and this important function strongly impacts the individual chances of survival as well as the chances to reproduce. This has a statistical influence on species populations. Therefore, because they are involved in evolution, natural color-generating structures are - from some point of view - highly optimized. In this short review, a survey is presented of the development of natural photonic crystal-type structures occurring in insects, spiders, birds, fishes and other marine animals, in plants and more, from the standpoint of light-waves propagation. One-, two-, and three-dimensional structures will be reviewed with selected examples.

  7. Frequency mixing crystal

    Science.gov (United States)

    Ebbers, Christopher A.; Davis, Laura E.; Webb, Mark

    1992-01-01

    In a laser system for converting infrared laser light waves to visible light comprising a source of infrared laser light waves and means of harmoic generation associated therewith for production of light waves at integral multiples of the frequency of the original wave, the improvement of said means of harmonic generation comprising a crystal having the chemical formula X.sub.2 Y(NO.sub.3).sub.5 .multidot.2 nZ.sub.2 o wherein X is selected from the group consisting of Li, Na, K, Rb, Cs, and Tl; Y is selected from the group consisting of Sc, Y, La, Ce, Nd, Pr, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu, Al, Ga, and In; Z is selected from the group consisting of H and D; and n ranges from 0 to 4.

  8. Crystal structure of nuarimol

    Directory of Open Access Journals (Sweden)

    Gihaeng Kang

    2015-08-01

    Full Text Available The title compound [systematic name: (RS-(2-chlorophenyl(4-fluorophenyl(pyrimidin-5-ylmethanol], C17H12ClFN2O, is a pyrimidine fungicide. The asymmetric unit comprises two independent molecules, A and B, in which the dihedral angles between the plane of the pyrimidine ring and those of the chlorophenyl and fluorophenyl rings are 71.10 (6 and 70.04 (5° in molecule A, and 73.24 (5 and 89.30 (5° in molecule B. In the crystal, O—H...N hydrogen bonds link the components into [010] chains of alternating A and B molecules. The chains are cross-linked by C—H...F hydrogen bonds and weak C—H...π and C—Cl...π [Cl...ring centroid = 3.7630 (8 Å] interactions, generating a three-dimensional network.

  9. Crystal structure of ruthenocenecarbonitrile

    Directory of Open Access Journals (Sweden)

    Frank Strehler

    2015-04-01

    Full Text Available The molecular structure of ruthenocenecarbonitrile, [Ru(η5-C5H4C[triple-bond]N(η5-C5H5], exhibits point group symmetry m, with the mirror plane bisecting the molecule through the C[triple-bond]N substituent. The RuII atom is slightly shifted from the η5-C5H4 centroid towards the C[triple-bond]N substituent. In the crystal, molecules are arranged in columns parallel to [100]. One-dimensional intermolecular π–π interactions [3.363 (3 Å] between the C[triple-bond]N carbon atom and one carbon of the cyclopentadienyl ring of the overlaying molecule are present.

  10. Crystal structure of propaquizafop

    Directory of Open Access Journals (Sweden)

    Youngeun Jeon

    2014-12-01

    Full Text Available The title compound, C22H22ClN3O5 {systematic name: 2-(propan-2-ylideneaminooxyethyl (R-2-[4-(6-chloroquinoxalin-2-yloxyphenoxy]propionate}, is a herbicide. The asymmetric unit comprises two independent molecules in which the dihedral angles between the phenyl ring and the quinoxaline ring plane are 75.93 (7 and 82.77 (8°. The crystal structure features C—H...O, C—H...N, and C—H...Cl hydrogen bonds, as well as weak π–π interactions [ring-centroid separation = 3.782 (2 and 3.5952 (19 Å], resulting in a three-dimensional architecture.

  11. Lamella settler crystallizer

    Science.gov (United States)

    Maimoni, Arturo

    1990-01-01

    A crystallizer which incorporates a lamella settler and which is particularly applicable for use in batteries and power cells for electric vehicles or stationary applications. The lamella settler can be utilized for coarse particle separation or for agglomeration, and is particularly applicable to aluminum-air batteries or power cells for solving the hydrargillite (aluminum-hydroxide) removal problems from such batteries. This invention provides the advantages of very low energy consumption, turbulence, shear, cost and maintenance. Thus, due to the low shear and low turbulence of this invention, it is particularly effective in the control of aluminum hydroxide particle size distribution in the various sections of an aluminum-air system, as well as in other electrochemical systems requiring separation for phases of different densities.

