WorldWideScience

Sample records for crystal melting endotherm

  1. Multiple Melting Endotherms of Syndiotactic Polystyrene in β Crystalline Form

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    A series of syndiotactic polystyrene (SPS) samples in β crystalline form were prepared by cooling from the melt at various cooling rates. The effects of cooling rate from the melt, and DSC heating rate on the multiple melting behaviors of β crystals were investigated by differential scanning calorimetry (DSC) and modulated differential scanning calorimetry (MDSC), from which the nature of the multiple melting behavior was ascribed to the occurring of a recrystallization process.

  2. CRYSTALLIZATION AND MELTING OF NYLON 610

    Institute of Scientific and Technical Information of China (English)

    1998-01-01

    Differential scanning calorimetry was used to study the crystallization and melting of nylon 610. For nylon 610 crystallized from the melt state (260℃), the overall rate of bulk crystallization can be described by a simple Avrami equation with Avrami exponent n≈2, independent of crystallization temperature. With the experimentally obtained Tm0 (235℃~255℃) of nylon 610, the fold surface free energy σe was determined to be 35~38 erg/cm2. The effects of annealing temperature and time on the melting of quenched nylon 610 were also investigated. For nylon 610 quenched at room temperature there is only one DSC endotherm peak DSC scans on annealed samples exhibited an endotherm peak at approximately 10℃ above the annealing temperature. The size and position of the endothermic peak is strongly related to annealing temperature and time. An additional third melting was observed when quenched nylon 610 was annealed at high temperature for a sufficiently long residence time. The existence of the third melting peak suggests that more than one kind of distribution of lamella thickness may occur when quenched nylon610 is annealed. The implications of these results in terms of crystal thickening mechanism were discussed.

  3. Melting of superheated molecular crystals

    Science.gov (United States)

    Cubeta, Ulyana; Bhattacharya, Deepanjan; Sadtchenko, Vlad

    2017-07-01

    Melting dynamics of micrometer scale, polycrystalline samples of isobutane, dimethyl ether, methyl benzene, and 2-propanol were investigated by fast scanning calorimetry. When films are superheated with rates in excess of 105 K s-1, the melting process follows zero-order, Arrhenius-like kinetics until approximately half of the sample has transformed. Such kinetics strongly imply that melting progresses into the bulk via a rapidly moving solid-liquid interface that is likely to originate at the sample's surface. Remarkably, the apparent activation energies for the phase transformation are large; all exceed the enthalpy of vaporization of each compound and some exceed it by an order of magnitude. In fact, we find that the crystalline melting kinetics are comparable to the kinetics of dielectric α-relaxation in deeply supercooled liquids. Based on these observations, we conclude that the rate of non-isothermal melting for superheated, low-molecular-weight crystals is limited by constituent diffusion into an abnormally dense, glass-like, non-crystalline phase.

  4. Quantifying melting and mobilistaion of interstitial melts in crystal mushes

    Science.gov (United States)

    Veksler, Ilya; Dobson, Katherine; Hess, Kai-Uwe; Ertel-Ingrisch, Werner; Humphreys, Madeleine

    2015-04-01

    The deformation of crystals mushes and separation of melts and crystals in is critical to understanding the development of physical and chemical heterogeneity in magma chambers and has been invoked as an eruption trigger mechanism. Here we investigate the behaviour of the melt in the well characterised, classic crystal mush system of the Skaergaard intrusion by combining experimental petrology and the non-destructive 3D imaging methods. Starting materials for partial melting experiments were four samples from the upper Middle Zone of the Layered Series. Cylinders, 15 mm in diameter and 20 mm in length, were drilled out of the rock samples, placed in alumina crucibles and held for 5 days in electric furnaces at atmospheric pressure and 1050-1100 °C. Redox conditions set by the CO-CO2 gas mixture were kept close to those of the FMQ buffer. We then use spatially registered 3D x-ray computed tomography images, collected before and after the experiment, to determine the volume and distribution of the crystal framework and interstitial phases, and the volume, distribution and connectivity the interstitial phases that undergo melting and extraction while at elevated temperature. Image analysis has allowed us to quantify these physical changes with high spatial resolution. Our work is a first step towards quantitative understanding of the melt mobilisation and migration processes operating in notionally locked crystal rich magmatic systems.

  5. Pressure-induced melting of micellar crystal

    DEFF Research Database (Denmark)

    Mortensen, K.; Schwahn, D.; Janssen, S.

    1993-01-01

    Aqueous solutions of triblock copolymers of poly(ethylene oxide) and poly(propylene oxide) aggregate at elevated temperatures into micelles which for polymer concentrations greater-than-or-equal-to 20% make a hard sphere crystallization to a cubic micellar crystal. Structural studies show...... that pressure improves the solvent quality of water, thus resulting in decomposition of the micelles and consequent melting of the micellar crystal. The combined pressure and temperature dependence reveals that in spite of the apparent increase of order on the 100 angstrom length scale upon increasing...... temperature (decreasing pressure) the overall entropy increases through the inverted micellar crystallization characteristic....

  6. Evolution of Morphology and Structure During Crystallization and Melting in Syndiotactic Polypropylene

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    Structure and morphology development during isothermal crystallization andsubsequent melting of syndiotactic polypropylene (Spp) was studied by time-resolvedsimultaneous small-angle X-ray scattering (SAXS) and wide-angle X-ray diffraction (WAXD)methods with synchrotron radiation and differential scanning calorimetry(DSC). The timeand temperature dependent parameters such as long period, L, crystal lamellar thickness, lc,amorphous layer thickness, la, scattering invariant, 6, crystallinity, Xc, lateral crystalsizes, L200 and L020, and unit cell parameters a and b were extracted from SAXS and WAXDprofiles. Decreasing long period and crystal thickness indicate that thinner secondary crystallamellae are formed. The decreases in unit cell parameters a and b during isothermalcrystallization process suggest that crystal perfection takes place. The changes in themorphological parameters (the invariant, Q, crystallinity, Xc, long period, L, and thecrystal thickness, lc) during subsequent melting were found to follow a two-stage meltingprocess, corresponding to the dual endotherm behavior in the DSC scan. We conclude that the dual melting peaks are due to the melting of secondary and primary lamellae(first peak)and the subsequent recrystallization-melting process (second peak). Additional minorendothermic peak located at the lowest temperature was also detected and might be related tomelting of secondary, thinner and defective lamellae. WAXD showed that during melting,thermal expansion was greater along the b axis than that along the a axis.

  7. Geometry and Combinatorics of Crystal Melting

    CERN Document Server

    Yamazaki, Masahito

    2011-01-01

    We survey geometrical and especially combinatorial aspects of generalized Donaldson-Thomas invariants (also called BPS invariants) for toric Calabi-Yau manifolds, emphasizing the role of plane partitions and their generalizations in the recently proposed crystal melting model. We also comment on equivalence with a vicious walker model and the matrix model representation of the partition function.

  8. Melting and Crystallization at Core Mantle Boundary

    Science.gov (United States)

    Fiquet, G.; Pradhan, G. K.; Siebert, J.; Auzende, A. L.; Morard, G.; Antonangeli, D.; Garbarino, G.

    2015-12-01

    Early crystallization of magma oceans may generate original compositional heterogeneities in the mantle. Dense basal melts may also be trapped in the lowermost mantle and explain mantle regions with ultralow seismic velocities (ULVZs) near the core-mantle boundary [1]. To test this hypothesis, we first constructed the solidus curve of a natural peridotite between 36 and 140 gigapascals using laser-heated diamond anvil cells. In our experiments, melting at core-mantle boundary pressures occurs around 4100 ± 150 K, which is a value that can match estimated mantle geotherms. Similar results were found for a chondritic mantle [2] whereas much lower pyrolitic melting temperatures were recently proposed from textural and chemical characterizations of quenched samples [3]. We also investigated the melting properties of natural mid ocean ridge basalt (MORB) up to core-mantle boundary (CMB) pressures. At CMB pressure (135 GPa), we obtain a MORB solidus temperature of 3950 ±150 K. If our solidus temperatures are in good agreement with recent results proposed for a similar composition [4], the textural and chemical characterizations of our recovered samples made by analytical transmission electron microscope indicate that CaSiO3 perovskite (CaPv) is the liquidus phase in the entire pressure range up to CMB. The partial melt composition is enriched in FeO, which suggests that such partial melts could be gravitationnally stable at the core mantle boundary. Our observations are tested against calculations made using a self-consistent thermodynamic database for the MgO-FeO-SiO2 system from 20 GPa to 140 GPa [5]. These observations and calculations provide a first step towards a consistent thermodynamic modelling of the crystallization sequence of the magma ocean, which shows that the existence of a dense iron rich and fusible layer above the CMB at the end of the crystallization is plausible [5], which is in contradiction with the conclusions drawn in [4]. [1] Williams

  9. Communication: Theory of melt-memory in polymer crystallization

    Science.gov (United States)

    Muthukumar, M.

    2016-07-01

    Details of crystallization processes of a polymer at the crystallization temperature Tc from its melt kept initially at the melt temperature Tm depend profoundly on the nature of the initial melt state and often are accompanied by memory effects. This phenomenon is in contrast to small molecular systems where the supercooling (Tm0-Tc), with Tm0 being the equilibrium melting temperature, and not (Tm - Tc), determines the nature of crystallization. In addressing this five-decade old puzzle of melt-memory in polymer crystallization, we present a theory to describe melt-memory effects, by invoking an intermediate inhomogeneous melt state in the pathway between the melt and crystalline states. Using newly introduced dissolution temperature T10 for the inhomogeneous melt state and the transition temperature Tt0 for the transition between the inhomogeneous melt and crystalline states, analytical formulas are derived for the nucleation rate as a function of the melt temperature. The theory is general to address different kinds of melt-memory effects depending on whether Tm is higher or lower than Tm0. The derived results are in qualitative agreement with known experimental data, while making predictions for further experiments on melt-memory.

  10. MULTIPLE MELTING AND CRYSTALLIZATION BEHAVIOR OF NYLON 1212

    Institute of Scientific and Technical Information of China (English)

    Jian-bin Song; Qing-yong Chen; Min-qiao Ren; Xiao-hong Sun; Hui-liang Zhang; Hong-fang Zhang; Shu-yun Wang; Zhi-shen Mo

    2006-01-01

    The wide-angle X-ray diffraction (WAXD) patterns of isothermally crystallized Nylon 1212 show that γ-form crystals form below 90℃ and the α-form crystals can exist above 140℃. In the temperature range of 90-140℃, the α-form and γ-form crystals coexist. Variable-temperature WAXD exhibits that the nylon 1212 γ-form does not show crystal transition on heating, while α-form isothermally crystallized at 160℃ exhibits Brill transition at a little higher than 180℃ on heating. The multiple melting behaviors of Nylon 1212 isothermally crystallized from melt come from a complex mechanism of different crystal structures, dual lamellar population and melting-recrystallization. In polarized optical microscope (POM) observations, Nylon 1212 isothermally crystallized at 175℃ shows the ringed banded spherulites. However, at temperatures below 160℃ the ringed banded image disappears, and cross-extinct spherulites are formed.

  11. Controlled Growth of Rubrene Nanowires by Eutectic Melt Crystallization

    Science.gov (United States)

    Chung, Jeyon; Hyon, Jinho; Park, Kyung-Sun; Cho, Boram; Baek, Jangmi; Kim, Jueun; Lee, Sang Uck; Sung, Myung Mo; Kang, Youngjong

    2016-03-01

    Organic semiconductors including rubrene, Alq3, copper phthalocyanine and pentacene are crystallized by the eutectic melt crystallization. Those organic semiconductors form good eutectic systems with the various volatile crystallizable additives such as benzoic acid, salicylic acid, naphthalene and 1,3,5-trichlorobenzene. Due to the formation of the eutectic system, organic semiconductors having originally high melting point (Tm > 300 °C) are melted and crystallized at low temperature (Te = 40.8–133 °C). The volatile crystallizable additives are easily removed by sublimation. For a model system using rubrene, single crystalline rubrene nanowires are prepared by the eutectic melt crystallization and the eutectic-melt-assisted nanoimpinting (EMAN) technique. It is demonstrated that crystal structure and the growth direction of rubrene can be controlled by using different volatile crystallizable additives. The field effect mobility of rubrene nanowires prepared using several different crystallizable additives are measured and compared.

  12. Crystallization, recrystallization, and melting lines in syndiotactic polypropylene crystallized from quiescent melt and semicrystalline state due to stress-induced localized melting and recrystallization.

    Science.gov (United States)

    Lu, Ying; Wang, Yaotao; Fu, Lianlian; Jiang, Zhiyong; Men, Yongfeng

    2014-11-13

    Crystalline lamellar thickness in syndiotactic polypropylene (sPP) during crystallization from either isothermal molten or stretching induced localized melt states and during subsequent heating was investigated by means of temperature dependent small-angle X-ray scattering techniques. Well-defined crystallization lines where the reciprocal lamellar thickness is linearly dependent on crystallization temperature were observed. Unlike in the case of polybutene-1 where stretching crystallization line was shifted to direction of much smaller lamellar thickness (Macromolecules 2013, 46, 7874), the stretching induced crystallization line for sPP deviates from its corresponding isothermal crystallization line only slightly. Such phenomenon could be attributed to the fact that both crystallization processes from quiescent melt and stress induced localized melt are mediated in a mesomorphic phase in sPP. Subsequent heating of sPP after crystallization revealed the same melting behavior in both systems for the two kinds of crystallites obtained from either quiescent melt or stretching induced localized melt. Both of them underwent melting and recrystallization when the lamellar thickness was smaller than a critical value and melting directly without changing in thickness when the lamellar thickness was larger than the critical value. The melting behavior in sPP systems can be understood by considering the chain relaxation ability within crystalline phase and also can be used as evidence that the crystallization from molten state and stress-induced crystallization passed through the intermediate phase before forming crystallites.

  13. Stability of melt crystal growth under microgravity conditions

    Science.gov (United States)

    Tatarchenko, V. A.

    The conception of dynamic stability of melt crystal growth has been developed. The method based on the Lyapunov stability theory has been used to the study stability of crystallization by capillary shaping techniques including Czokhralsky, Stepanov, Kiropoulos, Verneuil and floating zone methods. Preliminary results of the stability analysis of crystallization by floating zone technique under microgravity conditions are presented here.

  14. Improved procedures for separating crystals from the melt

    NARCIS (Netherlands)

    Verdoes, D.; Arkenbout, G.J.; Bruinsma, O.S.L.; Koutsoukos, P.G.; Ulrich, J.

    1997-01-01

    Innovative separation techniques like melt crystallization have the potential to fulfil two important demands, namely: a significant reduction of energy consumption by the chemical industry, and the production of high quality products required by industry. Several industrial applications of melt cry

  15. In situ crystallization of low-melting ionic liquids.

    Science.gov (United States)

    Choudhury, Angshuman R; Winterton, Neil; Steiner, Alexander; Cooper, Andrew I; Johnson, Kathleen A

    2005-12-07

    Single crystals of five very low-melting ionic liquids, [emim]BF4 (mp -1.3 degrees C), [bmim]PF6 (+1.9 degrees C), [bmim]OTf (+6.7 degrees C), [hexpy]NTf2 (-3.6 degrees C), and [bmpyr]NTf2 (-10.8 degrees C), have been grown using a combined calorimetric and zone-melting approach and their crystal structures determined by X-ray diffraction.

  16. Crystallization behavior during melt-processing of ceramic waste forms

    Science.gov (United States)

    Tumurugoti, Priyatham; Sundaram, S. K.; Misture, Scott T.; Marra, James C.; Amoroso, Jake

    2016-05-01

    Multiphase ceramic waste forms based on natural mineral analogs are of great interest for their high chemical durability, radiation resistance, and thermodynamic stability. Melt-processed ceramic waste forms that leverage existing melter technologies will broaden the available disposal options for high-level nuclear waste. This work reports on the crystallization behavior in selected melt-processed ceramics for waste immobilization. The phase assemblage and evolution of hollandite, zirconolite, pyrochlore, and perovskite type structures during melt processing were studied using thermal analysis, x-ray diffraction, and electron microscopy. Samples prepared by melting followed by annealing and quenching were analyzed to determine and measure the progression of the phase assemblage. Samples were melted at 1500 °C and heat-treated at crystallization temperatures of 1285 °C and 1325 °C corresponding to exothermic events identified from differential scanning calorimetry measurements. Results indicate that the selected multiphase composition partially melts at 1500 °C with hollandite coexisting as crystalline phase. Perovskite and zirconolite phases crystallized from the residual melt at temperatures below 1350 °C. Depending on their respective thermal histories, different quenched samples were found to have different phase assemblages including phases such as perovskite, zirconolite and TiO2.

  17. UHMW Ziegler–Natta polyethylene: Synthesis, crystallization, and melt behavior

    KAUST Repository

    Atiqullah, Muhammad

    2017-04-26

    The fabrication of normal and UHMW PE end-products involves melting and crystallization of the polymer. Therefore, the melt behavior and crystallization of as-synthesized UHMW PE, and NMW PE and E-1-hexene copolymer have been studied using a new nonisothermal crystallization model, Flory\\'s equilibrium theory and ethylene sequence length distribution concept (SLD), Gibbs–Thompson equation, and DSC experiments. By using this approach, the effects of MW, 1-hexene incorporation, ethylene SLD, the level of undercooling θ, and crystal surface free energy D on crystallite stability, relative crystallinity α, instantaneous crystallinity χ, the crystallization kinetic triplet, crystallization entropy, and lamellar thickness distribution (LTD) have been evaluated. Consequently, this study reports insightful new results, interpretations, and explanations regarding the melting and crystallization of the aforementioned polymers. The UHMW PE results significantly differ from the NMW PE and E-1-hexene copolymer ones. Ethylene sequences shorter than the so called minimum crystallizable ethylene sequence length, irrespective of E-1-hexene copolymer MW, can also crystallize. Additionally, the polymer preparation shows that the catalyst coordination environment and symmetry, as well as achiral ethylene versus prochiral α-olefin steric encumbrance and competitive diffusion affect the synthesis of UHMW PE, particularly the corresponding UHMW copolymers.

  18. Beating the Heat - Fast Scanning Melts Silk Beta Sheet Crystals

    Science.gov (United States)

    Cebe, Peggy; Hu, Xiao; Kaplan, David L.; Zhuravlev, Evgeny; Wurm, Andreas; Arbeiter, Daniela; Schick, Christoph

    2013-01-01

    Beta-pleated-sheet crystals are among the most stable of protein secondary structures, and are responsible for the remarkable physical properties of many fibrous proteins, such as silk, or proteins forming plaques as in Alzheimer's disease. Previous thinking, and the accepted paradigm, was that beta-pleated-sheet crystals in the dry solid state were so stable they would not melt upon input of heat energy alone. Here we overturn that assumption and demonstrate that beta-pleated-sheet crystals melt directly from the solid state to become random coils, helices, and turns. We use fast scanning chip calorimetry at 2,000 K/s and report the first reversible thermal melting of protein beta-pleated-sheet crystals, exemplified by silk fibroin. The similarity between thermal melting behavior of lamellar crystals of synthetic polymers and beta-pleated-sheet crystals is confirmed. Significance for controlling beta-pleated-sheet content during thermal processing of biomaterials, as well as towards disease therapies, is envisioned based on these new findings.

  19. Experimental studies of crystal-melt differentiation in planetary basalt compositions

    Science.gov (United States)

    Grove, T. L.

    1987-01-01

    An important process that controls the evolution of magmas on and within planetary bodies is crystal-melt differentiation. Experimental studies of silicate melt solidification were performed on several planetary and terrestrial melt compositions, and experiments on one of these compositions in the microgravity environment of the space station would provide an opportunity to understand the factors that control crystal growth and crystal-melt exchange processes at crystal-melt interfaces during solidification. Experimental requirements are presented.

  20. MELTING CRYSTALLIZATION BEHAVIOR OF NYLON 66

    Institute of Scientific and Technical Information of China (English)

    Qing-xin Zhang; Zhi-shen Mo

    2001-01-01

    Analysis of isothermal and nonisothermal crystallization kinetics of nylon 66 was carried out using differential scanning calorimetry (DSC). The commonly used Avrami equation and that modified by Jeziorny were used, respectively, to fit the primary stage of isothermal and nonisothermal crystallizations of nylon 66. In the isothermal crystallization process, mechanisms of spherulitic nucleation and growth were discussed. The lateral and folding surface free energies determined from the Lauritzen-Hoffman treatment are σ= 9.77 erg/cm2 and σe = 155.48 erg/cm2, respectively; and the work of chain folding is q = 33.14 kJ/mol. The nonisothermal crystallization kinetics of nylon 66 was analyzed by using the Mo method combined with the Avrami and Ozawa equations. The average Avrami exponent n was determined to be 3.45. The activation energies (ΔE) were determined to be -485.45 kJ/mol and -331.27 kJ/mol, respectively, for the isothermal and nonisothermal crystallization processes by the Arrhenius and the Kissinger methods.

  1. Crystal Melting and Toric Calabi-Yau Manifolds

    CERN Document Server

    Ooguri, Hirosi

    2008-01-01

    We construct a statistical model of crystal melting to count BPS bound states of D0 and D2 branes on a single D6 brane wrapping an arbitrary toric Calabi-Yau threefold. The three-dimensional crystalline structure is determined by the quiver diagram and the brane tiling which characterize the low energy effective theory of D branes. The crystal is composed of atoms of different colors, each of which corresponds to a node of the quiver diagram, and the chemical bond is dictated by the arrows of the quiver diagram. BPS states are constructed by removing atoms from the crystal. This generalizes the earlier results on the BPS state counting to an arbitrary non-compact toric Calabi-Yau manifold. We point out that a proper understanding of the relation between the topological string theory and the crystal melting involves the wall crossing in the Donaldson-Thomas theory.

  2. Crystal Growth Behaviors of Silicon during Melt Growth Processes

    Directory of Open Access Journals (Sweden)

    Kozo Fujiwara

    2012-01-01

    Full Text Available It is imperative to improve the crystal quality of Si multicrystal ingots grown by casting because they are widely used for solar cells in the present and will probably expand their use in the future. Fine control of macro- and microstructures, grain size, grain orientation, grain boundaries, dislocation/subgrain boundaries, and impurities, in a Si multicrystal ingot, is therefore necessary. Understanding crystal growth mechanisms in melt growth processes is thus crucial for developing a good technology for producing high-quality Si multicrystal ingots for solar cells. In this review, crystal growth mechanisms involving the morphological transformation of the crystal-melt interface, grain boundary formation, parallel-twin formation, and faceted dendrite growth are discussed on the basis of the experimental results of in situ observations.

  3. Solidification microstructures in single-crystal stainless steel melt pools

    Energy Technology Data Exchange (ETDEWEB)

    Sipf, J.B.; Boatner, L.A.; David, S.A.

    1994-03-01

    Development of microstructure of stationary melt pools of oriented stainless steel single crystals (70%Fe-15%Ni-15%Cr was analyzed. Stationary melt pools were formed by electron-beam and gas-tungsten-arc heating on (001), (011), and (111) oriented planes of the austenitic, fcc-alloy crystals. Characterization and analysis of resulting microstructure was carried out for each crystallographic plane and welding method. Results showed that crystallography which favors ``easy growth`` along the <100> family of directions is a controlling factor in the microstructural formation along with the melt-pool shape. The microstructure was found to depend on the melting method, since each method forms a unique melt-pool shape. These results are used in making a three-dimensional reconstruction of the microstructure for each plane and melting method employed. This investigation also suggests avenues for future research into the microstructural properties of electron-beam welds as well as providing an experimental basis for mathematical models for the prediction of solidification microstructures.

  4. Effect of cooling rate on crystallization in an aluminophosphosilicate melt

    DEFF Research Database (Denmark)

    Liu, S. J.; Zhang, Yanfei; Yue, Yuanzheng

    2011-01-01

    The effect of cooling rate on spontaneous crystallization behavior of an alumino-phospho-silicate melt is studied by means of differential scanning calorimetry, X-ray diffraction, scanning electron microscopy and viscometry. The cooling rates of 160, 2100 and 12000 K/s are attained by subjecting...

  5. Effect of cooling rate on crystallization in an aluminophosphosilicate melt

    DEFF Research Database (Denmark)

    Liu, S. J.; Zhang, Yanfei; Yue, Yuanzheng

    2011-01-01

    The effect of cooling rate on spontaneous crystallization behavior of an alumino-phospho-silicate melt is studied by means of differential scanning calorimetry, X-ray diffraction, scanning electron microscopy and viscometry. The cooling rates of 160, 2100 and 12000 K/s are attained by subjecting...

  6. Quantum melting of two-component Rydberg crystals

    CERN Document Server

    Lan, Zhihao; Lesanovsky, Igor

    2016-01-01

    We investigate the quantum melting of one dimensional crystals that are realized in an atomic lattice in which ground state atoms are laser excited to two Rydberg states. We focus on a regime where both, intra- and inter-state density-density interactions as well as coherent exchange interactions contribute. We determine stable crystalline phases in the classical limit and explore their melting under quantum fluctuations introduced by the excitation laser as well as two-body exchange. We find that quantum fluctuations introduced by the laser give rise to a devil's staircase structure which one might associate with transitions in the classical limit. The melting through exchange interactions is shown to also proceed in a step-like fashion, in case of mesoscopic crystals, due to the proliferation of Rydberg spinwaves.

  7. Single Crystal Growth of Zirconia Utilizing a Skull Melting Technique,

    Science.gov (United States)

    1979-08-01

    help eliminate many crystal growth problems. The flame-fusion apparatus was invented by A. Verneuil 3 over 75 years ago and has been used for growth of...AOAO2 23 OMEAIRDEVLOPENT CNT RI RIFISS AFB NY F /S .7/ NGLE CRYSTAL GROWTH OF Z RONA UT IXZIN A SKULL MELTING TE-SCUl AUG 79 A C MARSHALL, J A ADAMSK...Crucible-less synthesis 50. ABSTRACT (Ceefiw.. - eooe edi. ,.e.eimwd identiby Slek ~b.,) Investigation into the growth of single crystal materials are

  8. From melting to emplacement: the importance of fractional crystallization

    Science.gov (United States)

    Yakymchuk, C.; Brown, C. R.; Brown, M.

    2014-12-01

    The composition of anatectic melt extracted from the deep crust evolves during transport due to processes associated with melt-residuum separation and fractional crystallization. In the Cretaceous Fosdick migmatite-granite complex, P-T phase equilibria modeling of migmatitic paragneisses and orthogneisses, and the occurrence of leucosome-bearing normal-sense shear zones are consistent with suprasolidus conditions in the complex extending into the early stages of doming and exhumation. Sub-horizontal sheeted granites at shallower structural levels and variably oriented granites in networks at deeper structural levels within the complex commonly have coarse blocky plagioclase and/or K-feldspar grains within interstitial quartz, consistent with early crystallization of feldspar. The granites yield U-Pb zircon crystallization ages from 115 to 100 Ma, with a dominant grouping at 107-100 Ma, which corresponds to the timing of dome formation during regional oblique extension that facilitated exhumation of the complex. Whole rock Sr and Nd and zircon Hf and O isotope compositions are consistent with derivation from regionally-associated source materials. Although the major and trace element chemistry of these granites is highly variable, they typically have large positive Eu anomalies and correlated Rb/Sr/Ba covariation, features consistent with the early accumulation of feldspar and quartz and subsequent drainage of fractionated melt. The granites in networks are interpreted to represent clogging of magma transport channels through the middle crust by crystal accumulation as drainage of fractionating magma slowed during doming and exhumation. By contrast, the sheeted granites record collapse of sub-horizontal partially-crystallized layers of magma by filter pressing and drainage of melt during vertical shortening associated with doming. Processes that separate cumulates from evolved melt are likely to have been important in the evolution of granites in other migmatitic

  9. Modeling and simulation of Si crystal growth from melt

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Lijun; Liu, Xin; Li, Zaoyang [National Engineering Research Center for Fluid Machinery and Compressors, School of Energy and Power Engineering, Xi' an Jiaotong University, Xi' an, Shaanxi 710049 (China); Miyazawa, Hiroaki; Nakano, Satoshi; Kakimoto, Koichi [Research Institute for Applied Mechanics, Kyushu University, Kasuga 816-8580 (Japan)

    2009-07-01

    A numerical simulator was developed with a global model of heat transfer for any crystal growth taking place at high temperature. Convective, conductive and radiative heat transfers in the furnace are solved together in a conjugated way by a finite volume method. A three-dimensional (3D) global model was especially developed for simulation of heat transfer in any crystal growth with 3D features. The model enables 3D global simulation be conducted with moderate requirement of computer resources. The application of this numerical simulator to a CZ growth and a directional solidification process for Si crystals, the two major production methods for crystalline Si for solar cells, was introduced. Some typical results were presented, showing the importance and effectiveness of numerical simulation in analyzing and improving these kinds of Si crystal growth processes from melt. (copyright 2009 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  10. Transparent phosphosilicate glasses containing crystals formed during cooling of melts

    DEFF Research Database (Denmark)

    Liu, S. J.; Zhang, Yanfei; He, W.;

    2011-01-01

    The effect of P2O5-SiO2 substitution on spontaneous crystallization of SiO2-Al2O3-P2O5- Na2O-MgO melts during cooling was studied by X-ray diffraction (XRD), differential scanning calorimetry (DSC), scanning electron microscopy (SEM) and rotation viscometry. Results show that addition of P2O5 lea...... Na2MgSiO4 is also enhanced during cooling of the melts. In addition, the sizes of the local crystalline and separated glassy domains are smaller than the wavelength of the visible light, and this leads to the transparency of the obtained glasses containing crystals....

  11. Transparent phosphosilicate glasses containing crystals formed during cooling of melts

    DEFF Research Database (Denmark)

    Liu, S. J.; Zhang, Yanfei; He, W.

    2011-01-01

    The effect of P2O5-SiO2 substitution on spontaneous crystallization of SiO2-Al2O3-P2O5- Na2O-MgO melts during cooling was studied by X-ray diffraction (XRD), differential scanning calorimetry (DSC), scanning electron microscopy (SEM) and rotation viscometry. Results show that addition of P2O5 leads...

  12. Structural evolution in the crystallization of rapid cooling silver melt

    Energy Technology Data Exchange (ETDEWEB)

    Tian, Z.A., E-mail: ze.tian@gmail.com [School of Physics and Electronics, Hunan University, Changsha 410082 (China); Laboratory for Simulation and Modelling of Particulate Systems School of Materials Science and Engineering, University of New South Wales, Sydney, NSW 2052 (Australia); Dong, K.J.; Yu, A.B. [Laboratory for Simulation and Modelling of Particulate Systems School of Materials Science and Engineering, University of New South Wales, Sydney, NSW 2052 (Australia)

    2015-03-15

    The structural evolution in a rapid cooling process of silver melt has been investigated at different scales by adopting several analysis methods. The results testify Ostwald’s rule of stages and Frank conjecture upon icosahedron with many specific details. In particular, the cluster-scale analysis by a recent developed method called LSCA (the Largest Standard Cluster Analysis) clarified the complex structural evolution occurred in crystallization: different kinds of local clusters (such as ico-like (ico is the abbreviation of icosahedron), ico-bcc like (bcc, body-centred cubic), bcc, bcc-like structures) in turn have their maximal numbers as temperature decreases. And in a rather wide temperature range the icosahedral short-range order (ISRO) demonstrates a saturated stage (where the amount of ico-like structures keeps stable) that breeds metastable bcc clusters. As the precursor of crystallization, after reaching the maximal number bcc clusters finally decrease, resulting in the final solid being a mixture mainly composed of fcc/hcp (face-centred cubic and hexagonal-closed packed) clusters and to a less degree, bcc clusters. This detailed geometric picture for crystallization of liquid metal is believed to be useful to improve the fundamental understanding of liquid–solid phase transition. - Highlights: • A comprehensive structural analysis is conducted focusing on crystallization. • The involved atoms in our analysis are more than 90% for all samples concerned. • A series of distinct intermediate states are found in crystallization of silver melt. • A novelty icosahedron-saturated state breeds the metastable bcc state.

  13. Growth of silicon carbide crystals on a seed while pulling silicon crystals from a melt

    Science.gov (United States)

    Ciszek, T. F.; Schwuttke, G. H. (Inventor)

    1979-01-01

    A saturated solution of silicon and an element such as carbon having a segregation coefficient less than unity is formed by placing a solid piece of carbon in a body of molten silicon having a temperature differential decreasing toward the surface. A silicon carbide seed crystal is disposed on a holder beneath the surface of the molten silicon. As a rod or ribbon of silicon is slowly pulled from the melt, a supersaturated solution of carbon in silicon is formed in the vicinity of the seed crystal. Excess carbon is emitted from the solution in the form of silicon carbide which crystallizes on the seed crystal held in the cool region of the melt.

  14. Estimating Influence of Crystallizing Latent Heat on Cooling-Crystallizing Process of a Granitic Melt and Its Geological Implications

    Institute of Scientific and Technical Information of China (English)

    ZHANG Bangtong; WU Junqi; LING Hongfei; CHEN Peirong

    2008-01-01

    Based on the theory of thermal conductivity, in this paper we derived a formula to estimate the prolongation period (AtL) of cooling-crystallization process of a granitic melt caused by latent heat of crystallization as follows: △t=QL×△tcol/TM-TC×CP where TM is initial temperature of the granite melt, Tc crystallization temperature of the granite melt,CP specific heat, △tcol cooling period of a granite melt from its initial temperature (TM) to its crystallization temperature (TC), QL latent heat of the granite melt. The cooling period of the melt for the Fanshan granodiorite from its initial temperature (900℃) to crystallization temperature (600℃) could be estimated ~210,000 years if latent heat was not considered. Calculation for the Fanshan melt using the above formula yields a AtL value of~190,000 years, which implies that the actual cooling period within the temperature range of 900℃-600℃ should be 400,000 years. This demonstrates that the latent heat produced from crystallization of the granitic melt is a key factor influencing the cooling-crystallization process of a granitic melt, prolongating the period of crystallization and resulting in the large emplacement-crystallization time difference (ECTD) in granite batholith.

  15. Phosphoric acid purification by suspension melt crystallization: Parametric study of the crystallization and sweating steps

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Baoming; Li, Jun; Qi, Yabing; Jia, Xuhong; Luo, Jianhong [Department of Chemical Engineering, Sichuan University, Chengdu 610065 (China)

    2012-10-15

    In order to purify phosphoric acid, the suspension melt crystallization process was studied. The suspension crystallization experiments were carried out with 80, 84 and 88 wt% phosphoric acid melt at the cooling rates of 0.05, 0.1 and 0.2 K/min, respectively. Sweating experiments were executed for various crystals obtained in suspension crystallization step. The purification effects of the sweating parameters including sweating time, initial inclusion amount and initial impurity content were studied. The inclusion fraction increases with the increase in cooling rate. The inclusion fraction of the crystals which were formed with feed concentration of 84 wt% phosphoric acid melt is lowest among the three feed concentrations. Different impurities have different purification performances during sweating. High inclusion amount and low impurity concentration favor the purification of H{sub 3}PO{sub 4}.0.5H{sub 2}O crystals during sweating. (Copyright copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  16. Crystallization and melt behaviour of isotactic poly((4-alpha,alpha-dimethyl-benzyl)phenyl methacrylate)

    NARCIS (Netherlands)

    vanEkenstein, GORA; Tan, YY

    1997-01-01

    The crystallization and melting behaviour of practically 100% isotactic poly((4-alpha,alpha-dimethylbenzyl) phenyl methacrylate) has been studied by d.s.c. and light microscopy. Crystallization from the melt seemed to be non-spherulitic. The maximum crystallization rate, which could only be

  17. InP Bulk Crystals Grown from Various Stoichiometric Melt

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    InP crystal was grown from stoichiometric or non-stoichiometric melt, including P-rich and In-rich condition by the P-injection synthesis LEC method. Owing to the non-stoichiometric condition, there are many pores in the tail of the P-rich ingot. Samples were characterized by high speed photoluminescence mapping and E.P.D. mapping. The perfection (dislocation, stoichiometry and uniformity) of these samples were studied and compared. The PL peak intensity standard deviation of the 4-inch InP wafer is higher. The EPDs around the pores are higher than the other regions. Besides the stress releasing, the pores and the high concentration of dislocations around them are the leading factors causing the inhomogeneity of the wafer. By adjusting the thermal field and ensuring the chemical stoichiometry, InP crystals of larger diameters and better performance can be developed.

  18. The Effect of Orientation Relaxation on Polymer Melt Crystallization Studied by Monte Carlo Simulations

    Institute of Scientific and Technical Information of China (English)

    WANG Mao-Xiang

    2009-01-01

    We use dynamic Monte Carlo simulations to study the athermal relaxation of bulk extended chains and the isothermal crystallization in intermediately relaxed melts. It is found that the memory of chain orientations in the melt can significantly enhance the crystallization rates. The crystal orientation and lamellar thickness essentially depend on the orientational relaxation. Moreover, there is a transition of the nucleation mechanism during the isothermal crystallization from the intermediately relaxed melts. These results explain the mechanism of the self-nucleation by orientation and suggest that in flow-induced polymer crystallization, the orientational relaxation of chains decides the crystal orientation.

  19. Crystallization Kinetics and Melting Behavior of PA1010/Ether-based TPU Blends

    Institute of Scientific and Technical Information of China (English)

    ZHANG Shu-ling; ZHAO Yan; SUN Xiao-bo; JIANG Zhen-hua; WU Zhong-wen; WANG Gui-Bin

    2007-01-01

    Polyamide 1010(PA1010)/thermoplastic poly(ether urethane) elastomer(ether-based TPU) blends were prepared via melt extrusion. The crystallization kinetics and melting behavior of PA1010/ether-based TPU blends were systematically investigated using differential scanning calorimetry. The crystallization kinetics results show that the addition of ether-based TPU hinders the crystallization of PA1010, and the hindrance effect increases with the increase of the concentration of ether-based TPU. Both pure PA1010 and PA1010/ether-based TPU blends exhibit double melting peaks in the process of nonisothermal crystallization. The double melting peaks change differently with the variation of cooling rate and blend composition. The cooling rate only influences the lower melting peak; however, the blend composition influences not only the lower melting peak but also the higher melting peak. The reason for the phenomenon must be the interaction between the two compositions.

  20. Comparison between isothermal cold and melt crystallization of polylactide/clay nanocomposites.

    Science.gov (United States)

    Wu, Defeng; Wu, Liang; Wu, Lanfeng; Xu, Bin; Zhang, Yisheng; Zhang, Ming

    2008-04-01

    The isothermal cold and melt crystallization behavior of intercalated polylactide (PLA)/clay nanocomposites (PLACNs) were studied using differential scanning calorimetry (DSC), polarized optical microscope (POM), X-ray diffractometer (XRD) and Fourier Transform Infra-Red Spectrometer (FT-IR). The results show that the degree of crystallinity of PLA matrix decreases monotonously with increasing clay loadings for both the cold and melt crystallization. The cold crystallized sample shows a double melting behavior and lower melting temperature compared to that of melt-crystallized sample, especially in the presence of clay. The crystallization kinetics was then analyzed by the Avrami and Lauritzen-Hoffman methods for further comparison between these two crystallization behaviors. The results reveal that PLA and its nanocomposites present higher activation energy in melt crystallization than that in cold crystallization due to the reptation of entire polymer chains. The addition of clay facilitates the overall kinetics of melt crystallization, which is attributed to both the nucleation effect of clay and enhanced diffusion of PLA chains. However, for cold crystallization, only very small amounts of clay can slightly increase the kinetics, while larger amounts impede the process. The presence of clay leads to a diffusion-controlled growth of nucleation of PLA matrix in the cold crystallization process and, the hindrance effect of clay hence becomes the dominant factor gradually with increasing clay loadings in the case of high-rate nucleation.

  1. Structures and growth mechanisms of poly-(3-hydroxybutyrate) (PHB) crystallized from solution and thin melt film

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    The spherulitic structures and morphologies of poly-(3-hydroxybutyrate) (PHB) crystallized from a so- lution and a thin melt film were investigated in this study. The formation mechanisms of banded spherulites under different crystallization conditions are proposed. It was found that the formation of banded spherulites was caused by the rhythmic crystal growth of the spherulites and lamellar twisting growth for the polymer crystallization from a thin melt film and a solution, respectively.

  2. A Unified Theory of Melting, Crystallization and Glass Formation

    DEFF Research Database (Denmark)

    Cotterill, R. M. J.; Jensen, F. J.; Damgaard Kristensen, W.

    1975-01-01

    -atomic dimensions, and the demonstration by Kotze and Kuhlmann-Wilsdorf that the solid-liquid interfacial energy is proportional to the grain boundary energy for a number of elements. These developments suggest the possibility of a relatively simple picture of crystallization and glass formation. In the liquid...... state dislocations, at the saturation density, are in constant motion and the microscopic grain boundary structure that they form is constantly changing due to dislocation-dislocation interaction. As the liquid is cooled below the melting point the free energy favors the crystalline form and grains...... especially on the amount of dislocation motion that can take place during the critical period when nucleation and growth becomes favored thermodynamically. Thus the glassy form will have a better chance of being formed if either the liquid is particularly viscous or if the cooling rate is particularly rapid....

  3. Textures and melt-crystal-gas interactions in granites

    Directory of Open Access Journals (Sweden)

    Jean-Louis Vigneresse

    2015-09-01

    Full Text Available Felsic intrusions present ubiquitous structures. They result from the differential interactions between the magma components (crystal, melt, gas phase while it flows or when the flow is perturbed by a new magma injection. The most obvious structure consists in fabrics caused by the interactions of rotating grains in a flowing viscous melt. New magma inputs through dikes affect the buk massif flow, considered as global within each mineral facies. A review of the deformation and flow types developing in a magma chamber identifis the patterns that could be expected. It determines their controlling parameters and summarizes the tools for their quantification. Similarly, a brief review of the rheology of a complex multi-phase magma identifies and suggests interactions between the different components. The specific responses each component presents lead to instability development. In particular, the change in vorticity orientation, associated with the switch between monoclinic to triclinic flow is a cause of many instabilities. Those are preferentially local. Illustrations include fabric development, shear zones and flow banding. They depend of the underlying rheology of interacting magmas. Dikes, enclaves, schlieren and ladder dikes result from the interactions between the magma components and changing boundary conditions. Orbicules, pegmatites, unidirectional solidification textures and miarolitic cavities result from the interaction of the melt with a gaseous phase. The illustrations examine what is relevant to the bulk flow, local structures or boundary conditions. In each case a field observation illustrates the instability. The discussion reformulates instability observations, suggesting new trails for ther description and interpretation in terms of local departure to a bulk flow. A brief look at larger structures and at their evolution tries to relate these instabilities on a broader scale. The helical structures of the Říčany pluton, Czech

  4. Textures and melt-crystal-gas interactions in granites

    Institute of Scientific and Technical Information of China (English)

    Jean-Louis Vigneresse

    2015-01-01

    Felsic intrusions present ubiquitous structures. They result from the differential interactions between the magma components (crystal, melt, gas phase) while it flows or when the flow is perturbed by a new magma injection. The most obvious structure consists in fabrics caused by the interactions of rotating grains in a flowing viscous melt. New magma inputs through dikes affect the buk massif flow, considered as global within each mineral facies. A review of the deformation and flow types developing in a magma chamber identifis the patterns that could be expected. It determines their controlling parameters and summarizes the tools for their quantification. Similarly, a brief review of the rheology of a complex multi-phase magma identifies and suggests interactions between the different components. The specific re-sponses each component presents lead to instability development. In particular, the change in vorticity orientation, associated with the switch between monoclinic to triclinic flow is a cause of many in-stabilities. Those are preferentially local. Illustrations include fabric development, shear zones and flow banding. They depend of the underlying rheology of interacting magmas. Dikes, enclaves, schlieren and ladder dikes result from the interactions between the magma components and changing boundary conditions. Orbicules, pegmatites, unidirectional solidification textures and miarolitic cavities result from the interaction of the melt with a gaseous phase. The illustrations examine what is relevant to the bulk flow, local structures or boundary conditions. In each case a field observation illustrates the instability. The discussion reformulates instability observations, suggesting new trails for ther description and interpretation in terms of local departure to a bulk flow. A brief look at larger structures and at their evolution tries to relate these instabilities on a broader scale. The helical structures of the ?Rí?cany pluton, Czech Republic and by

  5. Dissolving and melting phenomena of inorganic and organic crystals by addition of third or second components

    Science.gov (United States)

    Funakoshi, Kunio; Negishi, Rina; Nakagawa, Hiroshi; Kawasaki, Rentaro

    2017-06-01

    Dissolution of potassium sulphate (K2SO4) crystals was decelerated or stopped since the trivalent chrome ions (Cr(III)) or the iron ions were added into a K2SO4 aqueous solution, but inhibition mechanism of crystal dissolving by additives is not discussed well. Moreover, the melting inhibition of organic compound crystals by addition of the second components is not reported. In this study, inorganic or organic compound crystals are dissolved in a solution added the third component or were melted in a melt added the second one, and the dissolving and melting inhibition phenomena of the inorganic and organic crystals with additives are discussed. The dissolving rates of K2SO4 crystals decreased with the increasing of the amount of Cr(III) added into an K2SO4 unsaturated solution. The melting rates of m-chloronitrobenzene (CNB) crystals were also decreased by addition of p-CNB. The dissolving rates of a K2SO4 mother crystal and the melting rates of a m-CNB mother crystal were scattered during experiments and the dissolving and the melting phenomena would be caused by adsorption and detachments of additives on and from crystal surfaces.

  6. Crystallization and melting behavior of multi-walled carbon nanotube-reinforced nylon-6 composites

    NARCIS (Netherlands)

    Phang, In Yee; Ma, Jianhua; Shen, Lu; Liu, Tianxi; Zhang, Wei-De

    2006-01-01

    The crystallization and melting behavior of neat nylon-6 (PA6) and multi-walled carbon nanotubes (MWNTs)/PA6 composites prepared by simple melt-compounding was comparatively studied. Differential scanning calorimetry (DSC) results show two crystallization exotherms (TCC, 1 and TCC, 2) for PA6/MWNTs

  7. Integrable Structure of $5d$ $\\mathcal{N}=1$ Supersymmetric Yang-Mills and Melting Crystal

    CERN Document Server

    Nakatsu, Toshio; Takasaki, Kanehisa

    2008-01-01

    We study loop operators of $5d$ $\\mathcal{N}=1$ SYM in $\\Omega$ background. For the case of U(1) theory, the generating function of correlation functions of the loop operators reproduces the partition function of melting crystal model with external potential. We argue the common integrable structure of $5d$ $\\mathcal{N}=1$ SYM and melting crystal model.

  8. Crystallization and melting behavior of multi-walled carbon nanotube-reinforced nylon-6 composites

    NARCIS (Netherlands)

    Phang, In Yee; Ma, Jianhua; Shen, Lu; Liu, Tianxi; Zhang, Wei-De

    2006-01-01

    The crystallization and melting behavior of neat nylon-6 (PA6) and multi-walled carbon nanotubes (MWNTs)/PA6 composites prepared by simple melt-compounding was comparatively studied. Differential scanning calorimetry (DSC) results show two crystallization exotherms (TCC, 1 and TCC, 2) for PA6/MWNTs

  9. Crystal-melt interface shape of Czochralski-grown large diameter germanium crystals

    Science.gov (United States)

    Roth, M.; Azoulay, M.; Gafni, G.; Mizrachi, M.

    1990-01-01

    Crystal-melt interface shapes of 100 to 200 mm diameter 111-line Ge grown by the Czochralski technique have been examined using the method of fast withdrawal from the melt. Initially, the interface shape is convex, then transforms gradually into a sigmoidal shape, becomes nearly planar at about one third of the final crystal length, and finally assumes a concave profile with progressively increasing curvature. The nearly planar interface has a double-facet structure, with an annular facet at the edge of the crystal in addition to the central (111) facet. Formation of the annular facet is accompanied by a giant oscillation of the pull rate when the maximum average pull rate is exceeded. Such oscillation is detrimental to crystal quality, since it introduces a region of high dislocation density. An average pull rate maximum of 2 cm/h has been found to allow for a smooth growth of 200 mm diameter crystals. The origin of the pull rate perturbation is discussed in terms of an instantaneous change in the equilibrium shape of the meniscus.

  10. Composition dependence of spontaneous crystallization of phosphosilicate glass melts during cooling

    DEFF Research Database (Denmark)

    Liu, S.J.; Zhu, C.F.; Zhang, Y.F.

    2012-01-01

    and crystallization degree. It is found that adding NaF into the studied compositions slightly decreases melt fragility and improves both the glass-forming ability and melt workability. This effect is associated with the unique structural role of NaF compared to the other modifier oxides. It is also found...... that the onset viscosity of crystallization can be used as a parameter for describing both glass-forming ability and melt workability....

  11. Effects of melt aging and off-stoichiometric melts on CsSrI3:Eu(2+) single crystal scintillators.

    Science.gov (United States)

    Wu, Yuntao; Zhuravleva, Mariya; Johnson, Jesse Ashby; Wei, Hua; Koschan, Merry; Melcher, Charles L

    2016-03-28

    Ternary halide scintillators are commonly prepared from a mixture of commercially available binary halides. The initial binary halides may contain excess halogen ions or have different volatilities, which could lead to loss of stoichiometry of the resulting ternary halide crystals and potentially negatively affect optical and scintillation properties. In this work, the effects of vacuum aging of the melt (melt aging) and use of off-stoichiometric melts via introduction of excess CsI on the crystal quality and scintillation properties of CsSrI3:Eu(2+), a promising scintillator for gamma-ray detection applications, are investigated. The phase purity of the grown samples was confirmed by powder X-ray diffraction and differential scanning calorimeter measurements, and the existence of matrix composition variations is revealed by energy-dispersive X-ray spectroscopy analyses. An abnormal relationship between the full energy peak and the shaping time, i.e. full energy peak broadening or existence of two full energy peaks, in the melt-aged and off-stoichiometric samples is observed. It is ascribed to a slow scintillation decay event in a time scale between 15 and 50 μs. For the CsSrI3:Eu(2+) single crystal grown from a stoichiometric melt without melt aging treatment, an energy resolution of 5.0% at 662 keV and a light yield of 48,000 ± 2000 photons per MeV can be achieved at a size of 1.4 cm(3).

  12. THERMODYNAMICS AND NANOSTRUCTURAL MECHANISMS OF PROCESSES OF MELTING AND CRYSTALLIZATION OF METALS

    Directory of Open Access Journals (Sweden)

    V. Yu. Stetsenko

    2016-01-01

    Full Text Available Melting and crystallization of metals are equilibrium thermodynamic processes. As the main structural units of dendrites serve construction nanocrystals which are formed of elementary nanocrystals. The main mechanisms of processes of melting and crystallization of metals are disintegration of dendrites on nanocrystals and formation of dendrites from nanocrystals. On process of crystallization and morphology of dendrites the great influence is exerted by the hardening speed, surface-active elements and the dissolved gases.

  13. Influence of melt convection on the interface during Czochralski crystal growth

    Science.gov (United States)

    Miller, W.; Rehse, U.; Böttcher, K.

    2000-05-01

    During the growth process of single bulk crystals from melt, the defect density is strongly affected by the shape of the melt/crystal interface. The shape of the interface is governed by the construction of the growth equipment including the heating system and the convection in the melt. In this paper the flow in a GaAs melt and the boron oxide encapsulant in an equipment used for vapour pressure controlled Czochralski growth has been calculated. 2D-axisymmetric calculations have been performed by using the commercial general purpose program FIDAP TM. A simple model has been developed to describe the phase change problem in the weak form.

  14. Extended $5d$ Seiberg-Witten Theory and Melting Crystal

    CERN Document Server

    Nakatsu, Toshio; Takasaki, Kanehisa

    2008-01-01

    We study an extension of the Seiberg-Witten theory of $5d$ $\\mathcal{N}=1$ supersymmetric Yang-Mills on $\\mathbb{R}^4 \\times S^1$. We investigate correlation functions among loop operators. These are the operators analogous to the Wilson loops encircling the fifth-dimensional circle and give rise to physical observables of topological-twisted $5d$ $\\mathcal{N}=1$ supersymmetric Yang-Mills in the $\\Omega$ background. The correlation functions are computed by using the localization technique. Generating function of the correlation functions of U(1) theory is expressed as a statistical sum over partitions and reproduces the partition function of the melting crystal model with external potentials. The generating function becomes a $\\tau$ function of 1-Toda hierarchy, where the coupling constants of the loop operators are interpreted as time variables of 1-Toda hierarchy. The thermodynamic limit of the partition function of this model is studied. We solve a Riemann-Hilbert problem that determines the limit shape o...

  15. Oxygen isotope trajectories of crystallizing melts: Insights from modeling and the plutonic record

    Science.gov (United States)

    Bucholz, Claire E.; Jagoutz, Oliver; VanTongeren, Jill A.; Setera, Jacob; Wang, Zhengrong

    2017-06-01

    Elevated oxygen isotope values in igneous rocks are often used to fingerprint supracrustal alteration or assimilation of material that once resided near the surface of the earth. The δ18O value of a melt, however, can also increase through closed-system fractional crystallization. In order to quantify the change in melt δ18O due to crystallization, we develop a detailed closed-system fractional crystallization mass balance model and apply it to six experimentally- and naturally-determined liquid lines of descent (LLDs), which cover nearly complete crystallization intervals (melt fractions of 1 to content, will control the specific δ18O path of a crystallizing melt. Hydrous melts, typical of subduction zones, undergo larger increases in δ18O during early stages of crystallization due to their lower magmatic temperatures, greater initial increases in SiO2 content, and high temperature stability of low δ18O phases, such as oxides, amphibole, and anorthitic plagioclase (versus albite). Conversely, relatively dry, tholeiitic melts only experience significant increases in δ18O at degrees of crystallization greater than 80%. Total calculated increases in melt δ18O of 1.0-1.5‰ can be attributed to crystallization from ∼50 to 70 wt.% SiO2 for modeled closed-system crystallizing melt compositions. As an example application, we compare our closed system model results to oxygen isotope mineral data from two natural plutonic sequences, a relatively dry, tholeiitic sequence from the Upper and Upper Main Zones (UUMZ) of the Bushveld Complex (South Africa) and a high-K, hydrous sequence from the arc-related Dariv Igneous Complex (Mongolia). These two sequences were chosen as their major and trace element compositions appear to have been predominantly controlled by closed-system fractional crystallization and their LLDs have been modeled in detail. We calculated equilibrium melt δ18O values using the measured mineral δ18O values and calculated mineral-melt

  16. The hardness of synthetic products obtained from cooled and crystallized basaltic melts (in Romanian)

    OpenAIRE

    Daniela Ogrean

    2001-01-01

    The Hardness of Synthetic Products Obtained from Cooled and Crystallized Basaltic Melts. Hardness is one of the main properties of the products obtained from cooled and crystallized basaltic melts under a controlled thermal regime. It influences the abrasion tear resistance of the resulted material. The microhardness measurements on the samples (bricks, boards, gutters, armour plates, tubes) indicated Vickers hardness value between 757–926 for the materials obtained from Şanovita basalts (Tim...

  17. Recrystallization and zone melting of charged colloids by thermally induced crystallization.

    Science.gov (United States)

    Shinohara, Mariko; Toyotama, Akiko; Suzuki, Misaki; Sugao, Yukihiro; Okuzono, Tohru; Uchida, Fumio; Yamanaka, Junpei

    2013-08-06

    We examined the application of recrystallization and zone-melting crystallization methods, which have been used widely to fabricate large, high-purity crystals of atomic and molecular systems, to charged colloidal crystals. Our samples were aqueous dispersions of colloidal silica (with particle diameters of d = 108 or 121 nm and particle volume fractions of ϕ = 0.035-0.05) containing the weak base pyridine. The samples crystallized upon heating because of increases in the particle charge numbers, and they melted reversibly on cooling. During the recrystallization experiments, the polycrystalline colloids were partially melted in a Peltier cooling device and then were crystallized by stopping the cooling and allowing the system to return to ambient temperature. The zone-melting crystallization was carried out by melting a narrow zone (millimeter-sized in width) of the polycrystalline colloid samples and then moving the sample slowly over a cooling device to recrystallize the molten region. Using both methods, we fabricated a few centimeter-sized crystals, starting from millimeter-sized original polycrystals when the crystallization rates were sufficiently slow (33 μm/s). Furthermore, the optical quality of the colloidal crystals, such as the half-band widths of the diffraction peaks, was significantly improved. These methods were also useful for refining. Small amounts of impurity particles (fluorescent polystyrene particles, d = 333 nm, ϕ = 5 × 10(-5)), added to the colloidal crystals, were excluded from the crystals when the crystallization rates were sufficiently slow (∼0.1 μm/s). We expect that the present findings will be useful for fabricating large, high-purity colloidal crystals.

  18. Effects of Humidity and Surfaces on the Melt Crystallization of Ibuprofen

    Directory of Open Access Journals (Sweden)

    Il Won Kim

    2012-08-01

    Full Text Available Melt crystallization of ibuprofen was studied to understand the effects of humidity and surfaces. The molecular self-assembly during the amorphous-to-crystal transformation was examined in terms of the nucleation and growth of the crystals. The crystallization was on Al, Au, and self-assembled monolayers with –CH3, –OH, and –COOH functional groups. Effects of the humidity were studied at room temperature (18–20 °C with relative humidity 33%, 75%, and 100%. Effects of the surfaces were observed at −20 °C (relative humidity 36% to enable close monitoring with slower crystal growth. The nucleation time of ibuprofen was faster at high humidity conditions probably due to the local formation of the unfavorable ibuprofen melt/water interface. The crystal morphologies of ibuprofen were governed by the nature of the surfaces, and they could be associated with the growth kinetics by the Avrami equation. The current study demonstrated the effective control of the melt crystallization of ibuprofen through the melt/atmosphere and melt/surface interfaces.

  19. Purification of 2,6-Diisopropylnaphthalene by Static Melt Crystallization from a Mixture Containing Diisopropylnaphthalene Isomers

    Institute of Scientific and Technical Information of China (English)

    TIAN,Zheng-Hua; JIA,Hong-Min; ZHAO,Gui-Li; HU,Wei-Qi

    2007-01-01

    2,6-Diisopropylnaphthalene (2,6-DIPN), as the precursor of important monomer 2,6-naphthalene dicarboxylic acid, could be produced by the shape-selective isopropylation of naphthalene with propene resulting in an isomeric mixture having different alkylation levels. Since the boiling points of DIPNs were very close and the differences of melting points in-between isomers were quite distinctive, the static melt crystallization was applied to separate and purify 2,6-DIPN from its isomers. 2,6-DIPN with purity ≥99% was produced through a process of three stages:crystallization→sweating→melting. The phase diagram of 2,6-DIPN-2,7-DIPN binary system was plotted to optimize the temperature control of crystallization. By repeated crystallization of melts with different concentration levels, the yield of pure 2,6-DIPN could be enhanced to 87%. No solvent was necessary.

  20. Investigating the vortex melting phenomenon in BSCCO crystals using magneto-optical imaging technique

    Indian Academy of Sciences (India)

    A Soibel; S S Banerjee; Y Myasoedov; M L Rappaport; E Zeldov; S Ooi; T Tamegai

    2002-05-01

    Using a novel differential magneto-optical imaging technique we investigate the phenomenon of vortex lattice melting in crystals of Bi2Sr2CaCu2O8 (BSCCO). The images of melting reveal complex patterns in the formation and evolution of the vortex solid–liquid interface with varying field ()/temperature (). We believe that the complex melting patterns are due to a random distribution of material disorder/inhomogeneities across the sample, which create fluctuations in the local melting temperature or field value. To study the fluctuations in the local melting temperature/field, we have constructed maps of the melting landscape m(, ), viz., the melting temperature (m) at a given location () in the sample at a given field (). A study of these melting landscapes reveals an unexpected feature: the melting landscape is not fixed, but changes rather dramatically with varying field and temperature along the melting line. It is concluded that the changes in both the scale and shape of the landscape result from the competing contributions of different types of quenched disorder which have opposite effects on the local melting transition.

  1. Composition dependence of spontaneous crystallization of phosphosilicate glass melts during cooling

    DEFF Research Database (Denmark)

    Liu, S.J.; Zhu, C.F.; Zhang, Y.F.

    2012-01-01

    Crystallization behavior of alumino-phospho-silicate melts during cooling is studied by means of the differential scanning calorimetry, X-ray diffractometry and viscometry. The results show a pronounced impact of alkaline earth oxide, alkali oxide and fluoride on the crystal type...

  2. Divergent late-stage crystal records in melt domains from the Youngest Toba Tuff, Sumatra, Indonesia

    Science.gov (United States)

    Tierney, C. R.; Reid, M. R.; Vazquez, J. A.; Chesner, C. A.

    2016-12-01

    The voluminous 74 ka Youngest Toba Tuff (YTT) ejected an enormous >1000 km3 of high-silica (>74 wt.% SiO2) rhyolite (HSR). Based on melt inclusion morphology, quartz crystallized at least several thousand years before eruption in the dominant HSR melt domain represented by moderately crystalline pumices (HSR-A; 12-25% crystals). Quartz crystallized within a couple thousand years of eruption in melts represented by rare crystal-poor pumices (HSR-B; 175 kyr before eruption for HSR-A zircon and allanite, and to 100 kyr (zircon) and 75 kyr (allanite) for the HSR-B. Additionally, HSR-B pumices have a higher proportion of crystals with detectable eruption-aged rim growth than HSR-A in zircon ( 60 vs 50%) and especially allanite ( 80 vs 40%). Rim compositions, except for HSR-B allanite, are heterogeneous, even in crystals that date to within error of eruption. Shallow depth profiles reveal that rim and near-rim growth may either be relatively continuous, or mantle distinctly older and different interior zones. The diversity in rim ages shows that individual crystals were not always at conditions suitable for detectable growth, either due to stagnation of magmatic conditions, or inclusion in other phases or crystal aggregates. Heterogeneity in rim ages and compositions of zircon and allanite within the same HSR pumice reveals a dynamic system involving migration and mixing of crystals with diverse histories. Coupled with the distinct differences in quartz crystallization, the relative youthfulness of rims and greater affinity of allanites to each other indicate the HSR-B may have experienced different conditions of magmatic storage than the HSR-A. In addition, there may have been less mixing of non-cognate crystals into the HSR-B domain. Although growth of individual crystals was sometimes interrupted, the diverse and continuous distribution of rim ages imply a sustained 175 ka history of melt residence and accumulation for the YTT overall.

  3. Congruent melting of gallium nitride at 6 GPa and its application to single-crystal growth.

    Science.gov (United States)

    Utsumi, Wataru; Saitoh, Hiroyuki; Kaneko, Hiroshi; Watanuki, Tetsu; Aoki, Katsutoshi; Shimomura, Osamu

    2003-11-01

    The synthesis of large single crystals of GaN (gallium nitride) is a matter of great importance in optoelectronic devices for blue-light-emitting diodes and lasers. Although high-quality bulk single crystals of GaN suitable for substrates are desired, the standard method of cooling its stoichiometric melt has been unsuccessful for GaN because it decomposes into Ga and N(2) at high temperatures before its melting point. Here we report that applying high pressure completely prevents the decomposition and allows the stoichiometric melting of GaN. At pressures above 6.0 GPa, congruent melting of GaN occurred at about 2,220 degrees C, and decreasing the temperature allowed the GaN melt to crystallize to the original structure, which was confirmed by in situ X-ray diffraction. Single crystals of GaN were formed by cooling the melt slowly under high pressures and were recovered at ambient conditions.

  4. Steady distribution structure of point defects near crystal-melt interface under pulling stop of CZ Si crystal

    Science.gov (United States)

    Abe, T.; Takahashi, T.; Shirai, K.

    2017-02-01

    In order to reveal a steady distribution structure of point defects of no growing Si on the solid-liquid interface, the crystals were grown at a high pulling rate, which Vs becomes predominant, and the pulling was suddenly stopped. After restoring the variations of the crystal by the pulling-stop, the crystals were then left in prolonged contact with the melt. Finally, the crystals were detached and rapidly cooled to freeze point defects and then a distribution of the point defects of the as-grown crystals was observed. As a result, a dislocation loop (DL) region, which is formed by the aggregation of interstitials (Is), was formed over the solid-liquid interface and was surrounded with a Vs-and-Is-free recombination region (Rc-region), although the entire crystals had been Vs rich in the beginning. It was also revealed that the crystal on the solid-liquid interface after the prolonged contact with the melt can partially have a Rc-region to be directly in contact with the melt, unlike a defect distribution of a solid-liquid interface that has been growing. This experimental result contradicts a hypothesis of Voronkov's diffusion model, which always assumes the equilibrium concentrations of Vs and Is as the boundary condition for distribution of point defects on the growth interface. The results were disscussed from a qualitative point of view of temperature distribution and thermal stress by the pulling-stop.

  5. Crystal growth from the melt by capillary shaping techniques

    Science.gov (United States)

    Ossipyan, Y. A.; Tatarchenko, V. A.

    A method based on the Lyapunov stability theory has been developed for studying the stability of crystallization by capillary shaping techniques (including Czochralski, Stepanov, EFG, Verneuil and floating zone methods). The preliminary results of the analysis of stability shows that the crystallization by capillary shaping technique under microgravitation conditions is more stable in some cases than under the action of gravitation. To get deeper into details of the capillary shaping technique under microgravitation conditions, we have carried out model experiments using two immiscible liquids of equal density and crystallization of sapphire in terrestrial conditions with small Bond number. The experiments on the copper crystallization were realized in the high-altitude rockets. Our experiments on indium crystallization carried out in the orbital space probe “Salyut” yielded cylindrical specimens.

  6. A Study of the Crystallization, Melting, and Foaming Behaviors of Polylactic Acid in Compressed CO2

    Directory of Open Access Journals (Sweden)

    Chul B. Park

    2009-12-01

    Full Text Available The crystallization and melting behaviors of linear polylactic acid (PLA treated by compressed CO2 was investigated. The isothermal crystallization test indicated that while PLA exhibited very low crystallization kinetics under atmospheric pressure, CO2 exposure significantly increased PLA’s crystallization rate; a high crystallinity of 16.5% was achieved after CO2 treatment for only 1 min at 100 °C and 6.89 MPa. One melting peak could be found in the DSC curve, and this exhibited a slight dependency on treatment times, temperatures, and pressures. PLA samples tended to foam during the gas release process, and a foaming window as a function of time and temperature was established. Based on the foaming window, crystallinity, and cell morphology, it was found that foaming clearly reduced the needed time for PLA’s crystallization equilibrium.

  7. Melt migration in basalt columns driven by crystallization-induced pressure gradients.

    Science.gov (United States)

    Mattsson, Hannes B; Caricchi, Luca; Almqvist, Bjarne S G; Caddick, Mark J; Bosshard, Sonja A; Hetényi, György; Hirt, Ann M

    2011-01-01

    The structure of columnar-jointed lava flows and intrusions has fascinated people for centuries and numerous hypotheses on the mechanisms of formation of columnar jointing have been proposed. In cross-section, weakly developed semicircular internal structures are a near ubiquitous feature of basalt columns. Here we propose a melt-migration model, driven by crystallization and a coeval specific volume decrease inside cooling and solidifying columns, which can explain the observed macroscopic features in columnar-jointed basalts. We study basalts from Hrepphólar (Iceland), combining macroscopic observations, detailed petrography, thermodynamic and rheological modelling of crystallization sequences, and Anisotropy of Magnetic Susceptibility (AMS) of late crystallizing phases (that is, titanomagnetite). These are all consistent with our proposed model, which also suggests that melt-migration features are more likely to develop in certain evolved basaltic lava flows (with early saturation of titanomagnetite), and that the redistribution of melt within individual columns can modify cooling processes.

  8. Effect of clay on melt crystallization, crystallization kinetics and spherulitic morphology of poly(trimethylene terephthalate) nanocomposites

    Energy Technology Data Exchange (ETDEWEB)

    Smith, Lawrence; Vasanthan, Nadarajah, E-mail: nadarajah.vasanthan@liu.edu

    2015-10-10

    Graphical abstract: - Highlights: • PTT/clay exfoliated nanocomposites films were prepared by novel two-step approach. • It has been shown that the incorporation of clay accelerates the rate of crystallization and increases the total crystallinity of PTT nanocomposites compared to neat PTT. • FTIR results showed that the amorphous trans conformation transforms into the crystalline gauche conformation with increasing clay content and crystallization temperature. - Abstract: Poly(trimethylene terephthalate) (PTT)/clay nanocomposite films have been prepared via a novel two-step approach. The resulting nanocomposites have been characterized by Fourier transform infrared spectroscopy (FTIR), wide angle X-ray diffraction (XRD), differential scanning calorimetry (DSC) and polarized light microscopy (PLM). XRD results showed this two-step process of preparation forms predominantly exfoliated structures. The effect of nanoclay on the isothermal and nonisothermal melt crystallization behaviors of PTT has been investigated and shown that the incorporation of clay accelerates the rate of crystallization and increases the total crystallinity of PTT nanocomposites compared to neat PTT. Nonisothermal melt crystallization kinetics of neat PTT and PTT nanocomposites was analyzed using crystallization isotherm. The Avrami analysis modified by Jeziorny was successfully used to describe the non-isothermal crystallization kinetics of neat PTT and PTT nanocomposites, shown by the decrease in half time (t{sub 1/2}) of crystallization and increase in rate constant (Z{sub c}) as organoclay content increased up to 10%. FTIR spectroscopy has been utilized for the first time to monitor conformational changes during the melt crystallization of PTT nanocomposites. It was demonstrated that the amorphous trans conformation transforms into the crystalline gauche conformation with increasing clay content, which suggests that nanoclay accelerates the polymer chain conformational transition

  9. Evidence of unadulterated mantle-depth, granitic melt inclusions: kumdykolite and kokchetavite crystallized from melt in Bohemian Massif granulites.

    Science.gov (United States)

    O´Brien, Patrick J.; Ferrero, Silvio; Ziemann, Martin A.; Walczak, Katarzyna; Wunder, Bernd; Hecht, Lutz; Wälle, Markus

    2016-04-01

    Partial melting under near-UHP conditions of metagranitoids (now HP felsic granulites) at mantle depth in the Orlica-Śnieżnik Dome (Bohemian Massif, Poland) is recorded in small volumes of hydrous melt trapped as primary melt inclusions (MI) in peritectic garnets. When free of cracks connecting the inclusion with the leucocratic matrix, these "nanogranites" (≤ 50μm inclusion diameter) contain a unique assemblage including kumdykolite, kokchetavite and cristobalite - polymorphs of albite, K-feldspar and quartz, respectively. These usually metastable phases crystallized from the melt (glass?) during rapid exhumation (cm/a) at high T but the crack-free state strongly suggests over-pressuring of the inclusion with respect to the pressure-time path followed by the matrix. Reports of both kumdykolite and kokchetavite have been mainly from natural rocks equilibrated in the diamond stability field. The precise calculation of the PT path of the MI on cooling and the comparison with previous studies suggests, however, that pressure is not influential to their formation, ruling out the possible interpretation of kumdykolite and kokchetavite as indicators of ultra-high pressure conditions. Experimental re-homogenization of these crack-free nanogranites was achieved using a piston cylinder apparatus at 2.7 GPa and 875°C. These conditions are consistent with the results of geothermobarometric calculations on the host rock, suggesting that no H2O loss occurred during exhumation as this would have caused a shift of the inclusion melting T toward higher values. Coupled with the absence of H2O-loss microstructural evidence, e.g. decrepitation cracks and/or vesciculation in re-homogenized nanogranites, this evidence suggests that the nanogranites still preserve the original H2O content of the melt. Both experimental and microstructural evidence support the hypothesis that the presence of these polymorphs should be regarded as direct mineralogical criterion to identify former

  10. Evidence for fractional crystallization of wadsleyite and ringwoodite from olivine melts in chondrules entrained in shock-melt veins.

    Science.gov (United States)

    Miyahara, Masaaki; El Goresy, Ahmed; Ohtani, Eiji; Nagase, Toshiro; Nishijima, Masahiko; Vashaei, Zahra; Ferroir, Tristan; Gillet, Philippe; Dubrovinsky, Leonid; Simionovici, Alexandre

    2008-06-24

    Peace River is one of the few shocked members of the L-chondrites clan that contains both high-pressure polymorphs of olivine, ringwoodite and wadsleyite, in diverse textures and settings in fragments entrained in shock-melt veins. Among these settings are complete olivine porphyritic chondrules. We encountered few squeezed and flattened olivine porphyritic chondrules entrained in shock-melt veins of this meteorite with novel textures and composition. The former chemically unzoned (Fa(24-26)) olivine porphyritic crystals are heavily flattened and display a concentric intergrowth with Mg-rich wadsleyite of a very narrow compositional range (Fa(6)-Fa(10)) in the core. Wadsleyite core is surrounded by a Mg-poor and chemically stark zoned ringwoodite (Fa(28)-Fa(38)) belt. The wadsleyite-ringwoodite interface denotes a compositional gap of up to 32 mol % fayalite. A transmission electron microscopy study of focused ion beam slices in both regions indicates that the wadsleyite core and ringwoodite belt consist of granoblastic-like intergrowth of polygonal crystallites of both ringwoodite and wadsleyite, with wadsleyite crystallites dominating in the core and ringwoodite crystallites dominating in the belt. Texture and compositions of both high-pressure polymorphs are strongly suggestive of formation by a fractional crystallization of the olivine melt of a narrow composition (Fa(24-26)), starting with Mg-rich wadsleyite followed by the Mg-poor ringwoodite from a shock-induced melt of olivine composition (Fa(24-26)). Our findings could erase the possibility of the resulting unrealistic time scales of the high-pressure regime reported recently from other shocked L-6 chondrites.

  11. An experimental study of partial melting and fractional crystallization on the HED parent body

    CERN Document Server

    Ashcroft, Helen

    2015-01-01

    We have performed an experimental and modeling study of the partial melting behavior of the HED parent body and of the fractional crystallization of liquids derived from its mantle. We estimated the mantle composition by assuming chondritic ratios of refractory lithophile elements, adjusting the Mg# and core size to match the density and moment of inertia of Vesta, and the compositions of Mg-rich olivines found in diogenites. The liquidus of a mantle with Mg# (=100*(Mg/(Mg+Fe))) 80 is ~1625oC and, under equilibrium conditions the melt crystallises olivine alone until it is joined by orthopyroxene at 1350oC. We synthesized melt from our 1350oC experiment and simulated its fractional crystallization path. Orthopyroxene crystallizes until it is replaced by pigeonite at 1200oC. Liquids become eucritic and crystal assemblages resemble diogenites below 1250oC. MELTS correctly predicts the olivine liquidus but overestimates the orthopyroxene liquidus by ~70oC. Predicted melt compositions are in reasonable agreement ...

  12. Industrial growth of yttria-stabilized cubic zirconia crystals by skull melting process

    Institute of Scientific and Technical Information of China (English)

    徐家跃; 雷秀云; 蒋新; 何庆波; 房永征; 张道标; 何雪梅

    2009-01-01

    We reported the development of a Ф100 cm growth apparatus for skull melting growth of yttria-stabilized cubic zirconia(YSZ) crystals and more than 1000 kg crystals have been grown in the furnace each time.The growth conditions were optimized and the structure of the as-grown crystals was characterized by X-ray diffraction.The transmittance of 15 mol.% yttria-stabilized cubic zirconia crystal was nearly 80% in the range of 400-1600 nm.The refractive indices were measured and fitted the Sellmeier equation whi...

  13. Influence of rare earth oxides on the non-isothermal crystallization of phosphosilicate melts during cooling

    DEFF Research Database (Denmark)

    Liu, S.J.; Shan, Z.T.; Fu, G.Z.;

    2014-01-01

    We report a detailed calorimetric study concerning the influence of Yb2O3 and Er2O3 on the non-isothermal crystallization in phosphosilicate melts. The results show that Yb3+/Er3+ ions promote the Zn2SiO4 crystal formation, but suppress the Na3PO4 and AlPO4 formation during cooling. The non......-isothermal melt-crystallization kinetics can be well described by the Avrami model. The activation energy Ee of crystallization in both the undoped and Yb3+/Er3+ codoped samples during cooling is determined using the differential iso-conversional method of Friedman. The Ee value decreases with crystallinity (θ...

  14. A Method of Stray Grain Suppression for Single-Crystal Superalloy During Seed Melt-Back

    Science.gov (United States)

    Xuan, Weidong; Lan, Jian; Liu, Huan; Li, Chuanjun; Zhong, Yunbo; Ren, Xingfu; Li, Xi; Cao, Guanghui; Ren, Zhongming

    2016-12-01

    The suppression of stray grains during seed melt-back of single-crystal superalloy through thermal resistance technique has been investigated based on both experimental observations and numerical simulation. The results indicate that the introduction of thermal resistance layer significantly suppresses the stray grain formation of single-crystal superalloy. Based on both theoretical analysis and numerical simulation, above results should be attributed to the decrease of radial heat transfer of sample in the thermal resistance layer.

  15. Numerical investigation of carbon contamination during the melting process of Czochralski silicon crystal growth

    Science.gov (United States)

    Liu, Xin; Gao, Bing; Kakimoto, Koichi

    2015-05-01

    Czochralski (CZ) growth of single silicon (Si) crystals is invariably accompanied by transport of impurities such as carbon (C), oxygen (O), and related compounds produced by reactions at high temperature. To study the generation and accumulation of C during the melting process, a transient global model was developed that included coupled O and C transport. Transport phenomena of C, O, and related compounds were predicted by considering five chemical reactions in the furnace. The dynamic behavior of impurities was revealed during the melting process of the Si feedstock. It was found that C contamination is activated once the melting front contacts argon gas. For accurate control of C contamination in CZ-Si crystals, the accumulation of C during the melting stage should be considered. Parameter studies of furnace pressure and gas flow rate were conducted on the accumulation of C during the melting stage. At the gas/melt interface, pressure and flow rate affected the C flux in different ways. The results suggest that increase in gas flow rate could reduce C contamination much more effectively than decrease in pressure.

  16. Isothermal Crystallization Kinetics and Melting Behavior of POE-g-MAH Compatibilized PAII/POE Blends

    Institute of Scientific and Technical Information of China (English)

    GUO Yunxia; HU Guosheng; WANG Zhiqiang; LI Yingchun; YANG Yunfeng

    2012-01-01

    A new Nylon 11 (PA11)/polyethylene-octene (POE) blends compatibilized by maleic anhydride grafted mixture polyethyleneocten (POE-g-MAH) was prepared through melt blending method.The isothermal crystallization kinetics and melting behaviors of PA11/POE blends were investigated in detail by differential scanning calorimetry (DSC) and polarized optical microscope.The n values of PA11 blending with POE or POE-g-MAH are almost similar with pure PA11,which indicates that the effect of POE and POE-gMAH on nucleation and growth of PA11 crystal is slight.The overall crystallization rate of PA11/POE blends are higher than ones of pure PA11 at the same crystallization temperatures,but they decrease significantly when POE-g-MAH is added into PA11/POE blends.DSC heating curves of both PA11 and its blends exhibit two melting peaks,but the two melting peak become weaker when POE-g-MAH is add into PA11/POE blend systems.And the spherulite size is reduced significantly by the addition of POE-g-MAH compared with pure PA11 and PA11/POE blends.

  17. Melt extraction from crystal mushes: Numerical model of texture evolution and calibration of crystallinity-ordering relationships

    Science.gov (United States)

    Špillar, Václav; Dolejš, David

    2015-12-01

    Mechanical crystal-melt interactions in magmatic systems by separation or accumulation of crystals or by extraction of interstitial melt are expected to modify the spatial distribution of crystals observed as phenocrysts in igneous rocks. Textural analysis of porphyritic products can thus provide a quantitative means of interpreting the magnitude of crystal accumulation or melt loss and reconstructing the initial crystal percentage, at which the process occurred. We present a new three-dimensional numerical model that evaluates the effects of crystal accumulation (or interstitial melt removal) on the spatial distribution of crystals. Both processes lead to increasing apparent crystallinity but also to increasing spatial ordering expressed by the clustering index (R). The trend of progressive crystal packing deviates from a random texture trend, produced by static crystal nucleation and growth, and it is universal for any texture with straight log-linear crystal size distribution. For sparse crystal suspensions (5 vol. % crystals, R = 1.03), up to 97% melt can be extracted, corresponding to a new crystallinity of 65 vol.% and R = 1.32, when the rheological threshold of crystal interlocking is reached. For initially crystal-rich suspensions, the compaction path is shorter, this is because the initial crystal population is more aggregated and it reaches the limit of interlocking sooner. Crystal suspensions with ~ 35 vol.% crystals cannot be compacted without mechanical failure. These results illustrate that the onset of the rheological threshold of magma immobility strongly depends on the spatial configuration of crystals in the mush: the primary rigid percolation threshold (~ 35 vol.% crystals) corresponds to touching or interlocking crystal framework produced by in situ closed-system crystallization, whereas the secondary rigid percolation threshold (~ 35 to ~ 75 vol.% crystals) can be reached by compaction, which is particularly spatially efficient when acting on

  18. Effect of melt superheating treatment on crystallization behavior and magnetic properties of melt-spun Fe-rich Nd-Fe-B ribbons

    Institute of Scientific and Technical Information of China (English)

    盛洪超; 曾燮榕; 胡强; 邓飞

    2010-01-01

    Melt-spun Nd7Fe90B3 ribbons were prepared under different melt treatment conditions,i.e.,the melt temperature was varied prior to ejection onto the quenching wheel.The microstructure characteristics,crystallization behavior,and subsequent magnetic properties of α-Fe/Nd2Fe14B-based exchange-spring magnets were investigated using X-ray diffraction,differential scanning calorimeter,transmission electron microscopy,and vibrating sample magnetometer.It was shown that melt spinning at different quenching temperat...

  19. Segregation during crystal growth from melt and absorption cross section determination by optical absorption method

    Institute of Scientific and Technical Information of China (English)

    ZHANG QingLi; YIN ShaoTang; SUN DunLu; WAN SongMing

    2008-01-01

    Segregation during crystal growth from melt under two conditions is studied by using crystal mass, which can be measured easily, as an independent variable, and a method to determine the effective segregation coefficient and absorption cross section of optical dopant is given. When the segregated solute disperses into the whole or just a part of melt homogenously, the concentration Cs in solid interface will change by different formulas. If the crystal growth interface is conical and segregated solute disperses into melt in total or part, the solute concentration at r=2/3R, where r is the distance from the growth cross section center and R the crystal radius, is independent on the shape of the crystal growth interface, and its variation at r=2/3R can be regarded as the result from crystal growth in flat interface. With Cs variation formula in solid and absorption cross section σ for optical dopant, the absorption coefficients along the crystal growth direction can be calculated, and the corresponding experimental value can be obtained through the crystal optical absorption spectra. By minimizing the half sum, whose independent variables are k, △W or σ, of the difference square between the calculated and experimental absorp-tion coefficients from one or more absorption peaks along the crystal growth di-rection, k and σ, or k and △W, can be determined at the same time through the Levenberg-Marquardt iteration method. Finally, the effective segregation coefficient k, △W and absorption cross sections of Nd:GGG were determined, the results fitted by two formula gave more closed effective segregation coefficient, and the value △W also indicates that the segregated dopant had nearly dispersed into the whole melt. Experimental results show that the method to determine effective segregation coefficient k, △W and absorption cross sections σ is convenient and reliable, and the two segregation formulas can describe the segregation during the crystal growth from

  20. Segregation during crystal growth from melt and absorption cross section determination by optical absorption method

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    Segregation during crystal growth from melt under two conditions is studied by using crystal mass,which can be measured easily,as an independent variable,and a method to determine the effective segregation coefficient and absorption cross section of optical dopant is given.When the segregated solute disperses into the whole or just a part of melt homogenously,the concentration CS in solid interface will change by different formulas.If the crystal growth interface is conical and segregated solute disperses into melt in total or part,the solute concentration at r=2/3R,where r is the distance from the growth cross section center and R the crystal radius,is independent on the shape of the crystal growth interface,and its variation at r=2/3R can be regarded as the result from crystal growth in flat interface.With CS variation formula in solid and absorption cross section σ for optical dopant,the absorption coefficients along the crystal growth direction can be calculated,and the corresponding experimental value can be obtained through the crystal optical absorption spectra.By minimizing the half sum,whose independent variables are k,ΔW or σ,of the difference square between the calculated and experimental absorp-tion coefficients from one or more absorption peaks along the crystal growth di-rection,k and σ,or k and ΔW,can be determined at the same time through the Levenberg-Marquardt iteration method.Finally,the effective segregation coefficient k,ΔW and absorption cross sections of Nd:GGG were determined,the results fitted by two formula gave more closed effective segregation coefficient,and the value ΔW also indicates that the segregated dopant had nearly dispersed into the whole melt.Experimental results show that the method to determine effective segregation coefficient k,ΔW and absorption cross sections σ is convenient and reliable,and the two segregation formulas can describe the segregation during the crystal growth from melt relatively commendably.

  1. The non-equilibrium phase diagrams of flow-induced crystallization and melting of polyethylene.

    Science.gov (United States)

    Wang, Zhen; Ju, Jianzhu; Yang, Junsheng; Ma, Zhe; Liu, Dong; Cui, Kunpeng; Yang, Haoran; Chang, Jiarui; Huang, Ningdong; Li, Liangbin

    2016-09-09

    Combining extensional rheology with in-situ synchrotron ultrafast x-ray scattering, we studied flow-induced phase behaviors of polyethylene (PE) in a wide temperature range up to 240 °C. Non-equilibrium phase diagrams of crystallization and melting under flow conditions are constructed in stress-temperature space, composing of melt, non-crystalline δ, hexagonal and orthorhombic phases. The non-crystalline δ phase is demonstrated to be either a metastable transient pre-order for crystallization or a thermodynamically stable phase. Based on the non-equilibrium phase diagrams, nearly all observations in flow-induced crystallization (FIC) of PE can be well understood. The interplay of thermodynamic stabilities and kinetic competitions of the four phases creates rich kinetic pathways for FIC and diverse final structures. The non-equilibrium flow phase diagrams provide a detailed roadmap for precisely processing of PE with designed structures and properties.

  2. The origin of crystalline residues in Stardust Al foils: Surviving cometary dust or crystallized impact melts?

    Science.gov (United States)

    Wozniakiewicz, Penelope J.; Kearsley, Anton T.; Ishii, Hope A.; Burchell, Mark J.; Bradley, John P.; Teslich, Nick; Cole, Mike J.; Price, Mark C.

    2012-04-01

    Samples returned by the Stardust mission from comet 81P/Wild 2 provide an unequaled opportunity to investigate cometary formation and evolution. Crystalline silicates have been identified in impact craters in Stardust Al foil, yet their origin is ambiguous. They may be original cometary components, or they may have grown from melt generated by impact. We have now studied experimental impacts of the calcium silicate mineral wollastonite, using scanning and transmission electron microscopy to document the relationship between impact feature shape and crystal lattice orientation in impact residue. Wollastonite can have a characteristic acicular habit, forming crater shapes that indicate crystal orientation upon impact. From extracted impact residue, we determined the lattice orientation of crystalline material for comparison with the whole particle orientation. We assume that crystallization from melt, without surviving seed nuclei, should result in randomly oriented crystallite growth, with no preferred direction for individual crystals. However, we find that the majority of crystalline material in the residue retains b-axis orientation parallel to the long axis of the crater form. This, together with impact parameter calculations and lack of Al incorporation by the residue (suggesting melting did not occur), indicates that these crystals and, by analogy, the majority of Al-free crystalline silicates in Stardust foil, are surviving remnants of the impactor. Furthermore, amorphous wollastonite residue probably did not form via melting and subsequent quenching, but instead by high-pressure amorphization or degradation of unquenchable phases. Finally, one crystal studied appears to be a new high-pressure/temperature polymorph of CaSiO3, indicating that such polymorphs may be observed in Stardust residues in craters.

  3. AFM-tip-induced crystallization of poly(ethylene oxide)melt droplets

    Institute of Scientific and Technical Information of China (English)

    ZHU Dunshen; SHOU Xingxian; LIU Yixin; CHEN Erqiang; Stephen Zhengdi Cheng

    2007-01-01

    The AFM-tip-induced crystallization of poly(ethylene oxide) (PEO) melt droplets was studied.The melt droplets with a height of 50-100 nm and a lateral size of 2-3 pm were obtained by melting the PEO ultra-thin films on a mica surface.For the PEO samples with average molecular weights (Mn) ranging from 1.0×103 g/mol to 1.0×104 g/mol,the lateral perturbation from the AFM tip in the hard-tapping or nanoscratch modes could not induce the growth of the flaton lamellae.In contrast,under AFM nanoindentation mode,the tip-induced crystallization occurred when a sufficiently high vertical tip force was applied to the melt droplets of PEO with Mn≥1.0×104 g/mol. Moreover,the experimental results indicated that the AFM-tip-induced crystallization of PEO in the nanoindentation process had molecular weight dependence.

  4. High Speed Crystal Growth by Q-switched Laser Melting

    Science.gov (United States)

    Cullis, A. G.

    1984-01-01

    The modification of the structural and electrical properties of semiconductors short radiation pulses obtained from Q-switched lasers is described. These modifications are accomplished by high heating and cooling rates. This processing revealed novel crystal growth and high speed resolidification phenomena. The behavior of semiconductor Si is analyzed. The annealing process typically employs short pulses of radiation in or near the visible region of the spectrum. The Q-switched ruby and Nd-YAG lasers are commonly used and these are sometimes mode locked to reduce the pulse length still further. Material to be annealed can be processed with a single large area radiation spot. Alternatively, a small radiation spot size can be used and a large sample area is covered by overlapping irradiated regions.

  5. Crystal growth nucleation and Fermi energy equalization of intrinsic spherical nuclei in glass-forming melts

    Directory of Open Access Journals (Sweden)

    Robert F Tournier

    2009-01-01

    Full Text Available The energy saving resulting from the equalization of Fermi energies of a crystal and its melt is added to the Gibbs free-energy change ΔG2ls associated with a crystal formation in glass-forming melts. This negative contribution being a fraction ε ls(T of the fusion heat is created by the electrostatic potential energy −U0 resulting from the electron transfer from the crystal to the melt and is maximum at the melting temperature Tm in agreement with a thermodynamics constraint. The homogeneous nucleation critical temperature T2, the nucleation critical barrier ΔG2ls*/kBT and the critical radius R*2ls are determined as functions of εls(T. In bulk metallic glass forming melts, εls(T and T2 only depend on the free-volume disappearance temperature T0l, and εls(Tm is larger than 1 (T0l>Tm/3; in conventional undercooled melts εls(Tm is smaller than 1 (T0l>Tm/3. Unmelted intrinsic crystals act as growth nuclei reducing ΔG2ls*/kBT and the nucleation time. The temperature-time transformation diagrams of Mg65Y10 Cu25, Zr41.2Ti13.8 Cu12.5Ni10Be22.5, Pd43Cu27 Ni10P20, Fe83B17 and Ni melts are predicted using classic nucleation models including time lags in transient nucleation, by varying the intrinsic nucleus contribution to the reduction of ΔG2ls*/kBT. The energy-saving coefficient ε nm(T of an unmelted crystal of radius Rnm is reduced when Rnm LtR*2ls; εnm is quantified and corresponds to the first energy level of one s-electron moving in vacuum in the same spherical attractive potential −U0 despite the fact that the charge screening is built by many-body effects.

  6. ROLE AND IMPORTANCE OF RADIUS OF GYRATION OF CHAINS IN THE MELT IN THE CRYSTALIZATION OF POLY(1-BUTENE)

    Institute of Scientific and Technical Information of China (English)

    Qiang Fu; G.Strobl

    2002-01-01

    Crystallization in polymer systems actually is a process that transfers the entangled melts into a semi-crystalline layered structure. Whether or not a chain disentangles may result in different crystallization mechanism. When compared to the crystal thickness (dc), the volume occupied by the chain in the melt, i.e., the radius of gyration (Rg), plays a very important role in polymer crystallization. When dc ≤ Rg, crystallization does not necessitate a chain disentangling. The entanglements are just shifted into the amorphous regions. However, as dc>Rg, i.e., as the crystal thickness gets larger than the radius of gyration of the chain in the melt, it becomes necessary for a chain to disentangle. Then a change of crystallization mechanism occurs. Such change has been experimentally observed in the crystallization of poly(1-butene). A change in the crystal morphologies from spherulite to quadrangle, is seen via PLM, as crystallization temperatures increase.Even more, such a change is molecular weight dependent, and shifts to lower temperature as molecular weight decreases. There exists a jump of crystal thickness and crystallinity associated with morphological change, as seen via SAXS. A change of crystallization kinetics and crystallinity is further evidenced via dilatometry. The unique feature of P1b crystallization has been discussed based on the radius of gyration of chain in the melt (Rg), and very good agreement is obtained.

  7. Capturing the crystal: prediction of enthalpy of sublimation, crystal lattice energy, and melting points of organic compounds.

    Science.gov (United States)

    Salahinejad, Maryam; Le, Tu C; Winkler, David A

    2013-01-28

    Accurate computational prediction of melting points and aqueous solubilities of organic compounds would be very useful but is notoriously difficult. Predicting the lattice energies of compounds is key to understanding and predicting their melting behavior and ultimately their solubility behavior. We report robust, predictive, quantitative structure-property relationship (QSPR) models for enthalpies of sublimation, crystal lattice energies, and melting points for a very large and structurally diverse set of small organic compounds. Sparse Bayesian feature selection and machine learning methods were employed to select the most relevant molecular descriptors for the model and to generate parsimonious quantitative models. The final enthalpy of sublimation model is a four-parameter multilinear equation that has an r(2) value of 0.96 and an average absolute error of 7.9 ± 0.3 kJ.mol(-1). The melting point model can predict this property with a standard error of 45° ± 1 K and r(2) value of 0.79. Given the size and diversity of the training data, these conceptually transparent and accurate models can be used to predict sublimation enthalpy, lattice energy, and melting points of organic compounds in general.

  8. Study of macro- and micro-segregation of iridium in molybdenum single crystals after electron beam zone melting

    Energy Technology Data Exchange (ETDEWEB)

    Drapala, Jaromir; Skotnicova, Katerina [VSB-Technical University of Ostrava (Czech Republic). Dept. of Non-ferrous Metals, Refining and Recycling

    2013-01-15

    The aim of the work was to study the creation of micro- and macro-segregation of iridium in low-alloyed molybdenum single crystals after electron beam zone melting (floating zone technique) depending on various conditions of crystallization. In order to evaluate relations between the chemical inhomogeneity and structural defects and their influence on properties of single crystals, the dependence of concentration and character of distribution of admixtures under various crystallization conditions on the origin of concentration undercooling and dislocation substructure of molybdenum single crystals prepared by electron beam floating zone melting was experimentally investigated.

  9. Comparison of melting and crystallization behaviors of polylactide under high-pressure CO2, N2, and He

    Science.gov (United States)

    Nofar, M.; Tabatabaei, A.; Ameli, A.; Park, C. B.

    2014-05-01

    This study investigated the melting and crystallization behaviors of polylactide (PLA) under high-pressure CO2, N2, and helium (He) using a high-pressure differential scanning calorimeter. The results showed that the PLA's melting temperature was depressed only in contact with pressurized CO2 where at high CO2 pressures the lubricating gas molecules induced more imperfect melt and cold crystals during the cooling and heating cycles, respectively. PLA's melt crystallization was analyzed during nonisothermal processes. Despite the effect of dissolved CO2 that expedited the PLA's crystallization rate, N2 showed almost a neutral impact on the PLA's crystallization kinetics. Because of the lower solubility, N2 gas content dissolved in the PLA had a diminutive plasticization effect, and thereby it could only counterbalance its negative hydraulic pressure effect. Moreover, as the helium pressure increased, the PLA's final crystallinity was reduced due to the dominant effect of helium's hydraulic pressure.

  10. Improvement of melt crystallization's efficiency for industrial applications. Final report 01-08-1990 - 31-03-1994

    NARCIS (Netherlands)

    Arkenbout, G.J.; Goede, R. de; Nienoord, M.; Verdoes, D.; Berg, E.P.G. van den; Geertman, R.; Bennema, P.; Neumann, M.; Ulrich, J.; Wellinghoff, G.; Kind, M.

    1994-01-01

    A research project was carried out by the University of Nijmegen, the University of Bremen, BASF and TNO to improve melt crystallization's efficienry in industrial applications. Both process options of growing crystal layers on the cooled wall of a heat exchanger and of growing crystals in suspensio

  11. Conditions of crystallization of the Ural platinum-bearing ultrabasic massifs: evidence from melt inclusions

    Science.gov (United States)

    Simonov, Vladimir; Puchkov, Victor; Prikhod'ko, Vladimir; Stupakov, Sergey; Kotlyarov, Alexey

    2013-04-01

    Conditions of the Ural platinum-bearing ultramafic massifs formation attract attention of numerous researchers. A most important peculiarity of such plutons is their dunite cores, to which commercial Pt deposits are related. There are a different opinions about genesis of these massifs and usual methods not always can solve this question. As a result of melt inclusions study in the Cr-spinel the new data on physical and chemical parameters of dunite crystallization of the Nizhnii Tagil platinum-bearing ulrabasic massif (Ural) was obtained. The comparative analysis of Cr-spinels, containing melt inclusions, has shown essential differences of these minerals from chromites of the ultrabasic ophiolite complexes and of modern oceanic crust. Contents of major chemical components in the heated and quenched melt inclusions are close to those in the picrite and this testifies dunite crystallization from ultrabasic (to 24 wt.% MgO) magma. On the variation diagrams for inclusions in Cr-spinel the following changes of chemical compositions are established: during SiO2 growth there is falling of FeO, MgO, and increase of CaO, Na2O contents. Values of TiO2, Al2O3, K2O and P2O5 remain as a whole constant. Comparing to the data on the melt inclusions in Cr-spinel from the Konder massif, we see that values of the most part of chemical components (SiO2, TiO2, K2O, P2O5) are actually overlapped. At the same time, for the Nizhnii Tagil platinum-bearing massif the big maintenances of FeO and CaO in inclusions are marked. Distinct dependence of the majority of components from the MgO content in inclusions is observed: values TiO2, Al2O3 FeO, CaO and Na2O fall at transition to more magnesia melts. On the peculiarities of distribution of petrochemical characteristics melt inclusions in considered Cr-spinels are co-ordinated with the data on evolution of compositions of melts and rocks of model stratified ultramafic plutons during their crystallization in the magmatic chambers. On the

  12. Influence of melt structure on the crystallization behavior and polymorphic composition of polypropylene random copolymer

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Bin [State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute of Sichuan University, Chengdu 610065 (China); Ecole Normale Supérieure, CNRS-ENS-UPMC UMR 8640, 24 Rue Lhomond, Paris 75005 (France); Chen, Zhengfang [State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute of Sichuan University, Chengdu 610065 (China); Kang, Jian, E-mail: jiankang@scu.edu.cn [State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute of Sichuan University, Chengdu 610065 (China); Yang, Feng; Chen, Jinyao; Cao, Ya; Xiang, Ming [State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute of Sichuan University, Chengdu 610065 (China)

    2015-03-20

    Highlights: • We prepared β-PPR and studied its crystallization behavior with different melt structures. • We observed surprising synergetic effect between β-NA and the ordered structures. • We explored the nature of ordered structures by calculating the equilibrium temperature. - Abstract: Polypropylene random copolymer (PPR) is one of important polypropylene types for the application fields. However, due to the random copolymer chain configuration, it is difficult to obtain high proportion of β-phase even under the influence of β-nucleating agent (β-NA). In this study, the melt structure (namely, the content of ordered structures in the melt) of β-nucleated ethylene-copolymerized PPR (β-PPR) was controlled by tuning the fusion temperature (T{sub f}), and its impact on the crystallization and polymorphic behavior of β-PPR was investigated by differential scanning calorimetry (DSC), wide-angle X-ray diffraction (WAXD), polarized optical microscopy (PLM) and scanning electronic microscopy (SEM). The result revealed that compared with the β-nucleated iPP homo-polymer, it is more difficult for β-PPR to form β-crystals; interestingly, when T{sub f} is in the temperature range of 162–173 °C, the ordered structures survived in melt exhibit high β-nucleation efficiency under the influence of β-NA, resulting in significant increase of β-phase proportion and evident variation of crystalline morphology, which is called the Ordered Structure Effect (OSE). Moreover, through investigating the self-nucleation behavior and equilibrium melting temperature of pure PPR (non-nucleated PPR), the physical nature of the lower and upper limiting T{sub f} temperatures for the occurrence of OSE in β-PPR was explored; the role of ethylene co-monomer in the occurrence of OSE was discussed.

  13. The hardness of synthetic products obtained from cooled and crystallized basaltic melts (in Romanian

    Directory of Open Access Journals (Sweden)

    Daniela Ogrean

    2001-04-01

    Full Text Available The Hardness of Synthetic Products Obtained from Cooled and Crystallized Basaltic Melts. Hardness is one of the main properties of the products obtained from cooled and crystallized basaltic melts under a controlled thermal regime. It influences the abrasion tear resistance of the resulted material. The microhardness measurements on the samples (bricks, boards, gutters, armour plates, tubes indicated Vickers hardness value between 757–926 for the materials obtained from Şanovita basalts (Timiş district and between 539–958 respectively, in case of the Racoş basalts (Braşov district. There is a certain variation of the hardness within the same sample, in various measurement points, within the theoretical limits of the hardnesses of the pyroxenes and that of the spinels.

  14. Dynamic yield and tensile strength of aluminum single crystals at temperatures up to the melting point

    Energy Technology Data Exchange (ETDEWEB)

    Kanel, G. I.; Razorenov, S. V.; Baumung, K.; Singer, J.

    2001-07-01

    This article presents experimental results of the dynamic yield strength and dynamic tensile strength ({open_quotes}spall strength{close_quotes}) of aluminum single crystals at shock-wave loading as a function of temperature. The load duration was {similar_to}40 and {similar_to}200 ns. The temperature varied from 20 to 650{degree}C which is only by 10{degree}C below the melting temperature. A linear growth of the dynamic yield strength by more than a factor of 4 was observed within this temperature range. This is attributed to the phonon drag effect on the dislocation motion. High dynamic tensile strength was maintained over the whole temperature range, including the conditions at which melting should start in a material under tension. This could be an indication of the existence of superheated states in solid crystals. {copyright} 2001 American Institute of Physics.

  15. Nonstoichiometry and luminescent properties of ZnSe crystals grown from the melt at high pressures

    Science.gov (United States)

    Khanh, Tran; Mozhevitina, Elena; Khomyakov, Andrew; Avetisov, Roman; Davydov, Albert; Chegnov, Vladimir; Antonov, Vladimir; Kobeleva, Svetlana; Zhavoronkov, Nikolai; Avetissov, Igor

    2017-01-01

    50 mm diameter ZnSe crystals have been grown from the melt by a vertical Bridgman technique at 100 atm argon pressure in a graphite crucible. 3D impurities concentration and nonstoichiometry mappings of the grown crystals have been defined by ICP-MS and a direct physic-chemical method, correspondingly. Photoluminescence mapping of the analyzed crystal has been done. It was found out that along the crystal height the nonstoichiometry changed from Se excess over stoichiometrical composition in the cone (bottom) part to Zn excess in the tail (upper) part passing through the stoichiometrical composition in the cylindrical part of the crystal. Metal impurities concentrated in the upper part of the crystal. The gas-forming impurities (H, C, O, N, F) had stochastic distribution but Cl impurity concentrated in the crystal peripheral part (near the crucible walls). It was found out that the as-grown crystal had a single wide PL peal with maximum of 583 nm. A proposal about complex structure luminescent center based on Cl dopant an overstoichiometric Se has been made.

  16. Method of Promoting Single Crystal Growth During Melt Growth of Semiconductors

    Science.gov (United States)

    Su, Ching-Hua (Inventor)

    2013-01-01

    The method of the invention promotes single crystal growth during fabrication of melt growth semiconductors. A growth ampoule and its tip have a semiconductor source material placed therein. The growth ampoule is placed in a first thermal environment that raises the temperature of the semiconductor source material to its liquidus temperature. The growth ampoule is then transitioned to a second thermal environment that causes the semiconductor source material in the growth ampoule's tip to attain a temperature that is below the semiconductor source material's solidus temperature. The growth ampoule so-transitioned is then mechanically perturbed to induce single crystal growth at the growth ampoule's tip.

  17. Crystallization and melting behavior of nanoclay-containing polypropylene/poly(trimethylene terephthalate blends

    Directory of Open Access Journals (Sweden)

    S. H. Jafari

    2012-02-01

    Full Text Available This contribution concerns preparation and characterization of polypropylene (PP/poly(trimethylene terephthalate (PTT melt-mixed blends in the presence of organically-modified montmorillonite nanoclays and functional compatibilizers. Immiscibility and nanocomposite formation were confirmed via transmission electron microscopy. An intercalated structure was observed by wide angle X-ray diffraction technique. Crystallization, and melting characteristics were studied by differential scanning calorimetry in both isothermal and non-isothermal modes, supplemented by temperature modulated DSC (TMDSC. A concurrent crystallization was found for both polymeric components in the blends. Whereas blending favored PP crystallizability, it interrupted that of PTT. The addition compatibilizers interfered with rate, temperature, and degree of crystallization of PP and PTT. On the contrary, nanoclays incorporation increased crystallizability of each individual component. However, as for blend nanocomposite samples, the way the crystallization behavior changed was established to depend on the type of nanoclay. Based on kinetic analysis, isothermal crystallization nucleation followed athermal mechanism, while that of non-isothermal obeyed thermal mode. Addition of nanoclays shifted nucleation mechanism from athermal to thermal mode.

  18. Computer simulation study of surface wave dynamics at the crystal--melt interface

    CERN Document Server

    Benet, Jorge; Sanz, Eduardo

    2014-01-01

    We study, by means of computer simulations, the crystal-melt interface of three different systems: hard-spheres, Lennard Jones and the TIP4P/2005 water model. In particular, we focus on the dynamics of surface waves. We observe that the processes involved in the relaxation of surface waves are characterized by distinct time scales: a slow one related to the continuous recrystallization and melting, that is governed by capillary forces; and a fast one which we suggest to be due to a combination of processes that quickly cause small perturbations to the shape of the interface (like e. g. Rayleigh waves, subdiffusion, or attachment/detachment of particles to/from the crystal). The relaxation of surface waves becomes dominated by the slow process as the wavelength increases. Moreover, we see that the slow relaxation is not influenced by the details of the microscopic dynamics. In a time scale characteristic for the diffusion of the liquid phase, the relaxation dynamics of the crystal-melt interface of water is ar...

  19. Exploring crystallization kinetics in natural rhyolitic melts using high resolution CT imagery of spherulites

    Science.gov (United States)

    Clow, T. W.; Befus, K. S.; Gardner, J. E.

    2014-12-01

    Little of our understanding of crystallization kinetics has been directly derived from studies of natural samples. We examine crystallization of rhyolitic melts by quantifying spherulite sizes and number densities in obsidian collected from Yellowstone caldera using high-resolution x-ray computed tomography (CT) imagery. Spherulites are spherical to ellipsoidal masses of intergrown alkali feldspar and quartz in a radiating, fibrous structure. They are thought to form in response to relatively rapid crystallization of melt in response to large amounts of undercooling. Recent research using compositional gradients that form outside of spherulites has suggested that they nucleate at 700 to 500 ˚C and their growth slows exponentially until it eventually ceases at ~400 ˚C. By quantifying spherulite textures, and using those temperature constraints, we derive new kinetic information regarding crystallization in natural rhyolitic systems. We find that spherulites range from 0.2 to 12.3 mm in diameter, and are 0.004 to 49.5 mm3 in volume. Such values generate number densities of 70 to 185 spherulites cm-3. Histograms of size display positively skewed distributions indicating small spherulites are far more abundant than larger ones. Those distributions imply nucleation rates change as a function of temperature. At higher temperatures where the melt is undercooled by 400-500 ˚C, nucleation is rare and growth is favored. With decreasing temperature, nucleation rates increase rapidly until cold enough temperatures are reached that diffusion limits crystallization and causes it to cease (undercoolings of ~650 ˚C). Assuming a cooling rate for the host obsidian of 10-5 ˚C s-1, then overall spherulite nucleation rates are 0.01 to 0.03 spherulites cm-3 hour-1.

  20. Morphology, Crystallization, and Melting of Single Crystals and Thin Films of Star-branched Polyesters with Poly(ε-caprolactone) Arms as Revealed by Atomic Force Microscopy

    NARCIS (Netherlands)

    Nunez, E.; Vancso, G.J.; Gedde, U.W.

    2008-01-01

    The morphology and thermal stability of different sectors in solution- and melt-grown crystals of star-branched polyesters with poly(ε-caprolactone) (PCL) arms, and of a reference linear PCL, have been studied by tapping-mode atomic-force microscopy (AFM). Real-time monitoring of melt-crystallizati

  1. Crystal growth of pure and impurity-doped lead chloride single crystals from the melt

    NARCIS (Netherlands)

    Willemsen, B.

    An account is given of the purification and the crystal growing of lead chloride. Difficulties observed are blackening of the material and the formation of oxides. It is evident that oxygen should be avoided. The influence of water vapour is studied with mass spectroscopy, crystal microbalance

  2. Crystal growth of pure and impurity-doped lead chloride single crystals from the melt

    NARCIS (Netherlands)

    Willemsen, B.

    1971-01-01

    An account is given of the purification and the crystal growing of lead chloride. Difficulties observed are blackening of the material and the formation of oxides. It is evident that oxygen should be avoided. The influence of water vapour is studied with mass spectroscopy, crystal microbalance measu

  3. Gas-driven filter pressing in magmas: insights into in-situ melt segregation from crystal mushes

    Science.gov (United States)

    Pistone, M.; Arzilli, F.; Dobson, K. J.; Cordonnier, B.; Reusser, E.; Ulmer, P.; Marone, F.; Whittington, A. G.; Mancini, L.; Fife, J.; Blundy, J. D.

    2015-12-01

    Gas-driven filter pressing is the process of melt expulsion from a volatile-saturated crystal mush, induced by the buildup and subsequent release of gas pressure. Filter pressing is inferred to play a major role in magma fractionation at shallow depths (bubbles and crystals (~74 vol%). Above this threshold, the mush tends to fracture and gas escapes via fractures. Therefore, the efficiency of gas-driven filter pressing is promoted close to the percolation threshold and in situations where a mush inflates slowly relative to build-up of pressure and expulsion of melt. Such observations offer a likely explanation for the production of eruptible, crystal-poor magmas within Earth's crust. Figure = Synchrotron X-ray tomographic microscopy 3D renderings of representative haplogranite (A-D) and dacite (E-H) samples, with different crystal (Φ) and bubble fractions (β) at representative temperatures and experimental times (t, in minutes). Black objects are bubbles and fractures; dark gray field is silicic glass/melt; light gray objects are corundum crystals in haplogranite sample, and quartz in dacite sample. White and black arrows indicate representative fractures and directions of melt expulsion during vesiculation, respectively. In H, white contours highlight quartz cluster boundaries and melt channels where melt is driven by gas bubbles. During experiments, gas exsolution mainly consists of (1) bubble nucleation and growth (white circles) and (2) crystal clustering and/or compaction (white rectangles).

  4. Melt growth and properties of bulk BaSnO3 single crystals

    Science.gov (United States)

    Galazka, Z.; Uecker, R.; Irmscher, K.; Klimm, D.; Bertram, R.; Kwasniewski, A.; Naumann, M.; Schewski, R.; Pietsch, M.; Juda, U.; Fiedler, A.; Albrecht, M.; Ganschow, S.; Markurt, T.; Guguschev, C.; Bickermann, M.

    2017-02-01

    We present the first-time growth of bulk BaSnO3 single crystals from the melt by direct solidification, their basic electrical and optical properties as well as their structural quality. Our measurement of the melting point (MP) of BaSnO3 amounts to 1855 °C  ±  25 K. At this temperature an intensive decomposition and non-stoichiometric evaporation takes place as the partial pressure of SnO(g) is about 90 times higher than that of BaO(g). X ray powder diffraction identified only the BaSnO3 perovskite phase, while narrow rocking curves having a full width at half maximum of 26 arcsec and etch pit densities below 106 cm-2 confirm a high degree of structural perfection of the single crystals. In this respect they surpass the structural properties of those single crystals that were reported in the literature. The electrical conductivity of nominally undoped crystals depends on the growth conditions and ranges from insulating to medium n-type conductivity. After post-growth annealing in an oxidizing atmosphere undoped crystals are generally insulating. Doping the crystals with lanthanum during growth results in a high n-type conductivity. For a La doping concentration of 0.123 wt.% we measured an electron concentration of 3.3  ×  1019 cm-3 and an electron mobility of 219 cm2 V-1 s-1. Based on optical absorption measurements we determined an energy of 3.17  ±  0.04 eV at 5 K and of 2.99  ±  0.04 eV at 297 K for the indirect band gap of BaSnO3.

  5. Melt growth and properties of bulk BaSnO3 single crystals.

    Science.gov (United States)

    Galazka, Z; Uecker, R; Irmscher, K; Klimm, D; Bertram, R; Kwasniewski, A; Naumann, M; Schewski, R; Pietsch, M; Juda, U; Fiedler, A; Albrecht, M; Ganschow, S; Markurt, T; Guguschev, C; Bickermann, M

    2017-02-22

    We present the first-time growth of bulk BaSnO3 single crystals from the melt by direct solidification, their basic electrical and optical properties as well as their structural quality. Our measurement of the melting point (MP) of BaSnO3 amounts to 1855 °C  ±  25 K. At this temperature an intensive decomposition and non-stoichiometric evaporation takes place as the partial pressure of SnO(g) is about 90 times higher than that of BaO(g). X ray powder diffraction identified only the BaSnO3 perovskite phase, while narrow rocking curves having a full width at half maximum of 26 arcsec and etch pit densities below 10(6) cm(-2) confirm a high degree of structural perfection of the single crystals. In this respect they surpass the structural properties of those single crystals that were reported in the literature. The electrical conductivity of nominally undoped crystals depends on the growth conditions and ranges from insulating to medium n-type conductivity. After post-growth annealing in an oxidizing atmosphere undoped crystals are generally insulating. Doping the crystals with lanthanum during growth results in a high n-type conductivity. For a La doping concentration of 0.123 wt.% we measured an electron concentration of 3.3  ×  10(19) cm(-3) and an electron mobility of 219 cm(2) V(-1) s(-1). Based on optical absorption measurements we determined an energy of 3.17  ±  0.04 eV at 5 K and of 2.99  ±  0.04 eV at 297 K for the indirect band gap of BaSnO3.

  6. Melt extraction in mush zones: The case of crystal-rich enclaves at the Sabatini Volcanic District (central Italy)

    Science.gov (United States)

    Masotta, M.; Mollo, S.; Gaeta, M.; Freda, C.

    2016-04-01

    A peculiar feature of the Sabatini Volcanic District (SVD, central Italy) is the occurrence of crystal-poor pumices and crystal-rich enclaves within the same eruptive host-deposit. The stratigraphic sequence of pumices and enclaves indicates the tapping of a stratified magma chamber, where a crystal-poor phonolitic magma lay on top of a more primitive crystal-rich magma. The crystal-rich enclaves are genetically related to the pumices and record the evolution of a solidification front, in which a more differentiated melt was produced, extracted and eventually erupted. We collected and analyzed crystal-rich enclaves from one of the largest phonolitic eruptions at the SVD and used their petrological and geochemical features to reconstruct magma differentiation and crystal-melt separation in the solidification front. On this basis, three groups of enclaves have been identified: porphyritic enclaves, holocrystalline enclaves and sanidinites. The mineralogical variability faithfully reproduces the spatial and temporal evolution expected of a solidification front, from early-to-intermediate crystallization conditions (porphyritic and holocrystalline type) to the late stage of solidification (sanidinites), in which the percolation of a more differentiated melt through the crystal mush triggered the instability of the solidification front. Results from numerical models indicate that gravitational instability is the most efficient mechanism to explain melt extraction in mush zones of medium-sized (~ 10 km3), short-lived (~ 104 years) magma chambers.

  7. Phase relations study on the melting and crystallization regions of the Bi-2223 high temperature superconductor

    Directory of Open Access Journals (Sweden)

    Polasek Alexander

    2004-01-01

    Full Text Available The melting and solidification behavior of Bi2Sr2Ca2Cu3 O10 (Bi-2223 precursors has been studied. Nominal compositions corresponding to excess of liquid, Ca2CuO3 and CuO have been investigated. Each sample was made by packing a precursor powder into a silver crucible, in order to approximately simulate the situation found in 2223 silver-sheathed tapes. The samples were partially melted and then slow-cooled, being quenched from different temperatures and analyzed through X-ray diffraction (XRD and scanning electron microscopy (SEM/EDS. The precursors decomposed peritectically during melting, forming liquid and solid phases. Very long plates with compositions falling in the vicinity of the 2223 primary phase field formed upon slow-cooling. The 2223 phase may have been formed and the results suggest that long grains of this phase might be obtained by melting and crystallization if the exact peritectic region and the optimum processing conditions are found.

  8. Effect of thermoelectromagnetic convection on the growth of bulk single crystals from semiconductor melts in a constant magnetic field

    Energy Technology Data Exchange (ETDEWEB)

    Gorbunov, L.A.

    1987-12-01

    The growth of bulk single crystals in semiconductor melts is investigated with emphasis on the effect of constant magnetic fields on the hydrodynamic processes and heat and mass transfer occurring in the melt. In particular, it is shown that the thermal emf in semiconductor melts can produce thermal currents whose interaction with a constant magnetic field can generate electromagnetic forces and lead to melt mixing (thermoelectromagnetic convection). The parameters of thermoelectromagnetic convection are estimated, and the importance of allowing for its effect in real processes is emphasized. 11 references.

  9. Effect of the packing structure of silicon chunks on the melting process and carbon reduction in Czochralski silicon crystal growth

    Science.gov (United States)

    Liu, Xin; Nakano, Satoshi; Kakimoto, Koichi

    2017-06-01

    Carbon (C) contamination in Czochralski silicon (CZ-Si) crystal growth mainly originates from carbon monoxide (CO) generation on the graphite components, which reaches a maximum during the melting stage. Loading a crucible with poly-Si feedstock includes many technical details for optimization of the melting and growth processes. To investigate the effect of the packing structure of Si chunks on C accumulation in CZ-Si crystal growth, transient global simulations of heat and mass transport were performed for the melting process with different packing structures of poly-Si. The heat transport modeling took into account the effective thermal conductivity (ETC) of the Si feedstock, which is affected by the packing structure. The effect of the chunk size on the melting process and C accumulation were investigated by parametric studies of different packing structures. The heat transport and melting process in the crucible were affected by the ETC and the emissivity of the Si feedstock. It was found that smaller Si chunks packed in the upper part could speed up the melting process and smooth the power profile. Decreasing the duration of the melting process is favorable for reduction of C contamination in the Si feedstock. Parametric studies indicated that optimization of the melting process by the packing structure is possible and essential for C reduction in CZ-Si crystal growth.

  10. Light-melt adhesive based on dynamic carbon frameworks in a columnar liquid-crystal phase

    Science.gov (United States)

    Saito, Shohei; Nobusue, Shunpei; Tsuzaka, Eri; Yuan, Chunxue; Mori, Chigusa; Hara, Mitsuo; Seki, Takahiro; Camacho, Cristopher; Irle, Stephan; Yamaguchi, Shigehiro

    2016-07-01

    Liquid crystal (LC) provides a suitable platform to exploit structural motions of molecules in a condensed phase. Amplification of the structural changes enables a variety of technologies not only in LC displays but also in other applications. Until very recently, however, a practical use of LCs for removable adhesives has not been explored, although a spontaneous disorganization of LC materials can be easily triggered by light-induced isomerization of photoactive components. The difficulty of such application derives from the requirements for simultaneous implementation of sufficient bonding strength and its rapid disappearance by photoirradiation. Here we report a dynamic molecular LC material that meets these requirements. Columnar-stacked V-shaped carbon frameworks display sufficient bonding strength even during heating conditions, while its bonding ability is immediately lost by a light-induced self-melting function. The light-melt adhesive is reusable and its fluorescence colour reversibly changes during the cycle, visualizing the bonding/nonbonding phases of the adhesive.

  11. Lindemann's rule applied to the melting of crystals and ultra-stable glasses

    Science.gov (United States)

    Tournier, Robert F.

    2016-05-01

    The ratio of the mean square amplitude root of thermal vibrations and the interatomic distance is a universal constant δls at the melting temperature Tm. The classical Gibbs free energy change completed by a volume energy saving ɛls (or Δɛlg) × ΔHm that governs the liquid to solid and liquid to ultra-stable glass transformations leads to a universal constant equal to δls (or δlg), ΔHm being the crystal melting enthalpy. The minimum values 0.217 of ɛls and 0.103 of δls are used to predict ultra-stable glass formation in pure metallic liquid elements at a universal reduced temperature θg = (Tg - Tm)/Tm = -0.6223.

  12. Melt-inclusion-hosted excess 40Ar in quartz crystals of the Bishop and Bandelier magma systems

    Science.gov (United States)

    Winick, J.A.; McIntosh, W.C.; Dunbar, N.W.

    2001-01-01

    40Ar/39Ar experiments on melt-inclusion-bearing quartz (MIBQ) from the Bishop and Bandelier Tuff Plinian deposits indicate high concentrations of excess 40Ar in melt inclusions. Two rhyolite glass melt inclusion populations are present in quartz; exposed melt inclusions and trapped melt inclusions. Air-abrasion mill grinding and hydrofluoric acid treatments progressively remove exposed melt inclusions while leaving trapped melt inclusions unaffected. Laser step-heating of MIBQ yields increasing apparent ages as a function of exposed melt inclusion removal, reflecting the higher nonatmospheric 40Ar concentrations hosted in trapped melt inclusions. Exposed melt inclusion-free MIBQ from the Bishop, Upper Bandelier, and Lower Bandelier Tufts yield total-gas ages of 3.70 ?? 1.00 Ma, 11.54 ?? 0.87 Ma, and 14.60 ?? 1.50 Ma, respectively. We interpret these old apparent ages as compelling evidence for the presence of excess 40Ar in MIBQ. Trapped melt inclusions in sanidine phenocrysts may contain excess 40Ar concentrations similar to those in MIBQ. This excess 40Ar has the potential to increase single-crystal laser-fusion ages of sanidine by tens of thousands of years, relative to the actual eruption age.

  13. An experimental study of permeability development as a function of crystal-free melt viscosity

    Science.gov (United States)

    Lindoo, A.; Larsen, J. F.; Cashman, K. V.; Dunn, A. L.; Neill, O. K.

    2016-02-01

    Permeability development in magmas controls gas escape and, as a consequence, modulates eruptive activity. To date, there are few experimental controls on bubble growth and permeability development, particularly in low viscosity melts. To address this knowledge gap, we have run controlled decompression experiments on crystal-free rhyolite (76 wt.% SiO2), rhyodacite (70 wt.% SiO2), K-phonolite (55 wt.% SiO2) and basaltic andesite (54 wt.% SiO2) melts. This suite of experiments allows us to examine controls on the critical porosity at which vesiculating melts become permeable. As starting materials we used both fine powders and solid slabs of pumice, obsidian and annealed starting materials with viscosities of ∼102 to ∼106 Pas. We saturated the experiments with water at 900° (rhyolite, rhyodacite, and phonolite) and 1025 °C (basaltic andesite) at 150 MPa for 2-72 hrs and decompressed samples isothermally to final pressures of 125 to 10 MPa at rates of 0.25-4.11 MPa/s. Sample porosity was calculated from reflected light images of polished charges and permeability was measured using a bench-top gas permeameter and application of the Forchheimer equation to estimate both viscous (k1) and inertial (k2) permeabilities. Degassing conditions were assessed by measuring dissolved water contents using micro-Fourier-Transform Infrared (μ-FTIR) techniques. All experiment charges are impermeable below a critical porosity (ϕc) that varies among melt compositions. For experiments decompressed at 0.25 MPa/s, we find the percolation threshold for rhyolite is 68.3 ± 2.2 vol.%; for rhyodacite is 77.3 ± 3.8 vol.%; and for K-phonolite is 75.6 ± 1.9 vol.%. Rhyolite decompressed at 3-4 MPa/s has a percolation threshold of 74 ± 1.8 vol.%. These results are similar to previous experiments on silicic melts and to high permeability thresholds inferred for silicic pumice. All basaltic andesite melts decompressed at 0.25 MPa/s, in contrast, have permeabilities below the detection

  14. Crystallisation and Melting Behavior of Methyl Esters of Palm Oil

    Directory of Open Access Journals (Sweden)

    Cheng S. Foon

    2006-01-01

    Full Text Available The methyl esters of palm oil, which consists of saturated and unsaturated esters (0.6 to 95.9% unsaturation of the C12 to C18 fatty acids, solidify at the two temperature ranges, -52 to -45°C and -24 to 21°C, when the esters are cooled. When the esters are heated, they melt at two distinct temperatures, -25 and -33°C and a broad peak at -9 to 28°C. The heating thermograms also showed an exothermic crystallisation peak in between two endothermic melting peaks, indicating the occurrence of re-crystallisation of low melting methyl esters into higher melting point crystal and then melt again at higher temperature.

  15. Early Impacts on the Moon: Crystallization Ages of Apollo 16 Melt Breccias

    Science.gov (United States)

    Norman, M. D.; Shih, C.-Y.; Nyquist, L. E.; Bogard, D. D.; Taylor, L. A.

    2007-01-01

    A better understanding of the early impact history of the terrestrial planets has been identified one of the highest priority science goals for solar system exploration. Crystallization ages of impact melt breccias from the Apollo 16 site in the central nearside lunar highlands show a pronounced clustering of ages from 3.75-3.95 Ga, with several impact events being recognized by the association of textural groups and distinct ages. Here we present new geochemical and petrologic data for Apollo 16 crystalline breccia 67955 that document a much older impact event with an age of 4.2 Ga.

  16. On the theory of ternary melt crystallization with a non-linear phase diagram

    Science.gov (United States)

    Toropova, L. V.; Dubovoi, G. Yu; Alexandrov, D. V.

    2017-04-01

    The present study is concerned with a theoretical analysis of unidirectional solidification process of ternary melts in the presence of a phase transition (mushy) layer. A new analytical solution of heat and mass transfer equations describing the steady-state crystallization scenario is found with allowance for a non-linear liquidus equation. The model under consideration takes into account the presence of two phase transition layers, namely, the primary and cotectic mushy regions. We demonstrate that the phase diagram nonlinearity leads to substantial changes of analytical solutions.

  17. Melting and crystallization of nanocrystalline silicon microwires through rapid self-heating

    Science.gov (United States)

    Bakan, G.; Cywar, A.; Silva, H.; Gokirmak, A.

    2009-06-01

    Nanocrystalline silicon microwires are self-heated through single, large amplitude, and microsecond voltage pulses. Scanning electron micrographs show very smooth wire surfaces after the voltage pulse compared to as-fabricated nanocrystalline texture. Voltage-pulse induced self-heating leads to significant conductance improvement, suggesting crystallization of the wires. The minimum resistivity during the pulse is extracted from wires of different dimensions as 75.0±4.6 μΩ cm, matching previously reported values for liquid silicon. Hence, nanocrystalline silicon microwires melt through self-heating during the voltage pulse and resolidify upon termination of the pulse, resulting in very smooth and less-resistive crystalline structures.

  18. Partially confined configuration for the growth of semiconductor crystals from the melt in zero-gravity environment

    Science.gov (United States)

    Lagowski, J.; Gatos, H. C.; Dabkowski, F. P.

    1985-01-01

    A novel partially confined configuration is proposed for the crystal growth of semiconductors from the melt, including those with volatile constituents. A triangular prism is employed to contain the growth melt. Due to surface tension, the melt will acquire a cylindrical-like shape and thus contact the prism along three parallel lines. The three empty spaces between the cylindrical melt and the edges of the prism will accommodate the expansion of the solidifying semiconductor, and in the case of semiconductor compounds with a volatile constituent, will permit the presence of the desired vapor phase in contact with the melt for controlling the melt stoichiometry. Theoretical and experimental evidence in support of this new type of confinement is presented.

  19. CRYSTALLIZATION AND MULTI-MELTING BEHAVIOR OF POLY (ETHYLENE TEREPHTHALATE) MODIFIED BY SODIUM SALT OF 5-SULPHO-ISOPHTHALIC ACID

    Institute of Scientific and Technical Information of China (English)

    HU Hengliang; MU Xiangqi; WU Shizhen

    1987-01-01

    The crystallization kinetics of the copolyester, poly(ethylene terephthalate) (PET) modified by sodium salt of 5-sulpho-isophthalic acid(SIPM), was investigated by means of differential scanning calorimeter. The experimental results and polari-microscopy observation all showed that the introduction of SIPM did not affect the nucleation of crystallization. Within the temperature range between their glass transition temperature Tg and melting point T., the crystallization rate of the copolyester sample decreased with increasing content of SIPM. The relative crystallization rate constant Z of SIPM/DMT (dimethyl terephthalate) 4mol % sample was about 1% pure PET's Z value. For isothermal crystallized copolyester samples, DSC heating curves displayed multi-melting behavior. This was interpreted by molecular weight fractionation during crystallization and premelting-recrystallization mechanism. This interpretation showed why the second melting point Tm2 will change according to Hoffman-Weeks(H-W) equation[1] and the first melting point Tm1 will increase with increasing SIPM. The principal cause of these phenomena is the high temperature crystallization rate decreases rapidly with increasing SIPM.

  20. Trace element geochemistry of Amba Dongar carbonatite complex, India: Evidence for fractional crystallization and silicate-carbonate melt immiscibility

    Indian Academy of Sciences (India)

    Jyotiranjan S Ray; P N Shukla

    2004-12-01

    Carbonatites are believed to have crystallized either from mantle-derived primary carbonate magmas or from secondary melts derived from carbonated silicate magmas through liquid immiscibility or from residual melts of fractional crystallization of silicate magmas. Although the observed coexistence of carbonatites and alkaline silicate rocks in most complexes, their coeval emplacement in many, and overlapping initial 87Sr/86Sr and 143Nd/144Nd ratios are supportive of their cogenesis; there have been few efforts to devise a quantitative method to identify the magmatic processes. In the present study we have made an attempt to accomplish this by modeling the trace element contents of carbonatites and coeval alkaline silicate rocks of Amba Dongar complex, India. Trace element data suggest that the carbonatites and alkaline silicate rocks of this complex are products of fractional crystallization of two separate parental melts. Using the available silicate melt-carbonate melt partition coefficients for various trace elements, and the observed data from carbonatites, we have tried to simulate trace element distribution pattern for the parental silicate melt. The results of the modeling not only support the hypothesis of silicate-carbonate melt immiscibility for the evolution of Amba Dongar but also establish a procedure to test the above hypothesis in such complexes.

  1. Degenerate Ising model for atomistic simulation of crystal-melt interfaces

    Energy Technology Data Exchange (ETDEWEB)

    Schebarchov, D., E-mail: Dmitri.Schebarchov@gmail.com [University Chemical Laboratories, Lensfield Road, Cambridge CB2 1EW (United Kingdom); Schulze, T. P., E-mail: schulze@math.utk.edu [Department of Mathematics, University of Tennessee, Knoxville, Tennessee 37996-1300 (United States); Hendy, S. C. [The MacDiarmid Institute for Advanced Materials and Nanotechnology, School of Chemical and Physical Sciences, Victoria University of Wellington, Wellington 6140 (New Zealand); Department of Physics, University of Auckland, Auckland 1010 (New Zealand)

    2014-02-21

    One of the simplest microscopic models for a thermally driven first-order phase transition is an Ising-type lattice system with nearest-neighbour interactions, an external field, and a degeneracy parameter. The underlying lattice and the interaction coupling constant control the anisotropic energy of the phase boundary, the field strength represents the bulk latent heat, and the degeneracy quantifies the difference in communal entropy between the two phases. We simulate the (stochastic) evolution of this minimal model by applying rejection-free canonical and microcanonical Monte Carlo algorithms, and we obtain caloric curves and heat capacity plots for square (2D) and face-centred cubic (3D) lattices with periodic boundary conditions. Since the model admits precise adjustment of bulk latent heat and communal entropy, neither of which affect the interface properties, we are able to tune the crystal nucleation barriers at a fixed degree of undercooling and verify a dimension-dependent scaling expected from classical nucleation theory. We also analyse the equilibrium crystal-melt coexistence in the microcanonical ensemble, where we detect negative heat capacities and find that this phenomenon is more pronounced when the interface is the dominant contributor to the total entropy. The negative branch of the heat capacity appears smooth only when the equilibrium interface-area-to-volume ratio is not constant but varies smoothly with the excitation energy. Finally, we simulate microcanonical crystal nucleation and subsequent relaxation to an equilibrium Wulff shape, demonstrating the model's utility in tracking crystal-melt interfaces at the atomistic level.

  2. Degenerate Ising model for atomistic simulation of crystal-melt interfaces

    Science.gov (United States)

    Schebarchov, D.; Schulze, T. P.; Hendy, S. C.

    2014-02-01

    One of the simplest microscopic models for a thermally driven first-order phase transition is an Ising-type lattice system with nearest-neighbour interactions, an external field, and a degeneracy parameter. The underlying lattice and the interaction coupling constant control the anisotropic energy of the phase boundary, the field strength represents the bulk latent heat, and the degeneracy quantifies the difference in communal entropy between the two phases. We simulate the (stochastic) evolution of this minimal model by applying rejection-free canonical and microcanonical Monte Carlo algorithms, and we obtain caloric curves and heat capacity plots for square (2D) and face-centred cubic (3D) lattices with periodic boundary conditions. Since the model admits precise adjustment of bulk latent heat and communal entropy, neither of which affect the interface properties, we are able to tune the crystal nucleation barriers at a fixed degree of undercooling and verify a dimension-dependent scaling expected from classical nucleation theory. We also analyse the equilibrium crystal-melt coexistence in the microcanonical ensemble, where we detect negative heat capacities and find that this phenomenon is more pronounced when the interface is the dominant contributor to the total entropy. The negative branch of the heat capacity appears smooth only when the equilibrium interface-area-to-volume ratio is not constant but varies smoothly with the excitation energy. Finally, we simulate microcanonical crystal nucleation and subsequent relaxation to an equilibrium Wulff shape, demonstrating the model's utility in tracking crystal-melt interfaces at the atomistic level.

  3. Solidification (crystal growth) in the presence of gravitational forces. [indium antimonide melts at reduced gravity

    Science.gov (United States)

    Gatos, H. C.; Witt, A. F.

    1978-01-01

    The surface tension behavior of doped and undoped InSb melts was investigated as well as their temperature and composition dependence. Surface tension in InSb melts was determined using the sessile-drop technique covering the temperature range from 530 C to 880 C. A linear regression of the data obtained shows that the temperature dependence of sigma is 392- (T-530) x (7000) plus or minus 10 dyne/cm. The d sigma/d Tau for intrinsics InSb is less than that previously reported. On the basis of the surface tension data obtained, it is concluded that surface tension induced convective flow velocities in InSb under reduced gravity conditions range from zero to at most 1 cm/sec. Accordingly, no interference with dopant segregation can be expected during growth in space because the momentum boundary layer (at the crystal melt interface) associated with any Marangoni-type convective flows would, at the given growth rate, be significantly larger than the predicted diffusion boundary layer thickness.

  4. Coherent lateral-growth of Ge over insulating film by rapid-melting-crystallization

    Energy Technology Data Exchange (ETDEWEB)

    Sadoh, T., E-mail: sadoh@ed.kyushu-u.ac.jp [Department of Electronics, Kyushu University, 744 Motooka, Fukuoka 819-0395 (Japan); Kurosawa, M. [Department of Electronics, Kyushu University, 744 Motooka, Fukuoka 819-0395 (Japan); JSPS Research Fellow, 5-3-1 Kojimachi, Chiyoda-ku, Tokyo 102-0083 (Japan); Toko, K.; Miyao, M. [Department of Electronics, Kyushu University, 744 Motooka, Fukuoka 819-0395 (Japan)

    2014-04-30

    In rapid-melting-crystallization of network Ge-on-insulator (GOI), coalescence of growth-fronts inevitably occurs. To clarify crystallinity of the coalesced regions of two growth-fronts in GOI stripes, scanning electron microscopy and transmission electron microscopy analyses are performed. These analyses reveal that lattice planes of two growth-fronts coherently align without strains for short growth-distance (≤ 5 μm). The lattice planes at growth-fronts start to tilt gradually for growth-distance above 5 μm. For intermediate growth-distance (5–150 μm), slightly-tilting lattice-planes coherently align without generating any defects, where locally-distributed strains are induced in the coalesced regions. On the other hand, for long growth-distance (≥ 150 μm), grain-boundaries are generated in coalesced regions, and the locally-distributed strains are relaxed. The coherent lattice-alignment for growth-distance below 150 μm is attributed to atomic reordering in the coalesced regions, where coalescence occurs at high temperatures around the solidification point of Ge. - Highlights: • Coalesced regions of growth-fronts in melting-grown Ge-on-insulator are investigated. • Lattice planes of growth-fronts coherently align. • The coherent alignment is attributed to atomic reordering in coalesced regions. • Here, coalescence occurs at high temperatures around solidification point of Ge. • This high-quality demonstrates significant advantage of melting growth.

  5. Lubricating and waxy esters, I. Synthesis, crystallization, and melt behavior of linear monoesters.

    Science.gov (United States)

    Bouzidi, Laziz; Li, Shaojun; Di Biase, Steve; Rizvi, Syed Q; Narine, Suresh S

    2012-01-01

    Four pure jojoba wax-like esters (JLEs), having carbon chain length of 36, 40 (two isomers) and 44, were prepared by Steglish esterification of fatty acids (or acid chlorides) with fatty alcohols at room temperature. Calorimetric and diffraction data was used to elucidate the phase behavior of the esters. The primary thermal parameters (crystallization and melting temperatures) obtained from the DSC of the symmetrical molecules correspond well with the carbon numbers of the JLEs. However, the data also suggests that carbon number is not the only factor since the symmetry of the molecule also plays a significant role in the phase behavior. Overall, the JLEs show very little polymorphic activity at the experimental conditions used, suggesting that they are likely to transform the same way during melting as well as crystallization, a characteristic which may be useful in designing new waxes and lubricants. The XRD data clearly show that the solid phase in all samples consists of a mixture of a β-phase and a β'-phase; fully distinguishable by their characteristic diffraction peaks. Subtle differences between the subcell patterns and phase development of the samples were observed. Different layering of the samples was also observed, understandably because of the chain length differences between the compounds. The long spacings were perfectly linearly proportional to the number of carbon atoms. The length of the ester layers with n carbon atoms can be calculated by a formula similar to that used for the layers in linear alkane molecules.

  6. Preservation of Seed Crystals in Feedstock Melting for Cast Quasi-Single Crystalline Silicon Ingots

    Directory of Open Access Journals (Sweden)

    Zaoyang Li

    2013-01-01

    Full Text Available The preservation of seed crystals is important for the casting of quasi-single crystalline (QSC silicon ingots. We carried out transient global simulations of the feedstock melting process in an industrial-sized directional solidification (DS furnace to investigate key factors influencing seed preservation. The power distribution between the top and side heaters is adjusted in the conventional furnace for multicrystalline silicon ingots and in the evolved furnace with a partition block for QSC silicon ingots. The evolution of the solid-liquid interface for melting and the temperature distribution in the furnace core area are analyzed. The power distribution can influence the temperature gradient in the silicon domain significantly. However, its effect on seed preservation is limited in both furnaces. Seed crystals can be preserved in the evolved furnace, as the partition block reduces the radiant heat flux from the insulation walls to the heat exchange block and prevents the heat flowing upwards under the crucible. Therefore, the key to seed preservation is to control radiant heat transfer in the DS furnace and guarantee downward heat flux under the crucible.

  7. Kinetic roughening transition and missing regime transition of melt crystallized polybutene-1 tetragonal phase: growth kinetics analysis

    Institute of Scientific and Technical Information of China (English)

    Motoi YAMASHITA

    2009-01-01

    The morphology and lateral growth rate of isotactic polybutene-1 (it-PBl) have been investigated for crystallization from the melt over a wide range of crystallization temperatures from 50 to 110°C. The morphology of it-PBl crystals is a rounded shape at crystallization temperatures lower than 85°C, while lamellar single crystals possess faceted morphology at higher crystallization temperatures. The kinetic roughening transition occurs around 85°C. The nucleation and growth mechanism for crystallization does not work below 85°C, since the growth face is rough. However, the growth rate shows the supercooling dependence derived from the nucleation and growth mechanism. The nucleation theory seems still to work even for rough surface growth. Possible mechanisms for the crystal growth of this polymer are discussed.

  8. Experimental evidence for thermal generation of interstitials in a metallic crystal near the melting temperature

    Science.gov (United States)

    Safonova, E. V.; Mitrofanov, Yu P.; Konchakov, R. A.; Vinogradov, A. Yu; Kobelev, N. P.; Khonik, V. A.

    2016-06-01

    The only intrinsic point defects of simple crystalline metals known from solid state physics are vacancies and interstitials. It is widely believed that while vacancies play a major role in crystal properties and their concentration reaches relatively big values near the melting temperature T m, interstitials essentially do not occur in thermodynamic equilibrium and their influence on properties is minor. Here, taking aluminum single crystals as an example, we present compelling experimental evidence for rapid thermoactivated growth of interstitial concentration upon approaching T m. Using high precision measurements of the shear modulus we found a diaelastic effect of up to -1.5% near T m. It is argued that this effect is mostly due to the generation of dumbbell (split) interstitials. The interstitial concentration c i rapidly increases upon approaching T m and becomes only 2-3 times smaller than that of vacancies just below T m. The reason for this c i -increase is conditioned by a decrease of the Gibbs free energy with temperature, which in turn originates from the high formation entropy of dumbbell interstitials and a decrease of their formation enthalpy at high c i . Special molecular dynamic simulation confirmed all basic aspects of the proposed interpretation. The results obtained (i) demonstrate the significance of interstitial concentration near T m that could lead to the revaluation of vacancy concentration at high temperatures, (ii) suggest that dumbbell interstitials play a major role in the melting mechanism of monatomic metallic crystals and (iii) support a new avenue for in-depth understanding of glassy metals.

  9. Analysis of the effect of symmetric/asymmetric CUSP magnetic fields on melt/crystal interface during Czochralski silicon growth

    Science.gov (United States)

    Daggolu, Parthiv; Ryu, Jae Woo; Galyukov, Alex; Kondratyev, Alexey

    2016-10-01

    With the use of 300 mm silicon wafers for industrial semiconductor device manufacturing, the Czochralski (Cz) crystal growth process has to be optimized to achieve higher quality and productivity. Numerical studies based on 2D global thermal models combined with 3D simulation of melt convection are widely used today to save time and money in the process development. Melt convection in large scale Cz Si growth is controlled by a CUSP or transversal magnetic field (MF) to suppress the melt turbulence. MF can be optimized to meet necessary characteristics of the growing crystal, in terms of point defects, as MF affects the melt/crystal interface geometry and allows adjustment of the pulling rate. Among the different knobs associated with the CUSP magnetic field, the nature of its configuration, going from symmetric to asymmetric, is also reported to be an important tool for the control of crystallization front. Using a 3D unsteady model of the CGSim software, we have studied these effects and compared with several experimental results. In addition, physical mechanisms behind these observations are explored through a detailed modeling analysis of the effect of an asymmetric CUSP MF on convection features governing the heat transport in the silicon melt.

  10. Novel melt-processable nylon-6/inorganic fullerene-like WS{sub 2} nanocomposites: Complex isothermal crystallization kinetics and melting behaviour

    Energy Technology Data Exchange (ETDEWEB)

    Naffakh, Mohammed, E-mail: mnaffakh@ictp.csic.es [Departamento de Fisica e Ingenieria de Polimeros, Instituto de Ciencia y Tecnologia de Polimeros, CSIC, c/Juan de la Cierva, 3, 28006 Madrid (Spain); Marco, Carlos; Gomez, Marian A. [Departamento de Fisica e Ingenieria de Polimeros, Instituto de Ciencia y Tecnologia de Polimeros, CSIC, c/Juan de la Cierva, 3, 28006 Madrid (Spain); Jimenez, Ignacio [Instituto de Ciencia de Materiales de Madrid, CSIC, Campus de Cantoblanco, 28049 Madrid (Spain)

    2011-07-15

    Highlights: {yields} Environmentally friendly IF-WS{sub 2} is used to produce advanced nylon-6 NCPs. {yields} Melt-processable nylon-6 NCPs are obtained without using modifiers or surfactants. {yields} Novel IF-WS{sub 2} remarkably influences the nucleation and growth processes of nylon-6. {yields} High nucleating efficiency of IF-WS{sub 2} is observed for high-temperature {alpha}'-phase. {yields} New insights into crystallization and melting behaviour of nylon-6 in NCPs. - Abstract: Environmentally friendly inorganic fullerene-like tungsten disulfide nanoparticles (IF-WS{sub 2}) were used to produce new nylon-6 nanocomposites. In the nucleation-controlled regime, the crystallization rates for the nanocomposites are significantly faster than that for the neat nylon-6 as confirmed by DSC and X-ray diffraction techniques using synchrotron radiation. This fact was related to the high nucleation efficiency of IF-WS{sub 2} nanoparticles on the {alpha}'-form crystals of nylon-6. Other parameters such as the Avrami exponent, the equilibrium melting temperature, long period and the fold surface free energy of nylon-6 chains in the nanocomposites were obtained from the calorimetric data in order to determine the effect of the nanoparticles on them. The addition of IF-WS{sub 2} remarkably influences the energetics and kinetics of nucleation and growth of nylon-6 with a decrease in the fold surface free energy of 36-51%.