  12. Modeling liquid crystal polymeric devices

    Science.gov (United States)

    Gimenez Pinto, Vianney Karina

    The main focus of this work is the theoretical and numerical study of materials that combine liquid crystal and polymer. Liquid crystal elastomers are polymeric materials that exhibit both the ordered properties of the liquid crystals and the elastic properties of rubbers. Changing the order of the liquid crystal molecules within the polymer network can induce shape change. These materials are very valuable for applications such as actuators, sensors, artificial muscles, haptic displays, etc. In this work we apply finite element elastodynamics simulations to study the temperature induced shape deformation in nematic elastomers with complex director microstructure. In another topic, we propose a novel numerical method to model the director dynamics and microstructural evolution of three dimensional nematic and cholesteric liquid crystals. Numerical studies presented in this work are in agreement with experimental observations and provide insight into the design of application devices.

  13. Springer Handbook of Crystal Growth

    CERN Document Server

    Dhanaraj, Govindhan; Prasad, Vishwanath; Dudley, Michael

    2010-01-01

    Over the years, many successful attempts have been made to describe the art and science of crystal growth. Most modern advances in semiconductor and optical devices would not have been possible without the development of many elemental, binary, ternary, and other compound crystals of varying properties and large sizes. The objective of the Springer Handbook of Crystal Growth is to present state-of-the-art knowledge of both bulk and thin-film crystal growth. The goal is to make readers understand the basics of the commonly employed growth processes, materials produced, and defects generated. Almost 100 leading scientists, researchers, and engineers from 22 different countries from academia and industry have been selected to write chapters on the topics of their expertise. They have written 52 chapters on the fundamentals of bulk crystal growth from the melt, solution, and vapor, epitaxial growth, modeling of growth processes and defects, techniques of defect characterization as well as some contemporary specia...

  14. Photonic crystals in epitaxial semiconductors

    CERN Document Server

    La Rue, R M de

    1998-01-01

    The title of the paper uses the expression "photonic crystals". By photonic crystals, we mean regular periodic structures with a substantial refractive index variation in one-, two- or three- dimensional space. Such crystals can $9 exist naturally, for example natural opal, but are more typically fabricated by people. Under sufficiently strong conditions, i.e., sufficiently large refractive index modulation, correct size of structural components, and $9 appropriate rotational and translational symmetry, these crystals exhibit the characteristics of a photonic bandgap (PBG) structure. In a full photonic bandgap structure there is a spectral stop band for electromagnetic waves $9 propagating in any direction through the structure and with an arbitrary state of polarization. This behavior is of interest both from a fundamental viewpoint and from the point of view of novel applications in photonic devices. The $9 paper gives an outline review of work on photonic crystals carried out by the Optoelectronics Researc...

  15. Prediction of molecular crystal structures

    CERN Document Server

    Beyer, T

    2001-01-01

    The ab initio prediction of molecular crystal structures is a scientific challenge. Reliability of first-principle prediction calculations would show a fundamental understanding of crystallisation. Crystal structure prediction is also of considerable practical importance as different crystalline arrangements of the same molecule in the solid state (polymorphs)are likely to have different physical properties. A method of crystal structure prediction based on lattice energy minimisation has been developed in this work. The choice of the intermolecular potential and of the molecular model is crucial for the results of such studies and both of these criteria have been investigated. An empirical atom-atom repulsion-dispersion potential for carboxylic acids has been derived and applied in a crystal structure prediction study of formic, benzoic and the polymorphic system of tetrolic acid. As many experimental crystal structure determinations at different temperatures are available for the polymorphic system of parac...

  16. Growth habit of polar crystals

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    Using coordination polyhedron rule, growth habit of polar crystals such as ZnO, ZnS and SiO2 is investigated. It shows that the growth rates in the positive and negative polar axis directions are different. The theoretical growth habit of ZnO crystal is hexagonal prism and the growth rates of its various faces are:V{0001}>V{0111}-->V{0110}->V{0111}->V{0001}-. The growth habit of ZnS crystal is tetrahedron and its growth rates of different crystal faces are: V{111}>V{001}>V{001} =V{100} =. The growth rate relationship between positive and negative polar axis directions of SiO2 crystal V[1120]-->V[1120]-.is These results are in agreement with the growth habits observed under hydrothermal conditions. The different growth rates between positive and negative polar axis directions cannot be explained by PBC theory.

  17. Bacterial Ice Crystal Controlling Proteins

    Directory of Open Access Journals (Sweden)

    Janet S. H. Lorv

    2014-01-01

    Full Text Available Across the world, many ice active bacteria utilize ice crystal controlling proteins for aid in freezing tolerance at subzero temperatures. Ice crystal controlling proteins include both antifreeze and ice nucleation proteins. Antifreeze proteins minimize freezing damage by inhibiting growth of large ice crystals, while ice nucleation proteins induce formation of embryonic ice crystals. Although both protein classes have differing functions, these proteins use the same ice binding mechanisms. Rather than direct binding, it is probable that these protein classes create an ice surface prior to ice crystal surface adsorption. Function is differentiated by molecular size of the protein. This paper reviews the similar and different aspects of bacterial antifreeze and ice nucleation proteins, the role of these proteins in freezing tolerance, prevalence of these proteins in psychrophiles, and current mechanisms of protein-ice interactions.

  18. Crystallization of Biological Macromolecules in Microgravity

    Science.gov (United States)

    Snell, Edward H.; Chayen, N. E.; Helliwell, J. R.

    2000-01-01

    An overview of microgravity crystallization explaining why microgravity is used, factors which affect crystallization, the method of crystallization and the environment itself. Also covered is how best to make use of microgravity and what the future might hold.

  19. Crystallization of Biological Macromolecules in Microgravity

    Science.gov (United States)

    Snell, Edward H.; Chayen, N. E.; Helliwell, J. R.

    2000-01-01

    An overview of microgravity crystallization explaining why microgravity is used, factors which affect crystallization, the method of crystallization and the environment itself. Also covered is how best to make use of microgravity and what the future might hold.

  20. Effects of impurities on crystal growth in fructose crystallization

    Science.gov (United States)

    Chu, Y. D.; Shiau, L. D.; Berglund, K. A.

    1989-10-01

    The influence of impurities on the crystallization of anhydrous fructose from aqueous solution was studied. The growth kinetics of fructose crystals in the fructose-water-glucose and fructose-water-difructose dianhydrides systems were investigated using photomicroscopic contact nucleation techniques. Glucose is the major impurity likely to be present in fructose syrup formed during corn wet milling, while several difructose dianhydrides are formed in situ under crystallization conditions and have been proposed as a cause in the decrease of overall yields. Both sets of impurities were found to cause inhibition of crystal growth, but the mechanisms responsible in each case are different. It was found that the presence of glucose increases the solubility of fructose in water and thus lowers the supersaturation of the solution. This is probably the main effect responsible for the decrease of crystal growth. Since the molecular structures of difructose dianhydrides are similar to that of fructose, they are probably "tailor-made" impurities. The decrease of crystal growth is probably caused by the incorporation of these impurities into or adsorption to the crystal surface which would accept fructose molecules in the orientation that existed in the difructose dianhydride.

  1. Influence of crystallizing and non-crystallizing cosolutes on trehalose crystallization during freeze-drying.

    Science.gov (United States)

    Sundaramurthi, Prakash; Suryanarayanan, Raj

    2010-11-01

    To study the influence of crystallizing and non-crystallizing cosolutes on the crystallization behavior of trehalose in frozen solutions and to monitor the phase behavior of trehalose dihydrate and mannitol hemihydrate during drying. Trehalose (a lyoprotectant) and mannitol (a bulking agent) are widely used as excipients in freeze-dried formulations. Using differential scanning calorimetry (DSC) and X-ray diffractometry (XRD), the crystallization behavior of trehalose in the presence of (i) a crystallizing (mannitol), (ii) a non-crystallizing (sucrose) solute and (iii) a combination of mannitol and a model protein (lactose dehydrogenase, catalase, or lysozyme) was evaluated. By performing the entire freeze-drying cycle in the sample chamber of the XRD, the phase behavior of trehalose and mannitol were simultaneously monitored. When an aqueous solution containing trehalose (4% w/v) and mannitol (2% w/v) was cooled to -40°C at 0.5°C/min, hexagonal ice was the only crystalline phase. However, upon warming the sample to the annealing temperature (-18°C), crystallization of mannitol hemihydrate was readily evident. After 3 h of annealing, the characteristic XRD peaks of trehalose dihydrate were also observed. The DSC heating curve of frozen and annealed solution showed two overlapping endotherms, attributed by XRD to the sequential melting of trehalose dihydrate-ice and mannitol hemihydrate-ice eutectics, followed by ice melting. While mannitol facilitated trehalose dihydrate crystallization, sucrose completely inhibited it. In the presence of protein (2 mg/ml), trehalose crystallization required a longer annealing time. When the freeze-drying was performed in the sample chamber of the diffractometer, drying induced the dehydration of trehalose dihydrate to amorphous anhydrate. However, the final lyophiles prepared in the laboratory lyophilizer contained trehalose dihydrate and mannitol hemihydrate. Using XRD and DSC, the sequential crystallization of ice, mannitol

  2. Adsorption calorimetry during metal vapor deposition on single crystal surfaces: Increased flux, reduced optical radiation, and real-time flux and reflectivity measurements

    Science.gov (United States)

    Sellers, Jason R. V.; James, Trevor E.; Hemmingson, Stephanie L.; Farmer, Jason A.; Campbell, Charles T.