  11. Acoustic and NMR investigations of melting and crystallization of indium-gallium alloys in pores of synthetic opal matrices

    Science.gov (United States)

    Pirozerskii, A. L.; Charnaya, E. V.; Lee, M. K.; Chang, L. J.; Nedbai, A. I.; Kumzerov, Yu. A.; Fokin, A. V.; Samoilovich, M. I.; Lebedeva, E. L.; Bugaev, A. S.

    2016-05-01

    The paper presents the results of studying the crystallization and melting processes of Ga-In eutectic alloys, which are embedded in opal matrices, using acoustic and NMR methods. The indium concentrations in the alloys were 4, 6, 9, and 15 at %. Measurements were performed upon cooling from room temperature to complete crystallization of the alloys and subsequent heating. It is revealed how the size effects and alloy composition influence the formation of phases with α- and β-Ga structures and on changes in the melting-temperature ranges. A difference was observed between the results obtained using acoustic and NMR methods, which was attributed to different temperature measurement conditions.

  12. Oxygen Barrier Properties and Melt Crystallization Behavior of Poly(ethylene terephthalate/Graphene Oxide Nanocomposites

    Directory of Open Access Journals (Sweden)

    Anna Szymczyk

    2015-01-01

    Full Text Available Poly(ethylene terephthalate nanocomposites with low loading (0.1–0.5 wt% of graphene oxide (GO have been prepared by using in situ polymerization method. TEM study of nanocomposites morphology has shown uniform distribution of highly exfoliated graphene oxide nanoplatelets in PET matrix. Investigations of oxygen permeability of amorphous films of nanocomposites showed that the nanocomposites had better oxygen barrier properties than the neat PET. The improvement of oxygen permeability for PET nanocomposite films over the neat PET is approximately factors of 2–3.3. DSC study on the nonisothermal crystallization behaviors proves that GO acts as a nucleating agent to accelerate the crystallization of PET matrix. The evolution of the lamellar nanostructure of nanocomposite and neat PET was monitored by SAXS during nonisothermal crystallization from the melt. It was found that unfilled PET and nanocomposite with the highest concentration of GO (0.5 wt% showed almost similar values of the long period (L=11.4 nm for neat PET and L=11.5 nm for PET/0.5GO.

  13. The effect of Pglass state on the non-isothermal cold and melt crystallization processes of PET matrix

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Huichao [State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Material Science and Engineering, Donghua University, Shanghai 201620 (China); Ma, Jinghong, E-mail: mjh68@dhu.edu.cn [State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Material Science and Engineering, Donghua University, Shanghai 201620 (China); Gong, Jinghua [State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Material Science and Engineering, Donghua University, Shanghai 201620 (China); Xu, Jian, E-mail: jxu@iccas.ac.cn [State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Material Science and Engineering, Donghua University, Shanghai 201620 (China); Beijing National Laboratory for Molecular Sciences, Laboratory of Polymer Physics and Chemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190 (China)

    2015-08-10

    Highlights: • Pglass is an inorganic polymer with low T{sub g} and mutable viscosity. • Kinetics models and activation energy can be used to analyze the process. • Pglass can play different effect on the crystallization process of PET. - Abstract: The physical state of phosphate glass (Pglass) has an influence on the non-isothermal crystallization behaviors of PET matrix in the PET/Pglass blends, which has been investigated via heating the glassy state and cooling the melt state of the blends at various scanning rates, respectively, by means of differential scanning calorimetry (DSC) technique. The kinetics models based on the Avrami and Mo equations were used to analyze the non-isothermal crystallization process. Furthermore, the activation energy of non-isothermal crystallization, according to Kissinger theory for heating process and Friedman theory for cooling process, has been evaluated. The results showed that the Pglass accelerated the non-isothermal cold crystallization rate of PET matrix due to its nucleation effect. In contrast, for the non-isothermal melt crystallization, the Pglass hindered the crystallization process due to its large melt viscosity.

  14. Anisotropic surface melting in lyotropic cubic crystals. Part 1: Pn3m/L1 interface, poor faceting.

    Science.gov (United States)

    Grenier, J; Plötzing, T; Rohe, D; Pieranski, P

    2006-02-01

    From experiments with ice or metal crystals, in the vicinity of their crystal/liquid/vapor triple points, it is known that melting of crystals starts on their surfaces and is anisotropic. It is shown here by direct observations under an optical microscope that this anisotropic surface melting phenomenon occurs also in lyotropic systems. In the case of C12EO2/water mixture, it takes place in the vicinity of the peritectic Pn3m/L3/L1 triple point. Above the peritectic triple point, where the Pn3m and L1 phases coexist in the bulk, the surface of a Pn3m-in-L1 crystal is composed of (111)-type facets surrounded by rough surfaces. The angular junction suggests that rough surfaces are wet by a L3-like layer while facets stay "dry". This is analogous to the pre-melting at rough surfaces in solid crystals. Upon cooling below the peritectic triple point, where L3 and L1 phases coexist in the bulk, a thick layer of the L3 phase grows from the pre-melted, rough Pn3m/L1 interface. Simultaneously, facets stay dry and their radius decreases. In this tri-phasic configuration, stable in a narrow temperature range, the L3/L1 and L3/Pn3m interfaces have shapes of constant mean curvature surfaces having common borders: edges of facets.

  15. Influence of the crucible geometry on the shape of the melt crystal interface during growth of sapphire crystal using a heat exchanger method

    Science.gov (United States)

    Chen, Jyh-Chen; Lu, Chung-Wei

    2004-05-01

    Computer simulations using the commercial code FIDAP, which is based on finite element techniques, were performed to investigate the effect of the shape of the crucible on the temperature distribution, velocity distribution and shape of the melt-crystal interface, during the application of the heat exchanger method (HEM) of growing sapphire crystals. Heat transfer from the furnace to the crucible and heat extraction from the heat exchanger can be modeled by the convection boundary conditions. Cylindrical crucibles with differently curved corners at their base are considered. The curved base of the crucible decreases the convexity of the melt-crystal interface and suppresses the appearance of "hot spots". A hemispherically shaped crucible base yields the lowest maximum convexity. The variation in convexity of the melt-crystal interface is less abrupt for a cylindrical crucible with curved corners at the base than one without curved corners. The effects of the thickness and the conductivity of the crucible are also addressed. The convexity of the melt-crystal interface decreases as the thickness of the crucible wall increases. The convexity also declines as the conductivity of the crucible increases.

  16. Crystallization and structure of cast A390.0 alloy with melt overheating temperature

    Directory of Open Access Journals (Sweden)

    J. Piątkowski

    2012-07-01

    Full Text Available The paper presents the research on the influence of melt overheating temperature on crystallization parameters and primary structure of cast AlSi17Cu5Mg (A390.0 alloy overheated to temperature: 820 °C, 880 °C, 940 °C and 1 000 °C. It was found that the degree of overheating influences the change of microstructure significantly and morphologies of primary silicon of the castings from Al-Si alloys. Research has shown that the overheating of the liquid metal bath is one of the methods of finding more applications of hypereutectic Al-Si system alloys without the addition of modifiers.

  17. Crystallization kinetics and morphology of melt spun poly(ethylene terephthalate nanocomposite fibers

    Directory of Open Access Journals (Sweden)

    R. R. Hegde

    2013-10-01

    Full Text Available Natural nanoclay closite Na+ incorporated melt spun poly(ethylene terephthalate (PET fibers were investigated for crystallization kinetics and morphology. Nature of clay dispersion and nanocomposite morphology were assessed using wide angle X-ray diffraction (WAXD and transmission electron microscopy (TEM. Fiber mechanical properties were measured using single fiber tensile test. Combination of scanning electron microscopy (SEM and energy dispersive spectroscopy (EDS was used to investigate the fiber failure mode. Among nanocomposite PET fibers, sample with 1% clay performed better. WAXD and TEM micrographs of the fibers revealed intercalated and delaminated morphology. Size of agglomerate increased with percentage of add-on. SEM surface images showed significant variation in fiber diameter, voids and imperfections. Cross-sections of fractured surfaces revealed the presence of clay agglomerates at failure spots. Nanoclay reinforcement did not incur mechanical property benefits due to increase in voids and agglomerates in fiber section, especially at loading levels higher than one percent.

  18. Reduction of carbon contamination during the melting process of Czochralski silicon crystal growth

    Science.gov (United States)

    Liu, Xin; Gao, Bing; Nakano, Satoshi; Kakimoto, Koichi

    2017-09-01

    Generation, incorporation, and accumulation of carbon (C) were investigated by transient global simulations of heat and mass transport during the melting process of Czochralski silicon (CZ-Si) crystal growth. Contact reaction between the quartz crucible and graphite susceptor was introduced as an extra origin of C contamination. The contribution of the contact reaction on C accumulation is affected by the back diffusion of C monoxide (CO) from the gap between the gas-guide and the crucible. The effect of the gas-guide coating on C reduction was elucidated by taking the reaction between the silicon carbide (SiC) coating and gaseous Si monoxide (SiO) into account. Application of the SiC coating on the gas-guide could effectively reduce the C contamination because of its higher thermochemical stability relative to that of graphite. Gas flow control on the back diffusion of the generated CO was examined by the parametric study of argon gas flow rate. Generation and back diffusion of CO were both effectively suppressed by the increase in the gas flow rate because of the high Péclet number of species transport. Strategies for C content reduction were discussed by analyzing the mechanisms of C accumulation process. According to the elucidated mechanisms of C accumulation, the final C content depends on the growth duration and contamination flux at the gas/melt interface.

  19. Melt-rock interaction near the Moho: Evidence from crystal cargo in lavas from near-ridge seamounts

    Science.gov (United States)

    Coumans, Jason P.; Stix, John; Clague, David A.; Minarik, William G.; Layne, Graham D.

    2016-10-01

    The Taney Seamounts are a NW-SE trending linear, near mid-ocean ridge chain consisting of five volcanoes located on the Pacific plate 300 km west of San Francisco, California. Taney Seamount-A, the largest and oldest in the chain, is defined by four well-exposed calderas, which expose previously infilled lavas. The calderas can be differentiated in time by their cross-cutting relationships, creating a relative chronology. The caldera walls and intracaldera pillow mounds were sampled systematically by a remotely operated vehicle (ROV) to obtain stratigraphically-controlled samples, a unique aspect of this study. The geochemistry of the seamount varies from more differentiated to more primitive with time (6.2-8.6 wt.% MgO), suggesting that the sub-caldera reservoir is open and undergoes periodic collapse, replenishment, crystallization, and eruption. The youngest and least differentiated lavas entrained a crystal cargo of plagioclase (An80-90) with melt inclusion volatile saturation pressures indicating entrapment in the lower oceanic crust and upper mantle (6-12 km, with 45% between 8 and 10 km below the sea floor). Melt inclusions exhibit high Al2O3, low SiO2, positive Sr and Eu anomalies and negative Zr and Nb anomalies when normalized to typical Pacific mid-ocean ridge basalt (MORB). In comparison, the host lavas exhibit positive Sr anomalies, but no concurrent Zr, and Nb anomalies. Based on thermodynamic modeling using alphaMELTS, we develop a melt-rock interaction model defined by melting and assimilation of plagioclase-rich cumulates by hot, primitive mantle-derived melts. Significantly, the variability of the negative Zr and Nb anomalies cannot be explained by either cumulate melting or AFC alone. We propose that the melt inclusions record the interaction between cumulate partial melts and the assimilating melt, demonstrating the importance of cumulate melting during the assimilation process. Later percolating melts underwent diffusive interaction with, and

  20. The thermal physical properties and structure of In-In2Bi eutectic at melting-crystallization process

    Directory of Open Access Journals (Sweden)

    V. Prokhorenko

    2007-04-01

    Full Text Available The physical properties of In-In2Bi liquid eutectic alloy as well as structure has been studied at different temperature. Structure data are used for calculation of configuration entropy. The change of structure upon melting is analyzed in comparison with change chemical bonding. The data on acoustic emission studies at meting and crystallization processes are analyzed too.

  1. Real-time imaging of melting and crystallization in poly(ethylene oxide) by atomic force microscopy

    NARCIS (Netherlands)

    Pearce, R.; Vancso, Gyula J.

    1998-01-01

    The processes of melting and crystallization of poly(ethylene oxide) are followed in real time at elevated temperature by atomic force microscopy using a simple hot stage apparatus. Hedritic development at a temperature of 57°C is monitored, including the process of lamellar splaying to yield a

  2. Crystal-chemical controls on the partitioning of Sr and Ba between plagioclase feldspar, silicate melts, and hydrothermal solutions

    Energy Technology Data Exchange (ETDEWEB)

    Blundy, J.D.; Wood, B.J. (Bristol Univ. (England))

    1991-01-01

    The aim of this paper is to evaluate the factors which control the partitioning of alkaline earth elements (Ba and Sr) between plagioclase feldspar and silicate melts, specifically the respective role of crystal chemistry, melt chemistry, and temperature. We have selected plagioclase because of the wealth of volcanic and experimental data, the compositional simplicity of plagioclase, and its relevance to many petrological problems. We begin our study by examining experimental data on Sr partitioning between plagioclase and hydrothermal solutions in an attempt to constrain the role of crystal chemistry. We establish a simple thermodynamic model for trace element partitioning between plagioclase and hydrothermal solutions. This treatment is then extended to the plagioclase-melt system using available data from both experimental and volcanic systems in order to derive a general equation for Sr and Ba partitioning. Finally we consider the geochemical applications and implications of our findings.

  3. Melt crystallization for refinement of triolein and palmitic acid mixture as a model waste oil for biodiesel fuel production

    Science.gov (United States)

    Fukui, Keisuke; Maeda, Kouji; Kuramochi, Hidetoshi

    2013-06-01

    Melt crystallization using an annular vessel with two circular cylinders was applied to produce high-quality vegetable oil from waste oil. The inner cylinder was cooled at a constant rate and rotated, and the outer cylinder was heated at a constant temperature. The melt was solidified on the inner cylinder surface. The binary system of triolein and palmitic acid was used as the model waste oil. We measured the distribution coefficient of triolein. Suitable operation conditions were proposed to attain a high yield and a high purity of triolein from waste oil. The distribution coefficient correlated well with the theoretical equation derived on the basis of the "local lever rule" at the interface of the crystal layer and melt [1].

  4. Unusual crystals of poly(ε-caprolactone) by unusual crystallisation: The effects of rapid cooling and fast solvent loss on the morphology, crystal structure and melting

    NARCIS (Netherlands)

    Sanandaji, N.; Ovaskainen, L.; Klein Gunnewiek, M.; Vancso, G.J.; Hedenqvist, M.S.; Yu, S.; Eriksson, L.; Roth, S.V.; Gedde, U.W.

    2013-01-01

    The lateral habit, unit cell structure and melting behaviour of single crystals of poly(ε-caprolactone) (PCL) prepared by the rapid expansion of a supercritical solution technique was studied by AFM at ambient and higher temperatures and by grazing-incident X-ray scattering using a synchrotron sourc

  5. Dielectric relaxation and crystallization of ultraviscous melt and glassy states of aspirin, ibuprofen, progesterone, and quinidine.

    Science.gov (United States)

    Johari, G P; Kim, S; Shanker, Ravi M

    2007-05-01

    Molecular relaxation in ultraviscous melt and glassy states of aspirin, ibuprofen, progesterone, and quinidine has been studied by dielectric spectroscopy. The asymmetric relaxation spectra is characterized by the Kohlrausch distribution parameter of 0.46 +/- 0.02 for aspirin to 0.67 +/- 0.02 for progesterone. The dielectric relaxation time varies with the temperature, T, according to the Vogel-Fulcher-Tammann Equation, log(10)(tau(0)) = A(VFT) + [B(VFT)/(T - T(0))], where A(VFT), B(VFT), and T(0) are empirical constants. The extrapolated tau(0) at calorimetric glass-softening temperature is close to the value expected. The equilibrium permittivity, epsilon(0), is lowest for ibuprofen which indicates an antiparallel orientation of dipoles in its liquid's hydrogen-bonded structure. A decrease in epsilon(0) with time shows that ultraviscous aspirin, progesterone, and quinidine begin to cold-crystallize at a relatively lower temperature than ibuprofen. epsilon(0) of the cold-crystallized phases are, 4.7 for aspirin at 290 K, 2.55 for ibuprofen at 287 K, 2.6 for progesterone at 320 K, and 3.2 for quinidine at 375 K. It is argued that hydrogen-bonding, the Kohlrausch parameter, extent of localized motions and the long-range diffusion times all determine the physical and chemical stability of an amorphous pharmaceutical during storage. (c) 2007 Wiley-Liss, Inc. and the American Pharmacists Association.

  6. Turbulence-induced melting of a nonequilibrium vortex crystal in a forced thin fluid film

    CERN Document Server

    Perlekar, Prasad

    2009-01-01

    To develop an understanding of recent experiments on the turbulence-induced melting of a periodic array of vortices in a thin fluid film, we perform a direct numerical simulation of the two-dimensional Navier-Stokes equations forced such that, at low Reynolds numbers, the steady state of the film is a square lattice of vortices. We find that, as we increase the Reynolds number, this lattice undergoes a series of nonequilibrium phase transitions, first to a crystal with a different reciprocal lattice and then to a sequence of crystals that oscillate in time. Initially the temporal oscillations are periodic; this periodic behaviour becomes more and more complicated, with increasing Reynolds number, until the film enters a spatially disordered nonequilibrium statistical steady that is turbulent. We study this sequence of transitions by using fluid-dynamics measures, such as the Okubo-Weiss parameter that distinguishes between vortical and extensional regions in the flow, ideas from nonlinear dynamics, e.g., \\Poi...

  7. Modeling the Influence of Antifreeze Proteins on Three-Dimensional Ice Crystal Melt Shapes using a Geometric Approach

    CERN Document Server

    Liu, Jun Jie; Dolev, Maya Bar; Celik, Yeliz; Wettlaufer, J S; Braslavsky, Ido

    2012-01-01

    The melting of pure axisymmetric ice crystals has been described previously by us within the framework of so-called geometric crystal growth. Nonequilibrium ice crystal shapes evolving in the presence of hyperactive antifreeze proteins (hypAFPs) are experimentally observed to assume ellipsoidal geometries ("lemon" or "rice" shapes). To analyze such shapes we harness the underlying symmetry of hexagonal ice Ih and extend two-dimensional geometric models to three-dimensions to reproduce the experimental dissolution process. The geometrical model developed will be useful as a quantitative test of the mechanisms of interaction between hypAFPs and ice.

  8. Ultrafast characterization of phase-change material crystallization properties in the melt-quenched amorphous phase.

    Science.gov (United States)

    Jeyasingh, Rakesh; Fong, Scott W; Lee, Jaeho; Li, Zijian; Chang, Kuo-Wei; Mantegazza, Davide; Asheghi, Mehdi; Goodson, Kenneth E; Wong, H-S Philip

    2014-06-11

    Phase change materials are widely considered for application in nonvolatile memories because of their ability to achieve phase transformation in the nanosecond time scale. However, the knowledge of fast crystallization dynamics in these materials is limited because of the lack of fast and accurate temperature control methods. In this work, we have developed an experimental methodology that enables ultrafast characterization of phase-change dynamics on a more technologically relevant melt-quenched amorphous phase using practical device structures. We have extracted the crystallization growth velocity (U) in a functional capped phase change memory (PCM) device over 8 orders of magnitude (10(-10) programmed PCM devices at very high heating rates (>10(8) K/s), which reveals the extreme fragility of Ge2Sb2Te5 in its supercooled liquid phase. Furthermore, these crystallization properties were studied as a function of device programming cycles, and the results show degradation in the cell retention properties due to elemental segregation. The above experiments are enabled by the use of an on-chip fast heater and thermometer called as microthermal stage (MTS) integrated with a vertical phase change memory (PCM) cell. The temperature at the PCM layer can be controlled up to 600 K using MTS and with a thermal time constant of 800 ns, leading to heating rates ∼10(8) K/s that are close to the typical device operating conditions during PCM programming. The MTS allows us to independently control the electrical and thermal aspects of phase transformation (inseparable in a conventional PCM cell) and extract the temperature dependence of key material properties in real PCM devices.

  9. The peculiarities of water crystallization and ice melting processes in the roots of one-year plants (Plantago major L.).

    Science.gov (United States)

    Bakradze, N; Kiziria, E; Sokhadze, V; Gogichaishvili, S

    2008-01-01

    Results are presented of a water phase transition study in plantain (Plantago major L.) roots, which were used as a model system to research the peculiarities of water crystallization and ice melting processes in complex heterogeneous biological systems. It was confirmed that water in such systems is crystallized in two clearly distinguished temperature ranges: -10 to -25 degree capital ES, Cyrillic and -25 to -45 degree capital ES, Cyrillic. These water fractions are conditionally attributed to extracellular (-10 to -25 degree capital ES, Cyrillic) and intracellular (-25 to -45 degree capital ES, Cyrillic) solutions. A possible explanation is given for such significant supercooling of the intracellular solution. The values of osmotic pressures of extra- and intracellular solutions were determined according to ice melting curves. It is noted that the intracellular solution, which crystallized at lower temperatures, had a lower osmotic pressure.

  10. CRYSTALLIZATION AND MELTING OF POLY(ETHYLENE OXIDE) CONFINED IN NANOSTRUCTURED PARTICLES WITH CROSS-LINKED SHELLS OF POLYBUTADIENE

    Institute of Scientific and Technical Information of China (English)

    Wei-ping Gao; Yu Bai; Er-qiang Chen; Qi-feng Zhou

    2005-01-01

    Small fixed aggregates of a poly(ethylene oxide)-block-polybutadiene diblock copolymer (PEO-b-PB) in THF solution were obtained by adding a selective solvent for PB blocks, followed by cross-linking the PB shells. The morphologies of the nanostructured particles with a cross-linked shell were investigated by atomic force microscopy and transmission electron microscopy. The average behaviors of the PEO crystallization and melting confined within the nanostructured particles were studied by using differential scanning calorimetry experiments. For the deeply cross-linked sample (SCL-l), the crystallization of the PEO blocks was fully confined. The individual nanoparticles only crystallized at very low crystallization temperatures (TcS), wherein the homogenous primary nucleation determined the overall crystallization rate. For the lightly cross-linked sample (SCL-2), the confinement effect was Tc dependent. At Tc ≤ 42℃, the crystallization and melting behaviors of SCL-2 were similar to those of the pure PEO-b-PB diblock copolymer. At Tc > 42℃,SCL-2 could form PEO lamellae thicker than those of the pure PEO-b-PB crystallized at the same Tc.

  11. Lamellar thickness transition of melt-crystallized polybuten-1 tetragonal phase: configurational change in chain folding directions

    Institute of Scientific and Technical Information of China (English)

    Motoi YAMASHITA

    2009-01-01

    Lamellar crystal thickness lc of isotactic polybutene-1 (it-PB 1) have been investigated for crystal-lization in the melt over a wide range of crystallization temperature T from 40℃ to 90℃ by small angle X-ray scattering experiments and density measurements. The crystal thickness lc demonstrates two linear dependences on inverse supercooling and a transition from one dependence to the other has been observed around T =65~C. Each of the two dependences obeys the nucleation theory in the high and low supercooling ranges, respec-tively. Chain folding free energy q determined from the low supercooling range is larger than that determined from the high supercooling range. Possible mechanisms for the transition are discussed taking account of entropy of chain folding directions.

  12. Molecular dynamics simulation of melting and crystallization processes of polyethylene clusters confined in armchair single-walled carbon nanotubes.

    Science.gov (United States)

    Zhou, Zhou; Wang, Jinjian; Zhu, Xiaolei; Lu, Xiaohua; Guan, Wenwen; Yang, Yuchen

    2015-01-01

    The confined interaction is important to understand the melting and crystallization of polymers within single-wall carbon tube (SWNT). However, it is difficult for us to observe this interaction. In the current work, the structures and behaviors of melting and crystallization for polyethylene (PE) clusters confined in armchair single-walled carbon nanotubes ((n,n)-SWNTs) are investigated and examined based on molecular dynamics (MD) simulations. The nonbonded energies, structures, Lindemman indices, radial density distributions, and diffusion coefficients are used to demonstrate the features of melting phase transition for PE clusters confined in (n,n)-SWNTs. The chain end-to-end distance (R(n)) and chain end-to-end distribution are used to examine the flexibility of the PE chain confined in SWNT. The global orientational order parameter (P2) is employed to reveal the order degree of whole PE polymer. The effect of polymerization degree on melting temperature and the influence of SWNT chirality on structure of PE cluster are examined and discussed. Results demonstrate that within the confined environment of SWNT, PE clusters adopt novel co-axial crystalline layer structure, in which parallel chains of each layer are approximately vertical to tube axis. The disordered-ordered transformation of PE chains in each layer is an important structural feature for crystallization of confined PE clusters. SWNTs have a considerable effect on the structures and stabilities of the confined PE clusters.

  13. Transport phenomena in a high pressure crystal growth system: In situ synthesis for InP melt

    Science.gov (United States)

    Zhang, H.; Prasad, V.; Anselmo, A. P.; Bliss, D. F.; Iseler, G.

    1997-06-01

    The physical phenomena underlying the "one-step" in situ synthesis and high pressure growth of indium phosphide crystals are complex. A high resolution computer model based on multizone adaptive grid generation and curvilinear finite volume discretization is used to predict the flow and temperature fields during the synthesis of the InP melt. Simulations are performed for a range of parameters, including Grashof number, crucible rotation, and location of the injector. These parameters affect the gas flow in a high pressure liquid-encapsulated Czochralski (HPLEC) furnace significantly, and have a strong influence on the melt synthesis and its control.

  14. Solidification of interstitial melt in a gabbroic crystal mush: the Skaergaard intrusion, Greenland

    Science.gov (United States)

    Namur, Olivier; Humphreys, Madeleine C. S.; Holness, Marian B.; Veksler, Ilya V.

    2013-04-01

    40 in the LS reflect thermochemical changes within the crystal mush. An58, An51 and An40 correspond to the three plagioclase compositions at the successive appearance of cumulus clinopyroxene, Fe-Ti oxides and apatite along the Skaergaard liquid line of descent. Saturation of these phases in the intercumulus melt is thought to result in significant chemical disequilibrium between the intercumulus melt and the liquid in the main magma body. Chemical diffusion of some components, especially sodium, might result in rapid plagioclase growth, resulting in the constant composition rims. Thermal buffering due to the release of significant latent heat might also help in the diffusional process. Diffusion of trace elements probably did not occur or was very slow, explaining the absence of chemical buffering for trace elements in plagioclase rims. The absence of external rims of constant composition in the MBS, as opposed to what is observed in the LS, is perhaps related to the relatively high liquid/crystal ratio in the MBS compared to the LS.

  15. Crystallization behavior of a melt-spun Fe-Ni based steel

    Science.gov (United States)

    Michal, G. M.; Laxmanan, V.; Glasgow, T. K.

    1987-01-01

    Whether Fe-Ni-based alloys solidify with a bcc or fcc structure has been observed by many investigators to be a stronger function of kinetics and undercooling than strictly free-energy minimization. Such behavior has been observed in an Fe(52.8)Ni(28.7)Al(3.4)Ti(6.1)B(9.0) alloy. The alloy was cast as ribbons about 45 microns thick using a dual free-jet variation of chillbock melt spinning against a Cu wheel. Optical, X-ray, and electron analyses of the as-cast and annealed ribbons were performed. A microstructure of at least four layers containing combinations of ecc, bcc, and amorphous phases in differing proportions was observed in the as-cast ribbon. The midthickness layer had the most unusual features, containing fcc grains about 75 nm in size encompassing spherulitic regions as large as 15 microns comprised of fcc grains about 25 nm in size. The crystallization sequence responsible for the as-cast microstructure is discussed in terms of the competition between the formation of bcc and fcc phases as influenced by undercooling, recalescence, and variations in cooling rate experienced by the as-cast ribbon.

  16. Rapid Melt Growth of Single Crystal InGaAs on Si Substrates

    Directory of Open Access Journals (Sweden)

    Xue Bai

    2016-01-01

    Full Text Available InGaAs integration on Si substrates is an important topic for next generation electronic devices. Rapid melt growth (RMG has the potential to grow defect-free lattice mismatched materials on Si at low cost. Most previous publications have focused on growing binary III–V compounds by RMG, but none have discussed ternary compound materials. In this paper, we demonstrate the RMG of the single crystal ternary compound InGaAs on Si substrates. We discuss two main issues. The first is segregation along the stripe length. An analytical model is developed to describe the segregation of In/Ga in the grown stripe and the model is compared with experimental data. The second issue is the dissolution of the Si seed region during RMG, which leads to formation of Si islands inside the InGaAs stripe. The results of this study are applicable to any compound material in which Si is soluble at the elevated temperatures required for RMG.

  17. Influence of clusters in melt on the subsequent glass-formation and crystallization of Fe-Si-B metallic glasses

    Institute of Scientific and Technical Information of China (English)

    Shaoxiong Zhou; Bangshao Dong; Rui Xiang; Guangqiang Zhang; Jingyu Qin; Xiufang Bian

    2015-01-01

    The liquid structure of seven representative Fe–Si–B alloys has been investigated by ab initio molecular dynamics simulation focusing on the role of clusters in terms of glass-forming ability (GFA) and crystallization. It is demonstrated that the type of primary phase precipitated from amorphous state under heat treatment is determined by the relative fraction and role of various clusters in melt. The alloy melt shows higher stability and resultantly larger GFA when there is no dominant cluster or several clusters coexist, which explains the different GFAs and crystallization processes at various ratios of Si and B in the Fe–Si–B system. The close correlation among clusters, crystalline phase and GFA is also studied.

  18. Influence of clusters in melt on the subsequent glass-formation and crystallization of Fe–Si–B metallic glasses

    Directory of Open Access Journals (Sweden)

    Shaoxiong Zhou

    2015-04-01

    Full Text Available The liquid structure of seven representative Fe–Si–B alloys has been investigated by ab initio molecular dynamics simulation focusing on the role of clusters in terms of glass-forming ability (GFA and crystallization. It is demonstrated that the type of primary phase precipitated from amorphous state under heat treatment is determined by the relative fraction and role of various clusters in melt. The alloy melt shows higher stability and resultantly larger GFA when there is no dominant cluster or several clusters coexist, which explains the different GFAs and crystallization processes at various ratios of Si and B in the Fe–Si–B system. The close correlation among clusters, crystalline phase and GFA is also studied.

  19. Quantum melting of the hole crystal in the spin ladder of Sr14-xCaxCu24O41

    NARCIS (Netherlands)

    Rusydi, A.; Abbamonte, P.; Eisaki, H.; Fujimaki, Y.; Blumberg, G.; Uchida, S.; Sawatzky, G. A.

    2006-01-01

    We have used resonant soft x-ray scattering to study the effects of discommensuration on the hole Wigner crystal (HC) in the spin ladder Sr14-xCaxCu24O41 (SCCO). As the hole density is varied the HC forms only with the commensurate wave vectors L-L=1/5 and L-L=1/3; for incommensurate values it "melt

  20. Ab initio analysis of a vacancy and a self-interstitial near single crystal silicon surfaces: Implications for intrinsic point defect incorporation during crystal growth from a melt

    Energy Technology Data Exchange (ETDEWEB)

    Kamiyama, Eiji; Sueoka, Koji [Department of Communication Engineering, Okayama Prefectural University, 111 Kuboki, Soja, Okayama 719-1197 (Japan); Vanhellemont, Jan [Department of Solid State Sciences, Ghent University, Krijgslaan 281-S1, Gent 9000 (Belgium)

    2012-10-15

    The microscopic model of the Si (001) crystal surface was investigated by first principles calculations to clarify the behavior of intrinsic point defects near crystal surfaces. A c(4 x 2) structure model was used to describe the crystal surface in contact with vacuum. The calculations show lower formation energy near the surface and the existence of formation energy differences between the surface and the bulk for both types of intrinsic point defects. The tetrahedral (T)-site and the dumbbell (DB)-site, in which a Si atom is captured from the surface and forms a self-interstitial, are found as stable sites near the third atomic layer. The T-site has a barrier of 0.48 eV, whereas the DB-site has no barrier for the interstitial to penetrate into the crystal from the vacuum. Si atoms in a melt can migrate and reach at the third layer during crystal growth when bulk diffusion coefficient is used. Therefore, the melt/solid interface is always a source of intrinsic point defects. (Copyright copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  1. A novel reverse flow reactor coupling endothermic and exothermic reactions. Part II: sequential reactor configuration for reversible endothermic reactions

    NARCIS (Netherlands)

    Sint Annaland, van M.; Scholts, H.A.R.; Kuipers, J.A.M.; Swaaij, van W.P.M.

    2002-01-01

    The new reactor concept for highly endothermic reactions at elevated temperatures with possible rapid catalyst deactivation based on the indirect coupling of endothermic and exothermic reactions in reverse flow, developed for irreversible reactions in Part I, has been extended to reversible endother

  2. A novel reverse flow reactor coupling endothermic and exothermic reactions. Part II: sequential reactor configuration for reversible endothermic reactions

    NARCIS (Netherlands)

    van Sint Annaland, M.; Scholts, H.A.R.; Kuipers, J.A.M.; van Swaaij, Willibrordus Petrus Maria

    2002-01-01

    The new reactor concept for highly endothermic reactions at elevated temperatures with possible rapid catalyst deactivation based on the indirect coupling of endothermic and exothermic reactions in reverse flow, developed for irreversible reactions in Part I, has been extended to reversible

  3. A novel reverse flow reactor coupling endothermic and exothermic reactions. Part I: comparison of reactor configurations for irreversible endothermic reactions

    NARCIS (Netherlands)

    van Sint Annaland, M.; Scholts, H.A.R.; Kuipers, J.A.M.; van Swaaij, Willibrordus Petrus Maria

    2002-01-01

    A new reactor concept is studied for highly endothermic heterogeneously catalysed gas phase reactions at high temperatures with rapid but reversible catalyst deactivation. The reactor concept aims to achieve an indirect coupling of energy necessary for endothermic reactions and energy released by

  4. Effect of the thermal history of glass melts on crystallization in lithium and sodium disilicate glasses doped with platinum as a nucleating agent

    Energy Technology Data Exchange (ETDEWEB)

    Mishima, Naofumi, E-mail: mishima@ms.kochi-ct.ac.jp; Kawasaki, Yuji

    2016-02-15

    The crystallization behavior of Li{sub 2}O–Na{sub 2}O–2SiO{sub 2} glasses with different thermal histories was examined. The glass melts were doped with 0.005 wt% platinum, held at various temperatures (>T{sub L}) and then water-quenched, and glasses were obtained. Measurements revealed distinctly different crystallization tendencies between glasses whose melt was held at just above the liquidus temperature and glasses whose melt was held at a higher temperature. After double-stage heat treatments, the glasses were crystallized, and needle-like crystals (Li{sub 2}O·SiO{sub 2}) and spherical crystals (Li{sub 2}O·SiO{sub 2}) formed. In particular, platinum-derived nuclei promoted the generation of Li{sub 2}O·SiO{sub 2} crystal. Microscopic observations showed that both crystal particles precipitating in the interior of the crystallized glasses increased in number as the holding temperature decreased. The exothermic crystallization peak of the glass held at a lower temperature appeared earlier than that of the glass with a higher holding temperature in the profile of differential thermal analysis. Additionally, the precipitated amount of Li{sub 2}O·SiO{sub 2} obtained from X-ray diffraction measurement increased with decreasing holding temperature. These results suggest that the distribution of platinum colloids in glass melts varies depending on the holding temperature. - Highlights: • Pt-doped Li{sub 2}O–Na{sub 2}O–2SiO{sub 2} glasses were produced. • Glasses were synthesized by holding melts at various temperatures. • Crystallization behaviors of glasses with different thermal histories were examined. • Crystal particles increased in number as the holding temperature decreased. • Melt structure was estimated from crystallization depending on holding temperature.

  5. Partial crystallization of picritic melt and its applications for the genesis of high-Ti and low-Ti basalts

    Science.gov (United States)

    Yang, J.; WANG, C.; Jin, Z.; Jin, S.; Yan, S.

    2015-12-01

    Geochemical and petrological studies have revealed the existence of high-Ti and low-Ti basalts in large igneous provinces (LIPs). However the originate of these high-Ti and low-Ti magmas are still under debate. Several different mechanisms have been proposed: (1) the high-Ti basalts are formed by the melting of mantle plume containing recycled oceanic crust (Spandler et al., 2008) while low-Ti basalts are formed by the melting of subcontinental lithospheric mantle (Xiao et al., 2004); (2) both high-Ti and low-Ti basalts are from mantle plume source, but the production of high-Ti basalts are associated with the thick lithosphere while the low-Ti basalts are controlled by the thin lithosphere (Arndt et al., 1993); (3) they are derived from the different degrees of melting, with high-Ti basalts representing low degree of partial melting of mantle plume (Xu et al., 2004). The low Mg# (below 0.7) of high-Ti and low-Ti basalts provides that they are far away from direct melting of mantle peridotite. In addition, seismic data indicate unusually high seismic velocities bodies beneath the LIPs which explained by the fractionated cumulates from picritic magmas (Farnetani et al., 1996). Therefore, we believed that the crystallization differentiation process might play a more significant role in the genesis of high-Ti and low-Ti basalts.In order to investigate the generation of high-Ti and low-Ti basalts, a series of high pressure and high temperature partial crystallization experiments were performed at pressures of 1.5, 3.0 and 5.0 GPa and a temperature range of 1200-1700℃. The starting material is picrate glass with relative high TiO2 (2.7 wt %), which is synthesized according to the chemical composition of primary magmas of Emeishan LIP (Xu et al., 2001). The experimental results show that: (1) At a given pressure, the TiO2 content is decreased with increasing melt fraction; (2) At a given melt fraction, the TiO2 content of melts is increased with increasing pressure. On

  6. Crystal chemical effects on the partitioning of trace elements between mineral and melt - An experimental study of melilite with applications to refractory inclusions from carbonaceous chondrites

    Science.gov (United States)

    Beckett, John R.; Spivack, Arthur J.; Hutcheon, Ian D.; Wasserburg, G. J.; Stolper, Edward M.

    1990-01-01

    Results are presented on the partitioning experiments for trace elements Be, Sc, Ba, La, Ce, and Tm between melilite and melt for a bulk composition relevant to Type B inclusions, using a technique, described by Brody and Flemings (1966), by which distributon coeffecients can be obtained over the entire range of crystallization from trace element analysis of a single zoned crystal. Zoned crystals of melilite were grown during controlled cooling rate experiments, and trace element concentrations were determined by SIMS. At each step in the crystal growth, trace element concentrations in the coexisting melt were determined by mass balance, using stepwise integration of a Rayleigh fractionation equation.

  7. Non-isothermal crystallization kinetics in melt-drawn PCL/PLA microfibrillar composites

    Science.gov (United States)

    Kratochvíl, Jaroslav; Kelnar, Ivan

    2016-05-01

    The non-isothermal crystallization kinetics of the system poly(ɛ-caprolactone)/poly(lactic acid)/clay C15 and related microfibrillar composites has been studied using a simple method based on mathematical treatment of the DSC cumulative crystallization curves in their inflection point. The method provides three kinetic parameters: temperature of start of crystallization, temperature of maximum crystallization rate, and numerical value of the maximum crystallization rate. In the range of cooling rates 5 - 20°C/min, the temperatures of crystallization start and of maximum crystallization rate are determined with standard deviation of 0.3 and 0.4°C, respectively. Average standard deviation of maximum crystallization rate is 1.0 K-1 corresponding to coefficient of variation 5.8 %. Repeatability is slightly better at lower cooling rates. The modified samples show intensive nucleation effect during the non-isothermal crystallization, as demonstrated by their values of temperatures of crystallization start and of maximum crystallization rate that are significantly higher than that of neat PCL. The highest maximum crystallization rate has been found for the blend PCL/PLA 80/20. The proposed method does not refer to any crystallization model and does not require exact determination of the starting point of crystallization. On the other hand, it does not provide any information about dimensionality of crystal growth. The method is particularly useful for characterizing a series of samples derived by modification of the neat polymer.

  8. Determining Mechanics of Segregating Small Crystals from Melt Using Modeling and SHRIMP-RG Trace Element Analysis of Zircons: Application to the Spirit Mountain Batholith, Nevada

    Science.gov (United States)

    Claiborne, L. L.; Furbish, D. J.; Miller, C. F.

    2006-12-01

    Melt segregation from crystal mush is commonly cited as generating the highly differentiated melts that form leucogranites and high-silica rhyolites (i.e. Bachmann and Bergantz, 2004). The Spirit Mountain batholith in southern Nevada appears to be a prime example of an intrusion that records this process. It is composed primarily of a thick (more than 7 km) sequence of cumulate granite overlain by 2 km of high-silica leucogranite, interpreted to have been extracted from the cumulate below (Walker et al., in press). Using SHRIMP geochronology, Ti-in-zircon thermometry (Watson et al., 2006), and trace element analysis of the strongly zoned zircons, we have suggested that the batholith accumulated and evolved through repeated episodes of recharge, reheating, and fractionation via melt expulsion from mush (Walker et al., in press; Lowery Claiborne et al., in press). In the leucogranites, interiors of zircons commonly are similar to much of the zircon in cumulate granites, exhibiting the trace element signature of hotter, less fractionated melt; rims of leucogranite zircons generally reflect low T and fractionated melt compositions, consistent with the highly felsic melt represented by their host rocks. These interiors likely represent zircon crystals that were entrained in the upward moving differentiated melt during segregation from the crystal mush. However, the low bulk rock Zr and Zr/Hf of the leucogranite and the high whole rock Zr concentration of the cumulate indicate that most zircon was retained in the cumulate (Lowery Claiborne et al., in press). So, what determines whether zircon (and other small) crystals are entrained in the upward migrating differentiated melt, or whether they are captured in the cumulate mush and segregated from the high-silica melt? What can this tell us about the mechanics of cumulate-melt segregation? Following Bachmann and Bergantz (2004), we have modeled the critical size of crystals and the critical size to mush porosity ratio

  9. In situ crystallization of low-melting ionic liquid [BMIM][PF6] under high pressure up to 2 GPa.

    Science.gov (United States)

    Su, Lei; Li, Min; Zhu, Xiang; Wang, Zheng; Chen, Zhenping; Li, Fangfei; Zhou, Qiang; Hong, Shiming

    2010-04-22

    To develop a new practical method of purifying and recycling ionic liquids, we performed direct microscopic observations and in situ crystallization of low-melting ionic liquid, 1-butyl-3-methylimidazolium hexafluorophosphate ([BMIM][PF(6)]), in detail by high pressure Raman spectroscopy. Compression of [BMIM][PF(6)] was measured under pressures up to about 2.0 GPa at temperatures 293-353 K by using a high pressure diamond anvil cell (DAC). At room temperature, with pressure increasing, the characteristic bands of [BMIM][PF(6)] displayed nonmonotonic pressure-induced frequency shifts, and [BMIM][PF(6)] experienced the liquid-solid phase transition at about 0.50 GPa. In separate experiments, in situ crystallization of low-melting ionic liquid [BMIM][PF(6)] were also measured at various P-T regions, in order to improve the understanding of its stability limits. Finally, the T versus P phase diagram of [BMIM][PF(6)] was constructed, and it showed that the melting point was an increase function of pressure. It was also indicated that the structure changes in the crystalline and liquid states under high pressure might also be associated with conformational changes in the butyl chain. Pressure-released Raman spectra also showed that the phase transition of [BMIM][PF(6)] was reversible.

  10. Effect of melt composition and crystal content on flow morphology along the Alarcón Rise, Mexico

    Science.gov (United States)

    Martin, J. F.; Lieberg-Clark, P.; Clague, D. A.; Caress, D. W.; Portner, R. A.; Paduan, J. B.; Dreyer, B. M.

    2012-12-01

    Differences in submarine lava flow morphology have been related to differences in eruption rate; low eruption rates form pillow-flow morphologies whereas high eruption rates form sheet-flow morphologies. Eruption rate is likely controlled by dike intrusion width, exsolved bubble content of the magma, viscosity of the magma, or some combination these three properties. Samples and observations from a 2012 expedition to the Alarcón Rise, Mexico, are used to evaluate the potential control of viscosity due to melt composition and crystal content on observed flow morphologies and associated eruption rates. A 1-m resolution multibeam survey, covering the entire 50 km length of the neovolcanic zone, was completed using the MBARI Mapping AUV. Based on the high-resolution bathymetry, two basic flow morphologies could be distinguished: pillow flows, comprising ~ 40 % of the rise, and sheet flows, comprising the remaining ~ 60 %. A series of dives using the ROVs Doc Ricketts in 2012 and Tiburon in 2003 visually confirmed pillow flows, lobate flows, sheet flows, and jumbled sheet flows at the sampled sites. Over 150 lava samples collected during the dives, spanning the entire length of the rise were analyzed for major-element chemistry, crystal content, and corresponding flow morphology. Lavas selected for this analysis ranged from basalt to basaltic-andesite (100 pa s, only pillow lavas are generated. The majority (> 80 %) of sampled pillow lavas are plagioclase-phyric to ultraphyric whereas the majority of lobate and sheet flow lavas are aphyric. Crystal fractions in the pillow lavas are as high as 30-40%, resulting in magma viscosities ~ 5-15 times the melt viscosities. The majority of pillow lavas (~77%) have magma viscosities > 100 pa s. Only ~ 25 % of lobate and sheet flow lavas have magma viscosities > 100 pa s. Many of the phyric lobate and sheet flow samples show evidence of strong flow segregation of crystals to the outer surface of the flow, resulting in samples

  11. Magma transport and olivine crystallization depths in Kīlauea’s East Rift Zone inferred from experimentally rehomogenized melt inclusions

    Science.gov (United States)

    Tuohy, Robin M; Wallace, Paul J.; Loewen, Matthew W; Swanson, Don; Kent, Adam J R

    2016-01-01

    Concentrations of H2O and CO2 in olivine-hosted melt inclusions can be used to estimate crystallization depths for the olivine host. However, the original dissolved CO2concentration of melt inclusions at the time of trapping can be difficult to measure directly because in many cases substantial CO2 is transferred to shrinkage bubbles that form during post-entrapment cooling and crystallization. To investigate this problem, we heated olivine from the 1959 Kīlauea Iki and 1960 Kapoho (Hawai‘i) eruptions in a 1-atm furnace to temperatures above the melt inclusion trapping temperature to redissolve the CO2 in shrinkage bubbles. The measured CO2 concentrations of the experimentally rehomogenized inclusions (⩽590 ppm for Kīlauea Iki [n=10]; ⩽880 ppm for Kapoho, with one inclusion at 1863 ppm [n=38]) overlap with values for naturally quenched inclusions from the same samples, but experimentally rehomogenized inclusions have higher within-sample median CO2 values than naturally quenched inclusions, indicating at least partial dissolution of CO2 from the vapor bubble during heating. Comparison of our data with predictions from modeling of vapor bubble formation and published Raman data on the density of CO2 in the vapor bubbles suggests that 55-85% of the dissolved CO2 in the melt inclusions at the time of trapping was lost to post-entrapment shrinkage bubbles. Our results combined with the Raman data demonstrate that olivine from the early part of the Kīlauea Iki eruption crystallized at olivine in the 1-3 km depth range. These depths are consistent with the interpretation that the Kīlauea Iki magma was supplied from Kīlauea’s summit magma reservoir (∼2-5 km depth). In contrast, olivine from Kapoho, which was the rift zone extension of the Kīlauea Iki eruption, crystallized over a much wider range of depths (∼1-16 km). The wider depth range requires magma transport during the Kapoho eruption from deep beneath the summit region and/or from deep

  12. Crystallization of ion clouds in octupole traps: structural transitions, core melting, and scaling laws

    CERN Document Server

    Calvo, Florent; Yurtsever, Ersin

    2009-01-01

    The stable structures and melting properties of ion clouds in isotropic octupole traps are investigated using a combination of semi-analytical and numerical models, with a particular emphasis at finite size scaling effects. Small-size clouds are found to be hollow and arranged in shells corresponding approximately to the solutions of the Thomson problem. The shell structure is lost in clusters containing more than a few thousands of ions, the inner parts of the cloud becoming soft and amorphous. While melting is triggered in the core shells, the melting temperature unexpectedly follows the rule expected for three-dimensional dense particles, with a depression scaling linearly with the inverse radius.

  13. A comparison study on the melt crystallization kinetics of long chain branched and linear isotactic polypropylenes

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    The isothermal and non-isothermal crystallization kinetics of LCBPP and linear-iPP was investigated by optical microscopy and differential scanning calorimetry (DSC). The optical microscopy results in the isothermal crystallization process show that the crystals of LCBPP grow slower than the crystals of the linear-iPP. This originates from the low chain mobility, or in other words, the lower chain diffusion rate of LCBPP due to the existence of long side chains. The DSC results in the isothermal crystallization process show that the LCBPP exhibits, however, a higher overall crystallization rate with respect to the linear-iPP. This is related to the higher nucleation ability of LCBPP since the isothermal crystallization process of both LCBPP and linear-iPP are nucleation-dominated. Avrami analysis indicates that the nucleation nature and crystal growth manner of LCBPP and linear-iPP are about the same. The analyses of the non-isothermal crystallization processes indicate an increment in crystallization rate with increasing cooling rate. But at any cooling rate, the linear-iPP crystallizes more quickly than the LCBPP.This implies that the non-isothermal crystallization processes of LCBPP and linear-iPP are diffusion-dominated, in which the lower chain diffusion rate of LCBPP results in the slower crystallization of it.

  14. Adaptive thermoregulation in endotherms may alter responses to climate change.

    Science.gov (United States)

    Boyles, Justin G; Seebacher, Frank; Smit, Ben; McKechnie, Andrew E

    2011-11-01

    Climate change is one of the major issues facing natural populations and thus a focus of recent research has been to predict the responses of organisms to these changes. Models are becoming more complex and now commonly include physiological traits of the organisms of interest. However, endothermic species have received less attention than have ectotherms in these mechanistic models. Further, it is not clear whether responses of endotherms to climate change are modified by variation in thermoregulatory characteristics associated with phenotypic plasticity and/or adaptation to past selective pressures. Here, we review the empirical data on thermal adaptation and acclimatization in endotherms and discuss how those factors may be important in models of responses to climate change. We begin with a discussion of why thermoregulation and thermal sensitivity at high body temperatures should be co-adapted. Importantly, we show that there is, in fact, considerable variation in the ability of endotherms to tolerate high body temperatures and/or high environmental temperatures, but a better understanding of this variation will likely be critical for predicting responses to future climatic scenarios. Next, we discuss why variation in thermoregulatory characteristics should be considered when modeling the effects of climate change on heterothermic endotherms. Finally, we review some biophysical and biochemical factors that will limit adaptation and acclimation in endotherms. We consider both long-term, directional climate change and short-term (but increasingly common) anomalies in climate such as extreme heat waves and we suggest areas of important future research relating to both our basic understanding of endothermic thermoregulation and the responses of endotherms to climate change.

  15. Kyropoulos method for growth of nonlinear optical organic crystal ABP (4-aminobenzophenone) from the melt

    Science.gov (United States)

    Pan, Shoukui; Okano, Y.; Tsunekawa, S.; Fukuda, T.

    1993-03-01

    The Kyropoulus method was used to grow nonlinear optical organic crystals ABP (4-aminobenzophenone). The crystals were characterized by nonlinear optical measurements and had a large effect of frequency doubling.

  16. Melting and crystallization behavior of partially miscible high density polyethylene/ethylene vinyl acetate copolymer (HDPE/EVA) blends

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Yang; Zou, Huawei, E-mail: hwzou@163.com; Liang, Mei, E-mail: liangmeiww@163.com; Cao, Ya

    2014-06-01

    Highlights: • HDPE/EVA blends undergo phase separation, making it an interesting topic to investigate the relationships between miscibility and crystallization. • Influences from blending on the crystallization kinetics were successfully evaluated by Friedman's and Khanna's method. • X-ray diffraction studies revealed that blending with EVA the unit length of the unit cell of the HDPE increases. • Thermal fractionation method was successfully used to characterize the co-crystallization in HDPE/EVA blends. - Abstract: Crystallization studies on HDPE/EVA blends and the individual components were performed with differential scanning calorimetry (DSC) technique and wide angle X-ray scattering (WAXS). Influences of blending on the crystallization kinetics of each component in HDPE/EVA mixture were evaluated by Friedman's activation energy and Khanna's crystallization rate coefficient (CRC). The addition of more HDPE into the EVA matrix causes more heterogeneous nucleation while the addition of EVA would hinder the nucleation of HDPE at the beginning of cooling process. Inter-molecular interaction in the melt facilitated the crystallization of both EVA and HDPE components. X-ray diffraction studies revealed that HDPE and EVA have orthorhombic unit cell. Blending with EVA did not affect the crystalline structure of HDPE. In addition, a little shift of (1 1 0), (2 0 0) and (0 2 0) crystalline peaks toward lower 2θ values of samples indicating a little increase of unit cell parameters of the orthorhombic unit cell of polyethylene. Thermal fractionation results showed that co-crystallization took place in the HDPE/EVA blend. All those results indicated that the polymer pair we choose was partially miscible.

  17. Apparatus for use in the production of ribbon-shaped crystals from a silicon melt

    Science.gov (United States)

    Berkman, S.; Temple, H. E. (Inventor)

    1980-01-01

    A susceptor for facilitating induction heating of silicon melt is described. The susceptor comprises a pair of susceptor halves of a thickness less than two skin depths, each being the mirror image of the other, disposed in mutually opposed, electrically insulated relation. The crucible comprises a quartz body supported by the graphite susceptor, whereby the R-F coil is electrically coupled with the melt.

  18. 熔融结晶法提纯1-萘酚%Melt Crystallization Purification of 1 -naphthol

    Institute of Scientific and Technical Information of China (English)

    贺小兰; 朱进; 付达权

    2012-01-01

    从混合萘酚中分离提纯1-萘酚采用熔融结晶技术,通过对降温速率、结晶终温、升温速率及“发汗”终温等因素对粗晶体收率及纯度的影响的综合考虑,经多次反复实验,确定了结晶提纯1-萘酚较佳的工艺参数条件,经过单级结晶1-萘酚的含量由80%上升到了93%。%From mixed naphthol in separation and purification of 1 - naphthol by melt crystallization technology, through the cooling rate, the final crystallization temperature, heating rate and the "sweating" the final temperature and other factors on the yield and purity of the crude crystal, the better conditions of process parameters of crystallization purification of 1 - naphthol was determined after repeated experiments, and 1 - napht, hol content was increased from 80% to 93% through a single -stage crystallization.

  19. Micro- and nano-porous surface patterns prepared by surface-confined directional melt crystallization of solvent

    Science.gov (United States)

    Kim, Byoung Soo; Kim, Hyun Jin; An, Suyeong; Chi, Sangwon; Kim, Junseok; Lee, Jonghwi

    2017-07-01

    Recently, numerous attempts have been made to engineer micro- and nano-porous surface patterns or to develop convenient preparation methods for the practical applications of self-cleaning surfaces, water-repellent surfaces, novel textures, etc. Herein, we introduce a simple, cheap, and repeatable crystallization-based method to produce porous surface structures, on any surface of already fabricated polymeric materials. Contact of the solvent phase with cooled polymer surfaces enabled the limited dissolution of the surfaces and the subsequent extremely fast melt crystallization of the solvent. After removing the crystals, various micro- and nano-porous patterns were obtained, whose pore sizes ranged over three orders of magnitude. Pore depth was linearly dependent on the dissolution time. Crystal growth was mainly directed normal to the surfaces, but it was also controlled in-plane, resulting in cylindrical or lamellar structures. Superhydrophobic surfaces were successfully prepared on both polystyrene and polycarbonate. This process offers a novel surface engineering tool for a variety of polymer surfaces, whose topology can be conveniently controlled over a wide range by crystal engineering.

  20. Influence of gravitational and vibrational convection on the heat- and mass transfer in the melt during crystal growing by Bridgman and floating zone methods

    Science.gov (United States)

    Fedorov, Oleg

    2016-07-01

    Space materials science is one of the priorities of different national and international space programs. The physical processes of heat and mass transfer in microgravity (including effect of g-jitter) is far from complete clarity, especially for important practical technology for producing crystals from the melt. The idea of the impact on crystallizing melt by low frequency vibration includes not only the possibility to suppress unwanted microaccelerations, but also to actively influence the structure of the crystallization front. This approach is one of the most effective ways to influence the quality of materials produced in flight conditions. The subject of this work is the effect of vibrations on the thermal and hydrodynamic processes during crystal growth using Bridgman and floating zone techniques, which have the greatest prospect of practical application in space. In the present approach we consider the gravitational convection, Marangoni convection, as well as the effect of vibration on the melt for some special cases. The results of simulation were compared with some experimental data obtained by the authors using a transparent model substance - succinonitrile (Bridgman method), and silicon (floating zone method). Substances used, process parameters and characteristics of the experimental units correspond the equipment developed for onboard research and serve as a basis for selecting optimum conditions vibration exposure as a factor affecting the solidification pattern. The direction of imposing vibrations coincides with the axis of the crystal, the frequency is presented by the harmonic law, and the force of gravity was varied by changing its absolute value. Mathematical model considered axisymmetric approximation of joint convective-conductive energy transfer in the system crystal - melt. Upon application of low-frequency oscillations of small amplitude along the axis of growing it was found the suppression of the secondary vortex flows near the

  1. MORPHOLOGY EVOLUTION IN PTFE AS A FUNCTION OF MELT TIME AND TEMPERATURE Ⅰ. HIGH MOLECULAR WEIGHT SINGLE- AND MULTI-MOLECULE FOLDED CHAIN SINGLE CRYSTALS AND BAND STRUCTURES

    Institute of Scientific and Technical Information of China (English)

    J.Yang; K.L.Petersen; R.A.Williams; P.H.Geil; T.C.Long; P.Xu

    2005-01-01

    The effect of sintering dispersed dispersion and nano-emulsion particles of high molecular weight polytetrafluoroethylene (PTFE) on a substrate as a function of "melt" time and temperature is described. Folded chain single crystals parallel to the substrate and as ribbons on-edge (with double striations), as well as bands, are produced for longer sintering times; particle merger and diffusion of individual molecules, crystallizing as folded chain, single (or few) molecule,single crystals when "trapped" on the substrate by cooling occur for shorter sintering times. It is suggested the observed structures develop with sintering time, in a mesomorphic melt. The structure of the nascent particles is also discussed.

  2. Numerical investigation of factors affecting the shape of the crystal-melt interface in edge-defined film-fed growth of sapphire crystals

    Science.gov (United States)

    Stelian, C.; Barthalay, N.; Duffar, T.

    2017-07-01

    Numerical modeling is used to investigate the shape of the crystal-melt interface in edge-defined film-fed growth (EFG) of large size sapphire rods and sheets. The present analysis shows that the temperature distribution in the meniscus is significantly affected by the internal radiative exchanges in the sapphire crystal. 2D axisymmetric computations performed in the case of sapphire rods, show a concave shape of the interface for opaque crystals, and a convex shaped interface for semi-transparent crystals. The temperature gradient across the meniscus increases significantly in the case which accounts for the internal radiative effect in the crystal. Large temperature differences along the free surface of the meniscus generate intense Marangoni flow, which can influence the shape of the growth interface. In this case, the meniscus height increases, producing instabilities in the growth process. The effect of die geometry on the interface shape is analyzed by increasing the angle between the working edges of the die. Computations shows that the interface curvature decreases as this angle increases, but the solidification isotherm moves up, leading to an increased meniscus height. 3D modeling is applied to investigate the EFG growth of large size sapphire sheets. Numerical results show a non-uniform temperature distribution in the meniscus, and a complex 3D flow pattern. However, the intensity of the flow is low in this case, having no influence on the temperature field and interface shape.

  3. Melt inclusions are not reliable proxies for magmatic liquid composition: evidence from crystal-poor andesites and dacites in the Tequila volcanic field, Mexico

    Science.gov (United States)

    Frey, H. M.; Lange, R. A.

    2009-12-01

    A compositional study of >200 melt inclusions in plagioclase and orthopyroxene phenocrysts from six crystal-poor (2-5 vol%) andesite and dacite lavas (60-68 wt% SiO2) from the Tequila volcanic field in the Mexico arc is used to evaluate whether melt inclusions in phenocrysts accurately record magmatic liquid compositions. The crystal-poor andesites and dacites were erupted contemporaneously with crystal-poor rhyolites, and there is a continuum in the SiO2 concentration of the erupted magmas. The liquid line of descent defined by the whole-rock compositions ranges from andesite to rhyolite (60-77 wt% SiO2), as illustrated on Harker diagrams. The crystal-poor andesites and dacites are multiply saturated with five to seven mineral phases (plagioclase + orthopyroxene + titanomagnetite + ilmenite + apatite ± augite ± hornblende), most of which crystallized via degassing during magma ascent (Frey and Lange, 2009). By comparison with phase equilibrium experiments from the literature, it is shown that the vast majority of crystals are phenocrysts and not xenocrysts. Textural evidence of rapid crystal growth includes skeletal, hopper, and swallow-tail morphologies and abundant melt inclusions. The inclusions range in size from a few microns to > 50 μm and occur as isolated pockets and extensive channels that mimic the crystal morphology. Inclusions are typically brown glass, with occasional microphenocrysts of titanomagnetite and/or apatite within or adjacent to the melt inclusions. The compositions of the melt inclusions in the plagioclase and orthopyroxene phenocrysts, when plotted on Harker diagrams, vary systematically from one another and from the liquid line of descent defined by the whole rock compositions of erupted magmas. For example, melt inclusions in plagioclase are systematically depleted in Al2O3 relative to the whole rock samples, whereas those in coexisting orthopyroxenes are systematically enriched in Al2O3. The opposite trend is found for FeO, where it

  4. Ca(Ti,Si)O3 Diamond Inclusions Crystallized From Carbonate Melts in the Transition Zone: Experimental Constraints

    Science.gov (United States)

    Armstrong, L. S.; Walter, M. J.; Keshav, S.; Bulanova, G.; Pickles, J.; Lord, O. T.; Lennie, A.

    2007-12-01

    Composite diamond inclusions consisting of coexisting endmember CaSiO3 and CaTiO3 are rare but occur in diamond populations from Juina, Brazil1-2. Phase relations show that above ~9 GPa (at 1500 K) a perovskite-structured solid solution exists between these endmembers, while at lower pressures intermediate compositions produce coexisting CaTiO3-perovskite and CaSiO3 in the walstromite structure3. Inclusions with `perovskite' stoichiometry are commonly interpreted as fragments of solid mantle from the transition zone or lower mantle4-6. Here we report on two composite diamond inclusions from Juina kimberlite, and can effectively eliminate a subsolidus origin on the basis of experimental mineral phase relations. Instead, based on new melting experiments we find that the inclusions most likely crystallized directly from Ca-rich carbonate melts. Like other workers1-2 we interpret the composite inclusions as exsolution products of a high-pressure Ca(Ti,Si)O3 perovskite stable in the transition zone. Our bulk inclusion compositions are estimated to contain 50- 65 mol% CaTiO3, and are remarkably low in MgSiO3 component at less than 0.2 mol%. Experiments have shown that in peridotite or eclogite lithologies, Ca-rich perovskite in equilibrium with an MgSiO3-phase (majorite or Mg-perovskite) have about 3 to 7 mol% MgSiO37-8. Here we report on new subsolidus laser-heated diamond anvil cell experiments at 20-50 GPa in the ternary system CaSiO3-CaTiO3-MgSiO3 that bracket the CaTi-rich limb of the solvus between Ca- and Mg-rich perovskites. All experiments were made at 2000 (±200) K for 45-75 min, and were analysed using synchrotron micro-focus X-ray diffraction. We find that the solubility of MgSiO3 in CaTi-perovskite solid solutions increases significantly with increasing CaTiO3 component. Thus, Ti-rich calcium perovskite in peridotite or eclogite lithologies should have very high, not exceptionally low, MgSiO3 component. Accordingly, a subsolidus paragenesis is unlikely for

  5. Two-dimensional crystal melting and D4-D2-D0 on toric Calabi-Yau singularities

    CERN Document Server

    Nishinaka, Takahiro; Yoshida, Yutaka

    2013-01-01

    We construct a two-dimensional crystal melting model which reproduces the BPS index of D2-D0 states bound to a non-compact D4-brane on an arbitrary toric Calabi-Yau singularity. The crystalline structure depends on the toric divisor wrapped by the D4-brane. The molten crystals are in one-to-one correspondence with the torus fixed points of the moduli space of the quiver gauge theory on D-branes. The F- and D-term constraints of the gauge theory are regarded as a generalization of the ADHM constraints on instantons. We also show in several examples that our model is consistent with the wall-crossing formula for the BPS index.

  6. Vertical cavity lasing from melt-grown crystals of cyano-substituted thiophene/phenylene co-oligomer

    Energy Technology Data Exchange (ETDEWEB)

    Tanaka, Yosuke; Yanagi, Hisao, E-mail: yanagi@ms.naist.jp [Graduate School of Materials Science, Nara Institute of Science and Technology (NAIST), 8916-5 Takayama, Ikoma, Nara 630-0192 (Japan); Goto, Kaname; Yamashita, Kenichi; Yamao, Takeshi; Hotta, Shu [Graduate School of Science and Technology, Kyoto Institute of Technology, Matsugasaki, Sakyo-ku, Kyoto 606-8585 (Japan); Sasaki, Fumio [Electronics and Photonics Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1 Umezono, Tsukuba, Ibaraki 305-8568 (Japan)

    2015-10-19

    Vertical-cavity organic lasers are fabricated with melt-grown crystals of a cyano-substituted thiophene-phenylene co-oligomer. Due to lying molecular orientation, surface-emitting lasing is achieved even in the half-cavity crystal grown on a distributed Bragg reflector (DBR) under optical pumping at room temperature. Anticrossing splits in angle-resolved photoluminescence spectra suggest the formation of exciton-polaritons between the cavity photons and the confined Frenkel excitons. By constructing the full-cavity structure sandwiched between the top and bottom DBRs, the lasing threshold is reduced to one order, which is as low as that of the half cavity. Around the threshold, the time profile of the full-cavity emission is collapsed to a pulsed shape accompanied by a finite turn-on delay. We discuss these observed characteristics in terms of a polariton contribution to the conventional photon lasing.

  7. Study on the crystal morphology and melting behavior of isothermally crystallized composites of short carbon fiber and poly(trimethylene terephthalate)

    Institute of Scientific and Technical Information of China (English)

    Mingtao RUN; Hongzan SONG; Yanping HAO

    2009-01-01

    The spherulites of the short carbon fibcr(SCF)/ poly (trimethylcne terephthalate) (PTT) composites forrned in limited space at designed temperatures, and their melting behaviors were studied by the polarized optical microscopy, atomic force microscopy (AFM), and scanning electron microscopy (SEM), respectively. The results suggest that SCF content, isothermal crystallization temperatures, and the film thicknesses influence the crystal morphology of the composites. The dimension of the spherulites is decreased with increasing SCF content, but whether banded or nonbandcd spherulites will form in the composites is not depondcnt on SCF content However, the crystal morphology of the composites depends strongly on the temperature. When the isothermal crystallization temperatures increase from 180℃ to 230℃, the crystal morphology of SCF/PTT composites continuously changes in the following order: nonbanded → banded → nonbanded spherulites. Disconti-nuous circle lines form in the film when the film thickness increases from 30 to 60 μm. Basing on the SEM observation, it is found that these circle lines are cracks formed due to the constriction difference of the different parts of the sphemlites. These cracks are formed when the film is cooled from the isothermal crystallization temperature to the room tempera-ture at a slow cooling rate; while they will disappear gradually at different temperatures in the heating process. The crack will appear/disappear first around the center of the spherulite when the film was cooled/heated. The nontwisted or slightly twisted lamellas will reorganize to form highly twisted lamellas inducing apparent banded texture of the sphemlites.

  8. Enhancement of heat transfer in Czochralski growth of silicon crystals with a chemical cooling technique

    Science.gov (United States)

    Ding, Junling; Liu, Lijun; Zhao, Wenhan

    2017-06-01

    The cost of producing single-crystalline silicon with the Czochralski method can be reduced by promoting the crystal size and/or crystal pulling rate. However, more latent heat of solidification needs to be released from the melt-crystal (m-c) interface during the crystal growth process. In this study, the C-CO2 chemical endothermic reaction is proposed as a novel and efficient cooling technique to solve this problem. Compared with the conventional gas cooling method, C-CO2 endothermic reaction method can significantly enhance the heat transfer in the crystal at the m-c interface. It was found that the heat transfer is more enhanced with a chemical reaction of smaller activation energy, and the m-c interface becomes flatter. The influence of the carbon concentration in the chemical reactive gas flow on the heat removal in the crystal at the m-c interface is also investigated. The cooling effect is significantly increased with the increase in the carbon concentration when it is small. However, when the carbon concentration in the reactive gas is high, the cooling effect just increases slightly. The research demonstrates that the proposed chemical endothermic reaction is a promising cooling technique to be applied in CZ-Si crystal growth with large size/high pulling rate.

  9. Investigation of heat sink of endothermic hydrocarbon fuels

    Institute of Scientific and Technical Information of China (English)

    GUO Yong-sheng; LIN Rui-sen

    2005-01-01

    Endothermic hydrocarbon fuels are advanced coolants for high-temperature structures of spacecraft. No data of tested-cooling-ability of endothermic fuels have been broadly discussed in literature. In this work a high-temperature flow calorimeter was designed, and the cooling capacity of six different hydrocarbon fuels were measured. Experimental results showed that these hydrocarbon fuels have capacity for cooling high-temperature structures, and that the cooling capacity of fuel N-1 can reach 3.15 M J/kg, which can nearly satisfy the requirement of thermal management for a Mach 3 cruise aircraft, whose heat sink requirement is about 3.5 M J/kg. The endothermic velocity of hydrocarbon fuels was also measured by the calorimeter.

  10. Thermodynamics behind carbon nanotube growth via endothermic catalytic decomposition reaction.

    Science.gov (United States)

    Harutyunyan, Avetik R; Kuznetsov, Oleg A; Brooks, Christopher J; Mora, Elena; Chen, Gugang

    2009-02-24

    Carbon filaments can be grown using hydrocarbons with either exothermic or endothermic catalytic decomposition enthalpies. By in situ monitoring the evolution of the reaction enthalpy during nanotube synthesis via methane gas, we found that although the decomposition reaction of methane is endothermic an exothermic process is superimposed which accompanies the nanotube growth. Analysis shows that the main contributor in this liberated heat is the radiative heat transfer from the surroundings, along with dehydrogenation reaction of in situ formed secondary hydrocarbons on the catalyst surface and the carbon hydrogenation/oxidation processes. This finding implies that nanotube growth process enthalpy is exothermic, and particularly, it extends the commonly accepted temperature gradient driven growth mechanism to the growth via hydrocarbons with endothermic decomposition enthalpy.

  11. Stepwise behavior of vortex-lattice melting transition in tilted magnetic fields in single crystals of Bi(2)Sr(2)CaCu(2)O(8 + delta).

    Science.gov (United States)

    Mirković, J; Savel'ev, S E; Sugahara, E; Kadowaki, K

    2001-01-29

    The vortex-lattice melting transition in Bi(2)Sr(2)CaCu(2)O(8 + delta) single crystals was studied using in-plane resistivity measurements in magnetic fields tilted away from the c axis to the ab plane. In order to avoid the surface barrier effect which hinders the melting transition in the conventional transport measurements, we used the Corbino geometry of electric contacts. The complete H(c) - H(ab) phase diagram of the melting transition in Bi(2)Sr(2)CaCu(2)O(8 + delta) is obtained for the first time. The c-axis melting field component H(c)(melt) exhibits the novel, stepwise dependence on the in-plane magnetic fields H(ab) which is discussed on the basis of the crossing vortex-lattice structure. The peculiar resistance behavior observed near the ab plane suggests the change of phase transition character from first to second order.

  12. Characterization of the polycaprolactone melt crystallization: complementary optical microscopy, DSC, and AFM studies.

    Science.gov (United States)

    Speranza, V; Sorrentino, A; De Santis, F; Pantani, R

    2014-01-01

    The first stages of the crystallization of polycaprolactone (PCL) were studied using several techniques. The crystallization exotherms measured by differential scanning calorimetry (DSC) were analyzed and compared with results obtained by polarized optical microscopy (POM), rheology, and atomic force microscope (AFM). The experimental results suggest a strong influence of the observation scale. In particular, the AFM, even if limited on time scale, appears to be the most sensitive technique to detect the first stages of crystallization. On the contrary, at least in the case analysed in this work, rheology appears to be the least sensitive technique. DSC and POM provide closer results. This suggests that the definition of induction time in the polymer crystallization is a vague concept that, in any case, requires the definition of the technique used for its characterization.

  13. Simulation of ultrasound influence on melt convection for the growth of Ga(x)In(1-x)Sb and Si single crystals by the Czochralski method.

    Science.gov (United States)

    Kozhemyakin, G N; Nemets, L V; Bulankina, A A

    2014-12-01

    The flow simulation for GaxIn1-xSb and Si melts was conducted for quasi-steady conditions. The maximum velocity was under the solid-liquid interface near periphery of the crystals. An introduction of ultrasound into the liquid formed a standing wave channel under the solid-liquid interface, which acted on melt particles. The calculations of convective and ultrasonic forces acting on the particles in the melt showed that the ultrasonic force is much higher than the convective force. Copyright © 2014 Elsevier B.V. All rights reserved.