    2013-12-01

    Thin films of metals and other materials are often grown by physical vapor deposition. To understand such processes, it is desirable to measure the adsorption energy of the deposited species as the film grows, especially when grown on single crystal substrates where the structure of the adsorbed species, evolving interface, and thin film are more homogeneous and well-defined in structure. Our group previously described in this journal an adsorption calorimeter capable of such measurements on single-crystal surfaces under the clean conditions of ultrahigh vacuum [J. T. Stuckless, N. A. Frei, and C. T. Campbell, Rev. Sci. Instrum. 69, 2427 (1998)]. Here we describe several improvements to that original design that allow for heat measurements with ˜18-fold smaller standard deviation, greater absolute accuracy in energy calibration, and, most importantly, measurements of the adsorption of lower vapor-pressure materials which would have previously been impossible. These improvements are accomplished by: (1) using an electron beam evaporator instead of a Knudsen cell to generate the metal vapor at the source of the pulsed atomic beam, (2) changing the atomic beam design to decrease the relative amount of optical radiation that accompanies evaporation, (3) adding an off-axis quartz crystal microbalance for real-time measurement of the flux of the atomic beam during calorimetry experiments, and (4) adding capabilities for in situ relative diffuse optical reflectivity determinations (necessary for heat signal calibration). These improvements are not limited to adsorption calorimetry during metal deposition, but also could be applied to better study film growth of other elements and even molecular adsorbates.

  3. THE CRYSTAL STRUCTURE OF DIPHENYLTELLURIUM DIBROMIDE,

    Science.gov (United States)

    TELLURIUM COMPOUNDS, *ORGANOMETALLIC COMPOUNDS, CRYSTAL STRUCTURE , CRYSTAL STRUCTURE , BROMIDES, SYMMETRY(CRYSTALLOGRAPHY), X RAY DIFFRACTION, FOURIER ANALYSIS, LEAST SQUARES METHOD, MOLECULAR STRUCTURE, CHEMICAL BONDS.

  4. Crystallization of lactose from carbopol gels.

    Science.gov (United States)

    Zeng, X M; Martin, G P; Marriott, C; Pritchard, J

    2000-07-01

    To crystallize lactose under static conditions with a view to preparing crystals of well-defined morphology. et-Lactose monohydrate was crystallized from neutralized Carbopol 934 gels. When the majority of crystals had grown to maturity, the gels were acidified using diluted hydrochloric acid and the crystals were harvested by filtration or centrifugation and washed with ethanol-water mixtures. Crystals prepared from the gel had a consistently narrower size distribution than control crystals, prepared from solution under constant stirring. If crystallization was effected in the gel without sedimentation of the crystals, then the resultant crystals had smooth surfaces without visually detectable surface roughness or asperities viewed by optical microscopy. The crystals from Carbopol gels also exhibited the uniform shape of an elongated tomahawk regardless of the crystallization conditions, in contrast to crystallization under constant stirring, where the crystal shape of lactose changed with crystallization conditions especially as a function of the initial concentration of lactose. All batches of lactose crystals prepared from Carbopol gels existed as alpha-lactose monohydrate, which showed better flowability than the controls of a similar particle size. Crystallization from Carbopol gel produces lactose crystals of uniform size, regular shape, smooth surface, and improved flowability.

  5. Crystal-field effects in fluoride crystals for optical refrigeration

    Energy Technology Data Exchange (ETDEWEB)

    Hehlen, Markus P [Los Alamos National Laboratory

    2010-01-01

    The field of optical refrigeration of rare-earth-doped solids has recently seen an important breakthrough. The cooling of a YLiF{sub 4} (YLF) crystal doped with 5 mol% Yb3+ to 155 K by Seletskiy et al [NPhot] has surpassed the lowest temperatures ({approx}170 K for {approx}100 mW cooling capacity) that are practical with commercial multi-stage thermoelectric coolers (TEC) [Glaister]. This record performance has advanced laser cooling into an application relevant regime and has put first practical optical cryocoolers within reach. The result is also relevant from a material perspective since for the first time, an Yb3+-doped crystal has outperformed an Yb3+-doped glass. The record temperature of 208 K was held by the Yb3+-doped fluorozirconate glass ZBLAN. Advanced purification and glass fabrication methods currently under development are expected to also advance ZBLAN:Yb3+ to sub-TEC temperatures. However, recent achievements with YLF:Yb3+ illustrate that crystalline materials may have two potentially game-changing advantajes over glassy materials. First, the crystalline environment reduces the inhomogeneous broadening of the Yb3+ electronic transitions as compared to a glassy matrix. The respective sharpening of the crystal-field transitions increases the peak absorption cross section at the laser excitation wavelength and allows for more efficient pumping of the Yb3+ ions, particularly at low temperatures. Second, many detrimental impurities present in the starting materials tend to be excluded from the crystal during its slow growth process, in contrast to a glass where all impurities present in the starting materials are included in the glass when it is formed by temperature quenching a melt. The ultra high purity required for laser cooling materials [PRB] therefore may be easier to realize in crystals than in glasses. Laser cooling occurs by laser excitation of a rare-earth ion followed by anti-Stokes luminescence. Each such laser-cooling cycle extracts

  6. Crystal packing in two pH-dependent crystal forms of rhamnogalacturonan acetylesterase

    DEFF Research Database (Denmark)

    Mølgaard, Anne; Larsen, S.