  14. A sample holding technique for study of crystal growth in silicate melts

    Science.gov (United States)

    Donaldson, C. H.; Williams, R. J.; Lofgren, G.

    1975-01-01

    A thin platinum wire loop is an effective way to hold silicate melts during experimentation in a gas-mixing furnace. This method results in a minimum of physical and chemical interaction between the sample and container but maximum interaction between sample and gas mixture. However, volatilization of sodium occurs while the silicate is molten. By minimizing the chance of heterogeneous nucleation, the method is ideal for experimental investigation of the origin of rock textures.

  15. The influence of heterogeneous nucleation on the surface crystallization of guaifenesin from melt extrudates containing Eudragit L10055 or Acryl-EZE.

    Science.gov (United States)

    Bruce, Caroline D; Fegely, Kurt A; Rajabi-Siahboomi, Ali R; McGinity, James W

    2010-05-01

    The objective of this study was to investigate the influence of talc and humidity conditions during storage on the crystal growth of guaifenesin on the surface of melt-extruded matrix tablets. Tablets consisted of the model drug guaifenesin in a matrix of either Acryl-EZE(R) or Eudragit(R) L10055 and either no talc, 25% or 50% talc. After processing, the hot-melt-extruded matrix tablets were supersaturated with amorphous guaifenesin, which resulted in the development of guaifenesin drug crystals on exposed surfaces of the tablet during storage (all tablets were stored at 24 degrees C). A previously developed, quantitative test was used to assay for surface guaifenesin. In tablets with a drug-to-polymer ratio of 19:81, talc-containing tablets exhibited an earlier onset of crystal growth (storage at 17% relative humidity). The presence of talc also increased the amount of surface crystallization and was independent of the talc concentration, since the talc levels used in this study exceeded the critical nucleant concentration. Additional non-melting components did not have an additive effect on surface crystal growth. High humidity during storage (78%) increased guaifenesin crystallization, but moisture uptake of tablets did not correlate with increased drug recrystallization. When storage at 17% relative humidity was interrupted for 3days by storage at 78% relative humidity before the tablets were returned to their previous low RH storage conditions, crystal growth quickly increased during the high RH interval and remained at an elevated level throughout the remaining storage period. A similar intermediate period of low, 17% relative humidity in tablets stored before and after that time at 78% RH did not affect surface crystallization levels. The effects of humidity and talc on the crystallization of guaifenesin from melt-extruded dosage forms supersaturated with amorphous drug were ascribed to heterogeneous nucleation.

  16. Degassing-induced crystallization in silicate melt inclusion: evaluating the role of post-entrapment changes in melt inclusion from the SW volcanic flows of Deccan Large Igneous Province (Deccan LIP) lava.

    Science.gov (United States)

    Rani Choudhary, Babita

    2017-04-01

    Melt inclusions represent sampling of magma during their growth in magma chambers and during ascent to the surface. Several studies of melt inclusions in Large Igneous Provinces (LIPs) in different parts of the world have been documented in the literature (Sobolev et al. 2011; Kamenetsky et al. 2012). Melt inclusions study from Deccan LIP can provide new insights into the physio-chemical conditions and evolution of this important LIP. The Deccan LIP was fissure eruption mainly emplaced over a very short duration at 66 Ma (Schoene et al. 2015). To better characterize and explain the diversity in geochemical composition, petrogenesis and volatile degassing, melt inclusions studies have been carried out in clinopyroxene and plagioclase feldspar from a suite of samples in the Western Ghats section. Samples were obtained from the upper three formations (the Wai subgroup). The inclusions are primary and range in shape and size varies from a few microns, up to 100 microns. The inclusions are crystalline, and contain daughter phases. Some are glassy, with or without a shrinkage bubble. The melt inclusions show substantial variations in major element composition. Inclusions are significantly enriched in TiO2 (3.68 to 0.08 wt%) and FeO (18.3 to 2.63 wt%). SiO2 ranges from 43.4-66.8 wt% and classification diagrams of total alkali (Na2O+K2O) Vs. silica melt inclusions show that most inclusions are of sub-alkaline to mildly alkaline composition. Al2O3 ranges from 9.7- 22.4wt % and MgO 18.3-1.6. EPMA measurements demonstrated the presence of daughter crystals, such as magnetite and titanomagnetite, and high FeO, TiO2 and CaO within melt inclusions among the silicate daughter crystal clusters. Volatiles are determined have wide range in composition in both plagioclase- and pyroxene-hosted melt inclusions by using FTIR technique, values up to 2wt% H2Ototal and 1808 ppm CO2. Moreover the variability in composition and volatiles the melt from the samples in a single flow suggests

  17. Valence State Partitioning of V between Pyroxene and Melt for Martian Melt Compositions Y 980459 and QUE 94201: The Effect of Pyroxene Composition and Crystal Structure

    Science.gov (United States)

    Papike, J. J.; Burger, P. V.; Bell, A. S.; Shearer, C. K.; Le, Loan; Jones, J.

    2014-01-01

    A spiked (with REE, V, Sc) martian basalt Y980459 composition was used to synthesize olivine, spinel, and pyroxene at 1200 C at 5 oxygen fugacities: IW-1, IW, IW+1, IW+2, and QFM. The high spike levels for REE were used for two specific reasons. First, we wanted to be able to analyze REE by both electron microprobe and ion probe. Second, we wanted the most important "Others" components, (i.e., those outside the pyroxene quadrilateral such as Al, Cr3+, Fe3+, REE3+, V3+, V4+, etc.) to be REE3+Mg (Si,Al)2O6. At the doped levels we used, the most important "Others" component is REE3+ in the M2 site coupled with Al in the tetrahedral site. The goal of this paper is to explain the significant increase in the value of D(sub V)(sup pyroxene/melt) with increased Wo content of the pyroxene. We compare augite (Wo approx. 33), pigeonite (Wo approx. 13) and orthopyroxene (Wo approx 3.8). We also show olivine for comparison. The crystal chemical factors which account for this remarkable increase of DV with Wo are twofold. First, with Ca in the M2 site (as in diopside, CaMgSi2O6) the site is large and 8-coordinated while Mg in the M2 site (as in enstatite, Mg2Si2O6) the site is smaller and 6- coordinated. Second, tetrahedral Al in the pyroxene chains provides charge balance and makes the M2 site larger and more compliant for the introduction of REE.

  18. Effects of emulsifier addition on the crystallization and melting behavior of palm olein and coconut oil.

    Science.gov (United States)

    Maruyama, Jessica Mayumi; Soares, Fabiana Andreia Schafer De Martini; D'Agostinho, Natalia Roque; Gonçalves, Maria Inês Almeida; Gioielli, Luiz Antonio; da Silva, Roberta Claro

    2014-03-12

    Two commercial emulsifiers (EM1 and EM2), containing predominantly monoacylglycerols (MAGs), were added in proportiond of 1.0 and 3.0% (w/w) to coconut oil and palm olein. EM1 consisted of approximately 90% MAGs, whereas EM2 consisted of approximately 50% MAGs. The crystallization behavior of these systems was evaluated by differential scanning calorimetry (DSC) and microscopy under polarized light. On the basis of DSC results, it was clear that the addition of EM2 accelerated the crystallization of coconut oil and delayed the crystallization of palm olein. In both oils EM2 addition led to the formation of smaller spherulites, and these effects improved the possibilities for using these fats as ingredients. In coconut oil the spherulites were maintained even at higher temperatures (20 °C). The addition of EM1 to coconut oil changed the crystallization pattern. In palm olein, the addition of 3.0% (w/w) of this emulsifier altered the pattern of crystallization of this fat.

  19. Thermal Analysis, Mechanical and Rheological Behaviour of Melt Manufactured Polyethylene/Liquid Crystal Polymer Blends

    Directory of Open Access Journals (Sweden)

    Ilze ELKSNITE

    2011-07-01

    Full Text Available Modification of properties of conventional thermoplastics with thermotropic liquid crystal polymers, from one hand, allows decrease their viscosities, substantially facilitating processing conditions, and, from another hand, allows increase their exploitation properties. Orientation of the labile structure of liquid crystal polymer in extrusion or injection moulding causes specific reinforcement (so-called self-reinforcement to occur in the blends containing liquid crystal polymer. Up to now the effect of self-reinforcement is mostly investigated in the blends, containing considerable amount of liquid crystal polymer. In this research the effect of minor amounts of liquid crystalline co-polyester modifier on the properties of polyethylene is investigated. Various compositions of laboratory synthesized hydroxybenzoic acid /polyethylene terephtalate copolymer containing polyethylene composites have been manufactured by thermoplastic blending. It has been observed that 1 modulus of elasticity, yield strength and ultimate strength increase with raising the content of liquid crystalline modifier; 2 void content in the investigated polyethylene/liquid crystal copolymer composites is not greater that 1 %; 3 addition of liquid crystalline co-polyester modifier improves arrangement of PE crystalline phase.http://dx.doi.org/10.5755/j01.ms.17.2.483

  20. [Analysis of bleeding cause after uvulopalatopharyngoplasty with endotherm knife].

    Science.gov (United States)

    Yang, Guoning; Cun, Lihua; Ma, Ya; Duan, Jingyan

    2015-10-01

    To summary and analyze the bleeding causes after uvulopalatopharyngoplasty(UPPP) with endotherm knife, and preventive measures will be given to effectively reduce postoperation hemorrhage. Two hundred and twenty-six cases of obstructive sleep apnea hypopnea syndrome (OSAHS) adult patients, were carryed out UPPP under general anesthesia with endotherm knife to observe postoperation hemorrhage. Eight cases out of 226 patients or 3.5% occurred postoperation hemorrhage, 2 cases after 1 or 2 days, 6 cases after 6 or 12 days. The postoperation hemorrhage stopped by local compression hemostasis or bi-polar coagulation hemostasis, and no more bleeding occurred. The minimal trauma, quick operation and less-bleeding will be caused by UPPP with endotherm knife. Few patients 3.5% had a small amount of bleeding after operation, but no serious bleeding occured. Hemorrhage often happened during pseud mucosa falling off period. The bleeding was related with using skill of endotherm knife during operation, postoperation pse-ud mucosa falling off, local inflammation, improper eating and emotional stress of patients.

  1. Coupling of exothermic and endothermic hydrogen storage materials

    Science.gov (United States)

    Brooks, Kriston P.; Bowden, Mark E.; Karkamkar, Abhijeet J.; Houghton, Adrian Y.; Autrey, S. Thomas

    2016-08-01

    Chemical hydrogen storage (CHS) materials are a high-storage-density alternative to the gaseous compressed hydrogen currently used to provide hydrogen for fuel cell vehicles. One of the challenges of CHS materials is addressing the energy barriers required to break the chemical bonds and release the hydrogen. Coupling CHS reactions that are endothermic and exothermic during dehydrogenation can improve onboard energy efficiency and thermal control for the system, making such materials viable. Acceptable coupling between reactions requires both thermodynamic and kinetic considerations. In this work, models were developed to predict the reaction enthalpy and rate required to achieve high conversions for both reactions based on experimental measurements. Modeling results show that the coupling efficiency of exothermic and endothermic reactions is more sensitive to the ratio of the exothermic and endothermic enthalpies than to the ratio of the rates of the two steps. Modeling results also show that a slower endothermic step rate is desirable to permit sufficient heating of the reactor by the exothermic step. We look at two examples of a sequential and parallel reaction scheme and provide some of the first published insight into the required temperature range to maximize the hydrogen release from 1,2-BN cyclohexane and indoline.

  2. Coupling of exothermic and endothermic hydrogen storage materials

    Energy Technology Data Exchange (ETDEWEB)

    Brooks, Kriston P.; Bowden, Mark E.; Karkamkar, Abhijeet J.; Houghton, Adrian Y.; Autrey, S. Thomas

    2016-08-01

    Chemical hydrogen storage (CHS) materials are a high-storage-density alternative to the gaseous compressed hydrogen currently used to provide hydrogen for fuel cell vehicles. One of the challenges of CHS materials is addressing the thermodynamic and kinetic barriers required to break the chemical bonds and release the hydrogen. Coupling CHS reactions that are endothermic and exothermic during the dehydrogenation can improve the system on-board energy efficiency and thermal control, making such materials viable. Acceptable coupling between reactions requires both thermodynamic and kinetics considerations. Models were developed to predict the reaction enthalpy and rate required to achieve high conversions for both reactions based on experimental measurements. These modeling results show that the efficiency of coupling of an exothermic and endothermic reaction is more sensitive the magnitude of the ratio of the exothermic and endothermic enthalpies than the ratio of the rates of the two steps. The modeling shows further that a slower rate of the endothermic step is desirable to permit sufficient heating of the reactor by the exothermic step. We look at two examples of a sequential and parallel reaction scheme and provide some of the first insight into the required temperature range to maximize the H2 release from 1,2-BN cyclohexane and indoline.

  3. Magnetocaloric effect in a dual-phase coupled LaFe11Si2 crystal prepared by a modified high-pressure zone-melting technique

    Science.gov (United States)

    Feng, Shutong; Fang, Yue; Zhai, Qijie; Luo, Zhiping; Zheng, Hongxing

    2016-10-01

    A modified high-pressure optical zone-melting technique was adopted to grow a rare-earth-based LaFe11Si2 crystal in the present work. Dual-phase coupled microstructure was obtained where aligned α(Fe) phase distributed in the La(Fe,Si)13 matrix. Magnetic measurements showed that the produced crystal underwent a second-order magnetic transition in the vicinity of 250 K. Under a magnetic field change of 30 kOe, the refrigeration capacity (RC) of the produced crystal reached up to 162 J/kg. It was confirmed that zone-melting crystal growth technique is an effective approach to strikingly enhance the magnetocaloric effect of La-Fe-Si refrigeration materials.

  4. Silicon crystal growth from the melt: Analysis from atomic and macro scales

    Energy Technology Data Exchange (ETDEWEB)

    Kakimoto, K.; Liu, L.; Kitashima, T.; Murakawa, A.; Hashimoto, Y. [Research Institute for Applied Mechanics, Kyushu University, 6-1, Kasuga-Koen, Kasuga 816-8580 (Japan)

    2005-04-01

    The effect of impurity concentration on thermal conductivity of natural and isotope silicon by using equilibrium molecular dynamics simulation is investigated. It was found that the concentrations of the impurities such as boron, phosphor and arsene play an important role in the propagation of phonons in silicon crystals. It was also clarified that a mass difference of impurities and host crystals results in degradation of thermal conductivity of silicon. (copyright 2005 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  5. Cavity Pull Rod: Device to Promote Single Crystal Growth from the Melt

    Science.gov (United States)

    Goldsby, Jon (Inventor)

    2017-01-01

    A pull rod for use in producing a single crystal from a molten alloy is provided that includes an elongated rod having a first end and a second end, a first cavity defined at the first end and a second cavity defined at the first end and in communication with the first cavity. The first cavity receives the molten alloy and the second cavity vents a gas from the molten alloy to thereby template a single crystal when the pull rod is dipped into and extracted from the molten alloy.

  6. Organic Crystal Engineering of Thermosetting Cyanate Ester Monomers: Influence of Structure on Melting Point

    Science.gov (United States)

    2016-05-27

    heating baseline does show a modest non - linearity due to its nearness to the onset of the wide melting peak. Because we elected not to use heating...Guenthner, Sean M. Ramirez , Michael D. Ford, Denisse Soto, Jerry A. Boatz, Kamran B. Ghiassi and Joseph M. Mabry 5d. PROJECT NUMBER 5e. TASK...longer Si-C bonds for C-C bonds in the monomer chemical structure results in the “unlocking” of new degrees of freedom in non -interlocking molecules

  7. Nucleation and Crystallization in nucleated Polymers

    Science.gov (United States)

    Schick, Christoph; Zhuravlev, Evgeny; Wurm, Andreas

    2012-02-01

    Crystallization is commonly considered as nucleation followed by a growth process. Here we apply the recently developed technique, differential fast scanning calorimetry (DFSC), for a unique, new look at the crystal growth of poly(epsilon-caprolactone) (PCL) and PCL carbon nanotube composites from 185 K, below the glass transition temperature, to 330 K, close to the equilibrium melting temperature. The DFSC allows temperature control of the sample and determination of its heat capacity during temperature treatments by employing cooling and heating rates from 50 to 50,000 K/s. First, the crystal nucleation and overall crystallization half times were determined simultaneously in the range of temperatures where crystallization of PCL occurs. After attempting to analyze the experiments with the classical nucleation and growth model a new methodology is described, which addresses the specific problems of crystallization of flexible linear macromolecules. The structures seem to range from having practically unmeasurable latent heats of ordering (nuclei) to being clearly-recognizable, ordered species with rather sharp disordering endotherms at temperatures from the glass transition to equilibrium melting (increasingly perfect and larger crystals). The mechanisms and kinetics of growth (if any) involve a detailed understanding of the interaction with the surrounding rigid amorphous fraction (RAF) in dependence of crystal size and perfection. E. Zhuravlev, J.W.P. Schmelzer, B. Wunderlich and C. Schick, Kinetics of nucleation and crystallization in poly(epsilon-caprolactone) (PCL), Polymer 52 (2011) 1983-1997.

  8. First-order melting transition observed from resistivity measurements in ultra-pure YBa2Cu3O7-δ single crystals with high twin boundary density

    DEFF Research Database (Denmark)

    Grivel, Jean-Claude; Eltsev, Y.; Andersson, M.

    1999-01-01

    R(T) measurements have been performed on optimally and overdoped heavily twinned high-purity YBa2Cu3O7-delta single crystals, under a magnetic field B oriented parallel to the twin boundary planes (B parallel to c). The characteristic feature attributed to the flux line lattice melting transition...

  9. Ikaite crystals in melting sea ice – implications for pCO2 and pH levels in Arctic surface waters

    DEFF Research Database (Denmark)

    Rysgaard, Søren; Glud, R.N.; Lennert, K.

    2012-01-01

    chemical transformations occur in sea ice with a possible effect on CO 2 and pH conditions in surface waters. Here, we report on biogeochemical conditions, microscopic examinations and x-ray diffraction analysis of single crystals from a melting 1.7 km 2 (0.5-1 m thick) drifting ice floe in the Fram Strait...... during summer. Our findings show that ikaite crystals are present throughout the sea ice but with larger crystals appearing in the upper ice layers. Ikaite crystals placed at elevated temperatures disintegrated into smaller crystallites and dissolved. During our field campaign in late June, melt reduced...... within the ice floe of 0.3-1.3 mmol m -2 sea ice d -1. Finally, the presence of ikaite in sea ice and the dissolution of the mineral during melting of the sea ice and mixing of the melt water into the surface oceanic mixed layer accounted for half of the estimated pCO 2 uptake. © Author(s) 2012....

  10. Melting of a nonequilibrium vortex crystal in a fluid film with polymers : elastic versus fluid turbulence

    CERN Document Server

    Gupta, Anupam

    2016-01-01

    We perform a direct numerical simulation (DNS) of the forced, incompressible two-dimensional Navier-Stokes equation coupled with the FENE-P equations for the polymer-conformation tensor. The forcing is such that, without polymers and at low Reynolds numbers $Re$, the film attains a steady state that is a square lattice of vortices and anti-vortices. We find that, as we increase the Weissenberg number ${\\mathcal Wi}$, this lattice undergoes a series of nonequilibrium phase transitions, first to spatially distorted, but temporally steady, crystals and then to a sequence of crystals that oscillate in time, periodically, at low ${\\mathcal Wi}$, and quasiperiodically, for slightly larger ${\\mathcal Wi}$. Finally, the system becomes disordered and displays spatiotemporal chaos and elastic turbulence. We then obtain the nonequilibrium phase diagram for this system, in the ${\\mathcal Wi} - Re$ plane, and show that (a) the boundary between the crystalline and turbulent phases has a complicated, fractal-type character ...

  11. Registration of melting and crystallization process of MCMgLi8Ca5 alloy with use of ATND method

    Directory of Open Access Journals (Sweden)

    J. Pezda

    2009-04-01

    Full Text Available Among lightweight metal alloys, magnesium is the lightest structural material with density of 1.74 g/cm3, having many attractive physical and mechanical properties combined with processing advantages. Therefore, it represents very attractive material for large amountof applications starting from automotive industry as the main user, up to other industry fields like sports, robotic electronics, armaments, and textile ones, or production of audio-video equipment. Furthermore, addition of lithium, that has density of 0,53 g/cm3, reduces density of the resulting Mg-Li alloys to the same level as polymeric materials. On metallic matrix of magnesium alloys with lithium are also manufactured composites reinforced with e.g. ceramic fiber, which are used as a lightweight and resistant structure materials. Therefore, Mg-Li alloys become an alternative material assuring low density, improved ductility and corrosion resistance.The paper presents an attempt of implementation of the ATND method to monitoring of crystallization process of MCMgLi8Ca5 alloys.Investigated magnesium alloys were produced in the Foundry Research Institute. Registration of melting and crystallization processes wasmade with use of the ATND method. Results of the preliminary tests are shown in a graphical form.

  12. Temperature-Dependent Raman Spectra and Microstructure of Barium Metaborate Crystals and Its Melts

    Institute of Scientific and Technical Information of China (English)

    尤静林; 蒋国昌; 侯怀宇; 吴永全; 陈辉; 徐匡迪

    2002-01-01

    We have measured the Raman spectra of β- and α-barium metaborate in crystal and liquid states from room temperature to 1873K, with a semiconductor laser as the laser source, coupled with a time-resolved detection system to eliminate the dense thermal emission background when temperature was considerably high.Temperature-dependent Raman spectra can clearly indicate that the phase transformation from β- to α-barium metaborate has been completed during 1273 - 1300 K. Variations of different kinds of microstructure units with temperature are identified and discussed.

  13. Formation of the Yandangshan volcanic-plutonic complex (SE China) by melt extraction and crystal accumulation

    Science.gov (United States)

    Yan, Li-Li; He, Zhen-Yu; Jahn, Bor-ming; Zhao, Zhi-Dan

    2016-12-01

    The association of volcanic and shallow plutonic rocks in caldera may provide important clues to the geochemical evolution of silicic magma systems. The Yandangshan caldera is a typical example of late Mesozoic volcanic-plutonic complex in SE China. It is composed of a series of rhyolitic extrusives and subvolcanic intrusions of porphyritic quartz syenites. In this work, we conducted petrological and geochemical studies, as well as zircon dating, on the coexisting volcanic and plutonic rocks from the Yandangshan caldera. The results of SHRIMP and LA-ICP-MS zircon U-Pb dating revealed that the crystallization of the rhyolitic extrusives and subvolcanic intrusions was contemporaneous within analytical errors and in a short period (104-98 Ma). Geochemically, the volcanic rocks are characterized by high Rb/Sr and Rb/Ba ratios and depletion in Ba, Sr, P, Eu and Ti, while the shallow plutons show high K, Ba, Al, Fe and low Rb/Sr and Rb/Ba ratios with insignificant negative Eu anomalies. The volcanic and plutonic rocks have a similar range of zircon Hf isotopic compositions (εHf(t) = - 10.0 to + 1.5) and TDM2 model ages of 2.10-1.23 Ga. They also have comparable whole-rock Sr and Nd isotopic compositions ((87Sr/86Sr)i = 0.7084-0.7090; εNd(t) = - 7.8 to - 6.5) and zircon oxygen isotopic compositions (δ18O mainly = 4.5 to 6.0‰). We argue that the volcanic-plutonic complex of the Yandangshan caldera was formed by reworking of Paleoproterozoic lower crusts in the eastern Cathaysia block, and that the complex could be linked by fractional crystallization and crystal accumulation in a shallow magma chamber. The volcanic rocks represent the highly fractionated end-member, whereas the subvolcanic intrusions of porphyritic quartz syenites could be the residual crystal mushes. This case study could have a general implication for the genetic relationship between volcanic and shallow plutonic rocks in calderas.

  14. THE CRYSTALLIZATION OF POTASSIUM GERMANATE GLASS WITH HIGH CONTENT OF NIOBIUM OXIDE

    Directory of Open Access Journals (Sweden)

    SRĐAN D.MATIJAŠEVIĆ

    2012-03-01

    Full Text Available Potassium germanate glass with molar ratio [GeO2]/[K2O] = 1.2 and Nb2O5 content of 34 mol% have been synthesized by a melt-quenching method. The crystallization behavior under non-isothermal and isothermal crystallization conditions was investigated. The results showed that this glass exposed complex primary crystallization. In the temperature range 800 °C. K10Nb22Ge4O68 and metastable KNbO3 and K4Nb6O17 were formed as secondary phases. The crystallization commenced at T > 640 °C with high homogeneous nucleation rate and spherulite crystal growth morphology. DTA curves recorded for powder samples particle size 0.1 mm showed two exothermic peaks and two endothermic peaks within temperature range of T = 640-1020 °C. The analysis of the dominant crystallization mechanism of powder glass sample and kinetics of crystallization is presented.

  15. Fission Product Separation from Pyrochemical Electrolyte by Cold Finger Melt Crystallization

    Energy Technology Data Exchange (ETDEWEB)

    Versey, Joshua R. [Univ. of Idaho, Moscow, ID (United States)

    2013-08-01

    This work contributes to the development of pyroprocessing technology as an economically viable means of separating used nuclear fuel from fission products and cladding materials. Electrolytic oxide reduction is used as a head-end step before electrorefining to reduce oxide fuel to metallic form. The electrolytic medium used in this technique is molten LiCl-Li2O. Groups I and II fission products, such as cesium (Cs) and strontium (Sr), have been shown to partition from the fuel into the molten LiCl-Li2O. Various approaches of separating these fission products from the salt have been investigated by different research groups. One promising approach is based on a layer crystallization method studied at the Korea Atomic Energy Research Institute (KAERI). Despite successful demonstration of this basic approach, there are questions that remain, especially concerning the development of economical and scalable operating parameters based on a comprehensive understanding of heat and mass transfer. This research explores these parameters through a series of experiments in which LiCl is purified, by concentrating CsCl in a liquid phase as purified LiCl is crystallized and removed via an argon-cooled cold finger.

  16. PRENATAL DEVELOPMENT OF RESPIRATORY CHEMORECEPTORS IN ENDOTHERMIC VERTEBRATES

    OpenAIRE

    Hempleman, Steven C.; Pilarski, Jason Q.

    2011-01-01

    Respiratory chemoreceptors are neurons that detect PCO2, PO2, and/or pH in body fluids and provide sensory feedback for the control of breathing. They play a critical role in coupling pulmonary ventilation to metabolic demand in endothermic vertebrates. During birth in mammals and hatching in birds, the state change from placental or chorioallantoic gas exchange to pulmonary respiration makes acute demands on the neonatal lungs and ventilatory control system, including the respiratory chemore...

  17. Immiscible silicate liquid partition coefficients: implications for crystal-melt element partitioning and basalt petrogenesis

    Science.gov (United States)

    Veksler, Ilya V.; Dorfman, Alexander M.; Danyushevsky, Leonid V.; Jakobsen, Jakob K.; Dingwell, Donald B.

    2006-12-01

    This study investigates partitioning of elements between immiscible aluminosilicate and borosilicate liquids using three synthetic mixtures doped with 32 trace elements. In order to get a good spatial separation of immiscible liquids, we employed a high-temperature centrifuge. Experiments were performed at 1,050-1,150°C, 1 atm, in sealed Fe and Pt containers. Quenched products were analysed by electron microprobe and LA ICP-MS. Nernst partition coefficients ( D’s) between the Fe-rich and Si-rich aluminosilicate immiscible liquids are the highest for Zn (3.3) and Fe (2.6) and the lowest for Rb and K (0.4-0.5). The plots of D values against ionic potential Z/r in all the compositions show a convex upward trend, which is typical also for element partitioning between immiscible silicate and salt melts. The results bear upon the speciation and structural position of elements in multicomponent silicate liquids. The ferrobasalt-rhyolite liquid immiscibility is observed in evolved basaltic magmas, and may play an important role in large gabbroic intrusions, such as Skaergaard, and during the generation of unusual lavas, such as ferropicrites.

  18. Melt Motion Due to Peltier Marking During Bridgman Crystal Growth with an Axial Magnetic Field

    Science.gov (United States)

    Sellers, C. C.; Walker, John S.; Szofran, Frank R.; Motakef, Shariar

    2000-01-01

    This paper treats a liquid-metal flow inside an electrically insulating cylinder with electrically conducting solids above and below the liquid region. There is a uniform axial magnetic field, and there is an electric current through the liquid and both solids. Since the lower liquid-solid interface is concave into the solid and since the liquid is a better electrical conductor than the adjacent solid, the electric current is locally concentrated near the centerline. The return to a uniform current distribution involves a radial electric current which interacts with the axial magnetic field to drive an azimuthal flow. The axial variation of the centrifugal force due to the azimuthal velocity drives a meridional circulation with radial and axial velocities. This problem models the effects of Peltier marking during the vertical Bridgman growth of semiconductor crystals with an externally applied magnetic field, where the meridional circulation due to the Peltier Current may produce important mixing in the molten semiconductor.

  19. Thermal load leveling during silicon crystal growth from a melt using anisotropic materials

    Energy Technology Data Exchange (ETDEWEB)

    Carlson, Frederick M.; Helenbrook, Brian T.

    2016-10-11

    An apparatus for growing a silicon crystal substrate comprising a heat source, an anisotropic thermal load leveling component, a crucible, and a cold plate component is disclosed. The anisotropic thermal load leveling component possesses a high thermal conductivity and may be positioned atop the heat source to be operative to even-out temperature and heat flux variations emanating from the heat source. The crucible may be operative to contain molten silicon in which the top surface of the molten silicon may be defined as a growth interface. The crucible may be substantially surrounded by the anisotropic thermal load leveling component. The cold plate component may be positioned above the crucible to be operative with the anisotropic thermal load leveling component and heat source to maintain a uniform heat flux at the growth surface of the molten silicon.

  20. Stimulated crystallization of melt-quenched Ge{sub 2}Sb{sub 2}Te{sub 5} films employing femtosecond laser double pulses

    Energy Technology Data Exchange (ETDEWEB)

    Cotton, Rebecca L.; Siegel, Jan [Laser Processing Group, Instituto de Optica, CSIC, Serrano 121, E-28006 Madrid (Spain)

    2012-12-15

    The phase transformation of Ge{sub 2}Sb{sub 2}Te{sub 5} films from the melt-quenched amorphous phase into the crystalline phase induced by 800 nm, 100 fs laser pulses has been studied. For partly amorphized films, progressive crystallization could be induced by single pulses, which can be explained by growth of already existing crystalline embryos. For completely amorphized films, it was not possible to induce crystallization with one or two consecutive pulses; three pulses being the threshold for the onset of crystallization. By employing a fs laser double pulse with an adjustable inter-pulse delay, partial crystallization could be triggered for a delay range of 200 fs-100 ps, while for longer delays no crystallization was possible. The time window for stimulated crystallization can be related to the relaxation dynamics of free electrons excited by the first pulse, which are further excited by the second pulse still remaining in the excited state. Our results indicate that the lifetime of excited electrons in melt-quenched amorphous Ge{sub 2}Sb{sub 2}Te{sub 5} is Almost-Equal-To 100 ps.

  1. Interfacial free energy of the NaCl crystal-melt interface from capillary wave fluctuations.

    Science.gov (United States)

    Benet, Jorge; MacDowell, Luis G; Sanz, Eduardo

    2015-04-07

    In this work we study, by means of molecular dynamics simulations, the solid-liquid interface of NaCl under coexistence conditions. By analysing capillary waves, we obtain the stiffness for different orientations of the solid and calculate the interfacial free energy by expanding the dependency of the interfacial free energy with the solid orientation in terms of cubic harmonics. We obtain an average value for the solid-fluid interfacial free energy of 89 ± 6 mN m(-1) that is consistent with previous results based on the measure of nucleation free energy barriers [Valeriani et al., J. Chem. Phys. 122, 194501 (2005)]. We analyse the influence of the simulation setup on interfacial properties and find that facets prepared as an elongated rectangular stripe give the same results as those prepared as squares for all cases but the 111 face. For some crystal orientations, we observe at small wave-vectors a behaviour not consistent with capillary wave theory and show that this behavior does not depend on the simulation setup.

  2. separation of strontium and cesium from ternary and quaternary lithium chloride-potassium chloride salts via melt crystallization

    Directory of Open Access Journals (Sweden)

    Ammon N. Williams

    2015-12-01

    Full Text Available Separation of cesium chloride (CsCl and strontium chloride (SrCl2 from the lithium chloride-potassium chloride (LiCl-KCl salt was studied using a melt crystallization process similar to the reverse vertical Bridgeman growth technique. A ternary SrCl2-LiCl-KCl salt was explored at similar growth rates (1.8–5 mm/h and compared with CsCl ternary results to identify similarities. Quaternary experiments were also conducted and compared with the ternary cases to identify trends and possible limitations to the separations process. In the ternary case, as much as 68% of the total salt could be recycled per batch process. In the quaternary experiments, separation of Cs and Sr was nearly identical at the slower rates; however, as the growth rate increased, SrCl2 separated more easily than CsCl. The quaternary results show less separation and rate dependence than in both ternary cases. As an estimated result, only 51% of the total salt could be recycled per batch. Furthermore, two models have been explored to further understand the growth process and separation. A comparison of the experimental and modeling results reveals that the nonmixed model fits reasonably well with the ternary and quaternary data sets. A dimensional analysis was performed and a correlation was identified to semipredict the segregation coefficient.

  3. Incomparable hardness and modulus of biomimetic porous polyurethane films prepared by directional melt crystallization of a solvent

    Science.gov (United States)

    An, Suyeong; Kim, Byoungsoo; Lee, Jonghwi

    2017-07-01

    Porous materials with surprisingly diverse structures have been utilized in nature for many functional purposes. However, the structures and applications of porous man-made polymer materials have been limited by the use of processing techniques involving foaming agents. Herein, we demonstrate for the first time the outstanding hardness and modulus properties of an elastomer that originate from the novel processing approach applied. Polyurethane films of 100-μm thickness with biomimetic ordered porous structures were prepared using directional melt crystallization of a solvent and exhibited hardness and modulus values that were 6.8 and 4.3 times higher than those of the random pore structure, respectively. These values surpass the theoretical prediction of the typical model for porous materials, which works reasonably well for random pores but not for directional pores. Both the ordered and random pore structures exhibited similar porosities and pore sizes, which decreased with increasing solution concentration. This unexpectedly significant improvement of the hardness and modulus could open up new application areas for porous polymeric materials using this relatively novel processing technique.

  4. Annealing and surface conduction on Hydrogen peroxide treated bulk melt-grown, single crystal ZnO

    Energy Technology Data Exchange (ETDEWEB)

    Mtangi, W., E-mail: wilbert.mtangi@up.ac.za [University of Pretoria, Physics Department, Pretoria 0002 (South Africa); Nel, J.M.; Auret, F.D.; Chawanda, A.; Diale, M. [University of Pretoria, Physics Department, Pretoria 0002 (South Africa); Nyamhere, C. [Nelson Mandela Metropolitan University, Physics Department, P.O. Box 77000, Port Elizabeth 6031 (South Africa)

    2012-05-15

    We report on the studies carried out on hydrogen peroxide treated melt-grown, bulk single crystal ZnO samples. Results show the existence of two shallow donors in the as-received ZnO samples with energy levels (37.8{+-}0.3) meV that has been suggested as Zn{sub i} related and possibly H-complex related and (54.5{+-}0.9) meV, which has been assigned to an Al-related donor. Annealing studies performed on the hydrogen peroxide treated samples reveal the existence of a conductive channel in the samples in which new energy levels have been observed, Zn vacancies, related to the Group I elements, X{sub Zn}. The surface donor volume concentration of the conductive channel was calculated from a theory developed by Look (2007) . Results indicate an increase in the surface volume concentration with increasing annealing temperature from 60 Multiplication-Sign 10{sup 17} cm{sup -3} at 200 Degree-Sign C to 4.37 Multiplication-Sign 10{sup 18} cm{sup -3} at 800 Degree-Sign C.

  5. MORPHOLOGY EVOLUTION IN PTFE AS A FUNCTION OF MELT TIME AND TEMPERATURE Ⅱ. LOW MOLECULAR WEIGHT FOLDED CHAIN SINGLE CRYSTALS AND BAND STRUCTURES

    Institute of Scientific and Technical Information of China (English)

    J. Yang; P.H. Geil; T. C. Long; P. Xu

    2005-01-01

    The effect of sintering dispersed and bulk, low molecular weight (Mn = 50,000 Da), nano-emulsion polytetrafluoroethylene (PTFE) particles near their melting point is described. With the nascent particles consisting of ca.75 nm diameter, hexagonal, single crystals, sintering at, e.g., 350℃, results, initially, in merger of neighboring particles,followed by individual molecular motion on the substrate and the formation of folded chain, lamellar single crystals and spherulites, and on-edge ribbons. It is suggested these structures develop, with time, in the mesomorphic "melt". Sintering of the bulk resin yields extended chain, band structures, as well as folded chain lamellae; end-surface to end-surface merger,possibly by end-to-end polymerization, occurs with increasing time.

  6. Relationship between crystallization tendencies during cooling from melt and isothermal storage: toward a general understanding of physical stability of pharmaceutical glasses.

    Science.gov (United States)

    Kawakami, Kohsaku; Harada, Takuji; Miura, Keiko; Yoshihashi, Yasuo; Yonemochi, Etsuo; Terada, Katsuhide; Moriyama, Hiroshi

    2014-06-02

    The lack of protocols to predict the physical stability has been one of the most important issues in the use of amorphous solid dispersions. In this paper, the crystallization behaviors of pharmaceutical glasses, which have large variations in their crystallization tendencies, have been investigated. Although each compound appears to have a wide variation in their crystallization time, the initiation time for crystallization could be generalized as a function of only Tg/T, where Tg and T are the glass transition temperature and storage temperature, respectively. All compounds in which crystallization was mainly governed by temperature had similar activation energies for crystallization initiation, ca. 210-250 kJ/mol, indicating that physical stability at any temperature is predictable from only Tg. Increased stability is expected for other compounds, where crystallization is inhibited by an large energetic barrier, and stochastic nucleation plays an important role in initiating crystallization. The difference in the dominant factor, either temperature or pressure, appeared to correlate with the nucleation mechanism, and this could be determined by a cool-heat cycle after melting using thermal analysis. This conclusion should make prediction of physical stability of amorphous formulations easier, although the investigation was conducted under ideal conditions, which eliminated surface effects.

  7. Ikaite crystals in melting sea ice – implications for pCO2 and pH levels in Arctic surface waters

    Directory of Open Access Journals (Sweden)

    R. J. G. Leakey

    2012-08-01

    Full Text Available A major issue of Arctic marine science is to understand whether the Arctic Ocean is, or will be, a source or sink for air–sea CO2 exchange. This has been complicated by the recent discoveries of ikaite (a polymorph of CaCO3·6H2O in Arctic and Antarctic sea ice, which indicate that multiple chemical transformations occur in sea ice with a possible effect on CO2 and pH conditions in surface waters. Here, we report on biogeochemical conditions, microscopic examinations and x-ray diffraction analysis of single crystals from a melting 1.7 km2 (0.5–1 m thick drifting ice floe in the Fram Strait during summer. Our findings show that ikaite crystals are present throughout the sea ice but with larger crystals appearing in the upper ice layers. Ikaite crystals placed at elevated temperatures disintegrated into smaller crystallites and dissolved. During our field campaign in late June, melt reduced the ice floe thickness by 0.2 m per week and resulted in an estimated 3.8 ppm decrease of pCO2 in the ocean surface mixed layer. This corresponds to an air–sea CO2 uptake of 10.6 mmol m−2 sea ice d−1 or to 3.3 ton km−2 ice floe week−1. This is markedly higher than the estimated primary production within the ice floe of 0.3–1.3 mmol m−2 sea ice d−1. Finally, the presence of ikaite in sea ice and the dissolution of the mineral during melting of the sea ice and mixing of the melt water into the surface oceanic mixed layer accounted for half of the estimated pCO2 uptake.

  8. 提高结晶山梨醇熔点的工艺探讨%Technology for improving the melting point of crystal sorbitol

    Institute of Scientific and Technical Information of China (English)

    贺均林; 王建平; 李宁; 何丽萍; 韦炳前; 韦春艳

    2012-01-01

    The sorbitol is widely used in chemical, foodstuff, medicine field. The crystal sorbitol is more widely used. But, the crystallization technological conditions must be well controlled for higher melting point of crystal sorbitol. The single factor experiment about the crystallization temperature, crystallization time, seed dosage and the seed size were studied. The orthogonal tests were carried out according to L, ( 34 ) and the crystallization technological conditions were optimized. The significant factor was determined and the analyzed. The significant factor was the crystallization temperature. The crystallization temperature in the old equipment was changed and the operating staffs was trained. The melting point of crystal sorbitol reached stably over 101 ℃ under the optimized conditions. The optimized conditions were; crystallization temperature: 701 , crystallization time; 40min, crystallization seed dosage; 10%.%山梨醇是一种用途广泛的化工、食品、医药原料,结晶山梨醇应用更广,但必须掌握好其结晶的条件才能制备出熔点高的结晶山梨醇.本文对山梨醇结晶的工艺条件进行了深入研究,通过对结晶温度、结晶时间、晶种用量及晶种粒度进行了单因素对比试验,并用三因素三水平正交试验表安排了正交试验,优化结晶工艺条件.根据正交试验结果的极差分析及方差分析,对三因素的显著性作出了判断,确定了影响结晶山梨醇熔点的显著因素为结晶温度,也找出了原来产品熔点低的主要原因,对原装置上的结晶温度控制系统进行了改造,并对操作人员进行了培训,按优化的条件生产后,结晶山梨醇的熔点稳定达到101℃以上,达到进口样品的水平,其优化的条件为:结晶温度:70℃,结晶时间:40min,晶种用量:10%.

  9. Ikaite crystals in melting sea ice – implications for pCO2 and pH levels in Arctic surface waters

    DEFF Research Database (Denmark)

    Rysgaard, Søren; Glud, R.N.; Lennert, K.

    2012-01-01

    A major issue of Arctic marine science is to understand whether the Arctic Ocean is, or will be, a source or sink for air-sea CO 2 exchange. This has been complicated by the recent discoveries of ikaite (a polymorph of CaCO 3•6H 2O) in Arctic and Antarctic sea ice, which indicate that multiple...... chemical transformations occur in sea ice with a possible effect on CO 2 and pH conditions in surface waters. Here, we report on biogeochemical conditions, microscopic examinations and x-ray diffraction analysis of single crystals from a melting 1.7 km 2 (0.5-1 m thick) drifting ice floe in the Fram Strait...... during summer. Our findings show that ikaite crystals are present throughout the sea ice but with larger crystals appearing in the upper ice layers. Ikaite crystals placed at elevated temperatures disintegrated into smaller crystallites and dissolved. During our field campaign in late June, melt reduced...

  10. Ikaite crystals in melting sea ice – implications for pCO2 and pH levels in Arctic surface waters

    Directory of Open Access Journals (Sweden)

    R. J. G. Leakey

    2012-03-01

    Full Text Available A major issue of Arctic marine science is to understand whether the Arctic Ocean is, or will be, a source or sink for air-sea CO2 exchange. This has been complicated by the recent discoveries of ikaite (CaCO3·6H2O in Arctic and Antarctic sea ice, which indicate that multiple chemical transformations occur in sea ice with a possible effect on CO2 and pH conditions in surface waters. Here we report on biogeochemical conditions, microscopic examinations and x-ray diffraction analysis of single crystals from an actively melting 1.7 km2 (0.5–1 m thick drifting ice floe in the Fram Strait during summer. Our findings show that ikaite crystals are present throughout the sea ice but with larger crystals appearing in the upper ice layers. Ikaite crystals placed at elevated temperatures gradually disintegrated into smaller crystallites and dissolved. During our field campaign in late June, melt reduced the ice flow thickness by ca. 0.2 m per week and resulted in an estimated 1.6 ppm decrease of pCO2 in the ocean surface mixed layer. This corresponds to an air-sea CO2 uptake of 11 mmol m−2 sea ice d−1 or to 3.5 ton km−2 ice floe week−1.

  11. Timing and conditions of metamorphism and melt crystallization in Greater Himalayan rocks, eastern and central Bhutan: insight from U-Pb zircon and monazite geochronology and trace-element analyses

    Science.gov (United States)

    Zeiger, K.; Gordon, S. M.; Long, S. P.; Kylander-Clark, A. R. C.; Agustsson, K.; Penfold, M.

    2015-05-01

    Within the eastern Himalaya in central and eastern Bhutan, Greater Himalayan (GH) rocks are interpreted to have been thickened by the Kakhtang thrust (KT). In order to understand the metamorphic and exhumation history of the GH and to evaluate the structural significance of the KT, zircon and monazite from twenty samples were analyzed by laser-ablation split-stream ICPMS. In eastern Bhutan, zircon and monazite from samples collected in the KT hanging wall revealed ca. 36-28 Ma metamorphism. Subsequently, the initiation of melt crystallization shows a trend with structural distance above the KT, with early melt crystallization (ca. 27 Ma) in the structurally highest samples and younger melt crystallization (ca. 16 Ma) for leucosomes within the KT zone. Melt crystallization was protracted and continued until ca. 14-13 Ma in both the KT hanging wall and the footwall. In comparison, in central Bhutan, two leucosomes revealed extended melt crystallization from ca. 31 to 19 Ma. The youngest zircon dates from samples exposed structurally above and below the KT are similar, indicating that the KT was not as significant of a structure as other fault systems to which it has been correlated. However, the younging trend in the initiation of melt crystallization with decreasing structural distance above the KT argues that progressive underplating of ductile material assisted in the initial emplacement of the GH unit in central and eastern Bhutan. The KT likely represents a minor shear zone that aided in this underplating process.

  12. Endothermic force generation in skinned cardiac muscle from rat.

    Science.gov (United States)

    Ranatunga, K W

    1999-08-01

    Isometric tension responses to rapid temperature jumps (T-jumps) of 2-6 degrees C were examined in skinned muscle fibre bundles isolated from papillary muscles of the rat heart. T-jumps were induced by an infra-red laser pulse (wave length 1.32 microm, pulse duration 0.2 ms) obtained from a Nd-YAG laser, which heated the fibres and bathing buffer solution in a 50 microl trough; the increased temperature by laser pulse was clamped at the high temperature by a Peltier system (see Ranatunga, 1996). In maximally Ca2+ -activated (pCa ca. 4.5) fibres, the relationship between tension and temperature was non-linear, the increase of active tension with temperature being more pronounced at lower temperatures (below ca. 20 degrees C). A T-jump at any temperature (range 3-35 degrees C) induced an initial step decrease of tension of variable amplitude (Phase 1), probably due to thermal expansion, and it was followed by a tension transient which resulted in a net rise of tension above the pre-T-jump level. The rate of net rise of tension (Phase 2b or endothermic force generation) was 7-10/s at ca. 12 degrees C and its Q10 was 6.3 (below 25 degrees C). In cases where the step decrease of tension in Phase 1 was prominent, an initial quick tension recovery phase (Phase 2a, 70-100/s at 12 degrees C) that did not contribute to a rise of tension above the pre-T-jump level, was also seen. This phase (Phase 2a) appeared to be similar to the quick tension recovery induced by a small length release and its rate increased with temperature with a Q10 of 1.8. In some cases where Phase 2a was present, a slower tension rise (Phase 3) was seen; its rate (ca. 5/s) was temperature-insensitive. The results show that the rate of endothermic force generation in cardiac fibres is clearly different from that of either fast-twitch or slow-twitch mammalian skeletal muscle fibres; implication of such fibre type-specific differences is discussed in relation to the difficulty in identifying the

  13. Growth of ɛ-caprolactam crystals from the melt: The influence of cyclohexanone on the {1 1 1¯} and {1 1 0} forms

    Science.gov (United States)

    van den Berg, E. P. G.; Bögels, G.; Arkenbout, G. J.

    1998-01-01

    The (1 1 1¯) and (1 1 0) facets of ɛ-caprolactam growing from the melt appear to grow with different mechanisms. This is caused by the different molecular structure of the (1 1 1¯) and the (1 1 0) facets. Moreover, the cyclohexanone impurity concentration in front of the interface changes the growth mechanism leading to different distribution coefficients for each facet. Usually, in industry overall distribution coefficients are used and the crystal form is only of interest because of the filterability of the crystals. Here it is shown that a second factor, the growth mechanism of each facet has to be taken into account when considering the optimal conditions for growing pure crystals.

  14. Crystallization of rubrene on a nanopillar-templated surface by the melt-recrystallization process and its application in field-effect transistors.

    Science.gov (United States)

    Ho, Chi-Chih; Tao, Yu-Tai

    2015-01-11

    We present an approach to fabricate a continuous and crystalline rubrene film using the melt-recrystallization process with the assistance of a silicon nanopillar template. Better film morphology, enhanced crystallinity, and mainly oriented crystallites with the c-axis of the orthorhombic rubrene aligning parallel to the nanopillars were obtained as compared to that on a planar substrate. The oriented crystal growth is further modulated by the surface modification. It is suggested that the sidewalls of nanopillars play a key role in mediating the switch of crystal orientation and crystal growth. The obtained nanopillar-templated rubrene film was used to fabricate a vertical field-effect transistor. The device gave a current density of 78 mA cm(-2), on-off ratio around 10(3-4), subthreshold swing of 89.1 mV per decade and transconductance of 154.9 mS cm(-2) on an ODTS-modified substrate surface.

  15. Along-Strike Variations in the Timing of Melt Crystallization and Metamorphism Across Central and Eastern Bhutan: New Insights from LASS Monazite Geochronology and Trace-Element Abundances

    Science.gov (United States)

    Gordon, S. M.; Kauffman, R.; Gonzales-Clayton, B.; Kylander-Clark, A. R.; Agustsson, K. S.; Long, S. P.

    2014-12-01

    Continent-continent collisional systems represent the largest orogens on Earth and provide locations to study processes that drive the transition from contraction and crustal thickening to extension and collapse. The Greater Himalayan Zone (GHZ) exposed along strike of the Himalayan orogen contains exhumed mid-crustal metasedimentary rocks. To better understand the history of burial, crustal flow, and partial melting during the early stages of Himalayan tectonics in the Eocene to ~40 Myr into its orogenic evolution, monazite was analyzed from five migmatitic gneisses and five host gneisses exposed across two transects within central and eastern Bhutan. Monazite was analyzed in situ by the split-stream laser-ablation (LASS) ICPMS technique, which allows simultaneous collection of U-Th-Pb isotopes and trace-element abundances. The migmatites from the eastern Bhutan transect yield monazite dates that record melt crystallization as young as ca. 15-13 Ma. The host gneisses yield similar to younger (down to ca. 11 Ma) dates, documenting coeval to continued metamorphism of the GHZ. In comparison, melt crystallization in the central Bhutan rocks ended by ca. 18 Ma, and metamorphic monazite from a metapelite record metamorphism until ca. 14 Ma. In the migmatite and host-rock samples from both transects, the trace-element data show an inverse correlation between date and the HREE concentration. This trend likely documents the breakdown of garnet, which probably coincides with the first stages of GHZ exhumation. Thus, the LASS data showed that garnet breakdown and GHZ exhumation occurred from ca. 18 to 14 Ma in eastern Bhutan and ca. 20 to 17 Ma in central Bhutan. The new monazite data suggest different histories for the melt crystallization, metamorphism, and exhumation of the GHZ rocks between central and eastern Bhutan, even though the present day rocks from the two transects are only exposed ~60 km apart. Moreover, in comparison to other parts of the eastern Himalaya, the

  16. Ikaite crystals in melting sea ice - implications for pCO(2) and pH levels in Arctic surface waters

    DEFF Research Database (Denmark)

    Rysgaard, Søren; Glud, Ronnie N.; Lennert, K.

    2012-01-01

    that multiple chemical transformations occur in sea ice with a possible effect on CO2 and pH conditions in surface waters. Here, we report on biogeochemical conditions, microscopic examinations and x-ray diffraction analysis of single crystals from a melting 1.7 km(2) (0.5-1m thick) drifting ice floe......, melt reduced the ice floe thickness by 0.2m per week and resulted in an estimated 3.8 ppm decrease of pCO(2) in the ocean surface mixed layer. This corresponds to an air-sea CO2 uptake of 10.6 mmol m(-2) sea ice d(-1) or to 3.3 ton km(-2) ice floe week(-1). This is markedly higher than the estimated...... primary production within the ice floe of 0.3-1.3 mmol m(-2) sea ice d(-1). Finally, the presence of ikaite in sea ice and the dissolution of the mineral during melting of the sea ice and mixing of the melt water into the surface oceanic mixed layer accounted for half of the estimated pCO(2) uptake...

  17. A comparative study of crystallization kinetics between conventionally melt quenched and mechanochemically synthesized AgI-Ag{sub 2}O-CrO{sub 3} superionic system

    Energy Technology Data Exchange (ETDEWEB)

    Dalvi, Anshuman; Awasthi, A.M.; Bharadwaj, S.; Shahi, K

    2003-10-15

    Non-isothermal crystallization kinetics in conventionally melt quenched versus mechanochemically synthesized amorphous AgI-Ag{sub 2}O-CrO{sub 3} superionic solids is discussed. The quenched as well as ball-milled samples exhibit glass (T{sub g}) and multiple amorphous{yields}crystalline (T{sub c}) transitions. T{sub g} as well as T{sub c} are found to increase monotonically with heating rate. The activation energy for structural relaxation (E{sub s}) obtained using Moynihan equation is found to be higher for ball-milled samples that eventually suggests the relatively rigid and highly viscous structure of milled samples. The activation energy associated with nucleation and growth (E{sub c}) is obtained using Matusita-Sakka equation and its higher value confirms the higher rate of crystallization in ball-milled samples. The values of T{sub c}-T{sub g} and the enthalpy of phase transformation ({delta}H) are also found higher for the ball-milled samples that confirm their comparatively high thermal stability. The electrical conductivity near the crystallization temperatures is studied as a function of time and temperature and these results confirm the presence of amorphous {yields} crystalline transition temperatures in the ball-milled as well as in the melt-quenched samples.

  18. The formation of the Yichun Ta-Nb deposit, South China, through fractional crystallization of magma indicated by fluid and silicate melt inclusions

    Science.gov (United States)

    Li, Shenghu; Li, Jiankang; Chou, I.-Ming; Jiang, Lei; Ding, Xin

    2017-04-01

    The Yichun Ta-Nb deposit, which is located in Jiangxi Province, South China, can be divided into four lithological zones (from bottom upward): two-mica granite, muscovite granite, albite granite, and lepidolite-albite granite zones. It remains controversial whether these distinct vertical zones were formed through late magmatic-hydrothermal metasomatic alteration or fractional crystallization of magma. To investigate the evolution mechanism of rock- and ore-forming fluid in this deposit, we studied fluid and melt inclusions in quartz and lepidolite in these four granite zones. These fluid inclusions are mainly composed of H2O-NaCl, and have homogenization temperatures ranging from 160 °C to 240 °C, with densities between 0.86 and 0.94 g/cm3 and salinities between 0.5 and 6.5 wt% NaCl equivalent. Raman spectroscopic analyses showed that the daughter minerals contained in silicate melt inclusions are mainly quartz, lepidolite, albite, muscovite, microcline, topaz, and sassolite. From the lower to upper granite zones, the albite contents in silicate melt inclusions increase, while the muscovite contents decrease gradually until muscovite is substituted by lepidolite in the lepidolite-albite granite zone. Additionally, the calculated densities of the silicate melt inclusions exhibit decreasing trends from bottom upward. The total homogenization temperatures of silicate melt inclusions, which were observed under external pressures created in the sample chamber of a hydrothermal diamond-anvil cell, decreased from 860 °C in the lower lithological zone to 776 °C in the upper lithological zone, and the initial melting temperatures of solid phases were 570-710 °C. The calculated initial H2O contents of granitic magma showed an increasing trend from the lower (∼2 wt% in the two-mica granite zone) to the upper granitic zones (∼3 wt% in the albite granite zone). All of these features illustrate that the vertical granite zones in the Yichun Ta-Nb deposit formed through

  19. Effect of incongruent crystallization on glass–liquid transition features of a bulk metal glass

    Energy Technology Data Exchange (ETDEWEB)

    Aji, D.P.B.; Johari, G.P., E-mail: joharig@mcmaster.ca

    2015-09-10

    Highlights: • Ce{sub 66}Al{sub 10}Cu{sub 20}Co{sub 4} glass did not crystallize during aging for nine years. • Crystallization's onset temperature was higher for the aged glass. • Incongruent melt embedding the crystals had higher viscosity and T{sub g}. • Increase in crystallization increased the T{sub g} and broadened the T{sub g}-endotherm. - Abstract: It is known that most multi-component glasses cold-crystallize incongruently on heating through the temperature range of their ultraviscous melt. If the incongruent melt's composition changes with time, its viscosity, η, and the glass–liquid transition temperature, T{sub g}, would change. Since the η, relaxation time, and expansion coefficient of a liquid in its partially crystallized mixture cannot be determined, we used scanning calorimetry to study the liquid–glass–liquid transition during thermal cycling of the incongruently crystallizing Ce{sub 66}Al{sub 10}Cu{sub 20}Co{sub 4} glass. Its T{sub g} is 358 K for 20 K/min and 354 K for 10 K/min heating rates, and its ultraviscous melt crystallized incongruently when heated beyond the hysteresis peak of its heat capacity scan. Its sample that had been aged for nine years at ambient conditions had a higher crystallization-onset temperature than an un-aged sample. Delayed enthalpy gain on heating of the aged glass is ∼1/5th of the enthalpy lost on its crystallization. Crystallization of the melt occurred on both the heating and cooling paths of a thermal cycle and T{sub g} of the un-aged glass increased as the volume fraction of the compositionally different glass, f{sub gl}, decreased. The increase was by 8 K after the 24th cycle of 20 K/min, and by 11 K after the 13th cycle of 10 K/min cooling-heating. The highest T{sub g} values reached differed by ∼1 K, which indicates that closely similar T{sub g}s may be reached if the total time period for thermal cycling (at different rates) is kept the same. As f{sub gl} approached its limiting

  20. Million-year melt-presence in monotonous intermediate magma for a volcanic-plutonic assemblage in the Central Andes: Contrasting histories of crystal-rich and crystal-poor super-sized silicic magmas

    Science.gov (United States)

    Kaiser, Jason F.; de Silva, Shanaka; Schmitt, Axel K.; Economos, Rita; Sunagua, Mayel

    2017-01-01

    The melt-present lifetime of super-sized monotonous intermediate magmas that feed supereruptions and end life as granodioritic plutons is investigated using zircon chronochemistry. These data add to the ongoing discussion on magma assembly rates and have implications for how continental batholiths are built. Herein, we estimate ∼1.1 Ma of continuous melt presence before and after the climactic caldera-forming 2.89 ± 0.01 Ma (2σ error) Pastos Grandes Ignimbrite (PGI) supereruption (∼1500 km3 of magma) in the Andes of southwest Bolivia. Zircon crystallization in PGI pumice and lava from the faulted Southern Postcaldera Dome span ∼0.7 Ma prior to the climactic eruption and formation of the eponymous caldera, whereas younger, unfaulted Postcaldera Dome lavas (termed Northern and Middle) and a granodioritic plutonic clast within the products of a Pleistocene eruption indicate a further ∼0.4 Ma of post-climactic zircon crystallization. Bulk-rock compositions as well as zircon thermometry and geochemistry indicate the presence of homogeneous dacitic magma before and after the climactic eruption, but a trend to zircon crystallization at higher temperatures and from less evolved melts is seen for post-climactic zircon. We propose a model in which a large volume of crystal-rich dacite magma was maintained above solidus temperatures by periodic andesitic recharge that is chemically invisible in the erupted components. The climactic caldera-forming eruption vented the upper portions of the magma system zircon was saturated. Zircon in postcaldera lavas indicate that residual magma from this system remained locally viable for eruption at least for some time after the caldera-forming event. Subsequently, deeper "remnant" dacite magma previously outside the zone of zircon saturation rose to shallower levels to re-establish hydraulic and isostatic equilibrium where zircon crystallization commenced anew, and drove more resurgent volcanism and uplift. The same magma

  1. Thermoregulation in endotherms: physiological principles and ecological consequences.

    Science.gov (United States)

    Rezende, Enrico L; Bacigalupe, Leonardo D

    2015-10-01

    In a seminal study published nearly 70 years ago, Scholander et al. (Biol Bull 99:259-271, 1950) employed Newton's law of cooling to describe how metabolic rates (MR) in birds and mammals vary predictably with ambient temperature (T a). Here, we explore the theoretical consequences of Newton's law of cooling and show that a thermoregulatory polygon provides an intuitively simple and yet useful description of thermoregulatory responses in endothermic organisms. This polygon encapsulates the region in which heat production and dissipation are in equilibrium and, therefore, the range of conditions in which thermoregulation is possible. Whereas the typical U-shaped curve describes the relationship between T a and MR at rest, thermoregulatory polygons expand this framework to incorporate the impact of activity, other behaviors and environmental conditions on thermoregulation and energy balance. We discuss how this framework can be employed to study the limits to effective thermoregulation and their ecological repercussions, allometric effects and residual variation in MR and thermal insulation, and how thermoregulatory requirements might constrain locomotor or reproductive performance (as proposed, for instance, by the heat dissipation limit theory). In many systems the limited empirical knowledge on how organismal traits may respond to environmental changes prevents physiological ecology from becoming a fully developed predictive science. In endotherms, however, we contend that the lack of theoretical developments that translate current physiological understanding into formal mechanistic models remains the main impediment to study the ecological and evolutionary repercussions of thermoregulation. In spite of the inherent limitations of Newton's law of cooling as an oversimplified description of the mechanics of heat transfer, we argue that understanding how systems that obey this approximation work can be enlightening on conceptual grounds and relevant as an

  2. Programming the diameter of InSb single crystals grown by pulling from the melt using the thermal gradients in the crucible. Master's thesis

    Energy Technology Data Exchange (ETDEWEB)

    Azoulay, M.

    1984-05-01

    In the work a method is given of presetting the diameter of a crystal grown by pulling from the melt by means of a predetermined cooling plot. The parameters involved in calculating the cooling plot are the measured vertical and radial thermal gradients near the interface and the liquid to solid densities ratio. The theoretical analysis is based on the assumption that the thermal profile in the crucible vicinity is stiff, implying that any temperature change at any point near the surface is followed by exactly the same temperature change in the entire vicinity of the crucible. The method was applied successfully to the growth of defect-free InSb single crystals, 8 cm long and with diameters up to 2.5 cm.

  3. Influence of crystallizing and non-crystallizing cosolutes on trehalose crystallization during freeze-drying.

    Science.gov (United States)

    Sundaramurthi, Prakash; Suryanarayanan, Raj

    2010-11-01

    To study the influence of crystallizing and non-crystallizing cosolutes on the crystallization behavior of trehalose in frozen solutions and to monitor the phase behavior of trehalose dihydrate and mannitol hemihydrate during drying. Trehalose (a lyoprotectant) and mannitol (a bulking agent) are widely used as excipients in freeze-dried formulations. Using differential scanning calorimetry (DSC) and X-ray diffractometry (XRD), the crystallization behavior of trehalose in the presence of (i) a crystallizing (mannitol), (ii) a non-crystallizing (sucrose) solute and (iii) a combination of mannitol and a model protein (lactose dehydrogenase, catalase, or lysozyme) was evaluated. By performing the entire freeze-drying cycle in the sample chamber of the XRD, the phase behavior of trehalose and mannitol were simultaneously monitored. When an aqueous solution containing trehalose (4% w/v) and mannitol (2% w/v) was cooled to -40°C at 0.5°C/min, hexagonal ice was the only crystalline phase. However, upon warming the sample to the annealing temperature (-18°C), crystallization of mannitol hemihydrate was readily evident. After 3 h of annealing, the characteristic XRD peaks of trehalose dihydrate were also observed. The DSC heating curve of frozen and annealed solution showed two overlapping endotherms, attributed by XRD to the sequential melting of trehalose dihydrate-ice and mannitol hemihydrate-ice eutectics, followed by ice melting. While mannitol facilitated trehalose dihydrate crystallization, sucrose completely inhibited it. In the presence of protein (2 mg/ml), trehalose crystallization required a longer annealing time. When the freeze-drying was performed in the sample chamber of the diffractometer, drying induced the dehydration of trehalose dihydrate to amorphous anhydrate. However, the final lyophiles prepared in the laboratory lyophilizer contained trehalose dihydrate and mannitol hemihydrate. Using XRD and DSC, the sequential crystallization of ice, mannitol

  4. A novel reverse flow reactor coupling endothermic and exothermic reactions: an experimental study

    NARCIS (Netherlands)

    van Sint Annaland, M.; Nijssen, R.C.

    2002-01-01

    A new reactor concept is studied for highly endothermic heterogeneously catalysed gas phase reactions at high temperatures with rapid but reversible catalyst deactivation. The reactor concept aims to achieve an indirect coupling of energy necessary for endothermic reactions and energy released by

  5. Superconducting Bi1.5Pb0.5Sr2Ca2Cu3O(x) ceramics by rapid melt quenching and glass crystallization

    Science.gov (United States)

    Bansal, Narottam P.

    1989-01-01

    A glass of nominal Bi(1.5)Pb(0.5)Sr2Ca2Cu3O(x) composition, prepared by rapid quenching of the melt, showed a glass transition temperature of 383 C, crystallization temperature of 446 C, melting temperature of 855 C, and bulk density of 5.69 g/cu cm in air. The activation energy for crystallization of the glass was estimated to be 292kJ/mol from non-isothermal DSC. On heating in oxygen, the glass showed a slow and continuous weight gain starting at approximately 530 C which reached a plateau at approximately 820 C. The weight gained during heating was retained on cooling to ambient conditions indicating an irreversible oxidation step. The influence of annealing conditions on the formation of various phases in the glass has been investigated. The Bi(2)Sr(2)Ca(0)Cu(1)O(6) phase crystallized out first followed by formation of other phases at higher temperatures. The high-T(sub c) phase, isostructural with Bi(2)Sr(2)Ca(2)Cu(3)O(10) was not detected below 840 C, but its fraction increased with the annealing time at 840 C. A sample annealed at 840 C for 243h in air and furnace cooled showed the highest T(sub c)(R=0) of 107.2K and a narrow transition width, delta T(sub c)(10 to 90 percent), of approximately 2 K. The high T(sub c) phase does not seem to crystallize out directly from the glass but is rather produced at high temperature by reaction between the phases formed at lower temperatures. The kinetics of 110K phase formation was sluggish. It appears that the presence of lead helps in the formation and/or stabilization of the 110 K phase.

  6. Impacts of thermal stress and doping on intrinsic point defect properties and clustering during single crystal silicon and germanium growth from a melt

    Science.gov (United States)

    Vanhellemont, Jan; Kamiyama, Eiji; Nakamura, Kozo; Śpiewak, Piotr; Sueoka, Koji

    2017-09-01

    This paper reviews recent considerable progress made in the last few years in understanding the behavior and properties of intrinsic point defects close to moving melt/solid Si interfaces during single crystal Si growth from a melt. The so called Voronkov criterion allows to determine whether the grown Si crystal is interstitial I- or vacancy V-rich. This criterion is written as the ratio Γ of the pulling rate v over the thermal gradient G at the interface. Crystals pulled with Γ above a critical value Γcrit are vacancy-rich while below Γcrit, they are interstitial-rich. Various expressions based on the intrinsic point defect thermal equilibrium concentration and diffusivity have been proposed to calculate Γcrit and are briefly discussed in this paper. Recently it was shown that the thermal stress at the interface and heavy doping with neutral and/or electrically active impurities, have a considerable impact on the intrinsic point defect balance and thus also on Γcrit. Furthermore, high energy barriers of formation energies of I and V around three or four atom layers from (001) free surface support a model in which the boundary conditions of the point defect concentrations at the surface in simulations can be set at fixed values. The situation is quite different for Ge single crystal pulling where the vacancy is always the dominant intrinsic point defect so that the Voronkov criterion cannot be applied. Prediction of vacancy cluster concentration/size distributions as a function of the pulling conditions is however still possible. The possibility of reaching Voronkov criterion conditions for Ge by doping with specific impurities is also discussed. Finally, impacts of stress and doping on self-diffusion in Si and Ge are evaluated with comparing the previous experimental results.

  7. Catalytic cracking of endothermic fuels in coated tube reactor

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    Suspensoid of HZSM-5 or HY zeolites mixed with a self-made ceramic-like binder was coated on the inner wall of a tubular reactor by gas-aided fluid displacement technology.The coated zeolites were characterized by means of X-ray diffraction (XRD),Fourier transform infrared spectroscopy (FT-IR) and scanning electron microscopy (SEM).The coating thickness is 10-20 μm and the particle size of the zeolites is in the range of 1-5 μm.In the coated reactor,cracking of endothermic fuels including n-dodecane and aviation fuel RP-3 was carried out separately under supercritical conditions at 600℃ and 625℃ to investigate their heat sinks and conversion of catalytic reactions.For the reaction catalyzed by HY (25% mass fraction) coating,the heat sink capacity of ndodecane are 815.7 and 901.9 kJ/kg higher than that of the bare tube at 600℃ and at 625℃,respectively.Conversion of n-dodecane also increases from 42% to 60% at 600℃ and from 66% to 80% at 625℃.The coated zeolite can significantly inhibit the carbon deposition during supercritical cracking reactions.

  8. Prenatal development of respiratory chemoreceptors in endothermic vertebrates.

    Science.gov (United States)

    Hempleman, Steven C; Pilarski, Jason Q

    2011-08-31

    Respiratory chemoreceptors are neurons that detect PCO(2), PO(2), and/or pH in body fluids and provide sensory feedback for the control of breathing. They play a critical role in coupling pulmonary ventilation to metabolic demand in endothermic vertebrates. During birth in mammals and hatching in birds, the state change from placental or chorioallantoic gas exchange to pulmonary respiration makes acute demands on the neonatal lungs and ventilatory control system, including the respiratory chemoreceptors. Here we review the literature on prenatal development of carotid body chemoreceptors, central chemoreceptors, and airway chemoreceptors, with emphasis on the histology, histochemistry, and neurophysiology of chemosensory cells or their afferents, and their physiological genomics if known. In general, respiratory chemoreceptors develop prenatally and are functional but immature at birth or hatching. Each type of respiratory chemoreceptor has a unique prenatal developmental time course, and all studied to date require a period of postnatal maturation to express the full adult response. Copyright © 2011 Elsevier B.V. All rights reserved.

  9. Oscillations of the crystal-melt interface caused by harmonic oscillations of the pulling rate for the cylindrical phase of crystal growth

    Science.gov (United States)

    Vasil'ev, M. G.

    2017-02-01

    A technique for measuring the crystal cross-sectional area with a weight sensor based on the difference between its readings at the extreme rod positions in the stepwise and continuous modes of modulation of the pulling rate is proposed for the low-thermal gradient Czochralski method. A change in the crystallization rate at harmonic oscillations of the pulling rate is estimated with the aim of conserving the quality of the growing crystal for this measurement method.

  10. The spatiotemporal pattern of FeNi metal melt solidification in space and the mechanism of its crystallization

    Institute of Scientific and Technical Information of China (English)

    李肇辉; 谢先德; 张大同

    1995-01-01

    The microstructure study of the shock-remelt-recrystallized metal in the Yanzhuang chondrite has revealed that the tetra-concentric-ring growth structure is the fundamental spatiotemporal pattern of the FeNi melt solidification in space in the state far from the thermodynamic equilibriun. The rapid growth and interaction of tetra-concentric-ring growth structures led to the formation of octahedral FeNi metal dentrites. The tetra-concentric-ring growth of FeNi metal may be a fundamental way by which octahedrite is formed from recrystaltization of FeNi metal melt under microgravity conditions.

  11. The Effect of Filler-Polymer Interactions on Cold-Crystallization Kinetics in Crosslinked, Silica Filled PDMS/PDPS Copolymer Melts.