    2004-01-01

    The glycoprotein rhamnogalacturonan acetylesterase from Aspergillus aculeatus has been crystallized in two crystal forms, an orthorhombic and a trigonal crystal form. In the orthorhombic crystal form, the covalently bound carbohydrate at one of the two N-glycosylation sites is involved in crystal...... contacts. The orthorhombic crystal form was obtained at pH 5.0 and the trigonal crystal form at pH 4.5. In one case, the two crystal forms were found in the same drop at pH 4.7. The differences in crystal packing in the two crystal forms can be explained by the pH-dependent variation in the protonation...

  7. Crystallization of copper metaphosphate glass

    Science.gov (United States)

    Bae, Byeong-Soo; Weinberg, Michael C.

    1993-01-01

    The effect of the valence state of copper in copper metaphosphate glass on the crystallization behavior and glass transition temperature has been investigated. The crystallization of copper metaphosphate is initiated from the surface and its main crystalline phase is copper metaphosphate (Cu(PO)3),independent of the (Cu sup 2+)/(Cu(total)). However, the crystal morphology, the relative crystallization rates, and their temperature dependences are affected by the (Cu sup 2+)/(Cu (total)) ratio in the glass. On the other hand, the totally oxidized glass crystallizes from all over the surface. The relative crystallization rate of the reduced glass to the totally oxidized glass is large at low temperature, but small at high temperature. The glass transition temperature of the glass increases as the (Cu sup 2+)/(Cu(total)) ratio is raised. It is also found that the atmosphere used during heat treatment does not influence the crystallization of the reduced glass, except for the formation of a very thin CuO surface layer when heated in air.

  8. Spatial filtering with photonic crystals

    Energy Technology Data Exchange (ETDEWEB)

    Maigyte, Lina [Departament de Física i Enginyeria Nuclear, Universitat Politècnica de Catalunya, Rambla Sant Nebridi 22, Terrassa 08222 (Spain); Staliunas, Kestutis [Departament de Física i Enginyeria Nuclear, Universitat Politècnica de Catalunya, Rambla Sant Nebridi 22, Terrassa 08222 (Spain); Institució Catalana de Recerca i Estudis Avançats (ICREA), Pg. Lluís Companys 23, Barcelona 08010 (Spain)

    2015-03-15

    Photonic crystals are well known for their celebrated photonic band-gaps—the forbidden frequency ranges, for which the light waves cannot propagate through the structure. The frequency (or chromatic) band-gaps of photonic crystals can be utilized for frequency filtering. In analogy to the chromatic band-gaps and the frequency filtering, the angular band-gaps and the angular (spatial) filtering are also possible in photonic crystals. In this article, we review the recent advances of the spatial filtering using the photonic crystals in different propagation regimes and for different geometries. We review the most evident configuration of filtering in Bragg regime (with the back-reflection—i.e., in the configuration with band-gaps) as well as in Laue regime (with forward deflection—i.e., in the configuration without band-gaps). We explore the spatial filtering in crystals with different symmetries, including axisymmetric crystals; we discuss the role of chirping, i.e., the dependence of the longitudinal period along the structure. We also review the experimental techniques to fabricate the photonic crystals and numerical techniques to explore the spatial filtering. Finally, we discuss several implementations of such filters for intracavity spatial filtering.

  9. Photonic crystal enhanced cytokine immunoassay.

    Science.gov (United States)

    Mathias, Patrick C; Ganesh, Nikhil; Cunningham, Brian T

    2009-01-01

    Photonic crystal surfaces are demonstrated as a means for enhancing the detection sensitivity and resolution for assays that use a fluorescent tag to quantify the concentration of an analyte protein molecule in a liquid test sample. Computer modeling of the spatial distribution of resonantly coupled electromagnetic fields on the photonic crystal surface are used to estimate the magnitude of enhancement factor compared to performing the same fluorescent assay on a plain glass surface, and the photonic crystal structure is fabricated and tested to experimentally verify the performance using a sandwich immunoassay for the protein Tumor Necrosis Factor-alpha (TNF-alpha). The demonstrated photonic crystal fabrication method utilizes a nanoreplica molding technique that allows for large-area inexpensive fabrication of the structure in a format that is compatible with confocal microarray laser scanners. The signal-to-noise ratio for fluorescent spots on the photonic crystal is increased by at least five-fold relative to the glass slide, allowing a TNF-alpha concentration of 1.6 pg/ml to be distinguished from noise on a photonic crystal surface. In addition, the minimum quantitative limit of detection on the photonic crystal surface is one-third the limit on the glass slide - a decrease from 18 pg/ml to 6 pg/ml. The increased performance of the immunoassay allows for more accurate quantitation of physiologically relevant concentrations of TNF-alpha in a protein microarray format that can be expanded to multiple cytokines.

  10. Crystal ball single event display

    Energy Technology Data Exchange (ETDEWEB)

    Grosnick, D.; Gibson, A. [Valparaiso Univ., IN (United States). Dept. of Physics and Astronomy; Allgower, C. [Argonne National Lab., IL (United States). High Energy Physics Div.; Alyea, J. [Valparaiso Univ., IN (United States). Dept. of Physics and Astronomy]|[Argonne National Lab., IL (United States). High Energy Physics Div.

    1997-10-15

    The Single Event Display (SED) is a routine that is designed to provide information graphically about a triggered event within the Crystal Ball. The SED is written entirely in FORTRAN and uses the CERN-based HICZ graphing package. The primary display shows the amount of energy deposited in each of the NaI crystals on a Mercator-like projection of the crystals. Ten different shades and colors correspond to varying amounts of energy deposited within a crystal. Information about energy clusters is displayed on the crystal map by outlining in red the thirteen (or twelve) crystals contained within a cluster and assigning each cluster a number. Additional information about energy clusters is provided in a series of boxes containing useful data about the energy distribution among the crystals within the cluster. Other information shown on the event display include the event trigger type and data about {pi}{sup o}`s and {eta}`s formed from pairs of clusters as found by the analyzer. A description of the major features is given, along with some information on how to install the SED into the analyzer.

  11. Radiation generation with pyroelectric crystals

    Science.gov (United States)

    Geuther, Jeffrey A.

    2007-12-01

    Pyroelectric crystals heated or cooled in vacuum have been used to produce low-energy x-ray devices since 1992. In the course of this thesis, experiments with lithium tantalate (LiTaO3) and lithium niobate (LiNbO 3) were performed to extend the usefulness of pyroelectric radiation sources. Paired-crystal x-ray generators were shown to double the x-ray energy and yield, and allow the k-shell fluorescence of any metal up to thorium (Z = 90). It was demonstrated that the electron emission from a single pyroelectric crystal could be transmitted through a beryllium window to allow the electron beam to be extracted from the vacuum chamber. The electron emission current and energy were measured, and a mathematical model was developed to predict emission current and energy. Magnetic deflection experiments were used to verify that the electric field produced by the pyroelectric effect in lithium tantalate was sufficient to ionize gas. Finally, a paired-crystal system was used to ionize a deuterium fill gas near a metallic tip mounted to a pyroelectric crystal, and accelerate these ions into a deuterated target mounted to the opposing crystal. This technique was used to produce a compact, low-power fusion neutron source driven by pyroelectric crystals.

  12. Spherical colloidal photonic crystals.

    Science.gov (United States)

    Zhao, Yuanjin; Shang, Luoran; Cheng, Yao; Gu, Zhongze

    2014-12-16

    CONSPECTUS: Colloidal photonic crystals (PhCs), periodically arranged monodisperse nanoparticles, have emerged as one of the most promising materials for light manipulation because of their photonic band gaps (PBGs), which affect photons in a manner similar to the effect of semiconductor energy band gaps on electrons. The PBGs arise due to the periodic modulation of the refractive index between the building nanoparticles and the surrounding medium in space with subwavelength period. This leads to light with certain wavelengths or frequencies located in the PBG being prohibited from propagating. Because of this special property, the fabrication and application of colloidal PhCs have attracted increasing interest from researchers. The most simple and economical method for fabrication of colloidal PhCs is the bottom-up approach of nanoparticle self-assembly. Common colloidal PhCs from this approach in nature are gem opals, which are made from the ordered assembly and deposition of spherical silica nanoparticles after years of siliceous sedimentation and compression. Besides naturally occurring opals, a variety of manmade colloidal PhCs with thin film or bulk morphology have also been developed. In principle, because of the effect of Bragg diffraction, these PhC materials show different structural colors when observed from different angles, resulting in brilliant colors and important applications. However, this angle dependence is disadvantageous for the construction of some optical materials and devices in which wide viewing angles are desired. Recently, a series of colloidal PhC materials with spherical macroscopic morphology have been created. Because of their spherical symmetry, the PBGs of spherical colloidal PhCs are independent of rotation under illumination of the surface at a fixed incident angle of the light, broadening the perspective of their applications. Based on droplet templates containing colloidal nanoparticles, these spherical colloidal PhCs can be

  13. Multicolor photonic crystal laser array

    Science.gov (United States)

    Wright, Jeremy B; Brener, Igal; Subramania, Ganapathi S; Wang, George T; Li, Qiming

    2015-04-28

    A multicolor photonic crystal laser array comprises pixels of monolithically grown gain sections each with a different emission center wavelength. As an example, two-dimensional surface-emitting photonic crystal lasers comprising broad gain-bandwidth III-nitride multiple quantum well axial heterostructures were fabricated using a novel top-down nanowire fabrication method. Single-mode lasing was obtained in the blue-violet spectral region with 60 nm of tuning (or 16% of the nominal center wavelength) that was determined purely by the photonic crystal geometry. This approach can be extended to cover the entire visible spectrum.