    Energy Technology Data Exchange (ETDEWEB)

    Chien, A; DeTeresa, S; Thompson, L; Cohenour, R; Balazs, B; Maxwell, R S

    2006-04-21

    Crystallization in a series of variable crosslink density poly(dimethyl-diphenyl) siloxanes random block copolymers reinforced through a mixture of precipitated and fumed silica fillers has been studied by Differential Scanning Calorimetry (DSC), Dynamic Mechanical Analysis (DMA), and X-ray Diffraction (XRD). The silicone composite studied was composed of 94.6 mol% Dimethoylsiloxane, 5.1 mol% diphenylsiloxane, and 0.3 mol% methyl-vinyl siloxane (which formed crosslinking after a peroxide cure). The polymer was filled with a mixture of 21.6 wt. % fumed silica and 4.0 wt. % precipitated silica previously treated with 6.8 wt. % ethoxy-endblocked siloxane processing aid. The base composite was characterized by a molecular weight between crosslinks in the polymer network of {approx}24 kDa and an overall molecular weight (including the influence of the silica fillers) between crosslinks of {approx}11 kDa. Molecular weight between crosslinks and filler-polymer interaction strength were then modified by exposure to {gamma}-irradiation in either air or vacuum. The unirradiated material exhibited crystallization at -80 C as measured by DSC with a 16% crystallization as measured by XRD. Isothermal DMA experiments illustrated that crystallization at -85 C occurred over a 1.8 hour period in silica-filled systems and 2.2-2.6 hours in unfilled systems. The onset of crystallization typically occurred after a 30-minute incubation/nucleation period. The crystallization kinetics were dependent on crosslink density. Changes in molecular weight of a factor of two did not, however, change the amount of crystallization. Irradiation in vacuum resulted in faster overall crystallization rates compared to air irradiation for the same crosslink density, likely due to a reduction in the interaction between the polymer chains and the silica filler surface. Modulated differential scanning calorimetry contrasted the crystallization and melting behavior of pure PDMS versus the PDMS/PDPS base

  12. Reduction in number of crystal defects in a p+Si diffusion layer by germanium and boron cryogenic implantation combined with sub-melt laser spike annealing

    Science.gov (United States)

    Murakoshi, Atsushi; Harada, Tsubasa; Miyano, Kiyotaka; Harakawa, Hideaki; Aoyama, Tomonori; Yamashita, Hirofumi; Kohyama, Yusuke

    2017-09-01

    To reduce the number of crystal defects in a p+Si diffusion layer by a low-thermal-budget annealing process, we have examined crystal recovery in the amorphous layer formed by the cryogenic implantation of germanium and boron combined with sub-melt laser spike annealing (LSA). The cryogenic implantation at -150 °C is very effective in suppressing vacancy clustering, which is advantageous for rapid crystal recovery during annealing. The crystallinity after LSA is shown to be very high and comparable to that after rapid thermal annealing (RTA) owing to the cryogenic implantation, although LSA is a low-thermal-budget annealing process that can suppress boron diffusion effectively. It is also shown that in the p+Si diffusion layer, there is high contact resistance due to the incomplete formation of a metal silicide contact, which originates from insufficient outdiffusion of surface contaminants such as fluorine. To widely utilize the marked reduction in the number of crystal defects, sufficient removal of surface contaminants will be required in the low-thermal-budget process.

  13. (nBuCp)2ZrCl2-catalyzed Ethylene-4M1P Copolymerization: Copolymer Backbone Structure, Melt Behavior, and Crystallization

    KAUST Repository

    Atiqullah, Muhammad

    2016-01-08

    The judicious design of methylaluminoxane (MAO) anions expands the scope for developing industrial metallocene catalysts. Therefore, the effects of MAO anion design on the backbone structure, melt behavior, and crystallization of ethylene−4-methyl-1-pentene (E−4M1P) copolymer were investigated. Ethylene was homopolymerized, as well as copolymerized with 4M1P, using (i) MAO anion A (unsupported [MAOCl2]−) premixed with dehydroxylated silica, (nBuCp)2ZrCl2, and Me2SiCl2; and (ii) MAO anion B (Si−O−Me2Si−[MAOCl2]−) supported with (nBuCp)2ZrCl2 on Me2SiCl2-functionalized silica. Unsupported Me2SiCl2, opposite to the supported analogue, acted as a co-chain transfer agent with 4M1P. The modeling of polyethylene melting and crystallization kinetics, including critical crystallite stability, produced insightful results. This study especially illustrates how branched polyethylene can be prepared from ethylene alone using particularly one metallocene-MAO ion pair, and how a compound, that functionalizes silica as well as terminates the chain, can synthesize ethylene−α-olefin copolymers with novel structures. Hence, it unfolds prospective future research niches in polyethyne systhesis. This article is protected by copyright. All rights reserved.

  14. The interplay and effects of deformation and crystallized melt on the rheology of the lower continental crust, Fiordland, New Zealand

    Science.gov (United States)

    Miranda, Elena A.; Klepeis, Keith A.

    2016-12-01

    Microstructural, electron backscatter diffraction (EBSD), and misorientation analyses of a migmatitic granulite-facies orthogneiss from the exhumed lower crust of a Cretaceous continental arc in Fiordland, New Zealand show how deformation was accommodated during and after episodes of melt infiltration and high-grade metamorphism. Microstructures in garnet, omphacite, plagioclase, and K-feldspar suggest that an early stage of deformation was achieved by dislocation creep of omphacite and plagioclase, with subsequent deformation becoming partitioned into plagioclase. Continued deformation after melt infiltration resulted in strain localization in the leucosome of the migmatite, where a change of plagioclase deformation mechanism promoted the onset of grain boundary sliding, most likely accommodated by diffusion creep, in fine recrystallized plagioclase grains. Our results suggest three distinctive transitions in the rheology of the lower crust of this continental arc, where initial weakening was primarily achieved by deformation of both omphacite and plagioclase. Subsequent strain localization in plagioclase of the leucosome indicates that the zones of former melt are weaker than the restite, and that changes in deformation mechanisms within plagioclase, and an evolution of its strength, primarily control the rheology of the lower crust during and after episodes of melting and magma addition.

  15. Layering, melting, and recrystallization of a close-packed micellar crystal under steady and large-amplitude oscillatory shear flows

    Energy Technology Data Exchange (ETDEWEB)

    López-Barrón, Carlos R., E-mail: carlos.r.lopez-barron@exxonmobil.com [ExxonMobil Chemical Company, Baytown Technology and Engineering Complex, Baytown, Texas 77520 (United States); Wagner, Norman J. [Center for Neutron Science, Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, Delaware 19716 (United States); Porcar, Lionel [Institute Laue-Langevin, BP 156, F38042 Grenoble Cedex 9 (France)

    2015-05-15

    The rheology and three-dimensional microstructure of a concentrated viscoelastic solution of the triblock copolymer poly(ethylene oxide){sub 106}-poly(propylene oxide){sub 68}-poly(ethylene oxide){sub 106} (Pluronic F127) in the protic ionic liquid ethylammonium nitrate are measured by small angle neutron scattering (SANS) under flow in three orthogonal planes. This solution's shear-thinning viscosity is due to the formation of two-dimensional hexagonal close-packed (HCP) sliding layer structure. Shear-melting of the crystalline structure is observed without disruption of the self-assembled micelles, resulting in a change in flow properties. Spatially resolved measurements in the 1–2 plane reveal that both shear-melting and sliding are not uniform across the Couette gap. Melting and recrystallization of the HCP layers occur cyclically during a single large amplitude oscillatory shear (LAOS) cycle, in agreement with the “stick-slip” flow mechanism proposed by Hamley et al. [Phys. Rev. E 58, 7620–7628 (1998)]. Analysis of 3D “structural” Lissajous curves show that the cyclic melting and sliding are direct functions of the strain rate amplitude and show perfect correlation with the cyclic stress response during LAOS. Both viscosity and structural order obey the Delaware–Rutgers rule. Combining rheology with in situ spatiotemporally resolved SANS is demonstrated to elucidate the structural origins of the nonlinear rheology of complex fluids.

  16. Crystal structure and nanotopographical features on the surface of heat-treated and anodized porous titanium biomaterials produced using selective laser melting

    Energy Technology Data Exchange (ETDEWEB)

    Amin Yavari, S., E-mail: s.aminyavari@tudelft.nl [Faculty of Mechanical, Maritime, and Materials Engineering, Delft University of Technology (TU Delft), Mekelweg 2, 2628 CD Delft (Netherlands); FT Innovations BV, Braamsluiper 1, 5831 PW Boxmeer (Netherlands); Wauthle, R. [KU Leuven, Department of Mechanical Engineering, Section Production Engineering, Machine Design and Automation (PMA), Celestijnenlaan 300B, 3001 Leuven (Belgium); LayerWise NV, Kapeldreef 60, Leuven (Belgium); Böttger, A.J. [Faculty of Mechanical, Maritime, and Materials Engineering, Delft University of Technology (TU Delft), Mekelweg 2, 2628 CD Delft (Netherlands); Schrooten, J. [Department of Metallurgy and Materials Engineering, KU Leuven, Kasteelpark Arenberg 44 PB 2450, 3001 Heverlee (Belgium); Weinans, H. [Faculty of Mechanical, Maritime, and Materials Engineering, Delft University of Technology (TU Delft), Mekelweg 2, 2628 CD Delft (Netherlands); Department of Orthopedics and Department of Rheumatology, UMC Utrecht, Heidelberglaan 100, 3584 CX Utrecht (Netherlands); Zadpoor, A.A. [Faculty of Mechanical, Maritime, and Materials Engineering, Delft University of Technology (TU Delft), Mekelweg 2, 2628 CD Delft (Netherlands)

    2014-01-30

    Porous titanium biomaterials manufactured using additive manufacturing techniques such as selective laser melting are considered promising materials for orthopedic applications where the biomaterial needs to mimic the properties of bone. Despite their appropriate mechanical properties and the ample pore space they provide for bone ingrowth and osseointegration, porous titanium structures have an intrinsically bioinert surface and need to be subjected to surface bio-functionalizing procedures to enhance their in vivo performance. In this study, we used a specific anodizing process to build a hierarchical oxide layer on the surface of porous titanium structures made by selective laser melting of Ti6Al4V ELI powder. The hierarchical structure included both nanotopographical features (nanotubes) and micro-features (micropits). After anodizing, the biomaterial was heat treated in Argon at different temperatures ranging between 400 and 600 °C for either 1 or 2 h to improve its bioactivity. The effects of applied heat treatment on the crystal structure of TiO{sub 2} nanotubes and the nanotopographical features of the surface were studied using scanning electron microscopy and X-ray diffraction. It was shown that the transition from the initial crystal structure, i.e. anatase, to rutile occurs between 500 and 600 °C and that after 2 h of heat treatment at 600 °C the crystal structure is predominantly rutile. The nanotopographical features of the surface were found to be largely unchanged for heat treatments carried out at 500 °C or below, whereas they were partially or largely disrupted after heat treatment at 600 °C. The possible implications of these findings for the bioactivity of porous titanium structures are discussed.

  17. Crystal structure and nanotopographical features on the surface of heat-treated and anodized porous titanium biomaterials produced using selective laser melting

    Science.gov (United States)

    Amin Yavari, S.; Wauthle, R.; Böttger, A. J.; Schrooten, J.; Weinans, H.; Zadpoor, A. A.

    2014-01-01

    Porous titanium biomaterials manufactured using additive manufacturing techniques such as selective laser melting are considered promising materials for orthopedic applications where the biomaterial needs to mimic the properties of bone. Despite their appropriate mechanical properties and the ample pore space they provide for bone ingrowth and osseointegration, porous titanium structures have an intrinsically bioinert surface and need to be subjected to surface bio-functionalizing procedures to enhance their in vivo performance. In this study, we used a specific anodizing process to build a hierarchical oxide layer on the surface of porous titanium structures made by selective laser melting of Ti6Al4V ELI powder. The hierarchical structure included both nanotopographical features (nanotubes) and micro-features (micropits). After anodizing, the biomaterial was heat treated in Argon at different temperatures ranging between 400 and 600 °C for either 1 or 2 h to improve its bioactivity. The effects of applied heat treatment on the crystal structure of TiO2 nanotubes and the nanotopographical features of the surface were studied using scanning electron microscopy and X-ray diffraction. It was shown that the transition from the initial crystal structure, i.e. anatase, to rutile occurs between 500 and 600 °C and that after 2 h of heat treatment at 600 °C the crystal structure is predominantly rutile. The nanotopographical features of the surface were found to be largely unchanged for heat treatments carried out at 500 °C or below, whereas they were partially or largely disrupted after heat treatment at 600 °C. The possible implications of these findings for the bioactivity of porous titanium structures are discussed.

  18. Physical Characterization of Lard Partial Acylglycerols and Their Effects on Melting and Crystallization Properties of Blends with Rapeseed Oil

    DEFF Research Database (Denmark)

    Cheong, Ling Zhi; Zhang, Hong; Xu, Yuan;

    2009-01-01

    properties of LR. Lard-MAG exerted slight inhibitory effect on crystallization of LR. Nevertheless, it was not statistically significant (P > 0.05). In fact, the presence of lard-MAG did not change the. solid fat content (SFC) of LR. Lard-DAG, on the other hand, exerted different effects...... on the crystallization of LR depending on its concentration and degree of supercooling. The presence of a low concentration of lard-DAG was found to significantly (P SFC...... and increased half-time of crystallization (t(1/2)). Meanwhile, a high concentration of lard-DAG was found to promote nucleation and crystal growth in LR at low degrees of supercooling with increased k and SFC and decreased t(1/2). The characteristics of the blends may have correlations with their properties...

  19. DETERMINATION OF VICKERS MICROHARDNESS IN β-Ga2O3 SINGLE CRYSTALS GROWN FROM THEIR OWN MELT

    Directory of Open Access Journals (Sweden)

    L. I. Guzilova

    2015-05-01

    Full Text Available The results of microhardness measurements of β-Ga2O3 single crystals for (001 crystallographic face are reported. The crystals were grown by the free crystallization with the "Garnet-2M" equipment. Microhardness values ​​ were determined by the Vickers method at varying loads. A four-sided diamond pyramid was used as an indenter. The average value of gallium oxide microhardness was equal to 8.91 GPa. We have carried out comparison of the values ​​obtained with the microhardness for the other wide bandgap semiconductors - epitaxial GaN layers grown on 6H-SiC and GaP layers grown on GaP:S. The findings are usable for machining process development of β-Ga2O3 single crystal substrates. In particular, silicon carbide and electrocorundum may be recommended for β-Ga2O3 machine processing.

  20. Plasticity of Performance Curves Can Buffer Reaction Rates from Body Temperature Variation in Active Endotherms

    Directory of Open Access Journals (Sweden)

    Frank Seebacher

    2017-08-01

    Full Text Available Endotherms regulate their core body temperature by adjusting metabolic heat production and insulation. Endothermic body temperatures are therefore relatively stable compared to external temperatures. The thermal sensitivity of biochemical reaction rates is thought to have co-evolved with body temperature regulation so that optimal reaction rates occur at the regulated body temperature. However, recent data show that core body temperatures even of non-torpid endotherms fluctuate considerably. Additionally, peripheral temperatures can be considerably lower and more variable than core body temperatures. Here we discuss whether published data support the hypothesis that thermal performance curves of physiological reaction rates are plastic so that performance is maintained despite variable body temperatures within active (non-torpid endotherms, and we explore mechanisms that confer plasticity. There is evidence that thermal performance curves in tissues that experience thermal fluctuations can be plastic, although this question remains relatively unexplored for endotherms. Mechanisms that alter thermal responses locally at the tissue level include transient potential receptor ion channels (TRPV and TRPM and the AMP-activated protein kinase (AMPK both of which can influence metabolism and energy expenditure. Additionally, the thermal sensitivity of processes that cause post-transcriptional RNA degradation can promote the relative expression of cold-responsive genes. Endotherms can respond to environmental fluctuations similarly to ectotherms, and thermal plasticity complements core body temperature regulation to increase whole-organism performance. Thermal plasticity is ancestral to endothermic thermoregulation, but it has not lost its selective advantage so that modern endotherms are a physiological composite of ancestral ectothermic and derived endothermic traits.

  1. Effect of chlorine on near-liquidus crystallization of olivine-phyric shergottite NWA 6234 at 1 GPa: Implication for volatile-induced melting of the Martian mantle

    Science.gov (United States)

    Farcy, Benjamin J.; Gross, Juliane; Carpenter, Paul; Hicks, Jacob; Filiberto, Justin

    2016-11-01

    Martian magmas are thought to be rich in chlorine compared with their terrestrial counterparts. Here, we experimentally investigate the effect of chlorine on liquidus depression and near-liquidus crystallization of olivine-phyric shergottite NWA 6234 and compare these results with previous experimental results on the effect of chlorine on near-liquidus crystallization of the surface basalts Humphrey and Fastball. Previous experimental results showed that the change in liquidus temperature is dependent on the bulk composition of the basalt. The effect of chlorine on liquidus depression is greater for lower SiO2 and higher Al2O3 magmas than for higher SiO2 and lower Al2O3 magmas. The bulk composition for this study has lower Al2O3 and higher FeO contents than previous work; therefore, we provide additional constraints on the effect of the bulk composition on the influence of chlorine on near-liquidus crystallization. High pressure and temperature crystallization experiments were performed at 1 GPa on a synthetic basalt, of the bulk composition of NWA 6234, with 0-4 wt% Cl added to the sample as AgCl. The results are consistent with previous notions that with increasing wt% Cl in the melt, the crystallization temperature decreases. Importantly, our results have a liquidus depression ∆T (°C) from added chlorine that is consistent with the difference in bulk composition and suggest a dependence on both the bulk Al2O3 and FeO content. Our results suggest that the addition of chlorine to the Martian mantle may lower magma genesis temperatures and potentially aid in the petrogenesis of Martian magmas.

  2. The roles of fractional crystallization, magma mixing, crystal mush remobilization and volatile-melt interactions in the genesis of a young basalt-peralkaline rhyolite suite, the greater Olkaria volcanic complex, Kenya Rift valley

    Science.gov (United States)

    Macdonald, R.; Belkin, H.E.; Fitton, J.G.; Rogers, N.W.; Nejbert, K.; Tindle, A.G.; Marshall, A.S.

    2008-01-01

    The Greater Olkaria Volcanic Complex is a young (???20 ka) multi-centred lava and dome field dominated by the eruption of peralkaline rhyolites. Basaltic and trachytic magmas have been erupted peripherally to the complex and also form, with mugearites and benmoreites, an extensive suite of magmatic inclusions in the rhyolites. The eruptive rocks commonly represent mixed magmas and the magmatic inclusions are themselves two-, three- or four-component mixes. All rock types may carry xenocrysts of alkali feldspar, and less commonly plagioclase, derived from magma mixing and by remobilization of crystal mushes and/or plutonic rocks. Xenoliths in the range gabbro-syenite are common in the lavas and magmatic inclusions, the more salic varieties sometimes containing silicic glass representing partial melts and ranging in composition from anorthite ?? corundum- to acmite-normative. The peralkaline varieties are broadly similar, in major element terms, to the eruptive peralkaline rhyolites. The basalt-trachyte suite formed by a combination of fractional crystallization, magma mixing and resorption of earlier-formed crystals. Matrix glass in metaluminous trachytes has a peralkaline rhyolitic composition, indicating that the eruptive rhyolites may have formed by fractional crystallization of trachyte. Anomalous trace element enrichments (e.g. ??? 2000 ppm Y in a benmoreite) and negative Ce anomalies may have resulted from various Na- and K-enriched fluids evolving from melts of intermediate composition and either being lost from the system or enriched in other parts of the reservoirs. A small group of nepheline-normative, usually peralkaline, magmatic inclusions was formed by fluid transfer between peralkaline rhyolitic and benmoreitic magmas. The plumbing system of the complex consists of several independent reservoirs and conduits, repeatedly recharged by batches of mafic magma, with ubiquitous magma mixing. ?? The Author 2008. Published by Oxford University Press. All

  3. ELECTRICAL RESISTIVITY, CRYSTALLIZATION AND MECHANICAL PROPERTIES OF POLYPROPYLENE/MULTI-WALLED CARBON NANOTUBE/CALCIUM CARBONATE COMPOSITES PREPARED BY MELT MIXING

    Institute of Scientific and Technical Information of China (English)

    Ha-da Bao; Zhao-xia Guo; Jian Yu

    2009-01-01

    Polypropylene (PP)/multi-walled carbon nanotube (MWCNT)/calcium carbonate (CaCO3) composites are prepared by melt mixing using two types of CaCO3 of different sizes. The electrical resistivities of the composites with the two types of CaCO3 are all lower than those of the corresponding PP/MWCNT composites at various MWCNT loadings (1 wt%-5 wt%). The morphology of the composites is investigated by field emission scanning electron microscopy (FESEM). The crystallization behavior of PP in the composites is characterized by differential scanning calorimetry (DSC). The storage modulus, as measured by dynamic mechanical analysis (DMA), increases significantly by the presence of CaCO3.

  4. Fabrication and characterization of the -type (Bi2Te3)(Sb2Te3)1– thermoelectric crystals prepared via zone melting

    Indian Academy of Sciences (India)

    G Kavei; M A Karami

    2006-12-01

    In the present study, -type (Bi2Te3)(Sb2Te3)1– crystals with various chemical compositions ( = 0.2, 0.22, 0.235, 0.25, 0.265, 0.28 and 0.3) were fabricated through the zone melting method. Thermoelectric properties, including Seebeck coefficient (), electrical conductivity (), thermal conductivity () and Hall constants, were measured at room temperature, 300 K. The influence of the variations of Bi2Te3 content () on the thermoelectric properties was studied. The increase of Bi2Te3 content () caused a decrease in (carrier) hole concentration and thus a decrease of and an increase of . The maximum figure of merit ( = 2\\/) of 2.7 × 10-3 K-1 was obtained at about 300 K for the composition of 25% Bi2Te3–75% Sb2Te3 with 3wt% excess of Te.

  5. Endothermic Heat-Sink of Hydrocarbon Fuels for Scramjet Cooling AIAA 2002-3871

    National Research Council Canada - National Science Library

    Huang, H

    2002-01-01

    Storable liquid hydrocarbon fuels, such as JP-7, JP-8+ 100, and JP-10, that can undergo endothermic reactions may provide sufficient heat sink to enable hypersonic flight without having to resort to cryogenic fuels...

  6. Ikaite crystals in melting sea ice - implications for pCO(2) and pH levels in Arctic surface waters

    DEFF Research Database (Denmark)

    Rysgaard, Søren; Glud, Ronnie N.; Lennert, K.

    2012-01-01

    A major issue of Arctic marine science is to understand whether the Arctic Ocean is, or will be, a source or sink for air-sea CO2 exchange. This has been complicated by the recent discoveries of ikaite (a polymorph of CaCO3 center dot 6H(2)O) in Arctic and Antarctic sea ice, which indicate...... that multiple chemical transformations occur in sea ice with a possible effect on CO2 and pH conditions in surface waters. Here, we report on biogeochemical conditions, microscopic examinations and x-ray diffraction analysis of single crystals from a melting 1.7 km(2) (0.5-1m thick) drifting ice floe......, melt reduced the ice floe thickness by 0.2m per week and resulted in an estimated 3.8 ppm decrease of pCO(2) in the ocean surface mixed layer. This corresponds to an air-sea CO2 uptake of 10.6 mmol m(-2) sea ice d(-1) or to 3.3 ton km(-2) ice floe week(-1). This is markedly higher than the estimated...

  7. 增容对回收PET/PP共混物的结晶与熔融行为的影响%Effect of Compatibilization on Crystallization and Melting Behavior of Recycled Poly (ethylene terephthalate) and Polypropylene Blends

    Institute of Scientific and Technical Information of China (English)

    王春广; 林劲新; 章自寿; 麦堪成

    2012-01-01

    The recycled poly (ethylene terephthalate) /polypropylene (r-PET/PP) blends were prepared with different compatibilizers. The differential scanning calorimetry (DSC) was used to investigate the effect of compatibilizers on crystallization and melting behavior of r-PET, the effect of r-PET on crystallization and melting behavior of PP and the effect of compatibilizers on crystallization and melting behavior of r-PET/PP blends. The results indicated that the crystallization temperatures of PP increased with increasing r-PET contents and the crystallization temperatures of r-PET decreased with increasing PP contents. Addition of compatibilizers significantly decreased the crystallization temperatures of neat r-PET and r-PET component in the blends. However , the different compatibilizers had no influence on the crystallization and melting behavior of blends and the crystallization behavior of PP in the blends depend on the kinds of compatibilizers.%制备了不同相容剂增容回收PET/PP共混物,用DSC方法研究了相容剂对r-PET结晶与熔融行为的影响,r-PET对PP结晶与熔融行为的影响和相容剂对r-PET/PP共混物结晶与熔融行为的影响,观察到PP结晶温度随着r-PET含量增加而提高,r-PET结晶温度随着PP含量增加而降低,相容剂加入明显降低共混物中r-PET结晶温度,但不同相容剂对共混物中r-PET结晶与熔融行为影响不大,共混物中PP结晶性能与相容剂的大分子链有关.

  8. Unraveling Crystal Growth in GeSb Phase-Change Films in between the Glass-Transition and Melting Temperatures

    NARCIS (Netherlands)

    Eising, Gert; Van Damme, Tobias; Kooi, Bart J.

    2014-01-01

    The study of crystal growth in phase-change thin films is of crucial importance to improve our understanding of the extraordinary phase transformation kinetics of these materials excellently suited for data storage applications. Here, we developed and used a new method, based on isothermal heating u

  9. Kinetics of nucleation and crystallization in poly(e-caprolactone) (PCL)

    Energy Technology Data Exchange (ETDEWEB)

    Zhuravlev, Evgeny [University of Rostock, Institute of Physics, Rostock, Germany; Schmelzer, Jurn [University of Rostock, Institute of Physics, Rostock, Germany; Wunderlich, Bernhard {nmn} [ORNL; Schick, Christoph [Rostock University, Rostock, Germany

    2011-01-01

    The recently developed differential fast scanning calorimetry (DFSC) is used for a new look at the crystal growth of poly(3-caprolactone) (PCL) from 185 K, below the glass transition temperature, to 330 K, close to the equilibrium melting temperature. The DFSC allows temperature control of the sample and determination of its heat capacity using heating rates from 50 to 50,000 K/s. The crystal nucleation and crystallization halftimes were determined simultaneously. The obtained halftimes cover a range from 3 102 s (nucleation at 215 K) to 3 109 s (crystallization at 185 K). After attempting to analyze the experiments with the classical nucleation and growth model, developed for systems consisting of small molecules, a new methodology is described which addresses the specific problems of crystallization of flexible linear macromolecules. The key problems which are attempted to be resolved concern the differences between the structures of the various entities identified and their specific role in the mechanism of growth. The structures range from configurations having practically unmeasurable latent heats of ordering (nuclei) to being clearly-recognizable, ordered species with rather sharp disordering endotherms in the temperature range from the glass transition to equilibrium melting for increasingly perfect and larger crystals. The mechanisms and kinetics of growth involve also a detailed understanding of the interaction with the surrounding rigid-amorphous fraction (RAF) in dependence of crystal size and perfection.

  10. Crystal Growth in Al72.9Ge27.1 Alloy Melt under Acoustic Levitation Conditions

    Institute of Scientific and Technical Information of China (English)

    YAN Na; DAI Fu-Ping; WANG Wei-Li; WEI Bing-Bo

    2011-01-01

    The nonequilibrium solidification of liquid Al72.9Ge27.1 hypoeutectic alloy is accomplished by using single-axis acoustic levitation.A maximum undercooling of 112K (0.16TL) is obtained for the alloy melt at a coofing rate of 50 K/s. The primary (Al) phase displays a morphological transition from coarse dendrite under a normal conditions to equiaxed grain under acoustic levitation.In the (Al)+(Ge) eutectic,the (Ge) phase exhibits a conspicuous branched growth morphology.Both the primary (Al) dendrites and (Al)+(Ge) eutectics are well refined and the solute content of the primary (Al) phase is extended under acoustic levitation.The calculated and experimental results indicate that the solute trapping effect becomes more intensive with the enhancement of bulk undercooling.

  11. Modelling the crystal growth in highly undercooled alloy melts by non-isothermal phase-field method

    Institute of Scientific and Technical Information of China (English)

    Li Mei-E; Yang Gen-Cang; Zhou Yao-He

    2005-01-01

    A non-isothermal phase-field model is used to simulate the rapid solidification of highly undercooled alloy melts.The influence of undercooling on the solidification process is studied. It is indicated that with the increase of undercooling, the dendrite morphology changes from poorly developed dendrite, via the well-developed dendrite containing secondary and ternary arms, to the compact diamond-shaped grain. With increasing undercooling, the tip radius changes in the following rule: decrease → increase → decrease while the growth velocity increases constantly, which is consistent with the results predicted by the Boettinger-Coriell-Trivedi model. The thermal, solutal and kinetic undercooling contributions under different initial undercooling are also determined. It is shown that when the undercooling is increased beyond a certain value, the thermal undercooling contribution exceeds the solutal contribution and the dendrite growth transits from solutal diffusion controlled to thermal diffusion controlled one.

  12. Signatures of nonthermal melting

    Directory of Open Access Journals (Sweden)

    Tobias Zier

    2015-09-01

    Full Text Available Intense ultrashort laser pulses can melt crystals in less than a picosecond but, in spite of over thirty years of active research, for many materials it is not known to what extent thermal and nonthermal microscopic processes cause this ultrafast phenomenon. Here, we perform ab-initio molecular-dynamics simulations of silicon on a laser-excited potential-energy surface, exclusively revealing nonthermal signatures of laser-induced melting. From our simulated atomic trajectories, we compute the decay of five structure factors and the time-dependent structure function. We demonstrate how these quantities provide criteria to distinguish predominantly nonthermal from thermal melting.

  13. Caracterização de polietilenos lineares de baixa densidade II: fracionamento por cristalização isotérmica a partir do estado fundido Linear low-density polyethylene characterization II: fractionation by multiple-step isothermal crystallization from the melting state

    Directory of Open Access Journals (Sweden)

    Antonio C. Quental

    2005-11-01

    copolymerization with ethene. The alpha-olefins commonly used are 1-butene, 1-hexene and 1-octene. Depending on the alpha-olefin and the catalyst used for the polymerization, LLDPE presents different microstructures which determine the thermal and mechanical properties. One simple and efficient method to evaluate the microstructure of LLDPE is the fractionation by Multiple-Step Isothermal Crystallization from Melting State conducted by DSC. This method is based on several steps of isothermal crystallization of the polymer on decreasing the temperature from the melt. This process favors the separation of the crystalline material into groups having different lamellae thickness depending on the amount and distribution of the alpha-olefin units in the macromolecular chains and on the molar mass. The melting endotherm of a fractionated sample is made up of the same number of peaks as the isothermal crystallization steps, which inform the relative comonomers distributions between different LLDPE chains. In this work, this methodology was applied to determine the relative comonomers distribution of different LLDPE. The isothermal temperature, temperature range and the time influence the efficiency of the fractionation and these parameters must be chosen according to the LLDPE microstructure.

  14. Effect of inorganic salts on crystallization of poly(ethylene glycol) in frozen solutions.

    Science.gov (United States)

    Izutsu, Ken-ichi; Aoyagi, Nobuo

    2005-01-06

    The effect of inorganic salts on eutectic crystallization of poly(ethylene glycol) (PEG) 1500-20,000 in frozen solution was studied to model the polymer and inorganic salt interaction in freeze-dried formulations. Thermal analysis of an aqueous PEG 3000 solution showed a eutectic PEG crystallization exotherm at approximately -47 degrees C and a subsequent PEG crystal melting endotherm at -14.9 degrees C. Addition of sodium chloride prevented the PEG crystallization in the freeze-concentrated solution surrounding ice crystals. Higher concentration NaCl was required to retain higher molecular weight PEG in the amorphous state. Various inorganic salts prevented the PEG crystallization to varying degrees depending mainly on the position of the anion in the Hofmeister's lyotropic series. Some salting-in and 'intermediate' salts (NaSCN, NaI, NaBr, NaCl, LiCl, KCl, and RbCl) inhibited the crystallization of PEG 7500 in frozen solutions. On the other hand, salting-out salts (NaH2PO4, Na2HPO4, Na2SO4, and NaF) did not show an apparent effect on the PEG crystallization. Some salting-out salts induced PEG crystallization in PEG and sucrose combination frozen solutions. The varying abilities of salts to prevent the PEG crystallization in frozen solutions strongly suggested that the solutes had different degrees of miscibility in the freeze-concentrates.

  15. Fluid mechanics and mass transfer in melt crystal growth: Analysis of the floating zone and vertical Bridgman processes

    Science.gov (United States)

    Brown, R. A.

    1986-01-01

    This research program focuses on analysis of the transport mechanisms in solidification processes, especially one of interest to the Microgravity Sciences and Applications Program of NASA. Research during the last year has focused on analysis of the dynamics of the floating zone process for growth of small-scale crystals, on studies of the effect of applied magnetic fields on convection and solute segregation in directional solidification, and on the dynamics of microscopic cell formation in two-dimensional solidification of binary alloys. Significant findings are given.

  16. Ce-doped LuAG single-crystal fibers grown from the melt for high-energy physics

    CERN Document Server

    Xu, X; Moretti, F; Pauwels, K; Lecoq, P; Auffray, E; Dujardin, C

    2014-01-01

    Under a stationary stable regime undoped and Ce-doped LuAG (Lu3Al5O12) single-crystal fibers were grown by a micro-pulling-down technique. The meniscus length corresponding to the equilibrium state was <200 mu m. Fluctuations in the fiber composition and pulling rate were found to have a significant effect on the properties of the fibers grown. A great improvement in the performance was found in samples containing low Ce concentrations (<= 0.1 at.\\%) and produced using pulling rates <0.5 mm min(-1). Under such conditions a good lateral surface fiber quality was obtained and light propagation was significantly improved. Conversely, a high Ce concentration and a high pulling rate resulted in a strong degradation of the fiber surface quality causing defects to appear and a decrease in light output. (C) 2014 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  17. Crystallization kinetics of glassy Se90In10-xAgx alloys: Observation of Mayer-Neldel rule

    Directory of Open Access Journals (Sweden)

    Karishma Singh

    2016-09-01

    Full Text Available Glassy alloys of Se90In10-xAgx were prepared using melt quenching technique. Non-isothermal differential scanning calorimetric (DSC studies were done on Se90In10-xAgx (x = 0, 2, 4, 6, 8 at.% glassy alloys at four different heating rates (β = 5, 10, 15, 20 °C/min. Well defined endothermic and exothermic peaks were obtained at glass transition (Tg and crystallization temperature (Tc, respectively. Augis and Bennett’s method was used to obtain the composition dependent crystallization activation energy (Ec and the pre-exponential factor (η0 of the Arrhenius expression. A linear dependence between ln η0 and Ec was observed showing the existence of compensation effects of the Meyer-Neldel type. These compensation effects confirm the applicability of MeyerNeldel (MN rule for the non-isothermal crystallization in the present case.

  18. Rb2Na(NO33: A Congruently Melting UV-NLO Crystal with a Very Strong Second-Harmonic Generation Response

    Directory of Open Access Journals (Sweden)

    Guohong Zou

    2016-04-01

    Full Text Available Crystals of congruently melting noncentrosymmetric (NCS mixed alkali metal nitrate, Rb2Na(NO33, have been grown through solid state reactions. The material possesses layers with NaO8 hexagonal bipyramids and NO3 triangular units. Rb+ cations are residing in the interlayer space. Each NaO8 hexagonal bipyramid shares its corners and edges with two and three NO3 units, respectively, in order to fulfill a highly dense stacking in the unit cell. The NaO8 groups share their six oxygen atoms in equatorial positions with three different NO3 groups to generate a NaO6-NO3 layer with a parallel alignment. The optimized arrangement of the NO3 groups and their high density in the structure together produce a strong second-harmonic generation (SHG response. Powder SHG measurements indicate that Rb2Na(NO33 has a strong SHG efficiency of five times that of KH2PO4 (KDP and is type I phase-matchable. The calculated average nonlinear optical (NLO susceptibility of Rb2Na(NO33 turns out to be the largest value among the NLO materials composed of only [NO3]− anion. In addition, Rb2Na(NO33 exhibits a wide transparency region ranging from UV to near IR, which suggests that the compound is a promising NLO material.

  19. Melting of the cooperative Jahn-Teller distortion in LaMnO{sub 3} single crystal studied by Raman spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Martin-Carron, L.; Andres, A. de [Consejo Superior de Investigaciones Cientificas, Madrid (Spain). Inst. de Ciencia de Materiales

    2001-07-01

    We have studied the behavior of the Raman phonons of a stoichiometric LaMnO{sub 3} single crystal as a function of temperature in the range between 77 K and 900 K. We focus on the three main phonon peaks of the Pbnm structure, related to the tilt, antisymmetric stretching (Jahn-Teller mode) and stretching modes of Mn-O octahedra. The phonon frequencies show a strong softening that can be fit taking into account their renormalization because of three phonon anharmonic effects in the pseudoharmonic approximation. Thermal expansion effects, in particular the variation of Mn-O bond lengths with temperature, are not relevant above 300 K. On the contrary, phonon width behavior deviates from the three phonon scattering processes well bellow T{sub c}. The correlation between the magnitude of the cooperative Jahn-Teller distortion, that disappears at 800 K, and the amplitude of the Raman phonons in the orthorhombic phase is shown. Nevertheless, Pbnm phonons are still observable above this temperature. Phonon width and intensity behavior around T{sub c} can be explained by local melting of the orbital order that begins quite below T{sub c} and by fluctuations of the regular Mn-O octahedra that correspond to dynamic Jahn-Teller distortions. (orig.)

  20. Silica and Pyroxene in IVA Irons; Possible Formation of the IVA Magma by Impact Melting and Reduction of L-LL-Chondrite Materials Followed by Crystallization and Cooling

    Science.gov (United States)

    Wasson, John T.; Matsunami, Yoshiyuki; Rubin, Alan E.

    2006-01-01

    Group IVA is a large magmatic group of iron meteorites. The mean DELTA O-17 (= delta O-17 - 0.52(raised dot) delta O-18) of the silicates is approx. plus or minus 1.2%o, similar to the highest values in L chondrites and the lowest values in LL chondrites; delta O-18 values are also in the L/LL range. This strongly suggests that IVA irons formed by melting L-LL parental material, but the mean Ni content of IVA irons (83 mg/g) is much lower than that of a presumed L-LL parent (approx. 170 mg/g) and the low-Ca pyroxene present in two IVA meteorites is Fs13, much lower than the Fs20-29 values in L and LL chondrites. Thus, formation from L-LL precursors requires extensive addition of metallic Fe, probably produced by reduction of FeS and FeO. Group IVA also has S/Ni, Ga/Ni, and Ge/Ni ratios that are much lower than those in L-LL chondrites or any chondrite group that preserves nebular compositions, implying loss of these volatile elements during asteroidal processing. We suggest that these reduction and loss processes occurred near the surface of the asteroid during impact heating, and resulted partly from reduction by C, and partly from the thermal dissociation of FeS and FeO with loss of O and S. The hot (approx. 1770 K) low-viscosity melt quickly moved through channels in the porous asteroid to form a core. Two members of the IVA group, Sao Joao Nepomuceno (hereafter, SJN) and Steinbach, contain moderate amounts of orthopyroxene and silica, and minor amounts of low-Ca clinopyroxene. Even though SJN formed after approx. 26% crystallization and Steinbach formed after approx. 77% Crystallization of the IVA core, both could have originated within several tens of meters of the core-mantle interface if 99% of the crystallization occurred from the center outwards. Two other members of the group (Gibeon and Bishop Canyon) contain tabular tridymite, which we infer to have initially formed as veins deposited from a cooling SiO-rich vapor. The silicates were clearly introduced

  1. Thermalization calorimetry: A simple method for investigating glass transition and crystallization of supercooled liquids

    Directory of Open Access Journals (Sweden)

    Bo Jakobsen

    2016-05-01

    Full Text Available We present a simple method for fast and cheap thermal analysis on supercooled glass-forming liquids. This “Thermalization Calorimetry” technique is based on monitoring the temperature and its rate of change during heating or cooling of a sample for which the thermal power input comes from heat conduction through an insulating material, i.e., is proportional to the temperature difference between sample and surroundings. The monitored signal reflects the sample’s specific heat and is sensitive to exo- and endothermic processes. The technique is useful for studying supercooled liquids and their crystallization, e.g., for locating the glass transition and melting point(s, as well as for investigating the stability against crystallization and estimating the relative change in specific heat between the solid and liquid phases at the glass transition.

  2. Crystallization kinetics of amorphous Nd3.6 Pr5.4 Fe83Co3B5 and preparation of α-Fe/Nd2Fe14B nanocomposite magnets by controlled melt-solidification technique

    Institute of Scientific and Technical Information of China (English)

    杨丽; 尚勇

    2003-01-01

    The crystallization kinetics of amorphous Nd3. 6 Pr5.4 Fe83 Co3 B5 and the preparation of α-Fe/Nd2 Fe14 B nanocomposite magnets by controlled melt-solidification of Nd3.6Pr5.4Fe83Co3B5 was investigated by employing DTA, XRD, and TEM. The results show that a metastable intermediate phase Nd8Fe27B24 prior to α-Fe and Nd2 Fe14 B phases is crystallized as the amorphous Nd3.6 Pr5.4 Fe83 Co3 B5 is heated to 1 223 K. The crystallization activation energy of α-Fe and Nd8 Fe27324 phases is larger at the beginning stage of crystallization, and then it decreases with crystallized fraction x for the former and has little change when x is below 70% for the latter, which essentially results in an α-Fe/Nd2 Fe14 B microstructure with a relatively coarse grain size about 20-60 nm and a non-uniform distribution of grain size in the annealed alloy. The a-Fe/Nd2 Fe14 B nanocomposite magnets with a small average grain size about 14 nm and a quite uniform grain size distribution were prepared by controlled melt-solidification of nealing the amorphous Nd3. 6 Pr5. 4 Fe83 Co3 B5 precursor alloy.

  3. Are Chicken Embryos Endotherms or Ectotherms? A Laboratory Exercise Integrating Concepts in Thermoregulation and Metabolism

    Science.gov (United States)

    Hiebert, Sara M; Noveral, Jocelyne

    2007-01-01

    This investigative laboratory exercise uses the different relations between ambient temperature and metabolic rate in endotherms and ectotherms as a core concept to answer the following question: What thermoregulatory mode is employed by chicken embryos? Emphasis is placed on the physiological concepts that can be taught with this exercise,…

  4. ReSe2: a reassessment of crystal structure and thermal analysis

    Science.gov (United States)

    Jariwala, Bhakti; Thamizhavel, Arumugum; Bhattacharya, Arnab

    2017-02-01

    The rhenium-based layered dichalcogenide ReSe2 crystallizes in a distorted triclinic structure which results in unique, anisotropic electronic and optical properties. This, along with a weak layer-dependence of band gap has made ReSe2 a subject of intense contemporary research interest. However, there has been no agreement on the exact crystal structure of this material, or knowledge of its thermal properties like the melting point. In this work, we perform single crystal, Laue, and powder diffraction measurements on high-quality ReSe2 crystals synthesized using a modified Bridgman technique. We confirm the presence of triclinic symmetry (P\\bar{1} -space group) and support the view that that ReSe2 has a distorted CdCl2-type structure (rather than Cd(OH)2 as initially proposed) and obtain lattice parameter values of a  =  6.5791(8) Å, b  =  6.6897(10) Å, and c  =  6.7013(11) Å. Further, thermal measurements on these crystals show a clear endothermic peak at around 1115 °C pointing to a melting transition, and show no other phase transitions up to 1300 °C.

  5. Phase composition, structure and properties of (ZrO2)1-x-y(Sc2O3)x(Y2O3)y solid solution crystals (x=0.08-0.11; y=0.01-0.02) grown by directional crystallization of the melt

    Science.gov (United States)

    Borik, M. A.; Bredikhin, S. I.; Bublik, V. T.; Kulebyakin, A. V.; Kuritsyna, I. E.; Lomonova, E. E.; Milovich, F. O.; Myzina, V. A.; Osiko, V. V.; Ryabochkina, P. A.; Seryakov, S. V.; Tabachkova, N. Yu.

    2017-01-01

    For the first time crystals of the (ZrO2)1-x-y(Sc2O3)x(Y2O3)y solid solutions (x=0.08-0.11; y=0.01-0.02) have been grown by directional melt crystallization. We have determined the range of melt compositions for which growth from the melt produces of the (ZrO2)1-x-y(Sc2O3)x(Y2O3)y solid solution single crystals. The single-phase optically transparent single crystals following composition were grown: (ZrO2)0.9(Sc2O3)0.08(Y2O3)0.02; (ZrO2)0.89(Sc2O3)0.09(Y2O3)0.02; (ZrO2)0.89(Sc2O3)0.10(Y2O3)0.01; (ZrO2)0.88(Sc2O3)0.10(Y2O3)0.02. Comprehensive study of the crystal structure by using XRD, transmission electron microscopy, and Raman spectroscopy revealed that the all single crystals, which is identified by XRD data as cubic one, in fact have t″ tetragonal structure, which forms by small displacement of oxygen ions along the c-axis. Data on the phase stability of the crystals during mechanical crushing were obtained. The electrical conductivity was measured as a function of temperature by electrochemical impedance spectroscopy. It is established that (ZrO2)0.89(Sc2O3)0.10(Y2O3)0.01 crystals have the highest conductivity (0.168 S/cm at 1173 K).

  6. In-situ observation of isothermal CaSiO3 crystallization in CaO-Al2O3-SiO2 melts: A study of the effects of temperature and composition

    Science.gov (United States)

    Liu, Jing-Jing; Chen, Gong; Yan, Peng-Cheng; Planpain, Bart; Moelans, Nele; Guo, Muxing

    2014-09-01

    The crystallization behavior of CaSiO3 in different CaO-Al2O3-SiO2 melts was comprehensively investigated in-situ with a confocal scanning laser microscope (CSLM) over a wide range of temperatures. The observations clearly indicate a transition from a faceted to dendritic crystal morphology with decreasing temperature. The undercooling required for dendritic growth increases with decreasing Al2O3 (under same basicity) and increasing basicity. The dendrite structure becomes finer at higher growth rates with a lower Al2O3 and higher basicity. The growth rates of different dendrites are time-independent. With increasing temperature, the growth rate first increases and then decreases. The observed dendrite tip radii are compared with those obtained from Ivantsov theory in 2D and 3D. With decreasing temperature, the growth conditions in the CSLM experiments appeared to shift from 3D (with the dendrite tip below the surface melt) close to 2D (with the dendrite tip on top of the surface melt).

  7. Kinetic analysis of overlapping multistep thermal decomposition comprising exothermic and endothermic processes: thermolysis of ammonium dinitramide.

    Science.gov (United States)

    Muravyev, Nikita V; Koga, Nobuyoshi; Meerov, Dmitry B; Pivkina, Alla N

    2017-01-25

    This study focused on kinetic modeling of a specific type of multistep heterogeneous reaction comprising exothermic and endothermic reaction steps, as exemplified by the practical kinetic analysis of the experimental kinetic curves for the thermal decomposition of molten ammonium dinitramide (ADN). It is known that the thermal decomposition of ADN occurs as a consecutive two step mass-loss process comprising the decomposition of ADN and subsequent evaporation/decomposition of in situ generated ammonium nitrate. These reaction steps provide exothermic and endothermic contributions, respectively, to the overall thermal effect. The overall reaction process was deconvoluted into two reaction steps using simultaneously recorded thermogravimetry and differential scanning calorimetry (TG-DSC) curves by considering the different physical meanings of the kinetic data derived from TG and DSC by P value analysis. The kinetic data thus separated into exothermic and endothermic reaction steps were kinetically characterized using kinetic computation methods including isoconversional method, combined kinetic analysis, and master plot method. The overall kinetic behavior was reproduced as the sum of the kinetic equations for each reaction step considering the contributions to the rate data derived from TG and DSC. During reproduction of the kinetic behavior, the kinetic parameters and contributions of each reaction step were optimized using kinetic deconvolution analysis. As a result, the thermal decomposition of ADN was successfully modeled as partially overlapping exothermic and endothermic reaction steps. The logic of the kinetic modeling was critically examined, and the practical usefulness of phenomenological modeling for the thermal decomposition of ADN was illustrated to demonstrate the validity of the methodology and its applicability to similar complex reaction processes.

  8. Body mass scaling of passive oxygen diffusion in endotherms and ectotherms.

    Science.gov (United States)

    Gillooly, James F; Gomez, Juan Pablo; Mavrodiev, Evgeny V; Rong, Yue; McLamore, Eric S

    2016-05-10

    The area and thickness of respiratory surfaces, and the constraints they impose on passive oxygen diffusion, have been linked to differences in oxygen consumption rates and/or aerobic activity levels in vertebrates. However, it remains unclear how respiratory surfaces and associated diffusion rates vary with body mass across vertebrates, particularly in relation to the body mass scaling of oxygen consumption rates. Here we address these issues by first quantifying the body mass dependence of respiratory surface area and respiratory barrier thickness for a diversity of endotherms (birds and mammals) and ectotherms (fishes, amphibians, and reptiles). Based on these findings, we then use Fick's law to predict the body mass scaling of oxygen diffusion for each group. Finally, we compare the predicted body mass dependence of oxygen diffusion to that of oxygen consumption in endotherms and ectotherms. We find that the slopes and intercepts of the relationships describing the body mass dependence of passive oxygen diffusion in these two groups are statistically indistinguishable from those describing the body mass dependence of oxygen consumption. Thus, the area and thickness of respiratory surfaces combine to match oxygen diffusion capacity to oxygen consumption rates in both air- and water-breathing vertebrates. In particular, the substantially lower oxygen consumption rates of ectotherms of a given body mass relative to those of endotherms correspond to differences in oxygen diffusion capacity. These results provide insights into the long-standing effort to understand the structural attributes of organisms that underlie the body mass scaling of oxygen consumption.

  9. Common metabolic constraints on dive duration in endothermic and ectothermic vertebrates

    Directory of Open Access Journals (Sweden)

    April Hayward

    2016-10-01

    Full Text Available Dive duration in air-breathing vertebrates is thought to be constrained by the volume of oxygen stored in the body and the rate at which it is consumed (i.e., “oxygen store/usage hypothesis”. The body mass-dependence of dive duration among endothermic vertebrates is largely supportive of this model, but previous analyses of ectothermic vertebrates show no such body mass-dependence. Here we show that dive duration in both endotherms and ectotherms largely support the oxygen store/usage hypothesis after accounting for the well-established effects of temperature on oxygen consumption rates. Analyses of the body mass and temperature dependence of dive duration in 181 species of endothermic vertebrates and 29 species of ectothermic vertebrates show that dive duration increases as a power law with body mass, and decreases exponentially with increasing temperature. Thus, in the case of ectothermic vertebrates, changes in environmental temperature will likely impact the foraging ecology of divers.

  10. Amino acid composition in endothermic vertebrates is biased in the same direction as in thermophilic prokaryotes

    Science.gov (United States)

    2010-01-01

    Background Among bacteria and archaea, amino acid usage is correlated with habitat temperatures. In particular, protein surfaces in species thriving at higher temperatures appear to be enriched in amino acids that stabilize protein structure and depleted in amino acids that decrease thermostability. Does this observation reflect a causal relationship, or could the apparent trend be caused by phylogenetic relatedness among sampled organisms living at different temperatures? And do proteins from endothermic and exothermic vertebrates show similar differences? Results We find that the observed correlations between the frequencies of individual amino acids and prokaryotic habitat temperature are strongly influenced by evolutionary relatedness between the species analysed; however, a proteome-wide bias towards increased thermostability remains after controlling for phylogeny. Do eukaryotes show similar effects of thermal adaptation? A small shift of amino acid usage in the expected direction is observed in endothermic ('warm-blooded') mammals and chicken compared to ectothermic ('cold-blooded') vertebrates with lower body temperatures; this shift is not simply explained by nucleotide usage biases. Conclusion Protein homologs operating at different temperatures have different amino acid composition, both in prokaryotes and in vertebrates. Thus, during the transition from ectothermic to endothermic life styles, the ancestors of mammals and of birds may have experienced weak genome-wide positive selection to increase the thermostability of their proteins. PMID:20807394

  11. Effect of the distribution of saturated fatty acids in the melting and crystallization profiles of high-oleic high-stearic oils

    Directory of Open Access Journals (Sweden)

    Bootello, M. A.

    2016-09-01

    Full Text Available The composition and distribution of fatty acids in triacylglycerol (TAG molecules are commonly considered as factors that determine the physical properties of a given oil or fat. The distribution of any fatty acid in fats and oils can be described through the α coefficient of asymmetry, which can be calculated from the TAG composition and fatty acid composition of the sn-2 position of the TAGs determined through lipase hydrolysis. High-oleic high-stearic oils and fats are considered stable and healthy, and they are good substitutes for hydrogenated vegetable oils and palm fractions in many food products, such as spreads and confectionery. Here, different high-oleic high-stearic acid oils were formulated which contained different distributions of saturated fatty acids in their TAGs, while maintaining a similar fatty acid composition. The aim of this work was to discuss the possibility of using the α coefficient to predict the physical properties of fats in function of their chemical composition and their melting and crystallization behavior as examined by differential scanning calorimetry.La composición y distribución de los ácidos grasos en las moléculas de triglicéridos se consideran factores determinantes en las propiedades físicas de los aceites y grasas. La distribución de ácidos grasos en un determinado aceite o grasa puede caracterizarse mediante un coeficiente de asimetría α, calculado a partir de las composiciones de triglicéridos y de ácidos grasos en la posición sn-2 de la molécula de triglicérido mediante hidrólisis con lipasa. El aceite de girasol alto oleico-alto esteárico es una grasa estable y saludable, adecuada para reemplazar a los aceites vegetales hidrogenados y fracciones de palma en muchos productos alimentarios, como grasas plásticas y grasas de confitería. En el presente trabajo, se formularon diferentes aceites alto oleico-alto esteárico con diferente distribución de los ácidos grasos saturados en

  12. Synthesis and Proof of Diethylaluminum Azide being Lower Melting Point Crystal%低熔点晶体叠氮二乙基铝的合成和证明

    Institute of Scientific and Technical Information of China (English)

    张小航; 高占先

    2001-01-01

    Diethylaluminum azide (DEAA) is an important compound in organoaluminum azides. But the synthesis and property of DEAA were reported a little. The DEAA is a liquid compound in literature that was synthesed by the reaction of diethyl aluminum chloride (DEAC) and sodium azide. The solid product as a colorless crystal was first obtained by the reaction of DEAC and sodium azide in our work. The solid product was characterized as DEAA by IR spectrum and 1H NMR spectrum. The yield of crystal DEAA was increased as NaN3/DEAC (mol/mol) increased. When NaN3/DEAC=1.3 the yield of DEAA is increased from 74% in literature to 83%. The melting point of DEAA is 28~29℃ that was determined with two methods in the work. The DEAA containing trace DEAC (about 0. 2% of DEAC) is liquid which has been full proved by varied tests in this paper. The melting point of DEAA is-130℃ in literature because the DEAA is not pure that may contain DEAC. The-130℃ may be eutectic point of eutectic mixture forming of DEAA and DEAC. 27Al NMR of DEAA is determined. At 8=6.4 there is a peak that W1/2 of the peak is 834Hz.The structure of crystal DEAA is inferred from 27Al NMR.

  13. 乙烯-辛烯共聚物/淀粉共混体系的非等温结晶动力学%Non-isothermal Melt Crystallization Kinetics of Polyethylene-Octene Elastomer/Starch Blends

    Institute of Scientific and Technical Information of China (English)

    尚晓娅; 扶雄; 杨连生

    2007-01-01

    Non-isothermal melt crystallization kinetics of polyethylene-octene elastomer(POE)/starch blends has been investigated by differential scanning calorimeter(DSC). The Jeziorny and Ozawa equations were applied to describe the kinetics of the crystallization process. The crystallization temperature and crystallization enthalpy strongly depended on the starch content and cooling rate. For each type of sample investigated, the crystallization exotherm became wider and shifted towards lower temperature range with increasing cooling rate. All of the blends investigated were found to have fast crystallization rate at higher temperature. Jeniorzy equation is more suitable to describe the crystallization model under the non-isothermal crystallization of POE/starch blends, and Ozawa model can not fit POE/starch blend system well.%通过差示扫描量热仪(DSC)研究了乙烯-辛烯共聚物/淀粉共混体系的非等温结晶动力学,用Jeziorny和Ozawa方程描述了结晶动力学过程.共混物的结晶温度和结晶焓强烈依赖于淀粉含量和冷却速率.结果表明,随着冷却速率的增加,每个试样的结晶放热曲线均变宽,并向低温区移动.当温度一定高时,所有试样均具有较快的结晶速率.Jeniorzy方程可以较好地描述POE/淀粉共混物的非等温结晶模式,而Ozawa方程对于POE/淀粉共混体系不太适合.

  14. Research on Melt Level Control Method for 12 Inch Silicon Single Crystal Growth%12英寸硅单晶生长过程中熔液面位置控制方法研究

    Institute of Scientific and Technical Information of China (English)

    朱亮; 周旗钢; 戴小林; 张果虎; 曹建伟; 邱敏秀

    2011-01-01

    During 12 inch silicon single crystal growth for IC, the silicon melt level has to be controlled to meet the requirements on temperature gradient near the interface. Such traditional methods as setting CL/ SL (CL is the crucible lift rate, SL is the seed lift rate) and laser distance measurement can not meet the requirement of CZ silicon crystal growth in some case. In this article, the melt level is measured by capturing the reflected image of the reference using CCD, and the melt level is controlled by adjusting the crucible lift rate, this technology can finally meet the requirement of 12 inch silicon crystal growth.%集成电路用12英寸硅单晶生长过程中,为满足晶体生长界面附近温度梯度的要求,需要测量并控制晶体生长过程中硅熔体液面位置.传统的设定坩埚上升速度和激光测距的方法有时不能适应直拉硅单晶生长技术的发展.本文提出并实现了一种采用CCD图像捕捉和测量液面位置的方法,结合调节坩埚上升速度来控制液面高度,最终可以满足生长集成电路用12英寸硅单晶的需要.

  15. Influence of Grain Boundary on Melting

    Institute of Scientific and Technical Information of China (English)

    王暾; 周富信; 刘曰武

    2001-01-01

    The temperature behaviour of an Al bicrystal with surfaces consisting of (110) and (111) crystals is simulated using molecular dynamics. The result shows that the (110) crystal losses its crystalline order at 820K, whereas the disorder does not propagate through the (111) crystal at this temperature. Instead, some disordered atoms are recrystallized into the (111) crystal and the initial grain boundary changes into a stable order-disorder interface. Thus, it was discovered that at a temperature near its melting point, the (111) crystal grew and obstructed the propagation of disorder. Such an obstruction is helpfulfor understanding melting.

  16. Seasonal bone growth and physiology in endotherms shed light on dinosaur physiology.

    Science.gov (United States)

    Köhler, Meike; Marín-Moratalla, Nekane; Jordana, Xavier; Aanes, Ronny

    2012-07-19

    Cyclical growth leaves marks in bone tissue that are in the forefront of discussions about physiologies of extinct vertebrates. Ectotherms show pronounced annual cycles of growth arrest that correlate with a decrease in body temperature and metabolic rate; endotherms are assumed to grow continuously until they attain maturity because of their constant high body temperature and sustained metabolic rate. This apparent dichotomy has driven the argument that zonal bone denotes ectotherm-like physiologies, thus fuelling the controversy on dinosaur thermophysiology and the evolution of endothermy in birds and mammal-like reptiles. Here we show, from a comprehensive global study of wild ruminants from tropical to polar environments, that cyclical growth is a universal trait of homoeothermic endotherms. Growth is arrested during the unfavourable season concurrently with decreases in body temperature, metabolic rate and bone-growth-mediating plasma insulin-like growth factor-1 levels, forming part of a plesiomorphic thermometabolic strategy for energy conservation. Conversely, bouts of intense tissue growth coincide with peak metabolic rates and correlated hormonal changes at the beginning of the favourable season, indicating an increased efficiency in acquiring and using seasonal resources. Our study supplies the strongest evidence so far that homeothermic endotherms arrest growth seasonally, which precludes the use of lines of arrested growth as an argument in support of ectothermy. However, high growth rates are a distinctive trait of mammals, suggesting the capacity for endogenous heat generation. The ruminant annual cycle provides an extant model on which to base inferences regarding the thermophysiology of dinosaurs and other extinct taxa.

  17. Melt growth, structure and properties of (ZrO2)1-x(Sc2O3)x solid solution crystals (x=0.035-0.11)

    Science.gov (United States)

    Borik, M. A.; Bredikhin, S. I.; Kulebyakin, A. V.; Kuritsyna, I. E.; Lomonova, E. E.; Milovich, F. O.; Myzina, V. A.; Osiko, V. V.; Panov, V. A.; Ryabochkina, P. A.; Seryakov, S. V.; Tabachkova, N. Yu.

    2016-06-01

    Crystals of (ZrO2)1-x(Sc2O3)x solid solutions with x=0.035, 0.06, 0.09 and 0.11 have been grown for the first time using the directional crystallization technique. Analysis of the scandium distribution along the crystal showed that the composition of all specimens is homogeneous, and the Sc2O3 concentration is almost identical to its content in the charge. All specimens exhibit a little decline in the scandium concentration along the crystal, this indicating that the effective distribution coefficient Sc is slightly greater than 1. The structure of as-grown crystals has been studied as a function of the Sc2O3 stabilising oxide concentration by X-ray diffraction, transmission electron microscopy and Raman spectroscopy. Crystals containing 3.5 mol% Sc2O3 are a mixture of the monoclinic and tetragonal phases, the crystals containing 6 mol% Sc2O3 have a tetragonal structure, those with 9 mol% Sc2O3 have the tetragonal phase with inclusions of the rhombohedral one and the specimens with 11 mol% Sc2O3 represent the rhombohedral phase with inclusions of the cubic phase. The electrical conductivity was measured as a function of temperature by electrochemical impedance spectroscopy. The conductivity of the scandia stabilized crystals, in spite of their inhomogeneity, presence of stresses and low fracture toughness, is comparable with that of the yttria stabilized zirconia crystals.

  18. Thermal management for a Mach 5 cruise aircraft using endothermic fuel

    Science.gov (United States)

    Petley, Dennis H.; Jones, Stuart C.

    1990-01-01

    The present thermal management system for a carrier-based Mach 5 cruise-capable aircraft whose propulsion system does not entail cryogenic fuels is predicated on the use of the catalytic endothermic reaction of a petroleum-derived hydrocarbon fuel as the heat sink for engine cooling. The insulation of engine flowpath surfaces reduces cooling requirements. The primary elements of this closed-cycle cooling system are a fuel preheater, a catalytic fuel reactor, and engine wall-cooling panels; a silicone-based liquid polymer is used as the coolant. Structural, weight, and thermal analysis results are presented for each of the primary components.

  19. The case of the missing mechanism: how does temperature influence seasonal timing in endotherms?

    Directory of Open Access Journals (Sweden)

    Samuel P Caro

    Full Text Available Temperature has a strong effect on the seasonal timing of life-history stages in both mammals and birds, even though these species can regulate their body temperature under a wide range of ambient temperatures. Correlational studies showing this effect have recently been supported by experiments demonstrating a direct, causal relationship between ambient temperature and seasonal timing. Predicting how endotherms will respond to global warming requires an understanding of the physiological mechanisms by which temperature affects the seasonal timing of life histories. These mechanisms, however, remain obscure. We outline a road map for research aimed at identifying the pathways through which temperature is translated into seasonal timing.

  20. 聚乳酸可降解材料结晶和熔融行为的研究%The Crystallization and Melting Behavior of Degradable PLA with PEG

    Institute of Scientific and Technical Information of China (English)

    邹国享; 张鑫; 赵彩霞; 李锦春

    2011-01-01

    This paper studied the effect of the annealing temperature,the content and Mω of PEG on the crystal and melting behavior of PLA. The results indicted that the crystallinity increased and crystal temperature increased with the addition of PEG. All samples showed double melting peak after annealing 120mino The Tm1 and △H1 of samples annealing at 100℃ is higher than that annealing at 80℃ ; The Tm1 of samples G was heightened and the △H1 of samples was enlarged with the increase of Mω of PEG.%用DSC和XRD研究了聚乙二醇(PEG)用量、分子量和退火温度对PLA结晶和熔融行为的影响。结果表明PEG的加入有利提高PLA的结晶度和结晶温度;PLA/PEG样品在低于10022退火后均表现出双熔融峰特征,退火温度越高,样品的低熔融峰(Tm1)越高且熔融热焓也越高;PEG分子量越大,其低熔融峰的熔融热焓(△H1)越大,Tm1也越高。

  1. Stress-induced melting of crystals in natural rubber: a new way to tailor the transition temperature of shape memory polymers.

    Science.gov (United States)

    Heuwers, Benjamin; Quitmann, Dominik; Katzenberg, Frank; Tiller, Joerg C

    2012-09-26

    Lightly cross-linked natural rubber (NR, cis-1,4-polyisoprene) was found to be an exceptional cold programmable shape memory polymer (SMP) with strain storage of up to 1000%. These networks are stabilized by strain-induced crystals. Here, we explore the influence of mechanical stress applied perpendicular to the elongation direction of the network on the stability of these crystals. We found that the material recovers its original shape at a critical transverse stress. It could be shown that this is due to a disruption of the strain-stabilizing crystals, which represents a completely new trigger for SMPs. The variation of transverse stress allows tuning of the trigger temperature T(trig) (σ) in a range of 45 to 0 °C, which is the first example of manipulating the transition of a crystal-stabilized SMP after programming.

  2. Formation and properties of reverse micellar cubic liquid crystals and derived emulsions.

    Science.gov (United States)

    Rodríguez-Abreu, Carlos; Shrestha, Lok Kumar; Varade, Dharmesh; Aramaki, Kenji; Maestro, Alicia; Quintela, Arturo López; Solans, Conxita

    2007-10-23

    The structure of the reverse micellar cubic (I2) liquid crystal and the adjacent micellar phase in amphiphilic block copolymer/water/oil systems has been studied by small-angle X-ray scattering (SAXS), rheometry, and differential scanning calorimetry (DSC). Upon addition of water to the copolymer/oil mixture, spherical micelles are formed and grow in size until a disorder-order transition takes place, which is related to a sudden increase in the viscosity and shear modulus. The transition is driven by the packing of the spherical micelles into a Fd3m cubic lattice. The single-phase I2 liquid crystals show gel-like behavior and elastic moduli higher than 104 Pa, as determined by oscillatory measurements. Further addition of water induces phase separation, and it is found that reverse water-in-oil emulsions with high internal phase ratio and stabilized by I2 liquid crystals can be prepared in the two-phase region. Contrary to liquid-liquid emulsions, both the elastic modulus and the viscosity decrease with the fraction of dispersed water, due to a decrease in the crystalline fraction in the sample, although the reverse emulsions remain gel-like even at high volume fractions of the dispersed phase. A temperature induced order-disorder transition can be detected by calorimetry and rheometry. Upon heating the I2 liquid crystals, two thermal events associated with small enthalpy values were detected: one endothermic, related to the "melting" of the liquid crystal, and the other exothermic, attributed to phase separation. The melting of the liquid crystal is associated with a sudden drop in viscosity and shear moduli. Results are relevant for understanding the formation of cubic-phase-based reverse emulsions and for their application as templates for the synthesis of structured materials.

  3. The dynamics of ice melting in the conditions of crybot movement

    Directory of Open Access Journals (Sweden)

    Zakharova Ekaterina

    2017-01-01

    Full Text Available The mathematical modeling results of the simultaneous processes of heat and mass transfer under the conditions of intense phase changes (melting of ice during the movement of cryobot have been given. The spatial unevenness of the melting rate of ice has been taken into account. It has been established that the rate of passage of the cryobot depends essentially on its temperature. According to the results of the numerical simulation, considerable cooling of the cryobot sheath has been established. The latter is due to the high endothermic effect of melting ice.

  4. Investigation of bubble-point vapor pressures for mixtures of an endothermic hydrocarbon fuel with ethanol

    Energy Technology Data Exchange (ETDEWEB)

    Haiyun Sun; Wenjun Fang; Yongsheng Guo; Ruisen Lin [Zhejiang University, Hangzhou (China). Department of Chemistry, Molecular Thermodynamics

    2005-05-01

    Bubble-point vapor pressures and equilibrium temperatures for several mixtures with different mass fractions of a kerosene based endothermic hydrocarbon fuel (EHF) and ethanol were measured by comparative ebulliometry with inclined ebulliometers. Correlation between vapor pressures and equilibrium temperatures by the Antoine equation was given with satisfactory precision. The bubble-point lines of pressure versus composition at different temperatures and temperature versus composition at different pressures were obtained. The pseudo binary systems of EHF+ethanol appear with very large positive deviations from Raoult's law. It follows that the addition of ethanol had a critical effect on the vapor pressure of fuels. Ethanol may be an effective oxygenated hydrocarbon additive to adjust the volatility of EHF. 17 refs., 8 figs., 4 tabs.

  5. Applications of Endothermic Reaction Technology to the High Speed Civil Transport

    Science.gov (United States)

    Glickstein, Marvin R.; Spadaccini, Louis J.

    1998-01-01

    The success of strategies for controlling emissions and enhancing performance in High Speed Research applications may be Increased by more effective utilization of the heat sink afforded by the fuel in the vehicle thermal management system. This study quantifies the potential benefits associated with the use of supercritical preheating and endothermic cracking of let fuel prior to combustion to enhance the thermal management capabilities of the propulsion systems in the High Speed Civil Transport (HSCT). A fuel-cooled thermal management system, consisting of plate-fin heat exchangers and a small auxiliary compressor, is defined for the HSCT, Integrated with the engine, and an assessment of the effect on engine performance, weight, and operating cost is performed. The analysis indicates significant savings due a projected improvement in fuel economy, and the potential for additional benefit if the cycle is modified to take full advantage of all the heat sink available in the fuel.

  6. Applications of endothermic research technology to the high speed civil transport

    Science.gov (United States)

    Glickstein, M. R.; Spadaccini, L. J.

    1997-01-01

    The success of strategies for controlling emissions and enhancing performance in High Speed Research applications may be increased by more effective utilization of the heat sink afforded by the fuel in the vehicle thermal management system. This study quantifies the potential benefits associated with the use of supercritical preheating and endothermic cracking of jet fuel prior to combustion to enhance the thermal management capabilities of the propulsion systems in the High Speed Civil Transport (HSCT). A fuel-cooled thermal management system, consisting of plate-fin heat exchangers and a small auxiliary compressor, is defined for the HSCT, integrated with the engine, and an assessment of the effect on engine performance, weight, and operating cost is performed. The analysis indicates significant savings due a projected improvement in fuel economy, and the potential for additional benefit if the cycle is modified to take full advantage of all the heat sink available in the fuel.

  7. Crystallization and melting behavior of {beta}-nucleated isotactic polypropylene/polyamide 6 blends with maleic anhydride grafted polyethylene-vinyl acetate as a compatibilizer

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Zhugen [Materials Science Institute, School of Chemistry and Chemical Engineering, Sun Yat-Sen University, Key Laboratory of Polymeric Composites and Functional Materials of the Ministry of Education, Guangzhou 510275 (China); Institut des Nanotechnologies de Lyon, UMR 5270 CNRS, Ecole centrale de Lyon, Equipe Chimie et Nanobiotechnologies, 36 Avenue Guy-de-Collongue, 69134 Ecully (France); Mai, Kancheng, E-mail: cesmkc@mail.sysu.edu.cn [Materials Science Institute, School of Chemistry and Chemical Engineering, Sun Yat-Sen University, Key Laboratory of Polymeric Composites and Functional Materials of the Ministry of Education, Guangzhou 510275 (China)

    2010-11-20

    {beta}-Nucleated isotactic polypropylene ({beta}-iPP) blend with maleic anhydride grafted polyethylene-vinyl acetate (EVA-g-MA) and {beta}-iPP/polyamide (PA) 6 blend, as well as its compatibilized version with EVA-g-MA as a compatibilizer were prepared with an internal mixer. Analysis from differential scanning calorimeter (DSC) and wide angle X-ray diffraction (WAXD) indicates that the addition of EVA-g-MA into {beta}-nucleated iPP decreases the crystallization temperature (T{sub c}{sup p}) of PP, but it has no pronounced influence on the {beta}-crystal content for {beta}-nucleated iPP. For {beta}-nucleated iPP/PA6 blends, PA6 obviously decreases the {beta}-crystal content. However, the addition of EVA-g-MA is quite benefit for the formation of {beta}-crystal in {beta}-nucleated iPP/PA6 blends and the {beta}-crystal content increases with increasing EVA-g-MA content. It is suggested that the nucleating agent mainly disperses in the PA6 phase and/or the interface between iPP and PA6 in iPP/PA6 blend, which was proved by etching the blends with sulfuric acid and experimental facts from SEM.

  8. Global variation in thermal tolerances and vulnerability of endotherms to climate change.

    Science.gov (United States)

    Khaliq, Imran; Hof, Christian; Prinzinger, Roland; Böhning-Gaese, Katrin; Pfenninger, Markus

    2014-08-22

    The relationships among species' physiological capacities and the geographical variation of ambient climate are of key importance to understanding the distribution of life on the Earth. Furthermore, predictions of how species will respond to climate change will profit from the explicit consideration of their physiological tolerances. The climatic variability hypothesis, which predicts that climatic tolerances are broader in more variable climates, provides an analytical framework for studying these relationships between physiology and biogeography. However, direct empirical support for the hypothesis is mostly lacking for endotherms, and few studies have tried to integrate physiological data into assessments of species' climatic vulnerability at the global scale. Here, we test the climatic variability hypothesis for endotherms, with a comprehensive dataset on thermal tolerances derived from physiological experiments, and use these data to assess the vulnerability of species to projected climate change. We find the expected relationship between thermal tolerance and ambient climatic variability in birds, but not in mammals-a contrast possibly resulting from different adaptation strategies to ambient climate via behaviour, morphology or physiology. We show that currently most of the species are experiencing ambient temperatures well within their tolerance limits and that in the future many species may be able to tolerate projected temperature increases across significant proportions of their distributions. However, our findings also underline the high vulnerability of tropical regions to changes in temperature and other threats of anthropogenic global changes. Our study demonstrates that a better understanding of the interplay among species' physiology and the geography of climate change will advance assessments of species' vulnerability to climate change. © 2014 The Author(s) Published by the Royal Society. All rights reserved.