  14. Unexpected results from direct measurement, with a torsion microbalance in a closed system, of calcification rates of the coral Agaricia agaricites (Scleractinia:Agariicidae and concomitant changes in seawater pH

    Directory of Open Access Journals (Sweden)

    Ian M. Sandeman

    2014-09-01

    Full Text Available Ocean acidification is impacting the calcification of corals, but the mechanisms of calcification are still unclear. To explore the relationship between calcification and pH, small pieces of coral were suspended from a torsion microbalance in gently stirred, temperature controlled, seawater in a closed chamber. Net calcification rate and pH were continuously monitored while light, temperature or pH could be manipulated. The coral pieces were from the edges of thin plates of Agaricia agaricites and were studied alive and freshly collected. Unexpectedly, when calcification was taking place (n=9, 0.082 mg.hr-1.cm-2, as determined by weight increase, the pH of the surrounding seawater medium changed little (n=10, -0.0047 pH units.hr-1.cm-2. When calcification was not taking place the decrease of seawater pH was an order of magnitude higher, -0.013 pH units.hr-1.cm-2. This is the opposite of what is expected when calcium carbonate (CaCO3 forms. Similarly, fresh skeleton initially showed no change of pH in the seawater medium although the rates of weight gain were high (upto 1.0 mg hr-1.cm-2. After 10 hours, as the rate of deposition decreased following a generalized Michaelis-Menten growth curve, the pH began to decrease dramatically indicating an increase of CO2 in the seawater. These unexpected results can be explained if unstable calcium bicarbonate (Ca(HCO³2 is formed in the organic matrix/carbonic anhydrase surface and slowly transforms later to CaCO3. Pieces of living coral monitored in the chamber for 30 hours gained weight during the day and loss it at night. The loss would be consistent with the transformation of Ca(HCO³2 to CaCO3 with the release of CO2. The mean calcification rate of live coral was greater (n=8, p=0.0027 in high light (120 μmol.s-1.m-2 at 0.098 mg.hr-1.cm-2, compared to 0.063 mg.hr-1.cm-2 in low light (12 μmol.s-1.m-2. However, at the same time the mean rate of pH change was -0.0076 under low light compared to -0

  15. Preliminary results with a torsion microbalance indicate that carbon dioxide and exposed carbonic anhydrase in the organic matrix are the basis of calcification on the skeleton surface of living corals

    Directory of Open Access Journals (Sweden)

    Ian M Sandeman

    2012-03-01

    Full Text Available Ocean acidification is altering the calcification of corals, but the mechanism is still unclear. To explore what controls calcification, small pieces from the edges of thin plates of Agaricia agaricites were suspended from a torsion microbalance into gently stirred, temperaturecontrolled, seawater. Net calcification rates were monitored while light, temperature and pH were manipulated singly. The living coral pieces were sensitive to changes in conditions, especially light, and calcification was often suspended for one or two hours or overnight. The mean calcification rate increased from 0.06 in the dark to 0.10 mg.h-1.cm-2 (T test, n=8, p<0.01 in low light (15 μmol.s-1.m-2 and showed a positive linear relationship with temperature. With a reduction of mean pH from 8.2 to 7.6 the mean calcification rate in the light (65 μmol.s-1.m-2 increased from 0.19 to 0.28 mg.h-1.cm-2 (T test, n=8, p<0.05 indicating a dependency on carbon dioxide. After waterpiking and exposure of the skeletal surface/organic matrix to seawater, calcification showed an astonishing initial increase of more than an order of magnitude then decreased following a non-linear generalised Michaelis-Menten growth curve and reached a steady rate. Calcification rate of the freshly waterpiked coral was not influenced by light and was positively correlated with temperature. For a mean pH reduction from 8.1 to 7.6 the mean calcification rate increased from 0.18 to 0.32 mg.h-1.cm-2 (T test, n=11, p<0.02 again indicating a dependency on carbon dioxide. Calcification ceased in the presence of the carbonic anhydrase inhibitor azolamide. Staining confirmed the presence of carbonic anhydrase, particularly on the ridges of septae. After immersion of waterpiked corals in seawater for 48 hours weight gain and loss became linear and positively correlated to temperature. When the mean pH was reduced from 8.2 to 7.5 the mean rate of weight gain decreased from 0.25 to 0.13 mg.h-1.cm-2 (T test, n=6

  16. Single Crystal Surfaces

    Science.gov (United States)

    Aguilar-Santillan, Joaquin

    2014-06-01

    The present work studies (0001) Al2O3 and (111) Al2MgO4 wetting with pure molten Al by the sessile drop technique from 1073 K to 1473 K (800 °C to 1200 °C) under Ar at PO2 10-15 Pa. Al pure liquid wets a smooth and chemically homogeneous surface of an inert solid, the wetting driving force ( t, T) can be readily studied when surface solid roughness increases in the system. Both crystals planes (0001) Al2O3 and (111) Al2MgO4 have crystallographic surfaces with identical O-2 crystalline positions however considering Mg2+ content in Al2MgO4 structure may influence a reactive mode. Kinetic models results under similar experimental conditions show that Al wetting on (0001) Al2O3 is less reactive than (111) Al2MgO4, however at >1273 K (1000 °C) (0001) Al2O3 transformation occurs and a transition of wetting improves. The (111) Al2MgO4 and Al system promotes interface formations that slow its wetting process.