  9. Can foraging ecology drive the evolution of body size in a diving endotherm?

    Directory of Open Access Journals (Sweden)

    Timothée R Cook

    Full Text Available Within a single animal species, different morphs can allow for differential exploitation of foraging niches between populations, while sexual size dimorphism can provide each sex with access to different resources. Despite being potentially important agents of evolution, resource polymorphisms, and the way they operate in wild populations, remain poorly understood. In this study, we examine how trophic factors can select for different body sizes between populations and sexes in a diving endotherm. Dive depth and duration are positively related to body size in diving birds and mammals, a relationship explained by a lower mass-specific metabolic rate and greater oxygen stores in larger individuals. Based on this allometry, we predict that selection for exploiting resources situated at different depths can drive the evolution of body size in species of diving endotherms at the population and sexual level. To test this prediction, we studied the foraging ecology of Blue-eyed Shags, a group of cormorants with male-biased sexual size dimorphism from across the Southern Ocean. We found that mean body mass and relative difference in body mass between sexes varied by up to 77% and 107% between neighbouring colonies, respectively. Birds from colonies with larger individuals dived deeper than birds from colonies with smaller individuals, when accounting for sex. In parallel, males dived further offshore and deeper than females and the sexual difference in dive depth reflected the level of sexual size dimorphism at each colony. We argue that body size in this group of birds is under intense selection for diving to depths of profitable benthic prey patches and that, locally, sexual niche divergence selection can exaggerate the sexual size dimorphism of Blue-eyed Shags initially set up by sexual selection. Our findings suggest that trophic resources can select for important geographic micro-variability in body size between populations and sexes.

  10. Direct impacts of climatic warming on heat stress in endothermic species: seabirds as bioindicators of changing thermoregulatory constraints.

    Science.gov (United States)

    Oswald, Stephen A; Arnold, Jennifer M

    2012-06-01

    There is now abundant evidence that contemporary climatic change has indirectly affected a wide-range of species by changing trophic interactions, competition, epidemiology and habitat. However, direct physiological impacts of changing climates are rarely reported for endothermic species, despite being commonly reported for ectotherms. We review the evidence for changing physiological constraints on endothermic vertebrates at high temperatures, integrating theoretical and empirical perspectives on the morphology, physiology and behavior of marine birds. Potential for increasing heat stress exposure depends on changes in multiple environmental variables, not just air temperature, as well as organism-specific morphology, physiology and behavior. Endotherms breeding at high latitudes are vulnerable to the forecast, extensive temperature changes because of the adaptations they possess to minimize heat loss. Low-latitude species will also be challenged as they currently live close to their thermal limits and will likely suffer future water shortages. Small, highly-active species, particularly aerial foragers, are acutely vulnerable as they are least able to dissipate heat at high temperatures. Overall, direct physiological impacts of climatic change appear underrepresented in the published literature, but available data suggest they have much potential to shape behavior, morphology and distribution of endothermic species. Coincidence between future heat stress events and other energetic constraints on endotherms remains largely unexplored but will be key in determining the physiological impacts of climatic change. Multi-scale, biophysical modeling, informed by experiments that quantify thermoregulatory responses of endotherms to heat stress, is an essential precursor to urgently-needed analyses at the population or species level. © 2012 ISZS, Blackwell Publishing and IOZ/CAS.

  11. Crystal chemical control of clinopyroxene-melt partitioning in the Di-Ab-An system: implications for elemental fractionations in the depleted mantle

    Energy Technology Data Exchange (ETDEWEB)

    Lundstrom, C. C.; Shaw, H. F.; Ryerson, F. J.; Williams, Q.; Gill, J.

    1998-08-01

    The partitioning of fifteen trace elements (Rb, Sr, Zr, Nb, Ba, La, Ce, Nd, Sm, Gd, Yb, Hf, Ta, Pb and Th) between clinopyroxene and synthetic melt has been studied in two compositions along an isotherm in the diopside-albite-anorthite ternary at 1 bar pressure. The two compositions correspond to ~ Di65An35 and ~ Di55Ab45 and produce clinopyroxenes distinct in chemistry while melt compositions range from 49 wt % SiO2 to 61 wt. % SiO2. The partition coefficients of high field strength elements (HFSE) increase by factors of 2 to 8 in Di-An experiments relative to Di-Ab experiments while other elements show very little change (+/- 20%) between compositions. The change in HFSE partitioning correlates with increases in tetrahedral Al2O3 (IVAl) content of clinopyroxenes in the anorthite-bearing experiments. Changes in DTa/DNb also correlate with IVA1 based on a survey of previously published determinations.

  12. Studies of thermal dissolution of RDX in TNT melt

    Science.gov (United States)

    Suvorova, N. A.; Hamilton, V. T.; Oschwald, D. M.; Balakirev, F. F.; Smilowitz, L. B.; Henson, B. F.

    2017-01-01

    The thermal response of energetic materials is studied due to its importance in issues of material safety and surety. Secondary high explosives which melt before they thermally decompose present challenging systems to model due to the addition of material flow. Composition B is a particularly challenging system due to its multiphase nature with a low melt component (TNT) and a high melt component (RDX). The dissolution of RDX crystals in molten TNT at the temperature below RDX melting point has been investigated using hot stage microscopy. In this paper, we present data on the dissolution rate of RDX crystals in molten TNT as a function of temperature above the TNT melt.

  13. Petrogenesis of basaltic volcanic rocks from the Pribilof Islands, Alaska, by melting of metasomatically enriched depleted lithosphere, crystallization differentiation, and magma mixing

    Science.gov (United States)

    Chang, J.M.; Feeley, T.C.; Deraps, M.R.

    2009-01-01

    The Pribilof Islands, Alaska, are located in the Bering Sea in a continental intraplate setting. In this study we examine the petrology and geochemistry of volcanic rocks from St. Paul (0??54-0??003 Ma) and St. George (2??8-1??4 Ma) Islands, the two largest Pribilof Islands. Rocks from St. George can be divided into three groups: group 1 is a high-MgO, low-SiO. 2 suite composed primarily of basanites; group 2 is a high-MgO, high-SiO 2 suite consisting predominantly of alkali basalts; group 3 is an intermediate- to low-MgO suite that includes plagioclase-phyric subalkali basalts and hawaiites. Major and trace element geochemistry suggests that groups 1 and 2 formed by small-degree partial melting of amphibole-bearing to amphibole-free garnet peridotite. Group 1 rocks were the earliest melts produced from the most hydrous parts of the mantle, as they show the strongest geochemical signature of amphibole in their source. The suite of rocks from St. Paul ranges from 14??4 to 4??2 wt % MgO at relatively constant SiO 2 contents (43??1-47??3 wt %). The most primitive St. Paul rocks are modeled as mixtures between magmas with compositions similar to groups 1 and 2 from St. George Island, which subsequently fractionated olivine, clinopyroxene, and spinel to form more evolved rocks. Plagioclase-phyric group 3 rocks from St. George are modeled as mixtures between an evolved melt similar to the evolved magmas on St. Paul and a fractionated group 2 end-member from St. George. Mantle potential temperatures estimated for primitive basanites and alkali basalts are ???1400??C and are similar to those of mid-ocean ridge basalts (MORB). Similarly, 87Sr/. 86Sr and 143Nd/. 144Nd values for all rocks are MORB-like, in the range of 0??702704-0??703035 and 0??513026-0??513109, respectively. 208Pb/. 204Pb vs 206Pb/. 204Pb values lie near the MORB end-member but show a linear trend towards HIMU (high time-integrated 238U/. 204Pb). Despite isotopic similarities to MORB, many of the major and

  14. Volatile diffusion in silicate melts and its effects on melt inclusions

    Directory of Open Access Journals (Sweden)

    P. Scarlato

    2005-06-01

    Full Text Available A compendium of diffusion measurements and their Arrhenius equations for water, carbon dioxide, sulfur, fluorine, and chlorine in silicate melts similar in composition to natural igneous rocks is presented. Water diffusion in silicic melts is well studied and understood, however little data exists for melts of intermediate to basic compositions. The data demonstrate that both the water concentration and the anhydrous melt composition affect the diffusion coefficient of water. Carbon dioxide diffusion appears only weakly dependent, at most, on the volatilefree melt composition and no effect of carbon dioxide concentration has been observed, although few experiments have been performed. Based upon one study, the addition of water to rhyolitic melts increases carbon dioxide diffusion by orders of magnitude to values similar to that of 6 wt% water. Sulfur diffusion in intermediate to silicic melts depends upon the anhydrous melt composition and the water concentration. In water-bearing silicic melts sulfur diffuses 2 to 3 orders of magnitude slower than water. Chlorine diffusion is affected by both water concentration and anhydrous melt composition; its values are typically between those of water and sulfur. Information on fluorine diffusion is rare, but the volatile-free melt composition exerts a strong control on its diffusion. At the present time the diffusion of water, carbon dioxide, sulfur and chlorine can be estimated in silicic melts at magmatic temperatures. The diffusion of water and carbon dioxide in basic to intermediate melts is only known at a limited set of temperatures and compositions. The diffusion data for rhyolitic melts at 800°C together with a standard model for the enrichment of incompatible elements in front of growing crystals demonstrate that rapid crystal growth, greater than 10-10 ms-1, can significantly increase the volatile concentrations at the crystal-melt interface and that any of that melt trapped

  15. A comparative study of the structure and crystallization of bulk metallic amorphous rod Pr60Ni30Al10 and melt-spun metallic amorphous ribbon Al87Ni10Pr3

    Institute of Scientific and Technical Information of China (English)

    Meng Qing-Ge; Li Jian-Guo; Zhou Jian-Kun

    2006-01-01

    Pr-based bulk metallic amorphous (BM1 rods (Pr60Ni30Al10) and Al-based amorphous ribbons (Al87Ni10Pr3)have been prepared by using copper mould casting and single roller melt-spun techniques, respectively. Thermal parameters deduced from differential scanning calorimeter (DS3 indicate that the glass-forming ability (GF1 of Pr60Nia0Al10 BMA rod is far higher than that of Al87Ni10Pr3 ribbon. A comparative study about the differences in structure between the two kinds of glass-forming alloys, superheated viscosity and crystallization are also made. Compared with the amorphous alloy Al87Ni10Pr3, the BMA alloy Pr60Ni30Al10 shows high thermal stability and large viscosity, small diffusivity at the same superheated temperatures. The results of x-Ray diffraction (XRD) and transmission electron microscope (TEM) show the pronounced difference in structure between the two amorphous alloys.Together with crystallization results, the main structure compositions of the amorphous samples are confirmed. It seems that the higher the GFA, the more topological type clusters in the Pr-Ni-Al amorphous alloys, the GFAs of the present glass-forming alloys are closely related to their structures.

  16. Synthesis of Refractory Materials by Skull Melting Technique

    Science.gov (United States)

    Osiko, Vyacheslav V.; Borik, Mikhail A.; Lomonova, Elena E.

    This chapter discusses methods of growing refractory oxide single crystals and synthesis of refractory glasses by skull melting technique in a cold crucible. It shows the advantages of radiofrequency (RF) heating of dielectric materials in a cold crucible and points out some specific problems regarding the process of growing crystals by directional crystallization from the melt and by pulling on a seed from the melt. The distinctive features of the method of directional crystallization from the melt are discussed in detail on the example of technology of materials based on zirconia, i.e., cubic single crystals and partly stabilized single crystals. It is shown that the size and quality of crystals are functions of the process conditions, such as thermal conditions under crystallization, growth rate, and chemical composition. We provide an overview of research on the structure, phase composition, and physicochemical properties of crystals based on zirconia. The optical, mechanical, and electric properties of these crystals make them suitable for a number of technical and industrial applications in optics, electronics, materials processing, and medicine. In this chapter, we also consider some problems regarding the synthesis of refractory glasses by skull melting technique. The physicochemical and optical properties of glasses are given and their practical applications in technology are discussed. We note that one of the better developed and most promising applications of skull melting technique is the immobilization of liquid and solid waste (also radioactive waste) into solid-state materials by vitrification.

  17. Superconducting Bi(1.5)Pb(0.5)Sr2Ca2Cu3O(x) ceramics by rapid melt quenching and glass crystallization

    Science.gov (United States)

    Bansal, Narottam P.

    1990-01-01

    The preparation of superconducting Bi(1.5)Pb(0.5)Sr2Ca2Cu3O(x) in the glassy state is described, and the results of a study of its crystallization kinetics are presented. The annealing parameters for transforming the glass into a superconductor containing a large fraction of the high-Tc phase were determined. It was found that prolonged annealing (longer than 10 days) in air at 840 C, followed by slow cooling, results in the Tc of 107.2 K and a sharp transition of 2 K.

  18. Stable isotope analysis of vertebrae reveals ontogenetic changes in habitat in an endothermic pelagic shark.

    Science.gov (United States)

    Carlisle, Aaron B; Goldman, Kenneth J; Litvin, Steven Y; Madigan, Daniel J; Bigman, Jennifer S; Swithenbank, Alan M; Kline, Thomas C; Block, Barbara A

    2015-01-22

    Ontogenetic changes in habitat are driven by shifting life-history requirements and play an important role in population dynamics. However, large portions of the life history of many pelagic species are still poorly understood or unknown. We used a novel combination of stable isotope analysis of vertebral annuli, Bayesian mixing models, isoscapes and electronic tag data to reconstruct ontogenetic patterns of habitat and resource use in a pelagic apex predator, the salmon shark (Lamna ditropis). Results identified the North Pacific Transition Zone as the major nursery area for salmon sharks and revealed an ontogenetic shift around the age of maturity from oceanic to increased use of neritic habitats. The nursery habitat may reflect trade-offs between prey availability, predation pressure and thermal constraints on juvenile endothermic sharks. The ontogenetic shift in habitat coincided with a reduction of isotopic niche, possibly reflecting specialization upon particular prey or habitats. Using tagging data to inform Bayesian isotopic mixing models revealed that adult sharks primarily use neritic habitats of Alaska yet receive a trophic subsidy from oceanic habitats. Integrating the multiple methods used here provides a powerful approach to retrospectively study the ecology and life history of migratory species throughout their ontogeny.

  19. Surrogate Seeds For Growth Of Crystals

    Science.gov (United States)

    Shlichta, Paul J.

    1989-01-01

    Larger crystals of higher quality grown. Alternative method for starting growth of crystal involves use of seed crystal of different material instead of same material as solution. Intended for growing single-crystal proteins for experiments but applicable in general to growth of crystals from solutions and to growth of semiconductor or other crystals from melts.

  20. Size-dependent melting of Bi nanoparticles

    Science.gov (United States)

    Olson, E. A.; Efremov, M. Yu.; Zhang, M.; Zhang, Z.; Allen, L. H.

    2005-02-01

    Nanocalorimetry was used to investigate the melting of Bi nanoparticles. The particles were formed by evaporating Bi onto a silicon nitride substrate, which was then heated. The particles self-assemble into truncated spherical particles. Below 5-nm average film thickness, mean particle sizes increased linearly with deposition thickness but increased rapidly for 10-nm-thick films. As expected, small particles were found to exhibit size-dependent melting temperatures less than the bulk melting temperature (e.g., ΔT =67K for a 3-nm radius particle). The measured melting temperatures for particles below ˜7nm in radius, however, were ˜50K above the value predicted by the homogeneous melting model. We discuss this discrepancy in terms of a possible size-dependent crystal structure change and the superheating of the solid phase.

  1. The structural basis of chicken, swine and bovine CD8αα dimers provides insight into the co-evolution with MHC I in endotherm species

    Science.gov (United States)

    Liu, Yanjie; Li, Xin; Qi, Jianxun; Zhang, Nianzhi; Xia, Chun

    2016-01-01

    It is unclear how the pivotal molecules of the adaptive immune system (AIS) maintain their inherent characteristics and relationships with their co-receptors over the course of co-evolution. CD8α, a fundamental but simple AIS component with only one immunoglobulin variable (IgV) domain, is a good example with which to explore this question because it can fold correctly to form homodimers (CD8αα) and interact with peptide-MHC I (p/MHC I) with low sequence identities between different species. Hereby, we resolved the crystal structures of chicken, swine and bovine CD8αα. They are typical homodimers consisting of two symmetric IgV domains with distinct species specificities. The CD8αα structures indicated that a few highly conserved residues are important in CD8 dimerization and in interacting with p/MHC I. The dimerization of CD8αα mainly depends on the pivotal residues on the dimer interface; in particular, four aromatic residues provide many intermolecular forces and contact areas. Three residues on the surface of CD8α connecting cavities that formed most of the hydrogen bonds with p/MHC I were also completely conserved. Our data propose that a few key conserved residues are able to ensure the CD8α own structural characteristics despite the great sequence variation that occurs during evolution in endotherms. PMID:27122108

  2. Ice-Crystallization Kinetics during Fuel-Cell Cold-Start

    Science.gov (United States)

    Dursch, Thomas James, Jr.

    conditions where ice invariably forms non-isothermally. Non-isothermal ice-crystallization rates and ice-crystallization temperatures are obtained in water-saturated GDLs as a function of cooling rate. Our previously developed ice-crystallization rate expression is extended to non-isothermal crystallization to predict ice-crystallization kinetics at various cooling rates. For non-isothermal ice formation, we find that cooling rate has a negligible effect on the crystallization rate when crystallization times are much faster than the time to decrease the sample temperature by the subcooling. Therefore, a pseudo-isothermal method is proposed for non-isothermal crystallization kinetics using isothermal crystallization kinetics evaluated at the non-isothermal crystallization temperature. Catalyst layers also retain a significant amount of product water during cold-start. Accordingly, ice nucleation and growth in PEMFC CLs are investigated using isothermal DSC and compared to isothermal galvanostatic membrane-electrode assembly (MEA) cold-starts. Measured ice-crystallization and ice-nucleation rates follow expected trends from classical nucleation theory. Following our previous approach, a quantitative nonlinear ice-crystallization rate expression is developed from the JMAK framework. To validate ice-crystallization kinetics within PEMFCs, we further measure and predict MEA cell-failure time during isothermal galvanostatic cold-start. Using a simplified PEMFC isothermal cold-start continuum model, MEA cell-failure times predicted using the newly obtained rate expression are compared to that predicted using a traditional thermodynamics-based approach. From this comparison, conditions are identified under which including ice-crystallization kinetics is critical and to elucidate the impact of freezing kinetics on low-temperature PEMFC operation. During cold-start, the time for recovering cell performance strongly depends on the rate of melting residual ice by reactive heat

  3. Partitioning coefficients between olivine and silicate melts

    Science.gov (United States)

    Bédard, J. H.

    2005-08-01

    Variation of Nernst partition coefficients ( D) between olivine and silicate melts cannot be neglected when modeling partial melting and fractional crystallization. Published natural and experimental olivine/liquidD data were examined for covariation with pressure, temperature, olivine forsterite content, and melt SiO 2, H 2O, MgO and MgO/MgO + FeO total. Values of olivine/liquidD generally increase with decreasing temperature and melt MgO content, and with increasing melt SiO 2 content, but generally show poor correlations with other variables. Multi-element olivine/liquidD profiles calculated from regressions of D REE-Sc-Y vs. melt MgO content are compared to results of the Lattice Strain Model to link melt MgO and: D0 (the strain compensated partition coefficient), EM3+ (Young's Modulus), and r0 (the size of the M site). Ln D0 varies linearly with Ln MgO in the melt; EM3+ varies linearly with melt MgO, with a dog-leg at ca. 1.5% MgO; and r0 remains constant at 0.807 Å. These equations are then used to calculate olivine/liquidD for these elements using the Lattice Strain Model. These empirical parameterizations of olivine/liquidD variations yield results comparable to experimental or natural partitioning data, and can easily be integrated into existing trace element modeling algorithms. The olivine/liquidD data suggest that basaltic melts in equilibrium with pure olivine may acquire small negative Ta-Hf-Zr-Ti anomalies, but that negative Nb anomalies are unlikely to develop. Misfits between results of the Lattice Strain Model and most light rare earth and large ion lithophile partitioning data suggest that kinetic effects may limit the lower value of D for extremely incompatible elements in natural situations characterized by high cooling/crystallization rates.

  4. Rheology of Melt-bearing Crustal Rocks

    Science.gov (United States)

    Rosenberg, C. L.; Medvedev, S.; Handy, M. R.

    2006-12-01

    A review and reinterpretation of previous experimental data on the deformation of melt-bearing crustal rocks (Rosenberg and Handy, 2005) revealed that the relationship of aggregate strength to melt fraction is non-linear, even if plotted on a linear ordinate and abscissa. At melt fractions, Φ 0.07, the dependence of aggregate strength on Φ is significantly greater than at Φ > 0.07. This melt fraction (Φ= 0.07) marks the transition from a significant increase in the proportion of melt-bearing grain boundaries up to this point to a minor increase thereafter. Therefore, we suggest that the increase of melt-interconnectivity causes the dramatic strength drop between the solidus and a melt fraction of 0.07. A second strength drop occurs at higher melt fractions and corresponds to the breakdown of the solid (crystal) framework, corresponding to the well-known "rheologically critical melt percentage" (RCMP; Arzi, 1978). Although the strength drop at the RCMP is about 4 orders of magnitude, the absolute value of this drop is small compared to the absolute strength of the unmelted aggregate, rendering the RCMP invisible in a linear aggregate strength vs. melt fraction diagram. Predicting the rheological properties and thresholds of melt-bearing crust on the basis of the results and interpretations above is very difficult, because the rheological data base was obtained from experiments performed at undrained conditions in the brittle field. These conditions are unlikely to represent the flow of partially melted crust. The measured strength of most of the experimentally deformed, partially-melted samples corresponds to their maximum differential stress, before the onset of brittle failure, not to their viscous strength during "ductile" (viscous) flow. To overcome these problems, we extrapolated a theoretically-derived flow law for partially melted granite deforming by diffusion-accommodated grain-boundary sliding (Paterson, 2001) and an experimentally-derived flow law for

  5. Effect of annealing and cobalt content on relaxation and crystallization behavior of zirconium based bulk metallic glasses

    Science.gov (United States)

    Dong, Yue; Wunderlich, Rainer; Fecht, Hans-Jörg

    2017-08-01

    The effects of annealing and cobalt content on relaxation and the crystallization process of Zr64Ni10Al7Cu19 bulk metallic glasses were investigated. β-relaxation occurs during annealing, leading to increased endotherm before crystallization. α-relaxation during high temperature annealing (higher than Tg) affects the crystallization process. The introduction of cobalt leads to an inhomogeneous amorphous structure and two-step crystallization due to the positive mixing enthalpy between cobalt and copper. Non-affine thermal strain arising from low temperature annealing of heterogeneous structure leads to a reduced endotherm phenomenon during relaxation on the DSC curves and a reduction in hardness.

  6. Evidences of Cold-Melting Mechanism and Cold-Dissolving-Melting Mechanism for Low-heating Solid-state Reaction%低热固相反应冷融熔机理和冷溶熔机理的证据

    Institute of Scientific and Technical Information of China (English)

    唐新村; 黄伯云; 贺跃辉

    2005-01-01

    The cold-melting mechanism and the cold-dissolving-melting mechanism were further studied by TG/DTA and in situ micro-photographs techniques with the mixture of dimethylglyoxime and Ni(Ac)2·4H2O, and the mixture of dimethylglyoxime and anhydrous Ni(Ac)2 as the modeled reactive examples. The endothermic peaks on the DTA curves at about 38℃ revealed the formation process of the cold-melting layer and cold-dissolving-melting layer on the surface of reactant particles. Further, the cold-melting state and the cold-dissolving-melting state were observed by the micrographs. These results provided the direct evidences for the theories of cold-melting mechanism and the cold-dissolving-melting mechanism.

  7. Optimization of Temperatures Heating Melt and Annealing Soft Magnetic Alloys

    Science.gov (United States)

    Tsepelev, Vladimir; Starodubtsev, Yuri

    2017-05-01

    Taking into account the concept of the quasi-chemical model of the liquid micro-non-uniform composition and the research made on the physical properties of the Fe-based melts being crystallized, the unique technology of the melt time-temperature treatment has been developed. Amorphous ribbons produced using this technology require optimal annealing temperatures to be specifically selected. Temperature dependences of the kinematic viscosity of a multicomponent Fe72.5Cu1Nb2Mo1.5Si14B9 melt have been studied. A critical temperature is detected above which the activation energy of viscous flow of the melt changes. Upon cooling the overheated melt, the temperature curves of the kinematic viscosity become linear within the given coordinates. In amorphous ribbon produced in the mode with overheating the melt above the critical temperature, the enthalpy of crystallization grows, the following heat treatment results in an increase in magnetic permeability.

  8. Shocked Feldspar in L Chondrites: Deformation, Transformation and Local Melting

    Science.gov (United States)

    Fudge, C.; Sharp, T. G.

    2016-08-01

    We present textures and compositional profiles of partially to completely transformed plagioclase to maskelynite. Evidence for transformation mechanisms, including solid state transformation and crystallization from melt will be discussed.

  9. Melting of Transition Metals

    Energy Technology Data Exchange (ETDEWEB)

    Ross, M; Japel, S; Boehler, R

    2005-04-11

    We review the transition melting studies carried out at Mainz, and describe a recently developed model used to explain that the relatively low melting slopes are due to the partially filled d-bands, and the persistence of the pressure induced s-d transition. The basic tenets of the model have now been reconfirmed by new measurements for Cu and Ni. The measurements show that Cu which has a filled 3d-band, has a melt slope that is about 2.5 greater than its neighbor Ni. In the case of Mo, the apparent discrepancy of DAC melting measurements with shock melting can be explained by accounting for the change in melt slope due to the bcc-cp transition observed in the shock studies. The Fe melt curve is revisited. The possible relevance of the Jahn-Teller effect and recently observed transition metal melts with Icosahedral Short-Range Order (ISRO) is discussed.

  10. Melting of the Abrikosov flux lattice in anisotropic superconductors

    Science.gov (United States)

    Beck, R. G.; Farrell, D. E.; Rice, J. P.; Ginsberg, D. M.; Kogan, V. G.

    1992-01-01

    It has been proposed that the Abrikosov flux lattice in high-Tc superconductors is melted over a significant fraction of the phase diagram. A thermodynamic argument is provided which establishes that the angular dependence of the melting temperature is controlled by the superconducting mass anisotropy. Using a low-frequency torsional-oscillator technique, this relationship has been tested in untwinned single-crystal YBa2Cu3O(7-delta). The results offer decisive support for the melting proposal.

  11. Mechanistic variables can enhance predictive models of endotherm distributions: the American pika under current, past, and future climates.

    Science.gov (United States)

    Mathewson, Paul D; Moyer-Horner, Lucas; Beever, Erik A; Briscoe, Natalie J; Kearney, Michael; Yahn, Jeremiah M; Porter, Warren P

    2017-03-01

    How climate constrains species' distributions through time and space is an important question in the context of conservation planning for climate change. Despite increasing awareness of the need to incorporate mechanism into species distribution models (SDMs), mechanistic modeling of endotherm distributions remains limited in this literature. Using the American pika (Ochotona princeps) as an example, we present a framework whereby mechanism can be incorporated into endotherm SDMs. Pika distribution has repeatedly been found to be constrained by warm temperatures, so we used Niche Mapper, a mechanistic heat-balance model, to convert macroclimate data to pika-specific surface activity time in summer across the western United States. We then explored the difference between using a macroclimate predictor (summer temperature) and using a mechanistic predictor (predicted surface activity time) in SDMs. Both approaches accurately predicted pika presences in current and past climate regimes. However, the activity models predicted 8-19% less habitat loss in response to annual temperature increases of ~3-5 °C predicted in the region by 2070, suggesting that pikas may be able to buffer some climate change effects through behavioral thermoregulation that can be captured by mechanistic modeling. Incorporating mechanism added value to the modeling by providing increased confidence in areas where different modeling approaches agreed and providing a range of outcomes in areas of disagreement. It also provided a more proximate variable relating animal distribution to climate, allowing investigations into how unique habitat characteristics and intraspecific phenotypic variation may allow pikas to exist in areas outside those predicted by generic SDMs. Only a small number of easily obtainable data are required to parameterize this mechanistic model for any endotherm, and its use can improve SDM predictions by explicitly modeling a widely applicable direct physiological effect

  12. The endothermic ATP hydrolysis and crossbridge attachment steps drive the increase of force with temperature in isometric and shortening muscle.

    Science.gov (United States)

    Offer, Gerald; Ranatunga, K W

    2015-04-15

    The isometric tetanic tension of skeletal muscle increases with temperature because attached crossbridge states bearing a relatively low force convert to those bearing a higher force. It was previously proposed that the tension-generating step(s) in the crossbridge cycle was highly endothermic and was therefore itself directly targeted by changes in temperature. However, this did not explain why a rapid rise in temperature (a temperature jump) caused a much slower rate of rise of tension than a rapid length step. This led to suggestions that the step targeted by a temperature rise is not the tension-generating step but is an extra step in the attached pathway of the crossbridge cycle, perhaps located on a parallel pathway. This enigma has been a major obstacle to a full understanding of the operation of the crossbridge cycle. We have now used a previously developed mechano-kinetic model of the crossbridge cycle in frog muscle to simulate the temperature dependence of isometric tension and shortening velocity. We allowed all five steps in the cycle to be temperature-sensitive. Models with different starting combinations of enthalpy changes and activation enthalpies for the five steps were refined by downhill simplex runs and scored by their ability to fit experimental data on the temperature dependence of isometric tension and the relationship between force and shortening velocity in frog muscle. We conclude that the first tension-generating step may be weakly endothermic and that the rise of tension with temperature is largely driven by the preceding two strongly endothermic steps of ATP hydrolysis and attachment of M.ADP.Pi to actin. The refined model gave a reasonable fit to the available experimental data and after a temperature jump the overall rate of tension rise was much slower than after a length step as observed experimentally. The findings aid our understanding of the crossbridge cycle by showing that it may not be necessary to include an additional

  13. Mechanistic variables can enhance predictive models of endotherm distributions: The American pika under current, past, and future climates

    Science.gov (United States)

    Mathewson, Paul; Moyer-Horner, Lucas; Beever, Erik; Briscoe, Natalie; Kearney, Michael T; Yahn, Jeremiah; Porter, Warren P.

    2017-01-01

    How climate constrains species’ distributions through time and space is an important question in the context of conservation planning for climate change. Despite increasing awareness of the need to incorporate mechanism into species distribution models (SDMs), mechanistic modeling of endotherm distributions remains limited in this literature. Using the American pika (Ochotona princeps) as an example, we present a framework whereby mechanism can be incorporated into endotherm SDMs. Pika distribution has repeatedly been found to be constrained by warm temperatures, so we used Niche Mapper, a mechanistic heat-balance model, to convert macroclimate data to pika-specific surface activity time in summer across the western United States. We then explored the difference between using a macroclimate predictor (summer temperature) and using a mechanistic predictor (predicted surface activity time) in SDMs. Both approaches accurately predicted pika presences in current and past climate regimes. However, the activity models predicted 8–19% less habitat loss in response to annual temperature increases of ~3–5 °C predicted in the region by 2070, suggesting that pikas may be able to buffer some climate change effects through behavioral thermoregulation that can be captured by mechanistic modeling. Incorporating mechanism added value to the modeling by providing increased confidence in areas where different modeling approaches agreed and providing a range of outcomes in areas of disagreement. It also provided a more proximate variable relating animal distribution to climate, allowing investigations into how unique habitat characteristics and intraspecific phenotypic variation may allow pikas to exist in areas outside those predicted by generic SDMs. Only a small number of easily obtainable data are required to parameterize this mechanistic model for any endotherm, and its use can improve SDM predictions by explicitly modeling a widely applicable direct physiological effect

  14. Investigation on multiple-melting behavior of nano-CaCO3/polypropylene composites

    Institute of Scientific and Technical Information of China (English)

    LIN Zhidan; ZENG Chunlian; MAI Kancheng

    2007-01-01

    The multiple melting-peak behavior of polypropylene (PP) in nano-CaCO3/PP composites and modified nano-CaCO3/PP composites were investigated under the condition of isothermal crystallization and nonisothermal crystallization.The result indicated that the addition ofnano-CaCO3 markedly increased the crystallization temperatures of PP and induced the formation of the p-crystal of PP.The crystallization temperatures of nano-CaCO3/PP composites modified by reactive monomers were further increased,but the melting-peak intensity of the 13-crystal of PP was not greatly influenced.While in the presence of dicumyl peroxide,nanoCaCO3/PP composites modified by reactive monomers led to the significant increase in the melting-peak intensity of the β-crystal of PP.The double melting-peak of PP was observed,which was attributed to the formation of two kinds of different crystallization forms of or-crystal or β-crystal during the crystallization of PP.With the increase of crystallization temperatures,the double melting-peak moved toward the hightemperature side.The intensity of high-temperature melting peak was higher than that of low-temperature melting peak in nano-CaCO3/PP composites.While in modified nano-CaCO3/PP composites crystallized at higher temperature,the intensity of high-temperature melting peak was lower than that of low-temperature melting peak.The isothermal crystallization time had little effect on the melting temperatures.

  15. Glass forming ability of calcium aluminosilicate melts

    DEFF Research Database (Denmark)

    Moesgaard, Mette; Yue, Yuanzheng

    2011-01-01

    The glass forming ability (GFA) of two series of calcium aluminosilicate melts is studied by measuring their viscous behavior and crystallization tendency. The first series consists of five compositions on the joining line between the eutectic point of anorthite-wollastonite-tridymite and that of...

  16. Can slabs melt beneath forearcs in hot subduction zones?

    Science.gov (United States)

    Ribeiro, J.; Maury, R.; Gregoire, M.

    2015-12-01

    At subduction zones, thermal modeling predict that the shallow part of the downgoing oceanic crust (test the hypothesis that adakites are pristine slab melts. We find that adakites from Baja California and Philippines formed by two distinct petrogenetic scenarios. In Baja California, hydrous mantle melts mixed/mingled with high-pressure (HP) adakite-type, slab melts within a lower crustal (~30 km depth) magma storage region before stalling into the upper arc crust (~7-15 km depth). In contrast, in the Philippines, primitive mantle melts stalled and crystallized within lower and upper crustal magma storage regions to produce silica-rich melts with an adakitic signature. Thereby, slab melting is not required to produce an adakitic geochemical fingerprint in hot subduction zones. However, our results also suggest that the downgoing crust potentially melted beneath Baja California.

  17. The Soret and Dufour Effects in Non-thermal Equilibrium Packed Beds with Forced Convection and Endothermic Reactions

    Institute of Scientific and Technical Information of China (English)

    李明春; 赵中亮; 静宇; 刘家涛; 吴玉胜

    2013-01-01

    To study the influence of the Soret and Dufour effects on the reactive characteristics of a porous packed bed with endothermic reactions and forced convection, a two-dimensional mathematical model considering the cross-diffusion effects was developed in accordance with the thermodynamics of irreversible processes and the lo-cal thermal non-equilibrium model. The simulation results were validated by comparing with experimental data. The influence of the Soret and Dufour effects on the heat transfer, mass transfer and endothermic chemical reaction in the non-thermal equilibrium packed bed is discussed. It was found that when the Peclet number reaches 1865, the maximum relative error of the concentration of gas product induced by the Soret effect is 34.7% and that of the solid fractional conversion caused by the Dufour effect is 10.8%at reaction time 160 s and initial temperature 1473 K. The differences induced by the Soret and Dufour effects are demonstrated numerically to increase gradually with the initial temperature of feeding gas and the Peclet number.

  18. Thermal sensitivity of immune function: evidence against a generalist-specialist trade-off among endothermic and ectothermic vertebrates

    Science.gov (United States)

    Butler, Michael W.; Stahlschmidt, Zachary R.; Ardia, Daniel R.; Davies, Scott; Davis, Jon; Guillette, Louis J.; Johnson, Nicholas; McCormick, Stephen D.; McGraw, Kevin J.; DeNardo, Dale F.

    2013-01-01

    Animal body temperature (Tbody) varies over daily and annual cycles, affecting multiple aspects of biological performance in both endothermic and ectothermic animals. Yet a comprehensive comparison of thermal performance among animals varying in Tbody (mean and variance) and heat production is lacking. Thus, we examined the thermal sensitivity of immune function (a crucial fitness determinant) in Vertebrata, a group encompassing species of varying thermal biology. Specifically, we investigated temperature-related variation in two innate immune performance metrics, hemagglutination and hemolysis, for 13 species across all seven major vertebrate clades. Agglutination and lysis were temperature dependent and were more strongly related to the thermal biology of species (e.g., mean Tbody) than to the phylogenetic relatedness of species, although these relationships were complex and frequently surprising (e.g., heterotherms did not exhibit broader thermal performance curves than homeotherms). Agglutination and lysis performance were positively correlated within species, except in taxa that produce squalamine, a steroidal antibiotic that does not lyse red blood cells. Interestingly, we found the antithesis of a generalist-specialist trade-off: species with broader temperature ranges of immune performance also had higher peak performance levels. In sum, we have uncovered thermal sensitivity of immune performance in both endotherms and ectotherms, highlighting the role that temperature and life history play in immune function across Vertebrata.

  19. Thermal sensitivity of immune function: evidence against a generalist-specialist trade-off among endothermic and ectothermic vertebrates.

    Science.gov (United States)

    Butler, Michael W; Stahlschmidt, Zachary R; Ardia, Daniel R; Davies, Scott; Davis, Jon; Guillette, Louis J; Johnson, Nicholas; McCormick, Stephen D; McGraw, Kevin J; DeNardo, Dale F

    2013-06-01

    Animal body temperature (Tbody) varies over daily and annual cycles, affecting multiple aspects of biological performance in both endothermic and ectothermic animals. Yet a comprehensive comparison of thermal performance among animals varying in Tbody (mean and variance) and heat production is lacking. Thus, we examined the thermal sensitivity of immune function (a crucial fitness determinant) in Vertebrata, a group encompassing species of varying thermal biology. Specifically, we investigated temperature-related variation in two innate immune performance metrics, hemagglutination and hemolysis, for 13 species across all seven major vertebrate clades. Agglutination and lysis were temperature dependent and were more strongly related to the thermal biology of species (e.g., mean Tbody) than to the phylogenetic relatedness of species, although these relationships were complex and frequently surprising (e.g., heterotherms did not exhibit broader thermal performance curves than homeotherms). Agglutination and lysis performance were positively correlated within species, except in taxa that produce squalamine, a steroidal antibiotic that does not lyse red blood cells. Interestingly, we found the antithesis of a generalist-specialist trade-off: species with broader temperature ranges of immune performance also had higher peak performance levels. In sum, we have uncovered thermal sensitivity of immune performance in both endotherms and ectotherms, highlighting the role that temperature and life history play in immune function across Vertebrata.

  20. A quantum chemistry study on thermochemical properties of high energy-density endothermic hydrocarbon fuel JP-10.

    Science.gov (United States)

    Qin, Xiao-Mei; Xie, Hu-Jun; Yue, Lei; Lu, Xiao-Xing; Fang, Wen-Jun

    2014-04-01

    The density functional theory (DFT) calculations at the M06-2X/6-31++G(d,p) level have been performed to explore the molecular structure, electronic structure, C-H bond dissociation enthalpy, and reaction enthalpies for five isodesmic reactions of a high energy-density endothermic hydrocarbon fuel JP-10. On the basis of the calculations, it is found that the carbonium ion C-6 isomer formed from the catalytic cracking at the C₆ site of JP-10 has the lowest energy, and the R-5 radical generated from the thermal cracking at the C₅ site of JP-10 is the most stable isomer. Furthermore, a series of hypothetical and isodesmic work reactions containing similar bond environments are used to calculate the reaction enthalpies for target compounds. For the same isodesmic reaction, the reaction enthalpy of each carbon site radical has also been calculated. The present work is of fundamental significance and strategic importance to provide some valuable insights into the component design and energy utilization of advanced endothermic fuels.

  1. Heat storage in Asian elephants during submaximal exercise: behavioral regulation of thermoregulatory constraints on activity in endothermic gigantotherms.

    Science.gov (United States)

    Rowe, M F; Bakken, G S; Ratliff, J J; Langman, V A

    2013-05-15

    Gigantic size presents both opportunities and challenges in thermoregulation. Allometric scaling relationships suggest that gigantic animals have difficulty dissipating metabolic heat. Large body size permits the maintenance of fairly constant core body temperatures in ectothermic animals by means of gigantothermy. Conversely, gigantothermy combined with endothermic metabolic rate and activity likely results in heat production rates that exceed heat loss rates. In tropical environments, it has been suggested that a substantial rate of heat storage might result in a potentially lethal rise in core body temperature in both elephants and endothermic dinosaurs. However, the behavioral choice of nocturnal activity might reduce heat storage. We sought to test the hypothesis that there is a functionally significant relationship between heat storage and locomotion in Asian elephants (Elephas maximus), and model the thermoregulatory constraints on activity in elephants and a similarly sized migratory dinosaur, Edmontosaurus. Pre- and post-exercise (N=37 trials) measurements of core body temperature and skin temperature, using thermography were made in two adult female Asian elephants at the Audubon Zoo in New Orleans, LA, USA. Over ambient air temperatures ranging from 8 to 34.5°C, when elephants exercised in full sun, ~56 to 100% of active metabolic heat production was stored in core body tissues. We estimate that during nocturnal activity, in the absence of solar radiation, between 5 and 64% of metabolic heat production would be stored in core tissues. Potentially lethal rates of heat storage in active elephants and Edmontosaurus could be behaviorally regulated by nocturnal activity.

  2. EFFECT OF INTERMOLECULAR HYDROGEN-BONDING ON CRYSTALLIZATION, MELTING AND DYNAMIC MECHANICAL BEHAVIOR OF POLY(BUTYLENE SUCCINATE) IN POLY( BUTYLENE SUCCINATE)/BISPHENOL A BLENDS%分子间氢键的形成对聚丁二酸丁二酯结晶熔融及动态力学行为的影响

    Institute of Scientific and Technical Information of China (English)

    罗发亮; 张秀芹; 甘志华; 季君晖; 王笃金

    2011-01-01

    研究了含有酚羟基的小分子添加剂双酚A(BPA)对可生物降解高分子材料聚丁二酸丁二酯(PBS)的结晶、熔融及玻璃化转变的影响.研究表明在PBS中添加BPA,使PBS的结晶能力下降、熔点降低,这源于PBS与BPA通过氢键相互作用形成复合物,破坏了PBS的规整结晶结构.动态力学热分析表明,复合物的玻璃化转变温度随着BPA含量增加而升高,动态储能模量下降.%In order to investigate the effects of low molecular weight organic additives containing phenol hydroxyl group on the crystallization, melting and mechanical properties of biodegradable aliphatic polyester,poly(butylene succinate) (PBS) and bisphenol A(BAP) were selected to blend via solution mixing method.Then 13C-NMR spectroscopy was used to probe the interaction between PBS and BPA,and the effects of BPA on the crystallization, melting, glassy transition temperature (Tg) and dynamic mechanical properties were investigated using DSC (differential scanning calorimetry) and DMTA(dynamic mechanical thermal nalysis).The results indicate that hydrogen-bonding was formed between phenol hydroxyls in BPA and ester groups in PBS chain, leading to the decrease of crystallization ability and melting point for PBS, which is attributed to the formation of PBS-BPA complexes via intermolecular hydrogen-bonding that disrupts the regularity of the PBS chain structure. The storage modulus of PBS-BPA complexes decreases with the increase of BPA content above the glassy transition temperature due the decreasing of crystallization ability for PBS, while the maximun position of the loss factor shifts to high temperature.

  3. 垃圾焚烧飞灰电弧炉熔渣微品玻璃的晶化行为%Crystallization Behavior of Glass-ceramics from Arc-melting Slag of Waste Incineration Fly Ash

    Institute of Scientific and Technical Information of China (English)

    刘汉桥; 魏国侠; 梁茵; 杨俊兰

    2012-01-01

    To deal with the issue of municipal solid waste incineration fly ash, are melting treatment technology was developed in combination with electric arc furnace metallurgical processes. Glass-ceramics was made of arc-meUing slag from waste incineration fly ash and additional glass cullet through crushing, pressing and sintering at temperature between 750 "C and 1050 'C. The crystallization behaviours of the glass-ceramics were examined by differential thermal analysis (DTA), X-ray diffractometry (XRD) and scanning electron microscopy (SEM). It is shown that main crystalline phase of the glass-ceramics are wollastonite (CaSiO3) and diopside (Ca (Mg, Al) (Si, A1)2O5 ) . and the diffraction peaks become more intensive at higher temperature. It is found that the glass-ceramics sintered at 850 *C has the optimal physical, mechanical and chemical characteristics, and it has density of 2. 62 g/cm3 , bending strength of 54. 96 Mpa, chemical resistance of 2. 7% and 0. 9% in acid and alkali solution respectively. Furthermore, the leaching concentration of heavy metals is very low.%将垃圾焚烧飞灰与适量废玻璃粉混合后用电弧炉熔融处理,产生的水冷熔渣进一步粉碎、压型并在750~1 050℃间热处理制取微晶玻璃,运用同步热分析仪、X射线衍射仪、扫描电镜等测试设备对微晶玻璃的晶化行为及性能进行分析测试.研究表明:微晶玻璃主晶相为硅灰石CaSiO3和少量透辉石Ca(Mg,Al)(Si,Al)2O6,其衍射峰随处理温度升高呈增加趋势,850℃热处理时所得微晶玻璃具有较佳的微观结构和物理、机械及化学性能,其密度为2.62 g/cm3、抗弯强度达90.44 MPa,耐酸碱性分别为2.7%、0.9%,重金属浸出浓度非常低.

  4. Devolatilization or melting of carbonates at Meteor Crater, AZ?

    Science.gov (United States)

    Hörz, F.; Archer, P. D.; Niles, P. B.; Zolensky, M. E.; Evans, M.

    2015-06-01

    We have investigated the carbonates in the impact melts and in a monolithic clast of highly shocked Coconino sandstone of Meteor Crater, AZ to evaluate whether melting or devolatilization is the dominant response of carbonates during high-speed meteorite impact. Both melt- and clast-carbonates are calcites that have identical crystal habits and that contain anomalously high SiO2 and Al2O3. Also, both calcite occurrences lack any meteoritic contamination, such as Fe or Ni, which is otherwise abundantly observed in all other impact melts and their crystallization products at Meteor Crater. The carbon and oxygen isotope systematics for both calcite deposits suggest a low temperature environment (Meteor Crater. Although confined to Meteor Crater, these findings are in stark contrast to Osinski et al. (2008) who proposed that melting of carbonates, rather than devolatilization, is the dominant process during hypervelocity impact into carbonate-bearing targets, including Meteor Crater.

  5. Mechanisms of acoustic processing of a metal melt containing nanoparticles

    Science.gov (United States)

    Kudryashova, O.; Vorozhtsov, S.; Dubkova, Ya.; Stepkina, M.

    2016-11-01

    Wave processing with the frequencies from subsound (vibration) to ultrasound is used to produce nanopowder-modified composite alloys. This work considers mechanisms of such processing of metal melts, which lead to deagglomeration and wettability of particles of a metal melt and to the destruction of growing crystals during solidification. The main dependences for the threshold of the turbulence and cavitation were obtained. Resonance phenomena that contribute to positive changes in the melt are discussed. Possible mechanisms of the destruction of growing crystals and agglomerates of particles at the high-frequency processing of the melt are considered, including the destruction of agglomerates in the front of an acoustic wave and the destruction of crystals by oscillating solid particles.

  6. Experimental observation of Minkowski spacetime melting

    CERN Document Server

    Smolyaninov, Igor I

    2015-01-01

    Cobalt nanoparticle-based ferrofluid in the presence of an external magnetic field forms a self-assembled hyperbolic metamaterial, which may be described as an effective 3D Minkowski spacetime for extraordinary photons. If the magnetic field is not strong enough, this effective Minkowski spacetime gradually melts under the influence of thermal fluctuations. On the other hand, it may restore itself if the magnetic field is increased back to its original value. Here we present direct microscopic visualization of such a Minkowski spacetime melting/crystallization, which is somewhat similar to hypothesized formation of the Minkowski spacetime in loop quantum cosmology.

  7. Growth of dopamine crystals

    Energy Technology Data Exchange (ETDEWEB)

    Patil, Vidya, E-mail: vidya.patil@ruparel.edu; Patki, Mugdha, E-mail: mugdha.patki@ruparel.edu [D. G. Ruparel College, Senapati Bapat Marg, Mahim, Mumbai – 400 016 (India)

    2016-05-06

    Many nonlinear optical (NLO) crystals have been identified as potential candidates in optical and electro-optical devices. Use of NLO organic crystals is expected in photonic applications. Hence organic nonlinear optical materials have been intensely investigated due to their potentially high nonlinearities, and rapid response in electro-optic effect compared to inorganic NLO materials. There are many methods to grow organic crystals such as vapor growth method, melt growth method and solution growth method. Out of these methods, solution growth method is useful in providing constraint free crystal. Single crystals of Dopamine have been grown by evaporating the solvents from aqueous solution. Crystals obtained were of the size of orders of mm. The crystal structure of dopamine was determined using XRD technique. Images of crystals were obtained using FEG SEM Quanta Series under high vacuum and low KV.

  8. Growth of dopamine crystals

    Science.gov (United States)

    Patil, Vidya; Patki, Mugdha

    2016-05-01

    Many nonlinear optical (NLO) crystals have been identified as potential candidates in optical and electro-optical devices. Use of NLO organic crystals is expected in photonic applications. Hence organic nonlinear optical materials have been intensely investigated due to their potentially high nonlinearities, and rapid response in electro-optic effect compared to inorganic NLO materials. There are many methods to grow organic crystals such as vapor growth method, melt growth method and solution growth method. Out of these methods, solution growth method is useful in providing constraint free crystal. Single crystals of Dopamine have been grown by evaporating the solvents from aqueous solution. Crystals obtained were of the size of orders of mm. The crystal structure of dopamine was determined using XRD technique. Images of crystals were obtained using FEG SEM Quanta Series under high vacuum and low KV.

  9. Impact melt rocks from the Ries structure, Germany: an origin as impact melt flows?

    Science.gov (United States)

    Osinski, Gordon R.

    2004-10-01

    The production of impact melt rocks and glasses is a characteristic feature of hypervelocity impact events on Earth and other planetary bodies. This investigation represents the first detailed study of an unusual series of coherent impact melt rocks intermittently exposed around the periphery of the ~24-km diameter, ~14.5 Ma Ries impact structure, Germany. Optical and analytical scanning electron microscopy (SEM) reveals that the groundmass comprises sanidine, plagioclase, quartz and ilmenite (decreasing order of abundance) with the interstices filled by either fresh or devitrified glassy mesostasis. Primary crystallites display skeletal, dendritic and/or spherulitic textures indicating rapid crystallization from a melt. The mesostasis is characterized by extreme chemical heterogeneity (e.g., FeO and Al 2O 3 contents from ~1 to ~62-80 wt.%). This is likely due to a combination of crystal-liquid fractionation during rapid cooling and crystallization of an originally incompletely homogenized melt. Vapor phase crystallization of sanidine and cristobalite occurred in miarolitic cavities during late-stage cooling of the impact melts. The most likely protolith for the impact melt rocks are granitic rocks present in the crystalline basement target. The high volatile content of the mesostasis suggests that a large volatile component was retained from this protolith. Field observations together with analytical data and micro-textures indicate that the Ries impact melt rocks were molten at the time of, and after, deposition. Field relations with other impactites also suggest that these rocks were emplaced subsequent to the excavation stage of crater formation and that they are not, therefore, ballistic ejecta. Thus, it is proposed that the Ries impact melt rocks were emplaced as ground-hugging impact melt flows that emanated from different regions of the evolving transient cavity during the modification stage of crater formation. This is consistent with, and in fact

  10. Thermoregulation of water foraging honeybees—Balancing of endothermic activity with radiative heat gain and functional requirements

    Science.gov (United States)

    Kovac, Helmut; Stabentheiner, Anton; Schmaranzer, Sigurd

    2010-01-01

    Foraging honeybees are subjected to considerable variations of microclimatic conditions challenging their thermoregulatory ability. Solar heat is a gain in the cold but may be a burden in the heat. We investigated the balancing of endothermic activity with radiative heat gain and physiological functions of water foraging Apis mellifera carnica honeybees in the whole range of ambient temperatures (Ta) and solar radiation they are likely to be exposed in their natural environment in Middle Europe. The mean thorax temperature (Tth) during foraging stays was regulated at a constantly high level (37.0–38.5 °C) in a broad range of Ta (3–30 °C). At warmer conditions (Ta = 30–39 °C) Tth increased to a maximal level of 45.3 °C. The endothermic temperature excess (difference of Tbody − Ta of living and dead bees) was used to assess the endogenously generated temperature elevation as a correlate of energy turnover. Up to a Ta of ∼30 °C bees used solar heat gain for a double purpose: to reduce energetic expenditure and to increase Tth by about 1–3 °C to improve force production of flight muscles. At higher Ta they exhibited cooling efforts to get rid of excess heat. A high Tth also allowed regulation of the head temperature high enough to guarantee proper function of the bees’ suction pump even at low Ta. This shortened the foraging stays and this way reduced energetic costs. With decreasing Ta bees also reduced arrival body weight and crop loading to do both minimize costs and optimize flight performance. PMID:20705071

  11. On the correlation between hydrogen bonding and melting points in the inositols

    DEFF Research Database (Denmark)

    Bekö, Sándor L; Alig, Edith; Schmidt, Martin U;

    2014-01-01

    Inositol, 1,2,3,4,5,6-hexahydroxycyclohexane, exists in nine stereoisomers with different crystal structures and melting points. In a previous paper on the relationship between the melting points of the inositols and the hydrogen-bonding patterns in their crystal structures [Simperler et al. (2006...... ▶). CrystEngComm 8, 589], it was noted that although all inositol crystal structures known at that time contained 12 hydrogen bonds per molecule, their melting points span a large range of about 170 °C. Our preliminary investigations suggested that the highest melting point must be corrected for the effect...... of molecular symmetry, and that the three lowest melting points may need to be revised. This prompted a full investigation, with additional experiments on six of the nine inositols. Thirteen new phases were discovered; for all of these their crystal structures were examined. The crystal structures of eight...

  12. Purification and separation of durene by static melt crystallization☆

    Institute of Scientific and Technical Information of China (English)

    Shan Cong; Ying Liu; Hong Li; Xingang Li; Lvhong Zhang; Lei Wang

    2015-01-01

    The purification and separation of durene from the mixture containing durene isomers were studied. Since the boiling points of tetramethyl benzene isomers are very close but their melting points are of great differences, stat-ic melt crystallization was applied to separate and purify durene from its isomers. Crystallization experiments were carried out under various operating conditions. The effects of cooling rate, crystallization temperature, sweating temperature and sweating time on the yield and purity of crystal were investigated. Orthogonal exper-imental design method was adopted to analyze the factors that may affect the yield of durene. Under the optimal crystal ization conditions, the purity of durene could reach as high as 99.06%with the yield of 75.3%through one crystal ization process. By fitting purification data based on sweating time in isothermal operations, the purifica-tion rate coefficient was obtained.

  13. Physicochemical principles of high-temperature crystallization and single crystal growth methods

    Science.gov (United States)

    Bagdasarov, Kh. S.

    The mechanisms of crystal growth are reviewed, with attention given to the physicochemical reactions taking place in the melt near the phase boundary; phenomena determining physical and chemical kinetics directly at the growth front; solid-phase processes occurring within the crystal. Methods for growing refractory single crystals are discussed with particular reference to the Verneuil method, zone melting, Czhochralskii growth, horizontal directional solidification, and the Stockbarger method. Methods for growing crystals of complex geometrical shapes are also discussed.

  14. Evolution of melt-vapor surface tension in silicic volcanic systems: Experiments with hydrous melts

    Science.gov (United States)

    Mangan, M.; Sisson, T.

    2005-01-01

    We evaluate the melt-vapor surface tension (??) of natural, water-saturated dacite melt at 200 MPa, 950-1055??C, and 4.8-5.7 wt % H2O. We experimentally determine the critical supersaturation pressure for bubble nucleation as a function of dissolved water and then solve for ?? at those conditions using classical nucleation theory. The solutions obtained give dacite melt-vapor surface tensions that vary inversely with dissolved water from 0.042 (??0.003) J m-2 at 5.7 wt% H2O to 0.060 (??0.007) J m-2 at 5.2 wt% H2O to 0.073 (??0.003) J m-2 at 4.8 wt% H2O. Combining our dacite results with data from published hydrous haplogranite and high-silica rhyolite experiments reveals that melt-vapor surface tension also varies inversely with the concentration of mafic melt components (e.g., CaO, FeOtotal, MgO). We develop a thermodynamic context for these observations in which melt-vapor surface tension is represented by a balance of work terms controlled by melt structure. Overall, our results suggest that cooling, crystallization, and vapor exsolution cause systematic changes in ?? that should be considered in dynamic modeling of magmatic processes.

  15. Is the pre-Tg DSC endotherm observed with solid state proteins associated with the protein internal dynamics? Investigation of bovine serum albumin by solid state hydrogen/deuterium exchange.

    Science.gov (United States)

    Mizuno, Masayasu; Pikal, Michael J

    2013-10-01

    DSC thermograms of solid state pure proteins often show a distinct endotherm at a temperature far below the glass transition temperature of the system (Tg). We hypothesized this endotherm represents enthalpy recovery associated with an internal mobility transition of the protein molecule. Although the existence of an internal transition has been postulated, whether this endotherm is associated with such a transition has not previously been discussed. The purpose of this study was to investigate the origin of the pre-Tg endotherm in lyophilized bovine serum albumin (BSA). Due to strong glass behavior, the system Tg was determined by extrapolating Tg data of disaccharide/BSA formulations to zero saccharide. A small pre-Tg endotherm around 40-60 °C was observed in amorphous BSA equilibrated at 11%RH. The apparent activation energy suggested the endotherm was "α-mobility"-related. A solid state hydrogen/deuterium exchange study using FTIR was conducted over a temperature range spanning the endotherm. We found a fast phase, followed by essentially a plateau level which is highly temperature dependent in the 40-60 °C range, suggesting enhanced internal protein motion as the system passes through the temperature range of the endotherm. These results suggest the pre-Tg endotherm is associated with a protein internal mobility transition.

  16. Polarization effects in ionic solids and melts

    OpenAIRE

    Salanne, Mathieu; Madden, Paul A.

    2015-01-01

    Ionic solids and melts are compounds in which the interactions are dominated by electrostatic effects. However, the polarization of the ions also plays an important role in many respects as has been clarified in recent years thanks to the development of realistic polarizable interaction potentials. After detailing these models, we illustrate the importance of polarization effects on a series of examples concerning the structural properties, such as the stabilization of particular crystal stru...

  17. Basal metabolic rate of endotherms can be modeled using heat-transfer principles and physiological concepts: reply to "can the basal metabolic rate of endotherms be explained by biophysical modeling?".

    Science.gov (United States)

    Roberts, Michael F; Lightfoot, Edwin N; Porter, Warren P

    2011-01-01

    Our recent article (Roberts et al. 2010 ) proposes a mechanistic model for the relation between basal metabolic rate (BMR) and body mass (M) in mammals. The model is based on heat-transfer principles in the form of an equation for distributed heat generation within the body. The model can also be written in the form of the allometric equation BMR = aM(b), in which a is the coefficient of the mass term and b is the allometric exponent. The model generates two interesting results: it predicts that b takes the value 2/3, indicating that BMR is proportional to surface area in endotherms. It also provides an explanation of the physiological components that make up a, that is, respiratory heat loss, core-skin thermal conductance, and core-skin thermal gradient. Some of the ideas in our article have been questioned (Seymour and White 2011 ), and this is our response to those questions. We specifically address the following points: whether a heat-transfer model can explain the level of BMR in mammals, whether our test of the model is inadequate because it uses the same literature data that generated the values of the physiological variables, and whether geometry and empirical values combine to make a "coincidence" that makes the model only appear to conform to real processes.

  18. The role of the amorphous phase in melting of linear UHMW-PE; implications for chain dynamics

    Energy Technology Data Exchange (ETDEWEB)

    Rastogi, Sanjay [Department of Chemical Engineering and Chemistry/Dutch Polymer Institute, Eindhoven University of Technology, PO Box 513, 5600MB Eindhoven (Netherlands); Lippits, Dirk R [Department of Chemical Engineering and Chemistry/Dutch Polymer Institute, Eindhoven University of Technology, PO Box 513, 5600MB Eindhoven (Netherlands); Hoehne, Guenther W H [Department of Chemical Engineering and Chemistry/Dutch Polymer Institute, Eindhoven University of Technology, PO Box 513, 5600MB Eindhoven (Netherlands); Mezari, Brahim [Department of Chemical Engineering and Chemistry/Dutch Polymer Institute, Eindhoven University of Technology, PO Box 513, 5600MB Eindhoven (Netherlands); Magusin, Pieter C M M [Department of Chemical Engineering and Chemistry/Dutch Polymer Institute, Eindhoven University of Technology, PO Box 513, 5600MB Eindhoven (Netherlands)

    2007-05-23

    In ultra-high molecular weight polyethylene (UHMW-PE), it is possible to obtain single chain forming single crystals, where chains are adjacently re-entrant. Depending on the heating rate, it is feasible to melt these crystals either by simple consecutive detachment of chain stems from the crystalline substrate or by cluster melting, where several chain stems are involved. The consecutive detachment of chain stems occurs at the melting point predicted from the Gibbs-Thomson equation, whereas the cluster melting at much higher temperatures. Melting by the consecutive detachment of chain stems from the crystal substrate and their diffusion in the melt ultimately result in a new melt state having a heterogeneous distribution of physical entanglements, which invokes differences in local mobility. With combined DSC, rheology and solid-state NMR studies, it is concluded that the disentangled domains present within the entangled matrix possess higher local mobility than the entangled domains, ultimately causing lower elastic modulus. The fraction of the entangled and disentangled domains is maintained at higher temperatures, leading to a thermodynamically non-equilibrium melt state. In contrast, in cluster melting, where several chain stems (initially disentangled) can simultaneously adopt the random coil state, entanglements that are formed are homogeneously distributed in the melt. The paper invokes the influence of the topological differences present in the amorphous phase of the semi-crystalline polymer on the melting kinetics of crystals. The reported findings have implications for the melting behaviour and the resulting melt state of polymers in general.

  19. Melt Cast High Explosives

    Directory of Open Access Journals (Sweden)

    Stanisław Cudziło

    2014-12-01

    Full Text Available [b]Abstract[/b]. This paper reviews the current state and future developments of melt-cast high explosives. First the compositions, properties and methods of preparation of trinitrotoluene based (TNT conventional mixtures with aluminum, hexogen (RDX or octogen (HMX are described. In the newer, less sensitive explosive formulations, TNT is replaced with dinitroanisole (DNANDNANDNAN and nitrotriazolone (NTONTONTO, nitroguanidine (NG or ammonium perchlorate (AP are the replacement for RDRDX and HMX. Plasticized wax or polymer-based binder systems for melt castable explosives are also included. Hydroxyl terminated polybutadiene (HPTB is the binder of choice, but polyethylene glycol, and polycaprolactone with energetic plasticizers are also used. The most advanced melt-cast explosives are compositions containing energetic thermoplastic elastomers and novel highly energetic compounds (including nitrogen rich molecules in whose particles are nanosized and practically defect-less.[b]Keywords[/b]: melt-cast explosives, detonation parameters

  20. Melting of sodium clusters

    CERN Document Server

    Reyes-Nava, J A; Beltran, M R; Michaelian, K

    2002-01-01

    Thermal stability properties and the melting-like transition of Na_n, n=13-147, clusters are studied through microcanonical molecular dynamics simulations. The metallic bonding in the sodium clusters is mimicked by a many-body Gupta potential based on the second moment approximation of a tight-binding Hamiltonian. The characteristics of the solid-to-liquid transition in the sodium clusters are analyzed by calculating physical quantities like caloric curves, heat capacities, and root-mean-square bond length fluctuations using simulation times of several nanoseconds. Distinct melting mechanisms are obtained for the sodium clusters in the size range investigated. The calculated melting temperatures show an irregular variation with the cluster size, in qualitative agreement with recent experimental results. However, the calculated melting point for the Na_55 cluster is about 40 % lower than the experimental value.

  1. On the correlation between hydrogen bonding and melting points in the inositols

    Directory of Open Access Journals (Sweden)

    Sándor L. Bekö

    2014-01-01

    Full Text Available Inositol, 1,2,3,4,5,6-hexahydroxycyclohexane, exists in nine stereoisomers with different crystal structures and melting points. In a previous paper on the relationship between the melting points of the inositols and the hydrogen-bonding patterns in their crystal structures [Simperler et al. (2006. CrystEngComm 8, 589], it was noted that although all inositol crystal structures known at that time contained 12 hydrogen bonds per molecule, their melting points span a large range of about 170 °C. Our preliminary investigations suggested that the highest melting point must be corrected for the effect of molecular symmetry, and that the three lowest melting points may need to be revised. This prompted a full investigation, with additional experiments on six of the nine inositols. Thirteen new phases were discovered; for all of these their crystal structures were examined. The crystal structures of eight ordered phases could be determined, of which seven were obtained from laboratory X-ray powder diffraction data. Five additional phases turned out to be rotator phases and only their unit cells could be determined. Two previously unknown melting points were measured, as well as most enthalpies of melting. Several previously reported melting points were shown to be solid-to-solid phase transitions or decomposition points. Our experiments have revealed a complex picture of phases, rotator phases and phase transitions, in which a simple correlation between melting points and hydrogen-bonding patterns is not feasible.

  2. Force induced DNA melting

    Energy Technology Data Exchange (ETDEWEB)

    Santosh, Mogurampelly; Maiti, Prabal K [Center for Condensed Matter Theory, Department of Physics, Indian Institute of Science, Bangalore-12 (India)], E-mail: santosh@physics.iisc.ernet.in, E-mail: maiti@physics.iisc.ernet.in

    2009-01-21

    When pulled along the axis, double-strand DNA undergoes a large conformational change and elongates by roughly twice its initial contour length at a pulling force of about 70 pN. The transition to this highly overstretched form of DNA is very cooperative. Applying a force perpendicular to the DNA axis (unzipping), double-strand DNA can also be separated into two single-stranded DNA, this being a fundamental process in DNA replication. We study the DNA overstretching and unzipping transition using fully atomistic molecular dynamics (MD) simulations and argue that the conformational changes of double-strand DNA associated with either of the above mentioned processes can be viewed as force induced DNA melting. As the force at one end of the DNA is increased the DNA starts melting abruptly/smoothly above a critical force depending on the pulling direction. The critical force f{sub m}, at which DNA melts completely decreases as the temperature of the system is increased. The melting force in the case of unzipping is smaller compared to the melting force when the DNA is pulled along the helical axis. In the case of melting through unzipping, the double-strand separation has jumps which correspond to the different energy minima arising due to sequence of different base pairs. The fraction of Watson-Crick base pair hydrogen bond breaking as a function of force does not show smooth and continuous behavior and consists of plateaus followed by sharp jumps.

  3. Ice cream structural elements that affect melting rate and hardness.

    Science.gov (United States)

    Muse, M R; Hartel, R W

    2004-01-01

    Statistical models were developed to reveal which structural elements of ice cream affect melting rate and hardness. Ice creams were frozen in a batch freezer with three types of sweetener, three levels of the emulsifier polysorbate 80, and two different draw temperatures to produce ice creams with a range of microstructures. Ice cream mixes were analyzed for viscosity, and finished ice creams were analyzed for air cell and ice crystal size, overrun, and fat destabilization. The ice phase volume of each ice cream were calculated based on the freezing point of the mix. Melting rate and hardness of each hardened ice cream was measured and correlated with the structural attributes by using analysis of variance and multiple linear regression. Fat destabilization, ice crystal size, and the consistency coefficient of the mix were found to affect the melting rate of ice cream, whereas hardness was influenced by ice phase volume, ice crystal size, overrun, fat destabilization, and the rheological properties of the mix.

  4. Polymer semiconductor crystals

    Directory of Open Access Journals (Sweden)

    Jung Ah Lim

    2010-05-01

    Full Text Available One of the long-standing challenges in the field of polymer semiconductors is to figure out how long interpenetrating and entangled polymer chains self-assemble into single crystals from the solution phase or melt. The ability to produce these crystalline solids has fascinated scientists from a broad range of backgrounds including physicists, chemists, and engineers. Scientists are still on the hunt for determining the mechanism of crystallization in these information-rich materials. Understanding the theory and concept of crystallization of polymer semiconductors will undoubtedly transform this area from an art to an area that will host a bandwagon of scientists and engineers. In this article we describe the basic concept of crystallization and highlight some of the advances in polymer crystallization from crystals to nanocrystalline fibers.

  5. The first find of a melt inclusion in diamond from the Mir pipe

    Science.gov (United States)

    Bulanova, G. P.; Novgorodov, P. G.; Pavlova, L. A.

    1988-05-01

    Using the sequential-grinding method of Bulanova et al. (1986), designed for the gradual uncovering of diamond inclusions, deep-lying inclusions (including a central partly crystallized melt inclusion, six zonally distributed omphacites, and two pyrope-almandines) were brought to the surface in single-crystal diamond and analyzed using an energy spectrometer. The melt inclusion was found to consist of four phases: the rutile phase, the clinopyroxene phase, the K-Al-Si phase, and the Fe-Ti-Si phase. It is suggested that the melt inclusion is a fragment of a primary melt of rutilic eclogite.

  6. MELTED BUTTER TECHNOLOGY DEVELOPMENT

    Directory of Open Access Journals (Sweden)

    L. V. Golubeva

    2014-01-01

    Full Text Available Summary. Melted butter is made from dairy butter by rendering the fat phase. It has specific taste and aroma, high-calorie content and good assimilability. Defects of butter which appeared during the storage causes by the development of microbiological processes or by the chemical oxidation. On the development of these processes influence quality and composition of fresh butter, its physical structure, content of the increased amount of gas phase and content of heavy metals, storage conditions. Microbiological spoilage of butter occurs generally due to damage of plasma which is good environment for the development of microorganisms. Defects of microbiological origin include: unclean, sour, moldy, yeasty, cheesy, bitter taste. Defects of test and smell chemical origin are formed due to hydrolytic digestion of lipids. It's prevailed at long storage of butter in the conditions of freezing temperatures. It's picked out the following main processes of spoiling: souring, acidifying and sallowness. Often these processes take place simultaneously.It has been investigated melted butter with lactated additive. The latter improves the microbiological and toxicological safety, prolongs the storage condition of the products. Technological efficiency of the additives is achieved by a multilayer products formation from the inactive bound water, preventing microorganisms growth and by the barrier layer with lactate inhibiting hydrolytic reactions. Oil samples were obtained with the batch-type butter maker application, then they were melted and after that lactated additive were supplemented. It has been studied organoleptic and physico-chemical indices of the melted butter samples. The fatty-acid composition of melted butter were studied. Comparative analysis of fatty-acid composition of cow's milk fat and produced melted butter has shown their similarity. Also in the last sample there is increased weight fraction of linoleic and linolenic acids. The obtained

  7. Gas atomization of cobalt ferrite-phosphate melts

    Science.gov (United States)

    De Guire, Mark R.; O'Handley, R. C.; Kalonji, G.

    1989-01-01

    XRD, Moessbauer spectroscopy, and EDXS have been used to characterize a rapidly-solidified (Co,Fe)3O4 spinel generated in a cobalt-iron-phosphate glass matrix by gas atomization of melts. Of the two compositions tested, that containing 20 mol pct P2O5 exhibited randomly-oriented ferrite crystallization whose growth appears to have been diffusion-controlled. Unlike the ferrite, in which the iron has both tetrahedral and octahedral coordination, the iron in the glassy matrix was primarily of distorted-octahedral coordination. Calculations indicate that the cooling rates obtained with oxide melts vary strongly with droplet size, but less strongly with melt temperature.

  8. Gas atomization of cobalt ferrite-phosphate melts

    Science.gov (United States)

    De Guire, Mark R.; O'Handley, R. C.; Kalonji, G.

    1989-01-01

    XRD, Moessbauer spectroscopy, and EDXS have been used to characterize a rapidly-solidified (Co,Fe)3O4 spinel generated in a cobalt-iron-phosphate glass matrix by gas atomization of melts. Of the two compositions tested, that containing 20 mol pct P2O5 exhibited randomly-oriented ferrite crystallization whose growth appears to have been diffusion-controlled. Unlike the ferrite, in which the iron has both tetrahedral and octahedral coordination, the iron in the glassy matrix was primarily of distorted-octahedral coordination. Calculations indicate that the cooling rates obtained with oxide melts vary strongly with droplet size, but less strongly with melt temperature.