  17. Crystal structure of fipronil

    Directory of Open Access Journals (Sweden)

    Hyunjin Park

    2017-10-01

    Full Text Available The title compound, C12H4Cl2F6N4OS {systematic name: 5-amino-1-[2,6-dichloro-4-(trifluoromethylphenyl]-4-[(trifluoromethanesulfinyl]-1H-pyrazole-3-carbonitrile}, is a member of the phenylpyrazole group of acaricides, and one of the phenylpyrazole group of insecticides. The dihedral angle between the planes of the pyrazole and benzene rings is 89.03 (9°. The fluorine atoms of the trifluoromethyl substituent on the benzene ring are disordered over two sets of sites, with occupancy ratios 0.620 (15:0.380 (15. In the crystal, C—N...π interactions [N...ring centroid = 3.607 (4 Å] together with N—H...N and C—H...F hydrogen bonds form a looped chain structure along [10\\overline{1}]. Finally, N—H...O hydrogen bonds and C—Cl...π interactions [Cl...ring centroid = 3.5159 (16 Å] generate a three-dimensional structure. Additionally, there are a short intermolecular F... F contacts present.

  18. Crystal structure of pymetrozine

    Directory of Open Access Journals (Sweden)

    Youngeun Jeon

    2015-07-01

    Full Text Available The title compound, C10H11N5O {systematic name: 6-methyl-4-[(E-(pyridin-3-ylmethylideneamino]-4,5-dihydro-1,2,4-triazin-3(2H-one}, C10H11N5O, is used as an antifeedant in pest control. The asymmetric unit comprises two independent molecules, A and B, in which the dihedral angles between the pyridinyl and triazinyl ring planes [r.m.s. deviations = 0.0132 and 0.0255 ] are 11.60 (6 and 18.06 (4°, respectively. In the crystal, N—H...O, N—H...N, C—H...N and C—H...O hydrogen bonds, together with weak π–π interactions [ring-centroid separations = 3.5456 (9 and 3.9142 (9 Å], link the pyridinyl and triazinyl rings of A molecules, generating a three-dimensional network.

  19. Crystal structure of oxamyl

    Directory of Open Access Journals (Sweden)

    Eunjin Kwon

    2016-12-01

    Full Text Available The title compound, C7H13N3O3S [systematic name: (Z-methyl 2-dimethylamino-N-(methylcarbamoyloxy-2-oxoethanimidothioate], is an oxime carbamate acaride, insecticide and nematicide. The asymmetric unit comprises two independent molecules, A and B. The dihedral angles between the mean planes [r.m.s. deviations = 0.0017 (A and 0.0016 Å (B] of the acetamide and oxyimino groups are 88.80 (8° for A and 87.05 (8° for B. In the crystal, N/C—H...O hydrogen bonds link adjacent molecules, forming chains along the a axis. The chains are further linked by C—H...O hydrogen bonds, resulting in a three-dimensional network with alternating rows of A and B molecules in the bc plane stacked along the a-axis direction. The structure was refined as an inversion twin with a final BASF parameter of 0.16 (9.

  20. A Simple Method for the Detection of Long-Chain Fatty Acids in an Anaerobic Digestate Using a Quartz Crystal Sensor

    Directory of Open Access Journals (Sweden)

    Takuro Kobayashi

    2016-12-01

    Full Text Available In anaerobic digestion (AD, long-chain fatty acids (LCFAs produced by hydrolysis of lipids, exhibit toxicity against microorganisms when their concentration exceeds several millimolar. An absorption detection system using a quartz crystal microbalance (QCM was developed to monitor the LCFA concentration during an anaerobic digester’s operation treating oily organic waste. The dissociation of the LCFAs considerably improved the sensor response and, moreover, enabled it to specifically detect LCFA from the mixture of LCFA and triglyceride. Under alkaline conditions, the frequency-shift rates of the QCM sensor linearly increased in accordance with palmitic acid concentration in the range of 0–100 mg/L. Frequency changes caused by anaerobic digestate samples were successfully measured after removing suspended solids and adjusting the pH to 10.7. Finally, the QCM measurements for digestate samples demonstrated that frequency-shift rates are highly correlated with LCFA concentrations, which confirmed that the newly developed QCM sensor is helpful for LCFA monitoring in terms of rapidness and usability.