  9. STABILIZATION, REFORMATION AND MELTING OF POLY(L-LACTIDE) CRYSTALLITES

    Institute of Scientific and Technical Information of China (English)

    Tai-Yon Cho; Barbara Heck; Gert Strobl

    2007-01-01

    The large size of the crystallites in poly(L-lactide) and the low growth rate enable detailed time- and temperaturedependent X-ray scattering studies of the ordering processes to be carried out. A layer located intermediate between crystals and melt-like regions is observed which finally takes on crystalline order. Recrystallization processes during heating change the complete stack structure rather than the crystallites individually and produce voids in the stacks. Establishment of a new stable structure after a temperature jump in the melting range can be followed in time. DSC experiments indicate times of melting of the order of minutes.

  10. IN-SITU AFM OF POLYMER CRYSTALLIZATION

    Institute of Scientific and Technical Information of China (English)

    J.K.Hobbs

    2003-01-01

    Atomic force microscopy images taken during the crystallization of polyethylene both from processed and quiescent melts are presented. Crystallization from processed melts provides further evidence of a region in front of a growing lamella that is influenced by the crystallization process, but extending only 40 nm into the melt. High-resolution images of the growing crystal tip, taken during crystallization, show no direct evidence of the existence of intermediate phases. The growing tip is shown to be slightly rounded. In-filling crystallization, occurring after the initial flush of growth,is imaged in polyethylene for the first time, and shown to continue to a temperature 8℃ below the initial crystallization temperature.

  11. IN—SITU AFM OF POLYMER CRYSTALLIZATION

    Institute of Scientific and Technical Information of China (English)

    J.K.Hobbs

    2003-01-01

    Atomic force microscopy images taken during the crystallization of polyethylene both from processed and quiescent melts are presented.Crystallization from processed melts provides further evidence of a region in front of a growing lamella that is influenced by the crystallization process,but extending only 40nm into the melt.High-resolution images of the growing crystal tip,taken during crystallization,show no direct evidence of the existence of intermediate phases.The growing tip is shown to be slightly rounded.In-filling crystallization,occurring after the initial flush of growth,is imaged in polyethylene for the first time,and shown to continue to a temperature 8℃ below the initial crystallization temperature.

  12. Primary carbonatite melt from deeply subducted oceanic crust

    Energy Technology Data Exchange (ETDEWEB)

    Walter, M.J.; Bulanova, G.P.; Armstrong, L.S.; Keshav, S.; Blundy, J.D.; Gudfinnesson, G.; Lord, O.T.; Lennie, A.R.; Clark, S.M.; Smith, C.B.; Gobbo, L.

    2008-07-01

    Partial melting in the Earth's mantle plays an important part in generating the geochemical and isotopic diversity observed in volcanic rocks at the surface. Identifying the composition of these primary melts in the mantle is crucial for establishing links between mantle geochemical 'reservoirs' and fundamental geodynamic processes. Mineral inclusions in natural diamonds have provided a unique window into such deep mantle processes. Here they provide exper8imental and geochemical evidence that silicate mineral inclusions in diamonds from Juina, Brazil, crystallized from primary and evolved carbonatite melts in the mantle transition zone and deep upper mantle. The incompatible trace element abundances calculated for a melt coexisting with a calcium-titanium-silicate perovskite inclusion indicate deep melting of carbonated oceanic crust, probably at transition-zone depths. Further to perovskite, calcic-majorite garnet inclusions record crystallization in the deep upper mantle from an evolved melt that closely resembles estimates of primitive carbonatite on the basis of volcanic rocks. Small-degree melts of subducted crust can be viewed as agents of chemical mass-transfer in the upper mantle and transition zone, leaving a chemical imprint of ocean crust that can possibly endure for billions of years.

  13. Molecular morphology and crystallization in the quantum limit

    DEFF Research Database (Denmark)

    Bohr, Jakob

    2002-01-01

    The effects of phonons on crystallization and crystal morphology are investigated. It is shown that the commensuration of the lattice vibrations with the lattice will favor certain crystal morphologies. Vibrational effects can also be important for the molecular structure of chain molecules...... protein are estimated to differ by several electron volts. For a biomolecule, such energy is significant and may contribute to cold denaturing as seen for proteins. This is consistent with the empirical observation that cold denaturation is exothermic and hot denaturation endothermic....

  14. Growing Organic Crystals By The Czochralski Method

    Science.gov (United States)

    Shields, Angela; Frazier, Donald O.; Penn, Benjamin G.; Aggarwal, M. D.; Wang, W. S.

    1994-01-01

    Apparatus grows high-quality single crystals of organic compounds by Czochralski method. In Czochralski process, growing crystal lifted from middle of molten material without touching walls. Because of low melting temperatures of organic crystals, glass vessels usable. Traditional method for inorganic semiconductors adapted to optically nonlinear organic materials.

  15. Experiments on melt-rock reaction in the shallow mantle wedge

    Science.gov (United States)

    Mitchell, Alexandra L.; Grove, Timothy L.

    2016-12-01

    This experimental study simulates the interaction of hotter, deeper hydrous mantle melts with shallower, cooler depleted mantle, a process that is expected to occur in the upper part of the mantle wedge. Hydrous reaction experiments ( 6 wt% H2O in the melt) were conducted on three different ratios of a 1.6 GPa mantle melt and an overlying 1.2 GPa harzburgite from 1060 to 1260 °C. Reaction coefficients were calculated for each experiment to determine the effect of temperature and starting bulk composition on final melt compositions and crystallizing assemblages. The experiments used to construct the melt-wall rock model closely approached equilibrium and experienced phase equilibria, melt compositions, and reaction coefficients provide a framework for understanding how melt-wall rock reaction occurs in the natural system during melt ascent in the mantle wedge.

  16. Processing metallic glasses by selective laser melting

    Directory of Open Access Journals (Sweden)

    Simon Pauly

    2013-01-01

    Full Text Available Metallic glasses and their descendants, the so-called bulk metallic glasses (BMGs, can be regarded as frozen liquids with a high resistance to crystallization. The lack of a conventional structure turns them into a material exhibiting near-theoretical strength, low Young's modulus and large elasticity. These unique mechanical properties can be only obtained when the metallic melts are rapidly cooled to bypass the nucleation and growth of crystals. Most of the commonly known and used processing routes, such as casting, melt spinning or gas atomization, have intrinsic limitations regarding the complexity and dimensions of the geometries. Here, it is shown that selective laser melting (SLM, which is usually used to process conventional metallic alloys and polymers, can be applied to implement complex geometries and components from an Fe-base metallic glass. This approach is in principle viable for a large variety of metallic alloys and paves the way for the novel synthesis of materials and the development of parts with advanced functional and structural properties without limitations in size and intricacy.

  17. Discovery of Reversible Crystallization of Macromolecules

    Science.gov (United States)

    Wunderlich, Bernhard

    2004-03-01

    For 10 years "reversing melting" was observed with temperature-modulated differential scanning calorimetry, TMDSC. This reversing melting is the first harmonic response beyond that caused by the heat capacity of a metastable, semicrystalline macromolecular sample. Before one can identify "reversible melting," the calorimeter response must be corrected for loss of linearity, stationarity, frequency, amplitude, and instrument lag, or proper experiment-design must avoid these problems. Using quasi-isothermal TMDSC, the following observations were made [Prog. Polymer Sci. 28 (2003) 383-450]: Equilibrium crystals of polymers may melt at the equilibrium melting-temperature, but crystallization needs supercooling, even in the presence of crystal nuclei, making the overall process irreversible. Metastable, folded-chain crystals of the same molecules also melt irreversibly, however, may have some specific reversibility. Flexible, linear molecules of up to 10 nm length may melt fully reversibly. Macromolecules of less flexibility may lose the ability to melt reversibly. Decoupling of molecular segments, molecular nucleation, segregation of molar masses, rigid amorphous fractions, effects of equilibrium point defects in crystals and glasses, and transition-less ordering and solidification will be discussed in some detail. Supported by NSF, Polymers Program, DMR-0312233, and the Div. of Mat. Sci., BES, of DOE at ORNL, managed by UT-Battelle, LLC, for the U.S. Department of Energy, DOE-AC05-00OR22725.

  18. Comparative Analysis of Thermal Behavior, Isothermal Crystallization Kinetics and Polymorphism of Palm Oil Fractions

    OpenAIRE

    Zhang, Xia; Lin LI; Xie, He; Liang, Zhili; Su, Jianyu; Liu, Guoqin; LI, Bing

    2013-01-01

    Thermal behavior of palm stearin (PS) and palm olein (PO) was explored by monitoring peak temperature transitions by differential scanning calorimetry (DSC). The fatty acid composition (FAC), isothermal crystallization kinetics studied by pulsed Nuclear Magnetic Resonance (pNMR) and isothermal microstructure were also compared. The results indicated that the fatty acid composition had an important influence on the crystallization process. PS and PO both exhibited more multiple endotherms than...

  19. GLASS MELTING PHENOMENA, THEIR ORDERING AND MELTING SPACE UTILISATION

    Directory of Open Access Journals (Sweden)

    Němec L.

    2013-12-01

    Full Text Available Four aspects of effective glass melting have been defined – namely the fast kinetics of partial melting phenomena, a consideration of the melting phenomena ordering, high utilisation of the melting space, and effective utilisation of the supplied energy. The relations were defined for the specific melting performance and specific energy consumption of the glass melting process which involve the four mentioned aspects of the process and indicate the potentials of effective melting. The quantity “space utilisation” has been treated in more detail as an aspect not considered in practice till this time. The space utilisation was quantitatively defined and its values have been determined for the industrial melting facility by mathematical modelling. The definitions of the specific melting performance and specific energy consumption have been used for assessment of the potential impact of a controlled melt flow and high space utilisation on the melting process efficiency on the industrial scale. The results have shown that even the partial control of the melt flow, leading to the partial increase of the space utilisation, may considerably increase the melting performance, whereas a decrease of the specific energy consumption was determined to be between 10 - 15 %.

  20. Viscosity Measurement for Tellurium Melt

    Science.gov (United States)

    Lin, Bochuan; Li, Chao; Ban, Heng; Scripa, Rosalia N.; Su, Ching-Hua; Lehoczky, Sandor L.

    2006-01-01

    The viscosity of high temperature Te melt was measured using a new technique in which a rotating magnetic field was applied to the melt sealed in a suspended ampoule, and the torque exerted by rotating melt flow on the ampoule wall was measured. Governing equations for the coupled melt flow and ampoule torsional oscillation were solved, and the viscosity was extracted from the experimental data by numerical fitting. The computational result showed good agreement with experimental data. The melt velocity transient initiated by the rotating magnetic field reached a stable condition quickly, allowing the viscosity and electrical conductivity of the melt to be determined in a short period.

  1. Thermoacoustic Streaming and Ultrasonic Processing of Low Melting Melts

    Science.gov (United States)

    Trinh, E. H.

    1997-01-01

    Ultrasonic levitation allows the processing of low melting materials both in 1 G as well as in microgravity. The free suspension of the melts also facilitates undercooling, permitting the measurements of the physical properties of the metastable liquids.

  2. Melt inclusion record of immiscibility between silicate, hydrosaline, and carbonate melts: Applications to skarn genesis at Mount Vesuvius

    Science.gov (United States)

    Fulignati, Paolo; Kamenetsky, Vadim S.; Marianelli, Paola; Sbrana, Alessandro; Mernagh, Terrence P.

    2001-11-01

    Foid-bearing syenites and endoskarn xenoliths of the A.D. 472 Vesuvius eruption represent the magma chamber carbonate wall-rock interface. Melt inclusions hosted in crystals from these rocks offer a rare opportunity to depict the formation and the composition of metasomatic skarn-forming fluids at the peripheral part of a growing K-alkaline magma chamber disrupted by an explosive eruption. Four principal types of melt inclusions represent highly differentiated phonolite (type 1), hydrosaline melt (type 3), unmixed silicate salt melts (type 2), and a complex chloride-carbonate melt with minor sulfates (type 4). The high-temperature (700 800 °C) magmatic-derived hydrosaline melt is considered to be the main metasomatic agent for the skarn-forming reactions. The interaction between this melt (fluid) and carbonate wall rocks produces a Na-K-Ca carbonate-chloride melt that shows immiscibility between carbonate and chloride constituents at ˜700 °C in 1 atm experiments. This unmixing can be viewed as a possible mechanism for the origin of carbonatites associated with intrusion-related skarn systems.

  3. Crystallization process

    Science.gov (United States)

    Adler, Robert J.; Brown, William R.; Auyang, Lun; Liu, Yin-Chang; Cook, W. Jeffrey

    1986-01-01

    An improved crystallization process is disclosed for separating a crystallizable material and an excluded material which is at least partially excluded from the solid phase of the crystallizable material obtained upon freezing a liquid phase of the materials. The solid phase is more dense than the liquid phase, and it is separated therefrom by relative movement with the formation of a packed bed of solid phase. The packed bed is continuously formed adjacent its lower end and passed from the liquid phase into a countercurrent flow of backwash liquid. The packed bed extends through the level of the backwash liquid to provide a drained bed of solid phase adjacent its upper end which is melted by a condensing vapor.

  4. Eighth-order phase-field-crystal model for two-dimensional crystallization

    OpenAIRE

    Jaatinen, A.; Ala-Nissila, T.

    2010-01-01

    We present a derivation of the recently proposed eighth order phase field crystal model [Jaatinen et al., Phys. Rev. E 80, 031602 (2009)] for the crystallization of a solid from an undercooled melt. The model is used to study the planar growth of a two dimensional hexagonal crystal, and the results are compared against similar results from dynamical density functional theory of Marconi and Tarazona, as well as other phase field crystal models. We find that among the phase field crystal models...

  5. High-frequency Coil Deformation Zone Melting Crystal Growth Process Analysis and Theoretical Calculation%区熔单晶生长过程中高频线圈形变篚原因分析及理论计算

    Institute of Scientific and Technical Information of China (English)

    刘洪

    2012-01-01

    主要针对高频线圈于单晶生长过程中,在高频电流及棒体的高温作用下,产生的附加扭矩,改变线圈的设计外形,进行了原因研究、理论计算,并对单晶生长的影响进行了分析。通过采取适当的措施,降低由于线圈的形变对单晶的影响,提高单晶的成晶率。%Change the shape of the coil design for high-frequency coil in the crystal growth process, high-frequency current and the high temperature of the rods, resulting in additional torque, why study the theoretical calculations, and crystal growth the impact analysis. Take appropriate measures to reduce the coil deformation of single crystals, to improve the yield of single crystal.

  6. Phase Equilibria and Crystal Growth for LiREF4 Scheelite Crystals

    OpenAIRE

    2009-01-01

    The scheelite type laser crystals LiREF4 melt congruently only for RE being one of the elements Er, Tm, Yb, Lu, or possibly Y, respectively. For RE = Eu, Gd, Tb, Dy, or Ho the corresponding scheelites undergo a peritectic melting under the formation of the corresponding rare earth fluoride. The melting behavior of LiREF4 mixed crystals with two or more RE is not yet known well. If RE is a mixture of Gd and Lu, Gd rich solid solutions melt peritectically under formation of (Gd,Lu)F3 and Lu ric...

  7. MA-SEBS对超高分子量聚乙烯/碳纳米管复合材料结晶和熔融行为的影响%Effect of MA-SEBS on crystallization and melting behavior of ultra high molecular weight polyethylene/carbon nanotube composites

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    以马来酸酐接枝SEBS (MA-SEBS)作相容剂,采用溶液共混的方法制备超高分子量聚乙烯(UHMWPE)/碳纳米管(CNTs)复合材料.熔融结晶的UHMWPE/CNT复合材料是将其熔体以20℃/分的速率降温结晶而成.采用差示扫描量热法(DSC)研究了以不同方式结晶制备的UHMWPE/CNT复合材料的结晶和熔融行为.结果表明UHMWPE/CNT复合材料中UHMWPE相在溶液态结晶比在熔融态结晶形成的晶片厚,因而表现出更高的熔点(Tm)和结晶度(Xc).随着CNTs含量增加,UHMWPE/CNT复合材料中UHMWPE相的结晶温度(Tc)趋于提高.而且MA-SEBS的加入降低了UHMWPE/CNT复合材料中UHMWPE相的Tm 和 Tc. 此外UHMWPE/CNT复合材料中UHMWPE相的结晶速率随CNTs的引入而提高; MA-SEBS起相容剂的作用,改善了CNTs在UHMWPE基体中的分散性,使UHMWPE相的结晶速率进一步提高.%Ultra-high molecular weight polyethylene (UHMWPE) is filled with carbon nano-tubes (CNTs) by solution in the presence of maleic anhydride grafted styrene-(ethylene-co-butylene)-styrene copolymer (MA-SEBS) as a compatibilizer. The UHMWPE/CNT composites crystallized in melting state were prepared at a cooling rate of 20 ℃ min-1. The melting and crystallization behaviors of UHMWPE/CNT composites were investigated by differential scanning calorimetry. The results showed that Tm and Xc of UHMWPE/CNT composites crystallized in solution state are higher than those in melting state due to the larger crystalline lamellar thickness. Tc of UHMWPE/CNT composites tends to shift to higher temperature region with increasing CNTs content in the composites. Tm and Tc of UHMWPE phase in UHMWPE/CNT composites decrease with the addition of MA-SEBS. Moreover, the crystallization rate of UHMWPE phase in UHMWPE/CNT composite is accelerated due to the introduction of CNTs. MA-SEBS acts as compatilizer, enhances the dispersion of CNTs in the UHMWPE matrix. Thereby, the crystallization rate of UHMWPE phase in UHMWPE

  8. Increasing ablation distance peripheral to the saphenofemoral junction may result in a diminished rate of endothermal heat-induced thrombosis.

    Science.gov (United States)

    Sadek, Mikel; Kabnick, Lowell S; Rockman, Caron B; Berland, Todd L; Zhou, Di; Chasin, Cara; Jacobowitz, Glenn R; Adelman, Mark A

    2013-07-01

    The treatment of venous insufficiency using endovenous laser ablation or radiofrequency ablation may result in endothermal heat-induced thrombosis (EHIT), a form of deep venous thrombosis. This study sought to assess whether increasing the ablation distance peripheral to the deep venous junction would result in a reduction in the incidence of EHIT II. This study was a retrospective review of a prospectively maintained database from April 2007 to December 2011. Consecutive patients undergoing great saphenous vein (GSV) or small saphenous vein (SSV) ablation were evaluated. Previous to February 2011, all venous ablations were performed 2 cm peripheral to the saphenofemoral or saphenopopliteal junction (group I). Subsequent to February 2011, ablations were performed greater than or equal to 2.5 cm peripheral to the respective deep system junction (group II). The primary outcome was the development of EHIT II or greater (ie, thrombus protruding into the deep venous system but comprising less than 50% of the deep vein lumen). Secondary outcomes included procedure-site complications such as thrombophlebitis and hematomas. χ(2) tests were performed for all discrete variables, and unpaired Student's t-tests were performed for all continuous variables. P result was significant (group I: 2.6% ± 0.9% vs group II: 2.8% ± 1.0%; P = .006). The incidence of EHIT II was 76 in group I and 13 in group II. This represented a trend toward diminished frequency in group II as compared with group I (group I: 2.3% vs group II: 1.3%; P = .066). There were no reported cases of EHIT III or IV in this patient cohort. Patients who developed an EHIT II in group I were treated using anticoagulation 54% of the time, and patients who developed an EHIT II in group II were treated using anticoagulation 100% of the time. This study suggests that changing the treatment distance from 2 cm to greater than or equal to 2.5 cm peripheral to the deep venous junction may result in a diminished

  9. Crystallization Behavior of Waxes

    OpenAIRE

    Jana, Sarbojeet

    2016-01-01

    Partially hydrogenated oil (PHO) has no longer GRAS status. However, PHO is one of the important ingredients in bakery and confectionary industry and therefore the food industry is seeking for an alternative fat to replace PHO. Waxes have shown promise to fulfill that demand because of its easy availability and cheap in price. Waxes with high melting points (> 40 °C) help in the crystallization process when mixed with low melting point oils. A crystalline network is formed in this wax/oil cry...

  10. Ab initio molecular dynamics simulation of laser melting of silicon

    NARCIS (Netherlands)

    Silvestrelli, P.-L.; Alavi, A.; Parrinello, M.; Frenkel, D.

    1996-01-01

    The method of ab initio molecular dynamics, based on finite temperature density functional theory, is used to simulate laser heating of crystal silicon. We have found that a high concentration of excited electrons dramatically weakens the covalent bond. As a result, the system undergoes a melting tr

  11. Immiscible iron- and silica-rich melt in basalt petrogenesis documented in the Skaergaard intrusion

    DEFF Research Database (Denmark)

    Jakobsen, Jakob Kløve; Veksler, Ilya; Tegner, Christian;

    2005-01-01

    yet to be proven. Here we report the first finding of natural, immiscible iron- and silica-rich melts in a plutonic environment documented in the Skaergaard intrusion, East Greenland. Primary melt inclusions (now finely crystallized) in apatite are either dark or light colored. The predominant dark...

  12. 石蜡改性研究--石油树脂对蜡晶的影响%Study of modification of paraffin wax-effects of hydrocarbon resin on paraffin crystal

    Institute of Scientific and Technical Information of China (English)

    曾理强; 李毅; 刘家芳; 孙敬元; 宋珊珊; 李岩

    2016-01-01

    The crystal morphology and thermal character of the hydrocarbon resin-wax blends were studied using DSC and polarized light microscopy. The results showed that addition of hydrocarbon resin affected only the wax crystal size and the wax crystal morphology were not changed in the wax crystallization process. The hydrocarbon resin diluted the paraffin solid solution concentration, thinned the wax crystal and decreased the wax melting point. While the blends material endothermic enthalpy and the hydrocarbon resin content showed a linear relationship, so this method can be used for determination of paraffin content in the blend of paraffin and non crystalline materials.%通过差示扫描量热法(DSC)和偏光显微镜技术对碳氢树脂/石蜡共混材料进行热分析和晶体形貌分析,结果表明加入碳氢树脂材料只对石蜡结晶的尺寸产生影响,并未改变石蜡晶体形貌。碳氢树脂的加入使得石蜡的固溶体浓度变稀,晶体变细,熔点降低;同时碳氢树脂的浓度与共混材料的吸热焓呈线性关系,该方法可以用于石蜡与非晶质材料共混的含量测定。

  13. Thermodynamics of Oligonucleotide Duplex Melting

    Science.gov (United States)

    Schreiber-Gosche, Sherrie; Edwards, Robert A.

    2009-01-01

    Melting temperatures of oligonucleotides are useful for a number of molecular biology applications, such as the polymerase chain reaction (PCR). Although melting temperatures are often calculated with simplistic empirical equations, application of thermodynamics provides more accurate melting temperatures and an opportunity for students to apply…

  14. Melting of polydisperse hard disks

    NARCIS (Netherlands)

    Pronk, S.; Frenkel, D.

    2004-01-01

    The melting of a polydisperse hard-disk system is investigated by Monte Carlo simulations in the semigrand canonical ensemble. This is done in the context of possible continuous melting by a dislocation-unbinding mechanism, as an extension of the two-dimensional hard-disk melting problem. We find

  15. Melting of polydisperse hard disks

    NARCIS (Netherlands)

    Pronk, S.; Frenkel, D.

    2004-01-01

    The melting of a polydisperse hard-disk system is investigated by Monte Carlo simulations in the semigrand canonical ensemble. This is done in the context of possible continuous melting by a dislocation-unbinding mechanism, as an extension of the two-dimensional hard-disk melting problem. We find th

  16. Pavement Snow Melting

    Energy Technology Data Exchange (ETDEWEB)

    Lund, John W.

    2005-01-01

    The design of pavement snow melting systems is presented based on criteria established by ASHRAE. The heating requirements depends on rate of snow fall, air temperature, relative humidity and wind velocity. Piping materials are either metal or plastic, however, due to corrosion problems, cross-linked polyethylene pipe is now generally used instead of iron. Geothermal energy is supplied to systems through the use of heat pipes, directly from circulating pipes, through a heat exchanger or by allowing water to flow directly over the pavement, by using solar thermal storage. Examples of systems in New Jersey, Wyoming, Virginia, Japan, Argentina, Switzerland and Oregon are presented. Key words: pavement snow melting, geothermal heating, heat pipes, solar storage, Wyoming, Virginia, Japan, Argentina, Klamath Falls.

  17. Absence of grain boundary melting in solid helium

    Energy Technology Data Exchange (ETDEWEB)

    Caupin, Frederic; Sasaki, Satoshi; Balibar, Sebastien [Laboratoire de Physique Statistique de l' Ecole Normale Superieure, associe au CNRS et aux Universites Paris 6 et 7, 24 rue Lhomond, 75005 Paris (France)], E-mail: caupin@lps.ens.fr

    2008-12-10

    Crystals are often expected to start melting at their free surface or at the interface between grains. Grain boundary melting corresponds to the situation where the interface between grains is invaded by a thick liquid film at the bulk melting temperature T{sub m}. In some cases, premelting is predicted, with liquid-like layers appearing between grains at temperatures below T{sub m}. We review this topic, and describe our experiments on solid helium 4. We find that grain boundaries are not wetted by the liquid at T{sub m}: they emerge at the liquid-solid interface with a non-zero contact angle. This is consistent with a general argument which predicts that, although systems with short-range forces might show grain boundary melting and premelting, in systems with long-range forces (like helium), grain boundaries can only be wetted incompletely by the liquid at T{sub m}.

  18. Photoluminescence dynamics in singlet fission chromophore liquid melts

    Science.gov (United States)

    Piland, Geoffrey B.; Bardeen, Christopher J.

    2017-02-01

    The effect of high temperature melting on the photophysics of three prototypical singlet fission molecules is investigated. Time-resolved photoluminescence is used to look at the melt phase of the molecules tetracene, diphenylhexatriene and rubrene. Chemical decomposition of tetracene precluded any detailed measurements on this molecule. In the diphenylhexatriene melt, a rapid singlet state nonradiative relaxation process outcompetes singlet fission. In the rubrene melt, singlet fission occurs at a rate similar to that of the crystal, but the decay of the delayed fluorescence is much more rapid. The rapid decay of the delayed fluorescence suggests that either the triplet lifetime is shortened, or the fusion probability decreases, or that both factors are operative at higher temperatures.

  19. Toward a coherent model for the melting behavior of the deep Earth's mantle

    Science.gov (United States)

    Andrault, D.; Bolfan-Casanova, N.; Bouhifd, M. A.; Boujibar, A.; Garbarino, G.; Manthilake, G.; Mezouar, M.; Monteux, J.; Parisiades, P.; Pesce, G.

    2017-04-01

    Knowledge of melting properties is critical to predict the nature and the fate of melts produced in the deep mantle. Early in the Earth's history, melting properties controlled the magma ocean crystallization, which potentially induced chemical segregation in distinct reservoirs. Today, partial melting most probably occurs in the lowermost mantle as well as at mid upper-mantle depths, which control important aspects of mantle dynamics, including some types of volcanism. Unfortunately, despite major experimental and theoretical efforts, major controversies remain about several aspects of mantle melting. For example, the liquidus of the mantle was reported (for peridotitic or chondritic-type composition) with a temperature difference of ∼1000 K at high mantle depths. Also, the Fe partitioning coefficient (DFeBg/melt) between bridgmanite (Bg, the major lower mantle mineral) and a melt was reported between ∼0.1 and ∼0.5, for a mantle depth of ∼2000 km. Until now, these uncertainties had prevented the construction of a coherent picture of the melting behavior of the deep mantle. In this article, we perform a critical review of previous works and develop a coherent, semi-quantitative, model. We first address the melting curve of Bg with the help of original experimental measurements, which yields a constraint on the volume change upon melting (ΔVm). Secondly, we apply a basic thermodynamical approach to discuss the melting behavior of mineralogical assemblages made of fractions of Bg, CaSiO3-perovskite and (Mg,Fe)O-ferropericlase. Our analysis yields quantitative constraints on the SiO2-content in the pseudo-eutectic melt and the degree of partial melting (F) as a function of pressure, temperature and mantle composition; For examples, we find that F could be more than 40% at the solidus temperature, except if the presence of volatile elements induces incipient melting. We then discuss the melt buoyancy in a partial molten lower mantle as a function of pressure

  20. Superheating and melting behaviors of Ag clusters with Ni coating studied by molecular dynamics and experiments

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    Using molecular dynamics with embedded-atom-type interatomicpotentials, we simulated the melting behavior of a spherical Ag3055 cluster coated with Ni. The semi-coherent Ag/Ni interface formed at low temperatures acts as an effective barrier against the surface melting and leads to a substantial superheating of the Ag cluster. The melting point was found to be about 100 K above the equilibrium melting point of the bulk Ag crystal (1230 K±15 K) and about 290 K above that (1040 K) of the free Ag3055 cluster. A superheating of 70 K was observed in the high-temperature differential scanning calorimetry measurement for Ag particles with a mean size of 30 nm embedded in Ni matrix prepared by means of melt-spinning. Melting is initiated locally at the defective interfacial area and then propagates inwards, suggesting a heterogeneously nucleated melting event at the Ag/Ni interface.

  1. The Melting Curve and Premelting of MgO

    CERN Document Server

    Cohen, R E

    1996-01-01

    The melting curve for MgO was obtained using molecular dynamics and a non-empirical, many-body potential. We also studied premelting effects by computing the dynamical structure factor in the crystal on approach to melting. The melting curve simulations were performed with periodic boundary conditions with cells up to 512 atoms using the ab-initio Variational Induced Breathing (VIB) model. The melting curve was obtained by computing $% \\Delta H_m$ and agreement with previous estimates and we obtain a reasonable $\\Delta V_m$, but our melting slope dT/dP (114 K/GPa) is three times greater than that of Zerr and Boehler [1994] (35 K/GPa), suggesting a problem with the experimental melting curve, or an indication of exotic, non-ionic behavior of MgO liquid. We computed $S(q,\\omega )$ from simulations of 1000 atom clusters using the Potential Induced Breathing (PIB) model. A low frequency peak in the dynamical structure factor $% S(q,\\omega )$ arises below the melting point which appears to be related to the onset ...

  2. Interaction of rhyolite melts with monazite, xenotime, and zircon surfaces

    Science.gov (United States)

    Rustad, James R.

    2015-05-01

    The interfacial contact region between a rhyolite melt and the accessory minerals monazite, xenotime, and zircon is investigated using molecular dynamics simulations. On all surfaces, major structural rearrangement extends about 1 nm into the melt from the interface. As evidenced by the structural perturbations in the ion distribution profiles, the affinity of the melt for the surface increases in going from monazite to xenotime to zircon. Alkali ions are enriched in the melt in contact with an inert wall, as well as at the mineral surfaces. Melt in contact with zircon has a particularly strong level of aluminum enrichment. In xenotime, the enrichment of aluminum is less than that in zircon, but still notable. In monazite, the aluminum enrichment in the contact layer is much less. It is expected that the relative surface energies of these accessory minerals will be a strong function of the aluminum content of the melt and that nucleation of zircon, in particular, would be easier for melts with higher aluminum concentration. The crystal growth rate for zircon is expected to be slower at a higher aluminum concentration because of the effectiveness of aluminum in solvating the zircon surface. The variable interfacial concentration profiles across the series of accessory minerals will likely affect the kinetics of trace element incorporation, as the trace elements must compete with the major elements for surface sites on the growing accessory minerals.

  3. NANOSTRUCTURAL PROCESSES OF MELTING AND MOULDING OF HYPOEUTECTIC SILUMIN

    Directory of Open Access Journals (Sweden)

    V. Yu. Stetsenko

    2016-01-01

    Full Text Available It is shown that melting and molding of hypoeutectic silumin are difficult physical and chemical nanostructural processes. In them the major role is played by the centers of crystallization of primary dendrites of aluminum, aluminum nanocrystals, the dissolved and adsorbed hydrogen. The role of the modifying crystals of an intermetallid of TiAl3 is reduced to absorption of the dissolved hydrogen and an intensification of process of a koalestsention of nanocrystals of aluminum in the centers of crystallization of primary dendrites of aluminum.

  4. Quantum crystals and spin chains

    Energy Technology Data Exchange (ETDEWEB)

    Dijkgraaf, Robbert [KdV Institute for Mathematics, University of Amsterdam, Plantage Muidergracht 24, 1018 TV Amsterdam (Netherlands); Institute for Theoretical Physics, University of Amsterdam, Valckenierstraat 65, 1018 XE Amsterdam (Netherlands); Orlando, Domenico [Institut de Physique, Universite de Neuchatel, Rue Breguet 1, CH-2000 Neuchatel (Switzerland); Reffert, Susanne [Institute for Theoretical Physics, University of Amsterdam, Valckenierstraat 65, 1018 XE Amsterdam (Netherlands)], E-mail: sreffert@gmail.com

    2009-04-21

    In this article, we discuss the quantum version of the melting crystal corner in one, two, and three dimensions, generalizing the treatment for the quantum dimer model. Using a mapping to spin chains we find that the two-dimensional case (growth of random partitions) is integrable and leads directly to the Hamiltonian of the Heisenberg XXZ ferromagnet. The three-dimensional case of the melting crystal corner is described in terms of a system of coupled XXZ spin chains. We give a conjecture for its mass gap and analyze the system numerically.

  5. Quantum crystals and spin chains

    Science.gov (United States)

    Dijkgraaf, Robbert; Orlando, Domenico; Reffert, Susanne

    2009-04-01

    In this article, we discuss the quantum version of the melting crystal corner in one, two, and three dimensions, generalizing the treatment for the quantum dimer model. Using a mapping to spin chains we find that the two-dimensional case (growth of random partitions) is integrable and leads directly to the Hamiltonian of the Heisenberg XXZ ferromagnet. The three-dimensional case of the melting crystal corner is described in terms of a system of coupled XXZ spin chains. We give a conjecture for its mass gap and analyze the system numerically.

  6. Zircon saturation in silicate melts: a new and improved model for aluminous and alkaline melts

    Science.gov (United States)

    Gervasoni, Fernanda; Klemme, Stephan; Rocha-Júnior, Eduardo R. V.; Berndt, Jasper

    2016-03-01

    The importance of zircon in geochemical and geochronological studies, and its presence not only in aluminous but also in alkaline rocks, prompted us to think about a new zircon saturation model that can be applied in a wide range of compositions. Therefore, we performed zircon crystallization experiments in a range of compositions and at high temperatures, extending the original zircon saturation model proposed by Watson and Harrison (Earth Planet Sci Lett 64:295-304, 1983) and Boehnke et al. (Chem Geol 351:324-334, 2013). We used our new data and the data from previous studies in peraluminous melts, to describe the solubility of zircon in alkaline and aluminous melts. To this effect, we devised a new compositional parameter called G [ {( {3 \\cdot {{Al}}2 {{O}}3 + {{SiO}}2 )/({{Na}}2 {{O}} + {{K}}2 {{O}} + {{CaO}} + {{MgO}} + {{FeO}}} )} ] (molar proportions), which enables to describe the zircon saturation behaviour in a wide range of rock compositions. Furthermore, we propose a new zircon saturation model, which depends basically on temperature and melt composition, given by (with 1σ errors): ln [ {{Zr}} ] = ( {4.29 ± 0.34} ) - ( {1.35 ± 0.10} ) \\cdot ln G + ( {0.0056 ± 0.0002} ) \\cdot T( °C ) where [Zr] is the Zr concentration of the melt in µg/g, G is the new parameter representing melt composition and T is the temperature in degrees Celsius. The advantages of the new model are its straightforward use, with the G parameter being calculated directly from the molar proportions converted from electron microprobe measurements, the temperature calculated given in degrees Celsius and its applicability in a wider range of rocks compositions. Our results confirm the high zircon solubility in peralkaline rocks and its dependence on composition and temperature. Our new model may be applied in all intermediate to felsic melts from peraluminous to peralkaline compositions.

  7. Crystal Electrostatic Energy

    CERN Document Server

    Ivanchin, Alexander

    2010-01-01

    It has been shown that to calculate the parameters of the electrostatic field of the ion crystal lattice it sufficient to take into account ions located at a distance of 1-2 lattice spacings. More distant ions make insignificant contribution. As a result, the electrostatic energy of the ion lattice in the alkaline halide crystal produced by both positive and negative ions is in good agreement with experiment when the melting temperature and the shear modulus are calculated. For fcc and bcc metals the ion lattice electrostatic energy is not sufficient to obtain the observed values of these parameters. It is possible to resolve the contradiction if one assumes that the electron density is strongly localized and has a crystal structure described by the lattice delta - function. As a result, positive charges alternate with negative ones as in the alkaline halide crystal. Such delta-like localization of the electron density is known as a model of nearly free electrons.

  8. Nitridogermanate nitrides Sr7[GeN4]N2 and Ca7[GeN4]N2: synthesis employing sodium melts, crystal structure, and density-functional theory calculations.

    Science.gov (United States)

    Junggeburth, Sebastian C; Oeckler, Oliver; Johrendt, Dirk; Schnick, Wolfgang

    2008-12-15

    The alkaline earth nitridogermanate nitrides AE(7)[GeN(4)]N(2) (AE = Ca, Sr) have been synthesized using a Na flux technique in sealed Ta tubes. According to single-crystal X-ray diffraction the isotypic compounds crystallize in space group Pbcn (No. 60) with Z = 4, (Sr(7)[GeN(4)]N(2): a = 1152.6(2), b = 658.66(13), c = 1383.6(3) pm, V = 1050.5(4) x 10(6) pm(3), R1 = 0.049; Ca(7)[GeN(4)]N(2): a = 1082.6(2), b = 619.40(12), c = 1312.1(3) pm, V = 879.8(3) x 10(6) pm(3), R1 = 0.016). Owing to the high N/Ge ratio, the compounds contain discrete N(3-) ions coordinated by six AE(2+) besides discrete [GeN(4)](8-) tetrahedrons. One of the AE(2+) ion is coordinated by only four N(3-) ions, which is rather an unusual low coordination number for Sr(2+). Together with the isolated [GeN(4)](8-) tetrahedrons, these Sr(2+) ions form chains of alternating cation centered edge sharing tetrahedrons. The electronic structure and chemical bonding in Sr(7)[GeN(4)]N(2) has been analyzed employing linear muffin-tin orbital (LMTO) band structure calculations.

  9. Growth of Si Bulk Crystals with Large Diameter Ratio Using Small Crucibles by Creating a Large Low-Temperature Region Inside a Si Melt Contained in an NOC Furnace Developed Using Two Zone Heaters

    Science.gov (United States)

    Nakajima, Kazuo; Ono, Satoshi; Murai, Ryota; Kaneko, Yuzuru

    2016-06-01

    Three zone heaters were generally used for a noncontact crucible (NOC) furnace. For practical reasons a simpler NOC furnace was developed with two zone heaters, which had a carbon heat holder to cover the three roles of each heater. Large low-temperature regions were obtained, and silicon ingots were grown in small crucibles with a large diameter and diameter ratio. Here, the diameter ratio is the ratio of the ingot diameter to the crucible diameter and can be as large as 0.90. The diameter ratio was controlled mainly by the temperature reduction of the first heater. Power changes of the second heater did not have a significant impact on the ingot diameter. Using this NOC furnace, maximum ingot diameters of 28.0, 33.5, and 45.0 cm were obtained using crucibles of 33, 40, and 50 cm in diameter, respectively. The oxygen concentration of the ingots did not strongly depend on the diameter ratio and were always low because convection in the Si melt was markedly suppressed by the carbon heat holder. Moreover, the oxygen concentration of the ingots has a tendency to become lower as the crucible diameter becomes larger.

  10. Crystal growth and crystallography

    Science.gov (United States)

    Chernov, A. A.

    1998-01-01

    Selected topics that may be of interest for both crystal-structure and crystal-growth communities are overviewed. The growth of protein crystals, along with that of some other compounds, is one of the topics, and recent insights into related phenomena are considered as examples of applications of general principles. The relationship between crystal growth shape and structure is reviewed and an attempt to introduce semiquantitative characterization of binding for proteins is made. The concept of kinks for complex structures is briefly discussed. Even at sufficiently low supersaturations, the fluctuation of steps may not be sufficient to implement the Gibbs-Thomson law if the kink density is low enough. Subsurface ordering of liquids and growth of rough interfaces from melts is discussed. Crystals growing in microgravity from solution should be more perfect if they preferentially trap stress-inducing impurities, thus creating an impurity-depleted zone around themselves. Evidently, such a zone is developed only around the crystals growing in the absence of convection. Under terrestrial conditions, the self-purified depleted zone is destroyed by convection, the crystal traps more impurity and grows stressed. The stress relief causes mosaicity. In systems containing stress-inducing but poorly trapped impurities, the crystals grown in the absence of convection should be worse than those of their terrestrial counterparts.

  11. Can the thermodynamic melting temperature of sucrose, glucose, and fructose be measured using rapid-scanning differential scanning calorimetry (DSC)?

    Science.gov (United States)

    Lee, Joo Won; Thomas, Leonard C; Schmidt, Shelly J

    2011-04-13

    The loss of crystalline structure in sucrose, glucose, and fructose has been shown to be due to the kinetic process of thermal decomposition (termed apparent melting), rather than thermodynamic melting. The purpose of this research was to investigate whether or not it is possible to scan quickly enough to suppress the kinetic process of thermal decomposition and reach the thermodynamic melting temperature of these sugars using a new rapid-scanning DSC. Indium, a thermodynamic melting material, and sucrose, glucose, and fructose were analyzed at three heating rates from 1 to 25 °C/min using standard DSC and at seven heating rates from 50 to 2000 °C/min using rapid-scanning DSC. Thermodynamic melting was achieved when the onset temperature (T(m onset)) of the endothermic peak leveled off to a constant value independent of heating rate. The T(m onset) for indium was constant (156.74 ± 0.42 °C) at all heating rates. In the case of fructose, the T(m onset) increased considerably until a heating rate of approximately 698 °C/min, after which the average T(m onset) for the remaining three heating rates was constant at 135.83 ± 1.14 °C. Thus, 135.83 °C is proposed to be the thermodynamic melting temperature of fructose. It is important to note that the heating rate at which this thermodynamic melting temperature is achieved is most likely influenced by the type and amount of trace components (e.g., water and salts) contained in the fructose, which are known to vary widely in sugars. In the case of sucrose and glucose, thermodynamic melting temperatures were not able to be obtained, because the upper limit heating rate used was not fast enough to suppress thermal decomposition and achieve thermodynamic melting, perhaps due to the higher apparent T(m onset) for sucrose and glucose compared to that for fructose.

  12. The impact of space research on semiconductor crystal growth technology

    Science.gov (United States)

    Witt, A. F.

    1983-01-01

    Crystal growth experiments in reduced gravity environment and related ground-based research have contributed significantly to the establishment of a scientific basis for semiconductor growth from the melt. NASA-sponsored research has been instrumental in the introduction of heat pipes for heat and mass transfer control in crystal growth and in the development of magnetic field induced melt stabilization, approaches primarily responsible for recent advances in crystal growth technology.

  13. Compensation mechanism in liquid encapsulated Czochralski GaAs Importance of melt stoichiometry

    Science.gov (United States)

    Holmes, D. E.; Chen, R. T.; Elliott, K. R.; Kirkpatrick, C. G.; Yu, P. W.

    1982-01-01

    It is shown that the key to reproducible growth of undoped semi-insulating GaAs by the liquid encapsulated Czochralski (LEC) technique is the control over the melt stoichiometry. Twelve crystals were grown from stoichiometric and nonstoichiometric melts. The material was characterized by secondary ion mass spectrometry, localized vibrational mode far infrared spectroscopy, Hall-effect measurements, optical absorption, and photoluminescence. A quantitative model for the compensation mechanism in the semi-insulating material was developed based on these measurements. The free carrier concentration is controlled by the balance between EL2 deep donors and carbon acceptors; furthermore, the incorporation of EL2 is controlled by the melt stoichiometry, increasing as the As atom fraction in the melt increases. As a result, semi-insulating material can be grown only from melts above a critical As composition. The practical significance of these results is discussed in terms of achieving high yield and reproducibility in the crystal growth process.

  14. Dendrite crystal morphology evolution mechanism of β-BaB2O4 crystal

    Institute of Scientific and Technical Information of China (English)

    HE ChongJun; ZHONG WeiZhuo; LIU YouWen

    2009-01-01

    Existence of [B3-O6]3- hexagonal ring growth unit in melt solution of β-BaB2O4 crystal was proved by the results of high temperature Raman measurements. A morphology evolution process of β-BaB2O4 crys-tal was observed by a high temperature in-situ observation device. The crystal morphology varied with the supersaturation of growth melt solution. The mechanism of β-BaB2O4 crystal morphology evolution was analyzed through the growth unit model.

  15. Dendrite crystal morphology evolution mechanism of β-BaB2O4 crystal

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    Existence of [B3-O6]3- hexagonal ring growth unit in melt solution of β-BaB2O4 crystal was proved by the results of high temperature Raman measurements.A morphology evolution process of β-BaB2O4 crys-tal was observed by a high temperature in-situ observation device.The crystal morphology varied with the supersaturation of growth melt solution.The mechanism of β-BaB2O4 crystal morphology evolution was analyzed through the growth unit model.

  16. Melting of Ice under Pressure

    Energy Technology Data Exchange (ETDEWEB)

    Schwegler, E; Sharma, M; Gygi, F; Galli, G

    2008-07-31

    The melting of ice under pressure is investigated with a series of first principles molecular dynamics simulations. In particular, a two-phase approach is used to determine the melting temperature of the ice-VII phase in the range of 10 to 50 GPa. Our computed melting temperatures are consistent with existing diamond anvil cell experiments. We find that for pressures between 10 to 40 GPa, ice melts as a molecular solid. For pressures above {approx}45 GPa there is a sharp increase in the slope of the melting curve due to the presence of molecular dissociation and proton diffusion in the solid, prior to melting. The onset of significant proton diffusion in ice-VII as a function of increasing temperature is found to be gradual and bears many similarities to that of a type-II superionic solid.

  17. Impact melting of the largest known enstatite meteorite: Al Haggounia 001, a fossil EL chondrite

    Science.gov (United States)

    Rubin, Alan E.

    2016-09-01

    Al Haggounia 001 and paired specimens (including Northwest Africa [NWA] 2828 and 7401) are part of a vesicular, incompletely melted, EL chondrite impact melt rock with a mass of ~3 metric tons. The meteorite exhibits numerous shock effects including (1) development of undulose to weak mosaic extinction in low-Ca pyroxene; (2) dispersion of metal-sulfide blebs within silicates causing "darkening"; (3) incomplete impact melting wherein some relict chondrules survived; (4) vaporization of troilite, resulting in S2 bubbles that infused the melt; (5) formation of immiscible silicate and metal-sulfide melts; (6) shock-induced transportation of the metal-sulfide melt to distances >10 cm (7) partial resorption of relict chondrules and coarse silicate grains by the surrounding silicate melt; (8) crystallization of enstatite in the matrix and as overgrowths on relict silicate grains and relict chondrules; (9) crystallization of plagioclase from the melt; and (10) quenching of the vesicular silicate melt. The vesicular samples lost almost all of their metal during the shock event and were less susceptible to terrestrial weathering; in contrast, the samples in which the metal melt accumulated became severely weathered. Literature data indicate the meteorite fell ~23,000 yr ago; numerous secondary phases formed during weathering. Both impact melting and weathering altered the meteorite's bulk chemical composition: e.g., impact melting and loss of a metal-sulfide melt from NWA 2828 is responsible for bulk depletions in common siderophile elements and in Mn (from alabandite); weathering of oldhamite caused depletions in many rare earth elements; the growth of secondary phases caused enrichments in alkalis, Ga, As, Se, and Au.

  18. Survival times of anomalous melt inclusions from element diffusion in olivine and chromite.

    Science.gov (United States)

    Spandler, C; O'Neill, H St C; Kamenetsky, V S

    2007-05-17

    The chemical composition of basaltic magma erupted at the Earth's surface is the end product of a complex series of processes, beginning with partial melting and melt extraction from a mantle source and ending with fractional crystallization and crustal assimilation at lower pressures. It has been proposed that studying inclusions of melt trapped in early crystallizing phenocrysts such as Mg-rich olivine and chromite may help petrologists to see beyond the later-stage processes and back to the origin of the partial melts in the mantle. Melt inclusion suites often span a much greater compositional range than associated erupted lavas, and a significant minority of inclusions carry distinct compositions that have been claimed to sample melts from earlier stages of melt production, preserving separate contributions from mantle heterogeneities. This hypothesis is underpinned by the assumption that melt inclusions, once trapped, remain chemically isolated from the external magma for all elements except those that are compatible in the host minerals. Here we show that the fluxes of rare-earth elements through olivine and chromite by lattice diffusion are sufficiently rapid at magmatic temperatures to re-equilibrate completely the rare-earth-element patterns of trapped melt inclusions in times that are short compared to those estimated for the production and ascent of mantle-derived magma or for magma residence in the crust. Phenocryst-hosted melt inclusions with anomalous trace-element signatures must therefore form shortly before magma eruption and cooling. We conclude that the assumption of chemical isolation of incompatible elements in olivine- and chromite-hosted melt inclusions is not valid, and we call for re-evaluation of the popular interpretation that anomalous melt inclusions represent preserved samples of unmodified mantle melts.

  19. The Properties of Ammonium Dinitramine (ADN): Part 2: Melt Casting

    Science.gov (United States)

    Hahma, A.; Edvinsson, H.; Östmark, H.

    2010-04-01

    A melt casting technique for ammonium dinitramine (ADN) and ADN/aluminum was developed. ADN proved relatively easy to cast, when 1% of magnesium oxide was used as a stabilizer and crystallization kernels. Densities of ADN/MgO 99/1 were 92 to 97% of theoretical mean density (TMD) and those of ADN/Al/MgO 64/35/1 were between 95 and 99% of TMD. Sedimentation of Al in the melt was prevented and the particle wetting was ensured by selecting a suitable particle size for Al. No gelling agents or other additives were used. The casting process and factors influencing it are discussed.

  20. Liquids of the Skaergaard intrusion traced by melt inclusions

    Science.gov (United States)

    Jakobsen, J. K.; Veksler, I. V.; Tegner, C.

    2009-12-01

    The Skaergaard intrusion, East Greenland, has for the past 75 years played a central role in the understanding of differentiation of tholeiitic magma. However, there is still no agreement on the general line of liquid descent. Here we compile the inference from melt inclusion in cumulus apatite and plagioclase as a direct tracer of the parental melt composition and its evolution. Compositions of crystallized melt inclusions have been estimated by broad beam analysis, mass balance summation and by remelting and homogenization. Melt inclusions in apatite are found in the Upper Zone and are of two types: One is dark brownish or opaque and contains finely crystallized daughter phases of plagioclase, ilmenite, magnetite, iron-rich biotite (lepidomelane) and a fine-grained matrix; a less abundant type is light-colored, transparent and consists of quartz, orthoclase, albite, minor magnetite and finely intergrown matrix. The predominant dark melt inclusions are extremely rich in FeOT (30.9 ± 4.2 wt%) and low in SiO2 (40.7 ± 3.6 wt%) whereas the light colored type contains 8.6 ± 5.9 wt% FeOT and 65.6 ± 7.3 wt% SiO2. The contrasting compositions is interpreted as entrapment of conjugate end-members of two immiscible liquids. Before apatite is saturated (Lower- and Middle Zone), melt inclusions in plagioclase represent the best available tracer of liquid compositions. The melt inclusions are fully crystallized and consist of a uniform daughter phase assemblage of highly variable modal proportions: plagioclase (42-59 %), clinopyroxene (29-41 %), ilmenite (6-9 %), magnetite (4-10%), apatite (1-9 %), and accessory phases (Skaergaard in the upper part of the Lower Zone close to the first appearance of liquidus magnetite and that the Upper Zone crystallized from an immiscible emulsion. The extent of gravitational separation of the two contrasting melts and macroscopic effects of unmixing on the Skaergaard magma remain, however, unclear. We expect to clarify these issues by

  1. Occurrence of silicate melt, carbonate-rich melt and fluid during medium pressure anatexis of metapelitic gneisses (Oberpfalz, Bavaria) revealed by melt and fluid inclusions study

    Science.gov (United States)

    Ferrero, Silvio; O'Brien, Patrick; Hecht, Lutz; Wunder, Bernd

    2014-05-01

    In the last decades our understanding of partial melting processes in the lower crust profited from the investigation of fluid inclusions (Touret et al., 2009) and more recently of anatectic melt inclusions (Cesare et al., 2011) within enclaves and high-grade terranes. The latter finding allowed us to directly analyse the original anatectic melt (Ferrero et al., 2012; Bartoli et al., 2013) preserved within peritectic phases, i.e. mainly garnet, but also ilmenite and spinel, before fractionation, mixing and contamination processes took place. Furthermore, the occurrence of primary fluid inclusions (FI) and anatectic melt inclusions (MI) within enclaves allowed the characterization of the COH fluid present during anatexis under fluid+melt immiscibility conditions (Ferrero et al., 2014). Primary crystallized MI, or "nanogranites", and FI have been identified to occur as clusters in garnet from stromatic migmatites (Zeilengneise) from Oberpfalz, Eastern Bavaria (Moldanubian Zone). During the late Carboniferous, these Grt+Bt+Sill+Crd+Spl metapelitic gneisses underwent HT/MP metamorphism, followed by a HT/LP event (Tanner & Behrmann, 1995). Nanogranites, ≤20 µm in size, consist of Qtz+Bt+Wm+Ab±Ap, and show abundant nanoporosity, localized in the quartz. Fluid inclusions are smaller, generally ≤10 µm, and contain CO2+N2+CH4 plus siderite, pyrophillite and cristobalite, mineral phases not observed in the surrounding rock or as mineral inclusion in garnet. Polycrystalline inclusions containing Cc+Wm+Opx±Qz, commonly ≤10 µm in diameter, occur in the same cluster with MI and FI. Microstructural features, negative-crystal shape and the well-developed crystalline faces of calcite within inclusions suggest that they may result from the crystallization of a carbonate-rich melt. The lack of arrays of carbonate-bearing MI, verified by cathodoluminiscence investigation, supports their primary nature, i.e. they formed during garnet growth. This would suggest the occurrence

  2. Raman Spectrum Analysis on the Solid-Liquid Boundary Layer of BGO Crystal Growth

    Institute of Scientific and Technical Information of China (English)

    ZHANG Xia; YIN Shao-Tang; WAN Song-Ming; YOU Jing-Lin; CHEN Hui; ZHAO Si-Jie; ZHANG Qing-Li

    2007-01-01

    We study the Raman spectra of Bi4Ge3O12 crystal at different temperatures, as well as its melt. The structure characters of the single crystal, melt and growth solid-liquid boundary layer of BGO are investigated by their high-temperature Raman spectra for the first time. The rule of structure change of BGO crystal with increasing temperature is analysed. The results show that there exists [GeO4] polyhedral structure and Bi ion independently in BGO melt. The bridge bonds Bi-O-Bi and Bi-O-Ge appear in the crystal and at the boundary layer, but disappear in the melt. The structure of the growth solid-liquid boundary layer is similar to that of BGO crystal. In the melt, the long-range order structure of the crystal disappears. The thickness of the grovth solid-liquid boundary layer of BGO crystal is about 50 μm.

  3. MULTIPLE MELTING IN NYLON 1010

    Institute of Scientific and Technical Information of China (English)

    FU Shuren; CHEN Taoyung

    1983-01-01

    Multiple melting behavior of nylon 1010 has been investigated by using DSC instrument. Effects of partial scanning, partial scanning and annealing, heating rate, cooling rate and stepwise annealing on the melting curve were studied. Experimental results indicate that the sample undergoes a process of continuous melting and recrystallization during DSC scanning. Nylon 1010 contains a distribution of crystallites of different degrees of perfection which is strongly dependent on its previous thermal history. From the structural reorganization point of view, the origin of double and multiple peaks of the melting curve is explained.

  4. Manufacturing, structure and properties of recycled polyethylene terephthalate /liquid crystal polymer/montmorillonite clay nanocomposites

    Science.gov (United States)

    Japins, Guntis; Berzina, Rita; Zicans, Janis; Merijs Meri, Remo; Ivanova, Tatjana; Kalkis, Valdis; Reinholds, Ingars

    2013-12-01

    Polyethylene terephthalate (PET)/liquid crystal polymer (LCP)/monthmorillonite clay (MMT) compositions were obtained by melt mixing. Their mechanical, structural, rheological and thermal properties were investigated.

  5. Investigating sulfur partitioning between nominally volatile-free minerals and silicate melts

    Science.gov (United States)

    Marzoli, A.; Callegaro, S.; Baker, D. R.; Geraki, K.; Maneta, V.

    2015-12-01

    Despite the key role played by volatile species in magmatic systems, it is still challenging to quantify their concentrations in ancient melts. We suggested a quantitative approach for estimating S contents in basaltic melts (Callegaro et al., 2014), based on direct measurement of S on clinopyroxene and calculation of its concentration in the melt through an experimentally determined partition coefficient (KD). We further investigated the partitioning of sulfur between silicate melts and nominally volatile-free minerals (olivine, orthopyroxene, clinopyroxene, and plagioclase), as well as between melt and amphibole. Partitioning experiments were performed with basaltic, andesitic and dacitic bulk compositions, at hydrous and anhydrous conditions, and at high and low oxygen fugacities (fO2), where sulfur in the melt is dominantly present as an S6+ or S2- species, respectively (Wilke et al., 2011). Sulfur concentrations in melts were measured by electron microprobe and in crystals by synchrotron X-ray fluorescence. At low fO2 the average crystal/liquid KDs for sulfur vary from 0.0004 (at a maximum) for olivine, to 0.003 (another maximum) for orthopyroxene, to 0.03 for clinopyroxene, and to 0.07 for plagioclase. The KDs correlate positively with the cation-oxygen bond lengths in the crystals. At high fO2 the KDs drop to approximately one-third of those observed at low fO2. These observations suggest that S2- replaces oxygen in the crystal structure. Water has no measureable influence on the crystal/melt partitioning of sulfur. Clinopyroxene/melt KDs are correlated with the Mg/(Mg+Fe) ratio of the crystal, but appear insensitive to the IVAl in the structure. Plagioclase/melt S partitioning appears unaffected by anorthite content and iron concentration in the crystal. These new KDs allow the determination of sulfur concentration in the igneous melts co-existing with these crystals and provide insights into the volatile concentrations of ancient magmas and their possible

  6. Nepheline structural and chemical dependence on melt composition

    Energy Technology Data Exchange (ETDEWEB)

    Marcial, José; Crum, Jarrod; Neill, Owen; McCloy, John

    2016-02-01

    Nepheline crystallizes upon slow-cooling in some melts concentrated in Na2O and Al2O3, which can result in a residual glass phase of low chemical durability. Nepheline can incorporate many components often found in high-level waste radioactive borosilicate glass, including glass network ions (e.g., Si, Al, Fe), alkali metals (e.g., Cs, K, Na, and possibly Li), alkaline-earth metals (e.g., Ba, Sr, Ca, Mg), and transition metals (e.g., Mn, and possibly Cr, Zn, Ni). When crystallized from melts of different compositions, nepheline chemistry varies as a function of starting glass composition. Five simulated high level nuclear waste borosilicate glasses shown to crystallize large fractions of nepheline on slow cooling, were selected for study. These melts constituted a range of Al2O3, B2O3, CaO, Na2O, K2O, Fe2O3, and SiO2 compositions. Compositional analyses of nepheline crystals in glass by electron probe micro-analysis (EPMA) indicate that boron is unlikely to be present in any significant concentration, if at all, in nepheline. Also, several models are presented for calculating the fraction of vacancies in the nepheline structure.

  7. Control of heat transfer in continuous-feeding Czochralski-silicon crystal growth with a water-cooled jacket

    Science.gov (United States)

    Zhao, Wenhan; Liu, Lijun

    2017-01-01

    The continuous-feeding Czochralski method is an effective method to reduce the cost of single crystal silicon. By promoting the crystal growth rate, the cost can be reduced further. However, more latent heat will be released at the melt-crystal interface under a high crystal growth rate. In this study, a water-cooled jacket was applied to enhance the heat transfer at the melt-crystal interface. Quasi-steady-state numerical calculation was employed to investigate the impact of the water-cooled jacket on the heat transfer at the melt-crystal interface. Latent heat released during the crystal growth process at the melt-crystal interface and absorbed during feedstock melting at the feeding zone was modeled in the simulations. The results show that, by using the water-cooled jacket, heat transfer in the growing crystal is enhanced significantly. Melt-crystal interface deflection and thermal stress increase simultaneously due to the increase of radial temperature at the melt-crystal interface. With a modified heat shield design, heat transfer at the melt-crystal interface is well controlled. The crystal growth rate can be increased by 20%.

  8. A new titanium-bearing calcium aluminosilicate phase. 2: Crystallography and crystal chemistry of grains formed in slowly cooled melts with bulk compositions of calcium-aluminium-rich inclusions

    Science.gov (United States)

    Barber, David J.; Beckett, John R.; Paque, Julie M.; Stolper, Edward

    1994-01-01

    The crystallography and crystal chemistry of a new calcium- titanium-aluminosilicate mineral (UNK) observed in synthetic analogs to calcium-aluminum-rich inclusions (CAIs) from carbonaceous chondrites was studied by electron diffraction techniques. The unit cell is primitive hexagonal or trigonal, with a = 0.790 +/- 0.02 nm and c = 0.492 +/- 0.002 nm, similar to the lattice parameters of melilite and consistent with cell dimensions for crystals in a mixer furnace slag described by Barber and Agrell (1994). The phase frequently displays an epitactic relationship in which melilite acts as the host, with (0001)(sub UNK) parallel (001)(sub mel) and zone axis group 1 0 -1 0(sub UNK) parallel zone axis group 1 0 0(sub mel). If one of the two space groups determined by Barber and Agrell (1994) for their sample of UNK is applicable (P3m1 or P31m), then the structure is probably characterized by puckered sheets of octahedra and tetrahedra perpendicular to the c-axis with successive sheets coordinated by planar arrays of Ca. In this likely structure, each unit cell contains three Ca sites located in mirror planes, one octahedrally coordinated cation located along a three-fold axis and five tetrahedrally coordinated cations, three in mirrors and two along triads. The octahedron contains Ti but, because there are 1.3-1.9 cations of Ti/formula unit, some of the Ti must also be in tetrahedral coordination, an unusual but not unprecedented situation for a silicate. Tetrahedral sites in mirror planes would contain mostly Si, with lesser amounts of Al while those along the triads correspondingly contain mostly Al with subordinate Ti. The structural formula, therefore, can be expressed as Ca(sub 3)(sup VIII)(Ti,Al)(sup VI)(Al,Ti,Si)(sub 2)(sup IV)(Si,Al)(sub 3)(sup IV)O14 with Si + Ti = 4. Compositions of meteoritic and synthetic Ti-bearing samples of the phase can be described in terms of a binary solid solution between the end-members Ca3TiAl2Si3O14 and Ca3Ti(AlTi)(AlSi2)O14. A Ti

  9. Melt pool dynamics during selective electron beam melting

    Science.gov (United States)

    Scharowsky, T.; Osmanlic, F.; Singer, R. F.; Körner, C.

    2014-03-01

    Electron beam melting is a promising additive manufacturing technique for metal parts. Nevertheless, the process is still poorly understood making further investigations indispensable to allow a prediction of the part's quality. To improve the understanding of the process especially the beam powder interaction, process observation at the relevant time scale is necessary. Due to the difficult accessibility of the building area, the high temperatures, radiation and the very high scanning speeds during the melting process the observation requires an augmented effort in the observation equipment. A high speed camera in combination with an illumination laser, band pass filter and mirror system is suitable for the observation of the electron beam melting process. The equipment allows to observe the melting process with a high spatial and temporal resolution. In this paper the adjustment of the equipment and results of the lifetime and the oscillation frequencies of the melt pool for a simple geometry are presented.

  10. Application of the Billet Casting Method to Determine the Onset of Incipient Melting of 319 Al Alloy Engine Blocks

    Science.gov (United States)

    Lombardi, A.; Ravindran, C.; MacKay, R.

    2015-06-01

    The increased use of Al for automotive applications has resulted from the need to improve vehicle fuel efficiency. Aluminum alloy engine blocks fulfil the need of lightweighting. However, there are many challenges associated with thermo-mechanical mismatch between Al and the gray cast iron cylinder liners, which result in large tensile residual stress along the cylinder bores. This requires improced mechanical properties in this region to prevent premature engine failure. In this study, replicating billet castings were used to simulate the engine block solution heat treatment process and determine the onset of incipient melting. Microstructural changes during heat treatment were assessed with SEM and EDX, while thermal analysis was carried out using differential scanning calorimetry. The results suggest that solution heat treatment at 500 °C was effective in dissolving secondary phase particles, while solutionizing at 515 or 530 °C caused incipient melting of Al2Cu and Al5Mg8Cu2Si6. Incipient melting caused the formation ultra-fine eutectic clusters consisting of Al, Al2Cu, and Al5Mg8Cu2Si6 on quenching. In addition, DSC analysis found that incipient melting initiated at 507 °C for all billets, although the quantity of local melting reduced with microstructural refinement as evidenced by smaller endothermic peaks and energy absorption. The results from this study will assist in improving engine block casting integrity and process efficiency.

  11. Lattice stability and high pressure melting mechanism of dense hydrogen up to 1.5 TPa

    CERN Document Server

    Geng, Hua Y; Wu, Q

    2016-01-01

    Lattice stability and metastability, as well as melting, are important features of the physics and chemistry of dense hydrogen. Using ab initio molecular dynamics (AIMD), the classical superheating limit and melting line of metallic hydrogen are investigated up to 1.5 TPa. The computations show that the classical superheating degree is about 100 K, and the classical melting curve becomes flat at a level of 350 K when beyond 500 GPa. This information allows us to estimate the well depth and the potential barriers that must be overcome when the crystal melts. Inclusion of nuclear quantum effects (NQE) using path integral molecular dynamics (PIMD) predicts that both superheating limit and melting temperature are lowered to below room temperature, but the latter never reach absolute zero. Detailed analysis indicates that the melting is thermally activated, rather than driven by pure zero-point motion (ZPM). This argument was further supported by extensive PIMD simulations, demonstrating the stability of Fddd stru...

  12. Experimental melts from crustal rocks: A lithochemical constraint on granite petrogenesis

    Science.gov (United States)

    Gao, Peng; Zheng, Yong-Fei; Zhao, Zi-Fu

    2016-12-01

    Many studies of experimental petrology have devoted to partial melting of crustal rocks. In order to provide lithochemical constraints on granite petrogenesis, this paper presents a compilation and synthesis of available experimental data for the major element compositions of felsic melts derived from partial melting of natural or synthetic materials in the compositional range of crustal rocks. The experimental melts are categorized into four types according to the species of hydrous minerals in starting materials: (I) amphibole-bearing; (II) amphibole- and biotite-bearing; (III) biotite-bearing; and (IV) biotite- and muscovite-bearing. If dehydration melting takes place at normal crustal conditions (P = 5-10 kbar, T ≤ 1000 °C), experimental melts are rich in SiO2 but poor in MgO + FeOT except those from amphibole-bearing sources. A comprehensive comparison of compositions between experimental melts and starting materials indicates that geochemical fractionation is variable for different major elements and their ratios. Source composition and melting temperature exert stronger controls on the compositional variations of experimental melts than pressure and fluid. By comparing the experimental melts with natural granites, the following insights into granite petrogenesis can be got: (1) while peritectic assemblage entrainment may be the dominant mechanism for the compositional variations of garnet/cordierite-rich S-type granites, fractional crystallization of diverse melts from heterogeneous metasedimentary precursors probably governs the compositional variations of garnet/cordierite-poor S-type granites; (2) relatively K2O-rich mafic to intermediate rocks are appropriate sources for calc-alkaline I-type granites. The compositional variations of calc-alkaline granites are jointly controlled by peritectic assemblage entrainment and subsequent fractional crystallization; (3) while dehydration melting at T > 950 °C is appropriate for the production of ferroan and

  13. Beyond the Melting Pot Reconsidered.

    Science.gov (United States)

    Anderson, Elijah

    2000-01-01

    Discusses the 1963 book, "Beyond the Melting Pot," which suggested that eventually the problem of different ethnicities in the U.S. would be resolved and society would become one melting pot. Examines how changes in immigration and economic structures have affected the issue, noting the devastating effect of the dominant culture's…

  14. Fault rheology beyond frictional melting.

    Science.gov (United States)

    Lavallée, Yan; Hirose, Takehiro; Kendrick, Jackie E; Hess, Kai-Uwe; Dingwell, Donald B

    2015-07-28

    During earthquakes, comminution and frictional heating both contribute to the dissipation of stored energy. With sufficient dissipative heating, melting processes can ensue, yielding the production of frictional melts or "pseudotachylytes." It is commonly assumed that the Newtonian viscosities of such melts control subsequent fault slip resistance. Rock melts, however, are viscoelastic bodies, and, at high strain rates, they exhibit evidence of a glass transition. Here, we present the results of high-velocity friction experiments on a well-characterized melt that demonstrate how slip in melt-bearing faults can be governed by brittle fragmentation phenomena encountered at the glass transition. Slip analysis using models that incorporate viscoelastic responses indicates that even in the presence of melt, slip persists in the solid state until sufficient heat is generated to reduce the viscosity and allow remobilization in the liquid state. Where a rock is present next to the melt, we note that wear of the crystalline wall rock by liquid fragmentation and agglutination also contributes to the brittle component of these experimentally generated pseudotachylytes. We conclude that in the case of pseudotachylyte generation during an earthquake, slip even beyond the onset of frictional melting is not controlled merely by viscosity but rather by an interplay of viscoelastic forces around the glass transition, which involves a response in the brittle/solid regime of these rock melts. We warn of the inadequacy of simple Newtonian viscous analyses and call for the application of more realistic rheological interpretation of pseudotachylyte-bearing fault systems in the evaluation and prediction of their slip dynamics.

  15. Statistical distribution of thermal vacancies close to the melting point

    Energy Technology Data Exchange (ETDEWEB)

    José Pozo, María, E-mail: mariaj.pozom@gmail.com [Grupo de Nanomateriales, Departamento de Física, Facultad de Ciencias, Universidad de Chile, Casilla 653, Santiago (Chile); Davis, Sergio, E-mail: sdavis@gnm.cl [Grupo de Nanomateriales, Departamento de Física, Facultad de Ciencias, Universidad de Chile, Casilla 653, Santiago (Chile); Peralta, Joaquín, E-mail: joaquin.peralta@unab.cl [Departamento de Ciencias Físicas, Facultad de Ciencias Exactas, Universidad Andrés Bello, Santiago (Chile)

    2015-01-15

    A detailed description of the statistical distribution of thermal vacancies in an homogeneous crystal near its melting point is presented, using the embedded atom model for copper as an example. As the temperature increase, the average number of thermal vacancies generated by atoms migrating to neighboring sites increases according to Arrhenius’ law. We present for the first time a model for the statistical distribution of thermal vacancies, which according to our atomistic computer simulations follow a Gamma distribution. All the simulations are carried out by classical molecular dynamics and the recognition of vacancies is achieved via a recently developed algorithm. Our results could be useful in the further development of a theory explaining the mechanism of homogeneous melting, which seems to be mediated by the accumulation of thermal vacancies near the melting point.

  16. Influence of crystal–melt interface shape on self-seeding and single crystalline quality

    Indian Academy of Sciences (India)

    D B Gadkari; P Shashidharan; K B Lal; B M Arora

    2001-10-01

    The growth of Sb-based crystals (InSb, GaSb etc) was undertaken using resistive heater furnace by vertical directional solidification (VDS) technique. Crystal–melt interface shape during the growth was shown to convert from concave to convex along the crystal axis of the ingots. Many antimonide (Sb) crystals of 8 mm to 18 mm diameter were grown by optimized growth parameters. The forced convection and absence of conducting support to ampoule showed improvement in crystal quality of as grown ingots. Crystals showed preferred orientation and self-seeding. Results on interface shape and crystallinity of ingots were found to be in good agreement with the experiments.

  17. Taste Masking of Griseofulvin and Caffeine Anhydrous Using Kleptose Linecaps DE17 by Hot Melt Extrusion.

    Science.gov (United States)

    Juluri, Abhishek; Popescu, Carmen; Zhou, Leon; Murthy, Reena N; Gowda, Vanaja K; Chetan Kumar, P; Pimparade, Manjeet B; Repka, Michael A; Murthy, S Narasimha

    2016-02-01

    The objective of this project was to investigate the potential of Kleptose Linecaps DE17 (KLD) in masking the unpleasant/bitter taste of therapeutic agents by hot melt extrusion (HME). Griseofulvin (GRI) and caffeine anhydrous (CA) were used as a bitter active pharmaceutical ingredient (API) model drugs. Thermogravimetric studies confirmed the stability of GRI, CA, and KLD at the employed extrusion temperatures. The differential scanning calorimetry (DSC) studies revealed a characteristic melting endotherm of GRI at 218-220°C and CA at 230-232°C in the physical mixtures as well as in all extrudates over the period of study, indicating the crystalline nature of drug. HME of KLD was achieved only in the presence of plasticizer. Among the several plasticizers investigated, xylitol showed improved processability of KLD at 15% w/w concentration. Dissolution studies of HME extrudates using simulated salivary medium exhibited ∼threefold less release compared to physical mixture at the end of 5 min (the lesser drug release, better the taste masking efficiency). Furthermore, the results from the sensory evaluation of products in human panel demonstrated strong bitter taste in the case of physical mixture compared to the HME formulation, suggesting the potential of Kleptose Linecaps DE17 as taste masking polymer in melt extruded form.

  18. A Sample from an Ancient Sea of Impact Melt

    Science.gov (United States)

    Taylor, G. J.

    2016-06-01

    Sophisticated computer modeling of the formation of lunar multi-ringed basins by impact indicate that substantial volumes of impact melt are produced, leading to melt bodies hundreds of kilometers in diameter and tens of kilometers deep. The impressively large bodies of magma created by the impact of a projectile 50 to 300 kilometers across might have differentiated, producing a zoned body with denser minerals concentrated towards the bottom and less dense minerals concentrated near the top, a process called fractional crystallization. Marc Norman (Australian National University) and colleagues at the University of Tennessee and the Johnson Space Center have studied a sample (67955) collected in the lunar highlands during the Apollo 16 mission. The overall texture, composition, and mineralogy of a clast (a fragment) in the rock indicate that it formed as an accumulation of crystals from a magma that was enriched in trace elements. Mineral compositions and crystal intergrowths suggest a similar depth of origin to lunar igneous rocks that formed more than 10 kilometers deep in the lunar crust, implying an impact melt pool at least as deep. Such a deep melt pool would have formed in an impact basin the size of Orientale, a multi-ringed basin whose inner ring is 480 kilometers across. Norman and co-workers also determined from samarium and neodymium isotopes that the igneous clast is 4.2 billion years old, clearly older than the typical age of 3.8-3.9 billion years assigned to visible lunar basins. The authors conclude that the clast in 67955 is a sample of a differentiated impact melt sea formed in an impact basin on the nearside of the Moon 4.2 billion years ago. The rock was part of a pile of ejecta thrown to the Apollo 16 site, possibly by the impact event that excavated the Imbrium basin.

  19. Cluster Evolution in Undercooled Melt and Solidification of Undercooled Ge-based Alloy Melts Induced by Extrinsic Clusters

    Institute of Scientific and Technical Information of China (English)

    王煦; 景勤; 王文魁

    2003-01-01

    The structure or short-range order of clusters in undercooled metallic melts is influenced, to some extent, by the interfacial free energy between the cluster and the melt. Analyses of the effects of interfacial energy on the cluster structure based on the Gibbs equation show a possibility that atoms in the clusters tend to be packed more loosely with the increasing cluster size (or the undercooling). Nucleation may occur, following these analyses,when clusters reach a definite size and atoms in the clusters relax to some extent to form the crystal structure.Indirect support to this viewpoint is provided by the present results of cluster-induced nucleation experiments on undercooled Ge73.7Ni26.3 alloy melts.

  20. Computer simulations of laser-induced melting of aluminum

    Science.gov (United States)

    Tang, Hong; Bai, Mingze; Dou, Yusheng; Ran, Qi; Lo, Glenn V.

    2013-04-01

    Laser-induced solid-to-liquid phase transitions in 100 nm aluminum film were simulated using a hybrid model that combines molecular dynamics (MD) with a continuum description of the laser excitation and a two-temperature method (TTM) to model the relaxation of conduction band electrons. When the laser fluence provides more energy than needed for a complete melting of the film, the phase transition is characterized by an ultrafast collapse of the crystal structure within 2-3 ps. Otherwise, the transition involves a homogeneous nucleation and growth of liquid zones inside the crystal and a heterogeneous propagation of transition fronts from the external surfaces or nucleated liquid zones.

  1. Effects of Exothermic/Endothermic Chemical Reactions with Arrhenius Activation Energy on MHD Free Convection and Mass Transfer Flow in Presence of Thermal Radiation

    Directory of Open Access Journals (Sweden)

    Kh. Abdul Maleque

    2013-01-01

    Full Text Available A local similarity solution of unsteady MHD natural convection heat and mass transfer boundary layer flow past a flat porous plate within the presence of thermal radiation is investigated. The effects of exothermic and endothermic chemical reactions with Arrhenius activation energy on the velocity, temperature, and concentration are also studied in this paper. The governing partial differential equations are reduced to ordinary differential equations by introducing locally similarity transformation (Maleque (2010. Numerical solutions to the reduced nonlinear similarity equations are then obtained by adopting Runge-Kutta and shooting methods using the Nachtsheim-Swigert iteration technique. The results of the numerical solution are obtained for both steady and unsteady cases then presented graphically in the form of velocity, temperature, and concentration profiles. Comparison has been made for steady flow ( and shows excellent agreement with Bestman (1990, hence encouragement for the use of the present computations.

  2. Simulation of temperature and flow fields in an inductively heated melt growth system

    Energy Technology Data Exchange (ETDEWEB)

    Tavakoli, M.H.; Mohammadi-Manesh, E.; Omid, S. [Physics Department, Bu-Ali Sina University, Hamedan (Iran, Islamic Republic of)

    2010-11-15

    The goal of the research presented here is to apply a global analysis of an inductively heated Czochralski furnace for a real sapphire crystal growth system and predict the characteristics of the temperature and flow fields in the system. To do it, for the beginning stage of a sapphire growth process, influence of melt and gas convection combined with radiative heat transfer on the temperature field of the system and the crystal-melt interface have been studied numerically using the steady state two-dimensional finite element method. For radiative heat transfer, internal radiation through the grown crystal and surface to surface radiation for the exposed surfaces have been taken into account. The numerical results demonstrate that there are a powerful vortex which arises from the natural convection in the melt and a strong and large vortex that flows upwards along the afterheater side wall and downwards along the seed and crystal sides in the gas part. In addition, a wavy shape has been observed for the crystal-melt interface with a deflection towards the melt. (copyright 2010 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  3. Estimate of influence of U-Th-K radiogenic heat on cooling process of granitic melt and its geological implications

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    The U-Th-40K concentrations of granite are on 1―2 orders of magnitude greater than those of basal- tic-ultrabasic rocks. Radiogenic heat of a granitic melt has significant influence on the cool- ing-crystallization period of the melt. In this paper we derived a formula to calculate prolongation period (tA) of cooling-crystallization of a granitic melt caused by radiogenic heat. Calculation using this for- mula and radioactive element concentrations (U=5.31×10-6; Th=23.1×10-6; K=4.55%) for the biotite adamellite of the Jinjiling batholith shows that the tA of the adamellite is 1.4 times of the cooling period of the granitic melt without considering radiogenic heat from the initial temperature (Tm=960℃) to crystallization temperature (Tc=600℃) of the melt. It has been demonstrated that the radiogenic heat produced in a granitic melt is a key factor influencing the cooling-crystallization process of the granitic melt, and is likely one of the reasons for inconsistence between emplacement ages and crystallization ages of many Meso-Cenozoic granitoids.

  4. Deep mixing of mantle melts beneath continental flood basalt provinces: Constraints from olivine-hosted melt inclusions in primitive magmas

    Science.gov (United States)

    Jennings, Eleanor S.; Gibson, Sally A.; Maclennan, John; Heinonen, Jussi S.

    2017-01-01

    We present major and trace element compositions of 154 re-homogenised olivine-hosted melt inclusions found in primitive rocks (picrites and ferropicrites) from the Mesozoic Paraná-Etendeka and Karoo Continental Flood Basalt (CFB) provinces. The major element compositions of the melt inclusions, especially their Fe/Mg ratios, are variable and erratic, and attributed to the re-homogenisation process during sample preparation. In contrast, the trace element compositions of both the picrite and ferropicrite olivine-hosted melt inclusions are remarkably uniform and closely reflect those of the host whole-rocks, except in a small subset affected by hydrothermal alteration. The Paraná-Etendeka picrites and ferropicrites are petrogenetically related to the more evolved and voluminous flood basalts, and so we propose that compositional homogeneity at the melt inclusion scale implies that the CFB parental mantle melts were well mixed prior to extensive crystallisation. The incompatible trace element homogeneity of olivine-hosted melt inclusions in Paraná-Etendeka and Karoo primitive magmatic rocks has also been identified in other CFB provinces and contrasts with findings from studies of basalts from mid-ocean ridges (e.g. Iceland and FAMOUS on the Mid Atlantic Ridge), where heterogeneity of incompatible trace elements in olivine-hosted melt inclusions is more pronounced. We suggest that the low variability in incompatible trace element contents of olivine-hosted melt inclusions in near-primitive CFB rocks, and also ocean island basalts associated with moderately thick lithosphere (e.g. Hawaii, Galápagos, Samoa), may reflect mixing along their longer transport pathways during ascent and/or a temperature contrast between the liquidus and the liquid when it arrives in the crust. These thermal paths promote mixing of mantle melts prior to their entrapment by growing olivine crystals in crustal magma chambers. Olivine-hosted melt inclusions of ferropicrites from the Paran

  5. Melt-Crystallization and Thermal Decomposition Behaviors of Poly(Vinyl Alcohol) Modified by Vinyl Ester with Long Chain%长链乙烯酯改性聚乙烯醇的熔融结晶与热分解行为

    Institute of Scientific and Technical Information of China (English)

    宋兴; 陈宁; 王琪

    2013-01-01

    In this paper,poly(vinyl alcohol)(PVA) with good physical and mechanical properties as well as good thermal processing properties was prepared by copolymerization of vinyl acetate (VAc) and vinyl ester with long chain (Va) and saponification reaction.The effect of Va content on the melt-crystallization and thermal decomposition behaviors of modified PVA was studied by differential scanning calorimetry (DSC) and thermogravimetric analyzer (TG).The results show that the melting temperature of the modified PVA decreases with the content of Va increasing because the formed long branch chain along the PVA molecules can decrease the structure regularity of PVA and increase its intermolecular distance.The decomposition temperature increases with the content of Va increasing due to its shielding effect on the removal of the adjacent hydroxyl groups in the PVA molecules chain.When the molar fraction of Va is 4 %,the difference between Tm and Td of modified PVA is up to 92.8 ℃,a wide thermal processing window is got,thus the modified PVA can be thermally processed without any plasticizer,and the tensile strength can reach 64.3MPa.%采用少量长链乙烯酯类单体(Va)与醋酸乙烯酯共聚后再醇解的方法制备了兼具聚乙烯醇(PVA)优良物理力学性能且可熔融加工的PVA.采用差示扫描量热法(DSC)、热重分析(TG)研究了共聚单体对PVA熔融结晶行为及热分解行为的影响,结果表明,与少量Va单体共聚在PVA分子链上形成的长链侧基,减小了PVA分子链的结构规整性,增加了PVA相邻分子间的距离,使其结晶能力减小,熔点降低;并可屏蔽相邻羟基间的脱除,使其热分解温度提高;当Va含量为4%时,改性PVA的熔点与分解温度相差达92.8℃,获得较宽的热塑加工窗口,在不添加任何增塑剂的条件下可热塑加工,拉伸强度可达64.3MPa.

  6. Electrical Conductivity of Cryolite Melts

    Science.gov (United States)

    Fellner, P.; Grjotheim, K.; Kvande, H.

    1985-11-01

    This paper proposes an equation for the electrical conductivity of multicomponent cryolite-based mixtures. The equation is based on a physical model which assumes that the conductivity is proportional to the number density of the effective electric charges in the melt. The various authors in the available literature show a great discrepancy in conductivity data of cryolite-based melts. The equation based on the physical model enables determination of which set of data is preferable. Special consideration in this respect is given to the influence of magnesium flouride and lithium flouride additions to the melt.

  7. Primary Ca-rich Carbonate Melts in the Transition Zone

    Science.gov (United States)

    Walter, M.; Bulanova, G.; Armstrong, L.; Keshav, S.; Blundy, J.; Hinton, R.; Lennie, A.

    2007-12-01

    We present new experimental and geochemical constraints on the origin of composite Ca(Ti,Si)O3 and Ca- rich majorite garnet diamond inclusions from Juina kimberlite, Brazil. The evidence reveals that the inclusions did not form as subsolidus minerals, but instead crystallized directly from calcium-rich carbonate melts during crystallization of the host diamond. Subsolidus Phase Relations. We interpret composite CaSiO3 + CaTiO3 inclusions as exsolution products from a single-phase perovskite (Pv) in the transition zone1. The MgSiO3 component in the bulk CaTiSi-Pv is exceedingly low (<0.2 mol%), unlike experimental observations of Ca-Pv coexisting with either majorite-garnet or Mg-Pv (3-7 mol%) in peridotite or eclogite2,3. Indeed, our new subsolidus phase relations show MgSiO3 increasing substantially in Ca-Pv with increasing CaTiO3- content (20-50 GPa, 2000 K). The Ca-content of the majoritic inclusions are exceptionally high (10-15 wt% CaO), also unlike in peridotite or eclogite (< 7%). Unless bizarre mantle lithologies are invoked, subsolidus paragenesis for these inclusions is effectively precluded. Melting Phase Relations. We present new experiments showing that at transition zone depths, primary melts from carbonated eclogite crystallize CaTi-rich perovskites with composition very like the inclusions, and with exceptionally low MgSiO3 (<0.2 mol%). Liquidus majorite is very calcic (10-20 wt% CaO), spanning the range of garnet inclusions. This evidence indicates that the mineral inclusions crystallized from Ca-rich carbonate melts4. Trace Element Modeling. The trace element chemistry of the inclusions as determined using SIMS techniques support a model in which the inclusions equilibrated with small-degree melts. Overall the inclusions are massively enriched in a range of incompatible trace elements, (e.g. 103 to 104 x CI in perovskite). Based on experimental mineral-melt partitioning data, calculated coexisting melts have features inherited from subducted

  8. Behavior of mineral matters in Chinese coal ash melting during char-CO{sub 2}/H{sub 2}O gasification reaction

    Energy Technology Data Exchange (ETDEWEB)

    Xiaojiang Wu; Zhongxiao Zhang; Guilin Piao; Xiang He; Yushuang Chen; Nobusuke Kobayashi; Shigekatsu Mori; Yoshinori Itaya [University of Shanghai for Science & Technology, Shanghai (China). Department of Power Engineering

    2009-05-15

    The typical Chinese coal ash melting behavior during char-CO{sub 2}/H{sub 2}O gasification reaction was studied by using TGA, XRD, and SEM-EDX analysis. It was found that ash melting behavior during char gasification reaction is quite different from that during coal combustion process. Far from the simultaneously ash melting behavior during coal combustion, the initial melting behavior of ash usually occurs at a middle or later stage of char-CO{sub 2}/H{sub 2}O reaction because of endothermic reaction and more reactivity of char gasification reaction as compared with that of mineral melting reactions in ash. In general, the initial melting temperature of ash is as low as 200-300 K below the deformation temperature (T{sub def}) of ash with ASTM test. The initial molten parts in ash are mainly caused by iron bearing minerals such as wustite and iron-rich ferrite phases under gasification condition. Along with the proceeding of ash melting, the melting behavior appears to be accelerated by the presence of calcium to form eutectic mixtures in the FeO-SiO{sub 2}-Al{sub 2}O{sub 3} and CaO-SiO{sub 2}-Al{sub 2}O{sub 3} system. The different states of iron are the dominant reason for different melting behaviors under gasification and combustion conditions. Even under both reducing conditions, the ash fusion temperature (AFT) of coal under char-CO{sub 2} reaction is about 50-100 K lower than that under char-H{sub 2}O reaction condition. The main reason of that is the higher content of CO under char-CO{sub 2} reaction, which can get a lower ratio of Fe{sup 3+}/{Sigma}Fe in NaO-Al{sub 2}O{sub 3}-SiO{sub 2}-FeO melts. 38 refs., 8 figs., 4 tabs.

  9. Crystals in crystals

    DEFF Research Database (Denmark)

    Christensen, Claus H.; Schmidt, I.; Carlsson, A.;

    2005-01-01

    A major factor governing the performance of catalytically active particles supported on a zeolite carrier is the degree of dispersion. It is shown that the introduction of noncrystallographic mesopores into zeolite single crystals (silicalite-1, ZSM-5) may increase the degree of particle dispersion...... of the zeolite particles, particularly after thermal treatment. When using mesoporous zeolites, the particles were evenly distributed throughout the mesopore system of the zeolitic support, even after calcination, leading to nanocrystals within mesoporous zeolite single crystals....

  10. Melt-quenched glasses of metal-organic frameworks

    DEFF Research Database (Denmark)

    Bennett, T.D.; Yue, Yuanzheng; Li, P.

    2016-01-01

    Crystalline solids dominate the field of metal−organic frameworks (MOFs), with access to the liquid and glass states of matter usually prohibited by relatively low temperatures of thermal decomposition. In this work, we give due consideration to framework chemistry and topology to expand the phen......Crystalline solids dominate the field of metal−organic frameworks (MOFs), with access to the liquid and glass states of matter usually prohibited by relatively low temperatures of thermal decomposition. In this work, we give due consideration to framework chemistry and topology to expand...... the phenomenon of the melting of 3D MOFs, linking crystal chemistry to framework melting temperature and kinetic fragility of the glass-forming liquids. Here we show that melting temperatures can be lowered by altering the chemistry of the crystalline MOF state, which provides a route to facilitate the melting...... of other MOFs. The glasses formed upon vitrification are chemically and structurally distinct from the three other existing categories of melt-quenched glasses (inorganic nonmetallic, organic, and metallic), and retain the basic metal−ligand connectivity of crystalline MOFs, which connects their mechanical...

  11. Springer Handbook of Crystal Growth

    CERN Document Server

    Dhanaraj, Govindhan; Prasad, Vishwanath; Dudley, Michael

    2010-01-01

    Over the years, many successful attempts have been made to describe the art and science of crystal growth. Most modern advances in semiconductor and optical devices would not have been possible without the development of many elemental, binary, ternary, and other compound crystals of varying properties and large sizes. The objective of the Springer Handbook of Crystal Growth is to present state-of-the-art knowledge of both bulk and thin-film crystal growth. The goal is to make readers understand the basics of the commonly employed growth processes, materials produced, and defects generated. Almost 100 leading scientists, researchers, and engineers from 22 different countries from academia and industry have been selected to write chapters on the topics of their expertise. They have written 52 chapters on the fundamentals of bulk crystal growth from the melt, solution, and vapor, epitaxial growth, modeling of growth processes and defects, techniques of defect characterization as well as some contemporary specia...

  12. Isothermal Crystallization Kinetics of Palm Oil with Additives

    Directory of Open Access Journals (Sweden)

    N. Su

    2015-04-01

    Full Text Available This study investigates the isothermal crystallization kinetics of palm oil with additives by Differential Scanning Calorimetry (DSC. The induction time of nucleation and crystallization are obtained by simulating the crystal process using the Gompertz model. The equilibrium melting temperature is obtained via the Hoffman-Weeks methods. The Gibbs free energy of nucleation was calculated by using the Fisher-Turnbull equation and the equilibrium melting temperature. The results indicate that the span 85 has an inhibition effect on nucleation and crystallization kinetics of palm oil. The span 85 can raise the equilibrium melting temperature of palm oil. The span 85 can obviously delay the induction time of nucleation and crystallization at 0.01 and 0.1% level. Although span 85 at 0.05% concentration level also can delay the induction time, it exhibits an effect of promoting nucleation. However, the crystal is uncomplicated in the system containing additives compared to the pure palm oil.

  13. Shaped Crystal Growth

    Science.gov (United States)

    Tatartchenko, Vitali A.

    Crystals of specified shape and size (shaped crystals) with controlled crystal growth (SCG) defect and impurity structure have to be grown for the successful development of modern engineering. Since the 1950s many hundreds of papers and patents concerned with shaped growth have been published. In this chapter, we do not try to enumerate the successful applications of shaped growth to different materials but rather to carry out a fundamental physical and mathematical analysis of shaping as well as the peculiarities of shaped crystal structures. Four main techniques, based on which the lateral surface can be shaped without contact with the container walls, are analyzed: the Czochralski technique (CZT), the Verneuil technique (VT), the floating zone technique (FZT), and technique of pulling from shaper (TPS). Modifications of these techniques are analyzed as well. In all these techniques the shape of the melt meniscus is controlled by surface tension forces, i.e., capillary forces, and here they are classified as capillary shaping techniques (CST). We look for conditions under which the crystal growth process in each CST is dynamically stable. Only in this case are all perturbations attenuated and a crystal of constant cross section shaping technique (CST) grown without any special regulation. The dynamic stability theory of the crystal growth process for all CST is developed on the basis of Lyapunov's dynamic stability theory. Lyapunov's equations for the crystal growth processes follow from fundamental laws. The results of the theory allow the choice of stable regimes for crystal growth by all CST as well as special designs of shapers in TPS. SCG experiments by CZT, VT, and FZT are discussed but the main consideration is given to TPS. Shapers not only allow crystal of very complicated cross section to be grown but provide a special distribution of impurities. A history of TPS is provided later in the chapter, because it can only be described after explanation of the

  14. Research and Development of Crystal Purification for Product of Uranium Crystallization Process

    Energy Technology Data Exchange (ETDEWEB)

    Yano, K. [Japan Atomic Energy Agency - JAEA (Japan)

    2009-06-15

    Uranium crystallization has been developed as a part of advanced aqueous reprocessing for FBR spent fuel. Although the purity of uranyl nitrate hexahydrate (UNH) crystal from the crystallization process is supposed to meet a specification of FBR blanket fuel, an improvement of its purity is able to reduce the cost of fuel fabrication and storage (in case interim storage of recovered uranium is required). In this work, UNH crystal purification was developed as additional process after crystallization. Contamination of the crystal is caused by mother solution and solid state impurities. They are inseparable by washing and filtration. Mother solution on the surface of UNH crystals is removable by washing, but it is difficult to remove that in an obstructed part of crystalline aggregate by washing. Major elements of solid state impurities are cesium and barium. Cesium precipitates with tetravalent plutonium as a double nitrate, Cs{sub 2}Pu(NO{sub 3}){sub 6}. Barium crystallizes as Ba(NO{sub 3}){sub 2} because of its low solubility in nitric acid solution. It is difficult to separate their particle from UNH crystal by solid-liquid separation such as simple filtration. As a kind of crystal purification, there are some methods using sweating. Sweating is a phenomenon that a crystal melts partly below its melting point and it is caused by depression of freezing point due to impurity. It is considerably applicable for removal of mother solution. Concerning the solid state impurities, which has higher melting point than that of UNH crystal, it is supposed that they are separable by melting UNH crystal and filtration. The behaviors of impurities and applicability of sweating and melting-filtration operations to the purification for UNH crystal were investigated experimentally on a beaker and an engineering scale. With regard to behaviors of impurities, the conditions of cesium and barium precipitation were surveyed and it was clarified that there were most impurities on the

  15. Nitrogen Control in VIM Melts

    Science.gov (United States)

    Jablonski, P. D.; Hawk, J. A.

    NETL has developed a design and control philosophy for the addition of nitrogen to austenitic and ferritic steels. The design approach uses CALPHAD as the centerpiece to predict the level to which nitrogen is soluble in both the melt and the solid. Applications of this technique have revealed regions of "exclusion" in which the alloy, while within specification limits of prescribed, cannot be made by conventional melt processing. Furthermore, other investigations have found that substantial retrograde solubility of nitrogen exists, which can become problematic during subsequent melt processing and/or other finishing operations such as welding. Additionally, the CALPHAD method has been used to adjust primary melt conditions. To that end, nitrogen additions have been made using chrome nitride, silicon nitride, high-nitrogen ferrochrome as well as nitrogen gas. The advantages and disadvantages of each approach will be discussed and NETL experience in this area will be summarized with respect to steel structure.

  16. On the determination of the equilibrium melting temperature of polybutylene terephthalate (PBT)

    Energy Technology Data Exchange (ETDEWEB)

    Luz, Alexandre P. da; Bretas, Rosario E.S. [Universidade Federal de Sao Carlos (UFSCar), Sao Carlos, SP (Brazil). Dept. de Engenharia de Materiais. Ncleo de Reologia e Processamento de Polimeros]. E-mail: bretas@power.ufscar.br; Marinelli, Alessandra L. [Universidade Federal de Sao Carlos (UFSCar), Sao Carlos, SP (Brazil). Centro de Caracterizacao e Desenvolvimento de Materiais]. E-mail: alucas@ccdm.ufscar.br; Farah, Marcelo [Braskem S.A., Sao Paulo, SP (Brazil)]. E-mail: marcelo.farah@braskem.com.br; Torriani, Iris [Laboratorio Nacional de Luz Sincrotron (LNLS), Campinas (Brazil)]. E-mails: tomas@lnls.br; torriani@lnls.br

    2005-07-01

    In this work, the equilibrium melting temperature, T{sub m}{sup 0}, of a PBT sample using the classical Hoffman-Weeks (H-W) Method and the Method proposed by Marand and Hoffman was evaluated. We also investigated the influence of the pre-melting temperature, T{sub pm}, that is the temperature of the melt prior to the isothermal crystallization, and different rates during the heating DSC scan, on the values of the T{sub m}{sup 0} calculated. The results show that the evaluation of the equilibrium melting temperatures of polymers is quite dependent of the experimental conditions used to crystallize the sample and the method used to evaluate it. (author)

  17. Convective melting in a magma chamber: theory and numerical experiment.

    Science.gov (United States)

    Simakin, A.

    2012-04-01

    We present results of the numerical modeling of convective melting in a magma chamber in 2D. Model was pointed on the silicic system approximated with Qz-Fsp binary undersaturated with water. Viscosity was calculated as a function of the melt composition, temperature and crystal content and comprises for the pure melt 104.5-105.5 Pas. Lower boundary was taken thermally insulated in majority of the runs. Size of FEM (bilinear elements) grid for velocity is 25x25 cm and for the integration of the density term 8x8 cm. Melting of the chamber roof proceeds with the heat supply due to the chaotic thermo-compositional convection and conductive heat loose into melted substrate. We compare our numerical data with existing semi-analytical models. Theoretical studies of the assimilation rates in the magma chambers usually use theoretical semi-analytical model by Huppert and Sparks (1988) (e.g., Snyder, 2000). We find that this model has strong points: 1) Independence of the melting rate on the sill thickness (Ra>>Rac) 2) Independence of the convective heat transfer on the roof temperature 3) Determination of the exponential thermal boundary layer ahead of the melting front and weak points: 1) Ignoring the possibility of the crystallization without melting regime for narrow sills and dykes. 2)Neglecting of two-phase character of convection. 3)Ignoring of the strong viscosity variation near the melting front. Independence of convective flux from the sill size (at Ra>>Rac) allows reducing of computational domain to the geologically small size (10-15 m). Concept of exponential thermal boundary layer is also rather important. Length scale (L0) of this layer is related to the melting rate and thermal diffusivity coefficient kT as L0=kT/um and at the melting rate 10 m/yr becomes about 2 m. Such small scale implies that convective melting is very effective (small conductive heat loss) and part of the numerical domain filled with roof rocks can be taken small. In the H&S model

  18. Laser melting of uranium carbides

    Science.gov (United States)

    Utton, C. A.; De Bruycker, F.; Boboridis, K.; Jardin, R.; Noel, H.; Guéneau, C.; Manara, D.

    2009-03-01

    In the context of the material research aimed at supporting the development of nuclear plants of the fourth Generation, renewed interest has recently arisen in carbide fuels. A profound understanding of the behaviour of nuclear materials in extreme conditions is of prime importance for the analysis of the operation limits of nuclear fuels, and prediction of possible nuclear reactor accidents. In this context, the main goal of the present paper is to demonstrate the feasibility of laser induced melting experiments on stoichiometric uranium carbides; UC, UC1.5 and UC2. Measurements were performed, at temperatures around 3000 K, under a few bars of inert gas in order to minimise vaporisation and oxidation effects, which may occur at these temperatures. Moreover, a recently developed investigation method has been employed, based on in situ analysis of the sample surface reflectivity evolution during melting. Current results, 2781 K for the melting point of UC, 2665 K for the solidus and 2681 K for the liquidus of U2C3, 2754 K for the solidus and 2770 K for the liquidus of UC2, are in fair agreement with early publications where the melting behaviour of uranium carbides was investigated by traditional furnace melting methods. Further information has been obtained in the current research about the non-congruent (solidus-liquidus) melting of certain carbides, which suggest that a solidus-liquidus scheme is followed by higher ratio carbides, possibly even for UC2.

  19. Scaleable Clean Aluminum Melting Systems

    Energy Technology Data Exchange (ETDEWEB)

    Han, Q.; Das, S.K. (Secat, Inc.)

    2008-02-15

    The project entitled 'Scaleable Clean Aluminum Melting Systems' was a Cooperative Research and Development Agreements (CRADAs) between Oak Ridge National Laboratory (ORNL) and Secat Inc. The three-year project was initially funded for the first year and was then canceled due to funding cuts at the DOE headquarters. The limited funds allowed the research team to visit industrial sites and investigate the status of using immersion heaters for aluminum melting applications. Primary concepts were proposed on the design of furnaces using immersion heaters for melting. The proposed project can continue if the funding agency resumes the funds to this research. The objective of this project was to develop and demonstrate integrated, retrofitable technologies for clean melting systems for aluminum in both the Metal Casting and integrated aluminum processing industries. The scope focused on immersion heating coupled with metal circulation systems that provide significant opportunity for energy savings as well as reduction of melt loss in the form of dross. The project aimed at the development and integration of technologies that would enable significant reduction in the energy consumption and environmental impacts of melting aluminum through substitution of immersion heating for the conventional radiant burner methods used in reverberatory furnaces. Specifically, the program would couple heater improvements with furnace modeling that would enable cost-effective retrofits to a range of existing furnace sizes, reducing the economic barrier to application.

  20. MELTS_Excel: A Microsoft Excel-based MELTS interface for research and teaching of magma properties and evolution

    Science.gov (United States)

    Gualda, Guilherme A. R.; Ghiorso, Mark S.

    2015-01-01

    thermodynamic modeling software MELTS is a powerful tool for investigating crystallization and melting in natural magmatic systems. Rhyolite-MELTS is a recalibration of MELTS that better captures the evolution of silicic magmas in the upper crust. The current interface of rhyolite-MELTS, while flexible, can be somewhat cumbersome for the novice. We present a new interface that uses web services consumed by a VBA backend in Microsoft Excel©. The interface is contained within a macro-enabled workbook, where the user can insert the model input information and initiate computations that are executed on a central server at OFM Research. Results of simple calculations are shown immediately within the interface itself. It is also possible to combine a sequence of calculations into an evolutionary path; the user can input starting and ending temperatures and pressures, temperature and pressure steps, and the prevailing oxidation conditions. The program shows partial updates at every step of the computations; at the conclusion of the calculations, a series of data sheets and diagrams are created in a separate workbook, which can be saved independently of the interface. Additionally, the user can specify a grid of temperatures and pressures and calculate a phase diagram showing the conditions at which different phases are present. The interface can be used to apply the rhyolite-MELTS geobarometer. We demonstrate applications of the interface using an example early-erupted Bishop Tuff composition. The interface is simple to use and flexible, but it requires an internet connection. The interface is distributed for free from http://melts.ofm-research.org.

  1. The melt-recrystallization behavior of highly oriented α-iPP fibers embedded in a HIPS matrix.

    Science.gov (United States)

    Ye, Liwei; Li, Huihui; Qiu, Zhaobin; Yan, Shouke

    2015-03-21

    The melt-recrystallization behavior of α-iPP fibers embedded in an amorphous HIPS matrix has been studied by means of optical microscopy. The amorphous HIPS serving as a supporter of iPP fibers does not become involved in the nucleation and crystallization process of the molten highly oriented iPP fibers. It also does not provide any birefringence under the optical microscope with crossed polarizers. This enables the study of orientation-induced β-iPP crystallization through a control of the melting status of the fibers. Through melting the fibers at different temperatures above 175 °C and subsequent recrystallization, some β-iPP crystals were always produced. The content of the β-iPP crystal depends strongly on the melting temperature and melting time of the iPP fibers. It was confirmed that melting the iPP fibers at relatively lower temperature, e.g. 176 °C, less amount of β-iPP crystals were observed. The content of β-iPP crystal enhances first with increasing melting temperature and then decreases with further increase of the fiber melting temperature. The β-iPP crystallization is found to be most favorable upon melting the fibers at 178 °C for 2 min. This demonstrates the requirement of a certain chain or chain segment orientation for generating β-iPP crystallization on the one hand, while higher orientation of the iPP chains or chain segments encourages the growth of iPP crystals in the α-form on the other hand. This has been further confirmed by varying the melting time of the fiber at different temperatures, since relaxation of the iPP molecular chains at a fixed temperature is time dependent. Moreover, the complete transformation of α-iPP fibers in some local places into β-iPP crystals implies that the αβ-transition may not be required for the orientation-induced β-iPP crystallization.

  2. Experimental evidence for flux-lattice melting. [in high-Tc superconductors

    Science.gov (United States)

    Farrell, D. E.; Rice, J. P.; Ginsberg, D. M.

    1991-01-01

    A low-frequency torsional oscillator has been used to search for flux-lattice melting in an untwinned single crystal of YBa2Cu3O(7-delta). The damping of the oscillator was measured as a function of temperature, for applied magnetic fields in the range H = 0.1-2.3 T. A remarkably sharp damping peak has been located. It is suggested that the temperature of the peak corresponds to the melting point of the Abrikosov flux lattice.

  3. Microstructural development of melt-grown mullite fibrils

    Science.gov (United States)

    Baer, Amanda

    The crystallization behavior of mullite growing from the melt within a siliceous glassy phase has been investigated. Initial studies examined single crystal, nominally continuous mullite fibers grown in bundles by directional solidification using a modified version of the Edge-Defined Film-Fed Growth (EFG) process (GE-AE/Saphikon, Inc.). These fibers are intended to be recovered by dissolution of the glass matrix and used as reinforcements of ceramic matrix composites. Subsequent experiments employed small-scale crucible-based solidification experiments conducted at the UCSB Materials Processing Lab. The EFG approach yielded ribbons containing bundles of aligned single-crystal mullite with relatively small diameters embedded in a silicate glass matrix. Because of interactions between the growing crystals, however, the fibers recovered are actually discontinous crystals and hence termed "fibrils." Ribbons were produced from SiOsb2-Alsb2Osb3-MgO melts at solidification rates ranging from 2.5 to 61 cm/h. Typically, mullite fibers grew in the (001) direction and had distinct facets on the \\{110)-type planes. The mullite fibrils exhibited a variety of cross-sectional profiles-including various forms of glass-filled hollows, internal splintering, and lateral dendritic growth-which resulted largely from morphological instability during growth, and thus depended on the alloy composition and solidification parameters. Morphological instabilities became more pronounced with increasing growth velocity. Increasing the MgO content or the Alsb2Osb3/SiOsb2 ratio reduced these instabilities, indicating the role of alloy chemistry in modifying the transport properties in the melt, and hence the ease of solute redistribution. The crucible experiments examined the role of melt chemistry further, paying particular attention to the effects of various modifying additions to the SiOsb2-Alsb2Osb3 melt (MgO, BaO, Nasb2O, and Ksb2O). The choice of modifying oxide had a significant effect

  4. Multi-stage melt-rock interaction in the Mt. Maggiore (Corsica, France) ophiolitic peridotites: microstructural and geochemical evidence

    Science.gov (United States)

    Rampone, Elisabetta; Piccardo, Giovanni B.; Hofmann, Albrecht W.

    2008-10-01

    Spinel and plagioclase peridotites from the Mt.Maggiore (Corsica, France) ophiolitic massif record a composite asthenosphere-lithosphere history of partial melting and subsequent multi-stage melt-rock interaction. Cpx-poor spinel lherzolites are consistent with mantle residues after low-degree fractional melting ( F = 5-10%). Opx + spinel symplectites at the rims of orthopyroxene porphyroclasts indicate post-melting lithospheric cooling ( T = 970-1,100°C); this was followed by formation of olivine embayments within pyroxene porphyroclasts by melt-rock interaction. Enrichment in modal olivine (up to 85 wt%) at constant bulk Mg values, and variable absolute REE contents (at constant LREE/HREE) indicate olivine precipitation and pyroxene dissolution during reactive porous melt flow. This stage occurred at spinel-facies depths, after incorporation of the peridotites in the thermal lithosphere. Plagioclase-enriched peridotites show melt impregnation microtextures, like opx + plag intergrowths replacing exsolved cpx porphyroclasts and interstitial gabbronoritic veinlets. This second melt-rock interaction stage caused systematic chemical changes in clinopyroxene (e.g. Ti, REE, Zr, Y increase), related to the concomitant effects of local melt-rock interaction at decreasing melt mass, and crystallization of small (<3%) trapped melt fractions. LREE depletion in minerals of the gabbronoritic veinlets indicates that the impregnating melts were more depleted than normal MORB. Preserved microtextural evidence of previous melt-rock interaction in the impregnated peridotites suggests that they were progressively uplifted in response to lithosphere extension and thinning. Migrating melts were likely produced by mantle upwelling and melting related to extension; they were modified from olivine-saturated to opx-saturated compositions, and caused different styles of melt-rock interaction (reactive spinel harzburgites, vs. impregnated plagioclase peridotites) depending on the

  5. Crystal science fundamentals

    OpenAIRE

    Ramachandran, V.; Halfpenny, PJ; Roberts, KJ

    2017-01-01

    The fundamentals of crystal science notably crystallography, crystal chemistry, crystal defects, crystal morphology and the surface chemistry of crystals are introduced with particular emphasis on organic crystals.

  6. Crystal Growth and Characterization of Bil3

    Science.gov (United States)

    Hayes, Julia; Chen, Kuo-Tong; Burger, Arnold

    1997-01-01

    Bismuth tri-iodide (BiI3) have been grown by physical vapor transport (PVT), and by the Bridgman (melt) method. These crystals along with pure and stoichiometric BiI3 powder have been investigated by differential scanning calorimetry (DSC). The DSC results show that pure BiI3 powder has no phase transition and melts around 408 C. While we found no evidence for the high temperature dissociation of BiI3, the DSC measurements show that crystals grown from melt method contain a significantly large amount of Bi-rich phases than crystals grown from PVT method, as indicated by phase transition detected at 270, 285, 298 and 336 C.

  7. Methods for Melting Temperature Calculation

    Science.gov (United States)

    Hong, Qi-Jun

    Melting temperature calculation has important applications in the theoretical study of phase diagrams and computational materials screenings. In this thesis, we present two new methods, i.e., the improved Widom's particle insertion method and the small-cell coexistence method, which we developed in order to capture melting temperatures both accurately and quickly. We propose a scheme that drastically improves the efficiency of Widom's particle insertion method by efficiently sampling cavities while calculating the integrals providing the chemical potentials of a physical system. This idea enables us to calculate chemical potentials of liquids directly from first-principles without the help of any reference system, which is necessary in the commonly used thermodynamic integration method. As an example, we apply our scheme, combined with the density functional formalism, to the calculation of the chemical potential of liquid copper. The calculated chemical potential is further used to locate the melting temperature. The calculated results closely agree with experiments. We propose the small-cell coexistence method based on the statistical analysis of small-size coexistence MD simulations. It eliminates the risk of a metastable superheated solid in the fast-heating method, while also significantly reducing the computer cost relative to the traditional large-scale coexistence method. Using empirical potentials, we validate the method and systematically study the finite-size effect on the calculated melting points. The method converges to the exact result in the limit of a large system size. An accuracy within 100 K in melting temperature is usually achieved when the simulation contains more than 100 atoms. DFT examples of Tantalum, high-pressure Sodium, and ionic material NaCl are shown to demonstrate the accuracy and flexibility of the method in its practical applications. The method serves as a promising approach for large-scale automated material screening in which

  8. Eighth-order phase-field-crystal model for two-dimensional crystallization

    OpenAIRE

    Jaatinen, A.; Ala-Nissilä, Tapio

    2010-01-01

    We present a derivation of the recently proposed eighth-order phase-field crystal model [A. Jaatinen et al., Phys. Rev. E 80, 031602 (2009)] for the crystallization of a solid from an undercooled melt. The model is used to study the planar growth of a two-dimensional hexagonal crystal, and the results are compared against similar results from dynamical density functional theory of Marconi and Tarazona, as well as other phase-field crystal models. We find that among the phase-field crystal mod...

  9. Crystallization kinetics in glassy GexSe100 - x

    OpenAIRE

    Goel, S.; Tripathi, S.K.; Kumar, A

    1990-01-01

    Crystallization kinetics of glassy GexSe100 - x system is studied using isothermal technique, i.e., by studying amorphous to crystalline transformation during isothermal annealing at various temperatures between glass transition and melting temperature. DC conductivity is taken a characteristic quantity to measure the extent of crystallization during crystallization process. To calculate the activation energy of crystallization and the order parameter, the data is fitted to the Avrami's equat...

  10. Synthetic and natural Nakhla pyroxenes: Parent melt composition and REE partition coefficients

    Science.gov (United States)

    Mckay, G.; Le, L.; Wagstaff, J.

    1994-01-01

    Nakhla is one of the SNC meteorites, generally believed to be of martian origin. It is composed mainly of cumulus augite, in which primary igneous zoning is apparently preserved, and which serves as a recorder of the composition of Nakhla's parent melt and the conditions under which it crystallized. Knowledge of the composition and petrogenesis of this parent melt may help unravel Nakhla's relationship to the other SNC's, and provide clues to martian petrogenesis in general. This abstract reports new results of an ongoing study in which we are (1) comparing the major and minor element compositions of synthetic pyroxenes crystallized from various proposed parent melt compositions with those in Nakhla pyroxene to constrain the composition of the parent melt, and (2) measuring minor and trace element partition coefficients, particularly those of the REE, in order to obtain the most applicable D values with which to invert the natural pyroxene compositions to obtain the trace element composition of the parent melt. Results suggest that recent estimates of Nakhla's parent melt composition are too aluminous, and that mafic or ultramafic melts are more likely candidates.

  11. Glass melt inclusion in clinopyroxene from Linqu Cenozoic basalt, Shandong Province, China

    Institute of Scientific and Technical Information of China (English)

    ZHANG Hongfu; Eizo Nakamura; ZHANG Jin; Ishikawa Akira

    2006-01-01

    Cenozoic basalts from the Linqu County, Shandong Province, China entrain some clinopyroxene crystals, of which many contain abundant glass melt inclusions. These melt inclusions are extremely irregular in shape with most grain sizes in a range of 10-50 μm and coexist with low-Mg# olivines, labradorites and Ca-rich potassium feldspars. In-situ major and trace element analyses show that the glass melt inclusions are high in alkalis (Na2O+K2O > 10 wt%), SiO2 (>54 wt%), CaO and FeO (>4 wt%), but low in MgO (Mg# < 20), and have LREE enrichments ((Ce/Yb)cn = 11.6-16.4) and apparently positive Eu anomalies (Eu/Eu*>2), thus having phonolitic compositions. The compositional features of clinopyroxene crystals, glass melt inclusions and their coexistent minerals suggest that these melt inclusions were exotic melts in clinopyroxenes trapped prior to their entrainment in the host basalt. The discovery of these melt inclusions provides a new approach to further investigating the evolution of Meso- zoic lithospheric mantle beneath the southeastern North China Craton.

  12. Resonant absorption induced fast melting studied with mid-IR QCLs

    Science.gov (United States)

    Lu, Jie; Lv, Yankun; Ji, Youxin; Tang, Xiaoliang; Qi, Zeming; Li, Liangbin

    2017-02-01

    We demonstrate the use of a pump-probe setup based on two mid-infrared quantum cascade lasers (QCLs) to investigate the melting and crystallization of materials through resonant absorption. A combination of pump and probe beams fulfills the two-color synchronous detection. Furthermore, narrow linewidth advances the accuracy of measurements and the character of broad tuning range of QCLs enables wide applications in various sample and multiple structures. 1-Eicosene was selected as a simple model system to verify the feasibility of this method. A pulsed QCL was tuned to the absorption peak of CH2 bending vibration at 1467 cm-1 to resonantly heat the sample. The other QCL in continuous mode was tuned to 1643 cm-1 corresponding the C=C stretching vibration to follow the fast melting dynamics. By monitoring the transmission intensity variation of pump and probe beams during pump-probe experiments, the resonant absorption induced fast melting and re-crystallization of 1-Eicosene can be studied. Results show that the thermal effect and melting behaviors strongly depend on the pump wavelength (resonant or non-resonant) and energy, as well as the pump time. The realization and detection of melting and recrystallization can be performed in tens of milliseconds, which improves the time resolution of melting process study based on general mid-infrared spectrum by orders of magnitude. The availability of resonant heating and detections based on mid-infrared QCLs is expected to enable new applications in melting study.

  13. Hypermetabolic Conversion of Plant Oil into Water: Endothermic Biochemical Process Stimulated by Juvenile Hormone in the European Firebug, Pyrrhocoris apterus L.

    Science.gov (United States)

    Sláma, Karel; Lukáš, Jan

    2016-01-01

    The physiological and biochemical mechanisms that enable insects to feed on dry food to secure enough water for larval growth were investigated. The study was carried out with a plethora of physiological methods, ranging from the simple volumetric determination of O2 consumption and water intake to more advanced methods such as scanning microrespirography and thermovision imaging of insect’s body temperature. The experiments were done on the European firebug, Pyrrhocoris apterus, which feeds exclusively on dry linden seeds. In order to survive, it needs to drink water or suck a sap from plants occasionally. It was found that the young larval instars compensate the occasional water deficiency by the increased production of metabolic water. The juvenile hormone (JH)-dependent production of metabolic water, which was previously found in other species consuming dry food, was achieved in P. apterus by total metabolic combustion of the dietary lipid (neutral seed oil). The water-producing, hypermetabolic larvae were heated from inside by endothermic energy released from the uncoupling of oxidation from oxidative phosphorylation. The “warm”, hypermetabolic larvae burning the dietary oil into CO2 and water showed the increased rates of respiratory metabolism. Microrespirographic recording of these larvae revealed the ratio of the respiratory quotient (RQ, CO2/O2) of 0.7, which indicated the breakdown of a pure triglyceride. The warm hypermetabolic larvae could be easily spotted and distinguished from the “cold” larvae on the screen of a thermovision camera. The last instar larvae lacking the JH were always only cold. They metabolized a carbohydrate substrate exclusively (RQ = 1.0), while the dietary lipid was stored in the fat body. In comparison with the hypermetabolic larvae of some other species fed on dry food, which exhibited the highest rates of O2 consumption ever recorded in a living organism (10–20 mL O2/g per hour), the metabolic difference between

  14. High-pressure phases in shock-induced melt of the unique highly shocked LL6 chondrite Northwest Africa 757

    Science.gov (United States)

    Hu, Jinping; Sharp, Thomas G.

    2016-07-01

    Northwest Africa 757 is unique in the LL chondrite group because of its abundant shock-induced melt and high-pressure minerals. Olivine fragments entrained in the melt transform partially and completely into ringwoodite. Plagioclase and Ca-phosphate transform to maskelynite, lingunite, and tuite. Two distinct shock-melt crystallization assemblages were studied by FIB-TEM analysis. The first melt assemblage, which includes majoritic garnet, ringwoodite plus magnetite-magnesiowüstite, crystallized at pressures of 20-25 GPa. The other melt assemblage, which consists of clinopyroxene and wadsleyite, solidified at ~15 GPa, suggesting a second veining event under lower pressure conditions. These shock features are similar to those in S6 L chondrites and indicate that NWA 757 experienced an intense impact event, comparable to the impact event that disrupted the L chondrite parent body at 470 Ma.

  15. Rock species formation due to deep-mantle melting

    Science.gov (United States)

    Fomin, Ilya; Tackley, Paul

    2017-04-01

    Melting and melting migration are processes leading to chemically distinct rock species from a homogeneous substrate in the Earth mantle. Iron-rich melts and corresponding rock species are proposed to result from magma ocean progressive crystallization [Labrosse et al., 2007], and modern geophysical models of ULVZ (e.g. [Beuchert & Schmeling, 2013]) discuss their presence at around the CMB today. We perform long-term (tens of millions of years) numerical simulations of the Earth's mantle for a plausible range of CMB temperatures to understands the possibility of melting and it's consequences. Our model of melting is based on experimental data and ab initio simulations. Physical properties (liquid-solid density differences) are adjusted with data of [de Koker et al., 2013; Mosenfelder et al., 2007; Stixrude & Lithgow-Bertelloni, 2011; Thomas & Asimow, 2013]. This model is included in StagYY numerical code (e.g. [Tackley, 2008]) to simulate mass and thermal fluxes within the Earth mantle. Melt segregation (rocks' permeability and velocities) is considered using equations listed in [Abe, 1995; Solomatov, Stevenson, 1993; Martin & Nokes, 1989]. Thermal effects (adiabatic heating and viscous dissipation) are considered. Viscous dissipation term includes Darcy flux term, but omits highly non-linear Brinkman contribution [Nield, 2007]. Modeling predicts formation of melt if temperature at CMB exceeds 4000-4050K. It's segregation and reequilibration results in sufficient volumes of slightly iron-enriched melt lighter than solid counterpart and moving upward. However, it's propagation is strongly controlled by temperature. Partial melting atop the molten layer results in formation of refractory iron-poor restite which delaminates and sink down, so that a layer of iron-depleted material forms underneath the molten layer. Our model applied to homogeneous pyrolitic mantle results in formation of layers of iron-depleted material with average FeO around 4.6 mol.% and iron

  16. Melt segregation in the Muroto Gabbroic Intrusion, Cape Muroto - Japan

    Science.gov (United States)

    Floess, David; Caricchi, Luca; Wallis, Simon

    2014-05-01

    Melt segregation is a crucial process in igneous petrology and is commonly used to explain characteristic geochemical trends of magmatic rocks (e.g. Brophy 1991), as well as the accumulation of large amounts of eruptible magma (e.g. Bachmann & Bergantz, 2008). In order to gain further insight into the physical processes behind melt segregation we investigated a small-scale, natural setting. The Miocene Muroto Gabbroic Intrusion (MGI) is a 230m thick, layered sill located at Cape Muroto (Shikoku Island - Japan; Yoshizawa, 1953). It was rotated into a near-vertical (~70°) orientation after horizontal emplacement, allowing for easy sampling of the entire sill from bottom to top. We collected ~70 oriented samples for petrographic and geochemical analysis, as well as for structural analysis using Anisotropy of Magnetic Susceptibility (AMS). A well-defined horizon (zone I) between 50 and 125m from the bottom shows spectacular evidence for the segregation of felsic melts from the mafic mush (Hoshide et al. 2006). Individual, cm- to m-sized, anorthositic melt lenses mainly consist of plagioclase laths with minor cpx. Small diapirs emanate from the melt lenses and clearly indicate the paleo-upward direction of the sill. Zone I is overlaid by a coarse-grained gabbro (zone II) with cm-sized crystals of plag+cpx and no anorthositic segregations can be found. The MGI grades into fine-grained dolerite towards the top and bottom margins of the sill. We modeled the phase relations of a representative MGI gabbro composition (chilled margin) upon cooling using MELTS (Gualda et al. 2012). Extracted physical parameters (i.e. melt and solid densities, melt viscosity) were used as a proxy for melt mobility (Sakamaki et al. 2013). The temporal and spatial evolution of melt mobility within the sill was investigated using the temperature-time curve obtained through a thermal model for the MGI. We observed several peaks for the melt mobility, implying zones of melt drainage (when mobility

  17. Growth of phase-pure, crack-free single crystals and large-grained polycrystals of molybdenum disilicide

    Science.gov (United States)

    Rossetti, M.

    1970-01-01

    High purity molybdenum disilicide crystals are prepared by zone melting sintered compacts. This method yields single crystals or polycrystals free from macrocracks which allow better measurement and evaluation of mechanical properties.

  18. Selection of excipients for melt extrusion with two poorly water-soluble drugs by solubility parameter calculation and thermal analysis.

    Science.gov (United States)

    Forster, A; Hempenstall, J; Tucker, I; Rades, T

    2001-09-11

    The aim of this study was to determine the miscibility of drug and excipient to predict if glass solutions are likely to form when drug and excipient are melt extruded. Two poorly water-soluble drugs, indomethacin and lacidipine, were selected along with 11 excipients (polymeric and non-polymeric). Estimation of drug/excipient miscibility was performed using a combination of the Hoy and Hoftzyer/Van Krevelen methods for Hansen solubility parameter calculation. Miscibility was experimentally investigated with differential scanning calorimetry (DSC) and hot stage microscopy (HSM). Studies were performed at drug/excipient ratios, 1:4, 1:1 and 4:1. Analysis of the glass transition temperature (T(g)) was performed by quench cooling drug/excipient melts in the DSC. Differences in the drug/excipient solubility parameters of 10 MPa(1/2) were expected to indicate a lack of miscibility and not form glass solutions when melt extruded. Experimentally, miscibility was shown by changes in drug/excipient melting endotherms and confirmed by HSM investigations. Experimental results were in agreement with solubility parameter predictions. In addition, drug/excipient combinations predicted to be largely immiscible often exhibited more than one T(g) upon reheating in the DSC. Melt extrusion of miscible components resulted in amorphous solid solution formation, whereas extrusion of an "immiscible" component led to amorphous drug dispersed in crystalline excipient. In conclusion, combining calculation of Hansen solubility parameters with thermal analysis of drug/excipient miscibility can be successfully applied to predict formation of glass solutions with melt extrusion.

  19. Optical and Electrical Characterization of Melt-Grown Bulk Indium Gallium Arsenide and Indium Arsenic Phosphide Alloys

    Science.gov (United States)

    2011-03-01

    constant match and mismatch effects on the quality of crystal. Bulk crystal growth typically uses the Czochralski Method (melt). In this method , a...deviation and Michelson Fabry-Perot interferometry methods . The measured results of refractive indices, transport properties, bandgap energies, and...exhibit some random compositional fluctuations across the sample. A practical method of extracting bandgap energies directly from the FTIR

  20. Twisted aspirin crystals.

    Science.gov (United States)

    Cui, Xiaoyan; Rohl, Andrew L; Shtukenberg, Alexander; Kahr, Bart

    2013-03-06

    Banded spherulites of aspirin have been crystallized from the melt in the presence of salicylic acid either generated from aspirin decomposition or added deliberately (2.6-35.9 mol %). Scanning electron microscopy, X-ray diffraction analysis, and optical polarimetry show that the spherulites are composed of helicoidal crystallites twisted along the growth directions. Mueller matrix imaging reveals radial oscillations in not only linear birefringence, but also circular birefringence, whose origin is explained through slight (∼1.3°) but systematic splaying of individual lamellae in the film. Strain associated with the replacement of aspirin molecules by salicylic acid molecules in the crystal structure is computed to be large enough to work as the driving force for the twisting of crystallites.

  1. Experimental constraints on melting temperatures in the MgO-SiO2 system at lower mantle pressures

    Science.gov (United States)

    Baron, Marzena A.; Lord, Oliver T.; Myhill, Robert; Thomson, Andrew R.; Wang, Weiwei; Trønnes, Reidar G.; Walter, Michael J.

    2017-08-01

    Eutectic melting curves in the system MgO-SiO2 have been experimentally determined at lower mantle pressures using laser-heated diamond anvil cell (LH-DAC) techniques. We investigated eutectic melting of bridgmanite plus periclase in the MgO-MgSiO3 binary, and melting of bridgmanite plus stishovite in the MgSiO3-SiO2 binary, as analogues for natural peridotite and basalt, respectively. The melting curve of model basalt occurs at lower temperatures, has a shallower dT / dP slope and slightly less curvature than the model peridotitic melting curve. Overall, melting temperatures detected in this study are in good agreement with previous experiments and ab initio simulations at ∼25 GPa (Liebske and Frost, 2012; de Koker et al., 2013). However, at higher pressures the measured eutectic melting curves are systematically lower in temperature than curves extrapolated on the basis of thermodynamic modelling of low-pressure experimental data, and those calculated from atomistic simulations. We find that our data are inconsistent with previously computed melting temperatures and melt thermodynamic properties of the SiO2 endmember, and indicate a maximum in short-range ordering in MgO-SiO2 melts close to Mg2SiO4 composition. The curvature of the model peridotite eutectic relative to an MgSiO3 melt adiabat indicates that crystallization in a global magma ocean would begin at ∼100 GPa rather than at the bottom of the mantle, allowing for an early basal melt layer. The model peridotite melting curve lies ∼ 500 K above the mantle geotherm at the core-mantle boundary, indicating that it will not be molten unless the addition of other components reduces the solidus sufficiently. The model basalt melting curve intersects the geotherm at the base of the mantle, and partial melting of subducted oceanic crust is expected.

  2. Containerless solidification of undercooled SrO-Al2O3 binary melts.

    Science.gov (United States)

    Kato, Katsuyoshi; Masuno, Atsunobu; Inoue, Hiroyuki

    2015-03-07

    The solidification of the SrO-Al2O3 binary system was investigated under containerless conditions using an aerodynamic levitation furnace. Glass formation was observed in compositions with 35-45 mol% SrO and 55-75 mol% SrO. Cooling curves were obtained at a constant cooling rate in the range of 1-1000 °C s(-1). The crystallization temperature was apparently independent of the cooling rate and far below the melting point when the sample was fully crystallized, whereas it decreased when the sample was partially crystallized. The difference between the crystallization temperature and the melting point under containerless conditions is considered a good measure of the glass-forming ability when there is not much difference in the critical cooling rates between the melt compositions. Furthermore, the homogeneous nucleation theory suggests that the apparent time-independent crystallization temperature is attributed to the high glass-forming ability of the SrO-Al2O3 binary system. The results suggest that the experimentally obtained continuous cooling transformation diagrams under containerless conditions provide new insights regarding solidification from an undercooled melt.

  3. Controlled growth of semiconductor crystals

    Science.gov (United States)

    Bourret-Courchesne, Edith D.

    1992-01-01

    A method for growth of III-V, II-VI and related semiconductor single crystals that suppresses random nucleation and sticking of the semiconductor melt at the crucible walls. Small pieces of an oxide of boron B.sub.x O.sub.y are dispersed throughout the comminuted solid semiconductor charge in the crucible, with the oxide of boron preferably having water content of at least 600 ppm. The crucible temperature is first raised to a temperature greater than the melt temperature T.sub.m1 of the oxide of boron (T.sub.m1 =723.degree. K. for boron oxide B.sub.2 O.sub.3), and the oxide of boron is allowed to melt and form a reasonably uniform liquid layer between the crucible walls and bottom surfaces and the still-solid semiconductor charge. The temperature is then raised to approximately the melt temperature T.sub.m2 of the semiconductor charge material, and crystal growth proceeds by a liquid encapsulated, vertical gradient freeze process. About half of the crystals grown have a dislocation density of less than 1000/cm.sup.2. If the oxide of boron has water content less than 600 ppm, the crucible material should include boron nitride, a layer of the inner surface of the crucible should be oxidized before the oxide of boron in the crucible charge is melted, and the sum of thicknesses of the solid boron oxide layer and liquid boron oxide layer should be at least 50 .mu.m.

  4. [The applicability of sucrose laurate in hot-melt technology].

    Science.gov (United States)

    Lang, Péter; Szuts, Angéla; Ambrus, Rita; Szabóné, Révész Piroska

    2011-01-01

    Nowadays, one of the most important task of the pharmaceutical technology is to optimize the dissolution of active ingredients, because most of the drug candidates have a poorly water solubility and hence a slow absorption. According to the latest examinations, the bioavailability of poorly water soluble drugs can be increased significantly by using surfactants or the mixture of surfactants and polymers. Nowadays, surfactants (like polysorbates) are generally used in the production of solid dispersions, so the use of surface-active sucrose esters can be resulted an innovative solution in the pharmaceutical technology. The aim of our investigation was to examine the applicability of sucrose laurate in hot-melt technology in order to influence the crystalline structure and dissolution rate of a poorly water soluble drug (gemfibrosil) having low-melting point. The results of the X-ray powder diffractometry have showed that the sucrose laurate had no significant effect on the crystallization degree of the drug which is important in case of the stability. On the bases of the results of in-vitro dissolution studies, it can be concluded that the sucrose laurate (using minimum 5%) can be well applied in hot-melt technology with carriers having characteristic melting point (e.g. Macrogol) to increase the dissolution rate of poorly soluble drugs.

  5. Anisotropic shear melting and recrystallization of a two-dimensional complex plasma.

    Science.gov (United States)

    Nosenko, V; Ivlev, A V; Morfill, G E

    2013-04-01

    A two-dimensional plasma crystal was melted by suddenly applying localized shear stress. A stripe of particles in the crystal was pushed by the radiation pressure force of a laser beam. We found that the response of the plasma crystal to stress and the eventual shear melting depended strongly on the crystal's angular orientation relative to the laser beam. Shear stress and strain rate were measured, from which the spatially resolved shear viscosity was calculated. The latter was shown to have minima in the regions with highest strain rate, thus demonstrating shear thinning. Shear-induced reordering was observed in the steady-state flow, where particles formed strings aligned in the flow direction.

  6. Energy model for the Zr-based metallic glass alloy melt with clusters

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    An energy model for the melt of bulk metallic glass (BMG) with clusters was estab- lished, the Gibbs free energy and interfacial energy for the Zr-Al-Ni ternary alloy melt with Zr2Ni clusters were calculated, and the effects of the clusters on the Gibbs free energy, interfacial energy and nucleation rate were analyzed. The results showed that the existence of the clusters in the Zr-Al-Ni ternary alloy melt enables the Gibbs free energy to decrease in the composition range where bulk metallic glass forms easily, makes the interfacial energy increase and changes the distribu- tion of the interfacial energy with the alloy composition. Because of the clusters in the melt, the Gibbs free energy of the Zr66Al8Ni26 alloy melt decreases about 0.3-1 kJ/mol and the interfacial energy between the melt and crystal nucleus increases about 0.016 J/m2. The nucleation rate of the undercooled Zr66Al8Ni26 alloy melt de- creases evidently under the influence of the clusters on Gibbs free energy and the interfacial energy, and the maximum of the nucleation rate in the melt with the Zr2Ni clusters is only about 107 mol1s1.

  7. Investigation of molybdate melts as an alternative method of reprocessing used nuclear fuel

    Science.gov (United States)

    Hames, Amber L.; Tkac, Peter; Paulenova, Alena; Willit, James L.; Williamson, Mark A.

    2017-04-01

    An investigation of molybdate melts containing sodium molybdate (Na2MoO4) and molybdenum trioxide (MoO3) to achieve the separation of uranium from fission products by crystallization has been performed. The separation is based on the difference in solubility of the fission product metal oxides compared to the uranium oxide or molybdate in the molybdate melt. The molybdate melt dissolves uranium dioxide at high temperatures, and upon cooling, uranium precipitates as uranium dioxide or molybdate, whereas the fission product metals remain soluble in the melt. Small-scale experiments using gram quantities of uranium dioxide have been performed to investigate the feasibility of UO2 purification from the fission products. The composition of the uranium precipitate as well as data for partitioning of several fission product surrogates between the uranium precipitate and molybdate melt for various melt compositions are presented and discussed. The fission products Cs, Sr, Ru and Rh all displayed very large distribution ratios. The fission products Zr, Pd, and the lanthanides also displayed good distribution ratios (D > 10). A melt consisting of 20 wt% MoO3- 50 wt% Na2MoO4-30 wt% UO2 heated to 1313 K and cooled to 1123 K for the physical separation of the UO2 product from the melt, and washed once with Na2MoO4 displays optimum conditions for separation of the UO2 from the fission products.

  8. Energy model for the Zr-based metallic glass alloy melt with clusters

    Institute of Scientific and Technical Information of China (English)

    YANG YuanSheng; LI HuiQiang; TONG WenHui

    2007-01-01

    An energy model for the melt of bulk metallic glass (BMG) with clusters was established, the Gibbs free energy and interfacial energy for the Zr-Al-Ni ternary alloy melt with Zr2Ni clusters were calculated, and the effects of the clusters on the Gibbs free energy, interfacial energy and nucleation rate were analyzed. The results showed that the existence of the clusters in the Zr-Al-Ni ternary alloy melt enables the Gibbs free energy to decrease in the composition range where bulk metallic glass forms easily, makes the interfacial energy increase and changes the distribution of the interfacial energy with the alloy composition. Because of the clusters in the melt, the Gibbs free energy of the Zr66Al8Ni26 alloy melt decreases about 0.3-1 kJ/mol and the interfacial energy between the melt and crystal nucleus increases about 0.016 J/m2. The nucleation rate of the undercooled Zr66Al8Ni26 alloy melt decreases evidently under the influence of the clusters on Gibbs free energy and the interfacial energy, and the maximum of the nucleation rate in the melt with the Zr2Ni clusters is only about 107 mol-1·s-1.

  9. Crystallization in Emulsions: A Thermo-Optical Method to Determine Single Crystallization Events in Droplet Clusters

    Directory of Open Access Journals (Sweden)

    Serghei Abramov

    2016-08-01

    Full Text Available Delivery systems with a solid dispersed phase can be produced in a melt emulsification process. For this, dispersed particles are melted, disrupted, and crystallized in a liquid continuous phase (melt emulsification. Different to bulk crystallization, droplets in oil-in-water emulsions show individual crystallization behavior, which differs from droplet to droplet. Therefore, emulsion droplets may form liquid, amorphous, and crystalline structures during the crystallization process. The resulting particle size, shape, and physical state influence the application properties of these colloidal systems and have to be known in formulation research. To characterize crystallization behavior of single droplets in micro emulsions (range 1 µm to several hundred µm, a direct thermo-optical method was developed. It allows simultaneous determination of size, size distribution, and morphology of single droplets within droplet clusters. As it is also possible to differentiate between liquid, amorphous, and crystalline structures, we introduce a crystallization index, CIi, in dispersions with a crystalline dispersed phase. Application of the thermo-optical approach on hexadecane-in-water model emulsion showed the ability of the method to detect single crystallization events of droplets within emulsion clusters, providing detailed information about crystallization processes in dispersions.

  10. Lunar highland meteorite Dhofar 026 and Apollo sample 15418: Two strongly shocked, partially melted, granulitic breccias

    Science.gov (United States)

    Cohen, B. A.; James, O.B.; Taylor, L.A.; Nazarov, M.A.; Barsukova, L.D.

    2004-01-01

    Studies of lunar meteorite Dhofar 026, and comparison to Apollo sample 15418, indicate that Dhofar 026 is a strongly shocked granulitic breccia (or a fragmental breccia consisting almost entirely of granulitic breccia clasts) that experienced considerable post-shock heating, probably as a result of diffusion of heat into the rock from an external, hotter source. The shock converted plagioclase to maskelynite, indicating that the shock pressure was between 30 and 45 GPa. The post-shock heating raised the rock's temperature to about 1200 ??C; as a result, the maskelynite devitrified, and extensive partial melting took place. The melting was concentrated in pyroxene-rich areas; all pyroxene melted. As the rock cooled, the partial melts crystallized with fine-grained, subophitic-poikilitic textures. Sample 15418 is a strongly shocked granulitic breccia that had a similar history, but evidence for this history is better preserved than in Dhofar 026. The fact that Dhofar 026 was previously interpreted as an impact melt breccia underscores the importance of detailed petrographic study in interpretation of lunar rocks that have complex textures. The name "impact melt" has, in past studies, been applied only to rocks in which the melt fraction formed by shock-induced total fusion. Recently, however, this name has also been applied to rocks containing melt formed by heating of the rocks by conductive heat transfer, assuming that impact is the ultimate source of the heat. We urge that the name "impact melt" be restricted to rocks in which the bulk of the melt formed by shock-induced fusion to avoid confusion engendered by applying the same name to rocks melted by different processes. ?? Meteoritical Society, 2004.

  11. Post-emplacement melt-flow as a feasible mechanism for reversed differentiation in tholeiitic sills

    Science.gov (United States)

    Aarnes, I.; Podladchikov, Y. Y.; Neumann, E.-R.; Galerne, C.

    2009-04-01

    This study provides a new explanation model for differentiation in sills, using a combination of geochemical data and field observations, numerical modeling and dimensional analysis. Geochemical data from a saucer-shaped dolerite sill intruded into the Karoo basin, South Africa reveal a process which causes reversed differentiation. The differentiation process is identified by D-shaped geochemical profiles. The notation is based on the vertical expression of whole-rock Mg-number (Mg# = 100*Mg/(Mg+Fetotal)) with the most primitive composition (i.e. high Mg#) in its center, and progressively more evolved composition (i.e. low Mg#) towards the upper and lower margins. Normal differentiation by fractional crystallization is known to produce C-shaped profiles (in terms of Mg# variations), as for example in the Skaergaard Intrusion. From a detailed field study of a saucer-shaped sill complex in the Karoo Basin, South Africa, we observe several different shapes (e.g. S, D and I) occurring within one sill. However, the C-shape is practically absent and hence fractional crystallization with double layer diffusion cannot be the main mechanism for differentiation in sheet intrusions. Several models have been proposed for the formation of D-shaped profiles, such as crystal settling and convection, multiple injections, flow differentiation, compositional convection, or Soret fractionation in combination with in situ crystallization. There is however no general agreement of one particular model, as they pose difficulties explaining all occurrences of D-shaped profiles. Based on numerical modeling we introduce post-emplacement flow as a feasible mechanism to explain the D-shaped profiles. A melt-flow can cause magmatic differentiation in the sill by transporting incompatible and less compatible elements associated with the melt phase (e.g. Zr and Fe) in an advective process through a stationary crystal network. Crystal networks of considerable strength are known to form in the

  12. Magnetic Biocomposites for Remote Melting.

    Science.gov (United States)

    Zhou, Mengbo; Liebert, Tim; Müller, Robert; Dellith, Andrea; Gräfe, Christine; Clement, Joachim H; Heinze, Thomas

    2015-08-10

    A new approach toward the fabrication of biocompatible composites suitable for remote melting is presented. It is shown that magnetite nanoparticles (MNP) can be embedded into a matrix of biocompatible thermoplastic dextran esters. For that purpose, fatty acid esters of dextran with adjustable melting points in the range of 30-140 °C were synthesized. Esterification of the polysaccharide by activation of the acid as iminium chlorides guaranteed mild reaction conditions leading to high quality products as confirmed by FTIR- and NMR spectroscopy as well as by gel permeation chromatography (GPC). A method for the preparation of magnetically responsive bionanocomposites was developed consisting of combined dissolution/suspension of the dextran ester and hydrophobized MNPs in an organic solvent followed by homogenization with ultrasonication, casting of the solution, drying and melting of the composite for a defined shaping. This process leads to a uniform distribution of MNPs in nanocomposite as revealed by scanning electron microscope. Samples of different geometries were exposed to high frequency alternating magnetic field. It could be shown that defined remote melting of such biocompatible nanocomposites is possible for the first time. This may lead to a new class of magnetic remote control systems, which are suitable for controlled release applications or self-healing materials.

  13. UNCONSTRAINED MELTING AND SOLIDIFICATION INSIDE ...

    African Journals Online (AJOL)

    2015-09-01

    Sep 1, 2015 ... Department of Mechanical Engineering, Sari Branch, Islamic Azad University, ... at initial time of melting process where the layer of liquid PCM near hot ... They carried out the simulation at different Rayleigh numbers ranging from 10 .... An enthalpy-porosity technique [28] is used in FLUENT for modeling the.

  14. Thermodynamics of freezing and melting

    DEFF Research Database (Denmark)

    Pedersen, Ulf Rørbæk; Costigliola, Lorenzo; Bailey, Nicholas

    2016-01-01

    phases at a single thermodynamic state point provide the basis for calculating the pressure, density and entropy of fusion as functions of temperature along the melting line, as well as the variation along this line of the reduced crystalline vibrational mean-square displacement (the Lindemann ratio...

  15. Structure and Mössbauer Analysis of Melt-Spun Fe-Pd Ribbons Containing Ni and Co

    Directory of Open Access Journals (Sweden)

    Hanen Rekik

    2015-06-01

    Full Text Available Fe68.45Pd28.21Co1.66Ni1.66 alloy in ribbon geometry was produced by melt spinning. The microstructure of the samples was examined using scanning electron microscopy. The structural identification of the as-spun ribbon sample and the annealed ones was performed by means of X-ray diffraction. All the Bragg peaks were indexed based on an fcc type structure of (γ-Fe, Pd phase with a lattice parameter a = 3.742 (3 Å. This result was proved by Mössbauer technique. The annealed ribbon at 600 °C shows an L10 ordered fct structure. An endothermic reaction at T = 358 °C followed by an exothermic one at 390 °C were observed on heating. These reactions were attributed to the Curie temperature of nickel and to the annihilation of an excess of quenched-in vacancies, respectively.

  16. 熔融织构YBa2Cu3O7-δ晶体中磁通涡旋锁定转变反常行为研究∗%Abnormal b ehaviors in lo ck-in transition of the vortices in melt textured growth of YBa2Cu3O7-δ crystals

    Institute of Scientific and Technical Information of China (English)

    吴董杰; 徐克西; 唐天威

    2016-01-01

    The magnetization behavior of the layered anisotropic high-Tc superconductor in the mixed state Hc1 In this paper, we systematically measure the magne